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Introduction

The period from the late fourth to the late second century B.C. witnessed,
in Greek-speaking countries, an explosion of objective knowledge about
the external world. While Greek culture had reached great heights in art,
literature and philosophy already in the earlier classical era, it is in the
so-called Hellenistic period that we see for the first time — anywhere in
the world — the appearance of science as we understand it now: not an
accumulation of facts or philosophically based speculations, but an orga-
nized effort to model nature and apply such models, or scientific theories in
a sense we will make precise, to the solution of practical problems and to a
growing understanding of nature. We owe this new approach to scientists
such as Archimedes, Euclid, Eratosthenes and many others less familiar
today but no less remarkable.

Yet, not long after this golden period, much of this extraordinary devel-
opment had been reversed. Rome borrowed what it was capable of from
the Greeks and kept it for a little while yet, but created very little science of
its own. Europe was soon smothered in the obscurantism and stasis that
blocked most avenues of intellectual development for a thousand years —
until, as is well known, the rediscovery of ancient culture in its fullness
paved the way to the modern age.

What were the landmarks in the meteoric rise of science 2300 years ago?
Why are they so little known today, even among scientists, classicists and
historians? How to they relate to the post-1500 science that we’re familiar
with from school? What led to the end of ancient science? These are the
questions that this book discusses, in the belief that the answers bear on
choices we face today.
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This is so for several reasons. A better understanding of ancient science
and how it relates to its modern counterpart can shed light on the inter-
nal structure of science, on its links to technology and other aspects of
modern civilization, and on the origins of, and possible remedies for, the
contemporary rift between the humanistic and scientific worlds. But what
makes ancient science an even more relevant topic, and at the same time
helps explain the low esteem in which it has been held in the last two
centuries, is its tragic end. The naïve idea that progress is a one-way flow
automatically powered by scientific development could never have taken
hold, as it did during the 1800s, if the ancient defeat of science had not
been forgotten. Today such dangerous illusions no longer prevail abso-
lutely, and we may have a chance to learn from the lessons of the past.
Those who engage in defending scientific rationality against the waves
that buffet it from many directions would do well to be forearmed with
the awareness that this is a battle that was lost once, with consequences
that affected every aspect of civilization for a thousand years and more.

Another reason to delve into Hellenistic science is historical. As we shall
argue, the rise of the scientific method was part of a more general trend:
roughly speaking, in Hellenistic times the creation of culture became a
conscious act. Not only do we see physicians conducting controlled ex-
periments, scientists using mathematics and mechanics to build better
weapons, painters applying geometry to their art, but even the notion
of language changes: poetry becomes a playground for experimentation,
while words are consciously assigned precise new meanings in technical
fields, a procedure that would not become familiar again until the nine-
teenth century. The material component of prescientific societies is largely
defined by their technology; but once technology starts to be consciously
developed through science, the two become inseparable, and science takes
on a vital role, down to the very way a society sees itself.

In sum, an appreciation of the original scientific revolution is essential for
the understanding of Hellenistic civilization; in turn, the role it played in
that civilization can help us better analyze key historical questions, such as
Rome’s legacy, the causes of urban and technological decline in the Middle
Ages, and the origins, features and limitations of what is called the early
modern scientific renaissance. In this sense the subject of this book is not so
much History of Science as simply History — “history via science”, so to
speak, just as one may study history through the “material civilization”,
or through literature, or, more traditionally, though a political and military
lens. In the case of the Hellenistic period and its aftermath, the approach
via science and technology seems to me particularly fruitful.
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Reader’s Advisory

The reader who peruses the Table of Contents will notice that the book
weaves together many threads, offering general formulations but also a
wealth of examples. That the subject matter overlaps with so many dis-
tinct specialties means there is no hope of giving a complete picture of the
literature. Therefore the bibliography’s 340 works fall roughly into two
types: on the one hand, many of the articles and books of twentieth- and
nineteenth-century scholarship I have drawn on, and which I feel are most
important or helpful — sometimes as an entry point to the bibliography
on a specific subject. On the other hand, the goal of some citations and
references is to illustrate a widespread opinion; in those cases the choice
is not necessarily of the best works, but of the most popular and therefore
most representative. Several of these are encyclopedic works.

Citations of works in the bibliography are given in brackets, together
with page numbers (sometimes for multiple editions; or else an edition-
invariant method of location may be used instead).

The 200 or so ancient texts referred to, plus another hundred medieval
and early modern works, are collected in a separate List of Passages, where
the reader unfamiliar with the conventions of classicists may turn for ad-
ditional help. Both in that list and in the text, the references are as explicit
as possible, often including both the chapter/section number and (as the
first not otherwise marked arabic numeral) the page number in the ref-
erence edition. Although “Plato, Republic, VI, 510c” will easily be found
in any edition or translation, since they all correlate with the reference
edition (Henri Estienne, Geneva, 1578), the situation for many other texts
is not so neatly standardized. In such cases, at the cost of perhaps being
thought too fussy, I have felt it better to spell out the edition to which the
page numbers refer, or to offer in other ways what to a specialist might be
redundant information.

All chapters and sections are interconnected, and not as independent
as their titles might suggest. The reader who chooses to dip into the text
here and there will be in turn informed, challenged to reflection, occa-
sionally amused or amazed, perhaps infuriated; but for the full benefit of
logical argumentation, the book is best read sequentially. Nevertheless, a
comprehensive subject index and a network of cross-references will help
those who are primarily interested in a particular topic.
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1
The Birth of Science

1.1 The Erasure of the Scientific Revolution

Given the central and widely recognized role science plays in our civi-
lization, one might think that the birth of science would be regarded as a
crucial juncture in human history. Instead, its importance is almost never
perceived. Histories of scientific thought tend to obscure the revolutionary
state of knowledge in the age of Archimedes — the Hellenistic period —
toning down the differences between it, the natural philosophy of clas-
sical Greece two centuries earlier, and even the prescientific knowledge
of ancient Egypt and Mesopotamia. The omission is even more glaring
in histories of Antiquity: one can typically find more information about
Archimedes or Aristarchus of Samos in a book about the Renaissance, in
connection with their rediscovery, than in a work on classical civilization.

A person who studies the modern age thinks of the Renaissance or the
seventeenth century with eyes set on the future, toward contemporary
civilization. She therefore cannot ignore the importance of the “rebirth of
science”. The student of Antiquity, on the contrary, often has (and in the
past even more so) the tendency to contrast the Hellenistic period either
with the supposed perfection of classical Greece or with Rome. He thus
runs the risk of judging it either by the standards of an earlier civilization
or by those of a civilization to which science remained foreign; in either
case, from the point of view of a prescientific culture.

The result is that most authors were led to identify the birth of scientific
method with what, not by accident, is called the Scientific Renaissance,
and that until the nineteenth century the civilization that gave us science
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was not even considered worthy of a name: it was just a “period of deca-
dence” of Greek civilization.

Droysen was the first historian to reevaluate this extraordinary period
and give it a name, in his Geschichte des Hellenismus.1

In the last half-century things have become clearer; today one can find
very interesting works on various aspects of Hellenistic civilization.2 But
in general these are specialized works that have not changed much the
general picture available to the educated public, to whom the Hellenistic
period often continues to appear as one whose cultural heritage is for us
less essential than that of the classical period.

There seems to have been in fact an erasure of Hellenistic civilization,
and in particular of the scientific revolution that took place in the third
century B.C., from our collective historical conscience, not unlike the phe-
nomenon of repressed memories. Our culture, though built on the twin
foundations of history and science, resorts to various expedients to hide
from itself the historical importance of the birth of science.

Let’s consider three great beacons of the scientific revolution: Euclid
of Alexandria, Archimedes of Syracuse, Herophilus of Chalcedon. What
does an educated person know about them?

About Herophilus, nothing.3 About Archimedes one remembers that
he did strange things: he ran around naked shouting Heureka!, plunged
crowns in water, drew geometric figures as he was about to be killed,
and so on. The childish store of anecdotes associated with his person and
the meager diffusion of his works give the impression that Archimedes
has more in common with figures of myth and legend than with other
thinkers. So he is remembered, yes, but as a legendary character, outside
of history. One ends up forgetting that he was a scientist of whom we still
have many writings and whose results continue to be part of scientific
education at many levels — from the formula for the volume of a sphere,
learned in elementary school, to university-level notions of mechanics and
mathematical analysis that were born with his work.

Euclidean geometry has remained throughout the centuries the frame-
work for basic mathematical teaching.4 But Euclid himself has been taken
out of history. In his case the mechanism is opposite the one used for

1[Droysen].
2Some of them will be cited later. Among the works of broad scope on the Hellenistic age I

still consider [Rostovtzeff: SEHHW] fundamental, while [Green] is a good representative of more
recent tendencies. Regarding Alexandria, in particular, much information and above all a useful
collection of testimonies can be found in [Fraser].

3We will return to him in Chapter 5.
4In view of the failure of attempts to base teaching on axiomatic systems devoid of geometric

content, the tendency today is increasingly not to teach the deductive method in high school at all;
but I do not think that such teaching can be fairly classified as mathematical.
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Archimedes: instead of being depicted in legend and in anecdotes, he is
offered to us without any historical context, laying down “Euclidean ge-
ometry” as if it were something that had always been there at mankind’s
disposal. If you are not convinced of this, try asking your friends what
century Euclid lived in. Very few will answer correctly, in spite of having
studied Euclidean geometry for several years.5 And yet Euclid has been
one of the most read authors in the history of humanity; his most famous
work, the Elements, has been studied without interruption for twenty-two
hundred years: from 300 B.C. to the end of the nineteenth century. There is
probably no author as well-studied (though not at first hand nowadays)
about whom we know so little in general.

Another mechanism leading to the erasure of Hellenistic civilization,
and particularly of the century of greatest scientific development, the third
century B.C., is the vague attribution of results, especially scientific or
technological, to “the Ancients”. For example: one always says that the
diameter of the Earth was measured “in Antiquity”, that “the Ancients”
discovered the principle of hydrostatic pressure, that the organ goes back
“to Antiquity”, that Copernicus had a precursor “in Antiquity”. We will
see many other examples later.

The difficulty one experiences in trying to frame historically the facts
and individuals of the third century B.C. is tied to our profound ignorance
of that period, which has been almost obliterated from history.

First of all, there remains no sustained historical account of the period
between 301 (when the Bibliotheca historica of Diodorus Siculus breaks off6)
and 221 B.C. (the beginning of Polybius’s Histories, which also reached us
incomplete). Not only do we have no historical works dating from the Hel-
lenistic period, but even the subsequent work of Livy is missing its second
ten books, which contained the period from 292 to 219 B.C. The tradition
preserved the history of classical Greece and that of the rise of Rome — the
periods that remained cultural reference points in the late Empire and in
the Middle Ages, whereas the history of the century of scientific revolution
was forgotten with the return of civilization to a prescientific stage.

Secondly, almost all writings of the time have been lost. The civiliza-
tion that handed down to us, among so many intellectual achievements,
the very idea of libraries and of the zealous preservation of the thinking
of the past, was erased together with its works. We have a few scien-
tific works transmitted through Byzantium and the Arabs, but Europe
preserved none. A little has been recovered: a few papyrus fragments

5This at least is the result of a little personal survey conducted among my friends and col-
leagues.

6At the end of Book XX; of later books we have only fragments.
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found in Herculaneum7 comprise all we can read of the hundred or so
books written by Chrysippus, who was according to many testimonies the
greatest thinker of his time; a fundamental work, Archimedes’ The method,
was fortuitously discovered in 1906 by Heiberg (on the famous palimpsest
subsequently lost and found again in 1998); and thanks to recent papyrus
finds we can read Menander. But these favorable cases are few.

The seriousness of the destruction of Hellenistic works has usually been
underestimated in the past, due to an assumption that it was the best
material that survived. Unfortunately, the optimistic view that “classical
civilization” handed down certain fundamental works that managed to
include the knowledge contained in the lost writings has proved ground-
less. In fact, in the face of a general regression in the level of civilization,
it’s never the best works that will be saved through an automatic process
of natural selection. That the same tradition that preserved in their totality
the 37 books of Pliny’s Natural history overlooked the few pages of Archi-
medes’ seminal treatise The method is in itself a proof that the tendency is
exactly the opposite. Late Antiquity and the Middle Ages favored com-
pilations, or at least books written in a language still understandable to
a civilization that had returned to the prescientific stage. Thus we have
Varro’s work on agriculture and Vitruvius’ on architecture, but not their
Hellenistic sources; we have Lucretius’ splendid poem on nature, but not
the works of Strato of Lampsacus, who according to some indications may
have originated natural science in the true sense. Even among real scien-
tific works, some of which were preserved by the Byzantines and Arabs,
two selection criteria seem to have been at work. The first was to give
preference to authors of the imperial period, whose writings are in general
methodologically inferior but easier to use: we have, for example, Heron’s
work on mirrors, but not the treatise that, according to some testimonies,
Archimedes wrote on the same subject. Next, among the works of an au-
thor the ones selected are generally the more accessible, and of these often
only the initial portions. We have the Greek text of the first four, more
elementary, books of Apollonius’ Conics, but not the next four (of which
three survived in Arabic); we have Latin and Arabic translations of the
work of Philo of Byzantium on experiments in pneumatics, but none of
his works on theoretical principles. We will see further examples of these
selection criteria.

A third reason for our ignorance is that until recently there had been
no systematic excavation of the centers of Ptolemaic Egypt. Even in the

7Herculaneum and Pompeii had an intense interchange with the Hellenistic world until their
sudden destruction in 79 A.D. The Vesuvius eruption thus had the effect of saving precious testi-
monies of Hellenistic art and culture from the loss that took place elsewhere in the late Empire and
early Middle Ages.
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case of Alexandria, the submerged remains of the ancient city only began
to be explored systematically in 1995. Much of our knowledge of Ptole-
maic Egypt comes form papyri found in the last hundred years. These
are fortuitous finds, in general discarded sheets used as “waste paper” by
embalmers.

Fourthly and finally, apart from some diplomatic and military events
that come to our ken through the Roman pen and from the paltry legal
data and the like that we glean from inscriptions, our knowledge about
Hellenistic states other than Egypt is virtually nil. Our lack of information
about the Seleucid kingdom, which included Mesopotamia, is particularly
jarring, because there are several indications that its contribution to scien-
tific development may have been comparable to Ptolemaic Egypt’s. Our
ignorance derives only in part from the perishability of parchment and
papyrus, which will not last for millennia except under exceptional cli-
mates such at that of certain areas of Egypt. Hellenistic Mesopotamia still
used cuneiform writing on clay tablets, a much more durable material; but
this fortunate circumstance does not appear to have been exploited to any
great extent. The historian Rostovtzeff writes:

We know rather more of Babylonia than of the other eastern parts of
the empire. A few Greek inscriptions, the ruins of some buildings of
Hellenistic date and, most important of all, thousands of cuneiform
tablets of the same period mostly from Babylon and Uruk have been
found. Very few of these have been read and published and even
fewer translated. . . 8

Perhaps what we have called “erasure” is a phenomenon profoundly
characteristic of our culture. Not only are cuneiform tablets not being read,
but even the Hellenistic writings that have come down to us in Greek are
often not found in accessible editions.9

We will try to identify the origins of this erasure in this book. And if
on the one hand the scarcity of sources makes it hard to prove any thesis
whatsoever, on the other hand one should not be astounded if some of
the current and earlier interpretations turn out to be misguided. If we face
Hellenistic scientific culture without doing our best to forget it, we may
encounter surprises and be forced to modify many longstanding ideas
about “Antiquity”.

8[Rostovtzeff: SE], p. 187.
9For example, there is no critical edition of the fragments of Eratosthenes. The only attempt

in that direction, by G. Bernhardy, dates from 1822. For scientific works there is no collection of
classics comparable to the various existing authoritative series devoted to literary or philosophical
works.
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1.2 On the Word “Hellenistic”

To give a sense to the claim that science was born during the Hellenistic
age, it is well to agree beforehand about the meaning of “Hellenistic” and
of “science”. This section and the next define these two terms.

We start by locating in time and space the civilization that concerns us
and some of the protagonists of the scientific revolution. The Hellenis-
tic age, in the terminology introduced by Droysen and accepted by later
historians, starts in 323 B.C., with the death of Alexander the Great.10 His
empire broke apart after that, giving rise to several political entities, which
were at first governed in the name of the emperor by various pretenders to
that title and later became autonomous kingdoms. The three main states
were:

– Egypt, with the new city of Alexandria (founded by Alexander in 331
B.C.) as its capital, and ruled by the Ptolemaic dynasty, which also gov-
erned Cyprus, Cyrenaica, and in the third century B.C. Phoenicia and
Palestine;

– the Seleucid state, with Antioch as its capital, comprising Syria, almost
all of Asia Minor, Mesopotamia, Persia, and after 200 B.C. also Phoeni-
cia and Palestine;

– the Antigonid state, comprising Macedonia and some cities in Greece.

There were also smaller states, such as the kingdom of Pergamum, ruled
by the Attalid dynasty, the Pontus, and Bithynia. One Hellenistic state of
which we know little, but which probably had a major role as a channel
between Hellenistic culture and Indian and Chinese cultures was Bactria,
which overlapped with today’s Afghanistan, Uzbekistan, and Tajikistan.

Hellenistic civilization was not solely the product of Greeks who dwelt
in regions that had formed Alexander’s empire; it also enjoyed the con-
tributions of autonomous Greek cities, which were spread all over the
Mediterranean. Among the important autonomous centers were Rhodes,
Syracuse and Massalia (Marseilles).

Hellenistic science boomed in the third century B.C. and has often been
called Alexandrian because it had its main center in Alexandria, in Egypt.
Among the reasons for this supremacy were the policies of its early rulers,
particularly Ptolemy I Soter, who was in power from 323 to 283 B.C., and
Ptolemy II Philadelphus, who ruled from 283 to 246.

10It might seem more logical to make the Hellenistic period start with Alexander’s expedition
or his reign, given that its essential new element was the fulfilment of Alexander’s program of
Hellenization of the territory of the ancient empires. The difference of a few years matters little, of
course, but the (slightly morbid) choice of a starting point suggests that even Droysen shared to
some extent the prejudice about “Hellenistic decadence”.
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It was in Alexandria that Euclid worked and taught, around the end of
the fourth century B.C.. Also there, in the first half of the next century,
lived Ctesibius, creator of pneumatics and founder of the Alexandrian
school of mechanics, and Herophilus of Chalcedon, founder of scientific
anatomy and physiology.11 The activity of Aristarchus of Samos, famous
above all for having introduced heliocentrism, dates from the same pe-
riod.12 It was also most likely in Alexandria that Archimedes (287–212)
studied, and even while in Syracuse he remained in constant communica-
tion with Alexandrian scientists. Among the scientists of the second half
of the third century was Eratosthenes, head of the Library at Alexandria,
who, among other things, carried out the first true measurement of the
size of the Earth. Chrysippus, who will interest us in particular for his
contributions to logic, lived during the same century in Athens, which
continued to be the main center for philosophical studies. The activities of
Philo of Byzantium, who continued the work of Ctesibius, probably date
from the second half of the century. At the turn of the next century there
was the work of Apollonius of Perga, to whom we owe in particular the
development of the theory of conic sections.13 The greatest scientist of the
second century B.C. was Hipparchus of Nicaea, who was active in Rhodes
and studied mainly astronomy.

Starting with the year 212 B.C., which witnessed the plunder of Syra-
cuse and the killing of Archimedes, Hellenistic centers were defeated and
conquered by the Romans. During the second century B.C. scientific stud-
ies declined rapidly. Alexandria’s scientific activity, in particular, stopped
abrutly in 145–144 B.C., when Ptolemy VIII (Euergetes II), who had just
ascended the throne, initiated a policy of brutal persecution against the
city’s Greek ruling class. Polybius says that the Greek population of Alex-
andria was almost entirely destroyed at that time;14 Athenaeus gives a
lively description of the subsequent diaspora of the city’s intellectuals;15

other sources give a few more details.16 Our information is not enough
to reconstruct the causes of the persecution. Subsequently, Euergetes II

11It is certain that Ctesibius was active during the reign of Ptolemy II Philadelphus; see, for
example, [Fraser], vol. II, p. 622. We will come back to the problem of dating Herophilus.

12Ptolemy tells us that ��������	�
�� �	�� ����	������ (“Aristarchus’s collaborators” or “the school of Aris-
tarchus”) made an observation in 279 B.C. (Almagest, III, i, 206, ed. Heiberg, vol. I.1). We also
know from Aetius (in Stobaeus, Eclogae I, xvi §1, 149:6–7 (ed. Wachsmuth) = [DG], 313b:16–17)
that Aristarchus had been a disciple of Strato of Lampsacus, who headed the Peripatetic school
until 269 B.C.

13For the dating of Apollonius see G. J. Toomer, Apollonius of Perga, in [DSB], vol. I, 179–193.
14Polybius, Historiae, XXXIV, xiv = Strabo, Geography, XIV, xx §19.
15Athenaeus, Deipnosophistae, IV, 184b–c.
16For instance, Valerius Maximus tells us that the king ordered the gymnasium surrounded and

all those within killed (Factorum et dictorum memorabilium libri IX, IX, ii, ext. 5). The few other
sources we have on the persecution are collected in [Fraser], vol. II, pp. 216 ff.
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For both maps: Gray strip indicates boundary of Alexander’s empire in 325 B.C.
Darker land indicates Roman empire in 116 A.D. Dots near the coast indicate
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Greek and/or Punic settlements. Adapted from the National Geographic Magazine,
December 1949. Used with permission of the National Geographic Society.
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continued to pursue a policy hostile to the Greek community in Alexan-
dria, turning to the indigenous ethnic groups for support.17 Since he had
enjoyed Roman support even before ascending the throne (when, exiled
by his brother, he had taken refuge in Rome18), it is reasonable to think
that he became a proxy for Rome’s Mediterranean expansionism,19 which
at the time was particularly violent.20

Rome’s expansion ended in 30 B.C. with the annexation of Egypt, thus
completing the unification of the whole Mediterranean under Roman rule.
This event is usually considered as the end of the Hellenistic era, which
was followed by the “imperial period”. From our point of view, however,
it is not a particularly significant date: although the golden age of science
had tragically come to an end over a century earlier, with the end of sci-
entific activity in Alexandria and the conquest of the other main centers
by the Romans, Hellenistic culture survived during the imperial age. The
former kingdoms, in fact, were not assimilated linguistically or culturally,
and from the technological and economic point of view there was per-
haps more continuity with the preceding period than similarities with the
Latin-speaking West. For this reason one sometimes continues to use the
term Hellenistic to refer to the culture of the part of the Roman Empire
where Greek remained the dominant language.

After the interruption caused by the wars with Rome, the Pax Romana
allowed a partial resumption of scientific research in the first and second
centuries A.D. — the time of Heron, Ptolemy and Galen — after which the
decline was unstoppable. For another couple of centuries, Alexandria re-
mained the center of what scientific activity there was. The last scientist
worthy of note may have been Diophantus, if, as has often been thought,
he lived in the third century A.D.21

The activity documented in the fourth century A.D. is limited to com-
pilations, commentaries and rehashings of older works; among the com-
mentators and editors of that time we will be particularly interested in
Pappus, whose Collection brings together many mathematical results that

17The Alexandrians managed to chase him away, but he reconquered the city in 127 B.C.
18Polybius, Historiae, XXXI, xx.
19This impression appears to be confirmed by an inscription in Delos, which contains the ded-

ication of a statue to a general of Euergetes II, on the part of the Roman merchants, in acknowl-
edgement of the privileges granted them when Alexandria was taken by the king Ptolemy Euergetes (that
is, Euergetes II). The dedication does not refer to the events of 145–144, but to those of 127. The
inscription ([OGIS], 135) is reported in [Fraser], vol. II, p. 217.

20Recall that in 146 B.C. the Romans had razed Carthage and Corinth to the ground.
21There are good reasons to place him instead as early as the first century A.D.; see [Knorr:

AS]. In any case, the deciphering of cuneiform texts has caused a drastic revision in our estimate
of Diophantus’ originality, since it shows that the methods he describes had long been in use in
Mesopotamia.
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have not reached us otherwise, and Theon of Alexandria, whose editions
of Euclid’s Elements and Optics have survived through the centuries.22

The definitive end of ancient science is sometimes dated to 415, the year
in which Hypatia, the daughter of Theon and herself a mathematician
who wrote commentaries on Apollonius, Ptolemy and Diophantus, was
lynched for religious reasons by a fanatical Christian mob in Alexandria.

Because only a few works and fragments, often not exactly datable, are
left from the extraordinary wealth of Hellenistic science, we will describe
its essential characteristics without always following a timeline.23 We will
concentrate on the third and second centuries B.C., but when documents
from that period are lacking we will use later ones. In using documents
from the imperial period great caution is necessary, because, as we shall
see, scientific methodology had regressed profoundly. When we discuss
certain political and economic aspects of the scientific revolution it will of
course be essential to differentiate between the period of independence of
Hellenistic states and the Hellenistic tradition within the Roman Empire.

1.3 Science

A coarsely encyclopedic organization of knowledge risks appearing to
validate the existence of a multitude of sciences, each equally worthy,
each characterized by its particular object of study: chemistry, computer
science, ornithology, mathematics, trichology, and so on. In this model it
is enough to define an object of study and choose a name (possibly of
Greek origin) in order to create a new science, understood as a container
in which are to be placed all the true statements concerning the specific
object chosen. Occasionally, in fact, some have felt that just a bit of Greek
is enough, without even the object of study: thus were born, for example,
parapsychology and ufology.24

22Heiberg identified Theon’s edition with the one transmitted in almost all our manuscripts of
the two works of Euclid, but this identification has been contested; see [Knorr: PsER], [Jones],
[Knorr: WTE].

23Among general books on the history of ancient science it’s worth mentioning [Enriques, de
Santillana], which still makes interesting reading, though many specific arguments are outdated;
the succint [Heiberg: GMNA], which summarizes the contents of extant works; [Farrington]; [van
der Waerden: SA]; and the lectures in [Neugebauer: ESA], those about Mesopotamia being espe-
cially interesting. [Pauly, Wissowa] is an irreplaceable reference work on ancient science and indeed
on classical civilization, while [Sarton] can still be useful for its bibliographical references.

As anthologies of sources we cite [Cohen, Drabkin] and [Irby-Massie, Keyser].
For quick and trustworthy information about individual scientists, ancient and modern, one can

use [DSB].
24Since UFO stands for “unidentified flying object”, the word ufology means approximately

“knowledge about unknown flying objects”, and is therefore a “science” whose content is void
by definition. Similar considerations hold for parapsychology.
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In this view, the history of science is the union of the histories of all
particular sciences, each being understood as a timetable of “acquisition
of truth” in the particular field considered. Naturally, those who adopt
this view have little interest in the history of science: that is the case with
many historians, who spare for science a nod or brief mention, if that.

Although there have been much more complex philosophical elabora-
tions, the coarse model just described was widespread among scientists
at least until the first decades of the twentieth century. The constant and
rapid modification of scientific principles, particularly in physics, even-
tually made untenable the view that science is a collection of statements
holding true with certainty. Indeed, this view forces one to consider non-
scientific all superseded theories. So long as it was a matter of bodies of
knowledge that, more often than not, dated from earlier centuries, their
demotion had been accepted painlessly enough; but with the new pace of
scientific development the same criterion would imply exclusion from the
ranks of science of all but the most recent results. This seemed unaccept-
able to scientists, probably because it would have meant that their own
results would inevitably be some day relegated to the category of non-
science. It became clear, in other words, that a good definition of science
must allow one to regard as scientific even mutually contradictory asser-
tions, such as the principles of classical mechanics and those of relativistic
mechanics.

At the same time, the usefulness of the term “science” evidently lies
in the possibility of telling scientific knowledge apart from other valid
types of knowledge, such as historical knowledge or empirical technology.
Since what distinguishes science from other forms of knowledge is not the
absolute validity of scientific assertions, the question remains:

What is science?
At first glance one might think of two different methods for answering

this question: either describing the characteristics of science as it arose
historically, or approaching the problem theoretically. But a slightly closer
analysis easily shows that each of the two methods presupposes the other.
One cannot approach the problem of characterizing the scientific method
without being familiar with the science that did in fact evolve through the
centuries, that is, without knowing the history of science. On the other
hand, any history of science must obviously presuppose a definition, if
perhaps tacit or even unconscious, of science.

The only way to avoid this apparent vicious circle is probably to follow
a spiral path, alternating between both methods so they justify each other
in turn.

Since our primary aim is historical rather than philosophical, and since
it is better to work with explicit rather than hidden assumptions, we will
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present and illustrate in this section a definition of science without dis-
cussing its validity. The definition’s aim is simply to pin down the object
of study of the next few chapters, and to clarify our criterion for selecting
the works that will be regarded as scientific. Once this definition has done
its job, helping us identify a corpus of relatively homogeneous works, we
will turn in Chapter 6 to the problem of characterizing science, asking
what were the origins and features of the Hellenistic scientific method as it
developed historically. I believe that a better understanding of the method
used by ancient scientists has essential relevance to the history of modern
science (this will be fleshed out with examples in later chapters) and that
it can be an important source of insight in the discussion of current science
(a point that lies beyond the scope of this work).

To reach our definition of science, we start by observing that some theo-
ries that everyone regards as scientific, like thermodynamics, Euclidean
geometry, and probability theory, share the following essential features:

1. Their statements are not about concrete objects, but about specific theoretical
entities. For example, Euclidean geometry makes statements about angles
or segments, and thermodynamics about the temperature or entropy of a
system, but in nature there is no angle, segment, temperature or entropy.

2. The theory has a rigorously deductive structure; it consists of a few fun-
damental statements (called axioms, postulates, or principles) about its
own theoretical entities, and it gives a unified and universally accepted
means for deducing from them an infinite number of consequences. In
other words, the theory provides general methods for solving an unlim-
ited number of problems. Such problems, posable within the scope of the
theory, are in reality “exercises”, in the sense that there is general agree-
ment among specialists on the methods of solving them and of checking
the correctness of the solutions. The fundamental methods are proofs and
calculation. The “truth” of scientific statements is therefore guaranteed in
this sense.

3. Applications to the real world are based on correspondence rules between
the entities of the theory and concrete objects. Unlike the internal assertions
of the theory, the correspondence rules carry no absolute guarantee. The
fundamental method for checking their validity — which is to say, the ap-
plicability of the theory — is the experimental method. In any case, the
range of validity of the correspondence rules is always limited.

Any theory with these three characteristics will be called a scientific
theory. The same term will be used for some other theories, which we
may call “of a higher order”. They differ from the theories we have been
considering in that they possess no correspondence rules for application to
the real world — they are applicable only to other scientific theories. That
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is the most common case in contemporary mathematics. Although some
who work at the higher levels may tend to lose sight of it, the relationship
between theory and reality does not change in any essential way: albeit
indirect, it is nonetheless guaranteed by the same mechanism of formation
of theories.

Exact science will mean to us the totality of scientific theories.
A simple criterion to verify whether a theory is “scientific” is to check

whether one can compile an exercise manual; if that is not possible, it’s
certainly not a scientific theory.

The immense usefulness of exact science consists in providing models
of the real world within which there is a guaranteed method for telling
false statements from true. Whereas natural philosophy failed in the goal
of producing absolutely true statements about the world, science succeeds
in guaranteeing the truth of its own assertions, at the cost of limiting itself
to the realm of models. Such models, of course, allow one to describe
and predict natural phenomena, by translating them to the theoretical
level via correspondence rules, then solving the “exercises” thus obtained
and translating the solutions obtained back to the real world. There is,
however, another possibility, much more interesting: moving freely within
the theory, and so reaching points not associated to anything concrete by
the correspondence rules. From such a point in the theoretical model one
can often construct the corresponding reality, thus modifying the existing
world. (See Figure 1.1.)

Thus scientific theories, even if created for the purpose of describing
natural phenomena, are able to enlarge themselves by means of the de-
ductive method, and as a consequence they usually develop into mod-
els of areas of technological activity. Scientific technology, characterized by
purposeful planning done inside some scientific theory or other, is in-
trinsically connected to the methodological structure of exact science, and
cannot but arise together with the latter.

One of the goals of this work is to corroborate this last assertion —
which openly contradicts the common notion that science in “Antiquity”
lacked technical applications — by analyzing Hellenistic science and tech-
nology. We will also try to clarify all the methodological characteristics
mentioned so far by examining the first scientific theories, which arise
precisely in Hellenistic times.

Every scientific theory has a limited realm of use; it can in general be
used to model only phenomena that are not “too far” from those that mo-
tivated its creation. Theories that prove inadequate in describing new sets
of phenomena must be replaced for the purpose; but they remain scientific
theories according to our definition, and can continue to be used inside
their own sphere of validity.
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concrete reality

natural

scientifically
designed

scientific theory

FIGURE 1.1. The role of scientific technology. Dark-shaded circles on the con-
crete (lower) plane represent objects from nature or prescientific technology. Their
counterparts on the theoretical (upper) plane are linked via logical deductions
(arrows) to many other constructs, which may or may not have a concrete coun-
terpart. Some of these theoretical constructs give rise, via correspondence rules
(dashed lines), to new concrete objects (lightly shaded circles on the lower plane).

The structure of science is enriched by links of various types between
different theories; sometimes one theory manages to include another, but
more often there is partial overlap between their spheres of applicability.

Two essential aspects of exact science, closely connected to one another,
are its methodological unity and its extreme flexibility in considering new
objects of study. The scientificness of a discipline does not depend on the
kind of thing it studies, but on whether scientific theories can be applied
to that thing, and the answer of that question is a historical given. For ex-
ample, the study of chemical reactions, which had been purely empirical
for centuries, acquired the character of exact science as soon as it started to
approach the problem using a scientific theory (based on postulates such
as the well-definedness of elements, their quantitative preservation and
their combination in fixed proportions).

The most significant divisions of exact science are those based not on
the phenomena under study, but on the theories brought to bear, each
of which generally applies to an enormous set of phenomena seemingly
unrelated to one another (other than through that theory).

Science will mean to us primarily exact science. The so-called empirical
sciences are to an extent similar to exact science, and distinct from various
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types of prescientific knowledge, above all because their development is
based on the experimental method and is carried out by specialists whose
work, unlike philosophical speculation on the one hand and professional
activities on the other, has the purpose of simply acquiring knowledge.
One can talk about theories in connection with the empirical sciences,
inasmuch as these sciences too are based on the construction of specific
theoretical concepts, but these empirical theories do not satisfy the sec-
ond property in our definition of a scientific theory, lacking as they do the
rigorously deductive structure that characterizes exact science. Empirical
theories, because they cannot be extended via the deductive method, can
be used only as models for a specific set of phenomena and do not produce
results exportable to other spheres. Therefore it is possible and convenient
to classify empirical sciences by their concrete objects of study, in contrast
with the situation for exact science.

The assignment of a privileged status to current scientific theories, as if
they represented the standard of truthfulness, is a distorting lens that has
often in the past led historians of science to misevaluate and misinterpret
ancient science. This can best be clarified with an example. Among many
possible quotations we select one from Max Jammer:

Even Archimedes, the founder of statics, has little to contribute to
the development of the concept of force. His treatment of mechanics
is a purely geometric one[.]25

Archimedean statics is a scientific theory that allows the solution of
pretty much the same problems as modern statics, which was born from
the translation of Archimedes’ theory into a Newtonian language, where
the concept of force plays a fundamental role. But the concept of force is
not a necessity of nature, as demonstrated by the several formulations of
mechanics that do not involve it at all. To regard it as a limitation of the
Archimedean theory that it contributed little to the development of the
concept of force is like regarding it as a limitation of the Greek language
that it contributed little to the development of the word “horse”.26

If we conceive history of science as the history of successive episodes
of acquisition of truths bearing directly on natural phenomena, we can-
not but be led to the practice, often adopted by historians, of confining
all mention of science to inessential remarks or footnotes; but if scientific
theories are conceived as theoretical models of sectors of human activity,
they clearly acquire fundamental historical interest. On the one hand, their

25[Jammer: CF], p. 41.
26The culminating irony is that the search for “purely geometric” formulations of mechanics has

been a constant from Lagrange to Einstein, whose general theory of relativity has allowed a “purely
geometric” formulation of the theory of gravitational forces.
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study can supply precious information about the sectors of activity for
which the models themselves were created and used; on the other, they
are cultural products that can be situated in relation to other aspects of the
civilization that created them.

At the other extreme, the contextualization of scientific theories can have
the side effect of obscuring what is special about scientific knowledge.
This is one of the outcomes of a process that probably started with Thomas
Kuhn’s famous book27 and culminated in the complete relativism of many
authors. Kuhn’s work comprises many of the ideas we have discussed,
but what he calls a scientific paradigm is a much more general notion
than a scientific theory having the three properties we listed on page 17.
It includes forms of knowledge, such as Pythagorean mathematics, Aris-
totelian physics and various medieval theories, which are excluded from
the definition we use. One reason to keep the distinction in sight is that
a paradigm such as Aristotelian physics may provide a useful system to
frame known reality,28 but cannot be used to plan different realities, since
it lacks a rigorously deductive structure and is thus unable to extend it-
self via the deductive method. Therefore there is no obvious relationship
between technology and science in the very broad sense that Kuhn gives
the word. Also the problem of the birth of science cannot be posed in the
scope of Kuhn’s terminology.

The definition of science proposed here will appear overly restrictive to
many. There is no question that it excludes many important conceptual
constructs that are often called scientific. The use of a restrictive defini-
tion is not intended to deny the importance of other cognitive methods —
among which are those used in this book. Its purpose is to focus on a
particular intellectual instrument, which, as we will attempt to show, is
inherited from Hellenistic culture and was essential in building what we
call modern civilization.

1.4 Was There Science in Classical Greece?

The thesis that science, in the particular sense we have given this term, is a
product of Hellenistic civilization obviously should not be taken to mean
that no element of the scientific method appeared before 323 B.C. — the
conventional boundary, which for our purposes should perhaps be moved
slightly earlier. Many characteristics of science certainly appeared in the

27[Kuhn: SSR].
28Directly perceptible “physical” properties are better described by Aristotelian physics than by

later science. See [Bozzi].
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preceding period, especially in Greek geometry and astronomy during the
fifth and fourth centuries. Nonetheless, we will try to show that:

– the method that we have called “scientific” was not fully present in the
ancient empires, nor yet in fifth century Greece or in the works of Plato
and Aristotle;

– the boom in scientific theories took place during the third century B.C.
and was an essential feature of Hellenistic civilization;

– if one must identify a turning point in the process of formation of the
new method, the best candidate seems to be the foundation of Alexan-
der’s empire.

The assertion that classical Greek culture had not created science needs
clarification.

Usually the comparison between modern and ancient scientific thought
is established primarily in terms of modern physics and the ideas of the
Greeks, most often presented as a conceptual evolution that, starting with
the Ionian school, seems to essentially end with Aristotle. Framing the
comparison in these terms allows one to pay homage to “Greek thought”,
to which we all recognize ourselves heirs, while maintaining an obvious,
if implicit, attitude of benevolent superiority. Today’s physicist, talking
about atoms, is often aware of using a term introduced by Leucippus
and Democritus almost twenty-five hundred years ago. She recognizes
the merits of these ancient thinkers who, although lacking our experi-
mental means and refined conceptual tools, nonetheless intuited a theory
that foreshadows the modern one. This acknowledgement is gladly made,
because it allows one to display one’s humanistic culture, while savor-
ing a pleasant sensation of superiority, based on the belief that the old
atoms, being born of pure philosophical imagination, had in fact very
little in common with the homonymous objects of modern physics. The
debt to ancient science explicitly acknowledged by modern science gen-
erally stays within similar limits. Even a scientist of vast learning like
Heisenberg, in sketching a comparison between Greek thought and mod-
ern physics, after having dwelt at length on pre-Socratic thinkers (with
interesting things to say) jumps from Aristotle to modern science, without
devoting a single word to the development of ancient exact science, which
took place chiefly after Euclid.29

From now on we will instead discuss Hellenistic science, referring only
occasionally to its classical antecedents. This is because these antecedents
are not really relevant to our subject. The atomic theory of Leucippus and

29[Heisenberg], Chapter 4.
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Democritus, for example, has of course tremendous interest for the history
of thought, but it does not seem to be a scientific theory in the sense we
gave this expression in the preceding section, because, as far as we know
from surviving fragments, no theorems of atomic theory were proved by
the ancient atomists, nor any true experiments carried out.

However, we stress the following points:

– Explanations of phenomena by means of theories that involve nonob-
servable entities, such as the atoms of Leucippus and Democritus, is a
step of enormous importance toward the construction of scientific the-
ories.

– Many of the ideas destined to become keystones in science, Hellenistic
and modern alike, were born from the Greek thought of the classical
period. This is the case with mechanistic determinism, which seems
to go back to Leucippus,30 and the distinction between primary and
secondary qualities, which appears in Democritus31 and became an es-
sential foundation for the formulation of quantitative theories of phe-
nomena such as sound, color and the chemical properties of substances.

– Even some more specific notions that are often considered scientific
already appear in the thought of the so-called pre-Socratic thinkers.32

Science is indebted to the Greeks not only for the general notion of
atoms and for the word, but also for ideas such as the chaotic mo-
tion of atoms33 (which, developed in the Hellenistic period and revived
in modern times, was essential in the creation of the kinetic theory
of gases) or the presence of “hooks” that allow atoms to connect to-
gether,34 a didactic image still used in elementary chemistry books.

For another example, consider the “bucket experiment”, one of whose
variants consists in spinning a bucket full of water in a vertical plane very

30As reported by Aetius (Stobaeus, Eclogae I, iv §7, 72:11–14 = [DG], 321b:10–14 = [FV], II, 81:3–6,
Leucippus B2).

31See for instance Stobaeus, Eclogae I, xvi §1, 149:10–16 = [DG], 314b:1–10 = [FV], II, 112:28–32,
Democritus A125.

32Among the philosophers traditionally called pre-Socratic we will be particularly interested in
Democritus, who in fact survived Socrates by several years.

33See, for example, Diogenes Laertius (Vitae philosophorum, IX §31 = [FV], II, 70:26 – 71:5, Leucip-
pus A1), where the idea is attributed to Leucippus. It would be interesting to know the origin of the
notion of chaotic motion of atoms. A superb passage in Lucretius about the disordered motion of
dust lit by a sunbeam (De rerum natura, II:112–141) hints at the type of phenomena that might have
suggested the idea. Lucretius mentions the disordered and extremely fast motion of atoms as the
ultimate cause of the progressively slower motion of larger particles. It is interesting to compare
the lucid explanation reported by Lucretius with the vitalist explanation given in 1828 for a similar
phenomenon by the famous discoverer of “Brownian motion”; see [Brown].

34The existence of atoms with hooks was postulated by Democritus, as we know from Aristotle’s
(lost) book On Democritus, a passage of which is reported by Simplicius (In Aristotelis De caelo
commentaria, [CAG], vol. VII, 294:33 – 295:24 = [FV], II, 93:37 – 94:2, Democritus A37).
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fast: the liquid does not fall out. Or, if the bucket is kept upright and
spun around its own axis, the surface of the water takes on a characteristic
concave shape. Either way one sees that the equilibrium configuration of

the water depends not only on the bucket’s position with respect to the
ground, but also on its state of movement, making it possible to assign an
absolute meaning to the statement that the bucket is “in motion”, at least
if the motion is rotational.

Such remarks, which today we phrase in terms of centrifugal “force”,
must have made an important contribution to the birth of dynamics, but
they are not true experiments, just qualitative observations, so it’s not sur-
prising that they predate the rise of scientific theories: indeed they must go
back to deep Antiquity. The first documented use of the bucket experiment
for theoretical ends seems to be due to Empedocles.35 Centrifugal “force”
was brought to bear in a cosmological context by Anaxagoras, among oth-
ers; he explained the origin of our world by invoking the separation of
the various types of matter caused by the centrifugation of an immense
vortex.36 The very idea of vortices in cosmology was to remain a constant
throughout the history of thought: Kant’s and Laplace’s theories on the
formation of the solar system seem to have been influenced by it.

Certainly, many ideas of the pre-Socratic philosophers seem to be akin
to the later, Hellenistic, scientific method. However, in no case is there doc-
umentation for the use in the classical period of full-fledged hypothetico-
deductive theories or the experimental method.37

35See Aristotle, De caelo, II, xiii, 295a:13–22 = [FV], I, 295:31–37, Empedocles A67. According to the
passage, Empedocles used the bucket experiment to make some argument about the immobility of
the Earth.

36Simplicius, In Aristotelis Physicorum commentaria, [CAG], vol. IX, 35:13–17 = [FV], II, 36:19–24,
Anaxagoras B9.

37The tale that Pythagoras made experiments with sound, studying for instance the change in
the pitch of a string as the tension varies, is widespread, but the earliest source we have for it dates
from about 100 A.D. (Nicomachus of Gerasa, Manual of harmonics, 6). This report is unreliable, not
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To show the qualitative leap from Aristotelian natural philosophy to
Hellenistic science, we recall that Aristotle wrote:

If, then, [a force] A moves B a distance D in a time T, it does not
follow that E, being half of A, will in the time T or in any fraction of
T cause B to traverse a part of D that is to the whole of D as A is to
E. . . . Otherwise one man would move a ship, since both the motive
force of the ship-haulers and the distance that they all cause the ship
to traverse are divisible into as many parts as there are men.38

Without reconstructing all of Aristotle’s reasoning, we focus on certain
key features of the method he uses to approach the problem of motion
(and other “physics” questions). Aristotle’s problem is determining the
quantitative relationship between force, time, and displacement. With the
scientific method one can solve such problems in one of two ways: either
by supposing a relation given “in principle” (in which case experiment
plays an essential role in checking whether the real phenomena whose
model one wishes to build do in fact occur in the way predicted by apply-
ing the correspondence rules to the stated principle), or else by deducing
the desired relationship inside a preexisting scientific theory, using the de-
ductive method. But Aristotle cannot use either the deductive method or
experiments, for he does not have, and does not wish to build, a scientific
theory. The forces, times and displacements that he talks about are not in
fact entities internal to a theory, but he conceives them as concrete objects,
whose mutual relations can be understood via philosophical speculation.

He mentions an empirical datum (the impossibility of a single person
moving a ship), but the decisive argument is that the portion of the force
under consideration acts differently depending on whether it is in isola-
tion or as part of a whole, because in the second case the part exists only
potentially. For all intents and purposes, the empirical fact is mentioned
just by way of illustration. The real game is to deduce quantitative state-
ments about particular physical phenomena directly from general philo-
sophical principles, derived from qualitative observations of nature.

Archimedes’ confutation of Aristotle’s argument, reported by Plutarch
and Proclus, was very persuasive. According to the tradition they trans-
mit, Archimedes designed, within his scientific theory of mechanics, a
device that enabled a single man — himself or King Hiero II, depending

only for chronological reasons and because of the general tendency neo-Pythagoreans like Nico-
machus had of backdating all knowledge to Pythagoras, but also because the same experiments
are attributed not to Pythagoras but to his followers by Plutarch (De animae procreatione in Timaeo,
1020F–1021A) and by Porphyry (In Harmonica Ptolemaei commentarius, 119:13 – 120:7, ed. Düring).
Iamblichus copied the story from Nicomachus (Iamblichus, Vita pythagorica, §§115–119) but on
another occasion he follows Porphyry’s version (In Nicomachi arithmeticam introductionem, 121).

38Aristotle, Physica, VII, v, 250a; loosely based on a translation by R. P. Hardie and R. K. Gaye.
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on the version — to drag into the water a ship towed up onto dry land
in the Syracuse harbor; Proclus specifies it was a full-laden three-masted
ship.39 The machine itself carried out the division of force that Aristo-
tle had judged impossible, and which indeed had probably never been
achieved before for a ship. This was a very effective way to demonstrate
the superiority of “scientific” method, in the sense already explained, over
natural philosophy. Rather than reflecting the world in philosophical spec-
ulation, the scientific method had changed the world, by allowing the de-
sign of a machine that eliminated the impossibility observed by Aristotle.

The methodological value of the experimental demonstration narrated
by Proclus and Plutarch, which stands out most clearly in comparison
with the Aristotelian quotation, does not of course depend on whether
Archimedes explicitly wished to confute Aristotle40 or whether the re-
ported details are historically accurate. The essential point is that, since
we know that Archimedes had in fact developed the possibility of design-
ing machines with high mechanical advantage, the story is not a legend
without foundation. It reflects on the one hand the type of achievement
made possible by Archimedean mechanics, and on the other a widespread
interest in this new technology, and in these respects it is completely be-
lievable.41 But instead, the ship episode is usually recounted in the context
of the legendary and anecdotal treatment of Archimedes’ persona, which
deprives it of its true meaning.

One often reads that Greek scientists invented statics but not dynamics.
That is, they knew the equilibrium conditions of bodies, but not their laws
of motion. Such statements give the impression that ancient scientists, be-
cause of their “contemplative” nature, spent their time observing objects
in equilibrium, without ever moving them. This impression can hardly be
reconciled with the tale of Archimedes designing and using a machine that
enabled a single person to drag a ship. The truth is that in the third century
B.C. “our” dynamics had not been developed; but the quantitative theory
of machines such as winches and cogwheels with mechanical advantage,
which had most certainly been developed, must be considered as a form
of dynamics, since the point of such machines is not just equilibrium. The
notion that Archimedes invented statics but not dynamics comes from the
fact that our statics essentially coincides with his, but the same cannot be

39Proclus, In primum Euclidis Elementorum librum commentarii, 63, ed. Friedlein. The same episode
is told by Plutarch in a slightly different way (Plutarch, Vita Marcelli, xiv §8).

40C. Mugler argues for this conscious reference to Aristotle’s passage; see [Archimedes/Mugler],
vol. I, Introduction, p. xi).

41The origin of the tradition was probably not a true experimental demonstration, but the won-
der aroused by the machine designed by Archimedes to launch the huge ship Syracusia (Athenaeus,
Deipnosophistae, V, 207b).
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said about our dynamics. Archimedes’ mechanics — literally, his “science
of machines” — was nonetheless a scientific theory, which dealt with both
equilibrium and motion, even though, like all scientific theories, it applied
only to phenomena that lie within a limited realm.

The situation was probably analogous to that of our thermodynamics
of reversible transformations. Since we only know how to define the ther-
modynamical state of a system when it is in equilibrium, we only know
how to study thermodynamical transformations by approximating them
by a series of equilibrium states. In this way we study thermodynamic cy-
cles that model for example what happens inside an internal combustion
engine; the model, within certain limits, applies, but that does not mean
that our internal combustion engines remain in equilibrium, nor has any-
one ever thought of naming “thermostatics” the study of such evolutions
through states of equilibrium.

Likewise, the main mechanical problem of the third century B.C. was
the study of machines that, while carrying out work, could be thought of
as if the forces in question were at all times “almost in equilibrium”. That
is indeed the case of a pulley that lifts a weight slowly. Problems regarding
mechanical systems of that type (in particular the calculation of their me-
chanical advantage42) can be solved using Archimedean mechanics. Our
“classical mechanics” is an improvement on the Archimedean theory be-
cause it subsumes it and can be applied in many cases where the preceding
assumptions are not valid. But this difference is of the exact same nature
as the difference that makes, say, relativistic mechanics an improvement
on the classical version. The essential qualitative leap, from natural philos-
ophy to science, has already taken place with Archimedes. After that it’s
“just” a matter of developing theories that can model increasingly more
general classes of phenomena; the path is already laid out, as shown by
the fact that several Hellenistic scientific theories, such as hydrostatics,
geometric optics, and the theory of simple machines, have been absorbed
essentially without change into modern science.

We will come back to successive developments in Hellenistic mechanics
and their relationship with Newtonian dynamics in Chapters 10 and 11.

1.5 Origins of Hellenistic Science

Why was science born precisely at the same time as Hellenistic civiliza-
tion, with Alexander’s conquests?

42We will return to this point in Section 3.3.
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Probably one important factor was the new relationship established be-
tween Greek civilization and the ancient Egyptian and Mesopotamian civ-
ilizations. The Greek cultural tradition, which in the classical period had
created historiography, theater, political democracy and the masterpieces
of literature and art that we all know, and also natural philosophy as we
have already discussed, was obviously essential. But what did the cre-
ators of this stupendous civilization have to learn from the Egyptians, for
example? We must let sink in the (long ignored) fact that, despite all the
achievements of their culture, the Greeks of the classical age were still
behind the Egyptians and Mesopotamians from the technological point of
view. Recall what Charles Singer wrote in the epilog of the second volume
of his History of Technology:

Whatever view be taken of the beauty and interest of the art, liter-
ature, ethics, and thought of Greece and Rome, it can no longer be
held true that their technology was superior to that of the ancient
empires.. . . The curve of technological expertness tends to dip rather
than to rise with the advent of the classical cultures. This will become
apparent if the relevant chapters of volume I be compared with the
corresponding chapters in the present volume.. . . Greece and Rome
. . . rose to their might by the destruction of the more ancient civiliza-
tions that they displaced.. . . [T]he rise of the Hellenic and Roman
peoples represents a ‘heroic age’ which, like many heroic ages, was
primarily a victory of barbarians over an effete but ancient civiliza-
tion.43

This is one of the conclusions of an influential work on the history of
technology, filled with articles by the greatest experts in their fields and
thus deserving of careful consideration. But one is struck by the constant
and mechanical merging of Greece and Rome into an indivisible unit. It
is impossible to see in what sense Greece might have destroyed older civ-
ilizations, or in what sense the Hellenes can be called barbarians. More-
over, it’s easy to document (and we shall do so) that Egypt’s technological
level rose under the Ptolemies. Singer’s conclusion seems to have been
reached by melding together three elements of wildly unequal worth:

– the conclusion — interesting and very valuable, in that it draws upon
a huge fund of historical research on numerous technological areas —
that the technology of the ancient empires was superior to classical
Greece’s (the point that concerns us) and Rome’s;

– the fairly obvious fact that Rome rose to its might by the destruction of
more advanced civilizations;

43[HT], vol. II, pp. 754–755.
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– the clichés that lie at the root of the uncritical association of Greece and
Rome into an indivisible unit and of the use of “Greek civilization” to
refer basically to the classical era, ignoring the originality of Hellenistic
civilization.

We can in any case take it as certain that the Greeks who moved into
Egypt and Mesopotamia at the time of Alexander’s conquests found there
a level of technology higher than their own. The technological develop-
ment of all three cultures — classical Greece, Egypt and Mesopotamia —
having proceeded by a gradual accumulation and transmission of empir-
ical knowledge,44 it is natural that the extra millennia would give the two
older civilizations a technological advantage, unsurmountable except in
the presence of a qualitative methodological leap.

The Greeks had always been interested in the traditions of older civiliza-
tions, with which they had been in contact for centuries. It is not by acci-
dent that the beginnings of Greek mathematics are credited to Thales and
Pythagoras, both of whom were said to have lived in Egypt (and Pythago-
ras also in the East). But in the Hellenistic period the contact becomes
much closer.45 The Greeks who moved to the new kingdoms that arose
from Alexander’s conquests had to administer and control these more
advanced economies and technologies with which they were not famil-
iar; their one crucial advantage and guide consisted in the sophisticated
methods of rational analysis developed by the Greek cultural tradition
during the preceding centuries. It is in this situation that science is born.

Actually there are indications that at the time Alexander formed his em-
pire many features of the scientific method were already in place. Since no
scientific work from that period has survived, this is difficult to prove,
but the progress achieved by scientists such as Eudoxus of Cnidus a few
decades before Alexander seems to show elements of continuity with the
following period. However, although on the basis of surviving documents
this continuity seems to be well-attested regarding individual instruments
internal to mathematics and astronomy, the scientific explosion, that is to
say the creation of many different scientific theories understood as models
of the real world based on systems of explicitly specified assumptions,
seems to be new to the Hellenistic era.

44Of course the pace of technological development never stayed constant. Mesopotamia, for ex-
ample, enjoyed a surge in the development of water, agricultural, and building technologies during
the fourth millennium B.C., with the appearance of the first cities. But this and similar bursts are
to be taken in a relative sense; they required many centuries. We will return to this question at the
beginning of Section 7.2.

45To an extent that is impossible to quantify, this change preceded, and even helped motivate,
Alexander’s campaigns: interactions between Greece and the territories of the ancient empires had
been intensifying throughout the fourth century, again thanks to increased migration.
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Note that the application of the scientific method requires the ability
to use simultaneously two levels of discourse, one internal to the theory
and one concerning concrete objects, and to move between the two lev-
els by means of what we’ve called “correspondence rules”. It is enticing
to conjecture that this ability was favored, in the territories belonging to
Alexander’s empire, by the simultaneous presence of two cultures and by
the ability developed by Greek immigrants to use both at the same time
according to their goals, in particular by reworking into their conceptual
framework the large mass of empirical knowledge inherited by the Egyp-
tian and Mesopotamian cultures.46

One example of the ability of Hellenistic science to provide a rational
framework within which the knowledge of ancient civilizations could be
used to advantage is given by the organization, under the Ptolemies, of
the immense labor of waterworks that consisted in the regulation of the
Nile floods. The Egyptians had millennia of experience with this problem;
it was the very problem that had led to the creation of Egypt as a unified
state.47 The Ptolemies organized the necessary labor by using many Egyp-
tian experts, but entrusting the general administration of the project to
Greek engineers. We shall see what these engineers were able to achieve.

46Incidentally, in later eras, an analogous mastery of two cultures — that of one’s ethnic group
and the majority culture of the surrounding population — has been a characteristic of the Jews, to
whom we also owe many key scientific results.

47Karl Marx remarked that the Egyptian state, and indeed the state structures of many ancient
riverside civilizations (in Mesopotamia, in the Indus Valley, by the Yellow River), arose from the
need to coordinate the labor of irrigation and dam building. This observation was the starting point
for Karl Wittfogel’s monumental studies on “hydraulic civilizations” and “hydraulic despotism”
(see [Wittfogel]). Beyond his (highly ideologized) theories, the essential role played by hydraulic
problems in the formation of states is widely recognized nowadays. The fact that the Greeks, in
a few years, had surpassed in hydraulic works the most ancient “hydraulic civilizations” shows
clearly how powerful the new scientific method was.
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2
Hellenistic Mathematics

2.1 Precursors of Mathematical Science

The term “mathematics” is seldom defined by historians of the subject: for
instance, Boyer’s History of Mathematics explicitly avoids the task, saying
merely that “much of the subject [ . . . ] is an outgrowth of thought that
originally centered on the concepts of number, magnitude and form.”1

Were we to take this as the basis for a definition, mathematics would not
only go back to paleolithic times — and indeed long before, since one can
talk about the “mathematical abilities” of various animals, and research
has been done on the issue — but would encompass even the Neapolitan
smorfia, a series of rules for extracting from dreams information supposed
to be helpful in predicting winning lottery numbers. This too, one must
admit, deals with questions centered on the concept of number.

But mathematical science, in the sense we have given the word, arises in
the Hellenistic period. Of course Hellenistic mathematics does not come
out of nothing. Earlier mathematics can be divided, roughly speaking, into
two phases. The first, extremely long, phase includes the mathematics of
Old Babylonia and of Egypt under the Pharaohs. The second consists of a
period of approximately two and a half centuries in which classical Greece
created what we will call Hellenic mathematics, to distinguish it from Hel-
lenistic mathematics.

The first period started in the paleolithic, with the ability to count,3 and
saw the accumulation of a remarkable body of knowledge, as in Egypt

1[Boyer], p. 1.
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during the Pharaonic era; there, for the first time, appeared specialized
writings with mathematical content.4 These writings can be called math-
ematical only in that their object is solving problems that we would call
arithmetical or geometric; they completely lack the rational structure that
we associate with mathematics today. They contain recipes for solving
problems — for example, calculating the volume of a truncated pyramid
or the area of a circle (the latter being, of course, unintentionally approx-
imate) — but there is no sign of anything like a justification for the rules
given. At that stage, then, fairly elaborate notions beyond the integers had
already been developed, including many plane and solid figures, area, and
volume; problem-solving methods were passed down the generations; but
the correctness of the solutions was based solely on experience and tradi-
tion. This was very far from being a science in the sense we have given the
word. It was simply a part of that enormous store of empirical knowledge
that enabled the Egyptians to achieve their famous technological feats; it
was methodologically homogeneous with the rest of such knowledge, and
transmitted in the same way.5

Otto Neugebauer, one of the twentieth century’s most accomplished
scholars of ancient exact science, wrily remarked:

Modern authors have often referred to the marvels of Egyptian ar-
chitecture [in connection with their mathematics], though without
ever mentioning a concrete problem of statics solvable by known
Egyptian arithmetical procedures.6

There is nothing surprising about the lack of applications of Egyptian
mathematics to statics or other theories with technological interest. Since
mathematical and technological knowledge alike were purely empirical,
either could be applied only to directly related, concrete, specific prob-
lems; there was no scientific theory within which technological planning
could be carried out, so there could not have been what we have called
scientific technology. The quantities considered in mathematical problems
known from Pharaoh-era Egypt are not internal to a theory, but instead
had immediate and concrete interest: the number of bricks needed for a
building of a given shape and size, or the area of a field.

3Animal bones have been found in today’s Lebanon, dating from 15000 to 12000 B.C., with series
of notches arranged into groups of equal cardinality. Thus the recording of tallies far predates the
invention of writing, which for that matter seems to have arisen precisely from the evolution of a
bookkeeping system (see Section 7.2).

4For a review of sources, see [Gillings].
5The papyrus Anastasi I gives some perspective on the role of “mathematical” knowledge in

the context of the competencies required of a scribe. See [Gardiner].
6[Neugebauer: ESA], p. 151.
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Similar considerations apply to Old Babylonian mathematics, though it
had reached a higher level.

The bridge between the empirical knowledge of Pharaoh-era Egypt and
ancient Mesopotamia, on the one hand, and the sophisticated mathemati-
cal science of the Hellenistic period, on the other, is Hellenic mathematics.
Without it, the transition would have been unthinkable. During these two
and a half centuries Greek culture assimilated the Egyptian and Meso-
potamian results and subjected them to a sharp rational analysis, closely
linked to philosophical inquiry. Greek tradition names two pioneers in
these investigations: Thales, who supposedly started developing, at the
beginning of the sixth century B.C., the geometry that he had learned in
Egypt, and Pythagoras, who founded his famous political and religious
association during the second half of the same century.

An ancient tradition, attested by (among other things) the name “Pytha-
gorean theorem” given to the famous theorem of geometry, holds that the
deductive method arose at the very beginning of Hellenic mathematics.
This belief goes back at least to the History of geometry written by Aristo-
tle’s disciple, Eudemus of Rhodes, according to whom Thales proved that
a diameter divides a circle into two equal parts, and that opposite angles
at a vertex are equal.7 But it is not possible that statements so apparently
obvious could have been among the first to be demonstrated. The use-
fulness of the deductive method must have been noticed first in proving
nonobvious statements. Only when a well-developed deductive system
is attained can the demand arise for demonstrations of such apparently
obvious statements as the ones attributed to Thales.8

In fact Eudemus systematically backdated mathematical results, in a
process made explicit by Proclus in at least one case:

Eudemus, in his History of geometry, attributes to Thales this theorem
[that triangles having one side and two adjacent angles equal are
congruent], because, in his opinion, the method with which Thales is
said to have determined the distance of ships in the sea depends on
the use of this theorem.9

It is clear from this passage how Eudemus confused the logical order,
which requires a theorem to be proved before it can be applied, with the
historical order. In fact, for the application he mentions, it is not necessary

7These statements by Eudemus (whose work has perished) are reported in Proclus, In primum
Euclidis Elementorum librum commentarii, 157:10–11; 299:1–3, ed. Friedlein = [FV], I, 79:8–9+13–15,
Thales A20.

8This argument is developed in [Neugebauer: ESA], p. 148.
9Proclus, In primum Euclidis Elementorum librum commentarii, 352:14–18, ed. Friedlein = [FV],

79:15–19, Thales A20.
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to know the theorem: it is enough to be convinced (and only in the partic-
ular case in question) of the truth of the statement of the theorem, without
knowing its proof; and without the proof one cannot, of course, talk about
its being a theorem. The error made by Eudemus is still made today. One
often reads that the “Pythagorean theorem” was known in Mesopotamia
in the Old Babylonian period; actually what was known was its empirical
basis, the fact that the square on the hypotenuse has the same area as the
sum of the squares on the sides. The idea of proofs and theorems had not
been invented in Old Babylonia, nor yet in Pythagorean times.

Without getting into the history of Hellenic mathematics,10 we will show
with some examples how it was not a science — not only at the time of
Thales and Pythagoras, but even much later.

A remarkable example of the state of Hellenic mathematics in mid-fifth
century is afforded by Zeno’s paradoxes, which are so famous (particu-
larly the one with Achilles and the turtle) that we need not repeat them
here.11 Why are they thought of today primarily as a philosophical sub-
ject, although they deal with the concept of a continuous quantity, which
is essential in mathematics? Above all because Zeno talks about space
and time and not about their mathematical model, which had not been
constructed then. The instruments used to analyze the notions of space
and time are ordinary language and philosophy; the structure of a sci-
entific theory, in the sense defined in Section 1.3, is still lacking. Zeno’s
paradoxes certainly influenced significantly the evolution of the concept
of a continuous magnitude, which eventually resulted in the sophisticated
theory expounded in Book V of Euclid’s Elements, but once the building
had been erected there was no place in it for that type of reasoning.

Another important example, traditionally attributed to the Pythagorean
school, is the discovery of the incommensurability of the side and diago-
nal of a square. This is often quoted as a demonstration of the irrationality
of the square root of 2, but the original argument should not be blurred
with its later development. One reconstruction of the early state of af-
fairs is the following.12 We know that the early Pythagoreans thought that

10Perhaps because of the complete absence of primary sources, Hellenic mathematics has in-
duced much more writing that its Hellenistic heir. Among the books devoted wholly or mostly
to Hellenic mathematics, we mention [Lasserre], [Szabó], [Knorr: EEE], and [Fowler]. For Greek
mathematics of both periods, the standard reference is [Heath: HGM], while [Loria] can also be
useful. An anthology of original texts can be found in [GMW], whose two little volumes are all the
Loeb Classical Library spares for Greek mathematics.

11The main source for Zeno’s paradoxes is Aristotle, Physica, VI, ix, 239b–240a. This passage and
all other relevant sources are reported in [FV], I, 247–258. The paradoxes are discussed in [Heath:
HGM], vol. I, pp. 271–283.

12Reconstructions of this episode are based primarily on two sources. The older one is a passage
of Aristotle (Analytica priora, I, xxiii, 41a:26–27), which says that the diagonal is not commensurable
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every segment was made up of finitely many points.13 If we construct a
square whose side is made up of an odd number of points, say k, we can
ask whether the number n of points of the diagonal is even or odd. Since
the square of n, by the Pythagorean theorem, is 2k2, and therefore even,
and only an even number can have an even square, it can easily be con-
cluded that n is even. But someone must have noticed that if n were even
its square would be a multiple of 4, whereas 2k2 is not such a multiple if k
is odd; therefore n must be odd. Since both reasonings appear convincing,
but an odd number cannot be even, they did not know what to conclude.14

The result is an impasse, analogous (from the viewpoint of the cul-
ture of the time) to Zeno’s paradoxes. Because the Pythagoreans attached
great importance to the opposition between even and odd numbers,15 it
is reasonable to assume that the difficulty just described arose among
them, as tradition maintains. But if the reconstruction above is correct, the
Pythagoreans had not proved anything by contradiction; they had simply
reached a contradiction (to their chagrin!), while trying to find the parity of
the diagonal. Note that to get to this point it is not necessary to know the
Pythagorean theorem in full generality, but only in the case of an isosce-
les right triangle, and the validity of this case can easily be verified by
counting half-squares in a square array.

Unlike Zeno’s paradoxes, the argument just discussed, which most likely
dates from the last quarter of the fifth century,16 was later incorporated
into mathematical science, where it provides the base for the proof of a
theorem. But to reach a theorem there must be a qualitative leap allowing

[with the side] because, if it were, odd and even numbers would coincide. The second source is a
(probably spurious) passage in Euclid’s Elements (X, 408–411, ed. Heiberg, vol. III), containing a
complete proof of the incommensurability, consistent with Aristotle’s brief remark.

13This can reasonably be deduced from several elements: the fact, reported by many sources,
that the Pythagoreans based geometry on the integers; the Pythagorean theories of “figurative
numbers” (for which see [Heath: HGM], vol. I, pp. 76–84, and [Knorr: EEE], Chapter 5); and above
all Aristotle’s assertion that the Pythagoreans attributed a magnitude to the units that made up
material bodies (Aristotle, Metaphysica, XIII, vi, 1080b:16–21 + 1083b:8–18 = [FV], I, 453:39 – 454:9,
Pythagoreans B9, B10). Sextus Empiricus seems to still be thinking in Pythagorean mode when he
says that it is impossible to bisect a segment formed by an odd number of points: Adversus physicos I
( = Adv. dogmaticos III = Adv. mathematicos IX), §283; Adversus geometras ( = Adv. math. III), §§110–111.

14The reconstruction given here, apart from the modernized notation (the use of letters to denote
numbers is not part of the Greek tradition) and the use of “points” as in the Pythagorean tradition,
follows in essence the sources that report the theorem on the incommensurability of a square’s
side and diagonal. It is generally accepted that incommensurability was first discovered in this
case, particularly because Plato and Aristotle always talk about it in connection with this example.
A different conjecture about the origin of the idea of incommensurability is argued for in [von
Fritz].

15Philolaus, as quoted by Stobaeus (Eclogae, I, xxi §7c, 188:9–12 = [FV], I, 408:7–10, Philolaus B5);
Aristotle, Metaphysica, I, v, 986a:18+23–24. Evenness and oddness were still at the basis of arithmetic
for Plato (Gorgias, 451a–b). For a discussion of the Pythagorean ideas about even and odd numbers,
see [Knorr: EEE], pp. 134–142.
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the circumvention of the impasse. Only by abandoning the Pythagorean
notion that a line segment is made up of a succession of points — and
therefore abandoning the Pythagorean program of basing explanations
about real objects on the concept of an integer — can one attain the idea
that two segments may not admit a common subdivision — may be in-
commensurable. The impasse can then be transformed into the proof by
contradiction, known to Aristotle, that the side and diagonal of a square
are incommensurable.17 There is no evidence for classifying this step as
being Pythagorean. That neither Plato nor Aristotle, in any of several pas-
sages where they discuss the problems posed by incommensurability, ever
attribute its discovery to the Pythagoreans is a strong indication that nei-
ther should we; that neo-Pythagoreans did so attribute it18 is sufficiently
explained by the likelihood that the realization of the difficulty dated to
Pythagoreans.

Even after the essential step of transforming the impasse into a proof
by contradiction, the result remains purely negative: the statement of an
impossibility, insufficient to serve as the basis for a theory of continuous
magnitudes. The mathematicians of the beginning of the fourth century
knew several pairs of incommensurable magnitudes, as we know from
Plato,18a but they did not have a “theory of irrationalities”. As attested by
the very word “irrational”, they did not say that the ratio between the side
and the diagonal of a square is irrational, but rather that there is no such
ratio.19

Because the Pythagoreans probably thought that statements about the
parity of the number of points on the diagonal referred to something in

16The dating of the first difficulties caused by the incommensurability between side and diagonal
of a square is discussed in [Knorr: EEE], Chapter II, where it is noted that the first author who
might have faced the problem was Democritus (born ca. 460 B.C.). But the evidence of Democritus’
possible interest in this question is very weak and debatable, being based only on a doubtful inter-
pretation of the title of a lost work. Information given by Plato and Aristotle makes it likely that
the problem first arose shortly before 400 B.C.

17The purpose of the Aristotle passage cited in footnote 12 is precisely to illustrate what we call
proof by contradiction.

18It is only in late sources that the discovery of incommensurability is attributed to the Pytha-
gorean school. The main one is a fragment, surviving in Arabic, of Pappus’s commentary on
Book X of the Elements, which says moreover that the first member of the school who divulged
the discovery perished in a shipwreck ([Pappus/Junge, Thomson], pp. 63–64). The same story can
be found in a scholium to Book X of the Elements (scholium 1 in [Euclid: OO], vol. V, p. 415),
which perhaps goes back to Proclus. There are also a passage in Proclus, certainly anachronistic,
that attributes outright to Pythagoras a theory of irrational numbers (Proclus, In primum Euclidis
Elementorum librum commentarii, 65:19–21, ed. Friedlein = [FV], I, 448:23–24, Pythagoreans B1), and
various mutually contradictory assertions of the neo-Pythagorean Iamblichus.

18aIn fact, an infinity of such pairs; see note 46 on page 45.
19The Latin word “irrationalis” is a literal calque based on the Greek ��� ��� ��� , which originally

expressed the nonexistence of a ratio ( ��� � ��� ), and took on its modern meaning in Hellenistic times.
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the real world, there may be some truth to the tradition that they regarded
the discovery of incommensurability (or rather, of the impasse that led to
the notion of incommensurability) as a dramatic event. If we discover that
a scientific theory is contradictory, it’s no big deal: we change theories. But
what can we do if we discover, or think we have discovered, a contradic-
tion in reality itself?

The widespread idea that the discovery of incommensurability shook
the foundations of mathematics is based on the assumption that in the
fifth century B.C. mathematics already existed in our sense; it must have
arisen by analogy with the shaking of the foundations of mathematics
at the turn of the twentieth century.20 What could have been shaken at
that time was the original Pythagorean philosophical framework, which
wished to be the foundation (in a sense very different from the one used
by today’s scholars) of much more than our mathematics. The studies that
we call mathematical today would have continued without much trouble,
precisely because they did not have a monolithic foundation.

Our third example of Hellenic mathematics comes from Plato, who was
very interested in the methods used by geometers of his time, and who
presents in his works mathematical arguments of great interest.21 As an
example of a demonstration expounded by Plato, we recall the famous
passage in the Meno where it is shown that, given a square, the square
built on the diagonal is double. The proof consists in observing that the

2 equal triangles 4 equal triangles

second square is formed of four triangles, each of which is equal to half the
initial square.22 This presupposes assumptions that are not made explicit
(among them: a square can be built on a given side, and the four triangles
into which a square is divided by the two diagonals are equal). In other
words, the truth of a geometric statement is deduced logically from other
statements chosen ad hoc among those that are visibly true. Precisely be-
cause a proof such as the one in the Meno is not embedded in a theory, but
stands on its own, independent of any other geometric line of argument,

20This point is emphasized in [Knorr: EEE], p. 307.
21Fabio Acerbi has shown that one can recognize in Plato (Parmenides, 149a:7–c:3) an example

of a proof by complete induction, a method that is usually considered to have been introduced in
modern mathematics. See [Acerbi: Plato].

22Plato, Meno, 84e–85b.
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it can, as in this case, be understood by a young slave completely ignorant
of geometry.

In the Timaeus Plato explains the growth of a young body as follows:

[Consider] the young constitution of the whole animal, which has
the triangles of the elements new. . . . Since the triangles coming in
from outside, which make up food and drink, are older and weaker
than its own triangles, it overpowers them and cuts them up with its
new triangles, making the animal grow by nourishing it with many
similar elements.23

What does Plato mean by “triangle”? It is clearly something real, not
a theoretical entity such as we, after twenty-three hundred years of Eu-
clidean geometry, naturally think it should be. Indeed, Plato states else-
where that mathematical objects are endowed with a higher level of real-
ity than that of their perceptible images;24 this was certainly an important
thought in the process leading to the conscious construction of theoretical
entities.

The Hellenic period — or at least most of it — can be considered as a
long gestation of mathematical science, in which ever more refined log-
ical instruments were being accumulated, but mathematics had not yet
reached the stage of a science in the sense we have given the word, since
there was not a single logically coherent and connected corpus of knowl-
edge inside which any student whatsoever could solve an unlimited num-
ber of “exercises”.

Probably a key person in the transition from the Hellenic to the Hel-
lenistic period was Eudoxus of Cnidus, who according to the traditional
boundary falls at the end of the Hellenic period. Because all his works
have perished, it is hard to ascertain whether he was a precursor or the
founder of mathematical science of the sort that appears in the Elements.
We will revisit the relationship between Euclid and his fourth-century pre-
decessors in Section 2.6.

In the next few sections, without intending to outline a history of Hel-
lenistic mathematics, we will illustrate some of its fundamental aspects by
means of examples, taken primarily from Euclid25 and Archimedes.26

23Plato, Timaeus, 81b–c.
24Plato, Republic, VI, 509c–511a.
25The critical edition of his works is [Euclid: OO]. An English translation of the Elements and a

rich historical and critical apparatus can be found in [Euclid/Heath].
26All his surviving works can be found in [Archimedes/Mugler]. Another very useful book is

[Dijksterhuis: Archimedes], which contains a detailed exposition of the contents of his existing
works.
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2.2 Euclid’s Hypothetico-Deductive Method

Three types of problems came up in Hellenic mathematics. First, it was no-
ticed how certain apparently obvious statements about geometric figures
could imply others, much less obvious. This revealed the usefulness of the
deductive method; but of course, as already remarked in Aristotle,27 one
could not prove everything without causing the proof of any statement to
involve an infinite regression. Second, paradoxes such as Zeno’s and the
impasse found by the Pythagoreans had made apparent the high degree of
subtlety of concepts such as space, time, and infinity, and of the relations
between discrete and continuous magnitudes; it had also shown how in-
adequate everyday language is for dealing with such questions. Finally,
there was the question of the unclear relationship between the concepts of
mathematics and the real world.

In Euclid’s Elements we can see for the first time the solution to these
problems, which was reached by establishing mathematics as a scientific
theory — more precisely, by explicitly defining the theory’s entities (cir-
cles, right angles, parallel lines, and so on) in terms of a few fundamental
entities (such as points, lines, and planes)28 and by listing the statements
about such entities that must be accepted without proof.

In the Elements there are five statements of this type, called “postulates”
( � ������� � � � ):29

1. [One can] draw a segment from any point to any point.
2. [One can] continuously extend a segment to a line.
3. [One can] draw a circumference with arbitrary center and radius.
4. All right angles are equal to one another.
5. If a line transversal to two lines forms with them in the same half-

plane internal angles whose sum is less than two right angles, the
two lines meet in that half-plane.

Any other statement regarding geometric entities can and should be ac-
cepted as true only if it can be supported by a proof ( 	
�������������� ), that is, a
chain of logical implications that starts from the postulates (and the “com-
mon notions”) and leads to the given statement. This method is known to
anyone who has studied mathematics in high school (at least that was the

27Aristotle, Analytica posteriora, I, ii, 71b:26–28.
28In the Elements even these fundamental entities are “defined”, and the presence of these “def-

initions” (which are mere tautologies or purely illustrative statements) appears to contradict the
thesis of the present discussion. This important question will be the subject of Section 10.14, where
we will be able to study it in light of the material contained in intervening chapters.

29There are also five “common notions”, that is, statements that are not about the specific entities
of geometry. However, the authenticity of the “common notions” has often been contested. See, for
example, [Euclid/Heath], vol. I, pp. 221 ff.
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case until a while ago), because it was inherited by modern mathematics.
Note the privileged role played, from the postulates on, by lines and cir-
cles. The reason for this choice is clear: these two entities play a special
role because they are the mathematical models of what can be drawn with
ruler and compass. Euclidean geometry arises explicitly as the scientific
theory of the objects that can be drawn with ruler and compass. Euclid’s
first three postulates are nothing but the straightforward transposition,
into the context of mathematical theory, of the usual operations carried
out with these basic instruments. Of course, there is a tremendous differ-
ence between mathematics and drawing. A compass cannot draw circum-
ferences of arbitrary radius — in fact it cannot draw a true circumference
at all. Mathematical science arises from the replacement of the ruler and
compass by an ideal ruler and compass, theoretical models of the real
instruments, capable of the operations described by the first three pos-
tulates; for this theoretical model, both its origin and the correspondence
rules that allow its application are perfectly clear.

The difference between the first three postulates, which affirm the con-
structibility of lines and circumferences, and the last two, whose nature is
more theoretical, is reflected in the propositions that make up the trea-
tise, which are of two types: “problems” ( ��������� ��� � � � ) and “theorems”
( 	��
��� �	� � � � ).30 The first type consists in the description of a geometric fig-
ure with specified properties, followed by the figure’s construction and a
proof that the figure constructed does satisfy the desired properties. The
first proposition of the Elements, for instance, solves the problem of con-
structing an equilateral triangle. The theorems, by contrast, consist in the
statement that certain properties imply others, and can be followed by the
demonstration alone. One famous theorem, for example, states that the
square built on the hypotenuse of a right triangle is equivalent to the sum
of the squares built on the other two sides.31 In the Elements this theorem is
immediately preceded by the problem of building the squares (and prov-
ing that the construction works).32 In fact, Euclid never uses a geometric
figure unless he has given its construction and demonstrated the validity
thereof.

30The distinction between problems and theorems is discussed at length by Proclus (In primum
Euclidis elementorum librum commentarii, 77–81, ed. Friedlein), and appears twice in Pappus (Collec-
tio, III, 30:3–24; VII, 650:16–20). Euclid does not differentiate between the two types of propositions
in these terms, but the distinction is clear from the formula that closes the demonstration, which is
either “as was to be shown” (  ��������� ����� ����� ��� ) or “as was to be done” (  ��� ����� ��� ����� ����� ).

31Euclid, Elements, I, proposition 47.
32Euclid, Elements, I, proposition 46.
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2.3 Geometry and Computational Aids

Mathematics has always been used to obtain quantitative results, and its
theoretical structure has always been influenced, if often unconsciously,
by the way in which these results are obtained. Today we have digital
computers. What were the computational aids of classical and Hellenistic
Antiquity? For calculations with integers abaci of various types were used,
but we know very little about the classical versions. Our ignorance of, and
the usual attitude toward, the subject is well illustrated by this quotation
from an authoritative history of technology (italics mine):

The form of the Greek abacus is obscure, but the more developed Ro-
man type is well known. . . 33

The other computational aid, used above all for noninteger quantities,
was geometry. Every problem about continuous magnitudes was cast into
geometric language, the data being represented by lengths of segments.
Knowing how to solve the problem meant knowing how to construct ge-
ometrically a segment whose length represented the solution; this length
was then measured. The instruments used in geometric constructions were
primarily the ruler and the compass, which thus became not just drawing
instruments but analog computational tools.34 The use of analog computa-
tional tools may seem strange to us, accustomed as we are to digital com-
puters, but remember that until a few decades ago engineers did a large
part of their calculations with slide rules, whose precision is less than that
attainable with the ruler and compass of Hellenistic mathematics. Two
features of ruler and compass solutions made them particularly useful.
First, their relative error was very small (of the order of the ratio between
thickness and length of the lines drawn): no technical application could
want better. Second, the construction was easily reproducible in solving
an equal problem with different numerical data. Today we consider in-
dependent three activities that were indissolubly linked in the practice of
Hellenistic mathematics: deductive reasoning, calculation, and drawing.

33[HT], vol. III, p. 501.
34The problems that can be solved in this way are those that we would express in terms of

algebraic equations of the first or second degree. For example, the determination of the fourth
proportional of three given segments (Euclid, Elements, V, proposition 12) is equivalent to the cal-
culation of a ratio, once one segment is chosen as the unit of measurement. The determination
of the proportional mean of two given segments (Euclid, Elements, V, proposition 13) amounts to
taking a square root. Obviously the algebraic formulation is not necessary for applications: every
problem solvable by taking a square root can be solved equivalently by finding a proportional
mean.
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Forgetting that ruler and compass were the main computational aids
of Hellenistic mathematics can lead one badly astray. Boyer writes in his
History of Mathematics:

The Greek definition and study of curves compare quite unfavorably
with the flexibility and the extent of the modern treatment. Indeed,
the Ancients overlooked almost entirely the part that curves of var-
ious sorts played in the world about them. Aesthetically one of the
most gifted people of all times, the only curves that they found in the
heavens and on the earth were combinations of circles and straight
lines. 35

Finding combinations of circles and lines in heaven and on earth meant
successfully reducing the solution of problems both earthly and astronom-
ical to calculations that could be performed with elementary instruments
such as ruler and compass.36 Boyer might as well have charged contem-
porary scientists with infinite intellectual poverty because, in using digital
computers, they are unable to imagine anything other than combinations
of zeros and ones.

Moreover the Greeks, from the Hellenistic period on, did study curves
that cannot be drawn with ruler and compass. They knew, for instance,
that the quadratrix of Hippias (the curve described by the intersection of
a segment in uniform translational motion with one in uniform rotational
motion) allows one to square circles and trisect angles. However, they
considered this a pseudo-solution, or “sophistic solution”, to these prob-
lems. Why? Clearly because it transferred the difficulty from the original
problem to that of building a machine that could carry out in practice the
two required synchronized motions, tracing the intersection point. The
task was certainly feasible, but not with the same precision with which
segments and circles could be traced with ruler and compass, and above
all not in such an easily reproducible way and with a precision so easy to
check.

The preference on the part of Hellenistic mathematicians for ruler and
compass solutions has often been considered an intellectual prejudice.
That misses the point; geometers who proposed “sophistic” solutions such
as the one just described were much in the same position as someone
today who might propose to solve a physics problem not by finding a
theoretical method translatable into an algorithm that can be implemented
on digital computers, but by using an analog “computer” that measures

35[Boyer], p. 173 (1st ed.), p. 157 (2nd ed.).
36How far one can get with “combinations of circles” was clear in Hellenistic times, and is even

clearer today to anyone who has studied Fourier series expansions. This point will be taken up
again in Section 3.8.
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the desired physical magnitude by reproducing the phenomenon under
study. Such a procedure can certainly be useful, but no one would say
that it provides a true solution for the problem.

Archimedes introduced in his Arenarius a numbering system whose ex-
pressive power equals not only that of our positional system,37 but even
that of today’s exponential notation. Despite the creation of an analogous
system by Apollonius38 and the introduction of zero,39 there was no con-
sequent spread of the positional notation system; its use remains largely
limited to the base sixty system used in astronomy and trigonometry.40 It
can be conjectured that the efficiency of geometric algorithms contributed
to the slow rate of diffusion of “algebraic” computation methods. This
impression is supported by the fact that both Archimedes and Apollonius
developed their (essentially equivalent) methods in close connection with
the problem of representing very large numbers, and so invented expo-
nential representation before positional representation pure and simple.
Clearly the geometric method was so efficient that the need for improving
it came up chiefly when very large ratios were involved, a case which
geometry does not serve well (how can one represent with segments two
numbers that differ by several orders of magnitude?).41

The efficiency of algorithms based on ruler and compass was closely
tied to the possibility of making accurate drawings on papyrus. The link
between theoretical structures and material instruments is illustrated by
the very different route taken by mathematics in Mesopotamia. There, as
we have said, clay tablets were used all the way down to the Hellenistic
period, and they do not allow accurate drawings. This meant that Meso-
potamian mathematics had to be based on numerical, rather than geomet-
ric, methods. The scarcity of sources, already mentioned in Section 1.1,42

prevents us from following Hellenistic-era Mesopotamian mathematical

37The first versions of positional notation arose in Old Babylonia; they were the result of mil-
lennia of unplanned evolution (as discussed further in Section 7.2) and had not, until Hellenistic
times, led to a completely coherent and ambiguity-free system. Archimedes’ creation, by contrast,
was consciously designed, with full knowledge of the conventional nature of such systems.

38A précis of Apollonius’ system can be found in Pappus, Collectio, II, 6–28.
39Zero was being systematically used in Mesopotamia with sexagesimal notation around 300

B.C. Its possible earlier history in Babylonian mathematics is unclear; see [Neugebauer: ESA], p. 29.
Its present symbol, transmitted by Indians and Arabs, appears in Ptolemy’s trigonometric tables
and in papyri from the Ptolemaic era (where it is modified by a line above or other decorations); see
[Neugebauer: ESA], p. 13–14. A late mention of the role played by the number zero in arithmetic
can be found in Iamblichus (In Nicomachi arithmeticam introductionem, 17–19). Iamblichus’ word for
zero is ��� ����� , from whose first letter may have derived the symbol we use.

40Because of its usefulness in astronomical calculations, the positional system was imported into
India together with astronomy (see Section 2.8).

41Another case where geometric algorithms fell short was that of trigonometric tables; see p. 53.
42Among the clay tablets dating from the Seleucid era many have been found to have mathemat-

ical content, but again the great majority of these have never been published or translated.
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developments as well as we’d like, but the few cuneiform texts that have
been translated make it clear that a transition from prescientific mathe-
matics to mathematical science took place during the Hellenistic period
in the Seleucid kingdom, just as it did in the Mediterranean world whose
main center was Alexandria.43

Although in the rest of this chapter we will continue to deal mostly with
mathematics characterized by the use of geometric methods, we should
keep in mind that this is not all there was to mathematical science in the
Hellenistic period. The different strand of mathematics pursued in Meso-
potamia led not only to the introduction of zero but also to certain alge-
braic methods which, after being taken up to some extent in Alexandria
during the imperial age (first by Heron and especially by Diophantus),
reappeared in different guise after centuries of dormancy, as part of new
developments in India and China.

2.4 Discrete Mathematics and the Notion of Infinity

Two classes of objects of study in the Elements are the integer numbers
( � ��� �

�
�

�

) and the magnitudes, or continuous quantities. As an example of a
theorem about integers, we recall the famous proof that there are infinitely
many primes. The statement of Euclid’s theorem (IX, proposition 20) is:

There are more prime numbers than any preset multitude of prime
numbers.

The proof is the following. Given any “multitude” (finite set) of prime
numbers, let k be the number obtained by multiplying them all together44

and adding 1 to the result. Clearly, k cannot be a multiple of any of the
given prime numbers (which are assumed to be different from 1). Thus, if
m is a prime factor of k distinct from 1, m cannot be one of the given prime
numbers. Thus we have found a prime number not included among those
originally preset.

It is often said that in Antiquity the concept of infinity was not used in
mathematics. For example, Morris Kline writes:

In Greek science the concept of the infinite is scarcely understood
and frankly avoided. . . . The concept of a limitless process fright-

43[Neugebauer: ESA], p. 48.
44Actually Euclid considers not the product, but the least common multiple, of the numbers.

Since the numbers are prime, the result is the same. Euclid’s choice makes possible the geomet-
ric interpretation provided by the illustrators of our manuscripts, who, representing each prime
number by a segment, represent in the same way also their least common multiple.
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ened [the Greeks] and they shrank before ‘the silence of the infinite
spaces.’ 45

Similar statements can be found in many histories of mathematics, such
as the one already cited by Boyer.

But the argument of Elements IX, 20 is a rigorous demonstration of the
infiniteness of a set. Euclid, knowing very well the subtlety of the con-
cept of infinity, which had been clear at least since Zeno’s time, manages
to obtain a rigorous proof without ever dealing directly with infinity, by
reducing the problem to the study of finite numbers. This is exactly what
contemporary mathematical analysis does. That Euclid does not use the word
“infinite” is of course irrelevant. In any case, the word “infinite” is not a
novelty introduced by modern mathematicians; it is the literal translation
of Greek � ��� � ��� � , which, after a long and complicated history, was even-
tually used in mathematics in its current meaning of “infinite” (by Apol-
lonius of Perga, for example).46 We will return to this question in Section
11.9, where we try to pinpoint the origin of the opinion that Kline and so
many others have held.

2.5 Continuous Mathematics

The use of “magnitudes”, or continuous quantities, in addition to inte-
gers, gave rise to a difficult problem. Consider segments. To operate with
these “magnitudes” one must know how to carry out the basic arithmetic
operations. Addition poses no problem: if a and b are two segments, the
sum a + b is the segment obtained in a natural way by extending the first
segment a length equal to that of the second. Differences are defined anal-
ogously. These rules correspond to what one effectively does in order to
add or subtract noninteger quantities using the geometric method. For
multiplication things were also simple: the product ab was thought of as
a rectangle whose sides were represented by a and b.47 But what meaning
could be assigned to the ratio a : b? Of course, the operation of addition

45[Kline], p. 57.
46See, for instance, Conica, II, proposition 44, where Apollonius, after showing how to construct

a diameter of a conic, concludes: “In this way we will find infinitely many diameters” ( � � � � � ��� �

� � ��� ����� ��� � ). This use of � ��� � ��� � in the sense of actual infinity in a mathematical context appears
already in Plato’s Theaetetus, 147d. Theaetetus reports a conversation between the mathematician
Theodorus and his students (of whom he was one), dealing with squares that are multiples of the
unit square but whose sides are not multiples of the unit length (and therefore are incommensu-
rable with it). They remark that such sides are infinite in number ( � ��� � �������	
	� � ������� ).

47This way of regarding products returns magnitudes nonhomogeneous with the factors, so it
makes expressions such as a + ab, where a and b are lengths, nonsensical. This introduces a kind of
automatic “dimension control”.
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between magnitudes induces in an obvious way the operation of multi-
plication of a magnitude by a natural number: if k is a natural number,
the product ka can be defined as the sum of k magnitudes, each equal to
a. If two integers, k and h, can be found such that ka = hb, the ratio a : b
can be defined as the ratio between integers h : k. In other words, the ratio
a : b can be defined as a fraction. When there are no two integers h and k
satisfying ka = hb, the magnitudes a and b are called incommensurable.
In this case (which happens, for example, when a and b represent the side
and diagonal of a square, as we saw in Section 2.1), it is not clear what can
be understood by a “ratio” between the two magnitudes. Yet the theory of
similarities — which we would not want to restrict to the case of commen-
surable magnitudes — requires that we assign a meaning to proportions
such as a : b = c : d even when the magnitudes are incommensurable.

This problem is solved by Euclid with his definition of proportion (Ele-
ments, Book V, definition 5, Heath translation):

Magnitudes are said to be in the same ratio, the first to the second
and the third to the fourth, when, if any equimultiples whatever be
taken of the first and third, and any equimultiples whatever of the
second and fourth, the former equimultiples alike exceed, are alike
equal to, or alike fall short of, the latter equimultiples respectively
taken in corresponding order.

Expressing this in an algebraic language more familiar to us, we say that
the proportion a : b = c : d holds when, for any chosen natural numbers h
and k, one of the following statements is true:

(A) ka > hb and simultaneously kc > hd;
(B) ka = hb and simultaneously kc = hd;
(C) ka < hb and simultaneously kc < hd:

In this way we manage to define equality between ratios using only
multiplication by natural numbers, even in the case of incommensurable
magnitudes.

For a long time, this definition of a ratio was criticized by modern math-
ematicians, who, for reasons to be explained later,47a did not realize the
need for such complexity. The idea was finally grasped by Weierstrass
and Dedekind, who founded the modern theory of real numbers essen-
tially by translating Euclid’s definition into the language used nowadays.
The translation,48 into the terms used by Dedekind, is essentially this: If
we define a real number as any possible “Euclidean ratio”,49 the Euclidean

47aSee Section 11.4, especially page 350.
48Obviously, this translation into modern language led to significant modifications. In particular,

the modern notion of the algebraic structure of the set of real numbers is new and comes from the
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definition boils down to saying that a real number is uniquely determined
by its behavior regarding every pair (h, k) of integers; that is, it is identified
by the set of pairs for which cases A, B, or C obtain. The sets corresponding
to cases A and C are called by Dedekind “contiguous classes of rational
numbers”, and are clearly sufficient to identify the ratio a : b, that is, the
real number. The first works on the “modern” theory of real numbers date
from 1872.50

On the subject of Euclid’s proportions, Heath wrote:

The greatness of the new theory itself needs no further argument
when it is remembered that the definition of equal ratios in Eucl. V,
Def. 5 corresponds exactly to the modern theory of irrationals due
to Dedekind, and that it is word for word the same as Weierstrass’s
definition of equal [real] numbers.51

As other authors whom we will encounter have done in similar cases,
Heath — one of the foremost modern historians of ancient science — re-
gards it as the greatest glory of Greek mathematicians that they managed
to anticipate modern theories. Here he seems almost to suggest that the
“word for word” correspondence he notes may have to do with Euclid’s
ability to anticipate results that would come two thousand years later,
rather than with Weierstrass’s “word for word” use of Euclid’s definition,
which he knew well. (Let’s not forget that the Elements were the textbook
at the foundation of Weierstrass’s and Dedekind’s early mathematical ed-
ucation.)

It may seem that Euclid’s definition of proportions, like the modern def-
inition of real numbers that derives from it, is impossible to apply, since it
requires the consideration of infinitely many integers. The question can be
clarified by examining an application of Euclid’s definition. Consider his
proof that the ratio of two circles equals the ratio of the squares on their
diameters.52 The existence — in the sense of constructibility with ruler and

modern primacy of algebraic over geometric aspects. But these changes, though important, do not
contradict the fundamental fact that the “modern” theory appeared with the recovery of Euclid’s
definition.

49Physicists and engineers know very well that even today a real number is just a ratio of homo-
geneous magnitudes (and so they know that in their formulas the arguments of functions such
as sines and exponentials must be ratios of homogeneous magnitudes). This awareness seems
sometimes to elude mathematics students.

50They are an article by Dedekind and one by Heine, both based on the ideas of their teacher,
Weierstrass.

51[Heath: HGM], vol. I, pp. 326–327.
52Euclid, Elements, XII, proposition 2. “The ratio of two circles” may sound odd to modern ears,

but the notion of area arose precisely as the ratio between a given figure and another chosen as
a unit of measurement. Euclid always talks about ratios between plane figures (or segments, or
solids) rather than about areas.

48 2. Hellenistic Mathematics

compass — of the mathematical objects involved has already been estab-
lished: that of circles is the content of the third postulate, and that of
squares was proved earlier.53 The definition of proportions is used to state
a relationship between geometric objects already constructed, one whose
validity can be demonstrated in a finite number of logical steps, as can be
checked by reading Euclid’s proof. Thus there is an important difference
between Euclid’s ratio between magnitudes and today’s real numbers:
whereas modern mathematicians have introduced axioms about the set of
all real numbers and have often considered real numbers whose existence
is proved thanks to these axioms and is not supported by constructive
procedures, Euclid considers only ratios of constructible magnitudes.

2.6 Euclid and His Predecessors

According to a widespread opinion, the contents of the Elements had ap-
peared before Euclid in similar treatises, since lost. This belief rests largely
on the fact that most of the statements of theorems contained in the Ele-
ments had indeed been known before Euclid, and that many proofs had
been accomplished, including complex ones.54 Much effort has been ex-
pended, often fruitfully, on the task of tracing the origins of the material
contained in the various books of the Elements. But from our point of view
the main feature of Euclid’s work is not the set of results presented, but the
way in which these results connect together, forming infinitely extensible
“networks” of theorems, drawn out from a small number of distinguished
statements. To judge the originality of the Elements, therefore, one must
ask whether a similar structure (without which one cannot extend the the-
ory by doing “exercises”: that is the whole point!) had been achieved prior
to Euclid.

In the surviving fragments on pre-Euclidean mathematics there is no
evidence for sets of postulates similar to Euclid’s. The works of Plato and
Aristotle, moreover, offer an explicit description of what the “principles”
accepted by mathematicians as the initial assumptions of their science
were like at the time. Plato writes that “those who work with geometry,
arithmetic, and the like lay as ‘hypotheses’ evenness and oddness, fig-
ures, the three kinds of angles and similar things.”55 Aristotle, in a passage
where he discusses the role of principles in the deductive sciences, makes

53Euclid, Elements, I, proposition 46.
54For example, Archytas gave a construction for two proportional means (which amounts to the

extraction of a cube root), and Eudoxus proved the formulas for the volume of the pyramid and
cone. Both proofs date from the first half of the fourth century.

55Plato, Republic, VI, 510c.
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a distinction between the principles common to all sciences and those par-
ticular to each. As an example of the first type he mentions the assertion
“Subtract equals from equals and equals remain”, which appears in the
Elements exactly as one of the “common notions”. Immediately before that
he had written: “Particular [principles] are ‘The line is such-and-such’,
and likewise for straightness.”56

There is an obvious difference between the type of “geometric princi-
ples” exemplified by Plato and Aristotle, which surely could not serve as
the basis for proving theorems, and the postulates contained in the Ele-
ments.

As to the premises actually used in the demonstration of geometric
theorems, several passages from Plato and Aristotle attest to a deductive
method much more fluid in the choice of initial assumptions than that
transmitted by the Elements and later works.

The logical unity of the Elements, or of a large portion of it, is clearly
not due to chance; it is the result of conscious work on the part of the
same mathematician to whom we owe the postulates. There is no reason
to suppose that this unity is not an innovation due to Euclid, and a very
important one at that.

2.7 An Application of the “Method of Exhaustion”

As an example of an application of what in modern times was named the
“method of exhaustion” — that is, of Hellenistic mathematical analysis —
we recall how Archimedes computed the area of a segment of parabola, in
his Quadrature of the parabola. This is probably the simplest of the surviving
proofs of Archimedes (and therefore the most popular), but it will suffice
for giving an idea, if not of Archimedes’ ability to solve difficult problems,
at least of his level of rigor. Readers who dislike detailed mathematical
arguments may proceed to the first full paragraph of page 52.

Let a parabola be given. If A and B are points on it, the part of the plane
comprised between the segment AB and the arc of the parabola joining A
and B is called the segment of parabola with base AB. The point C of the
arc of parabola that lies farthest from the line AB is called the vertex of the
segment of parabola.57

Archimedes’ proof is based on a postulate, fundamental in nature and
discussed at the beginning of the work, and on three technical lemmas.58

56Aristotle, Analytica posteriora, I, x, 76a:40.
57The vertex of a segment of parabola depends on the base AB, and should not be confused with

the vertex of the parabola, which is usually a different point.
58Our exposition differs slightly from the original one, which contained more propositions.
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Postulate. If two areas are unequal, there is some multiple of the difference
that exceeds any previously fixed area.
Lemma 1. If C is the vertex of the segment of parabola of base AB, the area
of the triangle ABC is more than half the area of the segment of parabola.

From the technical point of view, the fundamental ingredient in the
proof lies in the following lemma, whose proof, together with that of the
preceding lemma, is given in the Appendix.
Lemma 2. If C is the vertex of the segment of parabola of base AB and D is
the vertex of the segment of parabola of base CB, the area of triangle CBD
is one-eighth that of triangle ABC.

A B

C

D

Archimedes’ basic idea is to cover the segment of parabola with in-
finitely many triangles. He starts by inscribing the triangle ABC into the
segment of parabola of base AB, thereby dividing the latter into three
parts: the triangle ABC and two segments of parabola, in each of which we
can inscribe another triangle following the same procedure (like triangle
CBD in the figure). The procedure can of course be iterated, leading to
ever smaller triangles. Let S be the area of the initial segment of parabola,
A0 the area of the triangle ABC inscribed in it, and A1, A2, A3, . . . the total
area of the triangles inscribed at each successive iteration. Since at each
iteration the number of triangles doubles, whereas the area of each, by
Lemma 2, becomes 8 times smaller, it is clear that A1 = 1

4A0, A2 = 1
4A1, and

so on. At this point Archimedes proves another lemma:
Lemma 3. If A0, A1, A2, . . . , An form a finite sequence of magnitudes, each

of which is four times the next, we have

A0 + A1 + A2 + · · · + An + 1
3An = 4

3A0. (∗)

We will not reproduce the proof of this lemma; we merely note that it is
a particular case of a property of geometric progressions that is very well
known today.

Archimedes can now compute the area S of the segment of parabola by
proving the following theorem:

Theorem. S = 4
3A0.

The theorem is proved by contradiction, by showing that S cannot be
either more or less than 4

3A0. Suppose that S > 4
3A0, and call E the difference
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S − 4
3A0, so that

S = A0 + A1 + A2 + · · · + An + εn = 4
3A0 + E,

where we have indicated with εn the area of the part of the segment of
parabola not covered by triangles after n iterations. If n is large enough,
the area εn, which at each step gets smaller by a factor greater than 2 (by
Lemma 1), will end up smaller than E (by the postulate). Therefore

A0 + A1 + A2 + · · · + An > 4
3A0.

But this inequality is false, because it contradicts (∗). Thus we have ex-
cluded the case S > 4

3A0.
Suppose instead that S < 4

3A0. Using the postulate again, we see that if n
is a sufficiently large integer the area 1

3An must be less than the difference
4
3A0 − S. Using (∗) we deduce that

4
3A0 < A0 + A1 + A2 + · · · + An + 4

3A0 − S,

that is,
S < A0 + A1 + A2 + · · · + An.

This inequality, too, is clearly false, since the right-hand side represents
the area of a portion of the segment of parabola of area S. This concludes
the proof of the theorem.

We note (and it will be clearer to those who read the Appendix) that the
proof depends crucially on the study of triangles, which don’t appear at
all in the formulation of the problem. They are used merely as a tool. This
example makes it clear why Hellenistic mathematicians laid out with great
care such simple theories as that of triangles, presented in the Elements:
they were useful tools for tackling even problems whose original state-
ment had no connection whatsoever with the auxiliary theory. Triangles
were studied so that figures could be triangulated. We will encounter a
similar use of circles as a tool in the study of planetary orbits.

Every real number different from zero has a multiple that is greater than
an arbitrary fixed real number. In modern axiomatizations of the reals, this
property is assumed true and is called the “Archimedean postulate”. The
postulate that Archimedes actually stated is different: the magnitudes that
he (and Hellenistic mathematicians in general) considered in fact form a
non-Archimedean set (in the modern terminology), in that the magnitude
of a segment, though nonzero, has no multiple that exceeds the magni-
tude of a square. In the parlance of Hellenistic mathematicians, two mag-
nitudes have a ratio, and are called homogeneous, if each has a multiple that
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exceeds the other.59 Archimedes explicitly postulates that the difference
between any two inequivalent surfaces is homogeneous with (has a ratio
with) any other surface.60

Archimedes’ surviving writings may give the impression that the level
of scientific works transmitted through late Antiquity and the Middle
Ages was not as low as we claimed on page 8. In fact, the selection criteria
we mentioned are confirmed even in this case, because some of Archi-
medes’ works have reached us only through exceptionally lucky circum-
stances. In spite of their author’s fame, some of his writings (such as the
Quadrature of the parabola) apparently hung on for several centuries in a
single copy, a codex prepared in Byzantium in the ninth century, at the
initiative of Leo the Mathematician. This manuscript, now lost, found its
way to the Norman court in Sicily in the twelfth century and thence to the
hands of Frederick II, Holy Roman Emperor; after the battle of Benevento
(1266) it ended up in the Vatican Library. It still existed in the fifteenth
century, when copies were made in France and Italy, but there the trail
ends.61 Another manuscript, which contained different works and was
probably given to the pope at the same time, is lost track of earlier, in the
fourteenth century. From this second manuscript was derived a Latin ver-
sion of the treatise On floating bodies. Our only other source for the works
of Archimedes is the already mentioned palimpsest (page 8) discovered
by Heiberg in 1906, subsequently lost, and recently found again.

If we had none of his works, our knowledge about Archimedes would
be limited to remarks transmitted by authors such as Plutarch, Athenaeus,
Vitruvius and Heron. We would be exactly in the same situation we are
with respect to, say, Ctesibius: a scientist who, to judge from the same
sources, appears no less interesting than Archimedes. Circumstances such
as the preservation for six centuries of a codex owned successively by
Byzantines, Normans, German emperors, Angevins, popes and Florentine
humanists are hardly replicable. In how many other cases have we been
less fortunate?

2.8 Trigonometry and Spherical Geometry

We conclude this chapter on Hellenistic mathematics with a brief mention
of plane and spherical trigonometry. We make this choice not because of

59Euclid, Elements, V, definition 4.
60A more general version of the postulate, applying not only to surfaces but also to lines and

solids, appears in Archimedes, De sphaera et cylindro, 11:16–20 (ed. Mugler, vol. I).
61See [Dijksterhuis: Archimedes], Chapter 2. For a full discussion of the transmission of Archi-

medes in the Middle Ages, see [Clagett: AMA].
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the subject’s intrinsic importance — Apollonius’ theory of conics or the
methods introduced in Archimedes’ On spirals would be more nourishing
fare — but because it affords the opportunity of illustrating a method used
by many historians of science.

Until a few decades ago there was widespread agreement that “the An-
cients” did not know trigonometry. In fact, the few results comprised in
this elementary part of mathematics, such as the addition formulas, were
developed quite early, and trigonometric tables were compiled for use in
astronomy. The only difference between ancient and modern trigonome-
try is in the choice of the fundamental function, which was then the chord,
rather than the sine. The two choices are clearly equivalent: one can pass
from one function to the other using the obvious formula

chord a = 2 sin
a
2

,

since the sine of an angle is half the chord subtended by twice the angle.
It is not possible to find the chord associated to an arc of given length

using the methods typical of geometric algebra; that is, one cannot com-
pute the chord function using ruler and compass (this task being one of
the possible formulations of the famous problem of squaring the circle).62

That this impossibility did not block the development of trigonometry, but
instead channeled it toward methods other than geometric algebra, such
as numerical tables written in positional notation, shows that the use of
ruler and compass was a matter of convenience rather than an intellectual
prejudice.

In the fourth century A.D., trigonometry was imported into India to-
gether with astronomy, to which it had become an indispensable technical
adjunct.63 Indeed, at various times during the century, Alexandrian as-
tronomers and mathematicians decided to emigrate to India, pressed by
their ever more precarious situation in Alexandria.64 It seems, for exam-
ple, that the Paulisa who authored the Indian astronomical work Paulisa
siddhanta was the astronomer Paulus, a refugee from Alexandria.

Indian mathematicians, having to use half-chords often, decided to pick
the half-chord as the main variable. (They eventually even transferred to

62Obviously one can draw, with ruler alone, the chord corresponding to a given arc, but comput-
ing the chord function with ruler and compass would require constructing with these instruments
the chord of an arc whose length is the same as that of a given segment. The construction of such
an arc is effectively equivalent to the inverse operation of rectifying a circumference.

63It seems certain that the astronomical methods developed in the West were first introduced in
India in the second century A.D., but these were Mesopotamian arithmetic methods used in Greek
astrological texts; see [Neugebauer: HAMA], vol. I, p. 6. The use in Indian astronomy of geometric
methods, which required trigonometric functions, started in the fourth century.

64Hypatia’s end early in the next century (see page 15) shows that this was not at all a bad idea.
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it the Sanskrit term for the chord or bowstring itself, jiva. The Arabs, in-
stead of translating this term, transliterated it with consonants that could
also be interpreted as jaib, meaning “bosom of dress, cavity”; this was
subsequently translated into Latin as “sinus”, with the same meaning.65)
The novelty consisted of a trivial change in variables, which eliminated
factors of 2 in some formulas but did not alter in any way the theorems of
Hellenistic trigonometry; the latter were recovered intact on the other side
of the vacuum represented by the Romans and the barbarian post-Roman
kingdoms, through the eventful mediation of Indians and Arabs.

One historian of science wrote:

The development of our system of notation for integers was one of
the two most influential contributions of India to the history of math-
ematics. The other was the introduction of an equivalent of the sine
function in trigonometry to replace the Greek tables of chords.66

And another:

Since he did not know the ordinary trigonometric functions (sine,
cosine, etc.), Ptolemy employs to this end the so-called calculus of
chords, based on the properties of the chord considered as a function
of the arc that subtends it. It would fall on Arabic mathematicians
(and this was one of their most notable feats . . . ) to bring to light the
unquestionable advantages obtained by replacing this calculus with
true trigonometry in the modern sense of the word.67

We see that the opinions of the two scholars diverge: the “feat” of divid-
ing the chord by two is attributed to the Arabs by one and to the Indians
by the other (who is better informed). On one issue, however, there is total
agreement: real trigonometry (at least “in the modern sense of the word”)
only appeared when instead of using the chord people started using half
the chord!

This example, however banal, is instructive, because it illustrates vividly
an attitude that, although declining in connection with trigonometry, is
alive and well in many other cases, as we shall see. It consists in “con-
firming” the originality of modern science using the following circular
reasoning. It is implicitly assumed that modern science is of higher quality
than ancient science — indeed, that it is the only true science, which “the
Ancients” may have “foreshadowed” at best. As a result, whatever led
to the current formulation, even if it’s just a renaming of a concept or a

65[Rosenfeld], p. 11.
66[Boyer], p. 237 (1st ed.), p. 215 (2nd ed.).
67[Geymonat], vol. I, p. 354.
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division by two, is regarded as the crucial step in the development of the
science in question, perhaps with the qualification “in the modern sense of
the word”. Armed with that characterization, one concludes, sure enough,
that “the Ancients” had not yet developed that science, and so convinces
oneself of the correctness of the initial assumption.

One sees this attitude applied to the method of exhaustion, which is
usually presented as a “precursor” of modern methods of passage to the
limit.68 Readers of Section 2.7 will have noticed that Archimedes does not
employ limits only in the sense that he fails to use a word that matches ours
exactly; a proof in modern analysis needs only to have “limit” replaced by
its definition to become equivalent to his in every way.

Returning to Hellenistic mathematicians, it should be stressed that they
also developed spherical geometry and trigonometry, subjects for which
our main sources of information are the Sphaerica of Theodosius (who
straddled the second and first centuries B.C.), the homonymous work of
Menelaus (first century A.D.), and Ptolemy’s Almagest (page 79), of the
second century A.D.69 The mathematics developed in these treatises, al-
though of course instrumental to astronomy and mathematical geography,
has great theoretical interest. It includes not only formulas of spherical
trigonometry (which can be useful to astronomers or geographers), but
also, particularly in the work of Menelaus, a theoretical development of
intrinsic spherical geometry, constructed in analogy with the plane geom-
etry of Euclid’s Elements.70 In particular, the theory of spherical triangles
(subsets of the surface of the sphere bounded by three arcs of great circle)
is developed in analogy with the theory of triangles contained in Book I
of the Elements, based on postulates of spherical geometry — some closely
analogous to those of Euclid’s plane geometry and some very different. As
we shall see, those investigations would become important again many
centuries later.

68For instance, the Encyclopaedia Britannica says: “Although it was a forerunner of the integral cal-
culus, the method of exhaustion used neither limits nor arguments about infinitesimal quantities”
(15th edition, Micropaedia, sub “exhaustion, method of”).

69There are hints, however, that spherical geometry arose even before Theodosius, during the
heyday of astronomy and mathematical geography, its two most obvious applications. See note 27
on page 273.

70Theodosius’ work, by contrast, uses mostly stereometric methods; that is, theorems about
spherical geometry are demonstrated as theorems of solid geometry, using the three-dimensional
space where the surface is immersed. But even Theodosius sometimes uses methods of intrinsic
spherical geometry.

.

3
Other Hellenistic Scientific Theories

3.1 Optics, Scenography and Catoptrics

One of the first Hellenistic scientific theories was optics ( ��� � ��� � ), that is,
the “science of sight”, and the first known treatise on the subject is Euclid’s
Optics. In this work, Euclid deals with optics stricto sensu; according to
the nomenclature of the time (which we follow in this section), the term
included all that has to do with direct sight, but did not include reflection
(which was the object of the science called catoptrics1) or refraction.

The fundamental entities of the theory are visual rays ( ��� ����	 ), finite in
number and extending in a straight line from the eye. The assumptions of
the theory establish simple correspondences between visual perceptions
and the beams of visual rays that intercept the objects seen. In particular,
they reduce the apparent size of an object to its angular dimension.

The emergence of optics illustrates well where the novelty of the scien-
tific method lies. The term “visual ray” had been in use for a long time2

and the law that visual rays propagate in a straight line was well known.3

Plato, recalling that an object seems to vary in size depending on how far
it is from the viewer, states that no store should be placed on apparent
sizes: they are illusions, while true sizes are those that, being measurable,

1Euclid’s Optics and a pseudo-Euclidean Catoptrics appear in [Euclid: OO], vol. VII.
2Visual rays should not be confused with light rays. The relative roles of visual rays and light,

both of which are necessary for seeing, is clarified in many sources, such as Plato, Republic, VI,
507c–508a. Then as now, in order for an object to be seen two conditions must be satisfied: the
object must be lit and we must be looking at it.

3Plato, Parmenides, 137e:3–4, implicitly uses sight to define straightness.
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can be studied by science.4 On the other hand, in Euclid’s Optics, a chain
of theorems based on a few assumptions is enough to show that visual
perceptions, too, can be analyzed using the scientific method. In this spe-
cific case things are particularly simple, since in terms of internal structure
the theory can be considered a part of geometry.5 What changes radically
are the correspondence rules: visual rays, which within the theory can be
identified with segments, no longer correspond to lines drawn with the
ruler, but to possible directions of sight.

Optics had an important role as a bridge between geometry and sciences
that relate to vision.

First of all, it was an important preliminary tool for astronomy. In the
Arenarius, Archimedes describes a measurement of the apparent size of
the sun,6 not at all a trivial task if a reasonable degree of precision is de-
sired. Optics was also a necessary ingredient in the design of all visual
instruments, such as those used in topographical measurements and the
astrolabe.

The “science of sight” also had important applications to the figurative
arts. One connection between optics and painting was scenography, origi-
nally the technique of creating theater stage sets (which were apparently
introduced by Sophocles7). Geminus defines scenography as the part of
optics required for drawing views of buildings;8 Vitruvius explicitly men-
tions the use of the geometry of visual rays to give a three-dimensional
appearance to buildings painted on theater backdrops.9

Alas, no works on scenography and very little of Hellenistic painting
has survived, but the ties between optics, scenography and painting can
be partly recovered from literary testimonies and Roman-era frescoes and
mosaics, which were invariably of Hellenistic inspiration.

Although Vitruvius says Anaxagoras and Democritus were the first to
write works on scenography based on the geometry of visual rays,10 the
earliest documented paintings that benefited from the new techniques for
rendering three-dimensionality date from Alexander’s reign: in particular,
Aetion’s The marriage of Alexander and Roxane (a description of which we
owe to Lucian11) and a painting by Apelles showing Alexander holding a

4Plato, Republic, X, 602c–603a.
5Aristotle had already made remarks relevant to this: Analytica posteriora, I, xiii, 78b:37; Physica,

II, ii, 194a:7–12.
6Archimedes, Arenarius, 137–140 (ed. Mugler, vol. II).
7Aristotle, Poetica, iv, 1449a:18–19.
8Geminus, in [Heron: OO], vol. IV, 106:15–16. Several passages of Geminus and Anatolius were

published with Heron’s works because they appeared in the Byzantine collection where Heron’s
Definitions (on which more in note 226, page 322) were preserved.

9Vitruvius, De architectura, VII, preface §11.
10Vitruvius, loc. cit. = [FV], II, 14:35 – 15:5, Anaxagoras A39.
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lightning bolt in the temple of Diana. Pliny, stressing that the bolt seemed
to come out of the painting,12 is probably referring to one of the first suc-
cessful attempts to represent the third dimension. He also states that the
great Apelles was surpassed in his ability to render the distance of objects
by the less famous Asclepiodorus;13 this is yet another indication that to-
ward the end of the fourth century new techniques of perspective were
being perfected.14

The Pompeii frescos clearly reveal the use of effective geometric rules
for three-dimensional rendering — not only in the depiction of buildings
(in particular in the so-called “second style”) but in optical illusions that
would only be taken up again in the trompe l’œil of the baroque period.15

The notion of the vanishing point, too, is well attested, pace the many
who have denied that perspective was known in Antiquity.16 Lucretius
observes that a long portico appears like a cone toward whose vertex
the ceiling, the floor and the side walls converge.17 Sextus Empiricus and
Geminus give the same example,18 while Vitruvius writes:

Likewise scenography is the sketching of the front and sides that
recede and the correspondence of all lines toward the center of the
compass.19

The connection between scenography and optics, mentioned by Gemi-
nus, is confirmed by looking at Euclid’s treatise: already one of the first
propositions asserts that parallel lines are not seen as parallel.20

The debate over whether perspective was known in Antiquity has been
going on for centuries. It goes right back to the Renaissance painters21

and is still alive. If by perspective we mean primarily the systematic use
of central perspective as codified in the fifteenth century, its existence in

11Lucian of Samosata, Herodotus or Aetion, chap. 4–6 (in, e.g., Loeb Classical Library, vol. 430).
12Pliny, Naturalis historia, XXXV §92.
13Pliny, Naturalis historia, XXXV §80.
14For Hellenistic painting see, for example, [Bianchi Bandinelli] or [Robertson], vol. I (where the

discussion of Hellenistic perspective is on pp. 587–588).
15Some of the chief examples of these effects can be found in the villa at Oplontis, where excava-

tions started in 1964 have not yet been concluded.
16See [Veltman] for a bibliography on the subject.
17Lucretius, De rerum natura, IV:426–431.
18Sextus Empiricus, Adversus logicos I ( = Adv. dogmaticos I = Adv. math. VII), §244; Geminus, in

[Heron: OO], vol. IV, 102:4–8.
19“Item scaenographia est frontis et laterum abscedentium adumbratio ad circinique centrum

omnium linearum responsus” (Vitruvius, De architectura, I, ii §2).
20Euclid, Optics, proposition 6.
21Piero della Francesca starts his De prospectiva pingendi underscoring the need to recover this

ancient technique and listing ancient painters who had used it, while some of his contemporaries
held instead that the Ancients did not know perspective. Note that the word “perspective” comes
from the Latin “perspectiva”, itself a translation of the Greek � ��� � ��� .
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Antiquity is contested by many on the grounds that the Pompeii frescoes
generally seem to employ what is now called herringbone perspective
(having mutually inconsistent vanishing points along an axis). There is
dispute even about whether Euclid’s Optics contains rules that have imme-
diate application to the projection techniques used in the Renaissance. The
work certainly contains the prerequisites of a theory of perspective, but,
being about optics and not scenography — that is, dealing with our sight
of objects rather than with the preparation of plane drawings that generate
particular visual effects — it does not develop this line of applications. Yet
in spite of the complete loss of all treatises on scenography, explicit appli-
cations of optics to central perspective are mentioned in surviving ancient
works,22 and are in fact evident in some frescos, such as the one discov-
ered in 1961 in the “Room of the Masks” in the House of Augustus on the
Palatine Hill in Rome, which dates from around 30 B.C. (see Figure 3.1).23

Moreover central perspective is only one of the possible applications of
ancient optics; it is designed to optimize the visual impression a painting
makes when seen from a particular point, but it is not the best technique in
every case.24 For instance, it is not well suited to big wall paintings; even
modern artists have often ignored central perspective in large murals, to
avoid the glaring deformations that would appear in peripheral areas to
those not looking from the unique “correct” viewpoint.

Ancient optics and scenography had several other uses in the figurative
arts. Proclus writes:

Optics . . . uses visual rays and the angles they form; it is divided
into optics proper, which explains the appearance of objects at a dis-
tance, including the convergence of parallel lines, . . . catoptrics, . . .
and scenography, which shows how, in images, what is seen might
be made not to appear out of proportion or deformed, according to
the distance and the heights of the things drawn.25

22Ptolemy (Geography, VII, vi–vii) provides instructions for drawing in perspective a world globe
with parallels and meridians (compare [Andersen]). An even more interesting example, noted by
A. Jones in a conference cited in [Knorr: PLP], is a passage in Pappus’ commentary on Euclid’s
Optics that deals with the vanishing point, identifying the point through which one should draw
the lines of a plane in order that they should appear parallel to a given line from a given point of
view (Pappus, Collectio, VI, proposition 51). Elsewhere in his commentary Pappus makes remarks
on linear perspective that are absent from Euclid’s Optics itself.

23This fresco is examined, in the context of a history of perspective, in [Ghione, Catastini].
24This was rightly stressed in [Panofsky]. In the same essay the author argued that Euclidean

optics led ancient painters to the use of a perspective distinct from, but not inferior to, the one
used in the Renaissance. Although the “angular perspective” he postulates is unconvincing, his
ideas may help explain features of certain works. It should be kept in mind, however, that he was
unaware of works such as the fresco in the House of Masks.

25[Proclus/Friedlein], 40:10–21.
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FIGURE 3.1. Fresco from the Room of the Masks, House of Augustus (Domus
aurea), Palatine Hill. Courtesy of Ministero per i Beni e le Attività Culturali, So-
printendenza Archeologica di Roma.

We have from Geminus a complete description of scenography, as a
technique useful to painters who wished to create the illusion of three-
dimensionality, to sculptors (especially the makers of very large statues),
and to architects wishing to obtain certain effects from a particular point
of view.26 Art historians are well aware that such techniques were indeed
used in many cases by Greek architects and sculptors, and that they were
rediscovered only in the seventeenth century.

Catoptrics, based on the well known law of reflection, was used to de-
sign mirrors of various types, including “burning mirrors”, which were
parabolic mirrors capable of concentrating the parallel rays of the sun
into a point (called, for this reason, the focus of the parabola, this being

26Geminus, in [Heron: OO], vol. IV, 106:14 – 108:9. The reference to colossal statues clearly has in
mind the need to plan them so they appear well-proportioned to those standing below.
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FIGURE 3.2. Painting from Pompeii, now at the Museo Archeologico Nazionale,
Naples (#4344). Courtesy of Ministero per i Beni e le Attività Culturali, Soprin-
tendenza Archeologica delle province di Napoli e Caserta.

the Latin word for hearth). A widespread tradition, first documented in
Galen27 and later in various Byzantine sources, associates burning mirrors
with Archimedes, who supposedly built them during the siege of Syra-
cuse to set fire to the Roman ships. But this is unlikely for several reasons:
the mirrors would have to be very large; they would not be very effective
weapons; and there is no mention of them in the accounts of the siege
of Syracuse left by Polybius, Livy and Plutarch, all of whom wrote about
war machines built by Archimedes. This has led many to implicitly reject
as legendary not only the use of mirrors to burn ships, but burning mir-
rors themselves; yet there is nothing legendary about the latter. Diocles,28

possibly Apollonius of Perga,29 and before them Dositheus30 in mid-third

27Galen, De temperamentis, III, ii.
28Diocles’ On burning mirrors, from the second century B.C., survived in Arabic and was found

and edited by Toomer; see [Diocles/Toomer].
29Apollonius’ work on burning mirrors is mentioned in the Fragmentum mathematicum Bobiense

([MGM], 88:8–12). But Toomer, based on the comparison between the citations and Diocles’ text,
thinks that the work in question is that of Diocles, and was erroneously attributed to Apollonius
by the author of the fragment; see [Diocles/Toomer], p. 20.

30As we know from Diocles (On burning mirrors, 34, ed. Toomer).

3.1 Optics, Scenography and Catoptrics 63

century B.C. had studied these applications. Unfortunately we know very
little about the actual use of such devices.

The tradition that associates burning mirrors with Archimedes may be
founded on his works. We know from Diocles that Archimedes’ main cor-
respondent in Alexandria, Dositheus,31 studied parabolic mirrors, having
obtained only partial results;32 thus the problem was very likely brought
to Archimedes’ attention. The existence of an Archimedean Catoptrics is
attested by Apuleius33 and by Theon.34 It is reasonable to think that in
this book Archimedes, who wrote theoretical works on parabolas and
paraboloids, would mention the caustic properties of parabolic mirrors —
in fact Apuleius, listing some of the book’s contents, explicitly mentions
concave mirrors able to concentrate the sun’s rays on one point.35 One can
see how, combining such writings of Archimedes with the recollection of
his contribution to the defense of Syracuse, which included the construc-
tion of ballistic weapons capable of setting fire to ships from far away, the
traditional belief may have arisen.

The most interesting surviving theoretical result about reflection is prob-
ably a theorem in Heron’s Catoptrics saying that a light ray that leaves a
point A and reaches a point B after reflection in a plane mirror has equal
angles of incidence and reflection because it follows the shortest path from
A to B that touches the mirror.36 The simple proof is based on the obser-
vation that the path of the ray does not change in length if the leg from
A to the incidence point is replaced by its mirror image. See Figure 3.3.
Thus the reflection law can be deduced from a minimization principle —
the oldest such principle known. Archimedes had already deduced the
law of reflection from the principle of reversibility of optical paths.37

The earliest extant work that includes a systematic account of refractive

31Archimedes addressed to him his works On the sphere and cylinder, On conoids and spheroids,
and On spirals.

32Diocles says that Dositheus has solved only “practically” (or something like that: the Arabic
text is unclear) the problem of building a mirror that would make the sun’s rays converge to a
point ([Diocles/Toomer], p. 34).

33Apuleius, Apologia, xvi.
34Theon, Commentary on the Almagest (on I, iii) = [Theon/Rome], II, 347:5 – 348:1.
35Apuleius, loc. cit.
36De speculis, iv = [Heron: OO], II.1, 324–328. This work, preserved anonymously in Latin and re-

produced in [Heron: OO], vol. II.1, pp. 301–365, is believed to be a translation of Heron’s Catoptrics.
The proof is also reported by Olympiodorus (sixth century A.D.), In Aristotelis Meteora commentaria
III, in [CAG], XII.2, 212:5 – 213:20 = [Heron: OO], II.1, 368–372. The De speculis and Olympiodorus
agree in stating the result as economy implies equal angles and in giving a proof that is recognizably
the one reproduced here, but somewhat garbled in each case (the De speculis in fact details the proof
of the opposite implication).

37Archimedes’ proof is reported in a scholium to the pseudo-Euclidean Catoptrics: [Euclid: OO],
vol. VII, p. 348, sch. 7.
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FIGURE 3.3. The shortest path from A to B (via the mirror MM′) must touch the
mirror at a point C such that ∠ACM = ∠BCM′. This is because only the path ACB,
upon reflection of the first leg, gives a straight line A′CB. Another path such as
ADB gives a broken line A′DB, necessarily longer than A′CB.

phenomena is Ptolemy’s Optics.38 But studies of refraction started much
earlier; even Ptolemy’s observation that a heavenly body is seen elsewhere
than in the true direction where it lies because of atmospheric refraction
seems to go back to Hellenistic times.39

Ptolemy’s Optics also tabulates the refraction angles corresponding to
various incidence angles for air-water, air-glass, and water-glass inter-
faces.40 Apparently Ptolemy thought that the refraction angle varies with
the incidence angle according to what we call a quadratic function. He
does not state the functional dependence explicitly, but the values he gives
show constant second differences for each interface (see Figure 3.4 for the
water-air case). His values match reality with remarkable accuracy in the
central range, but are far off at the extremes, especially when the incidence
angle is 80◦. Clearly these values come from two procedures: careful ex-
perimentation on the one hand, and subsequent extrapolation (or “correc-
tion”) on the other, based on the a priori belief that the second differences
should be constant. The two procedures represent such disparate attitudes
toward experimental data that it is plausible to attribute them to different
people, possibly from distinct periods.

38All we have of this work is an incomplete and often obscure Latin translation made in the
twelfth century from an Arabic version. The Latin translation was first published in [Ptolemy/
Govi]; the critical edition is [Ptolemy/Lejeune].

39This is likely, because the observation (Ptolemy, Optics, V §§23–30, 237:20 – 242:7, ed. Lejeune)
also appears in authors from the imperial period and from late Antiquity whose sources seem to be
independent of Ptolemy: namely Cleomedes, Caelestia, II §6, 82:174 – 83:177 (ed. Todd), and Sextus
Empiricus, Adversus astrologos ( = Adv. mathematicos, V), §82. Other mentions of refraction appear in
works from the early imperial period, such as Seneca, Naturales quaestiones, I, vi §5.

40Ptolemy, Optics, V §§7–21 = 227:1 – 237:7 (ed. Lejeune).
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FIGURE 3.4. Angle of refraction versus angle of incidence for air and water. The
Ptolemaic values for the refraction angle (marked by dots) have constant second
differences, that is, the differences between consecutive values form an arithmetic
progression: 8◦, 7.5◦, 7◦, 6.5◦, 6◦, 5.5◦, 5◦, 4.5◦.

In Book V Ptolemy examines refraction between two media separated
by a plane or cylindrical surface. At that point the text stops and the
translator adds that the rest of the work could not be found. What did
the missing part of Book V contain? One might hope to learn this from
the statement of contents and purpose usually present at the beginning of
such works, but unfortunately Book I is missing too.

3.2 Geodesy and Mathematical Geography

Herodotus attributes to the Egyptians the introduction of geometry, in the
original sense of measuring of the land, and specifies that it arose from the
need to estimate, for taxation purposes, by how much plots of land were
eroded by the Nile.41 When Greek geometry embarked on its spectacular
course of development, its concrete applications, such as to surveying and
topography, were reclassified under the rubric of geodesy.42 Unfortunately
there is meager direct documentation about the evolution of these tech-
niques from the empirical stage, common to many ancient civilizations, to
Hellenistic science-based surveying and cartography.43

41Herodotus, Histories, II §109.
42See, for example, Aristotle, Metaphysica, III, ii, 997b:26–28, where geodesy is distinguished from

geometry by its concrete nature.
43An important, if late, source on geodesy is the Dioptra of Heron. See [Dilke] for a synthesis of

the available information.
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The basic notion of triangulation — the graphical determination of the
distance to an inaccessible feature by comparing the direction of the lines
of sight from two points lying a known distance apart — is very old. It
was present in Hellenic mathematics from the beginning.44 But the trans-
formation of this idea into effective surveying techniques had to await the
creation of instruments for viewing from a distance and the development
of trigonometry. The first documented use of trigonometric methods goes
back to the surviving astronomical work of Aristarchus of Samos, in the
first half of the third century B.C.; his calculations of the distance to the sun
and to the moon are clearly bold extensions of topographic triangulation
methods to an astronomical scale.45

Geminus, in the first century B.C., describes geodesy by listing the tasks
involved in determining distances and differences in height through the
use of instruments such as rulers, plumb lines, squares and dioptras for
looking through.46 Vitruvius mentions only the dioptra as an instrument
used in measuring differences in height, and another Greek instrument
having the same purpose: the chorobate (a water-filled level).47 We will
return later to the dioptra described by Heron.

Town planning affords some indirect evidence about the development
of surveying techniques. Greek town planning goes back to Hippodamus
of Miletus (fifth century B.C.), but it was probably in early Hellenistic
times that the establishment of many new and large cities with their infra-
structure stimulated the development of effective surveying instruments.
Such instruments would also have been needed for planning works such
as the citadel of Pergamum, which required hill terracing in addition to
building construction.

Chorography, whose purpose according to Polybius is to determine the
location of sites and the distances between them,48 seems to be a middle
step between the techniques used in town planning and in mathematical
geography.

The difference between Hellenistic mathematical geography and the
purely descriptive geographical works of classical Greece, Rome, and the

44Compare the Proclus passage mentioned in Chapter 2, footnote 9.
45Aristarchus of Samos, On the sizes and distances of the sun and moon = [Heath: Aristarchus], Ap-

pendix. Aristarchus uses trigonometric methods in the sense that he computes the ratios between
the sides of a triangle whose angles are known. Of course his values are not exact, nor can he use
tables of approximate values of trigonometric functions (which did not exist at the time), but he
determines small intervals which he can show contain the ratios that interest him.

46This fragment from Geminus appears in [Heron: OO], vol. IV, 100:4 – 102:8.
47Vitruvius, De architectura, VIII, v §§2–3.
48Cited in Strabo, Geography, X, iii §5. It may be significant that at the beginning of his work

Strabo compares geographers to architects who plan buildings or cities (Geography, I, i §13). There
is no direct evidence for topographical maps.
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Middle Ages is a good illustration of the difference between scientific and
prescientific societies.

We know Hellenistic mathematical geography through a single work,
Ptolemy’s Geography, but that is enough to show that it was as scientific
as today’s.49 It is a typical scientific theory with correspondence rules,
whereby each spot on the surface of the earth corresponds in the model to
a point on a spherical surface, identified by two spherical coordinates: lat-
itude and longitude. Ptolemy is also familiar with cartography; he knows
several projections (including modified conic projections, whose mathe-
matical properties he uses) in order to represent the earth on plane charts,
preserving all the information present in a spherical representation. He
records the latitude and longitude of about eight thousand places, from
Ireland to Southeastern Asia.

Mathematical geography, too, arose early in the Hellenistic period. The
quantitative description of the whole known world becomes an acutely
felt need following the sudden expansion of the Greek world due to Alex-
ander’s conquests. Already around 300 B.C., Dicaearchus, a student of
Aristotle, had taken the first step toward the creation of mathematical ge-
ography by identifying a parallel of latitude, that is, by selecting a series
of locations all having the same latitude, from Gibraltar to Persia.50

Eratosthenes of Cyrene drew the first scientific map of the known world,
going from Gibraltar to India and from Somalia to the North polar circle.
His work already relied on the spherical coordinates we use.51 The latitude
of a place — the Greek word was � ���

� � , which originally meant “inclina-
tion” and later gave our “climate” — is easy to fix, say by measuring with
a sundial the angle the sun rays make with the vertical at noon, on the
day of the solstice. Another way is to obtain it from the ratio between the
duration of day and night at the solstice.52 Fixing longitude has always
been much harder, until the advent of chronometers and radio, and we
don’t know what method Eratosthenes might have employed. Possibly it
was the one mentioned by Ptolemy at the beginning of his work, whereby
one finds the difference in longitude between two places by determining
the difference in latitude and estimating the angle that the line between
the two makes with the meridian.53 In the case of cities linked by a sea

49In fact, “modern” mathematical geography is none other than Ptolemy’s, recovered by Renais-
sance scholars.

50The attribution of the introduction of the first parallel to Dicaearchus is based on a passage of
Agathemerus (Geographiae informatio, proem, 5 = [Wehrli], vol. I, fr. 110).

51The spherical shape of the earth was known at least as early as Parmenides, in the first half of
the fifth century.

52Compare [Szabó, Maula], part II.
53Ptolemy, Geography, I, iii.
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lane, this information would have been known approximately to seafarers
plying the route.

Eratosthenes’ most famous result was the measurement of the earth’s
meridian.54 Earlier numbers, reported by Aristotle with no mention of
the method by which they were obtained,55 had been estimates rather
than measurements. The admiration earned by Eratosthenes’ feat was so
widespread that Pliny, centuries later, could still hear its echoes.56

Eratosthenes’ method, as given by Cleomedes (and as expounded in nu-
merous textbooks and works of scientific popularization), is the following.

It was known that Syene (today’s Aswan) is located almost on the tropic
line: during the summer solstice, the sun passes almost exactly overhead
at noon. Therefore, if someone in Alexandria at the same time measures
with a sundial the angle made by the sun’s rays with the vertical, he has
the angle formed by the vertical lines through the two cities. If she also
knows the distance between them as the crow flies, she can divide it by the
angle to deduce the distance corresponding to one degree of great circle.
The difficulty in knowing in Alexandria when it was noon in Syene is
overcome by assuming that Syene is directly south of Alexandria, so that
noon occurs simultaneously in both places.

We will return to the technical details in Section 10.2. For now we make
only a methodological observation.

Today Eratosthenes’ method seems almost banal to many people who
can easily explain it with the help of a drawing. Yet it is inaccessible to
prescientific civilizations, and in all of Antiquity not a single Latin author suc-
ceeded in stating it coherently. The difficulty lies not in the geometric reason-
ing, in itself very simple, but in understanding that by reasoning about a
drawing one can derive conclusions about the whole earth. Someone who
goes back and forth in thought between a drawing and the world is using,
most often unconsciously, correspondence rules — precisely what we have
singled out as an essential characteristic of scientific method. Indeed, only
by making explicit all the underlying assumptions (which in the case of
Eratosthenes were those of optics and of geometry, the roundness of the
earth and the smallness of the earth compared with the distance to the sun)
can one create a theoretical model that, being approximately applicable to
the earth, is also amenable to depiction by a drawing and so furnishes a
logical bridge between the two.

54This was described by Eratosthenes in his On the measurement of the earth, which is lost; we
know about his method chiefly through Cleomedes, Caelestia, I §7, 35:48 – 37:110 (ed. Todd). We
will come back to Cleomedes’ account in Section 10.2.

55Aristotle, De caelo, II, xiv, 298a. Probably the method involved comparing the elevation of stars
at different places.

56Pliny, Naturalis historia, II §§247–248.
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Eratosthenes’ method is a brilliant example of the power of scientific
method: by going back and forth between the real world and the model,
he gained information about the unknown regions of the earth, which no
Ancient had ever seen.

In the second century B.C., mathematical geography progressed thanks
above all to Hipparchus of Nicaea. It was he who, in critiquing the method
of his predecessors, had the idea of finding differences in longitude using
astronomical methods, by measuring differences in local time for the same
lunar eclipse.57

The study of geography was taken up again in the imperial age, in close
connection with astronomy and spherical geometry, by Marinus of Tyre,
whom we know only through Ptolemy’s criticism, and by Ptolemy him-
self (both second century A.D.). But whereas Eratosthenes had found one
degree of meridian to be worth 700 stadia, a quite accurate number also
accepted by Hipparchus a century later,58 Marinus and Ptolemy adopted
instead the value 500 stadia.59 Although we do not know why the world
shrank like this in the imperial age, an error of this magnitude must mean
that either the values of certain key geographic data current in Ptolemy’s
time were much less accurate than they had been 400 years earlier, or that
such data were misunderstood or misapplied. Either possibility should
not surprise us, given that Ptolemy was separated from the golden age
by centuries during which there had been no continuity in the transmis-
sion of information.60 Now we must ask ourselves how it came about that
Marinus and Ptolemy, who knew the method used by Eratosthenes and

57Strabo, Geography, I, i §12. Strabo mentions also solar eclipses, obviously by an oversight, which
nonetheless has propagated down the centuries (see, for example, the Encyclopaedia Britannica, 15th
edition, Micropaedia, sub “Hipparchus”).

58Strabo, Geography, II, v §7.
59Apparently this was not just a matter of inconsistent units: Ptolemy really did believe the

meridian was shorter than formerly thought. That the shorter value had already been adopted
by Marinus is mentioned in Ptolemy, Geography, I, xi. Using Ptolemy’s data, a person setting out
to travel westward along the latitude of (say) Palos, Spain, would expect to cover 17,000 km ( 5

7 of
the actual value of 24,000 km) before returning home. If his goal were to reach Asia by traveling
due west from Spain, he would estimate the length of the voyage by subtracting from 17,000 km
the breadth of Eurasia (about 10,000 km). It turns out that Ptolemy’s error did not affect the size of
the known continents, which he reports with reasonable accuracy; thus the calculated difference
(17,000 − 10,000 = 7,000 km) would be about half the true value (24,000 − 10,000 = 14,000 km). This
helps explain why Columbus grossly underestimated the length of a westward route to Asia.

60Studies at Alexandria were tragically interrupted by the persecution unleashed by Euergetes II
in 145 B.C. (page 11). The Library survived, and became the main element of continuity between the
golden era and the revival of the imperial age. But the scarcity of intellectuals after the persecution
was such that the position of the head of the Library fell to a certain Cida “from the corps of lancers”
( � � ����� � ��������� � ��� � ), as we know from a papyrus (P. Oxy. 1241, II, 16). It is easy to see how this
situation led in the imperial age to that passive dependence on written authorities that became
even more acute later on and that is sometimes backdated to the golden period of Alexandrian
science, through the conflation of two profoundly different cultural climates.
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had access to the same information about Syene, did not try to repeat the
simple measurement of the inclination of the sun. We might also ask why
Columbus did not repeat the measurement himself, instead of traveling
throughout Europe looking for information about the size of the earth in
libraries. Or yet why neither Galileo nor any of his contemporaries did
it. Clearly Eratosthenes’ method hides a further difficulty, which escapes
those who think it trivial. We will come back to this in Section 10.2.

3.3 Mechanics

We alluded in Section 1.5 to the main features of Aristotelian mechanics.
By contrast, the mechanics (literally, “science of machines”) we encounter
in the first Hellenistic treatise we possess on the subject, Archimedes’ On
the equilibrium of plane figures, already has the characteristic structure of a
scientific theory in our sense. That work deals with two kindred problems:
the law of levers and the location of barycenters of plane figures.61

Archimedes’ interest in the theory of levers is clearly aimed at the study
of machines and in particular at the calculation of their mechanical advan-
tage. Unfortunately very little remains of contemporary theoretical writ-
ings on this subject; Archimedes’ other treatises have perished.62 But we
can reconstruct some features of third century B.C. mechanics by combin-
ing information from three sources: the one surviving Archimedean book;
documents — particularly works of military technology — that mention
machines actually built; and treatises written centuries later, above all
Pappus’ Collection and Heron’s works. Among these the most useful is
the Mechanics,63 which describes the five simple machines (the winch, the
lever, the pulley, the wedge/ramp and the screw) as well as a number of
composite machines designed for various uses. The pseudo-Aristotelian
Mechanics, which share many features with Heron’s Mechanics, also has

61Mach’s criticism that Archimedes deduced the law of levers from inadequate symmetry con-
siderations (in [Mach], Sections I.3 and I.5) reflects a lack of understanding of the function of the
Archimedean postulates. Mach considers only the first two postulates, whereas in deducing the
law of the lever Archimedes makes essential use of the sixth. This is emphasized by O. Toeplitz,
W. Stein and E. J. Dijksterhuis, who showed how much subtler the Archimedean analysis was
than Mach’s (see, for example, [Dijksterhuis: Archimedes], pp. 291–295). Even as keen an intellect
as Mach’s can fall into the trap of assuming that the long time elapsed grants us an automatic
superiority over Hellenistic scientists.

62The one remaining piece is probably an excerpt from a longer work, Elements of mechanics
( �

����� ��� � � ����� ��� ���	� � � ��� ), which Archimedes himself seems to cite under this title (De corporibus
fluitantibus, II, 25:25; ed. Mugler, vol. III).

63This work was found in Arabic translation by Carra de Vaux and published in [Heron/Carra
de Vaux]. The standard critical edition, based on several manuscripts, is due to Nix and appears in
[Heron: OO], vol. II.
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interesting information. We postpone until Chapter 10 a discussion of the
successive theoretical developments, and treat here only the problem that
gave rise to the science of machines.

The main mechanical problem of the time can be described as follows.
Suppose we wish to raise a weight W to a height h. Instead of doing it di-
rectly, one can use a machine that, upon application of a force F, raises the
desired weight to the desired height, the point of application of F moving
in the process a distance d in the direction of F. In today’s language, the
principle of conservation of energy implies that the weight cannot be lifted
unless the product Fd, now called the work performed by the force, exceeds
the product Wh. If Fd does exceed Wh (and friction is sufficiently small),
the weight can be lifted, and moreover, by using appropriate devices, one
can choose the direction and the place where the force is applied, as well
as the decomposition of the work between the two factors: one can apply
a small force along a long distance or a large force along a short distance.
In particular, one can lift the weight W using a force F less than W. The
ratio W/F is the mechanical advantage of the machine.

The problem, given a maximum available force F and the need to lift
a weight W, is to design a machine having the appropriate mechanical
advantage and configuration, so the weight can be lifted by applying the
available force at a convenient point and in a convenient direction. All
devices of this type can ultimately be traced back to the simplest such de-
vice, the lever, which Archimedes uses as the starting point of his scientific
theory of mechanics.

Of course problems of this type had always been around and had often
been solved practically, as far back as paleolithic times, when levers and
wedges/ramps were already in use. At the time of the ancient empires
pliers (pincers) were also known, and the pyramids could not have been
built without the help of many machines. Classical Greece knew the pul-
ley and the winch, the latter having first been used, in all probability, for
shipbuilding or in the theater. This long evolution of empirical mechanics
was based on the slow accretion of craftsmen’s experience. The qualita-
tive leap made possible by science lay in that now one could compute
the mechanical advantage theoretically, and so for the first time design a
machine from first principles. This leap surely took place as early as the
third century B.C. Pappus64 and Plutarch65 tell us that Archimedes had
solved the problem of lifting a given weight with a given force; in other
words, he know how to design a machine with a specified mechanical
advantage. There is no reason to doubt these sources, since the theoretical

64Pappus, Collectio, VIII, 1068:20 (ed. Hultsch).
65Plutarch, Vita Marcelli, xiv §7.
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bases of such a solution are given by Archimedes in his extant work and
several applications of his designs were reported by various authors. We
also know that the same period witnessed the introduction, perhaps due
to Archimedes himself, of a piece of technology still used today for many
problems of this type: the gear.66

Hellenistic mechanics is closely connected to geometry. Diogenes Laer-
tius states that Archytas (first half of the fourth century B.C.) was the first
not only to introduce concepts from mechanics in the study of geometry
(using lines generated by moving figures to construct the two proportional
means between magnitudes), but also to treat mechanical questions using
mathematical principles.67

The close link between geometry and mechanics, understood as two
scientific theories, is clear in Archimedes. First of all, his On the equilib-
rium of plane figures, which founds the study of simple machines, borrows
from geometry not only the general form of the deductive scheme, but
also many particular technical results. More surprising to us today is that
Archimedes uses the laws of mechanics to find theorems of geometry. In
his Quadrature of the parabola, the rigorous proof we gave in Section 2.7
is preceded by a heuristic discussion based on the principle of the lever.
Likewise, the volume of the sphere is found by imagining the balancing
of a spherical and a cylindrical object, each placed on one plate of a bal-
ance. This procedure is explained systematically in The method,68 where
Archimedes expounds the two distinct methods he uses, respectively, for
discovering mathematical results and for proving them rigorously. The
geometric method is used only as a second step, to prove propositions
already identified as plausible. For the discovery of propositions he uses
instead the mechanical method, which he considers more intuitive. The
method glows with the intellectual honesty of someone who is trying to
communicate not only the proofs of his results but also the mental route
that led to them, and it is of great interest for this and other reasons, such
as the importance the author attaches to what we might call physical in-
tuition and because it shows how essential it is, even for a genius, to use
familiar methods in finding new scientific results, however tenuous the

66See Section 4.1.
67Diogenes Laertius, Vitae philosophorum, VIII §83. The construction given by Archytas for the

two proportional means is reported by Eutocius in his commentary to Archimedes’ On the sphere
and cylinder (pp. 62–64 in [Archimedes/Mugler], vol. IV). Plato reproached Archytas for having
contaminated geometry with mechanics (Plutarch, Quaestionum convivalium libri iii, 718E–F).

68Archimedes, The method, 77–127 (ed. Mugler, vol. III). The palimpsest (see page 8) is incomplete
and some pages are largely unreadable. Heiberg conjecturally filled in extensive gaps, and his work
was the base for the English translations in [Archimedes/Heath] and [Archimedes: GSM]. Recent
work has led to significant revisions; see [Netz, Saito, Tchernetska].
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objective connection between these methods and the initial problem might
seem after the fact.

Many widespread ideas about the relationship between mathematics
and physics should perhaps be revised in the light of the realization that
the original proof of the now familiar formula for the volume of a sphere
was in fact one of the first results of mechanics.

3.4 Hydrostatics

As far as we know, scientific hydrostatics was born with Archimedes’ On
floating bodies. And it was born already with much the same form it has
today. Indeed, Archimedes makes it a scientific theory by laying its foun-
dation in the form of a postulate:

If contiguous portions of liquid lie at the same level, the portion that
is more compressed pushes away the portion that is less compressed.
Each portion is compressed by the weight of liquid that lies vertically
above it, as long as the liquid is not enclosed in something and com-
pressed by something else.69

The second half of the postulate has generally been misunderstood, both
because a key word was twisted in the Latin translation that was until
1906 the only accessible version, and because Archimedes never uses the
statement in this one surviving work, which deals with bodies that float
on an open liquid. But note that the so-called principle of communicating
vessels (though also not deduced explicitly in this work) clearly follows
from the postulate, and may even have suggested its formulation.70

As a theorem arising from this postulate, Archimedes derives the fa-
mous principle that bears his name and that we all learn in school: Any

69Archimedes, On floating bodies, I, 6:2–8 (ed. Mugler, vol. III).
70If two open vessels joined by a horizontal tube are in equilibrium, portions of liquid lying at

the same level are under the same pressure, whether they be contiguous (by the first part of the
postulate and the assumption of equilibrium) or not (by transitivity). Now consider a portion of
liquid in each container, both portions being at the same level and not compressed by anything else,
only by the liquid above them: the equality of pressures just derived implies (by the second part of
the postulate) that the columns of liquid above these two portions are equal. Therefore the surface
of the liquid is at the same level in both containers.

If the communicating tube is not horizontal, the deduction is a bit more involved, but it can be
derived as an exercise by anyone who has read carefully the first few propositions of On floating
bodies, book II.

The principle of communicating vessels has generally been attributed to Heron, who uses it in
the Pneumatica and in the Dioptra. But it was certainly known empirically before Archimedes; Plato
mentions that water will flow through a wool thread from the fuller to the emptier of two cups
(Symposium, 175d:6–7), implicitly supposing the two cups to be identical and placed on the same
table.
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FIGURE 3.5. A low-form solid paraboloid of revolution (left) always floats up-
right. A tall-form one will float upright if it is dense enough (middle), but for
lesser densities its equilibrium position is tilted at an angle (right) that depends
on the density and the form factor. Archimedes proved these facts, calculating
the threshold between the two regimes and the stable angle in the second case.
(For the tall shape illustrated here, the threshold density is 1

4 of the liquid’s; the
figure on the right has density 1

9 of the liquid’s.)

object is buoyed up with a force equal to the weight of liquid it displaces.
But, contrary to the impression we generally get in school, Archimedes’
hydrostatics is not limited to this statement. The typical problems that
Archimedes solves in his treatise are finding the waterline for solids in
equilibrium in a homogeneous liquid, and above all whether the equi-
librium position is stable. The most interesting results along these lines
are about an arbitrary floating solid in the shape of a right paraboloid of
revolution (that is, a paraboloid truncated perpendicularly to the rotation
axis). The stability of equilibrium in the upright position is studied as a
function of two parameters — the form factor, which says how “fat” the
paraboloid is, and the density of the solid. To summarize the results: If the
paraboloid is fat (shallow) enough, upright equilibrium is always stable.
If it’s skinny, upright equilibrium is stable only if the density exceeds a
certain value, while less dense paraboloids will stabilize at a certain angle
of tilt that depends on the density (Figure 3.5).71

This study would be regarded today as an application of bifurcation
theory, and according to Dijksterhuis it “deserves the highest admiration
of the present-day mathematician, both for the high standard of the results
obtained, which would seem to be quite beyond the pale of classical math-
ematics, and for the ingenuity of the argument”.72 Evidently, in present-

71To be precise, the position with the axis vertical is stable regardless of density if and only if the
height of the segment of paraboloid is less than 3

2 times the parameter of the generating parabola
(the parameter is the distance between focus and directrix). Archimedes also determines, for taller
segments, the threshold density and the angle of tilt at any given density above the threshold; both
increase with the form factor. Eventually the paraboloid is so tall that it floats on its side for density
values in a certain range; Archimedes shows that this happens when the height exceedes 15

4 of the
parameter.

72[Dijksterhuis: Archimedes], p. 380.
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day opinion the pale of “classical mathematics” does not even reach as far
as the few surviving works of its most famous luminary.

That Hellenistic scientists were conscious of the “theoretical model”
character of scientific theories is made clear by the use of not one but two
such models in what we know of Archimedean hydrostatics. Indeed, the
first book of On floating bodies derives from the postulate already quoted
the fact that the surface of the oceans is spherical, whereas in the second
book the surface of the liquid is implicitly assumed to be flat from the start:
Archimedes does not spend a single word in justifying this assumption as
an approximation of the “true” spherical shape. Obviously we are dealing
with two different models, appropriate for phenomena at different scales.

The function of hydrostatics is clear. Inside the theory we have elegant
and difficult mathematical problems. As for the real-life objects that the
theory models, what can these objects be, about which one wants to calcu-
late the waterline and the stability of equilibrium theoretically, before plac-
ing them in a homogeneous liquid? Clearly these are problems of naval
architecture. Archimedes not only solves them, but even frames his study
in an elegant and efficient hypothetico-deductive structure that allows the
reduction of other problems analogous to those discussed to “exercises”
internal to the theory (though perhaps solvable only approximately). This
makes possible, in particular, the theoretical design of ships. 74 This inter-
play is the essence of scientific method.

Important precursors of Archimedean hydrostatics appear in the frag-
ments of Democritus and in Strato of Lampsacus,75 whereas Aristotle’s
ideas in this respect were much more distant.76

3.5 Pneumatics

In the case of pneumatics, as in many others, we find an important quali-
tative precursor of Hellenistic science in pre-Socratic thought. The earliest
clear reference we have to the effects of atmospheric pressure was made

74The connection with ships is not far-fetched if we consider that Archimedes’ proofs apply also
to an elliptic paraboloid, so long as one considers roll and pitch separately.

75According to Democritus, the upward motion of “light” bodies is explained by the fact that,
though having weight, they are pressed toward the top of the atoms of the surrounding fluid, if
these atoms are heavier (Simplicius, In Aristotelis De caelo commentaria, [CAG], vol. VII, 569:5–9 =
[FV], II, 100:3–6, Democritus A61). Similar ideas are attributed to Strato of Lampsacus, who wrote
a work On the vacuum (relevant testimonia are collected and discussed in [Wehrli], vol. V, fr. 54–
67 or [Diels: Strato], pp. 110–119; see also [Rodier], p. 57; two of the main ones are Simplicius, In
Aristotelis De caelo commentaria, [CAG], vol. VII, 267:30 – 268:4 and Aetius, in Stobaeus, Eclogae, I,
xiv, 143:6–9 (ed. Wachsmuth) = [DG], 311b:23–26).

76According to Aristotle (Physica, IV, i; De caelo, I, iii; De caelo, IV), levity is a quality opposite to
gravity (weight); bodies that have that quality naturally tend to go up.
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by Empedocles.77

However, the first unequivocal testimonia about pneumatics, under-
stood as the science of compressible fluids, date from the first half of
the third century B.C., when Ctesibius of Alexandria wrote at least two
works on the subject: one, perhaps more theoretical, called Demonstrations
in pneumatics ( ��� ��� � � � ����� ������� ��� � � � ),78 and a more applied one, the Com-
mentaries ( �	
 	 � � � ��� � � � ),79 where a great many machines were described.
Strato of Lampsacus, too, probably made significant contributions to the
birth of pneumatics, but these are harder to document.

Unfortunately no work of Strato or Ctesibius has survived. Apart from
some indirect references,80 our knowledge of this ancient science is based
essentially on the Pneumatica of Philo of Byzantium, who continued Cte-
sibius’ investigations, and on the homonymous and much later work by
Heron (first century A.D.). The work that bears Philo’s name is represented
by an Arabic text in 65 chapters, describing as many devices, and by Latin
manuscripts.81 The latter match the first 21 chapters of the Arabic text,
albeit with notable omissions; it is reasonable to assume that this material
was written by Philo, though our texts are very corrupt. By contrast, the
part we have only in Arabic must be a compilation from heterogeneous
sources,82 because it is highly uneven in terms of technical sophistication
and subject matter: while many of the devices it talks about are essentially
amusements (as in the homonymous work by Heron), the last few chap-
ters describe water-wheels and water-lifting machines — applications of
great economic value which, as we shall see in Section 4.6, appeared in
the early Hellenistic period.

77Aristotle, De respiratione, 473a:15–474a:6 = [FV], I, 347:13 – 349:6, Empedocles B100. (For a trans-
lation see, for example, [Empedocles/Inwood], pp. 138–139.) The clepsydra of this text is a gadget
used to transfer liquids between containers — an inverted funnel whose wide mouth is closed by a
perforated plate. In its normal usage, the clepsydra is partly immersed in the liquid; after it fills up
to the surrounding level, the narrow opening at the top is capped with a finger and the instrument
is lifted with the liquid inside. The girl of this passage, instead, immerses the clepsydra with the
top opening covered, and the water cannot come in; as she lifts her finger, the air rushes out. The
process is discussed, explained and illustrated in Heron, Pneumatica, I, vii = [Heron: OO], vol. I,
56–60.

78This work is cited by Philo of Byzantium in Belopoeica, 77:12 = [Marsden: TT], p. 152. The
word � � � � ��� � ��� here can mean either “theorems” or, more likely, “demonstrations”, in the sense
of demonstrative experiments.

79Vitruvius, De architectura, X, vii §4.
80For Ctesibius we have very important testimonia in Vitruvius and Athenaeus, besides those in

the works by Philo and Heron about to be discussed.
81See [Philo/Prager] for an English translation of the Arabic and Latin texts; Prager’s introduc-

tion is probably the most interesting modern article on ancient pneumatics. The standard reference
on the subject is [Drachmann: KPH].

82Prager attributes to Philo only chapters 37–39, besides those surviving in Latin ([Philo/Prager],
p. 66).
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The Greek word pneuma ( � ��� � � � , translated spiritus in Latin) had a
wide range of meanings, which changed significantly through the cen-
turies and between cultural environments. The early meanings were air,
breath, breathing, spirit, etc. In Stoic thinking, pneuma is also a contin-
uous medium that underlies exchanges between the various parts of or-
ganisms83 and of the universe.84 But Heron, at the beginning of his Pneu-
matica, states that pneuma is just air in motion;85 this simple meaning of
the term may have been sharpened precisely through the development of
pneumatics.

Although the total loss of Ctesibius’ works and the corruption of Philo’s
text greatly limit our knowledge of theoretic aspects of Hellenistic pneu-
matics, we do have some insight on one important methodological char-
acteristic of it. The objects described in the early, and reputedly authentic,
chapters of Philo’s works are intended neither to amaze nor, for the most
part, to perform useful functions; they are simple experimental devices
designed to demonstrate particular phenomena, such as those related to
the syphon principle. Some of Philo’s demonstrative experiments are still
used in school today to teach the experimental method: for example, the
effect that burning a candle inside a submerged dome has on the water
level inside the dome.86 Heron, most probably drawing from Ctesibius or
Strato of Lampsacus, devotes the entire introduction of his Pneumatica to
arguing that macroscopic regions of vacuum cannot exist in nature, but
can be approximated artificially — as in fact he demonstrates later in the
work on several occasions. In particular, Heron explains that the natural
distribution of particles and void in air can be changed in both directions
under the application of external forces, although the air opposes such
changes with an elastic reaction.87 The elastic properties of air had already
been described and used by Ctesibius, as we know from Philo.88

83In animals, according to several authors, the transmission of information from sensory organs
to the central unit and from there to the muscles is mediated by pneuma; see for example Stobaeus,
Eclogae, I, xlix, 367:17 –368:20 (ed. Wachsmuth) = [SVF], II, 826 (quoting Iamblichus) and Calcidius,
Ad Timaeum, ccxx = [SVF], II, 879.

84Pneuma — in this function overlapping with the aether of some authors — is the medium for
interactions between the various parts of the universe, thanks to its tension ( � � � ��� ) and its char-
acteristic tensional motion ( � ��� � ��� � � � ��� � ); in particular it allows the transmission of light (see for
example Cleomedes, Caelestia I §1, 3:68–74 (ed. Todd) = [SVF], II, 546). The reference [Sambursky:
PS] may be useful in connection with Stoic physics.

85Heron, Pneumatica, I, introduction = [Heron: OO], vol. I, 6:6–7.
86Philo of Byzantium, Pneumatica, viii = [Philo/Prager], p. 136. Even Philo’s explanation for the

rise (some of the air “perishes”, or is consumed) continues to be offered by many introductory
science books, in spite of its incompleteness. In this the books follow an uninterrupted tradition
over two thousand years old. We will return to Philo’s explanation at the end of Section 5.7.

87Heron develops these notions throughout the work’s proem ([Heron: OO], vol. I, 2–28); see in
particular 6:23 – 7:16 and 26:23 – 28:11.

88Philo of Byzantium, Belopoeica, 77–78 = [Marsden: TT], pp. 152–154.
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Pneumatics, appearing from its foundation as a theory of phenomena
that can only be caused artificially, lies very far from natural philosophy
and certainly from Aristotelian philosophy.89 This provides corroborative
evidence for the revolution in thought illustrated in Section 1.4 with ex-
amples from mechanics.

One important technical application of pneumatics was the pressure
pump. Vitruvius has left us a description of it taken from the Commentaries
of Ctesibius, to whom he attributes the pump’s invention.90 (He refers
the reader to the same work on the subject of several other air-operated
machines.91) The design is that of today’s two-piston, two-phase pumps
(see Figure 4.10 on page 124). Its construction was made possible by the
introduction of a new element, the valve, which became crucial in all later
technology.

3.6 Aristarchus, Heliocentrism, and Relative Motion

Starting in the fourth century B.C., scientific astronomy developed in close
connection with mathematics. The greatest astronomers we know of were
Eudoxus of Cnidus (whose mathematical accomplishments we have al-
ready mentioned), Callippus and Heraclides of Pontus in the fourth cen-
tury; Aristarchus of Samos, Conon of Samos92 and Archimedes93 in the

89Aristotle gave several “demonstrations” of the impossibility of the vacuum (Physica, IV, vi–ix,
213a–217b). Like Archimedes with the ship (page 25), Ctesibius overcomes Aristotle’s objections
by designing machines that create phenomena not observable in nature. It was once thought that
Heron offered the impossibility of a vacuum as an explanation for why syphons work (Pneumatica,
I, ii = [Heron: OO], vol. I, 36:8–18). This view turns out to be based on the emendation of a question
mark into a colon by philologists eager to shoehorn Heron into the confines of Aristotelian ortho-
doxy. This at least is what Prager concluded after comparing the edited text with the Biblioteca
Marciana codex of the Pneumatica; see [Philo/Prager], p. 21.

90Vitruvius, De architectura, X, vii §§1–3. A variation, used as a hydrant, is described by Heron
(Pneumatica, I, xxviii). A description of a vacuum pump contained in the Arabic text of the Pneu-
matica of Philo of Byzantium (chapter lxiv) seems to be by Arabic hands and has scarce technical
value.

91The clocks and pumps that Vitruvius describes are, he says, the “most useful” among the de-
vices in the Ctesibian Commentaries (ibid., §5); the others he dismisses as very ingenious but meant
solely for amusement. The contents of the first chapters of the Pneumatica of Philo, whose main
source was certainly Ctesibius’ work, may suggest that some of those “useless” devices might in
reality have been designed for experimental demonstrations (see page 77).

92Conon is best known because Callimachus, in a famous short poem translated by Catullus,
mentions him as having explained the motion of heavenly bodies (Coma Berenices = Catullus poem
66:1–7; a fragmentary Greek text has been found on papyrus: Callimachus, fr. 110 Pfeiffer). One
imagines that he made important contributions to science, since Archimedes mentions him ad-
miringly more than once (Quadratura parabolae, 164:1–12; De sphaera et cylindro, I, 9:12–15; De lineis
spiralibus, 8:12–20, ed. Mugler in each case) and Apollonius of Perga stresses the importance of
some of his theorems on conics (Conics, preface to Book IV; we quote the passage on page 200).

93The astronomical activities of Archimedes are attested by references in his extant works and
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third; Apollonius of Perga (better-known for his treatise on conic sections)
between the third and second; and Seleucus and Hipparchus in the second
century B.C. After that astronomical research stops.

Of all the astronomical works of the scientists mentioned so far, only
two remain, both altogether minor: Aristarchus’ On the sizes and distances
of the sun and moon, already mentioned,94 and Hipparchus’ Commentary on
the Phenomena of Aratus and Eudoxus, containing a critical commentary on
Aratus’ poem and saved thanks to the latter’s popularity. To these one can
add a famous passage in Archimedes’ Arenarius describing the heliocen-
tric theory of Aristarchus of Samos. The information contained in these
writings is meager. Aristarchus’ surviving work, indeed, gives us a sense
of his scientific method and of the use of trigonometric methods, but it
is essentially a geometric work, unrelated to the fundamental problem of
astronomy: the description of the motion of heavenly bodies. Also barren
is Hipparchus’ commentary on the poem of Aratus, which merely fur-
nishes angular coordinates of fixed stars. In sum, the only contemporary
source of insight into early Hellenistic models for describing the motion
of planets is the passage in the Arenarius, and that’s just a brief digression,
a mention of an astronomical argument embedded in a different context.
(We will examine it shortly.)

The only important astronomical work that has come down to us from
Antiquity was written in the imperial period by Claudius Ptolemy (sec-
ond century A.D.), and is the major work of this author. Called Syntaxis
mathematica (Mathematical treatise), it is better known under the name the
Arabs gave it, Almagest.95

Two results of Hipparchus, recoverable from the Almagest, will suffice
to give an idea of the level astronomy had reached in his time in terms
of accuracy of measurements. Hipparchus discovered the precession of
the equinoxes, and he probably measured the mean distance to the moon,
finding it to be 59 earth radii.96

by a passage of Hipparchus reported by Ptolemy (Almagest, III, i, 195).
94See page 66 and footnote 45 thereon.
95The critical edition of the Almagest is Heiberg’s (Leipzig, 1898–1903), whose pagination we

follow; for a recent translation see [Ptolemy/Toomer].
96Certainly Hipparchus made the observation (reported also in Plutarch, De facie quae in orbe

lunae apparet, 921D) that lunar parallax can be measured. The distance of 59 terrestrial radii is
obtained in the Almagest (V, xiii, 416) through a procedure marred by many errors that miraculously
cancel out. Toomer suggests that this was a value obtained by Hipparchus and known to Ptolemy
([Toomer: HDSM]). The mean distance between the centers of the two bodies is just over 60 earth
radii; thus the approximation reported by Ptolemy is very good, and indeed exceptionally good
if it refers to the distance between the surfaces, which is the datum that can be measured directly.
(Compare Aristarchus’ On the sizes and distances of the sun and moon, proposition 11, where he had
taken the distance as measured “to the center of the moon from our eye”, though there was no need
for him to be specific, since he assumed the radius of the earth to be negligible in comparison.)
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The difficult problem of trying to reconstruct the fundamental ideas of
astronomy in the third and second centuries B.C. will occupy us in Chap-
ter 10. For now we make just a few observations about the heliocentrism
of Aristarchus. As related by Archimedes,97 Plutarch98 and Simplicius,99

among others, Aristarchus formulated a theory according to which the
earth revolves yearly about the sun and rotates daily about an axis tilted
with respect to the plane of its orbit. The Plutarchan passage says that by
postulating these two earthly movements Aristarchus was trying to save
the phainomena ( � ����� � � � ��������� ��� ) — that is, explain what is seen in the
skies. (We use the Greek word phainomenon instead of the modern spelling
phenomenon in order to stress the original meaning: anything that is seen or
appears to the senses. In current English, phenomenon tends to be used in a
more “objective” sense — see page 381 — or to imply a marvel.) Since the
description of the apparent motion of sun, moon and fixed stars cannot be
affected in any way by heliocentrism, the phainomena in question must
have concerned the planets. Archimedes mentions in the Arenarius that
Aristarchus had certain demonstrations (or illustrations) of the phainom-
ena.100 These evidently consisted in showing how the complex planetary
motions, with their stations and retrogressions, could be obtained from
the combination of two simple uniform circular motions around the sun:
the earth’s revolution and an analogous movement for the planets.

The Aristarchan “demonstrations” could become particularly effective
if illustrated by a mechanical model of planetary motion. We know that
Archimedes did build such a model, a moving planetarium that repro-
duced the apparent motion of the sun, the moon and the planets. Some
have wondered how Archimedes managed to do this, presupposing that
in his contraption the sun and the planets moved independently, their
mechanisms hinged on a fixed earth. A purely geocentric construction
would indeed be hard-pressed to account for the observed motion of plan-
ets, but it would only be attempted by someone who did not know about
Aristarchus’ theory and its power to save the phainomena. Since this the-
ory came down to us precisely through the Arenarius, to imagine that
Archimedes made no use of it is to place the dogma that heliocentrism
was rejected after Aristarchus ahead of all the evidence.101

97Archimedes, Arenarius, 135:8–19 (ed. Mugler, vol. II).
98Plutarch, De facie quae in orbe lunae apparet, 923A.
99Simplicius, In Aristotelis De caelo commentaria, [CAG], vol. VII, 444:31 – 445:5.

100 ����� ����� � � � ��� � � � ��� ��� 	 � ��� 	 ��� �
	�� 		
�
�
 � � ����� �� � � (Archimedes, Arenarius, 136:1–2, ed. Mugler,
vol. II).

101See, for example, [Neugebauer: HAMA], vol. II, p. 652, note 7, where the author admits he
“do[es] not see how the daily . . . motions of sun and moon can be combined with the planetary
retrogradations . . . in one spherical model”, and concludes from this that Archimedes’ model did
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FIGURE 3.6. Planetary retrogressions. On the left, a schematic heliocentric view:
because the earth (inner orbit) has a shorter period than the outer planet, the
direction in which the planet is visible appears most of the time to move coun-
terclockwise, but at times, as between points 6 and 10, it moves clockwise. This
is also seen in the diagram on the right, which plots the difference between the
sun-planet and sun-earth vectors — that is, the vector shown by the arrows on the
left. From the “fixed” earth the planet appears to move against the background
of stars first westward (clockwise), then eastward (during part of the loop), then
westward again. The bottom panel of Figure 3.7 on page 90 shows what the actual
track of a retrograde planet in the sky looks like.

The idea that Archimedes’ was a geocentric planetarium probably arose
because the testimonia are unanimous in saying that his device showed
the motion of the sun and the planets around the earth. But what does this
mean? First note that the aim of explaining planetary motions as seen from
the earth is not achieved by a machine that shows only the earth and plan-
ets revolving around the sun; instead the earth must be kept fixed as the
device operates, in order to make obvious the motions actually observed
in the sky.102 (Compare the top two diagrams in Figure 3.6.) What makes a
planetarium heliocentric is the crucial feature that the mechanical linkage
between the various planets and the earth is performed through a single

not show “the most characteristic features of planetary motions, [namely] stations and retrograda-
tions, and the inner planets must be ignored altogether” — in direct contradiction with the sources,
which say that all five planets were accounted for with their irregular motions (see below).

102Naturally, if one only wants to show “true” motion, with no concern for what is actually ob-
served, a stationary-sun device is enough. But this attitude seems to me far removed from that
with which Aristarchus built a theoretical model that could save the phainomena; it is of more
recent vintage. In fact, it’s typical of today’s teaching that children are indoctrinated from a tender
age with the notion that the earth revolves around the sun (not to mention electrons revolving
around the nucleus) before being aware of any directly observable fact that can be explained by
this motion.
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hinge placed in the sun, and this is sufficient to generate relative motions
sometimes in one direction and sometimes in the other. Most likely Archi-
medes’ planetarium was of this type. This conjecture has an important
source of support in the main testimonium about the issue, from Cicero:

Archimedes’ invention is admirable in that he figured out a way to
make a single conversio reproduce the diverse and various trajecto-
ries, in motions that contrast among themselves.103

The word conversio can mean rotation, inversion, reversal. It would be an
appropriate term for a hinge allowing the production of retrograde mo-
tion. In any case this emphasis on the singleness of the mechanism on
which the various contrasting motions depend would be inconsistent with
a mechanical model based on a Ptolemaic-type algorithm.

We are told of other moving planetaria from Antiquity in a passage of
Pappus104 to the effect that some were built that were powered by a hy-
draulic mechanism, and again by Cicero,105 who mentions a planetarium
constructed by Posidonius in the first century B.C. While we do not know
that anyone ever managed to build a Ptolemaic-type mechanism able to
represent planetary motion, after the “Copernican revolution” the con-
struction of moving planetaria — of heliocentric type, of course — became
possible again.

Thus the history of planetaria suggests that the heliocentric theory was
not abandoned right after Aristarchus, as is generally assumed,106 but after
the time of Hipparchus, when scientific activities stopped. We will return
to this point in Chapter 10.

103“. . . in eo admirandum esse inventum Archimedi, quod excogitasset, quem ad modum in dis-
simillimis motibus inaequabiles et varios cursus servaret una conversio” (Cicero, De re publica, I,
xiv §22). Cicero is relaying observations contained in a lost work of Sulpicius Gallus, who saw
the Archimedean planetarium at the home of his coconsul Marcus Marcellus, who in turn had
inherited it from his grandfather, the Marcellus who sacked Syracuse. Cicero brings up elsewhere
the same idea of a single conversio on which all the motions depend (Tusculanae disputationes, I, xxv
§63).

104Pappus, Collectio, VIII, 1026, 2–4 (ed. Hultsch).
105Cicero, De natura deorum, II, xxxiv §88.
106The common idea is that Aristarchus was too far ahead of his time to have had a lasting in-

fluence on the course of science, and support for it is generally found in the accusation of impiety
supposedly leveled at him because of his heliocentrism. The belief that Aristarchus was accused
of impiety originates with the seventeenth century philologist Gilles Ménage, who, obviously in-
fluenced by the prosecutions of Giordano Bruno and Galileo, changed a passage in Plutarch (the
same one cited in note 80 above) by emending an accusative into a nominative and vice versa.
Later editors, perhaps regarding as inevitable the link between heliocentrism and impiety, have
almost without exception accepted the emendation to Plutarch’s text, which became canonical in
Ménage’s “modernized” version. For more information on this enlightening episode, see [Russo,
Medaglia].
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Nor was Aristarchus the first person to say that the earth moved. Al-
ready Heraclides of Pontus, in the fourth century B.C., asserted the daily
rotation of the earth,107 and the same is said of the Pythagoreans Hicetas
and Ecphantus.108 These are important precedents, of which Aristarchan
heliocentrism is a natural development. If the alternation of day and night
can be explained by a movement of the earth, it is natural for astronomers
to explain the retrograde motion of planets in an analogous way. Saying
for the first time that the earth moves, on the other hand, requires a pro-
found transformation in the concepts of space and motion. It is not by
accident that Ptolemy, who shares Aristotle’s conception of space, rejects
not only heliocentrism but the rotation of the earth as well; nor that, in
modern times, the two were accepted at the same time.109

Prescientific societies have always talked about rest and movement of
bodies in an absolute sense, without ever feeling the need to specify with
respect to what reference system the motion is considered. From the mod-
ern point of view this was possible through the implicit use of a reference
system fixed on the earth. Aristotle still believed that space is absolute and
comprises places of differing natures, and that one such place, having the
property of attracting heavy bodies, had become (thanks to that property)
the center of the world. This concept of space is closely connected to the
idea that the absolute state of motion of bodies is observable.

If, while accepting the idea of absolute space, you dare hypothesize an
(absolute) motion for the earth, as Heraclides did before anyone, the very
idea of absolute motion cannot but face a crisis. For then you must accept
that you are moving at over a thousand kilometers per hour (the approxi-
mate speed due to terrestrial rotation at the latitudes of Hellenistic cities)
without noticing it. You realize then that your observations do not indicate
the “true” state of motion of bodies, but only the relative motion between
observer and observed.110

Did granting the earth movement lead to a relativistic idea of motion in
Hellenistic times? A positive answer can be deduced from many sources.

107This is attested in quite a few sources; see especially Simplicius, In Aristotelis De caelo commen-
taria ([CAG], vol. VII, pp. 444:31 – 445:5; 519:9–11; 541:27 – 542:2). These passages are translated in
[Heath: Aristarchus], pp. 254–255. Other testimonia about Heraclides’ astronomical doctrines are
listed in [Wehrli], vol. VII, fr. 104–117.

108See, for example, [Heath: Aristarchus], pp. 187–188, 251–252. The meager information we have
about these Pythagoreans is due to Diogenes Laertius, Aetius and Hippolytus.

109Recall that the objection to Copernicism based on biblical authority did not apply to terrestrial
revolution, only to rotation.

110Of course in our classical mechanics not all reference systems are equivalent, and a reference
system fixed on the earth is not inertial. But since the motions of the earth, compared with those
experienced in everyday life, have small acceleration despite their enormous velocity, this subtlety
can be neglected to a first approximation.
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The remark that what is seen depends only on the relative motion be-
tween observer and observed is already in Euclid’s Optics.111

Archimedes, discussing Aristarchus’ theory in the Arenarius, abstains
from objecting to it on physical grounds (though he does take issue with
the mathematical formulation; see page 87). He uses the theory only to
deduce from the absence of stellar parallax an estimate for the diameter
of the sphere of fixed stars. Thus he is interested in terrestrial motion not
in an absolute sense, but with respect to the fixed stars. Naturally, if one
believes, as Archimedes did, that there is a sphere of fixed stars,112 the
existence of such a naturally privileged reference system lessens the im-
portance of relativism (and perhaps obviates the need to state it), but, as
a matter of principle, it’s one thing to refer motions to “natural” reference
bodies such as the stars, and quite a different one to consider absolute mo-
tion (relative to the void). The essential point is that Archimedes thought
there was no way to check whether the earth moves relative to the stars
by means of earth-based experiments.113

Ptolemy, expounding in the Almagest his own theory of the earth’s im-
mobility, attacks the contrary opinion, concerning in particular the daily
rotation. The opinion he reports and opposes is not the assumption that
the earth rotates, but the relativistic statement made by “some people”
that the rotation can be ascribed indifferently to the earth or the heavens,
or even to both, so long as both rotations have the same axis and their
difference (the relative motion) is the one actually observed.114 He recog-
nizes that this is compatible with all astronomical phainomena. To refute
the theory and assert the earth’s immobility, he must resort to arguments
from natural philosophy , taken in large measure from Aristotle. This is
not an isolated case: authors from the imperial age often frame Hellenistic
scientific results by stating first their own arguments, taken from philoso-
phers of the classical period. We’ll see in Section 10.15 a similar situation
regarding geometrical concepts.

Many Hellenistic works, or works based on Hellenistic sources, illus-
trate the relativity of motion. The most famous locus is perhaps that of
Lucretius about the passengers of a ship to whom it seems that the ship is
stationary and the land is moving.115

111Euclid, Optics, proposition 51. The passage is quoted in Section 6.3, page 178.
112However, the existence of the sphere of fixed stars had already been called into question before

Archimedes, in the fourth century B.C. We will return to this point in Section 3.7.
113Indeed Archimedes discusses the compatibility of Aristarchus’ hypotheses with the absence

of measurable parallax effects and accepts as possible the explanation based on the enormous
distance to the stars, without taking into consideration any Ptolemaic-type arguments.

114Ptolemy, Almagest, I, vii, 24.
115Lucretius, De rerum natura, IV:387–390.
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It should be noted that, just as thinking that the earth moves naturally
leads to relativistic views, such views, in turn, can make the question
of whether the earth moves appear inconsequential. Thus the preceding
paragraphs can explain why post-Aristarchan Hellenistic sources, starting
with Archimedes, appear to modern eyes so indifferent to the question of
heliocentrism as to generate the belief that heliocentrism was suddenly
abandoned.116

Confirmation for this explanation is provided by a passage of one of
the greatest modern scholars of ancient astronomy, John L. E. Dreyer, who
analyzed with great skill all the available evidence about Aristarchus and
later astronomers:

Aristarchus is the last prominent philosopher or astronomer of the
Greek world who seriously attempted to find the physically true sys-
tem of the world. After him we find various ingenious mathematical
theories which represented more or less closely the observed move-
ments of the planets, but whose authors by degrees came to look on
these combinations of circular motion as a mere means of computing
the position of each planet at any moment, without insisting on the
actual physical truth of the system.117

This passage is very instructive. Dreyer evidently thinks of the physical
truth of an astronomical theory as something other than its ability to pre-
dict the observable position of each planet at any moment. This suggests
that the idea of judging the validity of a theory solely on the basis of its
power to save the phainomena (i.e., in the case of astronomy, represent the
observable positions of celestial bodies)118 had not yet been fully recov-
ered in Dreyer’s time (the History of astronomy from which the quotation
is taken is from 1906). What does Dreyer regard as the physical truth of an
astronomical system? Its ability to determine the “true motion” of planets,
we surmise, given the prevailing belief at the turn of the twentieth century
in an absolute space with respect to which motions should be identified by
astronomers.119 Dreyer, not finding the same concept of absolute space in

116According to Sextus Empiricus the motion of the earth was accepted by the “followers of
Aristarchus” ( ��� � � � � � �	��
 ���� � � � ), so that Aristarchus was not isolated (Adversus physicos II ( = Adv.
dogmaticos IV = Adv. mathematicos X), §174). We will return to the developments of heliocentrism in
the second century B.C. in the next section and in Chapter 10.

117[Dreyer], p. 149.
118See Section 6.3 for a more extensive discussion.
119Galilean relativity, as is well known, was refuted by Newton. The idea of absolute space was

then reinforced by the theory of the ether, which still held sway in the early 1900’s. Relativistic
views reacquired the upper hand only thanks to Einstein, whose first work on special relativity
(Zur Elektrodynamik bewegter Körper, 1905) came out just before Dreyer’s History of astronomy and,
given its technical character and difficulty, could hardly have had an immediate influence on the
ideas presented in a historical work such as Dreyer’s.
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the ancient astronomers, draws the facile (and unwarranted) conclusion
that this absence was a fault.

The attitude of historians of science changed after the idea of absolute
space was definitively laid to rest. Neugebauer, having collected many
ancient passages that illustrate the relativity of motion, concluded that
“statements about obvious cinematic equivalences are a commonplace in
ancient literature”.120 But the oldest reference he found regards Heraclides
of Pontus. Neugebauer calls Heraclides’ idea “relativistic” and considers
it obvious, but ideas of this type were certainly not obvious before Hera-
clides, and they stop being obvious again from the end of the Hellenistic
period down to Dreyer’s time at least. Clearly, notions like the possibility
of a free choice of reference system are not only extremely hard to acquire:
once acquired, it is also extremely hard to shake them off in order to ap-
preciate their depth.

3.7 From the Closed World to the Infinite Universe

As everyone knows who has observed the night sky for a few hours, the
stars seem to move all together, keeping fixed their mutual distances and
so the shape of the constellations. This naturally suggests the thought
that what is going around, making a full turn per day, is the whole sky,
imagined as a material sphere in which the individual stars are embed-
ded. The rotating sphere of fixed stars, besides giving a straightforward
explanation for the most obvious of astronomical observations, seems to
provide also a natural limit for the extension of the cosmos, imagined as
a sphere whose center is the earth. This image of an enclosed and spher-
ical universe, which goes back perhaps to Pythagoras and was certainly
held by Parmenides, is also present in Plato’s and Aristotle’s works, and
was accepted by Ptolemy, who handed it down to the Arabic and Euro-
pean Middle Ages. Nevertheless, this was not the cosmology of all the
“Ancients”, as many think.

In Hellenistic times the idea that the earth moves had important cosmo-
logical consequences, which modified profoundly the picture just limned.
If, indeed, one is bold enough to imagine that the motion of the stars is
merely apparent, and that it is the earth that turns around daily, the sphere
of the fixed stars loses its function. It is not an accident that both Aristotle
and Ptolemy, who believed in the earth’s immobility, also believed in a
rigid sidereal sphere, and that the first person to challenge the notion of
that sphere was apparently the same who first asserted that the earth ro-

120[Neugebauer: HAMA], p. 695.
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tates — Heraclides of Pontus, who maintained that the universe is infinite
and that every celestial body is a world in itself (and even has its own
atmosphere).121

An interesting argument in favor of an infinite universe is reported by
Lucretius:122 If the universe were finite, all masses would already be con-
centrated in its center. This supposes that gravity affects all bodies, not
just “heavy” ones. (In this connection see Section 10.7.)

Aristarchan heliocentrism brought to bear a new argument that increased
enormously the traditional dimensions of the cosmos. The supporters of
heliocentrism, indeed, had to explain why ever our motion around the sun
causes no observable parallax — that is, why the appearance of the con-
stellations does not change as our vantage point moves relative to them
throughout the year. According to Archimedes, Aristarchus overcame that
objection by assuming that the radius of the earth’s orbit is to the radius of
the sphere of fixed stars as a sphere’s center is to its radius.123 This “ratio”
( ����� � � ) between the earth and the sphere of fixed stars (also mentioned by
Geminus, Cleomedes, Ptolemy etc.124) is what Archimedes criticizes, on
the grounds that the ratio between two lengths is necessarily nonzero.125

This issue calls perhaps for a mathematical parenthesis. The aim of the
Arenarius may have been precisely to defend the “Archimedean postu-
late” (see page 51 in Section 2.7), by showing that one can assign a finite,
nonzero ratio to any two nonzero lengths (or other homogeneous mag-
nitudes). To accomplish this it was necessary to work out a numbering
system able to express even the largest imaginable ratio between homo-
geneous magnitudes, such as the ratio between the volume of the sidereal
sphere and that of a grain of sand; this is what Archimedes does in his
tract. The triumph of Archimedes’ views on commensurability took away
the rationale for the task undertaken in the Arenarius and rendered the
work hard to understand (it has always been felt to be strange). Obvi-
ously, what Aristarchus (and the other authors mentioned) intended in
saying that two lengths are in the same ratio as a point is to a circumfer-

121Aetius, in Stobaeus, Eclogae, I, xxi, 182:20–21 and I, xxiv, 204:21–25 (ed. Wachsmuth) = [DG],
328b:4–6 and 343b:9–14. The latter passage attributes the same opinions to the Pythagoreans as
well; these may have been the same Pythagoreans, such as Hicetas and Ecphantus (page 83), who
asserted that the earth moves.

122Lucretius, De rerum natura, I:984–997.
123Arenarius, 135:14–19 (ed. Mugler, vol. II).
124See, for example, Geminus, Eisagoge eis ta phainomena ( = Elementa astronomiae), XVII §16; Cleo-

medes, Caelestia, I §8, 38:1–5 (ed. Todd); Ptolemy, Almagest, V, xi, 401:22 – 402:1. Aristarchus likewise
postulates that the ratio between the earth and the orbit of the moon is equal to the ratio between
a point and a circumference (On the sizes and distances of the sun and moon, hypothesis 2 = [Heath:
Aristarchus], p. 352).

125Arenarius, 135, 19–22 (ed. Mugler, vol. II).
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ence was to translate in mathematical terms an assumption that the ratio
is too small to be measured or estimated from observed data. To admit the
Aristarchan statement by assumption is not simply equivalent to saying
that one length is negligible with respect to the other in calculations; it
constitutes rather an attempt to construct a model in which lengths form
what we would call a non-Archimedean set. In particular, to think that
the stars lie on a “sphere” whose radius is incommensurably greater than
any observable length is but a step away from introducing a mathematical
model where the “celestial sphere” is a conventional and useful way to
represent the set of directions. This step was effectively taken, as seen from
the fact that Geminus, in his compilation dating probably from around
50 B.C., introduces the “so-called sphere of fixed stars”, explaining its
conventional nature and warning the reader not to suppose it to have a
physical existence, since the stars are at different distances from us.126

Archimedes was utterly victorious in his assertion that all lengths have
nonzero ratio. But if the history of mathematics for two millennia followed
the path shaped by this view, it is not to be concluded that older formu-
lations like that of Aristarchus were necessarily erroneous or lacked all
possibility of coherent development. Indeed, the goal of constructing ge-
ometries that admit points “at infinity” came to be achieved in modern
projective geometry.

To go back to astronomy: Not surprisingly, another known proponent
of heliocentrism, Seleucus,127 likewise did without the sidereal sphere and
believed in an infinite universe.128

Because the further something is the slower it appears to move, the new
distances suggested for the stars also left room for the possibility that the
stars were not in fact fixed. Thus it is no wonder that Hipparchus also
conjectured that the apparently fixed stars were in fact mobile. Accord-
ing to Pliny, Hipparchus compiled his catalog of stars precisely so that
later generations might deduce from it the displacements of stars and the
possible appearance of novae.129 Clearly, Hipparchus too did not believe
in a material sphere in which the stars are set. His catalog achieved its
aim in full: the stellar coordinates listed therein were incorporated into
Ptolemy’s work130 and so handed down until such a time when a change

126Geminus, Eisagoge eis ta phainomena ( = Elementa astronomiae), I §23, a good recent edition being
[Geminus/Aujac]. The exact same approach is adopted today by, for instance, the Encyclopaedia
Britannica (15th edition, Micropaedia, sub “celestial sphere”).

127Plutarch, Platonicae quaestiones, 1006C.
128The opinion of Seleucus is reported by Aetius together with that of Heraclides of Pontus, in

the first passage cited in note 121 above.
129Pliny, Naturalis historia, II §95.
130See page 284 for the relationship between the catalogs of Hipparchus and Ptolemy.
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in the positions of the “fixed” stars could be detected. Changes were first
noticed in 1718 A.D. by Halley, who, probably without realizing that he
was completing an experiment consciously started two thousand years
earlier, recorded that his measured coordinates for Sirius, Arcturus and
Aldebaran diverged noticeably from those given by Ptolemy.

Now, one can hardly relinquish the sphere of fixed stars without con-
cluding that the daily motion of stars is merely apparent — that is, with-
out recognizing that the earth moves.131Thus the preceding testimonia,
too, corroborate the view that the earth’s motions were not discarded by
Aristarchus’ Hellenistic successors, and in particular that Hipparchus did
not consider the earth immobile.

Once the stars are conceived as extremely distant bodies not all at the
same distance, they can be ascribed other important properties, above all
an enormous size. We cannot follow the debate on this point in astronom-
ical works of the time, but we can perhaps hear some distant echoes of it.
For example, Cleomedes, though a believer in geocentrism and the side-
real sphere,132 wonders how the earth would appear from a star; since he
knows that the sun is much bigger than the earth and that the stars are
vastly more distant than the sun, he deduces that seen from the sun the
earth would appear minuscule, and that from a star it would not be visible
at all. It follows that the stars, which we can see, must be much bigger than
the earth. Cleomedes also says that the sun, seen from a star, would look
as the stars look to us.133 The statement that the stars are larger than the
earth is also found in other authors.134

The notion of the universe as a multicentered structure, where a great
many (or infinitely many) worlds coexist, was held also on other grounds.
We will return to this in Section 10.7.

3.8 Ptolemaic Astronomy

The only well known Greek astronomical theory is the one Ptolemy ex-
pounds in the Almagest. We defer to Chapter 10 a comparison between
early Hellenistic ideas and Ptolemy’s on such subjects as space and mo-
tion, limiting ourselves here to some observations on the mathematical
model used in the Almagest. Everyone knows that Ptolemy’s planetary

131The examples of Aristarchus, Copernicus and Kepler show that the reverse implication is false.
The earth’s motions can be imagined to coexist with a rigid sidereal star, kept for tradition’s sake
though stripped of its function of explaining the rigid motion of the heavens.

132However, Cleomedes insists that the void is infinite, and regards it as somehow real and exist-
ing beyond the sky.

133Cleomedes, Caelestia, I §8, 38:19 – 39:31 (ed. Todd).
134Cicero, De re publica, VI, xvi §16; Proclus, In Platonis Rem publicam, II, 218:5–13 (ed. Kroll).
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FIGURE 3.7. Agreement between Almagest algorithm (black dots) and modern
calculations (white dots linked by dark curves). Top: moon at 6 A.M. Alexandria
time on consecutive days in 126 B.C. Bottom: Mars, every 10 days from August 8,
297 to March 7, 296 B.C., a period that includes a full retrograde loop. The moon
and Mars exemplify opposite extremes in the accuracy of the approximation;
Martian motion was known not to be in very good agreement with the theory, but
its qualitative features were nonetheless correctly modeled, as here. The data are
taken from [Neugebauer: HAMA], vol. I, pp. 97, 188, 220. (Axes show longitudes
and latitudes in degrees; the vertical axis is expanded in each case).

theory is based on the composition of circular motions. This technique had
been used in astronomy by Apollonius of Perga, and it was in fact much
older: the first algorithm of this type that we know about was worked out
by Eudoxus, who described planetary motions as obtained from a succes-
sion of concentric spheres rotating uniformly, each with an axis of rotation
marked by two points fixed on the previous sphere.

Because “epicycles” is still a byword for clumsy and backward attempts
at science, we spell out the two reasons why the method was supremely
well-adapted to the purposes to which it was put.
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First, accounting for the observed motion of planets as the composite of
several uniform motions on circular orbits (the first centered on the earth
and called the deferent in medieval terminology, and each of the others,
called epicycles, centered on the point obtained on the preceding circum-
ference) is equivalent to a modern expansion in Fourier series, and allows
an efficient description of observed data with increasing precision as the
number of epicycles grows. The analogy between Fourier series expan-
sions and developments in epicycles was observed by Schiaparelli,135 but
one can imagine that the thought occurred earlier. One can conjecture, in
fact, that in this important observation Schiaparelli was preceded by the
mathematicians who developed the idea of Fourier series expansions —
starting with Daniel Bernoulli in the eighteenth century, who also stud-
ied planetary motion and surely knew about developments in epicycles.
A formal demonstration of the equivalence has been given by Giovanni
Gallavotti.136

Second, since the main computational tool of Hellenistic mathematics
was geometric algebra performed with ruler and compass, decomposition
into circular motions was the most efficient possible system for computing
the observable position of planets.137 If, for example, the motion of a planet
is described as a combination of three uniform circular motions, in order
to compute the position at a given instant it is only necessary to draw three
arcs of circle and measure out three angles obtained by multiplication.138

Thus the calculation is reduced to a very few arithmetic operations and six
elementary geometric operations, realizable with two simple instruments:
compass and protractor.

In Ptolemy’s work the number of circular motions needed to obtain
good agreement with experimental data (cf. Figure 3.7) is reduced to two,
one deferent and one epicycle, through the introduction of eccentrics (the
center of the deferent does not coincide with the earth) and equants (the cir-
cular motion is not considered to be uniform, but to have uniform angular

135“And we shall understand also the necessity and reason for this multiplicity of spheres, which
has been wrongly criticized by those who have not grasped its function, and which arouses de-
rision and condescension in our contemporaries, who, without knowing it, use epicycles by the
dozen and by the hundreds in their planetary theories, under the name of periodical terms of
infinite series” ([Schiaparelli], vol. II, p. 11).

136In [Gallavotti: QPM], which also contains an interesting translation into modern mathematical
terms of the main ideas from the systems of Hipparchus, Ptolemy and Copernicus.

137Just a few epicycles suffice to account for the position of the planets to within the precision
afforded even by modern experimental data.

138It’s worth noting that, since multiplications were carried out in sexagesimal notation and an-
gles were measured, accordingly, in degrees, the result of multiplying an angular velocity by time is
immediately reducible to a “plottable” angle of less than 360 degrees. If the same task is performed
(as today) in decimal arithmetic using the same degree units, every such multiplication must be
followed by an extraction of the remainder under division by 360.
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FIGURE 3.8. A two-dimensional sketch shows how eccentrics and equants help
model orbits. Left: a Keplerian orbit with the planet’s position marked at regular
intervals. Note the significant variation in the rate at which the central angle �

is swept. Right: A judicious Ptolemaic-type construction with one eccentric circle
and equant suffices to approximate � with remarkable accuracy — the maximum
deviation is 0◦26′ for the Keplerian orbit shown here, of eccentricity 0.436 (greater
than that of any solar planet).

velocity with respect to a point, the equant, which differs from the center
of the circle).139 Although these modifications disrupt the symmetry of
uniform circular motion, they have the essential merit of buying flexibility
without sacrificing computational ease: the use of eccentrics and equants
amounts to a simple displacement of the point on which each of the two
fundamental instruments — compass and protractor, respectively — is to
be centered. This shows that the use of circular motions was not due, as
has often been said, to reasons of symmetry or esthetics, but to the con-
crete need for an algorithm that could reduce the necessary calculations
to simple operations realizable with elementary instruments.140

Much as in the case of mathematics (Section 2.3), the link between theo-
retical scientific structures and material instruments is evidenced by the
fact that in Mesopotamia the use of clay tablets as the writing material
took astronomy in a different direction from Alexandrian astronomy.141

Mesopotamian astronomy did not employ geometric constructions like

139On the actual use of eccentrics and equants one can read [Neugebauer: HAMA] or, for a briefer
treatment, any history of astronomy.

140We cannot conclude that Hellenistic scientists had a preference for circles because of their “per-
fection”, just because this idea is present in authors of the classical and imperial periods — the more
so because imperial-age authors, who no longer mastered the Hellenistic scientific method, often
framed scientific results in conceptual schemes belonging to prescientific natural philosophy.

141By Alexandrian astronomy we mean, as in the case of mathematics, the homogeneous scientific
tradition developed in Hellenistic times in the Greek-speaking Mediterranean world, and having
its greatest center in Alexandria.
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Ptolemy’s epicycles, but the study of numerical regularities. Although
much is still unknown, it is clear from cuneiform tablets deciphered in the
twentieth century142 that, whereas the astronomy of Old Babylonia was
prescientific and qualitative, Hellenistic-era mathematical astronomy in
Mesopotamia had a level similar to that of contemporary geometric-based
Alexandrian astronomy.143 It is also clear that, though the mathematical
methods were distinct, there were cultural exchanges. This is shown not
only by the fact that scientific astronomy arose in both civilizations simul-
taneously, but also by mutual influences. For example, Alexandrian as-
tronomers adopted the Mesopotamian sexagesimal system, and the Meso-
potamian astronomer Seleucus is referred to as a follower of Aristarchus
of Samos.

142The astronomical tablets deciphered prior to 1955 have been published in [Neugebauer: ACT].
143For a survey of what is known regarding the history of Mesopotamian astronomy in Hellenistic

times one can turn to [Neugebauer: HAMA], pp. 347–558.
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4
Scientific Technology

In this chapter we will try to verify in the case of Hellenistic civilization the
relationship between exact science and scientific technology that we have
characterized theoretically. The consequences of this new technology to
production and the economy will be considered in Chapter 9.

Alas, the information we have on Hellenistic technology is very limited:
literary sources are almost completely silent on the subject,1 and archeo-
logical data, though having grown in the last decades, yield information
that is fragmentary, casual and often not at all easy to interpret. Today’s
secondary literature contains excellent works on particular sectors of tech-
nology, but among general works even the best are by now completely
obsolete.2

Given this situation, our objective will be simply to document through
examples the existence of scientific technology in Hellenistic civilization,
and to get a qualitative idea of its level.3

1The meagerness of the source material is such that the useful anthology [Oleson, Humphrey,
Sherwood] gathers in one volume all the passages deemed relevant — not just for the Hellenistic
period but for for the whole Greco-Roman world.

2I refer to the History of technology edited by C. Singer and others ([HT]) and to the Studies in an-
cient technology in nine volumes by R. J. Forbes ([Forbes: SAT]). The main limitation of these works
(which are admirable in many respects) is not the presence of ideological prejudices — though they
often are present, as we will have more than one occasion to point out — but that they were written
before a good part of the archeological evidence now available came to light. These works have
contributed for several decades to the supremacy of the “primitivist” view, according to which
Antiquity as a whole was a stagnant period in all sectors of technology.

3The prevalence of statistical methods has discredited in the eyes of many historians of culture
the use of examples as an insufficiently “scientific” method. But a single example is enough to
prove a theorem of existence in mathematics, and a single counterexample is sufficient to prove
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4.1 Mechanical Engineering

Vitruvius lists twelve authors of works on mechanics: Archytas (whose
works have all perished), Archimedes (who, according to Plutarch, wrote
nothing on the subject), Ctesibius and Philo of Byzantium, whom we have
already discussed, and eight others we know nothing about.4 Athenaeus
mentions a work on mechanics by one Moschus, not included in Vitruvius’
list; we know nothing else about him either.5

The anonymous Laterculi Alexandrini, dating probably from the second
century B.C. and found on a papyrus,6 includes rosters of men who had
reached the pinnacles of fame on various accounts: legislators, painters,
sculptors, architects and mechanikoi, or mechanical engineers. The choice
of categories demonstrates an interest in technology that has long been
denied in connection with all of the “classical world”.7 The selection is
so stringent that only five sculptors are named: Phidias, Scopas, Praxite-
les, Myron and Polycletus.8 It’s obviously some kind of “hall of fame”
intended to enshrine the exponents of human genius, in the same vein as
the famous catalogs of seven wonders of the world. One of the engineers
listed is Abdaraxus, “who built the machines in Alexandria”.9 These ma-
chines must have been so famous at the time that the author of the Laterculi
judged any further specification superfluous. Yet the name Abdaraxus has
not reached us through any other source, nor have any clues that might
help us understand what machines are meant.

All of this suggests that our ignorance about Hellenistic mechanical en-
gineering may reflect not indifference to the subject on the part of writers
from the third and second centuries B.C., but rather the selection process
of later ages — imperial, late ancient and early medieval — characterized
by a marked lack of interest in technology.

Despite the virtual silence of our sources, we can tell from the meager
information available that, not surprisingly, the birth of mechanics — the
science of machines — was accompanied by a newly developed ability to

that an assertion is false. Of course, after one demonstrates through examples the existence of a
cultural phenomenon — in this case, scientific technology — there is still the problem of assessing
its magnitude; but this too cannot be addressed solely through statistical surveys.

4Vitruvius, De architectura, VII, preface §14.
5Athenaeus, Deipnosophistae, XIV, 634b.
6See [Diels: LA], where the extant text (the papyrus is much damaged) is transcribed and dis-

cussed.
7Fraser notes that the inclusion of mechanical engineers in this list “is of importance as showing

the rather unexpected interest taken in such engineers and as indicative perhaps of a new prestige
acquired by them” ([Fraser], vol. I, p. 426).

8[Fraser], vol. I, p. 456.
9Each entry on this list of engineers found in the Laterculi Alexandrini is followed by the respec-

tive achievements in a nutshell. The whole passage is reproduced in [Fraser], vol. II, p. 617.
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FIGURE 4.1. Cutter for screw holes, from [Drachmann: MTGRA], p. 138. First a
cylindrical hole is made in the plate E where the screw will engage. Into this hole
goes the smooth end of the tool stem B, whose other end includes the template
screw. A wedge C fixes the position of a tip D which, as B is turned, cuts the
groove into E, shallow at first and then deeper in subsequent passes, as D is
pushed out. Four guiding pegs F engage the stem B as it turns within its casing A.

design and build a great many machines. At least two important novelties
arose in early Hellenistic times: the use of several new foundational tech-
nological elements, such as screws and cogwheels, and the appearance
of composite machines of high mechanical advantage, whose design and
construction were stimulated by the possibility of computing advantages
theoretically.

Augers for wood-drilling and other forerunners of the screw are very
ancient, but cylindrical bolts with nuts are first found in presses, which
were probably introduced in the early Hellenistic period.10 Heron shows
a method for manufacturing such bolts, which consists in wrapping about
a cylinder a right triangle made of metal foil, the short side being parallel
to the axis of the cylinder; the hypotenuse thus coils into a cylindrical helix
that serves as a guide for the grooving.11 He also explains how one grooves
the hole where the screw will engage, using a tool with preexisting (male)
grooving identical to the screw’s; see Figure 4.1.12 Both methods are based
on scientific design, without which precision screws cannot be made.

10See Section 5.3 for this dating.
11Heron, Mechanica, II §5.
12Heron, Mechanica, III §21. The reconstruction of this tool is due to Drachmann, who, after a

carefully study of the extant Arabic manuscripts, proposed the emendations necessary for the text
to yield sense, and even built a model. See [Drachmann: MTGRA], pp. 135–139. Earlier attempts at
understanding the text, in [Heron/Carra de Vaux] and [Heron: OO], were not as successful.
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Cylindrical objects having a helical groove were used for different pur-
poses, as we shall see. The theoretical properties of cylindrical helices were
studied in a lost work of Apollonius of Perga, On the cylindrical helix13

( � � ���
�

�
�

� ��� �
�

� � ; the curve’s Greek name means “snail”). According to
Proclus, Apollonius proved, among other things, that the cylindrical helix
is homeomeric; that is, given any two points P and Q on it, there exists a
rigid motion that leaves the curve invariant and moves P to Q. Thus the
curve can slide along itself without changing shape; this is precisely the
property that makes it useful in the construction of bolts and nuts.

It seems that cogwheels, too, were made for the first time in the early
Hellenistic period.14 They opened to engineers many novel possibilities,
including the transfer of torque between perpendicular axles (as in the
machine depicted on page 121) and the achievement of high mechanical
advantages through reduction gear trains (see Figure 4.2).15 The reduc-
tion gears that we still use in many devices, from bicycle derailleurs to
timepieces, are direct descendants of the Alexandrian inventions, recov-
ered through the study of ancient works — particularly those of Heron of
Alexandria — by Arabs and Renaissance Europeans. They are not objects
thrust on us by nature or by logic, as many seem to believe, but cultural
products inherited from Hellenistic civilization.

4.2 Instrumentation

Archeological finds and surviving descriptions are so rare that we can-
not hope to know a good part of Hellenistic measuring instruments. But
we have enough information to form an idea of the prevailing qualitative
technological level. We will mention only two types of measuring instru-
ments: surveying instruments and timepieces.

Surveying instruments. The main surveying instrument of Pharaoh-era
Egypt had been the surveyor’s cross or groma, which consisted of two
perpendicular wood beams and allowed the recognition of right angles.
It was inherited essentially unchanged by classical Greece and by Rome.
The difference between prescientific and scientific technology is well illus-
trated by the comparison between the groma and a Hellenistic instrument

13Proclus, In primum Euclidis Elementorum librum commentarii, 105:1–6, ed. Friedlein.
14Our earliest documentation about gears is from the first half of the third century B.C. See

[Drachmann: MTGRA], pp. 200–203; [Price: Gears]; [Sleeswyk]. As we shall see, gears were used
in Hellenistic times in water mills and in machines for lifting water, among others.

15Reduction gears (also called demultiplier gears) and their mechanical advantages are exam-
ined in Heron, Mechanica, II §§21–28.
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FIGURE 4.2. Weight-lifting reduction gear (barulkos) from Heron’s Mechanics, as
preserved in Greek in his Dioptra.16 The author explains in detail, referring to the
letters in the diagram, how the device allows a force of 5 talents to lift a weight of
1000 talents. Top: diagram as it appears in the Mynas codex (fol. 82r); taken from
[Drachmann: MTGRA], p. 25. Bottom: a modern editor’s rendition of the same
object, based on the textual description and the manuscripts’ figures; taken from
[Heron: OO], vol. II.1, p. 263. (Manuscript drawings suffer more than the text
in the copying process, and important features — here, the gear ratios and the
engagement of the endless worm screw on the top right with the wheel — often
become corrupt and have to be reconstructed from the text. But the placement
of the wheels in the same plane as their axles is a convention motivated by the
need to allow easy copying with ruler and compass. For another comparison see
page 127.)

16Heron, Dioptra, xxxvii, in [Heron: OO], vol. III, 306–310 = Mechanica, I §1, in [Heron: OO],
vol. II.1, 256–266. The text and illustration are also preserved in Pappus, Collectio, 1060–1068.
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used for the same end: the dioptra described by Heron (Figure 4.3).17 Here
the perpendicular axes are drawn on a graduated disc; one axis, at whose
ends there are slits for looking through, is free to rotate on the plane of the
disc, around its center. The disc itself not only can rotate freely about its
center, but it is attached at right angles to the diameter of a cogged semi-
circle made of brass, which can pivot about a horizontal axis; an endless
worm screw allows one to fine tune and secure the position. The whole de-
vice described so far is attached by three pivots to a vertical cylinder that
can itself turn about its axis; here again fine tuning and fixing depend on a
worm, which meshes with a cog coaxial with the cylinder. Heron mentions
several uses for the dioptra, particularly in astronomical measurements
and in the surveying necessary for the excavation of underground gal-
leries. Unfortunately the description we have is incomplete and we don’t
know whether the missing part dealt with important components of the
instrument.

Heron also describes in the Dioptra a level, consisting of a horizontal
wooden pole, about two meters long, containing inside a tube with ends
turned up, to which two vertical glass tubes could be connected. When the
instrument was filled with water, the principle of communicating vessels
ensured that the water would reach the same level in both glass tubes. The
tubes were endowed with small sliding brass plates that could be kept in
place at the water level by means of screws. Each plate had a peephole for
alignment.

Instruments such as these are incompatible with the widespread belief
in a constant rate of progress and in the primitive state of classical tech-
nology. Those historians of technology who, imbued with these beliefs,
nonetheless studied Heron’s dioptra have become aware of the existence
of an error; however, they generally attribute the error to Heron himself,
for failing to keep his designs in line with the age in which he happened
to live. For example, in the authoritative History of technology edited by
Singer et al., we read:

Heron’s dioptra remains unique, without past and without future: a
fine but premature invention whose complexity exceeded the tech-
nical resources of its time.18

In fact by Heron’s time the dioptra was already centuries old, as can be
seen just by reading the Almagest (see note 23 on page 272). As for the
future of the dioptra, it contained if nothing else the theodolite, born in
the sixteenth century of the study of Heron’s work.

17Heron, Dioptra = [Heron: OO], vol. III, pp. 187–366.
18[Price: Instruments], p. 612.
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FIGURE 4.3. The dioptra. From [Heron: OO], vol. III, p. 193.

Timepieces. The main Hellenistic instrument for measuring time was the
water clock. Its ancestor was the water clepsydra of Pharaoh-era Egypt,
which was simply a container with an orifice in the bottom. The time
elapsed from the filling of the container could be read off from the level of
the water against a scale drawn on the interior. A clepsydra of this type,
from about 1400 B.C., was found in Karnak.19

The Egyptian clepsydra served to give an idea of the passage of time,
particularly at night, but it cannot be said to have been a true measuring
instrument, for two reasons. First, the rate at which the water flows out
depends on the pressure and therefore decreases as more water escapes.

19See [Borchard], pp. 6–7.
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FIGURE 4.4. A: Ctesibius water clock. B: cylinder to adapt reading to the seasonal
length of the hour. From [Price: Instruments], p. 601.

Second, the size of the hole cannot be regarded as constant except in the
short term, because of corrosion and accretions that tend to constrict it.
The Egyptians had partly overcome the first difficulty — but not the sec-
ond — by using containers shaped as truncated cones rather than cylin-
ders; as far as we know this was a purely qualitative correction. A further
complication was caused by the unit of time used then, the hour, which
changed from day to day and between day and night, being defined as
one-twelfth the time between sunrise and sunset and vice versa.

Classical Greece made no essential improvements to the Egyptian clep-
sydra: the water timers used in trials and mentioned by Aristotle20 were
clepsydras, if anything simpler than the Egyptian ones.21

The first real clocks appeared in Alexandria in the first half of the third
century B.C., thanks to Ctesibius, whom we encountered in Section 3.5. We
know through Vitruvius that he solved brilliantly all the problems above,
transforming the old clepsydra into a true measuring instrument.22 The
water reservoir had two openings, a small one in the bottom and a larger
escape hole on the wall; it was continually refilled at a rate intermediate

20Aristotle, Atheniensium respublica, lxvii §§2–3.
21Because their function was merely to set a uniform limit to the duration of each party’s address,

these timers had no intermediate marks, much like the hourglasses that come with games today.
22Vitruvius, De architectura, IX, viii §§2–14.
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between the flow rates of the two openings, so the water remained at the
level of the upper hole, ensuring constant pressure.23 The lower orifice was
drilled in gold or a precious stone, to avoid corrosion and accretions. The
water that flowed out of the bottom was collected in another container,
where a float moved a pointer by means of gears, allowing the reading
of the water level against a scale.24 In one model multiple reading scales
were set on a cylinder that rotated so as to display the scale appropriate to
the time of year, thus adjusting for the variable duration of the hour.

Other scientists, including Heron,25 studied water clocks. A remarkable
design is described and attributed to Archimedes in an anonymous work
preserved in Arabic.26 This clock, unlike that of Ctesibius, is not refilled
continuously; the main reservoir is filled but once a day and emptied at
a constant rate, so that its level can be read out by the use of a float con-
nected to a display by appropriate means (Figure 4.5). Water descends
from the main reservoir into a second chamber through a pipe that ends
in a conical flare that opens downward; inside this flare a conical float
valve fits snugly. When the water in the lower chamber is not at its top
level, the float valve lets in just enough water to bring the level back up to
where the valve is pushed against its socket. Thus the water in the lower
chamber remains always practically at its maximum level, and so flows
out (through a hole near the bottom) at a constant rate; that is also the
rate of emptying of the main reservoir. The float valve, if indeed due to
Archimedes, is one of the earliest feedback control devices.

Among the causes of error in water clocks considered in Antiquity was
the variation in the flow rate of water caused by temperature changes.27

Much has been written about the transformation the concept of time
underwent in the modern age because of clocks,28 but in general it has not
been supposed that anything like the modern scientific concept of time

23This technical solution suggests that the notion that hydrostatic pressure depends on the height
of liquid (stated in the first postulate of Archimedes’ On floating bodies; cf. page 73) was already
clear to Ctesibius.

24Like the dioptra described by Heron, the gears built by Ctesibius are considered “premature”
by Price ([Price: Gears], p. 53).

25A fragment of Heron’s treatise on water clocks can be found in [Heron: OO], vol. I, p. 456.
26The work is translated and discussed in [Hill: CWC]. The clock is also described in [Lewis:

TH], pp. 364–366.
27This observation appeared in a lost treatise by Theophrastus, On waters ( � � � ��� ��� ����� ), and is

mentioned by Plutarch (Quaestiones naturales, 914A) and by Athenaeus (Deipnosophistae, II, 42a–b).
Indeed the higher viscosity of cold water (to use the modern terminology) slows down the flow
noticeably. Athenaeus explains the slowdown with the words � � � � ������	
��� , “because of the pachos”,
a word that can mean both thickness and density, the two concepts seemingly being merged in his
mind. A similar explanation is given by Plutarch, who is perhaps Athenaeus’ direct source.

28It suffices to recall the classic pages of Marc Bloch on the medieval concept of time ([Bloch: FS],
pp. 73–74) and the essay [Koyré: MPUP].
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FIGURE 4.5. Water clock attributed to Archimedes. The pressure at the bottom
of the lower chamber is kept constant by means of a float valve. A joint lets the
output pipe be directed vertically, horizontally or diagonally, thus allowing for
seasonal adjustments in the flow rate to compensate for the variable length of the
hour (the rate is controlled by the difference between the water level in the lower
chamber and the height of the outer spout).

might have been known to the scientists to whom we owe the invention of
clocks. For example, Sambursky not only talks of the “inability [of ancient
scientists] to comprehend time as an independent variable”29 but writes:

Galileo’s work was revolutionary . . . [also] in treating time as a math-
ematical quantity which could be used in calculations . . . His proofs
are accompanied by graphs showing portions of time as sections on a
straight line. This geometrical representation of time by Galileo was
a step of first-class historical significance.30

In fact, the use of time as an independent variable, geometrically repre-
sented, enabled Hellenistic scientists to define many curves kinematically.
Archimedes, in his On spirals (neglected by Sambursky but studied with

29[Sambursky: PWG], p. 185.
30[Sambursky: PWG], p. 239. Sambursky’s book cannot be ignored because it is the only one, as

far as I know, devoted to Greek “physics” (a subject generally regarded as nonexistent).
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attention by Galileo) explicitly considers the “axis of times” and uses it as
a fundamental geometrical entity. Time as an independent variable plays
an essential role in the Almagest, and to cite just one more example, Heron
makes interesting considerations on the subject in his Mechanics(note 24
on page 334).

Did the use of clocks change the concept of time in everyday life as well?
Besides the previously mentioned use of timers at trials, some indication
of a movement in this direction already in the fourth century B.C. is pro-
vided by the case of the prostitute nicknamed Clepsydra, who “timed her
favours by the water-clock, stopping when it was emptied”.31

4.3 Military Technology

One area in which the close relation between Hellenistic science and tech-
nology is particularly visible is military technology. The descriptions given
by Polybius32 and Plutarch of the siege of Syracuse (212 B.C.) bear witness
to the terror roused by “technological warfare”. Plutarch tells us that when
Archimedes

began to ply his engines, he at once shot against the land forces all
sorts of missile weapons, and immense masses of stone . . . [Some
ships were] lifted up into the air by an iron hand or beak like a
crane’s beak and . . . plunged . . . to the bottom of the sea; . . . A ship
was frequently lifted up to a great height in the air (a dreadful thing
to behold), and was rolled to and fro, and kept swinging, until the
mariners were all thrown out, when at length it was dashed against
the rocks, or let fall.33

Plutarch presents the technology the Syracusans used as a set of inven-
tions contrived by Archimedes’ isolated genius. Generally speaking, this
childish version has been transmitted uncritically down to our days. But
the “machines of Archimedes” should instead be understood within the
framework of the progress achieved by military technology starting from
early Hellenistic times. This is clear from Diodorus Siculus’ report of the
siege of Rhodes by Demetrius Polyorcetes, in 305 B.C., which reads in part:

Demetrius . . . built an engine called the helepolis [destroyer of cities],
which far surpassed in size those which had been constructed before
it. . . . The whole structure was movable, mounted on eight great

31Athenaeus, Deipnosophistae, XIII, 567c–d (Gulick translation).
32Polybius, Historiae, VIII, v–vii.
33Plutarch, Vita Marcelli, xv §§1–3 (Dryden translation).
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solid wheels . . . [and was] nine storeys high. . . . The three exposed
sides of the machine he covered externally with iron plates. . . . On
each storey there were ports on the front, in size and in shape fitted
to the individual characteristics of the missiles that were to be shot
forth. These ports had shutters, which were lifted by a mechanical
device and which secured the safety of the men on the platforms
who were busy serving the artillery. . . 34

[On some ships intercepted by the Rhodians] were also captured
eleven famous engineers, men of outstanding skill in making mis-
siles and catapults.35

[The Rhodians] placed all their ballistae and catapults upon the wall.
When night had fallen, at about the second watch, they suddenly
began to strike the helepolis with an unremitting shower of the fire
missiles, and by using other missiles of all kinds, they shot down
any who rushed to the spot. . . . The night was moonless; and the
fire missiles shone bright as they hurtled violently through the air;
but the catapults and ballistae, since their missiles were invisible,
destroyed many who were not able to see the impending stroke. It
also happened that some of the iron plates of the helepolis were dis-
lodged, and where the place was laid bare the fire missiles rained
upon the exposed wood of the structure. Therefore Demetrius . . .
finally assembled by a trumpet signal the men who were assigned
to move the apparatus and by their efforts dragged the machine be-
yond range. Then when day had dawned he ordered the camp fol-
lowers to collect the missiles that had been hurled by the Rhodians
. . . they counted more than eight hundred fire missiles and not less
than fifteen hundred catapult bolts.36

Mobile siege towers along the lines of the helepolis later grew to have
up to twenty floors.37 The machines designed at the time of the siege of
Rhodes included ones capable of grabbing and lifting enemy matériel,
just like the “Archimedean” machines used in Syracuse to lift the ships
93 years later.38

War machines such as siege towers and ramrods had a long history
already by the time that concerns us: the Assyrians were experts in their
construction and that know-how was inherited by the Persians, who trans-
mitted it to the Greek world. According to Diodorus Siculus, the oldest

34Diodorus Siculus, Bibliotheca historica, XX, xci §§1–6 (Geer translation).
35Diodorus Siculus, Bibliotheca historica, XX, xciii §5 (Geer translation).
36Diodorus Siculus, Bibliotheca historica, XX, xcvi §3 – xcvii §2 (Geer translation).
37Vitruvius, De architectura, X, xiii §5.
38For designing such a machine Callias got the post of public engineer in Rhodes (Vitruvius, De

architectura, X, xvi §3).
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type of “catapult” — essentially a modified bow operated with the whole
body — was built in 399 B.C. by Dionysius I of Syracuse,39 but it may go
back even further.40

In Hellenistic times military technology, and particularly artillery, went
through a phase of rapid progress, starting with the invention of the tor-
sion catapult, a weapon that, unlike the bent-spring variety (which could
evolve purely empirically from the bow), was based on a new principle:
torsion elasticity.41 The first exemplars, which cast bolts, seem to go back
to the siege of Perinthus by Phillip II of Macedonia, in 340 B.C., while tor-
sion catapults able to throw stones were probably first used by Alexander,
during the siege of Tyre in 332 B.C. The power of these weapons grew
rapidly during the third century (see Figure 4.6).42

Missiles of a range of weights could be thrown by the different ma-
chines. We have found in various arsenals shot ranging from 10 minae
(4.4 kg) to 150 minae (66 kg).43 As to their reach, specialists disagree: some
believe it was under 200 meters, whereas others think it may have ex-
ceeded 300 meters.44

The effectiveness of Hellenistic catapults is demonstrated by the fact
that fortification techniques changed following their introduction (much
as happened after the introduction of firearms).45 Fortified walls not only
became thicker and started being surrounded by moats, but were com-
plemented by towers capable of hosting catapults. Progress in artillery,
however, left behind advances in defense, as seems to be demonstrated
by a rapidly increasing number of victorious sieges.46 There is an obvious
correlation between the increasing difficulty in defending the perimeter of
a city and the development of the great Hellenistic states.

One salient novelty of Hellenistic military technology was that the new
weapons were not just the fruit of the ingenuity of individual artisans or
generals, but were designed with the participation of the greatest scientists
of the time.

39Diodorus Siculus, Bibliotheca historica, XIV, xlii §§1–2; XIV, l §4.
40[Marsden: HD], pp. 48–64; [Milner], pp. 209–210.
41The main work on the history of Hellenistic artillery is [Marsden: HD]. The surviving Hellenis-

tic treatises on the subject are collected and translated in [Marsden: TT].
42The main source for the rapid technological development of artillery weapons in the first half

of the third century B.C. is Heron’s Belopoeica (which is included in [Marsden: TT]), based on a
homonymous book by Ctesibius.

43See [Marsden: HD], pp. 81–83. Much heavier stone balls have been found, but it is thought that
they were meant not to be thrown but to roll down the walls onto the enemy’s siege train.

44McNicoll discusses all the available data, reaching the conclusion that ranges between 350 and
400 meters could be achieved ([McNicoll], p. 5).

45See [Winter], [Marsden: HD], pp. 116–163, and [McNicoll].
46A table showing a sharp drop in the number of cases of successful resistance between 322 and

303 B.C. is given in [McNicoll], p. 47.
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FIGURE 4.6. Torsion catapult, from [Marsden: HD], p. 35. Marsden declares these
weapons “the standard artillery of the Mediterranean world from about the mid-
dle of the third century B.C. to the end of the first century A.D.” (ibid., p. 33).



4.3 Military Technology 109

In torsion catapults elastic energy was stored in bundles of animal fibers
(sinews or hairs) but the third century B.C. also saw experimentation with
weapons based on alternative elastic materials whose properties were then
being investigated. Thus Ctesibius designed and built artillery weapons
based on metal alloy springs and others based on air springs. The latter
were similar in structure to torsion catapults, but propulsion was effected
by air compressed inside two metal cylinders by means of pistons. Con-
tact surfaces were treated for airtightness, so when the launching arm was
pulled back, pushing the pistons in, such high pressures could be achieved
that upon release the stone shot would be hurled “a very respectable dis-
tance”. According to Philo of Byzantium, to whom we owe the preceding
description,47 one would often see sparks between piston and cylinder.
The creation of such weapons must naturally have gone hand-in-hand
with Ctesibius’ research on techniques for treating materials and on the
compressibility properties of air.

At Rhodes, one of the most active centers of artillery studies, scientists
also built a repeating catapult.48 Modern historians who refer to these con-
trivances usually add that they remained in the model stage, but there is
no good reason to think so. Repeating crossbows similar to the repeating
catapults described by Philo, albeit less powerful and sophisticated, were
in use centuries later in China and still played a role in the Sino-Japanese
war of 1894–95.49

Romans had no contribution to make to the development of military
technology, prior to the anonymous author of De rebus bellicis (fourth cen-
tury A.D.). Even this writer uses only Greek terms for all war machines.50

In Western Europe’s early Middle Ages, the ability to build effective
artillery weapons was completely lost. Late medieval trebuchets were far
less effective than the ancient catapults, the power of which could only be
appreciated again after 1904, when models were first built on the basis of
the indications provided by the ancient treatises, through the efforts of the
German general E. Schramm.

The introduction of firearms in the modern age concerned primarily
large-bore guns used against fixed fortifications; as a personal weapon, the
arquebus took centuries to supplant the pike.51 So the role of gunpowder
was to replace the catapult, the technology of which had been lost.

47Philo of Byzantium, Belopoeica, 77–78 = [Marsden: TT], pp. 152–154.
48Philo of Byzantium, Belopoeica, 73–77 = [Marsden: TT], pp. 144–152.
49[Marsden: TT], p. 178.
50One wonders if this person was in fact the first Roman to be interested in technological inno-

vations or the first Greek speaker to realize the advantages of writing in Latin for the purposes of
selling technology to Roman generals.

51See, for example, [Braudel], pp. 392–393.
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Wherever there is science, military technology has been an important
motivation and application for it. Hellenistic mechanics and early-modern
mechanics both arose in connection with the main military applications of
their day: catapults and firearms, respectively. In the latter case, mechanics
had nothing to contribute to the energy imparted to the projectile, which
depends on a chemical reaction outside the scope of the quantitative sci-
ence of the time. Therefore scientists concentrated on the motion of the
missile after it leaves the weapon’s barrel, and, as is well known, the dis-
covery of the laws of motion in free fall was decisively stimulated by the
problem of determining bullet trajectories. By contrast, at the time of the
catapults, the projectile was impelled by an elastic force, which could be
investigated and modified using the scientific methods of the time. Thus,
although we do not know why there was no interest in studying trajecto-
ries (and how can we be sure there wasn’t?), it is clear from a reading of the
Hellenistic treatises on military technology that Archimedean mechanics
had vital applications to artillery.52

That science was relevant to the military technology actually used is
proved not only by the efficiency of scientifically designed weapons, but
by the mushrooming of texts on military technology. Clearly, the knowl-
edge gained by scientists could not be used by builders unless mediated
by specialized texts. Despite the obviously sensitive nature of such infor-
mation, we know of several military treatises, teaching the construction
of artillery weapons (belopoeica), siege machines (polyorcetica), and so on.
Among the authors we know about are Philo of Byzantium, Biton and
Athenaeus.53 By Philo we have three texts: Belopoeica, Paraskeuastica (on
defense works) and Polyorcetica.54

The descriptions contained in all these Hellenistic treatises, especially in
Philo’s Belopoeica, are of great interest because they shed light on the gen-
eral level of mechanical technology in the third century. Among the tech-
nological innovations they rely on are universal joints, used for aiming,
and flat-mesh conveyor belts, used in loading repeating catapults. (Uni-
versal joints were later named Cardan joints, after the sixteenth-century
Italian scientist Gerolamo Cardano, while conveyor belts have sometimes
been attributed to Leonardo da Vinci, who drew them much as described

52See, for example, Philo of Byzantium, Belopoeica, 59 = [Marsden: TT], p. 123. We will return
in Chapter 10 to the question of whether a science of dynamics in the modern sense existed in
Hellenistic times.

53Also called Athenaeus the Mechanic, and not to be confused with the homonymous author of
the Deipnosophistae.

54These texts made up the three books of a single, vast treatise on “mechanics”. The Belopoeica is
included in [Marsden: TT]; the other two works, which survived only in part, were edited by H.
Diels and E. Schramm ([Philo/Diels]).
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by Philo of Byzantium.55)
Authors of military technological works based on Hellenistic mechanics

include several engineers who were active at the Pergamum court: we
have the short book that Biton dedicated to Attalus I in the third century
B.C.56 In imperial times Heron, too, wrote works on military technology,
two of which have survived.57

The most fascinating surviving pages on the relationship between math-
ematics and military technology are probably those of Philo of Byzantium.
Talking about the construction of catapults, he says:

Later, through the analysis of former mistakes and the observation of
subsequent experiments, the fundamental principle of the construc-
tion was reduced to a constant element, the diameter of the circle
holding the spring. This was first done by Alexandrian technicians,
who benefited from large subsidies from fame-seeking kings who
supported craftmanship and technique. That everything cannot be
accomplished through pure thought and the methods of mechanics,
but much is found also by experiment, is proved especially by what
I’m about to say.58

Thus Hellenistic scientists had already enunciated explicitly the relation-
ship between mathematics and experiments that is usually considered
typical of the Galilean method.

Soon after this passage Philo gives the formula for the diameter of the
opening that the spring (tension rope) goes through, and hence the diame-
ter of the spring itself, as a function of the weight of the projectile that one
wishes to throw a given distance; the diameter is proportional to the cube
root of the weight, the proportionality constants being given by Philo. The
famous problem of the doubling of the cube (extraction of cube roots) thus
reveals its practical interest in the task of “calibrating” catapults. An inge-
nious instrument, the mesolabe, was designed by Eratosthenes to perform
the extraction.59

55Leonardo da Vinci, Madrid Codex I, folios 5 and 10. The manufacture of conveyor belts was
one of the main obstacles in modern attempts to reconstruct ancient repeating catapults. In 1904 E.
Schramm succeeded in creating efficient weapons using bicycle chains, which were then a recent
innovation.

56Biton, Construction of war engines and catapults = [Marsden: TT], pp. 66–103.
57The already cited Belopoeica and the Cheiroballistra (in [Marsden: TT]).
58Philo of Byzantium, Belopoeica, 50:21–29 = [Marsden: TT], pp. 107–109.
59The description Eratosthenes gives of his mesolabe was preserved by Eutocius (together with

other solutions of the problem of doubling the cube) in his commentary In Archimedis sphaeram et
cylindrum = [Archimedes/Mugler], vol. IV, pp. 64–69. Eratosthenes mentions the usefulness of his
instrument in designing catapults.
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4.4 Sailing and Navigation

Hellenistic civilization, like Hellenic civilization before it, was that of a
group of harbor cities connected by sea. Therefore sailing and navigation
techniques were crucial to its economy. What were these techniques? Did
they have any relation to science?

We will restrict ourselves to a few observations on two forms of sailing
that were long considered to have been unknown in Antiquity: windward
sailing and open-seas sailing.

Did the “Ancients” know how to sail into the wind? Given that Greek
and Latin have specific expressions for this action ( � � ��� � ��� � � ����� �

�

��� , facere
pedem) and that classical authors, including some of the best-known, men-
tion it many times, even giving fairly detailed explanations of how it was
done,60 this would seem to be an open-and-shut question. Yet even here
the primitivist position has had its defenders.61

From our point of view, a particularly interesting testimonium is that of
the pseudo-Aristotelian Mechanics, giving a “scientific” — and correct —
explanation of how close-hauled sailing works.62 Here everything indi-
cates that practice preceded theory,63 but the need to include even sailing
techniques into the framework of mechanics is an interesting example of
the interaction between science and craft.

To sail the open seas, more than a way to roughly locate the cardinal
points (for which a compass is useful if the skies are overcast) it is essential
to have

– a coordinate system, that is, a scientific theory of geography;
– reliable charts; and
– a method to locate the ship with respect to the coordinate system.

With these theoretical instruments, even without a compass, one can cor-
rect for deviations from course caused by currents, leeway, storms and
poor orientation on starless nights. By contrast, if one has a compass but
is not able to determine the ship’s position, the inevitable errors add up
unchecked and the ship goes off course. The usefulness of the compass is

60See [Casson: SS], pp. 273–278, where several sources are quoted. We mention only Lucian,
Navigium, 9; Pliny, Naturalis historia, II §128.

61The relevant article in the History of technology dismisses the skeptics and states that Roman
ships could beat to windward, though only in “the most limited sense” ([Lethbridge], p. 574) until
the invention of the lateen sail — of unknown date but probably due “to the Graeco-Romans” —
made the task easy (ibid., p. 583–584).

62Pseudo-Aristotle, Mechanica, 851b:7–14. See [Casson: SS], p. 276, footnote 24, which points out
that the explanation is correct.

63It is interesting that Philostratus attributes the discovery of techniques for windward sailing to
the Phoenicians (Philostratus, Heroicus, i §2).
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that it reduces the magnitude of the necessary corrections, but the correc-
tions are always needed and yet cannot be made without the theoretical
instruments listed above.

Spherical coordinates were relearned when a copy of Ptolemy’s Geogra-
phy reached the West, in the fifteenth century. The recovery of Hellenistic
navigation instruments, including the plane astrolabe,64 allowed mariners
to determine latitude on the open sea through astronomical observations.65

It was these “rediscoveries” that allowed the long open-sea voyages that
had been impossible in the Middle Ages.

All of this would seem to suggest that the seafaring people who created
spherical geometry and trigonometry, mathematical astronomy, mathe-
matical geography, cartography and the astrolabe might also know how
to use these instruments for sailing, if only because the tie between Greek
astronomy and navigation was clearly present from the earliest, presci-
entific, days.66 Yet until not long ago it was believed that the “Ancients”
sailed only within sight of the coast, because this is what people did in the
Middle Ages, when all the scientific theories needed for ocean sailing had
been lost.

In fact, we know from the literature that Eudoxus of Cyzicus sailed sev-
eral times between Egypt and India not by skirting the shore but along a
direct ocean route from the Gulf of Aden.67 There is also the very famous
exploratory voyage in the North Atlantic made, probably in the late fourth
century B.C., by the Massalian Greek Pytheas, which was described in his
book The ocean ( � � � ��� � � � ���

�

). From fragments of this book and other in-
formation preserved by several authors,68 we know that Pytheas reached
places where the sun stays up all night in summer (such as the island of
Thule, six days of sailing north of Britannia)69 and even the frozen ocean

64That the plane astrolabe was a Hellenistic instrument known to Ptolemy was established in
[Neugebauer: EHA]. Until then it was thought that its invention dated from much later.

65Measuring longitude is much harder, but one can do without it by first reaching the desired
latitude and then sailing along that parallel to one’s destination.

66The first “astronomical” work we know about is the Nautical astrology attributed to Thales
(Simplicius, In Aristotelis Physicorum libros commentaria, [CAG], vol. X, 23:29–32 = [FV], vol. I, 80:3–
8, Thales B1) or to Phocus of Samos (Diogenes Laertius, Vitae philosophorum, I §23).

67These trips, dating form the time of Euergetes II, were narrated by Posidonius and are men-
tioned in Strabo, Geography, II, iii §4. In that period the interest of the Ptolemies in sailing in the
Indian Ocean is demonstrated by the naming, toward the end of the second century B.C., of a
royal officer �

� � � ��� ��� � � � ����� � ��� ��� � � � � ��� � � � ��	 ��� (with authority over the Red Sea and the Indian
Ocean). See [Rostovtzeff: SEHHW], vol. II, p. 928 and neighboring pages (last four pages of Chapter
VI).

68The fragments and testimonia are collected in [Pytheas/Roseman] and [Pytheas/Bianchetti].
69In Pliny (Naturalis historia, II §186), Pytheas is reported to have written that Thule’s days and

nights last six months; in the more reliable Cleomedes (Caelestia, I §4, 25:208 – 26:231, ed. Todd), that
around the solstice the day lasts a month. According to Diogenes Laertius (Vitae philosophorum, IV
§58), a certain Bion was the first to say there are places where day and night last six months.
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(polar pack ice).70 Strabo scolds Eratosthenes for using data from Pytheas,
whom he considers a fibber, but in our days the credibility of Pytheas has
been confirmed not least by the fragments transmitted by Strabo.

Trips in the Atlantic, toward the West, are mentioned by Diodorus Sicu-
lus, Plutarch and others.71 Strabo even talks of attempts to circumnavigate
the globe.72

Even fantastic tales such as Lucian’s True story or Photius’ summary of
the lost novel The incredible things beyond Thule by Antonius Diogenes are
echos of Hellenistic oceanic voyages produced in an age that no longer
had the means to replicate them.73

Open-sea voyages certainly employed the theoretical instruments men-
tioned earlier. Did science also give sailors useful technological products?
It may not have been by chance that Pytheas, the explorer of the North
Atlantic, was a Greek from Massalia, a city recorded by Strabo as having
been famous for the manufacture of instruments useful in navigation.74

Strabo also mentions that in Massalia and in Cyzicus, as in Rhodes, the
secrets of mechanical arts were guarded with particular care;75 this may
help explain our lack of information on the subject.

Another area where technology was useful to navigation was in the dig-
ging of canals. We mention here just the reactivation, around 275 B.C., of
the old canal that connected the Mediterranean with the Red Sea;76 in the
imperial age it was no longer passable77 and it took about two thousand
years for navigation from one sea to the other to become possible again.

70Strabo, Geography, I, iv §§2–3; II, iv §1.
71Diodorus Siculus, Bibliotheca historica, V, xix–xx; Plutarch, Vita Sertorii, viii. Diodorus talks of a

great island, many days to the west, with mountains and navigable rivers. The Carthaginians, he
reports, had founded a colony there and even considered moving there en masse if their city were
in grave danger. Many testimonia about Atlantic trips are collected and discussed in [Manfredi].

72Strabo, Geography, I, i §8.
73The protagonist of Photius’ novel travels from the Scythian Ocean to the Eastern Ocean and from

there, skirting the Outer Sea, he reaches Thule, an island in the North Atlantic (probably Iceland
for Pytheas; but Ptolemy’s Thule has been identified with the Shetlands: [Ptolemy/Toomer], p. 89,
note 66). Lucian’s tale, as the author explains, is a spoof of travelogues he regards as untrustworthy;
though it appears as a grotesque mass of obvious falsehoods, we can be sure from the authors
satirical intent that many elements of the narration were present in supposedly realistic works. At
the same time, we know that Lucian’s contemporaries no longer lent credence even to Pytheas’
trip.

74Strabo, Geography, IV, i §5.
75Strabo, Geography, XIV, ii §5.
76The canal (of which archeological evidence still remains) joined a branch of the Nile with the

Red Sea. It may have been dug as early as the Pharaohs and reactivated already once by King
Darius of Persia. According to Strabo (Geography, XVII, i §25) and Diodorus Siculus (Bibliotheca
historica, I, xxxiii, §§9–11), who mention the Pharaoh-era and Persian precedents as failed attempts,
the canal was first placed in operation by Ptolemy II Philadelphus. But it was already known to
Herodotus (Historiae, II §158) and is mentioned in an Iranian inscription by Darius.

77Already Pliny does not seem to be aware that the canal ever worked, though he mentions the
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4.5 Naval Architecture. The Pharos

Little is known about techniques of naval architecture. We do know that
the third century B.C. witnessed radical changes in this area, including an
unexpected race toward ever larger ships.78 It seems that the cataphracts
used by Antigonus II of Macedonia against Ptolemy II Philadelphus in the
naval battle near Cos (ca. 260 B.C.) were as big as fifteen quadriremes —
and the race was not even on the final stretch.

In classical times the main type of vessel had been the trireme. Its name,
in both Greek and Latin, is composed of the words for “three” and “oar”,
but the exact meaning of the term has been a subject of debate since late
Antiquity. Some maintained that there were three rowers per oar, but the
prevailing view today is that there were three stacked oar banks. In Hel-
lenistic times there appear multiremes with rapidly increasing numbers,
culminating with the forty-reme built by Ptolemy IV Philopator; such large
numbers clearly require a different interpretation. The commonest opin-
ion today is that they indicate the total number of rowers manning all oars
comprising a vertical column. All we can be sure of is that these new terms
indicate ships much bigger than their predecessors, and this sudden, dras-
tic increase indicates qualitative changes in shipbuilding technology. One
of the motivations for increasing the size of men of war, even at the ex-
pense of maneuverability, was probably the diffusion of artillery: growing
use was made of ships as floating platforms that could accommodate cat-
apults and other war engines.

Merchantmen also got bigger. Hiero II of Syracuse had a cargo ship
built, the Syracusia, which Moschio described in a book of which generous
portions are quoted by Athenaeus.79 Thus we know that the ship, whose
construction had required as much wood as sixty quadriremes, had on
board, among other things, a gymnasium, a library, hanging gardens and
twenty horse-stalls. Just before the Syracusia, Athenaeus discusses other
ships of similar dimensions, built in Alexandria by the Ptolemies.

No remains of these enormous ships have been found, but undersea
archeology has amassed a consistent record on smaller ships. One of the
first important finds took place in 1954, near the islet of Grand Congloué,
offshore from Marseilles.80 It consisted of the remnants of a Hellenistic
ship of the mid-second century B.C., about 23 meters long and lead-plated.
We now know that lead plating, used to protect the hull from barnacles,

attempts made to build it (Naturalis historia, VI §§165–166).
78See [Casson: AM], [Casson: SS], [Morrison].
79Athenaeus, Deipnosophistae, V, 206–209.
80[Benoit].
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was common in ships of the time; yet as late as the seventeenth century
British and Dutch ships had no such defense.

The theoretical calculation of waterlines, which as we saw occupied
Archimedes in his On floating bodies, probably gained in importance from
shipbuilding innovations in terms of materials and size. One couldn’t just
multiply the dimensions of an existing ship by some factor in order to get
fifteen or sixty times the tonnage: the task required theoretical planning,
based among other things on mechanics and hydrostatics, novel theories
of the time. The relationship between science and the building of these
large ships is explicitly documented in at least one case: Athenaeus says
that Archias of Corinth, the architect in charge of building the giant Syra-
cusia for Hiero II, worked under the guidance of Archimedes.81

One would wish to know more about these enormous Hellenistic ships.
We know that at Rhodes the penalty for spying on shipyards was death,82

and that ships of the Rhodian fleet carried many specialists in technical
services, including some of high rank. Yet we know neither what kinds of
secrets were so zealously kept nor the duties of naval technicians.

One application of Hellenistic technology to navigation was the con-
struction of the Pharos, the great lighthouse at Alexandria, around 280
B.C. Its total height was about 95 meters. The first level, with a square
cross section, reached half that height; then came an octagonal tower and
at the top there was a cylindrical room with the lantern, which was the true
“wonder”: its light, according to Flavius Josephus, could be seen 300 sta-
dia (48 km) away.83 This number seems right because it is approximately
the maximum permissible by the curvature of the earth,84 and one can
suppose that, as for modern lighthouses, that was the limiting factor (else
such a tall structure would be useless). To project the light that far a re-
flector would seem to be necessary; in fact we know that one was used,
because Arab visitors to the locale talk of reflecting metal surfaces that
lasted down to their time.85

The installation of the Pharos was considered so useful that other pharoi
were erected at every important port of the Hellenized Mediterranean.

81Athenaeus, Deipnosophistae, V, 206d. Athenaeus also says that this ship was lead-plated (ibid.,
207a).

82Strabo, Geography, XIV, ii §5.
83Flavius Josephus, Bellum judaicum, IV, x, 613.
84The distance to the horizon from a point at height h is

√
2Rh, where R = 6366 km is the radius of

the earth. If h and d are the heights above sea level of the light and of the sailors who were supposed
to see it, the light, if bright enough, would be visible at distances up to D =

√
2Rh+

√
2Rd. We know

that h was around 95 meters; taking 10 to 15 meters as reasonable values for d, we get between 46
and 48.5 km for D, in excellent agreement with the value reported by Josephus.

85A brief survey of Arabic sources on the Pharos can be found in [Fraser], vol. II, p. 46. Its main
structure still stood in the fourteenth century, when it collapsed after a series of earthquakes.
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But Greek sources contain no overall description or a single technological
detail relative to the Pharos, even though it was regarded in its own time
as one of the seven wonders of the world. This confirms how reticent our
sources are about technological products, in a case where the product itself
is not in doubt. Because the only extant descriptions of the Pharos are by
Arab historians, who visited it long after it had ceased to function, we
know very little of its technology. Yet some conjectures can be made on the
basis of its purpose and contemporary knowledge. First, we can imagine
that the reflector consisted, as it would today, of a parabolic mirror, all the
more so because the relevant theory arose precisely around the time of the
construction of the Pharos.86

Even if it cannot be proved directly that scientists had a hand in de-
signing the Pharos, it cannot be a coincidence that the first reflector in
history appeared in Alexandria in the first half of the third century B.C.,
exactly when and where we first see scientists interested in conics and in
catoptrics — the latter being precisely the scientific theory created for de-
signing mirrors. (A longstanding misattribution gives Kepler the credit for
first applying the classical theory of conics, but there were several earlier
applications, e.g., to cartography, as attested by Ptolemy’s Geography.)

Because a light beam in a fixed direction is not very useful in guiding
ships, one can also suppose that the Pharos had a rotating light or reflector.
This would also explain the cylindrical shape of the light room, replicated
in every lighthouse ever known.

In the Middle Ages, catoptrics was lost, and with it the ability to build
lighthouses. At best attempts were made to keep some of the remaining
ancient ones in operation. Lighthouses started being built again in the
twelfth century (Genoa got one in 1139), but these were vain attempts to
imitate the ancient pharoi. In the History of technology that we have often
cited we read:

It was, however, only in the closing years of the seventeenth century
that lighthouse-construction began in earnest, and on new and orig-
inal lines that were to lead to the modern types of structure.87

86The scarcity of sources does not allow one to document this statement as precisely as one
might desire. But we know that optics and the theory of conics were developed (particularly in
Euclid’s work) toward the end of the fourth century B.C. and that the theory of conics was applied
to mirrors. A burning mirror is nothing but a parabolic reflector “in reverse”, according to the
principle of reversibility of optical paths. Since the focal property of parabolas was applied to the
construction of burning mirrors around the middle of the third century (as we know from Diocles’
comments on Dositheus: see footnote 32 on page 63), and since Archimedes knew the principle of
reversibility of optical paths (see footnote 3.1 on page 63), the design of parabolic reflectors had
certainly become possible by the middle of the third century. Since the Pharos was built around
280, it is likely that parabolic reflectors in fact predate burning mirrors.

87[Goodchild], p. 524.
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The “new and original lines” consisted in the use of reflectors based on the
theory of conics. And the date when these structures reappeared might
be guessed approximately without any recourse to historical documents
about modern lighthouses. It is enough to know that a part of the ancient
theory of conic sections, comprising the focal property of parabolas, was
recovered in the first half of the seventeenth century (chiefly by Bonaven-
tura Cavalieri88), and to make allowance for the time needed to overcome
the technical problems attending the practical construction of lighthouses.

4.6 Hydraulic and Pneumatic Engineering

In the area of water engineering, the full extent of the practical relevance
of Hellenistic scientific knowledge can hardly be overlooked.89 Hellenistic
aqueducts are remarkably well-documented by archeology. Remnants of
water supply systems have been found at several sites, although many
technical features are not yet well understood and in some cases even a
Hellenistic dating has been challenged.

One of the main characteristics of Hellenistic aqueducts is the frequent
use of pressure pipes, which overcame depressions of the terrain thanks to
the principle of the inverted syphon (such pressure pipes are simply called
“syphons” in the archeological literature). For a while the use of syphons
was denied or regarded as exceptional, but they occur in at least seven
of the nine aqueducts known for sure to be Hellenistic.90 The relationship
between the idea of the inverted syphon and the science of hydrostatics
is obvious. The most remarkable syphon was at Pergamum (Figure 7.4 on
page 208); it pushed water uphill to a height of perhaps 190 meters from
the deepest point, and the pressure at the bottom must have been almost
20 atmospheres.91 Note that we only know the technological level of these
waterworks because of twentieth-century archeological finds.

88In Lo specchio ustorio overo trattato delle settioni coniche. . . , Bologna, 1632. Chapter 32 is titled
“How the aforementioned mirrors [the burning mirrors of Archimedes] can be used to shine a
light beam far away at night.”

89For information on ancient hydraulic engineering, see [Bonnin], [Tölle-Kastenbein], [Hodge:
RAWS], [Wikander: HAWT].

90[Lewis: HP], p. 646. A much longer list of Hellenistic aqueducts with syphons can be found in
[Hodge: A], p. 43, but for some of them a Roman dating has been proposed.

91See [Garbrecht]. Hellenistic engineers did not have pressure gauges and so could not measure
the pressure at the bottom. But by the principle of Archimedes (note 73 on page 70), they could
certainly calculate the pressure in the static case: if a U-shaped tube is full of water and in equi-
librium, the pressure at the bottom is that of a column of water as tall as the difference in height
between the bottom and the highest water level (which is the same on both sides because of the
principle of communicating vessels). In an inverted syphon the downhill leg starts higher than the
uphill leg ends and the pressure at the bottom corresponds to a height somewhere in between, as
can be seen from considerations that could hardly have escaped a reader of Archimedes. Thus the
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A very important technology, involving both hydraulic and mechanical
engineering, is water lifting.92

The oldest machine for lifting water, the shaduf, is documented in Meso-
potamia around 2300 B.C. and in Egypt around 1600 B.C., and is still used
in many oriental cultures. It consists of a bucket at the end of a rod. The
rod pivots about its middle, at a height of some five feet, and the other end
has a clay block that serves as a counterweight. When the bucket is lifted
to a certain height, the contents can be poured into a runoff channel.

In the Hellenistic period water lifting technology was revolutionized
by the appearance of completely new devices, all of which date from no
earlier than the third and no later than the second century B.C. The field
witnessed no further progress in ancient times.

With the new machines, not only could much more water be lifted, but
most importantly, unlike the shaduf (which had to be operated with some
skill by a human), the necessary action can be “automated”, being reduced
to a continuous rotational motion that can be supplied by an animal or a
natural energy source. The simplest device of this type is the tympanum or
waterwheel described by Vitruvius.93 It is a hollow cylinder (Figure 4.7)

↗ ↘
Figure 4.7. The tympanum.

From [Drachmann: MTGRA],
p. 150. Black dots and triangles
are holes in the side walls, which
otherwise are drawn as if trans-
parent.

divided radially into wedges (usually eight) and set on a horizontal axis,
the lowest part being immersed in the water that must be lifted; the open-
ings are so placed that each wedge lets water in when it’s submerged and
lets it out when it rises above the axis. There is one defect: the water can-
not be raised a height greater than the radius of the tympanum. To lift
the water more one would use a series of buckets that were filled and
emptied automatically. The buckets could be attached to the edge of a

engineers of the time could bracket the pressure within an upper and a lower bound, which in the
case of Pergamum would differ by about 15%.

92For a complete and up-to-date survey of the field, see [Oleson: WL].
93Vitruvius, De architectura, X, iv §§1–2. The same wheel is cited in Chapter 61 of the Arabic

version of Philo of Byzantium’s Pneumatica.
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wheel (so the height of lifting would be the diameter of the wheel), of,
if a greater height was needed, the buckets could be attached to a chain
connecting two wheels, one placed at the departure level of the water and
one at the delivery level. As in the case of the tympanum, the raised water
was poured into a runoff channel.94 These machines could be arranged in
series to lift water a great way (see Figure 9.2 on page 254).

The preceding machines have vertical wheels revolving around a hori-
zontal axle. But for using animal power it is much easier to rotate a hori-
zontal wheel about a vertical axle. Hellenistic gears allowed a solution to
the problem, leading to a device now called the sakiyeh by the Arabs, who
still use it (see Figure 4.8).

In the sakiyeh (then called simply

���
� � �

�

, “machine”) the lifting is done
by a tympanum or a bucket chain. The tympanum or the wheel that carries
the buckets is solidly attached to a smaller coaxial wheel, which stays dry;
this second wheel has cogs suitably meshed with those of a third, horizon-
tal, wheel, which is pushed around its axis by an animal. A sakiyeh is first
documented in a second century B.C. tomb fresco in Alexandria, where
it is shown pushed by two oxen.95 The use of animal power to lift water
must have been very widespread, as it still is today.96

Another machine for lifting water introduced in Hellenistic times was
the water-screw or Archimedean screw ( � �����

� � � ). This well known tool
is of a miraculous simplicity. The water flow it delivers is continuous; no
vestige is left of the age-old use of buckets. The water is lifted directly,
inside a tilted tube, by a helicoidal surface that fits snugly within the tube
and rotates with it (Figure 4.9).

Both sakiyeh and water-screw appear as products of the new scientific
technology. Indeed, they rely on the two new elements of mechanical tech-
nology mentioned earlier, the gear and the screw, and moreover they are
the fruit of theoretical design. Thus, the helicoidal surface of the water-
screw does not seem related either to earlier instruments or to natural
objects having similar functions; at the same time, it is a natural object of
investigation in the context of Hellenistic geometry.97 This by itself would
be enough to suggest that its origin is connected to scientific thought. But
in fact we need not make conjectures: the invention of the water-screw is

94The bucket chain is described in the (certainly corrupt) Arabic text of Chapter 65 of Philo of
Byzantium’s Pneumatica. Remains of a water-lifting system of this type, dating from the second
century B.C., have been found in Cosa in central Italy; see [Oleson: WL], pp. 258–261.

95See [Oleson: GRWL], pp. 184–185 or [Oleson: WL], p. 270.
96Philo of Byzantium, presenting an air-operated device of his invention for lifting water, de-

clares it to be much better than the methods based on animal traction (Pneumatica, v, 84, ed. Prager).
97We have already mentioned on page 98 Apollonius of Perga’s On the cylindrical helix, which,

though of a later date, is significant in this context.
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FIGURE 4.9. Roman-time Archimedean screw found at Centenillo Mines, Spain.
From [Palmer], p. 330. Scale of plan and elevation, ca. 1:80; details of screw and
pivot, ca. 1:20.



4.7 Use of Natural Power 123

attributed to Archimedes by concurrent testimonia of Diodorus Siculus98

and Athenaeus.99 Its timing is further confirmed by the utter absence of
material, documentary or pictorial evidence for earlier use.100 Yet the ten-
dency to cast as legendary all that has to do with Archimedes, without
even considering the evidence, has led to persistent attempts to back-
date it to Pharaoh-era Egypt.101 The water-screw did become important
to Egyptian irrigation under the Ptolemies (see page 252), but the copious
iconographic documentation from earlier times, including much that is
related to irrigation and flood control, fails to show Archimedean screws
or screws of any type.

One further technological product of Hellenistic science useful for lift-
ing water was Ctesibius’ pump, already discussed on page 78. This device
must still have been widespread in Roman times, because archeological
digs have yielded twenty-five examples from early imperial times: thir-
teen in wood, eleven in bronze and one in lead (see Figure 4.10).102 The
bronze pieces bespeak skill in treating metal surfaces with the precision
necessary to ensure a fit between piston and cylinder, as in the air catapult
(page 109): that is, metal grinding techniques were already known.103

4.7 Use of Natural Power

The design of machines that could be operated through simple rotational
motion, like those just described for lifting water, allowed the replacement
of human by animal power, but also suggested the desirability of using

98Diodorus Siculus, reporting what is in all probability information from Agatharchides (sec-
ond century B.C.), discusses the use of the water-screw to irrigate the Nile delta and attributes
its invention to Archimedes (Bibliotheca historica, I, xxxiv §2). Diodorus returns to the water-screw
in V, xxxvii §§3–4 (a passage thought to be based on Posidonius), mentioning its use in draining
Spanish mines, and promises to discuss “in detail” ( �

� � � ��� � ) all of Archimedes’ inventions in the
books devoted to his time (these books have been lost).

99According to Moschio’s book on the Syracusia (as quoted in Athenaeus, Deipnosophistae, V,
208f), that ship’s bilge water “was pumped out by a single man with the water-screw, an invention
of Archimedes”.

100See [Oleson: WL], pp. 242–251.
101Thus the influential History of technology: “According to legend, Archimedes invented and

constructed many machines . . . but . . . the evidence is vague. The only machine which is both
associated with his name and precisely known is the ‘Archimedean screw’ for irrigation. Here it
seems that legend has incorrectly attributed to him a contrivance that had long been in use in
Egypt” ([Gille: Machines], p. 633). But this thesis had already been refuted in [Feldhaus] and in
[Rehm]: “That the Archimedean screw . . . is an invention of the man whose name it bears is as
well-attested as it can possibly be” ([Rehm], p. 146, note 28).

102[Oleson: WL], p. 272, note 96.
103This is stressed in [Woodbury], p. 30. Compare also [Philo/Prager], p. 12, note 30. Earlier it

was thought instead that the need for ground metal joints disqualified an instrument from being
contemporary with Philo ([Drachmann: KPH], p. 50).
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FIGURE 4.10. A bronze pump from the early imperial period found in Bolsena,
Italy, boasts beveled spindle valves. The one-third to the right of the dotted line,
as well as the left piston, have not been found. From [Walters], p. 121.

inanimate power sources. In Hellenistic times several such sources were
used.

Running water. The earliest water mill we know of was connected with
the palace of King Mithridates VI of Pontus (120–63 B.C.) at Cabeira, but
the testimonium gives no details.104 Next we read in an epigram of An-
tipater of Thessalonica (first century B.C.):

Rest your hands from the mill, flour-women: sleep in, even if the
cocks crow to announce dawn, for Demeter has assigned the labor of
your hands to the nymphs; and they, tumbling down the very edge
of the wheel, spin the axle, which with its curved rays [or cogs] turns
. . . the Nisyrian millstones.105

This agrees best with a vertical water mill;106 this is anyway suggested
by the absence of good evidence for the use of horizontal water mills in
Antiquity.107 The type of configuration is of some importance: a vertical
wheel is more efficient than a horizontal one, but it requires that the ro-

104Strabo, Geography, XII, iii §30.
105Anthologia graeca, IX, 418. The Greek for “tumbling down the very edge of the wheel” is �������

� � � � � � � � ���
� � �
� � � ��� ��� ��	 � � � ; the meaning “top” instead of “edge” is also possible.

106[Wikander: WM], p. 375: “A few scholars still take the epigram as referring to a horizontal-
wheeled mill, but to me an unprejudiced analysis unequivocally favors the overshot variety.”

107[Wikander: WM], p. 376.



4.7 Use of Natural Power 125

tation of the paddle-wheel (about a horizontal axis) be converted to the
rotation of the millstone (about a vertical axis); thus we have evidence for
right-angle transfer gears. For centuries the vertical mill was called Vitru-
vian and attributed to the Romans, for no better reason than that Vitruvius
described it without explicitly mentioning its Hellenistic origins.108

Marc Bloch, in his essay on water mills, says they were invented in the
“Mediterranean East”,109 among other reasons because otherwise there
would be no justification for Vitruvius to use a Greek word for them. The
vertical water mill might have originated from the idea of using a sakiyeh
in reverse.110 Interestingly, Bloch finds it odd that this geographical area
should have been the cradle of such an invention, because Mediterranean
streams are not very reliable power sources due to seasonal variations. He
seems not to take into account that among the “Mediterranean people”
were the creators of both mechanics and hydraulics. Bloch, a founder of
the “history of material civilization”, was one of the greatest twentieth-
century historians, but as a medievalist — a specialist in the study of a
prescientific society — he was not in the best position to be the first to clar-
ify the long misunderstood link between Hellenistic science and scientific
technology.

The testimonia of Strabo, Antipater and Vitruvius show that water mills
(vertical, to boot) existed in the first century B.C. The gears needed to build
such mills were used in the sakiyeh, which is documented from the second
century B.C. (see page 120); they may actually go back to the first half of
the third century.111 Most scholars think the invention of the water mill
dates from around 100 B.C., but recently M. J. T. Lewis has argued that this
was one of the first products of Hellenistic science, owed to Alexandrian
scientists of the first half of the third century B.C.112

Wind. The origins of the windmill are obscure. The earliest documented
specimen was built for Caliph Omar I (634–644) by a Persian who said he
could do it. However, it is likely that in Sistan (the southwestern part of
today’s Afghanistan) windmills predated Islam.113

108Vitruvius, De architectura, X, v. Forbes ascribes the invention of the vertical mill to “a Roman
engineer of the first century B.C.” ([Forbes: Power], p. 595), and states without supporting argu-
ments that the Antipater epigram refers to an unspecified water mill rather than to a vertical mill
(ibid., p. 593).

109[Bloch: Moulin], p. 539.
110As noted in [Bloch: Moulin], p. 541, such an origin would explain why Vitruvius discusses

wind mills together with water-lifting devices (De architectura, X, iv–v): he would simply be keep-
ing the order adopted by his source, and that in turn would be the order of historical development.

111[Lewis: MH], pp. 56–57.
112[Lewis: MH], pp. 33–61. A summary of the arguments is given in [Lewis: HP], pp. 644–645.
113[Hill: E], p. 784.

126 4. Scientific Technology

Heron, in discussing a pipe-organ moved by a wheel with paddles,
describes the wheel by saying it’s similar to an anemourion ( � ��� � �

�
��� � � ),

evidently something the reader was expected to be familiar with.114 The
word (a compound whose first part means wind) is not otherwise attested
as a common noun, but the context makes it clear that it means some-
thing that uses the wind to create rotational motion: in the manuscripts the
passage is illustrated with drawings showing the organ with its paddle-
wheel, which moves a piston (Figure 4.11).

The same word was in Antiquity also a place-name — given, for exam-
ple, to two promontories in Cilicia.115 In this capacity its likely meaning
would of course be “windmill”, a conspicuous landscape feature (unless
there was a homonym that happened to mean “windy mountain”).

Many scholars have felt that the Heronian passage can be disregarded
because it is not confirmed by other writings. Heron presumably men-
tioned the anemourion in a moment of distraction, forgetting that it had
not been invented yet. We know that he was given to such lapses.

Steam. Heron describes two steam engines: a demonstration model (the
eolipile, an enclosed round vessel with curved vents through which steam
came out, causing it to revolve: see Figure 4.12), and a device used to open
the doors of a temple when a fire was lit.116 Heron’s steam engines have
generally been considered oddities built just to amaze, but if we consider
their construction in the framework of a civilization that had started to
employ water power, they can be seen instead as arising from a search for
energy sources that do not depend on geographical accident (see Section
4.9 for a fuller discussion).

It should be stressed that modern steam engines are not at all, as is often
implicitly assumed, an invention independent of the Hellenistic engines;
there is a continuous line of descent. Heron’s expositions were studied
carefully by Leonardo da Vinci, among others. The possibility of using
steam as a source of power was then mooted by Giambattista della Porta
in his Pneumaticorum libri tres (1601), based on Heron’s Pneumatica.117 The
first steam engine actually built in modern times seems to have been the
one described in 1615 by Salomon de Caus; it operated an ornamental

114Heron, Pneumatica, I, xliii, 204:16.
115Strabo, Geography, XIV, v §3; XIV, v §5.
116Heron, Pneumatica, II, xi; I, xxxviii.
117Della Porta’s work was soon translated into Italian under the title I tre libri de’ spiritali (1606).

With the end of ancient science, the meaning given to pneuma by Hellenistic scientists had been
forgotten, and the word was generally translated “spiritus” or its reflex in modern languages, in a
sense similar to the one it had had in the classical period. Reversing in this way the path traveled by
Ctesibius and Herophilus, we get the amusing result of the same adjective being used for spiritual
beings and steam engines.
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FIGURE 4.11. Wind organ described by Heron. Top: the figure as transmitted
in the Codex Marcianus 516, Venice; taken from [Lewis: TH], p. 144. Bottom:
reconstruction by W. Schmidt based on the manuscript’s figure and the textual
explanation; taken from [Heron: OO], vol. I, p. 205.
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FIGURE 4.12. The eolipile (Schmidt’s rendition). From [Heron: OO], vol. I, p. 230.

fountain intermittently. Thus the inheritance from Heron was so complete
that it even concerned the end to which the machine was put. Heronian
technology hung on for another century in various hands, until it became
economically convenient to start building steam engines for industrial
use — which is to say, when the rapidly growing energy needs of nascent
industrialization no longer could be met by watermills alone.

4.8 The Antikythera Mechanism

In 1902, near the wreck of a ship that foundered by the islet of Antikythera,
between the Peloponnesus and Crete, divers found some corroded bronze
fragments that at first appeared to belong to some clock-like object with
complicated gears. The find dates from the early first century B.C.,118 but it
appeared so qualitatively different from any known object from classical
Antiquity that it gave rise to absurd speculations of all sorts.119

The partially readable inscriptions on the fragments make it clear that
the mechanism has to do with the motions of the sun and the moon.

118In 1985, Jacques Cousteau found on the shipwreck coins issued in Pergamum in 86 B.C. (see
[Casson: AM], p. 224), indicating that the wreck probably took place not long thereafter.

119Humorously recounted in [Price: Gears], p. 12. The early date of the find is secure, among other
reasons because a paleographical study of the inscriptions shows they are contemporary with the
shipwreck. For an accurate description of the finds and a reconstruction of the whole machine, see
[Price: Gears]. The description in [Price: Instruments] was written before the author studied the
fragments in person and is completely superseded.
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FIGURE 4.13. Top: Sectional diagram of gearing system found in Antikythera, as
reconstructed by Price. Teeth counts are indicated. The remnants of the device lie
in several fragments, each of which contains a number of gears or partial gears
stuck together through corrosion. Radiography allowed the determination of the
position and teeth count of most individual gears (see bottom inset with Price’s
working notes). From [Price: Gears], pp. 33, 28.

130 4. Scientific Technology

According to Price’s reconstruction, it was a sort of perpetual calendar,
allowing the calculation of the phases of the moon, past and future. To
this end a gear train converted the motion of a wheel representing the
solar cycle to another representing the sidereal revolution of the moon,
according to the ratio of 254 lunar revolutions to 19 solar years.

Technologically speaking two features stand out. One is the complexity
of the mechanism, which uses at least thirty gears. This intricacy is what
makes one instinctively assign the machine to the category of clockwork.
The second and most remarkable feature is the presence of a differential
turntable, a mechanism that allows the addition or subtraction of angular
velocities. The differential was used to compute the synodic lunar cycle
(moon phase cycle), by subtracting the effects of the sun’s movement from
those of the sidereal lunar movement.

Price’s verdict about the significance of the Antikythera mechanism is
revealing: “We must suppose that from both Heron and Vitruvius we un-
derestimate what was available in gearing technology in their times.”120

Indeed, he felt that the existence of this single object of “high technology”
is enough to radically alter our ideas about classical civilization and lay
to rest once and for all old clichés to the effect that the Greeks scorned
technology and that the easy availability of slave labor led to an unsur-
mountable gap between theory and experimental and applied sciences.121

4.9 Heron’s Role

The most famous written documentation on Hellenistic technology that
has survived consists of the works of Heron of Alexandria. Heron, who
lived most likely in the first century of our era,122 described a great many
“marvelous engines”, especially in two of his works: the Pneumatica and
the Automata. An example is a vending machine that, upon the introduc-
tion of a five-drachma coin, would dispense a fixed amount of liquid.123

120[Price: Gears], p. 54.
121[Price: SSB], p. 42; [Price: Gears], p. 51. Price’s comments seem to be informed by a personal ex-

perience; he held very different views on Greek technology in [Price: Instruments], written twenty
years earlier.

122The most useful datum for dating Heron is the lunar eclipse used as an example in the Dioptra,
which was unequivocally identified as that of March 13, 62 A.D. in [Neugebauer: Heron]. Heron
might conceivably be transmitting an account of an earlier author, but it is likely that he used a
recent eclipse. In any case 62 A.D. is a terminus post quem. One piece of evidence against the dating
once proposed by Heiberg and Heath as the most probable, namely the third century A.D., is that
Sextus Empiricus, around 200 A.D., seems to refer to Heron, though not by name (see pages 322–
323).

123Heron, Pneumatica, I, xxi.
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Heron knows and uses precision screws, rack gears, reduction gears,
transmission chains, camshafts,124 pistons, valves of various types, and
more. He puts to use many properties of fluids, the principle of jet propul-
sion and the sources of natural power already mentioned: water, wind and
steam.

Conceptually, one of the most interesting features of Heron’s machines
is the pervasive presence of feedback mechanisms, capable of taking a sys-
tem back to its initial state after being displaced from it, or of maintaining
a device in a steady operation state (until the energy resource being used
is exhausted).

As we shall see in this section, modern attitudes toward Heron’s writ-
ings have generally been misguided by the often amusing uses to which
he puts technology and by prejudices about classical civilization. A pas-
sage of Dijksterhuis may be quoted as a good example of the common
opinion:

He has as many physical and technical possibilities at his command
as the eighteenth-century inventors who by their work made the in-
dustrial revolution possible. Why, one is continually inclined to ask,
does he not accomplish anything comparable to their work, and why
does he confine himself to the construction of instruments without
any practical utility?125

To see things in perspective, one must first of all recognize that the tech-
nology described by Heron is too complex to be the creation of a single
inventor. When dealing with theoretical arguments, too, he appears as
more of a compiler and transmitter of information that as an innovator,
and ever more so as our knowledge of Hellenistic science advances. For
instance, he was once considered the inventor of “algebraic” methods,
but the decipherment of cuneiform texts has shown that such methods
had long been in use in Mesopotamia;126 Heron’s formula for the area of
a triangle is attributed to Archimedes by the Arabic mathematician al-
Bı̄rūnı̄;127 Heron’s Definitions are avowedly a compilation made for divul-
gation purposes; the principle of communicating vessels, though not dis-
cussed explicitly in the pre-Heronian texts that we possess,128 is implicit in

124The cam (eccentric wheel) and camshaft convert circular motion into reciprocating (alternating
linear) motion. They were used, for example, in the pipe-organ already discussed on page 126
(Heron, Pneumatica, I, xliii). They were long thought to have been invented in medieval Europe or
in China.

125[Dijksterhuis: MWP], p. 73.
126On this topic see, for example, [Neugebauer: HAMA], vol. II, p. 847.
127[al-Biruni/Suter], p. 39.
128This absence has led to statements such as “the first attempt to explain their action [i.e., of

syphons] was that of Hero” ([Forbes: HES], p. 669).
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Archimedes’ postulate and was the basis for the Hellenistic syphons built
centuries before Heron.129 Other examples could be added.

Heron’s personal contributions concern at best some of the applications
he describes, not the underlying technology. Thus we should inquire how
far back the technology goes. We list here a few relevant facts.

Heron’s use of mechanical technology and fluid technology is based on
mechanics, hydrostatics and pneumatics, scientific theories that all date
from the third century B.C. The same century witnessed the invention
of foundational pieces of technology such as precision screws, gears and
valves, and an extraordinary technological development demonstrated by,
among other things, the already discussed testimonia on shipbuilding and
war engines.

The link between Heron and his sources has been carefully analyzed in
the case of the treatises on artillery by Marsden,130 who concludes that “in
spite of his own [Heron’s] date, the technical content of his work belongs
in the third century B.C.”131 Marsden cites as evidence, in particular, that
details of weapons described by Heron (following Ctesibius’ work) had
already been critiqued by Philo of Byzantium,132 and that Heron starts his
Belopoeica by stressing the importance of artillery in safeguarding cities: a
comment obviously lifted from sources that predated the establishment of
the Pax Romana.

The building of automata also goes back to the third century B.C., more
precisely to the first half. According to Vitruvius (who cites as his source
the Commentaries of Ctesibius), the clocks built by Ctesibius could activate
automata at preset times.133 Callixenus, writing about a famous parade
organized by Ptolemy II Philadelphus, mentions a statue of Nysa that
would stand up by itself from a sitting position, pour libations of milk
and sit down again.134 Heron, in his book on the automatic theater (see
page 139), mentions several times a work of Philo of Byzantium on the
same subject, criticizing details and boasting that he could improve on
Philo in some particulars, such as the number of simultaneous movements
of each automaton. Evidently, the technology in this area was not very dif-
ferent in early Hellenistic times from what Heron describes. In particular,
Lewis points out that many automata of the third century B.C. could not

129See pages 118–118.
130In [Marsden: HD]; see also [Marsden: TT], pp. 1–2.
131[Marsden: HD], p. 3.
132This fact was once thought to imply that Heron preceded Philo (see [Heath: HGM], vol. II,

p. 302, for example). The fallacy of this logic hinges, as it does in many analogous cases, on the
falsehood of a premise implicitly taken as obvious: that the interval between the two scientists was
one of technological progress and not regression.

133Vitruvius, De architectura, IX, viii §§4–5.
134Athenaeus, Deipnosophistae, V, 198f.
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have worked without a mechanism for converting rotational motion into
reciprocating motion, like the ones used by Heron.135

Ctesibius and Philo of Byzantium had of course known and described
many pneumatic devices centuries before Heron. Indeed, sources for cer-
tain parts of Heron’s Pneumatics have been identified and date from the
third century: besides the works of Philo of Byzantium and of Ctesibius
(the latter for the water-organ, for instance), Heron probably also relied
on the writings of Strato of Lampsacus (especially for the introduction, as
Diels was the first to propose).

The feedback mechanisms used by Heron also go back to the Hellenistic
period; they are used systematically in Philo of Byzantium’s Pneumatica.

In part, the problem of dating Heron remained open for centuries pre-
cisely because in his work he often mentions early Hellenistic scientists —
Archimedes, Ctesibius, Philo of Byzantium — but never any contempo-
raries that we know about. Obviously Heron, contrary to what is often
said, does not belong to a school that had stayed alive since Ctesibian
times; he derives his knowledge from reading ancient works. Indeed, as
already noted,136 Alexandrian scientific tradition was traumatically inter-
rupted in 145 B.C., and the main element of continuity during the dark
centuries separating those tragic events from imperial-age Alexandria was
the Library.

In sum, there is every evidence that most of the technology described
by Heron goes back to the third and second centuries B.C. More than that,
certain hints suggest that the technology had already been lost to some
extent by the time of Heron’s writing.137 Namely:

The dioptra and other Heronian devices include small metal screws,
but when Heron deals with the manufacture of screws, in the Mechanics,
he states only the two methods mentioned on page 97, which are easy to
implement (especially the first), but only work for big wooden screws.
There are additional reasons to think that Heron’s Dioptra is based on
Hellenistic-period sources.138

In the Mechanics, in a theoretical context, Heron describes reduction
gears, but in the Automata, when he must repeatedly transfer movement
from one wheel to another, he never uses gears, only friction devices. This
is easily explained if we assume that in his time it had become difficult to
procure not just precision metal screws but even gears.

135[Lewis: MH], pp. 84–88.
136See Sections 1.2 and 3.2, especially note 60 on page 69.
137In other words, it may be that Price (see page 100) is right in saying that Heron’s dioptra was

an “invention whose complexity exceeded the technical resources of its time” — but not because it
was “premature” in Heron’s time, rather for the opposite reason.

138See note 24 on page 272.
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In the few cases where direct documentation is available, the technology
of earlier centuries appears more sophisticated than Heron’s; for example,
from his work we would never suspect the existence of differential gears
of the type used in the Antikythera machine, which predates Heron by
about 150 years.139

We see that Heron’s writings provide precious, but late and incomplete,
documentation about the level of Hellenistic technology, and cannot be
used unless with great caution to evaluate the motivations that led to that
technology’s appearance and development in a completely different cul-
tural and political climate, centuries earlier. Some relevant observations
toward such an evaluation:

Mechanics and pneumatics arose in close connection with technology
and, as we have seen, allowed the creation of many economically useful
devices as early as the third century B.C.

Heron himself describes many devices that are not at all just amuse-
ments: artillery weapons, various types of press, machines to lift weights,
the dioptra, the screw maker.

A growing number of aspects of Heronian technology are now known
to have had serious uses in Hellenistic times. For example:

– We knew that some of Heron’s models were moved by water power.
Now we know that those models reflected real-life installations based
on efficient vertical water wheels, which had been in use long before.

– We knew about the use of fluid pressure in Heron’s “toys”. From twen-
tieth-century archeological excavations we have learned that the same
principles were used to build pumps in widespread use and pressure
pipes that supplied cities with water.

– We knew about the use of hydrostatic principles in Heron’s works. The
same principles, as we have seen, were very likely used in the third
century B.C. in naval technology.

Sometimes Heron obtains the spectacular effects he seeks by altering
simple experimental devices. Take for instance the thermoscope described
by Philo in chapter vii of his Pneumatics, a simple setup to demonstrate
that air expands when heated. It has a syphon that dips below water level
in two partly filled containers, one airtight and the other open. When the
air in the closed container is heated in the sun or by a fire, it pushes some

139See Section 4.8 above. Also Archimedes’ planetarium must have reproduced the correct ratio
of angular velocities not only of sun and moon, but also of the planets. Since we know that various
gears were already in use in Archimedes’ time and that science was already on the wane at the time
of the Antikythera machine, we may imagine that Archimedes’ planetarium was technologically
even more sophisticated.
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water through the syphon to the other container, and the opposite hap-
pens when the temperature drops. Essentially the same object appears in
Heron’s Pneumatica, II, viii, where it is disguised as a fountain having the
amazing property of spouting only when it is exposed to the sun. The
same setup with a fire as the source of heat appears in I, xii, as a trick to
make automata pour libations onto an altar when a fire is lit. The construc-
tion is repeated with sound effects — a hissing snake — in II, xxi. Likewise
the principle of jet propulsion behind the demonstration device called the
eolipile (Figure 4.12) is used by Heron in II, iii for ornamental purposes
(Figure 4.14).

At other times Heron refers to a preexisting technology with practical
uses when introducing a derived entertainment-related use. For example,
in the Pneumatica, I, x, he explains one of his famous fountains, which re-
lied on pressure to create an astonishing gush of water. A key component
is the flap valve, which he introduces with the words “called an assarium
by the Romans”. He proceeds to describe the valve in detail in I, xi (though
it was obviously not a novelty), and uses it again in I, xxviii, in a pump
that serves as a fire extinguisher. The two constructions are very similar: in
either case a water jet is driven by air that is compressed thanks to pistons
and valves, and the basic designs largely coincide. Since we know that

FIGURE 4.14. Rotating altar moved by hot air, in Schmidt’s rendition; the figures
in the glass case would start to move when the fire was lit. From [Heron: OO],
vol. I, p. 215.
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Ctesibius invented this pump, we conclude that valves had been playing
a useful role for centuries, and that the purely ornamental fountain was
an offspring of the pump. Elsewhere Heron or one of his predecessors
adapts the mechanism of water clocks to light-hearted ends. Heron’s use
of a paddle-wheel “like an anemourion” to operate a pipe-organ (page
126) may be a further example of the same pattern.

Automata, which had been of interest since the third century B.C., are
precisely mechanisms able to transform a simple rotation into complex
motions, similar to those needed in human tasks. Mechanisms of this type
had been used from early Hellenistic times for military purposes and to
save labor, as we saw in the case of the repetition catapult and the sakiyeh.
We shall see in Section 9.3 examples of automation in agriculture during
the same period.

FIGURE 4.15. Two applications of the valve in delivering a jet of water under
pressure (Schmidt’s redition). Left: The Ctesibian pump configured for use as a
fire hydrant, in Heron, Pneumatica, I, xxviii ([Heron: OO], vol. I, p. 133). Right: A
Heronian fountain, Pneumatica, I, x ([Heron: OO], vol. I, p. 73).

Now consider that eighteenth-century inventors did not just have, in
Dijksterhuis’ phrase, as many physical and technical possibilities as Heron:
they had the same possibilities. Because technology, like scientific theories,
is not predetermined by our genes, being rather a cultural product, this
coincidence should give us pause. It can only be due to the fact that at the
source of eighteenth-century technology lay the Hellenistic works, stud-
ied since the twelfth century thanks above all to manuscripts available
through the Arabs in Spain, and later, more intensively, by Europeans in
general from the fifteenth century on. Thus it is that, in the early modern
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era, knowledge of many technological items such as syphons, differential
gears and steam engines preceded any practical application for them. This
would seem very peculiar, except in the light of the preceding observation,
which explains it outright.

As Dijksterhuis implicitly observed, the Industrial Revolution in Europe
is based in an essential way on devices described in Hellenistic works,
and Heron’s in particular. This shows how important the knowledge that
Heron recorded may have been for production technology in Antiquity.
Only wisps of information about Hellenistic production technology have
come down to us, but this should not cause surprise, since so little remains
of Hellenistic literature at all. And it is safe to say that the exceptional
transmission of Heron’s works through prescientific societies of low tech-
nological level owes a lot to the amazing and entertaining character of the
devices described.

In conclusion, many of Heron’s devices could be seen as byproducts
of Hellenistic technologies originally created for other purposes, having
managed to survive and thrive in the new conditions of the imperial age
precisely, likewise, because of their amusing nature. If instead we are to
accept the common opinion about Heron, it would be necessary to draw
the depressing conclusion that modern European civilization, to develop
its own technology, could do no better for centuries than to continue to
draw ideas form the isolated work of an ancient toy builder.

4.10 The Lost Technology

Technology has always been treated as a sensitive subject. For centuries
the Romans imported via intermediaries the coveted “ferrum sericum”
produced in far regions of the Orient,140 without being able to learn even
its exact provenance, let alone how to produce it. Silk was imported from
China for over a thousand years without its origin being known. Con-
cerning the Hellenistic period in particular, we have mentioned (page 114)
Strabo’s remark that at Rhodes, Cyzicus and Massalia mechanical technol-
ogy was shrouded in secrecy, and we will see (page 165) that chemical lore
in Egypt was equally secret. In Hellenistic kingdoms, confidentiality about
technological procedures was encouraged by the control that rulers held
over the main industries141 and, in the case of Egypt and Mesopotamia, by
the ancient tradition of priestly control over areas of production reserved
for temples: an approach maintained by the Ptolemies toward indigenous
industries, but supplemented by other control systems in Greek commu-

140Pliny, Naturalis historia, XXXIV §145; Orosius, Adversus paganos, VI, xiii §2.
141Chapter 6 will discuss the interest of rulers in production technology.
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nities. Thus it is not surprising that we know virtually nothing about, say,
kiln techniques, weaving techniques, or methods used for producing per-
fumes or particular types of glass.

Obviously, then, it cannot be claimed that direct traces of all relevant
Hellenistic technologies should be retrievable from the few sources that
have reached us.

The idea that the “Ancients” had very powerful technology lived on
throughout the Middle Ages. It is reasonable to think that the origin of this
tradition lay in memories of ancient knowledge, since technology really
had been in many cases superior to what it became in medieval Europe,
as we have seen, and also because this admiration for ancient technology
tended to be rekindled in times and places were ancient works were being
recovered and read.142 That some medieval authors may have had access
to works no longer available today (see page 333) adds interest to their
testimony, although the pervasive contamination of elements grounded
in truth with other types of elements, often magical,143 makes the use of
such testimonies problematic. Consider, for example, what Roger Bacon
wrote in the thirteenth century:

It is possible to make sailing devices without rowers, so that great
ships can move by river and sea with a single man in control, faster
than if they were full of men. Likewise it is possible to make cars
not pulled by any animal, which move with incalculable speed; we
think the currus falcati which the Ancients used in combat were of
this kind. It is possible to make flying machines where a man sits in
the middle turning some device by means of which artificial wings
flap through the air, like a bird in flight. It is also possible to make
instruments small in themselves, but able to raise and lower almost
infinite weights, whose usefulness on occasion cannot be surpassed.
. . . One might also easily make a device with which a single man
can drag to himself a thousand, against their will, and attract other
things as well. And devices can be made for walking in the sea or
in rivers, going down to the bottom without bodily harm: Alexander
the Great used them to look at the secrets of the sea, as Ethicus the
astronomer tells us. And these things were made in Antiquity and
have been made in our times, this much being certain — except for
the flying machine, which I have not seen, nor do I know any who

142We will return to this point in Sections 11.1 and 11.2.
143Two examples of this phenomenon in the area of optics: the belief in the magic powers of

crystal balls (probably arising from knowledge of the magnifying properties of spherical lenses)
and the name of “magic lantern” given to a simple projector that goes back at least to the Arabs.
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have seen it; but I know a scholar who has contrived to flesh out the
design.144

At fist sight this may seem like a list of wishful fantasies. But first of all
some objects mentioned are real: weight-lifting machines had certainly
been built in Antiquity with greater efficiency that in Bacon’s Europe. For
other objects it is easy to identify a literary origin: the diver used by the
Macedonian ruler appears in the Romance of Alexander,145a Greek source
which Bacon seems to be indirectly acquainted with, and rich in legendary
elements that would not be easily recognized as such in the thirteenth
century. In other cases it is not hard to separate the distortions from a
probable kernel of preexisting truth: the machine with which a single man
could drag a thousand was of course unfeasible, but replacing “drag” by
“balance” we have a machine of high mechanical advantage, such as the
ones used for lifting weights. The brief description of the machine that
flies by flapping its wings (which Bacon himself expresses doubts about)
belongs to a tradition whose origin is not easy to trace, but some of whose
developments are easily recognized: the idea was taken up again in very
like terms by Leonardo da Vinci, after whom Rome’s airport is named.
One wonders whether the self-propelled cars and the rowerless ships,
admittedly exaggerated in Bacon’s rendition, are related to real objects;
quite likely they originate in ancient sources, perhaps less fantastic than
the Romance of Alexander, because Polybius records a self-moving engine
displayed in a procession146 and rowerless ships are illustrated in the De
rebus bellicis.147

In certain cases the technology described in extant works may have been
misunderstood. Consider Heron’s Automata, a work in two parts, each de-
voted to one type of mini-theater played out by automata. The automata
of the first part are called moving, those of the second static or standing
( � � � � � ). It is generally assumed that both kinds of show involved dum-
mies operated by intricate machinery, an example of which appears in
Figure 4.16. But intriguingly, Heron says the inner works of the standing
automata were both safer and able to allow a greater variety of scenes than
the other kind; they caused such amazement that “the Ancients used to

144Roger Bacon, Epistola de secretis operibus, IV (a very loose translation is given in [Bacon/Davis],
pp. 26–27).

145Historia Alexandri Magni, II §38.
146Polybius, Historiae, XII, xiii §11. His description is taken from Demochares. The machine was

built in Athens by Demetrius Phalerius (who later became one of the main inspirers of the cultural
politics of the early Ptolemies) at the close of the fourth century B.C.

147De rebus bellicis, xvii and preceding illustration = [RB/Ireland], pp. 10–11 and Tabula XI. These
are paddleboats, which the anonymous author of the fourth century A.D. thought were moved by
oxen, through a mechanism similar to the sakiyeh.
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FIGURE 4.16. Detail of an automaton, in Schmidt’s rendition. From [Heron: OO],
vol. I, p. 425.

call the creators of such things wonder-makers” ( � � � � � � � ��� � �
�

).148 Among
the features of these mysterious standing automata shows were:

– The characters were figures ( �
� ����� ) painted ( � � � �	� � ��� �	� ) on a board

( 
 �
�	��� ), yet they were capable of appearing to be in motion ( ��� � � � �� �

� � �
�	� � ��� ).149

– These figures made up images that were displayed in rapid succession.
In the extremely short time ( ���

�
� � � 
 � � � ����� � � �	� � � � )150 between the

display of two consecutive images, the stage was covered by special
automatic doors.

– A knotted rope, pulled by a weight, moved an intricate mechanism that
coordinated the stage coverings and uncoverings and the succession of
images. The passage of each knot through a neck in the mechanism
triggered a corresponding action.151

Conventionally, each interval between coverings of the stage has been
thought of as a scene, and it has been assumed that mechanical motion

148Heron, Automata, i §7, 340:23 – 342:4 (ed. Schmidt, in [Heron: OO], vol. I).
149Heron, Automata, i §5, 340:13–15.
150Heron, Automata, xxi §2, 410:15.
151Heron, Automata, xxiii, 416–420; xxv–xxvi, 426–436.



4.10 The Lost Technology 141

told the story within each scene. But if this were all, it is hard to see why
the automata should be drawings on a board and not three-dimensional
objects, or why so much of the treatise should be devoted to the mov-
ing doors and the substitution of the scenes — or indeed, why the scenes
should follow each other so fast that they can be controlled by a rope
pulled by a weight. The preceding elements of the description suggest
a different possibility: that these automata were called still because the
component figures of the images were always the same, the illusion of
movement coming from a quick run of images.152

It is agreed that Heron’s source for the Automata is Philo of Byzantium.
It is not easy to figure out through the filter of Heron’s pen what exactly
went on in Philo’s automatic plays. It is true that Heron describes mech-
anisms to move various parts of the automata; but some elements of the
exposition are of his own creation, and he does not always seem to under-
stand his source fully. My conjecture is that the mechanism described by
Philo was already obscure to Heron, and was subsequently forgotten for
many centuries.

There are other ancient passages that might refer to optical tricks whose
nature is no longer understood by the reporter.153

152This is consistent with Heron’s remark that an early automatic playlet merely showed, by way
of motion, a face with blinking eyes (Heron, Automata, xxii §1, 412:3–6) — something that is of
course easy to accomplish with an alternation of just two images. Heron also says that with still
automata one can either show a character in motion, or a character appearing or disappearing
(ibid., i SS5–6, 340:13–21).

153In this direction one passage that deserves attention is Athenaeus, Deipnosophistae, IV, 130a. A
discussion of it will appear in a forthcoming work.

.

5
Medicine and Other Empirical Sciences

5.1 The Birth of Anatomy and Physiology

Among the medical schools of classical Greece the most famous was that
founded in the fifth century B.C. by Hippocrates of Cos. It played an im-
portant role in freeing medicine from magic and religious practices and in
founding medical ethics. But Hippocratic thinking remained in the realm
of techne, or professional medical practice, which it essentially founded; it
did not generate autonomous sciences (in our sense). The key novelty of
Hellenistic medicine was the creation, in the first half of the third century
B.C., of anatomy and physiology based on the dissection of the human
body. This was done by Herophilus of Chalcedon, active in Alexandria,
and by Erasistratus of Ceos.

Again in this field, tradition favored the works still understandable in
the Middle Ages. Thus we have the works of the Hippocratic corpus and
those of Galen, from the imperial period, but all Hellenistic writings have
been lost; no treatise by Herophilus or Erasistratus exists. But from frag-
ments and testimonies it is possible to recover a certain fraction of their
results, enough for a qualitative evaluation. We are indebted to Heinrich
von Staden for a keen effort in reconstructing the results of Herophilus
and his school, based on a critical analysis of all relevant testimonies.1

An impressive picture emerges. Human anatomy and physiology under
Herophilus appear “modern” in many ways. A lot of anatomical concepts
and terms still used today are directly traceable to him. For instance, it was

1[von Staden: H].
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Herophilus who first described the liver and the digestive system, distin-
guishing the intestine’s various tracts and giving them some of the names
used today (often in Latin translation), such as duodenum and jejunum.2

His most interesting discoveries were probably about the nervous sys-
tem. Before Herophilus the role of the brain had not been clearly iden-
tified; some thinkers had intuited it correctly, but Aristotle thought that
it consisted in cooling the blood.3 Herophilus was the first to describe
the anatomy of the brain; most importantly, he discovered the nerves,4

whose existence was previously unknown, and, having understood their
function, he distinguished between sensory and motor nerves. Among the
pairs of cranial nerves described by Herophilus were the optic, oculomo-
tor, trigeminal, motor root of trigeminal, facial, auditory and hypoglossal.5

Herophilus co-founded the anatomy of the circulatory system (which
also owes much to Erasistratus). He described the heart’s cavities and
valves6 and was the first to identify and describe the anatomical differ-
ences between arteries and veins, which had been first distinguished by
his teacher Praxagoras of Cos. The introduction of specific terms such as
calamus scriptorius (“writing quill”) for the narrow lower end of the floor of
the fourth ventricle of the brain and torcular Herophili (see page 150) for the
confluence of the four cranial venous sinuses gives an idea of how detailed
his description of the vascular system was. He made equally significant
contributions to respiratory and reproductive anatomy; it was Herophilus,
for example, who discovered the ovaries and the so-called Fallopian tubes,
and gave an accurate description of the spermatic ducts (including the
epididymis, which he discovered and named with the term still used).

Herophilus paid particular attention to the eye, the only organ to which
it is said he devoted a specific treatise. His was the first description of the
retina, which he named arachnoides (“like a spider’s web”), and of three
other membranes, probably to be identified with the sclera (and cornea),
the iris and the choroid.

One gets the feeling that, if a person versed in anatomy and physiology
could read Herophilus’ treatises, he would have the same impression that

2The duodenum was so called because of its length of twelve finger-widths, and the jejunum
because it was normally found empty upon dissection.

3Aristotle, De partibus animalium, II, vii, 652a:24 – 653a:36.
4This is demonstrated in [Solmsen].
5Galen, De anatomicis administrationibus, IX, ix, 8–9 (ed. Simon, from the surviving Arabic trans-

lation) = [von Staden: H], text 82.
6Apparently Erasistratus described cardiac valves more accurately than Herophilus (Galen, De

placitis Hippocratis et Platonis, I, x §§3–4, 96 (ed. De Lacy) = [von Staden: H], text 119). The descrip-
tions themselves are lost and surviving references involve general terms such as “membranes at
the [heart’s] openings” ( ��� � � ��� � � � � � � � � � � � � ), so it is not certain that either researcher knew
their role as valves, but this is likely in view of the considerations on pages 146–148.
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a mathematician has in reading Euclid or Archimedes: getting past the
differences between ancient and modern knowledge, he would recognize
these treatises as works in his own field. This impression would certainly
not be conveyed by the Hippocratic corpus, nor by Aristotle’s works, nor
by any other earlier text.

Herophilus also dealt with medicine proper: pathology, diagnosis and
therapy. He introduced what became for two thousand years one of the
main instruments of diagnosis: the measurement of the pulse. He noticed
the relationship between heart rate and body temperature, as well as the
variation of average heart rate with age. To measure the heart rate of his
patients, according to Marcellinus, he had a water “stopwatch” built that
could be adjusted for the age of the patient.7 Since in those years, as we
saw on page 102, Ctesibius was building water clocks in Alexandria that
could be adjusted for the length of the day, there is no reason to doubt
Marcellinus’ report.

Without listing the many areas of Herophilean interest in pathology, we
mention only that he was the first physician to describe the symptoms of
mental illness.8

As for therapeutics, Herophilus on the one hand declares the impor-
tance of prevention, stressing for example the benefits of physical exercise,
and on the other prescribes treatments of various types: diets (which, he
says, are also important in prevention), simple medicines of plant, animal
or mineral origin, as well as complex formulations involving a dozen or
more ingredients in stated amounts.8a In an obvious allusion to the age-
old habit of entrusting healing to the gods, Herophilus says that “medica-
ments are the hands of the gods”.9 For some diseases, such as the cholera,
it is recorded that Herophilus handed down no treatment: this is perhaps
the best proof of how serious he was in his medicine.10

5.2 Relationship Between Medicine and Exact Sciences

The birth of exact science is contemporaneous with the qualitative leap
taken by medicine at the hands of Herophilus and his school, a leap so
vast that one is inclined to call it the birth of scientific medicine. This
simultaneity forcefully suggests two questions:

7Marcellinus, De pulsibus, xi, 463 (ed. Schöne) = [von Staden: H], text 182.
8Caelius Aurelianus, Celeres vel acutae passiones, I, pref. §§4–5 = [von Staden: H], text 211.

8aSee testimonies in [von Staden: H], p. 422–423.
9[von Staden: H], p. 417.

10See testimonies in [von Staden: H], pp. 413–414.
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1. What features of Herophilus’ work make it appear so much more sci-
entific than pre-Hellenistic medicine? Put another way, is it the case, and
if so in what sense, that Herophilus’ anatomy, physiology and medicine
are sciences?

2. What is the relation between the (possible) birth of scientific medicine
and that of the exact sciences?

We start with some observations about the second question. Today, by
and large, the history of medicine enjoys few points of contact with the
history of the exact sciences and the history of technology (which them-
selves interact but little with each other). At the same time, none of these
disciplines can by itself give an idea of the unity of third-century Hellenis-
tic culture, which has never been recovered since. It is easy to imagine
the interest with which Herophilus and his disciples followed advances
in exact science and technology. As we shall see, this interest is reflected
even in the choice of anatomical terms. Collaboration with other scientists
must have been fecund in both directions. It is likely, in particular, that the
physicians had dealings with Ctesibius. We know that the latter built a
water clock with a variable scale that compensated for the variable length
of the day, and we now see Herophilus using a timepiece of the same type
for a different purpose. We know that Ctesibius first introduced valves,
and we see Erasistratus and Herophilus describing heart valves. In the
pseudo-Galenic De historia philosopha we read:

Herophilus admits a motor capacity for bodies in the nerves, arter-
ies, and muscles. He accordingly thinks the lung has an additional
tendency to dilate and contract. The natural activity of the lung, he
says, is, then, the drawing in of pneuma from the outside. . . 11

That the lungs draw something in because they expand may seem banal
today, but it probably first became clear around that time, in Alexandria,
and precisely because of the studies of Ctesibius.12 Thus the descriptions

11Pseudo-Galen, De historia philosopha, ciii, 317–318 (ed. Kühn) = [DG], 639:4–16 = [von Staden:
H], text 143c. For pneuma see page 77; the meaning here may be simply “aspirated air” (cf. Heron’s
definition of the term), particularly in its physiological role, which would distinguish it from aer, air
outside the body. Herophilus maintains that pneuma, besides being breathed in, is also present in
the arteries. The surviving testimonia unfortunately say nothing about the passage of pneuma from
lungs to arteries. It has been said that Herophilus thought that arteries contained only pneuma and
no blood, but a closer analysis of the sources reveals that most likely he distinguished between the
contents of veins (blood alone) and that of the arteries (blood and pneuma). For discussion see [von
Staden: H], pp. 264–267.

12Heron also describes a medical device (syringe) based on suction due to expansion (Pneumatica,
II, xviii). It does not seem that the idea of suction depending on expansion was clear to Aristotle:
he does say that when the lung rises the air comes in, but he also says that when the air comes in
the lung rises, so it’s not clear whether and in what direction he postulates a causal link. It might

5.2 Relationship Between Medicine and Exact Sciences 147

of the circulatory and respiratory systems seem connected to contempo-
rary progress in the new science of pneumatics.

The relationship between medicine and fluid mechanics suggests that
physicians may have contributed indirectly to pneumatics. Couldn’t it
have been the descriptions of the physiology of the heart and heart valves
that gave Ctesibius the idea of the valve-based pump? Extant testimonia
don’t allow us to assert with certainty that blood circulation was under-
stood by Herophilus and Erasistratus, but neither do they allow one to
conclude the opposite. According to Galen, Erasistratus believed that the
pneuma is communicated from the heart to all parts of the body through
the arteries, which are filled with blood.12a We also know that Herophilus
believed that the pulsation of arteries served to spread nourishment.12b A
mechanical action of contraction and dilation could hardly move pneuma
and nourishment while the blood remains stationary.

Herophilus called arteries the vessels that contain what we call arterial
(oxygenated) blood, and veins those that contain venous blood. Thus his
terms differ from ours in the case of pulmonary circulation: the vessel
that carries stale blood from the heart to the lungs was to him a vein.
But recognizing its mechanical similarity to arteries, he called it the ar-
terial vein ( � �

� �
����� � � � � �

�
� ). This name became canonical and, though

sometimes considered a poor choice and a proof that Herophilus did not
grasp the role of arteries and veins, it appears in the correct description
of pulmonary circulation given by the thirteenth-century Arab physician
al-Nafı̄s:

The blood from the right chamber must flow through the arterial
vein to the lungs, spread through [their] substance, be mingled with
air, pass through the venal artery to reach the left chamber of the
heart. . . 13

The possibility of interaction between Herophilus and Ctesibius, sug-
gested above all by the fact that in the case of the adjustable clock and of

be that, following his teleological scheme, he attributed the influx of air to the lung’s porousness,
which he stresses (De partibus animalium, III, vi, 669a). It may seem that the very early use of bellows
should have been enough to suggest the “modern” explanation for suction, but Aristotle’s passage
shows that this is not so. This exemplifies the contrast between a product of prescientific technology
and an object designed scientifically: the construction of the former does not have to (as we see)
lead to a theoretical clarification; the construction of the latter by definition presupposes such a
clarification.

12aGalen, An in arteriis natura sanguis contineatur viii, 18 (ed. Albrecht) = [von Staden: H], text 145a.
12bP. Londinensis 137 (Anonymus Londinensis, Iatrica Menonia), col. 28:46 – 29:15 = [von Staden:

H], text 146.
13Ibn al-Nafı̄s, Sharh. tashrı̄h. al-Qānūn; see [Chehade]. In Europe, discussions of blood circulation

appeared before Harvey in the Renaissance, at the same time as the first modern descriptions of
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the valve it is plausible to postulate influences in opposite directions, is
compatible with what little we know about Herophilus’ dates: his floruit
seems to have been the first half of the third century,13a while we know
that Ctesibius was active in the time of Ptolemy II Philadelphus (283–246).

Herophilus’ interest and proficiency in what we now call “physics” are
demonstrated also by his work on the pulse. Significantly, his heart rate
measurements are in all probability the very first measurements of inter-
vals of time of the order of one second, ever. There were no terms in Greek
to indicate such short intervals and he had to invent an appropriate unit;
he chose the average period of the heartbeat of a newborn. It is particularly
interesting that he used mathematical concepts in his theory of heartbeats:
he studied the ratio between the times spent in systole and in diastole
and distinguished rational from irrational ratios. Unfortunately our only
source for this is a very obscure passage by the imperial-age physician
Rufus Ephesius.14 The way Rufus puts things is clearly self-contradictory:
supposedly Herophilus found the systole and diastole of a newborn to
have equal duration, but the ratio between the two to be irrational. Per-
haps what Herophilus meant is that in a newborn the ratio is very close
to 1 but not equal to 1 or to any other simple rational number.15 In any
case, Herophilus’ familiarity with the terminology of the more advanced
material in Euclid’s Elements is impressive. Herophilus also applied to the
theory of heartbeats musical and metrical terms, with which he names
various cardiac rhythms. This interest in music, too, was shared by Ctesi-
bius, who invented the water organ. Probably it was not just results and
instruments of exact science that found use in medicine, but also the other
way around.

The only bodily organ about which Herophilus wrote a specific book
was the eye. Since all his anatomical interests seem to be directed toward
an understanding of physiology, he was probably interested in the funda-
mentals of physiological optics. This interest would be contemporaneous
with the development of optical science in Alexandria. The assumption
of a close connection between Alexandrian physicians and the founders
of optics may help understand certain parts of Euclid’s Optics that have

the heart valves (see page 342). The terminology used by al-Nafı̄s is a further reason to suspect that
the source of this knowledge lay in Antiquity.

13a[von Staden: H], p. 50.
14Rufus Ephesius, Synopsis de pulsibus, iv, 223–225 (eds. Daremberg, Ruelle) = [von Staden: H],

text 177. The passage is discussed in [von Staden: H], pp. 280–282.
15That is, the ratio would not be expressible as a fraction having a small enough denominator.

It makes sense to call a ratio a/b of two homogeneous measured values rational only if it can be
expressed as a fraction n/m with m small enough to make 1/m large with respect to measurement
errors. What Herophilus says becomes comprehensible if we assume that he was aware of the point
just made.
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remained obscure since the imperial age.16 We have seen, for example,
that Herophilus knew the “weblike” structure of the retina, as implied by
the name he gave it. This knowledge, plus the knowledge of the function
of sensory nerves, could easily have suggested the existence of a discrete
set of photoreceptors. To construct a mathematical model of vision, then,
it is natural to consider a discrete set of “visual rays”, one for each sensory
element of the retina, and that is exactly what Euclid does. The resulting
theory can explain quantitatively the resolving power of the human eye.
In real life, distant objects appear not only smaller but also fuzzier, because
the amount of information provided by the nerve endings decreases with
the portion of the retina involved. This loss of detail is not easily explained
within a continuous theory of vision; but in Euclid’s model visual rays
form a discrete set and are separated by at least some minimum angle,17

so the loss derives from fewer visual rays intercepting the object. Modern
scholars, no longer recognizing in classical optics a mathematical model of
the physiological act of vision — in part because of the total absence, for
the next two thousand years, of any mathematical models of physiological
processes — have regarded Euclid’s choice as a “false hypothesis”.18

One may ask whether ancient optics incorporated other anatomical and
physiological knowledge about the eye. The preface attached to Euclid’s
Optics in the redaction attributed to Theon contains some interesting ob-
servations, such as that, on reading, one’s gaze moves so that the words
read in succession are always centered in the field of vision, and that, anal-
ogously, when scanning for a small object one catches sight of it only when
looking directly at it, at the center of the visual field.19 Although the text
does not say so explicitly, it is clear that to explain such phenomena in the

16The close connection between optics and ophthalmology is also suggested by the passage in
the Arenarius where Archimedes deals with the measurement of the apparent size of the sun: one
preliminary step is the measurement of the pupil’s diameter (Archimedes, Arenarius, 139, ed. Mu-
gler, vol. II).

17Euclid, Optics. This is already clear at the beginning of the work, in “definitions” 1 and 7 and in
proposition 1. (In the Optics, “definitions” ( � ����� ) is the term used for what are in fact the assump-
tions or postulates underlying the theory.) Definition 7 says that the sharpness with which an object
is perceived depends on the number of incident visual rays, showing that the choice of a discrete
model is due to the need to explain the eye’s limited resolution power. Definition 7 can be regarded
as a consequence of definition 3, which says that a thing is seen if and only if it is reached by visual
rays. It follows that what is reached by more visual rays is seen in greater detail, and what is far
enough is not seen at all (proposition 3) because it falls between adjacent visual rays. According to
Euclid, the impression that we see a continuous image arises from rapid eye movements.

18These are Heath’s words (see page 384). Today the term “false” is out of fashion, but Euclid’s
hypothesis continues to appear strange. More recent articles have recognized that Euclidean optics
is in part a theory of visual perception (see [Jones] and references therein) but probably we have
not yet exhausted what can be deduced from Hellenistic ophthalmology. See [Medaglia, Russo],
pp. 46–54 for a fuller discussion.

19[Euclid: OO], vol. VII, 146–148.
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framework of Euclid’s optical theory one must suppose that visual rays
are not equidistributed, but more concentrated near the center of the cone
of sight: an assumption compatible with, though not explicitly contained
in, the text of the Optics.20 The name “weblike” given by Herophilus to
the retina seems to allude to a web’s finer mesh size near the center, so
the idea of a nonuniform distribution of visual rays may have come from
anatomy.

5.3 Anatomical Terminology and the Screw Press

The anatomical terminology introduced by Herophilus can be a precious
source of insights, probably not fully mined yet. For example, he gave
the name pharoid (Pharos-like) to a certain elongated structure, the styloid
apophysis of the temporal bone. Pharos had always been the name of an
Alexandrian islet, but Herophilus had in mind, of course, the new mean-
ing of the name — the lighthouse recently built on the island. This shows
a willingness to borrow terms from the new technological reality.

The term torcular Herophili, adopted for the confluence of the cranial
venous sinuses, is particularly interesting in this regard. The Latin word
torcular, from the verb torquere (twist), suggests a screw shape, and this has
always been considered the reason for the name. Because the screw shape
of this structure is characteristic in oxen but not in humans, some have
thought that Herophilus in this cased relied not on human autopsies but
on bovine anatomy. However, as von Staden observes, the torcular shape
does occur in humans, though more rarely.21

Now, the Greek term that Herophilus actually used is lenos ( �
�

��� � ).22 Its
etymology is dubious, but in any case not originally related to screws; the
early meanings were a large vat or trough, and a press of any sort. When
screw presses were invented, the term acquired that meaning as well.
Conceivably, Herophilus might have chosen the term before that inven-
tion took place, in which case he would have had in mind “an object that
holds a certain amount of liquid”; but it would be a strange coincidence
if, among the dozens of nouns available for containers, he had selected
exactly the one that later came to mean the screw shape associated with

20The first postulate of the Optics (concerning the structure of visual rays) is certainly corrupt
in the version that has come down to us. In trying to reconstruct it, it may be useful to take into
account the portions of the preface that try to illustrate the postulate’s meaning. The preface is
admittedly late, but some of the notions it contains may predate the corruption of the text. For a
discussion see [Medaglia, Russo].

21[von Staden: H], p. 158.
22This is stated in two passages of Galen (De anatomicis administrationibus, IX, i, 712 (ed. Kühn,

vol. II) = [von Staden: H], text 122a; De usu partium, IX, vi, 19 (ed. Helmreich, vol. II) = [von Staden:
H], text 123).
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the structure being named (sometimes in man and always in the ox —
and Herophilus was probably even more familiar with bovine than with
human anatomy.23 ) Thus it seems probable that when Herophilus chose
the term lenos it already had the sense of “screw press”.

We must conclude that probably at the time of Herophilus, in the first
half of the third century B.C., screw presses already existed. The absence of
references to this object (and to any other type of screw-nut combination)
in classical-age literature, together with Herophilus’ particular attention to
technological progress, suggests that the invention took place during this
time. The earliest surviving description of screw presses is from centuries
later, written by Heron of Alexandria,24 while Pliny mentions them as a
novelty of his time.25

All of this tends to confirm on the one hand that the technology Heron
describes actually dates from the third century B.C.,26 and on the other
Pliny’s unreliability: he presents as a recent invention every Hellenistic
product that had started being imported to Rome in the recent past.

5.4 The Scientific Method in Medicine

Turning now to the problem of the relationship between exact science and
medicine, it goes without saying that Herophilus’ intelligence, scholarship
and instrumental use of results from science do not in themselves warrant
labeling his work scientific. For that we must ask whether and to what
extent he shared with the luminaries of Hellenistic exact science not only
technical instruments and terminology, but also methodological elements.

Consider first that the dissection of cadavers is a complete novelty as
compared to earlier medicine: for the first time a human body is han-
dled not for healing, or for embalming, or for other immediate practical
ends, but purely for knowledge’s sake. We also know from Celsus that
Herophilus was supplied by the king with condemned men for experi-
mental vivisections.27 Thus Herophilus’ work certainly presents two of

23Almost all anatomical knowledge before Herophilus was based on the ox. Bovine anatomy was
also well-known to priests, who sacrificed them. The religiously imposed bar to human dissection
had forced “physicians” to rely primarily on analogies between man and ox.

24Heron, Mechanica, III §§19–20.
25Pliny, Naturalis historia, XVIII §317.
26See pages 132–134.
27Celsus, De medicina I, proem, §§23–26 = [von Staden: H], text 63a. Von Staden, who discusses

at length all the available evidence (pp. 142–153), regards this statement as credible; in any case,
as he notes, it’s not possible to determine whether a nerve is sensory or motor, as Herophilus
did systematically, without experimenting in vivo. The ethical problems raised by vivisection are
certainly very serious; at the same time they have such a modern ring to them as to confirm, in a
sense, Herophilus’ proximity to modern “scientific method”.



152 5. Medicine and Other Empirical Sciences

the features typical of empirical sciences: research as distinct from profes-
sional activities, and the experimental method.

For anatomy to be founded by Herophilus, two taboos of classical Greek
culture had to be overcome. One was religious in nature and obvious: the
ban on cutting up human bodies. The second was intellectual and subtler.

Fifth-century medicine developed without introducing neologisms.28 In
all of classical culture, discussions about concepts had been inseparable
from discussions about the terms used to name them. The ancient doc-
trine that things have “natural names”, still partly present in Plato,29 was
already contradicted by Aristotle,30 but the latter considered that humans
were free to choose only names as strings of sounds, not the demarcation
of the world into individual nameable objects. For example, the De partibus
animalium (Parts of animals) takes for granted that the parts of which one
can talk always have a Greek name. The implicit assumption, in other
words, is that there exists a finite, static set of all knowable objects, cor-
responding to the vocabulary of Greek or any other language. Aristotle
does seem to have introduced new terms in zoological taxonomy, such as
entoma (“segmented”) for insects and coleoptera (“sheath-winged”) for bee-
tles.31 But these terms were not being used conventionally; their meanings
either preexisted or were obvious from the component parts. The words
simply indicate all creatures that share the characteristic in question: all
segmented creatures or all those having sheath-like wings. This is there-
fore only a preliminary step toward the introduction of a conventional ter-
minology: the novelty in Aristotle’s new names — an important one from
the perspective of zoology, of course — has to do not with the meanings of
the terms (which are understandable in the intended sense even by some-
one who has not been told about them), but with their systematic use in
classification.

Even Democritus, though having offered several arguments for the con-
ventional origin of names, does not seem to have fully overcome the tradi-
tional view,32 which in the modern age only started to lose ground in the
seventeenth century. Tullio De Mauro writes:

28See [Irigoin], where it is said, for example, that in the Hippocratic De locis in homine, two-thirds
of the anatomical terms had already been used in Homer.

29Plato, Cratylus. Though recognizing that words are a human creation, Plato insists on the ob-
jective similarity between a good name and the named object. Further, he denies the possibility that
a run-of-the-mill contemporary of his might introduce new words; in his view, all names had been
chosen by the original legislators who created the various languages.

30Aristotle, De interpretatione.
31Aristotle, Historia animalium, I, 487a:32 and 490a:14–15.
32These arguments are reported by Proclus (In Platonis Cratylum, §16, 5:25, ed. Pasquali = [FV],

II, 148:3–26, Democritus B26). They are based on the existence of homonyms and synonyms and
on the possibility of changing names, but the only example proposed for the latter possibility was
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Starting with the seventeenth century, the experimental method and
[zoological and botanical] classifications revealed to the avant-garde
of European culture that there are scientifically knowable things . . .
for which nonetheless there had never been a name either in the “per-
fect” Latin language or in any other.33

The freedom with which Herophilus introduces his anatomical names
is analogous to that with which Hellenistic mathematicians create new
mathematical terms.34 This freedom would have been inconceivable not
only in classical Greece but also after the decline of Hellenistic civilization,
all the way to the seventeenth century. And note that the avant-garde of
European culture of which De Mauro speaks had been studying Hellenis-
tic works intensively for centuries — works containing on the one hand
ideas underlying the classifications and the experimental method, and on
the other the memory of scientists like Herophilus, who identified new
objects of study by giving them a name for the first time.

Thus the notion of a conventional terminology is not at all trivial. In
anatomy it is even less so than, say, in systematic zoology: new animal
species are fairly easy to identify as such, but there is ample freedom in
the choice of what anatomic structures deserve a name. When Herophilus
picks from the continuous and enormously complex structure that is the
circulatory system those particular morphological features that warrant
a specific name (such as calamus or torcular) in view of his physiological
and pathological purposes, he is creating new concepts. He is in fact in-
augurating a new discipline in which not only the words but even the
corresponding concepts are conscious creations.

This is, in my opinion, the source of the impression of “scientificness”
that one has in reading Herophilus’ anatomical excerpts, so different in
texture from Aristotle’s “anatomical” discussions.

The use of specific and consciously created theoretical concepts is in
fact one of the essential features that characterize scientific theories in our
sense. But the scientific theories of “exact science” described in Chapter 3,
which were developing in the time of Herophilus, were also characterized
by being:

– based on empirical data, without being uniquely determined by them;
– internally certain, thanks to a rigorously deductive structure;

of a proper noun. It’s hard to see why a conventionalist like Democritus would fail to mention in
this context the creation of conventional terms if that practice already existed in his time.

33[De Mauro], chapter II, section 3.
34Archimedes systematically defines mathematical concepts by introducing new and conven-

tional names for them (for example, geometric terms in the On conoids and spheroids and arithmetic
ones in the Arenarius); so does Apollonius of Perga, to whom we owe the terms ellipse, parabola and
hyperbola, among others.
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– applicable to concrete problems, via “correspondence rules” lacking ab-
solute validity.

Do these characteristics have analogues in Herophilean anatomy and
medicine? Any attempt to answer this question must start from the exist-
ing testimonia about the scientific methodology of Herophilus. Unfortu-
nately, in these passages, dating from the imperial period, the authors —
Galen, in particular — do not seem to be in a position to appreciate the
conceptual depth of their source.

The testimonia leave no doubt as to the fact that Herophilus considered
it essential to found knowledge on empirical bases. Galen, for example,
writes:

We find, however, that this Herophilus concedes no small impor-
tance to experience, nay indeed, to speak the truth (and it is the fittest
to be spoken), he makes experience all-important.35

And regarding the formation of the fetus:

For he considers that anatomical descriptions do not produce any
presupposition of knowledge on the basis of which [one might] say
“this part arose from this other part”, as some, misunderstanding,
believe; [he thinks] that the faculties that govern us should be discov-
ered on the basis of other phenomena and not simply by observing
the parts.36

The phainomena (“appearances”, “things seen”) that interest Herophilus
are therefore not just morphological data and they do not determine the
theory in a mechanistic way; they include things that we would whole-
heartedly call experimental data, as in this passage from Galen:

. . . [heart] rhythms, about which Herophilus discoursed at length,
surveying observations and experiments rather than teaching a ra-
tional method.37

For Galen, the experimental method contrasts with rationality, which he
evidently considers to be the hallmark of purely deductive expositions.38

It is amusing that Polybius criticizes Herophilus for the opposite reason:

35Galen, De experientia medica, xiii §6, 109–110 (ed. Walzer, from the surviving Arabic translation)
= [von Staden: H], text 52.

36Galen, De foetuum formatione, v, 678–679 (ed. Kühn, vol. IV) = [von Staden: H], text 57:4–9.
37Galen, De praesagitione ex pulsibus, II, iii, 278 (ed. Kühn, vol. IX) = [von Staden: H], text 53.
38This opinion of the person who is generally considered the greatest ancient physician, together

with the fact that we have Galen’s works but none by Herophilus, helps explain why in the few
extant scientific works from Antiquity examples of use of the experimental method are rare.
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The rational part [of medicine] arose especially in Alexandria, in the
hands of the so-called Herophileans and Callimacheans . . . but if
you lead [these rationalists] back to reality and put a patient in their
hands, you will find that they are as useless as he who has not read
a single medical treatise.39

If Herophilus, in spite of the opinion expressed by Galen, is considered
a founder of “rational medicine” (which Polybius counterposes to “em-
pirical medicine”), it is clear that the deductive aspect of the theory was
not absent from his work. Moreover Herophilus knew that theories do
not have an absolute truth value, as can be seen from other passages from
Galen:

Some say that there are no causes of anything; some, like the Empiri-
cists, are in doubt between yes and no; others yet, like Herophilus,
accept it hypothetically.40

Although Herophilus casts doubt on every cause with many argu-
ments and strong, he himself is later found making use of them.41

This last attitude seems contradictory to Galen, who, making a distinc-
tion only between true and false, is unable to understand the Hellenistic
scientists’ conscious use of theoretical models, that is, theories based on
hypotheses. We will return to this point later.

Yet another Galenic passage:

Herophilus and his followers state that prognosis [ � ������� ��� � , fore-
knowledge] possesses firm certainty, whereas foretelling [ � � � � �

�
� � ]

does not. For, they say, many of the things that have been foretold do
not come about — as if anyone is able to foretell without foreknow-
ing [ � � ����� � ��� � ].42

Galen (who returns to this question in two other passages) considers the
Herophilean distinction absurd. But one can argue otherwise; Herophilus
may be saying that the patient’s observable condition, together with ac-
cepted medical doctrine, determine a prognosis that is certain in the sense
of being in principle shared by all physicians — but one to which is associ-
ated an uncertain course of the disease. In other words, the prognosis is a
concept internal to the theory, and therefore determinable with certainty,

39Polybius, Historiae, XII, xxv-d = [von Staden: H], text 56.
40Galen, De causis procatarcticis, xiii §162 = [von Staden: H], text 58:1–3. The words here translated

as “hypothetically” are “ex suppositione.”
41Galen, De causis procatarcticis, xvi §197 = [von Staden: H], text 59:2–4.
42Galen, In Hippocratis prognosticum, I, comment. I.4, 204–205 (ed. Heeg) = [von Staden: H], text

264, 1–4.
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whereas the correspondence rules that allow one to apply the theory to a
concrete case, associating to the prognosis a prediction, have no absolute
guarantee of validity.

In conclusion, the impression of scientificity conveyed by Herophilus’
results is fully confirmed at the methodological level. Herophilus emerges
from the extant testimonial evidence as one of the founders of the scientific
method, for his introduction of the experimental method to medicine, for
his contribution to a new conception of language, and above all for his
methodological awareness.

5.5 Development and End of Scientific Medicine

Although so far we have discussed Herophilus as the dominant personal-
ity in the birth of scientific medicine, he was not at all an isolated case. The
development of medicine in the third century B.C. was not limited to the
work of a few exceptional individuals: it had remarkable repercussions on
common professional practice. The manifold increase in knowledge led to
the specialization of medicine: in Alexandria there were not only physi-
cians, but also dentists, gynecologists, and so on. Also, scientific medicine
was not a phenomenon limited to Alexandria; one of Herophilus’ contem-
poraries was Erasistratus of Ceos, whose medical activities probably took
place in Antioch, in the court of Seleucus I.43 Almost all of Herophilus’
main scientific interests, from anatomic dissection to neuroanatomy, from
the pulse to ophthalmology, seem to have been shared by Erasistratus,
and to him, too, were attributed by some ancient authors the discovery
of the nerves, the distinction between motor and sensory nerves, and the
practice of vivisection. The fragmentary nature of the extant testimonial
evidence makes it difficult to compare the contributions of the two scien-
tists.44

We know from a papyrus of the second century A.D. that Erasistratus
carried out at least one quantitative experiment in physiology. To prove
that animals give off matter in some invisible form, he locked an animal
in a container without food and compared its initial weight with the later
weight of its body together with its excreta.45 Similar experiments were
conducted in the seventeenth century and are considered a sign of the
appearance of the modern experimental method.

43Compare [von Staden: H], p. 47.
44For the fragments of Erasistratus, see [Erasistratus/Garofalo].
45P. Londinensis 137 (Anonymus Londinensis, Iatrica Menonia), col. 33:44–51 = [Erasistratus/

Garofalo], 86.
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Herophilus founded a school that remained active until the first century
A.D. According to Hyginus, one of his immediate disciples was Agnodice,
the first woman who dared challenge the exclusion of her sex from the
medical profession.46 In view of Agnodice’s professional success the ban
against female physicians was lifted — an example of the role played by
women in Hellenistic civilization.47

One of the earliest and most significant representatives of the Hero-
philean school was Andreas, personal physician to Ptolemy IV Philopa-
tor and perhaps an immediate disciple of Herophilus. Like the latter, An-
dreas had wide-ranging interests, which included for sure pharmacology,
surgery and physiology. A passage of Caelius Aurelianus on a case of pan-
tophobia suggests that he shared Herophilus’ interest in mental illness.48

A machine built to order for Andreas to reduce dislocations of the limbs
remained famous in later centuries and attests to the interactions between
Alexandrian physicians and mechanicians. But already there is no clear
indication that Andreas engaged in what had been Herophilus’ main sci-
entific activity: anatomic dissection. It is certain that among later members
of the school, almost none practiced it.49

An obvious symptom of decadence of the Herophilean school in later
centuries is the increasing importance given to the exegesis of Hippocratic
texts. Nonetheless throughout its existence the school produced scientists
who made important contributions to the development of knowledge in
their fields of specialization. For example, Demetrius of Apamea studied
the sexual organs, shifting in this area the focus of interest, which under
Herophilus had been the description of reproductive physiology, to the
treatment of ailments. Mantias, another important representative of the
school, was probably the greatest pharmacologist of Antiquity: it seems he
was the first person to prepare, describe and classify medicines obtained
by combining several ingredients.50

The continuing vitality of the Herophilean school in the first century
A.D. is attested by the work of one of its last representatives, Demosthenes
Philalethes. This physician, though having written a work on the theory

46Hyginus, Fabulae, §274 = [von Staden: H], text 8.
47Among the Hellenistic painters mentioned by Pliny there are five women (Pliny, Naturalis his-

toria, XXXV). The late examples of Mary the Jewess (page 166) and Hypatia indicate that scientific
activities, too, were not out of the reach of women.

48Caelius Aurelianus, Celeres vel acutae passiones, III, xii §108. Further information about Andreas,
including a list of testimonia, can be found in [von Staden: H], pp. 472–477.

49The only exception seems to have been Hegetor.
50However, Plutarch states that medicines obtained by combining plant, animal and mineral

ingredients had been made by Erasistratus, who called them “the hands of the gods” (Quaestionum
convivalium libri vi, 663C). This is an example of how traditions about the Herophilean and Erasis-
tratan schools merged.
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of heartbeats, devoted himself primarily to ophthalmology. The forty pas-
sages in which he is mentioned ascribe to him the study and cure of more
than forty infirmities of the eye, from sties to glaucoma, many of which
still maintain in all likelihood the names he gave them. The written works
of Demosthenes Philalethes remained the foundation of knowledge about
the eye throughout the Middle Ages.

After the first century A.D. the Herophilean school dies out. The ensuing
methodological decadence, already mentioned in connection with Galen,
is even more obvious in another of the best physicians of the imperial
period, Rufus Ephesius. In his treatise Names of the parts of the human body,
a source of invaluable testimonia on Herophilus, he scrupulously reports
all the anatomical terms he knows, together with their origins. But Rufus’
terminology is particularly exuberant regarding inessential features, such
as facial hair;51 this is a clear consequence of a passive attitude toward
the terminology under discussion, which becomes very rich precisely in
the case of parts of the body that, like the beard, are mentioned every day.
Rufus not only makes no attempt to standardize this nomenclature by nar-
rowing down the use of ambiguous terms; he even criticizes some terms
coined by Alexandrian scientists as being the creation of “Egyptian physi-
cians” with an inadequate mastery of Greek.52 Other imperial-age physi-
cians, too, often quibble with Herophilus’ language, whose creativity they
can no longer grasp. Caelius Aurelianus, for instance, in the same passage
where he reports the Herophilean description of a mental case, has deli-
ratio and alienatio as Latin counterparts of two words used by Herophilus
in his pioneer work on psychiatry, but because he regards the words as
synonymous, he reproaches Herophilus for unwisely juxtaposing them as
if they had distinct meanings.53

To these men language had again become an external body of infor-
mation which they could not influence except unconsciously. This is an
important aspect of the death of the scientific method.

5.6 Botany and Zoology

Zoology and botany gained great impetus from Alexander the Great’s
conquests, which made possible the systematic study of many animal and
plant species unknown or little known to classical Greece. Alexander him-
self had ensured that specimens of flora and fauna from the regions he

51Rufus Ephesius, De nominatione partium hominum (eds. Daremberg, Ruelle), §49, 139:8–10
52Rufus Ephesius, De nominatione partium hominum (eds. Daremberg, Ruelle), §133, 151:1–2.
53Caelius Aurelianus, Celeres vel acutae passiones, I, pref. §§4–5 = [von Staden: H], text 211.
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FIGURE 5.1. Detail of mosaic from the late second century B.C. found in a house
in Pompeii, known as the House of the Faun. Other mosaics in the building show
a variety of naturalistic birds, reptiles, beasts and plants. Museo Archeologico
Nazionale, Naples.

crossed, especially in his Indian campaign, were sent home so they could
be studied.

Hellenistic botany and zoology had an important precursor: Aristotle’s
research. The philosopher’s teleological world view did not, in this area,
prevent the collection of interesting results. Whereas, as already noticed,
his anatomy was obstructed by a static concept of language, this was not
a problem in zoology, where Greek names for animals provided a fairly
suitable conceptual scheme. Aristotle not only described about five hun-
dred animal species based on observations ranging from morphological
to behavioral,54 but he also recognized that animal life varies along a con-
tinuum, and so introduced a “natural classification scheme” for zoology.55

54Aristotle, Historia animalium. Many observations can be found in his other zoological works
as well.

55On the subject of classification criteria, the salient texts are the Historia animalium and the first
book of the De partibus animalium.
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Theophrastus, who was for decades Aristotle’s favorite disciple and
succeeded the master at the head of the Lyceum, devoted himself to many
subjects, including meteorology, mineralogy, and above all botany. His
two surviving botanical treatises, Historia plantarum and De causis plan-
tarum, contain the elements of a theory (in the empirical-science sense) of
botanical physiology, built both on the gathering of ancient empirical lore
and on recent observations and experiments.

Theophrastus discusses at length the modifications that living beings
can undergo between generations.56 Morphological variations of plants
due to changes in soil or climate are clearly distinguished from sponta-
neous changes; Theophrastus stresses that mutations of the second type,
which occur in plants and animals alike, do not happen to the individual
already formed, but to the seed,57 that they are hereditary, and that they
can build up to gradual but extensive changes after many generations.58

Of particular interest is Theophrastus’ critique of the Aristotelian theory
of final causes.59 Actually on this subject the most gripping passage is not
in Theophrastus, but, surprisingly enough, in Aristotle himself, in book II
of the Physics: it examines with great clarity the possibility of replacing the
teleological framework by a principle of natural selection:

But a difficulty comes up: what prevents nature from acting not
with a purpose or for the best but rather as Zeus makes rain — not
in order that the grain may grow but by necessity (for the rising [va-
por] must be chilled and, being chilled, turn into water and come
down)? . . . Likewise nothing prevents the parts [of livings beings]
from behaving in the same way, so that front teeth by necessity arise
sharp and adapted to cutting, and molars flat and useful for crushing
the food, all of this happening not on purpose, but by chance; and
nothing prevents this from being so also for other parts that seem to
have arisen for a certain purpose.

And so in the cases where everything happened by chance, but
as if with a purpose, those beings survived because they were put
together by chance in a suitable way; those for whom that was not
so have perished and do perish.60

Aristotle then overcomes the “difficulty” by noting that the features
mentioned (the shapes of incisors and molars, etc.) occur regularly and

56Theophrastus, Historia plantarum, II, iii.
57Theophrastus, De causis plantarum, IV, iv §11.
58Theophrastus, De causis plantarum, II, xiii §3.
59Theophrastus, Metaphysica, 10a:22 – 11b:26 (ed. Ross and Fobes).
60Aristotle, Physica, II, viii, 198b:16–31.
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not sporadically, as they would if mere chance caused them.61

The denial of the existence of true final causes, and the lucid explanation
of the correspondence between structure and function of animal organs
based on natural selection, are very far from Aristotelian thinking, and in
a matter that is central to it. Thus this passage may reflect a substantial
divergence in opinion between Aristotle and someone who had raised
the difficulty. The passage was well known to modern scientists62 and its
influence has probably been underestimated by historians of science.

Strabo (who on this subject reports also fragments of Posidonius63) says
that Eratosthenes studied the transformations of the earth’s crust and that
he offered as proof that coastlines had moved in the deep past the exis-
tence of marine fossil deposits on land.64 The argument actually goes back
to Xenophanes (sixth century B.C.), who noticed the presence of shells and
fish imprints in areas that lay inland in his time.65 Among marine fossils
known in ancient Egypt were the ammonites, so named in Antiquity on
account of their spiral form, similar to the ram horns sported by the The-
ban god Ammon. Historians of paleontology have long maintained that
the Ancients, though occasionally stumbling on large vertebrate fossils,
ignored them because of a prejudice rooted in the belief in the fixity of
species. But Adrienne Mayor has shown that it is rather a matter of histo-
riographical prejudice preventing modern scholars from taking seriously
the ample available textual evidence on ancient fossil finds.66 She used the
sources to demonstrate that:

– From the archaic period on there was a lot of interest in the frequent
finds of fossils of large vertebrates, which were often kept in temples as
precious relics because they were interpreted as remainders of giants
or heroes. Several authors of classical or late Antiquity associated the
buried finds of enormous bones with the events of the gigantomachia:
a myth toward which the fossils themselves probably contributed.

61Aristotle, Physica, II, viii, 198b:32 ff. The argument is obscure, in that a sporadic appearance of
organs adapted to their functions can become regular precisely through the mechanism of natural
selection that Aristotle presents and contradicts. His solution for the difficulty would be very con-
vincing if it had come immediately after the observation about the shapes of the teeth, that is, if he
had not included the second paragraph of the excerpt just quoted, containing the idea of natural
selection. One may therefore suspect that this paragraph was a later insertion, by a redactor of the
Physics, the better to illustrate the “difficulty”.

62For example, Darwin cites it in the preface to The origin of species (from the third edition on),
adding: “We here see the principle of natural selection shadowed forth. . . ” (footnote 1).

63Strabo, Geography, II, iii §6.
64Strabo, Geography, I, iii §4.
65Hippolytus, Refutatio contra omnes haereses, I, xiv §5 = [DG], 566:1–6.
66[Mayor]. There is no lack of texts espousing the point of view Mayor contradicts; having the

luxury of the choice, she mentions [Rudwick] and [Sarjeant], among others.
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FIGURE 5.2. Detail of the Monster of Troy vase (Museum of Fine Arts, Boston).
Mayor identifies the monster’s prototype as a fossil mammalian skull, calling
attention to the articulated jaw, the broken premaxilla and the extended occiput.
Extraneous features such as the tongue and the ring around the eye socket can
be explained by conflation with other familiar skulls and by the artist’s desire to
endow the creature with life. Photograph by John Boardman.

– Starting from at least the fifth century B.C. some fossils were identified
as belonging to animal species no longer extant.

– George Cuvier, the founder of modern paleontology, unlike some of
his successors, knew the ancient prodromes of his discipline: he col-
lected testimonia on ancient discoveries and descriptions of fossils dat-
ing from the fifth century B.C. to the fifth century A.D.67

One very striking depiction of a fossil in Greek art is the Corinthian
krater that shows the “Monster of Troy” (Figure 5.2). Heracles and the
princess Hesione, who was to be a sacrificial victim, are seen shooting ar-
rows and rocks at the monster, whose features have long seemed strange.
As Mayor points out,67a the beast is actually modeled on a fossil skull of a
large mammalian from the Tertiary era, eroding out of an outcrop: a sight
that occurs at many sites around the Mediterranean.

67[Cuvier].
67aSee [Mayor], pp. 157–165. The myth is briefly mentioned by Homer (Iliad, XX:146) and re-

counted by Apollodorus (Bibliotheca, II, v §9) and Diodorus Siculus (Bibliotheca historica, IV, xlii).
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Unfortunately, as usual, we have not a single Hellenistic work on such
subjects. But Theophrastus wrote two books On petrification ( � ����� � � � �����

��� �
���

� � � ), which very likely dealt with fossilization.68 The same interest
in fossils that can be documented today on the part of Theophrastus and
Eratosthenes was presumably shared by other authors.

We have seen, then, that the bases of modern evolutionism, namely the
notions of mutation and natural selection, were both present in Hellenistic
thought.69 Did these notions lead to full-fledged evolutionary theories?
The almost complete loss of zoological and botanical works precludes a
definite answer, but it should be noted that general ideas about evolution
in nature predate ideas about natural selection and mutations; they are
repeatedly brought up (and criticized) by Aristotle, who attributes them
once to Speusippus and to “some Pythagoreans” and again, more vaguely,
to his own contemporaries.70 Moreover, a rationalist explanation for ani-
mal evolution seems to be present already in Anaxagoras, who remarked
that man owes his intelligence to his hands.71 Prescientific versions of bio-
logical evolution were expounded by various pre-Socratic thinkers, from
Anaximander72 to Empedocles; the latter imagined, for example, that once
there had lived on earth monstrous beings formed by the random combi-
nation of disjoint animal limbs.73 Lucretius seems to be referring scientific
objections to Empedocles’ idea when he writes:

That there were many seeds of things on the ground
at the time when the earth first produced animals

68We know the title of the work from Diogenes Laertius, Vitae philosophorum, V §42. That it dealt
with fossilization is suggested by Theophrastus’ mention of “fossil ivory” ( � � � � � � � � � � � � � ; De
lapidibus, §37) and “petrified Indian cane” (

� � � 	 � � � � � � ��� ��� � ��� � � � 	 ��� � � � ��� ; De lapidibus, §38), as
well as by references to petrification made by Pliny and others.

69Regarding selection mechanisms, we see already in Plutarch the important observation that in
the struggle for survival a species is placed in opposition not to its predators but to its competitors,
those that would eat the same food. Plutarch also makes an interesting analogy with economic
competition (De fraterno amore, 486B).

70Aristotle, Metaphysica, XII, vii, 1072b:30 – 1073a:3; XIV, iv, 1091a:31–36; XIV, v, 1092a:11–17. See
also [Popper: OSE], note 11 to chapter 11.

71This important observation of Anaxagoras is reported by Aristotle (De partibus animalium, IV,
x, 687a:8–10 = [FV], II, 30:5–9, Anaxagoras A102), Plutarch (De fraterno amore, 478D–E) and Galen
(De usu partium, I, iii, 4, ed. Helmreich, vol. I). Aristotle, who just before this passage had noted the
relationship between the use of hands and an erect posture, rejects Anaxagoras’ thesis and states
that, contrariwise, nature gave hands to humans because, being intelligent, they would be able to
use them. Plutarch and Galen crib Aristotle’s opinion.

72We know through Aetius that Anaximander maintained, in particular, that life started in the
water (pseudo-Plutarch, De placitis philosophorum V, xix §4 = [DG], 430a:15–20).

73Fragments 6–7 in [Empedocles/Gallavotti] = frs. B35 + B57–61 in [FV], I, 326–328 + 333–334.
(Gallavotti’s edition contains a conjectural partial reconstruction of Empedocles’ Physical poem as-
sembled from fragments that were transmitted in isolation.) The concept of chance seems clearly
expressed in the verse � ������� ����	 � �	
 � ���
� ��� 
 ���	 ��� ��� ��� ��� � ����� (fr. 59 in Diels).
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does not at all mean that beasts could have arisen
mixed among themselves, nor combined animal limbs,
because the species that even now populate the land
— of herbs, of fruit, of luxuriant plants —
cannot be created in confusion with each other,
but each springs forth in its way and preserves
its distinctive features, by a firm law of nature.74

We see that the notion of a species as a pool of individuals capable of in-
terbreeding, often considered modern, must have been clear in Lucretius’
source, for he transmits it in an intelligible form. Elsewhere he expresses
the ideas about natural selection that we saw in the Aristotelian passage,75

and he even says

For time changes the nature of all in the world
and everything must go from one state to another,
nor does anything remain like itself: all moves,
all is changed by nature, which imposes transformations.
One thing rots with time and languishes, weakened;
another, once insignificant, gathers strength. . . .
Many races of animals must have perished, must not
have been able to propagate by procreation.
Those you see now enjoying the life-giving air
Owe to their wiles or their strength or swiftness
Their preservation since the beginning of time.76

What Lucretius knew about biology is not terribly clear: shortly before
this passage he discusses spontaneous generation (as having been once
very common, now characteristic of animal organisms that arise from pu-
trefaction)77 while elsewhere he seems to maintain that specific seeds are
needed for the generation of any living being.78 The passage about extinct

74Lucretius, De rerum natura, V:916–924.
75Lucretius, De rerum natura, IV:823–842.
76Lucretius, De rerum natura, V:828–833 + 855–859. In the intervening lines (omitted), Lucretius

talks about monstrous beasts of a distant past.
77A belief in the spontaneous generation of animals was espoused by Aristotle (De generatione

animalium, I, 715a–b) and others.
78Lucretius, De rerum natura, I:159–207. The idea that animals cannot arise spontaneously but

must be born from other animals is generally considered modern and attributed to the seventeenth-
century physician Francesco Redi. But Alexander Polyhistor ascribes the same belief to the Pyth-
agoreans (Diogenes Laertius, Vitae philosophorum, VIII §28). Redi, who devotes the first pages of
his Esperienze intorno alla generazione degl’insetti to an examination of the opinions held by the
“Ancients” on the subject, does not mention the Polyhistor passage reported by Diogenes; he
prefers to cite Diogenes when the latter quotes the opposite opinion that in bygone eras humans
were spontaneously generated ([Redi], p. 76; the English translation by Bigelow is incomplete).
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animals that were not able to procreate might seem to imply abiogene-
sis, but Lucretius is talking of extinct species, not individuals, and then he
states that the extant races (saecla) were preserved by their own fitness for
survival. Thus he does not have abiogenesis in mind in this case. That
in Lucretius’ sources natural selection operated by the gradual change of
specific characteristics is suggested by his mention of primitive men who
had a distinct bone structure and no language.79

As we shall see, the early Hellenistic period witnessed the first direct
contributions from learned men to agricultural techniques. The study of
plants was also important to pharmacology, which became the main ap-
plication of botany in the imperial age. The best source on this matter is
the De materia medica, compiled in the first century A.D. by the physician
Dioscorides. Down to the modern era it continued to be the best surviving
treatise on the medicinal properties of plants.

5.7 Chemistry

Chemical studies started in the Hellenistic period. Such early studies are
usually thought of as “alchemical”, but what is properly called alchemy —
a syncretism of Greek natural philosophy, Egyptian magic, allusions to
Judaism and Christianity, craftsmen’s recipes and empirical chemistry —
is first documented in the writings of Zosimus of Panopolis, from the early
fourth century of our era:80 a time when all areas of Hellenistic science had
already been overrun by irrationalist currents.

Very little remains of early chemical works. One reason is hinted at by
Zosimus himself, who insists on the arcane character of the knowledge
he is passing on.81 He and his successors call theirs the sacred art (

�
� � �

� �
� �

�

) and refer to ancient Egyptian religious centers, above all Memphis,
as the birthplace of chemical lore. One imagines that from its beginnings
Egyptian chemistry was controlled by the priestly class,82 which as late as
the Ptolemaic era was in charge of many economic activities, carried out
in temples.83 Our attempts at reconstructing Hellenistic empirical chem-
istry are thus thwarted by its confluence with alchemy in later centuries,

79Lucretius, De rerum natura, V:925–928 + 1028–1032.
80[Zosimus/Mertens] is a recent critical edition of this author’s Authentic memoirs, of which thir-

teen fragments exist. For his other writings one must use [CAAG], dating from 1888 and unsatis-
factory in various respects.

81Zosimus, Authentic memoirs, IV, i, 17:30–34; VII, ii, 23:8–10; X, vii, 41:135–137 (ed. Mertens).
82On the relationship between ancient “alchemical” knowledge and the Egyptian priesthood

(especially the Memphis sanctuary), see Mertens’ complementary note 9 in [Zosimus/Mertens],
pp. 187–189 and references therein.

83See page 262.
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and we must be content with glimpses of it caught through the alchemists
who, deciding what to transmit and how it would be combined with in-
gredients from other sources, filtered that knowledge.

Zosimus and other alchemists describe chemical devices such as stills
and sublimation chambers, but although they attribute some to Mary the
Jewess, “sister of Moses”,84 the device’s names are all Greek.85 In alchem-
ical works we almost always encounter these three components: Greek
names, elements of Egyptian magic and references to Judaism. This tripar-
tite melange points to the trilingual city of Alexandria as the place from
which alchemical knowledge radiated.

The fact that Zosimus’ work contains, apart from the religious elements
and the allegorical symbolism that ever more characterized later works,
information about a variety of chemical compounds and reactions shows
that much knowledge had accumulated in the preceding centuries on this
subject.

It is also significant that the oldest “alchemical” work we have notice
of, the treatise Physica et mystica attributed to Bolos Democritus of Mendes
(a city on the Nile delta), probably from the beginning of our era, con-
tains nothing of later alchemy. From the small portion of it that has sur-
vived and from many references we can deduce that this work dealt with
the preparation of imitation gold, silver, precious stones and purple, de-
scribing traditional procedures used by craftsmen (painters, glassmakers,
metalsmiths) and analyzing possible modifications thereto. Likewise the
Leyden and Stockholm papyri,86 dating probably from the late third or
early fourth centuries A.D. and usually classified as alchemical works,
have no reference to magic at all: they simply list recipes for preparing
various substances. Their favorite subjects, as in the case of Bolos’ treatise
(extracts of which probably form the substance of these papyri) are imita-
tion gems and precious metals. What most seems to interest the authors
of these works is the color of the substances produced; this suggests that
the main application of Alexandrian chemistry may have been the manu-
facture of dyes and other colorants.

Pliny explicitly distinguishes between natural and artificial pigments87

and contrasts classical-age painters, who made do with only four col-
ors, with Hellenistic ones, who used a great many different hues.88 Pro-
cedures for preparing artificial pigments are given also by Vitruvius, who

84This woman actually lived in Alexandria, probably in the first century A.D., and wrote under
the pseudonym Miriam the Prophetess, sister of Moses.

85See Mertens’ Introduction technique in [Zosimus/Mertens].
86P. Leidensis X and P. Holmiensis. For a recent edition of these papyri see [AG].
87Pliny, Naturalis historia, XXXV §30.
88Pliny, Naturalis historia, XXXV §§49–50.
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attributes some to the Alexandrians.89

We shall see that in Hellenistic times there developed also other indus-
tries involving the transformation of matter, from metal extraction and
refining to the manufacture of cosmetics, fragrances and medicines.90

Already the Stoics, and particularly Chrysippus, in the third century
B.C., had clearly in mind the distinction between heterogeneous materi-
als, homogeneous mixtures and single compounds. We know this from
various sources. Stobaeus, for instance, writes:

Stoics like to distinguish between juxtaposition ( ��� ��� ��� � � ), mixture
(

�
� ��	 � ), blend ( � ��� � � ) and composition ( � � � � � � ) . . . A mixture is

the complete interpenetration of two or more bodies, preserving the
properties of each . . . A blend, according to them, is the complete
interpenetration of two or more liquids, preserving the properties
of each. A blend displays simultaneously the properties of each of
the blended liquids, such as wine, honey, water, vinegar and so on.
That in such blends the properties of the constituents are preserved
is clearly shown by the fact that one can generally separate them
again with the right trick. If a sponge dipped in oil is introduced in
a blend of water and wine, the water will be attracted to the sponge
and separated from the wine. The composition ( � � � � � � ) of two or
more qualities is instead a transformation (

� � 
 ��� ��� � ) of the bodies
that gives rise to qualities diverse from the original ones, as happens
in the synthesis ( � � ��� � � ) of perfumes or medicines.91

We note that the noun here translated as composition never appears in
Aristotle’s works,92 and that the concept it designates is illustrated here
with examples from the new matter-transformation industries. The noun
derives from the same root (of the verb �

�
� ) that probably lies behind the

word chymeia ( �
��� � � � or � �
� � � � ), attested at a later date and from which

we ultimately got chemistry.93

The modern concept of a molecule has an interesting forerunner in the

89Vitruvius, De architectura, VII, xi–xiv.
90See pages 253–255.
91Stobaeus, Eclogae I, xvii, 154:8 – 155:14 (ed. Wachsmuth) = [SVF], II, 471. Other passages on this

point are Philo of Alexandria, De confusione linguarum, II, 264 (ed. Wendland) = [SVF], II, 472, and
Alexander of Aphrodisias, De mixtione, 216:14–218:6 + 221:16–18 (ed. Bruns) = [SVF], II, 473, 474.

92The most intimate combination of substances considered by Aristotle is the homogeneous mix-
ture, which he calls by the terms � 	
� � � and � � � � � (De generatione et corruptione, I, 328a).

93In Arabic the adjunction of the article transformed the Greek word into alchimia, which co-
existed in Latin for centuries with chimia. In the modern age, chemistry ennobled itself by ap-
propriating the Greek name, but usually when the Greek science is referred to, the Arabic word
is scornfully used. This strange situation illustrates the complex and contradictory way in which
modern scientists have regarded the relationship between themselves and the classical tradition.



168 5. Medicine and Other Empirical Sciences

Hellenistic notion of oncos ( ��� � � � ).94 Oncos is conceived as the ultimate
component of substances, but, unlike atoms (of which it seems to be made),
it is capable of transformation, through reorganization of its parts, thus
accounting for qualitative changes in substances.95

In the Leyden and Stockholm papyri, when amounts of ingredients are
indicated (which is often not the case), the information is given in parts.
The occasional use of weight units indicates that the parts are to be mea-
sured with a balance. There is evidence from several sources that this use
of the balance led to the principle of conservation of mass96 attributed to
Lavoisier and regarded as one of the greatest achievements of eighteenth-
century chemistry. In Lucretius the principle of conservation of mass is not
only clearly stated (in the poetical form that enabled the work to survive,
of course),97 but even justified on the grounds that atoms are indestruc-
tible.

Another attestation is in Lucian’s Life of Demonax: when someone asks
Demonax “how many minae of smoke do you get burning a thousand
minae of wood?”, he gets the answer “weigh the ashes; the remainder is
smoke”.98 Obviously it matters little that from our vantage point the pro-
posed method is incorrect (because atmospheric oxygen also takes part in
the combustion). More interesting than the answer is the question. Why
on earth would one ask about the weight of a certain amount of smoke?
The only sense the question makes is as an attempt to ridicule an existing
scientific theory to the effect that all objects have a “mass” (or weight)
and that the mass is preserved. Though such a theory has been regarded

94Sextus Empiricus (Adversus physicos II ( = Adv. dogmaticos IV = Adv. mathematicos VIII), §318)
attributes the use of this concept to Heraclides of Pontus (fourth century B.C.) and to Asclepiades
of Prusa, a Greek physician who worked in Rome in the first century B.C. and maintained, for
instance, that fevers can propagate through the emissions of corpuscles from the body (compare
Sextus Empiricus, Adversus geometras ( = Adv. math., III), §5).

95Compare Sextus Empiricus (Adversus physicos II §§42–44). The original meaning of oncos is
volume, mass, bulk. It would be interesting to investigate in detail what contribution the mem-
ory of the ancient concept of oncos made to the formation of the modern concept of molecules.
Here we just make two observations in this direction. First, the term oncos in scientific texts was
systematically translated in Latin as moles (bulk, large mass), even when the meaning is that of
volume, as is clear from the Latin translations of Archimedes’ On floating bodies made by William
of Moerbeke, I. Barrow and G. Torelli. Second, the passage in which Robert Boyle introduces the
modern idea (Chymista scepticus, London, 1661, chapter 1, prop. 2) is reminiscent of the Sextus
Empiricus passage, and in fact the whole work is pointedly set against the backdrop of ancient
Skepticism, a doctrine for which Sextus is almost our only source.

96An important prescientific precursor of this principle was already present in the statement of
conservation of matter made by Empedocles (fr. 4 in [Empedocles/Gallavotti] = frs. 17, 14, 13, 17,
22, 20 in [FV], I, 314–321; see particularly verses 30–32 of fr. 17 = Simplicius, In Aristotelis physicorum
libros commentaria, IX, 158:29 – 159:1).

97Lucretius, De rerum natura, II:294–296.
98Lucian, Vita Demonactis, 39:2–6.
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by some as absent in Antiquity,99 it is implicitly used by Heron of Alex-
andria, in connection with the same phenomenon, but in a more technical
context. After observing that coal, after burning, undergoes a small change
in volume but a large decrease in weight, Heron attributes the drop to the
transformation of coal into particles of different nature (fire, air and earth),
which partly go away as smoke and partly get absorbed by the ground.100

Conservation of mass appears to be contradicted in the Pneumatics of
Philo of Byzantium: in the candle experiment (see page 77 and note 86
thereon) the explanation given is that the air “perishes”. But a reading of
the homonymous work by Heron, which was preserved in the original
Greek (unlike Philo’s: see page 76), suggests that this may reflect a sim-
plification undergone by Philo’s text in the late Arabic and Latin versions
that have reached us. Indeed, Heron, who certainly uses Philo as a source,
repeatedly uses forms of the verb � ���

�
� � (destroy, spoil, corrupt; probably

the same verb used in Philo’s original) to describe what happens to air
and other substances during combustion, but he always clarifies that the
corruption consists in a transformation into other substances. He says, in
particular, that the air enclosed in a glass container, if consumed by the
fire, is in fact leaving through pores in the glass, leaving behind empty
space that attracts other matter.101 Thus conservation of matter was re-
garded by Heron as so certain that its apparent violations were explained
by means of invisible processes. It is highly improbable that this view was
a novelty of Heron’s times, if we consider that Erasistratus, in the third
century B.C., also seems to have been so confident in the conservation of
matter as to deduce from the change in weight of an animal left in isolation
the emission of invisible matter (for this experiment see page 156).

Some additional information about ancient chemical knowledge can be
gleaned from papyri. An especially interesting case is that of the word oxos
( � � � � ). It is usually translated as vinegar, that being its original meaning.
But recipe 14 of the Leyden papyrus talks about oxos from the purification
of gold ( � � � � ����� � � ��� �

�

� � � � ��� � � ). Since the methods given for puri-
fying gold may have released hydrochloric or sulfuric acid but certainly
not wine vinegar, it is clear that oxos is being used here in a sense similar
to acid, a notion that must have been partly worked out by Alexandrian
empirical chemists. The Latin term corresponding to oxos is acetum, also
translated as vinegar (the related adjective is acidus). Now, Livy says that
Hannibal used acetum to dissolve a blockage in a gorge.102 This is unlikely

99Max Jammer, after quoting Demonax’s answer, writes: “Such ideas, however, remained iso-
lated statements.. . . And never did such ideas give rise to the formation of the concept of ‘quantity
of matter’ in a technical sense” ([Jammer: CM], p. 27).

100Heron, Pneumatica, I, proem, 10:13–24.
101Heron, Pneumatica, I, proem, 16:10–14.
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(and Polybius says nothing of the sort in his account), but it is very sug-
gestive: Livy may have heard of an acetum that, much like the oxos from
the Leyden papyrus, was a lot stronger than anything obtainable from
wine.103 Vitruvius tells us that pearls, lead, copper and pebbles can be
dissolved in acetum — again, not ordinary vinegar.104

We conclude that the Hellenistic period saw the rise of chemistry as an
empirical science, although we cannot determine the level of knowledge
it achieved. Alchemy appeared only in the imperial age; it borrowed from
earlier empirical chemistry instruments and certain procedures, but it had
other goals and a different conceptual framework. It was also then that
scientific astronomy was reduced to a handmaiden of ancient astrology.

102Livy, Ab urbe condita libri, XXI, xxxvii §2.
103This possibility is also raised by Halleux in [AG], p. 31.
104Vitruvius, De architectura, VIII, iii §§18–19.
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6
The Hellenistic Scientific Method

6.1 Origins of Scientific Demonstration

One essential characteristic of scientific theories, as we have defined them
and as we have encountered them in the Hellenistic works considered,
is the use of demonstrations, that is, deductions of certain statements from
others, following a chain of logical steps that makes these deductions, in
principle, irrefutable: someone who accepts the premises cannot reject the
conclusions, except by finding an error in the deduction.

The English word “demonstrate” is a calque, through Latin, of the Greek
verb ��� � ��� �

��� �
� � , which initially meant “show, display, expound” (and

was interchangeable with the unprefixed � � �
� � �
� � ). The original meaning

of the corresponding noun, apodeixis ( ��� 	 ���
������ ), was “a showing, display,
exposition” of an object or subject: Herodotus, for example, presents his
work as an apodeixis (exposition) of his findings.1 The evolution from this
wider meaning, still present in the English “demonstration”,2 to the scien-
tific meaning that interests us went hand-in-hand with the establishment
and consolidation of what is called the hypothetico-deductive method. This
evolution went through at least two intermediate stages, which we can
exemplify through the use of apodeixis in Plato and Aristotle.

1Herodotus, Historiae, I §1.
2This English word — also a calque, through Latin, of apodeixis — means showings of various

kinds, and it has even spawned the clipped version “demo”, which applies to some of these senses.
In the scientific meaning that is the subject of this chapter, it has been losing ground: it is now more
common to hear “proof” than “demonstration”. In this chapter we will generally write “demon-
stration” to underscore the semantic origins of the term.
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In Plato the word is used in the sense of a rational argument capable
of convincing someone else. In the Hippias minor, for example, Hippias
proposes to demonstrate that Homer portrays Achilles in a better light
than Ulysses.3 The Republic gives various demonstrations of the possibil-
ity of realizing the proposed state model. Plato seldom uses the term in
connection with geometry.4 We have already remarked that Plato’s work
contains very interesting demonstrations (in the later, technical sense of
the word),5 but the method used in such cases is not distinguished by a
specific term from convincing arguments of another nature.

In Aristotle’s works on logic, apodeixis is associated with the feature of
absolute irrefutability considered today to be necessary in a mathematical
proof. This new type of demonstration stands out as the object of Aris-
totle’s Prior analytics, where he describes and analyzes syllogisms.6 He
defines a demonstration as a true syllogism (one whose premises are true).7

A survey of the evolution of apodeixis from general argumentation to
what we can call Aristotelian “syllogistic demonstration” would require
a reexamination of a good part of the history of Greek philosophy, with
special attention to the Eleatic school. But it would not be a story limited
to philosophy in the narrow sense that this word usually has now, for
the evolution owes much to the development of deliberative and judicial
rhetoric — the art of arguing convincingly in assemblies and courts — that
evolved especially in the Greek democracies of the fifth century. There was
a crucial link between the existence of certain forms of democracy and
the development of the argumentation skills that led to the hypothetico-
deductive method. The relationship between demonstrations and public
speaking is clearest in the Aristotelian Rhetoric, where the author stresses
that the so-called enthymemes are none other than syllogisms, and identi-
fies twenty-eight distinct types of rhetorical lines of argument.8 Aristotle
presents rhetoric, in large measure, as an application of the instruments he
elaborated in his works on logic, but the historical order was clearly the
reverse. A century before his day there were already treatises on rhetoric
(now lost), so we can imagine that the theory of syllogisms arose, at least
to some extent, from consideration of the rhetoricians’ enthymemes.9

3Plato, Hippias minor, 369c.
4One exception is in the Theaetetus (162e–163a), where a contrast is drawn between methods that

do not provide “true demonstrations” and the method used by Theodorus and other geometers.
5See page 37 and note 21 thereon.
6Aristotle, Analytica priora, I, i, 24a:11–15.
7Aristotle, Analytica posteriora, I, ii, 71b:18–25.
8Aristotle, Ars rhetorica, 1355a + 1397a ff.
9It seems that Aristotle was the first to use the title The art of rhetoric. Earlier works on the subject

had probably been called The art of discourse ( ������� � ����� ��� � ��� ), revealing in the very name the
genealogy of later works on logic (from logos). Mathematics too had certainly been food for thought
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For some deductive schemes we can recognize an origin in fifth-century
rhetoric and sophistics: the scheme called “consequentia mirabilis” in the
Middle Ages (a variant of the proof by contradiction, consisting in proving
A by proving that non-A implies A) was used by Protagoras and Gorgias.10

The link between apodeixis and rhetoric was still discernible during the
imperial age, when rhetoric was used only in law. Quintilian writes, illus-
trating the usefulness of the study of geometry in the training of orators:

Geometry proves consequences from premises and unestablished
things from established ones; do we [orators] not do the same when
we make a speech? Doesn’t the solution of the proposed questions
rely almost entirely on syllogisms? . . . So also [the orator] will use, if
necessary, syllogisms and of course enthymemes, which are rhetor-
ical syllogisms. Finally, of all lines of proof the most powerful are
those called � ��� � � � � � � � ������	 � 
�	��� [linear demonstrations]; and what
could be more desirable in an oration than good lines of proof?11

. . . so that an orator cannot ever be ignorant of geometry.12

Syllogistic demonstrations were an important element in the scientific
method, but one that gave it life only in combination with other elements,
which, through the creation of scientific theories, profoundly altered the
very role of demonstrations.

A Hellenistic scientific theory is something very different from a set of
syllogisms. To begin with, the statements of the theory make up a single
network, being all provable from a small number of premises. They also
involve theoretical terms, that is, terms specific to the theory, in contrast
with the syllogisms considered by Aristotle. To build a scientific theory,
then, is is not enough to be able to deduce one statement from another;
one must choose appropriately the premises and terms of discourse. Also
essential was the use of elements other than verbal argumentation, drawn
from observation and from technical activities; one important example is
the role played by constructions in geometric demonstrations.

The next few sections will be devoted to these aspects of the Hellenistic
scientific method.

for the founders of logic. But it should be noted that Egyptians and Babylonians, who for centuries
had cultivated mathematics, but not democracy or rhetoric, never did reach the demonstration
stage.

10For Protagoras see Sextus Empiricus, Adversus logicos I ( = Adv. dogmaticos I = Adv. math. VII),
§§389–390 = [FV], II, 258:36 – 259:3, Protagoras B15. The history of consequentia mirabilis is discussed
in [Bellissima, Pagli].

11Quintilian, Institutio oratoria, I, x §§37–38.
12Quintilian, Institutio oratoria, I, x §49.
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6.2 Postulates or Hypotheses

One important aspect of scientific method was that it marked explicitly
and unambiguously the premises that were to be accepted within a given
theory. These premises were called � � � ��� � � � (postulates, which is to say
demands), or ��� � ��� ��	 � 
���� (assumptions), or yet ��� � � � � �� (“hypotheses”).

This last term merits a digression. Its original meaning, “foundation,
base”, never disappeared in Greek: Aristotle uses the expression ��� � � � � ����� � � ����� � 
 � � � for the foundations of government, and Theophrastus says
that the trunk is the � � 	 ��
 � � of the tree.13 In either case there is noth-
ing “hypothetical” in the sense familiar to us. In philosophy the term was
used for the logical foundation of a chain of deductions, and in scientific
theories for more or less what we call principles.14 When Archimedes, in
describing the heliocentrism of Aristarchus of Samos, writes that the latter

��� � � �
� � �

� ����� � � � � � � � 
�� � ��� � � � (published the text of some “hypothe-
ses”),15 he means that the immobility of the sun and the rotation and revo-
lution of the earth were the ground assumptions of the Aristarchan theory
(though oddly, many commentators have taken the word in the modern
meaning of “hypotheses”).

What criterion was used in choosing the initial assumptions (postulates
or “hypotheses”) of a theory? The first that may come to mind, namely
picking the simplest and most easily checked statements, has been put
forth by many authors, ancient and modern, but it does not agree at all
with the facts.

First of all, the statements that seem simplest may turn out to be use-
less for deriving interesting consequences. In astronomy, for instance, an
assumption that the earth is fixed may look like an obvious choice, but
does not offer a particularly useful basis for the description of planetary
motion. In geometry one might think that the simplest entities are points,
but the attempts of the Pythagorean school to build up geometry on state-
ments dealing with points alone ended with failure (as we saw in Section
2.1) and with the acknowledgement that one may not even recover the
properties of the straight line by starting from statements about points
alone.16 The road chosen by Euclid consists in not starting from absolutely
“elementary” theoretical entities, such as points appear to be, but directly

13Theophrastus, Historia plantarum, IV, xiii §4.
14For example, Sextus Empiricus calls an � � � � � � � each of the postulates of geometry (Adversus

geometras ( = Adv. math. III), §§1–4). We will return later to the question of the somewhat different
meaning of “principles” in modern physics.

15Archimedes, Arenarius, 135:8–9 (ed. Mugler, vol. II).
16An interesting work dealing with this problem has survived: the pseudo-Aristotelian De lineis

insecabilibus, dating probably form the late fourth century B.C. It argues for the impossibility of
constructing geometric magnitudes (and lines, in particular) by putting points together.
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from statements on lines and circles.
In the second place, were the postulates or “hypotheses” of Hellenistic

theories verifiable statements?
In almost every case, verifiability is excluded by the universal character

of the statement in question: how can one check that something holds “for
every pair of points” or “for every straight-line segment”? We can only
check (approximately) particular statements implied by the postulates.

And generality is not the only problem. Consider, for example, the pos-
tulate on which the Archimedean treatment of hydrostatics is based (see
page 73). This statement cannot be verified even in particular cases. How
can one check, in non-equilibrium conditions (for instance, immediately
after opening a dam), the action that a particular small portion of liquid,
immersed in the whole, exerts on a neighboring portion? It is clear that
Archimedes is making an assumption that is not directly verifiable, and
that its interest for him lies in the possibility of deducing from it many
verifiable statements about what happens in equilibrium conditions.

In sum, it is clear that the initial assumptions of Hellenistic scientific
theories were neither obvious nor verifiable. What, then, could have been
the criterion with which they were chosen? The next sections are devoted
to this problem.

6.3 Saving the Phainomena

In his Outlines of Pyrrhonism, the Skeptic Sextus Empiricus writes:

We [Skeptics] do not contest that which compels us to involuntary
assent [ � � � � � � ��� � � ] to a sensorial impression, which is to say the
phainomena.17

He is reporting here the Stoic conception of phainomena or “appearances”
( � ��� ��� 	 ����� ). According to the Stoics, a phainomenon does not involve just
a (passive) sensorial impression; also essential is the assent ( � � � � � � � � � � )
of the subject, at once active and involuntary.18 Strato of Lampsacus, too,
wrote that every sensation is obtained through an active participation of
the intellectual faculties, even if we’re not conscious of it.19

It is important to notice the distance in meaning between the Greek

17Sextus Empiricus, Pyrrhoneae hypotyposes, I, x §19.
18The Stoics considered also voluntary assent, but we will be interested primarily in the invol-

untary kind, a typical example of which is provided by the recognition of a known person, which
happens through a comparison between visual impression and memory. The Stoics discussed at
length the possibility of identifying an erroneously given assent; see [Gould], pp. 56–62, as well as
[Frede] and the references therein. See also Figure 6.1.

19Plutarch, De solertia animalium, 961A.
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FIGURE 6.1. Hexagonal tessellations shaded to represent cubes in perspective are
a recurring motif in Hellenistic mosaics. The corners can be perceived alternately
as sticking out or in. Possibly this phainomenon was explained through the pos-
sibility of assenting to different interpretations of the same impression. The photo
shows a mosaic from Pergamum (with Silenus and child Dionysus at the center).
Courtesy of Deutsches Archäologisches Institut, Istanbul, negative Perg. 91/80,6,
photo by E. Steiner. See also [Dunbabin], pp. 223–224.

word phainomenon, which refers to the interaction between subject and
object constituted by perception, and our derived word phenomenon. In
modern times phenomena have long been considered simply as facts that
take place independently of, and can be known directly by, the observer,
through a mechanism that need not be looked into. Now the point for
us is that Sextus Empiricus identifies for us the only epistemological el-
ement about which there was no doubt at all (even among Skeptics!) in
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Hellenistic times.20 Not long before the passage cited, he gives a more
specific example:

For a Skeptic gives his assent to impressions caused necessarily by
sensation: for example, being hot or cold, he would not say, “I don’t
think I’m hot or cold”.21

Sextus Empiricus was a physician. It is possible that his example was
not independent of the analogous observation made centuries earlier by
Herophilus and reported by Galen:

So what does [Herophilus] say? “It is by nature impossible to find out
whether there is a cause or not; but I can assess whether I’m cold, or
hot, or satiated with food or drink.”22

If phainomena, because of their immediate evidence, are singled out as
the only indubitable epistemological data, they are the best candidate for
a departure point in the construction of scientific theories. But they can
only be the departure point in a heuristic, not a logical, sense; they must
then be explained by a theory logically based on “hypotheses” that are
not directly verifiable, and in this theory they play the role of effects. On
this point there is an important testimonium in the medical work of the
Anonymus Londinensis:

. . . as Herophilus observes, saying “let the phainomena be described
first, even if they do not come first.”23

In the case of optics — the theory of sight — the only certain data from
which one can start are visual perceptions. One of the propositions that
Euclid demonstrates is:

20Here we are interested more in the method actually used by scientists than in the epistemologi-
cal musings of Hellenistic philosophers (who, in the surviving fragments, rarely deal with scientific
theories). But it is nonetheless significant that to several Hellenistic philosophical schools, various
aspects and forms of perception lie at the base of knowledge: to the Cyrenaics, feelings ( ����� � : Eu-
sebius, Praeparatio evangelica, XIV, xix §1); to the Epicureans, perception ( ����� � � � : Epicurus, Letter
to Herodotus, lines 49–53, in Diogenes Laertius, Vitae philosophorum, X, §24); to the Stoics, impression
( ��� ��� � � : Diogenes Laertius, Vitae philosophorum, VII §50 and Sextus Empiricus, Adversus logicos I
( = Adv. dogmaticos I = Adv. math. VII), §§250–251). We will discuss later the notion of � � � � � ��� � � (also
translated as perception).

21Sextus Empiricus, Pyrrhoneae hypotyposes, I, vii §13.
22“Quid igitur ait [Herophilus]? ‘causa vero, utrum sit vel non, natura quidem non est invenibile,

existimatione autem puto infrigidari, estuari, cibo et potibus repleri’” (Galen, De causis procatarcti-
cis, xvi §198 = [von Staden: H], text 59a:7–9). Von Staden interprets it differently, translating “. . . it is
through a supposition that I think I am chilled. . . ”. Galen, who is criticizing Herophilus, may in fact
be using “existimatio” to some such effect. But even not taking into account the preceding passage
by Sextus, it seems to me that the original word translated “existimatio” in the Latin, referring as it
does to the perception of sensations such as cold or satiety and counterposed with the impossibility
of verifying causes, was probably not being used by Herophilus in a limiting function.

23P. Londinensis 137 (Anonymus Londinensis, Iatrica Menonia), col. 21:20–23 = [von Staden: H],
text 50a:3–4.
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If several magnitudes move [in the same direction] each at its own
speed, and the eye also moves in that direction, those magnitudes
that move at the same velocity as the eye appear stationary, those
that move more slowly appear to fall behind, and those that move
faster appear to advance.24

The phainomena, which heuristically speaking represent the starting
point, are here deduced from (not directly verifiable) statements about the
state of motion of the observer and the objects observed. Euclid’s propo-
sition has a great deal of methodological interest, recognizing as it does
that, at least in the case of visual perception, the phainomena do not speak
about the object directly, but only about a relationship between object and
observer.

A connection between Euclid’s proposition and the astronomical prob-
lems of his time is transparent: retrogressing planets were very soon to be
seen as a case of bodies that seem to move backward because their motion
is slower than the observer’s.

We now see clearly what essential requirement the “hypotheses” of a
theory must satisfy: they need not be directly verifiable, they may even be
surprising at first sight, but the important thing is that they must allow
the logical deduction of the phainomena: in the case of astronomy, the
observed motion of heavenly bodies. The Aristarchan “hypothesis” that
the sun was stationary and the earth had movements of rotation and revo-
lution certainly appeared strange and remote from intuition, but (and this
is the crux!) it allowed their inventor to “save the phainomena” ( � ��� ��� � � ���

������� � ), as Archimedes says, by deducing from them the planetary mo-
tions actually observed.

The passage in Aristotle’s Physics that mentions natural selection25is
apparently similar in spirit to Aristarchus’. The “hypothesis” that ani-
mal organs may in the beginning have had accidental shapes, like the
Aristarchan “hypothesis”, is not directly verifiable and appears at first
to flagrantly contradict observations — here the complex and functionally
well-adapted structures seen in animals. And yet, by drawing all the con-
sequences of that hypothesis, because only the more suitable forms would
have allowed survival and reproduction, one manages to explain much
more than through an appeal to final causes. Indeed, one can explain not
only the shapes of the organs based on their functions, but also why organs
are adapted to their functions, just as Aristarchus succeeded not only in
accounting for the apparent motion of fixed stars and the sun, but even in
explaining planetary retrogression.

24Euclid, Optics, proposition 51.
25See pages 160–161.
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6.4 Definitions, Scientific Terms and Theoretical Entities

Anyone who has used the term trapezium (or trapezoid) in school was never
in doubt that it describes a geometric figure rather than a concrete object.
Euclid’s students, to designate the same geometric figure, used the term

�
�����

�
��� � � , from which we derive ours. But to them, the word was also part

of the ordinary language: it meant a stool or small table. The abstraction
process through which it came to designate a theoretical entity, therefore,
was necessarily more conscious and explicit. As Bruno Snell wrote:

The relation between language and the formation of scientific con-
cepts . . . can, strictly speaking, be observed only in Greek, because
only here did the concepts grow organically from the language. Only
in Greece . . . was there a native formation of scientific terms — all
other tongues fed on Greek, borrowed from it, translated from it or
depend on it in some less direct way.26

To create a “scientific term” the Greeks resorted to one of two methods.
The first and more obvious to us was through a definition ( � ��� � ).

In the history of thought, two profoundly diverse notions of definition
have alternated. According to the first, which we will call essentialist or Pla-
tonist because we find it in Plato (though also in Aristotle), the purpose of a
definition is to identify the essence of the thing defined.27 Thus, for exam-
ple, the many attempts to define “good” and “justice” in Plato’s Socratic
dialogues. In the Platonist view, essentialist definitions apply just as well
to mathematical entities, which are regarded as having an objective reality,
the mathematician’s function being solely to describe and use them.28 This
view prevailed in the imperial age, in the Middle Ages and in the early
modern age.

Karl Popper wrote:

The development of thought since Aristotle could, I think, be summed
up by saying that every discipline, as long as it used the Aristotelian

26[Snell], p. 199.
27For Aristotle’s opinion that defining something means to identify its essence, see for example

Topica, I, v, 101b:36; Metaphysica, VII, v, 1031a:13 and VIII, i, 1042a:17. For the substantial agreement
on this subject between Aristotle and Plato see [Popper: OSE], Chapter 11, §2, following note 31.

28Plato’s conception of mathematical entities (put forth, for example, in the Republic, VI, 509c–
511a) was, it is true, criticized at length by Aristotle, who maintained that these entities were not
immanent in objects and did not possess a separate reality (see in particular Metaphysica, XI, iv; XIII;
XIV). Aristotle’s position can be summarized approximately by saying that mathematical beings
have a particular type of existence: they exist only as properties of perceivable objects. But although
his view has different philosophical bases than Plato’s, the difference is not such that the attitude
toward the mathematician’s work is significantly changed. In this respect the essential point is that,
for Aristotle as for Plato, humans do not construct mathematical entities: they somehow preexist.
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method of definition, has remained arrested in a state of empty ver-
biage and barren scholasticism, and that the degree to which the var-
ious sciences have been able to make any progress depended on the
degree to which they have been able to get rid of this essentialist
method.29

One may take issue with Popper’s opinion about the “empty verbiage”
of the Aristotelian method. In fact, the Aristotelian method of definition,
which consists in pinpointing the essence of what is being defined through
a series of dichotomies, is useful and applicable for singling out an existing
object among a finite set of possibilities; this is the case of animal species,
which Aristotle was particularly interested in. One can, for instance, de-
fine the swallow by saying that it is a bird and by listing enough features
to allow it to be distinguished from all other known bird species. But it
was not this method that led to the creation of the scientific terminology
that concerns us. In exact science, indeed, a definition is not meant to iden-
tify a concrete object among a finite set of possibilities, but to characterize
uniquely a theoretical entity among infinitely many possibilities.30

Typical definitions fit for creating new scientific terms are the following,
made by Archimedes:

. . . we suppose the following: if an ellipse, its major axis staying still,
rotates so as to get back to its initial position, the figure enveloped by
the ellipse will be called a lengthened ball-shape [ � � � � � � � � ��� ��� � � �

� � � � � ]. If an ellipse, its minor axis staying still, rotates so as to get
back to its initial position, the figure enveloped by the ellipse will be
called a flattened ball-shape [ � ��� ���	� 
�� � ��� � � � � � � � ]. For either ball-
shape. . . 31

What we have translated as “lengthened”, “ball-shape” and “flattened”
are everyday Greek words, which acquire a new and precise meaning after
this point in the text, becoming abbreviations or tags for certain long ex-
pressions made up of other terms already known. Note the contrast with
the essentialist mode of definition: Archimedes is not at all troubled by
the fact that his ball-shape may look nothing like a ball, but rather like
a needle or a lentil.32 We will call definitions of this type nominalist; they

29[Popper: OSE], Chapter 11, §2, following note 26.
30If in order to define an object one must take into account its differences vis-à-vis all others,

any definition has as a prerequisite the knowledge of all reality. This difficulty (raised, according
to scholiasts, by Speusippus) had already been faced by Aristotle in other contexts (Analytica pos-
teriora, II, xiii, 97a:6–10), but it becomes insurmountable in the case of mathematics.

31Archimedes, De conoidibus et sphaeroidibus, 155:4–13 (ed. Mugler, vol. I).
32By contrast, for Plato the same term really meant round like a ball (Plato, Timaeus, 33b). The

Greek � ��� ����� � ��� � is of course the etymon of our “spheroid”, the word traditionally used to trans-
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are common in the writings of Hellenistic scientists.33 There is clearly a
close connection between a nominalist notion of definition and linguis-
tic conventionalism, which, as already seen, arose at that time.34 The use
of nominalist definitions in mathematics was accompanied in Hellenistic
times by a new concept of mathematical entities. For example, we know
from Proclus that Apollonius of Perga described the origin of fundamental
geometric concepts from everyday experience, saying for instance that the
notion of a line arises from considering things such as roads about which
one can say “Measure its length” without fear of misunderstanding.35

The notion of a point ( � � �
� �

) was analyzed at length in pre-Hellenistic
times in the framework that we have called Platonist. The discussions of
the notion in Aristotle were of this type.36 Euclid avoids the word � � �

� �

in the Elements, using instead �

� � ��� � , which originally meant “sign”.37

This replacement suggests that Euclid may have wished to cut himself
off from the tradition of Platonic speculations on the true nature of the
point, sticking to a conventionalist notion of language and a new notion of
mathematics. This new way of seeing mathematical entities is in evidence
in some of Euclid’s definitions, in particular the definition of proportion.
If one thinks of the “ratio between magnitudes” as something that exists
in and of itself, the equality of two ratios seems like an obvious notion (as
it did to Galileo38), whereas Euclid’s definition, as we saw in Section 2.5,
is tantamount to a subtle and complex implicit definition of the notion of
the ratio between magnitudes.

Nominalist definitions are certainly very valuable for enriching scien-
tific terminology, but they cannot create it from scratch. Any definition

late this term in Archimedes; the technical expression used nowadays for the same notion is ellip-
soid of revolution (prolate for lengthened and oblate for flattened).

33Like the one just quoted, many definitions, particularly in Archimedes and Apollonius, con-
sisted of a long expression that was identified with a new term by means of some form of the verb

� �
�

� � (to call). In Euclid’s Elements there are also some definitions of Platonist type, for instance
for point, line and plane. We will return in Section 10.14 to the problems offered by these latter
definitions.

34See page 153 and especially footnote 34 thereon. A hint of nominalist definitions in mathemat-
ics is perhaps present already in Plato (Theaetetus, 184a–b). The passages in the Theaetetus dealing
with the practices of the mathematician Theodorus and his school seem to look forward to later
scientific elements that are not otherwise present in Plato (whose notion of language, as laid down
in the Cratylus, is miles away from conventionalism).

35Proclus, In primum Euclidis Elementorum librum commentarii, 100:4–8 (ed. Friedlein).
36Sample passages are listed in note 245 on page 326; see also the surrounding discussion.
37The occasional presence in some works of the Aristotelian corpus of this word � ��� � ��� in the

sense of “point” is neither here nor there, because these works were revised in post-Euclidean
times. The term recurs, for example, in some geometric constructions contained in the Meteorologica
(see especially III, iii, 373a and III, iv–v, 375b–377a), whose redaction into the form that has come
down to us is probably due to a student of Theophrastus.

38We will return to this on page 350.
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of this type can only reduce the meaning of a new term to that of terms
already assumed known. Just as the hypothetico-deductive method re-
quires demonstrationless statements on which to build, so the nominalist
definition procedure requires definitionless terms from which to start.

The awareness of the need to avoid infinite regress, which must be clear
to a person who shares a nominalist view of definitions, is documented
already in pre-Hellenistic philosophy. Thus, Aristotle reports that, accord-
ing to the school of Antisthenes, since every definition requires a reference
to something else, it is only possible to define what is composite (whether
materially or conceptually), not what is simple.39 This observation of An-
tisthenes is not an isolated one, because around 200 A.D. Sextus Empiricus
wrote:

And given that, if we want to define everything we define nothing at
all, because of regression to infinity, whereas if we admit that some
things can be understood without definition we are declaring that
definitions are not necessary for understanding, . . . we must either
define nothing at all or declare that definitions are not necessary.40

The conclusion drawn by Sextus Empiricus reflects his own Skeptic
ideas. What concerns us is that the possibility of “admitting that some
things can be understood without definition” — of presupposing, that is,
the existence of some definitionless entities — was still taken into consid-
eration in his time.

How were the first Greek purely scientific terms, and therefore the first
theoretical entities of science, created? It is not hard to realize that the es-
sential tools were provided by the postulates of the various theories and
the hypothetico-deductive method. Take the first postulate of the Elements,
for example. In Euclid’s text it reads, literally,

Let it be demanded that a straight line be drawn [i.e., drawable] from
every sign to every sign.41

This statement contains words from ordinary Greek, signifying concrete
objects: “straight lines” are originally traces drawn or carved (the Greek
word � � � � � �

indicates this explicitly), the “signs” are equally concrete in
nature, and the whole can be read as a sentence of ordinary language, with
a clear meaning relating to the concrete activity of a draftsman. Naturally
the draftsman can draw, for instance, a green or a red line, thicker or thin-
ner, and make signs of different types. But now suppose that we take this

39Aristotle, Metaphysica, VIII, iii, 1043b:23–32.
40Sextus Empiricus, Pyrrhoneae hypotyposes, II, xvi §§207–208.
41 ��� � � ��� � � ��� ����� �����

�

� � � ��� � � 	 ����� �

� ��� ��� � � �
� � ��� � � ��� ��� � � � ��� � � ���
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sentence, together with the other four that Euclid wrote, as postulates in
his theory based on the hypothetico-deductive method. Because none of
the postulates mentions color, clearly no proposition deducible from them
can say anything about color. The “lines” of the theory are thus automat-
ically colorless. The same can be said of their thickness or the shape of
the “signs”. In other words, the use of the hypothetico-deductive method
automatically restricts the semantic extension of the terms used in the pos-
tulate, generating new entities that are “theoretical” in the sense that the
only statements one can make about them are those deducible from the
postulates of the theory.

Another example: in the Optics, again of Euclid, the initial assumptions
of the theory contain an essential term, opsis, which in Section 3.1 we trans-
lated as “visual ray”. The meanings of the word in Greek are manifold:
view, aspect, image, spectacle; or yet, in an active sense, sight, look, organs
of sight; it can even mean the “evil eye”.42 In natural philosophy there
were various doctrines of sight based on the idea that an opsis was some-
thing actually emitted from the eye. In the Euclidean theory all of that
no longer matters; all these possible meanings of the term, since they do
not play a role in the theory’s assumptions, are automatically eliminated
from the theory itself. The visual rays of Euclidean optics are completely
characterized as entities that associate (according to precise rules) visual
perceptions to half-lines originating in the eye. In particular, since in none
of the assumptions is there any reference to propagation along the ray one
way or the other, the direction of propagation remains outside the theory,
just like color in Euclidean geometry.

Of course, theoretical terms, being formed from ordinary words by a
process of semantic pruning, maintain some relation with their ordinary
meanings. It is this relation that gives rise, in Hellenistic scientific theories,
to what we have called correspondence rules between theoretical entities
and concrete objects. It is clear, moreover, that this correspondence will
never be perfect, since actual observable phenomena depend also on those
properties of the concrete objects in question that were pruned away in
the process of abstraction. For example, if we wish to check a theorem
of Euclidean geometry on a drawing, the thickness of the lines, though
absent from the theory, will play in the drawing a role that will prevent
the verification of the theorem beyond a certain precision.

The abstraction process just described enjoys a very important feature:
because ties are never completely broken with common sense and daily
language, even theoretically incorrect results (those not following from the
hypotheses) tend to remain applicable within the framework in which the

42Plutarch, Quaestionum convivialium libri vi, 681A.
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theory was devised, if they are grounded in experience. Thus, for example,
Euclid states that an exterior angle of a triangle must be greater than either
of the nonadjacent interior angles. His proof is wrong: this statement does
not in fact follow from the assumptions previously made.43 But it is true
in the particular model of plane geometry that Euclid had in mind and to
which he intended to apply his theorems.

Analogously, the goal of research on logic (which meant the theory of
logos, or discourse) was to reach forms of deduction at once universally
acceptable yet expressible in the terms of ordinary language. Such studies
always remained closely connected with studies about language. “Logi-
cal” paradoxes, or paradoxes of discourse, were of special interest in part
because they highlighted the need to sharpen the tool that is language, and
helped do so. Chrysippus devoted many books to them. As in the case of
mathematical theories, there was no break with everyday experience, no
formal language divorced from everyday language.

We can summarize the matter so far by stating that the fundamental
entities of a theory were defined implicitly by the postulates of the theory
itself, so long as we keep in mind that this implicit definition process was
not the same as the modern formalist reduction of the “meaning” of terms
to the logical rules that must be followed in their use in discourse (à la
Hilbert with his tables, chairs and beer mugs). Instead, it is a consequence
of the choice of assuming as postulates certain statements formulated in
ordinary language and regarding them as unambiguous. Of course, the
postulates, once the theory was developed, also took on a new face (fol-
lowing the semantic pruning) as statements in the theory, but they also
kept their original naïve meaning, thus playing the role of a bridge be-
tween concrete reality and what we would now call the theoretical model.

It may be asked whether and to what extent Greek scientists were aware
of the procedure we have described. There are many indications that they
were. An awareness of the model nature of scientific theories is unavoid-
able in cases where alternative models were used simultaneously; we have
discussed one such case (Archimedean hydrostatics) and will see others in
the next sections. Likewise, an awareness about the mode of formation of
new scientific terms is attested by surviving references to Stoic semantics,
a framework in which the meaning of words boils down to whatever is
intended by their user (see Section 7.5 for further discussion). Regarding
the implicit definition of entities by means of postulates, the procedure

43Euclid, Elements, I, proposition 16. The non sequitur comes from a hidden assumption: that a
certain segment arising in the construction-proof lies within the exterior angle. In spherical geom-
etry the proposition is false whereas the assumptions made in Euclid’s theory up to that point are
valid.
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appears to be conscious whenever a fundamental entity of the theory is
introduced without definition, as in the case of the notion of visual rays
in Euclid’s Optics or that of barycenter in the Archimedean treatise On the
equilibrium of plane figures or that of the length of a class of curves in the
work On the sphere and cylinder by the same author.

6.5 Episteme and Techne

Humans interact with the external world by observing it and acting on
it. These two fundamental modes provide the heuristic bases of ancient
science: phainomena or perceptions on the one hand, technical activities
on the other. Geometry, in particular, kept a close link with the techniques
of drawing; we have seen that, in the Elements, three of the postulates
(dealing with the possible uses of ruler and compass) and many of the
propositions are feasibility statements: in effect, problems, whose solu-
tion ends not with the formula “as was to be shown” but with “as was to
be done”.44 In the demonstration of problems and theorems alike, many
logical steps are not verbal, but consist in drawing lines or carrying out
other, more complex, operations whose feasibility had been demonstrated
earlier.

Geometric drawings were not used simply as accessories to abstract
reasoning: in geometry it was rather abstract thinking that was conceived
as a functional instrument for drawing. Drawing is a technical activity
that played a privileged but not isolated role in the development of Greek
science. Among the elements of a problem Proclus includes the “construc-
tion” ( � � � ��� ��� �

).45 Though he is referring to geometry here, the word
also meant much more concrete things than geometric constructions —
although the latter, too, were meant to be really carried out and not just
imagined. Consider the following two propositions:

Construct an equilateral triangle on a given segment.

With a given force move a given weight by means of gears.

The first is taken from the Elements,46 the second from Heron’s Mechanics.47

From the point of view of Hellenistic science these two statements (or
“problems”) are strictly analogous: both are followed by an exposition

44See note 30 on page 40.
45Proclus, In primum Euclidis Elementorum librum commentarii (ed. Friedlein), 203:10–12.
46Euclid, Elements, I, proposition 1.
47Heron, Dioptra, xxxv, 306:22–23, in [Heron: OO], vol. III. The Mechanics has survived only in

Arabic translation, but the quoted proposition, together with its proof, is known in the original
because it appears also in the Dioptra.
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of the necessary construction and then the demonstration that, based on
propositions already known, the construction does satisfy the statement’s
conditions. A similar scheme is followed in the pneumatics works of Philo
of Byzantium and Heron. The “demonstrations” there are less rigorous,
but the scheme problem–construction–demonstration is still present, and
the exposition is reminiscent of works on geometry (or mechanics or op-
tics) even in its formal features, such as the use of letters to indicate simple
elements (which in this case might be valves or tubes).

Hellenistic mathematics was certainly constructive (every new figure
introduced by Euclid comes with a description of its construction), but in
a sense much stronger than that of modern constructivism, because the
construction was not a just a metaphor used for providing a demonstra-
tion of existence, but the actual goal of the theory, just as the machine
described by Heron was constructed to lift weights and not just to prove
a “theorem of existence” about the machine.48

At bottom, the criterion of value for a scientific theory was based on the
relationship between the theory and concrete objects, and this was two-
fold: on the one hand, the ability of the theory to account for the phain-
omena; on the other, its ability to allow the design of viable, functioning
objects.

Whereas with ordinary language one can talk reasonably only about
existing objects and observable phenomena, the hypothetico-deductive
method allows one to deduce from the “hypotheses” properties of ob-
jects and phenomena that are virtually possible, but not yet in existence.
Science thus provides a formidable tool for technical design. Obviously
empirical tests remain essential, because one can never be sure of having
included among the “hypotheses” all the data relevant to one’s purpose.

A discussion about the relationship in Greek civilization between epis-
teme ( � ��� �

��� �

, meaning “science”) and techne (

� �
� �

�

, meaning “art, craft,
technique”) would require many pages, if nothing else because of the
amount of ink that Plato and Aristotle devoted to the subject. But the close
ties between the two in Hellenistic times are completely obvious. Several
of the subjects that for us are sciences are named after a Greek techne: thus
mechanics was originally

� � �
� � �	����� � �
� �

�

, the art of building machines.
Even a very specific techne, such as making mirrors or theater backdrops,
could gave rise to a science: Geminus calls catoptrics and scenography
subdisciplines of optics.49

In some cases (optics, for instance) the name of a science arises in Greek

48Zeuthen was the first to stress the essential nature of geometric constructions in Euclid, but he
backdates the modern preoccupation with proofs of existence. See [Zeuthen], for example.

49Geminus, in [Heron: OO], vol. IV, 104:9–12.
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as an adjective that can be construed with either noun, episteme or techne.
This usage of course does not efface the difference in meaning between the
two nouns but it underscores the close relationship between the scientific
organization of certain disciplines and their origin in and application to a
particular techne.

Sextus Empiricus, in the part of his work called Against the rhetoricians,
refutes the widespread opinion that rhetoric is the art (techne) or science
(episteme) of discourse. For this purpose he transmits the following defi-
nition of techne:

Every techne is a system of acquisitions of knowledge exercised to-
gether in connection with some useful purpose in life.50

This Stoic definition is reported with little variation by several authors51

(and gave Lucian a pretext for writing an amusing satirical piece, making
the point that, on this basis, being a moocher or sponger is also a techne52).

Another passage of Sextus Empiricus is also worth quoting:

Every existing techne and episteme is mastered through the works
( ��� � � ) produced by that techne or episteme and associated with it.53

It is not by accident that the already quoted theoretical reflection of
Philo of Byzantium on the experimental method54 appears in a work on
the construction of catapults and mentions the experiments needed to de-
termine the optimal design features of the weapon. Likewise the science of
pneumatics, in which the experimental aspect is more evident, is closely
linked to the construction of objects such as pumps or water supply sys-
tems.55 An analogous link can be glimpsed between acoustics and the de-
sign of theaters and musical instruments.

6.6 Postulates and the Meaning of “Mathematics” and
“Physics”

The criterion we have identified for the choice of postulates, namely the
ability to “save the phainomena”, is certainly essential, but it does not lead
to a unique choice of postulates. Consider again the example of motion:
as Euclid observes,56 the same phainomena can be saved by different sets

50Sextus Empiricus, Adversus rhetores ( = Adv. math. II), §10.
51The versions that have come down to us are cataloged in [SVF], II, testimonia 93 to 97.
52Lucian, De parasito, sive artem esse parasiticam.
53Sextus Empiricus, Adversus ethicos ( = Adv. dogmaticos V = Adv. mathematicos XI), §188.
54See page 111.
55See Section 4.6.
56Euclid, Optics, proposition 51. Compare page 178 above.
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of postulates saying which objects are really stationary and which are in
motion, inasmuch as the same visual impressions are deducible from both
sets. This eventually led to the idea of a free choice of a reference sys-
tem with respect to which motion is to be measured, but it predates the
notion of a reference system. Because they were stated using verbs from
ordinary language, postulates about states of motion necessarily had to
involve “absolute” motion at first, so what we regard as a free choice of
reference systems was then seen as an equivalence of mutually contra-
dictory postulates. The epistemological importance of this example was
therefore much greater than it might appear today.

Sextus Empiricus writes that one must suspend judgement about the
question of what objects are truly stationary.57 Here as elsewhere, he is
probably echoing a thought that goes back at least to Herophilus, as seems
to be implied by the following passage of Galen:

Again, he [Herophilus] will express doubt in another manner by
justly making the following distinction . . . : “That which sees pro-
duces sense-perception of that which is seen, either because what
sees is stationary, and so is what is seen, or because what sees is in
motion and the seen object stationary, or because both are in motion,
or because what sees is stationary and the object is in motion.” Then,
showing that it is not plausible that sense-perception takes place ac-
cording to any of the aforementioned, he annuls the fact that we see
anything at all.58

Galen evidently misunderstood his source, and ascribed to Herophilus an
absurd statement.

If two distinct and apparently incompatible statements, such as the sun
is stationary versus the sun moves, can both represent good starting points
for distinct but equivalent theories, it is clear that one cannot apply to
such statements the ordinary idea of “truth”. The only criterion for judg-
ing postulates, namely the verifiability of their consequences, allows one
to welcome distinct postulates as equally valid. Of course, throughout
Antiquity many “more traditional” notions of scientific truth were held
(and are amply documented), but in the Hellenistic period the notion just
discussed was put forth as well, and it is attested in several works.

Diogenes Laertius, for example, presenting two of the five modes in
which the Skeptic Agrippa reached a suspension of judgement, wrote:

57Sextus Empiricus, Pyrrhoneae hypotyposes, I, xiv §107.
58Galen, De causis procatarcticis, xvi §§203–204 = [von Staden: H], text 59a:40–45 (von Staden

translation).
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The mode “regarding something” says that nothing can be under-
stood in itself, but [only] regarding something else. All things, there-
fore, are unknowable.
Another mode results from “hypotheses”: some say that it is neces-
sary to assume as true without qualification certain initial assertions,
and not to postulate59 them; this is senseless, for someone else will
assume the opposite.60

What interests us here is not Agrippa’s sceptic opinion, but the fact that
he considered it a generally accepted idea that postulating something does
not necessarily means claiming its truth.

Epicurus seems to already display the same methodological attitude
when he writes that anyone who takes one causal explanation over an-
other that is equally compatible with the phainomena is wallowing in
mysticism.61

The scientific method as described so far — and in particular its twin
foundations, postulates capable of saving the phainomena being one and
demonstrations/constructions the other — was used to some extent even
in medicine, but in subjects such as geometry, optics, hydrostatics and
astronomy, it reigned uniformly. The modern distinction between phys-
ical and mathematical sciences was alien to Hellenistic science, which was
unitary. This point cannot be stressed too often, given our well-nigh un-
avoidable tendency to think in terms of modern categories: the theories
developed in Archimedes’ On floating bodies and On the equilibrium of plane
figures or in Euclid’s Optics are homogeneous with Euclid’s more famous
work, the Elements, not merely in their instrumental use of geometric no-
tions and results, but in that they are made of theorems based on pos-
tulates of hydrostatics, statics and optics — just as the Elements is made
of theorems based on geometric postulates. Conversely, just as works on
statics and optics bear a clear relation to concrete activities such as the
use of balances and optical instruments (dioptra, astrolabe, and so on), the
exact same relation, as we have seen, obtains between Euclidean geometry
and drawing with ruler and compass.

It is essentially correct to say that the original name of the unitary sci-
ence that we have been discussing was mathematike (

� � � �
��� � � � �
�

, also
in the neuter plural,

�
�

� � �
��� � � ��� � ). Substituting “mathematics” for the

Greek term requires the use of quotation marks and the awareness that
the meaning of the word changed profoundly in the modern age. In fact it

59The verb here, �
�

��� � , is the same used by Euclid to introduce his postulates.
60Diogenes Laertius, Vitae philosophorum, IX §89.
61Epicurus, Letter to Pythocles, in Diogenes Laertius, Vitae philosophorum, X §87. See also Lucretius,

De rerum natura, V:526–533.
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changed twice: the original meaning was “all that is studied”, coming from
the verb

� � � ��� � � (learn) and the noun

�
� �

��� � (object of study, subject
of learning): Plato uses the term in this sense at least twice,62 and in the
Pythagorean school “mathematicians” were the disciples who shared in
the more profound teachings. Later came the sense, attested in Aristotle
and systematically in Hellenistic authors, of a body of knowledge char-
acterized by a certain methodological outlook: much broader than what
we understand today as mathematics, but narrower than the etymological
meaning.

Anatolius, in the late third century A.D., recorded an explanation for the
origin of the Hellenistic use of the word:

Why does mathematics have this name? The Peripatetics say that,
whereas rhetoric, poetry and popular music can be practiced even
without being studied, no one can understand what’s called math-
ematics without first having studied it. Thus they explain why the
theory of these things is called mathematics.63

From this we must conclude that, at least according to the interesting Peri-
patetic opinion reported by Anatolius, mathematics is so called because
one must study it.64

Several writings give us an idea of the Hellenistic use of the term. The
Plutarchan dialog De facie quae in orbe lunae apparet, an important source on
Hellenistic science, has no less than nine occurrences of “mathematicians”
and “mathematics”, and one of its characters, Menelaus, is presented as
a mathematician. Everything that is mentioned in the dialog as a typical
subject of concern for mathematicians belongs to optics or astronomy. Re-
call also (see note 3.6 on page 79) that Ptolemy’s astronomical work now
best known as the Almagest was originally titled Mathematical treatise.

Around 200 A.D., Sextus Empiricus wrote a treatise Against the mathe-
maticians ( � � � � � � �

��� � � ��� �
�

� ) in six parts: Against the grammarians, Against
the rhetoricians, Against the geometers, Against the arithmeticians, Against the
astronomers, and Against the music theorists.65 “Mathematics” was therefore
a very broad subject for him; moreover, he refers to certain statements in

62In the neuter singular: � � ����� ����� � � �
�
� (Sophista, 219c:2; Timaeus, 88c:1). Plato did use, in a sense

close to the modern one, narrower terms such as “geometry”.
63[Heron: OO], vol. IV, 160:17–24. The passage was preserved with “Heron’s Definitions” (compare

note 8 on page 58).
64Proclus proposes an alternative, and much less convincing, origin for the term, stemming from

the Platonic theory of reminiscence (In primum Euclidis Elementorum librum commentarii, ed. Fried-
lein), 44:25 – 45:21.

65The books Against the logicians, Against the physicists, and Against the ethicists are sometimes
also included under the title Against the mathematicians, but another tradition collects them under
the name Against the dogmatics.
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grammar and music as theorems ( ������� ��� � � � ).66

Proclus reports two classifications of “mathematical sciences”: the old
“Pythagorean” one, which went back to Archytas and divided the subject
into arithmetic, geometry, music and astronomy,67 and Geminus’ classi-
fication, which recognized as mathematical subjects not only arithmetic
and geometry (though he emphasized these two) but also mechanics, as-
tronomy, optics, geodesy, music theory and the art of calculation.68 In any
case there is no doubt that ancient mathematics included even works on
mathematical geography and hydrostatics. Thus the term “mathematics”,
faithful to its etymological origin, does not indicate a specific discipline of
study but the unitary method we have described.

“Physics”, too, is a Greek word: what did it mean? The verb �
�

� (gen-
erate, grow) gave rise to the noun physis ( �

�
� � ), meaning everything that

lives, grows, or (by extension) comes into existence; this was rendered by
the Latin natura. Therefore the corresponding adjective, physikos ( � � � � ��� ),
means “natural”. These terms appear systematically already in the pre-
Socratic philosophers, many of whom wrote poems About nature ( � � ���

�
� �

� � ), and who by virtue of their interests were called � � � ������� ��� 69

or �
�

� � ��� 70 — terms that can be partly transliterated as “physiologists”
or “physicists” but which meant simply “students of nature”. Aristotle,
whose works had a deep influence on medieval and modern terminology,
speaks specifically of physical science ( � � � � � � ��� �

	�
 �

).71 He wrote a
work on this argument whose Latinized title, Physica, is the ancestor of
our contemporary word “physics”. But Aristotelian physics differs pro-
foundly from the homonymous modern science, both in subject matter (it
encompassed not only plants and animals, but even the “prime mover”)
and in method.

Diogenes Laertius takes as generally accepted a division of philosophy
into three sectors: physical (which is to say natural), ethical and logical.72

According to him, the division is due to the early Stoics.73 Thus the term
“physics” corresponds to what came to be called “natural philosophy” in
the modern age.

66Sextus Empiricus, Adversus grammaticos ( = Adv. math. I), §§132–133; Adversus musicos ( = Adv.
math. VI), §30.

67Proclus, In primum Euclidis Elementorum librum commentarii (ed. Friedlein), 35–36.
68Ibid., 38.
69For instance, Diogenes Laertius says that Aristippus of Cyrene and Chrysippus called their

respective works on natural philosophers �
����� � � � �

� � � � � .
70This term is often used by Aristotle, for example in the quotation of a statement of Anaxagoras

(Metaphysica, XII, vi, 1017b:27).
71See, for example, Metaphysica, VI, i, 1025b:19.
72Diogenes Laertius, Vitae philosophorum, I §18.
73Diogenes Laertius, Vitae philosophorum, VII §39.
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Now, given that optical and astronomical phenomena, which were stud-
ied by mathematicians, are themselves natural and so within the scope
of physicists or natural philosophers, in what way are the latter different
from mathematicians? This question, already considered by Aristotle, was
taken up again several times in Antiquity.

Geminus, for example, explains that it is not the business of optics (to
him a part of mathematics) to inquire into the actual direction of propaga-
tion of rays, or the role played by air or ether in the transmission of light:
these matters are evidently within the realm of natural philosophy.74

The most interesting passage available today about the relationship be-
tween mathematical sciences and “physics” (natural philosophy) is also
by Geminus and we are able to read it because it made its way second-
hand into Simplicius’ commentary on Aristotle:

Alexander [of Aphrodisias] quotes . . . a passage from Geminus’ epit-
ome of his commentary on the Meteorologica of Posidonius. Geminus,
drawing from ideas of Aristotle, says: “It is characteristic of physical
science to consider what has to do with the substance of heavens
and celestial bodies, their powers and quality, their generation and
corruption . . . Astronomy, however, does not concern itself with all
that. . . . In many cases astronomers and physicists will set out to
demonstrate the same topics, for example the size of the sun or the
roundness of the earth, but they don’t follow the same route. The lat-
ter will deduce whatever it may be from substance [ ��� � � ] or powers
[ � �

� � � ��� ], or from optimality arguments [

�
�

�
�
� � ����� � ���
�

� ��� 	
��� � ], or
from generation or transformation, whereas the former will deduce
it from appropriate figures or magnitudes or the measurement of
motion and corresponding times. The physicist, with an eye towards
productive power, often touches on causes, whereas the astronomer,
when he is constructing proofs based on what comes from outside,
is a poor observer of causes[.]

Sometimes [an astronomer] through a “hypothesis” [ �
�  � � � � ] finds
a way to save the phainomena. For example, why do the sun, the
moon and the planets appear to move irregularly? If we suppose that
their round orbits are eccentric or that these bodies move on epicy-
cles, the apparent irregularities will be saved. One must investigate
in how many different ways the phainomena can be represented. . . 75

Note that in Simplicius’ time (early sixth century), “mathematician” and
“astronomer” were often used synonymously, in part through the influ-

74Geminus, in [Heron: OO], vol. IV, 102:19 – 104:8.
75Simplicius, In Aristotelis physicorum libros commentaria, in [CAG], vol. IX, 291:21 – 292:19.
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ence of the title of Ptolemy’s work; just before the passage cited, Simplicius
contrasts physics with “mathematics and astronomy”.76

The astronomical example reported by Simplicius, namely the possibil-
ity of explaining the same observable motions through an eccentric or an
epicycle, alludes to a theorem demonstrated by Apollonius of Perga and
then later by Ptolemy in the Almagest.77 The result is the following. If a
point B has uniform circular motion around a point A and a third point
C has uniform circular motion around B (following a so-called epicycle),
then in the particular case that the two angular velocities are the same,
the resulting motion can still be uniform and circular, but around a center
distinct from A. Thus the motion of C can be described in two different
ways: by saying that C goes around a circular orbit eccentric relative to A,
or that it moves on an epicycle based on an orbit around A. From our point
of view these are two descriptions of the same motion, but for Posidonius
and Geminus they are two hypotheses about real motions.

The passage quoted on the previous page pinpoints the distinguishing
feature of the “mathematician” or “astronomer”: limiting oneself to find-
ing “hypotheses” capable of saving the phainomena, and not aspiring to
know the absolute truth, whose pursuit is left to the “physicist”, or natural
philosopher. This situation is, as we have already seen, a necessary con-
sequence of the scientific method (or mathematical method, as it would
be called then). Indeed, if two theories, based on different hypotheses, are
both consistent and explain equally well what is observed, the choice be-
tween them is not within the purview of the scientist as such. This does not
mean that scientists necessarily reject the existence of ultimate truths or
global explanations; they may accept such theses characteristic of natural
philosophy. But the scientific method, shared by scientists regardless of
philosophical outlook, has a different goal: to develop theoretical frame-
works useful in describing the phainomena and in advancing technology.

This was still quite clear to Thomas Aquinas, who, taking up again
Simplicius’ contrast between “physics” and “astronomy” and the example
about eccentrics and epicycles, writes:

Reason may be employed in two ways to establish a point: firstly,
for the purpose of furnishing sufficient proof of some principle, as
in natural science [physica], where sufficient proof can be brought
to show that the movement of the heavens is always of uniform
velocity. Reason is employed in another way, not as furnishing a suf-
ficient proof of a principle, but as confirming an already established
principle, by showing the congruity of its results, as in astronomy the

76Ibid., 291:19–20.
77Ptolemy, Almagest, XII, i, 451–544 (ed. Heiberg).
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theory of eccentrics and epicycles is considered as established, be-
cause thereby the sensible appearances of the heavenly movements
can be explained; not, however, as if this proof were sufficient, foras-
much as some other theory might explain them.78

Thomas Aquinas is obviously using the word physica still in the clas-
sical sense of philosophy of nature. He still knows the ancient scientific
method. That ancient science renounces all claim to an unambigous iden-
tification of true first principles establishes, in his eyes, its inferiority with
respect to natural philosophy and theology.

6.7 Hellenistic Science and Experimental Method

That Greek science knew the experimental method has often been main-
tained and more often denied. As a representative of the former view, we
quote Neugebauer:

But if modern scholars had devoted as much attention to Galen or
Ptolemy as they did to Plato and his followers, they would have
come to quite different results and they would not have invented the
myth about the remarkable quality of the so-called Greek mind to
develop scientific theories without resorting to experiments or em-
pirical tests.79

This opinion seems to have remained minoritarian, but if we extend our
sights beyond the imperial-era Galen and Ptolemy and consider Hellenis-
tic scientists such as Herophilus and Hipparchus, we reach conclusions
even stronger that Neugebauer’s.

Obviously, a verdict on whether Hellenistic science knew the experi-
mental method will depend on the definition of “experimental method”.
If we take the expression to mean simply the systematic collection of em-
pirical data obtained through the investigator’s direct intervention, the
appearance of the experimental method is discernible, despite the mea-
gerness of our sources, not only in the physical and mathematical sciences,
but also in anatomy, in physiology,80 and in other empirical sciences like
zoology and botany — areas where the knowledge amassed through hus-
bandry and agriculture was being complemented by that derived from

78Thomas Aquinas, Summa theologica, part I, question 32, article 1, reply to objection 2. The trans-
lation is by the Fathers of the English Dominican Province (Benziger Brothers, 1947), except that
“astrology” has been replaced by “astronomy”.

79[Neugebauer: ESA], §63, p. 152.
80As we have seen, one source of scientific physiological knowledge was experimentation in vivo

on humans. These experiments, however repugnant, in themselves belie the widespread notion
that Hellenistic science was speculative and cared little for experimental checks.
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experiments performed in dedicated venues, such as the Ptolemies’ zoo
and the gardens devoted to this purpose by the Pergamene dynasty.81

If an essential characteristic of the experimental method lies in making
quantitative measurements, the systematic use of such measurements had
been present for many centuries in astronomy (and if we exclude observa-
tional astronomy from the experimental sciences, Newtonian mechanics
itself risks being denied an experimental basis). In the early Hellenistic
period quantitative measurements were extended not only to fields such
as mechanics and optics,82 but to the medical and biological sciences, as
shown by the systematic use of water clocks in Herophilus’ studies on the
pulse (page 148) and the use of a balance in Erasistratus’ physiological
experiment (page 156).

If by experimental method we understand the practice of observation
under artificially created conditions, the most significant examples are
perhaps in pneumatics, where we see the systematic construction of ex-
perimental gadgets for demonstrations, but examples are documented in
other areas as well.83

Von Staden, examining five physiological experiments performed in the
third century B.C., finds in each of them one or more of the features seen
by modern philosophers of science as characteristic of the experimental
method. Shunning generalizations about “ancient science”, he stresses the
sudden emergence of the experimental method in the third century and
its equally rapid decline in the second.84 Among the deniers of the exper-
imental method in Antiquity there are those who recognize the existence
of well-documented ancient experiments such as the ones considered by
von Staden, but claim they were sporadic events that did not add up to a
method.85 But making true experiments in the absence of an experimental
method would be a bit like casually writing a few sentences before writing
was invented. The notion of an experiment implies a qualitative method-
ological leap that cannot occur at random.

Because no one doubts that the “experimental method” was fully op-
erational in eighteenth-century European physics — that it was in fact an
essential feature of it — the question of what is meant by the expression
can be illuminated by a study of the paraphernalia in use at the time.
Consider, for example, a 1794 inventory of the contents of the “physi-
cal theater” of the University of Rome (then called “Archigimnasio”). It

81See Chapter 9, particularly pages 247 and 250.
82For instance, measurements of refraction (see page 64) and rate of water flow (page 103).
83For pneumatics, see page 77. For an example of an experimental device in optics, see note 2 on

page 270.
84[von Staden: EEHM].
85Thus M. D. Grmek on Erasistratus’ physiology experiment; see [Grmek], Chap. V, for example.
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comprises (besides modern devices such as electrostatic machines and
microscopes) objects such as a pneumatic pump, glassware for pneumatic
experiments, devices for experiments on the “elasticity of air”, hydrostatic
balances, inclined planes, barycenter finders, levers, beam balances, pul-
leys, winches, screws, Archimedean screws and a Heronian fountain.86

Thus, experimental physics developed in part thanks to the reintroduction
of devices whose Hellenistic origin is clear even from their names. Only
after the recovery was consolidated did it become possible to believe that
there was no experimental method in Antiquity.

Of course, there are important differences between the experimental
method of Hellenistic science and the contemporary one. In comparison
with the early modern age, Hellenistic exact science was project-oriented
rather than experimental: technology was more important than experi-
mentation in driving the interplay between theory and practice. And a
concept long considered essential to modern science was absent in Hel-
lenistic science, namely the “crucial experiment”. If by that expression we
understand an experiment designed for choosing between two alterna-
tive hypotheses on a particular phenomenon, then crucial experiments are
present in ancient science: the nerve section practiced by Herophilus to
decide if it was a motor or a sensorial nerve is an example of this type. But
crucial experiments in the sense of something decisive for establishing the
truth of a whole theory are certainly absent.

Notwithstanding these differences, if we want to regard as users of the
experimental method not only twentieth-century physicists and biologists
but also Galileo, Francesco Redi and Robert Grosseteste, it seems perverse
to exclude Ctesibius, Herophilus and Philo of Byzantium.

6.8 Science and Orality

The importance of oral culture in the Greek world was for a time underes-
timated, but in the last few decades it has been the subject of much litera-
ture.87 In the fifth century and to some extent down to Plato’s time, writing
had a subordinate role relative to oral culture, in the sense that books were
written and bought not for readers, but as professional instruments for
those who performed the contents in song, theater or declamation.

The genetic link between rhetoric and the hypothetico-deductive method
suggests that perhaps the scientific method, too, had its roots in oral cul-

86Inventario delle machine esistenti nel Teatro Fisico dell’Archigimnasio Della Sapienza. Adì 26 dicembre
1794. Preserved in the museum of the Physics Department of the University of Rome La Sapienza.
A summary can be found at http://www.phys.uniroma1.it/DOCS/MUSEO/catalogo1794.html.

87For a bibliography one can consult [Harris].
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ture, thus going back to long before the Hellenistic period.88

Naturally, it is difficult to demonstrate fully the existence or nonexis-
tence of particular practices in an oral culture of which, by definition, we
lack direct documentation. But while, as we have seen, the connection
with rhetoric (a verbal art by definition) implies that the origins of the
hypothetico-deductive method go back to oral culture, the diffusion of
books certainly caused important changes, above all in uniformizing the
choice of postulates.89 Indeed, a fundamentally oral culture is no bar to
the development of even very sophisticated forms of deductive reason-
ing, such as arose in classical Greece; but one would expect in this context
variations in the choice of assumptions, to suit the needs of the moment.90

A second important effect of the diffusion of books was the fostering
of a conventional terminology. Anything like Archimedes’ definition of
“ball-shape”, which associates a new meaning to an old word, is likely
meant to be written, not just spoken. Only those who, like Archimedes
or Herophilus, know that their work will last in the written medium and
remain available to specialists in the field can change the meaning of a
term without causing confusion. Thus, it seems not to be a coincidence
that linguistic conventionalism and nominalist definitions arose around
the time when written culture emancipated itself from oral culture.

Because a fully scientific methodology (in our sense of “scientific”) re-
quires the formation of vast unified theories, based on shared premises
and precisely defined terms, what we have called the scientific revolution
depends on the diffusion of written culture,91 and so would not have been
possible before the fourth century. Of course, the diffusion of writing came
at a cost (which Plato thought too high). In particular, the homogeneity of
methods and premises that allowed any student to solve as an exercise
a problem internal to a full-fledged scientific theory is paid for by the
giving up of many ideas which, although present in the earlier culture,
for various reasons did not make it into the victorious systematization.

6.9 Where Do Clichés about “Ancient Science” Come From?

This book espouses theses openly opposed to certain widespread opinions
about “ancient science”, summarizable in three interconnected statements:

– The Ancients did not know the experimental method.

88This belief is expressed in [Cerri].
89On this point see [Cambiano].
90See page 37 and also Plato, Meno, 86e–87b.
91Of course this prerequisite is not sufficient. Egyptian culture had used writing for millennia,

but its evolution led in other directions.
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– Ancient science was a speculative form of knowledge, unconcerned
with applications.

– The Greeks created mathematics but not physics.

We discussed the experimental method in Section 6.7. This section tries to
explain the origin of the other two assertions.

A first cause of misunderstandings is the idea that there was such a
thing as the “Ancients”. Talk of ancient science, supposedly spanning the
millennium and more from Thales to Simplicius and represented by such
diverse people as Parmenides, Archimedes, the elder Cato, Plutarch and
Seneca, makes as much sense as talk of a “second millennium science”
cultivated by Thomas Aquinas, Nostradamus, Galileo, Lavoisier, Freud
and Dr. Mengele.

Lack of interest in applied science is of course documented among many
classical-era Greek thinkers (who lived before the full blossoming of the
scientific method) and among imperial-era Roman intellectuals (to whom
the scientific method remained alien). These two groups of intellectuals
share with Hellenistic scientists the label “Ancient”; if one believes in a
homogeneous attitude of the “Ancients” regarding science, one can be
tempted to reconstruct it by dismissing as unrepresentative all the true sci-
entists we have notice of. This misunderstanding is further compounded
by the fact that most of what we know about Hellenistic scientists comes
to us through the sieve of imperial-era writers.

The best counterexample to the idea that Hellenistic science was uncon-
cerned with applications is provided by Archimedes, who wrote a trea-
tise on mirrors and founded the science of machines; who wrote the first
theoretical treatise on hydrostatics and followed the construction of the
biggest ship of his time; who devised new machines for lifting water and
for waging war; who showed (according to tradition by means of public
demonstrations, and at any rate in his writings) how natural philosophy
could be surpassed by creating a science that, through theoretical design,
was closely linked to technology. And yet many scholars have sworn that
Archimedes was not interested in technology! Since this lack of interest
is attested neither in his remaining works nor by documented facts, it is
cast in terms of an inner feeling or philosophical attitude that supposedly
caused Archimedes to carry out his numerous achievements willy-nilly.
Fraser, for instance, writes:

Archimedes had a profound contempt for applied mechanics.92

We might as well say that developers of today’s cutting-edge military
technology keep their work under wraps because they’re ashamed of it!

92[Fraser], vol. I, p. 425.
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Where does this very widely shared opinion about Archimedes’ private
sentiments come from? It is essentially pulled out of the hat of a single
sentence in Plutarch’s Parallel lives.93 Archimedes’ feelings are deduced
from the testimony of a writer who, three centuries after the scientist’s
death, gratuitously ascribes to him his own Platonist tendencies.94 It was
actually authors like Plutarch (who, being Greek in origin, had a shining
carrer in the service of the Romans) that created the myth of a homoge-
neous “Greco-Roman” civilization, by writing works such as the Parallel
lives. It is this extraordinarily persistent myth that has led so many people
to believe that Archimedes’ feelings on technology can be gleaned from
imperial-age works.

Stobaeus tells us that so-and-so started to study geometry with Euclid,
and after having learned the first theorem he asked the master: “But what
will I get out of it once I’ve learned all of this?” Euclid called his slave
and told him, “Give him three obols, the man must profit from what he’s
learning.”95 Some historians of science have deduced from this anecdote
that Euclid did not care for concrete applications of mathematics.96

In fact, the very breadth of the applications that were starting to be
derived from mathematics in Euclid’s time made imperative a division
of labor, in which the mathematician had a certain role in which he took
pride and which was very different from the role of, say, the engineer,
who applied mathematical procedures invented by others. While allow-
ing the resolution of concrete problems with newly found efficacy, the rise
of scientific theories, which is to say theoretical models of parts of the
concrete world, led to the equally new circumstance of certain persons
working within the theory itself. In other words, the birth of science was
closely connected with the appearance of scientists. In the eyes of writers
such as Stobaeus, who belonged to the subsequent (prescientific) society to
whom we owe the record of this new class of professionals, its members,
immersed as they were in theoretical work, seemed uninterested in the
practical aspects of life.

Moreover it was precisely the division of labor between scientists and
technicians that demanded extreme rigor from those who worked on the
theory, and so gave impulse to the new scientific method. Indeed, if the

93The Parallel lives is a series of biographies where each Greek character has a Roman “parallel”.
No scientists are represented, which is not surprising given that Plutarch would not have been able
to find a single Roman parallel. The statement about Archimedes that motivates Fraser’s remark
appears in the Life of Marcellus (xvii §§3–4) — that is to say, in the biography of the very Roman
general under whose watch Syracuse was sacked and its greatest scientist killed.

94An even later source reports the same claim: Pappus, Collectio, VIII, 1026:9–12, ed. Hultsch.
95Stobaeus, Eclogae, II, xxxi, 228:25–29 (ed. Wachsmuth).
96See, for example, [Boyer], p. 111 (1st ed.), p. 101 (2nd ed.).
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person who obtains a mathematical result also knows its only possible
application, it doesn’t matter if the result is exact: a reasonable approxima-
tion is enough, as was generally the case in the mathematics of Pharaonic
Egypt or Old Babylonia, which did not distinguish, for example, between
exact and approximate area formulas. But when the result obtained is con-
sciously kept internal to the theory, that is, when it must be applied, often
indirectly, to a variety of problems not known a priori, a mathematician’s
rigor becomes essential.

Thus, in the absence of direct information, a good way to get an idea of
the breadth of applications of mathematics in a particular historical mo-
ment is to inspect its level of rigor.

In the preface to Book IV of his fundamental treatise on conic sections,
Apollonius writes:

Moreover, apart from these uses, they [some theorems of Conon of
Samos] are worthy of being accepted for the demonstrations’ sake
alone, in the same way that we accept many other things in mathe-
matics for this reason and no other.97

There is no question that Apollonius is sincere (and that he is right!), but
the need to justify the value of pure science is so characteristic of civiliza-
tions where science is the locomotive of technology that this quote by itself
would be enough to document the existence of applied mathematics in
Hellenistic times. Had there been no applied mathematics, Euclid’s quip
and Apollonius’ apologetics would be unthinkable: no one would defend
in such stark terms the value of “pure” mathematics unless to distinguish
it proudly from existing, and well-known, applied mathematics. In fact,
the same contrast is seen in modern times. While Galileo had to rack his
brains to invent practical applications that might persuade the Venetian
government to increase his stipend, once physics took on a prime role in
technological development it won the luxury of producing “theoretical
physicists” apparently uninterested in potential applications of their own
research.

Apollonius himself is generally thought of as the quintessential pure
mathematician. But note that this impression comes primarily from the
sifting of his works carried out by later generations. It is known that he
wrote books on astronomy and one on catoptrics, but all these have been
lost, and of the work on conics, the only one that was partially preserved
in Greek,98 the treatise on conics, we have lost the eighth and last book,

97Apollonius, Conics, preface to Book IV.
98One other work by Apollonius has come down to us, in Arabic translation. It studies the prob-

lem of finding a line whose intersections with two fixed half-lines form segments having a fixed
ratio. See [Apollonius/Macierowski, Schmidt].
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which likely was devoted to applications of the theory.99

One other source of the myth that Hellenistic science had no applica-
tions was the introduction of new computational tools in the modern age.
In the three centuries that preceded the invention of digital computers,
calculations were perfomed using:

– arithmetic operations on numbers written in decimal notation;
– numerical tables of logarithms and of certain other (e.g., trigonometric)

functions;
– operations of analysis, such as differentiation and integration, on func-

tions expressible in terms of “elementary functions” (which is to say
those whose values had been tabulated).

Ancient geometric methods, which from the beginning of the modern
age had started to become less useful given the systematic use of posi-
tional notation, were definitely surpassed as computational tools at least
as early as 1614, when the first tables of logarithms were published. By
contrast, Euclidean mathematics remained a peerless model of rigor until
1872, when a rigorous theory of real numbers was founded (see page 47).
Between these two dates, mathematicians used Euclidean geometry as a
framework and prime example of the hypothetico-deductive method, and
decimal numbers and tables of logarithms for the calculations needed in
the solution of concrete problems. Also, certain ancient problems inherited
unsolved from Hellenistic mathematicians, including the trisection of the
angle, the doubling of the cube and the even more famous quadrature of
the circle, continued to fascinate, and the demand that they be solved with
ruler and compass, in spite of having lost its original motivation,100 was
accepted as a “rule of the game” that characterized what became known
as the classical problems.101

It was this, then, that nourished the belief that “classical mathematics”
was good only for theory, and so strengthened the prejudices in this di-
rection that had arisen from the loss of records on ancient technology and
from the fact that Hellenistic mathematics was part of “Greek thought”, a

99This is the implication of a remark in the preface to Book VII of the Conics, where Apollonius
says that the theorems contained therein (on diameters of conics) were applicable to “problems of
many types” and that examples of such applications would be given in Book VIII.

100See the discussion on page 41.
101In the nineteenth century these three problems were proved to be unsolvable with ruler and

compass. Note that all three had some practical interest in antiquity. The trisection of the angle
was probably suggested by the need to draw divisions corresponding to the hours in sundials
(compare [Neugebauer: ESA], p. 265). The quadrature of the circle was tied to the need to compute
trigonometric functions, essential in topography and astronomy. The extraction of cube roots was
useful, for example, in the design of catapults (see page 111).
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term usually targeting primarily the literary and philosophical works of
the classical period.

The remaining cliché, that the Greeks developed mathematics but were
incapable of creating physics, is closely connected to the one just dis-
cussed.

Even Sambursky, one of a handful of authors who have taken an in-
terest in the physics of the Greeks, believed that they had in fact no real
physics.102 I fear that his belief, like other clichés we have been discussing,
was fostered in part by terminological naïveté. Many historians of sci-
ence, taking as eternal the current boundaries between subjects, have felt
that they could reach conclusions about the existence of Greek physics
by concentrating on the writings of those whom the Greeks themselves
labeled “physicists”, ignoring what was called “mathematics”. As a result,
they basically looked at ancient natural philosophy (which lacked, among
other things, the experimental method), and failed to notice the birth of the
first quantitatively and experimentally based scientific theories about na-
ture. How else to explain Sambursky’s decision to base his analysis on the
writings of various pre-Socratic philosophers, of Plato and Aristotle, and
to devote a whole book to the “physics” of the Stoics, while showing very
little interest in scientists such as Euclid, Ctesibius, Philo, Archimedes and
Hipparchus?

Of course, the idea that Hellenistic theories such as hydrostatics and
geometric optics, which today belong in physics textbooks, were at the
time pure mathematics is due not only to the semantic shift undergone
by the name “mathematics”, but to the hypothetico-deductive nature of
the expository texts that have come down to us. Yet note that in the mod-
ern age it was only after a few centuries of scientific development that
a similar structure was constructed for mechanics, thermodynamics and
classical electromagnetism.

102See [Sambursky: PWG] and [Sambursky: PS]. For example, Chapter 10 of the former book
argues that the Greeks lacked altogether the ability to make experiments.

.

7
Some Other Aspects of the Scientific
Revolution

7.1 Urban Planning

The influence of the scientific revolution on everyday life is particularly
evident in the changes undergone by cities in the early Hellenistic period.

Hellenistic architecture revels in experimentation, a feature connected
with an increasing interest in complex structures. It does not limit itself to
designing buildings, but, thanks to new engineering possibilities, it inter-
venes actively in the landscape, urban or otherwise: roads built on cause-
ways transform islands into peninsulas, canals create new islands, hills are
terraced, artificial hills are made.1 As a project worthy of the ruler’s fame,
the architect Dinocrates even proposed to Alexander that Mount Athos be
carved into human shape, with a city placed in one hand and a lake in
another. The plan was not viable, but Alexander so liked this intention of
moulding nature, grandiose to the point of folly, that he put Dinocrates in
charge of designing Alexandria.2

The new city soon became the most populous on earth. It was a cos-
mopolitan metropolis: its inhabitants were mainly Greeks, Egyptians and
Jews, but there were immigrants from all parts of the known world. Dio
Chrysostom mentions Syrians, Persians, Romans, Libyans, Cilicians, Ethi-
opians, Arabs, Bactrians, Scythians and Indians. 3

The two main roads, over thirty meters wide, were flanked by porticos
lit all night by torches (Figure 7.1). An underground network of canals

1See [Lauter], Sections C.I and D.I.
2Vitruvius, De architectura, II, preface, §§1–4.
3Dio Chrysostom, Orationes, xxxii, 40:1–5.
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FIGURE 7.1. Watercolor by Jean-Claude Golvin, showing Ptolemaic Alexandria
as it can be imagined from surviving descriptions. The view is along the Canopic
Road toward the west. On the foreground we see the city’s other main road; in
the distance, starting near the far walls, is the causeway to Pharos Island.
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FIGURE 7.2. Nineteenth-century visitors explore an ancient cistern for storage
and purification of water, in Alexandria. Cisterns such as this (“subterranean
cathedrals”, in the words of an eighteenth-century traveler) and the canals that
fed them were a feature of the city from the beginning. More cisterns were built
under the Arabs, and some still functioned in the modern age. All but forgotten
in the late twentieth century, this underground network is now being studied and
recovered by the Centre d’Études Alexandrines.

distributed water from the Nile to private homes, after it had been made
fit to drink by sedimentation of suspended impurities in large cisterns, a
system that survived until the modern age (Figure 7.2).4

The city boasted parks, theaters, stadia, gyms, the great Hippodrome
and temples of several religions. The most stunning building, according
to Strabo, was the Gymnasion.5 At the center of the city — which was so
crowded that a law from the third century B.C. set a minimum distance of
a few feet between buildings6 — were the sacred groves and the Paneion, a
conical artificial hill from whose top one could admire the view all around.
The Pharos was reached by a road along a causeway that lay between the
two main harbors, joining the islet of the same name to the mainland.

4See Pseudo-Caesar, De bello alexandrino, v, where the unhealthy water of the Nile, drunk by
those who did not live in homes served by city water, is contrasted with the clear water delivered
through the underground network. Sedimentation tanks made for this purpose are documented at
several Hellenistic sites: see, for example [Tölle-Kastenbein], under index entry Absetzbecken. For
photos and discussion of Alexandria’s cisterns and other historical features, see the beautifully
illustrated [Empereur].

5Our main source about Hellenistic Alexandria is a long description by Strabo (Geographia, XVII,
i §§6–10), who visited the city at the beginning of the Roman occupation.

6P. Halle 1, lines 84 ff.
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FIGURE 7.3. Plan of Ptolemaic Alexandria, from [Forster]. A more detailed map,
from [Botti], can be found on the back endpaper of this book.

Poëte draws the picture vividly:

In Alexandria the urban organism, more complex, gives an inkling
of the nascent modern city. . . We see it with its mass of buildings, its
numerous population, its concentration of riches, its masterful appli-
cation of technology to community life[.]

Referring more generally to Hellenistic cities, he writes:

We feel here for the first time what a city really is — its vast area oc-
cupied by buildings, its fast pace, its imposing organization, its con-
veniences for body and spirit, its splendid luxury and stark misery,
its amusements and its vices, its sprawl into a more or less extensive
suburban area. A breath of modernity seems to reach us from this
distant world. We have the impression that we would not be too out-
of-place in a city such as Alexandria or Antioch[.]7

7[Poëte], pp. 280 and 344.
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The influence of science on the fabric of the city is not limited to the use
of scientific technology in building certain works such as, in Alexandria,
the water supply system, the Pharos or the causeway. More momentous
is the change undergone by the very notion of a city during the period of
the scientific revolution. The classical city was understood as an organism
whose natural dimensions were fixed and whose various parts existed
in a natural equilibrium.8 Overpopulation was mitigated through birth
control and the foundation of colonies. Now, instead, urban development
is rationalized and directed, rather than combated. Martin writes:

[A Hellenistic city] is no longer just a city of citizens, the harmonious
framework for the exercising of political activity: it becomes a city
with a growing population, a business center, where artisanal and
commercial activities win over political aspects. . . . The phenomenon
of modern urbanization has its roots and beginnings in the urbaniza-
tion of the Hellenistic world.9

The new urban centers existed in a dynamic equilibrium that foresaw
open-ended development and regulated it. The existence of an open and
infinitely extensible structure led Benevolo to compare Hellenistic cities
with American cities of the eighteenth and nineteenth centuries.10

Other aspects of Hellenistic, and more specifically Alexandrian, society
may bring to mind modern America: an immigration hub that quickly
becomes the biggest city in the world; the claiming of great expanses of
virgin land for agriculture; interest in technology; a taste for the colossal;11

the diffusion of the culture industry; the relationship of Greek emigrés
with Greece, which in some ways parallels that of Americans with Europe.

Among the many differences between the two historical situations, a
major one is the radically different relationship with native populations:
whereas the modern immigrants to North America encountered nomadic
hunters, the Greeks who went to Egypt and Mesopotamia came into con-
tact with the oldest civilizations in history. The Greeks acquired the upper
hand not because of superior technology — in fact, as we have seen, they
were initially technologically less developed than the indigenous popu-

8See, for example, Aristotle, Politica, VII, 1326a–b.
9[Martin], p. 573. We will return in Section 9.5 to the economic role played by Hellenistic cities,

discussing also opinions quite different from Martin’s.
10[Benevolo], p. 37.
11As far as I know, the United States is the first country in modern times where mountains were

carved and giant statues put up. When the French sculptor Bartholdi designed the Statue of Liberty,
much was borrowed from the Colossus of Rhodes, as tradition had it: not only the general idea,
the harbor location and the torch, but even the crown and the rays spreading therefrom; this was
originally an attribute of the Sun, to which the Colossus was dedicated, but for us it has become a
familiar detail to which we cannot assign a meaning.
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FIGURE 7.4. Top and middle: the Pergamum acropolis (reconstruction model in
the Pergamonmuseum, Berlin). Bottom: Profile of the syphon aqueduct discussed
on page 118, which supplied the acropolis in Hellenistic times. After [Hodge:
HAWS], p. 43, and [Garbrecht], p. 23.
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lations — but thanks to their cultural instruments. This was probably one
of the causes of the great attention paid by the Greeks in the Hellenistic
states to cultural and educational institutions.

7.2 Conscious and Unconscious Cultural Evolution

For millennia, technological innovations were rare and most of the time
unintentional. Craftsmen tried to follow tradition faithfully, but did not
always succeed; an automatic selection mechanism, similar to the one
operating in biology, let through useful variations, thus causing a slow
evolution. The fruits of this unconscious progress included not only most
prehistoric technological innovations but also many that took place in the
ancient empires.

An example is the long process, reconstructed (to some extent conjec-
turally) by Denise Schmandt-Besserat, whereby writing arose from an ac-
counting system.12 First came tokens or counters of various shapes, some
geometric and some evocative of people or objects. Then the tokens started
being “archived” in clay containers, which were closed and sealed. Later,
to allow the contents of the archive to be known from the outside, people
started imprinting the shapes of the content tokens on the containers, prior
to archiving, one imprint per token. This rendered the actual tokens use-
less, but they did not disappear suddenly and deliberately, only through
a slow process of natural selection. Indeed, the passage from the complex
system just described to that of simple tablets with incisions happened
through intermediate steps, represented first by the use of empty con-
tainers and then of curved tablets, reminiscent of the shape of the ancient
containers.

The positional number system arose along similar lines. In the Old Bab-
ylonian number system, symbols had multiple meanings distinguished by
size and differing by a power of the base: for example, the symbol for 4,
when enlarged appropriately, also meant 40 or 400 (this system was used
in base 10 and 60 alike). The habit of writing the component symbols of
a number in order of size made the size superfluous, since the position
by itself was enough to determine the value. But the superfluous size dis-
tinctions lingered on for centuries. Eventually they disappeared, and the
result (apart from the ambiguities arising from the lack of the zero) was
the positional system, which therefore no-one “invented”.13

12For details see [Schmandt-Besserat].
13See [Neugebauer: ESA], chapter 1, §14. It seems that the absence-of-zero ambiguities were not

fully overcome until the Hellenistic period.
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As a last example, recall the growth of the dimensions of the temple
in Southern Mesopotamia, which characterized early urbanization. The
growth can be considered “rapid” on a multimillennial scale, but even its
fastest phase required many centuries.14

Scientific technology altered this situation profoundly. Technological in-
novations became intentional and, because many appeared within a single
generation, their usefulness became obvious to everyone.

One sign of the importance given to new technological achievements
in the Hellenistic period is in the Seven Wonders of the World. Since it in-
cludes the Pharos at Alexandria and the Colossus of Rhodes, the canonical
list must have been compiled after the construction of the former (about
280 B.C.) and before the destruction of the latter (in 226 B.C., as a result
of an earthquake) — in other words, during the golden age of the scien-
tific revolution. This list of the most remarkable human works in history,
whose popularity is proved by its preservation down the centuries, thus
provides an interesting testimony about the prevailing ideas in the third
century B.C. The Seven Wonders encapsulate the three main elements of
Hellenistic culture: the ancient empires’ traditions are represented by two
wonders (the Great Pyramid and the Hanging Gardens of Babylon), clas-
sical Greece by three (the statue of Zeus at Olympia, the temple of Artemis
at Ephesus and the Mausoleum at Halicarnassus), and the present by the
two already mentioned, made possible by recent technological develop-
ments. Casting colossal bronze statues and shining light thirty miles out
into the sea — the ability to do such things was a lofty accomplishment in
the eyes of the Greeks of the third century B.C., on a par with the best of
the past.

The new scientific culture transformed many aspects of everyday life.
The flourishing of treatise writing, an offshoot of professional specializa-
tion, shows clearly the importance that the formation of new and specific
theoretical knowledge acquired in every area. In many fields of endeavor
the work was now being either carried out or directed by specialists who
relied on know-how connected to scientific developments: physicians, en-
gineers, navy and army technicians, and many others. We see a veritable
explosion of treatises — on agronomy, beekeeping,15 fishing,16 veterinary
medicine, perfumery,17 and so on.

14See the graph in [Liverani], p. 32.
15See page 251.
16Some authors of books on fishing are cited by Athenaeus (Deipnosophistae, I, 13b–c). The only

one that has come down us is by Oppian of Cilicia.
17Theophrastus had already written a treatise On smells, and several others followed suit. A

physician from the Herophilean school, Apollonius Mys, wrote a work On perfumes, from which
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Figure 7.5. The Pharos, an object of en-
during admiration, is the prototype of
this ancient terracotta lamp, where we
see the three levels with their charac-
teristic cross-sections: square, hexago-
nal and round. By the kind permission
of Prof. Jean-Yves Empereur, Centre
d’Études Alexandrines, Alexandria.

Conscious technological innovations cannot but be accompanied by the
notion of progress. The classical word to indicate growth in knowledge,

� � � ��� � � — literally, “addition” — was replaced by � � � � ��� � , “headway”,
from which our word “progress” is a literal translation through Latin.18

As a matter of fact, already in the late fifth century Thucydides wrote:

It is inevitable that [in politics], as in a techne, novelties always pre-
vail.19

Seneca wrote, evidently drawing from the same Hellenistic source he
used for the astronomical discussion that comes right before:

Why do we marvel if the comets, which are such a rare astronomi-
cal phenomenon, have not yet been described by firm laws . . . ? The
day will come when all this knowledge that is now hidden will be
brought to light . . . and our descendents will marvel that we might
have been ignorant about such obvious facts.20

Despite this, most scholars have held that the “Ancients” totally lacked
the notion of progress. I think this belief has two sources. First, it was true

Athenaeus quotes (Deipnosophistae, XV, 688e–689b). Athenaeus also cites a work on perfumes by
Philonides (Deipnosophistae, XV, 691f).

18[Edelstein], p. 146. The surrounding pages analyze the conceptual shift in some detail.
19Thucydides, Historiae, I, lxxi §3.
20Seneca, Naturales quaestiones, VII, xxv §§3–5. This passage is often cited, but usually (and in-

congruously) as if reflecting Seneca’s own thoughts on science.
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for almost all of Antiquity. When, for example, Ptolemy talks about Hip-
parchus or Heron about Archimedes, their tone is not what we would use
for scientists of three centuries ago, but the tone we use for our illustrious
contemporaries. Clearly (and for good reason!), imperial age scientists see
no scientific progress between the Hellenistic period and their own.

The second source is a profound difference between the Hellenistic no-
tion of progress and ours. In Hellenistic writers we see an awareness of
achievements made and the confidence that others will come, but not the
idea, to which we are now accustomed, of an automatic and effortless
progress which necessarily follows the course of time and which we can
cash in just as if it were interest earned by money in the bank.

A fragment of Chrysippus illustrates well the new climate of confidence
in the possibilities of mankind. Aristotle, analyzing in the Categories the
contrast between possession and deprivation of natural faculties, exempli-
fied by sight and blindness, wrote that one could go from possession to de-
privation and not the other way round: the seeing can lose their sight, but
the blind cannot reacquire theirs.21 Chrysippus remarks that this example
is belied by the existence of people whose sight was restored by cataract
removal operations.22 The importance of this critique is enormous. Aris-
totle, believing he lived in an essentially static world (as probably every-
one who lived before him had believed), regarded as impossible anything
that had never happened before. Chrysippus, on the other hand, saw so
many things happen for the first time: not only did pneumatics and me-
chanics allow the construction of machines to perform tasks that Aristotle
thought impossible, but physicians were able to restore light to the blind!23

It became necessary to revise the very notion of impossibility, denying the
validity of judgments about impossibility formulated on empirical bases.

This was one example of an interaction between philosophy and med-
ical science; such interactions seem to have been pervasive and fecund
in both directions. We have already noted the epistemological interests
of Herophilus. Chrysippus’ epistemology too, and especially his theory
of perception ( � �

�
���

�
� � � ),24 clearly seem (from what we can deduce from

the sources25) associated with new knowledge about the nervous system.
Particularly interesting is his idea that perception does not consist only

21Aristotle, Categoriae, x, 13a:35–36.
22Cited in Simplicius, In Aristotelis Categorias commentarium ([CAG], vol. VIII), 401:7ff.
23It is well-known that Demosthenes Philalethes, the first century A.D. follower of Herophilus

whom we mentioned on page 157, removed cataracts; but Chrysippus’ comment shows that the
procedure was already practiced in the third century B.C.

24Cicero translated this Chrysippean term with the Latin perceptio, whence our “perception”.
25The extant sources on Chrysippus are collected in volumes II and III of [SVF]. See also [Gould],

pp. 48–65, and [Solmsen].
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in a modification of the state of the psyche (the latter being pretty much
identified with the nervous system) caused by messages originating in
the sensory organs, but above all in the act of assent ( � � � �

�
� ��� � � ) that

may (or may not) follow.26 The recognition of the subject’s active function
in perception was forgotten for many centuries, but at the time it prob-
ably had important consequences not only in psychology but elsewhere,
including esthetics.27

The ideas discussed in this section are aspects of the same intellectual
revolution described in earlier chapters. The scientific revolution’s key
novelty lay in that people became aware, for the first time, of being able
to consciously create their own cultural categories. This is the common
foundation of all the conceptual upheavals we have discussed in con-
nection with the birth of science: the overcoming of natural philosophy
thanks to the experimental method (or “project-driven method”) of Cte-
sibius and Archimedes; the transition from a Platonist to a constructivist
view in mathematics; the novel creation of conventional terminology in
the empirical sciences.28

Even political and religious ideas were influenced by the new cultural
climate. In the political sphere we encounter the (originally Sophistic) idea
that law and state stem from an agreement among humans, grounded on
mutual benefit.29 Euhemerus attempted a rationalist explanation of reli-
gions, maintaining that cults originated in the deification of exceptional
humans.30 It is telling that early Ptolemaic Alexandria was the theater
for the only known episode of intentional creation of a divinity: it seems
that the persona of the god Serapis was simply made up by Ptolemy I
Soter and his advisors. Fraser remarks: “The operation of creating a new
deity, bizarre though it may seem to us, probably did not appear so at
the time”.31

26See page 175.
27An echo of this can be found in a beautiful passage of Philostratus concerning the active part

of the observer of a work of art (Life of Apollonius of Tyana, II, xxii).
28Bruno Snell has masterfully described the increasing awareness in Greek culture from the ar-

chaic to the classical period ([Snell]). I think, however, that he and later classicists have missed the
importance of the subsequent cultural leap, which led to the appearance of exact science. See, for
example, [Snell], p. 214, where the conclusion that the Greeks “lacked a genuine concept of motion”
is drawn from considerations on Zeno’s and Aristotle’s thought.

29This idea, which would not come back until the eighteenth century, is clear in the Principal
doctrines of Epicurus, in particular numbers 33, 36, 37 and 38. For precedents among the Sophists we
mention Lycophron’s statement (cited in Aristotle, Politica, III, 1280b) that the law is an agreement
meant to guarantee men’s just rights toward one another.

30Rationalist explanations of the origin of religions, though best known from Lucretius, also
go back to the ancient Sophists. Particularly important in this connection is a fragment of Critias
quoted by Sextus Empiricus (Adversus physicos I ( = Adv. dogmaticos III = Adv. mathematicos IX), §54).

31[Fraser], vol. I, p. 252 (quote), pp. 246–259 (discussion of episode).
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7.3 The Theory of Dreams

It would be fascinating to reconstruct what was thought in Hellenistic
times about the analysis of the psyche. Here we will treat only one aspect
of the problem, albeit an important one: the analysis of dreams.

One work about the subject that has enjoyed great popularity ever since
the Renaissance is the Interpretation of dreams ( � �

��� � ��� � ��� � � � � ) of Artemi-
dorus of Daldis, written in the second half of the second century A.D. A
recent reprint of a venerable Italian translation has an introduction by the
psychoanalyst Cesare Musatti, from which we quote to give an idea of the
content of Artemidorus’ work relative to modern psychoanalysis. Musatti
first stresses the profound difference between Artemidorus’ conceptual
framework and ours:

Artemidorus accepts the idea, widespread in the ancient world and
down to modern times, that dreams have a premonitory value. . . .

Freud maintains as a general thesis that dreams are hallucinatory
realizations of desires. . . .

Even for Freud, dreams may be prognostic. . . .

Admittedly [they foretell] a future that will be manufactured by the
dreamer, rather than facts that will unfold in the outside world and
that he would run into unawares. For Artemidorus the future tracked
in dreams is of the latter type; for Freud it may be just a future con-
structed by the subject himself.32

On more technical matters, however, Musatti finds much in common
between the two. For example, discussing the distinction Artemidorus
makes between two types of dreams, � ��� � � ��� and ���

� � ��� � � , he writes:

One is tempted to consider these images (the ���
� � ��� � � of Artemi-

dorus) similar to, if not in exact correspondence with, those we now
call hypnagogic.33

Artemidorus subdivides his other class, “true dreams” ( � ��� � � �	� ), into
contemplative ( � � ��� ��
 � � � � �

�

) and allegoric ( ���	� �
� � ��� � �

�

). Musatti remarks:

Artemidorus says that the former are realized immediately, with no
delay, whereas for allegoric dreams the realization happens only af-
ter a while. This notion that contemplative dreams have a very short
deadline has a curious match in what Freud says about the “residues
of the day” (images corresponding to elements really lived during

32[Artemidorus/Musatti], pp. 7, 10, 11, 12.
33[Artemidorus/Musatti], p. 9.
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wakefulness and inserted without change in the dreams): they will
appear in dreams no more than forty-eight hours later. . . .
[Among allegoric dreams] an interesting category is that of � ��� � � � �

� ��� � ����� (cosmic dreams). They appear fairly often in today’s psycho-
analysis, and we too call them cosmic dreams. . . .
But let’s consider in its totality the category of allegoric dreams, those
in which things may be represented not by their own images but by
other images that signify them. “He who loves a woman will not
see the beloved woman but a horse, or a mirror, or a ship, or the
sea, or a female animal, or a woman’s dress, or something else that
stands for a woman.”34 This is the principle of dream symbolism,
which is accepted by the Freudian theory as well. . . . And let it be
said right away that, in Artemidorus’ passage, the symbols listed for
a woman are, so to speak, all correct and exact from the point of view
of psychoanalytic experience. . . .35

Musatti finds other correspondences between Artemidorus and modern
psychoanalysis. A last quote can serve to summarize his thought:

It is certainly fascinating to find in this author from another era, for
whom dreams had a completely different meaning which we do not
accept, familiarity with types of ideas that scientific psychology only
through great pains has managed to uncover in the last century.36

Musatti is struck by the apparent contradiction between the presence
in Artemidorus’ thinking of so many elements present in modern scien-
tific psychology and his faith in the divinatory potential of dreams. But
this apparent contradiction may be explainable by the historical context:
Artemidorus belongs to the same late Hellenistic period represented by
Galen, Ptolemy and Heron, when scientific theories had been increasingly
contaminated by cultural elements of indigenous origin, often magical
(think of Ptolemy’s interest in astrology). Scientific results acquired in
the preceding centuries were being used for individual and immediately
practical ends. We have seen how Galen, in spite of the anatomical and
physiological knowledge he inherited from the school of Herophilus (and
put to use not least in the service of his extraordinary personal career)
was no longer able to fully understand the methodology underlying that
knowledge; we have seen Heron using elements from Alexandrian tech-
nology to design wonderful toys. One may suspect that, likewise, Artemi-
dorus uses for divination purposes the remnants of an ancient “scientific

34Musatti is quoting Artemidorus.
35[Artemidorus/Musatti], pp. 14–15.
36[Artemidorus/Musatti], p. 16.
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theory of dreams”. In fact it is not hard to track down such a theory; we
have already met the first author to whom it is attributed — Herophilus of
Chalcedon.37 In the pseudo-Galenic De historia philosopha we read:

Herophilus says that some dreams are sent by a god38 and arise by
necessity, while others are natural and arise when the soul makes
for itself an image [ ��� � � ��� � ] of what is to its advantage and of what
will undoubtedly happen; but the “compound” dreams [arise] spon-
taneously, according to the impact of the images whenever we see
what we wish, as happens in the case of men who harbour affection,
when in their dreams they make love to the women they love.39

Several elements stand out clearly: the relationship between dreams and
the future, based on a knowledge of what must happen; the importance
of sexual dreams; the relation between dreams and wishes. Alas, we have
none of Herophilus’ writings on dreams, but given the author’s known
intellectual level and his status as the founder of psychiatry, so to speak,
they must have been very interesting indeed. His thinking was picked up
and modified by the Stoics, and it influenced the Christian literature of the
first centuries A.D., with the replacement of sexual dreams by “demonic
dreams”.40 A fragment of Posidonius quoted by Cicero attests to an in-
termediate stage between Herophilus and Artemidorus: it relates a Stoic
classification of dreams that is still reminiscent of Herophilus’, but now
inserted in the context of divination.41

Thus the scientific psychology elements present in Artemidorus’ work
seem to stem from an old and distinguished tradition. But it was the part
that makes modern scientists smirk — the use of the theory for divina-
tion — that allowed the work to survive down to our days, preserved by
the same ancestors of ours who decreed the annihilation of all works by
Herophilus.42

37Among earlier authors of works on the interpretation of dreams can be counted the Sophist
Antiphon (Suda, under Antiphon = [FV], II, 334:9–10, Antiphon A1), to whom was attributed the
ability to suppress suffering through persuasion (Plutarch, Vitae decem oratorum, 833C = [FV], II,
337:2–4, Antiphon A6). We have no information about Antiphon’s ideas about dreams.

38“Sent by a god” is the literal meaning of the single original word ���
�
��� � � � ��� , which can also

mean simply “extraordinary”. The use of this word by our anonymous author, therefore, does not
imply that Herophilus thought that such dreams really had a divine origin.

39Pseudo-Galen, De historia philosopha, 106 = [DG], 640 = [von Staden: H], text 226c, von Staden
translation.

40See [von Staden: H], pp. 309–310.
41Cicero, De divinatione, I, xxx §64; see also [von Staden: H], p. 308.
42The same fate befell other works subsequent to Artemidorus and probably more “scientific”

than his. For instance, the mathematician Pappus is known to have written an ��� � ��� ��� � � � � � � � ,
again according to the Suda (under Pappus).
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At this point you might be thinking that Freud’s precursor in Antiquity
happened to be not so much Artemidorus but Herophilus and his school.
But there is more to it. In his Interpretation of dreams, Freud writes:

I am far from wishing to assert that no previous writer has ever
thought of tracing a dream to a wish. . . . Those who put store by such
hints will find that even in antiquity the physician Herophilos, who
lived under the First Ptolemy, distinguished between three kinds of
dreams. . . 43

Freud then continues with the trichotomy found in the already quoted
pseudo-Galenic passage. Earlier in the same book he writes:

The unscientific world, therefore, has always endeavoured to inter-
pret dreams, and by applying one or the other of two essentially dif-
ferent methods. The first . . . is symbolic dream-interpretation. . . . The
second . . . might be described as the cipher method. . . . An interest-
ing variant of this cipher procedure . . . is presented in the work on
dream-interpretation by Artemidoros of Daldis.
The worthlessness of both these popular methods of interpretation
does not admit of discussion. . . . So that one might be tempted to
grant the contention of the philosophers and psychiatrists, and to
dismiss the problem of dream-interpretation as altogether fanciful.
I have, however, come to think differently. I have been forced to per-
ceive that here, once more, we have one of those not infrequent cases
where an ancient and stubbornly retained popular belief seems to
have come nearer to the truth of the matter than the opinion of mod-
ern science.44

Freud cited Artemidorus often, and with the highest regard. For exam-
ple:

Artemidorus of Daldis . . . left us the fullest and most careful work of
the Greco-Roman world on the interpretation of dreams. 45

Thus, to judge from Freud’s authoritative testimony, the modern psy-
choanalytic theory of dreams had at its origin the elements “near to the

43Sigmund Freud, The interpretation of dreams, adapted from the translation by A. A. Brill, 1913.
The original is Die Traumdeutung, third edition, 1911 (and subsequent editions). The passage is in a
footnote at the end of Chapter 3 (“The dream as wish-fulfilment”).

44Ibid., Chapter 2 (at 4% and 18%), Brill translation.
45Sigmund Freud, ibid., Chapter 2, third footnote. In his Introductory lectures on psycho-analysis

he likewise wrote: “Of the literature dealing with dreams we fortunately have the main work, by
Artemidorus of Daldis” (Vorlesungen zur Einführung in die Psychoanalyse, 1915–1917, fifth lecture).
It is not clear whether these statements are based on (a priori) faith in the workings of chance, or
on a belief that Artemidorus could not be surpassed.
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truth” found in Artemidorus’ work (which Freud must have studied care-
fully, if he thought it was the most important on the subject) and based on
the “foreshadowings” of Herophilus, to whom Freud correctly, if uninten-
tionally,46 attributes the paternity of the theory of wish-incited dreams. If
it has been possible to reconstruct in this way at least part of the thinking
of the Herophilean school, it is no wonder that Musatti finds so many
“curious matches” for Artemidorus in Freud, nor that they use the same
terms, such as “cosmic dreams” and “hypnagogic images”,47 nor that all
the symbols listed by Artemidorus are generously approved as “correct
and exact” by the modern heirs of his thinking.

There remains to explain why on earth it took “great pains” (to use
Musatti’s words) for scientific psychology in the last century to uncover
the “types of ideas” that Artemidorus showed “familiarity” with. One
might suspect that the effort lay in translating the ideas into a scientific
language conforming to the current canon. But if, in the case of trigonom-
etry, halving the chord was enough to make the theory unrecognizable
to generations of historians of science,48 the effort shouldn’t have been so
great after all.

We have talked of dreams only, but in Artemidorus there are interesting
“foreshadowings” of other psychoanalytic elements. For instance, Musatti
writes:

Regarding the dream of incest between son and mother, Artemi-
dorus talks as if he knew of and agreed with Freud’s ideas about
the Oedipus complex.49

7.4 Propositional Logic

Aristotle devoted much attention to logic, and syllogisms in particular.
But in his analysis of the various forms of syllogisms their validity was
justified only through the evidence provided by examples. In other words,
he described the use of logic, but he did not formulate a theory thereof, in
our sense of the word.

46The facetious tone in which Freud cites Herophilus only for the sake of those who “put store
by such hints” (“Wer auf solche Andeutungen Wert legt”) suggests that he too was subject to the
well-known phenomenon of “Freudian repression”, which makes it seem hilarious that one may
have been foreshadowed by a Hellenistic author.

47Musatti is tempted to consider these images similar to the concept found in Artemidorus, and
this not only because of the similarity in meaning but also of the word itself: the modern word
“hypnagogic” is a direct borrowing of Artemidorus’ word.

48See Section 2.8.
49[Artemidorus/Musatti], p. 17.
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The first steps toward a scientific theory of logic seem to have been
taken around 300 B.C. by Diodorus Cronus and Philo of Dialectician. The
latter is known to have defined the conditional proposition “if p then q” as
“not (p and not q)”.50 But although his awareness of the need for a crisp,
unambiguous definition of the conditional seems to herald proofs of theo-
rems in logic, on the whole the existing testimonia point to Chrysippus as
the founder of the scientific theory of propositional logic. While Aristotle
adopted variables to represent generic terms in propositions, Chrysippus
used them to stand for the propositions themselves, and constructed a
theory of logical inference based on five postulates.51 If we use p and q to
denote generic propositions, the five inference rules assumed by Chrysip-
pus as undemonstrated correspond to the five lines below; the first two
entries of each line are premises and the last says what can be deduced
from them.

1. if p then q p q
2. if p then q not q not p
3. not (p and q) p not q
4. p or52 q p not q
5. p or52 q not p q

From these five postulates an unlimited number of inference schemes
could be deduced as theorems. But none of Chrysippus’ theorems in logic
has been preserved.

Chrysippus also wrote several books devoted to the study of antinomies
and logical paradoxes.

Apparently no historian of philosophy had grasped the substance of
Chrysippus’ work before Benson Mates did so around 1950.53 Indeed, an
understanding of Chrysippus had to wait for the development of mod-
ern propositional logic and for someone to study both propositional logic
and ancient philosophy — two subjects then regarded as far apart. And
yet Mates and others have been criticized for using modern propositional
logic in interpreting Chrysippus. Long, a historian of philosophy, wrote:

50Sextus Empiricus, Adversus logicos II ( = Adv. dogmaticos II = Adv. math. VIII), §113; Pyrrhoneae
hypotyposes, II, xi §110.

51These five postulates are listed by Diogenes Laertius (Vitae philosophorum, VII §§79–81) and by
Sextus Empiricus (Pyrrhoneae hypotyposes, II, xiii §§157–158). Another passage of Sextus (Adv. logicos
II §§224–227) reports only the first three postulates but gives more information about theorems in
logic.

52Here “or” is understood in the exclusive sense: either p or q is true but not both.
53[Mates]. For another very interesting study about ancient logic and its relationship to modern

logic, see [Bocheński] (which was partly based on Mates’ work, then still unpublished).
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[S]ome scholars have recently argued that modern logic may not be
the best key to understanding this or any other ancient logical theory.
The debate continues[.]54

It is important for our purposes to dissect the objections mentioned by
Long. They are based on one reasonable consideration and one implicit as-
sumption that is often applied unconsciously in reflecting about the past.
The reasonable consideration is that the key to understanding an author
is seldom found in a culture distant from that author: this is simply an
expression of culture’s historical relativity (which, by the way, was first
recognized in Hellenistic times). The implicit assumption lies in the mea-
surement of the distance between two cultures. In talking about “modern
logic” and “any ancient logical theory”, one is visibly judging this distance
primarily according to a dichotomy between ancient and modern. But
so many things become clearer if one manages to abandon this ancient/
modern opposition that has taken root so deeply since the Renaissance!
Truly the distance between cultures cannot be judged according to this
split, nor can it be measured in centuries or miles, but only by identifying
the discontinuities due to cultural revolutions and by following the often
subtle threads of deep influence.

Chrysippus’ logic is very different from any other ancient logical theory
in that it is a product of the scientific revolution we have been discussing.
It is the transposition to the realm of logic of the same conceptual scheme
used in Hellenistic geometry, which Chrysippus must have studied care-
fully.55 This makes his new logic radically different from, say, Aristotelian
logic. Thus, if one wishes to find the key to understanding Chrysippus
in a culture “close” to his, one can try looking for a culture in which the
Euclidean hypothetico-deductive scheme is essential.

But trying to axiomatize logic following the scheme used by Euclid
would not make sense for someone who does not even manage to follow
the Euclidean method in the case of mathematics. To apply the Euclidean
scheme to logic and thus to found propositional logic, as Chrysippus did,
it was first necessary to recover Euclid completely. Useful instruments for
understanding Chrysippus therefore must be sought in the mathematical
circles of the late nineteenth century, particularly in the German school, to
which we owe the recovery of Euclid (especially in the work of Weierstrass
and Dedekind in 1872, as mentioned on page 47). Thus it is not surpris-
ing that the first steps toward modern propositional logic (including the

54[Long], p. 139.
55Proclus, quoting Geminus, says that Chrysippus used a theorem of geometry to illustrate

with an analogy the role of ideas (Proclus, In primum Euclidis Elementorum librum commentarii
(ed. Friedlein), 395:13–18).
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restatement of Philo’s definition of the conditional) were taken in 1879 by
the German mathematician Frege.56

7.5 Philological and Linguistic Studies

Literary history and philology came into existence in the early Hellenistic
period and throve especially in Alexandria, at the hands of Callimachus,
Eratosthenes, Aristophanes of Byzantium, Aristarchus of Samothrace, and
others, until the tragic interruption of 145 B.C.57

Modern philology, not only in its humanistic phase but also in its more
technical developments begun in the eighteenth century, was born from
the rediscovery of Alexandrian philology. An important impetus was the
renewal of Homeric philology that took place in the late eighteenth cen-
tury after the finding of certain ancient scholia on the Iliad, containing a
storehouse of information on Aristarchan textual criticism.58

The birth of philology and literary history has often been put forth as
evidence of Hellenistic cultural decadence, the view being that such stud-
ies represented the musty erudition of the effete Alexandrian scholars,
instead of the fresh and robust inspiration of the classical age. Such opin-
ions, coming from philologists and historians of literature, may perhaps
give an indication of the origin of the erasure phenomenon (or Freudian
repression) that we have observed starting from Chapter 1.

We have seen how the scientific revolution generated a new concept of
language, involving the manifestly useful possibility of conscious lexical
enrichment through the introduction of new terms for novel conceptual
constructs. This new possibility, which probably underlay the increasing
awareness of the historical evolution of languages observed around that
time,59 was soon applied within the framework of the study of language it-
self. Thus was born Greek grammar, with its distinction between the parts
of speech, the five cases of nominal and adjectival declension, verb tenses,
and so on. In other words, a theory (in the sense of empirical science) was
formulated, and new and conventional terminology was introduced to de-

56See [Frege].
57See page 11 and note 60 on page 69. Even Aristarchus of Samothrace had to leave Alexandria.

For the history of Hellenistic philology see [Pfeiffer], for example.
58The scholia were on a tenth-century codex preserved in Venice and were published in 1788.

Seven years later, F. A. Wolf re-posed the ancient Alexandrian questions in his famous Prolegomena
ad Homerum, thus founding modern Homeric philology.

59Whereas Aristotle still has a static notion of language, Sextus Empiricus stresses both the in-
finity of possible meanings and signs, and the evolution of the lexicon (Adversus gramaticos ( = Adv.
math. I), §82). The second point was taken up also by Horace (Ars poetica, 60 ff.).
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note the concepts internal to it.60 The earliest work on Greek grammar that
we have adequate information about, thanks to a Byzantine compendium,
is the Art of grammar of Dionysus Thrax, from the second century B.C.,
which already uses the current canonical terminology. However it is clear
from other testimonia that the beginnings of Greek grammar date from no
later than the third century B.C.61 The subject was developed in particular
by eminent Stoic thinkers, including Chrysippus himself;62 main results
such as the description of nominal and verbal inflection were already in
place at the time of Aristophanes of Byzantium, Dionysus’ teacher.63

We have plenty of information about grammar because it was coopted
by the Romans.64 We know less about semantics, which was developed
in the Stoic school in close connection with the theory of knowledge and
with logic. The extant citations are late and do not allow a reconstruction
of the results obtained in this field, but they are enough to give an idea of
their level. Long writes:

One of the most interesting features of Stoic semantic theory is the
fact that it allows a distinction to be drawn between sense and refer-
ence. This distinction, which was first formulated in a technical sense
by the German logician Gottlob Frege, has been extremely fruitful[.]65

Next Long illustrates the Stoic distinction through passages from Dio-
genes Laertius.66 After all that was said in the preceding section, it should
not come as a great surprise that Frege was the first modern thinker to
revive Hellenistic ideas on semantics. But Long’s qualifying phrase “in

60An important forerunner of Hellenistic grammatical studies can be found in Aristotle, Poetica,
xx, 1456b–1457a. But the passage only makes a distinction between noun and verb and makes
a general remark about (substantival and verbal) inflection, without describing it. In any case
Hellenistic grammarians made essential use of the possibility, extraneous to Aristotle’s thought,
of introducing conventional terminology.

61Its relationship with Sanskrit grammar, developed in particular by Pān. ini, is not clear. How-
ever, the continuity between Stoic epistemology, Stoic semantics, the creation of a conventional
terminology in other fields, and Hellenistic grammatical studies seem to preclude the possibility
that Greek grammar appeared as a simple transposition of a theory imported from India.

62Two passages, one by Diocles of Magnesia (in Diogenes Laertius, Vitae philosophorum, VII §57 =
[SVF], II, text 147) and one by Galen (De placitis Hippocratis et Platonis, VIII, iii = [SVF], II, text 148)
report Chrysippus’ classification of words into parts of speech. Proper nouns, verbs, conjunctions
and articles appear on both lists; Diocles’ list also includes common nouns and Galen’s preposi-
tions. A later stage of grammatical studies is attested in Plutarch: in discussing the functions of
the various parts of speech he also includes adverbs and pronouns (Platonicae quaestiones, 1009B–
1011E).

63[Pfeiffer] is a useful reference for Hellenistic linguistic studies. For grammar, see in particular
pp. 202–203 and 266 ff.

64Latin grammar started with Remmius Palaemon, who, during the reign of Tiberius, adapted
the work of Dionysus Thrax to Latin.

65[Long], p. 137.
66Diogenes Laertius, Vitae philosophorum, VII §§94–102.
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a technical sense” brings to mind similar remarks already discussed, for
instance in the case of trigonometry. A few lines later Long concludes:

But, returning to Frege, we should beware of assimilating his theory
of meaning and the Stoics’. The Stoics have no term which corre-
sponds clearly to Frege’s use of Bedeutung, ‘reference’. Its place in
Stoicism is taken by ‘bodies’ (the thing referred to) or the ‘grammat-
ical subject’ (ptôsis).66a

One milestone of modern linguistics is the work of Ferdinand de Saus-
sure. In even more recent times the contributions to the theory of meaning
made by Roland Barthes, the founder of modern semiotics, have had great
resonance. Let’s see how Barthes, in his Elements of semiology, expounds
Saussure’s theory of meaning and his own:

Saussure himself has clearly marked the mental nature of the sig-
nified by calling it a concept: the signified of the word ox is not the
animal ox, but its mental image . . . These discussions, however, still
bear the stamp of psychologism, so the analysis of the Stoics will per-
haps be thought preferable. They carefully distinguished between

� � �
� ��� � ����� � �
�

(the mental representation), the

�
� � � � ��� � (the real

thing) and the ��� �
� � � (the utterable). The signified is neither the

� � �
� ��� � nor the

�
� � � � � � � , but the ��� �
� � � ; being neither an act of

consciousness, nor a real thing, it can be defined only within the
signifying process, in a quasi-tautological way: it is this ‘something’
which is meant by the person who uses the sign. In this way we are
back again to a purely functional definition[.]67

The Hellenistic linguistic notions appropriated by Barthes constitute an
important aspect of the scientific revolution. In the third century B.C. there
appeared in all fields new theoretical constructs, based on the use of new
concepts, consciously elaborated and denoted by conventional terms. To
reduce the meaning of words to the lekton ( �	� �

� � � ), that is, to “what one
wishes to signify”, is to use words as “signs” not for natural objects but
for freely created notions, and this practice can only arise from reflection
on the creation of intellectual notions. Thus, Stoic semantics is none other
than an aspect of the same revolution in thought that led also to science
and to Chrysippus’ theory of active perception.68

66a[Long], p. 138.
67[Barthes], p. 43 (section II.2.1).
68The main sources on Stoic semantics are, first and foremost, Sextus Empiricus, and then com-

ments by Stobaeus, Diogenes Laertius and others. The terms used by Barthes in the preceding
quotation are explained in Sextus Empiricus, Adversus logicos II ( = Adv. dogmaticos II = Adv. math.
VIII). (The tripartite distinction made by the Stoics between sign, meaning and object is in II §§11–
12, and the Stoic notion of lekton is illustrated in II §70.)
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It is certainly true, as Long says, that one should not shoehorn Stoic
semantics and Frege’s into the same mold. But one reason may be that, at
least to judge from Barthes’ passage, in Frege’s time the reacquisition of
Stoic semantics was still far from complete.

7.6 The Figurative Arts, Literature and Music

It has often been remarked that Hellenistic figurative art works display
surprisingly modern features. As in early modern Europe (in seventeenth-
century Holland, say) painting got the upper hand over sculpture, and
subject matter changed radically compared to the preceding period. We
see the birth of different styles, including those that have been named the
ancient baroque, naturalism, classicism and impressionism — terms that do not
merely refer to vague analogies with modern styles, but on the contrary
seem very apposite.69 The ease with which Hellenistic artists can be clas-
sified using modern terminology may appear surprising. But on further
reflection, in the case of the baroque it is not surprising that the term may
be applicable without exaggeration to ancient works whose study was cer-
tainly connected with the rise of the baroque style. One wonders whether
Hellenistic artists also succeeded in “foreshadowing” much of later art?70

In literature, too, styles and genres multiplied. Some literary genres
maintained their old names, but had little in common with their classi-
cal incarnations. The classical epigram, for example, was a commissioned
inscription, whereas its Hellenistic counterpart, of which Callimachus was
the greatest virtuoso, is a pretend inscription. Thus a cultural product of
social exigencies is transformed into an occasion for free and deliberate
invention. Also born then were bucolic poetry, the comedy of manners
and the luckiest of the new literary genres: the novel.71

Was there a connection between science and the new character of art and
literature? A positive answer is suggested by the simultaneity not only
of their first appearance but of their reappearance in modern times: the

69For example, Bianchi Bandinelli writes that a mosaic found in Palermo “echoes a painting
performed wholly without outlines and relying completely on light effects, in a way that is, in
effect, almost impressionistic” ([Bianchi Bandinelli], p. 477).

70The evolution of the modern styles homonymous with those cited happened during centuries
when a great many Hellenistic-inspired ancient works were brought to light and studied, at the
hands of artists who regarded the study of ancient art as part of the very foundation of their own
culture.

71The Hellenistic origin of the novel was long obscured. It was thought that Greek-language
novels first appeared in the late imperial age; this changed in 1945 when a papyrus was found in
Oxyrynchus that dates from the first century B.C. and contains fragments of the Novel of Ninus.
Now many scholars think that the novel originated in the second century B.C.
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FIGURE 7.6. Detail of floor mosaic from the second century B.C., found in the
1990s during the excavation of the site of the new Library of Alexandria. Courtesy
Prof. Jean-Yves Empereur, Centre d’Études Alexandrines.

same features in art were reacquired in the modern age together with the
scientific method.

Science of course lent art technical and conceptual tools, as we have seen
concerning the link between optics, scenography and painting, and as we
shall see in music.

But there is also a deeper relationship between science and art. The main
aspect of the scientific revolution lies in that the creation of culture became
a conscious act. It is this awareness that gives rise to artistic experimenta-
tion, causing styles and genres to multiply. At the same time, the focus of
interest shifts from cultural categories, “mythicized” (in different ways) in
both the archaic and classical ages, to the individual, who becomes recog-
nized as the creator of such categories, and to the individual’s concrete life.
This endows figurative art with a new realism, a novel interest in the de-
piction of emotions and psychological states (see photos on page 226), and
a wealth of fresh subject matter from everyday life — whether in sculpture
(page 227), mosaics (page 159 and this page), or painting, where personal
portraits, landscapes and still lifes become common (page 62).72 The same

72Particularly significant, in this respect, are pictorial representations of the painter’s atelier or
some other craftman’s shop. Paintings with such subject matter are known to have been made by
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FIGURE 7.7. Bronze from the second century B.C., found in pieces in a shipwreck
off Cape Artemisium. The young rider, nicknamed the Jockey of Artemisium, has
African features and rode a galloping horse: he held the reins in his left hand and
a whip in the right hand. Hirmer Photoarchiv.

FIGURE 7.8. The Dying Gaul (Capitoline Museums, Rome). Roman copy of a lost
original that belonged to a group commissioned by the Attalids for a monument
built in the Pergamum acropolis around 275 B.C. to commemorate their victory
against the Gauls.
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FIGURE 7.9. Old woman in market, Roman sculpture after Hellenistic original.
Courtesy Metropolitan Museum of Art. All rights reserved.
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trend is observed in comedy, which acquires characters and situations that
mirror the spectator’s world.

The novel’s appearance is linked both to the new idea of cultural pro-
duction as a deliberate invention, and to the new type of target audience
(individual readers) and mode of reading (private).73 As in modern Eu-
rope, many aspects of Hellenistic art depend on the existence of a public
of readers and buyers of art works.

In classical Greece the word “music” (

�
� � � �

�

) meant music, singing
and dance, thought of as an indivisible whole. Our notions of “music” and
“musician” date from the early Hellenistic period.74 The second half of the
fourth century B.C. also witnessed the development of the first true theory
of music, by Aristoxenus of Tarentum. We read in Franchi’s contribution
to an authoritative collection about Greek civilization:

These doctrines still constitute today the basis for any study about
sound systems, and their accuracy is often astonishing, as when Aris-
toxenus actually foreshadows equal temperament, which was not
achieved until the late seventeenth century.75

As in all cases examined, from semantics to shipbuilding, from dream
theory to propositional logic, any specialist who in the course of studies in
his own field turns his attention to the period of the scientific revolution is
invariably astonished to discover that modern knowledge was foreshadowed
at the time. The idea of foreshadowing of later theories is a bit like the pre-
monitions in which Artemidorus of Daldis believed. Now that we have
succeeded, in the case of oneirology, in reconstructing a scientific theory,
should we not try to do the same for the history of culture? Should we not
replace these foreshadowings by the study of the influences of Hellenistic
thought on modern thought?

The main Hellenistic innovation in the area of musical instruments was
the introduction of the first keyboard instrument: the water organ,76 which
seemingly was also the first scientifically designed musical instrument
(Figure 7.10). Its invention, attributed to Ctesibius,77 was clearly linked to
the new science of pneumatics created by the same man. In the Ctesibian

Antiphilus, active in the court of Ptolemy I Soter (see, for example, Pliny, Naturalis historia, XXXV
§§114 + 138) and by several others, such as Philiscus and Piraeicus (Pliny, Naturalis historia, XXXV
§§112 + 143).

73For an analysis of the relationship between Greek literary works and their modes of enjoyment,
see [Gentili: PP].

74See, for example, [Gentili: MR].
75[Franchi], p. 624.
76The instrument is described in Vitruvius, De architectura, X, viii.
77Sources for this attribution include Athenaeus (Deipnosophistae, IV, 174b+d–e), who adds that

Aristoxenus (born around 370 B.C.) did not know the instrument (IV, 174c).
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FIGURE 7.10. The Ctesibius water organ as described by Vitruvius and Heron.
Based on a drawing of James A. Diamond.

organ, the air is forced into the pipes because it is kept under pressure
in an underwater chest. The air spent in the tubes or otherwise lost is
replenished by means of a pump. The water, so long as its level does not
vary too much, keeps the pressure in the air chest approximately constant.
Remnants of an exemplar dating from the imperial period and having
four registers, each with thirteen tubes, have been found at Aquincum
(now Buda) and are on display at the local museum. Remnants of an older
water organ were found in 1994 in Dion, near Mount Olympus. Medieval
organs are the direct descendents of Alexandrian ones, through imperial
and Byzantine inheritance.78 This is a typical case of the pervasive role
played by Byzantine culture in the transmission of Hellenistic musical
heritage.79

Musical theory had close relations with acoustics, whose theoretical de-
velopments are poorly documented;80 as to applications, we know, for
example, that theaters were equipped with acoustic chambers that damp-
ened echoes and served to amplify certain frequencies, thanks to bronze
resonators.81

78The first organ in medieval Europe was received in 757 by the Frankish king Pepin the Short
as a present from the Byzantine emperor Constantine V. It was a water organ.

79A lack of interest in Byzantine music was for a long time a factor in hiding the continuity
between ancient and medieval music. See [Touliatos].

80Certain qualitative observations have come down to us: about the speed of sound (for example,
in Sextus Empiricus, Adversus astrologos ( = Adv. mathematicos, V), §69), the analogy between spher-
ical sound waves propagating in air and plane waves on the surface of the water (for example,
in Diogenes Laertius, Vitae philosophorum, VII §158), the relation between pitch and frequency of
vibration (for example, in Plutarch, Platonicae quaestiones, 1006A–B, and more extensively in Por-
phyry, In Harmonica Ptolemaei commentarius 56, ed. Düring = [FV], I, 431–435 (Archytas B1). On the
other hand the elementary results traditionally attributed to Pythagoras show, if nothing else, that
quantitative developments also took place.

81Vitruvius, De architectura, V, v. The passage mentions the existence of a quantitative theory and
that the Greek systems he describes were not yet in use in Rome. Recent restorations have revealed
such acoustic chambers in the theater at Scythopolis (now Beit Shean in Israel).
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Again in the case of music, modern scholars generally pass stern judge-
ment on the Hellenistic period. The Oxford History of Music says:

Certainly, however, sophisticated poets were growing incapable of
making music, and musicians of writing sophisticated verse. When
the classical unity of Music was broken, the ‘music’ (in our narrow
sense of the term) was supplied by a professional engaged in the per-
formance.82

Classical Music versus ‘music’: broken unity: what an odd way to think
of the beginnings of what we understand by music! Such is the stigma of
Hellenistic culture. Elsewhere in the same article we read:

The forms of rural music were afterwards collected by Alexandrian
scholars, more from literary references than from life. They catalogued
over fifty generic or regional types of dance, with innumerable songs
of shepherd loves or of rustic labours — the ‘practical songs’ sung at
work by spinners, millers, reapers, and water-drawers.83

Despite the (unsubstantiated) jab at library-bound work — perhaps the
author fears competition in the realm of second-hand musicology? — we
cannot help but see developments that “foreshadow” modern attitudes:
scholarly interest in popular musical motifs and in the preservation of mu-
sical heritage in general, to which we may add a frequently cited emphasis
on professionalization and technical excelence.84

82[Henderson], p. 400.
83[Henderson], p. 391. For popular music and work songs see Athenaeus, Deipnosophistae, XIV,

618e–620a.
84[Henderson], p. 400.

.

8
The Decadence and End of Science

8.1 The Crisis in Hellenistic Science

Hellenistic science and indeed Hellenistic civilization, after their extraor-
dinary development in the third century B.C., ran into a crisis during the
next century.

The resumption of studies in the imperial period secured a revival of
ancient knowledge, but did not yield any new scientific theories; even the
scientific method itself was rejected. The rejection of theoretical concepts,
which as we have seen is implicit in Galen and will be seen explicitly in
Plutarch, was theorized on a philosophical level by the Skeptics. The best
extant exposition of Skepticism is the work of Sextus Empiricus Against
the mathematicians, written around 200 A.D. (see page 190).

Sextus writes against the possibility of constructing theoretical models.
His arguments are well represented in the following passages:

If there is such a thing as mathema and it is attainable by humankind,
it presupposes agreement on four things: the thing which is taught,
the teacher, the learner, and the method of learning. However, the
thing which is taught does not exist, nor does the teacher, the learner,
nor the method of learning, as we shall demonstrate. Therefore, there
is no mathema.1

1Sextus Empiricus, Adversus grammaticos ( = Adv. mathematicos I), §9. We use D. L. Blank’s trans-
lation (Against the grammarians, Clarendon, Oxford, 1998) except in leaving the word mathema un-
translated; its meaning is learning, study, or an object thereof (see page 190).
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Sextus then gives an argument for the nonexistence of the thing being
taught:

Furthermore, since some somethings are bodies and others are incor-
poreal, the things which are taught will, as somethings, have to be
either bodies or incorporeal. . . . Now body would not be a teachable
thing, and especially not according to the Stoics, for things that are
taught must be lekta, but bodies are not lekta and hence not taught. . . .
Nor indeed can the incorporeal [be taught, for] . . . every [incorpo-
real] is obviously under investigation. . . , some insisting that they
exist, others that they do not, and others undecided.2

The lekta (literally “utterables”, which is to say meanings) were for the
Stoics the only possible object of teaching; they are of course conceptual
constructs. In the imperial age, when the notion of theoretical models had
been lost, such entities were conceivable only as real objects: the alterna-
tive between “bodies” and “incorporeal beings” thus became ineluctable.
Some such entities were indeed made corporeal — witness the crystalline
celestial spheres which replaced the spheres of Eudoxus of Cnidus and the
epicycles of Apollonius of Perga. Likewise, the “visual rays” of optics reac-
quired the character of physical objects emitted by the eyes, which was
not present in Euclid’s theory. This new interpretation appears already
in a preface to Euclid’s Optics3 dating perhaps from the fourth century
A.D. and prepended to the work in manuscripts that contain the recension
generally attributed to Theon.4 Other entities, such as those of geometry,
were given an incorporeal reality.5 This placed geometry in the realm of
Platonic thought, a position that Hellenistic mathematics had left behind.

(The memory of the function played by theoretical entities in Hellenistic
science did not disappear completely. As late as the fifth century A.D., Pro-
clus muses, probably harking back to an ancient epistemological debate:

What shall we say about eccentrics, which are still the subject of talk,
and about epicycles? Are they mere inventions or do they really exist
in the sphere to which they are attached?6

2Sextus Empiricus, Adversus grammaticos §§19–20, 28, Blank translation (leaving lekta untrans-
lated: see subsequent text and also page 223, where the singular, lekton, is discussed).

3See [Euclid: OO], vol. VII, p. 150, where it is said that if the eyes were to be receivers of some-
thing rather than emitters they would have to be hollow, like the nose and ears.

4This attribution was made by Heiberg, who also discovered a different version of the work,
which he thinks is original, and which was transmitted by certain other codices. Both versions are
published in [Euclid: OO], vol. VII.

5For an explicit statement of this position, see for example Iamblichus, De communi mathematica
scientia, xxviii.

6Proclus, Hypotyposes astronomicarum positionum, 236:15–17.
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But he criticizes both possibilities.)
What were the causes of the crisis in science?
Many seem to share C. Préaux’s opinion that the development of ancient

science was hindered by Aristotle’s excessive authority.7

But note that Aristotle, for whom the brain had a cooling function, could
not possibly have enjoyed excessive authority in the eyes of Herophilus
and his disciples, the founders of neurophysiology, nor in those of Archi-
medes and Ctesibius, who had designed machines that could perform
operations whose impossibility Aristotle had “demonstrated”. We have
seen an analogous supersession of Aristotle in Aristarchus’ heliocentric
theory, in mathematical, linguistic and logical concepts, and even in the
criticism to finalism advanced by Theophrastus, the favorite disciple. It
is clear that science, to whose birth Aristotle had contributed, had since
developed without consideration to authority of any sort.

In the third and second centuries B.C. the main philosophical school,
the Stoa, found its main opponents to be the Epicureans and Skeptics;
it did not take issue with Aristotle except marginally. It is clear that the
“excessive authority of Aristotle” applies only to later ages and is often
backdated; therefore it may perhaps have been an effect, but certainly not
a cause, of the crisis in science.

A more serious hindrance to scientific activity probably lay in the long
wars between Rome and the Hellenistic states. We have already recalled
the plunder of Syracuse in 212 B.C. and the killing of Archimedes.8 In
several cities the whole population were reduced to slavery.9 The deci-
sive phase of the wars ended in 146 B.C., the year in which Carthage
and Corinth were razed to the ground. In the following year it was King
Ptolemy VIII who took it upon himself to eliminate the Greek community
of Alexandria.10

The Roman civilization of the third and second centuries B.C. was of
course not at all that of Virgil and Horace. The refined culture acquired
by the Roman intelligentsia was a result of continuing contact with the
Hellenistic civilization, through Greeks deported as slaves and through
looted books and works of art. But this took several generations.

7[Préaux].
8One always reads that this killing was a tragic mistake that greatly saddened the commanding

general Marcellus, whose express orders were that Archimedes should be spared. This may be a
revisionist version of events, attested first in Livy and later embellished by Plutarch; there is no
confirmation in Polybius, who already in Livy’s time was probably the sole trustworthy source on
the siege of Syracuse. The notion that a Roman general of the third century B.C. was in awe of a
scientist is probably anachronistic.

9Thus Anticyra in 211, Oreus in 208, Dyme in 207 B.C.
10See pages 11 and 69.
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The circumstances attending the arrival of the first Hellenistic painting
in Rome are recounted by Pliny. With the destruction of Corinth in 146
B.C., the Romans found themselves in possession of numerous art works,
which they auctioned off. For a painting of Aristides the Pergamene king
offered such an exorbitant bid that the Roman general Lucius Mummius
carted it away with him to Rome, in the belief that it had magic powers.11

By the turn of the century the civilizing of Rome had progressed to the
point where the Senate decreed an end to human sacrifices.12

From the middle of the second century B.C. there were practically no
Hellenistic cultural centers left. For a while Rhodes was an important
holdout, but its economic role was drastically rescaled by the Romans,
who eventually sacked the island in 43 B.C. The wars finally ended in 30
B.C. with the conquest of Alexandria, rounding off the submission of the
Mediterranean world to Rome’s sway.

It was in the first century B.C. that interest in Aristotle started to wax.
Until then, he had been ignored by philosophers; this we have for example
on Cicero’s authority, and he was in a position to know.13

The Library at Alexandria survived the Roman conquest,14 but other
Hellenistic libraries ended up as war booty and ornaments for the villas
of successful generals.15 The end of libraries must have been a significant
factor in the crisis of science; likewise the fashion among Roman aristo-
crats of acquiring cultured Greeks as slaves and using them as readers,
tutors and copyists. Cicero, in a letter to his brother Quintus, laments the
poor quality of Latin books, saying that in Rome one could not easily find
books that weren’t full of scribal errors, unless they were in Greek.16 We
must conclude that Rome had a lot more Greek-speaking copyists than
native ones; this gives an idea of the scale of the deportations that had
befallen the limited class of Greek intellectuals in the Hellenistic states.

11Pliny, Naturalis historia, XXXV §24. The same Mummius also carried home the bronze res-
onators that had enriched the acoustics of Corinth’s theater (see page 229) — not through any
interest in acoustics, of course, but to make a votive offering to the Moon (Vitruvius, De architectura,
V, v §8).

12Pliny, Naturalis historia, XXX §12. In truth, ritual killings did not stop; they simply turned into
gladiatorial games, losing part of their religious significance.

13Cicero, Topica, i, §3. Interest in the philosopher was reawakened by the arrival in Rome of
a copy of his works in Silla’s booty from the plunder of Athens in 86 B.C., and the subsequent
publication of a Roman edition by the grammarian Tyrannion, who, taken to Rome as a slave of
Lucullus, was later employed as a librarian and a tutor to Cicero.

14The conflagration of books that happened soon after Caesar’s arrival in Egypt was for a while
thought to have destroyed the Library, but in fact what burned down was a warehouse near the
harbor; the Library lingered on until the war against Zenobia under Aurelianus (late third century
A.D.), when it was destroyed for the first time. See [Canfora], pp. 68–70 and p. 195 (or pp. 76 ff. and
p. 201 of the original).

15See, for example, [Fedeli], pp. 31 ff.
16Cicero, Litterae ad Quintum fratrem, III, v–vi.
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What was Rome’s attitude toward science? To give an idea of the level
of Roman interest in the scientific method, it may suffice to mention that,
as far as is known, no one even attempted to translate Euclid’s Elements
into Latin until the sixth century A.D. The first complete translation seems
to have been Adelard’s: the year was around 1120 and Adelard was an
Englishman (from Bath) translating from the Arabic.17

When Varro lists in his agricultural manual earlier treatises on the sub-
ject, he says that Theophrastus’ writings are not so much for people who
care to cultivate land but for those who want philosophical learning.18

Why were the Greek scientist’s books, which contained besides much else
principles on which viticulture was reformed throughout the Hellenistic
world,19 labeled as philosophical texts with no practical utility? Evidently
because Theophrastus talks of theories. Varro, probably the most erudite
of Romans, is turned off by such things, which he does not understand. He
classes their content with the only “theory” whose existence he’s aware of:
philosophy.

Varro represents a prescientific culture, to which science was utterly
alien. By contrast, later Roman writers like Pliny or Seneca are fascinated
by Hellenistic scientific works: they cannot follow the logic of the argu-
ments, but nonetheless admire their conclusions, precisely because they
appear unexpected and marvelous. These authors try to emulate their
models while eliminating the logical connecting threads or replacing them
with ones which, though arbitrary, are easier to visualize and so lead faster
to the desired result, the wonderment of the reader. This contact with the
results of a science whose methodology remains impenetrable then has
the glaring effect of causing faith in common sense — a quality that earlier
writers like Varro did not lack — to be jettisoned.

Pliny twists his sources to such an extent that it is difficult to recognize
even known information. An example:

Some beasts of burden suffer from eye disease when the moon waxes.
But only man is freed from blindness upon the emission of fluids.
After twenty years [of blindness] sight has been restored to many. . . .
The great authorities say that the eyes are linked to the brain through

17A full list of medieval manuscripts containing even fragments of Euclid’s work can be found in
[Folkerts]. For the bigger picture, see [Stahl], an amusing book that makes patent the nonexistence
of “Roman science”.

18“. . . non tam idonei iis qui agrum colere volunt quam qui scholas philosophorum” (Varro, De
re rustica, I, v §§1–2).

19See page 250.
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veins. I would think to the stomach too: certainly anyone who has his
eyes ripped out is bound to vomit.20

If we did not know that cataract-removal operations had been practiced
for centuries21 and that Herophilus had described the optic and oculomo-
tor nerves, it would be just about impossible to figure out what “emission
of fluids” and what “veins” were meant in Pliny’s sources.

Pliny devotes many pages of his work to the life of bees. Having read
somewhere about the reason why beehives have hexagonal cells, he re-
places the complex scientific arguments with the following explanation,
which naturally seems simpler to him: “Every cell is six-sided because
each side is the work of one leg.”22

Pliny reports the measurement of the meridian, of 252,000 stadia, cor-
rectly attributing it to Eratosthenes and showing admiration for the result.
How does he think this result was reached? He talks about the burial of a
geometer, Dionysidorus, and recounts:

It is said that they found in Dionysidorus’ tomb a letter from him
to the living, according to which he had traveled from the tomb to
the lowermost point of the earth, and the distance was 42,000 stadia.
And there were geometers who interpreted the letter to mean that it
was sent from the center of earth, which is down as far as possible
from the top, like the center of a ball. From which data a computation
was carried out, and they announced that the length of the meridian
was 252,000 stadia.23

Thus Pliny makes much of the calculation whereby the circumference
was obtained from the radius given in the letter (using the value 3 for ß,
to boot). About Eratosthenes’ method, not a word. Pliny is only able to
imagine as evidence a direct measurement. The problem is not stupidity,
of course. Eratosthenes’ procedure — using a scientific theory as a model
for the concrete world — is absolutely incomprehensible to someone who
belongs to a prescientific culture. Pliny is thus forced to replace the true
intellectual voyage of Eratosthenes by the imaginary concrete voyage of
Dionysidorus, though he prefaces it by saying that it is a prime example
of “Greek boasting”.23a

20Pliny, Naturalis historia, XI §149.
21See page 212 and note 23 thereon.
22Pliny, Naturalis historia, XI §29. The scientific explanation was probably in Pliny’s sources; see

page 251.
23Pliny, Naturalis historia, II §248.

23aPliny’s incomprehension of science was matched by his scorn for Hellenistic figurative art.
Books XXX to XVI of his Natural history, which form our main literary source on Greek art, stop
at the beginning of the third century, when, according to Pliny, art entered into steep decadence.

8.2 Rome, Science and Scientific Technology 237

Seneca says that wine struck by lightning becomes solid and stays that
way for exactly three days, after which time it kills or maddens anyone
who drinks it. He mentions his “research” on the reasons for such effects
of lightning.24 Regarding mirrors he offers some brief “scientific” remarks
(leaving open the possibility that duplicates of the reflected objects exist
within the mirror25), but the pièce de résistance is an account of a man’s
enjoyment of magnifying mirrors while copulating with partners of both
sexes: a story that affords Seneca a brilliant conclusion to his discussion of
mirrors, fulminating against their depraved uses.26

Writings such as Pliny’s and Seneca’s have for centuries been consid-
ered as masterpieces of ancient science and as concentrated extracts of all
knowledge worthy of transmission, rendering inconsequential the loss of
so many other scientific works. One famous propagator of this optimistic
view was Gibbon, who wrote in his famous and influential Decline and fall
of the Roman Empire (1776–1788):

Yet we should gratefully remember, that the mischances of time and
accident have spared the classic works to which the suffrage of antiq-
uity had adjudged the first place of genius and glory: the teachers of
ancient knowledge, who are still extant, had perused and compared
the writings of their predecessors [such as Galen, Pliny, Aristotle];
nor can it fairly be presumed that any important truth, any useful
discovery in art or nature, has been snatched away from the curiosity
of modern ages. 27

Here is what Seneca had to say about technological innovations:

Also the question whether the hammer or the tongs were used first
does not seem very interesting to me. Both were invented by a clever,
sharp mind, not a great and lofty one. The same goes for anything
that is to be sought by looking at the ground, with the body bent. . . .

It is well-known that certain things date from our times, like the use
of window panes that let daylight through the translucent glass, or
the raised fixtures for baths and the pipes hidden in the wall that
spread the heat uniformly up and down. . . . These are all inventions

This judgement, shared by Vitruvius and Pausanias, though accepted uncritically until at least the
nineteenth century, now appears remarkably prejudiced (see in particular Section 7.6); in any case it
is at variance with the actual tastes of cultured Romans, whose appetite for Hellenistic art, original
or in imitation, was if anything greater than for classical objects.

24Seneca, Naturales quaestiones, II, xxxi §1 + liii §1.
25Seneca, Naturales quaestiones, I, v §1.
26Seneca, Naturales quaestiones, I, xvi–xvii.
27Gibbon, History of the decline and fall of the Roman Empire, chapter LI, part VII.
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of base slaves. Wisdom has her throne higher up, and not the hands
but the minds does it teach.28

Vitruvius is known to have been Rome’s main writer on architecture.
In his book on the subject he tries to give a complete picture of current
technology, from building construction to the manufacture of automata,
from clocks to organs to war engines. Some examples will illustrate his
understanding of scientific technology. After having described water lev-
els,29 he says:

Perhaps readers of Archimedes will say that a true level cannot be
made with water, since he asserts that the surface of water is not
even [libratam] but is the surface of a sphere centered at the center of
the earth.30

Thus he is aware neither that the surface of the water can be at once hori-
zontal and spherical, nor that the roundness of the earth can have no effect
on objects the size of a water level. Later in the paragraph he “overcomes”
the “difficulty” with this remark:

It is necessary that the place where the water is poured in should
have a bulge or curvature in the middle, yet the heads of the left and
right water columns should be level against one another.

We should not chalk this lack of understanding up to Vitruvius’ per-
sonal limitations, of course: it is an inevitable consequence of the absence
of the notion of a theoretical model. And it should be said, to his credit,
that unlike other authors Vitruvius was quite aware of how difficult it
was to understand and translate Greek sources. He says, for example, that
acoustics is treated in works “obscure and difficult, particularly for those
who don’t know Greek”.31

In Vitruvius’ work, the hydrostatics of Archimedes boils down to the
observation that, if you immerse something into a full container, the liquid
overflows in an amount equal to the volume of the object. After recounting
this “discovery” as one of the scientist’s most dazzling ideas, Vitruvius
closes his discussion of hydrostatics with the vignette of the hollering
Archimedes running home naked.32

28Seneca, Epistulae ad Lucilium, xc, §13.
29These were essentially communicating columns of water; cf. page 100.
30Vitruvius, De architectura, VIII, v §3.
31Vitruvius, De architectura, V, iv §1. Likewise Lucretius, the Roman intellectual who came closest

to understanding Hellenistic science, stressed at the beginning of his poem how hard it was to cast
into Latin the “obscure discoveries of the Greeks” (De rerum natura, I:136–139). Of course it’s even
harder for us to translate the other way around, that is, to reconstruct the contents of lost sources
based on writers who at best found them obscure.

32Vitruvius, De architectura, IX, preface, §§9–12. For over two thousand years Vitruvius has been
the favored source on Archimedean hydrostatics, over Archimedes himself, and this although On
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Vitruvius’ regard for the role of applied science is the greatest of any
Latin author. His enumerates the fields of knowledge required by a good
architect (a term encompassing those who build all the sorts of objects he
discusses). They are writing, drawing, geometry, arithmetic, history, phi-
losophy, music, medicine, law and astronomy.33 But consider the ensuing
explanation of the uses of this knowledge: astronomy is regarded as nec-
essary, in essence, for determining the four points of the compass,34 and
geometry for understanding the use of squares and levels. The computa-
tion of the total cost of a building heads the short statement of the appli-
cations of arithmetic; much more space is devoted in this introduction to
“history” (understood as a collection of anecdotes that the architect should
know in order to be familiar with the subjects of ornamental statues) and
to law, needed for contract drafting and for the long and varied lawsuits
that accompany the building process.

Vitruvius’ work represents the highest level achieved by a Roman tech-
nical treatise. As for the rest, Frontinus, the author of the main Latin work
on aqueducts, systematically mixes up the flow rate of a pipe with its cross
section, thus ignoring, in particular, the role of the slope.35 The high tech-
nological level of Roman aqueducts36 seems hard to reconcile with such
incompetence, but we should not forget that Frontinus was not an engi-
neer but the bureaucrat in charge of Rome’s water supply (the powerful
curator aquarum), whereas the actual designers, builders and maintainers
of aqueducts were slaves37 who of course were not in a position to write
books.

In the same way we find that, for all productive activities with techno-
logical content, Rome had to import either finished goods or workers from
the East.

floating bodies has survived. Thus, for example, [Geymonat], vol. I, p. 298, and [Boyer], p. 137 (1st
ed.), p. 122–123 (2nd ed.). Discussing the anecdote of Hiero’s crown, Boyer takes Vitruvius at face
value, discarding as an idle complication the idea — which at least is based on Archimedean prin-
ciples! — of determining density by measuring buoyancy. (“It is also possible, although less likely,
that the principle [of buoyancy] aided [Archimedes] in checking [the crown]. Such fraud could
easily have been detected [in the manner told by Vitruvius]”. In fact, as anyone who has attempted
the experiment knows, the spilled-water method is grossly inadequate for the determination and
comparison of irregular volumes.) The buoyancy method is explained and attributed to Archi-
medes in the didactic poem De ponderibus et mensuris, written around 400 A.D. (Anthologia Latina,
I.2, 32:125 – 37:185, ed. Riese).

33Vitruvius, De architectura, I, i §§3 ff.
34Further astronomical knowledge is deemed necessary only to builders of clocks, who must

take into account the seasonal variation in day length.
35Frontinus, De aquis urbis Romae, I §§25–63.
36[Hodge: RAWS].
37This we know from Frontinus himself (De aquis urbis Romae, II §§96 + 118); see also [Finley:

AE], p. 75.
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8.3 The End of Ancient Science

The level of science in the first two centuries of our era, though low if
compared with the early Hellenistic period, is still very high relative to
later centuries. This can be seen from the literature. In some cases, as in
Pappus’ Collection, dating from the fourth century A.D., the quality of the
results contained in a late work is still very high; however, the work is
not original, but, as the name implies, a collection of earlier results, which
acquired importance with the loss of the sources. Pappus’ scientific profi-
ciency can be gauged when his contribution stands next to the source, as in
the case of his commentary on the Almagest: it then becomes clear that he
was no scientist, but a compiler with scarcely any intellectual autonomy.38

Sextus Empiricus is a bitter critic of the scientific method, in which he
does not believe. But he still represents the culture that nurtured the sci-
entists and philosophers he polemizes against: he can read their work and
use against them arguments couched in the rational language of ancient
philosophy. It is not by accident that his writings are for us a major lode
that can mined for information about, for instance, propositional logic and
semantics.

As time went by, the climate in what had once been the great Hellenistic
intellectual centers got overrun by irrationalist winds. Chemical knowl-
edge, contaminated by magic and religious elements, gave rise to alchemy;
astronomical lore dwindled and turned into no more than a lingo for the
casting of horoscopes. Thus was science smothered, while the ever-present
human tendency toward superstition gained new and fertile channels of
expression. And never since then did pseudoscience — the combination
of irrational beliefs with a language borrowed from science but devoid of
scientific methodology — yield its position of supremacy, at least as far as
popular attention is concerned.

Hellenistic philosophy became incomprehensible and attention turned
to authors ever more distant in time: to the interest in Aristotle and Plato,
which started to grow in the first century B.C., was added an interest
in Pythagoras. Thanks to the return of numerology, spearheaded by the
neo-Pythagoreans, even mathematics was plunged into an atmosphere of
irrationalism.39

Hipparchus of Nicaea was one of the authors who were retroactively
lumped with the Pythagorean tradition. A Letter from Lysis to Hipparchus
was concocted in which Lysis censures Hipparchus for having spread

38See, for example, [Neugebauer: HAMA], vol. II, p. 968.
39Among the attestations of this tendency we recall the works of Nicomachus and Iamblichus,

as well as the Theologoumena arithmeticae that have been attributed to the latter.
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Pythagorean knowledge outside the school, in violation of secrecy vows.40

The origin of this anachronism (Lysis was a Pythagorean of the fifth cen-
tury B.C. and Hipparchus lived three centuries later) is surely a confu-
sion between Hipparchus and Hippasus of Metapontus.41 Thanks to this
apocryphal letter, Hipparchus was regarded by many moderns as a rep-
resentative of the Pythagorean school; for example Copernicus, thinking
the Letter from Lysis to Hipparchus to be authentic, included a translation of
it in his De revolutionibus orbium caelestium.42

Even the amalgams of ancient traditions with scientific elements ran
into hard times, and eventually all remnants of ancient scientific culture
was destroyed. The Serapeum, which had been the first public library, was
demolished by Theophilus, patriarch of Alexandria, in 391. In 415, as we
have mentioned, Hypatia was lynched. She was the last commentator of
scientific books in Alexandria.

40The letter was published by Marcus Musurus, ��� ��� ��� �
��� � � ��� � 	�� 
 � � � ��� � � 
�� � � � 	�� 
�� � � ���

����
 (Letters of various philosophers, orators and wise men), Venice, 1499. A shorter version is reported
by Iamblichus (Vita pythagorica, xvii, §§75–78).

41Diogenes Laertius (Vitae philosophorum, VIII §42) quotes from a certain Letter from Lysis to Hippa-
sus, which probably served as the model for the letter to Hipparchus. The contents seem to be much
the same — Lysis scolds Hippasus for having publicly taught men from outside the school — but
this letter, though probably just as apocryphal, is at least plausible, since Hippasus was according
to tradition the Pythagorean who divulged the secrets of the school. Hippasus is called Hipparchus
by Clement of Alexandria (Stromata, V, ix §58). A scholium to Plato’s Phaedo, reported in [FV] under
Philolaus, A1a (vol. I, p. 398), yokes Hipparchus and Philolaus as the only two Pythagoreans to
have been saved from Cylon’s persecution (thus placing Hipparchus in the role that the tradition
assigns to Lysis). The confusion between Hipparchus and Hippasus was first remarked by Diels in
a passage of the Placita; see [DG], prolegomena, p. 213.

42This translation was in the manuscript of the first book, but was suppressed in the 1543 edi-
tion and subsequent ones. It can be found in Koyré’s French edition of the De revolutionibus (Des
revolutions des orbes celestes, Paris, F. Alcan, 1934).
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9
Science, Technology and Economy

9.1 Modernism and Primitivism

In the mid-century Social & economic history of the Hellenistic world we read:

We may accept, for instance, the view of many modern scholars, that
the brilliant development of exact science in the Hellenistic period
contributed largely to the improvement of methods of production
and exchange, by the invention of new technical devices in the eco-
nomic spheres in question.1

Leaving exchange aside for the moment, we can analyze the opinion that
Rostovtzeff accepts and summarizes in this passage by splitting it into
four theses:

1. During the Hellenistic period there was a brilliant development of exact
science.

2. Hellenistic science had nonmarginal technological applications.
3. Potentially important applications of scientific technology to produc-

tion methods were devised.
4. Some of these applications were in fact used to a significant extent, lead-

ing to appreciable economic progress.

Rostovtzeff’s modernist theses contrast with the views of primitivists
who have denied all four points above.

Thesis 1 might seem downright obvious. But for a long time a majority
of scholars maintained primitivist views even on science proper, engaging

1[Rostovtzeff: SEHHW], vol. II, p. 1180.
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in a debate on the causes of the putative scientific backwardness of Hel-
lenistic culture in articles such as C. Préaux’s “Stagnation de la pensée
scientifique à l’époque hellénistique”.2 Of course, any change can be seen
as indicative of stagnation or regression by those who choose to place else-
where the apex of the process under study (say by regarding Aristotelian
thought as the unsurpassed high tide of scientific thinking).

In any case, the other three theses have had a hard life and few histori-
ans of technology or economics have subscribed to them.

Among scholars who have denied any relationship between science and
technology in Antiquity many have wondered how on earth ancient sci-
entists were so oddly unable to find technological applications for their
science. One answer that enjoyed popularity for some time was that they
were all afflicted by “mental block”.3

Others, less charitable, think that technology was channeled toward
useless goals through a conscious and perverse decision. Here, for exam-
ple, is the opinion of two intellectuals of very high caliber:

Alexandrian technology was directed almost entirely toward games
and amusements, ever more costly and elaborate, in which a constel-
lation of rich parasites sought relief for their ennui.4

Certain historians of science, such as Dijksterhuis, having a profound
acquaintance with Hellenistic technology, have indeed accepted thesis 2
of the preceding page, realizing that Hellenistic scientists created a good
part of the technology that underlay Europe’s Industrial Revolution; but
these same historians then wonder why ever this technology was created
only “for amusement”, with no awareness of its usefulness.5

For several decades the contest between modernist or maximalist views
on the one hand and primitivist or minimalist views on the other leant
decisively toward the latter, thanks in no small part to M. Finley’s influen-
tial writings.

Finley, who once boiled all the technological innovations of “the Greeks
and Romans” down to a “fairly exhaustive” list of thirteen items,6 also
wrote:

2[Préaux].
3The mental block theory was put forward in 1938 in [Schuhl].
4[Enriques, de Santillana], p. 497.
5See Dijksterhuis’ quote on Heron, on page 131, and the subsequent discussion.
6[Finley: TIEP], first paragraph. The entries are: gear, screw, rotary and water mills, screw-press,

fore-and-aft sail, glass-blowing, hollow bronze casting, concrete, dioptra, torsion catapult, water
clock, water organ, automata driven by water and wind and steam. Astoundingly, he concludes:
“it adds up to not very much for a great civilization over fifteen hundred years” (as if the rate of
innovation had been constant throughout that period).
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[The Ptolemies] reclaimed great quantities of land, they improved
and extended the irrigation system, they introduced new crops, they
moved Egypt belatedly from the bronze age into the iron age . . . all in
the interest of the royal revenue, and all amounting to nothing more
than giving Egypt the advantages of already existing Greek tech-
nology and Greek processes. Simultaneously, the Ptolemies founded
and financed the Museum at Alexandria, for two centuries the main
western centre of scientific research and instruction. Great things
emerged from the Museum, in military technology and in ingenious
mechanical toys. But no one . . . thought to turn the energy and in-
ventiveness of a Ctesibius to agricultural and industrial technology.
The contrast with the Royal Society in England is inescapable.7

Finley warns us against the danger of mapping onto ancient societies
conceptual and economical structures characteristic of the modern world,
and denies that the ancient world ever witnessed in a significant way
nonagricultural economic activities, capital investments in production or
real economic growth.

He also maintained — and this is a key point in primitivist thought —
that in Antiquity the city was a center of consumption but not of produc-
tion. Admittedly, the argument goes, a certain number of city dwellers
engaged in craftsmanship (primarily to supply their own city), but on the
whole cities and towns lived at the expense of their surroundings.

Leaving that aside until Section 9.5, we have seen ample evidence that
the first two theses that summarize Rostovtzeff’s position (page 243) are
correct, and we will devote the rest of this chapter to an analysis of the
role played by scientific technology in the production of goods and in the
economy. Since the primitivist views refer to all of Antiquity and since we
have much more information about the imperial period, we will not be
able to limit ourselves to the Hellenistic period.

9.2 Scientific and Technological Policy

One argument of primitivists is that interest in technological progress was
altogether absent in Antiquity. An oft-cited anecdote in this regard is about
the Emperor Vespasian, who supposedly vetoed the installation of some
device capable of move heavy columns at a low cost, in order “that he
might be able to feed the mob” with labor-intensive projects.8 Another
well-known story goes like this: an artisan, who had invented a method

7[Finley: AE], p. 148.
8Suetonius, De vita Caesarum, Vespasianus §18.
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to make glass unbreakable, sought to see Tiberius in the hope of a reward.
The emperor, after ascertaining that the man had not shared his secret, put
him to death, fearing that the spread of infrangible glass would debase the
value of gold.9 Of course a lack of interest in technology on the part of the
Roman ruling class cannot be denied — and we have seen examples of it
before10 — but it can hardly be thought representative of the “Ancients” as
a whole.

In the Hellenistic states the attitude of authorities toward science and
technology was markedly different.

An Egyptian papyrus of the third century B.C. (Figure 9.1) contains a
letter to the king in which one Philotas, otherwise unknown, urges the
adoption of a new water-lifting machine he had invented.11 We don’t have
the response, but from the progress documented in this sector (Section 4.6)
it seems unlikely that the story ended badly for Philotas.

The Ptolemies founded the Mouseion (Museum) at Alexandria, the first
public research institution we have notice of.12 Strabo tells us that meals
were served in a common room.13 This shared life must have favored cul-
tural exchanges: if we keep in mind that Herophilus may have regularly
sat at table with Euclid and Ctesibius, it is easy to imagine the extent of
their mutual influences.

In the Mouseion, for the use of its scholars, was the famous Library.
Ptolemy II Philadelphus stocked it through purchases in every market,
through requests to other states with which he had dealings, and through
his famous “book toll”: every ship that put in at Alexandria had to declare
all books on board and donate them to the Library, receiving a copy in ex-
change. At the same time he fostered the publication of many new books,
particularly translations of foreign works. In a few decades the collection
grew to about half a million books. A separate section of the Library, called
the Serapeum, was open to the public: in Callimachus’ time (third century
B.C.) it contained 42,800 books.

Science and technology had pride of place among the studies promoted
by the Ptolemies: not only did Alexandria’s scholars include such names

9Told by Petronius (Satyricon, ix) and various other authors.
10See pages 237–239.
11Edfou papyrus 8. The author of the letter asks to be assigned to the strategus Ariston, who

presumably was in charge of waterworks. It may have been the same Ariston to whom Philo
of Byzantium devoted his Pneumatics (for the various forms in which the name appears in the
manuscripts see [Philo/Prager], p. 48).

12The Academy and the Lyceum in Athens had many features in common with it, but were
private institutions.

13Strabo, Geography, XVII, i §8. We have no account of the Mouseion dating from the third or sec-
ond centuries B.C., but it seems likely that the practice in question held also in the early Ptolemaic
period, if only because it was adopted at the Lyceum at well.
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FIGURE 9.1. Papyrus Edfou 8 is a letter by the inventor of a water-lifting machine,
urging the authorities to adopt his creation. (Courtesy University of Warsaw,
Institute of Archaeology.)

as Euclid, Ctesibius, Eratosthenes and Apollonius of Perga, but all scien-
tists of the time maintained contacts with the city.

How about Hellenistic states other than Egypt? One case where the little
we know is enough to show the existence of an energetic scientific policy
is the statelet of Pergamum. The Attalids created there a library second
only to that of Alexandria. Attalus III wrote a treatise on agriculture, and
he and other rulers of the same dynasty sponsored experimental studies
in botany, even devoting themselves and the royal gardens to them. The
Attalids were particularly eager to develop civil and military engineering.
We have already mentioned the Pergamene syphon aqueduct,14 part of an
extensive water distribution complex. Biton’s book on military technology
was dedicated to Attalus I. The protection extended by these rulers to the
greatest experts in military construction bore good fruit, to judge from

14See page 118.
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the fortifications they built, whose innovative characteristics include the
extensive use of arches and vaults as well as new types of towers designed
to accommodate the latest forms of artillery.15

About the Seleucid state we have little information, but we know that
naval technology in the third century vied with that of the Ptolemies; we
also know about the development of mathematics and mathematical as-
tronomy and we have seen that the rise in Alexandria of the Herophilean
school of medicine was matched by the contemporaneous activities of Era-
sistratus, probably in Antioch. We have notice of libraries in other states,
such as Macedonia. We have seen that the first water mill on record was
built at Cabeira by the king of Pontus; his palace also boasted a zoo.16

Strabo mentions astronomical observatories in Caria and in Libya, go-
ing back to Eudoxus.17 And it is well-known that Syracuse’s ruler, Hiero
II, used naval and military technology based on Archimedes’ scientific
achievements.

These examples suggest that the attention paid to science and technol-
ogy by the rulers of Egypt and Pergamum was shared, to a greater or
lesser degree, by the whole Hellenistic world.

Cultural policy absorbed considerable economic resources. Many of the
books published in the Alexandrine Library were translated into Greek
by teams of bilingual experts brought in from their countries of origin;18

the funding for such editions, given their very great number, must have
been a sizable budget item even for the rich Ptolemaic dynasty. The na-
ture of the Hellenistic rulers’ interest in culture is well illustrated by the
“paper wars”: Ptolemy II Philadelphus, in order to stunt the growth of the
Pergamene library, stopped exporting papyrus out of Egypt.19 This can be
interpreted not so much as a bibliophile’s act of jealousy towards a rival
but as an attempt to prevent other states from acquiring a product of per-
ceived strategic importance. Clearly, Hellenistic rulers supported culture
not out of intrinsic high-mindedness but because they saw in knowledge
an essential source of power.

State-funded cultural initiatives, including book publishing, often had
political ends. The translation of the Hebrew Bible into Greek known as
the Septuagint was at once an instrument and an effect of the Ptolemies’
policy of assimilation of the important Jewish community in Alexandria.

15[McNicoll], pp. 118–156.
16Strabo, Geography, XII, iii §30.
17Strabo, Geography, II, v §14; XVII, i §30.
18According to Pliny (Naturalis historia, XXX §4), just the Zoroastrian corpus involved the trans-

lation into Greek of two million verses, a task requiring extensive organization and coordination.
19As is well-known, Pergamum’s reaction was not to stop making books but to develop the

writing medium that we now know as parchment (from the Greek pergamene).
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In the first half of the third century B.C. the Egyptian priest Manetho com-
piled an Aegyptiaca and the Babylonian priest Berossus wrote a Babylonian
history dedicated to Antiochus I Soter. The goal of these Greek-language
works was to give the ruling class in those states a better understanding
of the local culture. Hellenistic kings realized that knowing one’s subjects
is a way of strengthening one’s power.

Interest in science also seems to have had economic motivations. This is
most obvious for the small Attalid kingdom, whose rulers, as we just saw,
sponsored research in areas that promised an immediate practical return,
such as agriculture and engineering. That this interest in agriculture was
not a hobby but aimed at acquiring knowledge useful in improve crop
yields may be seen from the fact that most of the authors of treatises on
agriculture mentioned by Varro20 are connected in some way or another
with Pergamum.21

9.3 Economic Growth and Innovation in Agriculture

Whereas opinions differ on whether there were economically important
nonagricultural activities during certain periods of Antiquity, there is no
doubt that agriculture did remain the mainstay of the economy through-
out the ancient world. In investigating whether scientific development
had economic consequences, therefore, we must start by asking if science
was applied to agriculture.

That theoretical knowledge was applied to agriculture is indicated by
the flourishing of treatises on the subject. Varro writes that in Greek there
were fifty such works, and he names forty-nine of them.22 Not a single
one has been preserved, nor do we have reliable quotes from them. It is
indisputable that they were the ultimate origin of all Roman knowledge
about the subject, but there is very little hope of reconstructing any sig-
nificant fraction of their content based on the writings of learned Romans.
Indeed, it seems that the chief source used by Varro and other Roman
writers on agriculture was Diophanes of Bithynia, who summarized the
translation made by Cassius Dionysius of the large handbook written by
the Carthaginian Mago, itself a compilation of various Hellenistic treatises
on agronomy.23

Many plants indigenous to other lands were acclimated for the first time
in the Hellenistic kingdoms. Preexisting plants were improved thanks to

20Varro, De re rustica, I, i §§8 ff.
21[Rostovtzeff: Pergamum], p. 694.
22Varro, De re rustica, I, i §§8 ff.
23[Rostovtzeff: SEHHW], vol. II, p. 1183.
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seeds imported from different countries. Progress in husbandry was like-
wise impressive: animals from elsewhere were acclimated, breeds were
improved through crosses, and wild animals such as hares, dormice and
boars began being raised,24 as did fish species. Innovations of this type had
of course been happening since neolithic times, but on a wholly different
time scale. There are clues that in early Ptolemaic Egypt the acclimation
and hybridization of species were carried out under the supervision of
Mouseion scholars: for example, in a passage by Athenaeus about the zoo
founded by Philadelphus in the royal district, the subject is brought up in
connection with new bird breeds obtained there,25 and the close link be-
tween the study of botany and the development of cultivation techniques
is clear in the botanical works of Theophrastus.

We also know that viticulture was reformed following directions laid
down by Theophrastus.26 In this regard R. J. Forbes writes:

Theophrastus believes that plants derive their vital spirit (pneuma)
from the soil and draw it up through the pith, together with water.
From this theory he deduces the correct way of striking cuttings from
good vines, the conditions under which they should be planted, the
porosity and moisture of the soil, and the care of the cuttings. Graft-
ing he rejects, but he discusses the uses and methods of pruning.
Despite the defects in his knowledge of plant physiology, his advice
is generally good and often so much in accordance with modern
views that we may reflect how little the practical experience of vine-
growers has advanced during the last 2200 years. It shows that Greek
genius raised viticulture to a very high level of achievement.27

If, as is likely, Theophrastus judged the value of a theory by its use-
fulness and simplicity, he would be amazed to read that his theories are
considered “defective” today by those who still follow his advice in spite
of having acquired vastly more complex knowledge.

Some of the advances lay simply in the adoption and spread throughout
the Hellenistic world of the best techniques practiced in the various parts
of the ancient empires. For example, the seeder, already used in Meso-
potamia, was introduced to Egypt, while egg incubators,28 long traditional

24Varro says that the first Romans who tried breeding these species learned about the practice
in the books by Mago and Cassius Dionysius (De re rustica, III, ii §§13–14). In the same context he
mentions the introduction of fish-farming.

25Athenaeus mentions hybrids of pheasants with guinea fowl (Deipnosophistae, XIV, 654b–c).
26Theophrastus, De causis plantarum, III, xi §1 – xvi §4.
27[Forbes: FD], pp. 131-132.
28Artificial incubation in a temperature-controlled environment is mentioned by Pliny (Naturalis

historia, X §154).
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in Egypt, became known to the Greeks.29 (In the early sixteenth century
Thomas More wrote admiringly that in Utopia “vast numbers of eggs are
laid in a gentle and equal heat, in order to be hatched”,30 but incubators
would remain a mere literary memory still long after that.)

In Hellenistic times, as in classical Greece, honey and wax had multi-
farious and extensive uses, and apiculture enjoyed considerable economic
importance. The growth of knowledge in this field (and, for that matter,
in entomology in general31), is demonstrated by the existence of treatises
on apiculture. Pliny mentions two: one by Aristomachus of Soli, who “did
nothing else” in his whole life but study bees, and one by Philiscus of
Thasus.32 We do not have these works, but a lovely page of Pappus gives
us a taste of the scientific level of these studies and an example of the inter-
action between exact and empirical sciences. Pappus, in the introduction
to the book where he deals with minima, passes on the observation that
bees, in building hexagonal hives, have solved an optimization problem,
because among regular polygons that tile the plane the hexagon is the one
with the least perimeter for a given area, and therefore the one that allows
the use of the least amount of wax to hold a given amount of honey.33 This
remark was made again many times in the modern age, becoming a cliché
of sorts.

About advances in agricultural machinery we know little. Rostovtzeff,
after mentioning the use of technological innovations to extend the area
under cultivation, says:

The question arises how far in the same period Egyptian agriculture
benefited by similar technical inventions. Our information on this
point is meagre. There is hardly any literary evidence; the papyri
occasionally mention agricultural implements, but the references are
not easy to interpret; and the agricultural implements themselves,
though found in large numbers, have never, as I previously remarked,
been collected, described, and analysed from the technical and histor-
ical standpoint.34

One big step forward in agriculture, reflecting probable breakthroughs
in ore extraction and metallurgy, was the diffusion of iron tools and ma-

29Diodorus Siculus, Bibliotheca historica, I, lxxiv §§4–5; Aristotle, Historia animalium, VI, 559b:1–5.
30Thomas More, Utopia, book II, at 3%.
31Incidentally, Plutarch offers us a glimpse of the introduction and subsequent abandonment of

the experimental method in entomology when he berates certain scientists (whom he nonetheless
uses as sources!) for having systematically cut up anthills to study their internal structure (Plutarch,
De sollertia animalium, 968A–B).

32Pliny, Naturalis historia, XI §19.
33Pappus, Collectio, V, 304–306.
34[Rostovtzeff: SEHHW], vol. I, p. 362.
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chines with iron parts, which were at first extremely rare both in Egypt
and in Greece. There was automation too. Pliny mentions animal-powered
automatic harvesters with teeth and blades.35 Similar implements were
still in use in Gaul in the fourth century A.D. and were described in greater
detail by Palladius in his work on agriculture.36

The Ptolemies put to use much virgin land, draining marshes and ir-
rigating the edge of the desert; in both cases essential use was made of
water-lifting machinery, and likewise in regulating the floods of the Nile
(that is, watering fertile land in years when the flood was weak and drain-
ing it in the opposite case).37 The source of lifting power was sometimes
the stream itself, thanks to a wheel that combined paddles and water-
holding compartments.38

All of this shows that the Hellenistic scientific revolution made possible
very significant changes in agriculture, but we do not have enough direct
information to figure out to what extent the new possibilities were effec-
tively put to use. Still, what demographic data we have speak eloquently:
whereas in the late Pharaonic period the population of Egypt is estimated
to have been about three million, at the beginning of our era it was eight
million: half a million in Alexandria39 and seven and a half in the rest of
the country.40 An interesting comparison can be drawn with an estimate
of Egypt’s production capacity, published in 1836, to the effect that eight
million was the maximum population that could be fed if all land capable
of cultivation were sown.41 The same source put the actual population at
the time at less than half that number. By 1882, after economic reforms
and a half-century of growth, it had reached 6.8 million.42 One might add
that Hellenistic and Roman Egypt was a major exporter of agricultural
produce and grain in particular.

We note that while it is easy to document the use of new agricultural
know-how in the Hellenistic period but difficult to quantify its impact,
most scholars who recognize the existence of growth in the agricultural

35Pliny, Naturalis historia, XVIII §296.
36Palladius, De re rustica, VII §§5–7. The machine was very simple, but still beyond the ken of

medieval and early modern Europe. In the 1830s an English translation of Palladius came into the
hands of an Australian farmer, who derived “Ridley’s stripper” from it; see for example [Thomp-
son], pp. 80–81.

37See, for example, [Oleson: WL], p. 247.
38Vitruvius, De architectura, X, v §1.
39This number is based primarily on a statement of Diodorus Siculus (Bibliotheca historica, XVII,

lii §6) that the city had about 300,000 free residents. For discussion see [Fraser], vol. II, pp. 171–172,
note 358.

40Flavius Josephus, Bellum iudaicum, II, xvi, 385. His number is compiled from tax rolls, so we
may presume it is, if anything, an underestimate. Josephus wrote around 75 A.D.

41[Lane], last three pages of introduction.
42[Walek-Czernecki]; cited in [Bowman], p. 17.
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economy in Antiquity place that growth in the early imperial period, on
the basis of a variety of evidence.43 We will return to this point.

9.4 Nonagricultural Technology and Production

Many scholars continue to maintain that technical innovations were irrel-
evant to economic output in the classical world, but admit an increasing
number of “exceptions”.

In several places in northern Africa there is archeological evidence of
big plants for the production of olive oil: their study has shown that the
output was probably meant for export and that production was certainly
based on up-to-date technology.44 This then is one of the “exceptions”. But
keep in mind that screws were a technological novelty of the Hellenistic
period and that their introduction was connected with science, as attested
by the fact that one of our few (and reticent) sources about presses, in
particular olive-presses, is Heron of Alexandria.45

In Hellenistic times new types of glass were produced and the new
technique of glass blowing was introduced, which in Syria gave rise to
blowing in molds. Today there remain many objects with the trademark
of Ennius, the most famous imperial-age producer of blown-glass objects.
His business was headquartered in Syria and had a branch at Rome. The
magnitude of his and similar firms was such that some have suggested
that glass blowing was the only exception to the economic negligibility of
technological innovations in Antiquity.46

Returning to water lifting, we now know from archeological evidence47

that an advanced technology, developed in close connection with science,
was employed on a vast scale and had significant economic consequences.
Water lifting was essential not only in agriculture, but also in draining
mines and ships. The most powerful drainage installation known from the
imperial age is that of the gold mines at Rio Tinto, in Andalusia, Spain. At
least eight pairs of water wheels, placed at different levels and working in
series, allowed water to be raised by about thirty meters (Figure 9.2).

Among nonagricultural economic activities, mining was particularly
significant and had been since classical Greece. The lead and silver mines
of Laurium, near Athens, had over ten thousand workers. Metal yields

43See [Millett], for example. But he warns: “I am only too aware that my discussion ignores the
possibilities for growth through the Hellenistic world; in particular, Ptolemaic (and later Roman)
Egypt, where materials for such a study may come closest to existing” (p. 41, note 46).

44[Mattingly: ORW]; [Mattingly: OPRA].
45Heron, Mechanica, III §§13–20.
46See [Manning], for example.
47Much interpretive work has been done by J. P. Oleson; see, in particular, [Oleson: GRWL].
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FIGURE 9.2. General arrangement of Roman water wheels uncovered during the
years 1919 to 1921 at Rio Tinto mine. From [Palmer], p. 303.

benefited from progress both in metal refining and in tunnel digging. The
remarks in Pliny and Livy about the use of “vinegar” to eat through rock
have generally been taken skeptically, but to pass judgement one would
need to know what “vinegar” they meant.48

To what extent did metal production change by virtue of progress in ex-
cavation, drainage, extraction and refining techniques? A partial response
is provided by the fact that in early Hellenistic times iron, which until
then had been scarce and was saved for weapons and knives, came into
common use for tools and machinery of every kind.

48See footnote 102 on page 170, and Pliny, Naturalis historia, XXIII §57; XXXIII §71.
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About the question of mining output we do have some potentially quan-
titative evidence of a global nature. Investigations of the northern polar
ice cap have shown a peak in lead and copper pollution in the atmosphere
corresponding to the early imperial age.49

From the little information we have about metallurgical procedures we
can glean certain technological innovations in the area of metal refining.
For instance, Polybius tells us about new blacksmith’s bellows, perhaps
fed by the Ctesibian pump.50

Among matter-transformation industries, some of the most important
in the Hellenistic period were the manufacture of medicines, unguents,
perfumes and dyes. These industries made essential use of new medical,
botanical and chemical knowledge in their processing of plant, animal and
mineral substances. (Some of the medicines mentioned by Dioscorides are
of mineral origin, such as verdigris and the copper mineral called chalkitis.)

One hint about both the availability of new products and the increasing
importance of materials of mineral origin is in a passage by Plutarch that
mentions nonflammable fabrics made from asbestos fibers. Admittedly
this was not an economically important use, but neither was it an isolated
curiosity, since the fibers were mined until the vein was exhausted.51

The most important of the ancient technologies long ignored by histori-
ans is probably the utilization of water power. Thus Marc Bloch, in spite of
having been the first to recognize the Greek origin of water mills, wrote:

For one should make no mistake: the water mill, though an ancient
invention, is medieval from the point of view of its effective diffu-
sion.52

His opinion was based primarily on the absence of clear literary references
to water mills in the first three centuries A.D. and was long shared by all
historians, who felt that the intensive utilization of water power was a
major mark of technological progress in the Middle Ages.

Of the ancient sites where the use of water power is archeologically at-
tested, the most important is the flour plant at Barbegal, near Arles, where
imposing remains have been found: grain was milled by 32 stones turned
by sixteen vertical water wheels arranged in pairs on eight levels. Though
many researchers think that the flour was exported, R. Sellin believes that
the plant was designed to serve local needs.53 The plant was originally

49[Hong et al.: Lead]; [Hong et al.: Copper].
50Polybius, Historiae, XXI, xxviii §15.
51Plutarch, De defectu oraculorum, 434A–B.
52[Bloch: Moulin], p. 545.
53[Sellin]. He reaches this conclusion by supposing, inter alia, that the wheels ran idle half the

time and that the population of Arles consumed 350 grams per capita per day of mill-produced
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thought to date from late Antiquity, but recent studies have proved that
present remains go back to the early second century A.D.54 Archeological
discoveries of smaller mills going back to the early imperial age continue
to multiply (Figure 9.3). They have been made throughout the western
extension of the Empire; in the eastern part, we know from epigraphical
evidence that in the Phrygian city of Hierapolis around 200 A.D. there
were enough water mills to justify the foundation of a millers’ league. It
is now accepted that, in spite of the almost complete silence of our writ-
ten sources, water mills were widespread55 — which certainly belies the
traditional contention that the “Ancients” were not interested in saving
labor.56

Cereal grinding and water lifting57 were not the only uses of water
power in Antiquity. In the poem Mosella, of about 370 A.D., Ausonius

flour. He also estimates that the power of each wheel did not exceed that of a 250 cc motorcycle. This
mordant observation highlights how technologically uncivilized we ourselves are, in destroying
the environment by wasting on a few motorcycles enough energy to produce food for a whole
town. But after all is said and done, our current system, based on the exploitation of nonrenewable
energy sources, will last but a moment on a historical scale.

54[Leveau].
55[Wikander: WM], in particular p. 398 for the water millers’ league ( � � ��������� 	 ���
� � ��� 	

�
����� � ).

56[Wikander: EWPTS].
57See page 252.
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records the use of water-powered saws for marble.58 Michael Lewis has
argued on the basis of indirect evidence that the Ancients built pounding
pestles and other reciprocating machines moved by water.59

9.5 The Role of the City in the Ancient World

Finley’s model of the consumer city is true for Rome, with a vengeance.
Documentation abounds. Rome was indeed, economically speaking, “the
complete parasite-city”.60 It was the destination point for an enormous
flow of riches from the whole Empire: taxes from the provinces, war booty,
rents from provincial land and mines owned by the Emperor and others.
Part of this bounty made its way to the bulk of the population through
public and private channels, helping ensure its subsistence. Caesar started
distributions of free grain; from Augustus onwards the plebs periodically
received other foodstuffs also, as well as clothing, money and other bene-
fits, such as free admission to public shows and baths. At the same time,
every rich man had his own slaves and supported his clientes in various
ways. Other income distribution channels are easily imaginable.

The case of Rome is unique, but Finley contends that the uniqueness
was only in scale, and that (almost) all ancient cities were consumption
centers61 that lived essentially on local agricultural resources, taxes, land
rents, commerce and tourism, the contribution of manufacturing being
negligible.62

This thesis has been supported by several analytical studies,63 but more
recently it has been contested as well, particularly in view of new and
reevaluated archeological evidence from the early imperial period.64 For

58Ausonius, Mosella, lines 362–364. In the 1960s the theory that the poem was an apocryphal
tenth-century invention was put forth, with no serious support, and it was not until the 1980s,
when doubts started to be cast on the primitivist case, that it was definitively abandoned.

59See [Lewis: MH], in particular p. 114 for the marble saw, pp. 93–105 for pestles and trip-
hammers, and p. 8 for an illustration of sixteenth century water-powered ore-crushing stamps.
For an overview of the industrial uses of water power in Antiquity, see [Wikander: IAWP].

60The expression is from [Finley: AE], p. 130.
61[Finley: AE], p. 130 (“only in scale”), pp. 122–149 (economic role of town and city). Finley

admits the existence of “exceptional cities” (ibid, p. 194) as a way of shielding his thesis against dis-
proof by any given piece of contrary evidence. This is analogous to the already observed technique
of maintaining the nonexistence of the experimental method in Antiquity in the face of documented
experiments, on the grounds that these were performed only exceptionally.

62[Finley: AE], p. 139. But he includes among income sources such “local resources” as silver and
other metals, premium wines and olive groves (all of which of course depend on transformation
processes). Tourism he considers one of the main sources of income for Athens (p. 134).

63For example, [Jongman] for the city of Pompeii and [Whittaker] for the administrative centers
of the northern provinces of the Empire.

64See [Mattingly, Salmon].
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example, it appears that the town of Thamugadi, founded in 100 A.D. and
now called Timgad (Algeria), can hardly fail to be thought of a produc-
tion center, twenty-two small shops for fulling (and perhaps dying) wool
having been found there.65 This may have been an exceptional case, but
it cannot be ruled out that it was instead a typical one, particularly in
northern Africa. A statistical study of surface-level archeological evidence
in Leptiminus (another Punic city, taken by Rome in 111 B.C., now Lamta
in Tunisia) has shown that this was the site of a lively production in-
dustry — of metal, amphors, fish- and olive-derived goods — very likely
geared toward exports. The authors of the study remark that over fifty
sites along the Tunisian coast have been found to be associated with such
manufacture, some operating at a very considerable scale, and conclude
that, rather than being exceptional, Leptiminus’ situation reflects a need
to abandon Finley’s single model in favor of a model allowing a variety
of economic roles for ancient cities, such as production and commercial
centers.66

If not all ancient cities were parasitical “consumer cities”, we should ask
what category the great Hellenistic centers belonged to.

Alexandria, founded by Alexander in 331 B.C., soon became the greatest
city in the known world. Not long before it was conquered by Rome, in
the mid-first century B.C., it was home to about half a million people.67

Diodorus Siculus calls it

. . . the first city of the civilized world . . . certainly far ahead of all the
rest in elegance and extent and riches and luxury. The number of its
inhabitants surpasses that of other cities.68

It is hard to see how such a city could have lived on local produce and
tourism. The possibility that Alexandria, like Rome, was fed by the ex-
ploitation of subject territories can be excluded, since the Roman conquest
of Egypt did not plunge its economy into a crisis. Dio Chrysostom, in an
oration probably dating from the reign of Vespasian, says to the Alexan-
drians:

Not only do you have a monopoly in sea traffic over the whole Medi-
terranean . . . but both the Red Sea and the Indian Ocean are in your
reach. . . . Alexandria is at the crossroads of the world . . . as if the
world were an immense market in the service of a single city.69

65[Wilson: Timgad].
66[Mattingly et al.].
67See note 39 on page 252.
68Diodorus Siculus, Bibliotheca historica, XVII, lii §5, based on Welles’ translation.
69Dio Chrysostom, Orationes, xxxii, 36.
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Here is how Alexandria is described as late as the fourth century A.D.
in a Latin-language letter apocryphally attributed to Hadrian:

Its inhabitants are very factious, arrogant and violent; the city is rich
and prosperous, and no-one is idle. One blows glass, another makes
papyrus into paper, yet another weaves flax: everyone seems to prac-
tice a craft. The gouty, the mutilated, the blind, all do something. Not
even cripples live in idleness. Their only god is money, worshiped by
Christians and Jews and all others. If only this city had better moral
principles. . . 70

This anonymous Roman author finds industriousness morally reproach-
able and a sign of a blasphemous yearning for wealth. He seems very
irritated at the prosperity of Alexandria.

The city does not seem to have been significantly depopulated even in
late Antiquity. At the time of the Arab conquest there were still four hun-
dred theaters and other entertainment venues, as well as four thousand
public baths.71

There seem to be only two possibilities, which are not mutually exclu-
sive: Alexandria was either a trade center or a production center. We don’t
have enough information for a firm answer,72 but the small amount of
data we do have unanimously point to the conclusion that Alexandria’s
vast sea traffic consisted above all of imports of raw materials and exports
of finished products. We know, in particular, that Alexandria imported
gold, iron, tin, silver, copper and many pharmacological and perfumery
ingredients, while it exported medicines, unguents, perfumes, dyes, fab-
rics, glassware, papyrus paper and metalware.73

The special relationship attested during the early Ptolemaic period be-
tween Alexandria and Rhodes, the main Hellenistic mercantile center, was
apparently based on the complementarity of the two economies.74

Fortuitously, we have from Cicero one piece of information regarding
commerce between Alexandria and Italy in the first century B.C. He talks
of “many ships” that had put in at Puteoli from Alexandria, chock-full of

70Historia Augusta: Firmus Saturninus Proculus et Bonosus, VIII §§5–7 (in, e.g., Loeb Classical Li-
brary, vol. 263).

71These figures are in a letter sent by the Emir Amr ibn al-As, the conqueror of Alexandria, to
the Caliph Omar. The letter is preserved in the Annals of Eutychius, a tenth-century patriarch of
Alexandria; the passage in question is given in [Canfora], p. 83 (p. 92 in the original).

72Fraser leans toward the prevalence of trade, but regards the question as open. However he
takes it as certain that Alexandria’s industry was much more developed than can be directly doc-
umented today; see [Fraser], vol. I, p. 143.

73Much of the available information on Alexandrine trade is collected in [Fraser], vol. I, pp. 132–
188.

74See [Fraser], vol. I, pp. 162–169; the complementarity, in particular, is stressed on p. 164.

260 9. Science, Technology and Economy

paper, linen and glassware — all goods known to be produced in Alexan-
dria.75

Strabo says that in his time Alexandria exported much more than it im-
ported, as anyone could notice by comparing how deep-laden the ships
were upon arrival and departure.76

One letter of 258 B.C. is particularly interesting. The author, a certain
Demetrius, perhaps a functionary of the mint, writes to Apollonius, dioe-
cete (chief financial officer) of the king Ptolemy II Philadelphus, about
some difficulty (which we can no longer make out):

The foreigners who arrive here by sea — merchants, adventurers, and
so on — bring with them good coin of their countries. . . . They get
furious because we don’t supply the banks with coins . . . so they
can’t send their agents to the countryside to buy merchandise; they
say their gold is resting idle, causing heavy losses.77

The presence in Alexandria, in the time of Philadelphus, of foreign mer-
chants who went out into the countryside to buy seems to indicate that at
least at that time Egypt was more of a producer than a trading country.

Josephus says that in his time (first century A.D.) Rome was fed by two
thirds of the crops sent as tribute from Egypt and from the province of
Africa.78 Now, when Rome’s imperial role ran into a crisis, the severance
of political ties with Egypt caused urban life to crumble in Rome, but not
in Alexandria: the two cities had evidently followed divergent economic
paths. One can hardly help seeing a link between Alexandria’s econom-
ically active role and its leading part in the development of science and
technology.

9.6 The Nature of the Ancient Economy

Modernist and primitivist theses are antagonistic also in what concerns
the organization of the economy and of finances in the ancient world. In
his Social & economic history of the Hellenistic world, Rostovtzeff discussed
the subject using terms such as bourgeoisie, industry, capitalism, industri-
alization of agriculture, capital investments and credit transfer systems.

Finley, on the other hand, insists on the absence in Antiquity of many
elements, including conceptual ones, that are essential to today’s capitalist
system. He argues for the primitive character of the ancient economy and

75Cicero, Pro Rabirio Postumo, xiv, §§39–40.
76Strabo, Geography, XVII, i §7.
77Papyrus Cairo Zenon 59021.
78Flavius Josephus, Bellum iudaicum, II, xvi, 383.
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its lack of “economic rationality”, stressing, for example, the complete ab-
sence of the notion of amortization,79 the nonexistence of long-term loans
for investment purposes80 and even the impossibility of translating the
word broker into Greek or Latin.81 He writes:

The absence of credit-creating instruments and institutions remains
as an unshaken foundation of the ancient economy.82

While Finley’s observations about the absence of stock markets and
credit formation institutions are accurate and have played an important
role in suppressing anachronisms, a growing number of scholars now
casts doubt on the idea that one can characterize an economic system or
a civilization by listing the ways in which it falls short of Wall Street. It is
certainly true that in Antiquity the economic and especially the financial
sphere had not acquired the commanding position they hold today. People
saw money as one instrument for acquiring tangible goods and power —
things they had fought over for thousand of years even in the absence of
currency — and had not yet developed the idea (now apparently widely
viewed as an inevitable result of rational thought) that goods and power
are but instruments to make money.

Our knowledge of the economic and legal organization of Hellenistic
states is sadly incomplete. For Ptolemaic Egypt it is relatively less so,
and we know that in that country ancient institutions going back to the
Pharaohs were preserved and merged into a new system, creating a struc-
ture both composite and organic. This is well illustrated by the legal status
of agricultural land. Much of it was “royal land”, cultivated on behalf of
the king. Other areas were “sacred land”: their utilization was controlled
by the priestly class and provided for the maintenance of the temples.
In addition to these two possibilities, inherited from the Pharaohs’ time,
there were two more: private land ownership, which may have been in-
troduced during the Persian domination, and finally “revocable grants”
of land to civil servants, which certainly were a novelty of the Ptolemies.

The production of vegetable oil, linen fabrics, salt and beer were royal
monopolies. The state had a record of all the looms in private homes of
weavers83 and after their production quotas were met all looms and oil
presses were kept under seal to prevent illegal use.84 The production of

79[Finley: AE], p. 116.
80[Finley: AE], p. 117.
81[Finley: AE], p. 118.
82[Finley: AE], p. 198.
83See [Rostovtzeff: PtE], p. 136.
84See [Rostovtzeff: SEHHW], vol. I, p. 303 (looms) and p. 306 (presses).
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paper, too, although not a monopoly, was concentrated to a significant
extent in royal factories.

In Pharaonic times a good part of the economic activity was carried
out in temples. An Egyptian temple was not just a place of worship; its
interior contained factories and workshops of various kinds — producing
cloth, oil and beer, for example — and small libraries; some temples also
functioned as places of healing. Thus temples were places where all types
of knowledge — religious, technical and medical — were concentrated un-
der priestly control. The Ptolemies respected the age-old prerogatives of
the temples. For example, when a monopoly in the manufacture of oil
was introduced, temples were allowed to keep their presses, though only
to make oil for their own use.85

Slavery in the Ptolemaic kingdom did not share at all the importance
and features that it had in Classical Greece and in Rome.86 Slaves were
not heavily used either in agriculture or in mining and quarrying.87 The
workers who manned the government presses, too, were free. Nor were
slaves used in the war fleet.88 In sum, we do not know of a single eco-
nomic activity that depended on slavery, an institution that was primarily
domestic in Hellenistic Egypt. We know a fair amount about conditions
in the household of Apollonius, the dioecete of Ptolemy II we have met
before,89 thanks to a trove of papyri associated with Apollonius’ chief
aide, Zenon. These documents show that the dioecete’s private household
staff included free men and women as well as slaves, both receiving com-
pensation in cash. Some papyri mention complaints from the staff about
payments in arrears.90

Privately owned factories, with wage-earning employees, are attested
in Egypt, in many cases down to the Roman period. Also documented
are wage negotiations between employers and workers91 and strikes for
salary raises.92

In Ptolemaic Egypt we encounter for the first time a central State Bank,
whose business is to manage the state’s finances and to invest public re-

85We have good information about the oil monopoly because the relevant law was found in its
entirety (Pap. Revenue Laws, lines 38–56, ed. Grenfell).

86The extent and economic importance of slavery in Ptolemaic Egypt have long been a subject of
debate. Much information can be found in [Bieżuńska-Małowist].

87See, for example, [Bieżuńska-Małowist], pp. 81, 111.
88[Bieżuńska-Małowist], pp. 81–82; [Casson: SS], pp. 322–328.
89See page 260.
90See, for example, P. Cairo Zenon 59028, in which the cithar player Satyra bemoans the delays

in receiving her earnings.
91Apprenticeship contracts specifying wages appear for example in Papyrus Oxyrhynchus 275

(A.D. 66), P. Oxy. 724 (A.D. 155), P. Oxy. 725 (A.D. 183), P. Oxy. 2977 (A.D. 239). Wage negotiations
in the imperial age are documented in P. Oxy. 1668, for example.

92Papyrus Bremen 63; [Aubert], p. 107; [Minnen], pp. 62–63.
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sources, even making loans to private individuals.93 Bank deposits are
very widespread, even among artisans and retailers. Among transactions
we see for the first time papers transferring sums from one bank account
to another.

To summarize, it seems that the use of terms such as bourgeoisie and
capitalism in a situation like that of Hellenistic Egypt is at once reason-
able — given the presence of elements such as privately owned factories
with salaried employees — and dangerous — given the strong role of the
state, the survival of Pharaoh-era structures, and the lack of certain fea-
tures we tend to associate with capitalism, such as a capital market of the
type that arose in modern Europe.

It should be stressed, too, that many of the features we have discussed
lasted until Roman times in Egypt, but were never present in the West-
ern provinces of the Roman Empire, where slavery, for instance, played
a much greater economic role. Geography here seems to provide a better
basis for a breakdown than time periods, and not only in terms of the econ-
omy but also regarding other institutions. For example, the possibility of
dissolving a marriage through the wife’s initiative, long inconceivable to a
Roman, is recognized in Egyptian matrimonial contracts of the Hellenistic
period.94

9.7 Ancient Science and Production

The considerations made so far allow certain conclusions and raise impor-
tant problems.

I think there can be no doubt about the importance that ancient science
and Hellenistic technology could potentially have had for production pro-
cesses, but in assessing the extent of the applications actually deployed in
Antiquity we must avoid certain traps that lurk in making comparisons,
whether explicit or implicit, with our own age.

In Chaplin’s movie Modern Times, the tokens of modernity are screws,
gears, transmission belts, valves, steam engines, automata: a smorgasbord
of inventions from ancient Alexandria. How can one say that these inno-
vations were useless back then? Yet, though so much of the technology
that made up the movie’s factory goes back to the third century B.C., it is
clear that in that century there were no factories like Chaplin’s.

The Western world has experienced since the late seventeenth century
a unique phenomenon in human history, characterized by an exponential

93[Rostovtzeff: SEHHW], vol. II, pp. 1283–1288.
94Some marriage, divorce and repudiation documents from the Hellenistic, imperial and late

ancient periods are collected in [SP], vol. I, pp. 2–30.

264 9. Science, Technology and Economy

increase in several technological and economic indicators, and the source
of achievements and problems without parallel. (This growth certainly
cannot continue for long at the same exponential pace.) The primitivists
are right in warning us against the pitfalls of “modernizing” Antiquity
by reading into it the accoutrements of modern life. There was certainly
no Hellenistic Industrial Revolution, there were no stock brokers in Alex-
andria and the Mouseion was not the Royal Society. On the other hand,
using today’s Western world as a sort of universal standard, lumping all
ages other than ours into an undifferentiated “underdeveloped” category,
can be highly misleading.95 If we think that biology has predetermined a
unique possible path for the human race, culminating in the “economic
rationalism” of today, it may be possible to define other civilizations by
how far they are from ours; but human history is much more complex
than that.

The application of scientific technology to production does not neces-
sarily mark the beginning of the process in which we find ourselves now,
where technology itself grows exponentially. Having made this clear, I
think it must be agreed that scientific technology did have in Antiquity
important applications to production. The Mouseion’s economic role was
not comparable to that of the Royal Society, but that does not mean this
role was insignificant, nor does it imply lack of wisdom or foresight on the
part of ancient scientists. The process of exponential development starting
with what is usually called the Industrial Revolution was triggered by a
plethora of economic, social, political, cultural and demographic factors
that we have not yet understood in depth. It is more sensible to try to
figure out what happened in Europe in the late seventeenth century than
to ask why the same thing did not happen two thousand years earlier.
Hellenistic scientific development was violently arrested by the Roman
conquest. We may wish to speculate on what might have happened had
this interruption not taken place. Nothing authorizes us to conclude that
things would have gone the way they did in seventeenth century Europe;
we do know, however, that the recovery of ancient knowledge on science
and technology played a major role in the modern scientific take-off (more
on this in Chapter 11).

The data examined so far limn two features that may appear contradic-
tory. Almost all of the advanced technology used in Antiquity appeared in
Hellenistic times and seems more or less directly connected with science.
Even for technological elements attested only in Roman times, such as
ball bearings (Figure 9.4), one may suspect a Hellenistic origin hidden by
a scarcity of archeological evidence. Moreover the interest of Hellenistic

95This is stressed in [Greene: TIEP].
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FIGURE 9.4. Brass rollers and remnants of rotating wooden trays encountered
in a shipwreck in Lake Nemi and dating from Caligula’s time.96 Top: portion of
the rim of a tray about 90cm in diameter. Middle and bottom: reconstruction of
another tray with conic rollers. From [Ucelli], pp. 186, 189.

political rulers and the higher classes in science and technology is clear,
whereas in imperial times an equally clear lack of interest is attested. Yet
archeology appears to indicate that the quantitative development of tech-
nological applications, particularly in production, was concentrated in the
early imperial period. How can this be?

96It is tempting to think that the rotating room of Nero’s domus aurea used something similar.
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There are at least two possible answers to this apparent contradiction.
The first is that the archeological evidence may be biased toward the more
recent. Thus we have imperial-age remains of water-drainage equipment
from the mines at Rio Tinto, but we know that those mines were already
being exploited by Carthage, and Diodorus Siculus mentions the use of
Hellenistic technology by the Carthaginians in draining Spanish mines.97

Strabo records both the traditional proficiency of Massalians with me-
chanical technology98 and Massalian control over the Rhone estuary,99 so
it may be speculated that the Barbegal water mills likewise represent a
pre-Roman technological tradition that the Romans found it convenient
to keep. Similar examples can be multiplied: one could plausibly conjec-
ture a Hellenistic precedent for almost every known Roman technological
installation.

There is, however, a second possible answer: that there is no actual con-
tradiction between the timing of inventions and that of their spread. Two
successive civilizations are not independent, because the second has as its
disposal the cultural instruments created by the first, if their record has not
vanished. A logical link between two cultural phenomena, here scientific
development and its technological consequences, does not have to imply
synchronicity; one period may be consuming resources accumulated in an
earlier one. The cultural policy of Hellenistic rulers clearly favored tech-
nological research and innovation more than the Roman one (indeed there
are very few technological novelties in Roman times), but the widespread
diffusion of technology already invented requires something different from
research. A long period of peace accompanied by a heavy fiscal burden
may have been more effective than the Mouseion ever was at causing an
increase in production and the application of all available technological
resources.

The Romans were not interested in science and favored the legal and
military structures of dominion over technological and economical ones,
but they certainly did not reject the benefits of technology and wealth: they
simply thought that it behooved lowly folks to generate them and aristo-
crats to enjoy them. Rome found an effective solution for the problem of
acquiring and controlling competent technicians, but not for that of form-
ing them. It was a system based on the exploitation of provinces where,
independently of the central power, a technological and scientific cultural
tradition still survived. Together with the crumbling of Rome’s political

97Diodorus Siculus, Bibliotheca historica, V, xxxvi–xxxvii. According to him, the Carthaginian in-
troduced the use of multiple Archimedean screws in series, while the massive use of slaves dates
from Roman times.

98Strabo, Geography, IV, i §5.
99Strabo, Geography, IV, i §8.
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system came the cultural, economic and technological crumbling of the
West. In the eight century the Venerable Bede was the greatest mathemati-
cian in what had been the Western empire. In his most exacting work he
describes a method for representing numbers with hand gestures. Many
could still do it up to ten: Bede, using a sort of sign language, manages to
go a bit further. When this is what a “mathematician” can aspire to, urban
life has already disappeared. In the Eastern empire, where the nexus of
science, technology and economy subsisted, however precariously, things
came out differently.

.

10
Lost Science

Besides being just a small part of the whole, extant Hellenistic scientific
writings have often been altered in intervening centuries by editors, who
adapted them to their own notions. Here we will try to reconstruct cer-
tain ideas of Hellenistic science, sometimes through plausible conjecture
and sometimes in a less tentative way. Our evidence will include indirect
testimonia present in literary works that are not often regarded as source
material for history of science studies; in passing, it may be said that our
knowledge of ancient science would greatly benefit from a systematic col-
lection of fragments and testimonia on various scientific theories.

10.1 Lost Optics

Only two sizable works of ancient optics are extant. Authored by Euclid
and Ptolemy, they stand almost five hundred years apart. Euclid’s Optics
represents an early stage of the science, which was then developed in lost
treatises by some of the greatest scientists of Antiquity, including Archi-
medes, Apollonius and Hipparchus, and finally hit a crisis like all other
scientific disciplines. We have several reasons to think that Ptolemy’s book
is more of a partial recovery of earlier stages than an improvement on
them. Ptolemy discusses only plane and spherical mirrors, without ever
applying to mirrors the theory of conics, but Diocles’ short work On burn-
ing mirrors shows that such applications, later taken up by the Arabs, were
very much older than Ptolemy. Ptolemy’s Optics is the only surviving
work that includes a theory of binocular vision, but certain testimonia
imply that such a theory had already been developed by Hipparchus.1

1Plutarch mentions a theory of binocular vision (Quaestionum convivalium libri vi, 625E–626E).
Aetius attributed such a theory to Hipparchus; cited in Stobaeus, Eclogae, II, lii, 483:19 – 484:2
(ed. Wachsmuth) = [DG], 404b:3–8.



270 10. Lost Science

The state of the sources leaves us in the dark about many areas of physi-
cal optics. For example, we know very little about research on colors2 and
on dispersion (the dependence of refraction on the color of light, which
gives rise to the rainbow and allows the separation of colors through a
prism). But interest in these subjects is demonstrated by many references
found in the literature: for example, in Diogenes Laertius,3 Plutarch,4 Lu-
cretius5 and Seneca, who talks about glass objects “with many angles”
that, when hit by sunlight, give back the colors of the rainbow.6 Apuleius
says that Archimedes too studied the rainbow phenomenon.7

It would be particularly valuable to know what the state of knowledge
on refraction was. Among extant scientific works, the first to discuss the
subject is Ptolemy’s Optics, where we find an extensive, but unfortunately
truncated, treatment of the phenomenon.8 Yet refraction had important
and early technological applications, first and foremost to lenses.

The use of lenses to focus sun rays is documented in Greek literature
from at least the fifth century.9 Theophrastus, among others, mentions this
method of lighting a fire,10 and Pliny talks of the medical use of converg-
ing lenses for cauterization.11

Because of a lack of clear literary references, it has often been denied
that classical Antiquity used lenses to magnify images. (Such lenses must
be made of better-quality glass, or else crystal, and require better grinding
techniques, than those used to start fires.) But today it seems very likely
from the archeological evidence that magnifying glasses were indeed in
use. Archeologists have found lenticular objects at many sites, including

2A very interesting passage in Ptolemy’s Optics (II §96, 60:11–19, ed. Lejeune) discusses spinning
disks with sections of different colors — the kind later called Newton’s disks. As Lejeune remarks,
they appear here “as a true experimental instrument”.

3Diogenes Laertius, Vitae philosophorum, VII §152.
4For example, De facie quae in orbe lunae apparet, 921A; De Iside et Osiride, 358F–359A.
5Lucretius, De rerum natura, II:799–800.
6Seneca, Naturales quaestiones, I, vii §1. The passage mentions a glass virgula, a term that is usu-

ally translated “little rod”. But virga, besides rod, is also the name of the mini-rainbow that arises
as a result of dispersion, and which Seneca discusses in the continuation of the passage cited. Thus
virgula vitrea could have been, in Seneca’s source, a small straight rainbow obtained with a glass
object. As to the “many angles”, it is possible that Seneca’s source did not refer to objects with
particularly many facets, but to the refraction angles of the various colors.

7Apuleius, Apologia, xvi.
8Ptolemy, Optics, V = 223–269 (ed. Lejeune). The work breaks off in the middle of this book V.

See page 64 for a discussion of Ptolemy’s tables of refraction angles.
9Aristophanes, Clouds, lines 766–772.

10Theophrastus, De igne, xiii §73, 20 (ed. Gercke). The fragment actually talks about lighting a
fire by converging sun rays, and it’s not totally clear whether a mirror or a lens is meant; but since
both glass and metals (bronze and silver) are mentioned, Theophrastus probably has in mind both
possibilities.

11Pliny, Naturalis historia, XXXVII §§28–29.
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Tyre, Pompeii, Cnossos and the Fayyum.12 Although the finds at Pompeii
(which started coming up in the eighteenth century) and some other sites
have often been interpreted as jewelry, and some others were probably
lenses used for ignition, the especially high quality of some of the lenses
found recently leaves little room for doubt that they were magnifiers. One
of two plano-convex lenses found in Crete in 1983, for instance, magni-
fies well at least seven times and still has visible signs of polishing.13 The
Archeological Museum in Heraklion, Crete, has 23 lenses on display, some
of prime quality, and has others in storage. Some of the finds, like the ones
from Cnossos, go back to the bronze age and show that lens technology,
though completely lost in early medieval Europe, is in fact very old.

To accept the idea that magnifying glasses were used in Antiquity we
must account for the scarceness of literary references. We have seen that
literary sources fail to mention other technological products that existed
for sure. Also we can imagine that the use of magnifiers was confined to a
few fortunate souls: probably some professionals to whom they would be
of most help, such as fine engravers and jewelers,14 and the very rich. Nero
and his famous emerald monocle may be a case in point.15 Moreover the
lack of literary references to magnifiers may to some extent derive from
the beliefs of modern scholars: a person convinced that something did not
exist in Antiquity cannot but misunderstand any passage mentioning that
thing. Thus, Alcaeus wrote that wine is a man’s dioptron.16 He probably
meant that drink as it were magnifies a person’s behavioral traits, putting
them in evidence,17 but the belief that lenses were unknown has caused
dioptron to be translated as “mirror”, sacrificing both the general sense of
the passage and the natural meaning of the word, which on etymological
grounds can be presumed to mean something that is seen through (whereas
a mirror is katoptron). Strabo uses the same word to refer to chunks of a
transparent mineral exported from a certain place in Asia Minor.18

12See [Beck] for the Cnossos find. The scant literary evidence is discussed in [Kisa], vol. II,
pp. 357–359.

13[Sines, Sakellarakis]. This article also discusses other recent finds and some older ones.
14Already in the eighteenth century the jewelry carver Johann Natter, based on his study of

ancient techniques, became convinced that his ancient colleagues could not have carried out all of
their work with the naked eye; see [Natter]. The same opinion is held today by several scholars
based on an analysis of gold craftmanship, particularly in the Roman period; see [Sines, Sakel-
larakis].

15Pliny, Naturalis historia, XXXVII §64. This continues a passage where Pliny mentions that en-
gravers used emeralds to lessen eye-strain and provide bigger images; but Pliny believed that the
engravers rested their eyes by contemplating the emeralds and that the enlarged images were those
of the emeralds themselves.

16 ��� � ��� � ���
�
������� � � ��� � � � ����� (Alcaeus, fr. 333 Voigt).

17I am indebted to Bruno Gentili for this observation.
18Strabo, Geography, XII, ii §10.
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While the ancient use of lenses for lighting fires is certain and that of
magnifying glasses seems at least very probable, few have been willing
to entertain the possible existence of telescopes in Antiquity. But, if noth-
ing else, this hypothesis would explain the many medieval pictorial and
written references to an object that supposedly would not be invented for
several centuries yet!19 As more direct evidence we may cite a passage in
Strabo mentioning “reeds” or “tubes” by means of which images can be
magnified thanks to the refraction of visual rays,20 and perhaps also one in
Geminus explaining that experts in geodesy, who used the dioptra, based
some of their work on the phenomenon of refraction.21

The conjecture that dioptras provided with lenses — in essence, tele-
scopes — were known in the Greek world may seem very daring, but the
possibility would become less far-fetched if there were confirmation for
the suggestion of Giovanni Pettinato that such instruments were already
used by Mesopotamian astronomers in the Late Assyrian period.22

Hipparchus was an expert in dioptrics, in that he perfected and de-
scribed dioptras23 and probably already knew the instrument described
by Heron.24 It is not inconceivable that he found a way to apply knowl-
edge about refraction to the dioptra.

We will return in Chapter 11 to the question of the possible existence of
telescopes in Antiquity. 25

19See page 347.
20Strabo, Geography, III, i §5. Many editors have adopted Voss’s emendation of ���

�
� � (reeds) into

� �
�
��� (glass pieces), thus admitting the existence of magnifying glasses but perhaps missing the

full import of the passage.
21In [Heron: OO], IV, 100:17–18. The Greek term �

� � �
�
� � � is usually rendered as “reflection”,

but there are several passages where “refraction” must be meant: for example, Sextus Empiricus,
Adversus astrologos ( = Adv. math. V), §82. Both this and the complementary word � � ��� � � � � � seem
to have been used for both phenomena (their root is � � ��� , “break”).

22[Pettinato], p. 103. The idea is by no means new; we read in Hoppe’s History of optics (1926)
that “some astronomers are of the opinion that such precision [in Babylonian astronomical mea-
surements] could not have been achieved without telescopes” ([Hoppe], p. 2).

23Ptolemy mentions the use of optical devices by Hipparchus and his written description of
a dioptra (Almagest, V, v, 369; V, xiv, 417, ed. Heiberg). Pliny mentions Hipparchus’ contribution
to the perfecting of optical instruments for astronomical observations (Naturalis historia, II §95).
The precision of the optical instruments used by Hipparchus and in particular the accuracy of his
angular measurements can be gauged from the excellent approximation of his measurement of the
distance to the moon (see note 96 on page 79).

24So Toomer in [Ptolemy/Toomer], p. 227, note 20. The suspicion that on this subject Heron may
have used Hipparchus as his source is suggested by the fact that the method described by Heron
in the Dioptra for determining the longitudinal difference between Alexandria and Rome, based on
the difference in local time for the same lunar eclipse, had been proposed by Hipparchus, as we
know from Strabo (Geography, I, i §12). But dioptras analogous to the one Heron describes may be
even older than Hipparchus: the thesis that they were already in use in the early third century is
expounded in [Goldstein, Bowen].

25See pages 343–348, particularly the text surrounding notes 53, 54, 65 and 66.
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10.2 Eratosthenes’ Measurement of the Meridian

Eratosthenes, with the method discussed in Section 3.2, obtained the value
252,000 stadia as the earth’s circumference along a meridian. Estimating
the accuracy of this measurement is not easy: there has been controversy
on the value of a stadium in this context. The most likely reconstruction
puts Eratosthenes’ stadium in the range 155–160 m,26 implying an error
of at most 2.4% below or 0.8% above the true value. Such remarkable ac-
curacy has often been seen with suspicion, especially because it is true
only to a coarse approximation that Syene and Alexandria lie on the same
meridian and that Syene lies on the tropic. Moreover, whereas modern
measurements, first attempted by W. Snell in 1615,27 involved triangula-
tion over distances of a hundred kilometers or so,28 it is generally held that
the distance between Syene and Alexandria was estimated by counting
days of travel. The conclusion ordinarily accepted is that Eratosthenes did
get an excellent value, but only as the result of a very lucky cancellation
of errors.29

The size of the degree is not the only distance measurement that Eratos-
thenes is reported to have made. He in fact compiled a map of the whole
known world. One of the data transmitted by Strabo is the distance from
Alexandria to Rhodes, which Eratosthenes found to be 3750 stadia.30 This
value, too, is generally regarded as the result of a rough estimate31 that is

26A value of 157.5 m for the stadium used by Eratosthenes was determined by Hultsch in his
thorough investigation of Greek measurements ([Hultsch: GRM], p. 61). Although different from
the traditional value used in Greece, it has been accepted by most subsequent scholars as substan-
tially correct. The argument is based primarily on a passage of Pliny (Naturalis historia, XII §53),
where the ratio between the stadium and the schoenus is reported to have two alternative values,
one of them being called “Eratosthenes’ ratio” (Eratosthenis ratione). For the view that Eratosthenes
used the traditional stadium, of about 185 m, see [Rawlins: ESNM].

27Snell — best known for the sine law of refraction, about which more on page 348 — explicitly
designed his measurement as an attempt to duplicate Eratosthenes’ feat. The work, carried out in
the Dutch flatlands and described in Snell’s Eratosthenes Batavus (1617), relied on his recovery of
ancient methods of triangulation and of spherical geometry, which culminated in the book Doctrina
triangolorum (Leiden, 1627). On p. 62 of the latter we find a tantalizing tidbit of terminological
information, noted in [Carnevale]: according to Snell, Hipparchus and Menelaus used the term
tripleuron for spherical triangles. Because we possess no ancient testimonium on Hipparchus in
connection with spherical geometry, this may mean that Snell had some source no longer extant.
(In the case of Menelaus the source may be Pappus.) Note that Hipparchus preceded Theodosius,
the author of the oldest extant work on spherical geometry.

28After Snell’s and other attempts involving distances too small to be effective, in 1669 the French
Academy undertook two careful measurements of distances over 100 km, under Picard’s direction,
and so obtained the first reliable values for the degree of the meridian, namely 57064.5 and 57057
Paris fathoms (toises de Paris). Picard related this unit to a precisely defined pendulum, so we
know it quite exactly (1949 mm); this gives an error of about 0.1%. See [Picard].

29See, for example, [Heath: HGM], vol. 2, p. 107; compare [Neugebauer: HAMA], p. 653.
30Strabo, Geography, II, v §24.
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close to right by accident.
Do we know for sure that Eratosthenes assumed that Alexandria and

Syene lay on the same meridian and that Syene was on the tropic? The
primary source on the subject, Cleomedes, actually wrote:

Eratosthenes’ method, being geometric, seems more difficult [than
the previously explained method of Posidonius]. What he says will
become clearer if we allow ourselves to make two assumptions. We
assume first that Alexandria and Syene are on the same meridian.32

Cleomedes does not give a detailed account of the method — that would
be pointless, Eratosthenes’ work still being available — but a pedagogical
précis meant for readers scared of the complex geometric arguments of the
original work. He attains his goal of explaining Eratosthenes’ method by
taking an ideal case obtained by eliminating all technical difficulties; how
else could he compress into three pages a work that occupied two books?
Cleomedes also rounds off the numbers, evidently so as not to bother the
reader with calculations inessential to an understanding of the method.33

We should not automatically attribute to Eratosthenes the simplifications
adopted by his popularizer.

Elsewhere Cleomedes records a precious detail: that at noon on the day
of the summer solstice sundials cast no shadow within a zone 300 stadia
wide about the tropic line.34 Clearly, many measurements with sundials
had been made, over a wide area, and the tropic was fixed as the midline
of the shadowless zone.35 Thus it is reasonable to think that this line could
be located precisely within a few tens of stadia, or a few minutes of arc.36

We must conclude that Eratosthenes, desirous of measuring the distance
from Alexandria to the tropic, first took the trouble to find it precisely
and didn’t just assume on someone’s say-so that it went through Syene.
Cleomedes and other authors probably name Syene because it was the

31See, for example, [Neugebauer: HAMA], p. 653.
32Cleomedes, Caelestia, I §7, 35:49–52 (ed. Todd).
33Cleomedes’ value for the circumference (250,000 stadia, instead of the 252,000 reported by all

other sources) and for the difference in latitude between Syene and Alexandria (1/50 of the whole
circle) are clearly obtained by rounding, an understandable liberty taken by someone whose aim
is avowedly just to illustrate the method.

34Cleomedes, Caelestia, I §7, 36:101 – 37:102 (ed. Todd).
35That this datum must have been determined by personnel sent on site for the purpose is said

already in [Hultsch: PGES], p. 14. But J. Dutka objects that “it is questionable whether in that era
royal surveyors would be used for a purely scientific purpose” ([Dutka], p. 61).

36We also know that Eratosthenes could detect astronomically differences in latitude between
spots more than 400 stadia apart along the same meridian (Strabo, Geography, II, i §35). The accu-
racy with which one can locate the tropic is much better than this margin of error, since it is easier
to distinguish precisely between no shadow and some shadow than it is to distinguish between
two approximately equal nonzero magnitudes. The main source of subjective error in the shadow
measurement is that the sun is not a point source.
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Egyptian town closest to the tropic and the most convenient base for an
expedition to the tropic.37As for the well whose bottom was lit by the sun
at the solstice, Pliny says that it was dug out for a demonstration.38

Here a digression is warranted on an important aspect of experimen-
tal methodology. It is commonly thought that Hellenistic scientists were
ignorant of the technique of averaging multiple measurements, because
there is no direct documentary evidence for its use.39 But the placement
of the tropic at the center of a shadowless zone, as logically implied by
Cleomedes’ statement just discussed, seems to be a case where the liter-
ature preserves an indirect trace of the method in question. The lack of
direct testimonia about experimental averaging is hardly surprising, since
the manuscript tradition preserved neither the works where the technique
might have been used (such as Herophilus’ research on heartbeats) nor the
theoretical treatise by Eratosthenes titled On means, which might perhaps
have cast some light on the issue.40

Next, the determination of the tropic through multiple simultaneous
observations affords an accuracy that would be pointless if the distance to
Alexandria were then estimated using days of journey. Is it possible that
the distance was actually measured? Eratosthenes was the first person to
make a map of Egypt. The degree of precision with which he managed
to measure the distance from Alexandria to the tropic — that is, to the
southern border of the kingdom — is equivalent to that with which the
chart was made.

A record of the work involved in this topographical survey can be found
in the sources. Martianus Capella writes that the distance measurements
on which Eratosthenes’ estimate of the size of the earth relied were fur-
nished by the royal surveyors (mensores regii),41 and Strabo relays some
data from Eratosthenes’ map of Egypt.42 We know that already in the
Pharaohs’ time a detailed measuring of the land ( � � �

� � �
�

� � ) was made
annually throughout Egypt. Under the Ptolemies the measurements were

37Strabo, Pliny and Arrian all say that Syene is on the tropic. The town lies near the first cataract
of the Nile, which marked the boundary between Egypt and Ethiopia: therefore to get to the tropic
one had to cross the border.

38Pliny, Naturalis historia, II §183.
39See, for instance, [Grasshoff], p. 203, where it is mentioned that the first documented instances

of averaging of experimental results are due to ninth-century astronomers in Baghdad.
40We know the title of this work from Pappus, Collectio, VII, 636:24–25 (ed. Hultsch). The only

other information we have is what we can deduce from another passage of Pappus (Collectio,
VII, 662:15–18), where, apparently referring to the same work, the author states that Eratosthenes
treated geometric loci related to means and that such loci, because of their particular definition, did
not fall within the scope of Apollonius’ classification.

41Martianus Capella, De nuptiis Mercurii et Philologiae, VI:598.
42Strabo, Geography, XVII, i §2. However, these data got corrupted on their way to us; a partial

reconstruction can be found in [Rawlins: ESNM].



276 10. Lost Science

entrusted to technical staff and royal inspectors in every village; they were
then collected and coordinated by the toparchs for each topos (a subdivi-
sion of the nome), and then further up by the nomarchs for each nome
(province). The reports finally reached Alexandria, were they were used
for the preparation of tax rolls.43 By combining this tentacular bureaucratic
organization with the new methods of scientific geodesy, good maps of
Egypt would not have been out of reach.

To sum up, it is not out of the question that Eratosthenes really did mea-
sure the meridian within a margin of error of less than 1%.

In Section 3.2 we posed the question how come Marinus and Ptolemy,
although aware of the method used by Eratosthenes, did not repeat the
measurement and instead chose to rely on old and misunderstood data.
What we have said so far points toward a partial answer: they could still
read Eratosthenes’ work and knew that it was based on sophisticated sur-
vey work that could no longer be carried out under prevailing political
conditions. This also explains why for so many centuries, even as recently
as Galileo’s time, no one was able to improve on Eratosthenes’ findings.

Later ages, no longer acquainted with so much as the possibility of a
state-funded scientific project, passed on the tale of Eratosthenes’ mea-
surement as if it had been the isolated idea of a genius. Isn’t that what
happened also to Archimedes’ hydrostatics, for that matter?

The French Academy’s measurement of the earth in 1669 stood on three
accomplishments of the human mind: mathematical geography, triangu-
lation methods and survey instruments. All three go back to Hellenistic
times. But in order to measure great distances accurately another ingre-
dient is needed: the ability to organize and manage projects on a large
scale. Is that an exclusive feature of modern civilization? In 1669 Europe
was still far from being able to dig a canal through the Red Sea: this took
another two hundred years and resources well beyond what the French
Academy could have mustered. Yet the same task had been carried out by
the Ptolemies decades before Eratosthenes’ measurement.

Being necessary for the compilation of accurate maps, the measurement
of the earth’s circumference was probably a scientific enterprise financed
by the state with the same largesse used to build other works useful to
mariners, such as the Pharos and the canal. The general oversight of the
work and the credit for it were assigned to Eratosthenes as the Head of
the Library, which is to say the highest-ranking person in charge of the
government’s scientific policy.

It has been observed that the Eratosthenes’ value of 252,000 stadia for

43For the organization of land registry and measurements under the Ptolemies, see [Rostovtzeff:
SEHHW], vol. I, pp. 275–276.
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the meridian is divisible by all numbers from 1 to 10 (their least common
multiple is in fact 2520). This is a very useful property and it is unlikely
that he came by it accidentally. He might have fudged the data in or-
der to get this convenient result.44 But Pliny’s reference to the value of
the stadium “according to Eratosthenes’ ratio” (or scheme or reckoning)
suggests another possibility, in line with Hellenistic conventionalism: that
Eratosthenes introduced a new stadium equal to a convenient fraction of
the meridian, just as with the meter’s definition in the eighteenth century.

10.3 Determinism, Chance and Atoms

A passage from Laplace’s Essai philosophique sur les probabilités (1825), very
often cited as a nutshell statement of nineteenth-century determinism, is
frequently considered as a “determinist manifesto”:

An intelligence who, for a given moment, knew all the forces that
act in nature and the respective situation of its component beings, if
it also were ample enough to analyze these data, would encompass
under the same formula the motions of the largest bodies in the uni-
verse and those of the lightest atom. Nothing would be uncertain to
that intelligence; the future, just like the past, would lie open before
its eyes. The human mind, in the perfection to which it has been able
to take astronomy, offers a pale reflection of such an intelligence.

By Laplace’s time determinism already had a very old history. It goes
back at least to Democritus45 and underwent interesting developments at
the hands of the Stoics.46 Cicero, reporting Stoic ideas, writes:

Moreover, since everything is caused by fate (as is shown elsewhere),
if there could be a mortal able to grasp in his mind the chain of
all causes, nothing at all would escape his knowledge: for he who
knows the causes of future events must perforce know also what
these events will be. And since this grasp is beyond any but the
gods, it is left for man to foretell future consequences by means of
certain declaratory signs. For events in the future don’t come about
suddenly: as the uncoiling of a rope is the passage of time, creating
nothing new but instead unfolding the old.47

44This is the opinion put forth in [Rawlins: ESNM], where the remark about divisibility seems
first to have been published.

45Democritus, A68 ff. in [FV], vol. II.
46One particularly interesting source about Stoic determinism is the De fato by Alexander of

Aphrodisias. Fragments 915–951 and 959–964 in vol. II of [SVF] are devoted to this subject.
47Cicero, De divinatione, I, lvi §127.
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One can speculate that in Antiquity too reflections on the predictability of
astral motion — and the creation of a successful planetary theory48 — were
factors in articulating determinism.

The notion of chance, like determinism, has a long history in Greek
thought, apparently going back to Democritus.49 The random combina-
tion of limbs considered by Empedocles introduced chance in biology,50

and Aristotle makes extensive reflections on chance.51

Plutarch, referring to Homer and Hesiod, says that men, at a time when
the term “chance” (

� �
�

�

) was not in use yet, when in the presence of causal
chains so irregular as to generate unpredictable events attributed those
events to the gods.52 This argument is heard in our days too.53

The existence of unpredictable and at least apparently random events
such as the motion of a particle of dust is at first glance incompatible with
determinism. Greek thought found two radically different ways to solve
this puzzle.

The Epicurean solution consists in rejecting determinism altogether, as-
cribing to each atom the possibility of a minute and wholly unmotivated
deviation (clinamen) from the trajectory that it would otherwise follow
based on its weight and its collisions with other atoms.54 (Naturally, the
idea that atomic motion is subject to intrinsic stochastic fluctuations has
gained renewed interest due to the establishment of quantum mechanics.)

In contrast, the Stoics reiterated the general validity of determinism, ex-
plaining the apparent randomness of many events through our inability
to follow causal chains that are too complex.55 Chrysippus, in particular,
criticized the Epicurean hypothesis of unmotivated motion and explained
that in every case, even that of a die that lands on a particular face, there
is always a hidden cause.56

48See the end of Section 10.5 and the beginnings of Sections 10.7 and 10.8.
49Simplicius, In Aristotelis Physicorum libros commentaria, [CAG], vol. X, 330:14–18 = [FV], II,

101:11–16 (Democritus A68); Lactantius, Divinae institutiones, I, ii = [FV], II, 101:33–36 (Democritus
A70).

50See page 163.
51Aristotle, Physica, II, iv–vi, 195b–198b.
52Plutarch, Quomodo adolescens poetas audire debeat, 24A.
53For example, [Rényi], p. 129: “Primitive people have a tendency to be very superstitious: if

something goes wrong they try to attribute it to somebody’s maliciousness. . . . The study of proba-
bility theory can help to erase these remains of magical thinking from the Stone Age[.]” Note that,
whereas Plutarch talks of an important conceptual evolution that happened at a time already far
removed from him, Rényi, an important probability theorist, makes a direct contrast between the
specialized contents of his own field of study and Stone Age magic (being perhaps unaware that
he is repeating a point made in classical times).

54This idea does not appear in the letters of Epicurus that have come down to us. The earliest
author who reports it is Lucretius (De rerum natura, II:216–260).

55Plutarch, De animae procreatione in Timaeo, 1015B–C. See also [SVF], II, texts 965–973.
56Plutarch, De stoicorum repugnantiis, 1045B–F.
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That atomic motion is essentially random and unpredictable may not
have been an idea concocted by the Epicureans to account for the exis-
tence of random events (though this point stood out after the triumph
of quantum mechanics); it may have played a role in theories of atomic
motion created to save phainomena of various types.

Anaxagoras had considered the motion of dust lit by a beam of sun-
light.57 Lucretius revisited the same theme, explaining the phenomenon’s
“randomness” through the invisible and orderless movement of atoms.58

The path of an atom in a gas was thought of as being determined by
a continuing succession of collisions.59 (The idea that gases are character-
ized by chaotic atomic motion apparently fell into oblivion for centuries,
but it is peculiar that the word “gas” itself was coined in the seventeenth
century from the Greek term chaos,60 which then, as in ancient times, had
many meanings.)

Atomic motion was used to explain, besides the behavior of dust, other
phenomena related to matter and heat. Unfortunately, only echoes of such
explanations have survived, scattered in literary texts. For instance, some
scientific ideas about thermal phenomena have come down to us through
Plutarch, such as the remark that wool clothing makes us warm because of
its insulating power rather than because of inherent heat, as demonstrated
by the use of wool to keep snow from melting.61 Plutarch also discusses —
and exaggerates — the effects of temperature on the density of water.62

Several of his passages hint that temperature differences may have been
understood to reflect changes in atomic velocity: he reports (without at-
tribution) the doctrine that coldness is merely the absence of heat and has
the property of being stationary;63 and the comment that “hotter” means
“faster”.64

Regarding states of matter, already Epicurus distinguished two types of
atomic motion: the vibration of atoms around a fixed position (in solids)
and the free movement of atoms separated by large distances (in gases).65

57Plutarch, Quaestionum convivalium libri iii, 722A–B = [FV], II, 24:10–15 (Anaxagoras A74).
58In the same lovely passage already mentioned in note 33 of page 23 (De rerum natura, II, 112-

141).
59See for example Plutarch, Adversus Colotem, 1112B.
60The neologism is due to J. B. van Helmont (1577–1644), who used a Flemish phonetic equiva-

lent for the letter � . I am grateful to Federico Bonelli for bringing this etymology to my attention.
61Plutarch, Quaestionum convivalium libri vi, 691C–692A.
62Plutarch, Quaestiones naturales, 914A; see also note 27 on page 27.
63Plutarch, De primo frigido, 945F. See also Quaestiones naturales, 919A–B.
64Plutarch, Quaestionum convivalium libri vi, 677E.
65Epicurus, Letter to Herodotus, lines 43–44. The passage does not talk explicitly about solids and

gases, but this correspondence (more or less obvious, in any case) is spelled out in Lucretius, De
rerum natura, II:95–111.
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The thermal dilation of gases was well-known. Philo of Byzantium, de-
scribing the thermoscope (page 134), observes that the thermal expansion
of a gas is owed to the increase in interatomic distances, which cannot be
observed directly.66 Unfortunately, in his extant works Philo makes only
a bare mention of these theoretical ideas, referring the reader to another
work of his that has perished, titled De mirabilibus arbitriis in the Latin
manuscripts of the Pneumatica.67

Without trying to speculate on the contents of this treatise, we mention
a very interesting remark of Philo’s on the possible origin of randomness,
found in his artillery book:

Many who have undertaken to build machines of equal size, us-
ing the same structure, the same type of wood and the same metal,
not changing even the weight, have made some with long reach
and great destructive power and others far inferior; and if asked
why, they had no explanation. One might apply here the observation
made by the sculptor Polycletus, who said that the good [creation] is
obtained through many calculations, thanks to small differences. In
the same way in this techne [artillery design] many calculations are
needed, and someone who makes a small departure in the individual
parts causes a large error in the result.68

In passing, we note that the use of mathematics to treat experimental
data was so entrenched that it was not discarded in this case in spite of the
unpredictable variability of concrete results. But the most interesting point
for us here is how an apparently random result is explained by means of
a chain of mathematical relations that magnify initially negligible varia-
tions: essentially a mathematized version of the Stoic argument for recon-
ciling chance and determinism. This notion that “chance” can boil down
to small causes generating large effects seems to have been forgotten for
many centuries after Philo of Byzantium. It was taken up again, in quite
another technical context, in modern theories of deterministic chaos.

66Philo of Byzantium, Pneumatica, vii. See also the chapters of Heron’s Pneumatics mentioned on
pages 134–136.

67Philo of Byzantium, Pneumatica, iii = [Philo/Prager], p. 129. Several authors have interpreted
arbitria as an Arabic-mediated corruption of “automata” or “organs”, assuming perhaps that these
are the only wonder-evoking (mirabilia) entities in pneumatics. But, as noted by Prager (loc. cit.,
note 409), the context shows clearly that the reference is not to automata or organs, but to a discus-
sion of the motion of atoms in the void.

68Philo of Bizantium, Belopoeica, 49:13 – 50:9 = [Marsden: TT], pp. 106–107.
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10.4 Combinatorics and Logic

Cicero says that anyone who thinks that the ordered universe we know
might have arisen accidentally, through the casual concourse of material
particles, should also allow that, by shuffling and scattering on the ground
a bag of letters of the alphabet, one might get Ennius’ Annals, ready for
reading.69 The curious thing is that, in choosing an event whose practical
occurrence can be excluded even though it is possible in theory — what
we now call an event of extremely low probability — Cicero should use an
example that seems to suggest an awareness of the enormous number of
ways in which a set of letters can be combined. Plutarch not only reports
a similar example,70 but writes:

Disorder, like Pindar’s sand, “eludes numbering”. . . . The facts al-
low only one true statement, but an unlimited number of falsehoods.
Rhythms and harmonies follow precise ratios, but no one can com-
prehend all the musical slips that people make playing the lyre or
singing or dancing.71

It has often been thought that combinatorial calculations were unknown
to ancient science, but twice in Plutarch’s dialogues we find this remark:

Chrysippus said that the number of intertwinings obtainable from
ten simple statements is over one million. Hipparchus contradicted
him, showing that affirmatively there are 103,049 intertwinings[.]72

This passage stumped commentators until 1994, when David Hough,
then a graduate student in mathematics, noticed that 103,049 is the tenth
Schröder number,73 representing the number of ways in which a sequence
of ten symbols can be bracketed (subdivided into hierarchically organized
groups). Hough’s discovery has shown that in combinatorial problems of
considerable complexity had been approached and solved by the time of
Hipparchus, and forced a reevaluation of our notions of what was known
about combinatorics in Antiquity. (Fabio Acerbi, on the basis of the mea-
ger source material, has made some progress toward a reconstruction of

69Cicero, De natura deorum, II, xxxvii, 93.
70Plutarch, De Pythiae oraculis, 398B–399E.
71Plutarch, Quaestionum convivalium libri iii, 732E–F.
72Plutarch, De Stoicorum repugnantiis, 1047C–E, and Quaestionum convivalium libri iii, 732F (in the

latter passage the number transmitted by the manuscripts, 101,049, was long ago emended to agree
with the other passage, the corruption from “three thousand” to “[a] thousand” being by far the
more likely one).

73This notion was introduced in 1870 in [Schröder]. The link between it and Plutarch’s passage
was published in [Stanley]; further remarks can be found in [Habsieger et al.].
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that knowledge.74) Plutarch specialists up to Schröder’s time did not even
have a chance to explain this passage and could not have imagined that
this was because combinatorics in their time was yet to recover a concept
known to Hipparchus.

Plutarch also mentions simpler combinatorial problems; for example, he
says that Xenocrates estimated the number of syllables that can be made
with the letters of the alphabet as 1002 billion.75

One conclusion that can be drawn from this episode is worth stressing:
at least sometimes, Plutarch faithfully recorded sophisticated scientific re-
sults of Hipparchus that are not otherwise documented. In subsequent
sections we will see that this was probably not the only case. Needless to
say, reconstructing scientific results from fragmentary allusions in literary
sources is tricky at best: even the meaning of Hipparchus’ calculation in
terms of symbolic logic has not been fully clarified.76

10.5 Ptolemy and Hellenistic Astronomy

One often hears that the Almagest rendered earlier astronomical works
obsolete.77 This view is inconsistent with a crucial, if often overlooked,
reality: whereas astronomy enjoyed an uninterrupted tradition down to
Hipparchus (and especially in the period since Eudoxus), the subsequent
period lasting almost until Ptolemy’s generation witnessed no scientific

74[Acerbi: SH]. Some of the sources are Pappus, Collectio VII, 833–837; Boethius, De hypotheticis
syllogismis, I, viii §§1–7; a scholium to Euclid’s Data, published in [Euclid: OO], vol. VI, p. 290.

75Plutarch, Quaestionum convivalium libri iii, 732F. This estimate is obscure in that we do not know
how many letters are to be combined nor the rules to be followed in combining them; moreover the
number “1002 billion” is certainly rounded off and so offers little in the way of clues to the original
computation.

76Probably the ten simple statements are to be combined using logical implications. The Plu-
tarchan term translated here literally as “intertwining” is � � �

�
� ��� , which in Stoic logics ordi-

narily means what we call logical conjunction (“and”). But bracketing (grouping) an expression
that involves only conjunctions is an idle exercise, since conjunction is associative. On the other
hand, if by intertwining is meant a nonassociative operation (of which the most obvious example
is implication), different groupings lead to essentially distinct logical compound statements, and
counting such compound statements acquires interest. (More precisely, the conjecture is that the
problem posed was to count chains of implications under different groupings, and that — as is
perhaps natural when one uses everyday language instead of operator symbols — the ungrouped
“intertwining” of A, B, C meant the chain of implications now represented by (A ⇒ B) ∧ (B ⇒ C),
as distinct from (A ⇒ B) ⇒ C on the one hand and A ⇒ (B ⇒ C) on the other; compare our a > b > c.
The interest of ancient logicians (particularly Stoics) in long chains of logical implications is doc-
umented in several loci; see in particular Alexander of Aphrodisias, In Aristotelis Analyticorum
priorum librum I commentarium, 283, 7ff. (ed. Wallies) = [SVF], II, 257, where this way of linking
propositions is implied.) For a different view see [Acerbi: SH].

77[Ptolemy/Toomer], p. 1: “. . . its success contributed to the loss of most of the work of Ptolemy’s
scientific predecessors, notably Hipparchus, by the end of Antiquity, because, being obsolete, they
ceased to be copied.” Likewise [Grasshoff], p. 1.
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FIGURE 10.1. Histogram of astronomical observations referred to in Ptolemy’s
Almagest. Each bin is a 20-year period centered on January 1 of the year indicated.
The number of observations is written on top of selected bars. Data gathered from
the index in [Ptolemy/Toomer].

activity: there was a deep cultural discontinuity. This break, attested in
different ways, is illustrated especially clearly by the astronomical ob-
servations mentioned in the Almagest. They are spread over a period of
nine centuries, from 720 B.C. to 150 A.D., but leaving a major gap of 218
years: from 126 B.C., the date of the last observation attributed to Hip-
parchus, to 92 A.D., corresponding to a lunar observation by Agrippa (see
Figure 10.1). It was during this hiatus that intellectual conquests such as
the possibility of consciously creating new terms or new pictorial styles
were abandoned, together with the ability to formulate new sets of pos-
tulates. We have already seen in several cases how the interruption of
oral transmission made ancient works incomprehensible. (As a further
example among many possible, consider that Epictetus, regarded at the
beginning of the second century A.D. as the greatest luminary of Stoicism,
freely confesses to being unable to understand the works of Chrysippus:78

a fact that helps explain their disappearance.)
The loss of the scientific method led to a “realistic” interpretation of

surviving scientific theses: they were no longer regarded as statements
within a model but as absolute statements about nature. In astronomy,
decompositions of planetary motions, which had been invented in the

78Epictetus, Enchiridion, xlix.
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early Hellenistic period as mathematical models useful in calculations,
were now in the imperial period regarded literally, each component mo-
tion having its physical reality. Even the concentric spheres of Eudoxus
were interpreted as material.79 That the theory of epicycles was originally
a mathematical model is clear with Apollonius of Perga, who proposed
two equivalent models for the same motion.80 “Realistic” interpretations,
thought not present in the Almagest, appear in another of Ptolemy’s works,
the Planetary hypotheses, which describes a complicated mechanical system
whereby circular motions are supposed to take place on material spheres
embedded in rotating spherical shells.81 The idea of material planetary
spheres was not abandoned again until the modern age.

Ptolemy wrote a work on astrology, something no astronomer from the
golden period ever did.82 In this work, the Tetrabiblos, planets are sorted
according to two binary classifications: male versus female, beneficial ver-
sus harmful.83

The relationship between the Almagest’s star catalog and Hipparchus’
lost star catalog has been the subject of much debate. From Tycho Brahe to
the beginning of the twentieth century it was accepted that at least a large
part of Ptolemy’s star coordinates were deduced from Hipparchan data
and not from independent observations. This thesis was later contested by
Vogt and by Neugebauer,84 but it has recently been proved by Grasshoff
through a careful statistical analysis of all the available data.85

We get a hint of Ptolemy’s attitude toward his sources from the fact
that when he treats the same problem in different works, he changes his
methods each time, and hardly ever makes self-references. Thus, as we
have seen, in each of the three books that deal with planets (Almagest,

79After the Hellenistic period, the purely algorithmic role of the Eudoxan spheres only came to
be understood again by Schiaparelli, in the nineteenth century.

80See page 192.
81The Planetary hypotheses survived in Arabic and partially in Greek. The standard edition is

in [Ptolemy: OAM], 69–145. A translation from the Arabic of a part omitted from it is given in
[Ptolemy/Goldstein].

82We do not know of any horoscope, either in Greek or in demotic, datable from before 80 B.C.
See [Neugebauer: HAMA], vol. 3, p. 1371, for a histogram showing the number of horoscopes from
each decade.

83Ptolemy, Tetrabiblos, I §§5–6. Some planets partake of opposing natures: Mercury, for example,
is hermaphroditic.

84[Vogt]; [Neugebauer: HAMA], vol. 1, pp. 280–284.
85[Grasshoff], particularly p. 4 and pp. 178–197. Because of the loss of Hipparchus’ catalog, the

only term of comparison we have is the coordinates given in the Commentary on the Phenomena of
Aratus and Eudoxus (see page 79). Grasshoff concludes that, although we of course cannot rule out
that Ptolemy included in his catalog coordinates measured by himself, the information found in
the Commentary on the Phenomena suffice to prove that at least half of Ptolemy’s catalog is based on
Hipparchan data. Even before such statistical investigations were made there had been proofs of
the non-originality of Ptolemy’s star catalog; see [Wilson: Ptolemy], p. 39.
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Planetary hypotheses and Tetrabiblos), the treatment is completely different.
The apparent increase in the size of heavenly bodies near the horizon is
discussed in the Almagest and in the Optics,86 but the two explanations
offered are completely different — one based on refraction and the other
psychological — and neither passage mentions the other.

One particular, about geography, will illustrate Ptolemy’s methodology.
Both Eratosthenes and Hipparchus chose Alexandria for defining zero
longitude,87 much as British astronomers adopted Greenwich. Ptolemy,
in his Geography, prefers instead to reckon longitudes from the faraway
and shadowy “Blessed Islands”. Why on earth? Evidently in view of these
islands’ property of being on the leftmost edge of the map. This choice of
a reference meridian is not particularly useful for compiling new maps,
nor for navigation, but once established it is the most convenient for data
transfer and armchair geography, since it avoids the need to specify east
or west.

The Almagest presents a system for predicting the motion of the planets
but no explanation about how the system was obtained. In other words,
the book gives a recipe or algorithm, which depends on certain parameters
also given, but it does not say how the parameters can be derived from
experimental data. As in other fields, so in astronomy too: knowing how
to build theories no longer matters, only how to use them.

For it to be true that the Almagest incorporated all the astronomical
knowledge present in earlier works, it would have been necessary for
Ptolemy to have known them and mastered their methods thoroughly.
The considerations above cast doubt on whether this second condition
was satisfied. As to the first, we have mentioned evidence of Ptolemy’s
incomplete knowledge of Hipparchus’ works, regarding instrumentation
(Ptolemy shows no knowledge of the dioptra described by Heron, which
in all likelihood goes back to Hipparchus) and geography (Ptolemy is ig-
norant of the length of a degree of the meridian, which was measured by
Eratosthenes and which Hipparchus knew well).88 More direct evidence
is provided by Ptolemy himself, when he writes:

Hipparchus did not even begin to formulate theories for the planets,
at least in the works that have reached me.89

The disclaimer, which may seem due to plain conscientiousness,90 gains
its full import in the light of Ptolemy’s awareness of the titles of all works

86Ptolemy, Almagest, I, iii, 13 (ed. Heiberg); Optics, III §59, 115:16 – 116:8 (ed. Lejeune).
87We know this from Strabo (Geography, I, iv §1).
88See pages 69 and 276.
89Ptolemy, Almagest, IX, ii, 210 (ed. Heiberg).
90Toomer takes it so: [Ptolemy/Toomer], p. 421, note 10.
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by Hipparchus; indeed, earlier in the Almagest he had cited verbatim a
passage from a Catalogue of my own works by Hipparchus.91 We conclude
that Ptolemy knew that not all of Hipparchus’ scientific writings were
available to him.

The Almagest sentence just quoted appears in the chapter that introduces
the study of planetary motions. Ptolemy claims there that he was the first
to create a planetary theory, and his statement about Hipparchus (the only
scientist mentioned at that point) is an essential part of his priority claim.
In devoting a good chunk of prose to the non-existence of a Hipparchan
planetary theory, Ptolemy must have been attacking an existing belief that
Hipparchus had at least started to formulate such a theory. Otherwise,
how to explain that a scientist about to treat a scientific topic should de-
vote so much space to a predecessor of three centuries earlier that had not
indeed studied the subject?

The idea that the Almagest included all earlier astronomical knowledge
must be tautologically based on the fact that, because of the loss of older
works, earlier astronomy was reconstructed based on the Almagest. And
we do know that certain Hellenistic astronomical ideas do not appear in
the Almagest: if nothing else, heliocentrism and the infinite universe. We
have seen in Sections 3.6 and 3.7 that there is good reason to think that,
contrary to common opinion, these were not isolated notions that were
abandoned abruptly.

Thus a reasonably accurate picture of Hellenistic astronomy as it existed
in Hipparchus’ time will depend crucially on analyses of the literature
preceding the Almagest.

10.6 The Moon, the Sling and Hipparchus

Toward the end of the first century A.D. Plutarch wrote a dialog on the
appearance of the moon, titled De facie quae in orbe lunae apparet, where we
read:

And further, to help the moon, that it may not fall, there is its motion
itself and the whizzing nature of its rotation, just as objects placed in
a sling are prevented from falling by the circular motion. For each
body is guided by motion according to nature, if it is not turned
aside by something else. For this reason the moon does not follow
its weight, which is cancelled by the counterweight of the rotation.

91Ptolemy, Almagest, III, i, 207 (ed. Heiberg). Rehm was the first person to correctly interpret this
passage of the Almagest, and Toomer is confident of this interpretation: [Ptolemy/Toomer], p. 139,
note 25.
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There would perhaps be much greater reason to marvel if it kept
motionless and still like the earth.92

One should not pay attention to philosophers if they want to ward
off weirdnesses with weirdnesses and, to fight the astonishments
of one doctrine, make up things even more weird and astonishing.
Take the folks who introduced the thrust toward the center. What
weirdness is missing there?. . . Not that multi-ton, white-hot boul-
ders thrust through the depths of the earth, upon reaching the cen-
ter, should stay still with nothing touching or supporting them; nor
that if thrust down with impetus they should overshoot the center
and turn back again and keep bobbing back and forth from these
[turning points]. . . . Not that a furious stream of water thrust down,
when reaching the center point (which they themselves call incorpo-
real), should stand suspended, go around in circles, swinging with
an incessant and perpetual swing?93

“Each body is guided by motion according to nature, if it is not turned
aside by something else.” To clarify the meaning of this we must first of all
ask what is meant by “according to nature” ( � �

�
� �

�
� � ). To Aristotle, who

discussed the question at length, in the De caelo in particular, the answer
depended on the body’s nature: for heavy bodies, motion according to
nature is downward (toward the center of the earth); for light bodies it is
upwards; whereas heavenly bodies move according to nature in circles.

For the pebble in the sling, Plutarch’s passage might suggest that, as in
Aristotle, “according to nature” means the downward movement, due to
weight, that would occur in the absence of rotation. But the divergence
between Plutarch’s source and Aristotle is patent in the case of the moon,
which is here made to parallel that of the pebble: in Plutarch’s source,
moon and pebble had the same motion according to nature, and obviously
a uniform circular motion is not according to nature for a pebble. This a
key point, because the idea that uniform circular motion is the natural
motion of heavenly bodies is usually associated with all of Antiquity,95

and was still shared by Galileo.
The Greek word we have translated as motion is kinesis ( �

�
�

�
� � ). The

effect of gravity is not described as a kinesis toward the center of the earth,
but as a thrust (fora, � � ��� ) toward the center. We cannot translate fora as
motion, because the motions described by Plutarch as subjected to fora

92Plutarch, De facie quae in orbe lunae apparet, 923C–D. The ideas we’re about to present about this
passage first appeared in [Russo: Plutarco], where they are discussed at greater length. As fully
explained there (p. 81), we adhere to the text as preserved in the manuscripts at some of the spots
where editors and translators have emended it.

93Plutarch, De facie. . . , 923F–924C. The claim that it is absurd that an incorporeal “point” should
influence material bodies is typical of the Skeptical critique of scientific theories. See, for exam-
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motion

thrust

FIGURE 10.2. Several ways in which a body (black dot) subject to a “thrust to-
ward the center” might move: a circular orbit, like that of the moon around the
earth or the stone in a sling; an oscillation about the center; no movement if the
body is already at the center; a single up-and-down trajectory of an ordinary
body thrown up in the air. The first three possibilites are alluded to by Plutarch;
see page 292 for an ancient testimonium on the last case. Arrows show direction
of motion, white triangles direction of thrust.

toward the center are not in general themselves directed toward the cen-
ter:96 in the case of the multi-ton boulder that, arriving at a certain speed
in the center of the earth, goes beyond it and starts to oscillate, the effect
of gravity (the “thrust toward the center”) is a decrease in speed when the
boulder is moving away from the center and an increase when it is moving
toward it; and the same can be said about the torrent of water in perpetual
back-and-forth movement. The same thrust toward the center may have
the effect of changing an object’s velocity in direction alone, leading to
a circular uniform motion, as the passage says regarding the water and
the moon. In each case the movements described as subject to fora toward
the center are those that, in modern terms, have an acceleration in that
direction. This does not mean that the scientific treatises where the theory
was presented necessarily used a mathematical concept coinciding with
our acceleration.96a But it does seem clear that Plutarch’s source regarded
a motion “according to nature” to be a uniform linear motion, so their

ple, Diogenes Laertius, Vitae philosophorum, IX §99, or the passage of Sextus Empiricus cited on
page 232: Adversus grammaticos ( = Adv. mathematicos I), §28.

95For example, in [Koyré: EG], where the author maintains from the introduction on that the
principle of inertia was unknown in Antiquity and that circular motion starts not being regarded
as according to nature only in the modern age.

96Nevertheless, the word is usually translated as motion in this passage — for example, by H.
Cherniss in the Loeb edition. This imprecision has led to confusion between the theory we’re
discussing (“thrust toward the center”) and the older theory of “motion toward the center” ( �

��� � �

� � � � � � � ��� � ), attributed to Chrysippus and it, too, reported by Plutarch (De stoicorum repugnantiis,
1054B–1055C), among others. Obviously the idea of a tendency toward a central point is as old as
the realization that the earth is round, but the theory under consideration here seems to be a new,
“dynamical” version of the old idea and is of great interest for that reason.

96aAs we shall see in Section 10.8, at least some ancient sources described the situation in terms
of a combination of bits of unperturbed straight-line motion with displacements directed to the
center.
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dynamical theory was based on the principle of inertia in some form. This
may seem out of place because, notwithstanding an interesting precedent
in Democritus,97 it is generally said that the principle of inertia and the
notion of friction were unknown in Antiquity. But Plutarch’s testimony
is not wholly isolated. Notice that the notion of friction is indissolubly
connected to the formulation of the principle of inertia. Common expe-
rience teaches us that to move a weight on a horizontal plane one must
apply force. This observation is compatible with the principle of inertia if
and only if friction is included among the possible forces. Several sources
mention the resistance a body in motion faces from the medium in which
it moves, vanishing only in the case of motion in the void.98 Heron, in his
Mechanics, unquestionably uses the notion of friction,99 and he also says:

We demonstrate that a weight in this situation [that is, on a horizon-
tal, frictionless plane] can be moved by a force less than any given
force.100

Heron proves this statement by taking arbitrarily close approximations to
the horizontal plane with decreasing slope.

Heron’s Mechanics has many overlaps with the homonymous pseudo-
Aristotelian work. In particular, the exposition of the parallelogram rule
for composing displacements is so similar in the two works that we may
suppose a common source.101 The pseudo-Aristotelian Mechanics follows
this exposition with the remark that a point in uniform circular motion is
subjected simultaneously to two motions: one “according to nature” ( � �

�
�

�
�

� � ) along the tangent and one “against nature” ( � � � � �
�

� � ) directed to-
ward the center.102This suggests that, as in Plutarch’s dialogue, only linear
motions were regarded as “according to nature”. Unfortunately, the text
of this work is corrupt and the quantitative analysis is not always clear.

Any theory based on a principle of inertia must allow as a consequence
that the same gravity can generate different motions (depending on initial
velocity). Plutarch, for the water near the center of the earth, does list three
possible motions for the same body subjected to the same fora toward the

97Democritus postulated that atoms have a continual motion devoid of cause (transmitted by
Cicero, De finibus, I, vi §17). The mid-nineteenth century historian of philosophy Eduard Zeller, not
having assimilated the principle of inertia, misunderstood Democritus’ idea, and his enormous
influence on later historiography helped perpetuate the incomprehension. The matter is clearly
explained in [Enriques, de Santillana], pp. 147–150.

98For example, Sextus Empiricus, Adversus grammaticos ( = Adv.~mathematicos I), §156: “It is char-
acteristic of the vacuum not to offer resistance” ( � � � ��� ����� � � � ��� � � ��� � � � � � � ��� � � ).

99Heron, Mechanica, I, §§20–21.
100Heron, Mechanica, I, §20.
101Heron, Mechanica, I §8; Pseudo-Aristotle, Mechanica, 848b:14–30.
102Pseudo-Aristotle, Mechanica, 849a:14–17.
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center: rest, uniform circular motion around the center and unending os-
cillation about the center. As we know now, these are indeed three possible
motions for a body in the conditions considered. In the case of a boulder,
too, Plutarch mentions not one but two possibilities: rest and oscillation.

Another very interesting statement made by Plutarch is that the moon
moves faster when closer to the earth.103

The whole passage suggests that Plutarch’s source taught an inertial
theory of dynamics where what we call force (and gravity in particular)
does not determine motion uniquely, but only the variation in motion.
Therefore it is valuable from a history of science perspective to investigate
what that source may have been.

Lamprias, the De facie character who ridiculed the theory of the thrust
toward the center, had earlier told Apollonides (who typifies “mathemati-
cians” in the dialogue): “the deviations of visual rays are not in your
purview nor in that of Hipparchus.”104 Thus Hipparchus is singled out as
a polemical target in the course of the same antiscientific polemic where
the supposed weirdnesses of our dynamical theory are highlighted. This
suggests the possibility that he was Plutarch’s source for the theory.

This conjecture gains plausibility in the light of several considerations.
First, the De facie alludes to other results certainly due to Hipparchus, such
as the observation that the moon has a measurable parallax105 and numer-
ical data from the Hipparchan lunar tables.106

Second, the conjecture that the theory was due to Hipparchus is consis-
tent with the distribution and small number of the sources that hint at it.
It seems not to have been known to Philo of Byzantium when he wrote
the Belopoeica,107 in the late third century B.C., so it probably belongs to the
second century. It also seems to have been unknown to many Alexandrian
scholars of the imperial period, which suggests that it had no time to sink
in before the interruption of scientific activities at Alexandria in 145–144
B.C. (and in particular that it was not documented in the Library).

We have seen that Heron is one of the few authors whose writings
contain ideas akin to those that appear in our Plutarchan passage. This
is significant because there is other evidence that he may have known
Hipparchan works that were not available to other Alexandrian schol-

103Plutarch, De facie. . . , 933B.
104Plutarch, De facie. . . , 921D.
105Hipparchus measured the lunar parallax (Ptolemy, Almagest, V, v, 369). In the De facie, as

Neugebauer notes, lunar parallax is mentioned just before Hipparchus is named (921D). The pas-
sage was mistranslated by Cherniss, but the meaning was put to right in [Neugebauer: HAMA],
p. 661.

106[Flacelière], p. 217; [Cherniss], p. 145.
107The book discusses the motion of weights, but there is no trace of a reference to the principle

of inertia.
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ars.108 That may have been a result of his well-attested familiarity with the
Mesopotamian scientific tradition: since we know of scholarly exchanges
between Rhodes, where Hipparchus worked, and the neighboring Seleu-
cid kingdom,109 it may be suspected that the astronomer’s works appear-
ing after the pogrom of 145–144 were preserved in the East better than in
Egypt.

The theory we are considering, by unifying the study of the motion of
weights with that of heavenly bodies such as the moon and treating both
as particular cases of motion subject to a fora toward the center, performs
a synthesis of astronomy and ballistics. It is not surprising that such a syn-
thesis should be performed by Hipparchus, the greatest astronomer of his
time and a denizen of Rhodes, then the main center of ballistic studies.110

Other evidence, in my opinion conclusive, is provided by Simplicius.
He tells us that Hipparchus wrote a work on gravity titled On bodies thrust
down because of gravity.111 This is the same terminology used several times
by Plutarch: the boulder, the stream and so on are said to be “thrust down”
because of gravity. And though Plutarch introduces the theory with the
words “thrust toward the center” rather than “thrust down”, the equiva-
lence of the two is implied by the very fact that later in the dialogue there
is an extensive critique of the identification of a single incorporeal point
(the center) with “down” ( � �

�
� ).112

Before we analyze Simplicius’ testimony, we note that already Aristotle
recognized the acceleration of falling weights, and that from other lines
of Simplicius we know that Strato of Lampsacus made decisive progress
in understanding the effect of gravity.113 He noticed that acceleration is
easily provable (visualizable, even) in the case of a trickle of water in
free fall: after going down for a while as a column, the water breaks up
into drops. Simplicius, alas, does not tell us by what argument Strato de-
duced from this that the water is gaining speed. From the viewpoint of
modern physics the separation into drops comes from the cross-section
of the trickle shrinking below a certain critical value, and the decrease
in the cross-section is what’s equivalent to the increase in velocity (the
rate of flow being of course constant). It is likely that Strato used just this

108One such work may have been a source for Heron’s Dioptra; see note 24 on page 272.
109For example, Hipparchus used Mesopotamian astronomical data.
110Philo of Byzantium, Belopoeica, 51 = [Marsden: TT], p. 108.
111

�
� � � ����� � � � ����� ��� � ��� � � ��� � �	��
�� � ����� (Simplicius, In Aristotelis De caelo commentaria, [CAG],

vol. VII, 264:25–26). That this work of Hipparchus, unknown to many Alexandrian scholars, was
familiar to Simplicius and (as we know from the latter) to Alexander of Aphrodisias, both coming
from Asia Minor, corroborates the conjecture that some Hipparchan works fared better in the East
than in Egypt.

112Plutarch, De facie. . . , 925E–926B.
113Simplicius, In Aristotelis Physicorum libros commentaria, [CAG], vol. X, 916:12–27.
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argument to deduce the increase in velocity from the decrease in cross-
section.114 Simplicius mentions Hipparchus’ theory in the case of an object
thrown straight up. The sequence of events are clearly described: first an
upward motion with decreasing velocity, then a downward motion with
increasing velocity. At this point Simplicius adds:

[Hipparchus] recognizes the same cause also for bodies let fall from
above.115

Thus Hipparchus’ theory treated identically the motion of a body thrown
up and of one dropped from on high. This unification suggests that the
astronomer, besides using the same terminology used by Plutarch, gave
it the same meaning. Only a theory that recognizes as essential variables
not just velocities but variations in velocity can unify the treatment of both
motions.

Simplicius offers us another highly valuable insight:

Hipparchus contradicts Aristotle regarding weight, as he says that
the further something is, the heavier it is.116

Hipparchus’ statement seems inexplicable if regarded as referring to small
displacements from the surface of the earth: in normal experience, things
don’t get heavier the higher up they are. If anything, the fact that weights
accelerate as they fall may suggest the opposite idea, which was indeed
maintained by Aristotle. Therefore the weight change that Hipparchus

114That the cross-section shrinks cannot fail to be noticed by anyone who has observed with any
attention a water trickle in free fall. The conjecture that Strato connected the formation of drops
with the decrease in cross-section, coming up with an explanation similar to the “modern” one,
seems very plausible in the light of three circumstances. First, the notion of flow rate, on which
the explanation is based, is used in a completely analogous way by Heron in his Pneumatics, a
work for which Strato was probably one of the main sources (see page 133). Next, the thirteenth
century Liber de ratione ponderis, attributed to Jordanus Nemorarius and certainly based on classical
sources, explicitly makes the link between acceleration and decrease in cross-section, concluding
with “and so it breaks up [into drops]” (Jordanus Nemorarius, Liber de ratione ponderis, proposition
R4.16, in [Moody, Clagett], pp. 224–227). Finally, the relationship established by Strato between
drop formation and acceleration seems hard to explain in the absence of the theoretical notions just
discussed, as shown by the modern historians of philosophy who have not succeeded in grasping
Strato’s argument (see, for example, [Rodier], p. 64, note 2).

115 � � � ��� � � � � � � � ��� ��� � ��� � � ��� � � ��� ���	� � ��� � 
 � � � � 
 � ����� � (Simplicius, In Aristotelis De caelo
commentaria, [CAG], vol. VII, 265:3–4).

116 ��
�������� ���� � ��� ��� � � � � � ��� ��� � ��� � ��� � ��� ��� � 
�� � ��� ����� � � ����� �����	
 ����� ���
 � � � ��� � � � ��� � � �����

� � 
�� � �� (ibid., 265, 9–11). This passage has been cited many times (in [Clagett: SM], for example)
in the translation given in [Cohen, Drabkin], which reads “. . . bodies are heavier the further re-
moved they are from their natural places” (p. 210). The last four words, added without bracketing,
have no correspondence in the original. It is true that specifying what the bodies are further from
makes the sentence more readable. It is also true that the reference point intended by Simplicius is
the center of the earth, which for him is indeed the natural place of a weight. None of this justifies
putting in Hipparchus’ mouth the Aristotelian notion of natural place.
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had in mind becomes manifest only when the distance to the center of
the earth changes appreciably. But if we think of bodies far away from the
earth, the statement is even odder. The only way to make it comprehensi-
ble is to suppose that Hipparchus meant the weight of bodies inside the
earth, recognizing that it decreases as the body nears the center. (It can be
seen from simple symmetry considerations that the weight vanishes at the
center, and it is natural to think that a small displacement from the center
will affect the weight but little.117)

We must conclude that Hipparchus’ work dealt also with the motion of
weights inside the earth, covering distances not negligible with respect to
the distance to the center. This is precisely the situation of the boulder and
the water in Plutarch’s passage. The other example Plutarch gives is the
moon, and Hipparchus was certainly the main source on the moon for this
dialogue;118 his name is mentioned explicitly (in connection with optics).
All this makes it very probably that the “weirdnesses” ridiculed by Lam-
prias come from Hipparchus’ work, possibly through intermediates.119

10.7 A Passage of Seneca

In 62 or 63 A.D., about 90 years before the Almagest, Seneca wrote his Nat-
ural questions, where we read:

Of these five stars, which display themselves to us and which pique
our curiosity by appearing now here now there, we have recently
started to understand what their morning and evening risings are,
where they stop, when they move on a straight line, why they move
backward; we learned a few years ago whether Jupiter will rise or
sink or retrograde (for this is the name given to its backward move-
ment).120

The five stars are of course the planets. Shortly before, Seneca had said
about the fixed stars that the Greeks had started to name them “less than

117Hipparchus may have used a more sophisticated reasoning than that. The reduction in weight
as the center of the earth is approached is naturally predicted by any theory that postulates that
gravity is a mutual attraction between bodies. In Section 10.7 we will analyze certain testimonia
that suggest that such a theory did arise in Hellenistic science.

118See notes 105 and 106 immediately above.
119Further evidence for a Hipparchan planetary dynamics comes from Roman sources; see Sec-

tions 10.7 and 10.8.
120“Harum quinque stellarum, quae se ingerunt nobis, quae alio atque alio occurrentes loco cu-

riosos nos esse cogunt, qui matutini vespertinique ortus sint, quae stationes, quando in rectum
ferantur, quare agantur retro, modo coepimus scire; utrum mergeretur Iupiter an occideret an ret-
rogradus esset (nam hoc illi nomen imposuere cedenti), ante paucos annos didicimus.” (Seneca,
Naturales quaestiones, VII, xxv §5).
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fifteen hundred years ago”. It is clear, therefore, that the “few years” of the
present passage should not be taken literally, but in the context of a very
long time scale.

It is generally believed that Seneca’s book drew from essentially one
source dating from the first century B.C. Therefore in the first century
B.C. there was still the living memory of a new theory, through which
scientists had “started to understand” planetary motions. The lack of as-
tronomers in the period between Hipparchus and Seneca makes it very
unlikely that the theory that Seneca refers to was unknown to Hipparchus.
Thus Seneca’s passage strengthens the case that, Ptolemy notwithstand-
ing, Hipparchus had at least started to fashion a new planetary theory.

Seneca tells us more about this “new” theory in the sequel:

There are some who have told us: “You are mistaken in thinking
that any star stops on its track or turns backward. Heavenly bodies
cannot be detained or turned back; they forever move forth; as they
once were sent on their way, so they continue; their path does not
end but with their own end. This eternal work has irrevocable mo-
tions: if ever [these bodies] stop, they will fall upon one another, for
it is constancy and evenness that preserve them now. Why is it then
that some of them seem to turn back? The appearance of tardiness
is caused by the intervention of the sun (solis occursus), and by the
nature of their paths and circles, so arranged that for a certain time
they deceive the observer: just as ships, though moving under full
sail, appear stationary.”121

Planets cannot reverse their motion: heavenly bodies are kept in their
orbits by the regularity of their motion; they cannot stop because, if they
did, they would fall on one another (alia aliis incident). It sounds like the
same idea presented more pointedly by Plutarch in the De facie for the
case of the moon, but with a significant difference: gravity here seems to
be viewed as a mutual action between bodies.

The sling argument mentioned by Plutarch, which in modern language
we might phrase as the cancellation between gravity and centrifugal force,
can explain quite easily the motion of the moon around the earth, at least
if, as suggested in the Plutarchan passage, we just want an approximate

121“Inventi sunt qui nobis dicerent: ‘Erratis, quod ullam stellam aut supprimere cursum iudicatis
aut vertere. Non licet stare caelestibus nec averti; prodeunt omnia: ut semel missa sunt, vadunt;
idem erit illis cursus qui sui finis. Opus hoc aeternum irrevocabiles habet motus: qui si quando
constiterint, alia aliis incident, quae nunc tenor et aequalitas servat. Quid est ergo cur aliqua redire
videantur? Solis occursus speciem illis tarditatis imponit et natura viarum circolorumque sic pos-
itorum ut certo tempore intuentes fallant: sic naves, quamvis plenis velis eant, videntur tamen
stare’ ”. (Seneca, Naturales quaestiones, VII, xxv §§6-7).
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description involving circular orbits. But the extension of this argument
to planets runs into a serious obstacle: How it is that at the moment of a
planetary station, when presumably there should be no centrifugal force,
the planet does not start to fall on the earth? This is the reason for the
interest in planetary stations and the gist of Seneca’s question: how is it
that some planets seem sometimes to reverse their motion, if heavenly
bodies cannot stop or turn back without starting to fall upon one another?

Seneca explains retrogressions by alluding to combinations of several
circular motions (natura viarum circolorumque sic positorum. . . ). The retro-
grade motion of planets, arising for a while from such combinations, is but
a deception (ut certo tempore intuentes fallant); in their real motion, planets
never turn backwards.

Possibly, Seneca’s source explained that the apparent motion of planets
(their motion relative to the earth) results from the combination of two
circular orbits, both centered at the sun and traveled respectively by the
earth and the planet, while the “real” motion of the planet happens on the
second of these orbits. This explanation accounts well for the occurrence
of retrogressions, and, having been proposed by Aristarchus of Samos,
at the time of Seneca’s source it would have been known to Hellenistic
astronomers for about two centuries. Of course, Seneca’s words about
“paths and circles” by themselves might admit other interpretations, and
might indeed suggest an epicycle-based geocentric theory. But I think that
the heliocentrism of Seneca’s source can be discerned clearly enough from
the following considerations.

First, heliocentrism is able to solve the dynamical problem mentioned
by Seneca: the sling argument can be applied to planetary motion exactly
as to lunar motion, by making the sun, rather than the earth, be the center.
It is hard to see what the solution would be in a geocentric framework.

Next, a Ptolemaic-type epicycle theory would explain the motion of the
planets without any reference to the sun, whereas the words solis occursus
in our passage show that the sun played a role in the explanation given by
Seneca’s source.

Thirdly, Seneca’s statement that planetary stations are just an illusion
and the ship analogy imply that what is regarded as the true motion (in
which the planets do not retrogress) is not the motion with respect to the
earth. Indeed, the ship topos is used to illustrate the relativity of motion
not only here but in several other ancient passages: Lucretius develops it
quite explicitly.122

Finally, we know that Seneca’s source envisaged the possibility that the

122“Qua vehimur navi, fertur, cum stare videtur; / quae manet in statione, ea praeter creditur
ire. / et fugere ad puppim colles campique videntur, / quos agimus praeter navem velisque vola-
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earth moves, because in an earlier passage Seneca mentions the rotating-
earth explanation for the daily motion of the skies.123

Thus it seems very likely that Seneca’s source applied to the revolution
of planets around the sun the same idea mentioned by Plutarch in the case
of the moon: the cancellation between gravitational attraction and cen-
trifugal force. Because heliocentrism can explain planetary motion in this
way, overcoming the difficulty inherent in planetary stations, the result
was a dynamical justification of heliocentrism. Since Seneca’s source must
be talking about ideas from Hellenistic astronomy of the second century
B.C. (the time of Hipparchus), the conclusion reached is consistent with
the thesis that the De facie passage discussed in the preceding section was
based on Hipparchus’ book on gravity.124

10.8 Rays of Darkness and Triangular Rays125

Although we have no true astronomical works from the period between
Hipparchus and Ptolemy, the Roman literature of the first centuries B.C.
and A.D. contains, besides the Seneca passages, at least two expositions
of astronomical arguments with some pretense of systematicity; they oc-
cur in Book II of Pliny’s Natural history and in Book IX of Vitruvius’ De
architectura. Since astronomical activity in Rhodes went on after it ceased
in Alexandria in 145 B.C., and since Rome maintained important trade
and cultural ties with Rhodes down to the mid first century B.C., it would
not be too surprising to find in these works traces of ideas of Hipparchus
unknown to Ptolemy — the more so because, when Pliny mentions the
foreign sources for Book II of the Natural history, Hipparchus heads the
list and garners lavish and enthusiastic praise. In fact Pliny regrets that no
one was left to carry on the astronomer’s scientific legacy.126 He briefly dis-
cusses an “immensely ingenious” theory capable of explaining the motion
of planets, and concludes by saying: “This is the theory of the outer plan-
ets, and it is harder than the rest; never before me has it been divulged.”127

mus” (De rerum natura, IV, 387–390). This passage parallels Seneca’s, as shown in [Russo: Lucrezio]
based on the respective contexts.

123Seneca, Naturales quaestiones, VII, ii §3.
124It has been generally assumed that this work of Hipparchus on gravity bore no relation to

his astronomical interests. But already Heath wrote: “It is possible. . . that even in this work Hip-
parchus may have applied his doctrine to the case of the heavenly bodies” ([Heath: HGM], vol. 2,
p. 256).

125The material in this section is drawn largely from [Russo: Vitruvio] and [Russo: Hipparchus].
126Pliny, Naturalis historia, II §95. Vitruvius, too, names Hipparchus (De architectura, IX, vi §3).
127“Haec est superiorum stellarum ratio; difficilior reliquarum et a nullo ante nos reddita” (II

§71). This discussion of the motion of outer planets starts with “aperienda est subtilitas immensa
et omnes eas complexa causas” (II §67).
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Together with his later remarks about Hipparchus, this makes one think
that the planetary theory that Pliny is “divulging” is that of Hipparchus. It
is very unlikely that Pliny would have dared to read astronomer’s works
directly, but his statements prove that a planetary theory attributed to
Hipparchus was explained in books that were still available in Rome in
the first century A.D.

As to the contents of the theory, it is admittedly not easy to reconstruct it
based on the pages of the Natural history. But it is clear that Pliny’s sources
include at least one that is scientific, because some of the data mentioned,
such as the periods of planetary revolutions, are reasonably accurate.

Pliny, like Seneca, says that planetary stations are merely appearances,128

which suggests that his source too espoused heliocentrism. Vitruvius adds
a bizarre explanation (which he says he does not agree with) of the retro-
gressions and stations of the outer planets Mars, Jupiter and Saturn, in-
volving a “darkness” that certain people supposedly claimed was caused
by the sun.129 It is not very likely that someone actually claimed that the
sun sends out rays of darkness. It seems more plausible that Vitruvius
misunderstood the heliocentric argument transmitted by Seneca and al-
luded to by Pliny. The source may have contained some remark (similar
to the one found in Seneca) to the effect that the motion of the planets is
obscured by the sun — that is, cannot be perceived directly from earth —
an explanation which Vitruvius could not grasp and took to mean a literal
darkness (obscuritas). The heliocentrism of Vitruvius’ source is corrobo-
rated by his statement that “the planets Mercury and Venus nearest the
rays of the sun move round the sun as a centre”.130

Vitruvius’ most interesting passage is probably this:

. . . the sun’s powerful force attracts to itself the planets by means of
rays projected in the shape of triangles; as if braking their forward
movement or holding them back, the sun does not allow them to go
forth but [forces them] to return to it. . . 131

Pliny has a parallel passage:

128“Hoc non protinus intellegi potest visu nostro, ideoque existimantur stare, unde et nomen
accepit statio” (Pliny, Naturalis historia, II §70).

129“Id autem nonnullis sic fieri placet, quod aiunt solem, cum longius absit abstantia quadam,
non lucidis itineribus errantia per ea sidera obscuritatis morationibus impedire. Nobis vero id non
videtur.” (De architectura, IX, i §11). Vitruvius then contradicts the explanation on the grounds that
the sun sheds light, not darkness, and that the outer planets are visible even while retrogressing.

130Vitruvius, De architectura, IX, i §6, Gwilt translation.
131“solis impetus vehemens trigoni forma porrectis insequentes stellas ad se perducit et ante cur-

rentes veluti refrenando retinendoque non patitur progredi sed ad se regredi. . . ” (Vitruvius, De
architectura, IX, i §12).
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[The planets] are struck in the position we have said and are pre-
vented by a triangular solar ray from following a straight path and
are lifted on high by the burning force [of the sun]. 132

The overlaps between the two texts are significant above all in view of
the matching contexts: both authors are explaining the motion of the three
outer planets. Both passages clearly display the idea of the sun’s pull on
the planets; Pliny includes the particularly interesting idea that this pull
has the effect of preventing the planets from moving on a straight line.

The continuation of the Vitruvius passage is very obscure. It reads:

and to be in the signum of the other triangle. It may be asked why the
sun in its hotness pulls [the planet] back in the fifth signum, rather
than in the second or third, which are closer. Therefore I will explain
why this seems to happen. Its rays extend out into the universe us-
ing lines in the shape of a triangle with equal sides. This however
does not happen either more or less [than] to the fifth signum from it.
Therefore. . . 133

To understand this passage it is essential to understand the sense in
which Vitruvius, and above all his source, used the term signum, which we
have not translated. It is generally assumed that signum means a zodiacal
sign and this interpretation is supported by the fact that elsewhere, in-
cluding in earlier passages in this chapter, Vitruvius uses the word in that
sense. This might seem to settle the question, but notice that in the pre-
vious passage, about the strange “darkness”, Vitruvius demonstrates dif-
ficulty in understanding his astronomical sources. Immediately after the
passage just quoted he curtails the argument by appealing to Euripides’
authority, another sign of his lack of familiarity with the subject. More-
over in this passage the words “lines” and “triangle”134 clearly indicate

132“Percussae in qua diximus parte et triangulo solis radio inhibentur rectum agere cursum et
ignea vi levantur in sublime” (Pliny, Naturalis historia, II §69).

133“in alterius trigoni signum esse. Fortasse desiderabitur, quid ita sol quinto a se signo potius
quam secundo aut tertio, quae sunt propiora, facit in his fervoribus retentiones. Ergo, quemad-
modum id fieri videatur, exponam. Eius radii in mundo uti trigoni paribus lateribus formae linia-
tionibus extenduntur. Id autem nec plus nec minus est ad quintum ab eo signum. Igitur. . . ” (Vitru-
vius, De architectura, IX, i §13). The penultimate word quoted is a generally accepted emendation
of the manuscripts’ “signo”, but the text as received also has much the same translation (“to the
fifth signum from that one”, i.e., the one where the sun is).

134Trigonum is the Latin transliteration of the Greek word for triangle. In Vitruvius the word is
generally assumed to mean the astrological trine or trigon, a configuration where the sun and
a planet appear separated by 120◦ in the sky. Under this interpretation the passage is rendered
essentially meaningless; there is no explanation for the trigonal rays of the sun, which according
to Pliny prevent the planet from moving on a straight line, nor for Vitruvius’ words “with equal
sides”. This astrological interpretation of trigonum, like that of signum, may even reflect Vitruvius’
own thinking, but not that of his source.
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a geometric construction. Thus we may suppose that Vitruvius is trying,
with difficulty, to convey a geometrical argument from a Greek scientific
source.135 If this is the case, one hint to the meaning of Vitruvius’ source
may be gained by literally translating the more obscure terms into Greek.
If we do this to the expression “second signum”, the Latin term signum
becomes semeion ( �

� � ��� � ), while the ordinal is indicated in Greek by the
letter � ; likewise “third” and “fifth” become the letters � and � . The Greek
term semeion, as we know, meant not only a sign but also (from Euclid on)
a point,136 and the letters of the alphabet were used not only for ordinals,
but to indicate the points of a geometric construction. In a context marked
by the presence of triangles and lines, the literal translation into Greek of
the Latin expressions “secundum signum”, “tertium signum”, “quintum
signum” has a clear meaning: “point B”, “point

L

”, “point E” in a geo-
metric construction. Could this have been the meaning, misunderstood
by Vitruvius, of the expressions in the Greek original?

When he talks about diagrams that he does understand, Vitruvius uses
expressions such as “where the letter A will be”, or “let’s draw a line from
the letter S”.137 Thus he uses the letter not as a label for a point, but to
indicate the actual place in the drawing where the letter is written. In one
passage where signum is used in a sense that seems to correspond approx-
imately to the meaning “point”, he writes: “from this signum and letter
C, let’s draw a line to the center, where the letter A is”.138 “Signum and
letter”: it is clear that here too, Vitruvius does not use signum to mean a
point, but simply a sign next to which is a letter. The absence of the abstract
geometric notion of a point in Vitruvius’ work should neither surprise us
nor be held against him. Never until his time had a geometrical work been
written in Latin (see beginning of Section 8.2), so it was not easy to express
in that language the geometric notion of a point.

The difference between the abstract meaning that semeion had to the
Greek mathematicians and the concrete notion of signum (a sign on the
paper) that a Roman writer like Vitruvius may substitute for it can be im-
portant in the interpretation of passages of astronomical arguments. The
same Latin term signum can in fact mean a sign of the zodiac (a meaning
expressed in Greek by a different word, ��� ��� � � ). In all cases the Latin term

135One example of the scientific reliability of this source is the value Vitruvius gives for the period
of revolution of Saturn: 29 years and 160 days. This is closer to the true value (29 years and 167)
than the value Ptolemy would later adopt in the Almagest (29 years and 182 days).

136See page 181.
137“Ubi erit littera A” (Vitruvius, De architectura, IX, vii §2); “ab littera S ducatur linea” (Vitruvius,

De architectura, IX, vii §6).
138“Ab eo signo et littera C per centrum, ubi est littera A, linea perducatur” (Vitruvius, De archi-

tectura, IX, vii §3).
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maintained a concrete meaning; of course the context would generally al-
low one to tell which signum was meant: for example, a sign on paper or a
sign of the zodiac. But we see the problems that could arise in the case of a
Greek scientific work making a statement about a �

� � ��� � in astronomical
space. A Roman reader might think that, since in Latin a signum on the sky
is a zodiacal sign, the same is true of a semeion on the sky; and even if he
was aware that this is not so, he would lack the linguistic tools needed to
correctly translate the text into Latin. As to the association between letter
and signum, since to Vitruvius it is at most a matter of spatial proximity, it
cannot be easily extended to the “signs” in the sky, since there are no let-
ters there. Since in Greek the letters of the alphabet are used also as ordinal
numerals, it would be natural in this case to assume this latter meaning
for the letters and to intrepret expressions such as semeion B (“point B”) as
“the second sign”.

Assuming that the source really did refer to the points in a geometric
construction, can the diagram underlying Vitruvius’ passage be recon-
structed?

Note first that Vitruvius mentions triangles with equal sides (paribus la-
teribus). This might seem to refer to equilateral triangles, but it can equally
mean an isosceles triangle, especially since the Greek adjective “isosce-
les” (

���
� ��� � � ) means “equal-sided” and Vitruvius may have translated

it componentwise instead of adopting the Greek word itself as became
customary later. The surrounding sentence, “its rays extend out . . . using
lines in the shape of a triangle with equal sides”, suggests triangles whose
equal sides are formed by rays originating in the sun, and so favors the
meaning “isosceles”. More than one such triangle, each sharing one ray-
side with the next, would all have the same side length. Thus the geo-
metric construction might involve adjacent isosceles triangles fanning out
from the sun; note that the rays of the sun (radii in Latin) are also radii of a
circle, since they are all of the same length.

The use of alter (“alterius trigoni”) indicates that there were two tri-
angles being considered. Thus we obtain the figure on the left, where H
marks the position of the Sun.

H H

E

The last position considered for the planet is, in Vitruvius’ words, at the
fifth signum, which is a signum in the second triangle. In our interpretation,
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the original meaning of this statement was that the planet, at the end of
the motions described, would be at the point E, a vertex of the second of
the two isosceles triangles (a signum of a triangle being simply one of its
vertices). Thus we get the figure on the right on the previous page.

We must account for four other points in the construction, A, B,

L

and

�

. It is natural to think that two of these (together with E) were the triangle
vertices other than H. Note that, since these are points on a circumference
centered at the sun, their interpretation as successive positions of a planet
is in accord with the heliocentric view that we seem to detect in Vitruvius’
source. There remain to determine two other points, corresponding to two
other positions considered for the planet. Vitruvius’ statement that the sun
forces the planet to return to it (“ad se regredi”) in the fifth signum suggests
that the last position considered before E (and presumably denoted with

�

) lay on the line HE, beyond the point E. Pliny, who seems to be using
the same source, says that the sun prevents the planet from moving on a
straight line; thus we may suppose that point

�

represented the position
the planet would occupy if the sun were not pulling it. Thus

�

is the inter-
section of the half-line HE with the imagined extension of the previous bit
of the orbit along a straight line (the tangent). The presence of two isosce-
les triangles suggests that the whole construction could be explained by
repeating the same procedure twice (as usual in the exposition of iterative
procedures by Greek mathematicians). Thus we get:

H

�
L

B

E

A

The meaning of the figure is clear. It shows how a planet’s orbit (sup-
posed circular) can be constructed as a succession of small strokes, each
of which is obtained by composing two simultaneous displacements: one
along the tangent to the circle (this would be the actual movement of the
planet if, in the absence of the sun, it could continue on a straight line,
as Pliny says) and another, directed toward the sun. The figure illustrates
the notion transmitted in qualitative form by Plutarch: indeed, the motion
of the planet arises as the result of a series of “thrusts toward the center”
We have already seen that the technical tool of vector addition for dis-
placements is present in Heron and in the pseudo-Aristotelian Mechanics,
and indeed it is used in this latter work to explain how a uniform circular
motion can be regarded as a continuous superposition of a displacement
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“according to nature”, along the tangent, with one “contrary to nature”,
directed toward the center.139 (We will see on page 373 that this description
of motion under a central force was used again by Newton.)

The figure we have drawn explains the origin of the otherwise inexpli-
cable statement by Pliny and Vitruvius that the planets are prevented from
moving on a straight line by “sun rays shaped like triangles”.

The way in which Vitruvius tries to explain what’s special about the fifth
signum (“id autem nec plus nec minus est ad quintum ab eo signo”) seems
to confirm that a signum meant a point in the source: the exact equality
of distance implied by the words “neither more nor less” seems more ap-
propriate to describing the position of a point than that of a zodiacal sign.
Moreover Vitruvius’ sentence matches the procedure throught which one
obtains point E in the proposed construction: namely, as the point on the
half-line H

�

that makes the side HE exactly equal (“nec plus nec minus”)
to the other side, H

L

, of the triangle.
Of course, Vitruvius’ statement that the second and third signa are closer

to the sun than the fifth is false when applied to points B,

L

and E of the
preceding figure. Within our proposed reconstruction, this can be seen as
a natural consequence of Vitruvius’ error. If he interpreted the points of
the geometric construction as signs of the zodiac and the letters used to
denote them as ordinal numerals, he might have thought that the zodiacal
signs were ordered starting from the one where the sun is.

10.9 The Idea of Gravity after Aristotle

Aristotle’s geocentrism is closely connected to his notion of gravity. The
center of the earth, which is also the stationary center of the cosmos, is
the “natural place” for which all “heavy objects” yearn. “Light” objects,
on the other hand, tend to go up (that is, away from the center), thanks
to their different nature.140 This view, like many others held by Aristotle,
held sway in late Antiquity and the Middle Ages.

At the end of the second century B.C., judging from the conclusions
reached in the previous sections, gravity stood on a very different footing.
In this and following sections we will follow clues to the evolution of this
idea in the third and second centuries B.C., interpolating logical steps to
fill the gaps between the few extant testimonia.

139See page 289, including notes 101 and 102.
140Aristotle, Physica, IV, i; De caelo, I, iii; De caelo, IV. Plato had already put forth substantially

equivalent ideas (above all in Timaeus, 62c–63e).
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Aristarchus’ heliocentrism was of course in explicit opposition to Aris-
totle’s ideas. Did the critique of geocentrism also lead to a critique of the
Aristotelian view of gravity?

Aristotle’s theory had become unsustainable after the development of
Archimedean hydrostatics. First of all, Archimedes had shown that there
is no such thing as levity (lightness) as the opposite of gravity (weight).
This eliminated one important rationale for regarding heavenly bodies as
essentially different from earthly ones. Even more importantly, in the first
book of On floating bodies Archimedes showed that simple postulates on
gravity (essentially that gravity is a spherically symmetric pull toward
the center of the earth, as Aristotle thought), together with simple postu-
lates about fluids, necessarily imply the spherical shape of the oceans (in
rest conditions). This was a momentous step: it showed that the spherical
shape is not something that must be accepted as “natural” because of its
perfection, being instead derivable from a few hypotheses on elementary
forces. It was, for the first time, a deduction of a feature of the actual world
from physical laws. There is no doubt that Archimedes’ demonstration
was also used to explain the form of the earth as a whole (though this
extension is not discussed in the On floating bodies, whose subject mat-
ter does not demand it). Indeed, the idea that the earth was originally
fluid is reported in several sources, and in particular by Diodorus Siculus,
who explicitly relates the earth’s shape to gravity.141 Archimedes’ theo-
rem must have helped corroborate it, showing that the actual shape of
the earth was just what would be expected from a fluid mass. This is a
good example of how exact science can connect apparently distant sub-
jects through logical ties: Archimedes’ theorem not only cast light on the
earth’s geological past, but also had important astronomical and cosmo-
logical consequences.

Once gravity is used to explain the roundness of the earth, the next step
is inevitable, namely explaining in the same way the obvious spherical
shape of the sun and of the moon. That shape could not but be viewed,
by anyone who had read Archimedes’ treatise, as indirect evidence that
these bodies, too, have a gravitational pull — not toward the center of
the earth, of course, but toward their own center. We do not know who
the first person to draw this conclusion was. Perhaps it was Archimedes
himself, since he was very interested in astronomy and took Aristarchus’
heliocentric hypothesis as a possibility at least, and so had no reason to re-

141Diodorus Siculus, Bibliotheca historica, I, vii §§1–2. The idea that the earth was originally fluid
might have arisen from geological studies. On this subject our main source is Strabo, who reports
ideas of Posidonius (Geography, II, iii §6). Seismic and volcanic phenomena, too, were as far back as
Eratosthenes a nexus for the study of transformations of the earth’s crust in geological time (Strabo,
Geography, I, iii §4).
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strict to the earth alone the causal relationship, which he so clearly pointed
out, between sphericity and gravity. What cannot be doubted is that the
conclusion was drawn by someone, since Plutarch says explicitly:

Just as the sun attracts to itself the parts of which it consists, so does
the earth. . . 142

After the theoretical reason for the spherical shape of the earth, sun and
moon was understood, the same shape was assumed to be shared by other
celestial bodies, though it could not be observed directly.143

At this point the Aristotelian picture (which later became the Ptole-
maic one) crumbled from inside. The universe no longer has a hierarchical
structure, centered on the earth and based on a distinction between earthly
and celestial bodies; it is made up of so many worlds, equivalent in im-
portant ways to one another. The multiplicity of worlds is closely linked
with the rejection of the sky of fixed stars, with the notion of an infinite
universe and with the relativity of movement.144 These ideas, too, whose
memory was to play such an important role in the early modern age, seem
to have had (apparently prescientific) forerunners among the pre-Socratic
philosophers.145

To return to gravity, the train of thought outlined above allows two pos-
sibilities: either one thinks that gravity has so many independent centers,
one for each heavenly body, each capable of attracting things that belong
to it and no others; or one thinks that there is also an attraction between
different heavenly bodies. The first possibility was certainly mooted, since
it is explicitly advanced in the De facie by Lamprias, to whom belongs the
line of the dialog quoted just above.146

The idea of so many gravity centers, each associated with one world and
not interacting with the others, while it may explain the shape of heavenly
bodies, does not solve the problem of what motions may be hypothesized
theoretically. One can ask, in fact: How would a mass move that is far
away from all stars? This question, crucial to the establishment of a “dy-
namical” astronomy and to the formulation of the principle of inertia, is in

142 � � ����� ��� � � ��� � � �
�
����� ���

�
��� �	� � � ������� � �
� � � ��� � � ���
� � � ����� ����	 � � (Plutarch, De facie quae

in orbe lunae apparet, 924E).
143See Cicero, De natura deorum, II, xlvi §117; Diogenes Laertius, Vitae philosophorum, VII §145. We

will return to this question in the next section.
144See Section 3.7.
145See, in particular, these testimonia about Anaximander: Eusebius, Praeparatio evangelica, I, vii =

[DG], 579:7–20 = [FV], vol. I, 83:27–40 (Anaximander A10); Stobaeus, Eclogae, I, x §12, 122:20 – 123:6
(ed. Wachsmuth) = [DG], 277b:3 – 278b:4 = [FV], vol. I, 85:1–8 (Anaximander A14).

146Plutarch, De facie. . . , 924D–F. Compare Plutarch, De defectu oraculorum, 424E–425C.

10.10 Tides 305

fact brought up by Plutarch in the same context of the polycentric theory
maintained by Lamprias.147

We now turn to the question of whether the possibility was raised of a
gravitational interaction between different astronomical bodies.

10.10 Tides148

Given that the Mediterranean is almost tideless, it is not an accident that
the Greeks became interested in tides primarily when they started sailing
the Atlantic and Indian Oceans, starting at the time of Pytheas and Alex-
ander the Great.

The main source of information on the subject is Strabo. He tells us that
Eratosthenes, based on his study of tides, criticized Archimedes’ conclu-
sion in the first book of On floating bodies, and said that the shape of the
oceans was not exactly spherical.149 This a very interesting point, because
it establishes a link between the study of tides and that of gravity in the
framework of Hellenistic exact science.

Since the Archimedean demonstration of the roundness of the oceans
is irreproachable, Eratosthenes knew that sphericity is an inevitable con-
sequence of the assumptions on gravity made by Archimedes. He could
have reached a different conclusion only by changing the assumptions:
more precisely, he must have eliminated the assumption that the earth’s
gravity is spherically symmetric. He knew the correlation of tides with
the moon (again our source is Strabo, in the continuation of the passage
just mentioned), so it seems that he explained the ocean’s ebb and flow
by abandoning Archimedes’ assumption of spherical symmetry and pos-
tulating an action of the moon that affected gravity on earth. The most
obvious phainomenon that a theory of tides must explain is that oceans
rise and fall twice a day, at times that correlate with the position of the
moon in the sky. On open shores, high tide comes soon after the moon
reaches the middle of its trajectory from horizon to horizon, whether up
in the sky or under the earth (these are called the upper and lower transits
over the local meridian). Neglecting this lag, now called the high water
interval, Eratosthenes might have postulated an influence of the moon as
follows: the tide is highest at locations and times when the moon is “seen”

147Plutarch, De defectu oraculorum, 425C–D. Actually Plutarch’s subject is the motion of “a rock
that some people assume to exist outside the cosmos”; the theoretical nature of the problem of the
motion of such a mass is clear enough from the context, even if Plutarch cannot grasp it.

148The material in this section is drawn in part from [Russo: FR].
149 Strabo, Geography, I, iii §11.
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directly overhead or underfoot, near the zenith or the nadir.150 In any case,
an action of the moon extending all the way to the earth must have been
hypothesized in the third century B.C. This was accompanied by the idea
that the earth also acts on the moon, which was certainly present in Hel-
lenistic astronomy (as we saw starting on page 286, it is documented in
Plutarch). Thus the action between the earth and the moon would have
been regarded as reciprocal, a significant conceptual leap.

Reciprocity might be thought to hold only for earth and moon, but if
extended to other heavenly bodies it would lead to a notion of gravity no
longer as an attraction toward one or many centers, but as a reciprocal
attraction between bodies. This extension, too, was accomplished, and is
attested in the passage of Seneca examined in Section 10.7. It, too, was
probably motivated by the theory of tides, as we will now see.

Besides the semidiurnal cycle, tides are subject to a monthly cycle, re-
lated to the phases of the moon. Spring tides — the tides of highest am-
plitude in a monthly cycle — occur near the full and new moons, while
neap tides — of lowest amplitude — occur at the first and third quarters.
We have no information on whether Eratosthenes knew the monthly cycle,
but the relationship between tides and phases of the moon was probably
known empirically to dwellers of ocean shores from very ancient times,
and it was articulated before Eratosthenes by Pytheas151 and perhaps by
an earlier Massaliote, Euthymenes.152

Ever since Parmenides, in the first century B.C., explained the phases
of the moon based on the relative positions of sun, moon and earth, the
knowledge of a relationship between tides and phases of the moon could
potentially mean a recognition of the sun’s role in tides.153 A theoretical
explanation of the monthly cycle is in fact not very difficult, if one at-
tributes tides to a major effect of the moon and a minor effect of the sun,
and admits that each of these two effects is maximal when the body is at
the zenith or the nadir. For then the solar and lunar effects add up when
the two bodies are aligned with the earth (Figure 10.3) — that is, at full

150In fact this reasoning helps explain the high water interval as well; in the open ocean where
there are no obstacles to the flow of water, high tide follows the moon’s transit over the meridian
very closely, whereas in bays or other shores separated from the open ocean by geographical fea-
tures, time is needed for the water that has risen in the ocean to flow in. The lag can be of many
hours.

151Aetius, in Stobaeus, Eclogae I, xxxviii, 252:18–19 (ed. Wachsmuth) = [Pytheas/Roseman], 102 =
[DG], 383b:4–7. The correlation attributed to Pytheas is incorrect and may reflect a doxographer’s
misunderstanding of the mariner’s accurate observations. In any case it shows that Pytheas related
tides with phases of the moon.

152[DG], 634 = Pseudo-Galen, De historia philosopha, lxxxviii.
153But this seems to be a non-obvious step. For example, chapter 12 of Le monde de M. Descartes,

ou Le traité de la lumière contains a clear statement of the relationship of phases of the moon with
tides, but explains it using the moon alone.
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sun

FIGURE 10.3. Spring tides: at new moon and full moon, when there is rough
alignment, the effects of moon and sun cooperate: each body individually would
cause high tide at the same locations on the surface of the earth, namely those
that see the body directly overhead (zenith) or underfoot (nadir).

sun

FIGURE 10.4. Neap tides: at quadrature, the sun’s effect partly cancels out the
moon’s, because the sun would be causing high tide at points where the moon is
causing low tide.

moon, when they’re on opposite sides of our planet, and at new moon,
when they’re on the same side — while they work at cross-purposes when
sun and moon are seen at right angles from the earth (Figure 10.4), the
moon’s effect predominating but being decreased by the sun’s.

Did Greek scientists ever formulate the astronomical explanation for
tides just stated, which we call the lunisolar theory? Posidonius, in the first
century B.C., wrote a work on tides that has perished, but on which we
have three important testimonia. One, by Strabo, is well-known:154 it con-
tains an accurate description of tidal phenomena that includes the daily,
monthly and yearly cycles and correlates them with astronomical facts (for
instance, it says that the highest tides occur at full moon and new moon);
but it does not mention hypotheses or postulates from which one could
deduce these phenomena.

Pliny also has a similar phenomenological description, but he adds two
important pieces of information. First, just before talking about the moon’s

154Strabo, Geography, III, v §8.
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attraction, he declares that the moon and the sun are the causes of tides.155

Second, after stating that spring tides come with the full and new moons,
he says that they actually come a few days later, as also high tides come
with a certain delay (“of about two hours”) in the semidiurnal cycle.156

This material is probably from Posidonius, though Pliny does not say so
explicitly.157 In any case the ideas just discussed would be difficult to un-
derstand unless an astronomical theory, filtered out by Pliny, were present
in his source. The two statements would then acquire a clear meaning and
a precise role in the context of the lunisolar theory. The mention of delays
in spring tides is particularly revealing. Pliny does not simply say that
spring tides come a few days after the new moon and full moon; he first
says they come at those times, and then “corrects” that with the statement
that they come a few days later. Probably his source first expounded the
purely astronomical model, which predicts that high water occurs when
the moon crosses the meridian and that spring tides occur when the moon
is full or new, and then mentioned the need to correct the first of these
statements to take into account the time necessary for water to flow.

The third testimonium is from the early Byzantine period and appears
in the work of Priscian of Lydia called Solutiones ad Chosroem. A good part
of Question VI is devoted to an exposition of Posidonius’ work on tides.158

Most likely Priscian knew this work only indirectly, but his account is the
best we have. It adds two elements of crucial importance; namely, that
the moon’s action is more important that the sun’s,159 and spring tides are
greater than neap tides because the sun’s action is added to the moon’s.160

These two statements, plus with those that we can glean behind Pliny’s
writing, plus Strabo’s accurate phenomenological description, character-
ize without doubt the lunisolar theory. (Although the partial cancelation
of the actions of the two bodies during quadrature is not mentioned by

155“Et de aquarum natura complura dicta sunt, sed aestus mari accedere ac reciprocare maxime
mirum, pluribus quidem modis, verum causa in sole lunaque” (Pliny, Naturalis historia, II §212).

156“Nec tamen in ipsis quos dixi temporum articulis, sed paucis post diebus . . . nec statim ut
lunam mundus ostendat occultetve aut media plaga declinet, verum fere duabus horis aequinoc-
tialibus serius” (Pliny, Naturalis historia, II §216).

157He does mention Posidonius, together with Pytheas, Eratosthenes and Hipparchus, as sources
for book II, where this passage is.

158[Priscian/Bywater], pp. 69–76.
159Horum igitur causas requirens Stoicus Posidonius, ut et per se ipsum explorator factus huius-

modi reciprocationis, discernit magis causam esse eius lunam et non solem ([Priscian/Bywater],
72:10–12).

160Unde in plenilunio et coitu extollitur maxime unda, quoniam et lunae tunc magna adest virtus:
in plenilunio enim totum eius in terram conuersum a sole illustratur; in coitu autem illuminata
desuper a sole aequalem in ea quae sunt in terra uirtutem plenitudini praestat ([Priscian/Bywater],
73:4–8).
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Priscian, it must have been in Posidonius; for if the two actions never
opposed each other, there would be no way to know which is the greater.)

We thus conclude that an astronomical theory of tides, capable of ex-
plaining the monthly cycle by appealing to both a solar and a lunar action,
was known to Posidonius. It is harder to establish its origin.

10.11 The Shape of the Earth: Sling or Ellipsoid?

Some histories of geography say that one of the shapes given the earth in
Antiquity was a sling. Behind this strange claim are obscure statements
in late sources. Agathemerus, writing probably in the third century A.D.,
says that Posidonius described the ge (earth or land) as sling-shaped.161

The twelfth-century Byzantine archbishop Eustathius writes in a commen-
tary on Homer: “Posidonius the Stoic and Dionysius say that the ge is
shaped like a sling.”162

We don’t know what Posidonius really said. As to Dionysius, a poet
from the third century A.D. (nicknamed Periegetes from the title of his
short geographical poem, Oikoumenes periegesis or Sketch of the world), the
expression he uses is like a sling ( � � ����� ��� � � � ����� � � ).

Commentators have tried to save the day by taking ge to mean the dry
land, a natural meaning of the word but one that makes the analogy no
less enigmatic. As for a sling-shaped earth, the idea is just too odd to
have cropped up more than once. Therefore it seems likely that Diony-
sius’ statement is taken from Posidonius, who might have had in mind
(given among other things his astronomical interests) the same dynamical
analogy between the earth and a sling that Plutarch brings up.163 Once the
earth’s motions were forgotten, the analogy was no longer understood,
and it is natural that people tried to reinterpret it, straining to see in the
continents a sling shape.

Strabo, in the Geography, is clearly referring to the whole earth when
he makes the ground assumption (“hypothesis”) that the ge is spheroidal
( � ��� � � � � � � 	 ).164 This term is usually interpreted to mean “exactly like a
sphere”. Thus H. L. Jones, who adds for good measure: “The spheroid-

161

�
��� � ����� � ����� � � � � � � � ����� � ��� � ������� � � � and he continues � ��� � � � 	 � � ����� � 	 � � � � ��� � � � � � 
�
 ��� �

��� � � � 	�
���� � � � �� ��� � � � ��� 	 
 ��� ��� 
���� � � � � 	 � � � � � � 
 � ��� 	�
 ��� � � ����� � � � ��� � (Agathemerus, Ge-
ographiae informatio, I, i).

162Eustathius, In Homeri Iliadem, vi, 446.
163See quotation and discussion starting on page 286. An echo of the original meaning may per-

haps still be seen in Dionysius’ verses: he writes that the � ����� (earth or land) is � � ������
 � ��� ����� 	 �

	�
���� � � � � � � � � � � � � � ��� � � � ��� � � � � � � ��� �	� 	 � (Dionysius Periegetes, Oikoumenes periegesis, lines 6–7 =
[GGM], II, 104–105).

164Strabo, Geography, I, i §20, and again at II, v §5.
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icity [non-sphericalness] of the earth was apparently not suspected until
the seventeenth century.”165 Strabo’s use of the term can certainly bear
that interpretation. But Strabo says he borrows his ground assumptions
from the scientific treatises on the subject; therefore one cannot exclude
the possibility that the word here has its (Hellenistic!) scientific sense,
now generally borne by the expression “ellipsoid of revolution”.166 The
suspicion that Strabo’s sources declared the earth to be ellipsoidal finds
some support in a passage of Diodorus Siculus about the genesis of our
world, to the effect that the early earth, still fluid, was shaped by gravity
and its own continual rotation.167

Diogenes Laertius reports that “the Stoics” gave not only the earth but
also heavenly bodies a spheroidal shape.168 Elsewhere he talks of heavenly
bodies being spheroidal in certain cases and ovoidal in others,169 saying
this was the Epicurean belief. Aetius attributes to Cleanthes the opinion
that heavenly bodies have a conoidal shape.170 The introduction in a tech-
nical sense of terms that were previously in common use must perforce
have led to confusion after the notion of linguistic conventionalism was
lost.171

The ellipsoidal shape of the earth was “suspected” in the seventeenth
century, as Jones says. Remarkably, this suspicion predates any measure-
ment of or theoretical explanation for the polar flattening (for one thing,
there was longstanding debate over whether the ellipsoid was flattened or
elongated172). If the idea that the earth is ellipsoidal arose neither from ex-
perimental data nor from theoretical arguments, what led to it? Couldn’t
it have been the assiduous reading of Strabo attested among seventeenth-
century geographers?

165[Strabo/Jones], vol. 1, p. 40, note 2.
166See the Archimedes quotation on page 180 and note 32 immediately thereafter.
167Diodorus Siculus, Bibliotheca historica, I, vii §2. Note that when Archimedes proves in the first

book of On floating bodies that the spherical shape of the oceans follows from gravity, he specifies
that this is true “in rest conditions”.

168Diogenes Laertius, Vitae philosophorum, VII §145.
169Diogenes Laertius, Vitae philosophorum, X §74.
170In Theodoret, Graecarum affectionum curatio, VI, xx = [DG], 344b:1.
171Thus in the passage just cited, as in others such as [DG], 312b:22–23 and 329a:1–2, the doxogra-

pher’s statements that certain authors gave objects a conical or conoidal shape might have arisen
from a misunderstanding of references to conics.

172The second possibility was still maintained by the famous Giacomo Cassini (1677–1756).
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10.12 Seleucus and the Proof of Heliocentrism173

Seleucus of Babylon, already encountered on page 88 in connection with
the infinity of the universe, was an astronomer from the second century
B.C. about whom not much else is known.174 But Plutarch offers a very
interesting testimonium, whose import appears to have been neglected
by historians of science:

Was [Timaeus] giving the earth motion . . . , and should the earth
. . . be understood to have been designed not as confined and fixed
but as turning and revolving about, in the way expounded later by
Aristarchus and Seleucus, the former assuming this as a hypothesis
and the latter proving it?176

The passage refers to two types of terrestrial motion, rotation and revolu-
tion.177 The verb � ��� � � �

���
� ��� appearing at the end of the passage allows

different possibilities for what Seleucus actually did, but the contrast with
“as a hypothesis” clearly implies that he found new arguments in support
of these motions.

To state, as Seleucus did, that the sun really is fixed and the earth is
moving is equivalent to stating that planetary stations and retrogressions
don’t just disappear under the assumption that the sun is stationary, as
Aristarchus said, but that they really don’t exist. That retrogressions and
stations are merely apparent is repeated by pre-Ptolemaic Latin sources,

173The material in this section is drawn in part from [Russo: Seleuco] and [Russo: FR].
174See [Russo: Seleuco] for an analysis of the testimonia on him.
176Plutarch, Platonicae quaestiones, 1006C.
177Thus [Schiaparelli], p. 36 and [Heath: Aristarchus], p. 305. Nevertheless, Dreyer and after him

Neugebauer took the words � ��� � ��� ��� � � � �	
 � ��� � �
��� � � � � � , which we have translated “turning

and revolving about”, to mean only the earth’s daily rotation. They offered no arguments for this
position, and indeed avoided translating the expression altogether, replacing it by a single word,
perhaps to avoid raising doubts in the reader’s mind ([Dreyer], p. 140; [Neugebauer: HAMA],
p. 611). It is true that, taken in isolation, each of these two Greek verbs might refer either to rotation
around an axis or revolution about an external point (as can “rotate” and “revolve” in English, out-
side the narrowest astronomical convention). But if Plutarch meant rotation only, why two verbs?
The idea of rotation and revolution is further clarified by the contrast with the possibility of an
earth that is fixed ( � ������� � � ) and confined ( � � � ����� � � � � ). Finally, Plutarch specifies that the motions
referred here are the ones already attributed by Aristarchus to the earth, which we know from an
unequivocal passage (Plutarch, De facie. . . , 923A) to be both rotation and revolution.

There is every likelihood that Copernicus, in choosing a word to designate the earth’s movement
around the sun, consciously selected revolvo as a calque on Plutarch’s � � ��� �

� � . The prefixes match,
and both roots (which incidentally are cognate) bear the primary notion of “rolling” — not exactly
a perfect fit for the idea being described. For an independent choice, other Latin roots might be
more appropriate, whereas for a calque, nothing else will do. In view of this and of Copernicus’
explicit references to Plutarch as a source, it is ironic that in the twentieth century we should have
come to deny that Plutarch’s verb might mean “revolve” in the Copernican sense. (I thank Maria
Grazia Bonanno for bringing to my attention the correspondence between � � � � �

� � and revolvo.)
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including Pliny and Seneca,178 suggesting that the notion of heliocentrism
as a physical reality, far from being exceptional, was well-known. Thus we
might hope to find traces of Seleucus’ proof in the literature.

One argument in favor of heliocentrism is what we reconstructed in Sec-
tion 10.7 based on a passage of Seneca. With the sun as the reference, the
planets’ motion admits a simple dynamical description, where centrifugal
force balances attraction. In a geocentric model this is not so easy to do: if
the planets are attracted by the earth, why wouldn’t they fall when they
stop in the sky? And if not attracted by the earth, why don’t they go off
forever? One is tempted to deduce that only the motion around the sun
is real. Since classical literature contains no other arguments in favor of
heliocentrism, it is reasonable to conjecture that the proof that Plutarch at-
tributes to Seleucus is based on the argument just given, which is reported
by Seneca.

But it may be objected that the preceding argument is not a true proof
of heliocentrism. Even if only heliocentric astronomy allows a dynamic
description of planetary motion, there is always the possibility of rejecting
both heliocentrism and the dynamic description. An Aristotelian thinker
might insist, without incurring in contradiction, that the moon and the
planets are not subject to either centrifugal force or attraction, and that they
simply move according to their nature. As to the earth, if one does not
accept that it revolves around the sun or that it is attracted toward the
sun, it can very well stay at rest, most reassuringly.

How can one gainsay the Aristotelian view, proving that the earth is in
fact subject to two forces, an attraction toward the sun and a centrifugal
force, rather than to neither? An astronomer from the second century B.C.,
in possession of the ideas that we have reconstructed through Plutarch’s
and Seneca’s testimony, might revisit the analogy with the pebble spun
in a sling, and extend it. If instead of the pebble on a sling one spins
an easily deformable object (say a ragball) attached to a rope, the object
is stretched by the opposing centrifugal and centripetal actions, whose
presence is thereby made manifest. Does something similar happen with
the earth? Solid land is not easily deformable, but the oceans are. Because
solar tides can be detected and work precisely to raise the level of the
oceans toward the sun and the antipodal point, they provide a physical
proof of heliocentrism than can hardly be denied.

Several testimonia provide support for our reconstruction of Seleucus’
proof. Aetius says that Seleucus connected tides with the earth’s motion.179

Other authors portray the Babylonian astronomer as a great authority on

178Pliny, Naturalis Historia, II §70. The Seneca passage was discussed in Section 10.7.
179See quote and discussion on page 315.
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tides. A particularly interesting passage in Strabo reveals that Seleucus,
studying tides in the “Erythrean Sea” (which probably means today’s Ara-
bian Sea180) went beyond an understanding of daily and monthly cycles:
he found a correlation between the diurnal inequality (defined as the height
difference between consecutive high tides) and the seasons. Specifically,
he found that spring tides show maximum diurnal inequality around the
solstice, and minimum during the equinoxes, thus giving rise to a yearly
cycle.181 A theoretical explanation of the effect described by Seleucus is
easily provided within the framework of the lunisolar theory we encoun-
tered on page 307. Suppose, for example, that we have full moon at the
northern summer solstice; ignoring the high water interval, we then have
a highest spring tide at point A on the Tropic of Cancer where it is noon,
and at the antipodal point B on the Tropic of Capricorn, where it is mid-
night. The next high tide on the same spot is rather less severe, since point
A has moved to A′ and no longer has the moon and the sun on the zenith-
nadir axis, but aslant (Figure 10.5, left). Thus the diurnal inequality is
large. On the other hand, an equinoctial spring tide (Figure 10.5, right)
has diurnal inequality close to zero, as can be seen by comparing the same
two points A and A′ on the Tropic of Cancer (or, for that matter, any two
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FIGURE 10.5. Configuration of spring tides.

points of same latitude where it is respectively noon and midnight). In this
situation the highest spring tide is at points C and C′ on the equator. On
other days of the year we have an intermediate situation.

The interesting thing is that in the Arabian Sea the actual behavior of
tides (which may in general depart far from what might be expected on
the basis of simple models) agrees both with Seleucus’ description and

180The expression was also used for today’s Red Sea, but since Strabo sometimes says that Seleu-
cus came from the Erythrean Sea (Geography, III, v §9) and sometimes from Babylonia (Geography,
I, i §§8–9; XVI, i §6), it seems that in this case the Arabian Sea was meant.

181Strabo, Geography, III, v §9.
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with the theoretical scheme just discussed, as was recognized in 1898 by
G. H. Darwin, one of the founders of modern tidal theory.182

Strabo does not report an astronomical explanation for the phenomenon
studied by Seleucus, but there are hints that the Babylonian astronomer
knew the one we just gave. First, we have seen that the lunisolar theory,
on which the explanation is based, was known to Posidonius, and, in view
of the interruption in scientific activities already mentioned several times,
it is unlikely that the theory was created later than the second century B.C.
Also the testimonia clearly show that Seleucus was an astronomer and not
a naturalist interested only in phenomenological description of tides: the
tradition ranks him with “mathematicians”,183 and, what is more, Hip-
parchus regarded him as an authority on tides.184 Then Pliny, who seems
to draw on sources that knew the lunisolar theory, seems to refer implicity
to Seleucus when he mentions the diurnal inequality and the fact that it
vanishes only during the equinox.185

It is likely, then, that Seleucus not only observed the yearly cycle of di-
urnal inequality but actually explained it using the lunisolar theory. Thus
he would have been in a position to formulate a dynamical justification of
heliocentrism based on the tide’s solar component, as conjectured earlier
in this section. But the tide depends more on the moon than on the sun.
Can lunar tides be explained in a similar way?

Besides the obvious analogy between sun and moon, other consider-
ations might have led our ancient astronomer to an affirmative answer.
As we read in Plutarch, the moon does not fall onto the earth because an
attractive force toward the earth is balanced by a centrifugal force. Once
tides led to the realization that the earth is also attracted by the moon,
it would be natural to explain that the earth, in turn, does not fall on
the moon because a centrifugal force acts on it — a force arising from an
earthly motion. The analogy of the sling also has something to contribute
here. Anyone who has tried to spin around a weight at the end of a string
has noticed that it is impossible to do this while keeping perfectly still;
likewise a hammer thrower never remains immobile, but swings his own
body in a small circle as he spins the hammer in a larger one.

All this would have led to the hypothesis that what seems to be the
revolution of the moon around the earth is in fact a circular motion of
both bodies around a common center; that is, it would have suggested
that the earth, besides its daily and yearly movements, also has a monthly

182[Darwin: Tides], pp. 84–85.
183See for example Strabo, Geography, XVI, i §6, where Seleucus is linked to the Chaldeans, famous

among “mathematicians”.
184Strabo, Geography, I, i §9.
185Pliny, Naturalis historia, II §213.
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movement around the barycenter of the earth-moon system,186 enough to
cause a centrifugal force which, together with attraction toward the moon,
causes lunar tides.

Now consider Aetius’ testimony on Seleucus, which appears in a list of
explanations for the phenomenon of tides:

Seleucus the mathematician (also one of those who think the earth
moves) says that the moon’s revolution counteracts the whirlpool
motion of the earth.187

These words have long been obscure: what is the “whirlpool motion”
( �

�
� � � or �

�
�

�

) of the earth? The usual translations of this passage say
“whirling” or “rotation”, but if just the earth’s rotation were meant, why
the use of a noun whose primary meaning is a whirlpool or eddy, rather
than the nouns attested elsewhere for rotation?187a I believe that what is
meant is the earth’s revolution along a very small circle (that is, around the
earth-moon barycenter), a wobbling very much like that of a largish object
caught near the center of a whirlpool. So the moon’s revolution counteracts,
or is counterposed to, the earth’s wobbling: as the moon describes a large
orbit, the earth describes a small one, both remaining always opposed in
relation to the center of the orbit, just as the hammer thrower moves in
a small circle, keeping diametrically opposite the projectile in its circular
trajectory.188

The fact that the analogy between the earth and a sling goes back to
Posidonius, who is the author of the most famous exposition of the ancient
theory of tides, may be a further piece of indirect evidence in support of
our reconstruction.

10.13 Precession, Comets, etc.

The main result of Hipparchus mentioned by Ptolemy is the discovery
of the precession of the equinoxes.189 The precession is so slow that any
available observational data would have given Hipparchus displacements

186These qualitative arguments do not allow one to pinpoint the center of rotation, but they indi-
cate that it is closer to the more massive of the two bodies. The barycenter, a notion present from
beginnings of Greek statics, would be the most natural candidate.

187

�
�

�
� � ����� � ����� ����� � � � � � ����� ��� ��� � � ����� ��� � � � � � � � � � � � � � � ��� � � ����� ��� ��� � � ��� � ��� � � � �	�
� � �

������ � � � ��� � � � � ��� � (Stobaeus, I, xxxviii §9, 253:16–18, ed. Wachsmuth = [DG], 383b:26–34; or,
with minor variations, pseudo-Plutarch, De placitis philosophorum, III, xvii = [DG], 383a:17–25).

187aCompare note 177 on page 311.
188This interpretation of the Aetius passage was first published in [Russo: AS] and [Russo: FR].
189Ptolemy, Almagest, III, i, 192 (ed. Heiberg).
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of only a few degrees.190 Nevertheless, the astronomer, who is known to
have been very rigorous in his use of experimental data,191 dared to ex-
trapolate from a tiny arc the existence of a circular uniform motion with
a period of 26,000 years. If his astronomy was “dynamical”, any old top
might have given him the idea of sifting through observational data for
the existence and periodicity of precession.192

Phenomenologically, comets have very little in common with planets;
their appearance is quite different and even if the periodicity of a comet
can be noticed (which is far from easy), the trajectory remains for the most
part hidden and is different from that of any other comet. A purely de-
scriptive astronomy precludes a theory of comets. On the other hand, a
dynamical astronomy based on some sort of gravitational theory might
naturally ask whether there are things besides the planets going around
the sun, perhaps with very long orbits. It is not an accident that there is no
theory of comets in the Almagest and that the modern theory was created
by Halley only after the development of Newton’s theory of gravitation.
But Seneca writes:

For he [Apollonius Myndius] says that the Chaldeans reckon comets
among the planets and know their orbits.193

Apollonius Myndius thinks otherwise. He says that a comet is not
made up of many planets, but rather that many comets are planets.
He says: “A comet is not a false appearance nor an extension of fire in
the neighborhood of two stars, but a heavenly body in its own right,
like the sun and the moon. Its shape is just like that, not enclosed in a
circle but more elongated and stretched out. Moreover it has an orbit
that is not openly visible; it crosses the upper regions of the universe
and appears only when it reaches the lowest point of its orbit.194

190Ptolemy says that Hipparchus noticed a difference of less than three degrees between his own
observations and those of Meton, of 431 B.C. (Almagest, VII, ii, 15–16, ed. Heiberg).

191Ptolemy (Almagest, IX, ii, 211, ed. Heiberg) concedes this much to Hipparchus in the midst of
his efforts to deny him credit for a planetary theory (compare page 286).

192Tops display precession clearly. They were common toys; see, for example, Callimachus’ epi-
gram in Anthologia graeca, VII, 89.

193“Hic enim ait cometas in numero stellarum errantium poni a Chaldaeis tenerique cursus eo-
rum” (Seneca, Naturales quaestiones, VII, iv §1). Recall that Seleucus was one of the Chaldeans (see
note 183 above).

194“Apollonius Myndius in diversa opinione est. Ait enim cometen non unum ex multis erraticis
effici, sed multos cometas erraticos esse. Non est, inquit, species falsa nec duarum stellarum con-
finio ignis extentus, sed proprium sidus cometae est, sicut solis ac lunae. Talis illi forma est, non in
rotundum restricta sed procerior et in longum producta. Ceterum non est illi palam cursus; altiora
mundi secat et tunc demum apparet cum in imum cursus sui venit.” (Seneca, Naturales quaestiones,
VII, xvii §§1–2).
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The statement about the “shape” probably referred to the orbit in the
source, though Seneca may not be aware of it. For even admitting that
an astronomical source would linger and say that the tail of a comet is
“more elongated” than a circle, we would lose the clear logical connection
with the next sentence, which evidently implies in any case that the orbit
is elongated.

The notion that comets are celestial bodies of the same type as planets,
which Seneca attributes to Apollonius of Myndius, is mentioned also by
Aetius, who attributes them to some Pythagoreans,195 and to Pliny, who,
without attributing the opinion to anyone in particular, says of the comets:
“Some move like planets, others remain fixed.”196 It may be suspected
that the immobility option (which is contrary to all observable facts) was
added by Pliny, to whom the notion that all comets without exception
shared the planets’ vagrancy may have seemed too far-fetched. But the
association between comets and planets must have been a widespread
idea in pre-Ptolemaic times, because, other than in Pliny, Seneca and the
Pythagoreans mentioned by Aetius, it can be found also in Manilius. This
character, who wrote an astrological poem some time in Augustus’ and
Tiberius’ reign, mentions three different theories about comets; according
to one (the most interesting for our purposes), the sun periodically attracts
the comets to itself and then lets them go, as it does with Mercury and
Venus.197

10.14 Ptolemy and Theon of Smyrna

The preceding sections have argued that Hipparchus, and perhaps other
astronomers in the second century B.C., reached a sort of “dynamical he-
liocentrism” based on the principle of inertia and the equilibrium between
centrifugal force and the gravitational pull of the sun.

The greatest obstacle to accepting this picture is that these ideas are
nowhere to be found in the Almagest. But the Almagest itself offers indi-
rect evidence for the proposed reconstruction, in the form of remnants
of scientific ideas not understood by Ptolemy and the absence of other
ideas whose existence in Hellenistic science is well documented. Dennis
Rawlins makes a strong case that several technical elements of Ptolemaic
astronomy can only be explained as derivatives of an earlier heliocentric
model.198

195In Stobaeus, Eclogae I, xxviii, 227:8–10 = [DG], 366b:6–10.
196“Moventur autem aliae errantium modo, aliae immobiles haerent” (Naturalis historia, II §91).
197Manilius, Astronomica, I:867–875.
198[Rawlins: AHPE].
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Among the consequences of the cultural gap separating Ptolemy from
Hellenistic astronomy was the loss of the idea of relative motion. Indeed,
the idea that one can choose the reference system, present for example in
Euclid, Herophilus and one of Seneca’s sources,199 was completely foreign
to Ptolemy. Nevertheless he reported recognizably relativistic opinions,200

which he himself understood simply as a convenience for describing ob-
served motions, with no consequences to his concept of space and motion,
which is squarely Aristotelian. In just the same way physicians like Rufus
Ephesius, though diligently transmitting Herophilus’ neologisms, could
no longer grasp their nature.

Ptolemy not only did not use gravity (or any other dynamical idea) in
astronomy; he also approached the earth’s sphericity in a purely geometric
and descriptive way, seemingly unaware of the explanation for it that was
well known in Hellenistic times.201

The Almagest mentions (and contests, of course) the opinion that the
“fixed” stars have a uniform linear motion.202 To Ptolemy the motion in
question was the apparent movement in the sky, but we may conjecture
that his source was not making such a bizarre claim; it was instead refer-
ring to the “real” motion whose existence Hipparchus suspected on the
basis of general principles and for whose detection he sought to enlist the
help of posterity (page 88).

Ptolemy says, in the passage where he denies that Hipparchus had taken
steps toward a planetary theory:

All that he did was to make a compilation of the data arranged in a
more useful way[.]203

Fitting a theory to a great deal of experimental data of course requires a
lot of data reorganization, and these manipulations were not intelligible
to imperial-age scholars, who no longer created theories based on experi-
mental data, but at best used them. In Ptolemy’s time it was thought that
a theory must be put forth in a purely deductive fashion; Ptolemy’s expo-
sition is of this type and we have seen that Galen criticized Herophilus’
treatment of heartbeats for the same reason.204

The preceding discussion suggests that the guiding ideas that we have
descried in Hipparchus’ astronomy did not remain at a qualitative stage,
but that, on their basis, a quantitative description of planetary motions

199See pages 177, 188 and 296.
200See page 84.
201Ptolemy, Almagest, I, iv, 14–16 (ed. Heiberg); for the explanation of sphericity see Section 10.8.
202Ptolemy, Almagest, I, iii, 11 (ed. Heiberg).
203Ptolemy, Almagest, IX, ii, 210 (ed. Heiberg), Toomer translation.
204See page 154.
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was begun. This conjecture finds support in Seneca’s statement that “we
have recently started to understand” the motions of the planets, in a state-
ment of Pliny that seems to imply that the study of Mars’ motion had
been particularly difficult,205 and in Ptolemy’s report of Hipparchus’ dis-
satisfaction with the incomplete accord between theory and experimental
data.206

Theon of Smyrna, a contemporary of Ptolemy, wrote:

[The sun] is the place that animates the cosmos, as cosmos and living
being — as if, blazing-hot, it were the heart of the universe, because
of motion and magnitude and the common journey of all that is
around it. . . . 207

The center of the magnitude is the earthly, cold and immobile one;
but the center that animates the cosmos, as universe and as living
being, is that of the sun, which is said to be the heart of the universe
and the place whence derives the universe’s soul, which reaches out
all the way to its edge.208

These two notions — the particular role of the sun in animating the world
and the existence of a “cosmic sympathy” between heavenly bodies —
survived for a long time, and have been regarded as purely philosophical,
mostly “Stoic”, in origin. They are reported, for example, by Macrobius,
though he attributes them to Pythagoras.209 They may have been remnants
of a gravitation-based dynamical astronomy, no longer understood.

If we look into why these ideas were attributed to the Stoics, we find that
the primary reason is that their origin can be traced back to Posidonius —
just as in the case of the analogy between earth and sling. Note that Posi-
donius (who, besides having built planetaria, seems to have been the last
scholar to be seriously interested in tides210) headed a school at Rhodes not
long after Hipparchus had been active there. As for the connection with
Pythagoras, besides the general tendency of neo-Pythagoreans to credit
him as the source of all sorts of knowledge, it may be explained also by
the confusion between Hipparchus and Hippasus (page 241).

205“Multa promi amplius circa haec possunt secreta naturae legesque, quibus ipsa serviat, exem-
pli gratia in Martis sidere, cuius est maxime inobservabilis cursus[.]” (Pliny, Naturalis historia, II
§77). Note that Pliny’s sources used the concept of “laws of nature” and expressed it in the same
terminology that was transmitted down to the modern age (in part by writers like Pliny).

206Ptolemy, Almagest, IX, ii, 210 (ed. Heiberg).
207Theon of Smyrna, Expositio rerum mathematicarum ad legendum Platonem utilium, III, xxxiii, 187:

14–18 (ed. Hiller).
208Ibid., 188:2–7.
209In particular in his commentary on Cicero’s Somnium Scipionis.
210See Strabo, Geography, III, v §9.
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10.15 The First Few Definitions in the Elements211

As already discussed, there is much to suggest that Euclid subscribed to
the nominalist and constructivist blueprint (see particularly pages 181 and
185), but this is apparently contradicted by the first few definitions in
Book I of the Elements, of which we quote the first four:212

A point is that which has no part.

A line is breadthless length.

The extremities of a line are points.213

A straight line is a line that lies equally with respect to the points on
itself.214

Such definitions, and the next ones for a surface and a plane, are clearly
Platonist-essentialist, and fit better with the cultural imperial age than
with that of the early Hellenistic climate of the period: they find no parallel
in the works of Archimedes and Apollonius.

The Elements have reached us with interpolations from late Antiquity,215

and it is not unreasonable to suspect that these definitions are instances
thereof. One of the few definitions in the Elements methodologically anal-
ogous to those just considered is found right at the beginning of Book VII:

An unit is that by virtue of which each of the things that exist is called
one.216

This “definition”, which is clearly of Platonist character, is attributed by
Iamblichus (circa 300 A.D.) to “more recent” writers ( �

�
� � �
�

� � ��� ).217 It is
possible, then, that similar interpolations of Platonist definitions by later
authors occurred for the fundamental geometric entities.

211The material in this section is drawn from [Russo: Elementi] and [Russo: Elements].
212The word “line” in English is ambiguous. In this section it will always mean a not-necessarily-

straight line ( � ������� � ). We use “straight line” to translate � � � ��� � .
213

�

��� � � � �
� � � � ��� � ��	 ��� ��� ������� � 	������ � ��� � � � ��� � 
 � � � � � � � 	����������	� � 
���	 � ���

�

��� � � (Heath
translation).

214 � � � ��� � � 	 ��� ���
�
� � � � � � � �

�

 � � � ��� � �

�
� ��������� ���

�

� � � ��� � � � � ����� .
215For example, Theon of Alexandria mentions a theorem whose demonstration he inserted in

his edition of the Elements (Commentary on the Almagest, on I, x = [Theon/Rome], II, 492:6–8). We
also know that Heron wrote a popularizing commentary to the Elements, and some passages that
appear in all our manuscripts of the Elements have been positively identified as interpolations from
Heron’s commentary. For instance, the Arabic commentator an-Nairı̄zı̄ attributes proposition 12 of
Book III to Heron (see [Euclid/Heath], vol. II, pp. 28–29), and Proclus does the same regarding
an alternative proof of proposition 25 of Book I (Proclus, In primum Euclidis Elementorum librum
commentarii, 346:12–15, ed. Friedlein).

216 � ������� � � � � ��� �������� � � � ��� ��� �����	�� ��� �
� ��� � � ��� ����� (Heath translation).
217Iamblichus, In Nicomachi Arithmeticam introductionem, 11:5 (ed. Pistelli).
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In seeking objective support for this suspicion, we can use documents
of two types: papyrus finds and the testimonia of authors who had access
to earlier versions of Euclid’s works than the ones available today.

Among the few papyri containing fragments of the Elements, only two
are relevant to the definitions from Book I. One, probably written by a
school child, contains the first ten definitions almost exactly as they have
come down to us, but it makes no reference to Euclid.218Thus it shows
that at the time of its writing — the third century A.D. — the definitions of
fundamental geometrical entities were taught in the form that we know
from the Elements, but not that they appeared in the Elements or that they
were associated with Euclid. The second papyrus, chronologically more
relevant, comes from Herculaneum219 and does not contain “definitions”
of fundamental entities, but only one for a circle. This latter is quite correct,
but does not coincide with the one present in the known versions of the
Elements: in particular, the term circumference ( � ����� �

�
��� � � ) is used in the

papyrus without being explicitly defined, whereas in the extant Elements
a definition of this term is included in the course of the definition of a cir-
cle.220 This shows that in at least one case a definition of a term originally
left undefined was interpolated in the Elements.

Sextus Empiricus wrote before Euclid’s work took the form that has
come down to us. He discusses definitions of geometric entitites several
times. The importance of his testimony is increased by the fact that he
seems to report the definition of a circle not in the form present in today’s
Elements, but in that found in the Herculaneum papyrus;221 this leads us
to think that he had an edition of the Elements that was if nothing else less
corrupt than ours.222

When Sextus reports Platonist-essentialist definitions of fundamental
geometrical objects similar to the first few in Book I of the Elements, they
usually differ from the latter in telling ways. Let’s examine, for example,

218P. Michigan III, 143.
219P. Herculaneum 1061.
220The text transmitted by all manuscripts of the Elements (I, definition 15) is: “A circle is a plane

figure contained by one line, called the circumference, such that all straight lines emanating from
one point inside the figure and falling upon it — upon the circumference of the circle — are equal
to one another” ( � � �

�
���

�
� ����� � �

�
� � ����� ��	 � ��� � � ��� � 
���������� � � 
 � � � � � � 	 ��	 � � � � � � �	
 � ��� ���
 � � �
�� � � �

��
���� � � 	 � � � �	����
�

��� � � � ����	 � 	 ����� � ����� �	��� ����� � ��� � � 	���	 � � ��� ������
�� � � � ��� � ��� � � 
�� 
 ��� � 
 ��� � � 	 �����

� � � � �������
 � � � 
 ��� ��	 � ��� ��� � � � ��� � �
��� 	 ). Note the gauche amplification “upon the circumference”,

especially pointless in Greek since the pronoun � � 	 cannot be misunderstood in view of its position
and gender. (Heath omits from his translation the two references to “circumference” because they
were declared spurious by Heiberg.)

221Sextus Empiricus, Adversus geometras ( = Adv. math., III), §107.
222Heiberg, for a variety of reasons, concluded that Sextus still had access to the original edition

of Euclid: see the Prolegomena to the critical edition of the Elements in [Euclid: OO], vol. V.
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his passage about the definition of a point. He writes that mathematicians,
in describing ( ��� ��� ��� � � �

�
� � ) geometrical entities, say that

a point [stigme] is a “sign” [semeion] having no parts and no exten-
sion, or the extremity of a line[.]223

Since the sentence “a point is a ‘sign’ having no parts” is very similar
to Definition 1 in the Elements, and the characterization of a point as the
extremity of a line coincides with Definition 3, it is generally thought that
Sextus is citing Euclid in this passage. But a third property of points is
mentioned, namely their extensionlessness, and further, none of the three
properties is called a definition ( � ��� � ), but rather a description. By con-
trast, when Sextus reports the definition of a circle (which we can probably
assume to go back to Euclid, because of the testimonium from the Hercula-
neum papyrus), he talks instead of mathematicians defining (

�
��� � � � � � ��� ) a

circle.224 Now, in the Elements many statements are called definitions, but
nothing is called a description. This indicates that in the case of a point
Sextus Empiricus is alluding not to Euclid but to someone else.

What Sextus says about points is much closer to a passage from a work
titled Definitions of terms in geometry, with which Heron’s name has long
been associated. This text, after a dedication where the author states his
purpose of describing the technical vocabulary of geometry,225 consists of a
hundred or so paragraph-length sections, each illustrating and character-
izing one geometric concept. Little of this material qualifies as definitions,
belying the work’s traditional name.226 The first section starts:

A point is that which has no part, or an extremity without extension,
or the extremity of a line.227

Thus we see here the two telltale differences present in the Sextus Em-
piricus passage but not in the Elements: the use of the verb “describe”
( � � ��� ��� � � � ) and the characterization of the point as devoid of extension.

Getting back to the Sextus passage quoted at the top of this page, here
is how it continues:

223 � � ��� � � � � � � � ��� �
�

��� � ��� � ���	
�� � � ��� � � � ���� ���������� � 
 ��� � 
 ��� ��� � (Sextus Empiricus, Adversus
geometras ( = Adv.~math., III), §20. For the terms stigme and semeion see page 181.

224Sextus Empiricus, Adversus geometras ( = Adv. math., III), §107.
225This passage is quoted on page 325.
226Heron’s Definitions of terms in geometry ( � ��
�� ��� � � 
 �	� ��� � � � � ��� ��
�� ��� � ����� � ��� � ) is the title

it bore in the Byzantine compilation where it was preserved. Though the work is still generally
attributed to Heron, Knorr gives good reasons to think that it belongs to Diophantus ([Knorr: AS]).
It first appeared in print in 1570 as an adjunct to Dasypodius’ edition of Book I of the Elements; our
references are to Heiberg’s edition in [Heron: OO], vol. IV.

227

�

��� � � � � � � � ����� � � 
 ��� ��� ���	���� � � 
 ��� � � � ��� � �������� � � 
 ��� � 
������ ��� (Heronis Definitiones, 14:11–
12, ed. Heiberg).
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A line is a length without width or the extremity of a surface; a sur-
face is the extremity of a body, or a width without depth.

All of this appears both in the Definitions and in the Elements, except for
“a surface is the extremity of a body”, which is not in the latter, showing
again that Sextus was not relying on the Elements. In discussing the notion
of a straight line, too, Sextus reports both the definition that appears in the
Elements228 and another definition (based on the invariance of the line with
respect to rotations that fix two points) that is missing in Euclid’s work
but appears in Definitions.229 We can conclude that when Sextus reports
“descriptions” of basic geometric entities his source usually seems to be
the Definitions rather than Euclid.230

As we have seen, Sextus knew that to avoid infinite regression one must
either eschew definitions altogether or accept that some entities must re-
main undefined.231 Since he could hardly have broached this subject with-
out taking into account Euclid’s Elements (a foundational work for all later
mathematical developments), this testimony of Sextus, too, suggests that
in the version(s) of the Elements known to him certain things were left un-
defined. This would explain why on the subject of fundamental geometric
entities Sextus had to use the Definitions.

The definitions of fundamental geometric entities (point, line, straight
line, surface and plane) given in the Elements all closely follow passages
from the Definitions. We therefore narrow down our suspicions by conjec-
turing that they are interpolations drawn from the Definitions of terms in
geometry.

What settles the issue for me is the definition of a straight line found in
the Elements, and quoted at the beginning of this section. This very murky
statement232 seems to mean, if anything, that a straight line is “seen” in
the same way from all its points; that is, that there are rigid motions that
leave the line invariant and take any point to any other. But this property
(which as we know also interested Apollonius233) does not fully charac-

228Sextus Empiricus, Adversus geometras ( = Adv. math., III), §94.
229Sextus Empiricus, ibid., §98; Heronis Definitiones, 16:21 – 18:6 (ed. Heiberg).
230This possibility could not have occurred to earlier scholars such as Heiberg and Heath, who

thought that Sextus Empiricus predated Heron (the correct dating for Heron having been estab-
lished later by Neugebauer). Note that if Knorr’s attribution of the Definitions to Diophantus be-
comes established (note 226), the fact that Sextus seems to cite his work would help solve the
vexing question of Diophantus’ dating. (The argument generally used to assign Diophantus to the
third century A.D. goes back to Tannery, but its inconsistency has been demonstrated in [Knorr:
AS]. Knorr (op. cit., note 23) also considers the possibility that Diophantus was a source for Heron,
in particular for arithmetic terminology.)

231See page 182.
232Heath concludes his discussion of it with the words “the language is thus seen to be hopelessly

obscure” ([Euclid/Heath], vol. I, p. 167).
233See page 98.
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terize straight lines: in the plane it is also shared by the circumference. It
is strange that Euclid should not realize that a circumference, too, “lies
equally with respect to the points on itself”.

Now, in the Definitions the long paragraph on straight lines starts thus:

A straight [ � ����� � � ] line is a line that equally with respect to [all] points
on itself lies straight [ � � �

�

] and maximally taut between its extremi-
ties.234

The origin of this characterization can be traced fairly easily. Already the
Stoics had defined a straight line as a line taut between its endpoints.235

Archimedes took it as a postulate that among lines sharing the same ex-
tremities the straight line was the shortest.236 In the imperial period a
“straight line”, � ��� � � � , (which in Euclid, unless otherwise specified, means
a segment) came to mean one that extends endlessly in both directions.237

A person wishing to use the Stoic definition or the Archimedean postulate
to characterize the “new” infinite straight line of course could not base a
statement on one pair of endpoints only, but must instead say that the
straight line has this tautness property “equally with respect to all points
on itself”. The statement found in the Definitions is thus clear in this post-
Euclidean context.

In view of the difficulty in memorizing long chunks of text and of the
type of teaching prevailing in the imperial age, one can imagine the poor
students being encouraged to work from crib sheets abridged from the
Definitions, where each entry was truncated as soon as the syntax allowed
it.238 Such a crib sheet, from being copied together with the Elements, might
easily have merged eventually with the Euclidean text. The fact that by
this procedure we obtain exactly the definitions found in the Elements —
even “A straight line is a line that lies equally with respect to the points on
itself”, which no mathematician has ever been able to make proper sense
of — demonstrates the plausibility of our conjecture.

We should every so often pause to consider the legions of students
who throughout the centuries were forced to memorize a half-sentence
by teachers who did not know the second half that could have made it
meaningful.

Proclus seems to have preserved, through channels not easily identi-
fiable, a memory of the relationship between Archimedes’ shortest-line

234 � � � ��� � � ��� � � � � ������� �
�
� � � � � � �

�
� � � � � � � �

�
	 � ��� � ���

�

�
� � � � � � � � ���	� � � � � � � 
 � �� ��� ���
�
	 �

� � � ��� � ������� � � �
�
	  ����	���� � ��� (Heronis Definitiones, 16:22–24, ed. Heiberg).

235Simplicius, In Aristotelis Categorias commentarium ([CAG], vol. VIII), 264:33–36 = [SVF], II, 456.
236Archimedes, De sphaera et cylindro, 10:23–25 (ed. Mugler).
237Straight lines form one class of infinite lines in a classification of Geminus reported by Proclus

(In primum Euclidis Elementorum librum commentarii, 111:1–12, ed. Friedlein).
238Papyrus Michigan iii, 143, already mentioned, may have been a late examplar.
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postulate and the definition of a line given in the Elements. He struggles to
show, using strange arguments whose origin remains mysterious, that the
Elements statement is just a reformulation of the shortest-line postulate.239

Points and lines are each defined twice in the Elements (Definitions 1
and 3 for points, 2 and 6 for lines). Even this duplication, which amounts
to a clear logical incongruence, is easy to explain in the scenario discussed
above. In the Definitions, the notion of a point was explained with a list
of many characterizations, and likewise the line. It is then understandable
that the abridger, faced with the task of choosing one sentence to be kept
as a “definition”, should sometimes have hesitated and chosen two just in
case.

Significant support for our thesis can be found in the very preamble to
the Definitions, which starts:

In describing [ � ��� � ��� � � � ] and summarizing for you, illustrious Dio-
nysius, as concisely as possible, the technical terms presupposed in
the foundations of geometry [

�
� � � � � ��� � � ��� � � � ����� � � � ��� � �	��� �

� �� ��� � ������� �
� � � ��
 ], I will lay down the beginnings and general struc-

ture according to the teachings of Euclid, the author of the Elements
of geometric theory.240

This wording makes sense if we assume that one of the author’s goals
was to illustrate the geometrical entities left undefined by Euclid, that is,
the “technical terms presupposed in the foundations of geometry”. The
fact that the author considers his own work as preliminary to the Elements
provides strong support to the conjecture that either he or later editors
prepended extracts from the Definitions to the Euclidean text; the tradition
could hardly have failed to merge the texts at some later point.

This conjectural reconstruction is consistent with other available testi-
monia, in that no author who cites Euclid attributes to him the definitions
we are considering, all the way down to late Antiquity.241 This silence is
significant if we consider it together with the testimonia of several ancient
authors who quote definitions of fundamental geometrical entities, none
of which come from the Elements. We have already examined the pas-
sages in Sextus Empiricus; the case is similar with Plutarch, for whom the
straight line is still characterized by being the shortest line between two
points, and not by the definition that we now find in the Elements.242 Again

239Proclus, In primum Euclidis Elementorum librum commentarii, 109–110 (ed. Friedlein).
240Heronis Definitiones, preamble, 14:1–6 (ed. Heiberg).
241I have checked the Thesaurus Linguae Grecae for all passages containing Euclid’s name, and all

authors not included in the TLG corpus who to my knowledge were interested in mathematical
definitions.

242Plutarch, Platonicae quaestiones, 1003E; De Pythiae oraculis, 408F.
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when defining a point Plutarch does not use the Elements: he says instead
that “a point is a unit in a location”: an ancient definition, Pythagorean in
origin, that appears in the Definitions but not in Euclid’s book.243

An even more significant passage, for chronological reasons if nothing
else, is found in Philo of Alexandria (first century B.C.). He makes a dis-
tinction among geometric concepts, placing on the one hand circles and
isosceles triangles and polygons, for example, and on the other concepts
like points and lines, which can be defined only in philosophical terms.
He wonders:

How could [geometry], giving definitions, say that a point is that
which has no part, a line is breadthless length, a surface only has
length and breadth, and a solid is three-dimensional, because it has
length, breadth and depth? This is the stuff of philosophy. . . 244

Clearly, in first century B.C. Alexandria, the type of Platonist-essentialist
definitions that now head the Elements could not be found in geometric
works.

There remains to explain what sources were used in compiling the Def-
initions. Consider the first entry: after the beginning quoted on page 322,
it goes on with illustrative properties of a point and other divagations,
some of which are found in Aristotle. The second entry says among other
things that a line is the extremity of a surface; this characterization, inter-
polated as Definition 6 into our Elements, goes back to Plato and had al-
ready been criticized by Aristotle.245 It is clear, then, that far from reflecting
the method of Euclid’s Elements, the Definitions draws heavily from pre-
Hellenistic sources, though of course it also contains properly geometric
material.

The thesis espoused in this section openly challenges the traditional
view that Euclid was a Platonist. I think the idea of a Platonist Euclid
has three chief causes: the lasting influence of the only commentary to
Euclid preserved in Greek, by the neo-Platonist philosopher Proclus; the
presence in the Elements of the definitions that we have been discussing;
and the ascendance of Platonizing interpretations of Euclid, arising from
the vigor that Platonist views have enjoyed in schools of mathematical
thought ever since the imperial age.

243Plutarch, Platonicae quaestiones, 1003F; Heronis Definitiones, 14:15, where the point is said to be
“like a unit having a location”.

244Philo of Alexandria, De congressu eruditionis gratia §146, 102:15–25 (ed. Wendl) = [SVF], II, text
99

245Some relevant Aristotelian passages: Physica, IV, xi, 220a:15 ff. (the point as the extremity of a
line); Metaphysica, V, vi, 1016b:24–30 (indivisibility as a characteristic feature of points); De caelo, III,
i, 300a; Topica, VI, vi, 143b:11 (line as extremity of a surface). See also footnote 243 above.
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Karl Popper seems to have implicitly reached the conclusion we have
articulated in this section. For if we apply his already quoted thoughts
about the Platonist-Aristotelian method246 to geometry, and discard (as
we must) the possibility that Euclid’s method, which remained for two
thousand years the very model of scientific method, might rate as “empty
verbiage and barren scholasticism”, we must deduce that the definitions
that we have been discussing — which are Platonist and Aristotelian not
only in tenor and methodology but often in actual wording — cannot be
Euclidean. Strangely enough, Popper did not draw this conclusion from
his perceptive analysis, but retained the traditional idea of a Platonist
Euclid.247

246See page 180.
247See [Popper: OSE], Addendum 1 (which appears in vol. 1 of the third and later editions). The

scientific importance of the Elements obviously cannot escape Popper, so he must deduce from his
assertion of Platonism (which he supports, in particular, with passages from Proclus) the conse-
quence that Plato was the “founder of modern science”. Since Popper also says that Plato founded
the essentialist method used in Aristotelian definitions, this latter statement is hard to reconcile
with the passage quoted on page 180.
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11
The Age-Long Recovery

11.1 The Early Renaissances

The memory of Hellenistic science survived thanks to a series of revival
periods when interest in ancient knowledge was rekindled for a time in a
certain geographical area. The resumption of scientific studies in imperial
times, already extensively discussed, can perhaps be viewed as the first
of these renaissances. The second occurred around the early sixth century
A.D. and had as its protagonists Simplicius, John Philoponus, Eutocius,
Anthemius of Tralles and Isidore of Miletus. For our narrative a few ob-
servations about this cultural reawakening will suffice.

All these authors showed great interest in Hellenistic science: Eutocius
wrote a commentary on some works of Archimedes and Apollonius and
even believed he had found a lost proof by Archimedes.1 John Philoponus,
like Simplicius, is known chiefly for his commentaries on Aristotle, but he
also studied mathematics and wrote a work on the astrolabe. Isidore of
Miletus, best known for having designed (with Anthemius) the Basilica
of Hagia Sophia in Constantinople, edited Archimedes’ works and wrote,
among other things, commentaries on Heron.2 His work about marvelous

1Eutocius, In Archimedis sphaeram et cylindrum, II, iv = [Archimedes/Mugler], vol. IV, 88–89. But
Archimedean authorship of the fragment found by Eutocius is very doubtful.

2According to a passage inserted by a copyist into Eutocius’ commentary on Archimedes’ On
the sphere and cylinder, one of the works commented by Isidore was a treatise of Heron called �

�����

� ������� � � � � , meaning that it dealt with vaults and/or domes (Eutocius, In Archimedis sphaeram et
cylindrum, II, i = [Archimedes/Mugler], vol. IV, 62:1–4). Specifically, the interpolator says that in
this commentary Isidore described a parabola tracer of his invention; this suggests that one of the
subjects dealt with in Heron’s work was vaults or domes with a parabolic section. It might be
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mechanisms, too,3 is clearly based on Hellenistic sources.
All these scholars had been disciples of one master, Ammonius Hermiae

in Alexandria. Anthemius, to whom Eutocius dedicated his commentary
on Archimedes, had Isidore as a collaborator and successor. This school
had Hellenistic works unknown to the Alexandrian scholars of the first
few centuries A.D.: Diocles’ work on burning mirrors was unknown to
Pappus but is mentioned by Eutocius. Simplicius (page 291) is our only
explicit witness about Hipparchus’ lost work on motion under gravity.
Priscian of Lydia, a neo-Platonist philosopher from the same time, is our
fullest source for ancient knowledge about tides, including Posidonius’
work on the subject.4 Probably when the cultural center of gravity shifted
from Alexandria to Byzantium — where Anthemius and Isidore, among
others, worked — scholars became acquainted with works preserved in
the East which had never been part of the Alexandrian tradition. Cultural
exchanges with Eastern countries that had stayed outside the Roman em-
pire are illustrated by a famous episode: When Justinian had the Athenian
philosophical academy closed in 529, the Sassanid king Chosroes I invited
the newly unemployed philosophers to his Persia; among those who ac-
cepted were Simplicius, Damascius (who was head of the academy at the
time it closed) and Priscian of Lydia.

The level of scientific originality of the authors in this period is practi-
cally nil. Eutocius’ comment on Archimedes is invaluable to us because of
its references to otherwise unknown Hellenistic mathematical works, but
it is never original. Anthemius’ treatment of conics is shabbily pedestrian
in its mathematics, when compared with Apollonius of Perga; Simplicius
gives signs of misunderstanding Hipparchus’ work.5 However, because
works of this time contain bits of knowledge not present in surviving ear-
lier sources, certain scientific and technological results have often been
dated to the sixth century.6 Because Philoponus records the important fact

valuable to the study of architectural history to reconstruct the ups and downs of Heron’s treatise
and Isidore’s commentary, both of which are lost. One might suspect that a Hellenistic architectural
work with a commentary by the famous architect of Hagia Sophia (a building particularly prized
for its dome) may have disappeared not when its contents stopped being of interest in Byzantium,
but when they started being of interest elsewhere. See below, in particular note 27 on page 335.

3Only a few pages by Anthemius of Tralles survive ([MGM], pp. 78–87 or [Anthemius/Huxley]).
4See page 308.
5For example, Simplicius, following Alexander of Aphrodisias, argues from Aristotelian natural

philosophy to criticize Hipparchus’ statement that the weight of an object decreases as it gets nearer
the center of the earth. Compare footnote 116 on page 292.

6For example, we read in [Vogel], p. 791, that Anthemius “out-distanced Apollonius on sev-
eral points” in his work on burning mirrors. This is evidently based on a fragment that shows
Anthemius using the focal property of parabolas, which is not stated in Apollonius’ Conics. After
the publication of [Diocles/Toomer] we have proof that this knowledge goes back to Hellenistic
times, and probably was well-known to Apollonius. But it would have been enough to consider the
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about gravity which is popularly associated with the leaning Tower of
Pisa, certain authors have even credited him with being the first to contra-
dict Aristotelian mechanics.7

Next came what has been called the Islamic Renaissance. Interest in sci-
ence started in Islam during the eighth century, following the Abbasid
revolution, under Caliphs al-Man. sūr and Hārūn ar-Rashı̄d, and reached
its heyday in the ninth century, under Caliph al-Ma’mūn.8 It was then that
extant Arabic translations of Hellenistic scientific treatises started being
made. A copy of Euclid’s Elements was requested for this purpose from
the Byzantine Emperor by the Caliph (either al-Man. sūr or al-Ma’mūn,
depending on the source). Byzantium, too, experienced around that time
a renewal in scientific interest, perhaps under the stimulus of the Islamic
revival. Among the numerous works published in Byzantium during the
ninth century were many editions of scientific texts: we have mentioned
(page 52) one containing Archimedes’ works, based on that of Isidore.

Islamic scientists — to whom we are indebted in a fundamental way
for the survival of science — devoted themselves above all to the exegesis
of scientific works from the imperial period; they regarded Ptolemy and
Galen as the highest authorities in astronomy and medicine, respectively.

Optics was recovered primarily thanks to ibn Sahl, whose one extant
work dates from around 893, and ibn al-Haytham, also known as Alhazen
(ca. 965 to ca. 1039). Both wrote about mirrors of different shapes and also
lenses. Alhazen’s Optics, after treating other subjects in close emulation of
Ptolemy’s homonymous work, discusses the theory of spherical lenses.9 It
was Alhazen who, based on the observation that light is not emitted but
only received by eye, banished the notion of a “visual ray” from Islamic
optics. Whereas Alhazen, like Ptolemy, did not apply the theory of conics
to optics, ibn Sahl before him had done so systematically, and considered
not only parabolic and elliptic mirrors but even plane-convex and bicon-
vex lenses bounded by hyperboloids.10

methodological chasm that separates the two authors to realize not only that Anthemius could not
have out-distanced Apollonius but that he could not have been the discoverer of the focal property.

On the technological side, we read in [Maier], p. 66, that Anthemius of Tralles “even discovered
the principle of the steam engine”.

7See the articles in to Philoponus’ knowledge of mechanics on [Sorabji]. We will return page 351.
8For extensive coverage of the history of Arabic science, see [Rashed: HAS].
9Alhazen, Kitāb al-manāz. ir (Book of optics), VII = [Rashed: GD], pp. 83–110. For the relationship

between Alhazen and Ptolemy in their exposition of earlier topics, see [Smith]. Recall (note 38
on page 64) that we lack parts of Ptolemy’s Optics, including everything after the treatment of
refraction through plane and cylindrical surfaces (the preceding topic being reflection in plane and
spherical mirrors).

10Ibn Sahl, Kitāb al-h. arrāqāt (Book of burning instruments). This work, written between 982 and 984,
was recognized by R. Rashed in a manuscript in Teheran and published in [Rashed: GD]. See also
[Rashed: PA].
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Interest in Hellenistic science is simultaneous with the development of
several industries: textiles, paper, metals, ships. Even “alchemy” is closely
connected with productive processes: arrays of stills, for example, were
used on an industrial scale for the production of rose-water.11 Agriculture,
much more advanced than it was in the Christian West at the same time,
made use of irrigation devices powered by natural energy sources.12

Links between science and technology, often claimed to have been non-
existent before the modern age, are clear to Arab thinkers. Ibn Sina, or
Avicenna (died 1037) lists the practical sciences that depend on geometry:
geodesy, the science of automata, the kinematics of weights, the science of
weights and balances, the science of measuring instruments, the science
of lenses and mirrors, the science of water transport.13 Among Hellenistic
technological products that interested Arab scientists were automata (in
Islam a guild of automata builders flourished for centuries14) and geared
mechanisms.15

The earliest period in Western Europe to which the name “Renaissance”
has been applied is the twelfth century.16 It was then, for example, that
Greek scientific works were first translated into Latin. At the beginning of
the century Bernard of Chartres encapsulated his generation’s relationship
with the Ancients in a witticism destined to become very popular: “We
ourselves are dwarfs, but by standing on the shoulders of giants [who
came before us] we can see further than they.” Tellingly, the opinions of
giants studied and discussed during that time were not just those that
later came to be regarded as canonical for the whole of “Antiquity”. Thus,
William of Conches’ Dragmaticon philosophiae, written around 1140, reports
statements such as that the fixed stars have an intrinsic motion too slow
to be noticed within a human lifespan, and that the sun has an attractive
force.17

In the twelfth and thirteenth centuries the Iberian peninsula and Sicily,
taken back from Islam, and Southern Italy, which had stayed in contact
with Constantinople all along, were important meeting points between

11[Holmyard], p. 49.
12For the diffusion in Islam of wind mills and water wheels (Bassora even boasted a tide mill),

see, for example, [Hill: E], pp. 780–784.
13Avicenna, Resā ‘il fı̄ ‘l-hikmet (Treatise on wisdom), Constantinople, Y.H. 1298, p. 76. The passage

is quoted, translated and discussed in [Philo/Carra de Vaux], p. 13.
14For the Arabic tradition of building “marvelous mechanisms”, which goes back to the eighth

century, see [Hill: MAS].
15Price has remarked on the close affinity between the Antikythera machine (Section 4.8) and a

similar mechanism described by al-Bı̄rūnı̄ around 1000 A.D. ([Price: Gears], pp. 42–43).
16The notion of a “twelfth century Renaissance” was discussed in [Munro], and more extensively

in [Haskins].
17William of Conches, Dragmaticon philosophiae, III and IV.
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European culture and the scientific tradition that went back to Hellenistic
times. In the states arising from the Reconquest it was in fact possible to
find Hellenistic works and Arab scholars able to understand their content,
at least in part. Arabic translations of Euclid, Galen and Ptolemy started
to spread throughout Europe. Another channel was opened violently by
the Fourth Crusade, with the sack of Constantinople in 1204 and the con-
sequent foundation of the Latin empire, one of whose consequences was
a major dispersion of manuscripts hitherto held at Byzantium.18

Two European cultural centers of the thirteenth century that applied
themselves to the task of reclaiming ancient scientific knowledge were
Paris and Oxford, the latter being where the exceptionally important work
of Robert Grosseteste (1168–1253) and Roger Bacon (ca. 1220–1292?) took
place. Bacon’s masterpiece, the Opus maius, organizes the knowable into
seven parts. Not counting a pars destruens, focusing on the identification
of sources of error, the second part, requisite for all other studies, is the
command of Greek, Arabic and Hebrew. Only those who could read these
tongues, says Bacon, could acquire essential knowledge that had remained
hidden to his day from Latin speakers.19 The same was said on various
occasions by Robert Grosseteste (compare citation on page 347). Now, it
is scarcely conceivable that all Greek, and especially Arabic and Hebrew,
manuscripts extant in Europe in the thirteenth century survived until the
invention of printing and were then published — if nothing else, read-
ership would have been too limited to make such an enterprise viable.
Therefore it is likely that on certain topics what we get from Grosseteste
and Bacon comes from sources now utterly lost or as yet undiscovered.
That Bacon was in the past held by many to be not only a pioneer in
mathematical geography but also the inventor of lenses, gunpowder and
such like shows how hard it is to track the scientific and technological
sources of these ideas. Down to the present Arabic manuscripts have been
“discovered” containing translations of Greek works that had remained
outside the Western tradition since the imperial age, yet obviously were
preserved in Muslim lands down to our days.20 Thus we must always
keep in mind the possibility that thirteenth-century scholars had access to
ancient works that we have not even heard of.

What is probably the most famous document of medieval technology
dates from around 1230: the sketchbook of Villard de Honnecourt.21 In

18See, for example, [Vogel], p. 274.
19Bacon returns to this point (and to the sacrifices he had to make to procure costly manuscripts

in the “scientific” languages) in a letter to Clement IV, published in [Bacon/Gasquet] and [Bacon/
Bettoni].

20See, for example, note 28 on page 62, note 26 on page 103 and note 10 on page 331.
21[Villard de Honnecourt].
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addition to many religious and architectural objects, it illustrates some
remarkable devices that we have already encountered: for instance, on
folio 22v we see a water-operated saw, a screw-jack to lift heavy weights
and a simple automaton. Folio 9r shows and describes a gimbal suspen-
sion, which has been called the first of its kind but is essentially a copy
of the figure that appears in Philo’s Pneumatics.22 The sketchbook’s most
fascinating device may be another one found on folio 22v, whose caption
reads: “How to make an angel keep its finger pointing toward the sun”. It
is based on an escapement, according to one plausible interpretation.23

Among technological finds that spread around Europe in the thirteenth
century are lenses (about which we will say more later) and mechanical
clocks based on reduction gears24 and escapements. Price, who was the
greatest specialist on the subject, remarked on the close analogy between
Hellenistic planetaria and a number of Chinese astronomical clocks from
between the second and the ninth centuries A.D., as well as the recurrence
of particulars found in the Antikythera machine (e.g., the shape of the gear
teeth) in Islamic clocks and European clocks of the fourteenth century.25

The thirteenth century also saw the first astronomical tables made in
Europe: the famous Alfonsine Tables (1252), compiled in Spain by Chris-
tian, Jewish and Muslim scholars by order of the Castilian king Alfonso X.
Soon thereafter gunpowder was introduced to western Europe.26

Scientific knowledge gave Spain and Portugal a mighty edge that lasted

22Philo, Pneumatica, lvi = [Philo/Prager], p. 216; Prager remarks on the identity on pp. 26–27. Pri-
ority for Villard de Honnecourt is claimed for example in the exhibit of the Bibliothèque nationale
de France on him, at http://classes.bnf.fr/villard/analyse/inv/index3.htm.

23China had mechanical clocks with escapement mechanisms at least as early as the eleventh
century.

24Heron, describing reduction gears (cf. Figure 15 on page 98), systematically remarks that they
slow down the movement by a factor equal to the mechanical advantage.

25[Price: SSB], chapter 2; [Price: Gears], pp. 42–43, and on p. 44: “It seems quite clear that the
tradition of the geared calendrical work must have been continued from Greco-Roman times to
Islam.” However, he does not exclude the possibility of independent reinvention of complicated
clockwork; after discussing the differential gear, which is not attested after Antikythera until the
sixteenth century, he writes: “Perhaps there is a particular sort of inventive mind that has its par-
ticular brilliance in the perception of such things as the complex relationship of a gear system of or
an involved mechanism. . . . I think that several times in history such genius has made geared as-
tronomical clockwork so far ahead of his time that after him the development has rested for awhile
to emerge with a tradition augmented more by stimulus diffusion than by direct continuation of
the idea” ([Price: Gears], p. 61). But we will see in the next section (note 55) that the possibility that
the differential gear was an independent invention of the modern age can be discarded.

26The invention of gunpowder is generally attributed to the Chinese, who had known it for
centuries by the time it was introduced to western Europe (probably from Byzantium). But perhaps
the difference was not great between gunpowder (saltpeter, sulfur and charcoal) and “Greek fire”
(saltpeter, sulfur and naphtha, which seems to be the composition stated in a ninth-century treatise:
see, for example, [Ensslin], pp. 49–50). Greek fire is usually considered to be a seventh-century
invention, but Ensslin lists a number of sources that attest its use in the fifth century A.D.
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for centuries. This is mostly clearly seen in navigation. In the fourteenth
century the Spanish and Portuguese, thanks to mathematical geography
learned from the Arabs, were still the only Europeans able to draw trust-
worthy geographical and nautical maps (as shown by the Catalan Map of
1375). The Portuguese prince Henry the Mariner (1394–1460) was one of
the first to support the use of astronomical methods for high seas naviga-
tion.

11.2 The Renaissance

Starting in the mid fourteenth century, a flow of Greek documents coming
from Constantinople made its way to Italy and from there to the rest of
Europe, triggering what we now know simply as The Renaissance. The
flow increased in the early fifteenth century. Two hundred thirty-eight, for
example, were the manuscripts brought back by Giovanni Aurispa from
his voyage of 1423.27

Renaissance intellectuals were not in a position to understand Hellenis-
tic scientific theories, but, like bright children whose lively curiosity is set
astir by a first visit to the library, they found in the manuscripts many
captivating topics, especially those that came with illustrations: anatom-
ical dissections, perspective, gears, pneumatic paraphernalia, large bronze
casts, war machines, hydraulic devices, automata, “subjective” portraits,
musical instruments.

The most famous intellectual attracted by all these “novelties” was Leo-
nardo da Vinci, who not only took an interest in all the things just listed,
but even ventured — unsuccessfully, alas — to master Archimedes’ works.
He fared much better when he tried to put in practice some of the ideas
contained in ancient works, especially when he could use his extraordi-
nary gifts of observation and depiction: for instance, in trying to recover
anatomy through the dissection of corpses and in making observations in
hydraulics.

For a while now Leonardo da Vinci has no longer appeared as a lone
genius, but as the most important representative of a milieu where for
many decades the same subjects had been pursued, the same books had
been prized and similar drawings had been made.28 Many of Leonardo’s

27Aurispa, above and beyond being a humanist, was one of the many merchants who devoted
themselves to the profitable traffic of manuscripts from Constantinople to Italy in the early fifteenth
century. We may be sure that a part of the books that reached Italy at that time was lost after a few
generations. Incidentally, the ideas that sprouted in those years among Italian artists included per-
spective and the possibility of building larger domes by making their section parabolic (or nearly
so) rather than semicircular.

28This reappraisal started with [Gille: IR].
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favorite technological subjects had earlier occupied, in the first half of fif-
teenth century, the Sienese Mariano Taccola, who was particularly keen
on Philo of Byzantium’s works on pneumatics and military engineering.
In the same period was made what is probably the first translation of a
work of science in a modern European language: the Italian version of
Philo’s Pneumatics that opens the anonymous manuscript Hydraulic and
war machines.29 The second half of the century saw the appearance of the
Treatise on architecture, engineering and the art of war by the sculptor, archi-
tect and engineer Francesco di Giorgio Martini, also from Siena, which has
drawings of water wheels fed by pressure pipes, vacuum and pressure
pumps, endless worms, rack-and-gear mechanisms, many other elements
from Hellenistic technology and even a vehicle with a steering wheel.30

Whereas Taccola and Francesco di Giorgio focused mainly on Philo and
Vitruvius, Leonardo, like other engineers of his time, was also very in-
terested in Heron. Often in the past the same critics who pooh-poohed
Heron’s “useless toys” fawned on the Leonardo’s “futuristic” technical
drawings, many of which turn out to have been either copied from or
closely inspired by Heron: screws, reduction gears, screw threaders, au-
tomatic pounders, wind wheels, syphons, “Heronian” fountains, devices
moved by rising hot air, water levels. . . 31 For other things, such as the flat-
mesh conveyor belt and the repeating crossbow, Leonardo follows Philo
of Byzantium. In numerous other notes, he clearly shows himself in debt
to ancient sources: in his observations on optics, or on the origin of sea fos-
sils found far inland; or yet in drawings of wheel boats, burning mirrors,
crossbows, hydraulic saws, ball bearings. . . . The list goes on.

The oft-heard comment that Leonardo’s genius managed to transcend
the culture of his time32 is amply justified. But his was not a science-fiction
voyage into the future so much as a plunge into a distant past. Leonardo’s
drawings often show objects that could not have been built in his time
because the relevant technology did not exist. This is not due to a special
genius for divining the future, but to the mundane fact that behind those
drawings (and Francesco di Giorgio’s) there were older drawings from a
time when technology was far more advanced.

29Macchine idrauliche, di guerra, etc. The manuscript continues with extracts from Vitruvius and
compilations of various kinds, including one on incendiary substances, and concludes with the
transcription of Taccola’s De ingeniis, which is based on Philo’s writings and deals with pneumat-
ics and military technology. The contents of the manuscript (preserved in the British Library as
Additional Manuscript 34113) is described in [Philo/Prager], pp. 112–113.

30On Taccola and Francesco di Giorgio see [Galluzzi], for example.
31It is enough to compare the respective drawings to reach this conclusion. Not many have done

so, because of the limited availability of Heron’s books.
32The Encyclopaedia Britannica says: “his notebooks reveal. . . a mechanical inventiveness that was

centuries ahead of his time” (15th edition, Micropaedia, sub “Leonardo da Vinci”).
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Leonardo’s written explanations are often not on par with his sketches.
In the Leicester Codex33 there is a drawing of a machine moved somehow
by steam. Here is Bertrand Gille’s comment about it:

The drawing is quite striking. Except for the explanation given on
the same page, one could swear that it shows a primitive steam en-
gine. But it is nothing of the sort. . . . There are many figures of this
curious device — curious above all because of its similarities [with
later devices].34

Gille does not seem troubled by the notion that a drawing should not have
been understood for what it is by its own author, nor yet by many subse-
quent generations.

Knowledge about Hellenistic technological elements spread in Europe
above all through Philo’s and Heron’s works. Some of this knowledge,
such as the shape of various kinds of gear, could be easily reconstructed
from the manuscripts’ illustrations, but the situation was not always so
favorable. Regarding the pumps drawn by Francesco di Giorgio, Gille
writes:

The drawings that Francesco left us of vacuum and pressure pumps
and of a hydraulic saw show that he ran into the same difficulties as
his predecessors, namely the impossibility of a working implemen-
tation. Only developments in metallurgy and metal turning and the
use of proper lubricants would allow [the rod-and-crank system] to
acquire its full intended range of use. 35

The use of oil to lubricate pumps is mentioned by Vitruvius, in a passing
reference that shows it was standard in the working implementations of
his time.36 In Francesco de Giorgio’s day, much worse than the lack of
proper lubricants was the backward state of metalworking: many Hel-
lenistic designs were to be made in metal, and so could not be imitated
in the Renaissance for the loss of good techniques of metal smelting, cast-
ing, turning and grinding. Ludovico Sforza called Leonardo to Milan and
charged him with the creation of a great bronze statue, but the manufac-
ture of this colossus remained a fantasy vainly pursued for many years.
The Sforzas’ interest in the development of casting techniques was not
just esthetic: many advances, especially in artillery, were blocked by the

33Folio 10r.
34[Gille: IR], p. 179.
35[Gille: IR], p. 103.
36Vitruvius, De architectura, X, vii §3.
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inability to recapture the ancient technology that had allowed the casting
of molten metal into colossi.37

Although the methodology of science remained well beyond the grasp
of Renaissance intellectuals, there was widespread interest in certain sci-
entific theories, especially those, such as mathematical geography and as-
tronomy, that were essential to navigation.

Already in 1406 Jacopo Angelo had translated Ptolemy’s Geography into
Latin, and later he brought a copy of the original from Constantinople
to Europe. The Geography was finally printed in 1477. To appreciate the
importance of this work it is enough to compare a map prior to that date
(apart from those made in Islamic and Iberian lands38) with those that
came after: for instance the Hereford Mappa Mundi, drawn around 1300 in
England and showing an oceanless flat world centered in Jerusalem and
crammed with unrecognizable continents separated by thin water lines,
versus the 1492 map engraved by J. Schnitzer in Ulm.

The rediscovery of mathematical geography breathed new life into an
old Hellenistic idea: reaching the Indies by sailing west.39 Just seven years
after the Geography was published Columbus presented his plan to the
king of Portugal, and another eight years later he bravely embarked on
his enterprise.

The next milestone in mathematical geography was the recovery in the
sixteenth century of Erathostenes’ estimate for the size of the earth. This
was in all likelihood the basis for the length of the degree of the meridian
adopted during that century by Portuguese navigators.40

At the same time that mathematical geography was being rediscovered,
so was ancient astronomy. Girolamo Fracastoro and Giovambattista Amici
proposed again, independently of one another, the theory of concentric
spheres of Eudoxus of Cnidus. The study of the classics also led to the
rediscovery of the earth’s motions: the first modern work to propose the
daily rotation was written around 1525 by the humanist Celio Calcagnini,
professor of belles-lettres at Ferrara.41

Aristarchus’ heliocentric theory was first revived by Copernicus in his
De revolutionibus orbium caelestium, published in 1543. That Copernicus
was following the ancient thinker was quite obvious to his contempo-

37We don’t know why this technology was developed in the first place, but we can be sure that in
the third century B.C. Rhodes was no less interested in naval technology than in large ornamental
statues. See pages 114 and 116.

38See page 335.
39Attempts to circumnavigate the globe are recorded in Strabo; see note 72 on page 114.
40[Taylor], p. 547.
41Quod caelum stet, terra moveatur, vel de perenni motu Terrae, published posthumously in his Opera

aliquot, Basel, 1544. His arguments for proposing the earth’s rotation consist essentially of a series
of classical citations, ranging from Virgil to Archimedes.
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FIGURE 11.1. Above: Hereford Mappa Mundi. Overleaf: Schnitzer’s 1492 map.
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raries, who could do mathematics and astronomy only through the atten-
tive study of the Hellenistic works that had resurfaced. Note that Coper-
nicus, in putting forth again the heliocentrism of Hellenistic times, at the
same overcame the Aristotelian concept of gravity, by co-opting the poly-
centric theory (capable of explaining the roundness of the sun, moon and
earth) mentioned by Plutarch.42

Copernicus did much more than overcome Ptolemy’s geocentrism and
views on gravity by taking up Aristarchus’ ideas. From the perspective of
science the key point is that he was able to create an algorithm, based on
a system of epicycles, to calculate the apparent motion of planets: thus
he was the first person able to reconstruct Ptolemy’s mathematical as-
tronomy.43 This reconstruction was far from trivial, because the Almagest
contains no hint about how to derive the algorithm whose use it describes,
and moreover the algorithm needed fine tuning in view of errors accumu-
lated in the intervening 1400 years.

Because of the choice of accepting the “hypotheses” of Aristarchus, this
fundamental work of recovery took on the odd guise of a battle against
Ptolemy. Copernicus’ opponent was not in fact Ptolemy, but the syncretic
image derived from his system by European culture. The Ptolemaic sys-
tem was not understood in its true function as an algorithm to predict
the motion of planets, because nobody before Copernicus had been able
to use it that way. Ptolemy’s name had instead become associated with
a complex cosmology, such as we see in Dante, blending certain aspects
of Ptolemaic astronomy (geocentrism, the use of circles to describe mo-
tions) with features from Aristotelian natural philosophy and Christian
religious tradition. Thus the cultural battle for heliocentrism acquired a
huge ideological charge, since it was necessary to overcome that cosmol-
ogy and, by recognizing the earth as a “heavenly” body, conversely affirm
the “earthly” nature of astronomical phenomena.

Kuhn has called attention to the fact that only after the Copernican rev-
olution took hold was it possible to observe the appearance of new stars
and the motion of comets across the putative planetary spheres. Though
visible to the naked eye, these phenomena had been ignored so long as the
Ptolemaic paradigm (with which they are incompatible) held sway.44 Since
we know that novae were observed and recorded in Hellenistic times, as
were the elongated orbits of comets (see Sections 3.7 and 10.9), we have

42Copernicus, De revolutionibus orbium caelestium, I, 9. For the polycentric theory and the Plutar-
chan passages where it is mentioned, see page 304. Recall that Copernicus cites Plutarch already in
the preface to his work.

43This is underlined in [Neugebauer: ESA], pp. 241–242, but Neugebauer is totally indifferent to
the ideological import of the “Copernican revolution”.

44[Kuhn: SSR], p. 115–116; [Kuhn: CR], pp. 206–209.
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further proof that the Ptolemaic paradigm only became prevalent in the
imperial period. Kuhn does not seem to have realized this consequence of
his observation.45

The sixteenth century was a time of great interest in other aspects of Hel-
lenistic culture as well. The study of anatomy was resumed: as in the case
of astronomy, the main step was the rediscovery in Byzantine manuscripts
of the Hellenistic science of the third century B.C., in contrast with the tra-
dition originating in the imperial age, which had already been reacquired
in part through the Arabs of Spain. Just as Ptolemy was superseded by
the use of Aristarchus’ ideas, so was Galen superseded through the partial
recovery of Herophilus. Among the leaders in this process were Vesalius
(1514–1564), Cesalpino (1519–1603) and Fallopius (c. 1523–1562). Vesalius
revived the ancient practice of dissection, recognizing that Galen’s belief
that one could do without it represented a grave limitation of his science.
Cesalpino is known today as the founder of modern scientific botany and
of botanical taxonomy, but in his time he was best known as a commen-
tator of Aristotle. Among his important contributions to anatomy was the
description of cardiac valves (earlier described by Herophilus) and their
function in blood circulation.46 Fallopius, whose name became associated
with anatomic features described by Herophilus, such as the Fallopian
tubes and the Fallopian acqueduct (canalis facialis, the orifice in the tem-
poral bone that admits the facial nerve), wrote that “Herophilus’ authority
on anatomical matters is gospel to me”, and again:

When Galen contradicts Herophilus, it is to me as if he were contra-
dicting medical gospel.47

These would be strange statements if Fallopius’ acquaintance with Her-
ophilus were, like ours, limited to late references and fleeting citations,
many of them in Galen. One wonders whether he and Cesalpino made
some of their anatomical discoveries in Herophilus’ writings. If a work of

45A certain parallel can be drawn with the fact that not only were fossils ignored during the
Middle Ages, but ancient observations of and theoretical explanations for fossils have tended to be
ignored in recent times (see pages 161–163). Thus we see a twofold operation of the fertile principle
that phenomena incompatible with current paradigms tend to be systematically ignored. It seems
that the principle is equally applicable to science proper and to scientific historiography.

46Andreae Caesalpini Peripateticarum quaestionum libri quinque, Florence, 1569; see also his Quaes-
tionum medicarum libri duo (with other works), Venice, 1593. Those who would have William Har-
vey (1578–1657) as the discoverer of blood circulation maintain that Cesalpino’s description of the
circulatory system was incomplete.

47“Herophili authoritas apud me circa res anatomicas est Evangelium.” “Quando Galenus refu-
tat Herophilum, censeo ipsum refutare Evangelium medicum.” Both passages come from the Ob-
servationes anatomicae and are quoted in [von Staden: H], p. xi.
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the father of anatomy had survived into the sixteenth century48 and made
its way into the hands of some lucky physician, it would not be to the
advantage of the possessor of such a treasure to divulge its contents by
having it published. Of course, it is very hard to turn specific suspicions
of this sort into proofs, but there is no reason to believe that all Hellenistic
works that survived down to the Renaissance still exist today, or that those
that exist have all been published or are even necessarily known.

An annotation by Leonardo in a manuscript contains the sentence “You
will get through Borges the Archimedes from the bishop of Padua and
through Vitellozzo the one from the village at San Sepolcro.”49 Some of
Leonardo’s sources on Archimedes must have contained information now
lost: for instance, he describes and draws an otherwise unknown steam
cannon (the architronito, or “mega-thunder”), crediting it to Archimedes,50

and he knows biographical details concerning a stay of Archimedes in
Spain51 and concerning his tomb52 of which we have no other record.

There is more in Leonardo’s manuscripts that seems to be based on now
vanished sources. It would be nice to find out, for example, where he read
about the magnification of faraway objects and the possibility of building
an instrument that could be used to study the features of the moon’s sur-
face.53 Perhaps his source was the same that allowed Girolamo Fracastoro,
a bit later (1538), to be more specific and say that this is done with two
lenses, not least because Fracastoro too (a physician, poet and humanist)
talks about using the instrument to observe the moon.54 What is certain is
that neither author was able to describe in detail, and much less build, the
telescopes of which they write.

Mechanical technology, too, continued to move forward in the sixteenth
century, with the building for amusement of various self-propelled mech-
anisms (which gave rise to such things as clocks with jackwork) and the

48Herophilus’ writings were still being cited, apparently directly, in Constantinople in the sixth
century, and works of the Herophilean school, particularly those of Demosthenes Philalethes, were
available in the West in the fourteenth century. See [von Staden: H], pp. 68–69, 573.

49Codex L of the Institut de France, 2a = [Leonardo/Richter], vol. II, p. 428.
50The passage is quoted by Gille, who adds: “Such experiments . . . led Leonardo to conceive

the war engine he called the architonitro, whose paternity he attributes to Archimedes, for reasons
not too clear. It seems this was simply the same as the famous seventeenth-century experiment of
making a cannon shoot by filling it with water and heating” ([Gille: IR], p. 179).

51Codex Ashburnham 2037 (ex codex B), 12 b = [Leonardo/Richter], vol. II, p. 451. Trips of Archi-
medes after his return from Egypt, not known from any ancient source presently available, are also
mentioned by Torelli in his biography of the scientist at the beginning of [Archimedes/Torelli].

52Codex Arundel (British Museum), 279b = [Leonardo/Richter], vol. II, p. 446.
53Codex E of the Istitut de France, 15b = [Leonardo/Richter], vol. II, pp. 140–141.
54“Per dua specilla ocularia si quis perspiciat, alteri altero superposito, maiora multo et propin-

quiora videbit omnia” (G. Fracastoro, Homocentrica sive de stellis, II, viii); the reference to the moon
is in III, xxiii. This is the book where the author puts forth Eudoxus of Cnidus’ theory of concentric
spheres.
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reproduction of ancient devices, like the differential gear, which were to
be of great importance to productive technology.55

Despite all these advances, the general picture remained prescientific.
Specific scientific results were grasped from Greek or Arabic manuscripts,
but not the methodology that had led to them. The study of Hellenistic
books brought with it the rediscovery of elements of exact science and
technology, of anatomy, of philology and even the possibility of ocean
voyages, thus putting Europe on the route to modern civilization, but
the conceptual framework was sought in the “Ancients” as a whole. Neo-
Platonist and neo-Aristotelian schools were born; classical reading was
put on a pedestal, justified by theoretical reflections on the superiority of
the Ancients, all of whose writings shared the same lofty status; Pliny’s
Natural history was printed and read side by side with Hellenistic sci-
entific works, with no awareness of the abyss that separates the two. In
other words, the Renaissance accepted the idea (born in imperial times)
of a Greco-Roman civilization that in fact confused completely different
cultures.

The retrieval of Byzantine manuscripts by the West did not end when
Constantinople fell to the Turks in 1453; it continued on for centuries. We
mentioned on page 221 the importance for philology of the eighteenth-
century find of ancient scholia to the Iliad in a codex preserved in Venice.
Besides this city, which had always had special ties with Byzantium, man-
uscripts could also come from regions of the Byzantine empire, such as
Dalmatia, that had been conquered by the Venetian state.

11.3 The Rediscovery of Optics in Europe

Optics was the first Hellenistic scientific theory attempted to be recovered.
The usefulness of the ancient science of perspectiva — this was the name
given in Latin to optics in the narrow sense, that is, the science of sight —
quickly became obvious, even though its first applications to painting had
to wait yet a century or so. But perspective was not all there was to it.

55The first application of differential gears in production (to a threading machine) came cen-
turies after the introduction of the same mechanism in astronomical clocks. Any doubt that it
was an independent reinvention rather than the resumption of Hellenistic knowledge disappears
when we observe that in sixteenth-century astronomical clocks differential gears were employed
to transform synodic months into sidereal months, the exact same use to which they were put in
the Antikythera machine; see [Price: Gears], pp. 60–61. Since today we know about the existence of
differential gears in Antiquity only from twentieth-century underwater archeology, this gives yet
another proof that the sixteenth century still knew certain things about classical technology that
were lost later.
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In Section 10.2 we mentioned the dispersion of light, an area where “an-
cient science” usually gets very little credit. Since it is a common opinion
that Newton was the father of the theory of dispersion (the dependence
of a medium’s refractive index on the color of incident light), we will give
him the floor. In his Opticks, at the beginning of his explanation for the
rainbow, he writes:

. . . this Bow is made by Refraction of the Sun’s Light in drops of
falling Rain. This was understood by some of the Antients, and of
late more fully discovered and explained by the Famous Antonius de
Dominis Archbishop of Spalato, in his book De Radiis Visûs & Lucis,
published by his Friend Bartolus at Venice, in the Year 1611, and writ-
ten above twenty Years before. For he teaches there how the interior
Bow is made in round Drops of Rain by two refractions of the Sun’s
Light, and one reflexion between them, and the exterior by two re-
fractions, and two sorts of reflexions between them in each Drop of
Water, and proves his Explications by Experiments. . . . The same Ex-
plication Des-Cartes hath pursued in his Meteors. . . . But whilst they
understood not the true Origin of Colours. . . 56

Six pages later comes a report of several of de Dominis’ experiments with
globes full of water, which today are usually attributed to Newton. We
must conclude that, despite Newton’s reservations, the modern theory of
dispersion did not start with him or Descartes, but with the Dalmatian
archbishop. Since his De radiis was written no later than 1590 — as we
know from the preface, by the editor Giovanni Bartolo, to the book’s first
edition, of 1611 — his optical experiments must have been started around
the same time, if not earlier, than Galileo’s first experiments (1586). Thus
de Dominis not only pioneered the modern theory of dispersion: it seems
he must be regarded as one of the founders of the “experimental method”
that, in the common opinion, is exclusive to modern science.

De Dominis’ work, from the title onward, uses Hellenistic terminology:
it talks of visual rays, which had been abolished by the Arabs back in the
eleventh century.57 Even more tellingly, his explanation for the rainbow
had already been given at the turn of the thirteenth century by Dietrich
(Theodoric) of Freiberg58 and, apparently independently, by the Arabic

56Newton, Opticks (1704), Book I, Part II, Prop. IX, Prob. IV, pp. 126–127 (or p. 169 in the most
common reprints of the 1730 edition).

57See page 331.
58Dietrich of Freiberg, Tractatus de iride et de radialibus impressionibus = [Dietrich of Freiberg],

pp. 115–268.

346 11. The Age-Long Recovery

writer Kamal al-Din al Farisi,59 both of whom described the same experi-
ments with water globes reported by de Dominis.60

In his book, de Dominis — who at the time of its writing, around 1590,
taught optics and other subjects in Padua, where Galileo was to arrive
a few years later — also treated the theory of lenses and (finally!) gave
an explanation for how telescopes work, though it seems that the instru-
ment did not exist then. Since the book came out in 1611, when telescopes
were the order the day thanks to Galileo’s discoveries of the previous year,
doubts have been cast on the date of writing stated by Bartolo, but what
is unarguable is that around 1590 the theory, if not yet the practice, of the
telescope was spreading around Europe, because the second edition of
Della Porta’s Magia naturalis (1589) makes very precise references to it.61

It seems that the development of optics was plagued by amazing bad
luck: the “Ancients” knew how to make good lenses but did not know
what to make of them and kept them as baubles,62 later intellectuals —
not just Leonardo and Fracastoro,63 but also Roger Bacon and Grosseteste
centuries earlier — knew many uses for them, yet could not build them
and had never even seen such things. Some medieval manuscripts even
show astronomers looking at the sky through long tubes; the incongruity
has been addressed by postulating that these were empty sighting-tubes!64

(See Figure 11.2.)
Consider that Bacon, in the fifth book of the Opus maius, waxed enthu-

siastic about the Ancients’ ability to enlarge small objects and to bring
faraway ones close, using appropriate configurations of lenses and mir-
rors — though he himself is unable to present a reasonable theory even in

59[Rashed: MST].
60Crombie is convinced that Dietrich of Freiberg did perform the experiments that Newton cred-

its de Dominis with ([Crombie: AG], pp. 122–125), and he calls them “an outstanding example of
the use of the experimental method in the Middle Ages” (p. 122). The fact that Dietrich and al
Farisi offer the same explanation Crombie calls “a curious coincidence”, but explains through the
use of common sources (ibid., p. 124). See also [Ziggelaar] for arguments for the non-originality of
de Dominis’ optical treatise.

61We met Della Porta when discussing the resurrection of the steam engine recorded by Heron,
and we will meet him again in connection with Philo of Byzantium’s thermoscope. This playwright
and student of the classics alludes in his works to many other objects of “modern” technology, such
as the “magic lantern” (which had also been a subject for Alhazen).

62See page 271.
63See page 343.
64The matter is summarily dealt with in [Zinner], pp. 214–215, where two such figures are men-

tioned: one from a manuscript of 982 (extant copy, in Sankt Gallen, from the 13th or 14th century)
and one from a 1241 manuscript now in Munich. Price gallantly allows as how the idea that these
are depictions of telescopes “cannot be summarily discarded merely because of the great improb-
ability of the invention having been made so early” ([Price: Instruments], p. 593), and then tacitly
discards it. In fact the illustrations may represent a residual iconographic tradition that was no
longer understood.
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FIGURE 11.2. Triptych illustration from medieval manuscript (1241). The person
with the tube is named as Ptolemy. Bayerische Staatsbibliothek, CLM 17405, fol. 3.

the case of a single lens. Consider the lucid account, in Grosseteste’s On
the rainbow (ca. 1230), of the possibility of using refraction phenomena to
build magnifiers and telescopes:

The main parts [of optics] are three, according to the ways in which
the rays can reach what is seen. Either the course of the ray is straight,
through a uniform transparent medium lying between the viewer
and the object seen; or its course is straight toward . . . a mirror,
in which it is reflected and so reaches the object seen; or the ray
goes through several transparent media of different natures, at the
boundaries of which it bends at an angle, thus reaching the object
not through a direct line, but through several straight lines joined at
angles.

The first part is the province of the science called “of sight”, and the
second, of that called “of mirrors”. The third part has remained un-
touched and unknown among us [Latin speakers] until now. But we
know that Aristotle studied it, that because of its subtlety it is much
harder than the others, and that by the depth of the phenomena [it
explains] it was the most admirable. Indeed this part of optics, if per-
fectly known, shows the way to make things that are very far away
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appear as if placed very close; large things placed nearby appear
very small; and small things placed at a distance appear as large as
we please. . . 65

The source that Grosseteste mentions (and attributes to Aristotle), if real,
naturally used a Greek term to indicate the study of refraction. This term,
if known in thirteenth-century Oxford, would have a good chance of being
transmitted to later generations. The term dioptrics, used by modern schol-
ars, was spelled out in Greek ( ��� ��� � ����� � ) in Kepler’s work of 1611,66 and
this, together with its etymology, which matches well the phenomenon of
light passing through a transparent medium, indicates that it may have
been precisely the term transmitted from ancient works. The same term
is attested in ancient works still extant, but with an apparently different
meaning, namely the technology relative to the construction and use of
dioptras.67 The two meanings would naturally coincide if there were an-
cient dioptras that employed refraction (lenses).

The modern study of refraction phenomena was not limited to the study
of Ptolemy’s Optics. Whereas Ptolemy believed that the angle of refraction
varies quadratically with the angle of incidence (see figure on page 65
and surrounding text), modern scholars found the famous sine law, now
known in English as Snell’s law. This was attributed to Descartes — and
still bears his name in French — because he was the first to publish it,
in his Dioptrics (1637). Later it was realized that Willebrord Snell already
knew the law in 1621 (as first documented by Huygens in his Dioptrics,
of 1703), but Snell himself was apparently preceded by Thomas Harriot,
in 1601 (neither man bothered to publish the result). Today we know that
priority belongs to neither Snell nor Harriot: both were preceded at least
by the Arabs, centuries earlier. It is true that “Snell’s law” was not known
to Alhazen, but it had been known a few decades earlier to ibn Sahl.68

That Arabic knowledge about refraction seems to increase as time moves
backward rather than forward raises the suspicion that it was based not
on original experiments but on the reading of ancient sources.

In ibn Sahl the refraction law is expressed in terms of ratios of segments,
not in terms of angles and their sines (though the sine function was intro-
duced by the Arabs), and is applied as something well-known, without
justification or any claim to originality. And one gets the impression that
he knew that the law is an application of the principle of the shortest path.

65Robert Grosseteste, De iride, 73–74 (ed. Baur).
66Johannes Kepler, Dioptrice, seu, demonstratio eorum qua visui . . . accidunt, Augsburg, 1611; this

apparently the first modern use of the term.
67For example, Heron, Dioptra, xxxiv, 292:16 ( � � � ����� � ��� ��� ������� � ��� � ); Proclus, In primum Euclidis

Elementorum librum commentarii, 42:4 (ed. Friedlein).
68It is clearly stated in the Book of burning instruments mentioned in note 10 above (page 331).
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What is curious is that Grosseteste too seems aware that refraction, like
reflection, can be described by a minimum principle,69even though his
refraction law is patently wrong.70

11.4 A Late Disciple of Archimedes

The pace of study of resurfaced works of Hellenistic exact science picked
up at the end of the sixteenth century. Pride of place goes to Galileo, who,
after writing several commentaries on Archimedes, was the first person
who attempted to build new scientific theories, in his Dialogues and math-
ematical demonstrations concerning two new sciences (1638).

Because Galileo is not widely read today and is often portrayed as the
founder of a new and almost unprecedented method, we must stress that
the aim of recovering Hellenistic science was openly and avowedly part of
his work.71 Love and enthusiasm for this far past were quite likely instilled
in him by his father Vincenzo, who had boldly undertaken a similar, and
extremely difficult, work of reconstruction in the field of music.72

At the end of the third day of the Dialogues — the day that contains
Galileo’s greatest contribution to the science of dynamics — there is a pas-
sage of great significance, a profession of what the author, now old, thinks
was his greatest scientific achievement. Galileo congratulates himself by
putting in Sagredo’s mouth the following words:

I do think we can grant our Academician [Galileo] that it is no idle
boast when he says, at the beginning of this treatise of his, that he
has founded a new science dealing with a very old subject. And
seeing with what ease and clarity he deduces from one very simple
principle the demonstrations of so many propositions, I marvel at

69Robert Grosseteste, De iride, 75 (ed. Baur).
70Philosophers of science have, with good reason, criticized the notion of absolute scientific truth,

but Grosseteste’s law of refraction qualifies as an “absolute scientific falsehood” if anything does.
He purports to obtain the refraction angle from the incidence angle independently of the refracting
substance (De iride, 74, ed. Baur). In my opinion, this absurdity can only come from a misunder-
standing of a source, since any experimenter is aware that the effects of refraction tend to disappear
when the two media are very similar. Yet Grosseteste has often been regarded as one of the fathers
of the experimental method, especially after the publication of [Crombie: RG].

71See [Drake: Galileo]. While earlier historians had sought the origins of Galilean science in its
medieval precursors, Drake has clarified how the development of ideas was not continuous, but
instead the same Greek sources were essential both for the Arabs and for Galileo. On this see
[Drake: HGG], in particular.

72Among the works of Vincenzo Galilei, composer and music theorist, is a Dialogue of ancient and
modern music (1581). He also published the hymns of Mesomedes, from the second century A.D.
The model he offered for the interpretation of ancient music thus rediscovered was essential to the
formation of Florentine opera.
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how such a matter could have been left untouched by Archimedes,
Apollonius, Euclid and so many other famous mathematicians and
philosophers; the more so because plenty of thick books have been
written about motion.73

Thus Galileo’s highly ambitious scientific aim was the recovery, after
so many centuries of oblivion, of the Hellenistic scientific method, con-
sisting in the creation of hypothetico-deductive systems where natural
phenomena can fit. With his well-honed critical mind, Galileo unequivo-
cally names his own models — the great scientists of the golden period —
without letting his obvious admiration blur into reverence for an undiffer-
entiated “Antiquity”. Indeed, he does not hesitate to take issue with both
Aristotle and Ptolemy.

Galileo did succeed in breathing new life into two legacies from his dis-
tant masters, the experimental method and the deductive method. Yet he
still lacked a command of the more refined Hellenistic mathematical tools.
While he could use Euclidean proof techniques and geometric algebra,
he never did grasp the so-called “method of exhaustion” and the theory
of proportions (and indeed nobody would for another two centuries and
more).

The crux of Euclid’s definition of proportions is that it is equivalent
to a construction of the notion of the ratio between magnitudes;74 thus
it is altogether foreign to a Platonist understanding of mathematics and
definitions. If ratios between magnitudes are conceived of as preexisting,
equality between them cannot but seem a self-evident notion, and Euclid
is guilty of introducing an abstruse and superfluous complication — one
which Galileo felt able to dispense with easily:

I will add another way in which one should understand that four
magnitudes are in proportion. It is the following. When the first is
neither more nor less than is necessary in order for it to have to the
second the same proportion that the third has to the fourth, we say
that the first magnitude has to the second the same proportion that
the third has to the fourth.75

73Galileo Galilei, Discorsi e dimostrazioni. . . , end of third day = [Galileo: Opere], vol. VIII, pp. 266–
267.

74See page 46, where the definition is given, and page 181.
75Galileo Galilei, Sopra le definizioni delle proporzioni d’Euclide, at Salviati’s seventh turn = [Galileo:

Opere], vol. VIII, p. 353. The passage caps Galileo’s critique of Euclid’s definition (on the grounds
that it is impossible to apply and is “more of a theorem to be proved than a definition to be given”).

This dialogue was first published by Vincenzio Viviani in his edition of Book V of the Elements
(Quinto libro degli Elementi d’Euclide, ovvero Scienza universale delle proporzioni spiegata colla dottrina
del Galileo. . . , Venice, 1674), with the subtitle: “To be added to the four Dialogues and mathematical
demonstrations concerning two new sciences.”
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The circularity of this “definition” makes it clear that in Galileo’s time we
were still far from regaining the ability to build true scientific theories.

As to the seminal reestablishment of the experimental method, the com-
mon attitude of denying any indebtedness to ancient science also denies
Galileo the merit of his hard, deliberate work in this direction. But a brief
recapitulation of the main phases of his experimental work can help set
the record straight.

Galileo’s first known experiments date from 1586, and tried to rebuild
the experimental basis for Archimedes’ On floating bodies. They culminated
with the construction of a hydrostatic balance, described in La bilancetta.
Galileo had already realized how important it was not just to read ancient
scientific texts, but to grapple with their concrete component.

His second experimental scientific work, to our knowledge, is the first
on the motion of bodies, described in the De motu. Since the theory de-
rived therefrom by Galileo does not differ from the one that Simplicius
attributes to Hipparchus,76 there is no reason to believe that the latter’s
theory was founded on a less solid experimental basis.

As to the momentous observation that the time a body takes to fall does
not depend on its weight (if one neglects air resistance), it was thought
for centuries that Galileo reached it by dropping weights from the tower
of Pisa. Surely a simpler way would have been to read it in Philoponus’
commentary to Aristotle’s Physics.77 And it is not easy to maintain that the
experimental method, having eluded Hellenistic scientists, was invented
in the sixth century A.D. by a theologian and commentator of Aristotle.
Since some of Philoponus’ statements on motion under gravity are akin to
those that Simplicius attributes to Hipparchus, and since both commenta-
tors probably had access to the same sources,78 one might conjecture that
the invariance of fall time was already mentioned in Hipparchus’ work on
gravity79 — if only because it is hard to see how else it would be known
to Lucretius,80 Hipparchus having been the last Hellenistic scientist who
studied motion under gravity, at least to our knowledge.

76As observed in [Koyré: EG], pp. 70 and 100. In the De motu, Galileo cites the relevant Simplicius
passage on Hipparchus (which we discussed on page 292). He says he read it only after having
formulated the same theory independently ([Galileo: Opere], vol. I, pp. 319–320).

77John Philoponus, In Aristotelis Physicorum libros commentaria, 683 in [CAG], vol. XVII.
78For the connection between Philoponus and Simplicius, see p. 329.
79The real difficulty that must be overcome in reaching this invariance result is the need to set

aside the effects of air resistance. Thus the result is within reach of a theory based on the principle
of inertia and the notion of friction, and our earlier considerations (Section 10.6) make it plausi-
ble that Hipparchus had gotten there. Philoponus (ibid., 642) says that a projectile receives at the
moment of launching a � � ������� � ��� � � � � ��� , which he calls “incorporeal” — an adjective that, as we
saw in Sextus Empiricus, had been used since imperial times to describe the entities of Hellenistic
scientific theories. Philoponus also uses for the same notion another name that was to have a bright
future: ��� � � � � ����������� ��� � � , kinetic energy.
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Suitable adaptation or alteration of experimental conditions to facilitate
measurements is customarily regarded as one of the fundamental features
of the Galilean method. For the study of motion under gravity, the object
of Galileo’s most important experiments, the key alteration was the use
of an inclined plane. His first consideration of inclined planes appears al-
ready in the youthful De motu. Most interesting is a statement about the
particular case of horizontal planes:

And in this situation [i.e., in the absence of friction], any movable
body lying on a plane equidistant from the horizon will be moved by
a minimal force, that is, by a force smaller than any arbitrary force.81

Though Galileo did not foresee all its consequences at the time, this
sentence marks the decisive step toward the supersession of Aristotelian
physics and the formulation of the principle of inertia. We have already
seen how Heron had introduced the subject:

We demonstrate that a weight in this situation [i.e., on a level, fric-
tionless plane] can be moved by a force less than any given force.82

Heron’s demonstration, treating a horizontal plane as the limiting case of
an inclined plane whose slope approaches zero, was to reappear in the
Dialogues. Now, the possible influence of Heron’s Mechanics on Galileo is
generally dismissed because that work, apart from extracts contained in
Pappus, is held to have been unknown to Europe until the end of the
nineteenth century, when it was found in Arabic translation. But corre-
spondences between several passages of Galileo — on subjects such as
friction or motion on inclined planes — and closely analogous passages
in Heron not relayed by Pappus should make one suspect that the two
texts were not independent.83 And obviously, given that even today not all
manuscripts in Italian public libraries have been catalogued, it is absurd
to claim exhaustive knowledge of those found in private libraries four
hundred years ago.84

80Lucretius, De rerum natura, II:225–239. Clagett writes that Philoponus’ passage “appears to
indicate that he had dropped bodies of different weight” ([Clagett: SM], p. 546). He continues: “It
is obvious, then, that neither Stevin nor Galileo was the first to perform such as experiment; nor in
all likelihood was Philoponus. But Philoponus does give us the first record of such an experiment
used to refute or confirm a dynamic law.” If we wish to attribute the experiment to the oldest
available source that mentions its result, credit should go to Lucretius.

81“Quae omnia si ita disposita fuerint, quodcumque mobile super planum horizonti aequidis-
tans a minima vi movebitur, imo et a vi minori quam quaevis alia vis” ([Galileo: Opere], vol. I,
p. 299).

82Heron, Mechanica, I, §§20. We discussed this passage on page 289.
83Some such correspondences are analyzed in [Voicu]. The subject will be discussed at length in

a forthcoming work of mine.
84In the introduction to [Heron/Carra de Vaux], the editor and discoverer of the Arabic version

of the Mechanics bemoans the obstacles met in mapping the fortunes of manuscripts, “especially
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Galileo’s interest in hydraulic experiments first arose during his Paduan
period; in particular, the work that led Galileo to patent a water-lifting
machine dates from 1593–94.85

Among the experiments that most interested him in subsequent years
were those relative to the syphon principle and the operation of vacuum
pumps. At the time it was not yet possible to build Ctesibian pumps to
sufficient precision, and in particular they could not be made with metal
cylinders.86 In these conditions it is easy to imagine that the experiments
that gave Galileo food for thought were primarily those of Hellenistic sci-
entists, described in ancient works. Thus it is not surprising that the the-
oretical conclusions often had the same origin. For example, the explana-
tion for water pumping given by Galileo on the first day of the Dialogues,
based on the cohesion of water particles,87 restates that of the Pneumatics
of Philo of Byzantium for the drinking straw and the syphon.88

Regarding catoptrics, the experimental facts that most interest Galileo
and his students are those regarding burning mirrors: on the first day
of the Dialogues, Sagredo says he has seen a spherical mirror melt lead,
and he imagines from this the enormous power of the Archimedean mir-
rors, which he knows were parabolic.89 The Dialogues came out only six
years after Bonaventura Cavalieri’s important treatise on The burning mir-
ror,90which treated many applications of the classical theory of conics, in-

when it comes to Roman libraries”, and says he found references to Greek copies of the Mechanics
(none of which he could locate) in several Roman libraries, in Venice’s Biblioteca Marciana and at
the Escorial. The Venice lead turned out to be false (a copy of the Pneumatics wrongly classified as
the Mechanics), but the other manuscripts seem to have been lost track of.

A holograph of Christopher Clavius, dating from 1579 or 1580 and apparently referring to math-
ematics courses he would presumably be teaching at the Collegio Romano, details the mechanics
syllabus as consisting of the “mechanical questions of Heron, Pappus and Aristotle” ([Baldini],
p. 175). Since the document is essentially a list of texts, the explicit reference to Pappus shows that
“Heron” did not mean just the passages of Heron included in Pappus.

85The patent letter is printed in [Galileo: Opere], vol. XIX, pp. 126–129.
86See for example [Usher], p. 332, where it is said that the use of metal (cast iron) cylinders in

vacuum pumps is attested from the second half of the seventeenth century. Before that, though
metal was used for other parts of the pump, the cylinder was wooden. Clearly techniques for
metal turning and grinding, needed to make surfaces regular enough to ensure a tight fit between
cylinder and piston, did not regain the level they enjoyed in Hellenistic times until after 1650.

87Galileo Galilei, Discorsi e dimostrazioni. . . , day 1, at Sagredo’s 12th turn = [Galileo: Opere],
vol. VIII, pp. 64–65.

88Philo of Byzantium, Pneumatica, iii = [Philo/Prager], 81 + 129–130. But the cohesion argument
is not in Heron’s Pneumatica, and moreover Empedocles already knew that air pressure can over-
come the weight of water, as happens with the clepsydra (note 77 on page 76), the syringe and
the syphon. So perhaps Galileo was led into error by Philo’s text, which survived to modern times
only in very corrupt Latin and Arabic translations. (The explanation chosen by Galileo is clearer in
the Latin text, which seems to be the farther from the original; see [Philo/Prager], p. 81.)

89Galileo Galilei, Discorsi e dimostrazioni. . . , day 1, at Sagredo’s 25th turn = [Galileo: Opere],
vol. VIII, p. 86.

90See note 88 on page 118.
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cluding parabolic mirrors (using newly relearned knowledge about the
parabola’s focal property), and even demonstrated that a body under the
action of gravity follows a parabolic trajectory.

Skipping over Galileo’s prominent work in observational astronomy
(because, as we know, many don’t grant such things the status of “exper-
imental science”), we turn to his interest, in the next few years, in other
Hellenistic experimental subjects such as statics, aerostatics and thermol-
ogy. We single out his studies on the expansion of heated gases (a sub-
ject that around that time also interested Della Porta and van Helmont91),
which led to the reconstruction of experiments and devices described by
Philo and Heron, opening the way to the construction of modern ther-
mometers.92

Galileo’s most famous experiment involved the motion of a body along
an inclined plane. Let’s see now what he says about the crucial matter of
measuring the time of descent:

For the measurement of time, we employed a large vessel of water
placed in an elevated position; to the bottom of this vessel was sol-
dered a pipe of small diameter giving a thin jet of water, which we
collected in a small glass during the time of each descent, whether
for the whole length of the channel or for a part of its length; the
water thus collected was weighed, after each descent, on a very ac-
curate balance; the differences and ratios of these weights gave us
the differences and ratios of the times, and this with such accuracy
that although the operation was repeated many, many times, there
was no appreciable discrepancy in the results.93

Galileo understood well how important it was, in order to rebuild the
experimental basis of ancient science, to find a replacement for the precise
water clocks whose technology had long ago been lost. But the fact that
his measurements, though repeated so often, never showed discrepan-
cies cannot but make a modern physicist wonder. Galileo’s description
of his timepiece, so more rudimentary to Ctesibius’ clocks, strengthens
the suspicion that measurements of time via buckets and glasses were
complemented in other ways. A sentence a few lines before the quoted
passage, in the description of the experimental setup, provides a clue to
this “complementation”:

91See note 60 on page 279.
92Galileo’s thermoscope, essentially a gas-expansion thermometer, is the device described by Philo

of Byzantium (see page 280).
93Galileo Galilei, Discorsi e dimostrazioni. . . , third day, at Salviati’s first turn after Corollary I =

[Galileo: Opere], vol. VIII, p. 213 (Crew and de Salvio translation).
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We repeated [the ball’s run] several times in order to be sure of the
elapsed time, and it never presented a deviation exceeding one tenth
of a heartbeat.94

Evidently, the pulse was the most commonly used clock. It is worth
pausing to consider how far we still were, in spite of Galileo’s efforts,
from the refined measuring instruments (the basis of any true experimen-
tal method) that had once allowed Herophilus to study scientifically the
heartbeat and to use the theory thus built in making diagnostics.95

In spite of its mathematical and technological limitations, the recov-
ery work carried out by Galileo was extraordinary, especially in terms
of methodology. He borrowed from ancient science the humility of the
scientific method, which is content with tackling well-circumscribed prob-
lems (such as motion under gravity or hydrostatics) through the tools of
mathematics and experimentation, and resists the temptation to pursue
overarching natural philosophy explanations for how nature behaves. For
almost two thousand years, no scientist in this mold had been seen.

Another point to be stressed is that the rift between mathematics and
physics, whose absence is often read as a sign of the primitive state of
Hellenistic science, is not yet present in Galileo’s work. He follows exactly
the example of his distant masters, blending together mathematics and
experiments.96 Physics as opposed to mathematics had not arisen yet.

11.5 Two Modern Scientists: Kepler and Descartes

Galileo’s lucid rationalism represents a methodological attitude excep-
tional among early modern scientists. Kepler, who played a giant role
in the formation of modern science, had quite a different approach. His
eclectic spirit drew on an ample gamut of sources — Hellenistic science,

94Ibid.
95See pages 145–148 and 154. This observation may seem contrary to the statement, contained

in a letter of Vincenzo Viviani to Leopoldo de’ Medici (published in [Galileo: Opere], vol. XIX,
pp. 647–659), that Galileo thought of using a pendulum to measure the heartbeat. But of course a
pendulum only lets one measure intervals of time equal to several periods or more, which is why
Galileo used not a pendulum but a water clock (besides his pulse and possibly other methods) for
the experiments on gravity. The frequency of the pulse can be obtained from the overall time of
many beats (which does lend itself to measurements with a pendulum), but this will not yield the
ratio between systolic and diastolic intervals, which had been studied by Herophilus. To measure
the overall time of many systoles or diastoles one must have a stopwatch that can be stopped and
started at will, as is the case with a water clock.

96In this connection it is illuminating to read the pages in the second day of the Dialogues and
demonstrations (in particular pages 169–170) showing how the shape of machines and animals de-
pends on their dimensions. I don’t know of a similarly limpid and example-rich account in ancient
literature, though the general idea is present in Vitruvius (De architectura, X, xvi §5).
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Aristotelian and neo-Platonic philosophy, neo-Pythagorean numerology,
astrology, alchemy — and amalgamated it all with the glue of theology.

His scientific method may be illustrated with excerpts from his writings.
About tides, for example, he writes:

Experience shows that everything that is made of moisture swells up
when the moon waxes and shrinks back when it wanes.97

Kepler derives the distances of the planets from their correspondence
with Platonic solids and metals: he believes in the celestial musical har-
monies and the crystalline sphere of fixed stars. Here is how he describes
the structure of the universe:

The philosophy of Copernicus matches the main parts of the world
[universe] to different regions of the world’s shape. For just as the
sphere, image of God the Creator and archetype of the world (as
shown in Book I), has three regions, symbolizing the three persons of
the Holy Trinity — the center corresponding to the Father, the surface
to the Son and the in-between to the Holy Spirit — so three main
parts of the world were created, each in its part of the spherical
shape: the sun in the center, the sphere of fixed stars on the surface
and finally the planetary system in the region in between.98

Later he relates the masses of the three zones:

Since these three bodies are analogous to the center of the sphere, the
surface and the in-between, the symbols of the three persons of the
Holy Trinity, it is plausible that each one of them has as much matter
as each of the other two[.] 99

Continuing in this vein, he manages to determine the thickness of the
sphere of fixed stars as one twelve-thousandth of the diameter of the sun:
in his reckoning, a bit over 2000 German miles.

The eclecticism of Kepler and his colleagues had the important function
of allowing the recovery of some ancient scientific knowledge that had
been disguised and filtered through nonscientific traditions. Some other
Keplerian passages will help make this point clear:

The perfection of the world consists in light, heat, motion and the
harmony of motions . . . Regarding light, the majestic sun itself is

97J. Kepler, De fundamentis astrologiae certioribus, thesis XV (Prague, 1601) = [Kepler: OO], vol. I,
p. 422.

98J. Kepler, Epitome astronomiae copernicanae (Linz, 1618), book IV, part I, section I = [Kepler: OO],
vol. VI, p. 310.

99J. Kepler, Epitome . . . , book IV, first part, near end of section IV = [Kepler: OO], vol. VI, p. 334.
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light, and as it were the eye of the world; and it lights up, colors and
beautifies everything else in the world, like a fountain of light or a
very bright torch[.]

Regarding fire, the sun is the hearth of the world . . . The sun is fire, as
the Pythagoreans said . . . [It is] as if a vegetative faculty were present
not only in earthly creatures but also in all of ether throughout the
whole expanse of the universe, a supposition thrust upon us by the
sun’s obvious heating energy. . . ; it is plausible that this faculty in-
heres in the sun as the heart of the world, and that it diffuses from
there, as vehicle of light, together with heat, throughout the enor-
mous amplitude of the universe, just as, in an animal, the seat of
heat and of vital faculties lies in the heart[.]

Regarding motion, the sun is the prime cause of movement of the
planets and the prime mover of the universe[.]100

So it is the sun that makes the planets move in circles. . . But how
can it do this, if it lacks hands with which to grip them. . . ? Instead
of hands it uses the power of its own body, sent out in straight lines
through the vastness of the word[.]101

We recognize some of Kepler’s sources: the last quote echoes passages
of Vitruvius and Pliny that we have discussed; the rest we have seen, in
almost the same words, in Theon of Smyrna.102 The idea of a gravitational
interaction between the sun and the planets was transmitted from ancient
to modern science thanks to the interest that scientists like Kepler had in
authors such as Pliny and Theon of Smyrna. Galileo’s rationalism had led
him to reject as foolish the notion of gravitation, which in his time ap-
peared in works belonging to definitely unscientific traditions (Hermetic
and astrological texts, for instance), where it exemplified astral influences
and was yoked to religion and magic.

Of course some of Kepler’s sources were much more “scientific” than
the ones we recognize in the passages just quoted. He used Apollonius of
Perga and Pappus, and one of the classical works that drew him strongly
was Plutarch’s dialogue De facie quae in orbe lunae apparet, of which he
even published an annotated Latin translation.103 One may ask whether
ancient sources helped Kepler in the long and arduous road that led him
to discover that planetary orbits are elliptic, as they helped him recognize
the motor role of the sun. The approach attested by the passages quoted

100J. Kepler, Epitome . . . , book IV, first part, section I = [Kepler: OO], vol. VI, pp. 310–311.
101J. Kepler, Epitome . . . , book IV, second part, section III = [Kepler: OO], vol. VI, p. 344.
102See pages 297–298 for Vitruvius and Pliny, and page 319 for Theon.
103This appears in [Kepler: OO], vol. VIII.
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earlier, involving in particular a belief in the perfection of the spherical
shape, does not seem too likely to have led to the ellipticity of orbits on its
own, particularly since the observed data could be described equally well
through a system of epicycles.

To take another example of the importance of sources in determining
method, we can contrast Descartes’ Geometry with his The world, subtitled
Treatise on light. Let’s examine, in this second work, the passage about a
pebble revolving around in a sling: a subject of great interest, and one
about which, as far as we know, the only sources available were literary
and from the imperial age.

For example, suppose a stone is moving in a sling along the circle
marked AB [see Descartes’ drawing above], and consider it exactly
as it is at the instant it arrives at the point A. You will readily find that
it is in the process of moving. . . toward C, for it is in that direction
that its action is directed in that instant. But nothing can be found
here that makes its motion circular. Thus, supposing that the stone
then begins to leave the sling and that God continues to preserve it
as it is at that moment, it is certain that He will not preserve it with
the inclination to travel in a circle along the line AB, but with the
inclination to travel straight ahead toward point C.

According to this rule, then, we must say that God alone is the author
of all the motions in the world in so far as they exist and in so far as
they are straight, but that it is the various dispositions of matter that
render the motions irregular and curved. Likewise, the theologians
teach us that God is also the author of all our actions, in so far as
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they exist and in so far as they have some goodness, but that it is the
various dispositions of our wills that can render them evil.104

Descartes, like Kepler, must have read the De facie and studied carefully
the passage we quoted on page 286. But where Plutarch talks about bodies
“turned aside by something else”, Descartes finds it natural to link the
something else, the cause of deviations from straightness, with the powers
of evil, the cause of misdeeds. His method strikes today’s reader as much
more “scientific” when, writing about geometry, his source is not Plutarch,
but the tradition of Euclid and Pappus.105

Historians of mathematics are quick to point out how much Cartesian
mathematics differs from its Hellenistic counterpart. C. Boyer and others
place the novelty of Descartes’s method in that he abandoned the homo-
geneity principle,106 which prevented “Greek mathematics” from dealing
with expressions such as x2 + x or x2 + x3:

In one essential respect, he [Descartes] broke from Greek tradition,
for instead of considering x2 and x3, for example, as an area and
a volume, he interpreted them also as lines. This permitted him to
abandon the principle of homogeneity, at least explicitly, and yet re-
tain geometrical meaning.107

But abandoning the homogeneity principle was not an unprecedented
step. Neugebauer writes:

[T]hat Heron adds areas and line segments can no longer be viewed
as a novel sign of the rapid degeneration of the so-called Greek spirit,
but simply reflects the algebraic or arithmetic tradition of Mesopo-
tamia.108

In truth Heron’s method differs somewhat from Descartes; Heron, to add
x2 and x, represents the summands as a square and a segment, using these
as graphical tokens for algebraic quantities, the fundamental entities in the
Mesopotamian tradition. By contrast, Descartes, to whom the fundamen-
tal entities remain geometric, can only add after making both summands
into segments. It seems to me that our current procedure is in substance
closer to Heron’s than to Descartes’. In any case it is clear that, clichés
aside, judgements about what mathematical procedures are “modern” are
both subjective and liable to fluctuate.

104Le monde de M. Descartes, ou Le traité de la lumière, chapter 7, at 80% (Gaukroger translation).
105The main source of Descartes’ Geometry is Pappus’ Collectio.
106See note 47 on page 45.
107[Boyer], p. 371 (1st ed.), pp. 337–338 (2nd ed.).
108[Neugebauer: ESA], p. 146.
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11.6 Terrestrial Motion, Tides and Gravitation109

In Section 10.10 we reconstructed an ancient theory that explained the
main features of tides by combining the moon’s action with the sun’s. The
testimony of Priscian of Lydia shows that the theory was expounded in
works accessible in the Byzantine period. Therefore it is not too surprising
that it should have outlasted the Middle Ages, winding its way through
paths not easy to identify, to the confines of the Venetian Republic, where
it resurfaces in a treatise of Jacopo Dondi, written about 1355.110 After that
the theory was kept alive mainly, but not exclusively, in Paduan lands,
and there it was the subject of many writings and university courses. In
the sixteenth century it appeared in print several times: first in a booklet
by Federico Crisogono or Grisogono, of Zara (Zadar) in Dalmatia,111 and
then in several other works, of which we mention those by Delfino in 1559,
Raimondo in 1589 and Duré in 1600.112

Kepler, in a scientific note to his fantastic novel Somnium (The dream),
shows he knows that tides are caused by the moon’s and sun’s attrac-
tion, and that spring tides at full moon and new moon are caused by
the sum of the two actions.113 These ideas, playing no role in Kepler’s
astronomy,114 being absent from all his astronomic works, and agreeing
with those found in so many sixteenth-century books, were not reached
by the astronomer on his own, but as a result of reading. This has not
usually been recognized, probably because historians of science tend to be
unaware of the sixteenth-century publications that contained the lunisolar
theory;115 it is easier to think that Kepler was filled with a magical intuition
good for his novel alone and forgotten soon thereafter.

109The material in this section is drawn largely from [Bonelli, Russo] and [Russo: FR], which the
reader should consult for details.

110De fluxu et refluxu maris, published in [Dondi/Revelli] and available at http://mat.uniroma2.it/
simca/Testi/Dondi.pdf. Dondi also wrote a pharmacopeia and a philological work.

111Tractatus de occulta causa fluxus et refluxus maris, a short work included in a collection of Criso-
gono’s writings published in Venice in 1528 (Federici Chrisogoni. . . de modo collegiandi et pronosticandi
et curandi febris. . . ) and reprinted in G. P. Gallucci’s Theatrum mundi et temporis (Venice, 1588), which
is today a less rare book.

112Federico Delfino, De fluxu et refluxu aquae maris, Venice, Academia Veneta, 1559; Annibale Rai-
mondo, Trattato utilissimo e particolarissimo del flusso e del riflusso del mare, Venice, Domenico Nicolini,
1589; Claude Duré, Discours de la vérité des causes et effects des divers cours, mouvements, flux, reflux et
saleure de la mer Océane, mer Méditerrannée et autres mers de la Terre, Paris, Jacques Rezé, 1600.

113J. Kepler, Somnium seu opus posthumum de astronomia Lunari, in [Kepler: OO], vol. VIII, p. 61,
note 202.

114Kepler believed the sun acted on planets, but to make them revolve (like Descartes), rather
than through an attraction.

115A recent and authoritative scientific history of tides [Cartwright] makes no mention of Dondi’s
work, while Crisogono’s is mentioned in a note (no. 4 on p. 23) as if it had never been printed and
had been unearthed in [Bonelli, Russo].
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The tradition of writings on the lunisolar theory of tides concluded in
1624, with the work Euripus, or the ebb and flow of the sea,116 by the same
archbishop de Dominis that we have already encountered as an expert in
experimental optics.117 In the few pages of this work, as in the others, tides
are ascribed to the action of the moon and the sun (“Therefore we hold that
. . . the sun and the moon have a strong force, magnetic as it were. . . ”);118

de Dominis also states that high tide occurs simultaneously at antipodal
points, and shows how the monthly cycle of spring and neap tides can be
explained by the joint action of the two bodies.

One particular makes the account in the Euripus unique. De Dominis,
after discussing the lunisolar theory in its traditional form, deduces from
it the observation that, given that when the sun or the moon are directly
above a point on the tropic of Cancer, the antipodal point is on the tropic
of Capricorn, the two daily tides should be unequal and the diurnal in-
equality should be greatest at the solstice and least at the equinox.119 What
makes this all the more fascinating is that de Dominis, far from writing
in support of the theory that he expounds, in fact disproves it on the
grounds that its consequences are false! He was convinced that the two
daily tides are invariably equal. Knowledge of the regime of diurnal in-
equality in such distant places as the “Erythrean Sea”, of which Strabo
wrote in connection with Seleucus (see page 313) had vanished in Europe.
We know from no less an authority than G. H. Darwin that the import of
Seleucus’ achievement would have been impossible to appreciate even in
the early nineteenth century.120 The discussion in the Euripus is thus in a
sense complementary to the Strabo passage, in that it includes a theoretical
explanation, not found in Strabo, for the observable phenomena described
by the ancient author but rejected by de Dominis.121

If it is already less than likely that our religious reformer and jurist could
have created an original mathematical theory that correctly explains the
annual variation of diurnal inequality, it beggars belief that he should have

116Marco Antonio de Dominis, Euripus, seu de fluxu et refluxu maris sententia. . . , Rome, 1624.
117See pages 345–346.
118“Itaque dicimus luminaria illa duo Solem & Lunam habere vim magnam, quasi magneti-

cam. . . ” (M. de Dominis, Euripus, 5).
119M. de Dominis, Euripus, 6–7. See Figure 10.5 (page 313) and the surrounding text.
120[Darwin: Tides], p. 84: “The meaning of [the passage on Seleucus reported by Strabo] was

obviously unknown to the Dutch commentator Bake — and indeed must necessarily have been
unintelligible to him at the time when he wrote, on account of the then prevailing ignorance of
tidal phenomena in remoter parts of he world”.

121Naturally de Dominis (like any of his contemporaries who might be interested in physical
geography) had to be familiar with Strabo’s work. What happens is that after reporting Seleucus’
observations, Strabo adds that Posidonius unsuccessfully tried to verify in Cádiz the phenomenon
Seleucus noticed in the “Erythrean Sea”. So probably de Dominis deduced not that the two seas
have different regimes, but that Seleucus should be disregarded.
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done so while denying that the diurnal inequality exists. The explanation
is that he merely transmitted (not terribly well, it must be said) the ele-
ments of an ancient theory born from observations made in seas he knew
nothing about. And it is not surprising that a high ecclesiastical figure,
who was successively the bishop of Segna (Sinj) and the archbishop of
Spalato (Split), and the scion, to boot, of an illustrious Dalmatian fam-
ily going back to at least the thirteenth century,122 should have outdone
Galileo in the procurement of relevant manuscripts, if not in scientific
originality.

From being a Catholic archbishop, de Dominis converted to Anglican-
ism and moved to England. Later he reverted to Catholicism and returned
to Rome, but ended his days enclosed in the Castel Sant’Angelo, await-
ing the outcome of an ongoing process against his person. Following his
posthumous condemnation to the stake and to damnatio memoriae, his body
and books were burned together in the Campo de’ Fiori, and it seems that
historians of science, including those outside Catholicism, have generally
abided by the Inquisition’s sentence.123 But this should not obscure the
fact that his scientific works were read with attention by other scientists of
the early modern age, in England more than anywhere else.

While the basic lunisolar theory never quite died, Seleucus’ elaboration
of it resurrected in the early modern age. As we saw in Section 10.12, Se-
leucus was known to have provided an explanation for tides involving an
earthly “whirlpool motion”:

Seleucus the mathematician (also one of those who think the earth
moves) says that the moon’s revolution counteracts the whirlpool
motion of the earth.

Naturally, this passage must have been thoroughly scrutizined in the six-
teenth century, appearing as it does in the De placitis philosophorum, a work
then regarded as authored by the influential Plutarch124 — the connection
between Seleucus and tides being reinforced by the Strabo passage dis-
cussed on page 313. But what to make of the earth’s “whirlpool motion”?

The important botanist, physician and anatomist Andrea Cesalpino, like
the vast majority of his contemporaries, believed in the Ptolemaic system.
Yet he decided that tides are caused by a motion of the earth, not rotation
or revolution but a “small” motion introduced ad hoc, and supposedly

122On the archbishop’s eventful life and political and religious writings, which are among the
main sources for the concept of jurisdictionalism, there are Ljubic’s nineteenth century works (in
Serbo-Croatian) and the books [Malcolm], [Russo: de Dominis].

123There is no literature on de Dominis’ scientific writings, other than the already cited [Ziggelaar]
and some allusions to his theory of the rainbow, made inevitable by Newton’s references to it (see
page 345).

124See note 187 on page 315.
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imparted onto earth from the heavens.125 Before him, the passage was
used by Celio Calcagnini, a highly regarded translator of Plutarch, in his
already-mentioned essay reviving the daily rotation of the earth;126 be-
ing aware of only one earthly motion, Calcagnini of course deduced that
tides were caused by the daily rotation. Not surprisingly, neither he nor
Cesalpino were able to fashion a theory able to account for observations.

Supporters of heliocentrism also made use of the De placitis testimo-
nium, putting it together with the Plutarchan passage we discussed on
page 311:

Was [Timaeus] giving the earth motion . . . , and should the earth
. . . be understood to have been designed not as confined and fixed
but as turning and revolving about, in the way expounded later by
Aristarchus and Seleucus, the former assuming this as a hypothesis
and the latter proving it? 127

The conclusion that Seleucus’ proof involved a recognition of tides as an
effect of the motion of the earth would have leapt out. They must have felt
that the way to solve the problem most dear to them was to reconstruct
Seleucus’ proof, thus completing what Copernicus had started when he
revived Aristarchus’ idea. The first man down this road was Paolo Sarpi,
who thought that tides must be caused by the combination of the two
earthly motions he know about: rotation and revolution. He introduced
the analogy (later taken up by Galileo) between the motion of the oceans
as a cause of tides and the nonuniform motion of a basin full of water.128

Galileo, whose main scientific aim was precisely the demonstration of
the earth’s motions, fully welcomed not only the hints contained in the
ancient passages but also the insights of his friend Sarpi. He devoted to
the problem the fourth and last day of his Dialogue concerning the two chief
world systems.129 Unfortunately, he did not understand the De placitis pas-
sage any more than his predecessors, and, believing that it opposed the
earth’s rotation to the moon’s revolution, concluded that Seleucus, though

125A. Cesalpino, Peripateticarum quaestionum libri quinque, Venice, 1571, book III, question V.
126See note 41 on page 338. His translation of Plutarch’s De Iside et Osiride heightened the Renais-

sance intelligentsia’s interest in Egypt.
127Plutarch, Platonicae quaestiones, 1006C.
128The idea was that the earth’s rotational velocity would alternately work for and against the

translational motion, thus making the velocity of a point on the earth oscillate periodically. This
appears in Sarpi’s Pensieri naturali, metafisici e matematici, contained in a manuscript of 1595; see
especially thoughts 569, 570, 571, reported in the introductory essay to [Galileo/Sosio], p. lxxvii.

129Tides are the main theme of the book, which Galileo originally called Dialogue on the ebb and
flow of the tide. The title was changed in deference to the Inquisition’s stipulation (in allowing pub-
lication) that heliocentrism be discussed therein solely as a hypothesis, and that no stress be laid
on what the author regarded as the physical proof of the earth’s motion.
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having the right intuition, misapplied it crassly.130 Therefore Galileo tried
to rediscover independently the link between earthly motions and tides,
based only on Sarpi’s hints. Alas, he knew of only two motions, with daily
and yearly periodicities, so his efforts to deduce from them a phenomenon
that has a monthly component could not but end in failure.

Those scholars who, based on the De placitis passage about Seleucus,
maintained that tides were caused by earthly motions, felt that this expla-
nation contradicted the lunisolar hypothesis, which reflects another part
of the ancient theory. Thus it is that Galileo inveighs against “a certain
prelate” for having “published a little tract saying that the moon, wan-
dering through the skies, attracts and lifts to itself a mass of water, which
follows it around.”131

Nonetheless, the mutual consistency that united the two lines of thought
(thanks to their common Hellenistic origin and regardless of the thinking
of their rediscoverers) eventually led to their merging. The Genoese Gio-
vanni Battista Baliani, a student and friend of Galileo’s, trying to salvage
the essence of the theory expounded in the Dialogue concerning the two chief
world systems, proposed an interesting modification thereof. He reasoned
that if tides, with their monthly cycle, depend on the earth’s motions,
there must be an earthly motion of monthly periodicity. The conclusion
is sound, but Baliani felt that the only way to make the earth move in
synchrony with the apparent revolution of the moon was to declare our
planet a satellite of the moon!

Baliani’s odd theory, born logically from the conjuntion of observational
data with our passage in the De placitis, had an important and not gener-
ally recognized role as one of the links between Galileo’s and Newton’s
theories of tides. The next step was taken by the one of the greatest sci-
entists of his time, John Wallis, who, in an article published in 1666,132

revisited both Galileo’s idea of regarding tides as an effect of the non-
uniformity of the earth’s motion, and Baliani’s elaboration, which Wallis

130“More is the wonder that, while some have thought to place the cause of ebb and flow in the
earth’s motion, and so displayed uncommon perspicacity, they should have then missed the mark
. . . The idea (reportedly held by an ancient mathematician) that the earth’s motion, coming up
against the moon’s, causes the ebb and flow because of this contrast, is completely foolish, not
only because no explanation is given (nor can one be found) of how tides should follow, but also
because it is manifestly false: seeing as the earth turns not in the opposite direction to the moon’s
motion, but in the same.” (Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano, in
[Galileo: Opere], vol. XIX, p. 486).

131Galileo, Dialogo sopra i due massimi sistemi, [Galileo: Opere], vol. XIX, p. 415. There was good
reason to refrain from naming de Dominis, whose very memory was damned.

132“An essay . . . exhibiting his hypothesis about the flux and reflux of the sea”, Philosophical Trans-
actions 16 (August 1666), 263–289.
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thought overzealous rather than absurd.133 Earth and moon are linked
by a mutual influence, and so, according to Wallis, must be considered
together as a single body. What revolves around the sun is neither the
earth’s center (as Galileo and others maintained) nor the moon’s center
(as Baliani alone had dare believe), but the barycenter of both bodies. It
follows that, in order to compute the non-uniformity of the earth’s mo-
tion, to which Wallis attributed tides, one must consider not only rotation
and revolution, as Galileo did, but also the monthly motion around the
barycenter of the earth-moon system. Thus Wallis achieved an important
feat: introducing into the theory, in a natural way, all three periodicities
observable in tides.

Thus the fragmentary information about Seleucus’ studies that reached
the modern age, in spite of its incompleteness, led, through the hard work
of several generations of scientists, to the rebirth of another key element
of the ancient theory.

11.7 Newton’s Natural Philosophy

In analyzing the links between Hellenistic and modern science we must
perforce dwell on Newton, often considered the primary founder of the
latter. We start by recalling how Newton talks about space in the Principia
mathematica:

All things are placed . . . in space as to order of situation. It is from
their essence or nature that they are places; and that the primary
places of things should be movable, is absurd. These are therefore
the absolute places; and translations out those places, are the only
absolute motions.
But because the parts of space cannot be seen, or distinguished from
one another by our senses, therefore in their stead we use sensi-
ble measures of them. . . . And so, instead of absolute places and
motions, we use relative ones; and that without any inconvenience
in common affairs; but in philosophical disquisitions, we ought to
abstract from our senses, and consider things themselves, distinct
from what are only sensible measures of them. For it may be that
there is no body really at rest, to which the places and motions of
others may be referred.134

133Baliani had not published his theory of tides; Wallis got wind of it through Riccioli’s Almages-
tum novum.

134Newton, Philosophiae naturalis principia mathematica, Definitions, scholium, at 35%, Motte trans-
lation (as revised by Cajori).
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Newton’s ideas, though seemingly close to and inspired by Aristotle’s,
differ from them in an essential respect. Aristotle’s absolute space was
simply that of everyday experience, fixed with the earth, and thus directly
linked to empirical data. We have already seen how it was incompatible in
substance with the assumption that the earth moves.135 It is not an accident
that Ptolemy, who reverted to an Aristotelian notion of space, rejected
the earth’s motions, or that Galileo, embracing heliocentrism, repudiated
absolute space and arrived at the principle of relativity. In Newton, by
contrast, absolute space coexists with Aristarchan heliocentrism (which
had of course triumphed irreversibly after Kepler’s work), so that it no
longer corresponds to any empirical datum. It follows that the motions
that are the object of Newton’s axioms or laws of motion are beyond our
perception. The Nature that concerns his natural philosophy transcends
experience, unlike Aristotle’s, and the first step toward it is to “abstract
from our senses”. This is not, mind you, an abstraction arising from the
substitution of a theoretical model for real objects, but one imposed by
the need to completely give up “sensible measures”. In this scheme there
can be no correspondence rule between relative movements and absolute
ones, because the latter refer to a fixed space beyond perception, and bear
no relation to phenomena. Thus Newton is forced, as he himself admits,
not to deal with “common affairs”. If this is the “experimental method”
characteristic of modern science, it is likely that it was indeed unknown to
scientists like Archimedes, Ctesibius and Herophilus.

(It is true that the Principia later does characterize absolute space, in the
following way. Newton establishes that the barycenter of the solar system
is at rest or in uniform motion, using an implicit, and arguably reasonable,
assumption of isolation. At the same time — and here is the crux — he opts
for rest over uniform motion, a gratuitous choice for which there is no
logical justification in his scientific mechanics, but which is very important
from the viewpoint of his metaphysical notion of space.136)

Building, with full methodological coherence, on his notion of space,
Newton next talks of motion and force:

[E]ntire and absolute motions can be no otherwise determined than
by immovable places. . . . Now no other places are immovable but

135See page 83.
136See Principia, Book III, proposition XI / theorem XI and its proof. The selection is effected

through the immediately preceding hypothesis I, “That the centre of the system of the world is
immovable”, which is justified by a single argument: “This is acknowledged by all.” In this meta-
physical statement, based on an appeal to common sense, Newton prefers to talk of “the system
of the world” and abandons previously defined terms. The proof of proposition XI / theorem XI
shows that he conceives “the centre of the system of the world” as coinciding with the barycenter
of the solar system.
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those that, from infinity to infinity, do all retain the same given po-
sition one to another; and upon this account must ever remain un-
moved; and do thereby constitute immovable space.
The causes by which true and relative motions are distinguished,
one from the other, are the forces impressed upon bodies to generate
motion. True motion is neither generated nor altered, but by some
force impressed upon the body moved; but relative motion may be
generated or altered without any force impressed upon the body.137

Thus Newtonian force (often claimed to be a cardinal novelty of modern
science) is the efficient cause of absolute motion, that is, of displacement
relative to “immovable space” — itself something whose only established
property is that of not being connected to “sensible measures”. And here
moreover Newton seems to be saying that “true motion” is not possible
in the absence of a causing force, in contradiction with the principle of
inertia.138

In spite of the approach just exemplified, Newton eclectically borrows
from Euclid a hypothetico-deductive expositive framework. His Principia,
like the Elements, contain definitions and axioms. But consider the first few
definitions:

Definition I. The quantity of matter is the measure of the same, arising
from its density and bulk conjointly.

Definition II. The quantity of motion is the measure of the same, aris-
ing from the velocity and quantity of matter conjointly.

Definition III. The innate force [vis insita] of matter is a power of re-
sisting, by which every body, as much as in it lies, continues in its
present state, whether it be of rest, or of moving uniformly forwards
in a right line.

Definition IV. An impressed force is an action exerted upon a body,
in order to change its state, either of rest, or of uniform motion in a
right line.

Definition V. A centripetal force is that by which bodies are drawn or
impelled, or any way tend, towards a point as to a centre.139

137Newton, Principia mathematica, Definitions, scholium, at 55%, Motte/Cajori translation.
138It may be objected that force is said to be necessary to cause motion and not to maintain it. But,

supposing that Newton does admit true motion in the absence of force, how can force as the cause
of motion provide the desired distinction between true and relative motion? For this reason I think
that in this passage the Aristotelian view (upon which is based the characterization of true motion
as the effect of a force) coexists with its opposite (according to which a force is needed only to alter
motion). The origins of this second view will be discussed shortly.

139Newton, Principia mathematica, Definitions, Motte/Cajori translation.
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In later developments force came to be a physical magnitude, but here
it is defined as a disposition or action directed to a particular end. It seems
that Newton does not mean to build scientific theories in the sense we
have given the expression — in the sense of Euclid and Archimedes. His
intention, to judge from the passage just quoted, would seem rather to de-
velop a natural philosophy based on Aristotelian concepts such as efficient
cause and final cause.

Here one must face what appears at first to be a very difficult problem.
How did Newtonian mechanics, leaning on such foundations, develop
into a true scientific theory?

First note that the deductive method, which was part of European cul-
ture mainly thanks to Euclid’s Elements, is an effective antidote against
the use of Peripatetic and theological approaches in science, and this in
spite of the practitioner’s own inclinations. Treated with massive doses of
the method, even an amorphous “theory” is eventually forced to take on
a deductive and logically coherent form. But this does not explain it all.
Newtonian dynamics did not just evolve toward an internally coherent
theory: it was applicable from the start as a model of real motion — and
planetary motion, no less. There must have been other factors at work.

Let’s read again the definitions that inaugurate the Principia. The first is
meaningless, since density would not be definable except by indulging in
a silly tautology. The second is unusable because it depends on the first.
But the third and fourth are very interesting, because (despite the use of
nonscientific language140) they graft into the Aristotelian framework an
idea that is foreign to it: that of considering “according to nature” not
just rest but also uniform straight motion (this being the effect of giving
the name of “impressed force” to the efficient cause of a departure from
such motion). This idea, as we know, heralded great developments. But
we must note that it is being superimposed on, not superseding, the more
purely Aristotelian idea attested in our earlier excerpt, where force was
the efficient cause of “true motion”. The third and fourth definitions are
thus anomalous in comparison with the rest of the discussion.

The next definition is strange. Why should centripetal force be intro-
duced immediately after the extremely general notion of impressed force?
If this is just a descriptive expression, to be used later about forces di-
rected toward a center, it makes no sense to place it among the very first
definitions. If, on the other hand, Newton is introducing here a “law of

140These two definitions clearly belong to the essentialist (Platonist–Aristotelian) type discussed
on page 179, and cannot identify any measurable physical quantity. Newton is perhaps conscious of
this, since, in contrast with the first two definitions, he does not say that innate force and impressed
force are measures of anything.
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nature”, it is not clear what law that is. One might think gravitation, but
then why aren’t bodies mutually attracted, rather than impelled toward a
point? What are these points that attract things? And what are they centers
of? It’s all very mysterious.

Plutarch, in the De facie quae in orbe lunae apparet, had written:

[T]o help the moon, that it may not fall [on the earth], there is its
motion itself and the whizzing nature of its rotation, just as objects
placed in a sling are prevented from falling by the circular motion.
For each body is guided by motion according to nature, if it is not turned
aside by something else.141

If the interpretation we gave to this passage in Section 10.6 is correct,
Newton, in the third and fourth definitions of the Principia, succeeded in
restoring the original meaning of the statement reported by Plutarch in
the italicized sentence. In choosing a name for the something else Newton
was more felicitous than Descartes: drawing from Aristotelian language,
he speaks of force. A little further in Plutarch’s dialog we read:

. . . the center. For this is [the point] toward which all weights, from
everywhere, are pressed, tending toward it and being moved toward
it and striving toward it. 142

The fifth definition in the Principia is virtually a translation of this. The
question arises: Were the definitions that Newton poses at the outset of
the foundational work of “modern science” influenced by Plutarch? The
evidence, though indirect, is quite strong.

Acquaintance with the De facie probably dated from Newton’s youth-
ful years, around 1664, when he started his scientific career precisely by
studying the appearance of the moon’s disk. We know that the De facie
played a role in guiding the formulation of the Principia, because Newton
included long excerpts thereof (including the ones we’ve quoted) in the
first draft of his book. They appear in the so-called Classical scholia, notes
about classical matters that Newton wrote for the Principia but did not
include in the published version.143 And Newton opens his illustrative
scholium to the fifth definition (of centripetal force) with what may well
be an echo from the De facie:

Of this sort is gravity, by which bodies tend to the centre of the earth;
magnetism, by which iron tends to the loadstone; and that force,

141Plutarch, De facie quae in orbe lunae apparet, 923C–D.
142Plutarch, De facie, 923E–F.
143The Classical scholia were partly published for the first time in [Casini]. Newton’s personal

library naturally included Plutarch’s Opera Omnia (number 133 in [Harrison]).
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whatever it is, by which the planets are continually drawn aside
from the rectilinear motions, which otherwise they would pursue,
and made to revolve in curvilinear orbits. A stone, whirled about in
a sling, endeavours to recede from the hand that turns it[.]144

With the loss of the original scientific treatises, Plutarch had become pre-
cious. Copernicus, too, had resorted to him in reconstructing Aristarchus’
ideas (just as the inventors of the modern age had to start from Heron’s
“toys” in reconstructing Alexandrian technology). But when the source
is a nontechnical writer of the imperial age, rather than Euclid or Archi-
medes, the effect is unmistakable. The metaphysical ingredient, largely
absent from Galileo, looms large. For already the ancient writer, unable to
make clear demarcations between scientific theory and the reality it mod-
els, tends to frame the discussion in pre-Hellenistic, usually Aristotelian,
concepts: a mix that early modern scientists are wont to contaminate fur-
ther with biblical influences (Newton was a passionate commentator of
the Bible).

Plutarch is not the only literary classical source used by Newton. In the
following passage we clearly recognize Seneca as the source, though it is
not explicitly stated:

The Chaldeans, the most learned astronomers of their time, looked
upon the comets (which of ancient times before had been numbered
among the celestial bodies) as a particular sort of planets, which, de-
scribing eccentric orbits, presented themselves to view only by turns,
once in a revolution, when they descended into the lower parts of
their orbits.145

The same applies to this very significant passage:

Therefore the earth, the sun and all the planets which [are] in our
system, according to the ancients have weight with respect to one
another, and would fall toward each other because of mutual gravity
and coalesce into one mass, if their fall were not prevented by their
circular motions.146

Where does this lead us?

144Newton, Principia mathematica, immediately after Definition V, Motte/Cajori translation.
145Newton, De mundi systemate liber, 1, anonymous translation of 1728 (probably by Motte), as

revised by Cajori. Compare the passages of Seneca quoted on page 316.
146“Igitur Terra Sol et Planetae omnes qui in nostro systemate ex mente veterum graves sunt in

se mutuo et vi gravitatis mutuae caderent in se invicem & in unam massam coirent nisi descensus
ille a motibus circularibus impediretur” (Classical scholia, folio 271r = [Casini], p. 46 or p. 37). Thus
Newton, who of course was immune to the modern scholarly fear of committing anachronisms by
attributing “Newtonian” notions to ancient authors, provides authoritative corroboration for the
interpretations of Seneca’s passages proposed in Sections 10.7 and 10.13.
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As we learned in school, the conceptual leap from a purely descriptive
astronomy to a gravitation-based theory lay in taking the sun, the moon
and the planets and realizing — though these bodies are only a handful
and there was no hope of observing others — that their regular motions
did not depend on their “heavenly nature”, but on their having “weight”,
and that these motions could be generalized through a theory that ren-
ders just as regular the motion of anything whatsoever: a stone, an apple
or a mass of liquid swinging about the center of the earth. The ancient
testimonia discussed in Chapter 10 and the use made of them by Kepler,
Newton and others show that this leap was achieved only once in history:
in Hellenistic science.

Two sets of factors were essential in creating the conditions for a modern
gravitation-based dynamics to take shape as a scientific theory and evolve
into modern physics.

The first set consisted of certain Hellenistic technical and methodologi-
cal tools, found above all in the works of Euclid and Archimedes. Some of
these tools were:

– the hypothetico-deductive method created in the Elements, providing
the general conceptual framework to which there must conform any
scientific theory wishing to use the results of classical mathematics — a
use that is of course inescapable;

– the so-called “method of exhaustion”, whose relation to the seed of in-
finitesimal analysis developed by Newton will be discussed in the next
section;

– Archimedean mechanics, as laid out specifically in the treatise On the
equilibrium of plane figures, which showed how to use the preceding
methods to found a scientific theory of mechanics.

The second set of prerequisites were certain pieces of information on
dynamics and gravitation which, with the loss of the original treatises,
were found scattered throughout works generally written by scientifically
incompetent authors and representing traditions that were far from sci-
entific. The fragmentary and heterogeneous nature of these testimonia
makes their complete identification difficult. Based on an examination of
a small part of the still extant literature, one can list at least the following
examples.

– The hints about inertia, centrifugal force and gravity (toward the earth)
transmitted by Plutarch in the De facie. These hints included a few “ex-
ercises in dynamics” together with their qualitative answers.147

147Sambursky (who was first and foremost an experimental physicist) revealingly wrote that
“some of [the conclusions in the De facie] call to mind classic exercises from Newton’s Theory
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– Other hints complementary to the first, including those found in the
commentaries to Aristotle by Simplicius and Philoponus and in the
Heronian and pseudo-Aristotelian Mechanics.

– Mentions of an attraction between planets and sun, and of the use of
this idea in a heliocentric framework to create a “celestial mechanics”
that could account for the motion of planets and the more elongated
motion of comets. These were found in classical authors (Seneca, Pliny,
Vitruvius) but also, as we shall see, in writings stemming from the neo-
Pythagorean and Hermetic traditions of late Antiquity.

– Some testimonia on an ancient theory of tides based on gravitational
interaction, whose memory had not been totally obliterated.

But all these prerequisites were not enough, since the technical tools
provided by the first set were insufficient for mathematizing the informa-
tion in the second. Two more elements were essential: a quantitative law of
gravity and a mathematical theory that could derive from it the motion of
the planets. The first of these elements will occupy us later in this section;
the second was the theory of conic sections of Apollonius of Perga. Since
orbits under a central gravitational field are conic sections, one can in large
measure view the theory of gravitation mathematically speaking as a set
of “exercises in the theory of conics”.148

The recovery of Apollonius’ theory had been one of the main goals of
seventeenth century mathematicians. We have already mentioned Bona-
ventura Cavalieri’s The burning mirror (1632), which applied the theory’s
rudiments to burning mirrors, lighthouses, acoustics and motion under
gravity. In 1655 there appeared John Wallis’ Tractatus de sectionibus conicis;
but apparently the author had been able to study only the first four books
of Apollonius’ treatise, those that survived in Greek.149 The next three
books of Apollonius’ Conics were first printed in Florence in 1661, in a
Latin translation (from an Arabic recension) prepared by Abraham Echel-
lensis and Giovanni Alfonso Borelli; the latter was reckoned by Newton
among his own forerunners concerning the universal law of gravitation.
This work of recovery continued after the publication of the Principia in
1687. A critical edition of the first seven books, containing the Greek text

of Gravitation”: see [Sambursky: PWG], p. 209. Yet he did not consider the question of the dialog’s
sources, taking it to be “perhaps the first work in astrophysics ever written” (p. 205) — which
would make Plutarch the founder of that science!

148For instance, Newton solves in the Principia the problem of finding a conic going through five
given points. According to Heath this problem had been solved by Apollonius, but its proof was
not included in his treatise, perhaps so as not to lengthen it too much. See [Apollonius/Heath],
Introduction, chapter VI, p. cli.

149The first four books were a sort of introductory textbook; Apollonius’ original results appear
in the next four.
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of the first four and a Latin translation of the next three based on multi-
ple Arabic manuscripts, was finally prepared by Edmund Halley,150 the
friend of Newton’s to whom we owe the discovery (or rediscovery) of
periodic comets and their elliptic orbits, not to mention the completion
of the secular observational experiment designed and set in motion by
Hipparchus.151 The eighth book was never found; we have an inkling of
its contents thanks to a remark contained in the seventh.152

That the bits of gravitational theory recorded by literary men such as
Plutarch and Seneca are only qualitative does not mean that Hipparchus
and other mathematicians of the second century B.C. necessarily neglected
the theory’s quantitative aspects. If they developed them, it would likely
have been in a direction not too far from that which Newton, based on in-
direct and partial knowledge of Apollonius, later took. For we should not
forget that the gravitational theory whose partial outlines we have tried to
reconstruct came into being a few decades after Apollonius’ time, within
the same scientific tradition, and that some Hellenistic astronomers did
discover that comets are no more and no less than planets.153 It is true that
Ptolemy never uses conics in astronomy, but he also avoids any discussion
of comets in the Almagest and he overlooks, in the Optics, the applicabil-
ity of the theory of conics to mirrors, though such applications had been
known and used systematically from the time of Dositheus (third century
B.C.) down to the Arabs.154

But it should be noted that the mathematical formalism used by Newton
is generally more elementary than Appolonius’: for instance, he some-
times deals with central forces as if they cause a sequence of successive
“thrusts toward the center” (Figure 11.3) — an ancient idea that we en-
countered in Chapter 10.

Newton’s work is explicitly founded on all the prerequisites we have
listed. If the universal theory of gravitational soon managed to reach the
status of a scientific theory, despite the obvious frailty of its foundations,
the reason, one suspects, is that the mutual coherence of its contributing
elements was ensured by their common origin. The starkly Aristotelian
statements made from the beginning of the Principia and onwards could
not, for instance, spoil the proofs about conics carried out according to the
Apollonian model. But it is not hard to imagine what kind of a natural
philosophy would come out of Newton’s ideas of space, time and force in

150Apollonii Pergaei conicorum libri octo et Sereni Antissensis de sectione cylindri et coni, Oxford, 1710.
151See page 89.
152See page 201, note 99.
153See the passages cited in Section 10.13.
154Many other aspects of Hellenistic knowledge seem to have been unknown to Ptolemy, as we

have seen in Sections 10.5 and 10.14.
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FIGURE 11.3. Figure illustrating Proposition I / Theorem I of Newton’s Principia
(Book I, Section II). Newton is proving that for central forces equal areas are swept
in equal times. The proof starts: “For suppose time is divided into equal parts,
and in the first part let the body by inertia go from A to B. In the second part of
that time, the body would, if not hindered, move to c . . . But when the body is
arrived at B, suppose that a centripetal force acts at once with a great impulse,
and, turning aside the body from the line Bc, compels it instead to move along
the line BC [with Cc parallel to SB, so area �SBC = area �SBc = area �SAB.] . . .
Now let the number of these triangles increase, and their breadth decrease to an
infinite degree. . . ”

the absence of all the elements listed earlier: we have over a million words
in his pen to show us the directions he might have gone into. Newton’s
world view and methodology are easier to recognize today, thanks to an
increasing awareness of his total written output. The cardboard image of
a purely rational genius held sway for centuries because of general igno-
rance of a large fraction of his writings. When these writings started resur-
facing, there were those who postulated a severe case of split personality;
more recently we have started seeing more irreverent accounts as well.155

155For example, [White]. Newton’s first exegetic work on the Apocalypse of St. John, written in
the 1670s, was only published in 1994, as [Newton/Mamiani]. Its very existence was little known
and indeed had been concealed by Samuel Horsley, the first editor of Newton’s “complete” works
(1779). The Observations on the prophecies of Daniel and the Apocalypse of St. John, written much later in
Newton’s life, were published in 1733 and enjoyed several reprintings, including the recent [New-
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Newton was sharply aware of the importance of knowledge inherited
from Antiquity, but his use of nonscientific sources and his ideological
bent did not allow him to perceive the true origin of the relevant knowl-
edge, namely Hellenistic science. In his view, the profundity of thought of
the “Ancients” (which struck him inordinately) arose from an early Truth
preserved in the esoteric tradition of priesthoods and religious sects. Here
is how the origins of heliocentrism are presented in the System of the world:

It was the opinion of not a few, in the earliest age of philosophy, . . .
that under the fixed stars the planets were carried about the sun; that
the earth, as one of the planets, described an annual course about
the sun, while by a diurnal motion it was in the meantime revolved
about its own axis. . . . This was the philosophy taught of old by
Philolaus, Aristarchus of Samos, Plato . . . and of that wise king of the
Romans, Numa Pompilius, who, as a symbol of the figure of the world
with the sun in the centre, erected a round temple in honor of Vesta,
and ordained perpetual fire to be kept in the middle of it.
The Egyptians were early observers of the heavens; and from them,
probably, this philosophy was spread abroad among other nations;
for from them it was, and the nations about them, that the Greeks,
a people more addicted to the study of philology than of Nature,
derived their first, as well as soundest, notions of philosophy; and
in the Vestal ceremonies we may yet trace the ancient spirit of the
Egyptians; for it was their way to deliver their mysteries, that is, their
philosophy of things above the common way of thinking, under the
veil of religious rites and hieroglyphic symbols.156

The superiority of the Egyptians over the Greeks, and of sacred rites and
mysteries over rational research, is a topos of Hermetic literature, a genre
that dates from late Hellenistic times (when native Egyptians regained
the upper hand in their country) and became very popular in Renaissance
Europe.157

ton/Barnett]; they probably contributed to the false belief that Newton’s writings on religion were
the product of his declining years. There is in fact methodological continuity between Newton’s
religious works and the Principia; in this regard the introduction to [Newton/Mamiani] is very
worth reading.

156Newton, De mundi systemate liber, 1, anonymous/Cajori translation.
157The role of such texts in the formation of modern scientific thought has probably not been

sufficiently placed in the right perspective. There have been studies of the influence of Hermetic
writings on Renaissance culture (especially after the famous [Yates] appeared) and on Copernicus,
Newton and others. But to my knowledge no one has analyzed the possible contribution of rem-
nants of Hellenistic science to Hermetic literature. Such an influence, if real, would help understand
why so many of the founders of modern scientific thought cultivated Hermetic knowledge. Here
we just remark that in document XVI of the Hermetic corpus — bearing the title “From Asclepius
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Let’s turn to the question that to many may seem the only crucial one:
was the “Newtonian” law of gravitation, involving the inverse square of
the distance, known in Antiquity? We don’t have Hipparchus’ work, but
we can start from what Newton himself wrote:

According to Macrobius, Pythagoras . . . applied to the heavens the
proportions found through these experiments [on the pitch of sounds
made by weighted strings], and learned from that the harmonies of
the spheres. And so, by comparing those weights with the weights
of the planets, and the intervals in sound with the intervals of the
spheres, and the lengths of string with the distances of the planets
[measured] from the center, he understood through the heavenly
harmonies that the weights of the planets toward the sun . . . are
inversely proportional to the squares of their distances.158

It is significant that Newton thought that the inverse square law was
known to Pythagoras, even if the testimony of Macrobius does not quite
justify this belief. Newton had probably read other, neo-Pythagorean, texts
on this subject.

The idea of applying the inverse square law to deduce Kepler’s laws
predates Newton. It had occurred at least to Wren and Halley, as im-
plied by a 1684 letter from the latter to Newton, and to Hooke, who put
forth the law in a letter to Newton of January 6, 1680.159 In fact Hooke’s
discovery of the universal law of gravitation was one of the two main
causes of Newton’s fierce animosity toward him. (The second had to do
with optics, another of Newton’s main scientific interests. Hooke, being
aware of several phenomena caused by diffraction and interference, re-
jected Newton’s corpuscular optics, and instead founded the wave theory
of light. He discovered, for instance, the interference phenomenon now
known as “Newton’s rings”, which is quite incompatible with Newtonian
optics. He achieved a lot more: apart from his work as an architect, we

to King Ammon” and cited, for example, by Copernicus — we read that the sun draws all things
to itself and, like a good charioteer, has bound the cosmos to itself, not letting it get away (Corpus
Hermeticum, XVI §5, §7). A systematic search of the Hermetic, kabbalistic, astrological and alchem-
ical literature that so fascinated Newton, and of which the neo-Pythagoreans were a chief source,
would likely reveal many other interesting passages.

158“ut refert Macrobius . . . [p]roportionem vero his experimentis inventam Pythagoras applicuit
ad caelos et inde didicit harmoniam sphaerarum. Ideoque conferendo pondera illa cum ponderibus
planetarum et intervalla tonorum cum intervallis sphaerarum, atque longitudines chordarum cum
distantiis Planetarum ab orbium centro, intellexit per harmoniam caelorum quod pondera Plane-
tarum in Solem . . . essent reciproce ut quadrata distantiarum earum” (Classical scholia, f. 11v =
[Casini], pp. 41–42 or 32–33). The reference is to Macrobius, In Ciceronis somnium Scipionis, II, i.

159Anyone can aspire to write interesting letters, and many succeed in doing so; but to receive
such letters all the time is a much more ambitious goal, which not many contemplate and only an
exceptional few achieve.
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must mention his major contributions to the design of many scientific
instruments, to the study of gases, to entomology, astronomy and crys-
tallography. He was the discoverer of cells and gave them the name we
use now. It is a legacy of Newton’s long-armed hatred that even today
our textbooks associate Hooke only with the study of elastic forces — a
field where his investigations allowed the substitution, at least in certain
cases, of a dynamometer-based definition of force for the one given in the
Principia.)160

But the law itself goes back further. It was stated in 1645 by Boulliau,
based on the argument that the sun’s force, like the light it emits, must
decay with distance in inverse proportion to the area reached.161 Such
considerations were not new even then, having been made by Kepler,
though the latter rejected the analogy between the sun’s motor force and
light, imagining that force, spreading only over the plane of the ecliptic,
was inversely proportional to distance.162

Continuing our brief backward history: the analogy between the sun’s
“virtue” and the light it sends out was drawn in the thirteenth century
by Roger Bacon, who outlined a quantitative theory of any propagation
along straight lines, and so arrived at the inverse square law, at least im-
plicitly, since he attributed the weakening of the action with distance to
the decrease in the cone (solid angle) under which the acted-on body is
seen by the agent.163

We must conclude that knowledge of the dependence of gravitational
force on the distance predated, in medieval and modern times, not only
any connexion with Kepler’s laws but even the statement of the second
principle of dynamics. In other words, this property of gravitational force
was known not only before it was used to explain any phenomenon, but
even before anyone had properly established what should be understood
by “force”. This odd order of ideas becomes intelligible if we assume that
Newton was right in thinking that the law was very old (although he un-
doubtedly overstates the case in throwing it as far back as Pythagoras).

160In recent years Hooke has benefited from a deep and rapid reevalution of his importance. See
the recent biographies [Bennett et al.] and [Inwood] and references therein.

161Ismaeli Bullialdi Astronomia Philolaica, Paris, Piget, 1645, p. 23. The reference to Philolaus in the
work’s title shows that Boulliau, too, meant to reconstruct Pythagorean astronomy.

162J. Kepler, Astronomia nova, xxxvi.
163R. Bacon, Specula mathematica, III, ii. Johann Combach first edited and printed this work (Frank-

furt, 1614), but it is now more readily available as the fourth part of the Opus maius. Bacon calls
multiplicatio secundum figuras the law of dependence on distance of an action that radiates in all
directions along straight lines, and he adds that the lines along which it radiates terminate in the
concave surface of a sphere (op. cit., II, iii).
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Kepler believed that the sun’s “virtue” radiated out in straight lines and
gripped the planets, dragging them in an orbital motion.164 This is a far
cry from our modern idea of force, but it is close indeed to the passages of
Vitruvius and Pliny. It is hard to see why a hand-like “virtue” with which
the sun grips the planets should decrease with distance, if it were not the
case that this decay, too, had been suggested by classical sources.

Let’s turn to the passage of Vitruvius that immediately precedes the
ones studied in Section 10.8 (page 297). It reads:

. . . ergo potius ea ratio nobis constabit, quod, fervor quemadmodum
omnes res evocat et ad se ducit, ut etiam fructus e terra surgentes
in altitudinem per calorem videmus, . . . eadem ratione solis impe-
tus vehemens trigoni forma porrectis insequentes stellas ad se per-
ducit. . . 165

The Latin word ratio has multiple meanings: our “ratio” is one, and an-
other is “reason, argument”. The same is true of the Greek word logos, of
which the Latin ratio is often a direct translation. Now, recall that we have
established that Vitruvius used a Hellenistic scientific source for this dis-
cussion, but disfigured it seriously. Thus we must inquire what lies behind
the “natural” meaning of the Latin, which is something like:

Therefore we find the following reasoning [ea ratio] stronger: in the
same way that heat calls and attracts everything to itself (as we see
the grain shoot up in height during the hot months. . . ), so for the
same reason [eadem ratione] the sun’s powerful force attracts to itself
the planets by means of rays projected in the shape of triangles[.]

To try to separate Vitruvius’ contribution from what was in the source,
we can start by imagining that both occurrences of ratio correspond to
logos, and that the original sense was that of our “ratio”. Then the juxtapo-
sition of “this ratio” (ea ratio) and “the same ratio” (eadem ratione) suggests
the idea of proportionality, which Vitruvius seems to have missed, as he
does not place these two expressions in parallel clauses.166 The analogy
with grain may be Vitruvius’; a scientific work would hardly have sand-
wiched it between ratios and triangles, in the midst of a mathematical
argument.

We can therefore conjecture that in his scientific source there was a quan-
titative statement, expressed through an equality of ratios, linking the

164See the last passage quoted on page 357 (footnote 101).
165Vitruvius, De architectura, IX, i §12.
166However, if we read qua for quod, the two uses of ratio become parallel and the Latin lends

itself naturally to the proportionality interpretation. Vitruvius’ meaning may have been closer to
the original than what is attested by our manuscripts.
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force exerted by the sun with the spread of heat. It is possible that the
source stated that the force decreases with distance in the same ratio as
the intensity of light and heat, and thus in inverse proportion to the area
reached: the same idea later stated by Roger Bacon, Kepler and Boulliau.
The two-dimensional context of Vitruvius’ work matches particular well
Kepler’s treatment (which, as we have already seen, appears to almost
quote verbatim from Vitruvius in this matter of the force exerted by the
sun).

Of course, the interpretation we have suggested for Vitruvius’ passage
is only one possibility. Boulliau might have taken his ideas from some
other classical author or from medieval authors, such as Roger Bacon.
However, in the absence of ancient sources, direct or indirect, it is unlikely
that either he or Bacon would have examined the variation with distance
in a “force” whose meaning they did not know yet.

Misunderstanding for reflections on nature what were in fact attempts
to interpret ancient texts may have led astray many historians who have
sought to trace the development of ideas in the dawn of “modern science”.

11.8 The Rift Between Mathematics and Physics167

The terminology of Renaissance scientists still followed the Greek model.
“Mathematics” meant the exact sciences as a whole.168 When Copernicus
proudly wrote, in the dedicatory letter of the De revolutionibus, that “math-
ematics is for mathematicians” (mathemata mathematicis scribuntur), he had
no doubt that his theory of the solar system was part of math.

As an example of what was still understood by the word in the early
seventeenth century, consider the second postulate in Simon Stevin’s On
the theory of ebb and flow (of tides):

[We postulate] that the earth is entirely covered with water, without
the wind or anything else hindering the ebb and flow.169

The assertion is blatantly and intentionally “false”. Stevin obviously plans
to build a model based on a simplification of reality, and he does not think

167This section contains material drawn from [Russo: Appunti].
168In fact, the Renaissance’s extraordinary cultural unity caused the term to acquire an even wider

meaning for some authors. Fra Luca Pacioli, in the front page of his famous De divina proportione
(1509), addresses it to “every student of philosophy, perspective, painting, sculpture, architecture,
music and other mathematics”.

169Simon Stevin, Van de spiegheling der ebbenvloet (Leiden, 1608), p. 179 = [Stevin: PW], p. 333. The
work is methodologically very interesting, but no more than middling in its technical content: it
lays out a simple static model for tides, based on lunar effects alone, and does not even discuss the
correlation between tides and phases of the moon.
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that postulates must be “true”. This short work (containing no formulas
or quantitative arguments of any sort) was published in 1608 as part of
his Wisconstighe ghedachtenissen, or Mathematical works, precisely because
of its logical structure and the role played in it by postulates such as the
one quoted.

The term “physics”, too, had until the seventeenth century a sense simi-
lar to the Greek one: it was used for works in natural philosophy, or in the
medical and biological sciences, while the practitioners of exact science
called themselves mathematicians, when not philosophers.

We have seen that Galileo did not hesitate in ranking his “new science”
of motion under gravity together with the scientific tradition of Euclid,
Archimedes and Apollonius.170

But the ancient method was understood by very few of Galileo’s con-
temporaries. It had not been utterly forgotten, but few scientists felt free
(as Stevin did) to choose hypotheses for building models; much more
frequently, the arbitrariness involved in setting ground assumptions was
taken (as it had by Simplicius and Thomas Aquinas) as a quirk of math-
ematicians and a sign of the weakness of the mathematical method as
compared to philosophy and theology, which could tell right from wrong.
Here, for example, is a letter of April 12, 1615, from Cardinal Bellarmino
to Brother P. A. Foscarini, who had tried to reconcile heliocentrism with
Scripture:

It seems to me that you, Father, and Mr. Galileo act prudently in
staying with arguments ex suppositione rather than speaking abso-
lutely. . . . For saying that, supposing that the earth moves and the
sun is fixed, all appearances are saved better than with eccentrics
and epicycles, is very well and involves no danger, and is enough for
mathematicians: but wanting to claim that the sun really is at the cen-
ter of the world and just turns around itself without speeding from
east to west, and that the earth lies in the third heaven and turns with
enormous speed around the sun, is a very dangerous thing, capable
not only of annoying all philosophers and scholastic theologians, but
also of injuring the Holy Faith by belying the Sacred Scriptures.171

As is well known, Bellarmino’s recommendation was in part adopted by
Galileo himself, though only as a ruse to try to avoid censure and condem-
nation.

Newton is often considered the founder of physics in the modern sense
of the term. Indeed, although his Philosophiae naturalis Principia mathema-

170See the quote on page 350.
171This letter appears in [Galileo: Opere], vol. XII, pp. 171–172.
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tica starts from definitions and axioms, following the practice of ancient
science, it is clearly Newton’s intention to move away from the model of
ancient mathematics. On this point one can do no better than quote Roger
Cotes, the editor of the second edition of the Principia. He writes in the
book’s preface (italics mine):

[Those who possess experimental philosophy] derive the causes of
all things from the most simple principles possible; but then they as-
sume nothing as a principle, that is not proved by phenomena. They frame
no hypotheses, nor receive them into philosophy otherwise than as ques-
tions whose truth may be disputed. They proceed therefore in a twofold
method, synthetical and analytical. From some select phenomena
they deduce by analysis the forces of Nature and the more simple
laws of forces; and from thence by synthesis show the constitution
of the rest. This is that incomparably best way of philosophizing,
which our renowned author most justly embraced in preference to
the rest[.]171a

This passage is perfectly emblematic of the birth of modern physics as a
science distinct from ancient mathematics. The ancient scientific method,
which for so many centuries not even those who could not understand
it had dared contradict explicitly, is here haughtily repudiated. Many of
Newton’s own assertions bear witness to the same attitude: the regulae
philosophandi that open Book III of the Principia (particularly the fourth);
the General Scholium that concludes the second edition of the same work
(with the famous sentence “Hypotheses non fingo”: I do not make hy-
potheses); and the considerations at the end of the Opticks.172

Newton’s science, unlike classical natural philosophy, makes systematic
use of instruments that are mathematical in the modern sense of the term.
And yet what he does is physics and no longer mathematics, in the sense
that he rejects hypotheses whose truth cannot be established; he is not
content with a theory able to save the appearances, but instead seeks that
substantial reality, beyond appearances, whose knowledge Simplicius and
Thomas Aquinas, following Aristotle, had placed in the realm of physics.
The word hypothesis, for Newton, had taken on the meaning that is now
most current (and different from the classical one) — something still under
debate, whose truth or falsehood will sooner or later will be definitively
established. The Greek term phenomenon, too, had taken on its modern
meaning: no longer a phainomenon — what is perceived, via the interaction
of subject and object — but an objective fact, thought to be describable

171aPreface to second edition (Cambridge, 1713), at 8%, Motte/Cajori translation.
172Such as the statement: “For Hypotheses are not to be regarded in experimental Philosophy”,

in Opticks, second edition (1730), p. 404 in the most common reprints.
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without any reference to the method by which it is observed. The aware-
ness that different theories can save the same phainomena is abandoned
for the conviction that phenomena unambiguously and definitively lead
to “true principles”. Although the technical structure of modern physics
is built on results of ancient mathematics, its epistemology is profoundly
affected by Aristotelian thinking and the theological tradition.

We have seen how the relativity of motion was introduced in Hellenistic
science as an application of the much more general idea that different but
equivalent explanations, based on different premises, can be offered for
the same phainomena. Thus is it not surprising that with Newton we lose
again the awareness that all motion is relative (which had been recovered
by Galileo, at least in part, after seventeen centuries), and return to a an
essentially Aristotelian conception of space.

The theoretical views put forth by Newton and Cotes spread together
with Newtonian mechanics, leading to a split of exact science into two
streams, mathematics and physics (in the modern sense). Both inherited
from ancient mathematics the quantitative method and many technical
results, and from ancient physics (which is to say, natural philosophy) the
goal of producing absolutely true statements. The two streams diverged in
the nature of their subject matter and the criterion of truth applied to their
statements. Mathematical entities, though applicable to the description of
concrete objects, were regarded as abstract, while physical entities were
felt to be as concrete as the objects to which they applied. Whereas the
assumptions of mathematics (called postulates) were seen as immediately
obvious truths, those of physics (called principles or laws) were seen as true
if and only if they were “proved by phenomena”, to use Cotes’ words.
Other statements could be deduced from the initial ones; but whereas in
mathematics the deductive method was essential and constituted the only
way through which truths not immediately evident could be established,
physics statements, though deducible from principles often enough, were
also considered to be directly verifiable, and this lessened interest for the
deductive method in physics, where it became optional.

The scope of what was considered mathematics or physics may seem to
some extent arbitrary. For example, statics and optics ended up in physics,
whereas geometry remained an essential part of mathematics. Work meth-
ods, which in Antiquity had been the same in all three, changed according
to the new classification. In geometry, the ties to drawing wore off, and
now Euclid’s “problems” (constructions) are left out of the curriculum
altogether.173 In the various areas of physics, conversely, it was the de-

173Considered unworthy of appearing in mathematics textbooks for being too “concrete”, such
constructions were in part shunted to courses in specialized drawing, but not before they were
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ductive method that became etiolated, and now even statements that are
provable from simple principles are sometimes regarded as “experimental
laws”; thus, in modern treatments of hydrostatics, the so-called principle
of Archimedes is stated as an experimental law, whereas in Archimedes’
treatise On floating bodies it was deduced as a theorem.174 A similar slide
can be documented in several other cases (for example, in statics) and may
be suspected in others: for example, “Snell’s law” is generally presented
nowadays as an experimental truth, instead of being deduced from a min-
imum principle.175

The name “mathematics” continued to apply mainly to those areas in
which Greek treatises were still essential. One good reason for this may
be that when mathematics and physics went their separate ways, in the
late seventeenth century, scientists were fluent in the deductive method —
to them an essential feature of mathematics — only in fields where they
could follow the classical model closely. The term “mathematics” was later
extended to new subjects that arose organically from the old ones, but in
the fast-paced development of mathematics in the eighteenth and early
nineteenth centuries, the expansion of content away from the classics was
accompanied by a drift away from the rigor of demonstrations as well.

A second, language-based, factor may have contributed to the fact that
precisely those fields most directly linked to the Greek legacy were seen
as dealing with “abstract” entities, and so labeled as mathematics: in these
fields, the use of Greek-derived technical terms to denote theoretical enti-
ties made it easier to distinguish them from concrete objects. On subjects
where complete Greek texts were not available, the use of terms from ev-
eryday language, such as “force” or “mass”, favored instead a confusion
between theoretical entities and concrete objects to which the theory was
applied. The importance of this effect may not be readily appreciated by
someone who is familiar (as we are) with conventional terminology, but
we must keep in mind that in the late seventeenth century linguistic con-
ventionalism was not even close to being recovered.176

stripped of their proofs. Thus logical rigor and practical applications, the two main features of
science, are made to stand in exclusion of each other.

174See page 73.
175For the conjecture that the law was first obtained as a consequence of a minimum principle,

see page 349.
176The recovery was a long process, with murky transitional stages that resist neat categorization

and precise dating. A few examples will give an idea of the progression. Linnaeus’ zoological
nomenclature, in the eighteenth century, was an important first stage. In economics, the necessity
to define terms was stressed by Malthus around 1820. Still after that, in Bolzano’s Paradoxien des
Unendlichen, published posthumously in 1851, infinite series are summed (leading to some of the
“paradoxes of infinity” of the title) without any suspicion that the concept of summation of a series
must first be defined; thus conventional terminology was still foreign to some. Conventionalism
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The reassignment of meanings to “physics” and “mathematics”, allied
to methodological differences between modern and ancient science, was
and is a source of pitfalls in the analysis of classical works. Believers in
the absolute validity of the boundaries and categories of modern science
have often been led astray by facile equations. Consider Euclid’s Optics,
a work automatically pigeonholed with physics on the basis of its title’s
modern meaning. Since physical theories, unlike mathematical ones, sup-
posedly deal in concrete entities, modern scholars have again and again
confused Euclid’s visual rays with modern light rays. If Euclid’s rays have
any property not coinciding with those of our light rays, only one reason
would spring to mind: Euclid was wrong. Here is what Giuseppe Ovio, a
researcher in physiological optics, wrote in the introduction to his transla-
tion of Euclid’s book, dating from 1918:

These two books of optics . . . presuppose . . . a theory of vision where
visual rays start from the eye and go toward the object. Nowadays,
as everyone knows, this theory can no longer be sustained; we know
instead that rays follow the reverse path, from the object to the eye.177

According to Euclid, visual rays are set apart a certain distance from
one another. Today this opinion brings a smile to our lips[.]178

Ovio’s was not an isolated opinion; a few years later Thomas Heath wrote:

Euclid assumed that the visual rays are not ‘continuous’, i.e. not ab-
solutely close together, but are separated by a certain distance, and
hence concluded, in Proposition 1, that we can never really see the
whole of any object, though we seem to do so. Apart, however, from
such inferences as these from false hypotheses, there is much in the
treatise that is sound. 179

Even the meaning of “optics” changed: its object of study was no longer
visual perception, but a natural object (light), felt to be describable in the
absence of any reference to the way in which it is observed. The meaning
of “phenomenon” changed in the same way. A rereading of the Dreyer
quote on page 85 will give a further example of how hard it became to
understand the ancient scientific method.

only became the norm in mathematics in the late nineteenth century. Physics still has a strong
essentialist streak (see Section 11.11).

177[Euclid/Ovio], p. 1.
178[Euclid/Ovio], p. 15.
179[Heath: HGM], vol. 1, pp. 441–442. Similar opinions have been expressed by many modern

writers on the question; see, for example, [Enriques, de Santillana], [Heiberg: GMNA], [Ronchi]
and the introduction to [Euclid/Ver Eecke]. All these authors consider false Euclid’s statements
about visual rays that differ from the statements about light rays accepted by modern optics. For
the meaning of Euclid’s hypotheses, see pages 58, 149 (especially note 17) and 183.
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11.9 Ancient Science and Modern Science

At the base of modern science were Hellenistic science, on the one hand,
and on the other the study of and experimentation with technological
products having, in large measure, the same source. Yet modern science
attained fairly soon a state that appeared much more powerful than that
of its ancient counterpart. Why?

The exponential growth in scientific and technological knowledge and
industrial production that started in seventeenth-century Europe — and at
no other time or place in human history — hinged on many prerequisites,
as we saw in Section 9.7, not all of them easy to identify. One of them was
of course a sufficient mass of technological and scientific knowledge. This
initial mass, or cultural capital, was inherited from a distant civilization,
which (though lacking stock brokers and even a word for them) managed
to create many cultural instruments of lasting usefulness. Since the intro-
duction of writing, information can be preserved down the centuries and
millennia, and this means that superficially unexpected similarities can
coexist with profound differences between cultures.

What were the new factors that unchained the development seen in
modern times?

Taking mathematics first, consider the common claim that the positional
number system gave a decisive advantage to modern over ancient science.
But this system was borrowed from the Arabs, who inherited it from the
Indians, who in turn learned it from Hellenistic mathematicians. While its
furthest origins go back to Old Babylon, it was reformulated and rational-
ized in the time of, and largely thanks to, Archimedes and Apollonius; in
Hellenistic times it was systematically used (especially in base sixty) for
trigonometrical and astronomical calculations — namely, those problems
that could not be solved with ruler and compass.

Thus the question becomes: How did solutions with ruler and compass,
which in Antiquity were considered simpler, get replaced by numerical
calculations in the modern age?

In reality, numerical calculations got a significant lead over geometric
methods only after the advent of printed tables of logarithms, in 1614.
The speedup represented by these computational aids meant that instead
of solving algebraic problems with ruler and compass, it became more
convenient to turn even geometric problems into algebraic ones, inverting
the relative standing that algebra and geometry had held since Hellenis-
tic times. The bridge between geometric and algebraic problems was the
assignment of coordinates to points. This, too, was not a radically new
idea: Apollonius had already used what came to be called Cartesian co-
ordinates. The novelty was that the systematic use of the algebraic form
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reduced the drawing, now a mere “sketch” of the curve under study, to a
subsidiary role, and primacy went to the curve’s equation, from which the
desired results could be obtained through numerical computation. This
allowed the study of a much broader mathematical phenomenology.

Shall we then conclude that the superiority of modern mathematics is
based on a new idea, logarithms? Certainly not. That writing numbers as
powers of the same base allows the reduction of time-consuming opera-
tions to easier operations on exponents is lucidly explained (en passant,
as it were) in Archimedes’ Arenarius.180 Nor was the practice of compiling
numerical tables new, since Hellenistic astronomers made use of trigono-
metric tables. But in the seventeenth century we start seeing the compi-
lation of numerical tables to a hitherto unmatched degree of precision
and extension. Only the new, detailed tables of logarithms could make
the ancient geometric calculation methods obsolete; but their preparation
requires tremendous labor, hardly to be undertaken unless the expected
use of the product exceeds a certain threshold. Moreover if it were not for
printing it would not be possible to keep the tables reliable, and printing
in turn only makes sense where the reading public is sufficiently wide.
Thus the essential novelty is not to be found in new ideas, but in the
achievement of a critical mass of interested individuals.

I believe that this discussion of methods of calculation exemplifies a
much more general pattern: the factors that made modern science take
off do not rest on radically new ideas, but rather on there being again, in
early modern Europe, an opportunity for remnants of ancient culture to
interact and develop, with the advantage of extension to a much wider
social base. When there started to be mutual interaction between scientific
and industrial development, the existence of wide markets became even
more important.

But this left modern science with a serious weak spot. Since its results
originated in the acquisition of external elements, created by a different
civilization and not completely understood, it is not surprising that the
science of Descartes, Kepler and Newton, despite its potential superiority
(due to its applicability to a wider range of phenomena) was poorer than
ancient science in its methodology. In the works of early modern science,

180Archimedes, Arenarius, 147:27 – 148:26 (ed. Mugler, vol. II). Of course, to get an efficient nu-
merical method from this it is necessary to take a geometric progression not of natural numbers
like the one considered in the Arenarius, but of noninteger magnitudes whose ratio is close to unity
(thus Napier’s table involved a geometric progression of ratio 0.9999999, while a table of decimal
logs to, say, three decimal places involves a progression whose ratio is the thousandth root of 10).
It is to be supposed that this step was within the reach of Hellenistic mathematicians, given the
parallel development of the theory of proportions for integers and for magnitudes in the Elements
and elsewhere. If it was not taken the reason is presumably to be sought in a relative lack of interest
in numerical methods.



11.9 Ancient Science and Modern Science 387

individual pieces of content either recovered from ancient science or de-
rived from such were plunged in a foreign overarching framework based
on theology and natural philosophy. The crystal sphere of fixed stars —
which, as we recall, was first introduced to explain the rigid nightly mo-
tion of the heavens, then abandoned in the time of Heraclides of Pontus
when the hypothesis of the earth’s rotation was made, and then taken up
again with the end of ancient science — did not disappear with the rise
of heliocentrism: it still surrounded Kepler’s universe. Likewise Newton
tried to frame his “new” science in Aristotelian categories, in particular
preserving a concept of absolute space that is virtually incompatible with
the principle of inertia.

As we remarked on page 368, the eventual evolution of modern science
into true scientific theories was ensured by the fact that its structure was
circumscribed by technical elements that followed closely the surviving
Hellenistic treatises, from which authors continued to draw. Nonetheless,
the level of mathematical rigor remained for a long period far below what
it was in Hellenistic times. Here is how Newton discusses the limit of the
ratio between two infinitesimals (what he calls the “ultimate proportion”
of “evanescent quantities”):

Therefore if hereafter I should happen to consider quantities as made
up of particles . . . I would not be understood to mean indivisibles,
but evanescent divisible quantities[.]
Perhaps it may be objected, that there is no ultimate proportion of
evanescent quantities; because the proportion, before the quantities
have vanished, is not the ultimate, and when they are vanished, is
none. . . . But the answer is easy; . . . by the ultimate ratio of evanes-
cent quantities is to be understood the ratio of the quantities not be-
fore they vanish, nor afterwards, but with which they vanish.181

Newton conceives “evanescent” quantities as real objects, which vary
in real time: their ultimate ratio (in our language, the limit of their ratio)
is thus the value the ratio takes at the moment in which the two values
vanish. It is clear that Newton has no awareness of using a mathematical
model. It is not an accident that his “method of ultimate ratios” is part of
his philosophy of nature. Newton and his contemporaries were still far from
mastering the technical methodology that, two thousand years earlier, had
allowed Archimedes to compare infinitesimals of different orders within
the rigorous structure of a hypothetico-deductive model.182

181Newton, Philosophiae naturalis principia mathematica, Book I, Section I, after scholium to lemma
XI, Motte/Cajori translation.

182See, for example, Archimedes’ On spirals, proposition 5, 17–18 (ed. Mugler), where the compar-
ison between infinitesimals of different orders is an important step in determining the direction of
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This is how Boyer, in his History of mathematics, contrasts ancient and
early modern infinitesimal methods:

Stevin, Kepler, and Galileo all had need for Archimedean methods,
being practical men, but they wished to avoid the logical niceties of
the method of exhaustion. It was largely the resulting modifications
of the ancient infinitesimal methods that ultimately led to the calcu-
lus[.] 183

How did modern infinitesimal calculus ever manage to work despite
its lack of “logical niceties” (or, to put it more bluntly, in spite of logi-
cal contradictions)? Probably because it was created precisely by prun-
ing the “logical niceties” from an actual scientific theory. The “practical
men” of calculus considered raw “infinite” or “infinitesimal” quantities
because they were not in a position to obtain rigorous demonstrations
using only finite quantities, as Euclid and Archimedes did, and as contem-
porary mathematical analysis would again do. It was at that point, thanks
to the “practical” mathematicians, that the idea was born that infinity was
unfathomable to the “Ancients”.184 This misjudgement survived in the
eyes of many historians of mathematics even after rigorous infinitesimal
methods were reintroduced in the late nineteenth century.185

11.10 The Erasure of Ancient Science

Each step in the recovery of ancient knowledge was accompanied by a loss
of historical memory. The assimilation of ancient ideas, indeed, consists in
translating them into the idiom of one’s own culture, recasting them into
writings that tend to edge out the old ones, which often end up forgotten.
Each of the renaissances discussed in Section 11.1 led to a partial replace-
ment of earlier works on technical subjects by new works — in many cases
of lower level; this sometimes limited the diffusion of the older works, and
sometimes led to their complete disappearance. In imperial times, Heron’s
work on automata displaced Philo’s and caused its disappearance. The re-
covery of ancient knowledge about refraction seems to have spelled, in the

the tangent at an arbitrary point of the spiral. This is the first known discussion of a topic in what
we now call differential geometry, making Archimedes the founder of the subject.

183[Boyer], p. 354 (1st ed.), p. 322 (2nd ed.).
184Of course, when the modern recovery of the scientific method started, there reappeared math-

ematicians who “didn’t understand infinity”. Boyer states, with apparent amazement, that both
“Gauss and Cauchy seem to have had a kind of horror infiniti”; see [Boyer], p. 565 (1st ed.), p. 516
(2nd ed).

185See the quotation by Kline on page 44.
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early seventeenth century, the end of Ptolemy’s Optics.186 Gilbert’s treatise
made obsolete the earlier work of Pierre de Maricourt (Petrus Peregrinus)
on magnetism and the compass;187 one may suspect that the latter, in turn,
had contributed to the loss of older works on the subject.188

But in none of these situations had it been denied or questioned that the
study of ancient Greek sources was, in their sum, essential. Admiration
for ancient science was imparted, unabated, by the writers of the imperial
period to Byzantium and the Arabs; it revived in late medieval Europe in
the passionate pen of Roger Bacon,189 and continued to be shared by such
men as Della Porta, Francis Bacon, Galileo and Newton.

In the eighteenth century something radically different took place. For
the first time it was again possible to build coherent theories, which could
be expected to evolve solely through the light of reason, without essential
and constant recourse to poorly understood ancient sources. European
science, confident of finally being able to walk on its own legs, underwent
during the Enlightenment a phase of violent rejection of the old culture
that had nurtured it, obliterating its memory. It was then that it came to be
believed that pneumatics started with Torricelli, and the works of Heron
and Philo of Byzantium fell into the oblivion in which they pretty much
remain.190 It was then that heliocentrism became “Copernican”, for earlier
it had always been linked with its creator, Aristarchus — as when Gilles
de Roberval apocryphally published his book in defense of heliocentrism
as if authored by the Greek astronomer (Aristarchi Samii de mundi systemate
partibus. . . , Paris, 1644), or when Libert Fromond published a refuting tract
called Anti-Aristarchus (Antwerp, 1631).191 It was also then that Hellenistic
technological inventions were forgotten or assigned the role of accidental
“precursors” of their modern imitations.192

186The last document that directly cites this work is Ambrosius Rhodius’ Optica, of 1611; after that
it was considered lost.

187Gilbert’s famous De magnete. . . (London, 1600), as the author acknowledges, owes much to
Pierre de Maricourt’s 1269 epistolary tract, which had until then been popular in manuscript
(“Tractatus de magnete Peregrini de Maricourt ad Sygerum militem”) and in print (De magnete,
seu Rota perpetui motus, Augsburg, 1558; a truncated edition had appeared in the 1510s under the
title De virtute magnetis, misattributed to Raymond Lull).

188In the thirteenth century, theoretical knowledge about magnetism and the compass was shared
by other authors such as Roger Bacon and Albertus Magnus. The compass — but not its use in
navigation — is attested in China in the first century A.D.

189See Section 4.10.
190See, for example, [Philo/Prager], p. 31.
191These books are mentioned in the preface to Heath’s Aristarchus of Samos: the ancient Copernicus,

a lovely work whose title nonetheless manages to get history backwards — as do all those who
marvel at the “foresight” of Aristarchus the “precursor” of heliocentrism.

192Some scholars tried to resist this trend. See, for example, Louis Dutens, Origine des découvertes
attribuées aux modernes, Paris, 1766.
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The age-long history of thinking on gravitation, too, was erased from
collective consciousness, and that force somehow became the serendipi-
tous child of Newton’s genius.193 The new attitude is well illustrated by
the anecdote of the apple, a legend spread by Voltaire, one of the most
active and vehement erasers of the past.194 (The immense popularity of
this legend is worth dwelling on. It is hard to talk of universal gravitation
without wondering what might have led to an idea so far removed from
common experience as the mutual attraction of all bodies. But one can’t
reconstruct the genesis of this idea within the confines of modern science,
which reclaimed it from an ancient tradition. Thus the erasure of gravita-
tion’s long history left a void that had to be filled by some other story: for
the gullible, it could even be the notion that all it took was a genius seeing
an apple fall.)

Newton’s name became a pigeonhole for an incredible number of ideas,
in a process already discussed.195 Even one of the seven wonders of the
ancient world suffered the magnetic attraction of his fame: lighthouses
were sometimes called Newtonian towers in the eighteenth and nineteenth
centuries.195a

Of course, in order for the new picture of the development of science
to gain credit, it was necessary to forget the essential role played by the
“missing links” between ancient and modern culture — intellectuals like
Crisogono, Boulliau and de Dominis, whose works include early forms of
important results of later science, but in a context that obviously cannot
account for their origin. Not only that: it was necessary to conceal many
of Newton’s own writings, including those where he credits Pythagoras

193See Section 10.9 for a reconstruction of the subject’s ancient lineage. Much information about
the medieval and modern history of gravitation (which we discussed briefly on pages 376–379) can
be found in [Duhem: TP], Chapter VII, Section 2.

194Voltaire tells the anecdote in the fifteenth of his Lettres philosophiques. To get an idea of the
general tone of his polemic, it suffices to read the entry système in his Dictionnaire philosophique (see
http://www.voltaire-integral.com/20/systeme.htm). There Voltaire inveighs against Aristarchus
of Samos, whom he thinks not only scientifically mediocre but bigoted, wicked and hypocritical
(this based on the passage of Plutarch we discussed on note 106 of page 82). After admonishing
the wayward reader for thinking that perhaps heliocentrism predated Copernicus, after extolling
ever more the depth, exactness, creativity and other qualities of Newton’s genius, Voltaire tears at
Dutens (see note 192) and all others who dare betray their own contemporaries by stressing what
the ancients knew.

195See Section 11.7 and note 2 on page 270. Another example is the discovery that the earth is an
oblate spheroid and the explanation for this shape. We read in [Whewell], vol. II, p. 111: “Newton’s
attempt to solve the problem of the figure of the earth, supposing it fluid, is the first example of
such an investigation, and this rested upon principles which we have already explained, applied
with the skill and sagacity which distinguished all that Newton did.” Compare Section 10.11.

195aAs attested, for example, in a letter from Farkas to János Bolyai of 1820; see [Dávid], p. 138.
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and the ancient Egyptians with ideas now taken to be sudden creations of
his own genius.196

The need to build the myth of an ex nihilo creation of modern science
gave rise to much impassioned rhetoric. Still in the nineteenth century,
the scientific and technological superiority of moderns over ancients was
argued with a vehemence that may seem surprising to us today.

After the turnaround that occurred under the Enlightenment, ancient
culture continued to be an essential influence on European science, but an
unconscious one, like so many repressed memories. A number of impor-
tant scientists were also archeologists and Greek scholars (Joseph Fourier,
Thomas Young); a good part of the others, like the two Darwins and Freud,
were cultured in the classics and read the ancients. But the influence of the
study of Greek sources on scientific development often went unnoticed
by the scientists themselves, as we have seen on several occasions and
will see again in the next section. And the relinquishment of Latin as a
language of science started to create a rift between scientific culture and
humanistic studies that in due time would make most medieval and early
modern writings largely inaccessible to all but classical scholars.

11.11 Recovery and Crisis of Scientific Methodology

The closer we get to the deepest aspects of Hellenistic science, which are
the methodological ones, the longer they took to reappear.

One important methodological step in the evolution of modern mechan-
ics was the introduction of variational principles, which correspond to ways
to formulate a dynamical problem not as a search for solutions of ordinary
differential equations with chosen initial conditions (Cauchy problems)
but as a search for minimum points of appropriate functionals. Instead of
deducing the future from the past (a process regarded as causal, if only
unconsciously), the variational formulation in principle allows the whole
motion to be obtained simultaneously.

This “radically new” way of setting problems was derived from its first
attested example, transmitted by Heron of Alexandria and having to do
with optics.197 It was natural to draw ideas from Hellenistic science in
trying to formulate the advances of modern dynamics within the lucid
geometric framework that Archimedes used for the creation of mechanics.

Another important methodological loss that took a long time to be made
good was that of the role of postulates and the criteria for their choice.
Down to the late nineteenth century there was not a single counterpart to

196See pages 375–376.
197See pages 63–64 and the figure thereon.
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the many Hellenistic hypothetico-deductive theories; we have seen how
Descartes, Kepler and Newton operated in a very different mode. Indeed,
even Euclid’s Elements, having sojourned for so long in a milieu that had
no notion of a scientific theory (and hence of the relations between theory
and concrete objects), had been shoehorned into the same prescientific
conceptual mold. Its five postulates were no longer conceived as the ba-
sis of a mathematical model for the use of ruler and compass, but as
the Truth. Over the centuries there were countless attempts to derive the
fifth postulate, an ugly duckling for not being obviously “true” like the
rest, from the first four. This vain quest, launched in the imperial era,198

only ended in the nineteenth century, with Lobachevskii and the so-called
“non-Euclidean geometries”. As is well-known, Lobachevskii discovered
that if the fifth postulate is negated one can nonetheless obtain consis-
tent theories. (Bolyai’s work, independent of Lobachevskii’s and covering
much of the same ground, followed a few years later. Before both there
had been observations in the same direction by Gauss, contained in pri-
vate letters going back to 1799.)

But before this a non-Euclidean geometry had already been developed,
albeit unconsciouly, by Johann Heinrich Lambert, in a Theory of parallel
lines. This study, dating from 1766 (according to Johann Bernoulli grand-
son, who, two decades later, edited Lambert’s unpublished works posthu-
mously), considered whether a quadrilateral with three right angles might
have an acute or obtuse fourth angle; studying these possibilities in order
to exclude them, he actually deduced from them two non-Euclidean ge-
ometries, without realizing he had done so. Earlier attempts (notably by
Saccheri) to demonstrate the fifth postulate by contradiction had already
led to many “false” statements characteristic of non-Euclidean geometry,
but Lambert’s work is especially interesting, not least because of its influ-
ence on later developments: it palpably opened the way for the creation
of consciously non-Euclidean geometries a few decades later. Lambert
wrote:

It seems remarkable to me that the second hypothesis [namely, that
the fourth angle is obtuse] holds if instead of plane triangles we take
spherical ones, for in this case not only the angles of a triangle add up
to more than 180 degrees, but also the excess is proportional to the
area of the triangle.199

198Proclus says that Ptolemy had a “demonstration” of the fifth postulate (In primum Euclidis
Elementorum librum commentarii, 362:12 – 363:18 + 365:5 – 367:27, ed. Friedlein). Proclus himself gave
another pseudo-demonstration (op. cit., 371:23 – 373:2). We know from an-Nairı̄zı̄’s commentary on
the Elements that Geminus had made a similar attempt earlier; see [Heath: HGM], vol. II, pp. 228–
230.

199J. H. Lambert, Die Theorie der Parallellinien, in [Stäckel, Engel], p. 202.
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This is a truly remarkable observation: it is (though he was unaware
of that) equivalent to the statement that his results consequent upon the
assumption of an obtuse fourth angle coincide with the spherical geom-
etry of ancient times. Lambert had in fact redemonstrated some classical
theorems.

The Sphaerica of Menelaus, from the first century A.D., is the oldest
work in non-Euclidean geometry that has come down to us. It studies
the surface of the sphere not as something immersed in three-dimensional
space, but through its intrinsic properties (to use the technical term).200

Each theorem, including those on spherical triangles, is proved following
the scheme used in the Elements for plane geometry, but interpreting Eu-
clid’s straight lines (line segments) as arcs of great circles. Naturally, those
theorems of plane geometry that depend on the existence of a parallel to
a line through a given point are not present, being replaced by different
theorems valid in the spherical case. In particular, the theorem cited by
Lambert on the excess of the angle sum of a spherical triangle appears as
proposition 11 in Book I of the Sphaerica.

To a Hellenistic mathematician, there would be no point even in posing
the question whether one can construct a consistent geometry containing
a theory of parallels different from the one in the Elements. This is because
spherical geometry makes it obvious that the answer is yes.201 It is rea-
sonable to think, then, that Menelaus’ Sphaerica, containing as it does an
explicit alternative to the geometry of the Elements, may have pointed the
way toward the recognition that such alternatives exist. And sure enough,
the first modern edition of Menelaus saw the light of day in 1758, eight
years before Lambert wrote his work.202

Hyperbolic geometry, too, is closely related to the spherical geometry of
Antiquity, and it is not surprising that Lobachevskii devotes to the latter a
good part of his New principles of geometry. Through his critical analysis of
the Euclidean set of postulates, Lobachevskii made a landmark contribu-
tion to science as is generally agreed — but this precisely because he lived

200However, some theorems of intrinsic sphere geometry were already present in the work of
Theodosius; see note 70 on page 55.

201For precision’s sake we ought to point out that in spherical geometry (which has no “parallel”
lines) what must be abandoned is not the fifth postulate in its original form, but an assumption
that Euclid makes implicitly in the proof of proposition 16 of Book I (see note 43 on page 184). It
may be objected that one must also modify the first postulate, since by interpreting lines as great
circles in spherical geometry, uniqueness fails for lines passing through antipodal points. This fault
is remedied by treating each pair of antipodal points as a single point (spherical geometry on the
projective plane).

202The Greek text of Menelaus’ work has perished. The 1758 edition is a Latin translation from
Arabic and Hebrew manuscripts, edited by Edmund Halley. See [Menelaus/Krause] for a modern
critical edition.
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in a culture that had never before created an axiomatic system comparable
to the Hellenistic ones.

How slowly the scientific method was recovered is hidden from most.
For example, a student that takes a course in mathematical analysis and
encounters several theorems bearing Cauchy’s name never hears that the
now-standard statements of these theorems do not correspond to actual
theorems in that mathematician’s works. For Cauchy studied numerical
quantities, not the geometric magnitudes of Euclid, and for numbers there
was no rigorous theory analogous to the Euclidean one. Thus the “Cauchy
criterion” for the convergence of a sequence cannot be proved in the ab-
sence of a theory of real numbers (which Cauchy lacked). As we remarked
on page 46, mathematical analysis became a scientific theory only after
the Euclidean notion of proportionality was reinstated by Weierstrass and
Dedekind, in 1872.

Up to that point, however, although mathematics had expanded widely,
especially in the direction of analysis, the maximum rigor that it had man-
aged to obtain in its base was that of Euclid, who remained unsurpassed
after twenty-two hundred years. To settle accounts with this cumbersome
character, it was necessary to finally face him on his own turf. This was
first attempted by David Hilbert with his Grundlagen der Geometrie, which
appeared in 1899, concluding a intense effort started by, among others,
Pasch and Peano.203

Around the same time Peano formulated his axiomatization of arith-
metic, systems of axioms were created for various other branches of math-
ematics, and several Hellenistic theories were revived, including proposi-
tional logic and semantics. In areas more distant from mathematics, too:
besides dream theory, already discussed in Section 7.3, we may mention
the new psychology of perception, founded on the essential need for ac-
tive subject participation, or assent ( � � � �

�
� ��� � � ) in the terminology of

Chrysippus.204

German-language authors were at the forefront of all these advances:
they came from the same culture that almost single-handedly made classi-
cal philology into the rich structure it had become by the close of the nine-
teenth century. Among the new ideas that arose at the turn of the twentieth
century from the fecund interaction of philology, history of science and
epistemology was the rediscovery that scientific theories are underdeter-

203Hilbert tried to improve on Euclid’s choice of postulates. Whether he succeeded is open to
discussion; the greater rigor obtained came at the cost of denying the postulates any meaning that
might relate them to experience. This created a problem of self-foundations in mathematics that
has not proved solvable.

204See pages 175 and 213. The new psychology was born thanks to Franz Brentano (1838–1917),
whose two main interests were psychology and the history of ancient philosophy.
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mined: different theories can be used to explain the same phainomena.
Henri Poincaré and Pierre Duhem (scientist, epistemologist and historian
of ancient science) played a key role in this realization. Duhem denied, for
example, the validity of so-called crucial experiments for “confirming” a
theory, thus turning on its head their supposed absence from ancient sci-
ence.205 The work of recovery seemed finally to have come to a conclusion
in the methodological dimension too.

In the following decades historians of science followed paths that di-
verged ever further from those of scientists and epistemologists. The study
of ancient thought became the province of a few specialists, who talked
but little with philosophers and scientists. It was then that the minimalist
views that we have discussed took hold.206

For a while, in the first half of the twentieth century, a link — sometimes
unconscious but nonetheless robust — between ancient and modern sci-
ence was ensured through the high-school education of future scientists.
Pride of place went to the study of Euclidean geometry, that unavoidable
threshold into the scientific method that all schoolchildren had to cross,
thus learning from an early age to recognize a theoretical model from
concrete reality. Another component was the study of philosophy and the
history of ideas, then part of the secondary school curriculum: for all their
shortcomings, such courses at least made future scientists aware of an an-
cient, intricate and profound relationship between phenomena and theory.
Their gradual and now virtually complete disappearance from secondary
schools in the Western world has had, I believe, far-reaching consequences
for scientific methodology. First mathematicians, starting with the French
school, persuaded themselves that they could pursue an ideal of abso-
lute rigor divorced from sensible reality; then the hypothetico-deductive
method was abandoned in secondary school and in every area of knowl-
edge other than pure mathematics practiced in an academic environment.
Thus the ancient balance between rigor and applicability did not last after
the Hellenistic tradition was abandoned. Physicists, on the other hand,
abandoned the humility of ancient science: rather than creating theories
capable of saving the phenomena in a circumscribed realm, they revived
the age-old ambition of formulating all-encompassing “theories of every-
thing” using a new version of the experimental method to research phe-
nomena that save their own theories.

205See especially [Duhem: TP] and [Duhem: SPh]. Duhem regarded many ancient scientists (not
excluding the imperial period) as conventionalists, and his position has been sternly criticized
(on valid grounds in many specific cases; see in particular [Lloyd], chapter 11). But we should
not forget that conventionalism arose in modern science thanks to intellectuals who, like Duhem,
found it in ancient sources.

206See Section 9.1.
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The departure of physics from the ancient scientific method started at
the turn of the twentieth century, when an enormous increase in the range
of observed phenomena demanded the creation of new scientific theories,
toward which no light could come from reading Archimedes nor yet from
browsing through all of Plutarch. Small-scale physics proved impossible
to describe via classical mechanics: its phenomena do not conform either
to the theory of particles or to that of waves. It was obviously necessary
to build another theory, but the way in which that theory arose and de-
veloped shows how serious was the loss of the sure guide that had sus-
tained us until then. Instead of proposing a third scientific theory, scien-
tists such as de Broglie and Bohr postulated “particle-wave duality” and
the “complementarity principle”. Faced with the inapplicability of two
mutually incompatible theories, a culture that still confused theoretical
entities with real objects found it normal to attribute to nature the incon-
sistency of science itself.

Not surprisingly, an intellectual edifice built on the laying aside of the
non-contradiction principle must claim citizenship in a country quite dis-
tant from mathematics. Thus de Broglie writes:

In explaining scientific theories the “axiomatic” method is the most
pleasing to reason, but in practice the least fruitful, except perhaps
in the field of pure mathematics.207

We must conclude that for the creator of particle-wave duality, pleasing
reason is a dangerous obstacle to the advance of science. De Broglie’s ideas
are deeply rooted in old traditions, also prized by Niels Bohr. This author,
in his book The unity of human knowledge, illustrates his complementarity
principle with the following comments, among others:

Indeed, in renouncing logical analysis to an increasing degree and
in turn allowing the play on all string of emotion, poetry, painting
and music contain possibilities of bridging between extreme modes
as those characterized as pragmatic and mystic. Conversely, already
ancient Indian thinkers understood the logical difficulties in giving
exhaustive expression for such wholeness. . . .

[I]t is equally clear that compassion can bring everyone in conflict
with any concisely formulated idea of justice. We are here confronted
with complementary relationships inherent in the human position,
and unforgettably expressed in old Chinese philosophy, reminding

207[de Broglie], p. 170.
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us that in the great drama of existence we are ourselves both actors
and spectators.208

And perhaps, too, when the Pythagorean school ran into an impasse in
classifying the diagonal of the square, someone resorted to Eastern teach-
ings and the inherently contradictory nature of the world, and proposed a
solution: to declare the diagonal a profoundly ambiguous entity featuring
a duality or complementarity between even and odd.

208[Bohr], at 72% and 81%. His reference to old Eastern philosophies is an early example of a trend
that became increasingly popular in the late twentieth century and led many authors to endeavors
such as (to quote the subtitle of Fritjof Capra’s The Tao of physics) “an exploration of the parallels
between modern physics and Eastern mysticism” — which is to say, the age-old tendencies that
ironically became known as New Age.

.

Appendix

We prove here the Archimedean results quoted in Section 2.7 as Lemmas
1 and 2. In his demonstrations, Archimedes used freely theorems that
were well known in his day (just as we do). Since none of the works on
conics written before Apollonius has survived, we do not know exactly
how Archimedes would have written the proofs of these auxiliary results.
Therefore we freely reconstruct demonstrations of the propositions taken
for granted by Archimedes, and then, when dealing with the lemmas he
actually demonstrates, we follow his proofs closely.

Preliminary Results Assumed by Archimedes

We denote by C the vertex of the segment of parabola of base AB, and by
M the midpoint of AB. Our starting point is the following proposition:
Proposition. Given a point F in the plane, draw the parallel to AB and let G
denote its intersection with the half-line CM originating at C, if this inter-
section exists. Then F lies on the parabola if and only if the intersection G
exists and is such that CM · GF2 = CG · MB2.

A BM

C

G F

Archimedes makes direct use of only one half of this equivalence (the
“only if” part), but we give the Proposition in the form above because this
allows the easy deduction, as corollaries, of all the results that Archimedes
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takes as known. We will not prove the Proposition here,209 but only how
the necessary corollaries follow from it.
Corollary 1. The line going through C and parallel to AB does not intersect
the parabola except at C.

If this line intersects the parabola at a point F, we have C = G, and the
Proposition implies G = F, that is, F = C.

Note that this corollary justifies our talking about the vertex.
Corollary 2. The line CM does not intersect the parabola except at C.

If CM intersects the parabola at a point F, we have F = G, and the Propo-
sition implies G = C, that is, F = C.
Corollary 3. Every parallel to CM intersects the parabola in exactly one
point.

If a parallel to CM intersects the parabola at F and F′, consider the cor-
responding points G and G′ along CM. Because of parallelism, GFF′G′ is
a parallelogram, so GF = G′F′, so by the Proposition CG = CG′. It follows
that G′ = G and F′ = F.
Corollary 4. The line CM is parallel to the diameter (symmetry axis) of the
parabola.

If we apply the Proposition to the particular case where A and B are
symmetrical with respect to the diameter, symmetry implies that CM co-
incides with the diameter. Corollary 3 then implies that any line parallel
to the diameter intersects the parabola in a single point. Thus it is enough
to show that the direction of the diameter is the only one that has this
property. To do this we again use again the Proposition in the case where
CM coincides with the diameter. Given a point L of AB distinct from M, the
half-line CL will intersect the parabola not only in C but also in the point
F whose orthogonal projection G onto the diameter satisfies the relation
CG/CM = MB2/ML2.
Corollary 5. A line CN joining the vertex C of a segment of parabola of base
AB with a point N of the base, is parallel to the diameter of the parabola if
and only if N is the midpoint of AB.

This is an immediate consequence of Corollary 4.

Lemmas Proved by Archimedes

Lemma 3. If C is the vertex of the segment of parabola of base AB, the area
of the triangle ABC is more than half the area of the segment of parabola.

209The reader may enjoy reconstructing a “purely geometric” proof that reflects the following
outline suggested by analytic geometry: Assume without loss of generality that the base AB is the
x-axis. First deal with parabolas whose axis of symmetry is vertical; then reduce the general case
to the particular case by applying a shearing transformation y �→ y, x �→ x + ky.
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Archimedes demonstrates this by considering the parallelogram ABPQ
comprised between the base AB, the line passing through C and parallel
to the base, and the parallels to the diameter passing through A and B,
respectively:

A B

CQ P

This parallelogram encloses the segment of parabola, by the definition
of the vertex and because, by Corollary 3, sides AQ and BP intersect the
segment of parabola only once. The lemma follows easily, by observing
that the area of the segment of parabola is less than that of the parallelo-
gram ABPQ, which is twice that of the triangle ABC.

Lemma 4. If C is the vertex of the segment of parabola of base AB and D is
the vertex of the segment of parabola of base CB, the area of triangle CBD
is one-eighth that of triangle ABC.

A B

C
D

M N

E

Lemma 2 is proved by Archimedes using the Proposition, Corollary 5
and typical arguments of “elementary geometry”, that is, the methods laid
out in Euclid’s Elements.

Consider parallels to the diameter of the parabola passing though C and
D, respectively. By Corollary 5, the first of these lines intersects AB at its
midpoint M, and the second intersects CB at its midpoint E. Let N be the
intersection of AB with the line ED. Because MCB and NEB are similar
triangles, N is the midpoint of MB.

Let G be the intersection of CM with the parallel to AB going through D.
By the Proposition we have CM/CG = MB2/GD2. But GD is equal to
MN (they are opposite sides of a parallelogram). We thus have CM/CG =
MB2/MN2 = 4, and DN = GM = 3

4CM. At the same time, since MCB and
NEB are similar triangles, we have NE = 1

2CM; thus NE = 2DE.

A B

C
D

M N

G

E
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If one of two triangles of the same altitude has double the other’s base,
its area is also double. Applying this trivial observation to the equality
NE = 2DE, we get

area CNE = 2 area CED;
area NEB = 2 area BED;

and adding the two relations,

area CNB = 2 area CBD;
area CDB = 1

2 area CNB = 1
8 area ABC:

This concludes the proof of the lemma.

.
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