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Introduction

I

After a remarkably quiet first decade John Muth’s idea of “rational expec-
tations” has taken hold, or taken off, in an equally remarkable way. The
term now enjoys popularity as a slogan or incantation with a variety of
uses. It may also suffer some notoriety due to presumed links with conserv-
ative political views or with excessive concern over the consequences of
money supply changes. The term “rational expectations” carries, it seems,
a charge of some magnitude.

In our view, this charge is not incidental or uninteresting: Muth’s hy-
pothesis is a contribution of the most fundamental kind, an idea that
compels rethinking on many dimensions, with consequent enthusiasm and
resistance. One of the purposes of this volume is to collect in a convenient
place some of the papers which conveyed this fact most forcefully to econ-
omists concerned with the connections between observed behavior and the
evaluation of economic policies.

Yet how, exactly, does the economist who is persuaded of the usefulness
of this idea, or is at least interested enough to give it an honest test, alter
the way he practices his trade? A full answer to this question is, we believe,
a central issue on the current research agenda of time-series econometrics
and dynamic economic theory. We do not presume to answer it in this
volume. At the same time, progress on this question has been rapid in
recent years, scattered in articles in many journals and conference vol-
umes. In the main, these articles are motivated by a variety of specific
substantive concerns, but they also contain many operational ideas and
methods of much wider applicability. The function, we hope, of the pres-
ent collection will be to increase the accessibility to these ideas and to
display their methodological contributions as clearly as possible.

The papers in this collection deal with various aspects of the general
problem of drawing inferences about behavior from observed economic
time series: we observe an agent, or collection of agents, behaving through
time; we wish to use these observations to infer how this behavior would
have differed had the agent’s environment been altered in some specified

We would like to thank John Taylor, Gregory Chow, Finn Kydland, Edward Prescott, and
Christopher Sims for thoughtful comments on earlier versions of this introduction.
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xii INTRODUCTION

way. Stated so generally, it is clear that some inferences of this type will be
impossible to draw. (How would one’s life have been different had one
married someone else?) The belief in the possibility of a nonexperimental
empirical economics is, however, equivalent to the belief that inferences of
this kind can be made, under some circumstances.

The dimensions of this generally stated problem can be clarified by
reference to an example, which we will use as a device for clarifying the
relationships among the various papers. Consider a single decision maker,
whose situation or state at time ¢ is completely described by two variables
x, and z,. Here z,eS, is thought of as selected by “nature,”
through time according to

and evolves

zp00 =S (2, €)s (1)

where the “innovations” ¢,€8 are independent drawings from a fixed cu-
mulative probability distribution function ®(+}):& — [0, 1]. (At the formal
level at which this discussion will be conducted, the set .S, can be conceived
very generally; for example, one may think of z, as the entire history of a
process from — co through ¢.) We will refer to the function /:8,x6 — S, as
the decision maker’s environment.

Think of x,eS, as a state variable under partial control of the decision
maker. Each period, he selects an action u,eU. There is a fixed technology
£:8x8,xU — S, describing the motion of x, given actions u, by the agent
and actions z, by “nature”:

Xep1 = &(2ps x5 1) (2)

The agent is viewed as purposively sclecting his action «, as some fixed
function A:5,x8, — U of his situation:

u, = h(z,, x,). (3)

As econometricians, we observe some or all of the process {z,, x,, u, }, the
motion of which is given by (1), (2), and (3). With the model suitably
specialized, the estimation of the functions f, g, and / from such observa-
tions is a well-posed statistical problem, and given long enough time series
we can speak of observing f, g, and #. Under what circumstances, then, do
these observations amount to an answer to our original question: how
would the agent’s behavior have differed had his environment been differ-
ent in some particular way?

To answer this, we need to be somewhat more specific about what we
mean by a “change in the environment.” One form of change, or interven-
tion, one can imagine is the alteration of one, or a “few,” realizations of the
shocks €, which enter into (1). If carried out in such a way as not to lead the
agent to perceive that either for @ has changed, it is reasonable to suppose
that such an intervention would not induce any change in the decision
rule 4 and hence that knowledge of £, g, and 4 amounts to having the
ability accurately to evaluate the consequences of the intervention.
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In typical economic applications, however, and certainly in macroeco-
nomic applications, the policy interventions we are interested in are not
one-time interventions but rather systematic changes in the way policy
variables react to the situation: changes in the function £ Thus a change
from balanced-budget peacetime fiscal policy to Keynesian countercycli-
cal policy affects not just one year’s deficit, but how fiscal policy is formu-
lated, year in and year out. In general, one would imagine that nontrivial
changes in f; of this or other sorts, would involve nontrivial changes in
agents’ decision rules 4. If so, the ability to evaluate the consequences of
changes in the environment requires knowledge of some function 7 relat-
ing decision rules to environments: 2 = T(f). If time-series observations
arise under a given environment f;, say, then we estimate only Ay = T(f;).
This estimate, no matter how accurate, tells us nothing about the way T°(f)
varies with f.

Experimentally, one can think of varying fand tracing out the observed
responses in behavior, & = T(f). This is the form, for example, of the
classical Skinnerian animal experiments, and of much successful empirical
research in psychology and education. Occasionally, economic experience
{e.g., international comparisons) provides “natural” experimental infor-
mation on T'( f) for many different environments f, but such good fortune
cannot be relied on in general.

A nonexperimental solution to this problem requires a more detailed
theoretical analysis of the decision problem underlying the agent’s choice
of a decision rule 4, typically based on the hypothesis that he is solving
some well-posed maximum problem. Thus let V:§xS,xU — R be a cur-
rent period return function and take the agent’s objective to be to select
the decision rule £ so as to maximize

EO{EB‘V(z,,xt,ut)}, 0<B<1, (4)
t=0

given (z,,x,) and given f and g, where the mathematical expectation
Ey{ -} is taken with respect to the distribution of z, z,, . . ., conditional on
(xg 2p). Provided this maximum problem is theoretically soluble, knowl-
edge of the return function V enables one to infer the decision rule 4 for a
given technology g and environment f, or, in other words, to calculate
h = T(f) theoretically. In an empirical context, the issue is whether, or
under which conditions, one can infer a return function V from observa-
tions on f; g, and 4. If so, we can then construct a robot decision maker (4),
or model, confront it theoretically with various environments f, and trace
out its responses 7°( f).!

In general, the decision function 4 is a functional of the functions f, g, and V, so that
maybe we should write & = T(f, g, V). At this point, we suppress the explicit dependence of
h on g and V, although it should be understood. Below, we shall find it useful to make this
dependence explicit.
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On a little reflection, it is difficult to feel any general optimism as to the
solubility of this problem, or as to our ability to reconstruct ¥ from knowl-
edge of £, g, and 4. One would need to know a great deal about pigeons in
order to construct a robot which would serve as a good imitator of an
actual pigeon in Skinner’s tests. As time-series econometricians, we are in
the position of attempting to do exactly this, using observations only on
pigeons in their natural environment. If any success is to be possible, it will
clearly involve some boldness in the use of economic theory.

Evidently no progress can be made on this difficult problem at the level
of generality at which this discussion has so far been set. It will be neces-
sary to restrict the sets §;, S,, and U and the functions V, £, @, and g in
order to bring available mathematical and computational technology to
bear on the various aspects of this general problem. In practice, some
success has been achieved with two quite different strategies. One strategy
is to impose severe restrictions on the dimensionality of S}, §,, and U, and
. seek qualitative information on # = 7°(f). In this collection, Chapter 6 is
an example of this approach; many others exist in the literature. A second
strategy, followed in the remaining contributions to this volume, is so to
restrict V, f, g, and @ that the function 4 is /inear. A primary advantage of
this second strategy is that it permits wide latitude as to the dimensions of
S1»> 85, and U. A second is that it permits one to exploit the property which
Simon (1956) and Theil (1964) termed “certainty equivalence.”

With the return function V restricted to be quadratic in a particular
way, and g restricted to be linear, Simon and Theil found that the optimal
decision u, = k(z,, x,) can be expressed in composite form, in the follow-
ing, very useful, way. Let 2, = (z,,,,12¢, ;,925, .. )eST = S$;x8x8x . . . be
an optimal (in the least-mean-squared error sense) sequence of point fore-
casts of all current and future states z. Here , ;z{ denotes the optimal point
forecast of 2, ,; formed using information available at time ¢. 'The optimal
forecast z, can be expressed as a function, in general a nonlinear one,
hy:8; — ST of the current state z, (which may, as remarked earlier, consist
of the entire history of the system):

‘Et = hy(2,). (3)

The function 4, itself in general depends in a complicated way on the
functions f and ®.

Next, given a quadratic ¥ and linear g, the optimal decision u, can be
expressed as a linear function £,:5¥xS, — U of z, and x,:

uy = hy(Z, %,). (6)
In other words, £ can be written as the composite function
h(zy, %) = hqlho(z,), %, ) (7

The convenience of these consequences of certainty equivalence (and
not, of course, a convenience that will obtain in general) is that they per-
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mit a very clear separation of the dependence of the decision rule 4 on
tastes I and technology g from the dependence of % on the environment f.
In particular, the function 4, will depend onfy on V and g, while the func-
tion %, depends only on the environment through fand @. Since it is conse-
quences of changes in f which concern us, this simplification is important.
In particular, one can relate optimal functions 4, to f; as, say, 4, = S(f)on
the basis of forecasting considerations only. The forecasting problem of
determining A, as a function of fand ® can be simplified considerably by
restricting f to be linear, which implies that 4, is also linear. Alternatively,
one can permit f to be nonlinear, but restrict £ to belong to the class of
decision rules that are linear in z, and x,. Either of these devices implies
computing £, as a linear least-squares predictor, which is immensely easier
to compute than are nonlinear predictors in - most contexts. Once
ks = 8(f) has been computed, the relationship 2 = T(f) of original inter-
est can be obtained directly from (7).

A second convenience of certainty equivalence is that it permits the
theoretical derivation of the decision rule 4, from tastes V' and technology
g under the hypothesis that the decision maker knows the future z, with
certainty (this, of course, is the origin of the term “certainty equivalence™)
even if his environment is in fact stochastic. To study the relationship of V
and g to £, then, one can study a much simpler problem than the one
originally posed.

While it was this feature of the approximate linear formulation which
first caught the attention of Simon and Theil, the separation of the maxi-
mum problem facing an agent into two parts, an “optimization” part and
a “forecasting” part, which it permitted was rather badly misinterpreted
by much of the profession. Implicitly, many economists took the postulate,
standard to economic theory, that agents act in their own interests as a
stimulus to the careful theoretical derivation of 4; from hypotheses about
V and g. Many good examples of such derivations of £ appeared in the
1960s, especially in the study of investment theory. The same type of
economic reasoning, namely, the appeal to agents’ pursuit of self interest,
should also have led researchers to derive specifications for 4, by using the
mapping k, = S(f) that describes how 4, optimally varies with changes in
the environment f. Inexplicably, on logical grounds, for a long time this
step was not taken. Instead, in typical econometric applications a particu-
lar function /4, was directly postulated, with a set of free parameters de-
signed to characterize expectations formation directly. The “adaptive ex-
pectations” formulation of Friedman (1956) and Cagan (1956) is one of
several such formulations that were motivated by plausibility and perhaps
tractability. The idea was that the free parameters of 4, would be esti-
mated directly, and without any reference to the nature of the function f,
by estimating the decision rule u, = 4,[k,(2,), x,] econometrically.

What is “wrong” with simply postulating a particular £, is not that an 4,
so postulated expresses forecasts of future variables as distributed lags of
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current and lagged variables. The future must be forecast on the basis of
the past, and it is surely acceptable to simplify things by modeling agents
as using linear forecasting rules. (These points are obvious enough, but are
so widely misunderstood as to warrant emphasis here.) The difficulty lies
not in postulating forecasts which are linear functions of history but rather
in introducing the coefficients in these linear functions as so many addi-
tional “free parameters,” unrestricted by theory. That this practice is un-
necessary, and in an important way fatal to the purposes of the empirical
study of economic time series, is the message of Muth’s classic paper,
Chapter 1.

The terminology “rational expectations” has not so far been used in this
introduction, but the idea has been applied. Perhaps we should review the
above, and point out where and why. In postulating the objective function
(4) for our exemplary decision maker we used the expectation operator
E{-}, adding that it is “taken with respect to the distribution of 2, z,, . . .”’
(italics added). From the point of view of normative decision theory, ‘“the
distribution of z,, z,,...” means just whatever distribution (i.e., environ-
ment f) the decision maker thinks is appropriate. From the point of view of
an outside observer who wishes to predict the agent’s responses to changes
in f, or to calculate T'(f), we are using “f” to denote the actual environ-
ment, as observed in the data and as altered by the hypothetical policy
changes we wish to assess. If the decision problem (4) is to be helpful in
calculating T(f), then it is essential to view the subjective z-distribution f
used by decision makers and the actual distribution fassumed to generate
our data as being, if not identical, as least theoretically linked in an ex-
plicit way. The hypothesis of rational expectations amounts to equating
the subjective z-distribution to the objective distribution f.

I

The papers collected herein treat various specific aspects of this general
issue of constructing 7T'(f), or of extrapolating from observed behavior in
actual, past environments to the prediction of behavior in environments
which are without exact precedent. At the risk of some arbitrariness, we
have grouped them into sections. Section 1 contains an introduction to the
subject, with emphasis on time-series implications. Section 2 contains pa-
pers on macroeconomic policy, early demonstrations of the importance of
the treatment of expectations in drawing policy inferences from economet-
ric models. Some general methods for utilizing the restrictions implied by
rationality are presented in Section 3. Sections 4 and 5 are continuations,
Section 4 containing a variety of applications, while Section 5 contains
papers using rational expectations to model and test for “neutrality.” Sec-
tion 6 illustrates some approaches to problems of optimal control in mod-
els with rational expectations.
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Muth’s Chapter 1 needs no introduction, except perhaps a reminder
that it is one of the most carefully and compactly written papers of recent
vintage: every sentence in the introduction counts, and many have since
been expanded into entire articles. Muth introduces the hypothesis at a
general, verbal level, motivating it as a corollary of the general principles
of economic equilibrium, and then turns to specific, certainty-equivalent
examples. The latter illustrate the explicit construction of A, = S(f), in
our notation, and hence of 2 = T(f).

In several interesting contexts, Muth’s Chapter 2 characterizes the map-
ping z, = h,(2,), using the hypothesis of rational expectations and the
theory of linear least-squares prediction to show how 4, depends on the
functions f and ®. Muth was partly motivated by a desire to discover
economic arguments which could be used to rationalize the “adaptive expec-
tations” mechanism advanced by Milton Friedman (1956) and Phillip
Cagan (1956). As formulated by Friedman and Cagan, the adaptive ex-
pectations hypothesis was

07 =07, =X, —07,), 0<AL]

or

9f=)\§:(1 = Ao, 5, (8)

i=0

where 0, is the actual value of a variable of interest to an agent, and 67 is
the agent’s expectation (about future values?) of that variable.

In effect, Muth works backwards from the particular specification of 4,
given in (8) to restrictions on the fand @ actually describing 0, that are
needed to reconcile the adaptive expectations mechanism with the hy-
pothesis that agents are optimally forecasting ¢ in light of fand ®. One
feature of this procedure was that Muth was forced to be much more
explicit about the nature of #¢ than either Friedman or Cagan was: Muth
had to specify precisely the horizon over which 67 is supposed to apply (in
our notation, whether it corresponds to , ;2¢ for some particular j > 1 or
an average of ,;z{ for several j’s > 1, or something else). Notice how one
outcome of Muth’s calculations was to characterize the way the function
h, depends on the function f. In effect, Muth found a set of cross-equation
restrictions which could be expressed in terms of our notation

2 = hy(z) = S(fNz)- 9

Equation (9) displays one hallmark of using rational expectations mod-
els to think about economic time series: they usually give rise to restrictions
across distributed lags in different equations, rather than to any simply
stated conditions on the distributed lag in a single equation. The note by
Sargent (Chap. 3) is an application of this general point to criticizing a



xviil INTRODUCTION

restriction on lag distributions that has often been used to identify the
effects of expectations in particular equations. This common restriction is
that 2 o Ay, = | in “generalized adaptive expectations” equations of the
form

0¢ = 2 that—j'
i=0

(Notice that the condition ;2 4,; = 1 is imposed in [8].) This restriction
is still commonly used to identify important parameters, and is justified by
mistaken arguments purporting to establish that £4,; = 1 is an implica-
tion of rationality.

Lucas’s paper, Chapter 4, written in October 1965 but unpublished
until now, studies how the functions V and g influence the function
hy(z,, x,) in the context of a firm planning its investment under certainty.
Lucas studies how variations in the form of gestation lags and depreciation
hypotheses influence the form of “optimal” distributed lags of u, on x,.
Lucas restricts the analysis to situations in which the firm faces extremely
simple forcing functions, in particular z-sequences (really, z-functions,
since he assumes continuous time) that are known with certainty to be
constant over time. As a consequence, Lucas fully analyzes only the de-
pendence of the function £, on x,. However, in the linear quadratic con-
text of Lucas’s analysis, there is a sort of symmetry between the “feedback
part” of &, (the dependence on x,) and the “feedforward part” (the de-
pendence on z, ). It turns out that the feedforward part can be computed
from what Lucas reports. Further, by appealing to certainty equivalence
and using linear prediction theory in continuous time, it is possible to use
Lucas’s results to compute #(z,, x,) itself. This involves using continuous-
time versions of the formulas reported by Hansen and Sargent, Chapters 7
and 8.

Lucas’s analysis is done in continuous time, so that he has to make
approximations to convert to the discrete-time formulations resembling
those used in empirical work. This step of Lucas’s paper should be redone
in light of what we have since learned about moving from continuous-time
to discrete-time models (see Sims 1971 and Phillips 1973). There is a need
to study aggregation over time in the context of rational expectations
models, in particular the question of whether the rational expectations
cross-equation restrictions can substitute for the exclusion restrictions of
Phillips as a device for identifying continuous-time models (i.e., continu-
ous-time analogues of V, f, and g) from discrete data.

Lucas, in Chapter 4, takes prices as given to the firm, even though in the
aggregate the investment plans of firms will influence the market price. In
another previously unpublished paper, Lucas (Chap. 5) indicates how this
influence can be taken into account, in the context of 2 model where each
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firm behaves competitively. Lucas’s Chapter 5 is again in continuous time
and under certainty. Lucas and Prescott, in Chapter 6, extend the analysis
to the case in which there is uncertainty due to a randomly shifting de-
mand schedule.

Lucas and Prescott’s study of investment behavior essentially parallels
Muth’s examples, but in a context in which certainty equivalence cannot
be invoked, so that other methods are needed to trace out 7 theoretically.
Their treatment emphasizes the intimate connection between the idea of
rational expectations and the modern “Arrow-Debreu” definition of com-
petitive equilibrium for situations in which all agents possess common,
up-to-date information. Hansen and Sargent analyze the mapping 7 more
fully, sometimes utilizing the connection between equilibrium and opti-
mality as do Lucas and Prescott, but in a linear-quadratic setting. In this
context, the restrictions implied by equilibrium behavior (expectations
rationality included) can be obtained in an econometrically useable (as
opposed to purely qualitative) way for lag structures much more complex
from those treated by Muth. All papers in this section, then, deal in vari-
ous contexts with the theoretical problem: given V, g, and f (or given A,
and ), how can & = T(f) (or hy = S[f]) be constructed?

The papers in Section 2 illustrate, in various ways, why we care about
this question for purposes of applied economics. All are focused on a com-
mon substantive question: the effects on real output and employment of
changes in monetary policy. Robert Barro, Chapter 12, develops a labor
(and goods) supply theory based on the idea that money supply move-
ments induce output movements in the same direction due to suppliers’
inability to distinguish between relative demand shifts and money-
induced shifts. In this model expectations are rational, but agents have
different, incomplete information sets. This model illustrates the impor-
tance of a distinction between anticipated inflations (or deflations) which
have no real output effects, and “surprise” inflations, which do.

The two papers by Thomas Sargent and Neil Wallace (Chaps. 10 and
11) and the paper by Sargent (Chap. 9) combined the goods supply hy-
pothesis used in Chapter 12 with a then-conventional IS-LM description
of aggregate demand determination. In this setting, they contrast the eval-
uations of alternative monetary policies under the assumption that fore-
cast rules 4, are invariant with respect to policy changes to the evaluations
under the alternative assumption that 4, = §(f), with § implied by expec-
tations rationality. They show that the same model which implies the abil-
ity to fine-tune the economy by means of monetary policy under one
expectations hypothesis (4, fixed) implies no ability whatever to improve
real performance when 4, = S(f) is rationally formed.

The striking examples in Chapters 10-12 rest jointly on their treatment
of expectations and their assumption that employment and wage rates are
competitively determined. Stanley Fischer, Chapter 13, reworks the Sar-
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gent-Wallace examples, retaining expectations rationality but replacing
the second of these assumptions with the hypothesis that nominal wages
are prevented, in part, from responding to demand changes by previous
contractual arrangements. This variation, perhaps implicitly viewed as a
variation in the assumed technology g, alters the calculation of 2 = T(f)
in such a way as to permit output-improving monetary policy. Of course,
Fischer’s argument is not a defense of the view that 4 is invariant to f
changes. In Chapter 14 Bennett McCallum shows that Sargent and Wal-
lace’s “extreme” conclusion still holds under certain forms of “price sticki-
ness.” His Chapter 15 provides an up-to-date summary of where the sub-
stantive question of monetary policy’s effectiveness now stands.

The substantive issue treated by all of these papers is, obviously, very
much an open question. Yet it is instructive to review the change in the
terms of the discussion between the first Sargent-Wallace paper (Chap. 11,
1975) and McCallum’s recent assessment (Chap. 15, 1979). Sargent and
Wallace used a conventional Keynesian structure to demonstrate the seri-
ous unreliability of policy evaluations it is capable of producing: logically
it, together with Chapter 10, served as a counter-example to some then
widely accepted propositions on the effects of monetary policy. By 1979, it
was clear that any emerging rationale in favor of activist monetary policy
will bear little resemblance to that originally criticized in Chapters 10
and 11.

The papers in Section 3 deal with some general econometric implica-
tions of rational expectations models. Each of the papers takes as a point of
departure the observation that the style of econometric identification in
rational expectations models is characterized by heavy emphasis on cross-
equation restrictions, with a deemphasis of the exclusion restrictions that
are the mainstay of Cowles Commission methods. Lucas and Sargent
(Chap. 16) criticize dynamic econometric models which are identified
mainly through imposition of exclusion restrictions as being inconsistent
with the body of dynamic economic theory summarized above. They sug-
gest that existing econometric models can be improved by building dy-
namic models that are motivated by reference to dynamic economic the-
ory, and which impose the cross-equation restrictions characteristic of that
theory. Muth (Chap. 17), Wallis (Chap. 18), and Chow (Chap. 19) de-
scribe econometric methods for estimating models of this type. Muth’s
paper, written in July 1960 but not published until now, points the way to
literally all of the estimation techniques for rational expectations models
that subsequent researchers have used or proposed. He points out that,
provided suitable care is taken, rational expectations models can be esti-
mated by replacing agents’ expectations about random variables with the
actual values of those variables, and then using an estimator appropriate
for a situation where there are errors in variables. He suggests both full
information and limited information methods. Although his treatment is
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restricted to a simple static context, his remarks in section III of his paper
indicate how the estimators he suggests might be applied in dynamic situ-
ations, provided that the assumption (necessary for his method) of no
serial correlation on the disturbances is met. Finally, attention should be
directed to Muth’s suggestion (sec. 111 of his paper) for handling advance
information with dummy variables, a procedure applied with some success
by Stanley Black (1972).

The paper by Wallis in effect develops many of Muth’s suggestions in
more detail and in the context of richer dynamic models. Wallis sets out
several systems of stochastic difference equations in which there appear
expectations of random variables, variously dated. How might those equa-
tions be interpreted in light of the dynamic economic theory sketched
above? Some of these equations might be interpreted as versions of our
equations (6), u, = hy(z,,%,) or (2), x,,, = g(2,, x,,u,). Those equations
involving expectations of future values of endogenous variables should
probably be viewed as versions of the system of stochastic Euler equations
in x, that are among the first-order necessary conditions for sufficiently
smooth versions of our optimum problems.? Since the equations studied
by Wallis are linear, if they are to have exactly these interpretations, rather
than being interpreted merely as linear approximations to appropriate
Euler equations or %, or g functions, they must correspond to optimum
problems with quadratic ¥ and linear g functions. In papers reproduced in
Section 2 of this volume, Hansen and Sargent (Chaps. 7, 8) characterize
restrictions that linear stochastic difference equations should satisfy if they
are to be Euler equations for linear quadratic optimum problems. In any
event, both in Wallis (Chap. 18) and the applied papers in the next section
by Hall (Chap. 26), Sargent and Wallace (Chap. 22), and Sargent (Chap.
23), the econometric model is parameterized at the level of what can at
best be interpreted as approximations to stochastic Euler equations or else
h or g functions.

The paper by Chow (Chap. 19) describes in a general way how a re-
searcher can go about estimating a model specified at the level of the
functions V, f, and g that, in our notation, characterize preferences and
constraints. Chow considers the case in which Vis quadratic and f, g, and £
are linear, and describes how the recursive techniques of dynamic pro-
gramming can in practice be used to evaluate the likelihood function.
Chow’s procedure is usefully to be compared to the mixture of recursive
and classical procedures recommended by Hansen and Sargent (Chap. 8)
for a similar class of problems. Which method is computationally superior
may depend on particular features of the problem at hand. In common
with many other papers in this volume, Chow emphasizes the feature that

2For descriptions of stochastic Euler equations, see Sargent (1979). For particular versions,
sce the papers (Chapters) by Sargent (25) Hansen and Sargent (7, 8) and Hall (26).
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the maximization of the likelihood function or “fit” of the model is to
occur over the free parameters of V, £, and g; the parameters of the decision
rule 4 are not themselves among the free parameters of the model.

Notice that Muth and Wallis require that the stochastic errors in their
equations be serially uncorrelated, and that this assumption is important
in delivering the good statistical properties that they claim for estimators
they propose. What reason can be advanced for supposing the errors in the
equation are serially uncorrelated? The answer to this question must de-
pend on how the researcher intends to interpret these stochastic error proc-
esses. Several possible interpretations of these error processes are possible if
one views the stochastic difference equations, as written down by Wallis
and others, as being Euler equations corresponding to optimum problems
of the class described in our introduction. Two of these interpretations are
explored by Hansen and Sargent (Chap. 7). The decision theory summa-
rized above virtually forces the econometrician to think of the error term
along lines like those developed by Hansen and Sargent (Chap. 7), since
the theory predicts that both the Euler equation and the solution x, =
glz,, x,, h(z,, x,)] are exact functions of the agent’s information set that
contains no random “errors.” Errors in the estimated equations crop up
perhaps because the econometrician has less information than the agent,
in some sense, or else because the model is misspecified in some way. Han-
sen and Sargent investigate only the former possibility for interpreting the
errors. The model misspecification route seems less likely to deliver error
terms with the good statistical properties—namely, certain orthogonality
properties—delivered by the Hansen-Sargent interpretation. In any event,
developments along either of these lines do not seem to provide any pre-
sumption that the errors in the difference equations associated with ra-
tional expectations models can safely be assumed to be serially uncorre-
lated. Taking this into account involves modifying some of the procedures
of Muth and Wallis. Some of these modifications are indicated in Chapter
7 by Hansen and Sargent.

Section 4 contains examples that in several diverse contexts use the
hypothesis of rational expectations to interpret economic time series.

The paper by Christopher Sims (Chap. 21) never mentions the hypothe-
sis of rational expectations, yet it and the important paper by C. W. J.
Granger (Chap. 20) have helped to shape the thoughts of otherresearchers
who use the rational expectations hypothesis in interpreting economic
time series. The concept of “causality” that Granger describes is useful in
two contexts associated with rational expectations modeling. First, in any
particular application of the decision theory summarized by equations
(1)—(6), the researcher has to specify a concrete z, and §;. Recall that the
agent is assumed to maximize

EOZIBtV(tht;ut)) 0<B<1 (4)
t=0
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subject to (z, xy) given and the laws of motion
201 =f(5,€) )
Xy = 8(2y, 0, 4,). (2)

In most economic applications, many of the components of z, that appear
in f are excluded from the functions ¢ and V. The reason for this is as
follows. In particular applications of this framework, the analyst would
first “make up” functions V and g, together with a list of the arguments
that appear in them. The return function V and the technology g will
contain a list of z variables, say, z;,. For example, in modeling a price-
taking firm’s decisions, z;, might include factor rentals, output prices, and
random disturbances to productivity. So z,, is the list of uncontroliable
state variables that the decision maker cares directly about because they
enter V or g. Given z,,, the analyst must specify the function f and its
arguments. In general, to form z,, z,, should be augmented by a list of
additional variables z,, which interact dynamically with z,,. Any varia-
bles z,, that the decision maker observes and that dynamically interact
with the z,, variables that he directly cares about belong in the function f.
They belong there in the sense that if the decision maker ignores them, he
will attain a lower value of the objective function (4).

In particular applications, specifying the instantaneous return function
V, the technology g, and their arguments is usually the result of a straight-
forward, if arbitrary, process involving thinking about the economics of
the phenomenon to be studied. But economic reasoning typically provides
no precise a priori guidance on how z,, ought to be augmented with z,, to
form the z, that appears in f, and that is in effect used to forecast future
z4,’s. For recall that the function fis taken as given in this setup and is not
itself the outcome of the economic analysis. But economic considerations
do establish a presumption that agents will augment z,, with any z,,’s that
they see and that marginally help predict future z,,’s, given that current
and past z,,’s have been taken into account. This is equivalent with saying
that any variables z,, that cause z,,, in Granger’s sense, belong in z,. It
follows that any variables z,, that Granger-cause z;, and that appear in
the agent’s information set z, will appear in the optimal decision function

u, = h(z, x,). (3)

All of these remarks hold under Granger’s general definition of causality,
and also under the specialization of that definition to linear least-squares
prediction theory that occupies most of his attention and all of Sims’s. The
specialization of Granger’s general definition to the linear setup blends
well with the applications in this volume which are mostly concerned with
studying optimal linear decision rules. Granger causality as a construct
influencing the modeler’s choice of which variables belong in the agents’
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decision rules plays an important role in the papers of Sargent and Wal-
lace (Chap. 22) and Sargent (Chaps. 23, 25), and is emphasized in the
paper by Hansen and Sargent (Chap. 7) in Section 1. Econometric proce-
dures similar to those described by Granger and Sims can be used to help
determine the appropriate choice of z,, or at least to check the appropri-
ateness of given choices about z,.

A second reason that the concept of Granger causality naturally inter-
ests students of rational expectations models is its link to the theory of
martingales. There is a variety of examples of statistical models arrived at
by writing down arbitrage conditions or Euler equations, models often
motivated by appeals to “efficient markets.” One example is the martin-
gale model for the log of stock prices. This statistical model has the impli-
cation that no variables Granger-cause the first difference of the log of a
stock price, an implication which can be tested using procedures described
by Granger and Sims. In this volume, the paper by Hall (Chap. 26) uses
such a procedure to test a statistical model derived from the Euler equa-
tions for a household’s intertemporal maximization problem.

In Chapter 22, Sargent and Wallace reexamine some of the hyper-
inflations studied by Cagan (1956) to determine the directions of Granger
causality between inflation and money creation. They find stronger evi-
dence of Granger causality extending from inflation to money creation
than in the reverse direction, a finding that at first glance would surprise
someone committed to a monetary explanation of the hyperinflations.
Sargent and Wallace go on to try to construct an explanation for this
pattern of Granger causality by constructing a stochastic model of money
creation and inflation in which Cagan’s adaptive expectations model turns
out to be consistent with rational expectations. The relationship of this
research strategy to that used by Muth (Chap. 2) is evident. The paper by
Sargent further pursues this strategy and discusses identification and esti-
mation of the demand for money function in the context of that bivariate
model of money creation and inflation that implies that Cagan’s adaptive
expectations model is rational.?

The Sargent paper on hyperinflation (Chap. 23) illustrates in a very
simple context how estimation might proceed under the cross-equation
restrictions on systems of stochastic difference equations that are imposed
by rational expectations. The Sargent papers on the term structure of
interest rates (Chap. 24) and on the demand for labor (25) are attempts to
estimate models where the cross-equation restrictions are substantially

3In further work, Salemi and Sargent (1980) have studied models that relax the assump-
tion that Cagan’s adaptive expectation formulation is rational. Also for the German hyperin-
flation Salemi (1976) has studied the block Granger-causality structure among sets of varia-
bles including money creation, inflation, spot foreign exchange rates, and forward exchange
rates, and has obtained interesting results that are usefully compared to those obtained by
Frenkel (1977).
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more complicated. All of these papers illustrate again how a characterizing
feature of rational expectations models is their restrictions across lag distri-
butions in different equations, that is, across the functions % and f.

Of all the applied papers in this volume, the one by Sargent on the
demand for labor (Chap. 25) is the only one with a structure that fully
matches the decision theory sketched above. That is, Sargent explicitly sets
out particular versions of the functions f, ®, V, and g, and then computes
as the solution of the agent’s optimal control problem. The econometric
model is specified and estimated in terms of the parameters of the func-
tions f, ¥, and g; the parameters of % are not free.

Each of the remaining papers falls short of specifying parameters at the
level of the functions f, ¥, and g. The papers (Chapters) of Sargent and
Wallace (22), Sargent (23 and 24), and Hall (26) each specify their statisti-
cal model at the level of what might be interpreted as “Euler equations” or
h’s.* There is at present little cause to criticize these analyses for not speci-
fying statistical models at the “deeper” level recommended above, since
theoretical and econometric methods for doing this are still in the stage of
early development. However, as comparison of Hansen and Sargent
(Chaps. 7, 8) with the paper of Sargent (25) indicates, these developments
are proceeding rapidly, so that more and more sophisticated and faithful
applications of the decision theory above can soon be expected.

Among students of the business cycle, private agents’ errors in forming
forecasts about the future have long been suspected of playing an impor-
tant role in business cycles. The papers in Section 5 are concerned with
interpreting time-series data with models that assert that private agents’
mistakes in forming expectations are the so/e mechanism through which
variations in aggregate demand provide impulses for the business cycle.
These models assert that movements in aggregate demand that have been
anticipated influence only prices, and do not contribute to business cycle
fluctuations. Only unexpected movements in aggregate demand are pos-
ited to set off movements in real economic activity. In order to give empiri-
cal content to this view, it is necessary to posit both some restrictions on
expectations formation and a model for aggregate demand. Barro (Chaps.
29, 30) and Sargent (Chap. 27) both impose rational expectations, while
they use somewhat different statistical models of aggregate demand.

The papers of Barro and Sargent are attempts to represent particular
versions of textbook classical macroeconomic models in a way suitable for
confronting aggregate economic time series. The version of classical theory
they sought to implement econometrically is represented at a variety of
levels of rigor in Friedman (1968), Bailey (1962), and Lucas (1972), and is
characterized by “neutrality” of output and employment with respect to

4Compare Cagan’s demand schedule for money with the marginal condition for the con-
sumer in Lucas (1972).
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some movements in aggregate demand. Of course, we know from the work
of Metzler (1951), that theoretical models that impose cleared markets and
optimizing agents do not uniformly imply that expected movements in
aggregate demand or money are neutral with respect to employment or
output. The work of Barro and Sargent was motivated by the hunch that
such deviations from neutrality are phenomena of secondary importance,
and that the time-series data could be well accounted for by models in
which expected movements in aggregate demand are neutral.

The papers in this section reveal that considerable subtlety is involved in
distinguishing the view that expected aggregate demand changes are neu-
tral from the view that they are not, at least on the basis of time-series
observations drawn from an economy operating under a single regime.
The paper by Sargent (Chap. 28) is devoted to discussing this problem,
though a careful reading of the papers (Chapters) by Barro (29 and 30)
and Sargent (27 and 9) also reveals that the authors are concerned with
aspects of this “identification” or “interpretation” problem. Partly because
of this problem, Sargent and Sims (1977) have been exploring other ways
of statistically representing and testing the hypothesis of neutrality.

The matter of whether unexpected movements in aggregate demand
have been the dominant demand impulse behind the business cycle is
important from the viewpoint of whether systematic countercyclical policy
can be effective, which is one message of the papers of Section 2 of this
volume. This issue is not yet fully resolved. Resolving it will require some
additional careful empirical studies to determine whether, in fact, unex-
pected movements in “aggregate demand” or “money” have been the
prime impetus for business cycles.

Up to now, we have said nothing about the methods available for solv-
ing the control problem of maximizing (4) with respect to (1) and (2) over
the class of control laws (3). At this point it is useful to make a few observa-
tions about the usual method of studying and solving such problems. We
do so in the context of a version of the problem (1)-(4) that has been
generalized to permit dependence on time of the functions V, f, g, and &
and the sets §;, S,, and U. We consider the (T + 1) period problem to

maximize

E[i BV, (ers ) (10)

t=0
subject to (2, x,) given and
2oy =S (24, €), t=0,...,T (11

X1 = & (2, X%, ), t=0,...,T. (12)
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Here f,:8; X 8 = 8y,415 & 15y X Sy X Uy = Sppy; and V15, X
Sy X U, = R. The sets §,, 85, , and U, are permitted to depend on time,
as are the functions f;, g,, and V,. At time ¢, the agent is assumed to
observe (z,, x, ), which completely describes the state of the system at that
time. The maximization of (10) subject to (11) and (12) is over decision
rules or policy functions of the form

U Zﬁ?(z“xt) (13)

where AT:S,, X §,, — U,. The T superscript on AT emphasizes that the
optimal choice of policy function at time ¢ in general depends on the
horizon 7. We continue to assume that ¢, is independently and identically
distributed with cumulative distribution function ¢.°

This maximization problem has two distinctive features. First, the crite-
rion function (10) is of a particular form, being additively separable in the
triples (z,, x,, 4,). Second, decisions #, at time ¢ only influence the returns
dated ¢ and later, V, (z,, x,,4), s > t. This influence occurs directly on
V,(2,,%,,u,) and indirectly on V (z,x,,u.), s > t, through the law of
motion (12). Taken together, these features of the problem impart to it a
sequential character which permits it to be solved via a recursive proce-
dure.

To indicate the recursive solution procedure, we write the problem as
being, subject to (11) and (12) and (z,, x,) given, to®
?}axrimiz;: E{Volzo, %o, (20, )] + BVilzy, 21, (24, 1))

RS S

v + o+ BWVplzg, xp, h(zg, xp)])
By the law of iterated mathematical expectations, we have that for any
random variable y, Egy = Eg(E y) = ... = E [E,\(... Epy...)].” Using
this law, the above line can be written,
o h“}axhl;:o{Vo[an %0y h§(20, %0)) + BE{V1[Zy, 2y, h] (24, 2y))

o + BEy{Valeg, x5, K3 (25, x9)l + -+ (15)

+ BE{Vylzg, xp, hp(zp, xp)1} - - - 13},

where the maximization is again subject to (11) and (12), with (z,, x,)
known at time ¢{. We now make use of the second property mentioned
above, namely that the choice of u, = A7(z,, x,) influences returns dated ¢

and later, but has no influence on returns dated earlier than ¢ This fact,
together with the additively separable nature of the criterion function (15)

(14)

5Control problems of this type are described in Bertsekas (1976).

SWhere y is any random variable, we define E,(y) = Ey|(z,, x,). Thus, E(E, ,y) =
EEy (241, %15, 5, )

"This law is also termed the “smoothing property” of conditional mathematical expecta-
tions.
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permits repeatedly moving the maximization operation inside the brack-
ets, so that (15) is equivalent with the problem,

max Ey{Volzgr %0, B (200 %0)] + B max Ey{(Vilzy, 2y A1 (29, %))
0 1
+ ,Brrﬁx Ey(Valza, %5, (a0, x5)] + -+ - (16)
2

+ BI’I‘;’%X ET{VT[ZT’ X, hg(zT!xT)]} e }}}

The maximization over AT is subject to (z,, x,) being known and to the
laws of motion (11) and (12) for x and z. The cascading of brackets indi-
cates that the maximization over 47 takes account of the influence of 4T on
returns dated ¢ and later. In distributing the maximization operations
above, we are exploiting the property that returns dated earlier than ¢ are
independent of the decision function 47 (z,, x,) chosen at time .

The equality of (14) and (16) implies that the original problem (14) can
be solved recursively by “working backwards”; that is, by first solving the
problem in the innermost bracket in (16) to determine A7, then proceeding
to solve the problems in the outer brackets in order. Thus, define the
optimum value functions:

J5(ep xp) = mh%x Ep Vilzp, xp, hg(zr’ xr)]
T

Sty xp_y) = rrhl’gx Ep ({Vpoalzr—p *r-ps Ry (2p_y %py)]
-1

+ B (zp, xp)} (17

JtT(zt’xt) = maXEt{Vt[zt’xt’htT(zt’xt)]
B

+ B) Lz %40) ) 0Lt <T -1

The maximizations in (17) are assumed to take place recursively subject to
the known laws of motion (11) and (12). By virtue of the equality of (14)
with (16), it is optimal to choose £}, according to the first line of (17), AT _,
according to the second line, and so on. In effect, it is optimal first to solve
for all (2, x;) the one-period problem that will be faced at time 7. Then
for all (z;_y, xp_,) the two-period problem starting at time 7" — 1 from
state (zp_,, xp_,) is solved with period T states being valued according to
J¥(zp, xp), and so on. This recursive solution strategy takes into account
the influence of 47 on returns dated ¢ and later but exploits the fact that
returns dated earlier than ¢ are independent of 4.

As this recursive solution procedure suggests, the optimal policy func-
tions 47 are functions of V,, f,, and g, dated ¢ and later. We can represent
this formally by a mapping

W =TI, f,, 8, 5 2 0) (18)
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This mapping from (V, f;, g, ) to earlier A7’s is produced through the proc-
ess of “working backwards” in solving the problem via the recursions (17).

The preceding argument shows that if a sequence of policy functions
(hT:t=0,1,..., T'} is optimal for the original problem (14), then the tail
end of the plan {AT:v =s,..., T} is optimal for the remainder of the
problem at s > 0, to maximize

7
E, z BV, [z, Xy hg‘(zv’ )]
v=s

subject to the laws of motion (11) and (12), starting from (z,, x,). This
property is known as Bellman’s “principle of optimality.” Satisfaction of
this principle means that the “agent” subsequently has an incentive to
stick with the original plan {£7:¢ =0,..., 7T} which was found to be
optimal at time 0. In addition, where it is applicable, the principle offers
considerable computational gains, since it is not necessary to choose the
(T + 1) functions {AT :t = 0,..., 7'} simultaneously. Instead, they can be
computed recursively. In effect, one large optimization problem in
(T + 1) unknown functions can be broken down into (7 + 1) smaller
problems in one unknown function each.

As indicated above, the principle of optimality is a consequence of the
two special features of our problem, the additively separable nature of the
criterion function, and the sequential nature of the problem. Below, we
shall encounter an important instance in which the second feature fails to
obtain, rendering the principle of optimality inapplicable.

In contrast to our earlier setup of (1)-(4), the optimum policy functions
hT emerging from (10)-(13) depend on time ¢ Two features of the setup
(10)~(13) make it necessary for the optimal policy functions 4T to vary
with t. First, there is the fact that the functions V,, g,, and £, have been
permitted to vary through time. Second, even if V,, g,, and f, were time
invariant, the finite horizon 7 would in general make it optimal for the
policy functions 47 to vary with ¢. For econometric applications of the kind
described in this book, it is especially convenient if the optimal policy
functions and the preference and constraint functions V,, f;, and g, are
time invariant. In the interests of this convenience, V,, f;, and g,, S4;, S,;,
and U, are commonly specified to be independent of time, as in (1)-(4).
Further, it is common to take the limit of problem (10) as 7 — o0. Under
suitable regularity conditions (see Blackwell 1965; Lucas and Prescott,
Chap. 6; or Bertsekas 1976) with V,, g,, f;, S, S5, and U, all independent
of time, it follows that for fixed j,

;vl—rg /l]-T =k
and that for all 7 and j
lim /llT = lim /ZJ-T = h,

T-» T
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so that it is optimal to employ a time-invariant optimal policy function.
For econometric applications, setups satisfying the regularity conditions
needed for time invariance are highly convenient and probably the only
tractable ones given current computer technology.

It is worth noting that restricting oneself to time-invariant return, con-
straint, and optimal policy functions ¥, f, g, and % is not necessarily as
confining as it may seem at first. For example, in some problems an ele-
ment of nonstationarity may seem to be introduced by the assumption
that the agent is learning about some parameters or variables as time
passes. However, by defining the state of the system (z,, x,) to include
variables that are sufficient statistics for the agent’s beliefs, the time-invari-
ant version of the model may still apply. The sufficient statistics for the
distribution of the agent’s beliefs in some applications themselves obey
time invariant laws of motion. Jovanovic (1979), Prescott and Townsend
(1980), and Bertsekas (1976) all exploit this idea. Econometric applica-
tions of this idea have not yet been made, but they seem feasible.

Applications of optimal control to macroeconomic policy problems, for
example, by Poole (1970), Chow (1975), and Kareken, Muench, and Wal-
lace (1973), have used precisely the control problem above, except with a
different interpretation. Recall that the problem is

ol o) g
subject to
2n =f(z,¢)  Prob (g, <€} = B(e) (1)
Xy = &2, X, 1), (2)
where the optimization is over control laws of the form
u, = h(z,, x,). 3)

In applications of this setup to determining optimal macroeconomic pol-
icy rules, u, has been interpreted as a vector of policy instruments such as
tax rates, government purchases, high-powered money, and so on; x, is a
set of endogenous variables determined by the model, including for exam-
ple inflation rates, GNP, and unemployment; z, is a vector of exogenous
variables and random shocks appearing in the structural equations of the
model; g is an econometric model of the economy; f and @ describe the
probability structure of the exogenous variables and random terms; V is
an instantaneous return function expressing the policy authorities’ prefer-
ences over states of the economy; and 4 is an optimal control law for the
macroeconomic policy variables. The idea was to implement this setup in
the context of particular concrete econometric models g to make careful
quantitative statements about optimal monetary and fiscal policy rules £.
This approach has contributed significantly to clarifying long-standing



INTRODUGTION xxx1

issues in the macroeconomic policy area. Examples are the studies by
Poole and by Kareken, Muench, and Wallace of the desirability of the
monetary authority’s controlling interest rates or monetary aggregates.

These applications of the control model view the policymaking problem
as a “game against nature.” That is, the problem assumes that the func-
tions fand g are both fixed, and independent of the policy authorities’
choice of 4. But recall that x,,; = g(z,,x,,%,) and z,,; = f(2,, €,) consti-
tute an econometric model of private agents’ behavior. Included in the
policymaker’s g are the decision functions of private agents, many of
whom are themselves supposed to face dynamic optimization problems.
For example, the policymaker’s g typically includes investment, consump-
tion, and portfolio balance schedules, each of which is supposedly the
outcome of a dynamic optimum problem of private agents. The assump-
tion that g is independent of the government’s choice of its 4 is in general
inconsistent with the notion that private agents are solving the:r optimum
problems properly. To see this, recall how above we imagined (1)-(4) to
describe the choice problem facing private agents. In such problems, typi-
cally some elements of the z, appearing in the private agents’ return func-
tion will be relative prices or tax rates whose random behavior is partly or
entirely determined by the government’s choice of its feedback rule A.
Thus the government’s choice of its 4 influence the g and f functions that
appear in private agents’ decision problems. Similarly, private agents
choose their 4’s which are elements of the government’s constraint set, that
is, its “econometric model” g.

These observations suggest that the single-agent decision theory out-
lined above is inadequate for fully analyzing the mutual interaction of the
government’s and private agents’ decisions. We can analyze these interac-
tions by replacing the setup described by (1)-(4) by a setting defining a
differential game. We now distinguish between two representative agents,
agent 1 and agent 2. We shall think of agent 1 as being “the government”
and agent 2 as being “the public” or “the private agent.”® The technology
is now defined as

X1 = G2y, Xy, Uy, Ugy) (19)

8In many applied problems, we would like a single government, agent 1, to face a large
collection of private agents who act approximately competitively. For this purpose, we would
use an N-agent game in which agent 1 is the government, and agents 2, . . ., N are the private
agents. Equation (19) would be replaced by x,,, = g,(2}, x;, Uy, gy, . - . , 4y, ), and (21) and
(22) would be modified accordingly. For the N-agent setup, most of the remarks we make
about the two-agent game apply. The advantage of the large N-agent game over the two-
agent game is that it permits individual private agents to ignore the influences that
economywide versions of the state variables which they are choosing exert on government
policy variables through the government’s policy rules. Lucas and Prescott (Chap. 6) distin-
guish between economywide state variables and the state variables of the representative
private agent in order to build in competitive behavior of private agents with respect to the
government. Using an N-agent game, and driving N toward infinity in the correct way
accomplishes the same purpose.
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where the function g, maps 8y, X S, X Uy, X Uy, — 8y, whereu,, e Uy,
and uy, € Uy, and where U}, and U,, are spaces in which the controls u,,
and u,, lie. The variable u;, is the vector of control variables that is set by
agent i. Here the state variables x, and z, and the spaces §}, and S,, are as
defined above. We once again assume that

IR NCI (20)

where the €, are independent drawings from a cumulative distribution
function ®.
Agent 1 is supposed to maximize

T
Eoz BV (25 %y, gy, gy ), 0B <], (21)

t=0

given z,, xy, while agent 2 maximizes

T
EOZBtZVZt(Zt’xt’ult’uZt)’ 0B, <1, (22)
t=0

given z, x4, where V,, and V,, are the given instantaneous return functions
of agents 1 and 2. We assume that at time ¢, each agent observes (z,, x, ).
The maximization of (21) is over sequences of policy functions of the form?

uy = hy(z,%), t=0,1,...,T, (23)

where Zu 18y, X 8, — Uy, while the maximization of (22) is over policy
functions of the form

Uy = by (2,%), 1=0,1,...,T, (24)

where /7% 18y, X Sy, = U,y,.

As described so far, the problems of maximizing (21) and (22), respec-
tively, are not fully posed. We must describe completely the views that
agent 7 has of agent j’s decision rules /71-‘, so that the return functions and
the constraints subject to which maximization occurs are fully specified.
For example, agent 1’s problem is to maximize (21) over policies 4,, sub-
ject to (19) and (20). Neither the return functions V,, nor the constraints
(19) are fully specified until one attributes to agent 1 a view about the
functions Em (2,,x,) according to which u,, is to be set.

One can imagine a variety of ways of specifying these views or, equiva-
lently, a variety of ways of modeling the differential game being played by
the agents. The papers in Section 6 of the book in effect utilize one or the
other of two different ways of specifying these views and of defining an

9The optimal policy functions %, and /72‘ depend on the horizon of the problem 7. We omit
a T superscript on 4, and h,, to get a less cumbersome notation, but its presence should be
understood.
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equilibrium of the game. These are the Nash equilibrium and the Stackel-
berg or dominant-player equilibrium.1°

In the Nash equilibrium, agent : is supposed to maximize his criterion
function (21) or (22) subject to (19), (20), and knowledge of the sequence of
the policy functions A, ¢t =0, ..., 7, of the other agent. The maximiza-
tion is carried out taking as given the A, of the other agent, so that agent i
assumes that his choice of the sequence of functions 4;, has no effect on the
policy functions }_ljt’ t=0,..., T being used by agent j. A Nash equilib-
rium is then a pair of sequences of functions Ay, Ay, t = 0,..., 7, such
that 4;, maximizes

T
E, 2 BiVy Lz, % uyys hoy (24, %,)] (25)

t=0

subject to

Xp1 = 8 l2es Xps tyys Roy (%, 20)), Uy = hyy (24, %)
201 = 8 (2,5 €,), given zg, xg;

while £,, maximizes

T
E, 2 BV 20 x5 hyy (24, %,), 1] (26)
t=0

subject to
X1 = & lag, Xy by (xy52,), gy | gy = by (24, %)
21 = /(25 €), given 2y, xo.

The Nash equilibrium of this differential game is known to have the
property that the principle of optimality applies to the maximization
problem of each player. This can be proved by noting that problem (25) or
(26) is a version of the single-agent optimization problem (10)-(13) which
we studied earlier. In particular, for problem (25) or (26), the assumptions
needed to pass from expression (14) to expression (16) are met. That the
principle of optimality is satisfied for each agent’s problem means that
recursive methods can in principle be used to calculate the Nash equilib-
rium policy functions {}71“ ZzzQ t=0,..., 7111

The fact that in a Nash equilibrium each agent’s problem satisfies the
principle of optimality means that each agent has an incentive to adhere
to the sequence of policy functions that he initially chooses. This is true so

10Cruz (1975) and the references he gives discuss alternative equilibrium concepts for
differential games. A variety of information structures for the game could also be imagined,
only some of which are mentioned by Cruz (1975).

Nash equilibria of linear quadratic differential games are computed recursively using the
matrix Riccati equations for each agent. See Cruz (1975) and the references given there.
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long as the assumptions about each agent’s perception of the indepen-
dence of the other agent’s policy from his own policy functions remain
valid.

Via the same argument that led to (18) in the single-agent problem, it
can be noted that the solution of agent :’s problem can be described by a
set of nontrivial mappings T? such that

hu= Ti Vg fys Bl s 2 1) i=1,2
J#i 27)
t =0, 1,...,T

so that 7'} maps the sequences of functions {V,;, f, g,, 4;,; s > t} into the
policy functions h” The arguments of 7% are all the functions that influ-
ence present or future returns or constraints of agent ¢ at time ¢. In the
Nash equilibrium, each agent i is assumed to ignore the fact that his choice
of the sequence {h“; t=0,...,T} influences %; in a nontrivial way
through the mappings 77.

A second concept of equilibrium is the Stackelberg or dominant-player
equilibrium. In the dominant-player equilibrium, one player ; called the
dominant player is assumed to take into account the mappings 77 of the
other player. We will assume that the dominant player is the government,
agent 1. Then it is assumed that agent 1 maximizes over
{Zu,t =0,..., T} the criterion

T
E, Z BiVaelzy, %y, oy (20, %), Ti(Vay o S5 855 brygs s 2 82,5 %,)] (28)

t=0
subject to

X1 =& [2 % by (20, %) TEVag S0 8o iy 5 2 1)(245 %))
Zp1 =S (245 %), given (2¢, xo).

Since they are derived by substituting from (27) for
Uy, = hz: (24, %) =T7? (st,fs,gs, 153 § 2 t)(2,,%,) into the functions g,
and Vy,, (28) and (29) express the notion that agent 1 is choosing the
sequence of functions {4,,,¢ = 0, ..., T}, taking into account the effect of
this choice on agent 2’s sequence of policies 172“ t=0,..., T The second
agent, called the follower, is assumed to behave in the same fashion as is
described for the Nash equilibrium. Thus, agent 2 solves his maximization
problem taking the sequence of functions /_lu as given. The follower, agent
2, ignores the existence of the influence of his choice of h2t ,0=0,..., T,
on hy, t=0,..., 7T though the mappings (27) /’u =TV, ,fs,gs, 25}
s> 0.

A dominant-player cqu1lxbr1um is a pair of sequences {/‘1: ;
t=0,...,T} and {hy; t=0,...,T} such that {hy; t=0,...,T)
maximlzes the follower’s criterion functlon (26) given the sequence of

(29)
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functions {k,,, t = 0,..., T}; and such that {A,,; ¢ =0,..., T} maxi-
mizes the leader’s criterion (28) subject to (29) and given the mappings
Izzt = T?(Vay,f,» &5 kg5 § > t). As we shall remark further below, comput-
ing a dominant-player equilibrium is generally a more difficult task than
is computing a Nash equilibrium.

Kydland and Prescott (Chap. 31) and Calvo (Chap. 32) both model the
differential game played by the government and the public as a domi-
nant-player game. This amounts to having the representative private
agent choose its decision functions 4,, taking as given the government’s
policy functions for such control variables as government expenditures,
tax rates, the “money supply,” and 5o on.'2 On the other hand, the govern-
ment is assumed to choose its policy functions th taking into account the
effect of this choice on private agents’ rules 4,,. One of the ultimate goals
of much of the econometric work described in this volume is to develop a
set of statistical tools that is in principle capable of giving the government
the ability to estimate the parameters that are needed for it to be able to
estimate the mapping T2(V,,, f., 8, k1, s > t). The government can ac-
complish this if it knows the functions V,,, f,, and g,. These are the objects
that econometric procedures ought to be directed at estimating.

In the dominant-player equilibrium, the problem of the follower is
readily shown to satisfy the principle of optimality. This follows because
once again the follower’s problem can be verified to be a version of prob-
lem (10)-(13). However, the optimum problem of the leader does not sat-
isfy the principle of optimality. The reason is that, via the mappings 72,
the functions Eu influence the returns of agent 1 for dates earlier than ¢.
This fact means that the problem ceases to be a sequential one to which
the principle of optimality applies. Thus, consider the leader’s problem
(28), and attempt to mimic the argument showing the equivalence of (14)
and (16) for our earlier single agent problem (10)-(13). Criterion (28) can
be written

lgnahwximiz;e Eo{Violzos %0, h10(200 o), T§(Vass S5 85> 1s5 5 2 0)(205 %0)]

JCS REARRE S b 4
+ BiEy (Vigley 2y, by (20, 201 TE(Vag o fy 1 &5 a5 5 2 1215 %1) (30)
+ oo+ BiEp{Vigle, xp, hap(zp, x0), T3(Vag fy5 g P
s =T)zpxp)l} -+ )

12At this point, a two-agent setting is excessively confining for analyzing the situation we
have in mind, in which the government sets its policy variables as functions of economywide
(or marketwide) aggregates over which individual agents imagine that they have no control.
For example, if the government sets some tax rate as a function of economywide employment,
we still want a model in which individual employers act as competitors (price takers) with
respect to that tax rate. The two-agent model in the text or in Chow (Chap. 34) does not
accommodate such competitive behavior. To analyze this kind of behavior, it is necessary to
resort to one of the devices mentioned in note 8 above. While such devices lead to additional
computational and econometric considerations, the analytics of the time-inconsistency issue
are essentially the same as conveyed by the discussion of the two-agent setup in the text.
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Expression (30) indicates that all {4, ; s =0,..., T} appear in the return
function ¥y, at time 0. More generally, {A,; s = ¢,..., T} appear in the
return function ¥}, at time ¢. Furthermore, future values of 4, also appear
in the law of motion x, . ; = g,[2,, %, Pyys T2(Vagrfor Bas Brgs § 2 )25 %)),
These facts prevent the distribution of the maximization operation that
occurred between (15) and (16), and that underlies the principle of opti-
mality. The upshot is that the functions {#,,s =0,..., T} cannot be
calculated recursively. Furthermore, suppose that the particular sequence
of functions {;ft, t =0,..., T}isoptimal for the original problem (28) or
(30). It is not in general true for s = 1,. .., T that the tail of the plan {4 ;
v=5s,..., T} is optimal for the remainder of the problem, to maximize

T
Es 2 Bﬁ Vlu[zv’xv’hlu(zv’xu)’ T{O?(Vzk,ﬁc,ik, h1k§ k> v)(zv, xv)]

v=s

subject to the laws of motion (29) and starting from (z,, x,). This means
that in general, at future points in time, the leader has an incentive to
depart from a previously planned sequence of policy functions {/71,;
t=0,...,T}.

The reason that the principle of optimality fails to hold for the leader’s
problem is the appearance of future values of his own policy functions /;13
in the current return functions ¥, in (30). Future k,’s occur in ¥}, in
(30) through the mappings T2(V,,, f,, . ;15; s>t) = Zm which summa-
rize the influence of the leader’s current and future policy functions #,, on
the follower’s current policy function. In essence, the principle of optimal-
ity fails to hold for the leader’s problem because he is taking account of the
fact that he is playing a dynamic game against an intelligent agent who is
reacting in systematic ways to his own choices of h,,. In particular, in
choosing the policy function 4, the leader, agent 1, takes into account the
influence of his choice on the follower, agent 2’s, choices in earlier periods.

Kydland and Prescott (Chap. 31) and Calvo (Chap. 32) use the term
“time inconsistency of optimal plans” to refer to the fact that the principle
of optimality does not characterize the leader’s problem. At future points
in time, the leader has an incentive to depart from a previously planned
optimal strategy #,, and to employ some different sequence of policy func-
tions for the “tail” of the problem. However, if the leader actually gives in
to the temptation to abandon the initially optimal rules }—tlt in favor of new
rules, this invalidates the assumptions used by the follower, agent 2, in
solving his optimum problem. Once the follower catches on to this fact,
the follower has an incentive not to behave as originally predicted, leading
to a breakdown in an ability either to predict the behavior of the follower
or to make an analytic statement about optimal government policy.

Kydland and Prescott (Chap. 31) and Calvo (Chap. 32) describe a vari-
ety of examples in which, in a dominant-player game with the public, the
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government has an incentive to depart from a contingency plan that was
optimal at an earlier point in time. Calvo’s example illustrates that this
“time inconsistency” problem can emerge even in a setup in which the
government shares the same objective as the representative private agent,
namely, the maximization of the expected utility of the representative
agent.

Kydland and Prescott (Chap. 31) introduce the concept of “time-con-
sistent” government plans which do satisfy the principle of optimality. To
obtain time-consistent plans, Kydland and Prescott in effect compute a
Nash equilibrium of a differential game. While such an equilibrium obeys
the principle of optimality, it leaves unexploited expected gains for the
government since it ignores the influence that the government’s choice of
the policies /,, has on £,,. Kydland and Prescott computed several numer-
ical examples showing that various arbitrary time-invariant functions
hy, = h,, to which the government commits itself forever, would dominate
the time-consistent rules in terms of the expected value of the govern-
ment’s criterion function.

Kydland and Prescott interpret their work as supporting the case for
using fixed rules for setting government policy variables. This amounts to
restricting the policy functions #£,, to be time invariant, meaning hu = h
for all ¢t. Such a restriction on the domain of the government’s choice in
general causes the resulting government rule to be suboptimal relative to
the time-varying rules described above. Hence, a preference for time-
invariant rules is not based on the formal results referred to above, but
sterns from the following considerations. Remember that the cornerstone
of the material in this volume is the assumption that private agents are
optimizing their criterion functions, subject to knowledge of the current
and future laws of motion of the variables that influence their constraints
and opportunities, among which are the laws of motion }—‘u for the varia-
bles chosen by the government. How is the public presumed to figure out
the laws of motion 71-1,? If the system is operating for a long time under a
single time-invariant rule A;, = 4, there is some presumption that private
agents will eventually catch on to the £, rule under which the government
is operating.!®> However, if the private agents are confronted with a
planned sequence {/zu } of time-varying government rules, it is harder to
imagine that agents can successfully figure out the constraints that they
face. Certainly, private agents’ inference problem in this setup is much
more complicated than it is under a constant {#,} sequence. Our view is
that the assumption of rational expectations is more plausible when agents
are assumed to face a time-invariant {#,, } sequence, and that more relia-
ble predictions about the consequences of alternative regimes can be made
under this assumption.

13This presumption can be formalized using Bayes’s law in some setups.
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John Taylor’s paper (Chap. 33) provides a simple example of a model in
which the government’s optimal control problem in the dominant-player
game can be solved computationally, when the government adopts a
time-invariant feedback rule. Taylor estimates a macroeconomic model
subject to the restrictions implied by rational expectations. He estimates
parameters describing private sector behavior, parameters that his theory
predicts are invariant with respect to interventions in the form of changes
in the government’s policy rule. This gives him the ability to predict pri-
vate behavior under alternative government policy rules. Taylor goes on to
compute the optimal policy rule for the government, where “optimal” is
interpreted to mean minimizing the stationary variance of real output
subject to a constraint on the variance of the inflation rate.

The paper by Gregory Chow (Chap. 34) describes computational meth-
ods for estimating parameters and solving optimal control problems in
two-person, linear quadratic differential games. These methods can also be
generalized to handle N-person games, and also by taking the limit as
N — oo in the correct way, the competitive game employed by Lucas and
Prescott (Chap. 6) and Lucas (Chap. 5). Chow describes how the optimal
rule for the “leader” can be solved in the dominant-player game, under
the restriction that the leader binds itself to a time-invariant rule, 4, = A,
in our notation, for the duration of the game. Chow describes how various
hill-climbing algorithms can be used to compute the optimal /71 function.
To perform this calculation, notice how Chow needs estimates of the pa-
rameters of private agents’ objective function and their constraints and
opportunities, and that knowledge of private agents’ past behavior as re-
flected in historical estimates of }72 will not suffice. Finally notice that even
though the econometric model is linear in the variables, the dominant
player’s optimization problem is a nonlinear one due to the presence of the
complicated nonlinear restrictions across the private agents’ optimal rule
%, and their environment, which includes 4,. The formulas developed by
Hansen and Sargent (Chaps. 7, 8) express these cross-equation restrictions
in a different way than does Chow (Chap. 34). It would be interesting to
study control problems such as Chow’s using these formulas, and to ex-
plore whether the numerical computations could be reduced.

II1

Before concluding, we should add a few words concerning the principles
which guided the selection of papers in this volume. First, with the excep-
tion of Muth’s (Chap. 1), which could hardly have been left out, we have
excluded papers which are reprinted elsewhere in book form. This rule also
excluded several of Lucas’s papers which will be published as a collection
separately.

Second, as emphasized by the title of this collection, we have focused
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mainly on papers which offer something to the economist who wishes to
apply the idea of rational expectations to problems of estimation, testing,
policy evaluation, or control. Naturally, the economists who have contrib-
uted most along this line tend to be those who find the hypothesis promis-
ing and attractive. This imparts a certain “bias” to the collection, which
we might have tried to “correct” by including some of the many critical
papers which have also been published. We chose not to do this: the book
is, frankly, a bandwagon, more appealing to some than to others.

Our emphasis on econometric applicability led us to exclude the many
papers applying rational expectations in more abstract theoretical con-
texts, though there have been many fruitful connections made between
this literature and that sampled here, and will be many more in the future.
We need a different principle to rationalize the exclusion of the vast litera-
ture, stemming from Fama’s work, applying similar ideas under the name
“efficient markets.” This work has a coherence of its own, but as noted
elsewhere in this introduction, the reader of this volume will have no diffi-
culty recognizing precursors of many of its ideas in this earlier empirical
work on securities prices.

Finally, though we claim no priority for the general ideas used in this
introduction to try to tie the various papers together, neither do we wish to
implicate any of the papers’ authors. These papers are individual prod-
ucts, each with its own motivation and point of view. Our reasons for
recommending them to readers need bear no particular relationship to
their authors’ reasons for writing them.

Robert E. Lucas, Jr.
and

Thomas J. Sargent

April 1980
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1

Rational Expectations and the Theory of
Price Movements

John F. Muth

In order to explain fairly simply how expectations are formed, we ad-
vance the hypothesis that they are essentially the same as the predictions
of the relevant economic theory. In particular, the hypothesis asserts
that the economy generally does not waste information, and that expec-
tations depend specifically on the structure of the entire system. Meth-
ods of analysis, which are appropriate under special conditions, are de-
scribed in the context of an isolated market with a fixed production lag.
The interpretative value of the hypothesis is illustrated by introducing
commodity speculation into the system.

That expectations of economic variables may be subject to error has, for
some time, been recognized as an important part of most explanations of
changes in the level of business activity. The “ex ante” analysis of the
Stockholm School—although it has created its fair share of confusion—is
a highly suggestive approach to short-run problems. It has undoubtedly
been a major motivation for studies of business expectations and inten-
tions data.

As a systematic theory of fluctuations in markets or in the economy, the
approach is limited, however, because it does not include an explanation

Research undertaken for the project, Planning and Control of Industrial Operations, under
contract with the Office of Naval Research, contract N-onr-760-(01), project NR 047011,
Reproduction of this paper in whole or in part is permitted for any purpose of the United
States Government. An earlier version of this paper was presented at the Winter Meeting of
the Econometric Society, Washington, D.C., December 30, 1959. I am indebted to
Z. Griliches, A. G. Hart, M. H. Miller, F. Modigliani, M. Nerlove, and H. White for their
comments. Author’s note, 1981: Reference should be made to the implicit expectations of
E. S. Mills (“The Theory of Inventory Decisions,” Econometrica 25 [1957]: 222-38), which
differs from rational expectations in its stochastic properties. The normality assumption in
note 3 below is not required, and the reference to the work of Bossons and Modigliani is not
correct. On this latter point, see J. Bossons and F. Modigliani, “Statistical vs. Structural
Explanations of Understatement and Regressivity in ‘Rational’ Expectations,” Econometrica
34 (1966): 347-53. Other references have not been updated.

[Econometrica, 1961, vol. 29, no. 6]
© 1961 by The Econometric Society
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of the way expectations are formed. To make dynamic economic models
complete, various expectations formulas have been used. There is, how-
ever, little evidence to suggest that the presumed relations bear a resem-
blance to the way the economy works.!

What kind of information is used and how it is put together to frame an
estimate of future conditions is important to understand because the char-
acter of dynamic processes is typically very sensitive to the way expecta-
tions are influenced by the actual course of events. Furthermore, it is often
necessary to make sensible predictions about the way expectations would
change when either the amount of available information or the structure
of the system is changed. (This point is similar to the reason we are curious
about demand functions, consumption functions, and the like, instead of
only the reduced form “predictors” in a simultaneous equation system.)
The area is important from a statistical standpoint as well, because param-
eter estimates are likely to be seriously biased toward zero if the wrong
variable is used as the expectation.

The objective of this paper is to outline a theory of expectations and to
show that the implications are—as a first approximation—consistent with
the relevant data.

1. The “Rational Expectations” Hypothesis

Two major conclusions from studies of expectations data are the following:

1. Averages of expectations in an industry are more accurate than naive
models and as accurate as elaborate equation systems, although there are
considerable cross-sectional differences of opinion.

2. Reported expectations generally underestimate the extent of changes
that actually take place.

In order to explain these phenomena, I should like to suggest that expec-
tations, since they are informed predictions of future events, are essentially
the same as the predictions of the relevant economic theory.? At the risk of
confusing this purely descriptive hypothesis with a pronouncement as to
what firms ought to do, we call such expectations “rational.” It is some-
times argued that the assumption of rationality in economics leads to
theories inconsistent with, or inadequate to explain, observed phenomena,
especially changes over time (e.g., Simon 1959). Our hypothesis is based on
exactly the opposite point of view: that dynamic economic models do not
assume enough rationality.

The hypothesis can be rephrased a little more precisely as follows: that
expectations of firms (or, more generally, the subjective probability distri-
bution of outcomes) tend to be distributed, for the same information set,

'This comment also applies to dynamic theories in which expectations do not explicitly
appear. See, e.g., Arrow and Hurwicz (1958) and Arrow, Block, and Hurwicz (1959).
2We show in Section 4 that the hypothesis is consistent with these two phenomena.
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about the prediction of the theory (or the “objective” probability distribu-
tions of outcomes).

The hypothesis asserts three things: (1) Information is scarce, and the
economic system generally does not waste it. (2) The way expectations are
formed depends specifically on the structure of the relevant system describ-
ing the economy. (3) A “public prediction,” in the sense of Grunberg and
Modigliani (1954), will have no substantial effect on the operation of the
economic system (unless it is based on inside information). This is not
quite the same thing as stating that the marginal revenue product of eco-
nomics is zero, because expectations of a single firm may still be subject to
greater error than the theory.

It does not assert that the scratch work of entrepreneurs resembles the
system of equations in any way; nor does it state that predictions of entre-
preneurs are perfect or that their expectations are all the same.

For purposes of analysis, we shall use a specialized form of the hypothe-
sis. In particular, we assume: (1) The random disturbances are normally
distributed. (2) Certainty equivalents exist for the variables to be pre-
dicted. (3) The equations of the system, including the expectations formu-
las, are linear. These assumptions are not quite so strong as may appear at
first because any one of them virtually implies the other two.

2. Price Fluctuations in an Isolated Market

We can best explain what the hypothesis is all about by starting the analy-
sis in a rather simple setting: short-period price variations in an isolated
market with a fixed production lag of a commodity which cannot be
stored.4 The market equations take the form

C, = —Bp, (demand),
Po=ypl +u, (supply), (1)
P =C, (market equilibrium),

where: P, represents the number of units produced in a period lasting as
long as the production lag, C, is the amount consumed, p, is the market
price in the tth period, p¢ is the market price expected to prevail during the
tth period on the basis of information available through the (t — 1)st

3 As long as the variates have a finite variance, a linear regression function exists if and only
if the variates are normally distributed (see Allen 1938 and Ferguson 1955). The certainty-
equivalence property follows from the linearity of the derivative of the appropriate quadratic
profit or utility function (see Simon 1956 and Theil 1957).

It is possible to allow both short- and long-run supply relations on the basis of dynamic
costs (see Holt et al. 1960, esp. chaps. 2-4, 19). More difficult are the supply effects of changes
in the number of firms. The relevance of the cost effects has been emphasized by Buchanan
(1939) and Akerman (1957). To include them at this point would, however, take us away
from the main objective of the paper.
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period, and u, is an error term—representing, say, variations in yields due
to weather. All the variables used are deviations from equilibrium values.
The quantity variables may be eliminated from (1) to give

Y 1
P = - El’f - Eut- (2)

The error term is unknown at the time the production decisions are made,
but it is known—and relevant—at the time the commodity is purchased in
the market.

The prediction of the model is found by replacing the error term by its
expected value, conditional on past events. If the errors have no serial
correlation and Eu, = 0, we obtain

Ep, = — 5t} ®

If the prediction of the theory were substantially better than the expec-

tations of the firms, then there would be opportunities for the “insider” to

profit from the knowledge—by inventory speculation if possible, by oper-

ating a firm, or by selling a price forecasting service to the firms. The profit

opportunities would no longer exist if the aggregate expectation of the
firms is the same as the prediction of the theory:

Ep, = pi. (4)
Referring to (3) we see that if y/8 # —1 the rationality assumption (4)
implies that p¢ = 0, or that the expected price equals the equilibrium
price. As long as the disturbances occur only in the supply function, price
and quantity movements from one period to the next would be entirely
along the demand curve.

The problem we have been discussing so far is of little empirical interest,
because the shocks were assumed to be completely unpredictable. For most
markets it is desirable to allow for income effects in demand and alterna-
tive costs in supply, with the assumption that part of the shock variable
may be predicted on the basis of prior information. By retracing our steps
from (2), we see that the expected price would be

1
B+

If the shock is observable, then the conditional expected value or its regres-
sion estimate may be found directly. If the shock is not observable, it must
be estimated from the past history of variables that can be measured.

pi= Eu,. ()

Expectations with Serially Correlated Disturbances
We shall write the #’s as a linear combination of the past history of nor-
mally and independently distributed random variables ¢, with zero mean
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and variance o2
o0 2 . . .
g if i =,
u = Z W, Ee; = 0, Eee, = { ) _ (6)
i=0

Any desired correlogram in the u’s may be obtained by an appropriate
choice of the weights w;.

The price will be a linear function of the same independent disturb-
ances; thus

b = 2 Wi, (7
i=0

The expected price given only information through the (¢ — 1)st period
has the same form as that in (7), with the exception that ¢, is replaced by
its expected value (which is zero). We therefore have

pi = Wy Ee, + 2 Wie,_; = 2 Wi, _;. (8)

i=1 i=1

If, in general, we let p,, be the price expected in period ¢ + L on
the basis of information available through the tth period, the formula
becomes

bios = > Wigr s 9
i=L
Substituting for the price and the expected price into (1), which reflect
the market equilibrium conditions, we obtain

'Y o0 1 o
Woe, + (1 + —) DW= —7 > wiE (10)
Bl S 8BS

Equation (10) is an identity in the £’s; that is, it must hold whatever values
of ¢; happen to occur. Therefore, the coefficients of the corresponding ¢; in
the equation must be equal.

The weights W, are therefore the following:

1
W, = — —Wy, 1la
0 B 0 ( )
1 .
Ptl”,:—ﬁ_*_ywi (i=123..). (11b)

Equations (11) give the parameters of the relation between prices and
price expectations functions in terms of the past history of independent
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shocks. The problem remains of writing the results in terms of the history
of observable variables. We wish to find a relation of the form

=S Vi (12)
j=1

We solve for the weights V; in terms of the weights W in the following
manner. Substituting from (7) and (8), we obtain

o i

Wieij= > (Z V}Wiﬂj)et_i. (13)

i=1 ji=1 i=0 i=1 Yj=1

L]

Since the equality must hold for all shocks, the coefficients must satisfy the
equations

w, =S VW, (i=1,23,..). (14)

This is a system of equations with a triangular structure, so that it may be
solved successively for the coefficients V|, V,, V,, .. ..
If the disturbances are independently distributed, as we assumed before,

then w, = —1/8 and all the others are zero. Equations (14) therefore
imply
=0, (15a)
1
by =0+ Wee, = g (13b)

These are the results obtained before.

Suppose, at the other extreme, that an exogenous shock affects all future
conditions of supply, instead of only the one period. This assumption
would be appropriate if it represented how far technological change dif-
fered from its trend. Because u, is the sum of all the past ¢, w;, = 1
(#=0,12,...). From (11),

W, = —1/8, (16a)
W, =—1/(B+7) (16b)

From (14) it can be seen that the expected price is a geometrically
weighted moving average of past prices:

_Z(B+y) Pr-y 4

This prediction formula has been used by Nerlove (1958) to estimate the
supply elasticity of certain agricultural commodities. The only difference
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is that our analysis states that the “coefficient of adjustment” in the expec-
tations formula should depend on the demand and the supply coefficients.
The geometrically weighted moving average forecast is, in fact, optimal
under slightly more general conditions (when the disturbance is composed
of both permanent and transitory components). In that case the coefficient
will depend on the relative variances of the two components as well as the
supply and demand coefficients (see Muth 1960).

Deviations from Rationality
Certain imperfections and biases in the expectations may also be analyzed
with the methods of this paper. Allowing for cross-sectional differences in
expectations is a simple matter, because their aggregate effect is negligible
as long as the deviation from the rational forecast for an individual firm is
not strongly correlated with those of the others. Modifications are neces-
sary only if the correlation of the errors is large and depends systematically
on other explanatory variables. We shall examine the effect of over-
discounting current information and of differences in the information pos-
sessed by various firms in the industry. Whether such biases in expecta-
tions are empirically important remains to be seen. I wish only to
emphasize that the methods are flexible enough to handle them.

Let us consider first what happens when expectations consistently over-
or underdiscount the effect of current events. Equation (8), which gives the
optimal price expectation, will then be replaced by

P =SiWe o + E Wie_;. (18)

i=2

In other words the weight attached to the most recent exogenous disturb-
ance is multiplied by the factor f;, which would be greater than unity if
current information is overdiscounted and less than unity if it is under-
discounted.

If we use (18) for the expected price instead of (8) to explain market
price movements, then (11) is replaced by

1
W = — —W,, 193
0 B 0 ( )
1
Wi=—-—a——uw, 19b
! B+fiv ! (19)
1 .
W, = — B—_{_—;w‘. 1=234,...). (19)

The effect of the biased expectations on price movements depends on the
statistical properties of the exogenous disturbances.
If the disturbances are independent (that is, w, = 1 and w, = 0 for
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¢ > 1), the biased expectations have no effect. The reason is that successive
observations provide no information about future fluctuations.

On the other hand, if all the disturbances are of a permanent type (that
is, wy = w, = --- = 1), the properties of the expectations function are
significantly affected. To illustrate the magnitude of the differences, the
parameters of the function

| = z Vibi
j=1
are compared in figure 1 for 8 = 2y and various values of f,. If current
information is underdiscounted ( f; = 1/2), the weight V| attached to the
latest observed price is very high. With overdiscounting (f; = 2), the
weight for the first period is relatively low.

The model above can be interpreted in another way. Suppose that some
of the firms have access to later information than the others. That is, there
is a lag of one period for some firms, which therefore form price expecta-
tions according to (8). The others, with a lag of two periods, can only use
the following:

b = Z Wie, ;. (20)
i=2

Then the aggregate price expectations relation is the same as (18), if f}
represents the fraction of the firms having a lag of only one period in
obtaining market information (that is, the fraction of “insiders”).

1o
8
UNDERDISCOUNTING
Rt(tfsm‘ )mraauAnan
-6 -
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g
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L 1
°
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k
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8 UNBIASED USE OF
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v & et
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y I
° i 2 3 - s )
k
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8
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-6
v f.-2)
P
.2
o
T 2 3 “+ 5 ©

k

Fic. 1.—Autoregression coefficients of expectations for biased use of recent information
(wg=wy=-..=1)
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3. Effects of Inventory Speculation

Some of the most interesting questions involve the economic effects of
inventory storage and speculation. We can examine the effect by adjoining
to (1) an inventory demand equation depending on the difference between
the expected future price and the current price. As we shall show, the price
expectation with independent disturbances in the supply function then
turns out to have the form

pte = }\/7;_1, (21)

where the parameter A would be between zero and one, its value depend-
ing on the demand, supply, and inventory demand parameters.

Speculation with moderately well-informed price expectations reduces
the variance of prices by spreading the effect of a market disturbance over
several time periods, thereby allowing shocks partially to cancel one an-
other out. Speculation is profitable, although no speculative opportunities
remain. These propositions might appear obvious. Nevertheless, contrary
views have been expressed in the literature.?

Before introducing inventories into the market conditions, we shall
briefly examine the nature of speculative demand for a commodity.

Optimal Speculation

We shall assume for the time being that storage, interest, and transactions
costs are negligible. An individual has an opportunity to purchase at a
known price in the /th period for sale in the succeeding period. The future
price is, however, unknown. If we let /, represent the speculative inventory
at the end of the ¢th period,® then the profit to be realized is

7, =1L (p1s1 — 1) (22)

Of course, the profit is unknown at the time the commitment is to be
made. There is, however, the expectation of gain.

The individual demand for speculative inventories would presumably
be based on reasoning of the following sort. The size of the commitment
depends on the expectation of the utility of the profit. For a sufficiently
small range of variation in profits, we can approximate the utility function
by the first few terms of its Taylor’s series expansion about the origin:

4 = 9(m) = $(0) + ¢O)m, + 56" O)mF + - (23)

The expected utility depends on the moments of the probability distribu-
tion of

1
Eu, = $(0) 4+ ¢'(0)Em, + —2—¢"(0)wa + ... (24)
5See Baumol (1957). His conclusions depend on a nonspeculative demand such that prices

would be a pure sine function, which may always be forecast perfectly.
$Speculative inventories may be either positive or negative.
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From (22) the first two moments may be found to be

Emy = L(pfey — b1)s (25a)

En} =Iflo}, + (i1 — £} (25b)

where p¢_; is the conditional mean of the price in period ¢ + 1 (given all
information through period ¢) and o7 is the conditional variance. The
expected utility may therefore be written in terms of the inventory position
as follows:

Eu, = 9(0) + ¢ O, (pfsr — p,) + 3¢ (O)1Flo?,

+ (pfa — P+ - (26)
The inventory therefore satisfies the condition
dEul ’ e " 2 e 2
I =¢ (0)(/’t+1 —p)+ ¢ (O)Iz[ot‘l + (pf41 — p )1+ - =0 (27)
t

The inventory position would, to a first approximation, be given by

- _ ¢'(0)(/’te+1 — /’t) ) (28)
¢"(Oofy + (541 — £1)°]

If ¢’(0) > 0 and ¢”’(0) < 0, the above expression is an increasing function

of the expected change in prices (as long as it is moderate).

At this point we make two additional assumptions: (1) the conditional
variance, o7, is independent of pf, which is true if prices are normally
distributed, and (2) the square of the expected price change is small rela-
tive to the variance. The latter assumption is reasonable because the origi-
nal expansion of the utility function is valid only for small changes. Equa-
tion (28) may then be simplified to?

I, = a(pf — b)) (29)

where @ = —¢/(0)/¢”(0)02 ;.

Note that the coefficient « depends on the commodity in only one way:
the variance of price forecasts. The aggregate demand would, in addition,
depend on who holds the stocks as well as the size of the market. For some
commodities, inventories are most easily held by the firms.® If an orga-
nized futures exchange exists for the commodity, a different population
would be involved. In a few instances (in particular, durable goods), in-
ventory accumulation on the part of households may be important.

The original assumptions may be relaxed, without affecting the results
significantly, by introducing storage or interest costs. Margin requirements

t

"This form of the demand for speculative inventories resembles that of Telser (1959) and
Kaldor (1939-40).
8Meat, e.g., is stored in the live animals or in any curing or ageing process.
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may, as well, limit the long or short position of an individual. Although
such requirements may primarily limit cross-sectional differences in posi-
tions, they may also constrain the aggregate inventory. In this case, we
might reasonably expect the aggregate demand function to be nonlinear
with an upper “saturation” level for inventories. (A lower level would
appear for aggregate inventories approaching zero.)

Because of its simplicity, however, we shall use (29) to represent inven-
tory demand.

Market Adjustments
We are now in a position to modify the model of Section 2 to take account
of inventory variations. The ingredients are the supply and demand equa-
tions used earlier, together with the inventory equation. We repeat the
equations below (£, represents production and C, consumption during the
tth period):
C, = —Bp, (demand), (30a)
Po=pi + (supply), (30b)
I, = a(pf.; — p,) (inventory speculation). (30c)
The market equilibrium conditions are

o + 1, =P +1_,. (31)

Substituting (30) into (31), the equilibrium can be expressed in terms of
prices, price expectations, and the disturbance, thus

—(a + B)p, + apf,y = (a + V)p] — ap,_y + u,. (32)

The conditions above may be used to find the weights of the regression
functions for prices and price expectations in the same way as before.
Substituting from (6), (7), and (8) into (32), we obtain

—(a+B) Z Wi, i +a 2 Wit 1
i=0 i=1 (33)
=(a+7) Z Wig_; —« Z Wie,_y; + z Wik ;-
i=1 i=0 i=0
In order that the above equation hold for all possible ¢’s, the corre-

sponding coefficients must, as before, be equal. Therefore, the following
system of equations must be satisfied:®

—(a + BW, + aW| = wy, (34a)
aW, |, — Ra + B+ Y)W, + aW,,, =w; (i=123,...). (34b)

9The same systemn appears in various contexts with embarrassing frequency (see Holt et al.
1960, and Muth 1960).
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Provided it exists, the solution of the homogeneous system would be of
the form

W, = c\k, (35)
where A, is the smaller root of the characteristic equation
a—2a+B+ YA+ =a(l =A== (B+yYA=0 (36)

A, is plotted against positive values of /(8 + ¥) in figure 2.

A unique, real, and bounded solution to (34) will exist if the roots of the
characteristic equation are real. The roots occur in reciprocal pairs, so that
if they are real and distinct exactly one will have an absolute value less
than unity. For a bounded solution the coeflicient of the larger root van-
ishes; the initial condition is then fitted to the coefficient of the smaller
root.

The response of the price and quantity variables will be dynamically
stable, therefore, if the roots of the characteristic equation are real. It is
easy to see that they will be real if the following inequalities are satisfied:

@ > Oy (373,)
B +v>0. (37b)

The first condition requires that speculators act in the expectation of gain
(rather than loss). The second is the condition for Walrasian stability.
Hence an assumption about dynamic stability implies rather little about
the demand and supply coefficients. It should be observed that (37) are not
necessary conditions for stability. The system will also be stable if both
inequalities in (37) are reversed (orif 0 > a/(B+v) > —~1/4.Ifa = 0,
there is no “linkage” from one period of time to another, so the system is
dynamically stable for all values of 8 + ¥.

Suppose, partly by way of illustration, that the exogenous disturbances
affecting the market are independently distributed. Then we can let
wy = land w; = 0 (i > 1). The complementary function will therefore be
the complete solution to the resulting difference equation. By substituting

ot 100 0’ ot © 1t 10 0t 10* 16* o
oL/(A+¥} (RATIO SCALE)

Fic. 2.—Characteristic root as a function of a/(8 + ¥)
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(35) into (34a), we evaluate the constant and find

1
W, = ————o—— At 38

k ((X + B) _ a)\l 1 ( )

The weights ¥, may be found either from (14) or by noting that the
resulting stochastic process is Markovian. At any rate, the weights are

Al’ k - 1,

sz{o, P 1 (39)

The expected price is therefore correlated with the previous price, and
the rest of the price history conveys no extra information, i.e.,

pE = Mpy_ys (40)

where the parameter depends on the coefficients of demand, supply, and
inventory speculation according to (36) and is between 0 and 1. If invento-
ries are an important factor in short-run price determination, A, will be
very nearly unity so that the time series of prices has a high positive serial
correlation.!® If inventories are a negligible factor, A, is close to zero and
leads to the results of Section 2.

Effects of Inventory Speculation
Substituting the expected price, from (40) into (30), we obtain the follow-
ing system to describe the operation of the market:

C, = —,3[7” (41a)
Py=yA\pq + & (41b)
I, = —a(l = App,. (41c)

The market conditions can be expressed in terms of supply and demand
by including the inventory carryover with production and inventory
carry-foward with consumption; thus,

Q,=C +1 (demand), (42)
Q=F+1_, (supply).
Substituting from (41) we obtain the system:
Q, = —[B + a(l —A))]p, (demand), (43a)

Q= [YA; — a1 =A)Ip 4 +&  (supply). (43b)

The coefficient in the supply equation is reduced while that of the demand
equation is increased. The conclusions are not essentially different from

10]f the production and consumption flows are negligible compared with the speculative
inventory level, the process approaches a random walk. This would apply to daily or weekly
price movements of a commodity whose production lag is a year (see Kendall 1953).
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TABLE 1

EFFECTS OF INVENTORY SPECULATION

General Approximation
Description Symbol Formula for Small «
1. Characteristic root Ay [eq. (36)] a/(B +v)
2. Standard deviation of o, [ Wol(1 — N2yV2g l(l - 5)0
prices B B
3. Standard deviation of 4 A0, —2 6
expected price BB+ )
4. Standard deviation of op (6% + YPAZoR)V? [1 " _"‘7_]0
output 2B(B + v)
5. Mean producers’ revenue EPp, yAfo? + Wyo? -—l(l _ ﬁ)a2
B B
6. Mean speculators’ revenue EL(poy — b)) a(l — )\1)2012, ao?
7. Mean consumers’ ECp, —Bo} —l(l - 2—“)02
expenditure B B
NOTES.—(1) o is the standard deviation of the disturbance in the supply function (306) with w, = | and w, = w, =
=0 W= — 18 + ol = AL

those of Hooton (1950). The change is always enough to make the dy-
namic response stable.

If price expectations are in fact rational, we can make some statements
about the economic effects of commodity speculation. (The relevant for-
mulas are summarized in table 1.) Speculation reduces the variance of
prices by spreading the effect of a disturbance over several time periods.
From figure 3, however, we see that the effect is negligible if « is much less
than the sum of 8 and y. The standard deviation of expected prices first
increases with @ because speculation makes the time series more predict-
able and then decreases because of the small variability of actual prices.
The variability of factor inputs and production follows roughly the same
pattern (cf. Kaldor 1939-40).

EXPECTED PRICES~. o>

o 100 0% et 0 @ 100 1t Kt o
,:‘,{ (RATIO SCALE)
Fic. 3.—Standard deviation of prices and expected prices as a function of a/(8 + y)

for B = v.
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CONSUMERS

1.0k

Fic. 4. —Mean income of producers and speculators, and mean expenditures of consumers
as a function of a/(8 + y) for B = v.

In figure 4 we see that mean income to speculators is always positive and
has a maximum value slightly to the left of that for expected prices. Pro-
ducers’ revenue and consumers’ expenditures both increase with a. Con-
sumers’ expenditures increase at first a little faster than the revenue of the
producers. The effect of speculation on welfare is therefore not obvious.

The variability of prices for various values of y/f is plotted as a function
of /B in figure 5. The general shape of the curve is not affected by values
of v/B differing by as much as a factor of 100. The larger the supply
coefficient, however, the sharper is the cut-off in price variability.

4. Rationality and Cobweb Theorems

It is rather surprising that expectations have not previously been regarded
as rational dynamic models, since rationality is assumed in all other as-
pects of entrepreneurial behavior. From a purely theoretical standpoint,
there are good reasons for assuming rationality. First, it is a principle
applicable to all dynamic problems (if true). Expectations in different
markets and systems would not have to be treated in completely different

y@:0.1
Y810
/82100

100 I e e e
1074107102107 1 10 102 10 10% 10% 10° 107
x I (RATIO SCALE)

Fic. 5.—Standard deviation of prices for various values of v/B as a function of «/8
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ways. Second, if expectations were not moderately rational there would be
opportunities for economists to make profits in commeodity speculation,
running a firm, or selling the information to present owners. Third, ration-
ality is an assumption that can be modified. Systematic biases, incomplete
or incorrect information, poor memory, etc., can be examined with analyt-
ical methods based on rationality.

The only real test, however, is whether theories involving rationality
explain observed phenomena any better than alternative theories. In this
section we shall therefore compare some of the empirical implications of
the rational expectations hypothesis with those of the cobweb “theorem.”
The effects of rational expectations are particularly important because the
cobweb theorem has often been regarded as one of the most successful
attempts at dynamic economic theories (e.g., Goodwin 1947). Few stu-
dents of agricultural problems or business cycles seem to take the cobweb
theorem very seriously, however, but its implications do occasionally ap-
pear. For example, a major cause of price fluctuations in cattle and hog
markets is sometimes believed to be the expectations of farmers themselves
( Jesness 1958). Dean and Heady (1958) have also suggested more exten-
sive governmental forecasting and outlook services in order to offset an
increasing tendency toward instability of hog prices due to a secular de-
crease in the elasticity of demand.

Implications of Cobweb Theorems
If the market equilibrium conditions of (1) are subjected to independent
shocks in the supply function, the prediction of the theory would be
i (44)
As a result, the prediction of the cobweb theory would ordinarily have the
sign opposite to that of the firms. This, of course, has been known for a
long time. Schultz noted that the hypothesis implies farmers do not learn
from experience, but added: “Such a behavior is not to be ruled out as
extremely improbable” (1958, p. 78).

The various theories differ primarily in what is assumed about price
expectations. The early contributors (through Ezekiel 1938) have assumed
that the expected price is equal to the latest known price. That is,

E(pt ipt—lypt__z, . ) = -

b=ty (43)
Goodwin (1947) proposed the extrapolation formula,
pr =101 — p(pyy — proa)- (46)

That is, a certain fraction of the latest change is added on to the latest
observed price. Depending on the sign of p, which should be between —1
and +1, we can get a greater variety of behavior. It is still the case,
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however, that farmers’ expectations and the prediction of the model have
the opposite sign.

A third expectations formula is much more recent. The adaptive expec-
tations model, used by Nerlove (1958), satisfies the following equation:

b= pi_y +py — pi0) (47)

The forecast is changed by an amount proportional to the most recently
observed forecast error. The solution of the difference equation gives the
price expectation as a geometrically weighted moving average:

pi=n> (1 —n)p,_; (48)
ji=0

Certain properties of the cobweb models are compared with the rational
model in table 2 for shocks having no serial correlation. Such comparisons
are a little treacherous because most real markets have significant income
effects in demand, alternative costs in supply, and errors in both behav-
ioral equations. To the extent that these effects introduce positive serial
correlation in the residuals, the difference between the cobweb and ra-
tional models would be diminished. Subject to these qualifications, we
shall compare the two kinds of models according to the properties of firms’
expectations and the cyclical characteristics of commodity prices and

output.

TABLE 2
PrROPERTIES OF COBWEB MODELS

Expectation Prediction Stability
b E(pp,-4,.) Conditions
(A) Classical (Schultz- bi — Yy V< B
Tinbergen-Ricci) B 1 1
—— <
1 —2p 3
. . Y Y
(B) Extrapolative (Goodwin) (1 — p)py_1 + PP ——pr L«
(-1<p <) A 1
™ 14 > a
p 3
. l : Y y 2
(C) Adaptive (Nerlove) 7 > (1 =) 1p ——pt R |
bt 8 B " m
01
(D) Rational 0 0 B+y#0
(E) Rational (with speculation) Ny by a>0
oA <Y B+y>0

Note.—The disturbances are normally and independently distributed with a constant variance.
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Expectations of Firms
There is some direct evidence concerning the quality of expectations of
firms. Heady and Kaldor (1954) have shown that for the period studied,
average expectations were considerably more accurate than simple extrapo-
lation, although there were substantial cross-sectional differences in expec-
tations. Similar conclusions concerning the accuracy have been reached,
for quite different expectational data, by Modigliani and Weingartner
(1958).

It often appears that reported expectations underestimate the extent of
changes that actually take place. Several studies have tried to relate the
two according to the equation:

pi=bp, + v}, (49)

where v; is a random disturbance. Estimated values of b are positive, but
less than unity (see, e.g., Theil 1953). Such findings are clearly inconsistent
with the cobweb theory, which ordinarily requires a negative coefficient.
We shall show below that they are generally consistent with the rational
expectations hypothesis.

Bossons and Modigliani (N.D.) have pointed out that the size of the
estimated coefficient, b, may be explained by a regression effect. Its rele-
vance may be seen quite clearly as follows. The rational expectations hy-
pothesis states that, in the aggregate, the expected price is an unbiased
predictor of the actual price. That is,

te=pi + 0, Epfv, =0, Ev, = 0. (50)

The probability limit of the least squares estimate of & in (49) would then
be given by

Plim b = (Var p°)/(Var p) < 1. (51)

Cycles
The evidence for the cobweb model lies in the quasi-periodic fluctuations
in prices of a number of commodities. The hog cycle is perhaps the best
known, but cattle and potatoes have sometimes been cited as others which
obey the “theorem.” The phase plot of quantity with current and lagged
price also has the appearance which gives the cobweb cycle its name.

A dynamic system forced by random shocks typically responds, how-
ever, with cycles having a fairly stable period. This is true whether or not
any characteristic roots are of the oscillatory type. Slutzky (1937) and Yule
(1927) first showed that moving-average processes can lead to very regular
cycles. A comparison of empirical cycle periods with the properties of the
solution of a system of differential or difference equations can therefore be
misleading whenever random shocks are present (Haavelmo 1940).

The length of the cycle under various hypotheses depends on how we
measure the empirical cycle period. Two possibilities are: the interval be-
tween successive “upcrosses” of the time series (i.e., crossing the trend line



TurEORY OF PRICE MOVEMENTS 21

TABLE 3

Cycricat. ProperTIES OF CoBWEB MODELS

Serial Mean Interval Mean Interval
Correlation between Successive between Successive
Of Prices, 7, Upcrosses, L Peaks or Troughs, L’
(A) Classical "= —% <0
(B) Extrapolative 7, = -0 2 L<4 2L <3
B+
(C) Adaptive _%7 < <0
(D Rational r, =0 L=4 L'=3
(E) Rational— n=A>0 L>4 3L <4

with storage

Nore.—The disturbances are assumed to be normally and independently distributed with a constant variance. Bandy
are both assumed to be positive.

from below), and the average interval between successive peaks or troughs.
Both are given in table 3, which summarizes the serial correlation of prices
and mean cycle lengths for the various hypotheses.!!

That the observed hog cycles were too long for the cobweb theorem was
first observed in 1935 by Coase and Fowler (1935, 1937). The graph of
cattle prices given by Ezekiel (1938) as evidence for the cobweb theorem
implies an extraordinarily long period of production (5-7 years). The in-
terval between successive peaks for other commodities tends to be longer
than three production periods. Comparisons of the cycle lengths should be
interpreted cautiously because they do not allow for positive serial correla-
tion of the exogenous disturbances. Nevertheless, they should not be con-
strued as supporting the cobweb theorem.
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Optimal Properties of Exponentially
Weighted Forecasts

John F. Muth

The exponentially weighted average can be interpreted as the expected
value of a time series made up of two kinds of random components: one
lasting a single time period (transitory) and the other lasting through all
subsequent periods (permanent). Such a time series may, therefore, be
regarded as a random walk with “noise” superimposed. It is also shown
that, for this series, the best forecast for the time period immediately
ahead is the best forecast for any future time period, because both give
estimates of the permanent component. The estimate of the permanent
component is imperfect, and so the estimate of a regression coefficient is
inconsistent in a relation involving the permanent component (e.g., con-
sumption as a function of permanent income). Its bias is small, however.

Forecasts derived by weighting past observations exponentially (i.e., geo-
metrically) have been used with some success in operations research and
economics. Magee (1958), Winters (in press),! and Brown (1959) have used
this approach in short-term forecasting of sales, primarily in inventory
control. Distributed lags, while not always arising from explicit forecasts,
have appeared in studies of capacity adjustment by Koyck (1954), de-
mand for cash balances during hyperinflations by Cagan (1956), the con-
sumption function by Friedman (1957), and agricultural supply functions
by Nerlove (1958). Its main a priori justification as a forecasting relation
has been that it leads to correction of persistent errors, without responding
very much to random disturbances.

Because exponentially weighted forecasts have been successful in a vari-
ety of applications, it is worthwhile finding the statistical properties of
time series for which the forecasting method would work well. The answer
would allow the range of applicability of the forecasting method to be

This paper was written as part of the project, “The Planning and Control of Industrial
Operation,” under grant from the Office of Naval Research.

1See also Holt et al. (in press, chap. 14).
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judged better and would ultimately lead to modifications when the condi-
tions on the time series are not met. The methods we will use are related to
those which have been moderately successful in control engineering.?

We shall consider only one estimation problem-—the possible inconsis-
tency in the regression coefficient of the forecasts because errors of meas-
urement may be present. The reader is referred to Klein (1958) and Koyck
(1954) for a discussion of other estimation problems.

1. “Adaptive Expectations” and Optimal Prediction

The exponentially weighted moving average forecast arises from the fol-
lowing model of expectations adapting to changing conditions. Let y, rep-
resent that part of a time-series which cannot be explained by trend, sea-
-sonal, or any other systematic factors; and let ¢ represent the forecast, or
expectation, of », on the basis of information available through the
(¢ — 1)st period. It is assumed that the forecast is changed from one period

to the next by an amount proportional to the latest observed error.
That is:

Yt =0ic1 + B — -1, 0<p<LL N

The solution of the above difference equation gives the formula for the
exponentially weighted forecast:

H=BS (1 =B Y 2)
i=1

Since the weights attached to prior values of », add up to unity, the fore-
casting scheme does not in this respect introduce any systematic bias.

Now, suppose that the realizations of the random process can be written
as some linear function of independent random shocks:

=8 + 2 Wik _i» (3)
i=1
the shocks being independently distributed with mean zero and vari-
ance o2
As long as the parameters w;, which characterize the random process,
are known, it is a relatively simple matter to find the expected value of p,
for any time period on the basis of previous outcomes. Suppose we wish to
find the expectation of y, given ¢,_,, &_,, &_5, - - - (i.e., the only informa-
tion lacking to give the value of y, exactly is the latest “shock,” ¢,). Then

%Statistical problems in engineering control are ably discussed in Laning and Battin
(1956).
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we simply replace ¢, by its expected value, which is zero. Therefore we
have:

Ji= E(yt Ist—la £ _ 56 3 ")

[+ <]
= > wig;
i=1

In order to relate the regression functions above to the expression for the
exponentially weighted forecast, we need to be able to write (4) in terms of
the observed variables y,_;, ¥,_,, - --. That is, we need to find the coeffi-
cients of the following function:

(4)

0

Yi= z Ui ¥ %)

ji=1

Substituting from (3), and rearranging terms, we obtain:

-]

yi= z Y (81—]' + z wifz—i—j)

j=1 i=1

. (6)
o i—1
—oe + S (ui S v,.wi_,.)e,_i.
=2 i=1

By comparing coeflicients of equations (4) and (6), we have the necessary
relation between the parameters, w;, associated with the latent shocks and

those, v;, associated with the observable past history of the process:

w, = v,
< : (7)
wizvi+zvjwifj, i =234, ..
i=1

In order to characterize the time series for which the exponentially
weighted forecast is optimal, we substitute the weights

vj = B(I - B)j—l, ] = la 2’ 3’ tee (8)

from equation (2) into equations (7). The result of the substitutions is the
system:

w, =B
. ks ) , (9)
w; =B — BT +BD (1 =By wy;, =234,
ji=1
It follows that
w, =8 for all ¢ > I. (10)

1



26 Joun F. MutH

Writing y, in terms of the independent shocks, as in equation (3), we
obtain:

n=&+8 2 & i (1)

i=1

The shock associated with each time period has a weight of unity; its
weight in successive time periods, however, is constant and somewhere
between zero and one. Part of the shock in any period, therefore, has a
permanent effect, while the rest affects the system only in the current
period.?

We have assumed that the forecasts given by equation (2) were for the
period immediately ahead. The best forecasts for all future periods, how-
ever, are the same. In order to prove this assertion, it is necessary to gener-
alize the previous results. Let y, ; represent the value of 3, r, forecasted on
the basis of information available through period ¢ (T is called the “fore-
cast span’). By an argument similar to that leading to equation (4), we
have the relation:

)’t,T = E(.yt+7'|8t) € 15 & 95+ )

(12)

o0
= 2 Wi r€ii-
i=0

However, we wish to express the forecast in terms of the observables y,,
Yi—1> Yi_2» **+, rather than the latent variables ¢, &,_;, &_5, ---. The
desired equation has the form:

Y1 = z UpiVi—j (13)
i=0
From a knowledge of the weights w, we need to find the coefficients v.
The appropriate relations, which are found in the same way as equa-
tions (7), are the following:

+"—21 i=0,1,2 .- 14)
Wipr = U U1,iWi—j> _
P T=123-

To find the coefficients of equations (13), substitute from (10) into (14) to
obtain the following system:

i-1

BIUT,i"'BzUT,j’ 1=0,1,2,3---, (15)
j=0

3Some ways in which the economic system might generate time series of this form is
examined in Muth (in press).
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Subtracting the conditions for i =4 — 1 from those for i =k (k =

1,2,3, --.), we obtain the difference equation:
v = (1 — B)DT,k—la k=123, .- (16)
Since, from equation (15), v, = B, we obtain the unique solution:
oy = B(1 — BY, k=012 ... a1

The forecast weights are therefore independent of 7, and the assertion is
proved. This result is due to the fact that all prior shocks have the same
weight, and that the forecasts only give an estimate of the permanent
component of the shocks.

2. Expectations with Independent Components

The same type of forecasting rule is appropriate if the permanent and
transitory components in each period are statistically independent rather
than perfectly correlated as in the preceding case. Let y, represent the
permanent component of », and 7, the transitory component, so that:

Y=+ 0, (18)

The transitory components are assumed to be independently distributed
with mean zero and variance ¢2. The permanent components are defined
by the relationships:

¢
I=dhate = 2 €;s (19)
i=1

where the ¢’s are serially independent with mean zero and variance o2.
The 7’s and ¢’s are also assumed to be independent (this assumption is not,
however, an essential one).

The forecasting problem, then, is to find the coefficients v,, v, - - - in the
equation:
yi= z Ui Vi (20)
ji=1

which minimize the error variance,
V=E(y -y~ (1)

The methods used in Section 1 are not appropriate for the independent
components because it is impossible to measure both the ¢, and the 7, from
the one set of observed variables. We can, however, proceed as follows.
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Substitute from equations (18)-(20) and write the forecast error in terms of
the weights attached to past observations:

i

€0 2 o0
V=of+o$,+oe22(l—20i) +o%20j2. (22)
j=1 j=1

i=1

Setting the derivatives of V with respect to v, equal to zero, we have the
following conditions on the optimal weights:

— 2 —_ —_
—év—k— = —203j:§k (l — E vi) + 2050, = 0, k=12 -... (23

i=1

Taking second differences of the conditions above to eliminate the long
summations, the optimal weights are the solution of the following differ-
ence equations:

a? o2

1 4+ —=& —p, =% 24

( +a$’)vl ) 0?' ( a)
2

ag
o (24 %o —na =0, k=23 (@4b)

n

The characteristic equation of the system above is

1 —APR o2
NI s

n

Because of the symmetry of equation (24b), the characteristic roots occur
in a reciprocal pair. Only the root less than unity, say A,, is relevant,
because the infinite sums in equations (22) and (23) would otherwise di-
verge. The relevant root may be written explicitly in terms of the variance
ratio as follows:

A 1+lof o, 1+lof 26)
1= = — — —_— .
20 o, 4 o2

The solution will then be of the form: v, = cA¥, where A, is the rele-
vant characteristic root and ¢ is a constant to be determined from equa-
tion (24a). Substituting from equation (25) into (24b), we find that
¢ = (I — A)/A,. The weights appearing in the forecasting formula would
therefore be the following:

o= (1 =AMLk =1,2,3 .. (27)

Note that the weights have the same form as those in equation (2) if
B =1 — A,. The forecast for the next period is the forecast for all future
periods as well because it is an estimate of the permanent component, 3,.
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If the changes in the permanent component are small relative to the
“noise,” then A, will be very nearly unity. The forecast then gives nearly
equal weights to all past observations in order that the transitory compo-
nents tend to cancel each other out. The forecasts then do not depend very
much on recent information because it says very little about the future. On
the other hand, if changes in the permanent component are large relative
to the noise, A, would be small so as to weight the recent information
heavily.

It is, incidentally, not necessary to assume that ¢, and 7, are uncorre-
lated. If E¢n, = o,, and Een, = 0 (t # s), it is only necessary to replace
the ratio 62/02 in equations (24)-(26) by ¢2/(0% + o,,).

3. Permanent and Transitory Components of Income

In the preceding sections we have characterized the time series for which
the exponentially weighted moving average equals the conditional ex-
pected value. The important feature is that the time series consists of two
random parts: one lasting a single time period, and the other lasting
through all subsequent periods. The structure therefore resembles the hy-
pothesis concerning permanent and transistory components of income,
advanced by Friedman in his study of the consumption function (1957).
The structure is not exactly the same, however, because Friedman inten-
tionally left the definitions of “permanent” and “transitory” somewhat
vague. We have had to be more specific in the definitions, according to
equations (18) and (19), although nothing in the analysis states how long a
“period” must be. Nevertheless, it appears that the exponentially weighted
moving average is an appropriate measure of permanent income if
Friedman’s other hypotheses are true.

A problem which may be raised at this point concerns errors of estimat-
ing the marginal propensity to consume because of inaccurate measure-
ments of the permanent component. Suppose that consumption depends
on the true value of the permanent component of income, on the assump-
tion that households can identify the two sources much better than is
possible from aggregate time series. The propensity to consume estimated
from the exponentially weighted moving average of income would then be
biased downward because of the errors of measurement. We will show,
however, that the bias should be small. The consumption model is:

¢ = oy, + 6, (28)

where ¢, is the consumption in the ¢th period, a the propensity to consume,
and §, the error term of the equation assumed to be independent of the
permanent component and its estimate.

The least-squares estimate of a (denoted by ) which results from using



30 Jonn F. MutH

the value of the moving average, y¢_ ,, instead of the true permanent com-
ponent, 3,, is

o= (2 w‘fﬂ)/ (me) (29)

Its probability limit is
Plim & = a Cov(3,,7¢,1)/ Var y¢, 4, (30)
as long as §, is not correlated with yf.
Assume that the process applies to the income of each household, with ¢

denoting the age of the head of the household starting from the beginning
of his working life.*

t
o=+ Zsi‘ (31)
i=1

From equations (20) and (27), ¢, ; may similarly be expressed in terms of
the independently distributed shocks:

t
Vi =1 —=A) Z M Y1k
k=1

(32)
t
= 2 [(1 =AM 'y + (1 = MDegya ]
k=1
The variance of 3¢, is therefore:
1 — A2 1 =N 1 — A%
Vary¢ , = (1 — A))? T o2 + (t — 2)\11—_)—\—— + A? T }\2)03
1 1 17 (33)

— >‘1 t\2| 42
—[t— 1 __Al(l _)\1) ]oe)

the latter equation arising from the dependence of A, on the ratio 62/02
according to (25). The covariance between 3, and »{,, may be similarly
expressed as:

CovFprten) = [1 = 20 = 20|02 (39
1
The asymptotic bias, according to equations (30), is determined by the
ratio of (34) to (33). Since this ratio is very nearly unity for moderately
large values of ¢, it appears that this kind of measurement error of the
permanent component would introduce very little asymptotic bias in the
estimate of the propensity to consume.

#This uses one of the ideas of Modigliani and Brumberg (1954) in their approach to the
theory of the consumption function.
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A Note on the '‘Accelerationist’”’ Controversy

Thomas J. Sargent

Recent empirical tests of the Phelps-Friedman “accelerationist” view of
the Phillips curve are marred by the fact that their validity is predicated
on the adequacy of a very suspect maintained hypothesis.! Those tests all
involve obtaining estimates of the notorious parameter “a” in the follow-
ing equation designed to explain the movement of wages over time:

Aw,

—=am + f(U, ---) +¢. (1)

Wy
Here 7, is the public’s anticipated rate of commodity price inflation, w, is
the wage rate at time ¢, U, is the unemployment rate, and f(U,, - - -) is the
short-run Phillips curve with 9f/3U <0 and with the sequence of dots
representing a list of other variables; ¢, is an unobservable random varia-
ble. In order to implement (1) empirically, an observable proxy for 7, must
be obtained. Almost always this requirement is filled by using the Fisher-
Cagan? equation

L, 9,20 ()

1

mo AP
"=

i=0 i-1

where P, is the commodity price level at time ¢, and the v;’s are parameters.
Substituting (2) into (1) yields the equation that has typically been esti-
mated:

Aw m AP, _.
w t:“z”iph'*'f(Ut"")“Hz- (3)
-1 i=0 t

—-i-1

An estimated a of unity (or close to unity) is taken to confirm the Phelps-
Friedman “accelerationist” position, while an « markedly lower than
unity is taken to imply that there is a meaningful long-run trade-off be-

1Examples of recent empirical work on the matter are papers by Gordon (1970), Cagan
(1968), Solow (1968), and Tobin (1968).

2See Fisher (1961) and Cagan (1956).

{ Journal of Money, Cred:t, and Barking, 1971, vol. 8]
© 1971 by The Ohio State University Press. Reprinted by permission
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tween wage inflation and the unemployment rate.? Empirical investiga-
tions of the accelerationist hypothesis have focused on estimating « in (3).

Notice, however, that fitting a regression like (3) only permits estimating
(m 4+ 1) of the (m + 2) parameters w, vy, vy, - - -, v,,. That is because the
weighted sum of current and past rates of inflation contains only (m + 1)
terms. Thus, in order to identify a, or any other of these m + 2 parameters,
some extraneous information must be imposed on those parameters. Al-
most always, the constraint that has been imposed is that the distributed
lag weights in (2) sum to unity:

m

z vi = 1. (4)
i=0

The quality of the estimates of « obtained is obviously predicated on the
adequacy of this restriction. Apparently, the restriction has been justified
by the following type of argument. Suppose that the rate of inflation
increases from zero, which has been its value for a long time (more than
m + 1 periods), to one percent per annum, staying there indefinitely. Then
it is reasonable to expect that eventually people will catch on and expect
inflation to continue at one percent per annum. This is taken to imply that
the weights in (2) sum to unity.

It is certainly reasonable to expect that a sustained, constant inflation
sooner or later would be fully anticipated. But this consideration is of very
little use in producing a reasonable restriction to impose on the 2,’s of (3)
for the purposes of empirical estimation; for during the periods used in
estimation, inflation was never as sustained as is imagined in the mental
experiment described above. That experiment leads us to deduce a restric-
tion on the weights in (3) by assuming a time path for the inflation rate
that bears little resemblance to the path that inflation has actually fol-
lowed in the past. This is an important shortcoming because what form of
expectations generator is reasonable depends on the actual behavior of the
variable about which expectations are being formed.* When searching for
an identifying restriction on the sum of the weights in (3) to be used in
empirical work, it therefore seems most appropriate to ask what sort of

3This interpretation of a flows from the following argument. Suppose that commodity
price inflation is generated via the “mark-up” equation (a) Ap,/p, ., = Aw,/w,_, + g(---)
where g( - - -) represents some unspecified influences on the inflation rate. In the long run, any
sustained rate of inflation will be fully anticipated, so that # = Ap/p_, = Aw/w_, + g(- - ).
Substituting the above expression for 7 into equation (3) yields the long-run Phillips curve
Aw/w_) = a(dw/w_ ) + ag(---) + U, --) or Aw/w_ ;= 1/(1 — AU, -- S+ a/
(1 = @)+ g(- - ). Theslope of the long-run Phillips curve, which indicates the extent to which
there exists a persistent trade-off between wage inflation and unemployment, equals
1/(1 — a)(@f/0U). The slope of the long-run Phillips curve approaches negative infinity as «
approaches unity from below.

*This point has been emphasized by Nerlove (1967).
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expectations-generating scheme would be reasonable in light of the actual
behavior of the inflation rate during the period being studied. In doing
this, it seems natural to adopt assumptions about the evolution of the rate
of inflation that are compatible with equation (2) being a “rational” (more
precisely a minimum-mean-squared-error) generator of expectations. As is
well known, one-period-forward expectations formed via (2) will be mini-
mum-mean-squared-error forecasts if the actual rate of inflation evolves
according to the (m + 1)th order autoregressive process

AP, Z AR,
_RinZOv,-P——'Fu,H, (5)

t—i—1

where u, is an independently, identically distributed random variable with

E(y,) =0,
o2 t=s
Bu)={7* | z

Now the configuration of distributed lag weights in estimates of equation
(3) will be plausible, or “rational” in the sense of Muth (1961), if they are
consistent with the actual process generating inflation, which we approxi-
mate by equation (5). Hence the most reasonable restriction to impose on
the sum of the weights is not that it necessarily equals unity, but that it be
compatible with the observed evolution of the rate of inflation.

It is apparent that as long as the inflation rate can be approximated as
a covariance-stationary stochastic process and the v;’s are nonnegative, the
v;’s in (5) must sum to less than unity.> Were the weights in (5) to sum to

5Consider the (m 4+ 1)th order autoregressive process

P =0 0t s T U T (6)

where u, , is an independently, identically distributed random variable with mean zero and
finite variance, and v; >0, t =0, ..., m. We transform (6) into a first-order system by
defining the (m + 1) X 1 vector x

X1y Yi-m
Xot Ft-m+1
Xi = = N
J(m+1,1 yl
the (m + 1) X (m + 1) matrix 4,
0 1 0 0
0 0 1 0
A=
Um Um—t Y%
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unity (or close to unity) the inflation rate would display extremely strong
serial correlation or “drift.” By this we mean that the spectral density of
the inflation rate would display Granger’s “typical spectral shape” (1966),
having infinite {(or very great) power at zero frequency. On the other hand,
a relatively drift-free inflation rate would require that the weights in (5)
sum to considerably less than unity.

Now even the most casual glance at the price history of the United
States makes it clear that the inflation rate has not been a strongly drifting
variable. The spectral density of the inflation rate for most U.S. data does
not possess Granger’s typical spectral shape, instead being quite flat or
“white.” Thus, the inflation rate has ordinarily displayed relatively little
serial correlation, and would certainly be very poorly modeled by a Mar-
kov process with the lag weights summing to unity. This means that im-
posing restriction (4) amounts to supposing that the public’s method of
forming expectations of inflation was very irrational in the sense of being
widely inconsistent with the actual inflation process.®

We conclude that imposing (4) on U.S. data is likely to lead to serious
overestimation of the individual distributed lag weights, the 2,’s, and to
serious underestimation of «. It is not surprising, therefore, that most empir-

and the (m + 1) X 1 vector B,

O

0
1
Then (6) can be written as the equivalent first-order system
X4 = Ax, + By, ™

Equation (7) describes a stationary system if and only if the maximum eigenvalue of 4 is less
than unity in absolute value. Now since 4 is an indecomposable, nonnegative matrix, its
maximum eigenvalue, say A\*, satisfies the inequalities:

e . 4 LA Sy
mim Z 4; <N < miax Z i unless min Z 4, max Z i
j j i i
in which case
. . _ -
N = min S, 4,y = e 34,
i j

(See, e.g., Lancaster 1968, p. 310.) It follows that (7) will be stationary only if E7%, v, is less
than unity.

SA somewhat deeper point can be made by extending the argument advanced in the text.
Notice that equation (3) and equation (a) in note 3 form a system that has been assumed to
govern the evolution of Aw,/w,_; and AP,/F,_, over time. But the model has been con-
structed in such a way that the expectations of the public have been assumed not to be
identical with the model’s predictions of subsequent rates of inflation. The model is “irra-
tional” in the sense of Muth (1961).
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ical studies have estimated a to be markedly less than unity. Unfortu-
nately, as usually interpreted, those estimates tell us virtually nothing
about the validity of the accelerationist thesis.”
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m

- -
Y = EGpglx, g, o) = Z VX
i=0
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m—1
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m—1 m
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Distributed Lags and Optimal Investment Policy

Robert E. Lucas, Jr.

The literature on optimal investment policy for a single firm has grown
rapidly in recent years.! It is now widely agreed that a satisfactory micro-
economic theory of capital should account not only for the determination
of the firm’s “desired” capital stock, but also for the adjustment process by
which this stock is attained (or approached). There are a number of plausi-
ble reasons why one might expect a present value maximizing firm to
stagger its adjustment to a new equilibrium level of capital stock (assum-
ing an equilibrium level exists) among which should be listed costs of
accumulation which vary with its rapidity, gestation lags between initia-
tion and completion of investment projects, lags between installation of
capital equipment and its “decay,” and uncertainty as to future demand
and cost shifts. There is as yet no “general” theory of investment which
analyzes simultaneously all of these factors: research to date has consisted
of the singling out of one or another of these effects and the analysis of the
structure of the optimal investment plan which results. The present paper
is another step in this series of “partial analyses” of the investment deci-
sion. In particular, it is an attempt to determine the firm’s optimal invest-
ment plan in the presence of gestation lags and under a wide variety of
assumptions on depreciation patterns. The analysis is conducted under the
assumptions of certainty and perfect markets used in Eisner and Strotz
(1963) and Lucas (in press). In order to maintain contact with empirical
investment studies, the discussion of each model concludes with the differ-
ence equation in gross or net investment which provides the natural dis-
crete time approximation to the continuous optimal plan. It is found that
with appropriate assumptions on lags and adjustment costs, any distrib-
uted lag investment function currently in use in empirical work can be
given as sound an optimizing basis as that now enjoyed by the first-order
“flexible accelerator.”

I wish to thank Michael Lovell, John Muth, and Richard Schramm for their helpful
criticism. [This paper was written in 1965. No attempt has been made to update the list of
references to include the many more recent papers which bear on the subject of this paper.]

1E.g., see Arrow, Beckmann, and Karlin (1958); Eisner and Strotz (1963); Lucas (in press).
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1. Statement of the Problem

Sections 2, 3, and 4 of this paper will be concerned with detailed examina-
tions of the optimal investment policy for a single firm under several alter-
native sets of assumptions about production possibilities, depreciation,
and gestation lags. In order to clarify the relationships among these vari-
ous models, it will be helpful first to formulate a problem general enough
to include those treated below as special cases.

Consider a firm whose receipts at time ¢ depend on its capital stock x(¢),
its gross rate of investment (purchases of capital goods) y(¢), its net rate of
investment x(¢), and the rate at which it is initiating new projects z(¢). The
presence of x(¢) and y(¢) in a “receipts function” is, of course, standard,
since the former provides productive services and the latter requires direct
outlays. Insofar as production is disrupted by the installation of new capi-
tal goods, either %(¢) or »(¢) or both may influence current receipts by
inducing variation in output from a given x(¢) input, or, in other words,
there may well be a cost in terms of output foregone of a rapid expansion
of capital stock. Finally, if initiating investment projects involves research
and planning in the search for and choice between proposed projects, an
increased initiation rate will entail a diversion of resources from current
production and a fall in output per unit of capital input. These considera-
tions suggest a receipts function R[x(¢), %(¢), y(t), 2(t)] with a positive mar-
ginal productivity of capital, negative marginal productivity of gross in-
vestment, and negative or zero marginal productivities for #(¢) and z(¢).
Throughout this paper we shall deal with a receipts function with these
properties.

To complete the characterization of production possibilities, we relate
initiated projects to gross investment, and investment to capital stock, as
follows:

50 = [ fe =50, (1)

t
20 = [ gt =)z ds, (2)
-T
Assume that f(u) is a piecewise continuous, nonincreasing function, with
f(0) =1 and f(o0) = 0, and that g is piecewise continuous with

f g(u)du = 1.
0
Note that any stronger restriction on f rules out such a popular deprecia-
tion hypothesis as f(u) = 1 for 0 <u < 7 and f(u) = 0 for u > 7. Simi-
larly, a stronger restriction on g would rule out the most commonly treated
case of zero gestation time: g(0) = 1, g(u) = 0 for « > 0. Finally, note that
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x(t) can be related directly to initiations by:

t

xm:waﬂMﬂ@ (3)

—7
where

u
ww) = [ f@)g —v)
0
is the convolution of fand g.

Given (1) and (2) [or (2) and (3)] together with an “endowment” z(s),
— T < s < {, of initiated projects it is evident that x(s), x(s), y(s) and hence
R(s), s > ¢, are determined by the firm’s choice of z(s), s > ¢ We shall
further restrict the function R by assuming that if z¥(s), i = 1,2, s > ¢, are
two investment plans, with associated receipts streams Ri(s), then for

0<8<1,
R[02Y(s) + (1 — B)z%s)] > ORY(s) + (1 — O)R¥(s)

for any 2(s), s > (.

Next suppose that the firm obtains funds on a perfect capital market at
a constant rate r, and that the receipts function R does not shift with time.?
We shall then regard the firm’s problem as that of initiating projects z(¢),
t > 0, so as to maximize its present value, given by:

V) = [ e RG gy 2)
0

subject to (1) and (2) and given an initial backlog of initiated projects z(i),
— T <t < 0. We assume that R is so restricted that a maximum for V(0)
exists for any initial backlog, so that there will be at least one optimal
choice for z(¢), t >> 0. In this event, there will be a unigue optimal z(t) path,
in view of the concavity of R as specified in the previous paragraph.

The difficulty with this formulation is that, in the absence of additional
restrictions on R, f, and g, it does not permit a very useful characterization
of the optimal investment path. A direct variational approach (i.e., a com-
parison of a proposed optimal path z°[¢] with z°[¢] + ev[t], & “small”) leads
to an integral equation, or marginal equality involving discounted costs
and returns, which sheds little light on the character of the optimal plan.
For this reason, the remainder of this paper will treat the problem un-
der alternative sets of simplifying restrictions. The restrictions we shall
employ fall into two quite different categories. In Section 2 it is as-
sumed that output depends only on x(¢) and x(¢), so that R(f) becomes
R(t) = pF(x, x) — gy, where p and ¢ are the (constant) prices of output and

2The reader should be aware that the restriction that R does not shift over time is a strong
one. For example, if prices enter into the function, this restriction requires that the firm treat
the current (¢ = 0) price as permanent, and that future changes be wholly unanticipated.
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capital goods, respectively. In this case, the linearity of V(0) in y(¢), to-
gether with the linearity of (2) and (3) in z(¢) permits the conversion of the
problem into a unconstrained maximum problem in which the integrand
depends only on x(¢), x(t), and ¢. This conversion can be carried out with
no further restrictions on f and g.

If R is not linear in y(¢) and z(¢), it will not be possible to convert the
maximization of V(0) into a problem involving x(¢) alone. Hence, to solve
the problem for more general R functions, one must restrict fand g. This is
done in Section 3, where these functions are assumed to possess rational
LaPlace transforms. With this restriction, it is shown that the integral
constraints (1) and (2) can be expressed as equivalent systems of differen-
tial constraints, and that with the constraints in this form the calculus of
variations may be employed to characterize the optimal paths.

2. Solution When Receipts Are Linear in Gross Investment

In this section, we treat the problem stated in Section 1 with a receipts
function of the form R(t) = pF[x(t), x(¢)] — q(¢) where the prices p and ¢
do not vary with time. The firm’s present value is then:

Vo) = [ RO d= [ e[ pF(x %) — gp] d
( 0
Note that V(0) is the weighted sum of the LaPlace transforms of F and y.
We shall use the constraints (2) and (3) to obtain an expression for the
transform of y(¢) which involves only x(¢).

The right side of (3) can be written as the sum:

t 0
x(t) = f w(t — s)z(s)ds + f w(t — 5)z(s) ds, 4)
0 ~T

where the first term is the convolution of w and z and the second is a
function of time, m(t) say, which cannot be affected by decisions made
subsequent to time 0. Applying the convolution theorem of LaPlace trans-
forms to (4) gives:

%

f e"ix(t) dt = L(x) = L(w)L,(z) + L (m)
(4]

- ®)
= L)L ()L,) + L,(m).
Operating similarly on equation (2) gives:
L(y) = Lg)L,(z) + L,(n), (6)

where
0

n(t) = f o(t — s)z(s) ds.

-7
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Eliminating L (z) between (5) and (6) gives:
1 L(mL,(f) — L(m)
= L(x) + L r .
Lo L)

Since only the first term on the right of (7) varies with the firm’s choice of
z(t), t > 0, the z(¢) path which yields a maximum to ¥ (0) will be the same
as that which maximizes

L.(»)

%

W =f e‘"[ F(x, %) — 7 . t].
IR T b XVi
Thus, under certain conditions, the original problem with integral con-
straints is easily converted to a classical problem in the calculus of varia-
tions. It should be noted, however, that this conversion will be useful only
if the choice of x(¢) is unrestricted, which requires that the choice of z(t) be
unrestricted and that g(0) > 0 (i.e., that an initiated project has some of its
effect immediately). If these conditions do not hold, x(¢) will be con-
strained and, further, the constraint at ¢ will depend in a complicated

fashion on decisions made prior to ¢.

In the event that #(¢) is unrestricted, the problem of maximizing W(0) is
essentially identical to the problem analyzed in Eisner and Strotz (1963)
and Lucas (in press) and requires no detailed discussion here. It can be
shown that the optimal investment plan can be approximated by the
stable, first-order flexible accelerator, with the stationary or desired capital
stock given implicitly by

q
L,(f)

The left side of (8) is the stationary marginal value product of capital. The
second term on the right of (8) is the marginal cost, in terms of value of
output foregone, of increasing the net accumulation rate from 0 to 1 unit.
The first term on the right is an expression for the user cost or rental price
of capital. With declining balance depreciation at a constant rate d, it
reduces to ¢(r + 4); with “one hoss shay” depreciation with lifetime S, we
have q/L(f) = qr(1 — ¢7™)~1. User costs for other depreciation schemes
can easily be generated from a table of transforms.

Another feature of the converted problem which is worth noting is the
absence in the integrand of W(0) of the gestation lag function g. In other
words, the nature of the gestation lag will have no effect on the optimal
investment plan (although it will affect the value of the firm, given adop-
tion of the optimal plan). This implausible result can be traced to the
absence, in the formulation of the problem, of any penalties to the firm for
initiating “too many” investment projects. An increase in product price,
for example, will induce the firm to initiate a sufficient number of projects

PF(x%,0) = — 1pF3(x°, 0). (8)
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to put net investrhent immediately onto the optimal flexible accelerator
path. As these projects “come due,” it may be necessary to initiate a large
volume of negative investment to remain on the optimal path, but how-
ever wild the fluctuation in initiations may be, it will have no effect on the
firm’s present value. To summarize, gestation lags, in the absence of appro-
priately specified initiation costs, will not affect the investment expendi-
tures of an optimizing firm.

3. Solution When Lag Functions Have Rational Transforms

In the preceding section, the investment problem was examined under
very general assumptions about the nature of the lag functions fand g, but
under rather severe restrictions on the way in which initiated and com-
pleted investment projects affect the receipts of the firm. In this section, we
require that fand g have rational LaPlace transforms, which will permit
the conversion of the integral constraints (1) and (2) into a finite number
of differential constraints. Once this conversion is accomplished, a much
richer variety of problems can be handled by well-known variational tech-
niques.

In order to permit the argument to proceed in the simplest way possible,
we shall treat in detail a highly simplified problem in which gestation lags
are excluded (so that p[¢] = z[t] = gross investment) and the receipts func-
tion takes the form R(?) = rF[x(¢)] — C[»(?)], where F and C are quadratic
production and investment cost functions, respectively, and F’ >0,
F” <0,C" >0, C” > 0. In fact, as will be noted at various points below,
the methods used can be applied as well to the general problem posed in
Section 1, provided only that fand g have rational transforms.

Assume, then, that the transform of the depreciation function ftakes the
form:

(s _ P06
L(f) = fo Ot = o,

where s is any complex number with nonnegative real part, and where:

Ps)=po+ b5+ -+ + ppyps™!
Q) =go+ g5+ -+ + qn—lsnnl + 5™

Without loss of generality, it is also required that £ and Q have no com-
mon roots. Functions fwhich satisfy this restriction can be written as a sum
of terms like A(¢)e=*, where A(¢) is a polynomial in ¢ In this application,
[is bounded, so that the real part of the parameter « must be positive. This
restriction is considerably more stringent than the “smoothness” assump-
tions typically used in economic theory, but for the purposes of applied
economics, it is essentially vacuous. While it rules out such familiar hy-
pothests as straight-line or “one hoss shay” depreciation (which were, of
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course, themselves introduced as approximations) it is compatible with
any observed value-decline or survival curve.

The utility of the restriction for our purposes lies in the fact that it
permits us to regard the constraint (1) as the solution for x,(¢) of a system
of n linear differential equations in x,(¢), . . ., x,,(t).? More precisely: there is
exactly one differential equation system of the form:

XN=x,+by,i=1...,n—-1,

n
)&n = z a;_1%; + bn,y (9)

i=1
(=T)=0,i=1,...,n

which yields as the solution for x,(t):
¢
(1) = f ft — 5)y(s) ds. (10)
Yot

For the proof of this statement, and for subsequent arguments, it will be
useful to develop some additional notation. Denote the n X n (companion)
matrix of coefficients of the x; in (9) by 4,(0), and the matrix [4,(0) — A7]
by Ay(A). Denote by 4;(A),; = 1, ..., n — 1, the submatrix of 44(A) ob-
tained by deleting the first j rows and columns. Then for j =0, 1, ...,
n — 1 the characteristic polynomial of 4,(0) is

det 4;(A) = (=1)"7la; + a; A + - -+ + g, AV + AVT]
= (=1 7g(A),

where the second equality defines g,(A), ..., g,_,(A). It is convenient to
define g, (A) = 1.

With this notation established, we may proceed with the proof. Without
loss of generality, assume that 7" = 0 (since the system can always be put
in this form by a change in the time variable). Let L (x;) be the transform
of x;(¢) and L (») the transform of y(¢). In matrix form, the transformed
system (9) is Ay(s)L,(x) = —bL (p), where L (x)= col[L(x;}] and
6L (») = col[b,L (»)]. The first row of the inverse of A(s) is the row vector
whose jth element is —g,(s)/gq(s). Hence the transform of the solution for
x4(t) is:

n

) g(:)
L =L b, ==,
s(xl) x(y)% lg()(s)

3The notion of using the rational transform assumption to permit the conversion of an
integral characterization of a distributed lag into a differential description has been ex-
ploited, in the discrete analogue, by Jorgenson (in press). The proof, which is given below,
that this conversion is legitimate is essentially an adaptation of arguments associated with
standard treatments of linear differential equations using LaPlace transforms. See, e.g.,
Widder (1961, chap. 14).
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The solution for x,(t) is therefore:
¢
OES WA ERIOrs
0

where L (f*) = Z7_, b,[g,(5)/g4(s)]- It remains only to show that there is a
one-to-one correspondence between the coefficients #;, ¢; of L (/) and the
coefficients a;, b; of L ( f*) such that L (f) = L(f*). This correspondence
isgivenbya, = ¢, fori =0,1,... n —1;b, =p,_ 1,040, ; + b, = p,_,,
by e b gy + T, =Py
The problem of the firm, stated at the beginning of this section, may
now be restated in what we have shown to be the equivalent form:

max V(0) = [ e {(pFlx,(0)] — CIH()]} b,

y{t)

(>0 0
subject to
(1) = 40 (1) + &(1) (1)
(where [11] is [9] in matrix form) and given x,(0), ..., x,(0). Of the n
“state variables” x,(t), ..., x,(t), only the first has a natural economic

interpretation as the level of capital services at time ¢. The remaining
n — 1 stocks are other weighted integrals of the initial endowment y(s),
—T < 5 <0, of capital goods, and may be regarded as “auxiliary capital
measures.” It has long been recognized, of course, that it is not in general
possible to summarize all the relevant information about the endowment
»(s) in a single capital measure, so that the novelty of this approach lies not
in the use of more than one capital measure but rather in the effort to
define these measures exactly.

To develop the necessary conditions for a maximum of V(0), form the
Lagrangean expression

Hxp, oo x, AL A0, 0) = e F(x) — C(p)

+ _z‘i)\i(ii - E a;x; — by )],
iz i=1

where (a;;) = 4,(0). Any optimal path must satisfy the Euler-Lagrange
conditions, given, after some simplification, by (11) and

0=C+ DN (12)
i=1
0 = F'(x,) + agh, + 1A, — A\, (13)

O = _Ak—l + ak—lAn + rAk - Ak - Xk’ k = 2, 3, [N (N (14)

4The values of x,(0) ..., x,(0) are determined by (9), given x(—T), ..., x,(—T) and
2(8), =T <s<0.
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together with the endpoint conditions:

lim e\ () =0,i=1,...,n (15)

To derive the implications of equations (11)-(15), we proceed in three
steps. First, a stationary solution is found, and the effect of changes in the
interest rate on the stationary levels of capital services and gross invest-
ment is determined. Secondly, this stationary solution is shown to be
stable, and the unique optimal investment plan is determined explicitly.
Finally, the distributed lag gross investment function which approximates
the continuous solution is determined.

Denote by (11°)-(14% the system of equations obtained from
(11)-(14) by setting all time derivatives equal to zero. We seck a solution
x%, A, »0 to this system of 2r + 1 linear equations. From (14%) A;, j = 1,
..., n — 1is obtained as a function of A:

)\j = )\”g]-(r).
From (13%:
F'(x)) = —aph, — 1\
= —ag\, — A, g4(r)
= ~ A go(r)-
From (129):

C'(y)=—A\, z b;g;(r)
i=1

’ = gi(’)
= F (xl) izl bz%

or:

; c'(r)

Flxy) = S0 (16)
L,(f)

A second relation between the stationary values of » and x; is obtained

from (11°):

=L =5 " fw) du. (17)

It is easily seen that if x0 and »? are the unique solutions to (16) and (17),
dxY/dr < 0 and &°/dr < 0.

To obtain the general solution to (11)~(14), we first use (12) to eliminate
() from the system, replacing y(¢) in (11) with:

1

»(t)y =»° — o Z b [N (2) — AD].
i=1
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Then (11), (12), and (14) constitute a homogeneous system of 2n linear
equations in the variables x; — x? and A; — A

=l el = e Zaolh il oo

where B is the n X n matrix whose ¢, j-th element is (b;;)/C” and C is the
n X n matrix with F” in the upper left corner and zeros elsewhere. We wish
to find the 2n roots of the characteristic polynomial P(g) = det (4 — ¢I)
associated with this system.

Expanding det (4 — ¢/) by the cofactors of the first column, we find
that P(q) = Py(q) + P,(q), where

Pi(g) = det Ay (q) +detdy(r —q) < (=1)"
= (—1)"go(9)8o(r — ),

and P,(q) is F” times its cofactor. Expanding the cofactor of " by the
cofactors of its first row one finds, after lengthy calculation, that

’7

P = (10 | 2 e[ S - 0]

Hence the roots of P(g) occur in n pairs: if ¢ is a root, so is r — ¢g. We now
wish to show that no root of P(¢q) has a real part lying in the closed interval
[0,7]. To do so, we proceed by contradiction.

The integral L,(f) converges for all complex s with nonnegative real
parts, which implies that the roots of gy(¢) all have strictly negative real
parts.” Hence if ¢° (and thus also r — ¢°) is a root of P(g) with real part in

[0, ], we have gy(g®)go(r — ¢%) # 0, and

0 = P = gaVatr — X— 111 = S LonL, D] 19)
Since F”’ < 0 and C” >0, (19) requ1res that the product L o(f)L,_,o(f)
be real and negative. For complex ¢° = ¢, + #g,, ¢, and ¢, real we have

© ©

Lo(f) = [ evtcos@t)f@0)dt +i [ et sin (g0)f (),
0 0

and similarly for L,_ o(f). Multiplying the two transforms expressed in
this form, an expression for the real part of the product is obtained which
may be regarded as a function of ¢, for fixed ¢,. Examination of this
function shows that it takes the positive value L, (f)L,_, (f) when ¢, = 0,
and further that its derivative with respect to ¢, 1s zero everywhere. Hence
¢q° cannot satisfy (19) and is not, therefore, a root of P(g). We conclude that
the matrix A of the system (18) has 1 roots with negative real parts and n roots with
real parts exceeding r.

Recall that L (/) = 30_, b;[g,()]/[go(0)]}
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To write out the general solution to (18), let
ro[ln T
Ty, Ty
where T;; are n X n blocks, be the nonsingular matrix such that:

74T = [01 32]

where J; is the n X n Jordan matrix whose diagonal elements are those
roots of A with negative real parts and J, is the Jordon matrix correspond-
ing to the roots with positive real parts. The general solution to (18) is

then:
[x(t) — xo] _ T[e”l O] T_l[x(O) — xo].
Aty — A° 0 etz A0) — A°
The initial values x; (0) are determined by gross investment prior to time 0;

A(0) is yet to be determined. Letting 79, i, 7 = 1, 2, be the blocks of 77,
the solution for A(t) is

A1) = A0 + Tyt (TH{x(0) — x°] + T2[A(0) — A9))

+ Types( TH[(0) — x%] + TA(0) — AY]).

If the necessary conditions (15) are to be satisfied, it is evident that the
second term on the right of (20) must be zero, since any nonzero compo-

nents will move away from zero at exponential rates exceeding r. This
requires that

(20)

A) — A = — (T2 1T2x(0) — xY].

Hence, observing that [T — T¥(7T22)T?1] = T7l, the unique optimal
paths for A(t) and x(¢) are:€

A(t) = X0 + Tyet THx(0) — x°], 21)
x(t) = x0 + Ty, e ' T7Hx(0) — x]. (22)

To develop the implications for observed investment behavior of the
solutions (21) and (22), three further steps are needed. First, (21) and (22)
must be replaced by discrete time analogues or approximations. Second,
provision must be made for changes over time in the determinants of x°

SEquations (21) and (22) are asymptotically valid approximations to the optimal path even
if Fand C are not quadratic. In the nonquadratic case, (18) is regarded as a linear approxima-
tion to the true, nonlinear system obtained from the necessary conditions. Equation (20)
cannot, however, be treated as an approximation to the general solution of this nonlinear
system, since the matrix 4 has n positive roots. Hence, in the nonquadratic case, the condi-
tions (15) cannot be used as above to rule out nonoptimal paths which satsfy (11)-(14).
Nevertheless, (21) and (22) are valid approximations since they approximate a path satisfying
(15) and the uniqueness of the optimal path assures that there is only one such path. For a
fuller treatment along these lines, see Lucas (in press).
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and A° (in this case, the rate of interest). Third, the solution must be
expressed in terms of gross investment only, since, in the absence of prior
information on the depreciation function, no other variable involved in
the problem can be observed.

In order to analyze the effects of interest rate changes, we adopt the
convention that such changes occur at discrete points in time, one unit
apart, that these changes are unanticipated, and that after a change the
firm behaves as though it knows that the new rate will be maintained
forever. We shall “measure” capital stocks at the beginning of a period and
all other variables at the end of a period, so that x and A? will be functions
of the rate 7, which has prevailed over the preceding one period. Note also
that in considering the discrete case we take into account the effect of
interest rate changes on x° and A? while ignoring the effect of these changes
on adjustment speeds. With these conventions established, define R =
T,,¢1T1l and § = T, e/1T1l, and replace (21) and (22) with:

x,01 = Rx, + [I — R)x%r), (23)
N = N(r) + Sl — 2%, (24)
An equivalent form for the difference equations (23) is:

pﬂxt+7l + pn—lxt+7l—'1 + -+ plxt+1 + poxt (25)

= ﬂ—lx?+ﬂ—1 + o+ le?+1 + UOxtO’

where (—1)"Z2_qp;q%(p, = 1) is the characteristic polynomial of R, and
Uy = (011 + pjyeR + - + pp (R"72 + RPIT1NI — R)

forj =0,1,...,» — 1. Note that if ¢, . . ., g, are the negative roots of 4,
then ¢%1, . . . | ¢% are the roots of R, so that the difference equation (25) (or
[23)) is stable. Further, we have

n—1 n
z U, =1 z ;- (26)
j=0 i=0
From the discrete version of (12) and from (24):
1 n
J—op = - Z bi(Ayy — Al = ¢'(x — 1), (27)
i=1
where ¢’ = —1/C"(b,,...,6,)5 is a 1 X n vector of constants. Then from

(23) and (27):

n—1

n n
z PiVpys = z Pid e = PaC'xlpy + Cl[z U, — piI)x?+i]' (28)
i=0 i=1

1=0
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From (119), each x% can be obtained as a constant times y?, say x? = ky?,
& = col(k;). Then combining terms on the right of (28), the coefficient of
i =0,1...,n— lisp, + ¢/(U; — p;I)k and the coefficient of y, , is
p, — pyc’k. Using (26), one finds that these n + 1 coefficients sum to
27_.p;- Finally, since 30 is a linear function of 7,, we obtain the gross
investment function:

n n—1
Yitn = 0o + 2 Bireps — 2 BiJv1- (29)
i=0 i=0

The ratio (Z7_,8;)/(1 + 27={p,) is equal to the “long-run” derivative of
gross investment with respect to the interest rate. The theory predicts that
this derivative will be negative, and in addition, that the difference equa-
tion (29) will be stable. Finally, from a given hypothetical depreciation
function one could in principle deduce additional implicationson 8, .. .,
B, and py, . .., p,_,. Reviewing the derivation of (29), however, one sees
that there is little hope of obtaining a simple, general formula for obtain-
ing these implications.

Before concluding the analysis of this problem, it is of some interest to
note the simplification which results if we assume constant returns to scale,
or more precisely, that F”’(x) = 0. Returning to equation (18), F"(x) = 0
is seen to imply that the block C of the matrix 4 is the zero matrix, so that
4 is block-diagonal, with characteristic polynomial P,(¢). The n negative
roots of Py(g) are the roots of 4,(0) (the poles of the transform L [ f]). The
solutions (21) and (22) become

x(t) = x° + er(O"[x(O) _ XO]’
Ay = A°

and the gross investment function is simply

y=a+ fr,. (30)
Thus under constant returns, gross investment attains its stationary level
instantaneously. The capital stock will either grow or decline until it
reaches the level at which »9 is just sufficient to maintain it.

This completes the analysis of the problem stated at the beginning of
this section, in which there are no gestation lags separating the initiation
and completion of an investment project and where the depreciation func-
tion is assumed to possess a rational LaPlace transform. To summarize the
argument, it was shown that the integral constraint relating past gross
investment to current capital services can be converted in a unique way to
a system of differential constraints. This conversion requires the introduc-
tion into the analysis of a finite number of “auxiliary capital measures.”
With the problem in this more tractable form, the calculus of variations is
used to obtain a differential equation system together with boundary con-
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ditions whose unique solution gives the optimal investment plan for the
firm. When translated into discrete terms, this optimal plan yields a stable
distributed lag investment function of the “general Pascal” form proposed
by Jorgenson (in press).

It is evident that the methods used to attack this simple problem are
easily extended to other cases. In particular, we are interested in the invest-
ment function which results when gestation lags are reintroduced into the
problem, and the firm’s problem is the maximization of:

©

VO) = [ B - C6) — lds
subject to (1) and (2) and given the backlog of initiations z(¢),
—T <t < 0. Let the functions f, F, and C be restricted as in the beginning
of this section, and let the gestation function g have a rational transform,
convergent for all s with nonnegative real parts. To solve this problem, (2)
and (3) are converted to first-order systems separately, and the argument
proceeds exactly as in the simpler case. If L (¢g) has n, poles and L (w) =
L,(f)L,(g) has n,, poles, then letting n = n, + n,, equation (29) gives the
gross investment function for this case as well. Under constant returns to
scale, (29) still holds, with n = n,. For each of these cases, the “long-run”
interest rate coefficient is predicted to be negative, and in each case the
difference equation is stable. It should be noted, however, that the three
theories which may underly (29) are not in principle indistinguishable from
each other. In deriving (29) and the two stated implications, the only
information on the lag functions which has been used is the assumption
that their transforms converge on the right half of the complex plane.
Depending on the additional restrictions one may wish to place on for g
or both, there will be additional implications on the coefficients of (29).

4, Discussion

This paper has been concerned with the examination of the optimizing
basis underlying distributed lag investment demand functions for a single
firm. Confining the argument to conditions of certainty and perfect capi-
tal markets, we have treated the firm’s problem as one of present value
maximization so that stationary or desired capital stocks and the optimal
path of approach to these levels can be derived in a single operation.
Within this framework, the implications of a variety of assumptions on the
production function, the depreciation pattern of capital equipment, and
the lag between the initiation and completion of an investment project,
have been obtained. This analysis has suggested several observations on
investment theory and econometric work which may be stated briefly be-
fore concluding.
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First, and most important, the effect on investment behavior of lags of
any sort depends critically on the way in which movements from one stock
level to another affect the firm’s costs and/or output. Thus in Section 2 it
was found that the introduction of gestation lags has no effect on either
desired stock or on the optimal approach to this stock as long as the initia-
tion of projects is assumed to be costless. In view of this fact, it is not
surprising that when the problem is formulated so that depreciation and
gestation assumptions do affect the investment behavior of an optimizing
firm, the relation between the assumed form of these lags and the form of
the distributed lag investment function which results is far from simple.
Only under constant returns to scale can the form of the lag structure of
investment demand be inferred from knowledge of the functions fand g.

Second, it is evident from the analysis in Section 3 that the lag between
initiation and completion of an investment project and the lag between
installation and replacement of a piece of equipment can be treated in
essentially identical fashion. For empirical study of investment demand, it
is no more necessary that we know in advance the depreciation function f
than it is necessary to know the form of the gestation lag g (although, of
course, genuine a priori information on either is useful). Similarly, we are
in as good a position to assert that initiated projects are a constant fraction
of completed projects as we are to assert that depreciation is a constant
fraction of completions (or of capital stock): both assertions are true for
stationary or exponentially growing capital stocks; neither is true for irreg-
ularly moving “desired” or actual stocks such as are typically observed
(unless, of course, the true f or g is exponential).

Finally, the analysis above may serve to underscore Griliches’s (1963)
insistence on the futility of a search for a single, “all purpose” measure of
capital. What is, in fact, given to a firm is a backlog of initiated, partially
or fully completed, investment projects. If by a capital measure is meant a
weighted integral, or sum, of this backlog, the capital measurement prob-
lem may be rephrased as the question: what is the minimum number of
such weighted integrals necessary to determine (a) the firm’s optimal in-
vestment policy, and (b) the firm’s present value under this policy? With
exponential depreciation and no gestation lag, this minimum number is
one: initial capital services contain all the necessary information. Under
the assumptions of Section 2, one measure (initial capital services) suffices
to answer (a), while a second [V (0) — W (0)] must be added to answer (b).
When these assumptions are relaxed, as is done in Section 3, one must
require the lag functions to possess rational LaPlace transforms in order to
define a finite number of “capital measures” needed to determine the
optimal policy. In the absence of this or other restrictions on the lag func-
tions, one cannot in general summarize a y(¢), ¢t < 0, endowment in any
finite number of capital measures.
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5

Optimal Investment with Rational Expectations

Robert E. Lucas, Jr.

Most recent work in investment theory has been concerned with the pres-
ent value maximization problem of an individual firm. That is, it is di-
rected at the question: how should a firm with given production possibili-
ties and initial assets respond to an anticipated pattern of future prices and
interest rates? In many applications, it is of at least equal interest to restate
the question at the industry level: how will a competitive industry, com-
posed of optimizing firms, respond to shifts in its demand and ‘factor sup-
ply functions? In particular, the latter statement of the problem is more
relevant to econometric investment studies, most of which have utilized
data at the industry or even sectoral level.

In a recent paper (Lucas 1967) I have analyzed the dynamic behavior of
a competitive industry composed of firms which optimize over time. This
model is restated in Section I below. The argument of this section proceeds
in what would seem to be a natural “two-step” fashion: first, the supply
response of an individual firm to changing current and expected prices is
obtained; secondly, these supply functions are aggregated over firms and
combined with a demand function to determine price and industry out-
put. To conduct an analysis of this sort, it is necessary to make some
assumption about the way in which firms form price expectations. For
simplicity, I have assumed that firms’ expectations are static in the sense
that current price is believed to be permanent.

In Section 11, an industry with the characteristics postulated in Section I
is analyzed again, this time under the assumption that firms’ expectations
are rational (i.e., correct). In this context, the optimal supply response of
firms and the industry as a whole must be determined simultaneously
rather than sequentially as in Section I. The conclusion of this section is
that, in the price-quantity plane, the behavior of the industry under the
two expectations hypotheses is qualitatively identical. Under rational ex-
pectations, however, it turns out that the “equations of motion” of the
industry may be interpreted as necessary conditions for the industry-wide
maximization of a “discounted consumer surplus” integral.

This paper was written in 1966. No attempt has been made to update the list of references
to include the many more recent papers which bear on the subject of this paper.

35



56 Rosert E. Lucas, Jr.

In Section III, the analysis of Section II is reinterpreted to provide a
growth theory for a pure monopolist. Section IV discusses possible general-
izations of the relationship between the maximization of consumer surplus
and the equations governing industry behavior to models with different
production possibilities.

L. A Model of a Competitive Industry

Consider an industry consisting of many small firms, each producing a
single output Q(¢) by means of a single capital input K(¢). Capital in use at
time ¢ is determined by an initial stock K(0) and a real, gross investment
rate I(¢), according to

K(t) = I(t) — 8K(), (1)

where 8 is constant. Output is determined by a “production function”
which incorporates internal “costs of adjustment” arising from variations
in the investment rate:

Q) = KOS H(©)/K(0)] = K@) f [u()), (2)

where u(t) = I{t)/K(t). The function fis defined for u > 0, has a continu-
ous second derivative, and satisfies

SOy >0, f'(u) <0, f"(u) <0,and f'(r + 6 — a) = —o0, (3)

where 7 is the firms’ cost of capital and « is some arbitrarily small, positive
number.

With prices p and g in the output and capital goods markets, each firm’s
receipts are

R() = KO{#/ ()] — qu(®)},

and present value is
V(0) = f e TR() db.
0

Our hypotheses both about the state of these markets (and about the
capital funds market in which r is determined) and about the way in
which firms form price expectations will be summarized in the assumption
that each firm treats p, ¢, and r as constant at current levels.

Given these production possibilities and market opportunities, it is as-
sumed that each firm selects a continuous investment plan I(t) (or u[¢]) for
t > 0, satisfying I(t) > O for all ¢, so as to maximize V(0), given K(0) and
subject to (1). It is also assumed that such a plan exists for all K(0) > 0. It
can then be shown that the optimal investrnent plan is unique.

To determine the optimal plan, form the Hamiltonian expression:

H(w, K, A, 1) = e " K(O)[pf () — qu + A — 8)].
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Then if [#(2), K(¢)] is the optimal plan, there must exist a continuous func-
tion A(?) such that

A=+ 8—u—pfw) + qu, (4)
and
tl_ir>nw e AR) = 0. (9)

Further, u(t) maximizes H(u, K, A, t) for all ¢ > 0, and the constraint (1) is
satisfied. From (3), H is maximized at a unique value of u for all K, A, and
t. At this value

o) —q+ A <0, (6)

where equality holds if the maximizing value of u is positive. Since (4) and
(6) do not depend on K(¢), the determination of the optimal investment
plan is reduced to that of finding a solution [u(t), A(?)] of (4) and (6) which
satisfies (5). If such a solution is found, the optimal K(¢) is given by (1)
and K(0).

We next show that for all positive p, ¢, r, and 8, (4) and (6) have a
stationary solution. Setting A = 0 and using (4) to eliminate A, equation
(6) becomes

Pl @) + (r 4+ 8 —u)f'(W)] < q(r + 8), ()

with equality for u > 0. The determination of u by (7) is indicated dia-
grammatically in figure 1. From (3), the left side of (7) is defined at u = 0,

- P T eFe-u) ()]

q(r+98)

r+é-a u

b
*
£

%

Fic. 1
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is declining for 0 < u <r + 8 — @, and becomes an arbitrarily large (in
absolute value) negative number as u approaches the right endpoint of this
interval. Thus, if p[ f(0) + (r + 8 — u)f(0)] > q(r + 8), (7) is satisfied
with equality for a unique # = «*. If this inequality at ¥ = 0 does not hold,
u = 0 satisfies (7) with a strict inequality. The constant solution «* (and
the corresponding constant A*) so determined thus satisfy (4), (5), and (6).
Since the optimal investment plan is unique, this stationary plan is the
optimal one.

By rewriting (7), one obtains a marginal condition with a familiar inter-
pretation:

P W) — ")) < [g — pf @] + 8], (8)

with equality for u > 0. Since f — uf” is the marginal physical product of
capital, the left side of (8) is the marginal value product of capital. The
termm ¢ — pf’ on the right of (8) is the marginal cost of accumulating
capital, consisting of payments to suppliers (¢) and the value of output
foregone by increasing investment by one unit (—gf’). The term r + 8
converts the right side of (8) to the units of a rental price or user cost of
capital.

Equation (8) (or {7]) may be solved for « as a function of r and ¢/p. It
is easily found that, for u > 0, ¢u/0r < 0 and 9u/0(¢/p) < 0. The function
u = D(r, q/p) with these properties is the firm’s investment demand func-
tion. It is clear that if u satisfies (7), f(x) > 0; hence, output will always be
positive. The function

Q) = KO f[D(r, 9/p)] ©

is the firm’s short-run supply function. Its derivatives are determined from
those of f and D. Finally, the firm’s planned capital stock and output
growth are given by

K@) _ Q)
R0 = g =Pl =8 (10)
In the remainder of this section we shall be concerned with an industry
of firms behaving as the firm just described would. In this discussion,
product price will vary through time, so that it will be useful first
to consider the response of investment to price changes in somewhat
more detail. Looking again at figure 1, it is seen that for fixed g and r,
changes in p will induce proportional shifts in the ordinate of curve
plf+ (r + 8§ — u)f’] at each value of u. Thus there will always be some
critical price p, > 0 such that u = 0 for p < p.. For p > p_, investment is
a rising function of price, or D(p) > 0. At some u =u, <r+8 —a
(where u, does not depend on p) the curve p[ f + (r + 8 — u)f’] will cross
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the u-axis. Also:
P ( ) U

The curve ¥ = D(p) must then have the form indicated in figure 2.

Turning next to the industry, note first that if all firms face the same
prices and have the same production possibilities the individual invest-
ment demand, output supply, and growth functions (eqq. [10]) all aggre-
gate perfectly to the industry level. We shall let Q(¢), K(¢), and I(¢) refer to
industry aggregates without change in notation. It remains only to postu-
late a demand function for the industry. Let this function be

p(t) = g[2(D)], (11)
where z(t) is the ratio of output Q() to a “shift variable” S(¢), with
§(t) = S0)P, B <, (12)
and where ¢ has a continuous second derivative and satisfies
g'(2) <0, £(0) = o0, g() = 0. (13)

From (10), (12), and the definition of z(t), the long-run supply function
of the industry is:
£(t)
— =D[p®)] — & — B. 14
5 = Pleo) =8 =8 (14)
Combining (11) and (15) yields a first-order equation in z(¢) which, with
z(0), determines the movement over time of industry output and, via (11),

|

u

N u=D(p)

Fic. 2
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of price. Initial output Q(0) is determined by the intersection of the de-
mand curve (11) and the short-run supply curve (9).!

The behavior over time of industry output and price for the case in
which D(p) = B + 6 has a solution p* (i.e., for the case u,, > + § > 0)
is shown in figure 3. In this case, z* = g~1(p*) is a position of stable equi-
librium for the industry: for any z(0), z(¢) converges monotonically to z*.
Price p(¢) is determined by (11); u(¢), K(¢), and Q(¢) are determined in the
manner indicated in the discussion of individual firm behavior.

In the event that either u,, < 8 + & or 8 + 6 <0, there is no price
satisfying D(p) = B + & and hence no equilibrium position for the indus-
try. In the first case, in which demand is expanding “too rapidly,” /2 <0
for all ¢, so that z(¢) will fall toward zero and price will rise without limit.
In the second case, where demand is declining even more rapidly than
capital is depreciating, z(t) grows and price tends to zero.

One interesting feature of the industry just described is the fact that the
firms which comprise it will grow at a rate independent of initial size (as
measured by assets or output). Further, unit costs (however measured) will
not vary across firms of different sizes, and estimation of a conventional
cross-section production function will yield Q = aK which is homogeneous
of degree one. Finally, the present value of an optimally managed firm will

p*

Y

¥ z
Fic. 3

IFrom what has been assumed so far, it follows that (9) and (11) are satisfied for at least one
value of p, but it does not follow that the short-run market clearing price is unique. This
possible lack of uniqueness has no effect on the stability argument.
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be proportional to its asset holdings, so that there are no “scale incentives”
for firms to merge or dissolve. In short, this model is consistent with the
evidence generally cited in support of the static constant returns to scale
hypothesis. Unlike the latter theory, however, the theory developed here
does distinguish between short- and long-run behavior, and the optimal
policy for each firm is determinate.

II. The Competitive Model under Rational Expectations

In the preceding section, firms were assumed to regard the current price at
each moment of time as a “permanent” price, yet this expectation proved
valid at one price only: the industry’s long-run equilibrium price. In this
section, it is assumed that the output price expectations of each firm are
rational, or that the entire future price pattern, p(¢), t > 0, is correctly antic-
ipated.? All other assumptions made in Section I will be maintained, in-
cluding the assumption that expectations on prices other than p(¢)(g and r)
are static.

Letting price vary with time has no effect either on the statement of the
firm’s maximum problem or on the necessary conditions. Hence condi-
tions (1) and (4)-(6) are valid under any price expectations hypothesis.
Under rational expectations, the investment plans satisfying these condi-
tions, aggregated to the industry level, must be consistent with the indus-
try demand function (11). For convenience, we restate these five condi-
tions, this time in terms of a new state variable: x(¢) = K(£)/S(t). These
conditions are valid for firm variables and for industry aggregates.

02 p0)fu®)] — g + M) (15)

with equality whenever u(t) > 0;

M) = [r + 8 — a(INE) — p(6)fu(®)] + qu(®), (16)
x(t) = x(O)fut) — 6 — B, (17)
p(0) = g{x(0) flu(0)]}, (18)

0= lim eA() (19)

Equations (15)-(19) have not been derived from a single maximum
problem. Nevertheless, as one might expect from static theory, they can be
given an interpretation as necessary conditions for a “consumer surplus”

2Muth (1961) defines a rational expectation as one with the same mean value as the true,
future price, where both the expected and actual prices are random variables. With certainty,
this definition reduces to that used here.
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maximization problem. To define this problem, let z(¢) = x(¢) f[u(?)], as in
Section I, and for some fixed positive value 2, let

[ena forz>z
[eya==]"

2,

~[Tend  forz<z

2

Clearly fg(z)dz is defined for x > 0. The functional

W= j; e [ g(z)dz — qui) s (20)

may then be regarded as a dollar measure of discounted consumer surplus,
in exact analogy to the area between the demand and supply curves in
static analysis. It is easily verified that (15)-(19) are necessary conditions
for the maximization of W, subject to (17) and given x(0).

We next prove the strict concavity of W, regarded as a functional of
u(t)x(¢), which will imply that, for given x(0), (¢) there is at most one
solution of (15)-(18) which satisfies (19), and (zi) this solution, if it exists,
maximizes W,

Let uyx, and u,x, be two distinct (for some ¢ and hence, by continuity,
for some interval of time) investment plans, yielding values W, and W] to
W. For 0 <A <1, let uyx, = Augxy + (1 — Auyx,, and let W, be the
value of W at u,x,. Let x, and 2, ( = 0, 1, A) be the associated capital and
output paths. From (17), x, = Az, + (1 — A)z, = z, (say). Then:

Wy — AW, — (1 — MW, = fo e fe(z)) dzy

—Afg(zg)dzy — (1 — N)Jg(z))dzy ] dt

=L e " fog(z) dzy — A fg(20) dzg — (1 = X) fg(2,) dzy ] dt

+ fo e[ $g(2)) dey — fg(25) dzy) dh.

The first term on the last line is strictly positive, since fg(z)dz is a strictly
concave function of z (from [13]). The second term is nonnegative, since
g(2) >0forall z and z, > z,. Thus W, — AW, — (1 — M)W, > 0 as was
to be shown.

It remains only to exhibit a solution to (15)-(18) which satisfies (19): if
such a solution can be found, it is the only growth pattern for the industry
consistent with both optimizing behavior and rational expectations.
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The behavior of solutions to (15)-(18) will depend on whether or not
(15) holds with equality. We begin, then, by dividing the positive quad-
rant of the (x, A) plane into a region over which ¥ = 0 and a region over
which u > 0. The u = 0 region consists of those pairs (x, A) satisfying:

A < g — gl (0)S0), (21)

and the boundary of this region is the curve on which (21) holds with
equality. This curve is downward sloping for all x; as x — o0, A — ¢; and
as x = 0, A > o0. The u = 0 region is thus as indicated in figure 4.

The curve on which ¥ = 0 is, from (17), the curve on whichu = 8 + §.
Along this curve, (15) must hold with equality, or

A=q—gl+f(B+ OB+ ) (22)

The u = B + & curve thus has the same features as the « = 0 curve, with
the former lying everywhere above the latter as indicated in figure 4.
Above this curve, x is rising; below it, x is falling.

A
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u=p+6 (52=0)
u=0 l
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Within the u = 0 region, the curve on which A=0is given by

0
A =L eison (23)
This curve intersects the boundary of the u = 0 region at the point
x = g7 Y(p,.)/ f(0), where p, is as defined in Section I. As x increases from
this value, A falls, with A — 0 as x — oo0. This portion of the A = 0 curve
is thus as indicated in figure 4.

In the 4 > 0 region, the curve relating A and x for A = 0 (as well as the
curve relating  and X) is obtained by solving the two equations (16) (with
A = 0) and (13) (with equality) for x and « as functions of A. Since the
relevant Jacobian is never zero, this may always be done. The slope of the
function x(A) so obtained is, however, indeterminate (except near the
boundary of the u = 0 region, where it is negative).

The stationary solutions of the system (15)-(18) must also be stationary
solutions of the system with static expectations treated in Section I, and
conversely. The system under rational expectations thus also has either one
stationary solution or none. Referring to figure 4, the A = 0 curve either
intersects the & = 0 curve once (as drawn) or remains below the x = 0
curve for all A.

If the system does have a stationary solution, its stability may be deter-
mined by examining the linear system which is approximately valid near
the stationary solution. The characteristic equation associated with this
linear system is

0=P()=y>—=(— By —xflx'(f? + TS+ (= BS),
where the coefficients of P( y) are evaluated at the stationary values of the
variables. Since x¢’(f")? + gf"” < 0 and f + (r — B)f’ > 0, the constant
term of P(») is negative. P(») then has two real roots, one negative and
one exceeding r — 8. This proves that the stationary solution is a saddle
point, which implies that for any x(0) there is exactly one solution to
(15)-(18) which converges to the stationary point. Since this solution satis-
fies (19), it is the unique optimal one. This solution, as well as those which
do not converge to the stationary point, is indicated by arrows in figure 4.

A comparison of industry behavior under the two alternative expecta-
tions hypotheses may also be made from figure 4. Under static expecta-
tions, condition (7) holds at each point in time, which implies that the
industry remains continuously on the A = 0 curve of this diagram. Under
rational expectations, the industry will move on a path to the left of this
curve for x(¢) less than its equilibrium value, x*, and on a path to the right
of this curve for x > x*. In other words, for any x, A will be closer to its
equilibrium value under rational than under static expectations. From
(13), this implies that the industry will approach equilibrium /ess rapidly if
expectations are rational. This result corresponds well to one’s intuition: a
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once-and-for-all shift to the right in the demand curve (for example) in-
duces a rise in current output price; firms with static expectations interpret
this increase as permanent, and expand accordingly; when this expansion
brings price down, they find their anticipations have been incorrect, and
that they have “overreacted” to the initial price change.

The two expectations hypotheses may also be compared via the “con-
sumer surplus” measure (20). For any x(0) not equal to the equilibrium
capital stock, any incorrect expectations will give this integral a smaller
value than it will have under rational expectations. The difference is a
measure of the “social cost” of errors in anticipations.

III. A Monopoly Model

With a slight reinterpretation of the function g(z), figure 4 and the adjoin-
ing text describe the behavior through time of a pure monopolist. Con-
sider an industry identical to the one just analyzed, but in which all assets
are owned by a single monopolist. The total revenue of the monopolist is
p0Q = g(2)28 and marginal revenue is g(2) + 2g'(2) = m(z) (say). Let the
function m satisfy

m(z) >0, m'(z) < 0, m(0) = o0, m(o0) =0 (24)

for all z > 0. The monopolist’s present value is then proportional to

PO = [ OB pg () — queld

0
= f e~r-p [f m(z)dz — qux] dt + K.

0

Comparing the last term on the right to the right side of (20), one sees that
the monopolist’s problem is identical in form (if [24] holds) to the problem
analyzed in Section II.

IV. Generalizations of the Rational Expectations Model

In Section III it was shown that the -equations governing the behavior
through time of firms in a competitive industry with rational expectations
could be regarded as necessary conditions for the maximization of “dis-
counted consumer surplus.” This conclusion was obtained under the as-
sumption of production possibilities which appear to be the natural gener-
alization of the static constant returns to scale hypothesis, namely, that
output is homogeneous of degree one in fixed capital inputs and gross
investment. The question arises as to whether the equations of motion for
a competitive industry with rational expectations can always (i.e., for any
production function) be derived from a consumer surplus maximization
problem.
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To deal with this question, consider an industry of n firms, each
producing an output (J; according to Q, = F(K,, I,). Let the industry

demand curve be given by p = g(Q,t) where Q = 2,0 ,. Then analo-
gously with (20), discounted consumer surplus W is given by

W= [ e [g(Q,on—q;Ii]dt-

To complete the formulation of the problem, one must now decide
whether capital is “fixed to the firm” or “fixed to the industry” or, in other
words, whether there are adjustment costs associated with interfirm trans-
fers of assets. If capital is fixed to each firm, then W is maximized subject
to n separate constraints: K, = I, — 8K,, i = 1,..., n. It is easily verified
that in this event, the necessary conditions for maximizing W are equiva-
lent to the necessary conditions for present value maximization by each
firm (under rational expectations).

If one regards a firm as composed of a number of distinct production
units, or plants, the ownership of which may be transferred costlessly from
firm to firm (or to newly organized firms), the assumption of # distinct net
investment constraints is not appropriate. In this case, W is maximized
subject to

%[;Ki}=;1i_a§Ki.

Further, the number of firms » must also be regarded as a “‘choice varia-
ble.” Maximization of W under these conditions requires that capital and
gross investment at each point in time must be distributed across firms so
as to maximize output. With identical production possibilities this re-
quires, with K = Z,K; and I = 2,7, that K; = K/n and I, = I/n. It also
requires that n be chosen to maximize:

o-u(td)

n’n
for given K and 7. Thus if, for example, F is strictly concave, W has no
maximum, since ( is always rising with z (i.e., since the optimal firm size is
zero). To summarize, if assets are freely transferable from firm to firm,
consumer surplus maximization yields the equations of motion for the

industry only if the industry is assumed to be optimally organized, in the
above sense, at each moment of time.
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Investment under Uncertainty

Robert E. Lucas, Jr.,
Edward C. Prescott

This paper determines the time series behavior of investment, output,
and prices in a competitive industry with a stochastic demand. It is
shown, first, that the equilibrium development for the industry solves a
particular dynamic programming problem (maximization of “consumer
surplus”). This problem is then studied to determine the characteristics
of the equilibrium paths.

Explanatory variables in empirical studies of the demand for investment
goods fall into three broad classes: variables measuring anticipated, future
demand-—sales, profits, stock price indexes; variables measuring past deci-
sions, the effects of which persist into the present—lagged capital stock and
investment rates; and variables measuring current market opportuni-
ties—interest rates, factor prices, and, again, profits.! Existing investment
theory has concerned itself largely with the latter two classes of variables,
first by rationalizing the role of prices in determining a long-run “desired”
capital stock using a static, profit maximizing hypothesis, later by discov-
ering the optimizing basis for a staggered approach to the desired stock in
“costs of adjustment” which penalize rapid change.? In the present paper,
an uncertain future is introduced into an adjustment-cost type model of
the firm, and the optimal response to this uncertainty is studied in an
attempt to integrate variables of the first category into the existing theory.3

Briefly, we shall be concerned with a competitive industry in which
product demand shifts randomly each period, and where factor costs re-
main stable. In this context, we attempt to determine the competitive

'For reviews of the empirical investment literature, sce Eisner and Strotz (1963), or, more
recently, Schramm (1966).

2We refer to the body of theory that stems from the work of Haavelmo (1960), Eisner and
Strotz (1963), and Jorgenson (1963). More recent contributions are by Gould (1968), Lucas
(1967a, 1967b), and Treadway (1967).

3A recent paper by Pashigian (1968) discusses one-period equilibrium in a competitive
industry under supply and demand uncertainty, a problem closely related to that studied
here. ‘
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equilibrium time paths of capital stock, investment rates, output, and out-
put price for the industry as a whole and for the component firms. From
the viewpoint of firms in this industry, forecasting future demand means
simply forecasting future output prices. The usual way to formulate this
problem is to postulate some forecasting rule for firms, which in turn
generates some pattern of investment behavior, which in turn, in conjunc-
tion with industry demand, generates an actual price series.

Typically the forecasting rule postulated takes the form of anticipated
prices being a fixed function of past prices—“adaptive expectations.” But
it is clear that if the underlying disturbance (in our case, the demand shift)
has a regular stochastic character (such as a Markov process), forecasting
in this manner is adaptive only in a restrictive and not very interesting
sense. Except for an unlikely coincidence, price forecasts and actual prices
will have different probability distributions, and this difference will be
persistent, costly to forecasters, and readily correctible.

To avoid this difficulty, we shall, in this paper, go to the opposite ex-
treme, assuming that the actual and anticipated prices have the same prob-
ability distribution, or that price expectations are rational.* Thus we sur-
render, in advance, any hope of shedding light on the process by which
firms translate current information into price forecasts. In return, we ob-
tain an operational investment theory linking current investment to ob-
servable current and past explanatory variables, rather than to “expected”
future variables which must, in practice, be replaced by various “proxy
variables.”

In the next section, our basic model of the industry is stated. In Section
2, we examine formally the investment decision from the viewpoint of the
individual firm, clarifying the role of observable securities prices as eval-
uators of additions to capital stock. In Sections 3 and 4 competitive industry
equilibrium is defined, and it is shown that equilibrium in this sense exists
and is unique. In Sections 5 and 6, we investigate the long-run behavior of
industry equilibrium under alternative assumptions on the nature of the
demand shift process. Conclusions are summarized in Section 7.

1. Statement of the Model

Consider an industry consisting of many small firms, each producing a
single output, ¢,, by means of a single input, capital, £,. We assume that
production takes place under constant returns to scale so that with appro-
priate choice of units we may use £, also to denote production at full

4This term is taken from Muth (1961), who applied it to the case where the expected and
actual price (both random variables) have a common mean value. Since Muth’s discussion of
this concept applies equally well to our assumption of a common distribution for these random
variables, it seems natural to adopt the term here.
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capacity. Thus the production function is:
0<q, <k (1)

Denote gross investment by x,. Investment and capacity are related in the
nonlinear way:

kt+1 - kth(xt/kg), (2

where £ is bounded, continuously differentiable, increasing, and strictly
concave.? Assume that § = £ (1) exists and satisfies 0 < § < 1, so that
k,8 is the investment rate which will just maintain the stock 4,. Assume
also that 2(0) > 0, so that even with no investment in period ¢, some
capital will remain in ¢ + 1 if £, > 0.

Given an initial stock £, (2) cannot be solved for £, as a linear function of
Kgs Xgs - - - » X,_1, as is possible with conventional depreciation hypotheses,
so (2) requires some explanation. One entirely plausible possibility is that
the true relationship between physical investment and plant capacity is, in
fact, nonlinear, so that a given quantity of, say, machines, makes a better
plant (yields more productive services) the longer the period over which
they are assembled. Alternatively, one may assume that the relation be-
tween capacity and physical investment s linear, and regard x, as the
dollar value of investment. Then if investment costs per unit of capacity
are a strictly convex function of physical investment per unit of capacity,
(2) is implied.®

Denote the product price by p,. Then ex post, the present value of the
firm, using the discount factor § = 1/(1 + r), where r > 0 is the cost of
capital, is

V= 2 Bipq, — %] (3)
t=0

It is evident that the allocation across firms of a given industry stock of
capital is immaterial, so that in the following the notation £,, x,, and ¢, will

5These assumptions on & imply that kA(x/k), regarded as a function of the two variables x
and £, is increasing in both arguments and concave. To see the latter property, let (k% x%) be
a convex combination of (k% x%) and (k% x') and let ¢ = k%K% 0 < ¢ < 1. Then
x%/k® = ¢(x%/k%) + (1 — ¢)(x'/k') and using the concavity of A,

KPR(xO /K%Y = SkOh(xO/k0) + (1 — YkOh(x1/kY)
= OkO%(x0/k%) + (1 — B A(x1/k1).

9The strict concavity of the function & gives rise to the “adjustment costs” referred to in the
introduction. The main function of introducing such costs, to anticipate the development
somewhat, is to assure that the model reflects observed, gradual changes in capital stocks, as
opposed to immediate passage to a long-run equilibrium level. This feature is shared by the
adjustment costs imposed in Eisner and Strotz (1963), Gould (1968), Lucas (19674, 19675),
and Treadway (1967), although there are differences in form among all of these treatments
and the present one. These differences will not be critical to any of the arguments which
follow.
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be used interchangeably for industry and firm variables. (Alternatively,
think of a competitive industry with one firm.)

To complete the formulation of the problem of the individual firm, one
must assume a particular stochastic structure for the price sequence {p, }
and postulate an objective function for the firm. This will be done in
Section 3, in the course of defining industry equilibrium. At this point,
however, we already have enough information for a suggestive, if formal,
examination of the decision problem faced by the individual firm. This is
undertaken in the following section.

2. The Investment Decision of an Individual Firm

In this section, we suppose that the objective of the firm is the maximiza-
tion of the mean value of the present value expression given in (3), with
the stochastic behavior of prices somehow specified. Since we have omitted
variable factors of production in our formulation, the firm’s supply deci-
sion is trivial: produce at full capacity. Hence the only current decision is
the choice of an investment level, in which the known (unit) cost of a unit
of investment goods is compared to an expected, marginal return. To com-
pute the latter, one must solve the present value maximization problem,
but it will turn out (predictably) that “solving’ this problem amounts to
finding an appropriate “shadow price” to use in evaluating an addition to
capital stock. From our (economists’) point of view, this difficult task can-
not be avoided, and we undertake it in the following sections, but from a
firm’s point of view it can be, and indeed is, avoided.

From the entrepreneur’s viewpoint, the objective is to maximize the
value of all claims to the income stream (3), and this value is the quantity of
capital held times the value per unit of capital as observed on securities
markets. Similarly, the appropriate valuation to place on an addition to
next period’s capital stock (current investment) is the price per unit, re-
flected in securities prices, expected to prevail next period. That is, the
burden of evaluating the income stream produced by the firm is borne not
by firms but by traders in the firms’ securities.

This fact considerably simplifies the firm’s decision problem (corre-
spondingly complicating household’s). In our formulation, additional sim-
plification arises from the evident fact that the value placed on the claim
to a unit of capital will not depend on the distribution of capital across
firms. It is thus treated by each firm as a parametric market price. Denote
by w, the current value of a unit of capital, and by w} the (undiscounted)
value per unit expected to prevail next period. For a firm beginning period
¢ with capital stock £,, an investment x will lead to a next period value of
Bk h(x/k,)w] (from [2]). The cost of this investment is —x. Hence the firm
must solve:

max [—x + Bk A(x/k w]).
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The current value of the firm is, of course,
wek, = pok, — x + Bkh(x/kwy. 4)

If the maximum problem is correctly solved, and if there is agreement on
w}, we have a second condition:

0> —1 + Bh(x/k)wy, with equality if x > 0. (5)

Solving (5) for x as a function of &,, B, and w; gives the investment de-
mand function as seen by the firm. From the point of view of an outside
observer (ourselves), however, (4) and (5) are solved jointly for x and w] as
functions of £, p,, and w,. This yields the observed investment function:

X =kgw, —p), g()>0. (6)

We remark at this point that (6) is essentially the function used by
Grunfeld in his empirical study of the investment behavior of several
United States corporations (1960). Grunfeld’s justification for using w, as
an “explanatory” variable was that it served as a proxy for the firm’s own
estimation of future income streams. Our argument goes somewhat fur-
ther, to assert that the firm need not even form its own estimation of the
future, beyond forecasting the value placed on assets in its industry next
period. (Of course, entrepreneurs, in common with other agents in securi-
ties markets, form judgments on the income streams of their own and other
firms. The point is that these judgments are apart from, and irrelevant to,
the investment goods demand decision.)

By aggregating (6) across firms (which leads to an equation of exactly
the same form) one obtains an industry demand function for investment
goods, given the value per unit, w,. But this aggregate function tells us
nothing about the development through time of capital stock, output, and
prices, since the time path of w, is, as yet, unknown. Equation (6) is a
consistency requirement which must hold at each point in time, but it is
not a theory of capital accumulation in the industry. To obtain such a
theory, we must determine how investment and the price w, are jointly
determined on the basis of available information on current and future
industry demand. This problem is studied in the following sections.

3. Industry Equilibrium: Definition

To answer the questions raised in the preceding section—that is, to obtain
a theory of the development of the industry through time—we begin with
a mathematical formulation of the stochastically shifting industry de-
mand. Given this formulation, we propose a definition of industry equilib-
rium involving in addition to a market clearing requirement, a precise
specification of firms’ objective functions. In the next section, we show that
there is a unique equilibrium development for the industry. Characteriza-
tion of this development is then resumed in Sections 5 and 6.
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The industry demand function is assumed to have the usual properties
and is assumed to be subject to random shifts. Specifically,

b = D(qp u)s (M

where {u,} is a Markov process taking values on the real line E, with a
transition function p(+, *) defined on £2 = E X E. For fixed u, p(-,u) is a
probability distribution function on E; and p(x, *) is a Baire function on
E." Thus if 4 is a Borel subset of E, the probability that u,,; € 4 condi-
tional on u, = u is given by

f p(dz, u),
4

where the notation indicates that the integration is with respect to the
distribution p(-, u), u fixed. For given u,, D is a continuous, strictly decreas-
ing function of ¢,, taking on the finite value p(y,) < < o0 at ¢, = 0, and
with ' D(z,4,)dz bounded uniformly in %, and ¢. Assume that D is con-
tinuous and increasing in #,, so that an increase in u, means a shift to the
right of the demand curve.®

To complete the formulation of the problem, we must specify the price-
forecasting policies of firms, define what is meant by an investment-output
policy, and postulate an objective function for firms. If the industry were
in short-run (one period) equilibrium at each point in time, price and
output would be determined for that period as functions of the shift varia-
ble u,. From the vantage point of time 0, the price at time ¢ will then
depend on the initial state of the industry, (£, #4), and on the realization
#y, . . -, 4, of the {u,} process between 0 and ¢. Hence it is natural to define
an anticipated price process, for given (k, u,), as a sequence {p, } of func-
tions of (uy, . . . , u,), or functions with domain E*. Similarly, one may think
of an investment-output plan as a sequence {g,, ¥, } of functions on EY, or
as a contingency plan indicating in advance how the firm will react to any
possible realization of the {u,} process. Specifically, let L be the set of all
sequences x = {x,},£ =0, 1,..., where x, is a number and, for ¢ > 1, x, is
a bounded Baire function on E!, bounded in the sense that for all x € L,

x|l = sup w0, P (g - )l

is finite. We restrict the sequences {g, }, {¢,}, and {x,} to be elements of L*:
elements of L with non-negative terms for all (¢, %y, ..., u,). Then for any
price-output-investment sequence, present value, V, is a well-defined ran-
dom variable with a finite mean. We shall take as the objective of the firm

"Baire functions are all members of the class of functions consisting of all continuous
functions, pointwise limits of sequences of continuous functions, pointwise limits of sequences
of this larger class, and so on. Alternatively Baire functions are measurable with respect to the
Borel sets.

8Further restrictions will be imposed, as needed, on p(+, *) in Sections 5 and 6.
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the maximization of the mean value of ¥ with respect to the investment-
output policy, given an anticipated price sequence.

It remains for us to link the anticipated price sequence to the actual
price sequence—also a sequence of functions on E*. Typically, this is done
by postulating the process by which firms actually develop forecasts from
actual past values and other information. In this paper, we shall not take
this route but rather postulate a property of the outcome of this (unspecified)
process. Specifically, we assume that expectations of firms are rational, or
that the anticipated price at time ¢ is the same function of (4, ...,%,) as s
the actual price. That is, we assume that firms know the true distribution
of prices for all future periods.

These considerations lead to the following notion of competitive equi-
librium for the industry under study.®

DEFINITION: An industry equilibrium (for fixed initial state [£, «] is an ele-
ment {g? x%,p%} of Lt X L* X L* such that (7) is satisfied for all
(¢, uy,...,u,) and such that

E{éﬁt[p?q? ~ =01} >E{§0B‘[p?qz ~ 51} ®)

for all {g,,x,} € L* X L* satisfying (1) and (2). (In [8], the expectation of
the ¢th term in the series is taken with respect to the joint distribution of

(4y, ..., 1))

In the next section, we show that the industry has a unique equilibrium
in the sense of the above definition, and, further, that this equilibrium can
be obtained by solving a particular dynamic programming problem. Sub-
sequent sections are devoted to developing various properties of this equi-
librium.

4. Existence and Uniqueness of Equilibrium

In this section, we show that the industry described above has exactly one
competitive equilibrium development through time. The device employed

9At this point, we make two rather defensive observations on the scope of the definition we
are using. First, we regard firms as mean value maximizers, with respect to the distribution of
the demand shift variable, »,. If this distribution is interpreted as reflecting relative frequen-
cies of certain physical events (such as rainfall), then this assumption implies risk-neutral
preferences on the part of shareholders. Alternatively, by imagining this industry as set in an
economy characterized by a ‘“state-preference” model (see Arrow 1964, Debreu 1939, and
Hirschleifer 1965), one can reinterpret this distribution as giving the structure of market
interest rates, and our “cost of capital” r as the certainty interest rate. In this case, (8), implies
nothing about risk preferences.

Second, now that the precise content of the “rationality” of expectations is made clear (in
the following definition), we add a final comment on its “reasonableness”: we can think of no
objection to this assumption which is not better phrased as an objection to our hypothesis
that the stochastic component of demand has a regular, stationary structure. If the demand
shift assumption #s reasonable, then expectations rational in our sense are surely more plausi-
ble than any simple, adaptive scheme. If the demand assumption is unreasonable, then
adopting an alternative expectations hypothesis will certainly not improve matters.
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to do this involves first showing that a competitive equilibrium develop-
ment will lead the industry to maximize a certain “consumer surplus”
expression, and then showing that the latter maximum problem can be
solved using the techniques of dynamic programming.

Define the function s(q, u), ¢ 2> 0, u € E, by

q
stgw) = [ D(z,u)dz,
0

so that for fixed u, s{g,u) is a continuously differentiable, increasing,
strictly concave, positive, and bounded function of ¢, and for fixed ¢, s is
increasing in u. Thus s(g,, «,) is the area under the industry’s demand curve
at an output of ¢, and with the state of demand »,. Then define the dis-
counted “consumer surplus,” S, for the industry by:

5= E{éﬁ‘[s@t,u,) ~ ).

The quantity S is used in applied cost-benefit work as a measure of the
dollar value to society of a policy {g,, x,}. For our purposes, however, the
welfare significance of § is not important. We are interested only in using
the connection between the maximization of § and competitive equilib-
rium in order to determine the properties of the latter.

Associated with the problem of maximizing the quantity S is the func-
tional equation

ok, ) = sup {s(k, u) — x + va[kh (%),z]p(dz, u)}. 9)

The main result of this section, linking (9) to the determination of industry
equilibrium, is the following theorem.

THeoreEM 1: The functional equation (9) has a unique, bounded solu-
tion v on (0, 00) X E, and for all (£, #), the right side of (9) is attained by a
unique x(k, #). In terms of this function, the unique industry equilibrium,
given k, and ug, is given by:

x = x(ky, u), (10)
ypr = koh [x_(/%,_u_,)_]’ (1n
t
q, = k,, and (12)
p = D(guy), (13)
fort =0, 1,2,..., and all realizations of the {u,} process.

The remainder of this section is devoted to the proof of theorem 1, and
to obtaining some properties of the functions v(k, #) and x(k, ). The
reader interested primarily in the nature of the solutions to the difference
equations (10)-(13) (that is, in the characterization of the development of
the industry) should proceed directly to Section 5.
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The proof of theorem 1 involves two distinct steps. First, one must con-
nect the determination of industry equilibrium to the problem of maxi-
mizing consumer surplus. Second, the latter problem must be shown to
lead to the functional equation (9). Both parts turn out to be complicated,
although the outlines of each are familiar.

For the first part, we have the following lemma.

Lemma 1: Suppose for given (&, u,) the problem of maximizing S, sub-
jectto (1)-(2),overall {g,, x,} € L* X L*issolved by the sequence {¢}, x?}.
Then {g?, x?, p?}, where p? is obtained from ¢! using (7), is an industry
equilibrium. Conversely, suppose {¢?, x?, 2} is an industry equilibrium.
Then {¢¢, x?} maximizes S, subject to (1)-(2), over L+ X L*.

Proor: The proof is an application of theorems 1 and 2 of Debreu
(1954) and of Prescott and Lucas (in press). The basic space used in
Debreu (1954) corresponds to our L X L. The economy in our application
consists of a single consumer whose preferences, given by §, are defined on
L* X L* (X in Debreu [1954]), and a single firm, whose production possi-
bility set ¥ C L* X L* consists of all elements satisfying (1) and (2).
Pareto optimality in this economy is then equivalent to maximizing S
over Y.

Assumptions I-V of Debreu (1954) (the convexity of X, the concavity of
S, the continuity of S, the convexity of Y, and the existence of an interior
point of Y) are readily verified. If &£, > 0, the hypotheses of the Remark
(Debreu 1954, p. 591) are valid. If £, = 0, the unique industry equilibrium
occurs when output and investment are zero for all ¢; in the following, we
assume k, > 0.

To prove the second part of the lemma, one applies theorem 1 of Debreu
(1954).

To prove the first part of the lemma, we use theorem 2 of Debreu (1954),
plus the Remark, which states that if {¢?, x?} maximizes § over Y, there
exists a continuous linear form a on L X L such that {¢?, x?} maximizes
a{q,, x,}) over ¥, and such that {¢?, x?} maximizes § over all elements of
X which satisfy

a({qca xt}) < a({‘I?a x?}).

It then follows from theorems 1 and 2 of Prescott and Lucas (in press)
that there exist elements {«,}, {y,} of L* such that {g?, x?} maximizes

E[é} Bilayg, — ytxt]} (14)

over Y, and such that {¢?, x)} maximizes S over all elements of X which
satisfy

o

E[E Bla,q, — Ym]] < E{é Bila,q; — th?]] (15)

t=0
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where the expectations in (14) and (15) are with respect to the distribu-
tions P, of (uy,...,4),t=12,....
We next show that for some constant A > 0

Y, <A (16)

almost everywhere, with equality a.e. on any Borel set 4 such that
E{y,1,x?} > 0. (I, is the function taking the value 1 on 4 C E* and 0
elsewhere.) To verify (16), consider first the case E{v,1,x?} = O for all ¢, 4.
If (16) is false in this case, then for all A *> 0 one can find ¢, 4 such that
E{v,1,} > AE{l,}. Then S can always be improved, subject to (15), by
increasing q0 over some B C E® with E{Iz} > 0 and increasing x? over
A C E? with E{y,1,}/E{1,} sufficiently large, which is a contradiction.

For the case where E{y,[,x?} >0 for some ¢, A4, define A by
E{y,1,} = NE{I,}. Now if 5, B satisfy E{y, Iz} > AE{I,}, S can be in-
creased, subject to (15), by increasing x? on B and decreasing x{ on 4.
Similarly if E{y, Iz} <<AE{Ig}, S can be improved, subject to (15), by
decreasing x¢ on B and increasing x on 4, unless 0 = 0 almost every-
where on B. In the latter case, however, E{y Igx?} = 0. Hence (16) is
proved.

In view of (16) and the fact that {¢?, x?} maximizes the expression (14)
over Y, we have

© ©

2 BE{ayq) — v,x)} > 2 BE{eaq, — %} 2 2 B'E{a,q, — Ax,}
t=0 t=0 t=0

for all {g,,x,} € Y, with equality if {g,, x,} = {¢?, x?}. Then letting p7 =
A~la,, we have shown that {¢?, x?} maximizes

z B'E{piq, — x,}
t=0

over ¥, or that condition (8) of the definition of industry equilibrium is
satisfied.

To show that (7) is satisfied (almost everywhere) by {¢?, x, p?}, observe
that if {¢}, x?} maximizes S over all elements of X satisfying (15), it also
maximizes § over the subset of X on which x, = 0 whenever x? = 0. Over
this set, (16) (and the fact that x is clearly 0 whenever y, = 0) implies that
the constraint (13) is equivalent to

oo o«

2 BE{plq, — x} < 2 BE{pPqy — x7}.

t=0 t=0

Since s is strictly increasing in ¢, this constraint will be binding, so that
{¢?} maximizes

2 BE{s(q,, u) — 29 }-

t=0



INVESTMENT UNDER UNCERTAINTY 77

Then since ¢? > 0, we have

P =s,(¢7,u) = D(q), ),

which proves that (7) is satisfied (almost everywhere) and completes the
proof of lemma 1.

We now turn to the study of the problem of maximizing S subject to (1)
and (2), the solution to which will be, by the lemma just proved, the
unique industry equilibrium. This will be done by studying the functional
cquation (9), which is related to the problem of maximizing § by the
principle of optimality, a version of which is utilized in lemma 4, below.

To show the existence and uniqueness of a solution to (9) and to obtain
some of its properties, we utilize the method of successive approximation
as applied in Bellman (1957). As a convenient device in this argument, we
employ the operator 7, taking bounded Baire functions on (0, o) X £
into the same set of functions, defined by

Tf(k,u) = ig%{s(k, u) — x + Bff[kh(%),z]p(a’z, u)}. (17)
Then, clearly, solutions to (9) are coincident with solutions to 7f = /. The
relevant properties of T are given by the next lemma.

LemmMma 2: (¢) If fis nondecreasing in £, so is Tf; (i) if fis concave in £,
so is Tf; (éit) Tf = f has a unique solution, f*; and (&) for any g,
lim,_ 7" =f*

Proor: To prove (7), observe that if f is nondecreasing, s(k,u) and
S flkh(x/k), z]p(dz, u) are nondecreasing functions of £ for all fixed x.

To prove (i1), note first that the concavity of f in £ implies that f is
continuous in £ on (0, 00), so that the expression in brackets on the right of
(7) is continuous in k. Further, this expression is finite at x = 0 and tends
to —o0 as x becomes large (since f is bounded). Hence, for any £ > 0,
Tf(k, u) is attained by some x > 0. Let £° and ! be on (0, o), let £% be a
convex combination, and let x® and x! attain Tf(£% u) and Tf(k%, u), re-
spectively. Then:

TFK®, u) = s(k?, u) + ;;%{—x + B [ fIk%R(x/k?), 2)p(dz, u)]

> Os(k% u) — 6x° + 6B ff[k“h(xo/ko),z]p(dz, u)
+ (1 — @)s(kl,u) — (1 — @)x?
+ (1= 0) B [ fIkh(x'/kY), 21p (dz, u)

= 0TF (K u) + (1 — O)TF(KY, u).

To prove (i7) and (i), observe that T is monotone ( f > g for all (£, u)
implies 7f > Tg) and if a is any constant, 7( f + a) = Tf + af. By theo-
rem 5 of Blackwell (1965), these two facts imply (1) and ().

Lemma 2 leads directly to a third lemma.
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Lemma 3: The functional equation (9) is satisfied by a unique bounded
Baire function v(k, «) on (0, o0) X E. The function v(%, «) is continuous,
nondecreasing, and concave in £ for any fixed u. For any (&, u), v(k, u) is
attained by a unique investment rate x (4, #) and x (%, «) is a Baire function,
continuous in £.

Proor: Let g(k, u) = s(k, u). Then by lemma 2, lim,,_,_ T" = f*, where
£ is the unique bounded solution to (9). Let v(k, u) = f*. Since s(k, u) is
increasing in both arguments and strictly concave in £, the limit function »
is nondecreasing and concave in £. Since v is concave in £ for fixed u, it is
continuous in £ on (0, ).

It follows from these facts that the expression in brackets on the right
side of (9) is a continuous, strictly concave function of x, positive at x = 0
and negative for x sufficiently large, so that it attains its supremum on
(0, o0) at a unique x, depending on £ and u. This defines the policy func-
tion x(&, u).

To show that x(, u) is a Baire function, we must show that for all x,

S(x% = {(k,u) € (0, 00) X E: x(k,u) < x9}

is a Borel set. For x® <0, this is trivial. Now denote the expression in
brackets on the right of (9) by H(x, £, «), and for x* 2> 0 and € > 0, define

S(x% &) = {(k,u) € (0,0) X E: H(x% ku) > H(x® + ¢, k,u)).

Since H is a Baire function, —H (x°, &, u) + H(x°® + ¢, k, u) is a Baire func-
tion on (0, 00) X E, for each &£ > 0. Hence S(x°, ¢) is a Borel set. Let {¢, }
be a decreasing sequence tending to 0 as » tends to infinity. Then

() S(x%e,)
n=1

is a Borel set, and since this set equals (using the concavity of H in x) the
set S(x%), x(k, u) is a Baire function. Since the expression in brackets varies
continuously with £, x(%, u) is continuous in £.1°

The function x (4, u) defines, for given (k;, 4,), a sequence of Baire func-
tions {£,, x,} as given by (10) and (11). The next lemma shows that this
sequence is the (essentially) unique optimal policy.

Lemma 4: For any fixed (&g, uy) € (0, 00) X E, the sequence {4, x?}
defined by (10) and (11) is an element of ¥, and this policy maximizes
over Y. Further, it is the unique optimal policy in the sense that any other
element of ¥ yielding the same value of § differs from {49, x{} at most over
sets of P, measure zero.

10A theorem in Debreu (1959, p. 19), suitably specialized to this application, states that if
f(x, ) is continuous, the function g( ) = max, ¢ f(x, y), where § is compact, is continuous.
Further, if g( ») is attained at a unique x( ») for each y, x( ») is also continuous. This fact will
be used at various points below, without reference.
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Proor: From lemma 3 and the continuity of 4, the terms of the se-
quence {£?, x?} are Baire functions, and they clearly satisfy (1) and (2) To
show that {£9,x?} € ¥, then, we need only show that £? and x{ are
bounded, uniformly in (uy,...,u, ). Since the policy x, = 0 for all ¢ is
always feasible, we have v(k, u) >0 for all £ > 0. Then from (9),

—x(k, 1) + va[kh(x(lz u)),z]p(dz,u) > ,va[kh(O),z]p(a'z, ) >0

for all (k, u), K > 0. Let B be a bound for v so that the term on the left,
above, is less than

—x(k,u) + BB.

Hence x(k,u) is bounded from above by BB. Then if k, > (BB/9),
k.1 <k, so that max [(8B/8), k4] is an upper bound for £,.

To show that {£?, x?} is optimal, it is sufficient to show that it yields the
return 2(kg, uy) (Blackwell 1965, theorem 6, part ). Define the operator F,,
taking bounded Baire functions on (0, ) X E into the same set of
functions, by

Fy f(k,u) = s(hk, u) — x(k, u) + ﬁff[kh( x(k, ")) z]p(dz, w).

The functional equation Fy /= f has a unique solution, /™ (Blackwell
1965, theorem 5), and this solution, evaluated at (£, u,), gives the value of
S under the policy {£¢, x?}. Since Fyo = v, v = f*, which proves that
{£2, x0} is optimal.

To prove uniqueness, let {k}, x!} yield the same value to S as {£?, x{},
and let 4, be the Borel subset of £? on which x}! and x? differ. Let ¢’ be the
first period in which the probability of 4, is nonzero. Then the returns
from the policies differ by

B"E{ —xp +v[k°h(k0) utlﬂ] + x} — [kolz(ko) ut,+1]}>0,

where the expectation is taken with respect to P, ;. This contradicts the
assumed optimality of {k}, x}}, and completes the proof of the lemma.

The proof of theorem 1 now follows directly from lemmas 1, 3, and 4. In
the next two sections, we pursue the study of the unique industry equilib-
rium as given by (10)-(13).

5. Long-Run Equilibrium with Independent Errors

Equations (10) and (11) and p(-, *) determine a Markov process {£,, u, }
taking values on (0, c0) X E which governs the development of £,, x,, and
u, through time, starting from a given (k, #,). To determine the long-run
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characteristics of this process, it will be necessary to restrict the {u, } process
further. In the present section, we treat the special but interesting case
where u, and u, are independent for s # ¢, or where the transition function
p(z, u) does not depend on u.

In this case, the functional equation (9) becomes

vlk,u) = max {s(k, u) —x + ,va[k}z (%),z]p(dz)}, (18)

from which it is clear that the optimal investment rate, x(£, u), will not
depend on u. It follows from (10) and (11) that the time path of capital
stock will be deterministic, following the difference equation

kg = kt}z[x(/:')], (19)

where x(£,) is the unique investment rate attaining v(£,, u). Hence we turn
our attention to the existence, uniqueness, and stability of stationary solu-
tions to (19), with results summarized in theorem 2, below.

A capital stock £° >> 0 will be a stationary solution to (19) if and only if
it is a solution to

x(k) = 8, (20)

since £(8) = 1. The solutions to (20) are described in the next lemma.
Lemma 5: Equation (20) has a solution £¢ > 0 if and only if

D(0, u)p( 8+ ——. 21

J P wotn >+ 55 (1)
A positive stationary solution, if it exists, must satisfy

Dk, uw)p(du) = 8 + ——, 22

[otkwpn =8+ 37 (22)

so there is at most one positive solution to (20).
Proor: We first show that any solution to (20) satisfies (22). From (18),

o(k, u) > sk, u) — Ok + ny(k,z)p(dz)

(since x = 8k is always feasible) for all (£, u) with equality if and only if £
satisfies (20). Then taking the mean of both sides with respect to p(u) and
collecting terms:

1
-
with equality if and only if £ satisfies (20). If 4 satisfies (20), (18) implies

—0k¢ + BE{v(k, u)} > —x + BE{v(k°h(x/k))}

E{o(k,u)} >

[E{s(k,u)} — 8k] (23)
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for all x 2> 0. Now applying (23), which holds with equality at ¢,

— 8k +

s(k¢, u)} — 8k°]

2 —x+

T3 [E{s(keh{x/k®)} — 8kh(x/k)],
for x 22 0. At x = 8k°, this inequality holds with equality. At any other
value of x, the right side takes on a smaller value, which is to say that 8¢
maximizes the expression on the right. Then the first-order condition

E{s,(k°,u)} = E{D(k,u)} =8 + — h(8)
is satisfied. If (21) does not hold, no k¢ >> O satisfies this condition, so the
necessity of (21) is proved. Further, we have proved that positive station-
ary solutions satisfy (22) and, since D is strictly decreasing in £, that there is
at most one such solution.

To show that (21) is sufficient for the existence of a positive solution to
(20), we must rule out the possibilities that x(k) > 8k or x(k) < 8k for all
k > 0. To rule out the former possibility, recall from lemma 4 that x(£) is
bounded, so that for k sufficiently large, x(k) < 6. Suppose, contrary to
the lemma, that (22) has a positive solution ¢ and that x (k) < 8k for all
k > 0. Define the function z(k) by

E{s(k,u)} — 6k 0}
1 -8 ’
so that from (23), 2(k) < E{v(k, «)} for all k¢ > 0. Now, define the operator

Fy on bounded continuous functions on (0, o) by

z(k) = max {

Fyy(k) = E{s(k,u)} — x(k) + By[klz( x(k ))]

It is readily verified that for any y, z in the domain of Fy, || Fyy — Fyz|| <
Blly — z||. Also, FyE{e(k, u)} = E{v(k,u)} where v is the solution to (9),
and for any y,

lim Fy = E{v(k, u)). (24)

We next show that for z(k) as defined above, Fyz(k) < z(k) for all £ < £°.
We have, directly from the definitions of z and Fy,

e - 2 o[ st

- fBSk[ ("(kk)) ] + 8k — x(k).

(25)
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) - 1] (26)

h("(kﬁ) —1< h'(s)["(kﬁ - 3]. (27)

The strict concavity of s and 4 implies

s[kh (xik)), u] — x(k,u) < D(k, wlk [h (x kk)

and

Combining (25), (26), (27), and (22) then gives, for & < £°,
Fyz 2 (28)

One may also verify that y(k) < z(k) over the interval (0, £°) implies
Fyy(k) < Fyz(k) on this interval. Thus (24) and (28) together imply

E{o(k,w)} = lim Fyz(k) <z(h), k€ (0,47

which contradicts (23). This completes the proof of lemma 5.
It can be shown that v(k) = E{v(k,u)} is differentiable for £ > 0.11
Then from (18), x(k) must satisfy

-1+ Bu'[kh(%ﬁ)]h'[%] <0 (29)

with equality if x (k) > 0. Inspection of (29) reveals that x(k)/k is a strictly
decreasing function of £ where x(£) > 0, and that kA(x(k)/k) is a strictly
increasing function of £ Hence if (20) has a solution, £° >> 0. Then the
results of this section may be summarized in this theorem.

TueoremM 2: Under the hypothesis of independence of the {u, } process,
there are two possibilities for the behavior of the optimal capital stock, %,.
If (21) holds, and if £, > O, £, will converge monotonically to the station-
ary value £°, given implicitly by (22). If (21) fails to hold, or if £, = 0,
capital will converge monotonically to zero.

The marginal condition (22), which is satisfied by the long-run capital
stock, has a familiar interpretation. The left side of (22) is the expected
marginal value product of capital. Since in our model the marginal physi-
cal product is unity, this becomes simply expected output price. The right
side of (22) is a rental price or user cost of capital, equal to the sum of a
depreciation cost term, 8, and a capital or interest cost term, (r/A’(8)).

While capital and investment are varying deterministically as de-
scribed in theorem 2, output each period is supplied to the market inelas-

UIf we let g (k) = E{T"s(k,u)) and a,(k) = g,(k) — g,_,(k), it can be shown that (:)
a,(k) < BnBy, (3) a,(0) = 0, (i) aj(k) > 0, and (i) |a,/(k)| < B, provided A" (k) is bounded,
for k > £* >> 0. Given these conditions, it follows a;(k) < (8"/2/2)B1/2B, proving g/, (k) con-
verges uniformly for £ > £*, Since g, (k) converges to o(k) = Ev(k, u), v(k) is differentiable for
all £ > £*. Since this result holds for all £* > 0, v’(4) exists for all £ > 0.
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tically, in a quantity given by the historically determined capacity of the
industry. Fluctuations in demand then affect price only, in a manner
which can be computed from the demand function (7). (It may be noted
that if variable inputs were introduced, the short-run supply would be
upward sloping but not vertical, so that both price and output would vary
with demand shifts. Nevertheless, in this case as well the capital-invest-
ment path will be deterministic.)

While the case of independent errors discussed in this section may ap-
pear to be an unlikely specialization of our general model, it is interesting
to note that it corresponds perhaps more closely than any other analytical
model of the industry to the familiar geometrical dichotomy between
short-run and long-run supply. In the short-run case, capacity is fixed and
price and output are determined entirely by the current demand function
and the short-run supply function. In determining the long-run equilib-
rium, on the other hand, demand fluctuations play no role, with equilib-
rium capacity determined entirely by average, or normal, demand.

6. Long-Run Equilibrium with Serially Dependent Errors

In the case of a serially independent {, } process, as studied in the preced-
ing section, a demand shift in period ¢ results in a windfall gain (or loss) for
firms in that period, but yields no information about what the state of
demand in future periods is likely to be. As a result, the current state of
demand has no effect on investment policy, and the capital stock of the
industry follows a deterministic difference equation. In this section, we
shall drop the assumption of independent demand shifts, replacing it with
an assumption that these shifts are positively correlated in a particular
way, so that, for example, an upward shift in demand not only increases
price and profit this period but increases the probability that price will
continue to be higher than average over the near future.

To study the case of dependent errors, it will be necessary to impose
some additional restrictions on the {«,} process, with the general aim of
assuring that the distribution of (k,, 4,) will converge to a stationary distri-
bution which is independent of the initial state of the industry, (4, 1)
First, we require, for all » € E and all nondegenerate intervals 4 C E,

f p(du, v) >0, (30)
A

so that for any «, and any nondegenerate subinterval of E, u, , will fall in
that subinterval with positive probability. Similarly, it assures that
will fall in that subinterval with positive probability, or that

pr[uHsEAlut =uy} >0 (31)



84 Lucas AND PrREScOTT

for all u; € E and all nondegenerate subintervals 4 of E. Assumption (30)
does not preclude the possibility that the left side of (31) may approach 0
as s approaches infinity. We shall rule out this possibility explicitly by
adding

lsim priu, ., € Alu, =uy] >0 (32)

for all uy, A as above, where the limiting value does not depend on the
value of u;. That is, u, has a limiting distribution which does not depend
on the initial value #, and which assigns positive probability to all non-
degenerate intervals of E. It follows from (31) and (32) that for any fixed 4
the terms of the sequence (31),s = 1, 2, . . ., are uniformly bounded away
from zero.

We also wish to insure that the relation between current and future
demands is always positive (so that a high demand this period always
signals high demand for the future) by requiring that

pr {u;q 2> x|u,} (33)
be a strictly increasing function of %, for all x € E and that

lim pr {u,,, > x|y, } = 1,

u'—)w

. 34

lim pr{u,_, > x|u} =0, (3%)
u‘—)—w

for all x € E. An example of a process satisfying the restrictions (30), (32),

(33), and (34) is:

Uy = puy + €,

where 0 < p < 1, and where {¢, } is a sequence of independent, identically
distributed normal random variables. Finally, in addition to the assump-
tion (Sec. 1) that D(k, ) (and hence s[k, u] also) is an increasing function
of u, we add the restrictions that the limits

5(k) = lim s(k, u), (35)
s(k) = lim s(k, u), (36)

exist, and convergence is uniform in £.

Our first task, given these restrictions, is to decompose the set of possible
states of the (k,,u,) process, the set (0, c0) X E, into transient sets (sets
which cannot be entered, and which will be departed with probability
ultimately approaching 1) and ergodic sets (sets which once entered can-
not be departed, and which contain no transient subsets). To do this, we
develop some additional notation and prove some preliminary lemmas.
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Since fv(k, 2)p(dz, u) is a bounded, increasing (by [33]) function of u, the
limits

7(k) = lim f o(k, 2)p(dx, u), (37)
o(k) = lim f o(k, 2)p(dz, u), (38)

exist for all fixed £ We wish to show that convergence is uniform in £ and
to exhibit functional equations solved by v(k) and »(k). To this end, we
first introduce another lemma.

LemMma 6: Let f(£, u) be a bounded Baire function on (0, o¢) X E, such
that

lm f(k,u) = f(k) and lim f(k,u) = f(k)
U— U—+—00 -
exist, and convergence is uniform. Then

lim [ f(k 2)p(dxu) =F(k) and  lim [ f(k2)p(dx,u) = f(b)

and convergence is uniform.

Proor: Let B be a bound for f. Then for x € E,

|70 ~ f 7tk 23p002,0)
= | 170 — s b + [ (70 — stk otz v

<2 [ pldes) + sup 1706 =Sk, [ pldes)

For x sufficiently large, | f() — f(k, z)| is arbitrarily small, uniformly in £,
while {7 p(dz, u) is bounded by 1. For any fixed x, however large, the first
term on the right is made arbitrarily small by choosing u sufficiently large,
applying (34). The proof for f(k) is similar.

As an application of lemma 6, we have the next lemma.

Lemma 7: The function v(k), defined in (37), satisfies the functional
equation

a(k) = sup {'s'(k) —x+ Bi[lclz (%) ]} (39)

and an analogous functional equation is satisfied by (k).
Proor: We first show that

lijn v(k,u) = v(k) (40)
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uniformly in k. Define the operator T as in Section 2, and let 0(, u) = Oon
(0, o) X E. Let 0,(k,u) = T"0(k, »). Then, by lemma 3, lim,_,, 7"0 =
v(k, u), uniformly in £ and u. It will then be sufficient to show that 0, (£, u)
converges uniformly to the limit 0,(k) as u — oo, for all n. For n = 1, the
proposition is true, since 0,(%, u) = s(%, ), and s(&, u) converges uniformly
to 5(k) by (35). Suppose 0, (£, u) converges uniformly to an(lc). By the defi-
nition of the operator 7,

0,,,(k 1) = sup {s(lc u) — x + ﬁfo [k/z( ) ]p(dz u)}

o 230
0,,.(k) =5(k) + sup [ —x + f0, [k}z (%) ] }
Since 0, (k) > 0, (k, u),

P
0< 0n+1(k) - On+1(k’ “)

=sup -+ + 40 (})
- o[
up ﬁn[kh(%)] —~ fOn[k}z( ) ]p(a’z )

+ 5(k) — s(k, u).

By lemma 6, the induction hypothesis, and (35), the term on the right is
arbitrarily small, uniformly in kA(x/k), for u sufficiently large. Thus
0, 1(k, u) converges uniformly to 0, (k) and lim,,_,__ 0, (k). This completes
the proof that the convergence in (40) is uniform.

Now

v(k)y = 1111_12 :1;% {s(k, u) —x + ﬂfv[k/z(x/k)]p(dz, u)}

By (35), (40), and lemma 6, the expression in braces converges uniformly
in k; thus, the supremum and limit operation can be interchanged to
obtain (39). The proof for v(£) is similar.

The limit functions (k) and u(k) share the properties of continuity,
monotonicity, and concavity with [v(k, 2)p(dz, u) regarded as a function
of k for fixed u. Then, as in Section 3, 7(k) and »(£) are attained at unique
values ¥(k) and x(k), respectively, and these functions are continuous. Also
as in Section 3, the functions (1/k)x(k) and (1/k)x(k) are decreasing and
the functions k4[(1/k)x (k)] and kA[(1/k)x(k)] are increasing. Finally,

x(k) = lim x(k, u)
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and
x(k) = lim x(k, u)
*U->r—oo

for all £.

From (33), x(k, ) is an increasing function of «, so that x(k) > x(k) for
all £ such that x(k) > 0. By an argument used to prove lemma 4,
¥(k) < 8k for k sufficiently large. Let £ be the least positive solution to
%(k) = 8k (or O if there is no positive solution) and let £ be the greatest
positive solution to x(k) = k& (or O_if there is no solution). Then since
x(k) < x(k) if X(k) > 0, either k =k =0, or 0 < £ < k < o0.

We now prove another lemma.

Lemma 8: (¢) For all £ > £, there exists hy < 1 (not dependent on &)
such that the event A[(x(k, u)/k)] < 44 has positive probability, for all ¢
and all ug; (2) for all 0 < k < £ there exists 2, >> 1 (not dependent on £)
such that the event A[(x(k, u/k)] 2> h, has positive probability, for all £ and
all u,.

Proor: We prove (z) only, since the proofs of the two parts are essen-
tially the same. For any &, the event (1/k)x(k) < (1/k)x(k,u) <
(1/2k)[x(k) + x(k)] has positive probability, by (31) and the definitions of
%(k) and x(k). For k > k, (1/k)x(k) < (1/k)x(k) = §, so that the occur-
rence of this event implies

1
é‘;.&(k) <4

Lx(huw) < o+

Letting A, = A[(8/2) + (1/2k)x(k)] < 1, (i) is proved.

Using lemma 8, we can prove the next lemma.

LEmMa 9: Thesets T, = (0,£) X E and T, = (k, ) X E are transient,
and the set B = (, k) X E contains all ergodic sets.

Proor: Since {#,,u,} takes values in 7; U B U T, (for k, > 0), it is
sufficient to show that (2) if (ko, 4o) € T;(i = 1, 2), (k,, »,) € T; with proba-
bility 1 for all ¢ =1, 2...; and (22) for all (kg u,) € T, U T,

gim pr[(k,u,) € B] = 1.

To prove (i), we show that pr [k, ., > k|(k,u,)] =0 for (k,, )€
T, U B. For k, <k, we have

ko <k ( x(k, )) (——x(k)) =

since k&((1/k)x(k)) is an increasing function of £. A similar argument rules
out passage into T} from B U T,.

To prove (i), let (ky, u,) € T,. Since x(k,, u) < 6k, for all u, we have
kt < kg forallt Let £, < 1 be the number whose existence was established
in lemma 8. For some ¢* koh‘ < k. Hence if the event h[(x(k, u)/k)] < A,
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occurs ¢* times in ¢ periods, k, < k. Since the probability that this event
occurs is bounded away from zero, the probability that it will not occur ¢*
times in ¢ periods goes to zero as ¢ becomes large. A similar argument
applies if (ky, uy) € T;.

Next, we have the final lemma.

Lemma 10: The set B = (k, k) X E constitutes the single ergodic set.

Proor: It has been shown (lemma 9) that all ergodic sets are contained
in B. To show that B is a single ergodic set, it is sufficient to show that for
some ¢ 2> 1, all (&g, 4,) € B, and all nondegenerate rectangular subsets 4
of B, that

pr [(kp ut) €4 |(k07 uo)] > 0.

Let A = {(k,u) € B: k, <k < ky, u, <u<w}, where k <k, <k, <k
and u, <w, u,, 4, € E. Suppose, to be specific, that &, < k,. Then for any
finite ¢ one can choose 6, > 8, > 1 such that k8% = £, and k0% = &,, and
lim, 0, = 1. By choosing ¢ large enough, the event A[x(k, u)/k] > 6, has
positive probability for all £ < £, so that the event

0, < hlx(k,u)/k] <0,

has positive probability. Hence the probability that this event will occur ¢
consecutive times is positive, as is the probability that u, < u, < u,, for
any u, ;. Hence the lemma is proved.

Lemmas 9 and 10 accomplish the division of the set (0, o0) X E of
possible states of the {k,,u,} process into two transient sets and a single
ergodic set. In doing this, nothing has been assumed to assure that the
ergodic set B is non-empty, or equivalently, that x(4) = 6k has a positive
solution £. The following theorems characterize the long-run behavior of
the system under the hypothesis that B is non-empty. We return to the
questions of verifying this hypothesis, and of characterizing the system
when it is false, below.

TueoreMm 3: If B is not empty, for all (£, «) and all (£, u,), the limit

lim pr {k, <k, u, < ullky ug)} = Pk, u)
t—oo

exists, and does not depend on (kg, %,). The function P(£, 1) is a probabil-
ity distribution on (0, c0) X E, assigning probability zero to all subsets of
T, U T, and positive probability to all Borel subsets of B with positive
area.

Proor: See Doob (1953, theorem 5.7, p. 214, and surrounding text).

Since under the limiting distribution, £, lies on a bounded interval with
probability 1, the mean of &, £*, say, exists and is positive. Then we have
the following “stability” theorem.
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TueorewM 4: If B is not empty, then for any initial state (k,, ug),

lim ! i k, =k
Tow T =0 t
with probability 1.
Proor: The result follows from Doob (1953, theorem 6.2, p. 220).
To verify the hypotheses of theorems 3 and 4, we wish to determine
when the equation X(£) = 6k has a positive solution. This question is anal-
ogous to the question of the existence of a positive solution to x(k) = 8(k)
studied (and solved) in the preceding section. We have the following
theorem.
TueoreM 5: The ergodic set E is non-empty (x[£] = 8% has a positive
solution) if and only if

. r

Proor: The proof follows that of lemma 5, with the operator [ f(u)p(du)
on functions f replaced by lim,_, f(u). This replacement is justified by
lemma 7.

If (41) fails to hold, capital stock in the industry will go to zero with
probability one, since x(k,,u,) < 8, for all (k,,«,). Thus theorems 3, 4,
and 5 provide a complete description of the long-run behavior of the
industry under the assumptions of this section.

7. Conclusions

The object of this paper has been the extension of “cost-of-adjustment”
type investment theory to situations involving demand uncertainty. In
doing so, we have tried to go beyond formulations of the “price expecta-
tions affect supply, which in turn affects actual price” variety, to consider
the simultancous determination of anticipated and actual prices. This in-
volves studying the determination of industry equilibrium, in addition to
the individual firm’s optimizing behavior, a step which radically alters the
nature of the problem.

Generally, the equilibrium behavior of capital stock, output, and price
through time is similar to the certainty case studied in Lucas (1967a): the
interplay of shifting demand and the costs of varying capacity leads to a
difference equation in capital stock. The stationary character of the de-
mand shifts leads capital stock to settle down, either with certainty or “on
average,” to a long-run equilibrium level, determined by interest rates,
adjustment costs, and average demand levels.

An interesting feature of our theory is the role played by securities prices
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in informing firms of the market (not “‘shadow’) price placed on additions
to capital stock. We have found (Sec. 2) that securities prices as a variable
in a firm level investment function have a much stronger justification than
simply as a “proxy” variable for future demand.
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Formulating and Estimating Dynamic Linear
Rational Expectations Models

Lars Peter Hansen
Thomas J. Sargent

This paper describes methods for conveniently formulating and estimat-
ing dynamic linear econometric models under the hypothesis of rational
expectations. An econometrically convenient formula for the cross-equa-
tion rational expectations restrictions is derived. Models of error terms
and the role of the concept of Granger causality in formulating rational
expectations models are both discussed. Tests of the hypothesis of strict
econometric exogeneity along the lines of Sims’s are compared with a
test that is related to Wu’s.

This paper describes research which aims to provide tractable procedures
for combining econometric methods with dynamic economic theory for
the purpose of modeling and interpreting economic time series. That we
are short of such methods was a message of Lucas’s (1976) criticism of
procedures for econometric policy evaluation. Lucas pointed out that
agents’ decision rules, e.g., dynamic demand and supply schedules, are
predicted by economic theory to vary systematically with changes in the
stochastic processes facing agents. This is true according to virtually any
dynamic theory that attributes some degree of rationality to economic
agents, e.g., various versions of “rational expectations” and “Bayesian
learning” hypotheses. The implication of Lucas’s observation is that in-
stead of estimating the parameters of decision rules, what should be esti-
mated are the parameters of agents’ objective functions and of the random
processes that they faced historically. Disentangling the parameters gov-
erning the stochastic processes that agents face from the parameters of
their objective functions would enable the econometrician to predict how
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the Federal Reserve Bank of Minneapolis or the Federal Reserve System. Helpful comments
on an earlier draft were made by John Taylor.
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agents’ decision rules would change across alterations in their stochastic
environment. Accomplishing this task is an absolute prerequisite of relia-
ble econometric policy evaluation. The execution of this strategy involves
estimating agents’ decision rules jointly with models for the stochastic
processes they face, subject to the cross-equation restrictions implied by the
hypothesis of rational expectations. However, even for very simple mod-
els, these cross-equation restrictions are of a complicated form, so that in
applications substantial technical problems exist even about the best way
of expressing these restrictions mathematically. This paper aims to extend
what is known about conveniently characterizing these restrictions and
estimating models subject to them.

Our work here involves a setup in which the environment and agents’
decision rules can be modeled as time invariant linear stochastic difference
equations. Such setups are attractive because they are ones for which the
dynamic stochastic optimization theory is tractable analytically, and be-
cause it is convenient for econometric reasons to remain within the well-
developed domain of time invariant linear stochastic difference equations.
In this paper, we adopt the device of carrying out the entire discussion in
terms of a simple example, that of a firm devising a contingency plan for
the employment of a single factor of production subject to quadratic costs
of adjustment and uncertain technology and factor rental processes. This
has the advantage of keeping the discussion simple and concrete, while
setting aside several technical complications that arise in more general
settings, e.g., models with multiple factors, Virtually every issue we deal
with here appears in the more complicated setups. Included among the
topics treated in this paper are the following:

1. Derwation of a convenient expression for the decision rule. Having tractable
expressions for the restrictions across the parameters of stochastic processes
that agents face and their decision rules is necessary in order to make
rational expectations modeling applicable to problems of even moderate
dimension. Success in this part of our work will in effect extend the size of
rational expectations systems that are manageable.

2. Delineation of the natural role played by “Granger causality” in these models.
Formulating and estimating models of this type naturally requires use of
the concept of Granger causality (1969). In dynamic problems, agents’
decision rules typically involve predictions of future values of the stochas-
tic processes, say w,, that they care about but can’t control, e.g., in competi-
tive models output prices and/or input prices. Theory asserts that current
and past values of any stochastic processes that help predict w, belong in
the decision rules. This is equivalent with saying that all processes agents
see and that Granger cause w, belong in agents’ decision rules. Further,
given the appropriate conditioning set or universe with respect to which

tExamples of such cross-equation restrictions in simple setups are in Lucas (1972), Sargent
(1978a, 1978b), and Taylor (1978, 1979).
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Granger causality is defined, it is usually correct to assume that the deci-
sion variable of a competitive firm fails to Granger cause w,. It is for these
reasons that analysis of such models naturally leads to heavy utilization of
the concept of Granger causality. However, it should be recognized that in
some settings w, fails to be Granger caused by the firm’s decision variable
only when the firm’s information set used to forecast w, includes market-
wide totals of the firm’s decision variable. This occurs, for example, when
marketwide employment contributes to the determination of the factor
wage w,.

3. Delineation of the relationship between Granger causality and econometric
exogeneity. Sims (1972) has shown that if x, is to be strictly exogenous in a
behavioral relationship expressing n, as a one-sided distributed lag of x,,
then 7, must fail to Granger cause x,. So failure of #, to Granger cause x,
is a necessary condition for x, to be strictly exogenous. It is not a sufficient
condition, however, which will be evident in the context of this paper.
Below we develop a statistical test of a stronger sufficient condition which
is applicable to situations in which the economic behavioral relationship
in question is a decision rule expressing n, as a one-sided distributed lag of
x,. The restrictions that the assumption of rational expectations imposes
across the decision rule and the stochastic process for x, are essential in
making the test feasible. This test is related to Wu's (1973) test for
exogeneity so that a useful by-product of this paper is to clarify the rela-
tionship between Wu’s test for exogeneity and Sims’s test.

4. Development of models of the error terms in estimated decision rules. This
paper develops two different models of the error terms in behavioral equa-
tions. Both models use versions of the assumption that private agents ob-
serve and respond to more data than the econometrician possesses. Each
model imposes substantial structure on the error term and limits the free-
dom of the econometrician in certain respects to be described. Together
with variants of “errors in variables” models, these models are about the
only plausible models of the error processes that we can imagine. The
rational expectations or equilibrium modelling strategy virtually forces
the econometrician to interpret the error terms in behavioral equations in
one of these ways. The reason is that the dynamic economic theory implies
that agents’ decision rules are exact (nonstochastic) functions of the infor-
mation they possess about the relevant state variables governing the dy-
namic process they wish to control. The econometrician must resort to some
device to convert the exact equations delivered by economic theory into
inexact (stochastic) equations susceptible to econometric analysis.

5. Development of estimation strategies for rational expectations models. The
discussion of this topic will draw heavily on each of the preceding four
topics as we discuss methods for the tractable, consistent, and asymptoti-
cally efficient estimation of rational expectations models.

It should be emphasized that the techniques we describe are applicable
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to an entire class of problems of which our factor demand example is only
one member. Other setups that involve identical conceptual and estima-
tion problems include linear-quadratic versions of Lucas and Prescott’s
(1971) model of investment under uncertainty (e.g., Blanco 1978 or Sar-
gent 1979), versions of Cagan’s model of portfolio balance during hyper-
inflations (e.g., Salemi and Sargent 1980, and Sargent 1977), and rational
expectations versions of Friedman’s permanent income theory of con-
sumption (e.g., Hall 1978 or Sargent 1978a). The essential characteristic of
these examples is that each can be reduced to a problem in which an agent
is choosing a linear dynamic contingency plan for a single variable. Exten-
sions to multivariable dynamic choice problems are deferred to a sequel to
this paper.2

1. Formulas for Decision Rules

A firm employing a single factor of production chooses a contingency plan
for that factor n, to maximize its expected present value

N
Ilvlﬂ E, 2 B(Yo + a4y — weyInyy — (Y2/ 2,
j=0

1
= (8/2)(nyy; — npi5-1)%) 1)

subject to n,_; given, where n, is employment of the factor at time ¢, w, is
the real factor rental, and g, is a random shock to technology which is seen
by the firm but unobserved by the econometrician.? We shall think of », as
being employment of the single factor labor and w, as the real wage, but it
would be equally appropriate to regard #, as the stock of capital and w, as
the real rental on capital.* In (1) y,, v;, and 8 are each positive constants,
while the constant discount factor f satisfies 0 < 8 < 1. The notation
E,(y) denotes the mathematical expectation of the random variable y,
conditioned on information available at time ¢, an information set to be

2Aspects of estimating models under rational expectations are discussed by McCallum
(1976), Shiller (1972), Wallis (1980), Taylor (1978, 1979), and Revankar (1980). While our
estimation problems share many common features with the ones treated in these papers, our
setup tends to impose more structure on the estimation problem because the process that we
estimate is in effect a “closed-loop-system” resulting from the solution of an optimum prob-
lem by a private agent or by a fictitious planner. The paper by Kennan (1979) estimates
parameters of a model similar to ours by estimating the stochastic Euler equation.

3The price of the output good has not been included in our formulation. One can view this
as a world in which there is only one consumption good. Alternatively, we could formally
introduce the output price into the analysis. However y; would have to be set to zero so that
no third-order terms enter into the objective function.

In particular, we could assume that the firm chooses capital £, to maximize

0
~Jeihias = 1) — 872k, — kiiy 1))

Vt = Et 2 Bi[(YO + a¢+j)kt+j - (71/2)/‘?4.;'
j=
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specified shortly. The firm faces a stochastic process for a, of the form

a4 =034, 1 + -+ 0,a_, +0f,
or
a(L)a, = v,
where L is the lag operator and where a(L) = 1 — a;,L — .-+ —a, L9, a;

being a scalar for all ;. We assume that w, is the first element of a vector
autoregressive process x, that satisfies

§(L)x¢ = 0':‘,
where x, and »{ are each (p X 1), and where
QLy=T—§L— - —¢,I"

The matrix {;is p X p and so is conformable in dimension with the vector
x, for j = 1,...,7. Here (v}, v{)pre the innovations for the joint (g,, x,)
process. More particularly, we assume

a —
of = a4 — Elajla, 1,0, s X1 %5 - );
> —
vi=x —Elxlx n X g8 1,8 5, ]
It follows that Ev¢Q, , =0 and E»¥Q, ; =0, where £, ;=
{a,_1s 8y 95 X1, X;_g,.--). At time ¢, the firm is assumed to know

Q, U {n,_y,n,_,,...}. We further assume that g, and x, are jointly covari-
ance stationary stochastic processes. Sufficient conditions for this are that
the roots of a(z) = 0 and det {(2) = 0 lie outside the unit circle. Actually,
for much of our work, the assumption of covariance stationarity can be
relaxed somewhat and be replaced by the assumption that 4, and x, are of
mean exponential order less than 1/ V.5

We solve the firm’s problem by using the discrete time calculus of varia-
tions.® Differentiating the objective function (1) with respect to n,,;,

subject to k,_, given. Here J, is the relative price of capital at time ¢, relative to the firm’s
output. Using “summation by parts” it is easy to verify that the above expression is equiva-
lent with

Ve =EJk,y + E, 2 Bl(Yo + @by — (/DK
i=0

- (Jt+i - BEt+th+j+1)kt+j - (6/2)(kt+j - kl+j—1)2]'

Since &,_, is given, the same decision rule for £, will be found by maximizing (1) in the text
withk, = n,and J, — BE, J,,, = w,. Here J, — BE, ], can be interpreted as the rental rate
on capital.

SSufficient conditions for this requirement of mean exponential order less than 1/ VB are
that the zeroes of a(z) and det {(z) be greater than \/,T?pin absolute value. This is the gen-
eral condition on uncontrolled random processes required for the class of problems we are
studying.

6See Sargent (1979) for an exposition of this technique and application to some simple
models.
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j=0,...,N — 1, and setting each derivative equal to zero gives the sys-
tem of stochastic Euler equations

BE inpajsr + &y + npyy g = (1/8)(wy45 — a5 — Yo),
Jj=0,...,N—1,

()

where ¢ = —[(v,/8) + 1 + B]. Differentiating with respect to the last
term n,, . gives the terminal or transversality condition

zlvl-To E, BV (Yo + ayin — Wyn — Yitpaw — 8y — iy )] = 0. (3)

To solve the Euler equations for j = 0,..., oo, subject to the terminal
condition (3) and the given initial employment n,_,, first obtain the factor-
ization of the characteristic polynomial of (2),

[L+ (@/B)z + (1/B)z%] = (1 — p2)(1 — py2).

Given our assumptions about the signs and magnitudes of B, y,, and §, it
can readily be shown that 0 < p; < 1 and that p, = 1/8p,.7 It follows
that the unique solution of the Euler equations that satisfies the trans-
versality condition is

n, = pyn,_q — (p1/8) 2 NE, (w4 — @y — Yol €]
i=0

where A = p3! = Bp,. Equation (4) is derived from the Euler equation (2)
by solving the stable root backwards, and the unstable root forwards in
order to satisfy the transversality condition. See Sargent (1979) for more
details. Equation (4) exhibits the certainty equivalence or separation prop-
erty. That is, the same solution for n, would emerge if we had maximized
the criterion formed by replacing (a,;, w, ;) by (E,a,,;, E,w, ;) and drop-
ping the operator E, from outside the sum in the objective function (1).

Equation (4) is not yet a decision rule, for the terms Ew, ,; and E,a,;
must be eliminated by expressing them as functions of variables known by
agents at time . We shall use the classic Wiener-Kolmogorov formulas to
derive a closed form for the decision rule.® To derive the decision rule we
shall tentatively restrict our specification of the stochastic processes for
w, and g, to require that the roots of det {(z) = 0 and of a(z) = 0 be out-
side the unit circle. These conditions on roots guarantee that 2, and w,
are covariance stationary, thereby justifying the use of the Wiener-
Kolmogorov prediction formulas. It will turn out, however, that while our

“See Sargent (1979).
8These formulas are derived by Whittle (1963).
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formulas were initially derived on the assumption that these roots are
outside the unit circle, the formulas remain valid under wider conditions,
in fact under the conditions on the exponential orders of w, and g, indi-
cated in footnote 5.

In Appendix A we shall derive expressions for the terms on the right-
hand side of (4) using complex analysis. That derivation seems worthwhile
to us in its own right, since it illustrates a method useful in other contexts
and also carries insights into the nature of the “annihilation operator”
used in solving linear least-squares prediction problems. Here we shall
derive the formula in a technically less demanding way using tools more
familiar to economists. We desire formulas for the terms

U 2 )\’E,JttH = z AjEthj and z )\jEtat+j,

j=0 ji=0 j=0

0

where U is the (1 X p) unit row vector with 1 in the first place and zeroes
elsewhere. The moving average representations for a, and x,, which exist
by the assumptions on the zeroes of «(z) and det {(z), are

a, = a(Ly % = x(L)} = [z x].L’]v‘;,
i=0

and

®©

v = 8w = g0f = [ > g1 or

i=0
The Wiener-Kolmogorov prediction formula is
Ex,p = [§(L)/LF] 0F,

where [ ], is the annihilation operator that instructs us to ignore negative
powers of L. In other words,

Ex,,, = [Z gjLH]yf.
j=k
Then we have

2 }\kEtka = [ 2 Ak z %L’*] vf = Y(L)of,
k=0 j=k

k=0
where

w0

VOESS i)\"gijL-".

k=0j=k
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Interchanging orders of summation gives
© ]
Y(L) =D S ARGLL*
j=0 k=0
i

= i &L S KL
j=0

k=0

= i EjU[(l — NHIL==h /() — ALY
j=0

J

= (2 &L — AL i g].w')/(l — ALY
=0 i=0

= [E(L) — AL7YEQ)]/(1 = ALY,
Even though the above expression for /(L) contains both positive and
negative powers of L, by construction the polynomial in the lag operator
Y¥(L) contains only nonnegative powers of L. In summary it has been
shown that

D AREx, g = {[E(L) — LTNEM)]/(1 = AL D)ot %)
k=0

Equation (5) is a closed form that is especially useful for estimation in the
frequency domain. The corresponding formula for a, is

D A Ea = {[x(L) — LAXN/(1 ~ ALY}, (6)
k=0
For time domain estimation, it is desirable to replace the right-hand

sides of equations (5) and (6) with equivalent expressions in terms of cur-
rent and past values of x, and a,, respectively. Using

vf = {(L)x, = §(L) 'x,,
we can substitute into equation (5) to obtain
S NHEpx,y, = ([E(L) — LAEQ/( — AL} (L,
k=0

= {[/ = LMWL/ = AL H}x,
= {[1 = LTALA)(D1/(1 = AL D}y,

Now calculate ¢{(L)/(1 — XAL™1) by using polynomial long division on

(=L7¢, = L%,y —... ~L{ + I)/(1 = AL7") to obtain
S(L)/(1 = ALY
= 6L =G ML = = G A+ - F AL

+ (I =AY — - = NL)/(1 = ALY,
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It follows that

LTINM)TH(L)/( = ALY

= LTSN =EL7 — (§q HAL)LT

— e = (& F A+ o FNT)L) 4+ LT/ - ALY,
Therefore

[1 = LN T(D]/(1 = ALY
= L7 IASA)UE L + (6, + AS,) LT
+ o+ G A+ s AL
+ /(1 = ALY = LAI/(1 = ALY
=1+ N AGL + (A,oy + A% L2
+ AL+ AK+ -+ AT
Thus we have
[I =L ALMN)Y(D))/(1 — ALY
=S LA + AL + A%, + - + N8
+ AL+ ALy 4+ AL
+ oo A+ A+ - NI
Recalling that {(A) = I — ¢ N — LA — -« — £\, we have

[7 — L7AALA) (D)1 = AL
=S+ AL + A5+ - + AL
4o (N + AL NG LT,

or

[1 — LI A) L))/ (1 = ALY

r—1 T ) . (7)
={\) T + ARSI )L
1+ 5( 2 xn)2]
Using an analogous argument we have
[1 = L~ aM) la(L)]/(1 = ALY
-1
= a()\)‘l[l + qz( S )\"*fak)L’]. ®)

i=1 “k=j+1

Substituting from (5), (6), (7), and (8) into (4) gives a closed form ex-
pression for the decision rule for n,.

m = byt — UL 74 z( PRI

i=1 ‘k=j+1

P1 plky a ; ; P1Yo 1
+ Ta(}\)_l[l + 2( 2 }\"—Jak)LJ]a, + 5 (—1 — }\),

j=1 ‘k=j+1
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where a(L)a, = v%, and {(L)x, = v%. Equation (9) is a convenient closed
form that expresses the restrictions imposed across the decision rule and
the parameters of the stochastic processes for x, and a,. Notice that current
and (r — 1) lagged values of x, are in the decision rule, while current and
(¢ — 1)lagged values of 4, appear. So the numbers of lagged x’s and a’s in
the decision rule are one less than the orders of the autoregressive processes
for x, and a4, respectively. Further, notice that current and lagged x’s ap-
pear in the decision rule because they help predict future values of the
wage. Thus, any stochastic processes that both Granger cause the wage
and that are included in the firm’s information set appear in the decision
rule for n,. The above derivation took place under the assumptions that x,
had an rth order vector autoregressive representation and a, a gth order
univariate autoregressive representation. Analogous formulas have been
obtained when x, and a, are permitted to be mixed autoregressive moving
average processes and when other variables observed by the firm are useful
in forecasting future values of a, (see Hansen and Sargent 1979).

The solution method leading to (9) is usefully compared with the stand-
ard dynamic programming algorithm for computing the optimal decision
rule (e.g., Bertsekas 1976 or Kwakernaak and Sivan 1972). It is straightfor-
ward to show that our problem is a linear optimal regulator problem with
a system representation that is detectable and stabilizable.” The optimal
value function of the problem can be determined by solving the matrix
“algebraic Riccati” equation, from which the optimum decision rule is
directly calculable. The algebraic Riccati equation is solved either by
iterating on the Riccati matrix difference equation until convergence is
obtained, or else by Vaughan’s (1970) procedure of calculating the eigen-
values and eigenvectors of the state—costate transition matrix. Such proce-
dures do not lead to closed forms but require the use of iterative proce-
dures either to solve for the stationary solution of a matrix difference
equation or else to calculate eigenvalues of the state—costate transition
matrix. Evidently, the solution method leading to (9) dominates these
dynamic programming procedures both in terms of speedier computation,
and in terms of delivering expressions for the decision rules which can
conveniently be differentiated with respect to the free parameters. Each of
these features is of substantial practical importance since the decision rule
and its derivatives with respect to the free parameters {y,, v, 9, a(L),
$(L)} will have to be evaluated repeatedly in the course of nonlinear
maximum likelihood estimation.

It should be mentioned that we are able to obtain a closed form solution
in (9) because the costs of adjustment have a simple first-order form,
permitting us analytically to factor the characteristic polynomial
{1+ (¢/B)z + (1/8)2%]. In models with higher-order characteristic poly-
nomials, which result either when there are higher-order adjustment costs

9But not controllable (see Kwakernaak and Sivan 1972).
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or when there are interrelated costs of factor adjustment, the characteristic
polynomial cannot be factored analytically. In such models, one cannot
obtain a completely closed form expression for the decision rule. Still, the
method leading to equation (9) remains useful in such models, and enables
one to get “as close as possible” to a closed form solution. The application
of our method of solution to models with higher-order dynamics will be
described in a sequel to this paper.

2. Restrictions on the Error Process

In this section we illustrate how our methods can be used to provide guid-
ance for interpreting the disturbance or error term in a regression equa-
tion. We shall take the view that 4, is a random process that is observed by
private agents but is not observed by the econometrician. This indeed is a
well-known way for justifying the presence of a disturbance term. Under
this interpretation, equation (9) imposes substantial structure on the error
process in the equation to be fit by the econometrician. Recalling that
a, = a(L) 1%, the disturbance in equation (9) is given by

¢, = %a(}\)—l[l + Q_Ei (k

1=

i )\"‘jak)Lf] a( Ly 1.

=j+1
We can rewrite this equation as

a(L)e, = w(L)v}, (10)
where

-1 a

(L :flax~1[1 ( Neia )Li].

(L) 5 ) + JZ{ k;ﬂ K
Here v¢ is the serially uncorrelated random process of innovations in a,,
ie., v7is “fundamental” for a,.1°

Equation (10) shows that the error term in the decision rule (9) is a
mixed moving average, autoregressive process with autoregressive order g
and moving average order ¢ — 1. The parameters of the autoregressive
component «(L) are inherited from the gth order Markov specification for
the technology shock a,. The moving average part w(L) is entirely deter-
mined by the parameters of a( L) and the parameters of the objective func-
tion (1). Furthermore the roots of 7(z) can in general be on either side of
the unit circle.!* This means that the moving average polynomial 7 (L)
may not have a stable inverse in nonnegative powers of L. Consequently,
even though »¢ is fundamental for g, it is not necessarily fundamental for

10Some authors impose the additional requirement that the contemporaneous covariance
matrix of the serially uncorrelated process be the identity matrix as one of the conditions for
being “fundamental.” In our exposition we do not impose this additional requirement.

Throughout this paper we will continually make substitutions of z for L and vice versa. It

should be remembered that 7(L) is an operator defined on the space of stochastic processes
while 7(z) is an analytic function.
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¢,. That is, v need not lie in the space spanned by square-summable linear
combinations of current and lagged ¢’s.!2

It is of interest to contrast our specification for ¢,with other time series
specification strategies. Unrestricted moving average components of a
mixed autoregressive moving average process have multiple representa-
tions in the sense that different moving average specifications imply the
same covariance structure of the process. A common strategy in this situa-
tion is to achieve identification by focusing on the moving average specifi-
cation that is invertible, i.e., the specification for which the zeroes of the
moving average polynomial do not lie inside the circle. In our setup we
have restrictions across the autoregressive and moving average parameters.
In particular, we are not free to assume that the zeroes of 7 (2) lie outside
the circle because the parameters of #(L) are completely determined by
the other parameters of our model. This has important implications which
will be discussed below. Before proceeding to the discussion of these impli-
cations, we should emphasize that the restrictions which we have derived
on the disturbance term depend critically on the assumption that agents
use current and past observations of only the technology shock to forecast
future values of the technology shock, i.e., no other processes observable to
agents Granger cause a,. As noted previously, it is possible to relax this
assumption and instead operate under the notion that the firm observes a
vector b, whose first element is 2, and whose other elements are useful in
forecasting future values of ¢,. Unfortunately, the parameters governing
the b, process will not necessarily be identifiable. This can create problems
in identifying the criterion function parameters of the firm’s optimization
problem except when the b, process is orthogonal to the x, process.

Some widely used estimation procedures for models with mixed moving
average, autoregressive errors, such as those of Box and Jenkins (1970),
require that the error term be written in a form for which the moving
average component is invertible. If such an estimation strategy is to be
used, then it is required to rewrite ¢, in terms of 2 new process »f such that
a(L)e, = 0(L)v¢, where v¢ is fundamental for ¢,. The condition that ¢¢ be
fundamental for e, amounts to choosing (L) so that w(z)m(z"!) =
0(z)0(z71) for |z| = 1, where 6(z) has no zeroes inside the unit circle. To be
more specific, if zy,. .., z; are the zeroes of 7(z) that are inside the unit
circle, then by multiplying =(z) by Blaschke factors, we obtain!?

0(z) = w(2)[(1 — 242)/(z — 2] ... [(1 — z]-z)/(z -z}

2We have produced examples in which some of the roots of 7(z) are inside the unit circle.
This happens only if ¢ = 3. For ¢ = 2, (L) turns out to be (I — &,@,AL), where
(1 — a;L — a,l?) = (1 — &, L)1 — a,L). Since |&,] < 1, |, < 1, it follows that the zero
of (1 — &,a,Az) is outside the unit circle.

13The factor multiplying 7(2) is an example of the “Blaschke factors” described, e.g., by
Saks and Zygmund (1971, p. 221}. The Blaschke factors that we employ differ from the
standard form by a constant and a conjugation. We have left out the constant because it has
modulus equal to one, and we have left out the conjugation since the complex zeroes of 7(z)
come in conjugate pairs.
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which satisfies the above requirements. Other estimation procedures are
available that do not require that the moving average polynomial for the
error process ¢, in (10) be invertible. Such procedures are directly applica-
ble without need to replace w(L)v¢ by 6(L)zf. We shall describe these
procedures in Section 4.

An alternative to the model of the error term described above can be
derived by simply positing that the error term ¢, in the decision rule (9) is
an mth order autoregressive process, and then to work backwards and
determine what assumptions are implied about the a, process in the objec-
tive function. In particular, suppose that

e =€+ - e, t Uf’
or
e(L)e, = v¢, (11)
where ¢(L) =1 — ¢ L — ... — ¢, L™, ¢, is covariance stationary and v

is the innovation in the ¢, process. We then can invert (11), to get
e, = e(L)y ¢,

since €(z) has its zeroes outside the unit circle by the assumption of covari-
ance stationarity.
Let

A(L) = [e(L)" ML — \) + Ae(0)-1]/L.

It is easily verified that A(L) is one-sided, i.e., that the expansion for A(z)
about zero contains only nonnegative powers of L. Define ¢, = A(L)v¢,
and assume that »¢ is contained in agents’ information set at time z. We
know that the technology shock a, must be related to the disturbance ¢, in
the decision rule by

o =55 S NEa,,; = [LALY/(L = Mo, (12)
i=0

Using the formula (A3) in Appendix A we have that

[LA(LY/(L — N)], = [LA(L) — AAMN)]/(L = N)
= [e(L) (L = A) + Xe(0)™" — Ae(0)~"]/(L — A)
=e(Ly L

Substituting into (12) we have that ¢, = ¢(L)~%¢, and therefore equation
(11) has been verified. We should note that A(z) is not necessarily inverti-
ble. Consequently, v§ might not be recoverable from current and past
observations on g,, so that for this model of the error term it must be
assumed that agents observe the ¢{ process itself and not just the a, process.

A disadvantage of this model for ¢, as a purely autoregressive process is
that 1t requires that the covariance structure of the technology shock g, be
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linked in a particular way to parameters in the firm’s criterion function. In
our view, this is not plausible; thus we prefer the model (10) for e,.

3. Granger Causality and Econometric Exogeneity

Let us write the dynamic demand schedule for labor, i.e., the firm’s deci-
sion rule for n,, as

n, = pyn,_y + W(L)x, + m(L)a,
where

WD) = — Suso |1+ 2]( A

i=1 ‘ k=il
P q-1 q . _
7(l) = Fla()\)_l[l + z( 2 )\"—’ak)U].
j=1 ‘k=j+1
For the sake of simplicity, the constant term has been omitted. Solving for
n, as a function of current and past x’s and a’s we have that

n, = (1 — p L) w(L)x, + (1 — py L) *w(L)a,. (13)

This provides us with an expression for the firm’s demand schedule for #,
as a sum of distributed lags of current and past x’s and current and past
a’s. Recalling that x, = {(L)%? and q, = a(L) "%, we can substitute into
equation (13) to obtain

n, = (1 — p, Ly 'u(L)¢(L) ¥ + (1 — py Ly 'm(L)a(L) 2. (14)

Since (v%, v?) are the innovations in the joint (a,, x,) process, it follows that
v¢ and v are serially uncorrelated and that Evjof ; =0 for j # 0.
Contemporaneous correlation between #¢ and #f cannot in general be
ruled out.

Let us introduce a new process ¢, such that ¢, = o — w?¥, where
Ecp? =0 and v is a (1 X p) row vector. This defines pvf as the linear
least-squares predictor of v¢ given v7. In the case in which ¢¢ and o7 are

uncorrelated, v is equal to zero and ¢, = v¢. Substituting into equation
(14) we have

n, =1 — p L)y Hu(L)S(LY ™ + w(L)a(L)y Ww]e? (15)
+ (1 = py Ly m(Lya(LY .

As argued in the previous section, 7(z) may not be invertible. Thus if we
define a disturbance term

d, = (1 — p, Ly n(Lya(L) e, (16)

¢, may not be fundamental for d,. Using the transformation with Blaschke
factors described in Section 2, there exists a #(L) such that «(z)m(z~1) =
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6(2)8(z"1) for |z| = 1, where (z) does not have any zeroes inside the unit
circle. This allows us to define a new serially uncorrelated process »¢ that is
fundamental for 4, such that

d, = (1 — p, Ly 0(L)a(L)y %8 (17

Since Ec¢,vf_; = 0 for all j it follows that Edv{ ; = 0 and consequently
Evlv?_; = 0 for all j. We can substitute equations (17) and (16) into (15)
and determine that

m = (1 = oy Ly [(LR(L) + m(L)a(L)W]o?
+ (1 — py Ly (L)a(L) 0.

Equation (18) together with the fact that x, = {(L) !¢ provides us with
the representation of the joint (n,, x,) process given below

[1]=

[(1 = o L) 0(L)a( L) (1 = py Ly H{(L)S(L)™ + 7T(L)OI(L)‘IV}]
0 sy

x [”?]. (19)

This system expresses (n,, x,) as one-sided square-summable moving av-
erages of the serially uncorrelated processes v¢ and »? which satisfy
Evfv? ; = 0 for all j. The joint (27, v7) process is fundamental for the joint
(n,, x,) process. Thus (19) provides us with a Wold moving average repre-
sentation of the joint (n,, x,) process. Note that we have a zero restriction in
this representation in that x, is not dependent upon »¢. The triangular
character of this moving average representation together with Sims’s theo-
rem 1| (1972) imply that n, fails to Granger cause x,.1%

Sims’s theorem 2 informs us that if », fails to Granger cause x, then there
exists a representation of the form

(18)

ny = n(L)x, + u, (20)

where
n(L) = > n, L.
i=0

The coefficients of n(L), 1.e., the 1, are square-summable matrices and
is a covariance stationary stochastic process obeying the orthogonality
conditions Ex,u,_; = 0O for all j. These orthogonality conditions say that x,
is strictly exogenous in (20) and that the projection of #, onto the entire x,

4Formally Sims’s theorems are for a bivariate process; however, they readily generalize to
a partitioned vector process.
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process is one-sided on present and past x’s. So Sims’s theorem 2 informs us
that if #, fails to Granger cause x, then there exists a regression of », on a
one-sided distributed lag of x, in which x, is strictly exogenous. A candi-
date for the representation guaranteed by Sims’s theorem is the dynamic
labor demand schedule (13).1> Our purpose here is to indicate that this
schedule need not be the representation in which x, is strictly exogenous.
The upshot is that econometric exogeneity of x, in the firm’s decision rule
for n, is a stricter condition than the Granger noncausality of x, by n,. As
we have seen, this latter condition is an implication of the assumptions we
have used in our model derivation.

It is useful to substitute ¥ = {(L)x, and equation (17) into equation
(18) yielding

m = (1 = py L) (L) + m(L)a(L)"W{(L)]x, + 4. 2

Since Ed,v{_; = 0 for all j, it follows that Ed,x, ; = 0 for all ;. Letting
u, = d,, and

7(L) = (1 — py L) '[w(L) + m(L)a(L)yw{(L)],

we see that equation (21) is the representation insured by Sims’s theorem.
In other words, x, is strictly exogenous in equation (21). Comparing equa-
tions (13) and (21) it is immediately apparent that equation (21) is the
labor demand schedule if and only if » = 0. The condition » = 0 is equiv-
alent to the requirement that Ev?s? = 0.

Summarizing our argument, Sims’s theorem 1 indicates that the failure
of n, to Granger cause x, is manifest in the existence of a triangular moving
average representation for the joint (n,, x,) process. Equation system (19)
displays such a representation for our model. The existence of this triangu-
lar moving average representation is a necessary condition for x, to be
strictly exogenous in the firm’s demand schedule for labor as Sims’s theo-
rems | and 2 show, but it is not a sufficient condition. Sufficient conditions
are both that (a) there exists a triangular moving average representation,
i.e., n, does not Granger cause x,, and (b) the vector of regression parame-
ters » = 0, i.e., Evfo? = 0. Thus the conditions under which x, is exoge-
nous in the labor demand schedule are more stringent than the conditions
under which », fails to Granger cause x,.

The hypothesis that r, fails to Granger cause x, is a key one in formulat-
ing the model. Further, any variable that Granger causes the real wage w,
ought to be included in the vector x,, at least if there is a presumption that
that variable was observable by the firm. Using the standard tests of
Granger and Sims, these specifications can be subjected to empirical
checks, before proceeding with estimation of the model. Now it happens
that the parameters of the model, i.e., the parameters of the firm’s objec-

1>We are identifying the labor demand schedule as the representation of n, in terms of
current and past x’s and a’s.
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tive function and the Markov processes governing x, and g,, are all identi-
fiable without imposing the exogeneity assumption that » = 0. Consistent
estimators of these parameters can be constructed imposing only the
Granger noncausality of x, by n,, but leaving » unrestricted in (21). Then,
under the maintained hypotheses that n, does not Granger cause x, and
that the other specifications of the model are correct, the null hypothesis
that » = 0 can be tested.

This latter test is similar in spirit to the test for exogeneity proposed by
Wu (1973) in a classical simultaneous equations setting. The idea of Wu’s
test for exogeneity was to examine the covariance between the disturbance
of the reduced form equation for a stochastic regressor appearing in a
particular structural equation and the disturbance term in that same
structural equation. In the context of our model, this is analogous to test-
ing whether Ev?p¢ = 0, which is equivalent to » = 0. It should be pointed
out, however, that the estimation environment which we are considering
differs somewhat from the one which Wu considered, in that we are allow-
ing for serial correlation in disturbance terms and that we achieve parame-
ter identification via nonlinear cross-equation restrictions implied by the
hypothesis of rational expectations.

The preceding amounts to a description of the representation theory
underlying our proposed test for strict exogeneity under the maintained
hypothesis of the model. That is, we have shown that the hypothesis of
strict econometric exogeneity in the labor demand schedule in terms of
current and past n’s and a’s translates into the hypothesis that » = 0 in the
population Wold representation (19). We now briefly describe two statisti-
cal procedures for testing the null hypothesis » = 0, each of which has a
justification in terms of asymptotic distribution theory. The first procedure
involves first estimating all of the free parameters of (19) by a quasi-
maximum likelihood procedure, ¢ including » among the free parameters.
Then the model (19) is reestimated imposing the strict exogeneity assump-
tion » = 0. On the null hypothesis that v = 0, the likelihood ratio statistic
is asymptotically distributed as chi-square with p degrees of freedom,
where v is a (p X 1) vector.

A second testing procedure is closely related. It involves estimating (19)
with » a free parameter by a quasi-maximum likelihood procedure, and
then using the asymptotic covariance matrix of the estimated » to test the
null hypothesis that » = 0.

The preceding representation of the hypothesis of strict exogeneity
maintains the hypothesis that the specification of the model is correct. As it
happens, the model often imposes overidentifying restrictions on the lag
distribution of x, on the right-hand side of (21). This means that (21) is a
regression equation (i.e., Ed;x, ; = 0 for j = 0) only if the overidentifying

18For a precise definition of the term “quasi-maximum likelihood procedure,” see Sec-
tion 4.
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restrictions are true. One can compute various specification tests for the
model, which are closely related to exogeneity tests, and are based on
estimates of the sample moments corresponding to Ed, x, ; for j = 0. Re-
jection of the hypothesis that these moments are zero can be viewed as
evidence against the specification of the model. Failing such a test would
leave open whether the specification is faulty because of an incorrect crite-
rion function being attributed to the maximizing agent, or because of a
failure of x, to be Granger noncaused by #,, as the model assumes. Presum-
ably, careful application of Granger causality tests in the “model-free”
setting of Granger and Sims could be used to help isolate the source of
failure.

4. Estimation of the Model Parameters

The system that we want to estimate is

= (1 — py L) (L) + #(L)a(L)"wE(L)]x,
+ (1 = py L) ' m(L)a(L) e, (22)

$(L)x, = vf,
where

7(L) = %a()\)‘l[l + qi( i Ak-fak)L’],

i=1 ‘k=j+1

_ pl _ . .
WLy =Byt 1+ z( > ) o),
k=j+1
Ece, ; =0, Eutvt . =0 for j#0,
Ectvf_j =0 for all ;.

Equation system (22) can be estimated by using the method of quasi-
sion equations which emerge from our model. The underlying parameters
which are to be estimated are », p;, 8, A, and the parameters of a(L) and
{(L).Y7 As was noted in Section 3, x, is strictly exogenous in the first equa-
tion of this system.

Equation system (22) can be estimated by using the method of quasi-
maximum likelihood with a normal density function. The word “quasi” is
included because it is not necessary to assume that the stochastic processes
are Gaussian in order to obtain the desired asymptotic properties of the
maximum likelihood estimates, e.g., consistency and asymptotic efficiency.

17In actuality, one may be interested in knowing B and y,, since §, v, and & are the
parameters of agents’ objective functions. The parameters 8 and vy, can easily be recovered
from the other parameters being estimated.
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Suppose that we have a sample on (n,, x,) for ¢ = 1,..., T. Let us stack the
observations into vectors (7, xp), where

ny x
— n,| - X
— | N2 — | *2
Ny = , Xp = .
fp Xp

Now write the Wold moving average representation {19) in the form

() =ow () )

where ®(L) is the matrix of polynomials in L on the right-hand side of

(19), and where
¢ . Vv, ©
E(U;)(vafaz V:( u )
Ut 0 Vs

(Recall that by construction Ev¢o? = 0.) Then the covariance generating
function for the joint (n,, x,) process is ®(2)V®P(2~1). We can use the
covariance generating function for the (n,, x,) process to generate the pop-
ulation elements of the covariance matrix of the stacked random vector
(rnp, x7) in terms of the underlying parameters of the model. Let the covar-

iance matrix of (ng, X7) be
. nr\ (rr\
Fy=E{_"N.").
xp) \xp

(Recall that the mean of [ng, x7] is zero by virtue of the means having
been subtracted off.)
The normal log likelihood function for (np, X;) is given by

Lp= —HT + Tp)log 27 — Slog det I'y — %[H’T;?}]F;l[g]. (24)
T

Directly maximizing the log likelihood function is difficult computation-
ally, since I'p 1s a complicated function of the underlying parameters of the
model, and since inversion of the large (T + Tp) X (T + Tp) matrix [, is
required for each evaluation of the likelihood function.!® An alternative
strategy is to express the normal likelihood function as a product of condi-
tional likelihood functions and to employ recursive prediction algorithms
to evaluate the conditional means and variances (see Rissanen and Caines
1979). This relinquishes the burden of inverting the I'; matrix but requires

*8This is a well-known problem in models with moving average errors (see Anderson 1975,
chap. 5; or Hannan 1970, chap. 6).
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the use of recursive formulas in order to evaluate the likelihood function.
By virtue of the highly nonlinear nature of the cross-equation rational
expectations restrictions, the likelihood function will have to be maxi-
mized via some numerical method which requires repeated evaluation of
the likelihood. For this reason, we mention a pair of strategies for simplify-
ing the calculations by approximating the likelihood function.

Likelihood Conditional on Some Initial Observations

It is convenient to rewrite system (19) or (22) in the regression equation
form

(L)1 = pL)n, = [a(L)p(L) + m(LWw{(L)]x, + O(L)of,

2
$(L)x, = o%. (29)

The equations express 7, as 2 mixed moving average autoregressive process

with an exogenous driving process x,. In the first equation of (25), there are

(g + 1) lagged n’s, (g + r — 1) lagged s, and (g — 1) lagged 2{’s.
Now represent the joint density f; of (n7,x;) by

Fy(np, xp) = fo(np | xp) .fm(;T)’ (26)

where f. is the density function for 7, conditioned on x, and f,, is the
marginal density of x;. It is convenient to approximate each density on the
right-hand side of (26) with a density conditioned on some initial observa-
tions, First, approximate f, (x) by

Sy xq gy o5 Xq)
g (s Xpogy oo X | Xy Xy Xy) @7
=g(xplap_ps o xp )8 (Xpoy | X o Xpoyiy)

. 'gc(x7+1 | Xps Xyt o v oy xl))

where g, and g, are the appropriate marginal and conditional density
functions. Taking logarithms on both sides of (27) we obtain

108 & (¥ ¥p_1 -+ 5 Xppy [ X9 Xpog5 -5 %1)
! (28)
= 2 log g (%, | %1y o -5 Xy
t=r+l1

Using the normal density and equation (25) we have

log g.(x | %15+ -5 %1,)
b 1
= — -2—log 27 — Elog det V,,

1

_5(x, — Z §7.xt_j) ngl(x, - Z §sz-j)-
i=1 i=1
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Using this expression for log g, in (27) gives

log g, (X Xp_1s - -5 Xpgq | Xy X g5 o5 Xq)

_ _ﬁTT—Qlogg,,_(T;’)logdet Vo (29)
T r ’ 4
-3 > (xz -> §,~xt_,.) Vizl(xt -2 §,~x,_,-)-
t=r+1 j=1 i=1

Next approximate the term f (n,|*;) in (26) with

AT FICTNS P 2 N )
Rl (g gy ey g Ry s R X Xy X0 0d)
= h(nplnpgs- .-, My _g1p X -+ o5 Xp—(gtr—1)p 7 ST ”‘%—(q—l))
“ho(np_yInp_gs-- s Rp_g+2p XP—15 -+ + > Xp—(g+r—20 Vi gr s ”%—q)
o th(n

d
q+r|nq+r—l’ O (PP xq+r’ cees Xy Z)q+7‘—l’ Ty vr+1)= (30)

where 4, and 4, are the appropriate marginal and conditional densities.!?
The normal density with (25) leads to

d d
he(ng|ng_ys. .., Byg+10 X e o Xe(gir—10 Vp—10 - - 5 ”t—(q—l))

~91({[-a(L)(1 = 01 D)1/ L}imy g + [a(L)(L) + 7(Lw(L)]x,

+ B/ LLofr, 033 ).
Substituting the normal density into (30) and taking logs leads to

10g by (s g1y - - -5 gy | Rgyts e o e s By Xy o, X, 0850, 09)
= —{[T+1—(g+1)/2}og 27 — ([T + 1 — (g +1)]/2} log 83V,

d (1)
—3(1/65Vy) >, {a(L)1 = pL)n, — [a(L)p(L)

t=q+r
+ m(Lw{(L)lx, — [8(L)/L],0¢ }2

Adding (29) and (31) and viewing the result as an approximation to the
log of (26) leads to the approximate log likelihood function

L5 = {—[p(T = r)/2]log 27 — [(T — r)/2] log det V,,

T

=3 > BDx)VRE(L)x]}

t=r+1

18Recall that by virtue of the invertibility built into representation (19) or (23), »¢is in the
space spanned by current and lagged »’s and x’s. In effect, lagged »%’s are conditioned on in
(30) as proxies for the more extensive set of lagged n’s and x’s whose information they fully
summarize.
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(0T + 1 =+ )2} 10g 2

=T+ 1 — (g +n)]/2} log b5V, (32)

T
—3(1/05V1) z {a(L)( — pyL)n,

t=q+r

la(L)p(L) + T(Ly(Llx,
—(0(L)/L1.0f1}2).

This approximation to the log likelihood is to be maximized over the free
parameters », py, 8, A, (L), {(L), and V subject to the cross-equation
restrictions exhibited in (22). The expression (32) for the approximate log
likelihood indicates that it is desirable to estimate all of the equations of
(22) jointly, even though x, is strictly exogenous in the first equation of
(22). The reason for joint estimation is that the parameters of {(L) appear
in the first equation of (22) via the assumption of rational expectations.
Evidently, estimating {(L) by maximizing the term in braces in (32) and
then maximizing the second term in large parentheses,?® taking {(L) as
given, leads to a lower value of the approximate likelihood.

Since the initial values2?,,_,,..., v?,, are unobservable, implementing
the approximation (32) requires one additional approximation be used to
generate estimates of these initial values of »%. Box and Jenkins (1970)
describe several ways to select the initial 2¢’s. One permissible procedure
would be to set the initial values of the v4’s at their unconditional means of
zero. The invertibility built into the Wold representation (19) guarantees
that the impact of these initial 2’s becomes negligible as 77— 0.

Spectral Approximations

Hannan (1970) has suggested an alternative approximation to the log
likelihood function £, in (24).2! Using the compact representation (23),
we know that the theoretical spectral density matrix of the (n,, x,) process
is given by S(w) = ®(e7*)Vd(¢*“). Let I(w;) be the periodogram for the
(n;, x,) process at frequency w; = 277j/7. Now make the following approxi-
mations:

= T

I | ] = 3 e 806 )
i=1

20T his amounts to estimating the second equation of (22) for the exogenous process x, first,
and then estimating the first equation of (22) taking the estimate of {(L) as given.
21See Hannan 1970, chap. 6, secs. 4 and 5.



Dynamic LiNEar MoODELS 113

and (33)

T
log (det Ty) = > log {det [S(w;)]}.

i=1

Substituting into (24), the corresponding approximate log likelihood
function is

T
L7 = —HT + Tp)log 27 — § > log {det [S(w;)]}
ji=1

] (34)
-3 2 tr [S(ew;) ()]
ji=1

The computational gain in employing £7" instead of £, is evident by the
fact that evaluation of £, requires inversion of the (7" + Tp) X (T + 1p)
matrix [, whereas evaluation of £7" requires the inversion of the much
smaller (p 4+ 1) X (p + 1) matrices S(w;) forj = 1,2,..., T. The justifi-
cation for approximating £, by £3" relies on the sample size 7" being
large. In contrast to £} defined in expression (32), computation of £7"
does not compel one to shift to the invertible representation for (n,, ,).

A note of caution about these approximate likelihood functions is perti-
nent. In a somewhat different context, Phadke and Kedem (1978) show
that when a zero of the moving average polynomial is close to unity in
modulus, maximization of approximate likelihood functions analogous to
£7 and £} can give rise to parameter estimates that are substantially
inferior to the ones obtained by maximizing the actual likelihood func-
tion. They found this especially to be true for the frequency domain
approximization.??

In situations in which the parameter vector v is specified to be zero, an
alternative estimation procedure is available. The linear least-squares pro-
jection of 7, on current and past x’s is not dependent on the parameters of
the generating equation of the g, process. This can be witnessed by exam-
ining equation (21). The serial correlation properties of the disturbance
term of this projection can be consistently estimated by employing the
residuals obtained from least-squares estimation of the projection. Using a
variant of generalized least squares, the projection and the autoregression
for x, can then be estimated jointly subject to the cross-equation restric-
tions implied by the model, thus delivering estimates of the criterion func-
tion parameters of the firm’s dynamic optimization problem.

In practice, the selected approximation to the likelihood function would

22Phadke and Kedem (1978) ran Monte Carlo simulations on estimators obtained from
maximizing the approximate likelihood functions and the exact likelihood function for finite
order vector moving average processes.
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be maximized by using an “acceptable gradient method.” Let ¥, be the
free parameters of the model and let ¥ be an initial estimate. (Where the
model is overidentified, i.e., if p and r are large enough, there is a variety of
ways to get an initial consistent estimate.) Then the approximate likeli-
hood function is maximizing by iterating on

Vg = ¥, — A0Q,G;, (35)

where A; is a scalar step size, Q; a positive definite matrix, and G; the
gradient of the approximate log likelihood function. The reader is referred
to Bard (1974) for a detailed description of alternative procedures for
choosing A; and @; and for calculating the gradient G;. For present pur-
poses it suffices to point out that the explicit closed form solution (22)
exhibiting the cross-equation restrictions makes it possible to calculate the
gradient G; analytically fairly directly. Similarly, for methods in which Q ;
is set equal to H; ! where H, is the second derivative matrix of the approxi-
mate likelihood, the formulas in (22) make analytical calculation of the
Hessian feasible. The explicit formulas (22) are thus of potential advan-
tage both in facilitating rapid and accurate computation of estimates, and
in facilitating computation of the asymptotic covariance matrix of the
estimates.

Next, we note that where Q, = H; 1, asymptotically efficient estimates
can be obtained by taking one-step with (35) starting from an initial con-
sistent estimate ¥,. A variety of such two step estimators that exploit the
locally quadratic character of the normal log likelihood function have
been proposed in contexts somewhat similar to the present one.

Finally, hypotheses can be tested either using the estimated asymptotic
covariance matrix of the coefficients or likelihood ratio tests. For example,
where the model is overidentified, the model can be tested by nesting it
within a more loosely specified model, say one that does not impose the
cross-equation rational expectations restrictions, and then computing a

likelihood ratio statistic. Examples of this specification test strategy are
given by Sargent (1977, 1978b).

5. An Omitted Information Variables Model for the Error Term

In this section, we describe an alternative model of the error term which is
related to a model of the error proposed by Shiller (1972) in another
context. This model of the disturbance term permits estimation of the
parameters of the firm’s objective function under conditions which are
more stringent in some respects but less stringent in other respects than are
required for the model of the error term used in the preceding parts of this

paper.
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Let us write the demand scheduie for employment as

ny, = pyng_y — (01/8) D) NEw, ;| X, + 7(L)a,, (36)

ji=0

where X, = {x,,x,_4,...}. Let us partition x, as x; = (x},, x5,). Hence x,
isa (p X 1) vector and x;, a (p; X 1) vector. We assume that x,, includes
at least w,. Let X, = {xy;, x(,_4,...}. We make the following assump-
tions: (¢) The firm uses the entire information set X, to form its expecta-
tions of future w’s, so that (13) or (36) is the appropriate demand schedule
for employment. (2¢) The econometrician has access only to a subset of the
information X,, C X, which private agents use. (zi7) The random shock a,
obeys the extensive orthogonality conditions Ea, x,, ; = O for all ;. Notice
that the model (36) can be rewritten as

n, = pyny_y — (p1/9) 2 NEw, ;| Xy,
j=0

+ 7(L)a, + (py/9) Z N(Ewy, ;| Xy, — Ewy ;| X)),
j=0
or

ny = p1ny_y — (p1/9) z MEwH;‘ | Xy + 7(L)a, + s,
i=0
where

5, = (p,/9) 2 MN(Ew, ;| Xy, — Ew, ;| X,).
j=0

Let x,, have the vector autoregressive representation {}(L)x,, = v}, where

v} = x9, — E(xy | %y g5 Xyymgy - - )y
and
MLYy=1-8L — ...{}lUl,

and assume that the roots of det {1(z) = 0 are outside the unit circle. Then
equation (22) can be written as

n, = pyny_y + p(L)xy + 7(L)a, + 54, (37)
where
r—1 T
pi(L) = (—p,/ UL [I + Z ( z )\k"'ﬁ)L’], (38)
j=1 ‘k=j+1

and U, is the unit vector conformable to x,, with 1 in the (first) place
corresponding to w, and zeroes elsewhere.
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Now the random term g, has been assumed orthogonal to x,, ; for all
integer j. Therefore 7(L)a, is orthogonal to x,_; for all integer ;. Further,
by the law of iterated projections, we have for all j = 0,

E[(Ewt+j|X1t - Ewt+j|Xt)|X1t] = Ewt+j|X1t - Ewt+7'|X1t =0.

It follows that Es, | X;, = 0. Therefore, we have that Es;x;,_; = 0 for;j =0
so that the random variable s, is orthogonal to xy, ; for j = 0. We have
therefore established that the composite error term 7(L)a, + s, is orthogo-
nal to x;,_; for j =0, ie,

E{[n(L)a, + 5,]x},;} =0 for j=0. (39)

However, 7(L)a, + 5, is not in general orthogonal to n,_;, since lagged
values of both 7(L)a, and s, influence n,_;, and since both 7(L)e, and s,
may be serially correlated.

Under our current model assumptions we cannot rule out the possibility
that for the joint (n,, x,,) process, n, Granger causes x;,. Even though =,
fails to Granger cause the complete block x,, relative to the information set
{n,, x,}, n, may Granger cause x,,, for “omitted variable” reasons (see
Granger 1969). Thus no claim can be made that x,, is exogenous in equa-
tion (27). As noted above, the composite error term in equation (37) may
be serially correlated. Without specifically modeling the joint covariance
properties of the variables unobservable to the econometrician, fully effi-
cient parameter estimation procedures such as quasi-maximum likelihood
are not feasible. Indeed, a more richly specified model is needed in order
even to write down the joint likelihood function for (n,, x;,). One possible
strategy is to trace through the restrictions that our model places on the
moving average representation for the joint (n,,x,,) process. Although
conceptually this is a feasible approach, the restrictions are cumbersome
and estimation of the moving average representation subject to these re-
strictions appears to be computationally impractical. Rather than pursue
this line further, we consider an alternative, computationally simpler strat-
egy. This procedure can be viewed as a generalization of the method of
moments, and it exploits the orthogonality conditions implied by our
model. We now examine these orthogonality conditions in more detail.

Solving equation (37) for #(L)a, + s, and writing out the orthogonality
conditions (39) for j =0, 1, ..., r;, — 1 gives

r—1
E["t S LS Z H’I%xlt—k]x,lt—j =0,
k=0
or
=1
Enyxyy — piEn g%y — E prExy 42y 5 =0,
k=0
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or

-1

k=0

where?? C, (j) = En,x},_; and C,, () = Exyx7,_;. Each plisa (1 X p;)
row vector while each x,, ;isa (p; X 1) column vector. So (39) is a system
of p, = 7, equations in the (p, - 7; + 1) parameters (g, ft1, - - -, ft7 15 01)-
Therefore, the normal equations (39) by themselves are incapable of iden-
tifying this list of parameters. But recall that not all of the parameters in
this list are free. For the model imposes the extensive set of restrictions
across the ps and the parameters of {*(L) which are summarized in for-
mula (38). The parameters of {(L) are identified from the vector auto-
regression {!(L)x;, = v} and its normal equations

Cli) = S 81CG = k) =0, (41)
k=1

Given that {1(L) is sufficiently rich (i.e., p, and 7, are large enough—and
for the current problem each can be quite small, namely, one) the free
parameters of pl(L) in (37) and p, are identified or overidentified by the
population orthogonality conditions (40) and (41). It is clearly the pres-
ence of the cross-equation restrictions summarized in (38) that allows the
orthogonality conditions (40) and (41) to identify the free structural pa-
rameters despite the fact that we are one orthogonality condition short in
(40). Thus, (36) fails to be a regression equation, yet consistent estimation
of the free parameters is still possible because of the presence of the cross-
equation restrictions delivered by rational expectations.

A generalized method of moments estimator of the model parameters
can be obtained by replacing the population moments in the orthogonality
conditions (40) and (41) with the corresponding sample moments. When
the model parameters are overidentified there are more orthogonality con-
ditions than there are parameters to be estimated. Consequently, it is not
in general possible to select parameter estimates that allow all of the sam-
ple orthogonality conditions to equal zero. This necessitates an alternative
strategy for obtaining parameter estimates that allows linear combinations
of the sample orthogonality conditions to be as close to zero as possible.
The number of linear combinations is dictated by the number of underly-

23Additional orthogonality conditions can be obtained by allowing j to exceed r, — 1. In
particular, it may be desirable to exploit as many orthogonality conditions as there are
sample moments that can be computed. The determination of the appropriate number of
these orthogonality conditions is dependent on the serial correlation properties of the com-
posite residual. We intentionally choose not formally to specify these residual properties and
instead to focus on a fixed number of orthogonality conditions, i.e., the number of orthogon-
ality conditions we use is not dependent on sample size.
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ing parameters to be estimated. Discussions of consistency for generalized
method of moments estimators of this form when the underlying stochastic
processes are stationary and ergodic are provided in Hansen (1979).24

Given that there is latitude as to the choice of which linear combina-
tions of the sample orthogonality conditions to employ, a question remains
as to what is the “best” choice. In this context we mean best in sense of
delivering the smallest asymptotic covariance matrix among the class of
estimators under consideration. In other words, all other estimators in this
class have an asymptotic covariance matrix that exceeds the “best” estima-
tor by a positive definite matrix. It turns out that the “best” choice is
dependent upon the serial correlation properties of the composite residual
term. Consistent estimators of the residual covariances can be obtained
from some first step consistent parameter estimates. In Appendix B we
show how to determine the optimal or best weighting scheme for the sam-
ple orthogonality conditions as well as how to compute the asymptotic
covariance matrix for the parameter estimates. These results are developed
in much more detail in Hansen (1979).

6. Conclusions

A hallmark of rational expectations models is that they typically impose
restrictions across parameters in agents’ decision rules and the parameters
of equations that describe the uncontrollable random processes that agents
face passively. These cross-equation restrictions are an important source of
identification in rational expectations models, a source that helps to fill the
vacuum created by the fact that in these models there are often too few
exclusion restrictions of the classic Cowles commission variety to achieve
identification.?® The cross-equation restrictions play a critical role in the
statistical models and tests proposed in this paper. For example, it is the
presence of overidentifying cross-equation restrictions on the labor de-
mand schedule that makes it feasible to test both the necessary and suffi-
cient conditions that assure that x, is strictly exogenous in the labor de-
mand schedule. Again, the feasibility of consistent estimation with the
“omitted information variable” model of the error term rests on the pres-
ence of cross-equation restrictions which compensate for what would be a
short-fall of orthogonality conditions in their absence. Again, the presence
of restrictions across the parameters of the processes generating the exoge-
nous and endogenous variables is the reason that joint estimation of the

24S8ims has illustrated that a wide class of econometric estimators is encompassed in the
generalized method of moments framework. He has demonstrated this in his graduate econo-
metrics course at the University of Minnesota.

25The implications of rational expectations models for achieving identification with exclu-
sion restrictions are discussed by Sims (1980), Lucas and Sargent (1978), and Sargent and
Sims (1977).
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parameters of the exogenous and endogenous processes is required for sta-
tistical efficiency, in contrast to the more familiar case in which the param-
eters of the strictly exogenous processes can be efficiently estimated by
themselves.

The methods that we have described in this paper are fairly directly
applicable to a host of problems that can be reduced to that of an agent
choosing a linear dynamic contingency plan for a single variable.® It is
desirable and nontrivial to extend our methods to the case where the agent
is choosing linear contingency plans for a vector of interrelated variables.
An interrelated dynamic factor demand model would be a good example.
This generalization will be described in a sequel to this paper (sce Hansen
and Sargent 1981).

Appendix A

This appendix contains a derivation of formulas (5) and (6) of the text obtained
by using some analytic function theory. We use results from elementary complex
analysis that can be found in many good books on the subject, e.g., Churchill
(1960) and Saks and Zygmund (1971). The technique delivers a fast way of evalu-
ating the annihilation operator [¥(z)], by employing a partial-fractions-like de-
composition of ¥(z). This method turns out to be useful in solving a variety of
classical signal extraction problems in addition to our present application.
Let us begin with a two-sided lag operator ¥ (L) where

4o 4o
¥(L) = 2 ‘1’ij and E \P]?< + o0.
j=—x j=—

The “z transform” of this operator is given by

Y(z2) = § V2l = ¥H(2) + ¥(2),
j=—ow

where
+® +oe .
Y*(z) = z Y27 and ¥ (z) = z ¥ 27
= £

W¥*(z) defines an analytic function for |z| <1 and ¥~(z) defines an analytic
function for |z| > 1. Furthermore

lim ¥=(z) = 0.

Z—0
Using a result from Zygmund (1959), it follows that

lim W (Relw) = ¥H(eiv), lim ¥~ (Re'®) = ¥~ (')

RT1 RI1
exist for almost all w € [0 27).27 Thus ¥(2) is at least well deﬁned almost every-
where for |z| = 1, and in particular

h(w) = V(i) = ¥H(e™) + ¥ (i)
26A linear version of the Lucas-Prescott (1971) model of investment under uncertainty fits

in since their fictitious “planner” faces a problem of this form.
27See Zygmund 1959, p. 276.
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is the transfer function for the linear filter ¥ (L). The annihilation operator [ ],
applied to z transforms is defined by [¥(z)], = ¥*(z). In other words the annihi-
lation operator instructs us to ignore negative powers of z. We now restrict our-
selves to cases in which ¥7(z) defines an analytic function for |z| > R for some
R < 1. By this we simply mean that the power series

Vi

=

M s

1

.
1l

is convergent for |z| > R. Under this additional assumption, ¥(z) defines an
analytic function in the annular region R < |z| < 1. This prepares us for consid-
eration of the following lemma:

Lemma. Suppose A(z) is a regular function in |z| <1 such that
(i) A(z) = ¥(z) for R < |z] < 1, (ii) A(z) has at most a finite number of singular-
ities z, z,, ..., 2, in |z| < 1, with Pi(2), Py(2), ..., P(z) denoting the corre-
sponding principal parts of the Laurent series expansion of 4(z) at these points.?8
Then

[¥(2)], = 4(z) = S B(2).
ji=1

Proor. Let B(z) = A(z) — = | P(2). A standard result from analytic func-
tion theory assures us that B(z) is analytic in |z| < 1.2° Since (i) is true,
R > max {|z], |25], ..., |2|}. B(2) is analytic for |z]| # z; and

lim (2) = 0.
Hence D(z) = =¥, P(2) is analytic for |z| > R and
lim D(z) = 0.

2o

Using these results we have that

B(z) = EBJ-z" for |z <1,
j=0

and
D(z) = szz_j for |z| > R.
i=1

Since A(z) = B(z) + D(z), it follows that

iszj + > Dz
ji=1

i=0

Z8Let the Laurent series expansion of 4(z) about z; be given by

A= 5 A,z — 5™
m=—w
The principal part is given by 271 _ 4, (¢ — ;)™ The function A(2) is said to be regular in
the region |z| < 1 if it is analytic in that region except at isolated singularities.
#See Saks and Zygmund 1971, p. 146.
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is the Laurent series expansion for A(z) = ¥(z) in the region R < |z| < 1. Since
this expansion is unique,

Y(z) = 2 B;z = B(z).
j=0

This lemma provides a simple and computationally convenient formula for
computing [¥(2)],. In order to see the value of this computational technique, let
us reconsider the prediction problem examined in the text. We are interested in
determining the linear least-squares predictor of

I = 2 AX e (A1)
k=0

given information available up until time t. We assume that the only information
useful for predicting y, is current and past observations of x,. We also assume that
x, is a linearly indeterministic, covariance stationary process. Wold’s theorem

xo= 2> &vi (A2)
i=0

where »7 is the linear least-squares one-step-ahead prediction error and

Evfvf, = 0 forj # 0. Current and past »*’s encompass the same information set

as current and past x’s. Wold’s theorem also assures us that the elements of {§;}

are square summable. The z transform of 2}Z, AFL~* is

4
Z Az = 1/(1 = AzY) =2/(z = \) for |z] >A.

k=0

The 2 transform corresponding to the Wold representation is
4o
Ho)= D40 for 2| < L.
i=0
Combining (Al) and (A2) we can represent

+ %
P T
re= 2 Yyt

j=—=o

where

4o
V()= D ¥zl =z4(z)/(z = N) for A<z < L.
j=—o

The linear least-squares predictor of 3, is E, y, = [¥(L)],»?. Thus we need to
compute [V (2)],.

Now A(z)=z&(z)/(z — A) is regular in |z| < 1 and has a simple pole at A
A(z) = ¥(2) for A < |z| < 1. In the Laurent series expansion of 4(z) around A,
the residue of A(z) is given by

lzi_{r; (z = MA(z) = A§(A).
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This informs us that the principal part of the expansion of A(z) at A is
A{(A)/(z — A). Using the lemma we have that

(¥ (2)], = 24(2)/(z = A) = A4(A)/(z = A)
= [§(2) = Az7H(N))/(1 — Az,
This agrees with equation (5) in the text.

In the text it is claimed that the covariance stationarity assumption for g, and x,
can bhe relaxed. We shall examine this claim for x, and assert that the logic for g,
is completely analogous. We make an rth order vector Markov specification
{L)x, = vf for t = 0, where {(Ly =1 —{,L — ... = §{ L', where x_y, ..., x,
are given initial values, and where »{ is a contemporaneously uncorrelated vector
white noise. We assume that the roots of det {(z) = 0 lie outside the region

2] < VB

Define x, = 0 for t < —r, and let »¥ = {(L)x, for ¢t <O.

Using the assumption on the roots of det {(z), we know that {(2) has an inverse
with elements analytic for |2] < VB. Taking the Taylor series expansion about
zero we have

Syt =42 = S g2l
ji=0

Since ¥ = 0 for ¢ <C —r, {(L)v? is a well-defined stochastic process and
x, = §(Lyv?. (A3)

Even though the coefficients §; may not be bounded, equation (A3) provides a
valid representation of the x, process to which the Wiener-Kolmogorov prediction

formulas can be applied.
As was argued in the text A < VB. Therefore ¥ (z) = z£(z)/(z — A)is analytic
for A < |z] < V/B. Its Laurent series expansion, given by

+ %
V()= D ¥,z

j=—=

provides a representation for y, of the form

+ >
Y= z Y, of ;.

j=—=
Using the Wiener-Kolmogorov solution to the prediction problem we know that
Ely %% y5 -5 %] = [W(L)20
If we modify the domain specified in the lemma to be |z] < /B, we conclude that
(¥ ()], = [28(2) — A&(N))/(z = N).
This extends our prediction formula to nonstationary finite order Markov proc-
esses.

The lemma turns out to be handy in solving classical signal extraction problems
of the kind discussed by Whittle (1963, p. 66). For example, let a signal y, be
governed by an rth order Markov process

(= o)1 —ppL) ... (L—p, L)y = e, ol <1,

while x, = y, + u,. Here Eu,e, ; = 0 = Eu, = Ee, for all t and j, where u, and ¢,
are serially uncorrelated white noises. The problem is to form the linear least-
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squares projection [y, |x,,%,_y,...]. This can be solved using formula (3) of
Whittle (1963, p. 66). The lemma is useful in solving this problem since it makes
application of the annihilation operator [ ], fairly routine.

Appendix B

In this appendix we discuss the asymptotic distribution of the family of generalized
method of moments estimators proposed in Section 5. We abstain from a detailed
presentation and refer the interested reader to Hansen (1979). Both Hansen’s
discussion and the present discussion exploit a framework developed by Sims in
lectures to his graduate econometrics class at the University of Minnesota.

In this appendix we adopt different notation than is used in the text. We do this
in order to facilitate the presentation. We let x, denote the underlying observable
vector process including both endogenous and exogenous variables and all rele-
vant lags of these variables. We assume that this process is stationary and ergodic.
B denotes the vector of parameters to be estimated and is of dimension . The
sample orthogonality conditions discussed in Section 5 are compactly written

T
0p(B) = (1/T) Zf(xp B

The dimensionality of O, is assumed to be p = £. Our model assumptions imply
that Ef(x,, B,,) = 0 for all ¢, and therefore EOL(B.) = 0.

Let us introduce a matrix 4 that is ¢ X p, where k£ = ¢ = p and define 8, to be
that value of 8 such that |[A04(B7)| is as small as possible.
We assume that 3, converges in probability to .. Let

B = E[3f(x,, B.)/3B),
Ry = E{ f(x, B f(x4= B}

and let

The infinite sum

+x
S= > R
j=—=
is assumed to converge absolutely. Employing some mild side conditions Hansen
obtains the result that \/—'IT(BT — B,) converges in distribution to a normally
distributed random variable with zero mean and covariance matrix
(B'A’ABY \B’A’ASA’AB(B’A’AB)™ .

In order for this covariance matrix to be as small as possible, it is desirable to
select A so that 4’4 = §77, and the resulting covariance matrix is (B’S™'B)~L
The “best” choice of 4 is dependent on S, which is not known a prisri and must
therefore be estimated. Consistent estimators of § can be obtained from a first step
estimator of f3,, employing a not necessarily “optimal” choice of 4. This allows us
to obtain a sequence Apd, = S}, that converges in probability to §~1. If we
substitute A, for 4 in our definition of B, we still obtain the same asymptotic
distribution for \/T(BT — B.). This provides the “optimal” estimator alluded to

in Section 5.
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Linear Rational Expectations Models
for Dynamically Interrelated Variables

Lars Peter Hansen
Thomas J. Sargent

This paper aims to develop procedures for the rapid numerical computa-
tion and convenient mathematical representation of a class of multiple
variable, linear stochastic rational expectations models. A variety of exam-
ples from this class of models can be imagined. These include versions of
interrelated factor demand models like Mortensen’s (1973) formed by
blending the model of Nadiri and Rosen (1973) with the adjustment cost
models of Lucas (19674, b), Gould (1968), and Treadway (1969, 1971);
models of exhaustible resource extraction along the lines of Epple and
Hansen (1979); and dynamic linear models of interrelated industries, such
as the corn and hog industries. Our desires for rapid computation and
convenient representation are motivated by practical considerations, since
our ultimate goal is to devise methods for estimating multiple variable,
rational expectations models of time series by versions of the method of
maximum likelihood. Rapid computation of equilibria for different points
in the parameter space is required for inexpensive maximization of the
likelihood function. Convenient mathematical representation is valuable
for a closely related reason, since it is desirable to be able to differentiate
the likelihood function analytically in as many directions as possible. For
this reason, a goal of the paper is to get “as close as possible” to a closed
form summarizing the (highly nonlinear) cross-equation restrictions that
are the hallmark of rational expectations models. It will become clear later
what we mean by the phrase “as close as possible,” since we shall indicate
why a closed form analytic expression for the equilibrium cannot, in gen-
eral, be calculated for the multiple endogenous variable models of the class
that we consider.

The views expressed herein are solely those of the authors and do not necessarily represent
the views of the Federal Reserve Bank of Minneapolis or the Federal Reserve System. The
research described in this paper was supported by the Federal Reserve Bank of Minneapolis.
The computer programming was performed by Ian Bain, Thomas Doan, and Paul O’Brien.
Ian Bain made extensive and very helpful comments on an earlier draft.
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This paper is a sequel to our earlier paper, Hansen and Sargent (1980).
We extend the methods of estimating and formulating models that we
have described in the single endogenous variable case to the case of several
interrelated endogenous variables. We exploit several results obtained in
the previous paper. Other important precursors to the work we do here
include the work of Nadiri and Rosen (1973), the paper by Lucas and
Prescott (1971) on investment, and the books of Holt et al. (1960) and
Graves and Telser (1971). Graves and Telser consider a certainty version of
a problem close to our “standard problem.” Our paper proposes a simple
method for factoring the spectral-density-like matrix encountered in
Graves and Telser’s problem, and extends the computation of equilibria to
the stochastic case by using a formula developed by Hansen and Sargent
(1980).

This paper is devoted solely to issues of model formulation. We have
avoided issues of econometric estimation, including models or interpreta-
tions of “error terms,” since these issues are extensively discussed in our
earlier paper (1980). The estimation procedures and models of error terms
described in that paper extend rather directly to the present class of setups.
On the other hand, moving from a single endogenous variable to multiple
variables does involve some nontrivial technical complications. It is these
that we concentrate on in this paper.

The paper is organized as follows. Section I gives three examples of
models that fall within the general class of models we study. The distin-
guishing characteristic of these models is that all are the solutions of quad-
ratic dynamic optimum problems subject to linear constraints, and that to
solve each one a spectral-density-like matrix must be factored. Section II
describes the standard dynamic programming algorithm for solving our
general problem, while sections IIT and IV describe algorithms that are
“faster” and “more revealing.” Section V gives an example designed to
illustrate the relative computation costs associated with the different algo-
rithms. Section VI then mentions a certain kind of “identification” or
interpretation problem that can characterize some models of this class.

I. Three Examples

This section contains three examples of models that are included in the
class of models analyzed in subsequent sections. The first two examples are
related and are versions of interrelated factor demand models. We begin
with the simpler of these models first; which is a model at the firm level
and takes as given the factor price random processes and the output price
random process. The second model then takes into account that, in the
aggregate, firms’ decisions influence output price. A third example indi-
cates how the state and decision variables can be defined to model deci-
sions about depletion of exhaustible resources.
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Example (1): A Fim’s Interrelated Demand for Factors

Letting E; be the mathematical expectation operator conditioned on in-
formation known at time 0, a firm is supposed to maximize

T ) o

subject to (k_;, n_;) given, and the linear production function

o[k
se=a|)] @)
where dis a 2 X 1 vector of positive constants. Here § is a discount factor
with 0 < 8 <1, P, is product price, £, is the stock of capital, n, the stock of
employment of labor, W, the wage rate of labor, J, the price of capital
goods, and D a positive definite matrix reflecting costs of adjusting factors
of production. The model is a linear decision rule, quadratic objective
function, multiple factor version of the costly adjustment models of Lucas
(19674, b), Treadway (1969, 1971), Gould (1968), and Mortensen {1973).
The positive definite quadratic form in D represents interrelated costs of
adjustment.
The firm maximizes (1) by choosing a contingency plan for setting

kt
[RE
ny

as a function of information known to become available when period ¢
rolls around. At time ¢, the firm is supposed to have an information set
Q,={X,,X,_y,...},where X, isa p X 1 vector (p > 3), whose first three
elements are P,, /,, and W,. The vector X, also contains any other varia-
bles that the firm finds useful to forecast the process (P, /, W). Of course, at
time ¢, the firm also knows the lagged values £,_, and n,_;. We assume that
the vector process X follows the rth-order vector autoregressive scheme

(L)X, = V¢ )

where 8(L)y=171—8,L —... — §,L", where EV¥|Q,_; = 0, and where
the roots of det §(2) = 0 are in modulus all greater than VB. The process
for X is assumed to be taken as given by the firm and to be uninfluenced
by the firm’s decision process.

Substituting the production function (2) into the objective (1), and
using summation by parts and the law of iterated projections to rearrange
the expressions in /,(k, — k,_,) in terms of ( J, — BE, J,,,)k,, the objective
function can be rewritten

il k Ak, T TAk
B 38 {pa |, ] = i ri— [ ]2 ]
Otgoﬁ {Pt ["t W, — Rk, An, D An, +J 1k
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where R, = J, — BE, J,.,. The variable R, has an interpretation as the
rental rate on capital at time ¢.
The solution of this problem is a linear decision rule of the form

[kt] =% t& [kt_l] + ho X, + A&+ b X
7y M1

where the g/’s and 4;s are matrices of constants which are complicated
functions of the parameters of 4, D, and §(L). In subsequent sections, we
describe quick ways of computing the g;’s and 4;’s, and of characterizing
their properties.

Example (it): Market Equilibrium with
Interrelated Demand for Factors

This is a linear, multiple factor version of the model proposed by Lucas
and Prescott (1971). We retain the objective function (1), but change the
assumption about how the firm forms expectations about the product
market price P. In particular, we now take account of the fact that the
product price P follows a law of motion that is influenced by the capital
accumulation decisions of the aggregate of firms in the industry. First, we
assume that R, and W, are the first two elements of a (p X 1) vector Z,
(p > 2) which is governed by the rth-order autoregressive process

#L)Z, = Vi (4)

where &(L)=I—-60,L — -.- —8.L", where EV:=E[V}Z_,,
Zy oy U, Up_s,...] =0, where Uis a demand shock to be described
below, and where the roots of det #(z) = 0 are all greater than \/E in
modulus. Note that £, is excluded from Z,. The firm, which is now one of
m identical firms, takes the process (4) governing Z as given.

The industry demand curve is

P=4y—A4,Y, + U; 4,4, >0 ®)

where U, is a random process with mean zero and Y, is market output.
There are m identical firms, so we have

k K
Y, = my, = md[j] = d’[Ni] (6)

where K, = mk, and N, = mn,. Here K, and N, are marketwide stocks of
capital and employment, respectively.

We assume that the demand shock U follows the gth-order autoregres-
sive specification

§LU, =T} (7
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where §(L)y=1—§&L — .- —§ L% and where EVY=E[V}|Z,_,,
Zy oy U1, U,_5,...] =0. We also assume that the zeroes of det &(2)
exceed VB in modulus. To complete the model we must specify the firm’s
beliefs about the motion of K and N, which influence the evolution of the
market price P and which the firm has an incentive to forecast. We assume
that the representative firm believes that marketwide capital and labor
obey the law of motion.

K K,
[ ‘] = B, + Bl[ ‘ 1] +GZi+ - +GyZy
N Ny ®)

+RU A+ + F Ui gur
Further, the representative firm is assumed to know K,_; and N,_; at ¢.
Now substituting the demand schedule (5) and production function (6)

into the objective function, the individual firm’s problem is to maximize

i K k
E, z 'Bt{(AO - Ald’[Nt] + Ut)d'[nt] — Win,
t=0

t t

Ak, T [Ak,
- Rtkt - [Ant]D[Ant]} +J 1k

subject to k_;, n_;, K_;, N_; given and known, and the given laws of
motion as in (8), (4), and (7). At time ¢, the firm’s known state variables
consist of k,_;, n, ;, K, ;, N,_,;, and the information variables {Z,,
Zy ..., U, U,_4,...}. Asolution to this problem is a contingency plan

for setting [£,, n,] of the linear form

k, [kt—l] [Kt—l]
=4 b b VA . VA
["t] o + 04 ", + 0y N, + go4; + + & 141

+f0Ut + o +j;171Ut—q+1‘

)

(10)

A rational expectations equilibrium is a pair of functions (8) and (10) such

that
[ t] [nt]

identically. This equality between the perceived law of motion for (K, N)
and the actual law is readily shown to hold if

By = mby, By = (by + mby), G; = mg;, F, = mfj. (11)

The restrictions (11) guarantee that the individual firm’s perception of
the law of motion of (K, N} turns out to be accurate, that is, is implied by
optimizing behavior of the individual firms composing the industry. It is
to be emphasized that the individual firms are assumed to behave compet-
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itively with respect to the market price, and to take as given the process
governing the evolution of the marketwide stocks of factors, which influ-
ence the evolution of the market price.

Notice how the definition of the rational expectations equilibrium
builds in: (a) accurate perceptions on the part of firms of the laws of
motion for the state processes (K, N, Z, and U) that are beyond their con-
trol, () optimizing behavior of firms, and (¢) market clearing in the output
market. However, notice that the model does not analyze “the other side”
of the market for inputs, but simply takes the stochastic process Z as
given.!

The methods that we describe can readily be used to compute the equi-
librium of the model, that is, the parameters {B,, B,,G,,...,G, ;,
Fy, ..., F,_,} as functions of the underlying parameters 4, D, 4, 4,, 8(L),
and §(L). We give an example of such calculations in Section V.

Example (1u1): Exhaustible Resource Depletion

Epple and Hansen (1979) have formulated a model for the purpose of
studying the extraction of exhaustible resources. Their model fits a slightly
modified version of the “general problem” that we analyze in Sections II
and IIL

Epple and Hansen study a situation in which a vector of resources is
being extracted from a single reservoir or mine. They model the exhausti-
ble nature of these resources by positing that marginal exploitation costs
increase as a function of the cumulated amount of the resource vector that
has been extracted. Resource extraction cost at time f is assumed to be
given by Ayid + Ay;S, + Ayi DAy, + AyiDy(1/2 Ay, + y,_4) where y,
denotes the cumulated amount of the resource extracted as of time ¢, D,
and D, are positive definite symmetric matrices, d is a column vector, and
S is a vector random process representing shocks to the extraction process.
The exhaustible nature of the resource is represented by the presence of the
quadratic term Ay;D,(1/2 Ay, + 3, ;).

Let P, be the price vector at time ¢ for the resources. The owner of the
resource is assumed to maximize

Eq > BH{PAy, — Ayid — ApiS,
t=0

. (12)
— Ay, DAy, — AyiD, (5% +yt_1)}

The model could be extended in various ways to model the determination of /, and W, in
terms of the demands for factors generated here interacting with supply curves for these
factors.
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subject to y_, given and subject to the random processes (L)X, = V¥ and
a(L}S, = Vi where P, is the first component of the (p X 1) vector X,
EVI|Q, ,=0, EV$|Q,_,=0, and Q, ;,={X,_, X, 5 -->S 1
S;_g; . - -}. The polynomials in the lag operator (L) and a(L) satisfy prop-
erties analogous to those specified in example (7). The solution of the own-
er’s maximum problem is a linear contingency plan for setting y, as a
function of {y,_ 1, X,, X, {,...,5,,8,_4-..}. In this example, the sup-
plier faces the random process X as a price taker.

The example could be altered to handle the case where the supplier is a
monopolist facing a flow demand curve of the linear form

P=A4,— 449, + U,, 45, 4, >0 (13)

where U, is a random shock to demand. Alternatively, the example could
be modified along the lines of example (i2) to be a model of a competitive
industry with a large number of price taking firms with a market flow
demand curve such as (13).

I1. The General Problem
We consider the following setup. Let

, be an n X 1 vector of variables, typically stocks of things that
enter an agent’s objective function

k be an n X 1 vector of constants

B be a discount factor, with 0 < 8 <1

S, be an n X 1 vector of stochastic processes of mean exponen-

tial order less than 1/ \/E

S
S, = [Slt] be a (p X 1) vector of stochastic processes of mean
2t

exponential order less than 1/ VB. Here p > n,and §,, is the

first # rows of §,.
H be an n X n positive definite symmetric matrix
D(Ly=Dy+ DL + --- + D, L™ D;an n X n matrix, where
Dy is of full rank, j =0,...,m.

We assume that the p X 1 vector stochastic process § obeys the rth-order
autoregression §, = 8,S,_, + -+ +6,.5,_, + V5 or 8(L)S, = V5 where
o(Ly=1I—-8,L— ... —8,L",whered;is p X p, and where the zeroes of
det 8(z) are assumed to be greater than VB in modulus. This condition on
the zeroes of det §(z) is equivalent with the condition that § be of mean
expotential order less than (/)L

Let E be the mathematical expectations operator. We assume that
EVi|S,_1,8 0o\ Jy_1Vi—as.--] =0forallt,and EViV]' = Z, where
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Z, Is a positive semidefinite matrix for all ¢.2 At time ¢, the agent is assumed
to have an information set £, including at least y,_,,...,»_, and §,,
S St

The problem is then to choose a linear decision rule or contingency plan
for setting y, as a function of elements in §,, in order to maximize the
objective function

N
lim £y > B ((h + $1)y, =3 Hy, — DLy VDL, 1} (14)

t=0

where E, (x) = Ex|{,. The maximization is subject to y_,,...,y_, given
and the given law of motion for §,,

S
8(L)[ ”] =V, (15)
Say

This problem can be solved as follows by using standard dynamic pro-
gramming methods for problems with quadratic objectives and linear con-
straints (e.g., see Bertsekas 1976, Kushner 1971, or Kwakernaak and Sivan
1972). Define the state vector X;=1[p/_;,¥{ 0 s Vicm 1L.S],
S{_ 1.8 411] Define the control vector v, = Doy, + Dyy,_, + -+ +
D, »,_,,. The transition equation for the system is then

] [Pe'Dy =D'Dy o =DG'D, . =D§'D, 00
i I, 0 0 0 0 0
Fiome2 0 0 0 0 0 0
,yl—m+l 0 0 n 0 0 0
1 |=| o 0 0 0 10
Sy 0 0 0 0 0 8,
S 0 0 0 0 0 I,
S, ren 0 0 0 0 0
1S ) | O 0 0 0 0

2To insure that there is a sense in which the criterion function is well defined as N — oo,
we could impose the weak restriction on X, that

lim sup B trace 2, = 0.
tox

It turns out that even this weak restriction on X, could be relaxed if we adopt a suitable

modification of the criterion function (14) below. For example, replacing (14) with

1 N
lim =y > B4k + S, — yiHy, — [DLyJ[D{L)n ]},
t=0

would yield the same decision rule, but permit weakening the above condition on X,.
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0 0 ow 5, ] [D;? [ 0
0 0 O}} »_ 0 0
0 0 0 yl—nH—l + 0 Ul + 0
0 0 0| 0 0
0 0 0 1 0 0
8'_’ 8r—1 87 SI 0 V7+l
0 0o ofls,_, 0 0
0 0o olls,_ .| |0 0
o ... 1, oflS_..] Lol o]

or X, =AX, + By, + U,,,, where 4, B, and U, ; correspond to the
matrices in the line above.

Let SX[RX, and v;Qv, be the quadratic forms

I 1 1 10 1

Yo —-H 0 ... -2—}2 0 —2—¢ N
Ji-2 0 0 0 0 0 Ol 7i-2

! : : M
Yicm 0 0 0 0 0 Ol v
1 a0 0 0 0 of 1
S, 0 0 0 0 O ol s

1.,

S, 1 §¢ 0 0 0 0 ol s,
\ : : !
[Serid LO O ... 0 0 0 ... OfS_,i
and v;Qv, = —v;lv, where ¢ = [/0] and is dimensional » X p. Notice

that the {(mn) X (mn)submatrix in the upper-left-hand corner of R is nega-
tive semidefinite by virtue of the assumption that H is positive definite.

With these definitions of X,, U,, v,, A, B, Q, and R, the problem (14)
becomes to maximize

N
IlvimEoth{Xt'RXt +0,;Q0, } (16)
* t=0

subject to X, given and
X =AX, + By + Uy, (17
The solution of this control problem is a feedback rule of the linear form

v, = —FX, (18)
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where
F=3(Q + BB'PB)'B'PA (19)

and where P is the “appropriate” solution® of the algebraic matrix Riccati
equation

P = BA'PA + R — B?A'PB(Q + BB'PA)~'B'PA. (20)

The desired solution of equation (20) is obtained by iterations on the
matrix Riccati difference equation

P,..=PBA'PA +R—B*A'PB(Q+ BB'PBY'BPA (21

starting from P, = 0. For our problem, conditions are satisfied that are
sufficient to guarantee that iterations on (21) converge to the appropriate
solution of the algebraic Riccati equation (20).* The conditions on our
problem that are sufficient to guarantee this convergence are (¢) that the
matrix f{ is positive definite, and (i7) that the zeroes of det 8(z) all exceed
\/E in modulus. Furthermore, the conditions on our problem guarantee
that the asymptotic closed loop system matrix (4 — BF) has all of its
eigenvalues less than 1/\/,2? in modulus.”

Problems like ours have special features—namely, the presence of a dis-
tinctive pattern of zeroes in A and B in (17)—that permit a quicker
method of solving problem (16). Let us partition the state X as
Xi = X, X3 where X% =[5y pi b Xy = [LS7 . S10)
For applications of the problems that we will study, the dimension of X,
will generally be much smaller than the dimension of X,. That is, both the

3For problems with negative semidefinite matrices R, the “appropriate” solution of (18) is
the unique negative definite solution P. For our problem, R fails to be negative semidefinite,
and so does the appropriate solution of (18). However, the submatrix R,; defined below is
negative semidefinite, and so is the associated P;,. This is enough to make our problem well
posed, and to support the claims about appropriate solutions that are made in the text. These
claims are proved in Sargent (1980).

4For details, see Sargent (1980).

5This can be established as follows. In (16) define the transformed variables X, = §t/2X,,
and 5, = 8!/%y,. Problem (16} is equivalent to the undiscounted linear regulator problem, to
maximize

N
IIvim E, Z {XIRX, + 0[O}
e t=0

subject to X, = BY/2AX, + B/2Bs, + BU+V2¢, . The optimizer is a control law §, = FX,,
from which the optimizer of the original problem », = FX, can be calculated. For 4, B, R,
and Q defined as in the text, it can be verified that the pair (81724, $1/2B) is stabilizable.
Further, letting the rank of R be r, choose a matrix G with r rows such that G’'G = R. Then for
our problem, it can be verified that the pair (81724, G) is detectable. The stabilizability of
(8124, B1/2B) and the detectability of (8124, G) imply that the closed loop system matrix
(B/24 — BY2BF) has all of its eigenvalues less than unity in modulus. From this and the
observation that ' = F, it follows that the eigenvalues of (4 — BF) are bounded by 8~"/2in
modulus. For a more detailed treatment, see Sargent (1980). Kwakernaak and Sivan (1972)
and Kailath (1979) are good references on the results from linear optimal control theory we
are appealing to.
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number of variables n being chosen by the “agent” and the number of lags
m inherited from the criterion function will be small relative to the number
of variables p in S and the order r of the autoregression for S. Partitioning

!

the rest of the transition equation conformably with [X],, X}, ], we have

X A 0 X B
I:Xlt+1] — |:011 ) ][Xlt] + I:Ol]vt + Ut+1. (22)
2641 22 2¢

This system is in “controllability canonical form,” under the assumption
that the D is of full rank. This follows from the fact that the pair (4,,, B;)

is controllable.® Further, the eigenvalues of A, are all less than 1/V/8 by
virtue of the assumption that the zeroes of det §(z2) all exceed \/B— in modu-
lus. Now let us partition P and R conformably with the partition

(X1, X5,) so that

P = [Pll Pl‘z] R = [Rll R12]

’ 14
12 P22 R12 R22

where for our problem R,, = 0. Note again that R, is negative semi-
definite by virtue of the assumption that H is positive definite.

By partitioning the algebraic matrix Riccati equation (20), it is possible
to show that P, is the unique negative definite solution of

P]I = BA’11P11A11+R11

! ’ ’ 7 (23)
— BPALPB(Q + BBP B} 'B P Ay,
and that P, is the limit as ¥ — oo of
Piy i1 = BAYW P Ay + Ry (24)

— BPAL P B(Q + IBB;PH,kBl)leIIPII,kAll
starting from Py o = 0. Also, Py, is the stationary point of the difference
equation

P12,k+1 = BA;1P12,kA22 + Ry,
— B4, Py By(Q + BB'lpll,kBl)_lB’IPIZ,kAZZ

starting from P, , = 0, where the “forcing function” {P;,, }i=, is the
solution of (24) starting from P, , = 0.7

(25)

6Necessary and sufficient conditions for iterations on (19) to converge are readily stated in
terms of the controllability canonical form (22). The necessary and sufficient conditions are
(@), that the pair (4,,, B,) be controllable, and (4) that the eigenvalues of the matrix 4,, have
moduli all less than 1/\//?. The necessary and sufficient condition for controllability is that
the matrix [B, 4,,B,, ..., A7 'B,] have rank mn, where m is the number of lags in D(L)
and n is the dimension of y,. Condition (b) on the eigenvalues of 4,, is guaranteed by our
assumption that the roots of det 8(z) = 0 are all greater than VB in modulus. These condi-
tions are derived mainly by adapting results summarized by Kwakernaak and Sivan (1972)
for the undiscounted case to the discounted case. See Sargent (1980) for details.

"Again, for details see Sargent (1980).
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Now partition the control law F in (18) conformably with [X],, X, ], so

that
X
v, = —[F,F “].
= ]
Then it follows from partitioning (19) that
F, = B(Q + BB P B)) ‘B P4y, (26)
F, = B(Q + BB1Py B 1B Pipd (27)

The piece F X, of the control law is sometimes called the “feedback” part
of the control law, while F,X,, is called the “feedforward” part.

From the matrix Riccati equation (23) for P;; and from the formula
(26) for F,, it follows that the feedback matrix F; depends only on the
matrices A4, By, and R,,, and is independent of the parameters character-
izing the random process S. Recall that the feedback matrix F, gives the
dependence of the control law for v, on the initial state variables X, =
[Vi_1:¥{2 -+ » Vi) From inspection of the Riccati equation (23) for P,
and the formula (26) for F,, it follows that the parameters of F, are exactly
those that come from solving the following smaller-dimensional, non-
stochastic optimization problem: maximize

Z B (X R\ Xy + v{Q0)

t=0
subject to Xy, = 41, X, + By, with X, given. The solution of this
problem is the feedback law », = —F, X, where F; is given by equation
(26). Further, notice that (4,, — B,F,) is just the upper left square of
(A — BF), which has the block triangular form

[Au - 31F1 A12 - Ble]
0 A,y

It follows from the earlier result that the eigenvalues of (4 — BF) are
bounded in modulus by 8712 that the eigenvalues of (4,, — B,F,) are
bounded in modulus by 87172 This bound on the modulus of the eigen-
values of (4,, — B,F,) is an important feature of our problem, which we
propose to exploit in devising an alternative solution procedure in the
following section of this paper. In particular, it is this feature of our prob-
lem that verifies that the particular solution that we choose to the Euler
equations described in the following section is the optimizing choice.®
Now it happens that, given F,, the parameters of F, can be found di-
rectly without the need to use (27) and without the need to iterate on (23).

8The assumption that H is positive definite, and not only semidefinite, plays a role in
delivering the bound of 8172 on the modulus of the eigenvalues of 4,, — BF,. If H were
only assumed to be positive semidefinite, more restrictions than have been imposed above on
D(L) would be required to assure that the eigenvalues of (4,; — BF;) are bounded in
modulus by 8712 In particular, sufficient conditions would have to be imposed to satisfy the
detectability condition described in note 5.



LiNEarR MoODELS 139

This is true because of a certain kind of symmetry between the feedback
and feedforward parts of the optimal control law. Below, we note this
symmetry for our problem and show how it can be combined with the
Wiener-Kolmogorov theory of linear least-squares prediction to compute
F, directly from knowledge of F; and 8(L). There will be computational
and other advantages from pursuing this strategy.

II1. Solutions Using Wiener-Kolmogorov Formulas

We return to our problem (14). We propose to solve the problem by using
the certainty equivalence principle. That is, we shall first solve a version of
the problem assuming that {S;,} is a known sequence, rather than a sto-
chastic process. We derive an expression for the decision rule in which »,
depends linearly on lagged y’s and actual future Sy, ,;, j > 0. By the cer-
tainty equivalence principle, the correct rule under uncertainty can be
derived from this rule by replacing Sy, ; forj > 1 with E,S, ;, the linear
least-squares forecast of Sy, ,; based on information available at time ¢. We
use earlier results of Hansen and Sargent (1980), which are based on the
classic Wiener-Kolmogorov prediction theory, to derive a convenient oper-
ational expression for the part of the decision rule that implicitly reflects
the E,Sy,,;’s. This procedure leads to the optimal linear decision rule.
We first solve the certainty version of our problem: maximize

N
J = lim 5 BH(h + Sy,)y, —yiHy, — [DL)3]1D(L),]} - (28)
t=0

where {§,, }*_ is regarded as a known sequence, and where the maximiza-
tion is over sequences { y, }7=, The initial conditions y_y, ..., y_, are all
given. To solve the problem, we fix N > m, and consider first the N-period
problem (28) with N fixed. We shall obtain a set of first-order necessary
conditions for a maximum of (28) with N fixed.

Consider first the term

N
1= B[D(L)y)[D(L)y,]

t=0

N
= > BODs +yi D1+ o 40w Dp)Doyy + -+ + Dyyyy).
t=0

Differentiating I with respect to y, for t = 0, ..., N — m gives

@D/ (@) = B'DD(L)y, + B*'DID(L)yyy + + -+ + B"D,D(L)yy
+ BH{[D(L)y,I'Do} + BHY[D(L) 3, 14)'D1 )
+ -+ B{[DL) Y] D}’ (29)
= 2B DyD(L) + BL'D{D(Ly + --- + B™L™D, D(L))y,
= 2B‘D(BLYD(L)y,.
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Therefore, to maximize (28) with N taken fixed, we have the Euler equa-
tions

@/ (@) = Bk + Sy) — 2Hy, — 2D(BL7YYD(L)y,] = 0

30
t=0,1,..., N—m. (30)

For the infinite time problem obtained by driving N to infinity, the Euler
equations (30) are also first-order necessary conditions. However, as there
exists more than one solution of the Euler equations (30) that satisfies the
m X n initial conditions y_;, ..., y_,, we need additional conditions to
pick out the unique optimum path of y,. For the certainty version of our
problem, it can be proved that, as N — oo, the optimum of criterion
function (28) is bounded below.? This means that the optimum path for y,
satisfies

S By Hy, < + 0. (31)
t=0

This condition is shown in Appendix A uniquely to determine the solution
of the Euler equations that our procedure selects. Equivalently, our proce-
dure is known to be correct because it selects the unique solution of the
Euler equations that gives rise to a closed loop system with zeroes of its
characteristic polynomial that are bounded in modulus by 8712 As indi-
cated in Section I, this is known to be a property of the optimal closed
loop system.
Write the Euler equation as

[H + D(BL=YD(L)], = +(h + Sy,). (32)

The Euler equations (32) can be solved subject to (31) and »n *m initial
conditions, y_4, ..., y_,, by the following procedure. First, we note that
the roots of det [H + D(Bz~1YD(z)] = 0 come in pairs: if z, is a root, so
is Bzgl It is, in general, possible to factor the matrix polynomial

H + D(Bz71)'D(z2) so that
H 4 D(Bz71)D(z) = C(Bz~1)C(z) (33)

where C(z)is an mth-order, n X n matrix polynomial in nonnegative pow-
ersof z, C(z) = Cy + Cyjz + - -+ + C,z™, and where all of the roots of
det C(z) = 0 in modulus are greater than VB. For each root z, of
det C(z) = 0, there is a root Bzy! of det C(Bz~') = 0. The roots of
det C(Bz~1) = 0 in modulus are all less than V/B. The factorization (33) is

9This follows from the stabilizability and detectability of the transformed system (see n. 5)
and from results in linear optimal control theory (see Kwakernaak and Sivan 1972, and
Sargent 1980).
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unique up to premultiplication of C(L) by an orthogonal matrix. These
assertions about (33) are proved in Appendix B.

Using the factorization (33), we can write the Euler equations (32) as
C(BLYYC(L)y, = 1/2(h + S,,). The solution of this equation that satis-
fies condition (31) is then

C(LYy, = FICRLYI ' (h + S,) (34)

or
Core +Ciya+ - +Cppp = (35)

F(Co+ CLBLT + oo CL L™k + Syy)

As shown in Appendix A, condition (31) and the initial conditions impel
us to solve the “stable roots backwards and the unstable roots forwards.”
Now premultiplying both sides of (35) by Cj?! gives

W+ Gy e+ Calcm)’t—m =

(36)
%(Cgco b CLCBL" + - + CLCBmL™Y Yk + §,,).
From Section II we have a quick and feasible method of obtaining F7,
which together with D(L) directly gives the “feedback” polynomial in
(36)—namely, (I + C5'C\L + C5'CLL2 + - - - + C5C,L™). Given this
polynomial, we shall now describe a method for obtaining a tractable
expression for the “feedforward” part of the solution in (36)—namely,
1/2(CoCo + CLCBL™ + -+ + CLCB™L™) N (h + Syy).
First, by multiplying the polynomials in L, it is established that

C(BL™YC(L) = i G

j=-m
where
Cy = CyCy + BCICy + -+ + BmC.C,
C, = CyCy + BCICy + -+ + Bm'C,_,C,,
Cz = CoCy + BCIC, + -+ + 720, G, (37)
C,, = CoC,,

C_j = B’C]’ fory=1,...,m.
Similarly, where D(BL-'YD(L) = =i, D, LJ, it is established that

j=m

Dy =DyDy + DDy + -+ + fmD,,D,,

b, =DiD, (3)
by=pDyj=1,...,m
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Therefore, given D(L), it is evident from (37), (38), and (33) that
CyC, = DD, (39)
Next, since C5lC,,...,C5lC, are all known from the feedback poly-
nomial in (36), we can calculate Cy{C, using (33) from C{C, =
CoC,(CHIC, ) or
CoCo = (DD, N(CT'C,) (40)

Equation (40) expresses CyC,, in terms of known parameters. Given GG,
we can obtain C;C, from

CiCy = (C51C)CoCopj=1,...,m. (41)

So equations (40) and (41) together with the known values of D{D,, and
C(_)IC]. determine all the matrices that appear on the right side of (36):
M(Bz1 = CoCy+ CLCy Bz  + - + C,,Cyfmz™.

In order to compute the equilibrium decision rule (36), we shall need a
convenient algorithm for computing the inverse of M(z), since the inverse
of M(BL~1) appears on the right side of (36). We now describe convenient
formulas for computing M(z)™! via the identity M(z)™! = adf M(z)/
det M{z). We proceed by describing algorithms for computing both
adj M(z) and det M(z). These calculations ultimately lead to equation (45)
below. The intervening calculations are useful technical details which can
be skipped on first reading.

Our procedure is an adaptation of one proposed by Emre and Hiiseyin
(1975). We begin by evaluating det M(z). To accomplish this task we note
that

0 det M(z) - trac [8a’etM(z) aM(z)']

0z - oM(z) 0z (42)
M(z)

Z

= det M(2) trace [ 0 M(z)‘l]

Let M(z) = [8{\/1(z)/8.z].M(z)‘.1 and write its Taylor series expansion
about zero as M(z) = My + M,z + Myz? + -- -
Now
oM(z)
0z
=010, +20,Cpz + -+ + mC,’nCOZ'"_l.

M(HM(z) =

Equating coefficients in the Taylor series we know that
MyCyCy = C1C, or M, = CiCy?

MCyCy + MyC,Cy = 2C45C, or M, = 2C,CH™ " — M, C)Cy?
M,CiCqo + -+ + MyCjCy = (j + 1)C},,Cy or

M, = (j + 1)C}1Cit — M;_,C\Cy — - — MCICt
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where C; = 0 for j > m. This provides us with recursive formulas for the
M;’s. Let k = m* n and write
det M(z) =dy + dyz + + -« + d2*.
Differentiating with respect to z we obtain
0 det M
—ea—(z) =dy + 2yz + -+ + kdy2F L
z

We can rewrite equation (42) as

0 det M(z)

s = det M(z)(trace My + trace M,z + trace Mp2? + - ).
2

Again we equate coeflicients to obtain
d, = d, trace Mo

2d, = d trace 11;[1 + d, trace Mo or dy, = %(a’0 trace Ml + d, trace Mo)

kd, = dytrace M,_, + -+ + d,_, trace M, or

4, = 716-(d0 trace Mk_l + -+ + dy_ trace Mo)

Noting that d, = det (C{C,,)) we have now derived recursive formulas for
the d/s and thus the polynomial coefficients for det M(z). Using these
coefficients and a numerical factorization algorithm we can express
det M(z) = di(z — z.)(2 — 25) . .. (2 — z},), where z,, ..., z;, are the roots
of det M(z). These roots are greater than V/# in magnitude.

In order to proceed to the second step of the inversion of M(z), we shall
write

Moyt = adj M()
d(z —z)(z2 — 29} ... (¢ — 2;)

(43)

where adj M(2) is the adjoint of M(z). Thus our second step involves deriv-
ing a formula for adj M(z). The Taylor series expansion about zero for
adj M(z) can be written adjM(z) = My + Mz + .- + M;_ ¢k
Notice that [adj M(2)|M(2) = [det M(z)}]; equating coeflicients of the
Taylor series expansion of both sides of this equation gives

MACHCy = dy] or M = dy(ChCo)

M3CCy + MCyCo = dy] or M} = 4,(CyCo)™* — MyC3Cy
M;C;c—mco + 0+ M;—mCE)CO = dk—ml or

My = di_n(CoCo) " — MCY_, C57 - =My, €10

This provides us with recursive formulas for the M’s.
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The third step in our inversion formula for M(z) amounts to expanding
(43) by matrix partial fractions to obtain

N, N,
Meyt=—t2 4+ ... 4 "% (44)
(z —2y) (2 = z)
where
1 * * * —
N, = [Mg + Miz; + -0+ My_ (2,)F™].
! dkl__[(zj—'zi) v Y
i#j
1<i<k
Equation (44) can be rewritten
1y iy
‘1 %k
M(z) = + (45)
1 1
1 ——=z 1l ——=z
“1 23
Finally, substituting Bz7! for 2z gives
M(Bz"1)"1 = (ChCo + C1CBz™1 + -+ + CLC B2 ™™) !
- LN1 - ‘LNk .
) 2k (46)
=-————i—————.+ e +.——__T____
1 ——B21 1 — =B
z, 2

Applying equation (46) to the right side of (36) gives the decision rule
for y,:

N H Gy + o + GGy

1 ( —\N, )
=3 (=) kS

QEI—MMI '
where A; = 1/z;. Using the expansion [1 — (\;)BL 771 = 22, (A; 8)'L7,
(47) can be written

2= —(Co'Cryg + - + GGy, )

1 & - :
=5 SN[ S 0B S s + )|

i=1 =0

i=

(47)

(48)

Equation (47) or (48) expresses the optimal choice of y, as a function of m
lagged y’s and the sum of 4 geometric sums of all future values of the
vector sequence ;.

It is now a simple step to add uncertainty. Where § is a random process
obeying the assumptions we have imposed above, the optimal rule is ob-
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tained by replacing S§,,,; with E, S}, in (48):
N = —(CEICMH + -+ G5 C )

1k
—52}‘1‘1\/}[
j=1 i

By using a formula of Hansen and Sargent (1980), the geometric sum in
expected §y,.;’s can be written

©

49)
VB, Sues + )
0

o r—1 T
S (NBYE, Sy = 93, B)—l[l + 2[ STy B) 8i]LS]St, (50)
i=0

s=1 "i=s+1

where ¢ is an n X p matrix of the form [/0]. The classic Wiener-
Kolmogorov prediction formulas are embedded in (50), as described by
Hansen and Sargent (1980). Substituting (50) into (49), we obtain the
decision rule

2= = (G + - + Co'Cuy )

=1 “i=s+1

_%]:zlxjm¢a(xjﬁ)l[1+::l[ 2 (A B)® Si]Ls]St O

LS ()
_?].:21 INT = N8

Equation (51) expresses the optimal choice of y, as a function of m lagged
»’s and current and (r — 1) lagged values of §. The “‘state” variables thus
match up with the setup of Section II.

In Section V, we shall exhibit speeds of calculating a particular numeri-
cal example of a Lucas-Prescott equilibrium of investment uncertainty,
using both the method of Section II and the method leading up to (51).
This will give the reader some sense of how much quicker the method of
this section can be than the earlier one. Before proceeding to this example,
in the next section we describe a modification of the present procedure
which differs in that it factors the matrix H + D(BL™1YD(L) by a differ-
ent method.

IV. Another Solution Procedure

The previous two sections have indicated two different but related meth-
ods for solving our general problem. The first method involved casting the
problem in the form of a “stochastic linear optimal regulator” problem,
and solving it by iterating on the matrix Riccati difference equation. This
approach in effect solved the “optimization” and “prediction” pieces of
the problem jointly. The second method explicitly separated the optimiza-
tion and the prediction problems, used the recursive method to factor the



146 HANSEN AND SARGENT

spectral density-like matrix [H + D(BSL™1)D(L)] involved in the “optimi-
zation” piece of the problem, but used analytic, nonrecursive formulas to
solve the “prediction” aspects of the problem.

A third procedure is also available in principle, and it is practical
in sufficiently small systems (n and m should be small). The method in-
volves using the procedure described by Rozanov (1967) to factor
{H + D(BL™YYD(L)].** By using this procedure, the requirement for
nonanalytic procedures (i.e., numerical or recursive procedures) can be
reduced to the minimum extent possible, namely, to the need to find the
roots of several univariate polynomials. In general, the procedure can be
described as follows. The matrix characteristic polynomial for the Euler
equations can be represented, as in Appendix B, as

H + D(BL-YD(L) = H + D (VAL-YD (VI”EL) (52)

where D; = D,( VB)i. We use Rozanov’s procedure to factor the “spectral
density” matrix

H + D(z7YYD(z) = G(z"1YG(z) (53)

where G; = 2™ ( G; 2/, and the roots of det G(z) = 0 are all outside the unit
circle. As in Appendix B, the Euler equations for the certainty version of
our problem can be written as

G(VBL-YG (TIFEL)” =1+ 5u) (54)

or
1
CBLTNC(Lyyy = 5 (A + 8yy) (55)

where C; = (1/ \/E)"Gj. Once C(L) has been obtained, the solution for
the feedback rule can be obtained exactly as described in Section IIL

The advantage of using the method described by Rozanov over the
methods of Sections II and III is that Rozanov’s delivers closed form ex-
pressions (or ‘“nearly” closed form expressions, depending on the size of m
and n). The disadvantage of Rozanov’s method vis-a-vis using the recur-
sive method of Section III is that the algebraic calculations required for
Rozanov’s method are tedious.

9The procedure suggested by Rozanov (1967) involves obtaining an initial noninvertible
triangular factorization and then multiplying by appropriate Blaschke factor matrices in
order to shift roots from inside the unit circle to outside the unit circle. An alternative
procedure for factoring a vector moving average, discrete time spectral density matrix, has
been offered by Whittle (1963) and more recently by Murthy (1973). It amounts to inverting
the spectral density, thus converting a vector moving average problem into a vector
autoregressive problem. The orthogonality conditions associated with the vector autoregres-
sion are then used to determine the invertible factorization. From the standpoint of this
paper, we are concerned only with the factorization of spectral densities of vector moving
average processes. However, the procedures discussed by Rozanov, Whittle, and Murthy are
appropriate for arbitrary rational spectral densities.
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In Appendix C, we report explicit closed form formulas for factoring
H + D(z)'D(z) for the case in which n = 2, m = 1. These formulas were
derived by following the instructions provided by Rozanov (1967). When
combined with formulas (42)-(51), the formulas in Appendix C give a
completely closed form expression for the decision ruleinthen = 2, m = 1
case.

V. An Illustration

We illustrate these computational methods by computing the equilibrium
of a multiple factor version of the Lucas-Prescott model, which was the
second example in Section 1. Recall that the firm is assumed to maximize

i k Ak N (Ak
E B‘[Pa”( ’)— W,n, — R,k _< ‘)D( ')] (56)
02(:) t "t ot tvt Ant Ant

subject to
P, =A,—AY, + U, (57)
(K) =By + B, (Kt_l) +GoZy + - + G2y g
Nt Nt—l (58)
+F0Ut+" F Ut —g+1
oL)Z, = V: (39)
LU, = Ve (60)

where the rentals R, and W, are the first two elements of the (p X 1) vector
process Z,. At time ¢, the firm is assumed to know the state variables
{k,_15ny 1,Kt 13 NV,_1) and the information variables {Z,,Z,_,,..., U,
U,_{,...}. The firm knows the parameters of the laws of motion for
(K,NY, Z, and U, and also the parameters of the demand schedule.

To compute the equilibrium law of motion for (X,, N,) = (mk,, mn,), we
follow Lucas and Prescott (1971) or Sargent (1979) and solve the following
social planning problem: to maximizel!

’ 1 2 kt ’ ’ kt
E, 2 gt agmar () - Sdme( ') dd
L L 7y
k R\ (k
+md’(t)Ut—m( t)(‘) (61)
0 W,/ \n,
k, — kN [k — k,_
_m(z tl)D(t t1)]_
Ry — N q Ny — Ny
1 Note that in this example the matrix H = 4,m?dd’, and so is positive semidefinite but
not positive definite. However, it can be verified that the problem does satisfy sufficient
conditions for the closed loop system matrix (4,, — B,F,) to have eigenvalues bounded in
modulus by 8-1/2 In particular, the zeroes of what corresponds to the matrix polynomial

det D(z) of Section III are less than 8712 in modulus, which delivers the required detectabil-
ity condition (see n. 5).
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In (61), the maximization is over contingency plans for (&, n,) given the
laws of motion (39) and (60), and given (k,_y,7,_, 4,2, ..., U,
U,_,,...). Once the contingency plan for the representative firm’s stocks
(k,, n,) that maximizes (61) has been obtained, the competitive equilib-
rium for (K,, N,) can be obtained by multiplying by m, that is, by using
(K,, N,) = (mk,, mn,). It should be noted that the contingency plan for
(k,, n,) that maximizes the social planning criterion (61) is not the opti-
mum contingency plan (10) of the representative firm of Section I, but is
simply m™! times the equilibrium law of motion (8) for (K, N). That the
competitive equilibrium described in Section I implicitly maximizes (61)
can be verified directly by using an argument analogous to that of Sargent
(1980).

Using each of our three methods, we have calculated a rational expecta-
tions equilibrium by maximizing (61). For the Z process (59) we assumed

()=C D6+ 06
G | 50 R G [ B2

For (60), we assumed for simplicity that U, = 0, so that demand shocks
are suppressed. (It would be very cheap to include demand shocks with our
second and third computational methods, somewhat more expensive with

the first method.) We assumed that 4, = .00005, m = 1000, 8 = .9, and
d’' = (.25, .75). We chose D to obey

mD:(2 1).
1 15

To match the objective function (61) of the social planning problem with

the objective function (14) of the general optimization problem described
in Section Il above, we set H = (1/2)A,m%dd’, h = Aymd,

@@t = (1~ ) ey ( T h),

t — My ny — Ny
and
R
S: — Slt = —m(u/tt).

Also, we set 4, = 0, which amounts to setting constant terms in the equi-
librium (K, N) process to zero. The resulting equilibrium should then be
thought of as describing variables measured in deviations from their
means, 12

2We did not carry along the constant terms in the demand function or compute them for
the equilibrium. The latter constants would be easy to compute given the former.
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We calculated the equilibrium three ways: with the method of Section II
which involves iterating on the full matrix Riccati difference equation
(21), with the “short” method of Section III, and with the “shorter”
method of Section IV. The equilibrium can be written as

(kt) _( 1.1021 .3064)(1%‘1)
n/ ~ \—.3404 —.0213/\n,_,

(_.4977 .0627)(mRt) ( 0815 .0378) mRt_l)(GQ)

1747 —.0542/ \mWw, —.0275 —.0122/\mW,_,

(*.0139 .1960)(mR,_2) (—.0493 .0094) mRt_3)
0053 —.0661/\mW, _, 0167 —.0036/\mW, ./

To express the equilibrium in terms of (X, N,), simply multiply both sides
of (62) by m = 1000.

To implement the first two computational methods, which are iterative,
a convergence criterion had to be adopted. We used the following conver-
gence criterion. We calculated successive iterates on the feedback law,
namely, F, = B(Q + BB'P,B)"'B’P A, where iterations on the matrix
Riccati difference equation (20) were started from F,, = 0. Then we com-
puted the norm defined as the maximum absolute value over elements of
(Fy.y — F,). For convergence, we insisted that this norm had to be less
than 1075, For the (4,, n,) law that maximized (61), all three methods gave
identical answers to at least five digits, as expected. (The results for the
third method involve no iteration and are exact.)

Table 1 gives the time taken for each method in central processor time
on the Cyber 172 at the University of Minnesota. Generally, we would
expect the relative speed advantage of the shorter methods in calculating
the equilibrium to increase the closer is 8 to unity and the larger is the
dimensionality of the § process both in terms of the number of lags in its
autoregression, and the number of variables in S. For our example, since
central processor time costs about 8 cents per second, one evaluation of the
equilibrium costs about half a penny by the short methods, about 25 cents
by the full Riccati method. The relative costliness of these computational
procedures clearly will vary from problem to problem.

TABLE 1

CENTRAL PROCESSOR TIME TO CALCULATE RATIONAL EXPECTATIONS
EquiLisrium (IN SeEconDs)

Method Time
Full Riccati (Sec. 1) 3.247
Short Riccati (Sec. IIT) 0.075
Spectral Factorization (Sec. IV) 0.052

Note.—Computed on Cyber 172 Computer, University of Minnesota.
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VI. A Possible Identification Problem

Let us represent the decision rule (51), using (35) in the compact form
1 n-
ClLyy, = B, [FICBLY ik + 5,)) (63)

where 6(L)S, = v$. Here it is understood that E, stands for the expectation
or linear projection conditioned on {S,,S,_,,...}.

Suppose the econometrician sees enough of the (y, §) process to permit
him to estimate the parameters of C(L) and A. Let us pose the following
question. Is it possible to work backwards to obtain a unique H and D(L)
such that H + D(BL=YYD(L) = C(BL~1YC(L) In other words, can we
identify the criterion function parameters H and D(L) from the decision
rule parameters C(L)? First of all, there is a relatively trivial sense in which
the answer to this question is no. Both C(L) and D(L) are identified only
up to a premultiplication by an orthogonal matrix. From the standpoint
of criterion function identification, this problem is not particularly inter-
esting because premultiplication of D(L) by an orthogonal matrix does
not effect the term [D(L)y,][D(L)y,] that enters into the criterion func-
tion. In other words if A is an orthogonal matrix conformable with D(L),
then [AD(L)yJ[AD(L)y] = [DLpINAIDL)) = [DL)y)
[D(L)y,]. This suggests that all we should really care about is identifica-
tion of D(L) up to a premultiplication by an orthogonal matrix since
elements in this class of D(L)’s all give rise to the same criterion function.

It turns out that there is another sense in which the criterion function
parameters cannot be identified from the decision rule parameters. Using
the procedure suggested in Section IV and Appendix C, we see the link
between factoring a spectral density function and solving for C(L) from
D(L)and H. Appealing to linear prediction theory and using the develop-
ment provided in Appendix B it is possible to show that a whole family of
H’s and D(L)’s lead to the same decision rule. This turns out to be a simple
corollary to the result that a covariance stationary stochastic process has
multiple moving average representations.!® Thus, without further restric-
tions there is a whole family of objective functions that are consistent with
decision rule (63). In absence of additional restrictions we cannot hope
completely to identify the objective function parameters.

Fortunately, for many purposes, the fact that only a class of objective
functions can be identified is of no practical concern. The reason is that all
objective functions that imply the same decision rule give rise to exactly
the same predictions about the response of economic agents to interven-
tions in the form of changes in 8(L). For econometric policy evaluation,

13Multiple moving average representations can be obtained both by “flipping” roots inside
and outside the unit circle via multiplication by Blaschke factors and by altering the number
of underlying orthogonal white noise processes employed in the representation. See Rozanov
(1967) for details.
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then, it is enough to identify the decision rule without having completely
to identify the objective function.

In circumstances in which either more data are available or in which a
priori restrictions are imposed on D(L) it is often possible substantially to
reduce the family of objective functions consistent with C(L). For exam-
ple, the econometrician may have observations on “output” ¢, which
obeys

g, = (h + Sy, — 21 Hy, (64)

where §, is not observed by the econometrician. The idea here is that
observations on ¢ permit estimation of H via (64). In addition it is sup-
posed that the cost term [D(L) y,|'[D(L}y,] in (14) represents costs that are
“internal” to the firm or the unit whose decisions are being modeled, so
that D(L) cannot be estimated from direct observations on inputs and
outputs. In this example, H is uniquely identified; however, D(L) can-
not necessarily be completely pinned down from estimates of C(L). A
different example is where the form of D(L) is restricted so that
Or =2-)Hy — 21 = [D(L)y,]1D(L)y,]. Even without observa-
tions on ¢,, it is possible to recover both H and H from C(L) and hence the
objective function parameters are all identified.

VII. Conclusions

This paper has been devoted to describing quick and revealing ways of
calculating optimal decision rules or dynamic equilibria for linear stochas-
tic rational expectations models. The full value of such methods becomes
evident only when we recall that our purpose is ultimately to estimate
models of this class by using interpretations of the errors and estimators
along the lines described in our earlier paper (Hansen and Sargent 1980).
For example, there we describe maximum likelihood procedures for the
estimation of single-endogenous variable, dynamic models of the class con-
sidered here. For the purposes of implementing maximum likelihood
methods, it is a substantial advantage to have quick algorithms for evalu-
ating the likelihood function, which requires evaluating the optimal deci-
sion rule or equilibrium stochastic process. It is also an advantage to have
formulas as close to being in closed form as possible, since this facilitates
computing analytic derivatives of the likelihood function. The general
principles of estimation and interpretation of error terms described in our
carlier paper extend in a fairly straightforward way to the present context.

Appendix A

In this appendix we examine the solutions to discrete time Euler equations for the
infinite time problem. We take the following steps in order to characterize these
solutions. First, write the Euler equations

[H + D(BL-YD(L)]y, = St for t =0, 1, .... (A1)
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Second, obtain a partial fractions decomposition of [H + D(Bz71)D(z)]! of the
form

G Gx
[H + D(B"YD() ' = — 1 4 . 4
-z, z -z,
Hi Hy
where z;, . .., z; are assumed to be distinct and are greater than \/B_in modulus.

We assume that (1/V/8)!S? — Oas¢ — oo. Third, we obtain a particular solution
to (Al) of the form

_G;

%k

Gy & . i .
pE= = Y () IS - Y () TS+
1 =0 i=0

z

HYS (Bey")S7 + - + HY S (BT
i=0 j=0

fort = —m, —m + 1,... where ST = Oforj < 0. Let4},...,4;,B},..., B} be

n dimensional nonzero vectors such that [H + D(fz7')'D(z;)]4] =0 and

[H + D(2;)’D(Bz;1)]B} = 0. The general solution to the homogenous equation is
=adiant ot adist +

SBIBTHY T+ -+ BB

where ¢y, ..., ¢, f1, . . ., f; are arbitrary scalar constants. Fifth, obtain a general
representation of the solutions to (Al) by adding y? and y%.
We have m X n = k initial conditions y_y, y_,, ..., y_,,. We also have the re-

quirement that

2 By Hy, < o0 (A2)

t=0

where H is positive definite. Note that for nonzero f;
> B H(Be) B HB]
t=0

is not finite. Thus, (A2) is satisfied only if f; = 0 for j = 1, ..., £ The initial
condition vectors y_y, ..., y_, uniquely determine ¢,, ..., ¢,. The solution pro-
vided in the text corresponds to the solution for y, described above.

Appendix B

This appendix proves the assertions in the text about the factorization of the
characteristic polynomial associated with the system of Euler equations. We state
the assertions in the form of the following

Lemma: The matrix polynomial in z, [H + D(Bz71)’D(z)), has a representation

H + D(Bz1YD(2) = C(Bz"1)C(2) (B1)

where

Cx) =S ¢,
=0
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each C; is an (n X n) matrix, and all the roots of det C(z) = 0 in modulus are not
less than \/B. The factorization (B1) is unique up to premultiplication of C(z) by
an orthogonal matrix.

Proor: Define the polynomial in 2z

J(2) = H + D(Bz"1YD(2)

— H + D(VBYD (\/LE) -

where

D)= S D2l = 3 Dy (VBY (==2).
207 = 2 (75°)

So we have defined
D(z) = i l_)izj
j=0
where 5]- =Dy VB)'. Notice that
DBzl = > Di(VBY (VBzy
=0

= D(VB:Y.

Also D(z) = I)[(l/\/ﬁ)z]. Now consider the function F(z) defined as F(z) =
H + D(z7'YD(z2). The function F(z) is the matrix cross covariance generating
function of the a-dimensional covariance stationary stochastic process W defined
by W, = ¥, + X, where
H s=0
0 s#0
and EY, = 0, X, = D(LYU,, EU, = 0, EU,U} = I, and EY,U, , = 0 for all 5. It
follows from the factorization theorem for spectral density matrices (see Rozanov
1967) that we have the factorization of F(z),

H + D(zYD(z) = G(z VYC(2) (B3)

where the roots of G(z) do not lie inside the unit circle. The factorization is unique
up to premultiplication of G(2) by an orthogonal matrix. It immediately follows
from (B2) that

EY,Y| = [

H + D(Bz"1YD(2) = G( \/Ez’l)’G[(l/\/—B—)z] (B4)
=C(B1C(2)
where

C(2) = > Cal
ji=0

and C; = (1/\/,[7)1'Gi. From the spectral factorization theorem we know that
det G(2) = po(l — py2) ... (L — p,2) where s = nm, and where || < 1. Thus,

det C(z) = dezc(\/Lﬁz) = ,Lo(l _ Hl\/LEz)...(l - p.svl—Ez). (B5)

From (B5) we know that the roots of det C(z) are not less than V/f in modulus. It
also follows that the roots of det C(Bz71) do not exceed \/Z?_ in modulus. This
concludes the proof of the lemma.
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Appendix C

This appendix provides explicit formulas for factoring H + 5(2_1)’5(z) where
n=2and m = 1. Let H + D(z"Y)D(z) = F(z), where we write
J11(2) flz(z)]
F(2) = [
Ja(2) fox(2)
where we let
Sul2) = a2 4 g + a2
fo2) = Bzt + By + Bz
N8 =147+ v + 112
Sa(2) =via vy + v,z

The factorization procedure involves the following three steps:
Step 1: Set fi,(2) = po(1 — pyz)(1 — p2™?), lp4| < 1, py > 0. This is accom-

plished by setting
_ =+ /w2 4 2
Py = %o 20:!0 & subject to |p,| < 1

b
pp= ——.
0 o1
Step 2: Form det F(z) and find the factorization det F(2z) = xo(1 — x2)(1 —
k,2)(1 — k271 (1 — k27 1), where kg > 0, |x,] < 1, |x,| < 1. This is accomplished
as follows. Let
a = oy — youn
ay = aoBy + a1y — Yolv1 + v-1)
ag = agBy + 2048y — v2 — v{ - ¥

If a, # 0, set
G
-~ a a a
% 2 22 2
2
- a, a3 a,
2 2
f o+ VRTCq .
K==y subject to |r;| <1
Koy = VK3 — 4 .
Ky =~ subject to |k,| <1
ay
kg =
KiKo
If a, = 0, set
kK, =0
_ —ag =t Va3 — 4a? .
Ky = subject to |k, < 1
2a,
a
Y
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Step 3: Compute G(z) where G(271Y'G(z) = F(z), where
G(z) = [gu(z) glz(z)].
g21(2)  899(2)

We compute G(2) as follows. Define

£0=v_1 + o1 + V1P}

§ = \/'g(l = &30)(1 = K3py)

&= VEE+ &

Yo = &/&s
Y= 51/52
K3 = —(Ky + Ky)

Then
&u(2) = ‘Po\/P_o(z - py)
81(2) = =¥, Vio(l = py2)
Yo¥_1 + \1/1\/'; + (YoYo + P1¥ov_1 + Pl‘x’l\/'—‘; + ¥ \/a"s)z

&12(2) =
12 Voo
Yoy — Yo Vikg + (Pyve + YrYo1P1! = Yo Vigks — Yo Vo1 1)z
&2o(2) = .
V PoPy
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Rational Expectations, the Real Rate
of Interest, and the Natural
Rate of Unemployment

Thomas J. Sargent

The interaction of expected inflation and nominal rates of interest is a
topic that has received its share of attention since Milton Friedman gave
Irving Fisher’s theory a prominent role in his presidential address to the
American Economic Association in 1967.1 The relationship between inter-
est and expected inflation depends intricately on the interactions of the
real and financial sectors of the economy, so that the subject of this paper
lies in the domain of macroeconomic analysis. Partial equilibrium analysis
won’t do. Therefore, even though my main subject is the relationship be-
tween interest rates and expected inflation, there is no way to avoid such
matters as the nature of the Phillips curve, the way expectations are
formed, and, in some formulations, the sizes of various interest elasticities:
those of the demand and supply for money and those of aggregate demand
and its components.

Thus, consider Irving Fisher’s theory. In one interpretation, it asserts
that an exogenous increase in the rate of inflation expected to persist over
a given horizon will produce an equivalent jump in the nominal yield on
bonds of the corresponding maturity. That assertion concerns the way the
whole economy is put together; in particular, it is about the reduced form
equations for nominal rates of interest. If it is to hold, various restrictions
must be imposed on the parameters of the structural equations of a macro-
economic model, which in turn imply important restrictions on the re-
duced form equations for endogenous variables besides the interest rate—
for example, aggregate income and prices, variables that properly concern

The research underlying this paper was financed by the Federal Reserve Bank of Minneap-
olis, and earlier research that was an indirect input was supported by the National Bureau of
Economic Research. Neither institution is responsible for the paper’s conclusions. I benefited
from discussions with Neil Wallace, Arthur Rolnick, Christopher A. Sims, and members of
the Brookings panel, none of whom, however, can be held responsible for any errors. Thomas
Turner provided valuable help with the calculations.

'Friedman (1968). One statement of Fisher’s theory can be found in Fisher (1930).

[Brookings Papers on Economic Actwity, 1973, val. 2, ed. by Arthur M. Okun and George L. Perry]
© 1973 by The Brookings Institution
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policymakers more than do nominal interest rates. For example, in stand-
ard IS-LM-Phillips curve models,? the response of the interest rate to an
exogenous shock in expected inflation, like the response to any other shock
that affects aggregate demand, is distributed over time.? A once-and-for-
all jump in expected inflation eventually leaves the real rate of interest
unaltered, but in the short run drives it down and output up.* Only in the
special case in which the LM curve is vertical, the IS curve is horizontal, or
the short-run Phillips curve is vertical (price adjustments being instantane-
ous whenever employment threatens to deviate from full employment)
does an increase in expected inflation produce an immediate, equivalent
jump in the nominal interest rate.? These special sets of parameter values
obviously impart a very monetarist or classical sort of behavior to the
model.

On this interpretation of Fisher’s theory, all of the parameters influenc-
ing the slopes of the IS, LM, and Phillips curves are pertinent in evaluat-
ing its adequacy. Conversely, evidence that the theory seems adequate
contains indirect implications about the parameters of the macroeconomic
structure, and therefore might have some clues relevant for evaluating the
relative efficacy of monetary and fiscal policies.

While the preceding statement of Fisher’s theory may be of interest in
highlighting its macroeconomic content, the theory can be stated in an
alternative and less confining form, which probably comes closer to what
modern adherents to Fisher’s doctrine have in mind. This statement is less
confining because its truth does not require any restrictions on the magni-
tudes of the slopes of the IS, LM, and short-run Phillips curves. Further-
more, it does not involve pursuing the implications of an exogenous jump
in expected inflation. Instead, expectations of inflation are assumed to be
endogenous to the system in a very particular way: they are assumed to be
“rational” in Muth’s sense®>—which is to say that the public’s expectations
are not systematically worse than the predictions of economic models. This
amounts to supposing that the public’s expectations depend, in the proper
way, on the things that economic theory says they ought to. Beyond this,
the alternative statement of Fisher’s theory assumes that the Phelps-Fried-
man hypothesis of a natural rate of unemployment is true, and thus that
no (systematic) monetary or fiscal policies can produce a permanent effect
on the unemployment rate.” Given these two hypotheses (which are re-

ZSee, e.g., Bailey (1962, esp. pp. 49-54), which contains a good exposition of Fisher’s theory
from the standpoint of the standard macroeconomic model.

3This point has been made by Kane (1973), among others.

*Some of Keynes’ views about the effect of an increase in expected inflation on interest and
employment are contained in Keynes (1936, pp. 141-43).

5E.g., see Sargent (1972).

6Some very important implications of assuming rationality in Muth’s (1961) sense in
certain kinds of models of forward markets were pointed out by Samuelson (1965).

"See Phelps 1972.
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lated to one another, since it seems impossible to give the natural rate
hypothesis a proper formal statement without invoking the hypothesis of
rationality), it follows that the real rate of interest is independent of the
systematic, or foreseen, part of the money supply, which therefore can
influence the nominal rate only through effects on expected inflation.

The notion that the real rate of interest is independent of the systematic
part of the money supply embodies the key aspect of Fisher’s theory ap-
pealed to by Friedman in his presidential address. To obtain this property
for the real rate requires no assumptions about the slopes of the IS, LM,
and short-run Phillips curves, for rationality and the natural unemploy-
ment rate hypothesis are sufficient to support it. From this point of view,
then, the important thing is not the response of the system to an exogenous
shift in expected inflation.

It is important to determine the relationship that the standard way of
empirically implementing Fisher’s theory bears to the preceding statement
of the theory. Irving Fisher and most of his followers® have implemented
the theory by estimating a model of the form

n=pt+tmtuy
n

T = 2 wi(pr—i — broio1)
=0

where 7, is the nominal rate of interest, p is a constant, 7, is the unobserva-
ble expected rate of inflation, p, is the logarithm of the price level, w; and n
are parameters, and 4, is a random error assumed to be distributed inde-
pendently of past, present, and future values of p. These two equations
have typically been combined to yield the equation

n
= 2 wi(pey — Proic1) + 4 +p,
i=0

which has been estimated by a variant of the method of least squares. The
w;’s have been interpreted as estimates of the distributed lags by which the
public forms its expectations of inflation. (Some of Fisher’s followers have
added some regressors in an effort to improve his equation.)®

Generally speaking, the results of estimating this equation have reflected
poorly on the model. For data extending over very long periods of time,
estimates of the w;’s depict extraordinarily long distributed lags, much too
long to be useful in forming predictions of inflation. Consequently, the
estimated w;’s do not seem to provide a plausible description of the way

8E.g., see Gibson 1970, and Yohe and Karnosky 1969.
9E.g., see Feldstein and Eckstein 1970.
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people form expectations of inflation—at least if they do so in an informed
way. 10 For this reason, Fisher’s empirical results have often been viewed
with suspicion.!!

As it turns out, such negative empirical results carry no implications
about the validity of the version of Fisher’s theory considered here. Even if
the theory is correct, there is in general no reason to expect that regressions
of nominal interest rates on current and lagged rates of inflation should
give distributed lag functions that could reasonably be used to form expec-
tations of inflation. The theory cannot be tested by running regressions
like Fisher’s.

This paper is organized as follows. The first section describes a very
simple and fairly standard macroeconomic model within which to analyze
the relationship between interest and inflation. The second section takes a
short detour from the main theme of the paper to analyze the interest-
inflation relationship that obtains when expectations of inflation are gen-
erated by the standard “adaptive” mechanism, the usual assumption in
empirical work. Here 1 briefly outline the restrictions on the macroeco-
nomic structure necessary to rationalize the kind of procedure used by
Fisher in his empirical work. Next comes a description of the behavior of
the model embodying “rational” expectations; I show that under this as-
sumption, the natural unemployment rate hypothesis and a version of
Fisher’s theory about the interest rate and expected inflation form a pack-
age. Proper empirical tests of the model are also discussed, and two of
them are implemented. As it turns out, the most straightforward way to
test the model is to test the natural unemployment rate hypothesis.

The argument in this paper is heavily dependent on the analysis of the
natural rate hypothesis carried out by Lucas in a series of papers.!? The
proposition that the real interest rate is independent of the systematic part
of the money supply, given both rationality and the natural rate hypothe-
sis, follows quite directly from Lucas’s work. In important ways, the struc-
ture of the argument in this paper resembles that of Friedman’s presiden-
tial address, in which the close connection between the hypothesis of a
natural rate of unemployment and Fisher’s theory of the real rate of inter-
est was brought out.

This point has been made by Cagan (1965).

Nerlove has proposed comparing regressions of dependent variables (like r,) on current
and lagged proxies for psychological expectations (like g,, p,_,, . . .) with the distributed lags
associated with the optimal forecast of the variables about which expectations are being
formed (in this case inflation) on the basis of the regressors. See Nerlove (1967). An applica-
tion of such a comparison to Fisher’s equation, with the results confirming Cagan’s doubts
about the plausibility of long lags, is contained in Sargent (1973).

12Lucas and Rapping 1969; Lucas 1972, 19734, 19735, in press.
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A Simple Macroeconomic Model

I assume a macroeconomic structure that can be described by the follow-
ing equations:

Aggregate supply schedule: (1)
=k + ¥, — b7 D) + U Y >0;
Aggregate demand schedule, or IS curve: (2)
ye =k +elry — (aps — b))l +dZ, + &, ¢ < 0;
Portfolio balance schedule: (3)

m, = p, +y, + br, + 1, b <0,

Here y,, p;, and m, are the natural logarithms of real national income, the
price level, and the exogenous money supply, respectively; 7, is the nomi-
nal rate of interest itself (not its logarithm), while Z, is a vector of exoge-
nous variables. The parameters ¢, y, and b are assumed to be scalars, while
dis a vector conformable to Z,.1% The variables U,, ¢,, and %, are mutually
uncorrelated, normally distributed random variables. They may be seri-
ally correlated. The variable ,,,p7 is the public’s psychological expecta-
tion as of time ¢ of the logarithm of the price level expected to prevail at
time ¢ 4+ 1. The variable £, is a measure of “normal” productive capacity,
such as the logarithm of the stock of labor or of capital or some linear
combination of the two; it is assumed to be exogenous.

Equation (1) is an aggregate supply schedule relating the deviation of
output from normal productive capacity directly to the gap between the
current price level and the public’s prior expectation of it. Unexpected
rises in the price level thus boost aggregate supply, because suppliers mis-
takenly interpret surprise increases in the aggregate price level as increases
in the relative prices of the labor or goods they are supplying. This mistake
occurs because suppliers receive information about the prices of their own
goods faster than they receive information about the aggregate price level.
This is the kind of aggregate supply schedule that Lucas and Rapping
(1969) have used to explain the inverse correlation between observed infla-
tion and unemployment depicted by the Phillips curve.

Equation (2) is an aggregate demand or IS schedule showing that the
deviation of aggregate demand from capacity is inversely related to the
real rate of interest, which, in turn, equals the nominal rate r, minus the

13All of the results carry through if ¢ and b are assumed to be polynomials in the lag
operator, so that the equations in which they appear involve distributed lags. Also, almost all
of them carry through if the random terms are permitted to be correlated across equations.
The only exceptions occur where the assumption that they are uncorrelated is used to ration-
alize a version of Fisher’s equation under “adaptive” expectations.
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rate of inflation expected by the public, , ;7 — p,. The rate 7, is assumed
to be the yield to maturity on a one-period bond. Aggregate demand also
depends on a vector of exogenous variables, Z,, which includes govern-
ment expenditures and tax rates.!*

Equation (3) summarizes the condition for portfolio balance. Owners of
bonds and equities (which are assumed to be viewed as perfect substitutes
for one another) are satisfied with the division of their portfolios between
money, on the one hand, and bonds and equities, on the other, when
equation (3) is satisfied. Equation (3) posits that the demand for real bal-
ances depends directly on real income and inversely on the nominal rate of
interest.

To complete the model requires an hypothesis explaining the formation
of the public’s expectations of the price level. Here the behavior of the
model will be analyzed under two such hypotheses: first, with one particu-
lar kind of ad hoc, extrapolative expectations, consistent with the formula-
tion adopted in almost all empirical work on the Fisher relationship; and
subsequently with the assumption that the public’s expectations are “ra-
tional.”

The Interest-Inflation Relationship under “Adaptive” Expectations

To equations (1), (2), and (3) I temporarily add the hypothesis

o0

by = z v pyi = 0Py, 4)

i=0

where the ¢’s are a set of parameters. Equation (4) is an example of the
so-called adaptive expectations hypothesis proposed by Cagan (1956) and
Friedman (1957). Given the exogenous variables m,, k,, and Z, and the
random terms U,, ¢,, and 7,, equations (1)-(4) form a system that is capa-
ble of determining y,, p,, 7,, and ,, 4}

To obtain a version of the equation estimated by Fisher, substitute the
expectation hypothesis (4) into the aggregate demand schedule (2), and
solve for the nominal rate of interest:

n=up, —p, +c Ny, —k)—crdZ, — . (5)

4The results would apply if ¢ and 4 were polynomials in the lag operator; choosing those
polynomials appropriately would be equivalent to putting lagged »’s and £’s in the aggregate
demand schedule. For these results, an important thing about equation (2) is that it excludes
as arguments both the money supply and the price level, apart from the latter’s appearance
as part of the real rate of interest. This amounts to ruling out direct real balance effects on
aggregate demand. [t also amounts to ignoring the expected rate of real capital gains on cash
holdings as a component of the disposable income terms that belong in the expenditures
schedules that underlie equation (2). Ignoring these things is usual in macroeconometric
work.
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This equation has a disturbance term, —c¢~l¢,, which is simply a linear
function of the disturbance in the aggregate demand schedule, and so is in
general correlated both with p and with y — £. Because of this correlation,
single-equation methods like least squares ought not to be expected to
provide reliable estimates of the parameters of (5). In general, random
shocks to aggregate demand affect r, p, and y — £, contributing to the
existence of a relationship between r and p quite apart from any effects of
expected inflation on the interest rate. This influence poisons the data
from the point of view of extracting estimates of the parameters of (5) by
single-equation methods.

However, some restrictions can be placed on the parameters of the
model so as to make p and y — k independent of current and lagged ¢’s,
thus rationalizing the statistical procedures used by Fisher and his follow-
ers. In particular, suppose that in the portfolio balance schedule, 4 = 0, so
that the demand for money is independent of the nominal rate of interest.
It is also essential that %,, the measure of productive capacity, be exoge-
nous and not dependent on current or past values of either the nominal or
the real rate of interest. This requirement amounts to ruling out effects of
the real rate of interest on the rate of formation of productive capacity.
Given that # = 0, nominal aggregate output is determined by the portfolio
balance schedule (3), which can be arranged to read

bty =m -, (©)

The division of nominal output between real output and the price level is
then determined by the aggregate supply schedule (1) and the expecta-
tions generator (4):

2=k =vp, — vt + U, (N

Equations (6) and (7) jointly determine p and y, so that aggregate demand
plays no role in affecting either p or y — k; that 1s, the LM curve is vertical,
so that shifts in the IS curve have no effects on output. The interest rate
bears the full burden of equilibrating the system when shocks to aggregate
demand occur. In such a system, ¢ is uncorrelated with both g and y — £,
so that application of least squares to (5) can be expected to produce
statistically consistent estimates. Note that if £ depends on lagged values of
the real rate of interest, it also depends on lagged values of e But then
serial correlation of the €’s implies that least-squares estimates of (5) are
not consistent, even if & = 0. Hence, £, must be assumed independent of
lagged real rates of interest in order to rationalize least-squares estimation
of equation (5).

But the problem is more than a simple matter of statistical technique.
Unless 4 = 0, a jump in expected inflation is not fully reflected immedi-
ately in the nominal rate of interest. To see this, let (,,,4; — p,) in equa-
tion (2) and ,p;_, in equation (1) both be exogenous, thus abandoning (4).
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Then an exogenous jump in (,,,#; — p,) has the readily apparent effect of
shifting the IS curve upward in the 7, (» — k) plane by exactly the amount
of the shift. Unless & = 0, making the LM curve vertical, the upward shift
in the IS curve increases 7, but by less than the increase in (,,,p} — #,);
y — k also increases. How much of the adjustment to a jump in expected
inflation is borne by the nominal interest rate and how much by real
output depends on the slopes of the IS curve, the LM curve, and the
short-run Phillips curve. The nominal interest rate bears more of the bur-
den of adjustment the steeper is the LM curve, the flatter is the IS curve,
and the more responsive are prices to output in the short-run Phillips
curve—that is, the steeper is the short-run Phillips curve.’”

In summary, useful estimates of the parameters of Fisher’s equation (5)
can be expected only where both 4 = 0 and £, is independent of current
and past real rates of interest. The first restriction is extremely “monetar-
ist” in character, implying a “quantity theory” world. Many economists
would have little faith in the correctness of these restrictions, making esti-
mation of (5) an endeavor of questionable value from their point of view.
But at least there exists a set of restrictions on the economic structure that
makes (5) a sensible equation to estimate. As far as I can determine, no set
of restrictions on the parameters of a standard Keynesian model, like the
one formed by equations (1)-(4), can be used to rationalize some of the
equations fitted in the literature on price expectations and the interest
rate.16

Behavior of the Model under Rational Expectations

The implementation of Fisher’s theory described in the preceding section
is subject to two severe limitations. First, its appropriateness depends on
the adequacy of some very tight restrictions on the slopes of the LM curve,
the IS curve, and the short-run Phillips curve. Second, equation (4) has
often been criticized as an excessively naive theory of expectations, since it
fails to incorporate the possibility that people form expectations about the
price level by using information other than current and lagged prices. One
tractable way of meeting this second criticism is to hypothesize that the

150n this, see Bailey (1962), and Sargent (1972).

18E.g., Robert J. Gordon has regressed a nominal interest rate on current and past inflation
and current and past velocity (i.e., the nominal income-money ratio), interpreting the coeffi-
cients on current and lagged inflation as estimates of the weights that people use in forming
price expectations. I know of no way of interpreting such an equation either as a structural
equation or as a reduced form equation, at least within the class of Keynesian macroeco-
nomic models of which the simple model here is a member. See Gordon (1970, pp. 8-47). Also
see Gordon’s “Discussion” in Econometrics of Price Determination. The point being made here is
developed in greater detail in Sargent (1973). It should be noted that Gordon (1971) has
estimated a much improved equation. That equation can be regarded as the reduced form for
the interest rate, on the assumption that prices are exogenous.
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expectations of the public are rational in the sense of Muth (1961) and
Samuelson (1965), and are thus equivalent with the optimal predictions of
economic and statistical theory. For purposes of the analysis here, this
hypothesis would involve assuming that the public (a) knows the true
reduced form for the price level, (b) knows the probability distributions or
rules governing the evolution of the exogenous variables, and (c) combines
this information to form optimal (least-squares) forecasts of the price level.
Two reasons might be given for entertaining the hypothesis that expecta-
tions are rational. First, it makes concrete and operational the appealing
notion that people use information besides past prices in forming their
forecasts of the price level. Second, in certain instances it has been possible
to test the hypothesis empirically by using the test proposed by Samuelson,
and the hypothesis has fared pretty well when tested on data on stock
prices, commodities prices, and interest rates (Samuelson 1965).17

When (4) is replaced with the assumption that expectations are rational,
the system formed by equations (1), (2), and (3) implies a version of Fish-
er’s theory in which the real rate of interest is statistically independent of
the systematic part of the money supply, so that foreseen changes in the
money supply affect the nominal rate of interest only to the extent that
they alter the expected rate of inflation. This result holds regardless of the
magnitudes of the slopes of the IS, LM, and short-run Phillips curves. (In
fact, for the model to possess an equilibrium, # must be strictly less than
zero.) In this section, I propose to show that the invariance of the real rate
of interest with respect to the systematic part of the money supply requires
only (a) the assumption of an aggregate supply schedule like (1), and (b)
the assumption that expectations are rational.

To close the model formed by equations (1), (2), and (3), I now posit
that expectations about the logarithm of the price level are rational. This
amounts to requiring that

z+1/7r =€/’r+1, (8)

where £ p,,; is the conditional mathematical expectation of p,,, formed
using the model and information about the exogenous and endogenous
variables available as of time ¢. Equation (8) asserts equality between the
psychological expectation ,,,p} and the objective conditional expectation

Epian.

To complete the model under (8), I must specify the behavior of the
exogenous variables and random terms that condition the expectation in

17The evidence is reviewed by Fama (1970). Evidence that the hypothesis of rational
expectations can be combined with the expectations theory of the term structure to produce a
workable explanation of the term structure is presented in Shiller (1972). Also see Modigliani
and Shiller (1973).
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(8). I assume that the money supply is governed by the linear feedback
rule

o0 o0 o
— 1 2
My = 2 w;m_; + 2 vigy + z viU,
i=0 i=0 i=0
9)

+ z v + 2 CH A 2 02Z,_; + S
i=0 i=0 i=0

where the w,’s and v{’s are parameters and £, is a normally distributed,
serially uncorrelated random variable with mean zero; £,  satisfies
E, ilm,m_y, ..., 8,86 _1,...,2,...) =0and represents the random
part of the money supply that cannot be predicted on the basis of past
variables. This part might well result from deliberate policymaking deci-
sions, but simply cannot be predicted on the basis of information about
the state of the economy. The remaining, systematic, part of the money
supply, which in (9) is represented by distributed lags in all of the disturb-
ances and exogenous variables appearing in the model, can be predicted
perfectly, given the values of all current and lagged exogenous variables
and disturbances. Since each endogenous variable is a linear combination
of the exogenous variables and the disturbances, any sort of linear feed-
back from the exogenous and endogenous variables to the money supply
can be represented by (9). Thus, one justification for assuming (9) is that it
is a very general rule capable of encompassing feedback from, for example,
prices, output, and the interest rate to the money supply. Furthermore, for
a linear model with known coefficients and a quadratic loss function, feed-
back rules of the form (9) with §,,,,; = 0 are known to be optimal.18

The random terms ¢,, U,, and 7,, and the exogenous variables Z, and %,
are each governed by an autoregressive process

*
€01 = P& T &un
*
U1 = 00Us + &
*
M1 = Py + i (10)
*
ki1 = ik + &
*
Ziy1 =022 + &ui
where pl, =22, p.& ;> and so on. Here the £’s are mutually uncorre-
lated, serially uncorrelated, normally distributed random variables with
means zero.
The public is assumed to know, or at least to have estimated, the param-

eters of (9) and (10). Where required, it uses this knowledge to calculate
the pertinent expectations or least-squares forecasts. Then, given the sys-

18Except for the fact that I have added the stochastic term £
kind of linear feedback rule studied by Chow (1970).

me> this is an example of the
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tem formed by equations (1), (2), (3), (8), (9), and (10), the equilibrium
price level can be written as a function of current and past m, £, Z, ¢, 1,
and U:

po=Rm,m_y, ..k ko 2,2,

., (11)
€€ 1se My Mo Up Uplgy o 00),

which is the reduced form for the price level. This reduced form equation
builds in the fact that p, is influenced by E/’z+1 But p, , will be influenced
by E /)Hz, so that Ele will depend on E/)HZ, and so on, and this must
be taken into account under rationality. Appendix A, where R is calcu-
lated explicitly, shows how forecasts of next period’s price are forced,
through this dependence, to take into account forecasts of the values of the
exogenous variables influencing the price level in all subsequent periods.!®
In forming these expectations, individuals consider the money supply rule
(9) and the autoregressions for the disturbances and exogenous variables
(10). The parameters of equations (9) and (10) are thereby built into the
reduced form R of (11).Consequently, the parameters of the reduced form
R depend on both the structural parameters of the model and the parame-
ters of the monetary rule (9) and the autoregressions (10). The parameters
of (11) will thus not be invariant with respect to systematic changes in the
money supply rule that have either been publicly announced or in effect
long enough for the public to detect them.??

The reduced form equation (11) can be combined with the money sup-
ply rule (9) and the laws governing the random terms and exogenous
variables (10) to yield the probability distribution of g, ,, conditional on
data observed up through time ¢:

Prob(p, . < Flmy =mg,my_y=my, ... .k =kyk_1=4k,...,

2, =2y Ly =L B TR E_ =B,

U =Uy,U_ =Uf . o0 =M My =Ny -0 0) (12)
=H(F,mg,my ... kg kyyo ooy ZosZqso vy

€0y €155 Uy Uy oo o s Mgy Ms v - )
The conditional expectation in (8) is evaluated with respect to (12):
b7
=E(pqlmym_ ok k 22k Ul my) (13)

= [ PAH(F Impym s kb 2o Zogs ey Uy,

®Such an equilibrium is calculated for a nonstochastic model by Hall (1971). For a linear,
stochastic model, an example of such an equilibrium is calculated by Sargent and Wallace
(1973). Also see Lucas (1972).

20The implications for the theory of economic policy of this characteristic of models with
rational expectations are carefully drawn out by Lucas (in press).
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For convenience, let §, denote the set of variables upon which the expecta-
tion (13) is conditioned, so that

t+1pt* = E(P:+1|0t)’ (13%)

where 8, includes all observations on m, £, Z, €, U, and 7 dated ¢ and earlier.

It is now easy to show that the system is described by two intimately
related propositions that reflect central aspects of the monetarist point of
view. First, a natural rate of output exists in the sense that the deviation of
output from its normal level is statistically independent of the systematic
parts of monetary and fiscal policies; that is, widely known changes in the
w’s and 2’s of equation (9) and in the pz’s of equation (10) have no effects
on the expected value of (y — k). Second, the real rate of interest is inde-
pendent of the systematic part of the money supply; that is, alterations in
the w’s and o’s of the feedback rule (9) have no effects on the expected
value of the real rate. (Random movements in the money supply, repre-
sented by £,_,, do have effects on both aggregate supply and the real rate of
interest.)

The first of these propositions, which is due to Lucas (1972, 19734, in
press), follows from a simple and well-known property that, under ration-
ality, characterizes the prediction error that appears in the aggregate sup-
ply schedule (1). Using (13’), the prediction error is

e — E(p10, )

The regression of the prediction error on 0, , is

E{[Pc - E(pt |0t—1)]|0z—1} = E(pt Iat—l) - E(/’t‘gz—l) =0,

which shows that the prediction error is independent of all elements of
0,_,. Substituting this result into the conditional expectation of equation
(1) gives

E[()’t - k:)wt—l] = E(UtlﬂH) =EWU,|U,_y,U,_,...) (14)

mt?

Since U, depends only on lagged U’s, equation (14) shows that y — £ is
independent of all components of 8,_, except lagged values of U. That
part of the current money supply (or the fiscal policy variables in Z,) that
can be expressed as a linear combination of the elements of #,_, (that is,
the “systematic” part of policy) therefore has no effect on the expected
value of y, — k,, regardless of the parameters of that linear combination.

The second proposition—that the real rate of interest is independent of
the systematic part of the money supply rule—stands and falls with
Lucas’s natural rate proposition.?! Solving equation (2) for the nominal

21'The result requires that both m and p be excluded from the aggregate demand schedule,
except for the latter’s appearance as part of the term E,p,,; — p,. As mentioned in note 14,
this seems to be a standard specification in macroeconometric models. It is, however, well
known that including a real balance effect in the aggregate demand schedule modifies Fish-
er’s theory in a static, full employment context. See Mundell (1963). The expected rate of
inflation can be viewed as the rate of tax on real balances. Where m, — p, appears in the
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rate of interest gives
- d -
=0 I(J’t_kt)_'c'zz+E(/’t+1|0t)_f7t_c T (15)

Taking expectations in (15) conditional on #,_, and substituting from (14)
gives

E{lr, — E(p119) + £,110,_1} (16)
= —2B(Z,16, 1) + ¢ EU,10,_) — ¢ E(el]0,).

Equation (16) states that the real rate of interest is correlated with ele-
ments of §,_; only to the extent that they help predict subsequent values of
the random variables U, and ¢, and subsequent fiscal policy—that is, the
variables in Z,. Of course, U, depends only on lagged U’s, while ¢, depends
only on lagged ¢’s. The real rate of interest is therefore a function of the
systematic parts of fiscal policy, but is independent of the parameters that
determine the systematic part of the money supply. In this system changes
in the money supply at ¢ that can be foreseen as of time ¢t — 1 leave the real
interest rate at ¢ unchanged. It follows that the systematic part of the
money supply affects the nominal rate of interest only to the extent that it
influences the expected rate of inflation. The only part of the money sup-
ply at ¢ that affects the real rate at ¢ is the random component ,,,.

Results of Changing Aspects of the Model

These two propositions will characterize models much more complicated
than the one used here so long as expectations are assumed to be rational
and aggregate supply is governed by an equation like (1).22 For example,

aggregate demand schedule—either alone, as in the real balance effect, or multiplied by
minus the expected rate of inflation, as implied by some definitions of disposable income—
changes in the expected rate of inflation bring about changes in the real rate of interest, just
as do changes in the other tax rates included in Z,.

22The behavior of the model under rational expectations would not be sustantially altered
if the aggregate supply hypothesis were expanded to be

1 ﬂ L

y — k= Y[ﬁt - tl_zlpt - (; ]_ZIZEPH:' - ;;:21 flpm')] + U,

which states that aggregate supply responds to the “surprise” component of this period’s

price level minus the amount by which an average of expectations of prices in # future periods

is revised as a result of new information received this period. The above equation embodies

the notion that aggregate supply responds to the part of the prediction error p, — E1 p, that
=

is viewed as transitory. The argument in the above equation still possesses all of the properties
of prediction errors that are used in the text to show the behavior of the model under
rationality.

By invoking the expectations theory of the term structure of interest rates, yields on bonds
with maturities greater than one period could be included in the model. It would be straight-
forward, for example, to enter an n-period rate in the aggregate demand schedule, modifying
the price expectation term accordingly, while keeping a one-period rate in the portfolio
balance curve.
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the two propositions would continue to hold if the assumption of exoge-
nous productive capacity #, is abandoned and instead £, is assumed to
depend on past values of output and the real rate of interest. This specifi-
cation would permit growth in capacity to be influenced by capital accu-
mulation, which in turn could be governed by a version of the distributed
lag accelerator.

For another modification that would leave the two propositions intact,
(1) might be replaced with the alternative aggregate supply schedule

q
»—k =y, — Ep10,_1) + z)‘i(})t—i -k )+ U, (1)

i=1

which application of the Koyck-Jorgenson transformation shows to be
equivalent to

=k =1 D bt — E(pi 10,01 + D 0 Uiy, (1)
' i=0 i=0

where the ¢;’s are functions of the A;’s. According to (1’), deviations of
aggregate supply from normal capacity output display some persistence,
so that y, — £, depends partly on a distributed lag of prediction errors, as
equation (1”) shows. If (1”) replaces (1) in the version of the model with
rational expectations, both y, — &, and the real rate of interest remain
independent of the systematic part of the money supply. To see this, one
has only to note that the systematic parts of current and lagged values of
the money supply contribute nothing to the prediction errors that appear
in (1), nor do they influence the U’s. Of course, the random parts of the
money supply, £, will still influence y — . Under (17), the effects of £, on
y — k will be distributed over time, but thé¢ two propositions about the
systematic parts of policy variables remain unaltered.

In essence, two features of the model must hold to validate these propo-
sitions. First, expectations must be rational. Second, the model must pos-
sess “super-neutrality,” by which I mean that proportionate changes in
either the levels or the rates of change of all endogenous and exogenous
variables denominated in dollars (prices, wages, and stocks of paper assets
of fixed dollar value such as money and bonds) do not disturb an initial
equilibrium. It should be noted that current and expected values of endog-
enous and exogenous nominal variables are among those changed propor-
tionately in the experiment defining super-neutrality.

Appendix B demonstrates that key features of the results remain intact
even when individuals have much less information and wisdom than 1
have imputed to them so far, so long as they have access to information at
least about lagged prices and use it rationally in forecasting the price level.
Appendix B also shows that dropping the assumption that bonds and
equities are perfect substitutes does not change the essential character of
the model.
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Testing the Model
A “Wrong” Test

The usual way of implementing Fisher’s theory about interest and ex-
pected inflation has been to regress nominal interest rates on current and
lagged values of the logarithm of the price level, interpreting the coeffi-
cients as estimates of the distributed lag by which the public seems to form
its expectations about inflation. The implausibility of those distributed
lags as devices for forming predictions of inflation has weakened the ap-
peal of Fisher’s doctrine. However, according to the version of the model
with rational expectations described here, these regressions are not a valid
test. In particular, there is no reason to expect that the distributed lags
estimated in such regressions provide the basis for plausible, or in some
sense optimal, forecasts of inflation. This is so even though the model
predicts that the real rate of interest is independent of the money supply
rule, a proposition that can be taken as capturing the essence of Fisher’s
theory.

To establish the inappropriate nature of the standard regressions, I use
equation (15) to calculate the regression of the nominal interest rate on
current and lagged prices:

E(ry|pysbrors--) = E(pr1 — Pﬂ'ﬁnpt—lspt—w )
+ CEU, pbin ) = LB\ popi-) (D)

+ WE{[p, — Ep 10D b1 b1—15 - - -}
—_ CflE(gt Ipt’l)t—l’ .. )

Regressions of interest on current and lagged prices have been interpreted
as yielding estimates of the regression E{(p,,y — ;)| 4> f1—1s - - -]. In the
model here, however, that interpretation is erroneous because of the pres-
ence of the second, third, fourth, and fifth terms in (17). The model pre-
dicts that the exogenous variables Z, will be correlated with current and
perhaps past values of the price level. The model also predicts that ¢, and
U, will be correlated with the current price level: a positive “pip” in ¢,
increases both 7, and p,, an effect that has nothing to do with the forma-
tion of expectations of inflation.?? The presence of this effect pollutes the
relationship between r and p from the point of view of extracting an esti-
mate of E[(p,.; — p.)| p1s £1—15 - - -]- The presence of the third and fourth
terms similarly biases the regression of 7 on current and past p’s taken as a
device for recovering forecasts of inflation.

The biases pinpointed by equation (17) could easily be spectacularly
large and could in principle give rise to the presence of a Gibson paradox
in data generated by the model. Very long and implausible distributed

23This is presumably the kind of effect that Tobin (1968) had in mind when he questioned
Irving Fisher’s explanation of the Gibson paradox.
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lags of interest on inflation could be generated, since the model embodies
sources of dependence between the interest rate and price level that are
not accounted for by the presence of expected inflation. This fact implies
that demonstrations of the “implausibility” of regressions of interest on
inflation cannot refute the version of Fisher’s theory embodied in the
model.

A “Proper” Test

The straightforward approach to testing the model would be to subject the
theory’s centerpiece, the natural rate hypothesis, to an empirical test.
However, as Lucas (1972) has forcefully pointed out, almost all such work
has been wholly inadequate. Basically, these improper tests?? have all in-
volved fitting a structure that can be rearranged to yield an expression for
unemployment of the following form:

n

Un, = E(P: — 2 v;p,_;) + residual,, (18)

i=1

where the unemployment rate Un, can be regarded as an inverse index of
¥; — k,. In every case, ﬁ has been less than 0, indicating a short-run trade-
off between inflation and employment. The standard test of the natural
rate hypothesis has been to determine whether, according to the estimates
of equation (18), a once-and-for-all increase in the rate of inflation implies
a permanent change in the unemployment rate.?> But even if it doesn’t, a
once-and-for-all jump in some higher-order difference in the (log of the)
price level will always imply a permanent change in the unemployment
rate in the context of equation (18) with any fixed set of 2;’s. Thus, if the
authorities can make the price level follow a path

n

b= v + &,

i=1

they can, by increasing ¢ by d¢, have a permanent, predictable effect on
unemployment of 8d¢. This conclusion, however, is incompatible with the
natural rate hypothesis, which requires that certain, foreseen, once-and-

24The test was described by both Robert Solow and James Tobin in their contributions to
the Proceedings of a Sympoesium on Inflation. One of the best-known applications of the test is
Gordon (1970).
#Usually, the weights are constrained to satisfy >’ 2, = 1, s0 that a once-and-for-all jump
i=1
in the log of the price level is not permitted to imply a permanent change in the unemploy-
ment rate.
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for-all jumps in any order difference of the price level have no permanent
effect on the unemployment rate. Put another way, the natural rate hy-
pothesis requires that changing from one deterministic (and hence per-
fectly predictable) process for the price level to another will leave the
unemployment rate unaltered. No values of the 7;’s of equation (18) are
capable of representing that hypothesis, given the way the estimated 7;’s
are manipulated in the test. The test, therefore, cannot possibly be fair
(again, see Lucas 1972).

Lucas (1973b) has described and implemented two proper tests of the
rational expectations version of the natural rate hypothesis. One involves
testing a set of cross-equation restrictions implied by the hypothesis, the
other, testing across countries for a relationship between the slope of a
country’s short-run inflation-unemployment tradeoff and the variance of
its nominal aggregate demand implied by the hypothesis. Lucas is unable
to reject the natural rate hypothesis on the basis of either of these tests.

Although, to my knowledge, Lucas’s are the only proper tests of the
natural rate hypothesis implemented to date, there are other tests of the
natural rate hypothesis. One exploits the implications under rationality of
the hypothesis that aggregate supply is a function of the error in predicting
the current price level on the basis of data available at some previous
moment. Using the unemployment rate Un, as an inverse index of y, — £,,
the aggregate supply schedule (1°) can be written

q
Un, = B(p, — Ep, |0,_1) + D NUn_; + u,, B <0. (19)

i=1

Here u, is a random disturbance assumed to be normally distributed and
to obey E(u, |0,_1, 4,1, Uy_g, ...} = E(u, |u,_y, 4, 5, ...). To take a special
example that will illustrate the idea behind the test, suppose that «, is not
serially correlated and that all of the A;’s equal zero. Taking expectations
in (19) conditional on any subset #,,_, of 0,_, gives E(Un, |6,,_;) = 0, an
implication that could be tested empirically by regressing Un, on compo-
nents of §,,_;. However, the presence of nonzero A;’s or serial correlation in
4, would destroy this implication, since then

q
EUn |0y _1,Uny_ys...,Un,_ ) = 2 ANUn_, + E(u, |6,_y) #0.

i=1

i=1M
lated, then E(y, |6,,_,) also departs from zero to the extent that compo-
nents of 6;,_, proxy for lagged u’s.
To illustrate how a feasible test could be carried out under these cir-
cumstances, suppose that u, follows the first-order Markov process

The term = ;_, A; Un,_; obviously would not be zero; if u, is serially corre-
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u, = pu,_; + §,,, with |p| <1, where £, is a normally distributed, serially
uncorrelated random variable. Then notice that (19) can be written as

q
Un, = (A + p)Uny_y + 2 Ay — oA ) Un_y — pA Uny_y_y (20)

i=2
+ B(p — Ep160,_1) — Bo(py—y — Epy—1160,_2) + &yt

Taking expectations in (20) conditional on Un,_y, ..., Un,_,_, and any
subset #,,_, of §,_, yields

E(Un |Uny_y, ..., Un_q 1,8_5) = (A + p)Un;_,
q
+ > = e\ Uny — pA Uny_y_y (21)
i=2

— PBE[(p1—1 — Epy-110,_5)| Un,_].

Equation (21) holds because the prediction error p, — Ep, |8,_; is inde-
pendent of all components of §,_,, which include the regressors in (21),
while the lagged prediction error is independent of Un, ,,..., Un,_,_,
and #,,_,, but not of Un,_;. According to (21), the regression of the unem-
ployment rate against Un,_, ..., Un,_,_;, and some components of §,_,
ought, on the natural rate hypothesis, to have zero coefficients on compo-
nents of #,_,. This implication can be tested empirically by calculating the
regression indicated in (21). If p = 0, then (20) implies that

E(Un |Uny_y, ..., Uny_y 1,0, 1) = E(Un, |Uny_y,...,Un,_,_y),

so that if the #’s in (19) are serially uncorrelated, components of #,_, ought
not to obtain coeflicients significantly different from zero when they are
added to a regression of Un, on enough lagged values of itself. On the other
hand, if u, is governed by an nth order autoregressive process

n
Yy = 2 Pty + &y
i=1

where £, has the same properties imputed to it above, then it is readily
shown that the natural rate hypothesis implies only that

E(Unt |Unt—17 Unt~2’ s Unt—n—q> alt—n—l)

= E(Un |Uny_y, Uny_y, ..., Uny_p_ ).

The higher the order of serial correlation in the u’s, the more periods
components of #, must be lagged to warrant the implication that their
coefficients are zero.

One can view the test from a slightly different perspective by consider-
ing the following very general mixed autoregressive, moving-average rep-



RaATES OF INTEREST AND UNEMPLOYMENT 177

resentation of the unemployment rate,
q f
Ung = > NUnyy + > kg, (22)
i=1 i=0

where the A’s and a,’s are parameters and where £, is again a serially
uncorrelated, normally distributed random variable. The natural rate
hypothesis can be viewed as permitting £, to be correlated with values
of endogenous variables dated ¢ and later, but as requiring £, to be un-
correlated with past endogenous and exogenous variables, so that E(£,, |
6,_,) = 0. This means that the “innovation,” or new random part of the
unemployment rate, cannot be predicted from past values of any varia-
bles, and that it cannot be affected by movements in past values of govern-
ment policy variables. This specification captures the heart of the natural
unemployment rate hypothesis, and implies that there is no better way to
predict subsequent rates of unemployment than fitting and extrapolating
a mixed autoregressive, moving-average process in the unemployment rate
itself. This suggests that the natural unemployment rate hypothesis can be
tested against specific competing hypotheses by setting up statistical pre-
diction “horse races.” My proposed regression test is an alternative test,
and exploits the notion that, if E(§,, |6,_;) = 0, then (22) implies that

g
E(Un \Uny_y,...,Uny_, 0, ; 1) = Z A Un,_;.

i=1

To provide material for the test, regressions (1), shown below, are
autogressions for the unemployment rate.

Un, = 0.418 + 1.715 Un, , — 1.046 Un, , + 0.245 Un,_,

(0.164) (0.116) (0.199) (0.115) M

Rz = 0.9245, standard error of estimate = 0.318, Durbin-Watson statistic = 1.984.
Period of fit: 1952:1-1970:4.

Un, = 0.538 + 1.553 Un, | — 0.665 Un,_,,
(0.158) (0.089) (0.089)

R? = 0.9208, standard error of estimate = 0.325, Durbin-Watson statistic = 1.616.
Period of fit: 1952: 1-1970:4.

where Un is the unemployment rate for all civilian workers, seasonally
adjusted, and ¢ indicates time (data for regressions [1], and for regressions
[2] and [3] below, unless stated otherwise, were obtained from the data
bank for the Wharton Econometric Model). The numbers in parentheses
here and in the following regressions are standard errors.

Regressions (2) and (3) include various components of 8,_;, as well as
lagged values of the unemployment rate. In regression (2), these compo-



178 THoMaAs J. SARGENT

nents are the logarithm of the GNP deflator (p), seasonally adjusted,
lagged one through four quarters, and the log of average hourly earnings
in manufacturing corrected for overtime payments, not seasonally ad-
justed (w), lagged one through four quarters (from various issues of Em-
ployment and Earnings).

Un, = —0.723 + 1.600 Un,_, — 0.722 Un,_,
(1.806) (0.097) (0.101)
— 20.982p,_, + 15.805p,_, + 0.153p,_, + 2.574p, ,
(13.607) (20.223)  (20.087)  (14.002)
+ 5.509,_, + 3.152w,_, — 3.807w,_, — 3.080w,_,.
B (8.960)  (10.125)  (10.014)  (8.327)

R2 = 0.917, standard error of estimate = 0.333, Durbin-Watson statistic = 1.684.
F(8,65) = 0.594.

2)

The F-statistic pertinent for testing the null hypothesis that the coeffi-
cients on lagged p and lagged w are zero is 0.394, which implies that the
null hypothesis cannot be rejected at the 95 percent confidence level. Ac-
cordingly, the natural unemployment rate hypothesis cannot be rejected
on the basis of this regression. The adjusted standard error of the residuals
in regression (2) (0.333) is actually larger than that obtained by excluding
the p’s and w’s (0.325), reported in regressions (1).

Regression (3) implements the test by employing a much larger set of
elements of #,_;. In addition to three lagged values of the unemployment
rate, the regression includes values of the logarithm of the money supply
(currency plus demand deposits), seasonally adjusted (m), the federal and
state and local government deficit on the national income accounts basis
(Def); and the logs of the GNP deflator, seasonally adjusted (p), of the
implicit deflator for personal consumption expenditures (pc), of the aver-
age hourly wage rate in manufacturing, seasonally adjusted (wr), of gov-
ernment purchases of goods and services (g), of total federal and state and
local government employment, seasonally adjusted (ng), and of GNP ().
Each of these arguments is included lagged one, two, and three periods.

Un, = 39.622 + 1.223Un,_, — 0.546Un,_, — 0.129Un,_,
(12.427) (0.136) (0.211) (0.169)
— 3.852m,_, — 11.835m,_, + 16.801m,_5 + 0.023 Def,_,
(9.839) (15.926) (9.620) (0.016)
— 0.006 D¢f,_, + 0.020 Def,_5 + 26.268p, ; — 25.552p, ,
(0.020) (0.018) (21.702) (24.210)
+ 27.416p,_5 — 7.807pc,_; + 28.701pe,_, — 57.719p¢,_,

(19511)  (20.868) (24.375) (20.328) )
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— 1.631wr,_, + 1.46lwr, , + 8.567wr,_; + 3.448g,
(8.068) (10.286) (7.623) (2917)
— 1.508g, , + 3.812g, 5 + 4.909ng,_, — 13.424ng, ,
(3.723) (2.662) (10.333) (14.168)
+ 4.725ng,_5 + 1.151y,_;, — 8.560y,_, — 3.824y,_,.
(10.053) (6.228) (7.913) (6.879)

R? = 0.9497, standard error of estimate = 0.259, Durbin-Watson statistic = 2.161.
F(24,48) = 2.503.

For regression (3) the pertinent F-statistic for testing the null hypothesis
that elements of §,_, (other than lagged rates of unemployment) have zero
coefficients is 2.503. This statistic is distributed with 24,48 degrees of free-
dom and so is significant at the 99 percent confidence level. As a result, the
null hypothesis must be rejected. The adjusted standard error of estimate
falls from the 0.318 reported in (1) to 0.259 when the components of 8, _,
are added to the regression, indicating a modest but statistically significant
gain in explanatory power. Consequently, this application of the test re-
quires rejection of the version of the natural rate hypothesis that assumes
rational expectations formed on the basis of at least the information con-
tained in the particular set ;,_, used in the regression under discussion.

Several reasons suggest caution in interpreting the verdict of this test.
First, as shown above, the test assumes that the #’s in equation (19) are not
serially correlated. If, in fact, they are, the test becomes biased in favor of
rejecting the natural rate hypothesis. Second, the essence of the natural
rate hypothesis could stand unrefuted even though tests using large subsets
8,,_, find systematic effects of 6;,_; on Un,. This can occur if individuals
form their expectations rationally on less information than is represented
by 0,,_,. In this regard, it is noteworthy that the natural rate hypothesis
cannot be rejected on the basis of regression (2), which includes only
lagged w’s and p’s as components of §;,_,. Third, the test could lead to
rejection of the natural rate hypothesis if the u’s are correlated with com-
ponents of §;,_;. This might occur, because, for example, current and
lagged 6’s have a direct effect on unemployment that requires no move-
ment in the price level, contrary to the hypothesis in (19). In this event,
systematic changes in the price level could still leave the unemployment
rate unaffected, so that policymakers confront no “cruel choice” between
the average rate of inflation and the average unemployment rate.

Finally, it should be noted that the results of the test reported in (3) have
not been shown to be of comfort to advocates of any particular alterna-
tives to the natural rate hypothesis. That is, it has not been shown that an
autoregression for unemployment yields ex ante predictions of unemploy-
ment inferior to those of a particular structural macroeconometric model
that embodies a particular aggregate supply theory other than the natural
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rate hypothesis. A particular alternative aggregate supply hypothesis
might well be able to predict unemployment better than an autoregressive
moving-average process, but there is no way of knowing for sure until a
horse race is held.?6

Another Test

An alternative test of the natural unemployment rate hypothesis can be
carried out by directly estimating the parameters of a version of equation
(19), where %, is now assumed to be a serially uncorrelated random term
satisfying E(u, |6,_;) = 0. Equation (19) embodies the null hypothesis to
be tested, the natural unemployment rate hypothesis.?” I propose to test it
against the following alternative hypothesis:

q
Un, = > NUn_; + B(p, — Ep, |0,_1)

i=1
+ B(1 — a)(Ep, |0, — 1) + - (23)

Equation (23) states that if &« < 1{« > 1), then increases in the systematic
part of the rate of inflation decrease (increase) the unemployment rate,
contrary to the natural rate hypothesis. On the natural rate hypothesis,
a« = 1, which makes (23) equivalent to equation (19). My strategy is to
estimate (23) and to test the null hypothesis, « = 1, against the alternative
hypothesis, a # 1.28

In conducting this test, two econometric problems must be overcome.
First, macroeconomic theory implies that Unr, (or equivalently y, — £, ) and

26Charles Nelson found that the predictions of the unemployment rate from a version of
the Fed-M.IT. model were inferior to the predictions from an autoregression. This was so,
even though for my purposes Nelson’s procedure is biased in favor of the Fed-M.L'T. model
because he permits it to use the actual values of the exogenous variables at the same date for
which unemployment is being forecast (see Nelson 1972).

271t is common to write the natural rate hypothesis in a way that, under rational expecta-
tions, would take the form

q
Un, = z}\iUﬂtq + Bl(p — b)) — E(py — -] + uy, (a)
i=1

so that the surprise increase in the rate of inflation is what boosts aggregate supply. But so
long as p,_, is one of the variables in @,_,, it is straightforward to show that

(pr — br1) — E[(p, — p-010,_1] = p, — Ep,l0,_;.

It follows, then, that (a) is equivalent with (19) in the text.

28The test here is related to Lucas’s (1972), which tests the restrictions across the reduced
forms for the price level and for output that are implied by rational expectations in conjunc-
tion with an aggregate supply schedule like (1). For the test used here it is necessary neither to
specify nor to estimate the full reduced forms for aggregate supply and the price level. The
test requires that a list of some predetermined variables influencing the price level be availa-
ble; but there is no necessity to have a complete list of the predetermined variables appearing
in the reduced form for the price level.
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p, are simultaneously determined, implying that «, and p, may be corre-
lated. For example, take a standard macroeconomic model in which ag-
gregate demand, (» — k);, depends inversely on the current price level,
while aggregate supply, ( y — £),, responds directly to the current price
level. With predetermined expectations, equation (1) or (19) is an example
of such an aggregate supply schedule, while an aggregate demand sched-
ule in the p, » — £ plane is derived by using the portfolio balance schedule
(3) to eliminate the nominal interest rate from the IS curve (2). It is evi-
dent that an increase in %, causes the aggregate supply schedule to shift
upward in the p, y — £ plane, causing the price level to rise, » — & to fall,
and unemployment to rise. This leads to a positive correlation between ,
and p,, provided, for example, that u is uncorrelated with the disturbances
in the aggregate demand schedule in the p, y — & plane. The correlation
between u and p makes least-squares estimation of (19) or (23) inappropri-
ate. This problem can be overcome in the standard way, by using the
technique of instrumental variables: replacing p, in (23) by ,6:, the pre-
dicted value of p, from a first-stage regression including a constant, Un,_,
through Un,_,, and predetermined variables including lagged prices,
lagged values of other variables thought to be endogenous to the system,
and current and lagged values of exogenous variables.

The second econometric challenge is to produce an appropriate proxy
for Ep, |8,_;. Here I am assuming that the regression Ep, |0,_, is linear in
8,1, so that Ep, 18,_, is in effect formed as if it were the prediction from a
least-squares regression of p, on ¢,_,, and therefore

Ep, 6,y = 80, ,
p =080, +e=p +¢,
where 8§ is a vector of least-squares parameter estimates conformable to

#,_,, while ¢, is a least-squares residual vector that is orthogonal to #,_, by
construction. I propose to use p, in place of Ep, |6,_, in equation (23).29

®Suppose that instead of using 6, _, to obtain p,, #? is obtained from a regression of p, on
some subset 8, _; of #,_,, so that

by = 8ol + e = BY + ¢y,

where § is a vector of least-squares coefficients conformable to ;,_; and ¢, is a least-squares
residual. But individuals’ expectations really equal the , of the text. Then

b =07 + e ~ €,
so that (24) can be written

q
Un) = EAiUnt—l + Bp — 57) + (1 — «)B(AY — pp_y) + 4, — aBleg, — ¢).  (b)
i=1

So long as ;,_, includes the constant, Un,_, through Un,_,, and p,_,, ¢;, — ¢, is orthogonal to
all arguments of (b) except , — £Y. Tt can readily be shown that using pY rather than p, leads
to statistical inconsistency only in the estimate of 8, and in particular that its use does not
produce an inconsistent estimate of (I — «)f, the parameter that must be estimated to test
the natural rate hypothesis.
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I then substitute p, for Ep, |8,_; in (23) to obtain

Un, = 2 ANUn_i + B(py — b)) + (1 — a)B(fy — pe_y) + 1. (24)

i=1

Since it is assumed that E(x, |8,_,) = 0, it follows that u, is uncorrelated
with p,. Furthermore, by construction (p, — p,) is orthogonal both to
Un,_, through Un, ., to p,_,, and to f,, by the orthogonality of least-
squares residuals to regressors. However, as I have argued above, simulta-
neity leads to a prediction that «, and p,, and hence u, and p, — §,, are
positively correlated. Under these circumstances, in which p, — #, is corre-
lated with the disturbance while the remaining regressors are orthogonal
both to the disturbance and to p, — p,, it follows that least squares yields
consistent estimates of the coefficients on all regressors except p, — g,.>°
Consequently, in (24), application of least squares yields consistent esti-
mates of (1 — @) and the A;’s, but inconsistent estimates of 8. On the
hypothesis that § # 0, a consistent estimate of (1 — «)f is really all that is
required to test the natural rate hypothesis, a = 1.

As mentioned above, the inconsistency in the estimates of 8 can be
eliminated by replacing p, by i): in (24) to obtain

a
= EAiUnt—i + By — £1)

i=1
+ (A —a)B(p, — ) +u, + B, (24)

whcre f; is a least- -squares residual in the first-stage regression used to form
p,, f; is orthogonal to pt, Pi> Pi—y> and the lagged Un’s, so long as ,_,, the
lagged Un’s, and all the “first-stage” variables used to obtain p, are used in
the first stage to obtain [/7; Since u, and p, are expected to be positively
correlated, and since the u’s, the f’s, and (p — p)s are orthogonal to the
other regressors in (24’), estimating (24) rather than (24’) should produce
an estimate of B that is biased upward in large samples.

In summary, my strategy is to decompose the rate of inflation into two
parts: a systematic part that is predictable from variables known in the
past, and a random part that cannot be predicted from past data. The
natural unemployment rate hypothesis permits the random part of the log
of the price level (which equals the random part of the rate of inflation) to
have an effect on the unemployment rate, but denies that the systematic
part of the rate of inflation can affect unemployment. That hypothesis can
be tested by regressing the unemployment rate against lagged values of
itself and the random and systematic parts of the rate of inflation.

Table 1 reports the results of applying the test to quarterly data for the
United States over the period 1952:1-1970:4. Two measures of the price

30Theil’s (1971) specification theorem is being invoked here.
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TABLE 1

REGRESSION RESULTS FOR ALTERNATIVE TESTS OF THE NATURAL
UNEMPLOYMENT RATE HYPOTHESIS

Regression
Variable and
Regression Statistic 4.1 4.2 5.1 5.2
Variable:
Constant 0.2380 0.2380 0.694 0.694
(2.172) (0.216)
Unemployment rate lagged 1.717 1.717 1.667 1.667
1 quarter, Un_, (0.116) (0.116)
Unemployment rate lagged —1.029 —1.029 —0.999 —0.999
2 quarters, Un_, (0.199) (0.196)
Unemployment rate lagged 0.246 0.246 0.216 0.216
3 quarters, Un_g (0.115) (0.114)
Random (unexpected) part of
inflation, based on the GNP
deflator, p, or the wage
index, w:
p—P —8.694
(19.656)
[ S =T15.156
(68.672)
w— w ... —11.884
(10.053)
w—w .. —50.500
(52.109)
Systematic (expected) part
of inflation:
F—t 14.085 14.085
(11.130) (11.903)
o — w_, —13215  —13.215
(6.925) (7.634)
Regression statistic:
R? 0.924 - 0.928
Durbin-Watson statistic 1.980 S 1.952 .
o 2.62 1.19 0.11 0.74
t-statistic 1.27 1.19 —-191 —-1.73

Source.—Derived from equations (24) and (24"), using relevant official U.S. series from the data bank of the Wharton
Econometric Model.

Note.~~The period of fit is 1952:1-1970:4. The dependent variable is the unemployment rate. Standard errors are in
parentheses. The standard errors of coefficients for regressions (4.2) and (5.2) are asymptotic. For detailed definitions of
symbols see discussion in text.

level were used: the logarithm of the GNP deflator (p), and the log of a
straight-time wage index in manufacturing (w).3! Regressions (4.1) and
(4.2) are estimates of equations (24) and (24") for p, while regressions (5.1)
and (5.2) are estimates of the same two equations using w as the index of
the price level.

The data that form the raw material for these regressions are plotted in
figures 1 and 2. In each figure, panel (a) depicts the estimated innovation

31'To form p or w, p or w was regressed against a constant, time, and three lagged values
each of p and w, as well as three lagged values each of pc, g, Def, m, y, ng, Un, and wr, where
each of these variables is defined as in regression (3). To obtain # or ), p or w was regressed
against all of the variables just listed and also the current values of g, ng, m, and Def.
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Fic. I.—Innovation in the unemployment rate, and decomposition of inflation into system-
atic and random parts, using the GNP deflator to measure inflation. Derived from the
relevant official U.S. series from the data bank for the Wharton Econometric Model. Here
and in fig. 2, equal vertical distances on various panels do not necessarily signify equal
changes. Innovation in the unemployment rate is the residual in a regression of the unem-
ployment rate against a constant and three lagged values of itself.
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Fic. 2.—Innovation in the unemployment rate, and decomposition of inflation into system-

atic and random parts, using the manufacturing wage index to measure inflation (for source
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in the unemployment rate—that is, the residual in a regression of the
unemployment rate against a constant and three lagged values of itself.
The natural unemployment rate hypothesis permits this innovation to be
inversely related to the random or unexpected part of the current price
level, but denies that it is related to the systematic or expected part of the
price level or rate of inflation. Panels (b) depict § — = and w — w_,,
respectively, and panels (c) report the unexpected parts, p—pand o — .
Panels (d) report the paths of  and w. What is claimed for these numbers
is that, on my assumptions, they represent appropriate decompositions of
W, b, 0 — w_,, and b - p_, for the purpose of estimating equation (24").

Regressions (4.1), (4.2), (5.1), and (5.2) test the natural rate hypothesis
against the alternative hypothesis that the systematic part of the rate of
inflation affects the unemployment rate. The coefficient on p, — p,_, or
w, — w,_, estimates (1 — a) and should equal zero on the natural rate
hypothesis. T ae t-statistic reports the ratio of the coefficient on p, — p,_,
(w, — w,_;) to its standard error, and provides the basis for a statistical
test of the null hypothesis. Regressions (5.1) and (5.2) come closest to
supporting a rejection of the natural rate hypothesis. The ¢-statistic for
regression (3.1) is —1.91 and is distributed according to the ¢-distribution
with 70 degrees of freedom; its absolute value is thus slightly below the
critical value of 1.99 for a two-tailed test at the 95 percent confidence level.
However, for a one-tailed test, which is pertinent for testing the hypothesis
o = 1 against the alternative a <{ 1, the critical value of the ¢-statistic is
1.66 at the 95 percent confidence level, so that the natural rate hypothesis
can be rejected at that confidence level on a one-tailed test. The t-statistic
for regression (5.2), being based on instrumental variable estimates, has
only an asymptotic justification. Its absolute value is below the critical
level for a normal variate of 1.96 for a two-tailed test at the 95 percent
confidence level, but exceeds the critical value of 1.65 for a one-tailed test
at this level. The regressions using w thus provide some evidence for reject-
ing the natural rate hypothesis, although not at an unusually high confi-
dence level. On the other hand, the ¢-statistics for regressions (4.1) and
(4.2) fail to support rejection of the hypothesis. The point estimates in
regressions (5.1) and (5.2) indicate an inverse tradeoff (« < 1) between
unemployment and the expected change in w, a tradeoff consistent with a
negatively sloped long-run Phillips curve. But the point estimates in re-
gressions (4.1) and (4.2) indicate a direct tradeoff (« >> 1) between unem-
ployment and the systematic part of inflation in the GNP deflator, and are
thus not compatible with a negatively sloped long-run Phillips curve. Yet
the short-run Phillips curve in regressmn (4.2) has the usual slope.

The coeflicients on p pand w — win regressxons (4. 2) and (5.2) ex-
ceed in absolute value the coefficients on ¢ — § and w — w in regressions
(4.1) and (5.1), respectively. This is consistent with the argument that in



RATESs OF INTEREST AND UNEMPLOYMENT 187

large samples the least-squares estimate of the coefficient on p — p is bi-
ased upward due to simultaneous-equations bias.

The coefficients on all regressors except p — p or p — p(w — w or
@ — w) are identical in the pairs of regressions (4.1) and (4.2) and (5.1)
and (5.2). This is no accident but stems from the fact that, by construction,
p—pand p — p(w — w and @& — w) are each orthogonal to the remain-
ing regressors, which are the same in these pairs of regressions. Conse-
quently, the coefficients on those remaining regressors are the same which-
ever of these two “random” terms is included in the regression.

The magnitudes of the coefficients in regressions (4.2) and (5.2) support
Lucas’s notion that the surprise, or random, part of the rate of inflation
has a much larger effect on the unemployment rate than does the system-
atic part. However, in each regression, the t-statistic for the coeflicient on
the surprise part of inflation indicates statistical insignificance. If any-
thing, there seems to be less evidence for a stable relationship between
unemployment and the surprise in inflation than between unemployment
and expected inflation. The results suggest that it is difficult to isolate even
a stable short-run tradeoff between inflation and unemployment in these
data. Some evidence remains for an inverse tradeoff between the unem-
ployment rate and the systematic part of the rate of inflation in the
straight-time wage index, w, but it is not strong enough to reject the natu-
ral rate hypothesis at a very high confidence level. I imagine that that
evidence would not be sufficiently compelling to persuade someone to
abandon a strongly held prior belief in the natural rate hypothesis.

Conclusion

This paper has set out a macroeconomic model for which a version of
Irving Fisher’s theory about the relationship between interest rates and
expected inflation is correct. The model turns out to be characterized by a
number of properties that monetarists have attributed to the economy. Its
structural equations themselves do not differ from those of the standard
IS-LM-Phillips curve models used to rationalize Keynesian prescriptions
for activist, countercyclical monetary and fiscal policies. In fact, the statics
of the model with fixed or exogenous expectations about the price level are
of the usual Keynesian variety.3 Where the model does differ from stand-
ard implementations of the IS-LM-Phillips curve model is in the replace-
ment of the usual assumption of fixed-weight, extrapolative or “adaptive”
expectations by the assumption that expectations about future prices are
rational and do not differ systematically from the predictions of the model.

32There are models that, with exogenous expectations, display static properties that are
very much more “monetarist” than those possessed by the model in this paper. An example is
Tobin (1955).
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The result of this change in assumptions is to produce a model with the
following implications:

1. The rate of output is independent of the systematic parts of both the
money supply and fiscal policy variables.

2. The real rate of interest is independent of the systematic part of the
money supply.

3. The monetary authority should not adopt a systematic policy of
pegging the nominal interest rate at some fixed level over many periods.
Such a policy would be very inflationary or deflationary, since strictly
speaking, no equilibrium price level exists under it.

4, The distributed lag coeflicients of money income behind money are
variables, being dependent on, among other things, the money supply
rule. Changes in the rule have the effect of altering the lag of money
income behind money. More generally, the distributed lags in all of the
reduced form equations change with changes in the rule governing any
policy variable.

These four implications of the model are among the most prominent
doctrines associated with the Chicago school. Furthermore, the model’s
assumption that expectations are rational and its stress on the distinction
between the effects of random and systematic movements in the price level
have long been important elements of macroeconomics at Chicago. For
example, Milton Friedman (1969) has written:

. it is argued that once it becomes widely recognized that
prices are rising, the advantages [in terms of higher real output]
. . will disappear: escalator clauses or their economic equivalent
will eliminate the stickiness of prices and wages and the greater
stickiness of wages than of prices; strong unions will increase still
further their wage demands to allow for price increases; and in-
terest rates will rise to allow for the price rise. If the advantages
are to be obtained, the rate of price rise will have to be acceler-
ated and there is no stopping place short of runaway inflation.
From this point of view, there may clearly be a major difference
between the effects of a superficially similar price rise, according
as it is an undesigned and largely unforeseen effect of such im-
personal events as the discovery of gold, or a designed result of
deliberative policy action by a public body.

While the model described in this paper is consistent with a number of
policy prescriptions associated with monetarism, or the Chicago school, it
does not embody the naive monetarism of textbooks, which requires either
a vertical LM curve or a horizontal IS curve or a vertical short-run Phillips
curve. On the contrary, the model requires only weak “sign” restrictions
on the parameters of those three curves.

Given the empirical evidence of which I am aware, there is room for
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disagreement about the usefulness of the kind of model described in this
paper. On the one hand, one test of the natural unemployment rate hy-
pothesis above—which is the model’s centerpiece—points to rejection of
that hypothesis and seems to imply some scope for policymakers to influ-
ence the mean of the unemployment rate via a suitable policy rule. On the
other hand, I am aware of no evidence that shows that any particular
existing structural model embodying a specific alternative to the natural
rate hypothesis can outperform it in predicting the course of the unem-
ployment rate. Such evidence ought to be in hand before it is reasonable to
believe that economists know enough to design policies that can affect the
expected value of the unemployment rate.

Appendix A: Equilibrium of the Model with Rational Expectations

To determine the equilibrium of the system formed by equations (1), (2), (3), and
(8), I first solve (3) for 7,:

rn==0tm, — b7, — b Yy, — b1y,
Substituting the above equation and (8) into (2) yields
o=k, +cbIm, — cb7p, — b7y, — cb Iy, —cEp,+1 +cp, +g +dZ,.

Solving this equation for y, — k,, and equating the result to the expression for
¥, — k, derived by substituting (8) into (1), gives

cb~t c(l =41 ( ¢ )
Yp: — Yf‘lﬁt + U, = 1+ -1 + A+ ) b — L+t ?ﬁtﬂ

ch1 1 ch~1 d
— — k Z,.
1+ cb‘lnt + (1 + cb‘l) K (1 + cb—l) e+ 1+ cb 17t

Solving this equation for p, gives

b =B, tl_‘jlﬁz + Bym, + B2€P;+1+ By, + By, + BU, + Bgk, + B1Z,, (Al)

where v
5= (3)
"7 \e
Bl:l+bl/¢>0
By=— 1+b1/¢>0
B,=—-B, <0
4:1+b1/¢>0
1
B.= —-——<0
=<
B, =B;<0
B, =4dB,
1 — b1
¢‘=Y‘—L"’_)>O-

1 4+ ¢b?
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To simplify the notation, I define the (5 X 1) vector
= [Bgny, Bagys BsUy, Boky, B1Z, )
Defining 7 as the 1 X 5 vector |1, 1,1, 1, 1), (A1) can be written as
b =By /_fl pr + Bymy + B'.’l;:pu] + Iy, (A2)

To derive an expression for E p, ,, shift equation (A2) forward one period and
¢

take expectations conditional on information available at time ¢:

é“lerl = Em . + Epres +

1 2 I1E . A3
1 — B, 1 — B, t)u'+1 (A3)

1 — B,
More generally, for any ;7 > 1,

B, B, 1
Epy = mo‘?mm + -1_— Eprsm+ 15 IE“‘2+J (A4)

Repeatedly substituting (A4) into (A3) vields the following expression for E p,, ,:
t

> 1 L
é‘pt‘Fl - &1 Emt+] _ B Z é-1 I€HI+]‘> (A5)
i=1 0 =1
where
—C
B, 1 + cb’l/q)
§ = .
I - B, 1 Y
¢
or
_ 1
0<6————] 5 < 1.

Here I am imposing the terminal condition

lim 8/~ lEp,H =0,

]—-oo
which rules out speculative bubbles. Equation (A5) states that under rationality,
the currently held expectation of the price level for next period depends on current
expectations about the whole future course of the money supply, as well as that of
the vector p, which includes as components U, ¢, 1, £, and Z. Notice that as long as
b < Q, the parameter 8 is between zero and unity, which permits the infinite sums
in (12) to converge.

To make (A5) operational, I must specify how the expectations of future m and

p are formed. I do this by positing that m and p are governed by autoregressive
processes known to the public, and that the public properly takes into account the
nature of those processes in forecasting the variables. For example, the money
supply is assumed to be governed by the known feedback rule

My = z wim;_; + 2 LY R S (A6)
i=0 i=0

where £, is a serially uncorrelated random term that is normally distributed with
mean zero, while the w;’s are fixed parameters and each v; is a 1 X 5 vector of
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parameters, ; = 0, ..., c. The random variable £, denotes the component of the
money supply that cannot be predicted on the basis of past m’s or p’s (the part
perhaps attributable to discretion). The (5 X 1) vector g is assumed to be gov-
erned by the autoregressive process

Bepr = 2 Xity_i + ¥ipr (A7)
t=0
where each X; is a diagonal (5 X 5) matrix of parameters and ¥,,,;isa (3 X 1)
vector of mutually uncorrelated, serially uncorrelated, normally distributed ran-
dom variables with means zero.
Given (A6) and (A7), Wold’s “chain rule of forecasting” (see Wold 1964) can be
used to give the expected value of m, ; for any j, conditional on information
available at . These forecasts have the form

Emyy =2 wym_y + > Xy, (A8)
¢ i=0 i=0
where the w;;’s are known functions of the w/’s of (A6), and the (1 X 5) Xj;’s are

known functions of the v,’s of (A6) and the X,’s of (A7)
Using (A8), the first term on the right side of equation (A5) becomes

B - = w© " o
1 lB >, 8 (2 wim_ + > Xiinut—i) = > Wm_; + > Vits
—Po iz =0 i=0 i=0 i=0
where
B e
W. prand 1 63.‘1 e
K3 1 — B() = w]l’
B x
V. = 1 8j_1X..
T 1 -8B, ; "

a (1 X 5) matrix. Using this procedure, equation (A5) can be rewritten to express
E p,,, in terms of current and past values of m, and ,:
¢

Ep= z Wim,_; + Z Vigg s = Wrm, + Vrp, (A9)
t P Py

i=0 i=0

where

*
* —
Wem = Wm_;,
i=0

and so on, and where each ¥, is a (1 X 5) matrix. Here the f/i’s depend on the
parameters of the monetary “rule” (A6), the parameters of autoregressive proc-
esses that underlie (A7), and the parameters of the economic structure, equations
(1), (2), and (3). The W,’s depend both on the model’s structural parameters and
on the parameters w; of the monetary rule.

The expression for E p,,, can now be substituted into equation (A2) to get the
i
reduced form for the price level:
by =BoW xmy_y + BV *p_y + Bym, + Iy,
+ ByW*m, + ByV*p,.  (A10)
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Equation (A10) is the reduced form equation that appears as equation (11) in the
text, while equation (A9) corresponds to the conditional expectation (13) in the
text.

Appendix B: Modifications to the Model
A More Realistic Portfolio Sector

Building in a more realistic portfolio sector forces a modification of the proposi-
tion that the real rate of interest is independent of the systematic part of the
money supply. Suppose the assumption that bonds and equities are viewed as
perfect substitutes by owners of wealth were abandoned and replaced by separate
demand schedules for equities and bonds of various maturities, perhaps assuming
that the assets are gross substitutes (see Tobin 1969). It would then be standard to
assume that the pertinent interest rate to enter in the aggregate demand schedule
is the yield on equities (see Tobin 1969; Modigliani and Miller 1958). The real
yields on all of the paper assets would appear in each member of the set of
equations describing the conditions for portfolio balance—that is, equations ex-
pressing equality of the stock demand for each paper asset with the quantity of
each in existence. In such a system, it remains true that the real yield on equities
that appears in the aggregate demand schedule is independent of the systematic
part of the money supply. Systematic, predictable movements in the money sup-
ply are thus not able to influence the equity yield, which can be characterized as
the “critical” yield from the point of view of affecting aggregate demand (see
Tobin 1969). However, by conducting debt management or open market opera-
tions, the monetary authority can systematically influence both the relationships
borne by the yields on other paper assets to the equity yield and the relationships
among those other yields. In this way, debt management can have systematic
effects on the yields of certain assets, whose strength depends on the extent to
which wealth owners regard alternative paper assets as good substitutes for one
another. In such a system, debt management operations might well permit the
monetary authority to peg the nominal rate on, say, 3-month Treasury bills. But
that pegging would have no persistent effect on the critical yield on equities that
governs aggregate demand.?

It might be useful to consider an additional change in the system that would
further modify the second proposition, without, I believe, touching any of the
policy implications of the model. Assume again the existence of various paper
assets that are imperfect substitutes for one another; but abandon the notion that
the real rate of return on one single asset, such as the yield on a certain class of
equities, is the one crucial yield that belongs in the aggregate demand schedule,
and instead, assume that aggregate demand depends on the real rates of return on
all n assets, so that, instead of text equation (2), the aggregate demand schedule
becomes

n
y— k= zci’u +dZ; + ¢, (2)

i=1

33The literature on the term structure of interest rates has in large part been devoted to
attempting to detect evidence of imperfect substitutability among bonds of different maturi-
ties (e.g., see Modigliani and Sutch 1967; Meiselman 1962). Very little convincing evidence
has been assembled that debt management has important effects on the yield curve.
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where ¢; < 0 for all 7, and r;, is the real rate of return on the 7th paper asset. Define
an index 7, of real yields as

|3

N ¢

Sl

i
7“ .
i

izl N\
j=1

"

Then notice that equation (2°) can be rewritten as

n

y, — k= (Z c]->7, +d7Z, +¢,. 2"

ji=1

In the system that is formed by replacing (2) with (2) and replacing (3) as before
with a system of portfolio equilibrium conditions for a set of assets, it is easily
shown that the real yield index 7, is independent of the systematic part of the
money supply. Moreover, this yield index certainly qualifies as the “crucial” yield
affecting aggregate demand, if anything does. In such a system, debt management
policies are able systematically to affect the relationships among the real rates
that are components of 7,, but that is irrelevant from the point of view of affecting
7, and aggregate output.

The Model with “Partly Rational” Expectations

One criticism that has been made of the kind of model presented here is that it
seems to require extraordinary amounts of wisdom and information on the part of
those whose expectations are described by equation (13).3¢ They are assumed to
act as if they know the probability distribution (12) and then use it together with
data on all of the conditioning variables to form their expectation about next
period’s price level. While assuming such a well-informed public may or may not
strain credulity, the key aspects of the theory carry through even if the public is
much less wise and knowledgeable.

First, the orthogonality of the public’s prediction errors to the set of variables on
which its expectations are based applies when the public gets its knowledge of the
conditional expectation of p,,, as if it were simply computing a linear least-
squares regression of the price level on lagged values of the conditioning variables
for the historical data available. The well-known properties of least-squares pre-
diction errors—in particular, their orthogonality to the regressors in the sample
period-—will guarantee that the prediction error in the aggregate supply schedule
is uncorrelated with past values of the conditioning variables. That in turn im-
plies that y — % will be independent of lagged values of those conditioning varia-
bles.

Now to indicate the minimal amount of information and wisdom that must be
imputed to the public in order to preserve the key policy implications of the
model, assume for the moment that in forming its forecast of the price level, the
public has access to information only about lagged prices (and by implication
lagged values of its own forecasts). The public again is assumed to put this infor-
mation together in such a way as to extract the best (least-squares) forecast of p,,
so that

i1 = E(p iy bross - )= E[p,10,,_4],

34E.g., see Tobin’s discussion of Lucas’ paper in Tobin (1972).
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where ;,_; includes only past values of p,.3% Taking note of the fact that the
variables p, | — ;_1p%,5, 0,5 — ;_2Pi_3, - - - form a subset of the variables in 8;,_;
conditioning the above expectation, I calculate the regression of the current pre-
diction error on past prediction errors,

El(py — bt D bror — 11bi-2broz — 1-2bt-3---1 =0,

which establishes that the prediction errors are serially uncorrelated.
Now combine the above hypothesis about expectations formation with the
modified aggregate supply hypothesis (1):

q
Yy =k = = Ep10yy) + > N — k) + UL

i=1
Taking expectations conditional on §,_,, I obtain

El(y, — k10,11 = y(Ep, 10,1 — Ep,10,,_1)

q
+ z Ny — k) EWUNU,_L, U, ).

i=1

In general, the term Ep |0, ; — £p,|8,,_, will not be zero: one obtains a better
prediction of p, by taking into account the components of #,_; that are excluded
from 0,,_;. Consequently, on the hypothesis that the public’s expectation is condi-
tioned only on past prices, the forecast error p, — Ep,|6,,_, that appears in the
aggregate supply schedule is not in general independent of the elements of ,_,
that are excluded from #,,_,. In particular, the forecast error is generally corre-
lated with past values of the money supply. This means that by choosing the
money supply rule (9) appropriately, the monetary authority can systematically
influence the forecast errors that appear in the aggregate supply schedule. The
systematic part of the money supply then has effects on both the rate of output
and the real rate of interest, so that neither of the two propositions about the
neutrality of the systematic part of the money supply continues to hold.

But the potential accomplishments of stabilization policy are still severely cir-
cumscribed. While the monetary authority can have a systematic effect on the
prediction errors in the aggregate supply schedule, there exists no feedback policy
that is capable of inducing serial correlation in those forecast errors. So long as the
forecasts are conditioned on at least lagged prices, the errors will be serially uncor-
related. The monetary authority’s ability systematically to affect the public’s fore-
cast errors then comes down to an ability to affect the variance of those errors
without being able to affect their mean or serial correlation properties. It follows
that there are no feedback rules for the money supply and fiscal policy variables
that can be expected to produce “runs” of forecast errors that will in themselves be
a source of persistent movements in output. Under the assumptions here, then, the
monetary and the fiscal authorities still face no “cruel choice” between the aver-
age rate of inflation they shoot for and the expected value of the unemployment
rate. But there remains a nontrivial problem in choosing stabilization policies, for
different deterministic feedback rules deliver different variances for the public’s
errors in forecasting the price level, and thereby are associated with different
variances for the unemployment rate.

*Changing the assumption about ,,,p} in this way will itself change the form of the
probability distribution (12) that governs g, ;, as can be seen easily by pursuing the kind of
calculations reported in Appendix A. The arguments of (12) would remain the same, how-
ever.
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“"Rational Expectations’": A Correction

I have discovered an error in the computations of regression (3) and the
regressions in table 1 in my paper, “Rational Expectations, the Real Rate
of Interest, and the Natural Rate of Unemployment” (above). With the
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exception of the lagged unemployment rates in those regressions, the in-
strumental variables in #, were all inadvertently lagged four more quarters
than is reported in the paper. For example, m,_, in equation (3) is actually
m,_s. The correct calculations are reported here in regression (3) and
table 1. [Note: I would like to thank Thomas Turner for performing the
calculations. |

The F-statistic for regression (3) is now 4.5, which exceeds the value of
2.503 reported in my paper, and so is even more significant statistically.
Thus, the test continues to point toward rejection of the natural rate hy-
pothesis. The corrected results for table 1 now detect neither a short-run

TABLE 1

REGRESsSION RESULTS FOR ALTERNATIVE TESTS oF THE NATURAL
UnempLOYMENT RaTE HyPoTHESIS

Regression
Variable and
Regression Statistic 4.1 4.2 5.1 5.2
Variable:
Constant 0.420 0.420 0.696 0.696
(0.218) (0.220)
Unemployment rate lagged 1.715 1.715 1.666 1.666
1 quarter, Un_, (0.115) (0.116)
Unemployment rate lagged —1.046 —1.046 —0.999 —0.999
2 quarters, Un_, (0.198) (0.196)
Unemployment rate lagged 0.245 0.245 0.216 0.216
3 quarters, Un_, (0.115) (0.114)
Random (unexpected) part of
inflation, based on the GNP
deflator, p, or the wage
index, w:
p—F 30.322
N (19.976)
p—7 o 61.848
_ (37.420)
w— w ... —11.924
o (9.447)
w—w L. —100.852
(56.064)
Systematic (expected) part
of inflation:
-1, —0.170 —0.170
(11.380)  (11.627)
®— w_, S .- —13.282 —13.282

(7.154) (10.361)
Regression Statistic:

R? 0.925 . 0.928
Durbin-Watson statistic 1.935 L. 1.958 .
a 1.01 1.00 —0.11 0.87
t-statistic —0.01 —0.01 —1.86 —1.28

Source.—Derived from equations (24) and (24') of original article, using relevant official U.S. series from the data bank of
the Wharton Econometric Model.

Note.—The period of fit is 1952:1-1970:4. The dependent variable is the unemployment rate. Standard errors are in
parentheses. The standard errors for coefficients for regression (4.2) and (5.2) are asymptotic. For detailed definitions of
symbols, see text of original article.
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nor a long-run Phillips curve using the log of the GNP deflator, p, the
coeflicient on the systematic part of Ap having ¢-statistics close to zero. The
{-statistic on the systematic part of wage inflation in regression (5.2) is now
—1.28, and fails to support rejection of the natural rate hypothesis. How-
ever, the coefficient on the “random” part of @ in (5.2} is now larger than
before both in absolute value and in statistical significance, so that the
amended results for w are more favorable to the hypothesis of a tradeoft
between unemployment and the surprise component of wage inflation.

Un, = 54.556 + 0.773 Un,_, — 0.357 Un,_, — 0.027 Un,_,

(15.819) (0.175) (0.212) (0.136)
— 2.809m,_, — 10.046m,_, + 4.868 m,_,; — 0.003 Def,_,
(7.109) (12.522) (7.434) (0.013)
— 0.240 Def, o, — 0.023 Def,_5 — 17151 p,_; — 1967 p,_,
(0.018) (0.016) (17.468) (21.767)
— 14502 p,_, + 28.156 pc,_; + 13.122 pc, _, + 10.917 pe,_,
(18.157) (20.014) (22.101) (19.059)
+ 13274 wr,_, — 11.730 w0r,_, + 11.546 wr,_; + 2.536¢,_,
(6.969) (9.164) (7.079) (2.620)
— 72244, , + 03455, 5 — 11.132ng, _, + 2311 ng,_,
(3.652) (2.745) (7.237) (11.061)
—0.938ng,  — 16814y, _, + 15477 y,_, + 3.840y, .
(8.519) (5.240) (6.562) (5.544)

R? = 0.9652; standard error of estimate = 0.216; Durbin-Watson statistic = 1.941;
F(24,48) = 4.500.
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Rational Expectations and the Theory
of Economic Policy

Thomas J. Sargent
Neil Wallace

There is no longer any serious debate about whether monetary policy
should be conducted according to rules or discretion. Quite appropriately,
it is widely agreed that monetary policy should obey a rule, that is, a
schedule expressing the setting of the monetary authority’s instrument
(e.g., the money supply) as a function of all the information it has received
up through the current moment. Such a rule has the happy characteristic
that in any given set of circumstances, the optimal setting for policy is
unique. If by remote chance, the same circumstances should prevail at two
different dates, the appropriate settings for monetary policy would be
identical.

The central practical issue separating monetarists from Keynesians is
the appropriate form of the monetary policy rule. Milton Friedman has
long advocated that the monetary authority adopt a simple rule having no
feedback from current and past variables to the money supply. He recom-
mends that the authority cause the money supply to grow at some rate of

This paper is intended as a popular summary of some recent work on rational expectations
and macroeconomic policy and was originally prepared for a conference on that topic at the
Federal Reserve Bank of Minneapolis in October 1974. The paper was previously published
as paper 2 of the Studies in Monetary Economics series of the Federal Reserve Bank of Minneapo-
lis. To make the main points simple, the paper illustrates things by using simple ad hoc, linear
models. However, the ideas cannot really be captured fully within this restricted framework.
The main ideas we are summarizing are due to Robert E. Lucas, Jr., and were advanced by
him most elegantly in the context of a stochastic general equilibrium model (see Lucas
1972). Lucas’s paper analyzes policy questions in what we regard to be the proper way,
namely, in the context of a consistent general equilibrium model. The present paper is a
popularization that fails to indicate how Lucas’s neutrality propositions are derived from a
consistent general equilibrium model with optimizing agents. It is easy to overturn the
“neutrality” results that we derive below from an ad hoc structure by making ad hoc changes
in that structure. The advantage of Lucas’s model is that ad hockeries are given much less of
a role and, consequently, the neutrality proposition he obtains is seen to be a consequence of
individual agents’ optimizing behavior. In summary, this paper is not intended to be a
substitute for reading the primary sources, mainly Lucas (19724, 1972h, 1973, in press).
[ Journat of Monetary Economics, 1976, vol. 2]
© 1976 by North-Holland Publishing Company
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x percent per year without exception. In particular, the Fed ought not to
try to “lean against the wind” in an effort to attenuate the business cycle.

Within the context of macroeconometric models as they are usually
manipulated, Friedman’s advocacy of a rule without feedback seems inde-
fensible. For example, suppose that a variable y,, which the authority is
interested in controlling, is described by the stochastic difference equation,

=+ N+ By + oy, )

where y, is a serially independent, identically distributed random variable
with variance 02 and mean zero; m, is the rate of growth of the money
supply; and @, A, and B are parameters. The variable y, can be thought of
as the unemployment rate or the deviation of real GNP from “potential”
GNP. This equation should be thought of as the reduced form of a simple
econometric model.

Suppose that the monetary authority desires to set m, in order to mini-
mize the variance over time of y, around some desired level y*. It accom-
plishes this by appropriately choosing the parameters g, and g, in the
feedback rule,

my =gy + &1t (2)
Substituting for m, from (2) into (1) gives
e = (@ + Bgo) + (A + Bgy)yioy + 4, ()
From this equation the steady-state mean of » is given by
E(y) = (a + Bgo)/[1 — (A + Begy)], 4)

which should be equated to y* in order to minimize the variance of »
around »*. From (3) the steady-state variance of y around its mean (and
hence around »*) is given by

vary = (A + fg;)*vary + o
or

vary = aZ/[1 — (A + Bg,)?). (5)

The monetary authority chooses g, to minimize the variance of y, then
chooses g, from equation (4) to equate £( ) to »*. From equation (5), the
variance of y is minimized by setting A + Bg, = 0, so that g, equals —A/B.
Then from equation (4) it follows that the optimal setting of g, is
g = (" — a)/B. So the optimal feedback rule for m, is

my = (" —a)/B— (A/B)y_y (6)

Substituting this control rule into (1) gives

Pt ZJ’* + u,
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which shows that application of the rule sets y, equal to »* plus an irreduci-
ble noise. Notice that application of the rule eliminates all serial correla-
tion in y, since this is the way to minimize the variance of y. Use of rule (6)
means that the authority always expects to be on target, since its forecast
of y, at time ¢ — 1 is

Ji=a+ Mg+ Bm,

which under rule (6) equals y*.

Friedman’s x-percent growth rule in effect sets g, equal to zero. So long
as A is not zero, that rule is inferior to the feedback rule (6).

This example illustrates all of the elements of the usual proof that
Friedman’s simple x-percent growth rule is suboptimal. Its logic carries
over to larger stochastic difference equation models, ones with many more
equations and with many more lags. It also applies where criterion func-
tions have more variables. The basic idea is that where the effects of shocks
to a goal variable (like GNP) display a stable pattern of persistence (serial
correlation), and hence are predictable, the authority can improve the
behavior of the goal variable by inducing offsetting movements in its in-
struments.

The notion that the economy can be described by presumably a large
system of stochastic difference equations with fixed parameters underlies
the standard Keynesian objections to the monism of monetarists who
argue that the monetary authority should ignore other variables such as
interest rates and concentrate on keeping the money supply on a steady
growth path. The view that, on the contrary, the monetary authority
should “look at (and respond to) everything,” including interest rates, rests
on the following propositions:! (a) the economic structure is characterized
by extensive simultaneity, so that shocks that impinge on one variable,
e.g., an interest rate, impinge also on most others; (b) due to lags in the
system, the effects of shocks on the endogenous variables are distributed
over time, and so are serially correlated and therefore somewhat predict-
able; and (c) the “structure” of these lags is constant over time and does
not depend on how the monetary authority is behaving. These proposi-
tions imply that variables that the authority observes very frequently, e.g.,
daily, such as interest rates, carry information useful for revising its fore-
casts of future value of variables that it can’t observe as often, such as GNP
and unemployment. This follows because the same shocks are affecting
both the observed and the unobserved variables, and because those shocks
have effects that persist. It follows then from (c) that the monetary author-
ity should in general revise its planned setting for its policy instruments
each time it receives some new and surprising reading on a variable that is

1See Kareken, Muench, and Wallace (1973) for a detailed presentation of this view.
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determined simultaneously with a variable, like GNP or unemployment,
that it is interested in controlling. Such an argument eschewing a simple
x-percent growth rate rule in favor of “looking at everything” has been
made by Samuelson (1970):

. when I learned that I had been wrong in my beliefs about
how fast M was growing from December, 1968 to April, 1969,
this news was just one of twenty interesting items that had come
to my knowledge that week. And it only slightly increased my
forecast for the strength of aggregate demand at the present time.
That was because my forecasts, so to speak, do not involve
“action at a distance” but are loose Markov processes in which a
broad vector of current variables specify the “phase space” out of
which tomorrow’s vector develops. (In short, I knowingly commit
that most atrocious of sins in the penal code of the monetarists—
I pay a great deal of attention to all dimensions of “credit condi-
tions” rather than keeping my eye on the solely important varia-
ble M/M.)

. often, I believe, the prudent man or prudent committee can
look ahead six months to a year and with some confidence pre-
dict that the economy will be in other than an average or “er-
godic” state. Unless this assertion of mine can be demolished, the
case for a fixed growth rate for M, or for confining M to narrow
channels around such a rate, melts away.

These general presumptions arise out of what we know about
plausible models of economics and about the findings of histori-
cal experience.?

There can be little doubt about the inferiority of an x-percent growth
rule for the money supply in a system satisfying propositions (a), (b), and
(c) above. A reasonable disagreement with the “look at everything, re-
spond to everything” view would seemingly have to stem from a disbelief
of one of those three premises. In particular, proposition (c) asserting the
invariance of lag structures with respect to changes in the way policy is
conducted would probably not be believed by an advacate of a rule with-
out feedback.

Thus, returning to our simple example, a critical aspect of the proof of
the suboptimality of Friedman’s rule is clearly the assumption that the

2Perhaps the “look at everything” view goes some way toward rationalizing the common
view that policy ought not to be made by following a feedback rule derived from an explicit,
empirically estimated macroeconometric model. It might be argued that the models that
have been estimated omit some of the endogenous variables that carry information about the
shocks impinging on the system as a whole. If the authority has in mind an a priori model that
assigns those variables an important role, it is appropriate for it to alter its policy settings in
response to new information about those variables. Perhaps this is what some people mean by
“discretion,” although we aren’t sure.
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parameters @, A, and f8 of the reduced form (1) are independent of the
settings for g, and g, in the feedback rule. Macroeconometric models are
almost always manipulated under such an assumption. However, Lucas
(in press) has forcefully argued that the assumption is inappropriate, and
that the parameters of estimated reduced forms like (1) in part reflect the
policy responses in operation during the periods over which they are esti-
mated. This happens because in the reduced forms are embedded the
responses of expectations to the way policy is formed. Changes in the way
policy is made then ought not to leave the parameters of estimated re-
duced forms unchanged.

To illustrate this point while continuing with our example, suppose that
our reduced form (1) has been estimated during some sample period and
suppose that it comes from the “structure”:

=% + &(m, — E,_ymy) + &3, 4 + w, (7
my =gy + 8101+ &, 8)
E,_im =g+ 8101 9

Here &), £;, and §, are fixed parameters; ¢, is a serially independent ran-
dom term with mean zero. We assume that it is statistically independent of
u,. Equation (8) governed the money supply during the estimation period.
The variable E,_,m, is the public’s expectation of m, as of time ¢ — 1.
According to (9), the public knows the monetary authority’s feedback rule
and takes this into account in forming its expectations. According to equa-
tion (7), unanticipated movements in the money supply cause movements
in y, but anticipated movements do not. The above structure can be writ-
ten in the reduced form

yo= (& — &go) + (& — §180)01 + &y touy, (10)
which is in the form of (1) with a = (§, — &1¢,), A = (&, — &,¢,) and
B = £,. While the form of (10) is identical with that of (1), the coefficients
of (10) are clearly functions of the control parameters, the g’s, that were in
effect during the estimation period.

Suppose now that the monetary authority desires to design a feedback
rule to minimize the variance of y around »* under the assumption that the
public will know the rule it is using and so use the currently prevailing g’s
in (8) in forming its expectations, rather than the old g’s that held during
the estimation period. The public would presumably know the g’s if the
monetary authority were to announce them. Failing that, the public might
be able to infer the g’s from the observed behavior of the money supply
and other variables. In any case, on the assumption that the public knows
what g’s the authority is using, « and A of equation (1) come to depend on
the authority’s choice of g’s. This fundamentally alters the preceding anal-
ysis, as can be seen by substituting g, + g,,_ for m, in (10) to arrive at

Vi = (& — &180) + (& — S180)01 + &1(80 H 81011 + &) Ty
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or

=&+ &yt + e (1)

According to (11), the stochastic process for », does not even involve the
parameters g, and g;. Under different values of g, and g;, the public’s
method of forming its expectations is also different, implying differences in
the values of a and A in (1) under different policy regimes. In our hypo-
thetical model, the resulting differences in « and A just offset the differ-
ences in g, and g,, leaving the behavior of y identical as a result. Put
somewhat differently, our old rule “set g, = —A/B” can no longer be
fulfilled. For on the assumption that the public uses the correct g’s in
forming its expectations, it implies

&= —-NB= (g — 2/ =g —&/&4

or

0= —52/51,
which is an equality not involving the g’s, and one that the monetary
authority is powerless to achieve. The rule “g; = —A/B” in no way re-
stricts g,.

The point is that estimated reduced forms like (1) or (10) often have
parameters that depend partly on the way unobservable expectations of
the public are correlated with the variables on the right side of the equa-
tion, which in turn depends on the public’s perception of how policymak-
ers are behaving. If the public’s perceptions are accurate, then the way in
which its expectations are formed will change whenever policy changes,
which will lead to changes in the parameters « and A of the reduced-form
equation. It is consequently improper to manipulate that reduced form as
if its parameters were invariant with respect to changes in g, and g,. Ac-
cording to this argument, then, the above “proof” of the inferiority of a
rule without feedback is fallacious. The argument for the “look at every-
thing, respond to everything” view is correspondingly vitiated.

The simple model above is one in which there is no scope for the author-
ity to conduct countercyclical policy by suitably choosing g, and g, so as to
minimize the variance of y. Indeed, one choice of the g’s is as good as
another, so far as concerns the variance of , so that the authority might as
well set g, equal to zero, thereby following a rule without feedback. It
seems, then, that our example contains the ingredients for constructing a
more general defense of rules without feedback. These ingredients are two:
first, the authority’s instrument appears in the reduced form for the real
variable y only as the discrepancy of the instrument’s setting from the
public’s prior expectation of that setting; and second, the public’s psycho-
logical expectation of the setting for the instrument equals the objective
mathematical expectation conditioned on data available when the expec-
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tation was formed. The first property in part reflects a homogeneity of
degree zero of supply with respect to prices and expected prices, the natu-
ral unemployment rate hypothesis. But it also derives partly from the
second property, which is the specification that the public’s expectations
are “rational,” that is, are formed using the appropriate data and objec-
tive probability distributions.

The natural rate hypothesis posits that fully anticipated increases in
prices have no effects on the rate of real economic activity, as indexed for
example by the unemployment rate. A Phillips curve that obeys the natu-
ral rate hypothesis can be written as

by — b1 = ¢ + O, U, + HPf — byt g, ¢, <0, (12)

or
b= t—hbr =g + ¢, U, + ¢, (13)

where U, is the unemployment rate, p, is the log of the price level, ,_,p} is
the log of the price level that the public expects to prevail at time ¢ as of
time ¢ — 1, and ¢, is a random term. According to (12), the Phillips curve
shifts up by the full amount of any increase in expected inflation. That
implies, as indicated by equation (13), that if inflation is fully anticipated,
so that p, = ,_,p;, then the unemployment rate is unaffected by the rate of
inflation, since (13) becomes one equation,

0=¢,+ ¢,U, + ¢,

that is capable of determining the unemployment rate independently of
the rate of inflation.

As Phelps (1972) and Hall (in press) have pointed out, in and of itself,
the natural rate hypothesis does not weaken the logical foundations for
“activist” Keynesian macroeconomic policy, 1.e., rules with feedback. This
fact has prompted some to view the natural rate hypothesis as an intellec-
tual curiosity, having but remote policy implications.> To illustrate, we
complete the model by adding to (13) a reduced form aggregate demand
schedule and an hypothesis about the formation of expectations. We
subsume “Okun’s Law” in the former and assume it takes the form

p, = am, + bx, + cU,, ¢ >0, (14)

where m, is the log of the money supply, the authority’s instrument; and x,
is a vector of exogenous variables that follows the Markov scheme
x, = 8x,_; + u, u, being a vector of random variables. For price expecta-
tions, we posit the ad hoc, in general “irrational” scheme,

t—u{’;|= = }‘Pz—n (15)

3E.g., see the remarks attributed to Franco Modigliani in Sargent (1973), p. 480.
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where A is a parameter. Using (13)-(15), we can easily solve for unemploy-
ment as a function of m, and x,,

U, = [¢pg — a(m, — Am,_y) — b(x, — Ax,_y) + AU,_; + &]/(c — ¢y).
(16)

It follows that the current setting for m, affects both current and future
values of unemployment and inflation. Given that the authority wishes to
minimize a loss function that depends on current and future unemploy-
ment and perhaps inflation, the choice of m, is a nontrivial dynamic opti-
mization problem, the solution to which can often be characterized as a
control rule with feedback. The optimal policy rule will depend on all of
the parameters of the model and on the parameters of the authority’s loss
function. The policy problem in this context has been studied by Hall and
Phelps. The authority can improve the characteristics of the fluctuations
in unemployment and inflation by setting m so as to offset disturbances to
the x’s.

In this system, if the authority has a “humane” loss function that assigns
regret to unemployment and that discounts the future somewhat, the au-
thority should to some extent exploit the trade-off between inflation and
unemployment implied by (14) and (16). As Hall (in press) has empha-
sized, the authority is able to do this by fooling people:

the benefits of inflation derive from the use of expansionary pol-
icy to trick economic agents into behaving in socially preferable
ways even though their behavior is not in their own interests. . . .
The gap between actual and expected inflation measures the ex-
tent of the trickery. . . . The optimal policy is not nearly as ex-
pansionary when expectations adjust rapidly, and most of the
effect of an inflationary policy is dissipated in costly anticipated
inflation.

Hall has pinpointed the source of the authority’s power to manipulate
the economy. This can be seen by noting that removing the assumption
that the authority can systematically trick the public eliminates the impli-
cation that there is an exploitable trade-off between inflation and unem-
ployment in any sense pertinent for making policy. The assumption that
the public’s expectations are “rational” and so equal to objective mathe-
matical expectations accomplishes precisely this. Imposing rationality
amounts to discarding (15) and replacing it with

t—lxb: =E, 1, (17)

where E,_, is the mathematical expectation operator conditional on infor-
mation known at the end of period ¢ — 1. If (17) is used in place of (15),
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equation (16) must be replaced with*
Uy = la(my — E,_ym,) + b(x, — E,_1x,) — &]/(¢y — ¢) — do/b1-  (18)

To solve the model for U, it is necessary to specify how the authority is
behaving. Suppose we assume that the authority uses the feedback rule,

m, =G8,_, + 1, (19)

where 8,_, is a set of observations on variables dated ¢ — 1 and earlier, and
1, is a serially uncorrelated error term obeying E[n,|6, ;] =0; G is a
vector conformable with 4, ;.

If the rule is (19) and expectations about m are rational, then

E,_m =Em,|8,_ , =G0,_,, (20)
since E[7,|8,_;] = 0. So we have
m, — E,_m, =, (21)
Substituting from (21) into (18) we have
Uy = [am, + b(x, — E,_1%,) — &]/(dy — ¢) — o/ ¢r- (22)

Since the parameters G of the feedback rule don’t appear in (22), we can
conclude that the probability distribution of unemployment is independ-
ent of the values chosen for G. The distribution of the random, unpredict-
able component of m, which is 9, influences the distribution of unemploy-
ment but there is no way in which this fact provides any logical basis for
employing a rule with feedback. The 1’s have a place in (22) only because
they are unpredictable noise. On the basis of the information in f,_,, there
is no way that the n’s can be predicted, either by the authority or the
public.

In this system, there is no sense in which the authority has the option to
conduct countercyclical policy. To exploit the Phillips curve, it must some-
how trick the public. But by virtue of the assumption that expectations are
rational, there is no feedback rule that the authority can employ and
expect to be able systematically to fool the public. This means that the
authority cannot expect to exploit the Phillips curve even for one period.

*Using (17), compute E,_; of both sides of (13) and subtract the result from (13) to get
b~ ot =0, — ELUD + g ®
Perform the same operation on (14) to get
b — bt = almy — Ep_ym) + b(xy — E,_yx) + (U, — E_,U)). (i)
Solve (i) for (U, — E,_,U,) and substitute the result into (ii) to get
(U= e/t — 1apy) = a(my — E,_ym) — (c/$1)e + blx, — Ey_yx)). (i)
Upon substituting the implied expression for (g, — ,_,p7) into (13), we get (18).
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Thus, combining the natural rate hypothesis with the assumption that
expectations are rational transforms the former from a curiosity with per-
haps remote policy implications into an hypothesis with immediate and
drastic implications about the feasibility of pursuing countercyclical
policy.?

As indicated above, by a countercyclical policy we mean a rule with
feedback from current and past economic variables to the authority’s in-
strument, as in a regime in which the authority “leans against the wind.”
While the present model suggests reasons for questioning even the possibil-
ity of a successful countercyclical policy aimed at improving the behavior
of the unemployment rate or some closely related index of aggregate activ-
ity, the model is compatible with the view that there is an optimal rule for
the monetary authority, albeit one that need incorporate no feedback.
Such an optimal rule could be determined by an analysis that determines
the optimal rate of expected inflation, along the lines of Bailey (1956) or
Tobin (1968). If there is an optimal expected rate of inflation, it seems to
imply restrictions on the constant and trend terms (and maybe the coeffi-
cients on some slowly moving exogenous variables like the labor force) of a
rule for the money supply, but is not a cause for arguing for a feedback
rule from endogenous variables to the money supply. The optimal rate of
inflation, if there is one, thus has virtually no implications for the question
of countercyclical policy. Furthermore, there is hardly any theoretical
agreement about what the optimal rate of expected inflation is, so that it
seems to be a weak reed for a control rule to lean on.

The simple models utilized above illustrate the implications of imposing
the natural rate and rational expectations hypotheses in interpreting the
statistical correlations summarized by the reduced forms of macroecono-
metric models, reduced forms that capture the correlations between mone-
tary and fiscal variables on the one hand, and various real variables on the
other hand. What is there to recommend these two hypotheses? Ordinar-
ily, we impose two requirements on an economic model: first, that it be
consistent with the theoretical core of economics-optimizing behavior
within a coherent general equilibrium framework; and second, that it not
be refuted by observations. Empirical studies have not turned up much
evidence that would cause rejection at high confidence levels of models
incorporating our two hypotheses.® Furthermore, models along these lines
seem to be the only existing ones consistent with individuals’ maximizing
behavior that are capable of rationalizing certain important correlations,

5The original version of such a “‘neutrality” result is due to Lucas (19726). His formulation
is much deeper and more elegant than the one here, since his procedure is to start from
individual agents’ objectives and their information and then to investigate the characteristics
of general equilibria. Less elegant formulations of neutrality results are in Sargent (1973) and
Sargent and Wallace (1975).

$See Lucas (1973) and Sargent (in press) for empirical tests of the natural rate hypothesis.
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such as the Phillips curve, that exist in the data and are summarized by
the reduced forms of macroeconometric models. The key feature of models
that imply our hypotheses has been described by Lucas (1973): “All for-
mulations of the natural rate theory postulate rational agents, whose deci-
sions depend on relative prices only, placed in an economic setting in which
they cannot distinguish relative from general price movements.” Their
inability separately to identify relative and overall nominal price changes
is what gives rise to reduced forms like (1). But their rationality implies
that only the surprise components of the aggregate demand variables
enter. And this has the far-reaching policy implications described above.

Several reasons can be given for using the hypotheses of rational expec-
tations. An important one is that it is consistent with the findings that
large parts of macroeconometric models typically fail tests for structural
change (essentially versions of Chow tests).” As equation (10) illustrates, if
expectations are rational and properly take into account the way policy
instruments and other exogenous variables evolve, the coeflicients in cer-
tain representations of the model (e.g., reduced forms) will change when-
ever the processes governing those policy instruments and exogenous vari-
ables change. A major impetus to work on rational expectations is thus
that it offers one reason, but probably not the only reason, that macro-
econometric models fail tests for structural change. Indeed, the hypothesis
of rational expectations even offers some hope for explaining how certain
representations of the model change out of the sample.

A second reason for employing the hypothesis of rational expectations is
that in estimating econometric models it is a source of identifying restric-
tions. The usual method of modelling expectations in macroeconometric
models—via a distributed lag on the own variable—leaves it impossible to
sort out the scalar multiplying the public’s expectations from the magni-
tude of the weights in the distributed lag on own lags by which expecta-
tions are assumed to be formed. Therefore, the coefficients on expectations
are generally underidentified econometrically. The way out of this has
usually been to impose a unit sum on the distributed lag whereby expecta-
tions are formed. The problem is that this is an ad hoc identifying restric-
tion with no economic reason to recommend it. It is generally incompati-
ble with the hypothesis of rational expectations, which can be used to
supply an alternative identifying restriction.®

A third reason for using the rational expectations hypothesis is that it
accords with the economist’s usual practice of assuming that people be-
have in their own best interests. This is not to deny that some people are
irrational and neurotic. But we have no reason to believe that those irra-
tionalities cause systematic and predictable deviations from rational behavior

"E.g., see Muench et al. (1974).
8See Lucas (19722, 1973) and Sargent (1971).
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that a macroeconomist can model and tell the monetary authority how to
compensate for. In this regard, it should be noted that the rational expec-
tations hypothesis does not require that people’s expectations equal condi-
tional mathematical expectations, only that they equal conditional math-
ematical expectations plus what may be a very large random term
(random with respect to the conditioning information). Thus we need only
assume, for example, that

10 = E_ap + 9y, (18a)

where E, ¢, = 0, and ¢, is a random “mother-in-law” term allowing for
what may be very large random deviations from rationality. It is easy to
verify that all of our results about countercyclical policy go through when
(18a) is assumed. Therefore, in the context of the natural rate hypothesis,
random deviations from perfectly rational expectations buy the monetary
authority no leverage in making countercyclical policy. To be able to
conduct a countercyclical policy, there must be systematic deviations from
rational expectations which the monetary authority somehow knows about
and can predict.

A fourth reason for adopting the hypothesis of rational expectations is
the value of the questions it forces us to face. We must specify exactly the
horizon over which the expectations are cast and what variables people are
assumed to see and when, things that most macroeconometric models are
silent on. In doing policy analysis under rational expectations, we must
specify whether a given movement in a policy variable was foreseen be-
forehand or unforeseen, an old and important distinction in economics,
but one that makes no difference in the usual evaluations of policy made
with macroeconometric models.

Although the imposition of the natural rate and rational expectations
hypotheses on reduced-form equations like (1) has allowed us to state some
important results, such reasoning is no substitute for analysis of the under-
lying microeconomic models. Manipulation of such reduced forms even
under the interpretation given by equations (7)-(9), which imposes the
natural rate and rational expectations hypotheses, can be misleading be-
cause it leaves implicit some of the dependencies between parameters and
rules. (E.g., the “structure” consisting of [7]-[9] is itself a reduced form
suggested by Lucas [1973], some of whose parameters depend on the vari-
ance of ¢ in [8].) Also, a welfare analysis using such a model can be
misleading because it requires adoption of an ad hoc welfare criterion, like
the “humane” loss function described above. In general, such a loss func-
tion is inconsistent with the usual welfare criterion employed in models
with optimizing agents—Pareto optimality.

Finally, we want to take note of a very general implication of rationality
that seems to present a dilemma. Dynamic models that invoke rational
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expectations can be solved only by attributing to the agents whose behav-
ior is being described a way of forming views about the dynamic processes
governing the policy variables. Might it not be reasonable at times to
attribute to them a systematically incorrect view? Thus suppose an econ-
omy has been operating under one rule for a long time when secretly a new
rule is adopted. It would seem that people would learn the new rule only
gradually as they acquired data and that they would for some time make
what from the viewpoint of the policymaker are forecastable prediction
errors. During this time, a new rule could be affecting real variables.

A telling objection to this line of argument is that new rules are not
adopted in a vacuum. Something would cause the change—a change in
administrations, new appointments, and so on. Moreover, if rational
agents live in a world in which rules can be and are changed, their behav-
ior should take into account such possibilities and should depend on the
process generating the rule changes. But invoking this kind of complete
rationality seems to rule out normative economics completely by, in effect,
ruling out freedom for the policymaker. For in a model with completely
rational expectations, including a rich enough description of policy, it
seems impossible to define a sense in which there is any scope for discussing
the optimal design of policy rules. That is because the equilibrium values
of the endogenous variables already reflect, in the proper way, the param-
eters describing the authorities’ prospective subsequent behavior, includ-
ing the probability that this or that proposal for reforming policy will be
adopted.

Thus, suppose that a policy variable x, is described by the objective
probability distribution function,

Problx,, <F|Y, 2] =GR Y, Z;5 85,5 8] (23)

where ¥, = [9,,9,_y, .. .} is a set of observations on current and past values
of an endogenous variable, or vector of endogenous variables y; and where
Z, = |2,,2,_4, ...} is a set of observations on current and past values of a
list of n exogenous variables and disturbances zi,7 = 1,. .., n. The proba-
bility distribution has p parameters gy, ..., g,

The probability distribution in (23) represents a very general descrip-
tion of the prospects about policy. It obviously can describe a situation in
which policy is governed by a deterministic feedback rule, in which case
the probability distribution collapses to a trivial one. The probability dis-
tribution in (23) can also model the case in which the monetary authority
follows a feedback rule with random coeflicients, coeflicients that them-
selves obey some probability law. This situation is relevant where the mon-
etary authority might consider changing the feedback rule from time to
time for one reason or another. The probability distribution (23) can also
model the case in which policy is in part simply random. The parameters



212 SARGENT AND WALLACE

(&3 - - > &p] determine the probability function (23) and summarize all of
the factors making up the objective prospects for policy. Policy settings
appear to be random drawings from the distribution given in (23).

Now consider a rational expectations, structural model for y, leading to
a reduced form,

N =h(xpx s 2 Evyyia) (24)

where E, y,,, is the objective expectation of y, ; conditioned on informa-
tion observed up through time t. The Z,’s are assumed to obey some proba-
bility distribution functions,

Prob[zl , < HY 22, <HE ... 20, <H"|Z)]
— F[HL H?,... H" Z,].

A final form solution for the model is represented by an equation of the
form

I =X Xy, - 245 8), (25)
with the property that

E oy = ff (X 15 Xy - - -5 Zy 13 §) dG dF,

so that the expectation of »,,; equals the prediction from the final form.
The parameters ¢ = [gy, ..., g,] turn out to be parameters of the final
form (25), which our notation is intended to emphasize. Those parameters
make their appearance in (25) via the process of eliminating E, y, ., from
(24) by expressing it in terms of the x’s and Z’s. The parameters of F also
are embedded in ¢ for the same reason. That is, the function ¢ must satisfy
the equation

LICHE AR

= hlxp x5 Zo [ [ SCtin 5 s 24405 8) 4G dF)

in which the parameters of F and G make their appearance by virtue of the
integration with respect to G and F.

The final form (25) formally resembles the final forms of the usual
macroeconometric models without rational expectations. But there is a
crucial difference, for in (25) there are no parameters that the authority is
free to choose. The parameters in the vector g describe the objective char-
acteristics of the policymaking process and cannot be changed. They cap-
ture all of the factors that determine the prospects for policy. The author-
ity in effect makes a random drawing of « from the distribution described
by (23). The persons on the committee and staffs that constitute the au-
thority “matter” in the sense that they influence the prospects about policy
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and so are represented by elements of g. But the authority has no freedom
to influence the parameters of the final form (23), since the objective pros-
pects that it will act wisely or foolishly are known to the public and are
properly embedded in the final form (25).

The conundrum facing the economist can be put as follows. In order for
a model to have normative implications, it must contain some parameters
whose values can be chosen by the policymaker. But if these can be chosen,
rational agents will not view them as fixed and will make use of schemes
for predicting their values. If the economist models the economy taking
these schemes into account, then those parameters become endogenous
variables and no longer appear in the reduced-form equations for the
other endogenous variables. If he models the economy without taking the
schemes into account, he is not imposing rationality.
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‘’Rational’’ Expectations, the Optimal
Monetary Instrument, and the
Optimal Money Supply Rule

Thomas J. Sargent and Neil Wallace

Alternative monetary policies are analyzed in an ad hoc macroeconomic
model in which the public’s expectations about prices are rational.
The ad hoc model is one in which there is long-run neutrality, since it
incorporates the aggregate supply schedule proposed by Lucas. Follow-
ing Poole, the paper studies whether pegging the interest rate or pegging
the money supply period by period minimizes an ad hoc quadratic
loss function. It turns out that the probability distribution of output—
dispersion as well as mean—is independent of the particular deter-
ministic money supply rule in effect, and that under an interest rate
rule the price level is indeterminate.

This paper analyzes the effects of alternative ways of conducting monetary
policy within the confines of an ad hoc macroeconomic model. By ad hoc
we mean that the model is not derived from a consistent set of assumptions
about individuals’ and firms’ objective functions and the information
available to them. Despite this deplorable feature of the model, it closely
resembles the macroeconomic models currently in use, which is our excuse
for studying it. Following Poole (1970), we compare two alternative strat-
egies available to the monetary authority. One is to peg the interest rate
period by period, letting the supply of money be whatever it must be to
satisfy the demand for it. The other is to set the money supply period by
period, accepting whatever interest rate equilibrates the system. We
study the effects of such policies for two versions of the model: an auto-
regressive version in which the public’s expectations are assumed formed
via fixed autoregressive schemes on the variables being forecast, and a
rational-expectations version in which the public’s expectations are

Work on this paper was supported by the Federal Reserve Bank of Minneapolis, which
does not necessarily endorse the conclusions. Robert Barro, Milton Friedman, John
Kareken, and Robert E. Lucas made useful comments on an earlier version of the paper.
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assumed equal to objective (mathematical) expectations that depend on,
among other things, what is known about the rules governing monetary
and fiscal policy (see Muth 1961).

The two versions have radically different policy implications. In the
rational-expectations version, (a) the probability distribution of output
is independent of the deterministic money supply rule in effect, (b) if the
loss function includes quadratic terms in the price level, then the optimal
deterministic money supply rule is that which equates the expected value
of next period’s price level to the target value, and (¢) a unique equi-
librium price level does not exist if the monetary authority pegs the
interest rate period by period, regardless of how its value varies from
period to period. None of these results emerges from the autoregressive
version. It, instead, exhibits all the usual exploitable tradeoffs between
output and inflation, implies that minimization of the above loss function
is a well-defined nontrivial dynamic problem giving rise to a unique
optimal deterministic feedback rule either for the money supply or for
the interest rate, and has a unique period-by-period equilibrium if the
interest rate is pegged. Thus, in the autoregressive version of the model,
which in principle is merely a variant of Poole’s model, whether an
interest rate feedback rule or a money supply feedback rule is superior
depends, just as Poole asserted, on most of the parameters of the model
including the covariance matrix of the disturbances.

In the rational-expectations version of the model, one deterministic
money supply rule is as good as any other, insofar as concerns the prob-
ability distribution of real output. In this weak sense, an X percent growth
rule for the money supply is optimal in this model, from the point of
view of minimizing the variance of real output. Thus, switching from the
assumption of autoregressive expectations to that of rational expectations
has drastic policy implications. In particular, making that change trans-
forms the model in which following Friedman’s X percent growth rule
would in general be foolish into one in which such a rule can be defended
as being the best the authority can do.

1. The Ad Hoc Model
We assume a structure described by the following equations:!
aggregate supply schedule:
Je=ak,_y + ay(p — i) + w4 >0,i=1,2; (1)
aggregate demand schedule or “I§™ curve:
De = bikey + bty = (yrbicg — 1)) @)
+ b3Z, + uy, by > 0,5, < 0;

! The structure closely resembles the model used by Sargent (1973).
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portfolio balance or “LM? schedule:

my = p, + ¢,y + €1, + Uy, ¢, > 0,¢, < 0; (3)
determination of productive capacity:
ke = dik_y + dyfr, — (api=y — )] + B2y + wyy dy <05 (4)

evolution of the exogenous variables:

Z(

q
Z; pjzt—j + ét’
=
q )
Uy = 21 P -j + Cie
=

Here y,, p,, and m, are the natural logarithms of output, the price level,
and the money supply, respectively; r, is the nominal rate of interest itself
(not its logarithm); while Z, is the vector of exogenous variables. The
variable . ;p{" ; is the public’s psychological expectation of the log of
the price level to prevail at ¢ + ¢, the expectation being held as of the
end of period ¢ — j. The variable k,_, is a measure of productive capacity,
such as the logarithm of the stock of capital or labor or some linear
combination of the logarithms of those stocks at the end of period ¢ — 1.

Equation (1) is an aggregate supply schedule relating output directly
to productive capacity and the gap between the current price level and
the public’s prior expectation of the current price level. Unexpected
increases in the price level thus boost aggregate supply, the reason being
that suppliers of labor and goods mistakenly interpret surprise increases
in the aggregate price level as increases in the relative prices of the labor
and goods they are supplying. This happens because suppliers receive
information about the prices of their own goods faster than they receive
information about the aggregate price level. This is the kind of aggregate
supply schedule that Lucas (1973) has used to explain the inverse cor-
relation between observed inflation and unemployment depicted by the
Phillips curve.

Equation (2) is an aggregate demand or *IS” schedule showing the
dependence of aggregate demand on the real rate of interest and capacity,
a measure of wealth. The real rate of interest equals the nominal rate r,
minus the rate of inflation between ¢t and ¢ + 1 expected by the public
as of the end of period ¢ — 1, namely, ,,,pF , — ,p*,. The rate r, is
assumed to be the yield to maturity on a one-period bond. Aggregate
demand also depends on a vector of exogenous variables Z, which includes
government expenditures and tax rates.

Equation (3) summarizes the condition for portfolio balance. Owners
of bonds and equities (assumed to be viewed as perfect substitutes for one
another) are satisfied with the division of their portfolios between money,
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on the one hand, and bonds and equities, on the other hand, when
equation (3) is satisfied. Equation (3) posits that the demand for real
balances depends directly on real income and inversely on the nominal
rate of interest.

Equation (4) determines productive capacity for the next period, while
equation (5) describes autoregressive processes for the exogenous variables.
The &s, which are sometimes called the “innovations” in the Z and u
processes, are serially uncorrelated random. variables.

To complete the model, we need equations describing ,,,p¥ , and
L¥- 1. Adding those equations to (1)—(5) then results in a system capable
of determining the evolution over time of 3,, p,, 7oy (41071, and B/,
and k,.

2. The Stabilization Problem

In order to discuss policy within the context of an ad hoc model, we must
adopt an ad hoc loss function. The most familiar such function is the
quadratic loss function

2

o K} K}
L =E, ; 6 (Do 2)K(9u b)) + (Onty) (K, K3)' + _4— + _4— ?

where K is diagonal with elements K;; > 0, i = 1,2; K, and K, are
parameters; and 0 < § < 1. This function is separately quadratic in
» and p and implies that L = 0, its lower bound, at particular constant
values of y and p, the target values — K, /2K, for y and —K,2K,, for p.
This function is easy to work with because it is quadratic, additive over
time, and stationary in that the function of y and p whose expectation is
to be minimized does not depend on ¢.

To minimize L, the monetary authority compares two strategies.
The first is to peg r, via a deterministic linear feedback rule

re = GO}_,, (6)

where 6] represents the set of current and past values of all of the endog-
enous and exogenous variables in the system as of the end of period ¢,
and G is a vector of parameters conformable to 0F_ ;. The monetary
authority chooses the parameters in G to minimize L. It must then com-
pare the minimum loss associated with an interest rate rule having those
G’s with the loss associated with the best money supply feedback rule of
the form

m, = HO}_,. (7

Whichever rule delivers the lower loss is the one that should be used.
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3. The Autoregressive Expectations Version

Here we assume that the psychological expectations ,pf ; and ,,,pf ,
are governed by the distributed-lag or “adaptive” schemes

q

:+1P;k = Z(:)vlipt—if (8)
q

t+2[7;'= = Z Vyile—i> (9)

i=

where the »,;’s and v,,’s are fixed numbers. Given that the money supply
is used as the monetary instrument, the system formed by equations
(1)~(5), (8), and (9) can be reduced to a difference equation of the form

q q
Y, = Z:l AY i + Z()Bimt—i + b0 (10)

where Y|, = (y,pp 1 k-1, Z;) and ¢, is a vector of serially un-
correlated random variables, the components of which are functions of
the &.’s in equations (5). The 4;’s are vectors conformable with Y, and
the B/’s are scalars; both the 4;s and B;’s depend on the parameters of
equations (1)-(5), (8), and (9). To find the best money-supply feedback
rule, the monetary authority chooses the parameters H of the rule (7) to
minimize the loss L subject to (10). Where loss is quadratic and the model
is linear with known coefficients, rules of the linear form of (7} are known
to be optimal.?

To find the optimal interest rate rule, the system formed by equations
(1)-(5), (8), and (9) is written as

a

”
Yy = Z Ci¥pemi + ;Diﬂ—i + $an (11)

i=

where Y5, = (U, p, m,, k,—1, Z;). The optimal interest rate rule is the
one with the G’s of (6) chosen so as to minimize loss L subject to (11).3
To show that (1)-(5), (8), and (9) yield versions of (10) and (11) that
give rise to well-defined, nontrivial dynamic problems, it is enough to
examine the one-period reduced forms for y, and p,.
With the money supply as the monetary instrument, we solve (1)-(3)
for y, r, and p and get as a reduced form for p,

b = Jolubi=y) + Jiliri=1) + Jom, + X, (12)

2 See Chow (1970).

3 Chow (1970) describes how optimal rules of the form (6) or (7) are found for a system
like (10) or (11).
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where X, is a linear function (involving the parameters of [1]-[3]) of
k,_1, Z,, and the u;'s and where

Jo = [a2(1 + byc2") + b}/[a;(1 + byesh) + bye5') < 1,
Ji =0 = Jo)/(1 = 62—1>,
J: = _52—1.]1-

Substitution of p, from equation (12) into equation (1) gives the one-
period reduced form for y,. Taking E,_, of p, and y, from these reduced
forms and eliminating m, gives the set of pairs (E,_, y,, £,_,p,) attainable
by choice of m,. The set is a line whose slope is neither infinity nor zero.
Tts position, obviously, depends on lagged values of p, via the p* variables,
and on lagged values of other endogenous variables, the distributions of
which depend on lagged values of m. In other words, the choice for the
deterministic part of m, has effects in future periods, which is what we
mean when we say that (10) gives rise to a nontrivial dynamic problem.

With the interest rate as the monetary instrument, equation (2) is the
one-period reduced form for y, while that for p, is obtained by substituting
the solution for y, into equation (1) and solving for p,. The solution for
beis

ayp, = (ay + by) b=y — balexaticy) + bor,

(13)
+ (b — ap)ke—y + 032, — uy, + Uy

Again, if we take E,_, of equation (2) and equation (13) and eliminate r,,
we find the set of pairs (E,_ »,, E,_yp,) attainable by choice of r,. That
set again depends on lagged values of p, which shows that (11) also gives
rise to a nontrivial dynamic problem.

The monetary authority is supposed to solve each of the two dynamic
problems, minimizing loss first under an m rule and then under an r rule.
Which policy is superior depends on which delivers the smaller loss,
which in turn depends on all of the parameters of the model, including
the covariance matrix of the disturbances. Which rule is superior is
therefore an empirical matter, an outcome which is completely consistent
with Poole’s analysis.

4. The Rational-Expectations Version under a Money
Supply Rule

Here we impose the requirement that the public’s expectations be rational
by requiring that
*
t+ipl—j = Et—j[’rﬂ" (14')

where E,_;p,,; is the mathematical expectation of p,; calculated using
the model (i.e., the probability distribution of p,,;) and all information
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assumed to be available as of the end of period ¢t — j. The available
information is assumed to consist of data on current and past values of
all endogenous and exogenous variables observed as of the end of period
t — j, that is, 8.

To begin, we again solve the system (1)-(3) for y, r, and p given m.
With expectations given by (14), what is now a pseudo-reduced-form
equation for p is

be = JoEespe + J1E1prey + Jom + X, (15)
Computing E,_, p, from (15) and subtracting the result from (15) we get
pe — Ec by = Joim, — Eoym) + X, — E,_ (X,

(16)
= Xt - Er—an

where the last equality follows from the assumption that a deterministic
rule of the form (7) is being followed. But since X, — E,_, X, is a linear
combination of the innovations in the exogenous processes, it follows that
p: — E,_p, Is an exogenous process, unaffected by the rule chosen for
determining the money supply.

Using (14) and (16), we can write equation (1) as

Do = ik + a(X, — E X)) + g, (17)

If we substitute the right-hand side for y, in equation (2), we can obtain
the real interest rate as a function of £,_; and exogenous processes.
Substituting that function into equation (4), we get a difference equation
in k driven by exogenous processes. This proves that £ is an exogenous
process, which by (17) implies that y is an exogenous process, that is, has
a distribution independent of the deterministic rule for the money supply.
So we have proved assertion (@) above: the distribution of output does
not depend on the parameters of the feedback rule for the money supply.

To prove assertion (&), we write the ¢th term of the loss function L as

L, = E[E,_ (K,p, + Kppp? + K, 3, + Ky 37)],

where the insertion of E,_; is valid for ¢ > 0. Using E(x?) =
E[(x — Ex)*] + (Ex)?, we have

L, = Eg[Ko, + KGE,_yp, + Kyu(E,_10)7],
where
Koo = E,([Ky(p, — E,_1p)? + Ky + Kyy 37]

and where, given the exogeneity of y, and p, — E,_,p, proved above,
K, is an exogenous process. Moreover, it is possible, as we shall show
below, to find a rule for m that implies choosing E, _; #, to minimize

Koy + KE,_1p, + Kypp(E,_yp)2
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And, because K, is unaffected by settings for the money supply at any
other time, a rule which minimizes L, also minimizes L.

To show that there exists such a rule for m, we must solve the model.
Again, we take E,_, p, in (15) and write the result as

(1 - JO)Et-lpt = let—lle + JzEx—lmt + Et—lXt' (18)

Since this holds for all ¢, it follows that

(I = Jo)Ei—1besj = JiE1brvjrr + J2Eioimey;

(19)
+ E 1 Xy
By repeated substitution from (19) into (18), we obtain
(1 = Jo)Biste = 2, L0 = JoOVEirXers + SEemimes))
. (20)

+ LA = JV T E, i piinsrs

0 < A/(1 = Jo) = 11 —6;") < L.

We assume that the limit as n— oo of the second term on the right-hand
side of (20) is zero, which is a terminal condition that has the effect of
ruling out “speculative bubbles.” Then, from (20),

where

(1 = Jo)Ei-1t: = i (/1 = JO)]jEt—l(Xt+j + Jomyp)- (21)
=0

Since this holds for all ¢, we may replace ¢ by ¢ + 1 and compute E,_,
of the result to get

(A = JoEsstrns = 3 LA = Jo)V
i=0

X Et—l(Xt+i+1 + szt+.i+l)'

For an arbitrary money supply rule of the form (7), substituting (21)
and (22) into (15) gives the solution for p,; substituting (21) and (22) into
(2) gives the solution for 7,. This assumes that the rule is not such as to
imply too explosive a process for X,,; + J,m,, j.4

(22)

4 A workable “reduced form” for p, can be obtained by substituting (20) into (15)
and then by using (5) and (7) to replace E,_ m,,jand E,_, X, ; with the linear functions
of past variables that they equal. These linear functions are easily calculated from the
feedback rule for m, and the autoregressions governing components of X,. While the
resulting “‘reduced form” for p, formally resembles the corresponding equation in the sys-
tem with “adaptive” expectations, there is a crucial difference. Now changes in the
parameters of the feedback rule for m, produce changes in the parameters of the reduced
form for p,. This feature of the system is what renders Poole’s results inapplicable. For
an explicit illustration of the dependence of the reduced-form parameters on the form of
the policy rule, see Sargent and Wallace (1973, pp. 332-33).
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To find the optimal money supply rule, multiply (22) by J,/(1 — J,)
and subtract the result from (21} to get

(1 — JOE,—1py — J1Ei-1be41 = Eii X, + Jom,. (23)

The value of E,_, p, that minimizes L, for all ¢ is

E,_1p. = —K,[2K,,, (24)
so that

E,_piv1 = —K;[2K,,. (25)

The optimal rule for the money supply is obtained by substituting
(24) and (25) into (23). The resulting expression for m, is a feedback rule
of the form (7).

Thus, in the rational-expectations version of our model, the choice
among deterministic rules for the money supply is a trivial problem.
One argument of the loss function, y, is unaffected by the rule, so the
problem becomes the simplest kind of one target—one instrument problem.
Moreover, a definite rule emerges only because we have assumed in
specifying L that there is a target value for the price level. If] instead, loss
were made dependent only on the variance of the price level, then one
deterministic rule would be as good as any other.

The reason that the distribution of real output is independent of the
systematic money supply rule can be summarized as follows. In order for
the monetary authority to induce fluctuations in real output, it must
induce unexpected movements in the price level by virtue of the aggregate
supply curve (1). But by virtue of the assumption that expectations about
the price level are rational, the unexpected part of price movements is
independent of the systematic part of the money supply, as long as the
authority and the public share the same information. There is no system-
atic rule that the authority can follow that permits it to affect the unex-
pected part of the price level. Of course, the authority could add an
unpredictable random term to the systematic part of the money supply,
so that (7) would be amended to become

my = Ho:k—l + 'I’r: (7’)

where y/, is a random variable obeying Ey, | 6., = 0. Then the dis-
tribution of unexpected price movements and of real output will depend
on the distribution of ,. But clearly, there is no way the authority can
base a countercyclical policy on this particular nonneutrality, since there
is no way the authority can regularly choose y, in response to the state
of economic affairs in order to offset other disturbances in the system.
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This follows since ¥, is that part of the money supply obeying Ey, | 8, =
0. Furthermore, in our model it is optimal to set ¥, = O for all ¢.

5. The Rational-Expectations Version under an Interest
Rate Rule

Above we showed that a certain terminal condition implied the existence
of a unique equilibrium price level for the rational-expectations version
under a money supply rule that is not too explosive. That analysis took as
a starting point the difference equation (18). With the interest rate
determined by the feedback rule (6), a seemingly analogous difference
equation is obtained by imposing rationality, equation (14), in (13) and
taking E,_, of the result

0 = by(E,_yp — E_ipisr) + bory + (b — a)k,—y

(26)
+ b3Et-l(Zt -, + “zz)-

If we solve (26) by recursion, proceeding as we did in deriving (20) from
(18), we find

E,_ip = — Z) E _{reej + [(6y — a)[br)kesjoq + (83/82) (27)
=
X (Zipj = Uyepj + s )} + Ei i Prinsre

To obtain a particular solution for E,_, p, from (27) requires imposing a
terminal condition in the form of taking as exogenous a value of E,_, p, , ;
for somej > 0. This is obviously a very much stronger terminal condition
than we had to impose on (20), a consequence of (26) being a non-
convergent difference equation. Thus, when the interest rate is pegged,
the model cannot determine a path of expected prices E,_;p,,;,
7=0,1,..., and by implication cannot determine the price level p,.
Neither can it determine the money supply.

The economics behind the underdetermined expected price level is
pretty obvious. Under the interest rate rule (6), the public correctly
expects that the monetary authority will accommodate whatever quantity
of money is demanded at the pegged interest rate. The public therefore
expects that, ceteris paribus, any increase in p, will be met by an equal
increase in m,. But that means that one E,_,p, is as good as any other
from the point of view of being rational. There is nothing to anchor the
expected price level. And this is not simply a matter of choosing the
“wrong” level or rule for the interest rate. There is no interest rate rule
that is associated with a determinate price level.

At least since the time of Wicksell it has been known that, in the
context of a static analysis of a full-employment model with wages and
prices that are flexible instantaneously, it can happen that the price level
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is indeterminate if the monetary authority pegs the interest rate.® In
such a static analysis, the indeterminacy of the price level depends
critically on output and employment being exogenous with respect to
shocks to aggregate demand or portfolio balance; that is, the Phillips
curve must be vertical. In our model, however, the Phillips curve is not
vertical, but Wicksell’s indeterminacy still arises.

6. An Information Advantage for the Monetary Authority

Here we shall examine some consequences of the monetary authority
having more information than the public. We shall first show that if the
monetary authority follows the money supply rule that is optimal if there
is no information discrepancy, then the loss attained is the same as
attained when there is no information discrepancy. Then we consider
whether that rule is optimal given an information discrepancy.

We shall write E,_, for the expectation conditional on what the
monetary authority knows at the end of period ¢ — 1 and E, ,_, for
the expectation conditional on what the public knows at the end of
period ¢ — 1, where 0 is a subset of what the monetary authority knows.
Then in place of (14) we impose

t+ip:k—j = Eg _jbr+is (28)
so that in place of (15) we have
pe = JoEo, 10 + J1Eo,i—10t+1 + Jom + X, (29)

Then, taking E, ,_, of p, and subtracting from p,, we have
b — Eo,t—lpl = Jo(m, — Ea,t-lmr) + (X, — Eo,z—1X1)~ (30)

The rule that we found to be optimal without an information dis-
crepancy is

Jomy = —(Ky[2K,5)(1 = Jo — J1) — B, X, (31)
From this it follows that
jZ(mt - EB.t—lml) = "Et—er + Eo.r—-er' (32)
Substituting into (30), we have

b — EB,t—lp! = Xt - E:—lXt' (33)

5 See Olivera (1970). In both our model and the standard static model, the aggregate
demand schedule must exclude any components of real wealth that vary with the price
level if Wicksell’s indeterminacy is to arise, For example, if the anticipated rate of capital
gains on real (outside) money balances is included in the aggregate demand schedule,
the price level is determinate with a pegged interest rate. However, such a system has
peculiar stability characteristics, since stability hinges on the sign of the expected rate
of inflation.
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Upon substituting from (33) into equation (1) of the structure, we get
equation (17). And if we substitute for y, in equation (2) the right-hand
side of (17), we obtain [r, — Ey ,_;(p,+; — p,)] as a function of k,_,
and the exogenous processes, the same function that we previously found
forr, — E,_,(p,+, — p,)- Then, substituting this function into equation
(5) of the structure, we get the same first-order difference equation in %
as we had without an information discrepancy. This proves that under the
rule given by (31), the distribution of &£ does not depend on the information
discrepancy. It follows then from equation (17) that the same is true for y.

To find the distribution of p,, we proceed to solve the difference equation

(I — Jo)Eg,c—1£: = J1Ep,c—1be+1 + JoEg -1y + Eg (1 X, (34)

which is obtained by taking E, ,_, of (29). Then, proceeding as we did
for (18), we obtain expressions exactly like (21) and (22) except that in
place of E,_, on the left and right we have £, ,_,.

But from (31)

Xevj + Jamesy = —(K2K55)(0 — Jo — Jo) + Xisj — By Koy
soforj > 0

By 1(Xpsj + Jamer) = —(K2K) (Y = Jo = J1)
= E_(Xi4; + Jameyj)

Thus, use of the rule given by (31) implies By ,_1p,1; = E,_ 1614}
j = 0, 1, which by (29) implies that under the rule given by (31) the
distribution of p does not depend on 8, that is, does not depend on the
information discrepancy. It follows that the loss attained under the rule
given by (31) does not depend on the information discrepancy.

This shows that the monetary authority can do as well given an
information discrepancy as it can do if there is none. But can it do better?
Can it, as it were, take advantage of the presence of an information
discrepancy? We are not sure. But within our structure, the answer seems
to be that it can take advantage of a discrepancy, although necessarily in
a limited and rather subtle way.

To indicate why, let us focus first on how the distribution of y depends
on the rule for m. Under present assumnptions, equation (1) of the structure
is

Yo = @k + ay(py — Eg 1by) + Uy (35)

It follows that as of the end of ¢ — 1, E, ,_; , is unaffected by the choice
of m,, since

By i-19: = a1Eg o 1kooy + Ey gy, (36)

To find the variance of y,, we subtract (36) from (35) and obtain
Je = a)k,_y + ayp, + &y, where i, = x, — E, ,_,x,. The variance of
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J, around E, ,_, y, is, therefore,

Eo,:—1(J712) = Eo,r—1[(a1f€t—1 + d)p] + Eo,r—l(f’rz)

(37)
+ other terms,

where #, = E,_,x, — Ey ,_yx, and where the omitted terms are un-
affected by the setting for the deterministic part of m,. Thus, setting m,
according to (31) (i.e., setting p, = 0) minimizes E, ,_,( #7) only if the
first term on the right-hand side of (37) cannot be made negative. That
term can be made negative by a rule different from (31) if a,k,_, +
éy, # 0, that is, if the monetary authority knows more about either the
k,_, or the u, process than does the public. Of course, to take advantage
of this information discrepancy, the monetary authority must know
precisely how the public’s information differs from its own.

Similar conclusions hold for the distribution of £, The expectation
E, ,_ik, is unaffected by the setting for m,, but, in general, the variance
E, (k%) depends on it and is not minimized by use of the rule given by
(31).® And since the setting for m, affects the distribution of (4}, p,+;)
for j > 0 by way of its effect on the distribution of %,, this means that,
given an information discrepancy, our structure gives rise to a non-
trivial dynamic problem.

But this should not be taken to mean that we are back in the setting
produced by the assumption that expectations are formed on the basis
of fixed autoregressive schemes. The information discrepancy assumption
does not produce any simple tradeoff between the means of output and
the price level. The fact that £, ,_, y, and E, ,_.k, are unaffected by
m, is very limiting if § contains, savy, as little as (1, p,_,, »,_,). Second, to
exploit the information discrepancy, the monetary authority must know
what it is. To assume that it does seems farfetched. Indeed, we suspect
that estimating the discrepancy is a very subtle and perhaps intractable
econometric problem.

For these reasons, we think some comfort can be taken from the first
result established in this section. Use of the rule given by (31) is optimal
if the public is as well informed as the monetary authority. The loss
attained under that rule does not depend on how well informed the public
is, and implementation of the rule does not required knowledge of how
well informed the public is.

This does not, of course, deny that there is a gain from learning more
about the exogenous processes. Settings for the money supply under the
rule given by (31) depend on what the monetary authority knows.
Operating under that rule, loss is smaller the more the monetary authority
knows about the exogenous processes.

¢ The reader may verify this by finding &, as a function of k,_; and p, — Ey,; 14,
using (35) and equations (2) and (5) of the structure.



228 SARGENT AND WALLACE
7. Concluding Remarks

Given that our conclusions are derived from an ad hoc model, should
they be taken seriously? In one sense, they should not be. Because of their
ad hoc nature, neither the structure set out in section 1 nor the loss func-
tion of section 2 should be accepted as providing a suitable context
within which to study macroeconomic policy. Nevertheless, some aspects
of our model cannot be dismissed so easily. First, the hypothesis that
expectations are rational must be taken seriously, if only because its
alternatives, for example, various fixed-weight autoregressive models, are
subject to so many objections. Second, the aggregate supply hypothesis
is one that has some microeconomic foundations,” and it has proved
difficult to dispose of empirically.® It is precisely these two aspects of our
model—rational expectations in conjunction with Lucas’s aggregate
supply hypothesis—that account for most of our results. We believe that
the results concerning systematic countercyclical macroeconomic policy
are fairly robust to alterations of other features of the model, such as the
aggregate demand schedule and the portfolio balance condition. In
particular, the dramatically different implications associated with
assuming rational expectations, on the one hand, or fixed autoregressive
expectations, on the other hand, will survive such alterations.

References

Chow, Gregory C. “Optimal Stochastic Control of Linear Economic Systems.”
J. Money, Credit and Banking 2 (August 1970): 291-302.

Lucas, Robert E., Jr. “Some International Evidence on Output-Inflation
Tradeoffs.” A.E.R. 63 (June 1973): 326-34.

Muth, John F, “Rational Expectations and the Theory of Price Movements.”
Econometrica 29 (July 1961): 315-35.

Olivera, Julio H. “On Passive Money.” J.P.E. 78, no. 4, suppl. (July/August
1970): 805-14.

Poole, William. “Optimal Choice of Monetary Policy Instruments in a Simple
Stochastic Macro Model.” Q.J.E. 84 (May 1970): 197-216.

Sargent, Thomas. “Rational” Expectations, the Real Rate of Interest, and the ““ Natural”
Rate of Unemployment. Brookings Papers on Economic Activity, no. 2, Washing-
ton: Brookings Inst., 1973.

Sargent, Thomas, and Wallace, Neil. “Rational Expectations and the Dynamics
of Hyperinflation.” Internat. Econ. Rev. 14 (June 1973): 328-50.

7 For example, see Lucas (1973).
8 Tests of the aggregate supply hypothesis are reported by Lucas (1973) and Sargent
(1973).



12

Rational Expectations and
the Role of Monetary Policy

Robert J. Barro

The purpose of this paper is to analyze the role of monetary policy in a
model with three major characteristics: (1) prices and quantities are com-
petitively determined by market-clearing relationships-—that is, by the so-
lution of a competitive equilibrium system; (2) information is imperfect;
and (3) expectations of future variables are formed rationally, in the sense
of being optimal predictions based on the available information. The
focus of the analysis is on the effects of monetary expansion on prices and
outputs.

Part I of the paper generates a Phillips-curve-type relation in a frame-
work that builds on the work of Friedman (1968) and Lucas (1973). The
source of the Phillips curve is a lack of full current information that pre-
vents individuals from dichotomizing unanticipated price movements into
relative and absolute components. Hence, although suppliers and de-
manders in any market form their expectations about future prices (in
other markets) in a rational manner, the implied behavior of output in
each market does not separate unanticipated supply and demand shifts
into relative and aggregate parts. In this framework changes in money
that are not fully perceived as nominal disturbances can lead to move-
ments in output. It also follows here that an increase in the variance of the
monetary growth rate (which is one component of the variance of aggre-
gate excess demand) induces individuals to attribute a larger fraction of
observed price movements to monetary forces, and thereby leads to a re-
duced responsiveness of output to a given monetary disturbance. Thus, as
in Lucas’s model, the magnitude of the Phillips curve slope is inversely
related to the variance of the monetary growth rate.

Part 1 of the paper also discusses the determination of the variance of

This research was supported by a grant from the Liberty Fund. I have benefited from
discussions of earlier versions of this paper at the Federal Reserve Bank of Minneapolis
Seminar on Rational Expectations, and at seminars at Chicago, M.LT., Rochester, and
Pennsylvania. I am particularly grateful to Bob Lucas for a number of important suggestions.
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relative prices and the variance of future prices about their currently pre-
dictable values. One interesting conclusion is that an increase in the vari-
ance of aggregate excess demand would lead to an increase in the variance
of relative prices.

The second part of the paper follows Sargent and Wallace (1973) by
inquiring into the role of monetary policy in this type of rational expecta-
tions model. Pure variance of money leads to an increase in the variance of
output about its full current information position and to an increased
variance of future prices about their currently predictable values. Essen-
tially, an additional amount of monetary noise makes it more difficult for
individuals to isolate real shifts, and therefore tends to move output away
from full information output. Accordingly, to the extent that direct costs
of controlling money are neglected, a zero variance of money would be
optimal.

I then consider the implications of feedback effects from observed eco-
nomic variables to money. When the monetary authority lacks superior
information, it turns out that this sort of feedback is irrelevant to the
determination of output. Essentially, when individuals know the form of
the feedback rule and also perceive the variables to which money is react-
ing, this type of monetary behavior would be taken into account in the
formation of expectations. When the monetary authority possesses supe-
rior information there is the potential for beneficial countercyclical policy.
However, the provision of the superior information to the public has iden-
tical implications for output if the costs of providing this information are
neglected.

Finally, I consider the case where the monetary authority has superior
information about its own monetary rule. This situation might permit a
form of systematic policy deception in the “short run,” when the public
does not appreciate the nature of the deception. However, in my model
where the policy criterion concerns the gap between actual and full infor-
mation output, this type of policy deception is not desirable.

1. A Rational Expectations Model with Imperfect Information
A. Setup of the Model

The model is an extension to the one developed by Lucas (1973). There is
one type of nondurable commodity, denoted by y, that can be viewed as a
personal service. With this view, the supply of the commodity corresponds
to the supply of factor services, and the demand for the commodity corre-
sponds to the demand for factor services. The commodity is transacted in
various markets, indexed by z = 1, ..., n, that are at physically separated
locations. The variety of locations for a single good is intended to serve as
a proxy for markets in a variety of goods, since the multilocation context
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seems easier to formalize. There is assumed to be an instantaneous flow of
information within any market, but a lag in the flow of information across
markets. Hence, at a given point in time, there can be a different commod-
ity price across markets, but only a single price within each market.

The model is constructed in a discrete time period framework, where the
length of the period signifies the time delay with which information travels
across markets. In the present setup market participants possess full infor-
mation about the relevant economy-wide variables with a one-period lag.
During a single period an individual can visit any of the n markets, but it
is assumed to be impossible to visit more than one market during a pe-
riod.! Further, it is supposed that there is sufficient information about last
period’s prices across markets so that current arbitrage insures that all
markets offer the same ex ante distribution of price. In this respect the
setup resembles the one used by Mortensen (in press).

Aside from lagged knowledge of aggregate variables, a participant in
market z also possesses current information that is assumed to be limited to
an observation of the current price in that market, P,(z). The crucial idea
is that certain types of local information are received more rapidly than
some aspects of global information—such as prices in other markets. It is
this differential information structure that allows for a confusion between
relative and absolute shifts, and thereby allows for temporary real effects
of unpreceived money movements. Of course, the use of a fixed-length
information lag and the distinction of only two types of information, local
and global, are abstractions made solely for technical convenience.

Aside from the nondurable commodity, the only other good in the econ-
omy is fiat money, M.2 Money is held by individuals because it is the only
available store of value. New money enters the economy as transfer pay-
ments from the government. These transfers are received by individuals at
the start of each period in an amount that is independent of each individu-
al’s money holding during the previous period. It is assumed, for simplic-
ity, that the government does not participate directly in the commodity
markets.

In order to keep the model analytically manageable, I have constructed
the equations in log-linear form. All of the variables used below in these
equations are to be interpreted in logarithmic terms.

IThe present analysis does not deal with optimal search for information across markets.
Further, the manner in which aggregate information is transmitted (with a one-period lag) is
not explored. Extensions to incorporate optimal search could be very interesting.

2Sargent and Wallace (1975) have constructed a model that is similar in some respects, but
which also includes a capital market. As Bob Lucas has pointed out to me, the existence of
a single, economy-wide capital market implies that the observation of the price (rate of
return) on this market conveys important aggregate information. This sort of current aggre-
gate information is very different from the current local information that I assume is available
in the present model. I plan to deal at a later time with the different type of information
structure that is implied by the existence of an economy-wide capital market.
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The supply of the commodity at date ¢ in market z, denoted by y$(z), is
assumed to depend on the following set of variables: (1) A systematic
supply term, £$(z), that is intended to capture systematic changes in tech-
nology, population, etc. (2) A term that measures the current price of
output in market z, F,(z), relative to the price that is expected to prevail
next period.? Because all of next period’s markets have the same ex ante
distribution of price, it can be assumed that this expectation applies to
P, ., the (geometric, unweighted) average of prices across the markets at
date ¢ 4+ 1. If I,(z) denotes the information possessed at date ¢ by partici-
pants in market z,* then EP, | |],(z) is the relevant price expectation. A
positive response of supply to the term P(z) — EP, ;| 1,(z) can be viewed
as an effect of speculation over time associated with the intertemporal
substitutability of leisure. This type of effect has been discussed in Lucas
and Rapping (1969) and Lucas (1972). (3) A wealth variable, measured as
M, + EAM, |I,(z) — EP, ,|I,(2)],° that is assumed to have a positive
effect on desired leisure, and hence a negative effect on factor supply and a
negative effect on y§(z). The inclusion of the (log of the) aggregate money
stock, M,, reflects a simplifying assumption that the total money possessed
by participants in market z, M,(z), is always the same fraction of the
aggregate money stock.® The term E AM, ,|1,(z), where AM, =
M, , — M,, accounts for the expected governmental transfer at the start of
the next period. (4) Random terms u$ and &$(z), where «§ is a shift term on
aggregate supply, and &$(z) is a shift term on relative supply in market z.
The sample mean of £$(z) across the markets is zero by definition. Other
properties of the distributions of these random variables will be discussed
below, after the introduction of the demand side of the model.

The specific form of the supply function (in log-linear terms) is

74(2) = K(2) + a[F(2) — EP 4| £(2)]

1
- Bs[Mt + EAM, (| L(2) — EP (| 1(2)] + u} + £(2), M

where a, and f3, are, respectively, the (absolute values of the) relative price
and wealth elasticities of current commodity supply. It should be noted
that the wealth term in equation (1) does not hold constant the appropri-
ate measure of wealth when P,(z) changes. The price deflator for the

3The inclusion of expected prices at dates further into the future does not seem to have any
important effects in the present model.

4The present framework is sufficiently simple so that all participants in a single market at
a given point in time have the same information set. In this respect, Lucas (1975) considers a
more complicated setup.

5It would seem preferable to subtract off the expected desired real money holding at date
t + 1. However, this change would complicate the exposition of the model without affecting
the main results. See the discussion at the end of Appendix 2.

8Lucas (1972) develops a model in which this fraction is a random variable. In my model
the random relative disturbance terms, discussed next, serve the same purpose.
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wealth term should be a (weighted) price index that includes P,(z) as well
as EF,_ ;. The full effect of FP,(2) on y§(2) includes a positive substitution
effect plus a reinforcing effect that derives from the reduction in appropri-
ately measured wealth. However, this wealth effect would be negligible if
the weight of the current period, during which 7,(z) applies, is small rela-
tive to the weight of the future period(s), during which EZ,, applies.
Subsequently, the important issue concerns the net effect of EP,, on »§(2),
which depends from equation (1) on the sign of 8, — a,. If the current
period is viewed as short relative to the length of the future, then the
substitution effect, as measured by «,, would tend to dominate over the
wealth effect .. It is assumed below that the substitution effect is domi-
nant, so that @, > S, and the net effect of EP, | on y$(z) is negative.

The specification of the demand side of the model is parallel to that of
the supply side,

() = kH(2) — aq[F(2) — EP 4[] (2)]

2
+ Bd[Mt + E AMHlIIz(Z) —EP ,|1(2)] + “td + 5?(2) =)

Price speculation by demanders implies a negative effect of [F(z) —
EP , (|1,(z)) on »%(z), as measured by the elasticity —a,. Note that de-
manders in market z are assumed to possess the same information set,
I,(z), as suppliers to this market.” The positive effect of wealth on com-
modity demand is measured by the elasticity ;. As discussed in the case of
supply, it is assumed that the substitution effect of E £, is dominant, so
that a; > B, applies. Finally, »¢ and £J(z) are stochastic shift terms that
are analogous to those introduced into the supply function.

B. Market-Clearing Determination of Prices and Outputs

Before deriving the market-clearing conditions, it is useful to define the
excess demand variables,

k(2) = ki(z) — kj(2),

u, = ud — s

t t t
b (2) = el(z) — £](2).

The determination of prices depends solely on excess demand measures,
but the determination of output (below) requires also the specification of

In the present setup an individual supplies and demands commodities simultaneously in
the same market. It would be possible to allow each individual to visit two markets in each
period, one for supply and one for demand, but the resulting complications in information
sets are considerable. Separate concepts of supply and demand can be maintained here if one
thinks of the commodity that an individual supplies as not being identical to those he
demands (e.g., back-scratching services?).
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separate supply and demand functions. I assume in the main text that u, is
generated by a random walk process,

U =1y + 0,

v, ~ N(0, 02),

where N refers to the normal distribution. The random variable v, is seri-
ally independent and represents the current period’s “innovation” to real
aggregate excess demand. Because u, has a one-to-one effect on 4, ;, the
v-innovations are “permanent” in the sense of determining the most likely
position of all future values of u. I consider in Appendix 1 the implications
of substituting a first-order Markov process, u, = Ay,_; + v,, where
0 = A = 1. In this formulation, smaller values of A signify that v, has more
of a transitory and less of a permanent effect on excess demand.

I assume that ¢,(2) is serially independent and independent of ,,8 where
£,(z) ~ N(0, 62). The e-shifts are purely transitory, in the sense of lasting
only one period. This assumption seems best viewed as reflecting substan-
tial arbitrage possibilities across markets over one period of time, rather
than implying that relative shifts in taste, technology, etc., are short-lived.

Finally, it is useful to define the (absolute value of the) price elasticity of
excess demand, @ = a, + a4, and the wealth elasticity, 8 = B, + f8,. The
earlier assumptions on the dominance of substitution effects imply a« > §.

The price at date ¢ in market z is determined to equate supply and
demand in that market.® Equating the expressions in equations (1) and
(2), and using the above definitions, leads to the market-clearing condition
for market z,

aPy(2) = (a — BEP, | L,(2) + BIM, + EAM, | ,(2)]

(3)
+ k(2) + u, + £,(2).

It is apparent from the form of equation (3) and the assumed serial inde-
pendence of ¢,(z) that the distribution of P,(z) can be independent of the
market index, z, only if £,(z) is constant across markets. That is, the arbi-
trage condition that ensures that all markets have the same ex ante distri-

8Since the sample mean of ¢(z) is zero by definition, the distribution of ¢,(z) would
actually depend on the number of markets. However, this consideration seems unimportant
if the number of markets is large, as I am implicitly assuming. It is also possible that certain
markets have positive or negative correlations of their relative excess demand shifts with the
aggregate excess demand shifts (u, or the monetary disturbance that is discussed below). In
that case there would be different information about the aggregate picture in different mar-
kets. The analysis would then have to consider the implications of this differential informa-
tion on the choice of which market to enter. I do not deal with these possibilities here.

9The model does not include any elements of adjustment costs for price changes that
would inhibit price flexibility. In this respect see Barro (1972). In particular, there is no
consideration of the role of long-term nominal contracting in the present analysis. The role of
price stickiness in Keynesian models is discussed in detail in Barro and Grossman (1975,
chap. 2). It would be of interest to incorporate price adjustment costs into a rational-
expectations-type model.
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bution of price is that the ratio of systematic demand to supply, k,(2) =
kd(z) — k$(z), be the same for all markets.!0 It is then permissible to drop
the z subscript from the £,(z) term in equation (3).

Equation (3) indicates that F,(z) is determined by a set of “demand-
pull” variables that include the money stock plus expected next period’s
transfer and the sum of systematic and random excess demand terms,
k, + 4, + £(z). There is also a “cost-push” term, EP, _,|I,(z),!! that has
an effect in the direction of the sign of a — . Under the assumption of a
dominant substitution effect, the impact of EP, _; on P,(z) is positive.

The key element of the rational expectations approach is that the EP, |
term in equation (3) is not determined by an ad hoc expectations mecha-
nism from outside of the model, but is instead based on the knowledge—
implied by an assumed knowledge of the model—that prices are deter-
mined by market-clearing conditions of the form of equation (3). Hence,
current market-clearing prices and (the set of) expectations about future
prices are determined through a simultaneous process. In order to imple-
ment this approach, it is necessary to complete the specification of the
model by describing the processes that generate M, and £,. I assume, provi-
sionally, that changes in money are generated by a constant growth rate, g,
plus a random term, denoted by m,. That is,

M, —M,_ =AM, =g +m,

m, ~N(0,02), ®

where m, is assumed to be serially independent, as well as uncorrelated
with », and the array of ¢,(z). I examine the implications of more compli-
cated money supply processes in a later part of the paper. In order to focus
on the short-run, cyclical effects of money, I also abstract in the main text
from long-term monetary growth—that is, ¢ = 0 is assumed. This abstrac-
tion amounts to neglecting the effects of systematic inflation. Appendix 2
deals with the case where g # 0. When g = 0, equation (4) implies that
EAM, | 1,(z) = 0.
I assume that the £, process takes the form,

k, = ko — Bot, (5)

where £; = 0 can be assumed subsequently through an appropriate nor-
malization of output units. It turns out, as shown in Appendix 2, that the
form for £, in equation (5) amounts to assuming that the systematic
growth rate of output is equal to p. Again, it is convenient to abstract in
the main text from the effects of long-term growth so that p = 0 is as-

10Alternatively, if some serial dependence in ¢,(z) had been introduced, then £,(z) could be
such as to just offset the implications of this serial dependence for P,(z).

11The terms on the right side of equation (3) can be viewed equivalently as negative forces
on the current excess demand for money.
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sumed. Since £, = 0 in this case, the systematic excess demand term no
longer appears in the analysis. Appendix 2 deals with the case where
p #0.

The next step is to solve the model in the sense of determining prices and
outputs as functions of exogenous variables. The simplest procedure for
solving the model involves, first, writing out the (log-linear) form of the
solution for £,(z) in terms of a vector of unknown coefficients on the set of
relevant independent variables. Second, the market-clearing condition
expressed in equation (3) is used to determine the values of the unknown
coeflicients. This solution method has been used before in a parallel con-
text by Lucas (1972, 1973). The procedure is analogous to applying the
method of undetermined coefficients to a trial solution in the case of differ-
ential or difference equations. In the present situation P,(z) depends on the
following variables (in a log-linear form),!?

P(z) =TI,M,_, + llym, + Hz0, + [e(2) + Tgn, g, (6)

where the II’s are the unknown coefficients. Since M,_, is included in
current information sets, previous values of M do not appear in the price
solution. Since m,, v, and ¢,(z) are serially independent, past values of these
variables do not appear.!3 Since, for a given value of v,, u, depends only on
u,_1, it follows that values of u prior to { — 1 do not appear.

If individuals know that prices in each period are determined by equa-
tion (6), then the expected price for next period must be

EP | L(2) = HlEMtlIc(z) + IL;Eu, | ,(2)
= ILEWM, ; + m)| 1,(z) + IE(u,_y + e ) (=),

since the expected values of m, ,, v, ; and g, {(z), conditioned on /,(z), are
all zero. The information set, /,(z), is assumed to include observations (or
sufficient data to infer the values) of M,_; and u,_,. The additional infor-
mation contributed by an observation of P,(z)'* amounts, from equation
(6), to an observation of the sum Il,m, 4+ IT;0, + I1,¢,(2). The key to the
formation of price expectations is then the calculation of the two expecta-
tions, Em, and Ev,, conditioned on the observation of P,(z). In effect, these

2In the case where g and p are nonzero, the solution includes the additional terms IT¢f +
[1,—that is, a time trend and a constant term. See Appendix 2.

131f a variable such as »,_, had been entered, it would eventually be determined that its
associated Il-coefficient was zero.

1 have not included an individual’s own value of AM,, which arrives as a government
transfer, as an additional element of 7,(z). This exclusion is satisfactory if the relation be-
tween individual and aggregate transfers is sufficiently noisy so that the individual transfer
provides a negligible increment of information over P,(z). This assumption need not be
inconsistent with my earlier simplifying assumption that M,(z) was a constant fraction of M,
since M, (z) refers to the total money contained in market z. If individual and aggregate M
were always proportionately related, then M, would, itself, become an element of /,(z), and
the principal information gap in the model would disappear.



MoxEerary PoLicy 237

two conditional expectations are obtained by running regressions of m,
and v, respectively, on the observed sum IT,m, + 1,0, + Il,¢,(z). Thatis,

f
Em|I(z) = #[IIth + Mgy, + e (2)),
2

where
9. = (H5)%2
' (H2)2072n+ (H3)203 + (H4)20§ ’
and
a9 ]
Bo | 1,(2) = - [om; + Ty + Te ()], )
3
where

. (11,0
2 (Hz)2°rzn+ (I3)%02 + (T1)%0?

The 6,-coefficient measures the fraction of the total price variance (of P,[z]
about its best estimate given /,_,) that is produced by (aggregate) money
variance m, and the 6, coefficient measures the fraction produced by
aggregate real variance ». The remaining fraction of price variance,
1 — 8, — 0,, is attributable to relative real variance &. The expected price
at £ + 1 can then be written as

1,6, 1.6,
+ 572
I, © 1,

EP |1 (z) =TI,M,_; + ( )[Hth + o, + 1, (2)]

+ Igu,_;. ®)
The Il-coefhicients must be such that the market-clearing condition,
equation (3), holds as an identity, given equations (6) and (8). This iden-
tity relation implies five (independent) conditions corresponding to term-
by-term coefficient equalities for the variables that appear in equation (6).
The algebra is straightforward and I will limit the discussion here to a
presentation and interpretation of the results. The five Il-coeflicients can
be determined to be

I, =1,

I, = (B, + 8,) + (B/a)(1 — 8, — 0,),

1, = IL,/8, (9)
11, = I1,/8,

I, = 1/8

These coefficients imply the price solution

P2) =M,y + [0, + 0, + (B/a)(1 — 0, — 6)]

(10)
X Am, + (1/B)o, + & ()]} + (1/B);_s.
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Before discussing this result, it is convenient to define the variance of the
total aggregate disturbance, fm, + v,, as 03 = B%Z + o2 The f-coeffi-
cients in equation (10) are then determined, using equations (7) and (9), as

2.2 2 2

— B0m+ov — 04

— p2,2 2 2 T 2 2"
Bom+0v+as GA+UE

6, + 0, an

An aggregate “price index,” F,, can be calculated for future reference as
a (geometric, unweighted) average of the prices determined in equa-
tion (10),

Po=M,_; + [0, +0,+ (B/a)(1 — 8, — 8,)][m, + (1/8)v,]
+ (1/B)u,_y.

The relative disturbances, ¢,(z), are averaged out in determining P,.

The main results for £,(z) in equation (10) can be interpreted as follows.
First, M,_;, which is contained in the information set /,(z), has a propor-
tional effect on P,(z) (I, = 1). On the other hand, m,, the random part of
M, is not a part of /,(z). Since market participants do not have separate
observations of P,(z) and the aggregate price index, £,, they cannot sepa-
rate the impact of m, from the impact of the other excess demand shifts,
v, + €,(z). Hence, m, and (1/8)[¢, + &,(2)] enter with a common coeffi-
cient in equation (10). This coefficient is less than one as long as the substi-
tution effect of a change in EZ,;, outweighs the income effect (a > fB).
Because m, has a coeflicient that generally differs from one, it also turns
out that this part of money can have a nonzero effect on output.

The expected future price level follows from equations (8) and (9) as

(12)

EPt+1|It(z) =M, + 6, + 02){mt + (1/B)[v, + Et(z)]} 13
+ (1/B)u,_y. (13)

Note that 8; + 0, is the fraction of total excess demand variance that is
accounted for by aggregate shifts (m and v). Since M and u are generated
by random walk processes, it follows that the m, and », shifts persist into
the next period and therefore continue to affect £, ;. On the other hand,
the g,(z) shift is transitory and does not affect P,_;. Accordingly, the cur-
rent excess demand shift, m, + (1/8)(v, + £,(z)], is weighted by 8, + 8, in
forming E P, ;. This weighting would change if the processes that gener-
ated M,, u,, and ¢,(z) were altered. Appendix 2 deals with the case where u,
is no longer a random walk.

The difference between current observed price in market z and the ex-

pected future price (in any market) is determined from equations (10) and
(13) as

Pi(2) = EFq| L(z) = (B/a)(1 — 0, — 05){m, + (1/B)[v, + &,(2)]}. (14)
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The weighting term on the current demand shift dependson 1 — 8, — 8,,
which measures the fraction of total excess demand variance that is attrib-
utable to relative (hence, in this model, transitory) shifts.

The price solutions from equations (13) and (14) can be substituted into
either the supply or demand function for commodities (equations [1] or
[2]) to obtain an expression for output. It is convenient to define here the
parameter H = a,f8; — a,f,. Then, the result for output is1®

2(2) = (H/a)(1 — 8, — O)m, + (1/a)|a, — (H/B)O, + )] + ef(2)]
+ (1/e)leg + (H/B)O, + 0x)[vf + €5(2)] + (By/Buiy  (15)
+ (Bo/B)ui_.

There are a number of interesting aspects of the output expression. First,
(only) the unperceived part of the current money stock, m,, has an impact
on output. The sign of the effect depends on the substitution and wealth
elasticities of the commodity supply and demand functions, as measured
by the combination H =« f; — a,f;. In Lucas’s (1973) model, the sub-
stitution effect on demand, a,, and the wealth effect on supply, §;, were
both assumed to be zero. In that case unperceived monetary expansion
has, unambiguously, a positive effect on output. More generally, this result
follows if the substitution effect on supply, a,, and the wealth effect on
demand, f8,, are the dominant influences.1® T will treat the case where
H >0 as the normal one, although there is nothing in my particular
model that suggests that this case would typically arise.1?

Second, the magnitude of the effect of m, on »,(z)—which could be
called a (reverse) Phillips curve slope—depends, through the 1 — 6, — 0,
term, on the relation between the variances of relative and aggregate dis-
turbances. In particular,

ol o’

— &
2 2= pi 2 2 2
03+ o? B*62 4+ a2 + o

1 —-0,—-6,=

is the fraction of total excess demand variance that is attributable to rela-
tive disturbances. For given variances of the real disturbances, 2 and o2,
the magnitude of the Phillips-type response diminishes with the variance
of the monetary growth rate, 62.18 That is, when the monetary growth rate

15The output expression neglects any differences in the sizes of markets—that is, there are
no remaining systematic effects on y,(z) that are associated with the z-index.

16Barro and Grossman (1975, chap. 7) contains a related discussion for a model that has
separate labor and commodity markets, but which treats expectations in an ad hoc manner.

17In an overlapping-generations model with a retirement period, this case may be typical.
In this sort of model working households would have a small fraction of total wealth, so that
B, would be small. Further, the retired households, with a relatively large fraction of total
wealth, would have short time horizons, so that 8, would be large.

131f monetary disturbances had differential effects across markets—either systematic or
random—one would anticipate a positive association between ¢2 and o2 However, if the
movement in o2 is much less than one-to-one with o2, the qualitative conclusion about the
Phillips curve slope would remain valid.
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is less predictable, individuals are more inclined to associate observed price
fluctuations in their markets with (aggregate) monetary movements. In
that case, the reaction of output to a given monetary disturbance, m,,
would be correspondingly smaller. This type of effect has been discussed
previously by Lucas (1973, p. 330), and it can be appropriately called the
Lucas-hypothesis on the Phillips curve slope.1® Given the negative effect of
o2 on the Phillips slope, there is a sense in which more variable monetary
growth has a “stabilizing” effect on output. However, since this process
reflects a monetary clouding that lessens the extent to which observed
prices are a signal about relative prices, it seems intuitive that this type of
stabilization would not be desirable in a full sense. Section 2A of this paper
confirms that intuition.

Third, this type of model does not yield real effects of monetary disturb-
ances that persist beyond one period—that is, only the current value of m,
enters into equation (15). Some elements that could result in persistent
effects are (1) the recognition that aggregate information is attained only
gradually over time, rather than fully with a one-period lag; (2) elements
of capital accumulation that would allow current changes in stocks to
have a continued effect into subsequent periods; (3) adjustment costs in
the supply and demand functions. Lucas’s (1975) paper contains aspects of
the first two of these elements. However, my analysis in the present paper
does not incorporate any of these effects.

Fourth, the manner in which the current real shifts affect output brings
out the key aspect of the information structure of the model—namely,
each aggregate shift, v¢ or v5, has the same effect as the corresponding
relative shift, e?(z) or € §(z). This behavior derives from the underlying
assumption that participants in market 2z cannot tell what fraction of the
observed movement in P,(z) reflects a relative price shift rather than an
absolute shift. The precise way in which individuals would like to discrimi-
nate between these two types of shifts will be brought out below in Section
2A. It can also be noted here that the existence of an effect of unperceived
monetary expansion on output, as discussed above, depends entirely on
the inability of market participants to distinguish immediately between
relative and absolute price shifts.

C. Price Distributions

Given the price solutions in equations (10) and (12), the model determines
distributions of prices both across markets and over time. It is convenient
to focus the discussion of these distributions on the problem of predicting

T am currently attempting to test this hypothesis for the United States over the period
1890 to 1973. Lucas (1973) has performed some related tests for a cross-section of countries
during the post-World War II period. Lucas’s results support the hypothesis, but his main
evidence seems to rest on two outlying Latin American cases.
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the future price in a (randomly-selected) market z’, based on information
currently possessed by participants in market 2. That is, I focus on the gap
between P, ,(z") and EP, | 1,(z).2° This gap can be usefully broken down
into three independent components,

P(2) = EP | L(2) = [P (2) — Pa] + [Py — EP (1]

(16)
+ [EPHl”t - EPt+1|1t(Z)]a

where I, denotes full current information. The information set /, includes
separate observations of m, and v,, whereas /,(z) includes only the combi-
nation of m,, v,, and ¢,(z) that is implicit in an observation of 7,{z). It turns
out that the three components in equation (16) are independently, nor-
mally distributed with zero mean, so that the variance of each component
fully specifies its distribution. I will refer to these variances as 72, 62, and
74, respectively, and will use the symbol V' to denote the sum of the three
variances.

The first component corresponds to the distribution of relative prices at
a point in time. Equations (10) and (12) (updated by one period) imply

Pz =Py = /B0, + 8, + (B/a)(1 — 6, — 02)]5”1(3,))

which has zero mean (conditioned on [;[z]). Using the expression for
6, + 0, in equation (11), the variance of relative prices can then be
determined as
P =E[P1(2)) — PP 1(2)

_ ooi + (B/a)ol]?

~ BHoh + o))
Not surprisingly, a key determinant of the relative price variance is 62, the
variance of relative excess demand.?! More interestingly, there is also an
effect of a%. This effect is positive as long as a > B holds, as I have been
assuming. Therefore, an increase in the variance of aggregate excess de-
mand leads to an increase in the variance of relative prices.?? The reason-
ing for this effect is as follows. When 03 increases, the responsiveness of
excess demand to locally observed prices diminishes, because individuals
are less inclined to associate price movements with shifts in relative excess

(17

20Recall that EF, (z') = EF,,, for all 2’ in this model.

21'However, the effect is not unambiguously positive. Two sufficient conditions for a posi-
tive effect are a < 38 or 02 < o%.

22Vining (1974) has a preliminary, I believe inconclusive, discussion of some post-World
War II United States evidence on this issue. Graham (1930, p. 175) discusses some observa-
tions from the German hyperinflation that appear to support this hypothesis. Cairnes (1873)
discusses the general idea that changes in money (gold) would have short-run effects on the
dispersion of relative prices. His emphasis is on the (nonproportional) manner in which new
money enters different parts of the economy, and on differences in the responsiveness of
supply and demand for various types of commodities. Mills (1927 pp. 252-69) calculates
measures of price dispersion for the United States from 1891 to 1926.
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demand. Accordingly, a given-size relative disturbance, ¢,(z), requires a
larger price movement in order to achieve clearing of the local market.
This accentuated response of F,(2) to ¢,(2) implies the increase in relative
price variance, 7.

The second component of equation (16) is the future price net of the
price that is predictable based on full current information, /,. Equations

(12) and (13) imply
Py —EP 1L, = (1/B)0, + 8, + (B/a)(1 — 6, — 0)[(Bmyiy + 2,49)

Note that this component has zero mean (conditioned on /,[z]) and is
independent of the first component. The variance of the future absolute
price level can then be calculated as

o?=E[F; — EP LI (2)
_ o4lod + (B/a)o?P? (18)
G A

The effect of 63 on 02 is unambiguously positive if a > 8. The effect of 02
is negative when a > 8 holds.

Finally, the third component in equation (16) involves the distribution
of relative information in terms of its implications for EP, ,. Equations
(12) and (13) imply

EP I, —EP, |1,(z) = (1/B)(1 — 0, — 8,)(Bm, +v,) — (0, + b,)e,(2)].

It can be verified that this expression has zero mean conditioned on /,(z).
This component is also independent of the first two components. The
variance of relative information can then be calculated as

15 = E[EP (|1, — EP,||],(2)]|1,(2)
_ a5 (19)
B0} + o)
This variance is increasing in both 6% and o2
The full variance of P, ;(z") about EP, ,|/,(z) is the sum of the three
component variances,
V=E[P4(2) — EP L ()P, (2)
it ot 4 (20)
1 2 212 4 5242
= —{|0% + oa)o 050°% .
Bz(oi_'_o?) {[A (B/ ) s] "I" Ae}
It can be shown by straightforward differentiation that ¥ is unambigu-
ously increasing in 6223 and is unambiguously increasing in 62 as long as

a> B

23That is, the positive effect on 73 in equation (19) and the ambiguous (though likely
positive) effect on 77 in equation (17) dominate over the negative effect on 62 in equation (18).
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One aspect of the next part of the paper is an analysis of the impact of
monetary policy on the predictability of future prices, as measured in-
versely by V in equation (20). That analysis would be more meaningful if
price predictability played some direct role in the commodity supply and
demand functions—perhaps by affecting the costs of long-term nominal
contracting. However, the present treatment does not incorporate this type
of effect.

2. Monetary Policy

Following Sargent and Wallace (1975), I now consider the role of mone-
tary policy in a rational expectations framework. Monetary policy is iden-
tified here with a stochastic control rule for determining the time path of
the money stock. My procedure differs from that of Sargent and Wallace
in two major respects: first, the criterion for evaluating policy is different;
and second, my analysis incorporates the dependence of certain coeffi-
cients of the model—in particular, the Phillips curve slope—on the under-
lying distributions of the excess demand shifts. Sargent and Wallace (1975,
p- 5) evaluate policy by using a loss function that gives credit to stabilizing
a measure of aggregate output, where this output measure is an aggregate
analogue to my equation (15). Their model corresponds in essential re-
spects to dealing with the (geometric) average of the y,(2)’s across the
markets, where this averaging of equation (15) over the n markets leads to
an aggregate output expression in which the relative excess demand shifts,
€3(z) and €¢(z), do not appear. Stabilizing this measure of aggregate out-
put would amount to giving no credit to changes in the composition of
output that were responses to changes in relative supply and demand—
that is, to changes in the composition of tastes, technology, etc. It seems
clear that a loss function based on this simple measure of aggregate output
would not be appropriate.

My earlier discussion of the output expression in equation (15) stressed
that the key aspect of the partial information structure of the model is the
confusion between aggregate and relative shifts. It is possible to determine
the output that would arise in each market if all participants were able to
discriminate perfectly between these shifts—that is, under full current in-
formation where 1,(z) includes observations on P, and M,. The output
level under full current information (subsequently called full information
output) can be compared with the output level determined in equation
(15). My proposed criterion for monetary policy is to minimize the ex-
pected squared gap between actual and full information output in each
market.?4

24My basic idea for this measure is that it should serve as an approximation to the expected
loss of consumer surplus. Ideally, the criterion would be based directly on the behavior of
individual expected utilities. Unfortunately, the present model is not set up to proceed in
that fashion.
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A. Prices and Outputs under Full Current Information

This model coincides with the one developed in Part 1 except that P, and
M, (and, hence, m,, v, and ¢,[z]) are now included in I,(z). The analysis
proceeds as in Section 1B until the derivation of EZ, | /,(z). Given the
new information assumption, equation (8) is now replaced by the simpler
expression,

EP | I,(z) = II{(M,_; + m,) + Tlzu,.

The remainder of the analysis follows the form of Section 1B. Using an
asterisk to denote the full (current) information situation, the price level in
market z turns out to be

Pie) =M,y +m + (1/B)uy_q + 2,) + (1/)g(2). (21)

It is convenient to rewrite here the price that arises under partial informa-
tion, from equation (10),

P(z) =M,y + [0, + 0, + (B/a)(l -0, - 0){m, + (1/B)[z, + &(2)]}
+ (1/:8)”3—1'

In contrast with its effect on 7,(z), the unanticipated change in the money
stock, m,, has a one-to-one effect on P}(z). Further, the current real dis-
turbances, 7, and ¢,(2), have different effects on Pj(z). In particular, if
a > f3, the response of P} (z) to the aggregate disturbance, ,, is larger than
that to the relative disturbance, ¢,(2).

The result for full information output is

2i(2) = (1/a)a, — H/BWE + (1/a)(a, + H/BW; + (a,/a)d(z)
+ (ag/@)ef(z) + (B /BWd_y + (By/Bus_y,

where H = a8, — a,B,. Again, it is convenient to rewrite the partial
information result, this time from equation (15),

2(2) = (H/ea)1 — 6, — by)m, + (1/a)a, — (H/B)(B; + 6,)]
X [of + &f(2)] + (1/e)ay + (H/B)Oy + 05)][0f + €i(2)]
+ (By/Brui_y + (By/Bui_y.

There are several interesting contrasts between the results for y,(z) and
those for y;(z). First, m, has no effect on y;(z), which corresponds to the
one-to-one effect of m, on Pj(z). Second, each aggregate shift, »¢ or v%, has
a different effect on y;(z) from the corresponding relative shift, £2(z) or
&$(z). From inspection of the y,(z) and y}(z) expressions, it is clear that the
two responses to the »,’s would coincide if ; + 8, = 1. This result obtains
because #; + 6, = 1 signifies 62 = 0, so that the aggregate-relative con-
fusion cannot arise, and all aggregate shifts induce the appropriate output
response. Note that the effect of m, on y,(z) is zero in this case. It also

(22)
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follows that the response of y,(z) and »;(2) to the ¢&’s would coincide if
6, + 6, = 0, since 65 = 0 in that case. When 8, + 8, is between zero and
one, there will be divergences between the responses of 7,(z) and ¥ (2) to
m,, v, and &,(z). This observation can be seen more easily by writing out an
expression for the gap between actual and full information output,

2(2) —i@) = (H/aB)[(1 = 0y — 0,)(Bmy + 1) — (0, + O5)8,(2)].  (23)

If H>0 and 0 <8, + 6, <1, it is clear from equation (23) that (in
relation to the full information situation) y,(2) reacts too much to the
aggregate shifts, m, and »,, and not enough to the relative shifts, ¢,(z).
Equation (23) also indicates again that the important informational divi-
sion is between aggregate shifts, fm, + v,, and relative shifts, ¢,(z). In a
more general model it would also become relevant to separate the Sm, part
of the aggregate shifts from the », part—or, put another way, to separate
the monetary shift, m,, from the real shift, », + ¢,(z). For example, this
other type of informational division would arise if 4, were no longer gener-
ated by a random walk. Appendix 1 deals with this case and clarifies some
aspects of the two types of information divisions: aggregate versus relative
and monetary versus real.

The proposed criterion for monetary policy is to minimize the expected
squared gap between ,(z) and y;(z), which is denoted by £. Substituting
for 8, + 0, from equation (11) and using equation (23), the result is

Q=E[y,(2) —r;(2)P|1,(2)
_ H%%02
— (aB)(o} + o)

This expression for the variance of output about its full information posi-
tion will be used in the subsequent discussion of monetary policy.

(24)

B. The Optimal Money Variance

Before introducing the possibility of monetary policy through feedback
control on observed values of prices, outputs, etc., I consider here the role
played by pure variance of money—that is, by oZ. First, it is clear from
equation (23) that, if all the coeflicients including 8, + §, were fixed, then
an increase in 02, would lead to an increased variance of ,(z) about y;(z).
Accordingly, in the Sargent and Wallace model, where all coefficients are
fixed, it is trivial that 62 = 0 would be optimal (and, hence, they do not
discuss this issue). On the other hand, in my model an increase in 02 has
effects that operate through the #-coeflicients. Specifically, the coefficient
on the aggregate disturbance term in equation (23) is
of
1 -6, —-6,= Fo? ¥ ol 1 o
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and this coefficient declines with 02,. As 62 increases, individuals attribute
a larger fraction of observed price movements to aggregate shocks and are,
therefore, fooled less—in terms of the departure of y,(2) from y; (z)—for a
given value of the aggregate shock, fm, + v,. In fact, as 02, — o0, the
contribution of the aggregate disturbance term in equation (23) to the
output variance 2, as calculated in equation (24), approaches zero.?®
However, the contribution to § of the relative disturbance term in equa-
tion (23), (§; + 0,)e,(2), is an increasing function of 02, so that the overall
effect on  depends on two offsetting forces.

The nature of the net effect is apparent from equation (24). The form of
this expression implies that £ is an increasing function of both 6% (which
equals 8262 + o2)and o2 Hence, it is true in this model that the variance
of output about its full information position is minimized by setting
02 = 0.26 The reason for this result is that the policy criterion dictates
getting output as close as possible to its full information position. An in-
crease in any of the underlying variances, 62, 02, or 62, clouds the picture,
in the sense of making current price information a less accurate signal for
market participants, and therefore makes it more difficult for individuals
to get output close to full information output. To the extent that the
variance of money, 62, can be controlled,?” the smallest possible value
would be optimal.?®

The conclusion that 02, = 0 is optimal is basically in the spirit of the
constant growth rate rule that has been advocated particularly by Fried-
man (e.g., Friedman 1960, chap. 4) and earlier by Simons (1948, pp. 181-
83). The present result indicates that monetary policy is best when it is
most predictable. In particular, an increase in money variance is non-
neutral and leads to an increased variance of output about its full infor-
mation position because money variance clouds the real picture and re-
duces the valie of observed prices as allocative signals.

It is also useful to note here that the predictability of future prices is
maximized by setting 6% = 0. That is, the variance V of P, (z’) about

ZBecause (1 — #, — 0,)? approaches zero faster than o2 approaches infinity.

?%In an earlier version of this paper I obtained the result that 6% = 0 would minimize Q
only under some configurations of the underlying parameters, and that 62 = oo was optimal
in some other cases. Those conclusions depended on a misspecification in which £P,, rather
than EP,_,, entered into the supply and demand functions. Another way to end up with
62, = o0 as an answer is to change the objective function to the minimization of the variance
of “aggregate” output y, about Ey, | /,_; (essentially the Sargent and Wallace criterion), where
the aggregation eliminates the ¢,(z) terms from the output expression of equation (15). This
objective would definitely call for 0% = oo if aggregate real shifts were absent; that is, if
ud = u§ = 0. In the case where aggregate real shifts are present, the criterion would typically
lead to a positive, but finite, value for a2.

#1f there are significant money-control-type costs associated with reducing 62, then these
costs would have to be weighed against the benefits from a lower variance. This sort of
tradeoff would lead to the choice of a positive value for o2,

Z8This result remains valid when the u, process is no longer a random walk. See Appen-
dix 1.
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EP,,,|1,(z), which is indicated in equation (20), is an increasing function
of 6% (and, hence, of 02) as long as a > B holds. Therefore, the introduc-
tion of a price variance criterion into the objective function would not
alter the above result.

C. Monetary Policy as Feedback Control

I now consider the implications of complicating the money supply rule
from the simple form of equation (4) to include feedback effects from
observed economic variables. This extension would allow the monetary
authority to perform the countercyclical function of increasing money
more rapidly when output is relatively low or prices are relatively high,
and expanding money less rapidly in the reverse situations. The implica-
tions of this sort of monetary behavior depend crucially on the informa-
tion set that is available to the monetary authority. There are two cases
that have sharply divergent implications. In the first case, the monetary
authority does not have more information than any of the market partici-
pants. Formally, the authority’s current information set is ,_,, which in-
cludes all relevant information with a one-period lag, but does not include
an observation on F,.2° In this situation monetary policy can react (say,
countercyclically) only to economic variables that have already been per-
ceived by market participants. In the second case, the monetary authority
has superior information about (some) current economic variables. In an
extreme case the authority’s information set would be /;, which includes
an observation on F,. In this case the authority’s feedback rule for AM, can
include some economic variables, such as aggregate values of current
prices and outputs, which are not yet fully perceived by market partici-
pants. Not surprisingly, it turns out that countercyclical policy can be
more potent under the second case than under the first (and, further, that
policy may have zero potency under the first case). Finally, I assume in
both cases that the market participants and the monetary authority have
the same information about the form of the monetary rule. That is, the
form of the rule is, itself, assumed to be a part of the information set 7, _,
(and, hence, of /,{z]). I consider in a later section some implications of
differential information about the form of the monetary rule.

The Monetary Authority Lacks Superior Information about the Economy

I consider first the situation where the monetary authority’s information
set is I,_,. The feedback control problem can be illustrated in this case by
prescribing a monetary rule of the form,

AM, =m, — y,_q, (25)

291n this situation the monetary authority actually has less information than any of the
market participants since each individual has a current price observation, £,(z), in his infor-
mation set, 1,(z).
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where, as before, m, ~ N(0, 02). Since v,_, is last period’s real shift to
aggregate excess demand, the rule described by equation (25) amounts to
a countercyclical reaction to (one determinant of) last period’s absolute
price level if y > 0. The form of the rule could be complicated to include a
separate reaction to last period’s “aggregate” output or money stock,
which would amount to introducing m,_, and separate terms for »¢_; and
v!_; into equation (25). The rule could also be extended to incorporate
observations from period ¢ — 2 or earlier periods. However, these compli-
cations to the form of equation (25) turn out to yield no additional in-
sights, as should become clear from the subsequent discussion.30

When money is generated by the rule in equation (25), the model can be
solved out for prices and outputs using the same type of procedure as in
Section 1B.3! Since the formal procedure involves no important new ele-
ments, I will confine attention here to a presentation and discussion of the
results. The solutions for 7(z), EP, ,|/,(z), and E AM,_ | 1,(z) turn out
to be

F(z) =M,y + [0, + 0, + (B/a)(1 — 8, — b5) — vf,]
X Im, + {1/B)o, + &,(2)]} + (1/Byy_y — vo,_y,
EP I 1(2) =M,y + (0, + 0, — vBO,){m, + (1/B)[v, + &,(2)]}
+ (/B — v2,-15
EAM, (| 1,(2) = —yBO,(m, + (1/B)[o, + £,(2)]}-

In contrast to the earlier case in which there were no feedbacks to money
(equations [4], [10), and [13], and E AM, ,|],[z] = 0), the new elements
concern the y-terms. These terms are of two types: those pertaining to v,_,
and those associated with v,. First, v,_, is contained in the information set,
1,(2). Hence, the negative effect of 2,_; on M,, as implied by equation (25)
if y > 0, is fully perceived. As is generally the case for the perceived part of
M,, P,(z) moves in proportion to money—that is, the —y»,_; term appears
in the P,(z) expression. Since equation (25) implies that the effect of v,_;
on M, would also carry over to M, _ ,, it follows that EP, |, | 1,(z) also moves
in accordance with —yo,_,. Therefore, the negative reaction of AM, to o,_,
does not produce any gaps either between P,(z) and EP, ,|/,(z) or be-
tween M, + EAM, | |1,(z) and EP, |1, (2).

A second type of effect arises because the current excess demand shift, v,,
will have an effect next period on AA, ;. Since v, is not contained in [,(z),

30T have not discussed the possibility of monetary reaction to the array of £,_(z). Since the
monetary authority is assumed to possess only the aggregate instrument, AM,, one would not
expect the pattern of relative excess demands to be an important input into policy decisions.
In any event introducing the array of ¢,_,(z) into equation (25) would not change the basic
results.

31The form of the P,(z) solution in equation (6) would now include the addition term,
Ngo,_,.
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market participants form an estimate of the feedback effect on next
period’s money based on the expectation vEy,|[,(2) = yB8,{m, +
(1/B)v, + €,(2)]}. This term appears in the above expressions for
EAM, (|1,(z), EF, | 1,(2), and P,(z). Again, the response of AM, , to v,
does not produce any gaps either between P,(z) and EP,_ | 1,(2)%? or be-
tween M, + EAM, |1,(z) and EP,_ |1, (2).

The two feedback channels alter neither P,(z) relative to EF,_; nor the
wealth term, M, + E AM, , — EP,_,. It follows that there will be no ef-
fect on commodity supply and demand, as given in equations (1) and (2),
and therefore no effect on output, y,(2). Because the market participants
know the form of the money rule, and take this behavior into account in
forming expectations of future prices and monetary growth rates, the feed-
back from v, ; to M, has no effect on the entire distribution of output.®3
The level of output continues to be determined by equation (13). It follows
trivially that the choice of the feedback parameter, v, is irrelevant to the
determination of the variance of output about its full information posi-
tion, as determined in equation (24).34

+1

The Monetary Authority Possesses Superior Information about the
Economy

The conclusions on the output effect of feedback control are radically
different when the monetary authority has superior information that can
be included in the money rule. The situation can be illustrated in the case
where the authority has the information set 7,, which includes an observa-
tion of 9,.3° In this case a possible form of the monetary rule is

AM, =m, — bv,. (26)

#2Note that the supply and demand functions in equations (1) and (2) depend only on the
expected real value of next period’s money, M, + E AM, , — EP,,, which accords with the
role of money as a store of value in this model. The current real money stock in market z,
M, — P,(z), might also enter these functions if the model incorporated the role of money as
a mechanism for economizing on transaction costs (or if current real balances were simply
included as a direct argument of individual utility functions). In that case P,(z) would not
respond as much as EP,,|],(z) to the expected movement in AM,,,. The implied gap
between P,(2) and EP, , would then lead to effects on output, though the effects on actual
and full information output would coincide. This sort of effect is analogous to the effect of
systematic money growth on actual and full information output, as discussed in Appendix 2.

33This type of result was first presented by Sargent and Wallace (1975, sec. 4). Their
assumptions about the monetary authority’s information set are analogous to those that I
make in this section.

34Generally, there will be a nonzero effect of changes in y on the predictability of future
prices. The main effect is the following. When v is high, the effect of v, ; on P, is attenuated
because of the offsetting feedback effect on AM, ,. Hence (at least if y is not too large) P, ,
can be made more predictable, based on [,(z), by setting a positive value of .

351 do not consider here the possibility of superior information about the configuration of
the ¢,’s. Since the policymaker is assumed to possess only the aggregate instrument, AM,, this
sort of information would, in any case, be of only second-order use. Further, it seems much
less plausible that the policymaker would actually have superior information about the
relative shifts.
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Again, § > 0 describes a countercyclical monetary policy, but this time
the response of AM, is to v,, which is not a part of the individual informa-
tion sets, /,(z). Again, the solution for prices and outputs can be derived
from a procedure of the type discussed in Section 1B. The price results are
now36

P(z) =M,y + [0, + 0, + (B/a)(1 — b; — 6,)]
X {m, + (1/B)(1 — B, + ()]} + (/B
EP 11 1(z) = My_y + (6, + 05){m, + (1/B)(1 — Bd), + &,(2)1}
+ (1/B)uy_y-

The feedback from », to AM, implies that 8m, + (1 — B8)y, is now the
aggregate excess demand shift that affects £,(2) and EP, ;| /,(2). There-
fore, the variance of aggregate demand is now o3 = %2 + (1 — B8)%2.
It is apparen* that raising the feedback parameter, 8, will reduce o2 as long
as 6 < 1/8 applies. Further, setting § = 1/8 would minimize o2 for a
given value of 62. (The combination of § = 1/8 and 62 = 0 would yield
62 =0)

AThe forrula for €, the variance of output about its full information
position,?7 is still that given in equation (24), and the formula for V, the
variance of the absolute future price level, is still that given in equation
(20). In particular, reductions in 63 unambiguously reduce £, and such
reductions also unambiguously reduce V if « >> B applies. It is then clear
that 8 = 1/B (along with 62 = 0) yields the optimal money rule of the
form of equation (26). This parameter choice implies that the aggregate
excess demand shift is m, + (1 — B6)y, = 0. That is, there would be suffi-
cient feedback from », to AM, so that the direct effect of », on excess
demand would be fully offset by an inverse movement of AM,.38

Although the above form of stabilization policy seems obvious under
the assumed superiority in the monetary authority’s information set, the
way that it works is somewhat subtle. In particular, the stabilization policy
does not operate to eliminate any output effects of shifts in v¢ or »5, but,

t
rather, it works by removing discrepancies between the movements of ac-

(27)

36Given equation (26), it follows that E AM, ,|1,(z) = 0.
37The formula for y,(z) from equation (15) is modified only in the coefficients of ¢ and 5.
The new terms are

(1/a){a, — (H/B)[(1 — BB)B, + 6,) + B3]}ef,
(1/o){ag + (H/B)[(1 — B3)(6, + 6,) + Bd]};.

The formula for y,(z) — »j(z) in equation (23) is modified only by replacing v, with
(1 — B8),. However, the 8, + 8, coefficient that appears in this expression now involves
(1 — B8)202, rather than o2 (see equation (11)).

38This result can be generalized to a case where the policymaker has only partial informa-
tion about current variables. As long as the monetary authority possesses some information
that is not possessed by all market participants, there would be some potential role for
countercyclical adjustments in money.
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tual and full information output. Assume, for example, that there is no
monetary feedback (8 = 0), and that v{ is positive while v is zero. Accord-
ing to equation (27), this unanticipated aggregate demand shift would
affect prices in all markets equiproportionately—that is, there would be a
shift in the absolute price level, but no shift in relative prices. However,
participants in market z would not be able fully to distinguish this shift
from a relative price change, and, therefore, the movement in output
would depart from the movement in full information output. In the case
where H/ > 0, equation (23) indicates that actual output would increase
too much in this situation. Suppose, now, that a stabilization policy is
adopted that implies a negative response of AM, to v, so that the net
disturbance, (1 — B8),, is maintained at zero. Equation (27) indicates
that neither relative nor absolute prices would then be affected by the
positive value of »%. In that case there is no possibility of a confusion
between absolute and relative shifts, and the movement in »¢ cannot lead
to a departure of actual from full information output. Further, as is clear
from equation (22), the movement in AM, itself does not affect the re-
sponse of full information output. Therefore, in this example, both actual
and full information output would increase with the positive value of v in
accordance with the coefficient shown in equation (22).

Since the stabilization policy works by preventing a confusion between
absolute and relative price changes, it is also clear that an alternative to
the active stabilization policy would be the provision of the information
about current economic variables. If the monetary authority actually had
more rapid observations of »,, they could convey this information to the
public. This information would then augment the information set, 7,(z),
that is used to form expectations about 7, ;. Once v, is observable, it is
clear that shifts in 2, can no longer lead to confusions between relative and
absolute price changes. Hence, as in the case of the countercyclical mone-
tary policy described above, movements in v, would not produce discrep-
ancies between actual and full information output. In other words, when
the monetary authority has superior information about the economy, the
provision of the information to the public is an alternative to an active
stabilization policy. An argument for the superiority of stabilization policy
would have to be based on the costs of transmitting and using the relevant
information.?® In particular, it could be argued that the existence of an
active stabilization policy motivates individuals to reduce expenditures
that are aimed at augmenting their information sets. If there are econo-

39The active stabilization policy and the information-provision policy do have different
implications for the predictability of future prices. The information-provision policy (8§ = 0)
in equation (26), but with 2, contained in /,(z}), would involve a higher variance of future
prices. Essentially, the movements in », and the associated movements in P, would be per-
ceived currently, but these movements would still not be predictable at date ¢ — 1. On the
other hand, the stabilization policy described above completely eliminates fluctuations in P,
associated with movements in ,, and therefore makes P, more predictable at date t — 1.
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mies-of-scale in information production, there could be a net social gain
along these lines.*?

The Monetary Authority Has Superior Information about the Monetary
Rule

Taylor (1975) has stressed the idea that individuals would not have perfect
information about the form of the monetary rule. In this situation it is
plausible that the monetary authority would have better information than
the general public about its own future actions. In fact, this situation seems
most plausible when the policymaker lacks a consistent objective function,
such as the minimization of the variance of output about its full informa-
tion position.*! In any case, if the monetary authority has better informa-
tion about its monetary rule, there is the possibility of controlling money
so as to systematically fool the public. Taylor has pointed out that this sort
of deception can be carried out during “transition” periods during which
individuals are modifying their beliefs (along Bayesian adaptation lines)
about the form of policy.*?> In Taylor’s model there is also an optimal,
nonzero amount of this deception. His model appears to support this type
of action because the policymaker’s objective function does not reflect
individual preferences.*? In my model, there appears to be no basis for
policy deception as long as the policymaker’s objective is based on mini-
mizing the gap between actual and full information output.**

A simple form of policy deception arises when individuals believe that
AM, = m,, where m, ~ N(0, 62), but where the monetary authority knows
(determines) that m, is generated by a distribution other than N(0, 02).
Consider, for example, the case where m, can be set by the monetary
authority at any desired level, while, in the “short run,” holding fixed
people’s belief that m, has zero mean and variance 02,.%5 In this case it is

490f course, once this sort of information externality is introduced, it is also natural to
consider the negative externalities associated with governmental incentive and control.

41 An unpredictable objective function would be one possible rationale for the existence of
m,, the stochastic part of money.

#2Sargent and Wallace (1974, p. 16) argue that there is no way for the monetary authority
to systematically fool the public, even in the short run.

43His objective function gives positive credit to reducing unemployment throughout the
relevant range. The analogy to my model would be to credit expansions of output even when
it was already above its full information position.

#The normative case for policy deception could be based on external effects, such as
income taxation, unemployment compensation, etc., that are not incorporated into my
model. This idea is discussed by Phelps (1972) and also by Hall (1976), who argues: . . . the
benefits of inflation derive from the use of expansionary policy to trick economic agents into
behaving in socially preferable ways even though their behavior is not in their own interest.”
Prescott (1975) downplays the importance of external effects in this context. In any case the
possible external effects seem to have more pertinence for long-term allocative policies, such
as the design of tax and welfare system, than for countercyclical monetary policy.

45The monetary authority might, instead, be reacting to s,_, by a feedback rule of the form
of equation (25), but individuals currently believe that y = 0.
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clear that the choice of m, has a systematic effect on current output, as
determined in equation (15). However, it is also clear from equation (23)
that the expected squared gap between actual and full information output
would be minimized by choosing m, = 0.%6 Given the objective of mini-
mizing gaps between actual and full information output, it is not surpris-
ing that optimal behavior rules out policy deception. In this sort of frame-
work the best monetary policy is always the policy that is most
predictable.*” The obvious policy implication is for the monetary author-
ity to make known in advance its intentions about money growth,*® which
is again the basic philosophy behind the constant growth rate rule.

3. Conclusions

I will conclude by highlighting some of the main results that deal with the
effects of money variance and with the role of monetary policy. An in-
creased variance of money makes it more difficult for individuals to react
appropriately to the real shifts in the economy. There are two important
types of responses to an increased money variance. First, since individuals
react by attributing a larger fraction of observed price movements to mon-
etary causes, there is a smaller effect of a given size monetary disturbance
on output—that is, the magnitude of the Phillips curve slope is smaller.
Second, the associated compounding of individual information problems
leads both to a higher variance of output about its full (current) informa-
tion position and to a reduced predictability of future prices. It also leads
to an increase in the variance of relative prices across markets.

From the standpoint of monetary policy, it is clear that pure variance of
money is harmful, essentially because it clouds the real picture for individ-
uals. The analysis of monetary policy as feedback control is more compli-
cated since the results hinge on the relative information positions of the
monetary authority and the public. When the authority lacks superior
information, the feedback to money must be based on economic variables
that have already been perceived by the public. In this circumstance the
choice of feedback control parameters has no implications for the entire
distribution of output. On the other hand, if the monetary authority has
superior information about the economy—which, for some reason, it does
not provide to the public directly—then the appropriate feedback re-

81f the monetary authority sets m, = 0 continually, this action would also lead people to
believe (along Bayesian lines) that ¢2 = 0. I have not dealt explicitly with the effects of
fooling people about the value of 62, Presumably, the variance of actual about full informa-
tion output is minimized when perceptions about o2 are correct.

47There is a sense in which this conclusion is violated for the case where the monetary
authority has superior information about the economy. In particular, the feedback rule from
v, to AM, described by equation (26) would be ineffective if people fully perceived the
countercyclical money response, —8v,, while still remaining in the dark about z,. On the
other hand, it is desirable even in this case for people to know the form of the monetary rule.

48More specifically, the Federal Reserve should publicize, as rapidly as possible, the pro-
ceedings of its Open Market Committee.
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sponse to the extra information can move output closer to its full informa-
tion position.

Basically, the conclusions for monetary policy are in accord with the
philosophy behind Friedman’s proposal for a constant growth rate rule. It
is only to the extent that the monetary authority has superior economic
information (as well as the appropriate objectives), and to the extent that
providing information to the public is costly, that there is a call for depar-
tures from the constant growth rate rule. Further, if the attempt to use
countercyclical policy to exploit the superior information results in a
higher variance of money, 62, there would be a tradeoff between the
beneficial effects from the countercyclical elements (the negative correla-
tion between v, and AM,) and the adverse effects from pure monetary
variance.*?

It may be useful to discuss the role of feedback control of money in the
case of a concrete example.®® The United States economy in 1974 was
affected by two important real shocks: the oil cartel and the shortfall of
agricultural harvests. Although my model has been constructed to deal
with a closed economy, it seems that either of these shocks can be repre-
sented by a downward movement in aggregate real supply, v{, and a lesser
downward movement in aggregate real demand, ». (I am abstracting here
from effects on relative supply and demand, which would be quantita-
tively important for these shocks, but which would not affect the essential
parts of my story.) It follows that output (in a “typical” market which
experiences zero relative shifts) would fall while prices would rise. What is
the role for monetary policy in this situation? The present analysis suggests
that there is a substantive role only to the extent that the monetary au-
thority has better information than the public about the disturbances, or,
possibly, about their implications for the economy. Perhaps the most obvi-
ous observation about the oil and agricultural shocks is the extent to which
they are perceived. Hence, the approach in this paper argues that there is
no role for monetary policy in offsetting these real shifts.>! Adverse shifts
like the oil and agricultural crises will reduce output and cause painful
relative adjustments no matter what the reaction of the monetary author-
ity. Added monetary noise would only complicate and lengthen the proc-
ess of adjustment.

*This type of tradeoff is discussed in Friedman (1953).

®Gordon (1975) discusses the same example. Perhaps not surprisingly, he reaches very
different conclusions.

S1Further, to the extent that there is any role it would be a contraction of AM, in response
to the positive value of s, = v? — 5. The present analysis implies that having the monetary
authority announce that there had been an oil or agricultural crisis (or, perhaps, telling
people that these crises meant lower output and higher prices) would be equivalent to the
appropriate active response of money. In this case it seems that both the announcement and
the active policy would have negligible effects. In fact, the announcement would be some-
what preferable since it would not involve the danger of introducing added variance into the
money supply.
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Appendix 1: Results when u, Is a First-Order Markov Process

I consider here the case where the real excess demand shift, u,, is generated by a
first-order Markov Process, 4, = Au,_; + ,, where 0 = A = 1. Under this specifi-
cation the magnitude of A determines the extent to which the current shift, v,,
persists in its effect on u,,, and, hence, on Pt +1. The case treated in the main text
corresponds to A = 1—that is, to the situation where 2, affects u, ,, on a one-to-one
basis.

The solution for prices and outputs can be derived in accordance with the
general procedure developed in Section 1B of the text. Since no new elements are
involved, I will simply indicate the results. It is convenient to define the parame-
ter, A = AN+ (a/B8)(1 = A)]. If @ > B then the x parameter satisfies the con-
ditions OE/\_<_>\EI A—)Oask——)O and XA > 1 as A = L. Recalling that
H=aB; — a;B,, the results for prices and outputs are now

P(2) = M,_y + [0, + N6, + (B/a)(1 — 0, — X0,)]
X {m, + (1/B)o, + ()1} + A/Bywy_y,
EP,,|1,(z) = M,y + (8; + Mp){m, + (1/B)z, + &,(2)]}
+ (AX/Byy_y,
2i(2) = (H/a)(1 — 8, = Nym, + (1/e)[a, — (H/B)(B, + A8,)]
X [of + ef(2)] + (1/a)a, + (H/B)8, + NOp)][v} + &5(=)]
a,(1 — A) + B,A ag(1 = A) + B,AT
+>‘[ ail —)\§+BA ]"d' H‘[ Z(l —A;-f—ﬁ;\ ]
21z) = (La)la, — (H/BR)od + (1/a)a, + (H/BXJoS + (a,/a)ed(z)

1 —A A
+ (ag/a) +A[ B PR e

ag (1 —A) + BT,

A[ T =N + BA ]

3(2) —yi(2) = (H/aB){Bm, + Ro, — (8, + NO,)[Bm, + v, + £,(2)]},
Q=E[y,(z) — i) L(2)

H? ~ o~
= (—am[(l — A)2B%202 + BPa2a? + (A)%0202],

where 65 = B%02 + 02 in the last expression. The original results in Section 1B of
the text correspond in cach case, to A = A = 1.

The principal new results from allowing A # 1 are brought out in the above
expression for £. When X =1, the aggregate real shift, v, is permanent, in the
sense of affecting u,,; on a one-to-one basis. More importantly, the monetary
variable, M,, and the aggregate real shift, u,, are in this case generated by proc-
esses of the same form—that is, by random walks. In this situation the current
disturbance associated with money, 8m,, and the current movement in the aggre-
gatc real disturbance, v,, have identical implications for the future price level,

P, ,,. Therefore, when X = 1, it is unnecessary for individuals who are interested
in forecasting £, to separate out the 8m, part of the current excess demand shift
from the v, part. The only concern is with separating the total aggregate shift,
Bm, + v,, from the relative shift, et(z) (since ¢,[z] is purely transitory and has no
impact on 7, ;). In the Q- expressmn A=1 implies that the 0202 interaction term
vanishes, and the remaining terms can be combined into an interaction term
between o? and B8%2 + 062 = o3 (as in equation [24]). In this case the problem of
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separating permanent from transitory shifts in order to forecast P, ; amounts to
separating aggregate from relative shifts.

The other polar case is A = 0, which corresponds to the v, shifts being purely
transitory. In that case v, and ¢,(z) are generated by processes of the same form
and the 0202 interaction term vanishes from the Q-expression. The remaining
terms can then be combined into an interaction term involving 8% and 62 + o2
That is, the separation between permanent and transitory reduces in this case to a
separation between monetary and real.

In the general case where A is in the interval between zero and one, all three
interaction terms appear in the Q-expression. Individuals would then be con-
cerned with the full separation of the current excess demand shift, m, + v, +
£,(2), into its three components. The separation between permanent and transi-
tory would entail two types of divisions of current excess demand shifts: aggregate
versus relative and monetary versus real.

From the standpoint of monetary policy, the important aspect of the extended
model is that @ is still a strictly increasing function of 2. (This property can be
verified from straightforward differentiation of the Q-expression.) Hence, the com-
pounding of the information problem to include a separation of monetary versus
real along with a separation of aggregate versus relative does not alter the conclu-
sion that monetary noise makes the information problem more difficult.

Finally, it can be noted that the extension of the model to a first-order Markov
process for », has been carried out within the framework where the monetary
disturbance, m,, and the relative shift, ¢,(z), are purely white noise processes. It |
would be possible to introduce some serial dependence into these processes. How-
ever, it is already apparent from the above discussion of the u, process that the
crucial consideration is the relation between the processes that generate M, , u, and
£,(z). When these three processes assume different forms there will be an informa-
tion problem associated with dividing currently observed excess demand shifts
into its three components. The above case, in which the u;-process is first-order
Markov (with A # 0 or 1) and m, and ¢,(2) are white noise, is one way in which
the processes for M,, u,, and ¢,(z) can take on different forms. Further alteration of
the m, or &(z) processes would not seem to change the basic picture, at least in
terms of the implications for money variance, o2,

Appendix 2: Systematic Growth in Money and Qutput

This section extends the analysis of the text in two respects. First, the systematic
growth rate of money, g in equation (4), is allowed to be nonzero. Second, the
growth rate of £,, the systematic part of excess demand which is defined as — Bp in
equation (5), is allowed to be nonzero. It is clear that the introduction of these
systematic growth elements (which are included in the information set, 1,[z])
would not affect the gap between actual and full information output. Therefore,
the present discussion is limited to the effects of systematic growth on P,(z),
E 7, 1111,(2), and y,(z). The analysis here returns to the case where v, is generated
by a random walk (A = 1, in the terminology of Appendix 1).

Formally, the extended model can be solved by the method of Section 1B of the
text if the solution form for P,(2) in equation (6) is extended to include a time
trend and a constant term—that is, I1g¢ + II;. Additional complications to the
systematic parts of M, and k£,—for example, to allow nonconstant growth rates—
would be reflected as additional terms in the solution form for P,(z). Given the
extended form of the solution, the procedure for solving the model is the same as
that employed in Section 1B.



MoneTary PoLicy 257

The solution for P,(z) coincides with equation (10) except for the inclusion of
systematic effects associated with g and p. The extended result is

P2y=M,_, +g+ 1[0, + 8, + (B/a)(1 — 0, — 0)1{m, + (1/B)[v, + €,(2)]}
+ (/B — pt + (a/BXg — p) + p.

Since M,_; + g is now the fully perceived part of M,, this term has a one-to-one
effect on P,(z). The — pt term indicates that the systematic growth of k, at rate
— Bp would generate a systematic growth in the price level at rate —p if M were
constant. With M growing steadily at rate g, the net systematic growth rate of the
price level is ¢ — p. This systematic rate of inflation appears additionally in the
term (a/B)(g — p) as a positive effect on P,(z) for a given value of the nominal
money stock. Equivalently, systematic inflation reduces the (expected) holding of
real balances. I will discuss below the meaning of the final term, +p, in the P,(z)
expression.
The expected price level for next period is now

EP I L(z) = My + 28 + (8, + 8){m, + (1/B)[v, + ¢,(2)])
+ (1/Buy_y — plt + 1) + (¢/B)g — p) + p.

In particular, the gap between P,(z) and EP,, |1,(z) now includes the term
—(g — p), which is the negative of the systematic rate of inflation. In this model,
where commodity supply and demand depend on F,(z) — EP, ,|1,(z), it is this
effect of systematic growth that leads to influences on output.

The solution for output is determined by substituting the price results into the
commodity supply or demand function, as given in equations (1) and (2). The
result for y,(z) coincides with equation (15) except for the new systematic effects,

2(2) = (B/BYk{ + (By/BY; — (H/B)g — p) + - -,

where the terms that appear in equation (15) have been omitted. In determining
output it is necessary to specify separately the systematic demand and supply, £¢
and £}, as well as the excess demand, £,. I assume that individuals plan the
systematic growth rate of real balances (real wealth) to equal the systematic
growth rate of output. From the above expressions for P,(z)and EP, | I,(z), it is
clear that the systematic growth rate of real balances is p. From the y,(z) expres-
sion it is clear that the systematic growth rate of output depends on the systematic
growth rates of k¢ and k5. The condition that the systematic growth of real bal-
ances coincides with the systematic growth of output therefore implies a condition
on the time paths of £¢ and 4$. Using also the condition that £, = — f8pt, and
setting £% = k§ = O for convenience, it can be determined that

K = o(1 — B,
k= p(1 + By
Substitution into the above expression for y,(z) yields
ylz) =pt — (H/B)Xg —p) + -+~

That is, the systematic growth rate of output is, indeed, equal to p.

The other property of the output expression is that an increase in the systematic
inflation rate, g — p, reduces output (both actual and full information) if H > 0.
The mechanism is as follows. An increase in ¢ — p implies a lower real rate of
return on money, which is the only store of value in the model. Accordingly, there
is a substitution effect that reduces current labor supply and raises current con-
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sumption demand.?? This shift raises output when H > 0. Of course, this sort of
effect is operative here because money serves as the only store of value. Further,
the present analysis does not deal with any benefits of holding money that are
associated with transaction costs. For these reasons, it seems that the present
model is probably more useful for an analysis of unperceived monetary change
than for an analysis of systematic inflation.

Finally, I can now comment on the presence of the +p terms in the above price
expressions. In equations (1) and (2), excess commodity demand depends on ex-
pected next period’s real balances, M, + EAM,,|I,(z) — EP, ,|1,(2). This for-
mulation is reasonable as long as desired real balances are constant. More gener-
ally, it is a gap between expected and desired real balances that would produce an
effect on excess commodity demand. It is now apparent that (desired) real bal-
ances grow at rate p in this model. If the effects of real balances on excess com-
modity demand are adjusted to take account of this systematic growth in desired
real balances, the +p terms would no longer appear in the above price expres-
sions. The expression for y,(z) would be unaffected by this adjustment. Of course,
no adjustment at all is required for the case in the text where p = 0 was assumed.
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Long-Term Contracts, Rational
Expectations, and the Optimal Money
Supply Rule

Stanley Fischer

The paper is concerned with the role of monetary policy and argues that
activist monetary policy can affect the behavior of real output, rational
expectations notwithstanding. A rational expectations model with over-
lapping labor contracts is constructed, with each labor contract being
made for two periods. These contracts inject an element of short-run
wage stickiness into the model. Because the money stock is changed by
the monetary authority more frequently than labor contracts are
renegotiated, and, given the assumed form of the labor contracts,
monetary policy has the ability to affect the short-run behavior of output,
though it has no effects on long-run output behavior.

This paper is concerned with the role of monetary policy in affecting real
output and argues that activist monetary policy can affect the short-run
behavior of real output, rational expectations notwithstanding. Recent
contributions! have suggested that the behavior of real output is invariant
to the money supply rule chosen by the monetary authority if expectations
are formed rationally. The argument to the contrary advanced below
turns on the existence of long-term contracts in the economy and makes
the empirically reasonable assumption that economic agents contract in
nominal terms for periods longer than the time it takes the monetary
authority to react to changing economic circumstances—in this paper
the relevant contracts are labor contracts.

I am indebted to Rudiger Dornbusch for extensive discussions, to Edmund Phelps for
a suggestive discussion some years ago and for his comments on the first draft of this
paper, and to Robert Barro, Benjamin Friedman, and Thomas Sargent for comments.
An argument similar to the thesis of this paper is contained in an independent paper
by Phelps and Taylor (1977); the details are sufficiently different that the two papers
should be regarded as complementary. Note 19 below discusses the relationship between
the two papers. Research support from the National Science Foundation is gratefully
acknowledged.

! Notably that of Sargent and Wallace (1975) ; this paper is henceforth referred to as SW,

[Journal of Political Economy, 1977, vol. 85, no, 1]
© 1977 by The University of Chicago. All rights reserved.

261



262 StanNLEY FiscHER

The literature on the policy implications of rational expectations is
relatively technical. It is therefore worthwhile setting the issue in recent
historical perspective. Since the discovery of the Phillips curve in 1958,2
the logic of the evolution of professional views on the ability of monetary
policy to affect real output has tended toward a position similar to the
empirically based early postwar Keynesian view—that monetary policy
can play no significant role in determining the behavior of output.

The Phillips curve was originally seen as a stable long-run relationship
providing those combinations of unemployment and inflation rates among
which policymakers could choose in accord with their preferences. The
theoretical rationalization due to Lipsey (1960), based on the “law of
supply and demand” in the labor market, did not affect that particular
view of the curve.?

The famous “Phillips loops™ around the long-run relationship, discussed
in the original Phillips article, suggested that the short-run trade-off
differed from the long-run relationship. The distinction between the
short- and long-run trade-offs formed the basis for the originally startling
natural rate hypothesis of Friedman (1968) and Phelps (1967) which
argued that, while there was a short-run Phillips trade-off, there was in
the long run a natural unemployment rate, independent of the steady
state rate of inflation. More dramatically, the natural rate hypothesis
implies that the long-run Phillips curve is vertical.

The arguments rested on the point that the short-run trade-off was the
result of expectational errors by economic agents. In Friedman’s version,
suppliers of labor at the beginning of an inflationary period underestimate
the price level that will prevail over the period of the work contract,
accordingly overestimate the real wage, and offer a greater supply of labor
at the prevailing nominal wage than they would if expectations were
correct. The result is employment in excess of the equilibrium level and a
trade-off between output and unanticipated inflation.* However, the
expectational errors cannot persist so that employment returns to its
equilibrium level—and unemployment returns to its natural rate—as
expectations adjust to reality. Subsequent work by Phelps and others
(1970) provided a better worked out theoretical foundation for the short-
run trade-off.®

The dependence of the short-run trade-off on expectational errors did
not by itself preclude any effects of monetary policy on output provided

2 Despite Fisher’s (1926) earlier discovery of the unemployment-inflation relationship,
it was not until the publication of Phillips’s 1958 article that the relationship began to
play a central role in policy discussions.

3 However, Harry Johnson (1969) in his inflation survey expressed doubts as to the
ability of policymakers to exploit the Phillips tradeoff (see pp. 132-33).

4 The level of employment and the rate of unemployment move inversely in Friedman’s
exposition,

3 These developments are summarized by Gordon (1976).
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the monetary authority could produce a rate of inflation that was not
anticipated. Indeed the widespread use of adaptive expectations suggested
that an ever-accelerating rate of inflation could maintain an unemploy-
ment rate below the natural rate—hence adherents of the natural rate
hypothesis were for a time known as accelerationists. The accelerationist
version of the natural rate hypothesis had two important consequences.
First, by making the short-run trade-off depend on expectational errors it
brought to the fore the question of the optimality of the natural rate.®

Second, the reliance of the accelerationist hypothesis on expectational
errors made it possible that some expectations mechanism other than
adaptive expectations would imply that there is no trade-off usable by
policymakers. Rational expectations is that hypothesis.’

Briefly, rational expectations as applied in the context of economic
models is the hypothesis that expectations are the predictions implied by
the model itself, contingent on the information economic agents are
assumned to have.® In particular, if economic agents are assumed to know
the policy rule being followed by the monetary authority, that rule itself
will affect expectations. For instance, consider the consequences for the
expected price level of a current price level that is higher than had been
expected. Adaptive expectations implies that the price level currently ex-
pected for next period will be higher than the price level that was
expected last period to prevail in this period. Under rational expectations,
the expected price level will change in a manner dependent on the money
supply rule: if monetary policy accommodates inflationary shocks, the
expected price level will rise; if monetary policy counteracts inflationary
shocks, the expected price level may be lower than the level expected for
this period.

Now consider the implications of the rational expectations hypothesis
for the effects on output of alternative preannounced monetary rules in an
economy that has an expectational Phillips curve of the Lucas form:°

Y, =0+ (P, — (—1P) + u, B >0, (1

where o and B are constant parameters, Y, the level of output, P, the
logarithm of the price level, and ,_,P, the expectation taken at the end
of period (¢ — 1) of P,, and u, is a stochastic disturbance term.

The only way in which monetary policy can affect output, given (1), is
by creating a difference between the actual price level and the expected
price level. However, if the money supply rule is known to economic

6 This issue, among others, was analyzed by Tobin (1972); it is taken up by Prescott
(1975).

7 The fundamental application of the rational expectations hypothesis in a Phillips
curve context is by Lucas (1972); see also Lucas (1973) and SW.

% See Barro and Fischer (1976) for an extended discussion of rational expectations.

9 This is similar to the aggregate supply function of SW and also Lucas (1973).
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agents and is based on the same information as those agents have (for
example, the money supply may be adjusted on the basis of lagged values
of prices and output), then the predictable effects of the money supply
on prices are embodied in ,_, P, and monetary policy can affect output
only by doing the unexpected. Alternatively, if the monetary authority has
superior information to private economic agents, say because it receives
data more rapidly than they do, it can affect the behavior of output.!®
Superior information is, however, a weak reed on which to base the
argument for the effectiveness of monetary policy because useful infor-
mation has a habit of becoming available, perhaps through inference
based on the actions of the monetary authority.

The argument made in this paper for the effectiveness of monetary
policy depends instead on the existence of nominal long-term contracts in
the economy. The aggregate supply equation (1) implies that the only
expectation relevant to the behavior of output is the expectation formed
one period earlier. The length of the period is not specified, but for the
result to be interesting one supposes that it is a year or less. Since there are
contracts that are made for more than a year, expectations of P, made
in periods earlier than (¢ — 1) are likely to be relevant to the behavior of
output.

In this paper I construct a model similar in spirit to the simple rational
expectations models such as that of Sargent and Wallace (1975) (SW) and
assume that expectations are formed rationally. If all contracts in the
model economy are made for one period, the SW result on the irrelevance
of the money supply rule for the behavior of output obtains; if there are
some longer-term nominal contracts, then even fully anticipated monetary
policy affects the behavior of output and there is room for a stabilizing
monetary policy. The use of longer-term nominal contracts puts an
element of stickiness into the nominal wage which is responsible for the
effectiveness of monetary policy.

The paper does not provide a microeconomic basis for the existence of
long-term nominal contracts, though the transaction costs of frequent
price setting and wage negotiations must be part of the explanation. It
will be seen below that the essential element needed for the effectiveness
of monetary policy in this paper is that long-term contracts not be written
in such a way as to duplicate the effects of a succession of single-period
contracts, or the use of spot markets. It is reasonable to conjecture that
the costs of wage setting lead to the use of long-term contracts and that
the difficulties of contract writing prevent the emergence of contracts that
are equivalent to the use of spot markets.

Section I introduces the model and demonstrates the fundamental
rational expectations result on the irrelevance of monetary policy in a

10 SW examine a case in which the monetary authority has superior information;
see also Barro (1976).
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world where all contracts are made for only one period. Section II
presents a model with overlapping labor contracts in which all labor
contracts are made for two periods and in which at any one time half the
firms are operating in the first year of a 2-year contract and the other half
in the second year of a contract. In this model monetary policy can affect
the behavior of output. Section III considers various indexed labor con-
tracts. Gonclusions and further discussion are contained in Section IV.

I. The Model with One-Period Contracts

The model used to study monetary policy in this paper has three elements:
wage sctting behavior, an output supply equation, and an aggregate
demand equation. The economy is stationary in that the analysis abstracts
from growth in the capital stock and an increasing price level though the
latter is readily included. A potential role for stabilization policy is
created by the assumption that the economy is subjected to random
disturbances—real supply disturbances and nominal demand disturbances
—that affect output and the price level in each period. Depending on
the details of wage setting, monetary policy may be able to offset some
of the effects of these disturbances on real output.

First we consider wage setting behavior. The nominal wage is treated
as predetermined throughout the paper in that it is known at the begin-
ning of the period while output and the price level adjust during the
period. The assumption that the wage is predetermined is based on
the empirical observation that wages are usually set in advance of
employment.

It is assumed that the nominal wage is set to try to maintain constancy
of the real wage, which is equivalent in this model to maintaining con-
stancy of employment and/or labor income; this assumption is based on
recent work on the labor contract.'* However, it should be emphasized
that no substantive results of the paper would be affected if a nominal
wage schedule (e.g., specifying overtime payments) were to be negotiated,
rather than simply a nominal wage rate.!?

If labor contracts are made every period, and assuming the goal of
nominal wage setting is to maintain constancy of the real wage:

i-iWe =y + 4Py )
where ,_, W, is the logarithm of the wage set at the end of period ¢ — 1

for period ¢; y is a scale factor in the determination of the real wage and
will be set at zero for convenience.

11 See Azariadis (1975), Baily (1974), and Grossman (1975); Gordon (1976) discusses
these contributions.

12 The derivation of the aggregate supply function (4) below for the case of a nominal
wage schedule is available from the author on request. The function has the same form
as (4) but with different coefficients; no subsequent argument is affected by those differ-
ences.
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Second, the supply of output is assumed to be a decreasing function of
the real wage:

Yi=a+ (P,— W) + u, 3)

where, again, the coefficient § of (1) has been set equal to unity for con-
venience, and where o will be taken to be zero; P, is the logarithm of the
price level and Y, the level of output. It is assumed that firms operate on
their demand curves for labor, that is, that the level of employment is
determined by demand. Substituting from (2) into (3):!3

Y = (P, — (_(P) + u, 4)

This is similar to the standard rational expectations supply function (1).
The form of the aggregate supply function is essentially unaffected if the
firm faces a nominal wage schedule in which the wage rises as labor input
is increased.!* The term y, is a stochastic “‘real” disturbance that impinges
on production in each period; its properties will be specified below.

It remains now to close the model by taking demand considerations into
account, and the simplest way of doing so is to specify a velocity equation

Y=M, - P, — v, (5)

where M, is the logarithm of the money stock in period ¢ and v, is a
disturbance term.!?

Disturbances aside, this very simple macro model would be assumed in
equilibrium to have the real wage set at its full employment level, would
imply the neutrality of money, and would obviously have no role for
monetary policy in affecting the level of output. Note again that (2)
implies that all wages are set each period—there are only one-period labor
contracts. A potential role for monetary policy is created by the presence
of the disturbances #, and », that are assumed to affect the level of output
each period. Each of the disturbances is assumed to follow a first-order
autoregressive scheme:

Uy = Pyll_y + &, pal < 1, (6)
Uy = Pa¥—q + N Ipal < 1, 7N

where ¢, and #, are mutually and serially uncorrelated stochastic terms
with expectation zero and finite variances o? and o2, respectively.

13 By setting « in (3) at zero, we appear to make negative levels of output possible.
Any reader worried by that possibility should either set « to a positive value or else view
(4) as a relationship that applies to deviations of output from a specified level, Note also
that (3) can be viewed as a markup equation with the markup dependent on the level
of output.

14 See n. 12 above.

15 SW are interested in the question of the optimal monetary instrument and thus
specify two additional equations: an aggregate demand or IS equation, and a portfolio
balance or LM equation. I use the single equation (5) to avoid unnecessary detail. A
model with overlapping labor contracts and separate goods and money markets is
presented in the appendix to Fischer (forthcoming).
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We shall assume that expectations are formed rationally. Eliminating
Y, between (4) and (5)—which is equivalent to assuming the price level
adjusts each period to equate aggregate supply and demand—we get:

2P, =M, + P, — (4, + v,). (8)

Now, taking expectations as of the end of (¢ — 1) in (8), and noting that
E,_1(i-1P) = -1 Py

t-1Pe = M, — (4, + v) 9)

where ,_, X, is the expectation of X, conditional on information available
at the end of (¢t — 1).

Assume the monetary rule is set on the basis of disturbances which have
occurred up to and including period (¢ — 1):

M, = —Zx agty—y + Zl b, (10)

The disturbances can be identified ex post so that there is no difficulty
for the monetary authority in following a rule such as (10) or for the
public in calculating the next period’s money supply. From (10) it
follows that

1M, = M, (11)
and thus:

— e—1{u, + v) U+,
2 2

= 4[pyte—q + P2tey — (P1th—q + & + Pov—y + 1))

= —3( + n.
(12)

The disturbances in (12) are current shocks that can be predicted by
neither the monetary authority nor the public and thus cannot be offset
by monetary policy.

Substituting (12) into (4) it is clear that the parameters a; and b; of
(10) have no effect on the behavior of output. Of course, as SW note, the
monetary rule does affect the behavior of the price level, but since that is
not at issue, there is no point in exploring the relationship further. The
explanation for the irrelevance of the money supply rule for the behavior
of output in this model is simple: money is neutral, and economic agents
know each period what next period’s money supply will be. In their wage
setting they aim only to obtain a specified real wage and the nominal
wage is accordingly adjusted to reflect the expected price level.
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Thus, the model with only one-period contracts confirms the SW result
of the irrelevance of the monetary rule for the behavior of output.

II, The Model with Two-Period Nonindexed Labor Contracts

We now proceed to inject an element of stickiness into the behavior of
the nominal wage. Suppose that all labor contracts run for two periods
and that the contract drawn up at the end of period ¢ specifies nominal
wages for periods (¢ + 1) and (¢ + 2).'¢ Assuming again that contracts
are drawn up to maintain constancy of the real wage, we specify:

1-iWe = —iPs =12 (13)

where ,_;W, is the wage to be paid in period ¢ as specified in contracts
drawn up at (¢ — ¢), and ,_ P, is the expectation of P, evaluated at the
end of (¢ — 7). To prevent misunderstanding it should be noted that the
use of a one-period, and not a two-period, labor contract is optimal from
the viewpoint of minimizing the variance of the real wage; as discussed in
the introduction, there must be reasons other than stability of the real
wage, such as the costs of frequent contract negotiations and/or wage
setting, for the existence of longer-term contracts.

In period ¢, half the firms are operating in the first year of a labor
contract drawn up at the end of (¢ — 1) and the other half in the second
year of a contract drawn up at the end of (¢ — 2). There is only a single
price for output.!” Given that the wage is predetermined for each firm,
the aggregate supply of output is given by:

2

Y: =14 Z (P, — = W)) + u, (14)
2
Yi =14 Z (P — P + u, (14')

Now, using rational expectations again, by combining (14') and (5), and
noting that E,_,{(,_,P,) = ,_,P,:

2P = oM, — (4 + 0, (15)
i-1P = %r—lMt + %t—th - %t—l(ut + vx) - %t—l(ut + vl)' (16)

16 Akerlof (1969) uses a model with overlapping labor contracts, in which prices
charged differ among firms.

17 The extreme assumption is made here that labor is attached to a particular set of
firms and that the state of excess supply or demand for labor in firms operating in mid-
contract does not affect the starting wage in the new contracts of the remaining firms.
Some labor mobility between firms could be incorporated in the analysis without affecting
the results so long as mobility is not sufficiently great to eliminate all wage differentials
between the two types of firms in a given period.
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Note that since, by assumption, M, is a function only of information
available up to the end of period (t — 1), ,_ M, = M,.
Accordingly,

2P, = M, + $i-aM, — (w4, + 0) — L1 (u + v) = o520 + 0),

. (17)
an
M, - M
Y, = %ﬂ + o, — v) + §-1(u, + 0) + Feoo(uy + vp).
(18)

Let the money supply again be determined by the rule of equation (10)
so that

t-2M, = apu,_, + —Ez ajle_y + bipyve_y + Zz bo,—;  (19)
and
M, — M, = a,(uy_q — p1_3) + b(v,_1 — prv,_2)

(20)
= a18_y + byny_q.

The difference between the actual money stock in period ¢ and that stock
as predicted two periods earlier arises from the reactions of the monetary
authority to the disturbances ¢,_; and 5,_, occurring in the interim. It
is precisely these disturbances that cannot influence the nominal wage for
the second period of wage contracts entered into at (f — 2).

Substituting (20) and (10) into (I8) it is clear that the parameters a;
and &; of the money supply rule, for i > 2, have no effect on the behavior
of output, and for purposes of this paper can be set at zero.'® Thus:

Y, = Ya (uqy ~ pyste_z) + by(0,—1 — pv:-3)]
+ 3w — o) + do1(w + o) + 32w + o) (21)
(e, — n) + Ye—i(ay + 2py) + n—i(by — p2)] + plu,—.

Before we examine the variance of output as a function of the parameters
a; and by, it is worth explaining why the values of those parameters affect
the behavior of output, even when the parameters are fully known. The
essential reason is that between the time the two-year contract is drawn
up and the last year of operation of that contract, there is time for the
monetary authority to react to new information about recent economic
disturbances. Given the negotiated second-period nominal wage, the way
the monetary authority reacts to disturbances will affect the real wage
for the second period of the contract and thus output.

18 From the viewpoint of the behavior of the price level it might be desirable to have
nonzero values of those parameters, but we are focusing strictly on the behavior of output.
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Calculating the asymptotic variance of Y from (21) we obtain:

t a,(4p, + a
i =i+ gt + 2y it o]
, (22)
LR T
The variance minimizing values of 4, and b, are accordingly:
a; = —2p
1 t (23)
by = p;
which yield output variance of
2 2 ]' p‘: + %0.2 (24)
Oy = 0O, Z -+ = p% n

To interpret the monetary rule, examine the second equality in (21).
It can be seen there that the level of output is affected by current dis-
turbances (g — #5,) that cannot be offset by monetary policy, by
disturbances (g,_, and #,_,;) that have occurred since the signing of the
older of the existing labor contracts, and by a lagged real disturbance
(#,-,). The disturbances ¢,_; and n,_; can be wholly offset by monetary
policy and that is precisely what (23) indicates. The u,_ , disturbance, on
the other hand, was known when the older labor contract was drawn up
and cannot be offset by monetary policy because it is taken into account
in wage setting. Note, however, that the stabilization is achieved by
affecting the real wage of those in the second year of labor contracts and
thus should not be expected to be available to attain arbitrary levels of
output—the use of too active a policy would lead to a change in the
structure of contracts.

For a more general interpretation of the monetary rule, note from (17)
that u—the real disturbance—and s—the nominal disturbance-—both
tend to reduce the price level. The rule accordingly is to accommodate
real disturbances that tend to increase the price level and to counteract
nominal disturbances which tend to increase the price level. Such an
argument has been made by Gordon (1975).

The monetary rule can alternately be expressed in terms of observable
variables as

M, =p,M,_ + (2p; — p2)Pr_y — (2py + 02)Y,,
- pl(t—ZWt—l + r—SWz—l)

and it is also possible to substitute out for the wage rates in (253) to obtain
a money supply rule solely in terms of lagged values of the money stock,
prices, and income.

(25)
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II1. Indexed Contracts

The only way in which monetary policy can lose its effectiveness when
there are long-term labor contracts is for the wage to be indexed in a way
which duplicates the effects of one-period contracts. However, it will be
seen (in [28] below) that such indexing is not of the type generally
encountered. Other types of indexing do allow monetary policy that can
affect output.

If the wage is set such that

W= 4P, i=12... (26)

then the results of Section I above obtain, and, in particular, output is
given by
Y, =4(e, — m) + pyue-y (27)

However, the indexing formula implied by (26) is unlike anything seen
in practice. It is:

W= —p,M + (py + p2)P,_y + (p2 — p1)Yioy — piW,oy (28)

where M, is assumed constant at M since the monetary rule is of no
consequence for the behavior of output. For p, < 0—negative serial
correlation of real disturbances—and p; + p, > 0 the above formula
could be similar to a wage contract which specifies both indexation to
the price level and profit sharing, but it is certainly not in general the
type of contract which is found. Probably the major reason such contracts
are not seen in practice is that calculation of their terms would be difficult
since industry and firm specific factors omitted from this simple model
are relevant to contracts that duplicate the effects of a full set of spot
markets.

The variance of output obtaining with the general indexing formula
(28) for wage determination is

2 2 (1 pi 2
oy = 0, (— + ——2> + %oy, (29)
4 1-p
This exceeds the variance of output with optimal monetary policy in the
nonindexed economy with two-period contracts; this is because the
criterion for wage setting, attempting to maintain constancy of the real
wage, is not equivalent to the criterion of minimizing the variance of
output. This result may be part of the explanation for the continued

hostility of stabilization authorities to indexation.

If any indexation formula for wages other than (28) is used, and there
are contracts which last more than one period, there is again room for
stabilizing monetary policy. For instance, consider a wage indexed to
the price level such that

t—iwt = iWiis1 + Py — Py (30)
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in which the wage paid in period ¢ on a contract made at the end of
(¢ — ¢) is the wage specified for the first year of the contract adjusted for
inflation over the intervening period. We also specify that

t—th—i+1 = t—iPt—i+13 (31)

that is, that the wage for the first year of the contract minimizes the
variance of the real wage in that period.

Assuming 2-year contracts, the supply equation (14), the velocity
equation (5), and rational expectations in determining the expected price
level in (31), one obtains, using the lag operator L:

Y,(6 — 4L + 2L%) = 2M(1 — L)2 + u[3 — (1 — p)L + p,L?]
— 03 — (3 + p))L + (2 — p,)L2,
(32)

where use has been made of the fact that M, = ,_ M,.

Since M, enters the output equation, it is clear that monetary policy
does have an effect on the behavior of output. In this case it is actually
possible for monetary policy to offset the effects of all lagged disturbances
by using the rule

M, = Lu[—(1 + 4p,) + (1 + p)L ~ p, L7201 — L)*] 7!

(33)
—Lo[(1 = 2p,) + (=1 + 3p,)L — p,L%][2(1 — L)*]7*
which leaves
2 2
2 % %y, 34
H=L Tty (34)

In the face of real disturbances, the monetary rule (33) destabilizes the
real wage relative to its behavior under the optimal monetary policy in
the nonindexed two-period contract model, and a fortiori relative to its
behavior when there are single-period contracts. Given that the assumed
aim of labor is to have stable real wages, an indexed contract like (30)
would be less attractive to labor than the nonindexed contracts of
Section II.

IV. Conclusions

The argument of this paper about active monetary policy turns on the
revealed preference of economic agents for long-term contracts. The only
long-term contracts discussed here are labor contracts, which generally
provide a Keynesian-like element of temporary wage rigidity that provides
a stabilizing role for monetary policy even when that policy is fully
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anticipated.!® Monetary policy loses its effectiveness only if long-term
contracts are indexed in an elaborate way that duplicates the effects of
single-period contracts, as indicated at the beginning of Section ITT—
and it should not be doubted that the labor contract of equation (28) is
a very simplified version of the long-term contract that would in practice
be needed to duplicate the effects of contracts negotiated each period.

The effectiveness of monetary policy does not require anyone to be
fooled. In the model of Section II, with two-period contracts, monetary
policy is fully anticipated but because it is based on information which
becomes available after the labor contract is made, it can affect output.
If the monetary authority wants to stabilize output, it can do so; in the
model of Section IT its optimal policy from the viewpoint of output
stabilization is to accommodate real disturbances that tend to increase
the price level and counteract nominal disturbances that tend to increase
the price level. Stabilization of output in the face of real disturbances
implies a less stable real wage than would obtain with one-period con-
tracts while output stabilization in the face of nominal disturbances
implies a real wage as stable as that obtained with one-period contracts.

Despite the different implications of this model from that of SW for the
effectiveness of monetary policy in affecting output, the implied aggregate
supply functions are only subtly different. An aggregate supply function
such as that used by Lucas (1973) in which monetary policy cannot affect
the behavior of output can be written

0
Yr = ;'yi(Pt—i - t—i—lPt—i) + U, (35)

That is, output is determined as a distributed lag on one-period forecast
errors of the price level. A general aggregate supply function implying
the potential effectiveness of monetary policy would be

Y, = Z(:) 0P, — (_iP) + u, (36)

In this case output is determined as a function of one and more period
forecast errors of the price level.?® The two formulations could be
difficult to distinguish empirically.

19 The major difference between this paper and that of Phelps and Taylor (1977) (PT)
is that in most of PT it is price, rather than wage, rigidity that provides the element of
nominal stickiness from which monetary policy derives its effectiveness. At the end of their
paper, PT do present a model with (single-period) price and wage stickiness. Persistence
effects in the present paper arise from the overlapping contracts and serial correlation of
disturbances while in PT inventory accumulation produces persistence of past disturbances.

28 Obviously, a more general form of (36) could involve terms like

Z ¢.I Z al(Pr-J - t-l—}Pt-j)-
Jj=0 i=0
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Before concluding, we should note that there is no dispute that monetary
policy can affect price level behavior. To the extent that price changes are
costly, it would be desirable to maintain price stability. In the face of
autocorrelated disturbances of the sort discussed in this paper, and even
if all contracts are one period, an activist monetary policy would be
needed to maintain stable prices. Thus an argument for the desirability of
an activist monetary policy could be constructed even if there were no
potential role for monetary policy in affecting output.

While the paper argues that an active monetary policy can affect the
behavior of output if there are long-term contracts, and is desirable in
order to foster long-term contracts, one of the important lessons of the
rational expectations literature should not be overlooked:?! the structure
of the economy adjusts as policy changes. An attempt by the monetary
authority to exploit the existing structure of contracts to produce behavior
far different from that envisaged when contracts were signed would likely
lead to the reopening of the contracts and, if the new behavior of the
monetary authority were persisted in, a new structure of contracts. But
given a structure of contracts, there is some room for maneuver by the
monetary authorities—which is to say that their policies can, though will
not necessarily, be stabilizing.
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Price-Level Stickiness and the Feasibility
of Monetary Stabilization Policy with
Rational Expectations

Bennett T. McCallum

This paper considers the validity of the Lucas-Sargent Proposition,
which concerns the ineffectiveness of countercyclical monetary policy
when expectations are rational, under the assumption that prices are
“sticky.” The model of Sargent and Wallace is modified so as to incor-
porate stickiness as follows: in each period the price adjusts to the
market-clearing value only if the latter is far from the expected value
(i.e., when the cost of maintaining an inappropriate price exceeds the
lump-sum cost of a revision). Otherwise the price equals the value pre-
viously expected. Given this modification, the proposition remains
valid.

Several recent papers have demonstrated a striking theoretical result
concerning the feasibility of countercyclical monetary policy.? This
result, which I shall refer to as the Lucas-Sargent Proposition, may be
stated as follows: if aggregate-supply fluctuations are initiated by in-
formational errors?
rationally, then countercyclical monetary policy will be entirely in-

and if economic agents’ expectations are formed

effective.® This proposition provides powerful intellectual support for
Milton Friedman’s proposal that monetary authorities abandon attempts
to “lean against” prevailing cyclical tendencies, acting instead so as to

I am indebted to Robert Barro, Herschel Grossman, Robert Lucas, John Taylor, and
John Whitaker for valuable comments on an earlier draft. Special thanks are due Thomas
Sargent for suggesting an important modification,

! The result was first given a clear and explicit statement by Sargent (1973), who
built upon the ideas of Lucas (1972, 1973, 1976). More recent developments are provided
by Sargent and Wallace (1975, 1976) and Barro (1976), while an insightful but informal
early discussion is presented by Gordon and Hynes (1970).

2 Fluctuations initiated by expectational errors may persist: see Sargent (1973, p. 445).

3 That is, the probability distribution of output will be independent of parameters
describing the systematic portion of the authorities’ responses to cyclical conditions.

[Journal of Political Economy, 1977, vol. 85, no. 3]
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generate steady growth of the nominal money stock at some constant
rate.*

In reaction, Edmund Phelps and John Taylor (1977) have developed
a model, similar in some respects to the one used by Sargent and Wallace
(1975), in which there is a role for activist monetary policy even though
expectations are formed rationally. While there are several ways in which
their model differs from that of Sargent and Wallace, the one stressed
by Phelps and Taylor is the assumption that prices are “sticky”’—that is,
the aggregate price level does not adjust “flexibly” so as to equate
aggregate supply and demand in each period. As it is widely agreed that
prices are in fact sticky (in some sense), the Phelps-Taylor argument
might appear to cast doubt on the relevance, for the design of monetary
policy, of the Lucas-Sargent Proposition.?

Actually, however, it is not price stickiness per se that accounts for the
Phelps-Taylor result. Instead, it is the combination of their particular (and
extreme) method of incorporating stickiness fogether with a second change
vis-a-vis Sargent and Wallace, namely, the replacement of the Lucas-type
supply function with an “output determination equation” that relates
departures from capacity output to differences between the expected
“natural” and real rates of interest.® In fact, if one modifies the Sargent-
Wallace model in a way that incorporates price stickiness of a less extreme
degree but leaves intact its other features, the Lucas-Sargent Proposition
will continue to hold. The purpose of the present note is to establish the
validity of this assertion

I. The Model

Let us begin by writing the model of Sargent and Wallace in a manner
that will prove to be convenient. For simplicity, we take (the log of)
productive capacity, k,, to be exogenously determined.” Excepting the
money stock, which will be discussed below, the other exogenous variables
are represented by the vector Z,. The endogenous variables are y, = log
of aggregate output or supply; ¢, = log of aggregate expenditure or
demand; p, = log of price level; and 7, = nominal interest rate. The
structural equations of the model, which determine y,, ¢,, p,, and r,, are

+ This point is stressed by Sargent and Wallace (1976).

5 This has been suggested by Gordon (1976) and Nordhaus (1976).

¢ The rationale for this equation is not entirely clear, but the specific nature of the
Phelps-Taylor stickiness assumption makes some replacement almost imperative. More
discussion appears below, esp. in n. 8.

7 As Phelps and Taylor take capacity to be constant, the question of its exogeneity
(considered by Sargent and Wallace [1975]) is evidently not at issue.
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as follows:
e =k +a(p — 1) + Uy (N
e = bk, + bylry — (a1 — c180)) + 632, + uy, (2)
m, = p, + ¢1¢, + 67, + Uy (3)
and
Y = &y “4)

Here equation (1) is a Lucas-type aggregate-supply function (see Lucas
1973), in which ,_, pF¥ represents the value of p, expected by the public
on the basis of information available at the end of period ¢ — 1. Note
that we have reversed the role of the p* subscripts, in comparison with
Sargent and Wallace (1975). Moreover, in what follows we shall delete
the leading subscript whenever it equals ¢ — 1, writing p¥ instead of
167+ Equation (2) is an IS schedule relating demand for consumption
and investment goods to an indicator of wealth (k,) and the real rate of
interest, while (3) is a conventional LM or portfolio-balance equation.
The final relationship, (4), implies that the price level adjusts so as to
equate aggregate supply and demand in each period. The model is
completed by the specification of stochastic processes generating Z, and
u, (1t =1,2,3) plus the assumption that expectations are formed
rationally. The zero-mean, constant-variance disturbances u;, may be
autocorrelated but are generated by processes independent of those that
yield Z,.

The focus of attention in what follows is the feasibility of the monetary
authority choosing a policy that will keep y, closer to k,, on average, than
it would be in the absence of a stabilization policy. Again following
Sargent and Woallace, let us presume that the authority’s policy is
describable as a deterministic feedback rule of the form

m, = thr—l + hX, oy + 0, (3)

where X, denotes the set of observations on all relevant variables as of
period ¢, while each £; is a vector of parameters conformable with X,_ .
Then the Lucas-Sargent Proposition is that the probability distribution
of », in the foregoing model is not dependent upon the policy parameters.
If the authorities alter the value of one or more elements of one or more
of the #; vectors, the distribution of y, will be unaffected. This was proved
by Sargent and Wallace (1975) and earlier, for a slightly different model,
by Sargent (1973).

Our object now is to modify the foregoing model by replacing equation
(4) with a relation that reflects price-level stickiness. At present there is
no generally accepted way of representing this sort of phenomenon,
except in analyses in which it is adequate simply to hold the relevant
variable fixed at some constant value. The approach taken by Phelps
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and Taylor is to make each period’s price predetermined and thus entirely
unresponsive to current conditions. To be precise, Phelps and Taylor
assume that each period’s price is equal—apart from the effect of a purely
random disturbance unrelated to any other aspect of the model—to the
value that was expected one period earlier to be the market-clearing
value.® The idea evidently is that last-minute price revisions are costly,
that is, require the use of real resources.®

As the notion that price revisions are costly is quite appealing, it will
be retained in our formulation. Our approach will also reflect, however,
a second notion: that real (opportunity) costs are incurred whenever
prices depart from market-clearing levels. Thus we presume that the cost
of making a price change (which is taken to be of the lump-sum variety)
must be balanced against the cost of maintaining an inappropriate price
(which is taken to depend on the extent of the discrepancy). From the
point of view implied by this pair of notions, the Phelps-Taylor analysis
embodies an implicit assumption that the former cost is always greater
than the latter, no matter how far current conditions depart from those
expected one period earlier. Our presumption suggests that a more
satisfactory method of representing price-level stickiness would be to
specify the following: the price level in period ¢ will equal the expected
price p¥ whenever the current market-clearing value is sufficiently close
to pF. Otherwise, when the market-clearing price is far from the expected
value, the price will adjust to its market-clearing level. In the former
case, 3, and ¢, will be unequal. Thus we assume that additions (subtrac-
tions) to existing inventory stocks are made whenever output exceeds
(falls short of ) aggregate demand.

Formally, let us define the (log of the) market-clearing price as p],
the value that would equate aggregate supply and demand. Setting
¢, = ¥, in equations (1)—(3) and solving, we obtain

plo=mk, + Tom, + T+ Tt + T2,
+ WeUye + Mol + Tglsy (6)

8 This one change from the Sargent-Wallace model would not alone yield the Phelps-
Taylor result: with rational expectations, the value of p, — p¥ would be pure noise, so
the supply function (1) would amount to », = k, + #;; + noise. Accordingly, Phelps
and Taylor drop (1}, replacing it with an output equation that involves the value of p,
expected as of t — 1. It is the combination of this equation with the predetermined price
level that provides their result: the money supply for t—which has an influence on p, . ;—
is set after the price for ¢ is fixed, hence with additional data available. Thus the effect is
similar to supposing that there exists an informational advantage for the monetary
authority (even though the private sector obtains information at the same time as the
autharity). There is, as a result, scope for useful countercyclical monetary policy: as
shown by Sargent and Wallace (1975) and Barro (1976), an informational advantage
will render monetary stabilization policy effective even in models with completely
flexible, market-clearing prices.

9 Phelps and Taylor explicitly mention but do not model the costs of making price
changes.
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where the coefficients n,-ng are definitionally related to the parameters
of (1)—(3). Then taking 4, and J, to be positive constants, we assume
that p, obeys the relationship

PR L R <pl<pf+ 6y
' P otherwise.

)

Clearly, this specification permits various degrees of stickiness, with
relatively small values of §; and J, representing relatively flexible prices
and vice versa.'? Of course we have not given any full-blown justification
for the specification, but the analysis of Barro (1972) provides some
support.'! In any event, relationship (7) certainly provides one way of
modeling stickiness, appears no more ad hoc than other possibilities, and
is less extreme than the Phelps-Taylor assumption.

II. Analysis

Our next task is to prove that the Lucas-Sargent Proposition holds in the
model described by equations (1), (2), (3), (6), and (7). Let us begin by
noting that this model incorporates the two features stressed by Sargent
and Wallace (1975, p. 254),'? namely, the Lucas-type output function
and expectational rationality. Next, notice that the first of these features
implies that the (unconditional) distribution of y, can be affected by
monetary policy only if that policy affects the distribution of the expec-
tational error p, — p¥. But the rationality assumption requires that p;
be formed in such a way that the expectational error will be unrelated to
data available at ¢ — 1. Thus p, — p;* will have a distribution that will
depend in 7o way on available data, so there can be no policy feedback
rule for m,, based on such data, that will influence the distribution of »,.

As there are some unorthodox aspects to the argument in the present
context, some elaboration may be appropriate. For simplicity, let us
delete the exogenous Z, variables and assume that the u,, processes are
serially independent.’? Now the expectational error can be expressed as

0 if =8, < pl — pf < &,
p,—p:"={T \ LS Pemhe s 0 ®)
Py — b otherwise.
Furthermore, if we define
& = Mgy, + Moy, + Mgtz 9)

10 With 6, = §, = 0, prices are entirely flexible.

1 Barro shows that a rule like (7), but with p,_, appearing in place of g}, would be
used by a profit-seeking monopolist with costs of the types described by our two “notions.”

12 And earlier by Sargent (1973, p. 444).

13 If they were not, it would be possible to eliminate the u;, in favor of serially indepen-
dent “innovations” and proceed as in the case considered.
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we can write
bl = 87 = mk 4 mamy + (73 — D+ mapl + & (10)

and observe that £, is stochastically independent of the other variables
on the right-hand side of (10), all of which are included in the set of
available data!* ®,_, = {X,_;, X,_,,...}. Thus the rationality as-
sumption, which requires the error to depend in no way on any subset
of ®,_,, may be imposed by means of the condition

mk, + mom, + (ny — D)pF 4 mapti, = 0. (11)

Accordingly, (8) reduces immediately to

pt_p;*={0 if =8 < ¢, < 9y,

¢, otherwise,

(12)

from which it is clear, since &, represents irredueible noise, that the
choice among deterministic monetary feedback rules will have no effect
on the distribution of p, — p¥. Consequently, the choice will likewise
have no effect on the distribution of y,—which is the proposition asserted
above.

It will be observed that our definition of rationality is not the one most
frequently encountered, according to which p} is taken to be the math-
ematical expectation, conditional on ®@,_,, of p,.'* If there is no asym-
metry in the model—that is, if §; = J, and the distribution of &, is
symmetric about its mean value of zero—then our definition will be fully
consistent with the usual one, although slightly more stringent.'® More-
over, the imposition of such symmetry requirements should not be
deemed entirely unreasonable, as one such requirement is implicit in the
usual notion that the conditional expectation is an “optimal” predictor
of p,.17 It would be possible, therefore, to avoid any unusual implication
of our definition by simply assuming that the symmetry conditions are
satisfied.

I can see, however, no compelling theoretical reason for adding these
requirements just to avoid the fact that our definition will, in the presence
of asymmetries, make p;* unequal to E(p, | ®,_,;). When an asymmetry
does exist, it is surely ‘‘reasonable” that p* # E(p, | ®,_,), for the effect
in the model is to reduce the probability of the more costly type of

14 Or, as in the case of m,, are deterministically dependent upon variables in ®,_,.

13 The Phelps-Taylor rationality condition is also somewhat unorthodox. Instead of
setting p¥ equal to E(p, | ®,_,), their procedure is to use the model to determine p¥ and
then generate p, by adding a pure noise disturbance to the latter.

16 That E{p, — p¥ | ®,_,) = 0 in this case can be deduced from expression (12).
If F(£) is the distribution function for &, then the expectation equals § ¢dF (&) over the
area outside (— 4, 8,), which will be zero.

17 In particular, optimality is defined relative to a mean-squared-error criterion,
which implies symmetry in the loss or cost structure.
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discrepancy between p, and p!, the market-clearing price. An example
may be useful. Suppose that the distribution of &, is symmetric but that
any given absolute discrepancy between p, and p! is more costly for
2, > p! than for p, < pi. Then §; will by design be smaller than §,, so
that the more costly type of discrepancy will occur with lower probability.
But this implies that the set of negative values of p, — p* with nonzero
probability of occurrence is larger than the corresponding set of positive
values, so the mean value of the expectational error must be negative.
This sort of example can, however, only serve to illusirate the fundamental
justification for our definition of rationality, which is that any systematic
relationship between expectational errors and available data would
imply!'® the existence of unexploited profit opportunities.

III. Extension and Conclusion

Thus we have established our main point: recognition of price-level
stickiness does not, in and of itself, negate the Lucas-Sargent Proposition.
Furthermore, it appears that this conclusion could survive various changes
in the specification of the foregoing model, provided that they do not
alter equations (1) or (7). To provide some support for this conjecture,
let us briefly sketch the analysis of one such change, which involves a
slight extension of the model. Suppose that firms are more concerned with
their inventory holdings than our previous discussion has implied and
specifically assume that their desired end-of-period holdings are given by

i;d = d1kz + dz[rr - (p:"-fl - p:k)] + Ugss (13)

an inventory demand function of the ‘‘supply-of-storage’ type. Given
this modification, the market-clearing price p! must now be defined not
as the value that equates y, and ¢, but, rather, as the value that satisfies
the condition'®
-d .
Je =&+ 4 — 4y (14)

Consider then the extended model consisting of equations (1), (2), (3},
(7), (13), and the counterpart of (6)—implied by (14)—which can be
written as

b = ik + Yam, + yapE + Vbl + v5Z,
+ Yoy, + Prty, + Velae + Yole—g + Viotar

Clearly the analysis of this model would proceed just as in Section II,
with the only qualitative changes being the inclusion of an 7, term in
the counterpart of condition (10) and a redefinition of £, that incorporates

(6"

18 In the absence of information collection and processing costs.
19 When p, # p!, actual inventory holdings will depart from the desired level.
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the additional disturbance u,,. Thus the Lucas-Sargent result would hold
as before.

Finally, we might add that all of the foregoing discussion is applicable
to the stabilization aspects of countercyclical fiscal policy as well as
monetary policy. Thus in the model at hand there is no fiscal feedback
rule, utilizing information available as of period ¢ — 1, that can be used
to control expectational errors or output.?® Of course fiscal policy could
be used to affect the real interest rate and thereby capacity output.?!
But activist stabilization policy, concerned with the distribution of », — £,,
will be ineffective unless it is based on more recent information than is
available for private expectation formation. The combination of rational
expectations and the supply function (1) negates output effects of counter-
cyclical demand policy, not just monetary policy.
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The Current State of the
Policy-Ineffectiveness Debate

Bennett T. McCallum

The debate in question is, of course, over the applicability to the U.S.
economy of the famous and controversial “neutrality” proposition—due
primarily to Robert Lucas, Thomas Sargent, and Neil Wallace—accord-
ing to which the choice among monetary policy feedback rules is irrelevant
for the stochastic behavior of the unemployment rate in a neoclassical
economy with rational expectations. Since the basic logic of this proposi-
tion has become well-known, I will not devote space to a formal statement
or proof. It will be necessary, however, to inject some interpretive com-
ments. This need arises because formal proofs of the proposition refer to
effects of alternative policy rules on the stochastic steady-state behavior of
key macro-economic variables. Thus the alternative policy rules are
treated as permanently maintained, with transitional effects ignored.
Under this interpretation the proposition does not imply that actions of the
Fed (the “monetary authority”) have no impact on unemployment rates.
Since expectations at any moment of time are given, the more expansion-
ary are the Fed’s actions “this month” the lower will be “this month’s”
unemployment rate, even if the proposition is valid. Evidently, what the
latter does suggest is that the Fed’s choice among alternative reaction
patterns, sustained over many periods of time, will have negligible effects
on the level and variability of unemployment rates averaged over these
periods. The distinction between policy actions and policy rules is crucial.

The proposition is straightforwardly applicable, therefore, only to hypo-
thetical, maintained situations. One might even say that the proposition is
a “long-run” result, though such terminology hardly seems helpful. But it
does not follow that the proposition is irrelevant for actual policy, as some
commentators have suggested. Clearly, it bears upon the following ques-
tion: Does it matter, on average, if the money stock is typically increased
rapidly, slowly, or not at all when high unemployment rates are observed?
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The proposition may apply only to the systematic, nontransitory compo-
nent of policy behavior, but presumably that is the portion of primary
interest to economic scientists and public-spirited policymakers.!

A few more matters should be clarified before I begin with the main
discussion. In particular, it should be mentioned that the neutrality propo-
sition refers to real output rates, as well as unemployment rates, but with
the relevant concept in both cases measured relative to some “capacity,” or
“full employment,” or “natural rate” benchmark. There are many models
in which the proposition is valid for such measures even though capacity
levels are themselves affected by the choice among policy rules. By taking
these relative concepts as the ones under discussion, I will be focusing on
“stabilization policy” and abstracting from issues of “economic growth.”
Notationally, the same symbol, y,, will be used to refer to both concepts—
unemployment and (the log of) output relative to natural-rate levels. Fi-
nally, it will be presumed that information on period ¢ values of all rele-
vant variables becomes available in period ¢ + 1, both to the Fed and to
individual agents.? Thus the theoretical discussion presumes that the Fed
has no informational advantage. It is generally agreed that such an advan-
tage would invalidate the neutrality proposition without providing a
strong basis for policy activism (see Barro 1976).

I. Objections to the Neutrality Proposition

Let us now proceed by considering some of the main objections that have
been raised by activist critics to the application of the proposition to the
U.S. economy. For a while there was resistance to the notion that expecta-
tions are formed rationally, especially in the sense that all agents act as if
they knew the true structure of the economy including the policy feedback
rule.? More recently, however, macroeconomic researchers seem to have

IThat most “policymakers” are not, in their day-to-day activities, concerned with the
choice among sustained feedback rules hardly diminishes the importance of the proposition
under discussion. With respect to economists, my position has received implicit support from
the practice of leading activist critics of the proposition: the analyses of Fischer (1977), Phelps
and Taylor (1977), and Taylor (in press) all focus upon stochastic steady-state behavior.
(These examples also illustrate that the desirability of conducting policy by means of feed-
back rules is not at issue.) This sort of analysis abstracts from effects of two kinds: those due to
initial conditions and those that occur while agents are in the process of learning about newly
adopted policy rules. With respect to the latter, it is important to keep in mind that it is
doubtful whether output or employment effects obtained by policy deception would be
welfare enhancing.

2For simplicity, the discussion in this paper will be restricted to aggregate relationships.
Aggregate supply functions like equation (1) below are typically rationalized by means of the
analysis of Lucas (1973), in which agents in separate markets carry out transactions knowing
values of aggregate variables for previous periods but only “local” absolute prices for the
current period.

3Actually, the proposition permits the somewhat weaker assumption that expectations
differ from the fully rational values by a random term uncorrelated with available data.
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moved toward a sort of implicit agreement that this extreme rational ex-
pectations assumption is appropriate for analysis of stabilization policy.
There are, I believe, two main justifications for this view. First, there is no
reason to believe that the assumption is terribly inaccurate, empirically, at
the macroeconomic level.* Of course it is literally untrue, but so is every
behavioral relation in every formal economic model. Second, every alter-
native assumption has an extremely unattractive property: it requires the
assumed existence of some particular pattern of systemaiic expectational
error. One would not expect any systematic pattern of errors to persist,
however, since each would imply the existence of unexploited opportuni-
ties for enormous entrepreneurial gain. The relevant issue is not whether
expectations are “actually” formed rationally, but whether it would be
fruitful to conduct stabilization analysis under any other assumption.

One of the most prominent activist arguments for the inapplicability of
the proposition has to do with “persistence” of positive or negative values
of y, (output or unemployment). According to this viewpoint, the proposi-
tion implies that y, values are serially uncorrelated, so the fact that meas-
ured U.S. unemployment and output values exhibit strong serial depend-
ence immediately provides an empirical refutation. But, as several writers
have noted, while the rationality assumption implies that expectational
errors are serially uncorrelated, there is no such implication regarding
values of y,. To emphasize this, Sargent (1979) has developed an agent-
maximizing, market-clearing model in which adjustment costs lead to an
aggregate supply function of the form

n
N=a, (b = Eip) + D> byt (1)
i=1

where p, is the log of an aggregate price index, E,_;p, is its conditional
expectation, and ¢, is a disturbance uncorrelated with past values of all
variables. In the example explicitly worked out, Sargent takes n = 1, but
the analysis could in principle be extended to the more general case. Now
(1) is clearly a supply function consistent with standard proofs of the prop-
osition. And for many parameter values (1) will imply positive serial cor-
relation of y, values.® Furthermore, Lucas (1975b) has developed a model,
quite different from Sargent’s, in which neutrality prevails yet persistence
results from certain restrictions on the information available to individual
agents. And very recently Blinder and Fischer (1978) have shown that
persistence can be generated, without violation of the proposition, by in-

4Arguments based on expectational differences across individual consumers or firms
amount to objections to macroeconomics, not rational expectations. Any readers who are
Jfundamentally unsympathetic to the rationality assumption are urged to consider the position
expressed in Lucas (1975a).

5Sargent (1979) also shows that the neutrality proposition is, in a two-shift model, consist-
ent with the apparent failure of real wages to move countercyclically.
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ventory behavior of a plausible type. Thus the persistence objection is not
well founded.

The other main line of argument on the activist side has to do with
“sticky prices.” One version begins with the observation that many models
yielding the neutrality result—most notably, the model of Sargent and
Neil Wallace (1975)—assume that prices are “perfectly flexible” in the
sense that the price level adjusts in each period so as to equate aggregate
supply and demand. But actual prices are sticky—the price level seems to
adjust very slowly to eliminate conditions of excess supply or demand.
Accordingly, the argument goes, the neutrality proposition is inapplicable
to the U.S. economy. There are, however, two flaws with this argument.
First, it is not entirely clear that the Sargent-Wallace model rules out price
level stickiness of the type that has been documented: the model permits a
many-period, distributed-lag response of the price level to changes in the
money stock. Second, it is possible to construct models in which prices are
sticky in a stronger sense and yet the neutrality proposition prevails. For
these reasons, discussed more fully in my 1978 paper, the proposition can-
not be disposed of by simply noting that actual prices move sluggishly.®

There is, however, a more persuasive version of the sticky-price argu-
ment, one that involves the notion of “long-term contracting.” In particu-
lar, it has been shown, most notably by Fischer (1977), that scope for activ-
ist monetary policy will exist—the neutrality proposition will fail—in an
economy in which typical labor contracts fix nominal wages for two or
more periods in advance. In such an economy, the choice of a policy rule
will not affect the mean value of y,—so unemployment cannot be kept
permanently low—but will influence the variability of y,. This is possible,
even if monetary policy is fully anticipated, because the policy rule can
take account of shocks that occur after a contract has set the wage for a
(fixed) portion of the workforce. A similar result obtains, furthermore, for
multiperiod price-setting arrangements (see Taylor, in press) and such ar-
rangements may be formal or implicit.

In my opinion, this line of argument constitutes the most telling objec-
tion to the neutrality proposition that has been advanced to date. Never-
theless, it is not entirely compelling. As Barro (19775) has emphasized, the
procedure by which employment is determined in Fischer’s contracting
scheme is Pareto suboptimal: other contracts could conceivably be written
that would improve the welfare of both firms and households. Thus there
is no solid economic rationale for the presumption that Fischer-type con-
tracts are written.” And it seems unlikely that any such contracts would

6A related argument invokes the concept of “disequilibrium.” For a discussion of disequi-
librium models, see the papers on “Macroeconomics: An Appraisal of the Non-Market-
Clearing Paradigm”: Barro (1979), Grossman (1979), and Howitt (1979).

"Indeed, Barro’s analysis leads him to suggest that “sticky wages, layoffs versus quits, and
the failure of real wages to move countercyclically” may be merely “a facade with respect to
employment fluctuations” (19774, p. 316).
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remain in force if the policy authorities were to try to exploit them to a
great extent. Fischer recognizes both of these points but argues that con-
tracts of the form used in his model are, in fact, of the type that exist in
actual economies.

I1. Formal Empirical Evidence

Given the considerations discussed in the previous section, it appears un-
likely that the ineffectiveness debate can be resolved by means of purely
theoretical arguments or casual empiricism. Recourse to formal economet-
ric evidence would seem to be necessary.

Unfortunately, however, it has become apparent that it is extremely
difficult to bring such evidence to bear on the issue in an effective way. In
part, this is because the neutrality proposition is compatible with supply
functions more general than (1)—in particular, with functions that in-
clude lagged one-period expectational errors (lagged “innovations”),
such as

k

=D albe — Bl )l + D by + & (2)

i=0 ji=1

The proposition is not, on the other hand, consistent with a formulation
that includes multiperiod expectational errors, such as

k n
= 2 a;[py — £, i_o(p)] + z 0; 9 + &. (3)
i=0 =1
Simple inspection suggests that it could be difficult to distinguish empiri-
cally between formulations like (2) and (3).

Indeed, Sargent (19766) has shown that, without the use of additional a
priori information of some type, it is logically impossible to distinguish
between (2) and (3) or, more generally, between models in which the neu-
trality proposition is valid and invalid. In other words, the neutrality
property alone places no restrictions on time-series data taken from a sin-
gle policy regime. This does not imply that attempts to test the proposition
are hopeless, but it does emphasize the importance of giving careful con-
sideration to the type of a priori information used in any test attempt.

At present, the two most well-known empirical studies are those of Sar-
gent (1976a) and Barro (1977a). In the first of these, identifying restrictions
are imposed by the adoption of a supply function of type (1): since (2) is
more general, this amounts to the assumption that the parameters a,,
a4y, . .., a4 are all equal to zero. (Actually, Sargent emphasizes innovations
in policy variables, such as the log of the money stock, m,, rather than p,.
Also, he notes that it may be appropriate to interpret y, and m, as vectors of
variables.) While this specialization is not implied by the proposition, it
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seems plausible—why should past errors affect today’s supply decision? In
any event, with the additional assumption that the equation’s disturbance
term is free of serial correlation, this exclusion of lagged expectational
errors permits Sargent to obtain the implication that y, is, given the effect
of lagged »’s, uncorrelated with past values of policy variables. Accord-
ingly, evidence consistent with this implication would seem to provide
genuine empirical support for the neutrality proposition, even though in-
consistent evidence could result either from the proposition’s invalidity or
from the presence of lagged innovations in the aggregate supply function.
As it happens, Sargent’s results are mixed, but reasonably consistent with
the implication. It has been noted, however, that Sargent’s auxiliary as-
sumption regarding serial correlation is crucial to this procedure (see Sims
1977; Shiller 1978) and Sims has argued that the assumption is arbitrary.
So, while Sargent’s results may not be totally uninformative, they should
probably be regarded as shedding little light on the validity of the prop-
osition.

Barro’s (1977a) test approach is quite different. It involves explicit esti-
mation of an equation analogous to (2) but with monetary innovations
appearing in place of expectational errors in p, and with additional “real”
labor market variables in place of lagged values of y,. Testable implica-
tions are obtained under the neutrality hypothesis by the exclusion from
the unemployment rate ( »,) equation of certain exogenous variables that
appear significantly in the equation used to explain monetary policy. This
exclusion permits Barro to distinguish between the effects of monetary
innovations and anticipated values of the money stock (Barro, 19774, pp.
109-10). His results for 1946-73 (annual data) are strikingly favorable to
the neutrality proposition: current and lagged monetary innovations are
highly significant while anticipated components of m, provide no incre-
mental explanatory power.

On the surface, it might appear that Barro’s results are open to criticism
on the grounds of implausibility: strong effects on », are found for ex-
pectational errors made one and two years earlier. The estimated equation
can be interpreted, however, as resulting from the elimination of other real
endogenous variables from an aggregate supply function in which only the
current monetary innovation is present (see McCallum 1979). Thus this
apparent objection is not telling. A more reasonable source of uneasiness
over Barro’s results is, I believe, their reliance on an accurate decomposi-
tion of money growth rates into anticipated and unanticipated compo-
nents; analysis of policy behavior rules is not something with which
macroeconomists have a great deal of experience. Also open to skepticism
is Barro’s explanatory variable (in the y, equation) designed to reflect ef-
fects of the military draft. Still, Barro’s results—recently augmented
(1978) by evidence on price level behavior—are quite impressive.

A third empirical approach, as yet less well-known, has been suggested
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by Sargent (19766) and implemented by Neftci and Sargent (1978). If the
monetary authority’s policy feedback rule changes at some point of time,
there should be a shift in the distributed-lag relationship of y, on actual m,
values if the neutrality proposition is true but not if it is false, with this
implication reversed for a relationship between », and innovations in m,.
Using quarterly U.S. data for 1949-74, Neftci and Sargent located a pol-
icy break at the start of 1964 and then obtained Chow-type test statistics
that are reasonably supportive of the neutrality proposition. The main
weaknesses of this procedure are the absence of any formal statistical basis
for reaching conclusions and (again) the difficulty of characterizing policy
behavior. The approach would seem, nevertheless, to warrant additional
attention.

II1I. Conclusions

For the most part, the formal econometric evidence developed to date is
not inconsistent with the neutrality proposition. But the power of existing
tests is probably not high and, in any event, the evidence is not entirely
clearcut. Thus many economists may tend, at least for the present, to
maintain adherence to their favorite theoretical model—whichever one
offers the combination of features that seems essential. There is room for
hope that future research will offer new insights, but it is hard to imagine
that any conclusive breakthrough will occur. Thus it may be best to con-
clude by noting the extent to which the current brand of policy activism
has been affected by the analysis and findings of the Lucas-Sargent-Barro
school. Just over a decade ago, Milton Friedman’s suggestion that unem-
ployment could be kept low only by accelerating inflation seemed radical;
now even many activists doubt that it can be kept low by any monetary
policy stance.
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After Keynesian Macroeconomics

Robert E. Lucas. Jr., and Thomas J. Sargent

For the applied economist, the confident and apparently successful appli-
cation of Keynesian principles to economic policy which occurred in the
United States in the 1960s was an event of incomparable significance and
satisfaction. These principles led to a set of simple, quantitative relation-
ships between fiscal policy and economic activity generally, the basic logic
of which could be (and was) explained to the general public and which
could be applied to yield improvements in economic performance benefit-
ting everyone. It seemed an economics as {ree of ideological difficulties as,
say, applied chemistry or physics, promising a straightforward expansion
in economic possibilities. One might argue as to how this windfall should
be distributed, but it seemed a simple lapse of logic to oppose the windfall
itself. Understandably and correctly, noneconomists met this promise with
skepticism at first; the smoothly growing prosperity of the Kennedy-John-
son years did much to diminish these doubts.

We dwell on these halcyon days of Keynesian economics because with-
out conscious effort they are difficult to recall today. In the present decade,
the U.S. economy has undergone its first major depression since the 1930’,
to the accompaniment of inflation rates in excess of 10 percent per annum.
These events have been transmitted (by consent of the governments in-
volved) to other advanced countries and in many cases have been ampli-
fied. These events did not arise from a reactionary reversion to outmoded,
“classical” principles of tight money and balanced budgets. On the con-
trary, they were accompanied by massive government budget deficits and
high rates of monetary expansion, policies which, although bearing an
admitted risk of inflation, promised according to modern Keynesian doc-
trine rapid real growth and low rates of unemployment.

That these predictions were wildly incorrect and that the doctrine on
which they were based is fundamentally flawed are now simple matters of

A paper presented at a June 1978 conference sponsored by the Federal Reserve Bank of
Boston and published in its After the Phillips Curve: Persistence of High Inflation and High Unem-
ployment, Conference Series No. 19. The authors acknowledge helpful criticism from William
Poole and Benjamin Friedman.

(Federal Reserve Bank of Minneapolis Quarterly Review, 1979, vol. 3, no. 2|
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fact, involving no novelties in economic theory. The task now facing con-
temporary students of the business cycle is to sort through the wreckage,
determining which features of that remarkable intellectual event called
the Keynesian Revolution can be salvaged and put to good use and which
others must be discarded. Though it is far from clear what the outcome of
this process will be, it is already evident that it will necessarily involve the
reopening of basic issues in monetary economics which have been viewed
since the thirties as “closed” and the reevaluation of every aspect of the
institutional framework within which monetary and fiscal policy is formu-
lated in the advanced countries.

This paper is an early progress report on this process of reevaluation and
reconstruction. We begin by reviewing the econometric framework by
means of which Keynesian theory evolved from disconnected, qualitative
talk about economic activity into a system of equations which can be
compared to data in a systematic way and which provide an operational
guide in the necessarily quantitative task of formulating monetary and
fiscal policy. Next, we identify those aspects of this framework which were
central to its failure in the seventies. In so doing, our intent is to establish
that the difficulties are fatal: that modern macroeconomic models are of no
value in guiding policy and that this condition will not be remedied by
modifications along any line which is currently being pursued. This diag-
nosis suggests certain principles which a useful theory of business cycles
must have. We conclude by reviewing some recent research consistent with
these principles.

Macroeconometric Models

The Keynesian Revolution was, in the form in which it succeeded in the
United States, a revolution in method. This was not Keynes’ (1936) intent,
nor is it the view of all of his most eminent followers. Yet if one does not
view the revolution in this way, it is impossible to account for some of its
most important features: the evolution of macroeconomics into a quanti-
tative, scientific discipline, the development of explicit statistical descrip-
tions of economic behavior, the increasing reliance of government officials
on technical economic expertise, and the introduction of the use of mathe-
matical control theory to manage an economy. It is the fact that Keynes-
ian theory lent itself so readily to the formulation of explicit econometric
models which accounts for the dominant scientific position it attained by
the 1960s.

Because of this, neither the success of the Keynesian Revolution nor its
eventual failure can be understood at the purely verbal level at which
Keynes himself wrote. It is necessary to know something of the way
macroeconometric models are constructed and the features they must have
in order to “work” as aids in forecasting and policy evaluation. To discuss
these issues, we introduce some notation.
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An econometric model is a system of equations involving a number of
endogenous variables (variables determined by the model), exogenous var-
iables (variables which affect the system but are not affected by it), and
stochastic or random shocks. The idea is to use historical data to estimate
the model and then to utilize the estimated version to obtain estimates of
the consequences of alternative policies. For practical reasons, it is usual to
use a standard linear model, taking the structural form?

Aoy +Ayy+ - + 4,0, = Box, + Bix,_y
F B, ey
Roe, + Rig,_y + -+ + R, =u, Ry=1 (2)

(1)

Here y, is an (L X 1) vector of endogenous variables, x, is a (K X 1) vector
of exogenous variables, and ¢, and «, are each (L X 1) vectors of random
disturbances. The matrices 4; are each (L X L); the B’s are (L X K), and
the R;’s are each (L X L). The (L X L) disturbance process ¥, is assumed
to be a serially uncorrelated process with Eu, = 0 and with contemporane-
ous covariance matrix £u,u; = ¥ and Eu,u; = Oforall 1 # 5. The defining
characteristics of the exogenous variables x, is that they are uncorrelated
with the ¢’s at all lags so that Eu,x is an (L X K) matrix of zeroes for all
t and s.

Equations (1) are L equations in the L current values y, of the endoge-
nous variables. Each of these structural equations is a behavioral relation-
ship, identity, or market clearing condition, and each in principle can
involve a number of endogenous variables. The structural equations are
usually not regression equations? because the g’s are in general, by the
logic of the model, supposed to be correlated with more than one compo-
nent of the vector y, and very possibly one or more components of the
VECtors ¥, 1, ... ¥y_p-

The structural model (1) and (2) can be solved for y, in terms of past y’s
and x’s and past shocks. This reduced form system is

=Py - =Bt Qo+ (3)
+ Qr+nxt—nf'r + A51“t

where?

P, =431 S RA,

j=—w

Qs = Ao—l z RJ'Bsfj'

j=—

!Linearity is a matter of convenience, not principle. See Linearity section below.

2A regression equation is an equation to which the application of ordinary least squares
will yield consistent estimates.

3In these expressions for P, and Q, take matrices not previously defined (e.g., any with
negative subscripts) to be zero.
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The reduced form equations are regression equations, that is, the disturb-
ance vector Aglu, is orthogonal to 3,_y,...,% _,_m: %, .-+ %_,_, This
follows from the assumptions that the x’s are exogenous and that the u’s
are serially uncorrelated. Therefore, under general conditions the reduced
form can be estimated consistently by the method of least squares. The
population parameters of the reduced form (3) together with the parame-
ters of a vector autoregression for x,

x=Cx 1+ - +Cx_,+a “4)

where Ea, = 0 and Eg, * x,_; =0 for j > 1 completely describe all of the
first and second moments of the ( »,, x, ) process. Given long enough time
series, good estimates of the reduced form parameters—the P;’s and
Q,’s—can be obtained by the method of least squares. All that examina-
tion of the data by themselves can deliver is reliable estimates of those pa-
rameters.

It is not generally possible to work backward from estimates of the P’s
and Q’s alone to derive unique estimates of the structural parameters, the
4;’s, B;’s, and R;’s. In general, infinite numbers of 4’s, B’s, and R’s are
compatible with a single set of P’s and Q’s. This is the identification prob-
lem of econometrics. In order to derive a set of estimated structural param-
eters, it is necessary to know a great deal about them in advance. If enough
prior information is imposed, it is possible to extract estimates of the 4,’s,
Bj’s, and R;’s implied by the data in combination with the prior informa-
tion.

For purposes of ex ante forecasting, or the unconditional prediction of the
VECEOT ¥, 1, Vpi0: - - - @iven observation of y; and x,, s < ¢, the estimated
reduced form (3), together with (4), is sufficient. This is simply an exercise
in a sophisticated kind of extrapolation, requiring no understanding of the
structural parameters, that is, the economics of the model.

For purposes of conditional forecasting, or the prediction of the future
behavior of some components of y, and x, conditional on particular values of
other components, selected by policy, one needs to know the structural
parameters. This is so because a change in policy necessarily alters some of
the structural parameters (for example, those describing the past behavior
of the policy variables themselves) and therefore affects the reduced form
parameters in a highly complex way (see the equations defining P, and Q,
above). Unless one knows which structural parameters remain invariant as
policy changes and which change (and how), an econometric model is of
no value in assessing alternative policies. It should be clear that this is true
regardless of how well (3) and (4) fit historical data or how well they
perform in unconditional forecasting.

Our discussion to this point has been highly general, and the formal
considerations we have reviewed are not in any way specific to Keynesian
models. The problem of identifying a structural model from a collection of
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economic time series is one that must be solved by anyone who claims the
ability to give quantitative economic advice. The simplest Keynesian
models are attempted solutions to this problem, as are the large-scale ver-
sions currently in use. So, too, are the monetarist models which imply the
desirability of fixed monetary growth rules. So, for that matter, is the
armchair advice given by economists who claim to be outside the econo-
metric tradition, though in this case the implicit, underlying structure is
not exposed to professional criticism. Any procedure which leads from the
study of observed economic behavior to the quantitative assessment of
alternative economic policies involves the steps, executed poorly or well,
explicitly or implicitly, which we have outlined.

Keynesian Macroeconometrics

In Keynesian macroeconometric models structural parameters are identi-
fied by the imposition of several types of a priori restrictions on the 4,’,
B,’s, and R;’s. These restrictions usually fall into one of the following three
categories:* (@) a priori setting of many of the elements of the 4,’s and B;’s
to zero; (b) restrictions on the orders of serial correlation and the extent of
cross-serial correlation of the disturbance vector ¢,, restrictions which
amount to a priori setting of many elements of the R;’s to zero; and (¢) a
priori classifying of variables as exogenous and endogenous; a relative
abundance of exogenous variables aids identification. Existing large
Keynesian macroeconometric models are open to serious challenge for the
way they have introduced each type of restriction.

Keynes’ General Theory was rich in suggestions for restrictions of type (a).
In it he proposed a theory of national income determination built up from
several simple relationships, each involving a few variables only. One of
these, for example, was the “fundamental law” relating consumption ex-
penditures to income. This suggested one “row” in equations (1) involving
current consumption, current income, and no other variables, thereby im-
posing many zero-restrictions on the 4;’s and B;’s. Similarly, the liquidity
preference relation expressed the demand for money as a function of only
income and an interest rate. By translating the building blocks of the
Keynesian theoretical system into explicit equations, models of the form
(1) and (2) were constructed with many theoretical restrictions of type (a).

Restrictions on the coefficients R; governing the behavior of the error
terms in (1) are harder to motivate theoretically because the errors are by
definition movements in the variables which the economic theory cannot

*These three categories certainly do not exhaust the set of possible identifying restrictions,
but they’re the ones most identifying restrictions in Keynesian macroeconometric models
fall into. Other possible sorts of identifying restrictions include, for example, a priori knowl-
edge about components of £ and cross-equation restrictions across elements of the 4,’s, B,’s,
and C}’s, neither of which is extensively used in Keynesian macroeconometrics.
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account for. The early econometricians took standard assumptions from
statistical textbooks, restrictions which had proven useful in the agricul-
tural experimenting which provided the main impetus to the development
of modern statistics. Again, these restrictions, well-motivated or not, in-
volve setting many elements in the R;’s equal to zero, thus aiding identifi-
cation of the model’s structure.

The classification of variables into exogenous and endogenous was also
done on the basis of prior considerations. In general, variables were classed
as endogenous which were, as a matter of institutional fact, determined
largely by the actions of private agents (like consumption or private in-
vestment expenditures). Exogenous variables were those under govern-
mental control (like tax rates or the supply of money). This division was
intended to reflect the ordinary meanings of the words endogenous—
“determined by the [economic]| system”—and exogenous—“affecting the
[economic]| system but not affected by it.”

By the mid-1950s, econometric models had been constructed which fit
time series data well, in the sense that their reduced forms (3) tracked past
data closely and proved useful in short-term forecasting. Moreover, by
means of restrictions of the three types reviewed above, their structural
parameters 4;, B;, R, could be identified. Using this estimated structure,
the models could be simulated to obtain estimates of the consequences of
different government economic policies, such as tax rates, expenditures, or
monetary policy.

This Keynesian solution to the problem of identifying a structural
model has become increasingly suspect as a result of both theoretical and
statistical developments. Many of these developments are due to efforts of
rescarchers sympathetic to the Keynesian tradition, and many were ad-
vanced well before the spectacular failure of the Keynesian models in the
1970s.°

Since its inception, macroeconomics has been criticized for its lack of
foundations in microeconomic and general equilibrium theory. As was
recognized early on by astute commentators like Leontief (1965, disap-
provingly) and Tobin (1965, approvingly), the creation of a distinct
branch of theory with its own distinct postulates was Keynes’ conscious
aim. Yet a main theme of theoretical work since the General Theory has been
the attempt to use microeconomic theory based on the classical postulate
that agents act in their own interests to suggest a list of variables that
belong on the right side of a given behavioral schedule, say, a demand
schedule for a factor of production or a consumption schedule.® But from

5Criticisms of the Keynesian solutions of the identification problem along much the fol-
lowing lines have been made in Lucas (1976), Sims (in press), and Sargent and Sims (1977).

SMuch of this work was done by economists operating well within the Keynesian tradition,
often within the context of some Keynesian macroeconometric model. Sometimes a theory
with optimizing agents was resorted to in order to resolve empirical paradoxes by finding
variables omitted from some of the earlier Keynesian econometric formulations. The works of
Modigliani and Friedman on consumption are good examples of this line of work: its econo-
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the point of view of identification of a given structural equation by means
of restrictions of type (a), one needs reliable prior information that certain
variables should be excluded from the right-hand side. Modern probabil-
istic microeconomic theory almost never implies either the exclusion re-
strictions suggested by Keynes or those imposed by macroeconometric
models.

Let us consider one example with extremely dire implications for the
identification of existing macro models. Expectations about the future
prices, tax rates, and income levels play a critical role in many demand
and supply schedules. In the best models, for example, investment demand
typically is supposed to respond to businesses’ expectations of future tax
credits, tax rates, and factor costs, and the supply of labor typically is
supposed to depend on the rate of inflation that workers expect in the
future. Such structural equations are usually identified by the assumption
that the expectation about, say, factor prices or the rate of inflation attri-
bute to agents is a function only of a few lagged values of the variable
which the agent is supposed to be forecasting. However, the macro models
themselves contain complicated dynamic interactions among endogenous
variables, including factor prices and the rate of inflation, and they gener-
ally imply that a wise agent would use current and many lagged values of
many and usually most endogenous and exogenous variables in the model
in order to form expectations about any one variable. Thus, virtually any
version of the hypothesis that agents act in their own interests will contra-
dict the identification restrictions imposed on expectations formation. Fur-
ther, the restrictions on expectations that have been used to achieve identi-
fication are entirely arbitrary and have not been derived from any deeper
assumption reflecting first principles about economic behavior. No general
first principle has ever been set down which would imply that, say, the
expected rate of inflation should be modeled as a linear function of lagged
rates of inflation alone with weights that add up to unity, yet this hypothe-
sis 1s used as an identifying restriction in almost all existing models. The
casual treatment of expectations is not a peripheral problem in these mod-
els, for the role of expectations is pervasive in them and exerts a massive

metric implications have been extended in important work by Robert Merton. The works of
Tobin and Baumol on portfolio balance and of Jorgenson on investment are also in the
tradition of applying optimizing microeconomic theories for generating macroeconomic be-
havior relations. In the last 30 years, Keynesian econometric models have to a large extent
developed along the line of trying to model agents’ behavior as stemming from more and
more sophisticated optimum problems.

Our point here is certainly not to assert that Keynesian economists have completely fore-
gone any use of optimizing microeconomic theory as a guide. Rather, it is that, especially
when explicitly stochastic and dynamic problems have been studied, it has become increas-
ingly apparent that microeconomic theory has very damaging implications for the restric-
tions conventionally used to identify Keynesian macroeconometric models. Furthermore, as
emphasized long ago by Tobin {1965), there is a point beyond which Keynesian models must
suspend the hypothesis either of cleared markets or of optimizing agents if they are to possess
the operating characteristics and policy implications that are the hallmarks of Keynesian
€Cconomics.
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influence on their dynamic properties (a point Keynes himself insisted on).
The failure of existing models to derive restrictions on expectations from
any first principles grounded in economic theory is a symptom of a deeper
and more general failure to derive behavioral relationships from any con-
sistently posed dynamic optimization problems.

As for the second category, restrictions of type (b), existing Keynesian
macro models make severe a priori restrictions on the R;’s. Typically, the
R;’s are supposed to be diagonal so that cross-equation lagged serial correl-
ation is ignored, and also the order of the ¢, process is assumed to be short
so that only low-order serial correlation is allowed. There are at present no
theoretical grounds for introducing these restrictions, and for good reasons
there is little prospect that economic theory will soon provide any such
grounds. In principle, identification can be achieved without imposing
any such restrictions. Foregoing the use of category (b) restrictions would
increase the category (z) and (¢) restrictions needed. In any event, existing
macro models do heavily restrict the R;’s.

Turning to the third category, all existing large models adopt an a priori
classification of variables as either strictly endogenous variables, the y,’s, or
strictly exogenous variables, the x,’s. Increasingly it is being recognized
that the classification of a variable as exogenous on the basis of the obser-
vation that it could be set without reference to the current and past values
of other variables has nothing to do with the econometrically relevant
question of how this variable has in fact been related to others over a given
historical period. Moreover, in light of recent developments in time series
econometrics, we know that this arbitrary classification procedure is not
necessary. Christopher Sims (1972) has shown that in a time series context
the hypothesis of econometric exogeneity can be tested. That is, Sims
showed that the hypothesis that x, is strictly econometrically exogenous in
(1) necessarily implies certain restrictions that can be tested given time
series on the »’s and x’s. Tests along the lines of Sims’ ought to be used
routinely to check classifications into exogenous and endogenous sets of
variables. To date they have not been. Prominent builders of large econo-
metric models have even denied the usefulness of such tests (see, e.g., Ando
1977, pp. 209-10; and L. R. Klein in Okun and Perry 1973, p. 644).

Failure of Keynesian Macroeconometrics

There are, therefore, a number of theoretical reasons for believing that the
parameters identified as structural by current macroeconomic methods are
not in fact structural. That is, we see no reason to believe that these models
have isolated structures which will remain invariant across the class of
interventions that figure in contemporary discussions of economic policy.
Yet the question of whether a particular model is structural is an empiri-
cal, not a theoretical, one. If the macroeconometric models had compiled a
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record of parameter stability, particularly in the face of breaks in the
stochastic behavior of the exogenous variables and disturbances, one
would be skeptical as to the importance of prior theoretical objections of
the sort we have raised.

In fact, however, the track record of the major econometric models is, on
any dimension other than very short-term unconditional forecasting, very
poor. Formal statistical tests for parameter instability, conducted by sub-
dividing past series into periods and checking for parameter stability
across time, invariably reveal major shifts. (For one example, see Muench
et al. 1974.) Moreover, this difficulty is implicitly acknowledged by model
builders themselves, who routinely employ an elaborate system of add-
factors in forecasting, in an attempt to offset the continuing drift of the
model away from the actual series.

Though not, of course, designed as such by anyone, macroeconometric
models were subjected to a decisive test in the 1970s. A key element in all
Keynesian models is a trade-off between inflation and real output: the
higher is the inflation rate, the higher is output (or equivalently, the lower
is the rate of unemployment). For example, the models of the late 1960s
predicted a sustained U.S. unemployment rate of 4 percent as consistent
with a 4 percent annual rate of inflation. Based on this prediction, many
economists at that time urged a deliberate policy of inflation. Certainly
the erratic “fits and starts” character of actual U.S. policy in the 1970s
cannot be attributed to recommendations based on Keynesian models, but
the inflationary bias on average of monetary and fiscal policy in this pe-
riod should, according to all of these models, have produced the lowest
average unemployment rates for any decade since the 1940s. In fact, as we
know, they produced the highest unemployment rates since the 1930s.
This was econometric failure on a grand scale.

This failure has not led to widespread conversions of Keynesian econo-
mists to other faiths, nor should it have been expected to. In economics as
in other sciences, a theoretical framework is always broader and more
flexible than any particular set of equations, and there is always the hope
that if a particular specific model fails one can find a more successful
model based on roughly the same ideas. The failure has, however, already
had some important consequences, with serious implications for both eco-
nomic policymaking and the practice of economic science.

For policy, the central fact is that Keynesian policy recommendations
have no sounder basis, in a scientific sense, than recommendations of non-
Keynesian economists or, for that matter, noneconomists. To note one
consequence of the wide recognition of this, the current wave of protec-
tionist sentiment directed at “saving jobs” would have been answered 10
years ago with the Keynesian counterargument that fiscal policy can
achieve the same end, but more efficiently. Today, of course, no one would
take this response seriously, so it is not offered. Indeed, economists who 10
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years ago championed Keynesian fiscal policy as an alternative to inefh-
cient direct controls increasingly favor such controls as supplements to
Keynesian policy. The idea seems to be that if people refuse to obey the
equations we have fit to their past behavior, we can pass laws to make
them do so.

Scientifically, the Keynesian failure of the 1970s has resulted in a new
openness. Fewer and fewer economists are involved in monitoring and
refining the major econometric models; more and more are developing
alternative theories of the business cycle, based on different theoretical
principles. In addition, more attention and respect is accorded to the theo-
retical casualties of the Keynesian Revolution, to the ideas of Keynes’
contemporaries and of earlier economists whose thinking has been re-
garded for years as outmoded.

No one can foresee where these developments will lead. Some, of course,
continue to believe that the problems of existing Keynesian models can be
resolved within the existing framework, that these models can be ade-
quately refined by changing a few structural equations, by adding or sub-
tracting a few variables here and there, or perhaps by disaggregating vari-
ous blocks of equations. We have couched our criticisms in such general
terms precisely to emphasize their generic character and hence the futility
of pursuing minor variations within this general framework. A second
response to the failure of Keynesian analytical methods is to renounce
analytical methods entirely, returning to judgmental methods.

The first of these responses identifies the quantitative, scientific goals of
the Keynesian Revolution with the details of the particular models devel-
oped so far. The second renounces both these models and the objectives
they were designed to attain. There is, we believe, an intermediate course,
to which we now turn.

Equilibrium Business Cycle Theory

Before the 1930s, economists did not recognize a need for a special branch
of economics, with its own special postulates, designed to explain the busi-
ness cycle. Keynes founded that subdiscipline, called “macroeconomics,”
because he thought explaining the characteristics of business cycles was
impossible within the discipline imposed by classical economic theory, a
discipline imposed by its insistence on adherence to the two postulates
(a) that markets clear and (b) that agents act in their own self-interest. The
outstanding facts that seemed impossible to reconcile with these two pos-
tulates were the length and severity of business depressions and the large-
scale unemployment they entailed. A related observation was that meas-
ures of aggregate demand and prices were positively correlated with
measures of real output and employment, in apparent contradiction
to the classical result that changes in a purely nominal magnitude like
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the general price level were pure unit changes which should not alter
real behavior.

After freeing himself of the straightjacket (or discipline) imposed by the
classical postulates, Keynes described a model in which rules of thumb,
such as the consumption function and liquidity preference schedule, took
the place of decision functions that a classical economist would insist be
derived from the theory of choice. And rather than require that wages and
prices be determined by the postulate that markets clear—which for the
labor market seemed patently contradicted by the severity of business de-
pressions—Keynes took as an unexamined postulate that money wages are
sticky, meaning that they are set at a level or by a process that could be
taken as uninfluenced by the macroeconomic forces he proposed to ana-
lyze.

When Keynes wrote, the terms “equilibrium” and “classical” carried
certain positive and normative connotations which seemed to rule out
either modifier being applied to business cycle theory. The term equilibrium
was thought to refer to a system at rest, and some used both equilibrium and
classical interchangeably with “ideal.” Thus an economy in classical equi-
librium would be both unchanging and unimprovable by policy interven-
tions. With terms used in this way, it is no wonder that few economists
regarded equilibrium theory as a promising starting point to understand
business cycles and design policies to mitigate or eliminate them.

In recent years, the meaning of the term equilibrium has changed so dra-
matically that a theorist of the 1930s would not recognize it. An economy
following a multivariate stochastic process is now routinely described as
being in equilibrium, by which is meant nothing more than that at each
point in time, postulates (a) and (b) above are satisfied. This development,
which stemmed mainly from work by Arrow (1964) and Debreu (1959),
implies that simply to look at any economic time series and conclude that
it is a disequilibrium phenomenon is a meaningless observation. Indeed, a
more likely conjecture, on the basis of recent work by Sonnenschein
(1973), is that the general hypothesis that a collection of time series de-
scribes an economy in competitive equilibrium is without content.”

"For an example that illustrates the emptiness at a general level of the statement that
employers are always operating along dynamic stochastic demands for factors, see the re-
marks on econometric identification in Sargent 1978, In applied problems that involve mod-
eling agents’ optimum decision rules, one is impressed at how generalizing the specification of
agents’ objective functions in plausible ways quickly leads to econometric underidentifica-
tion.

A somewhat different class of examples comes from the difficulties in using time series
observations to refute the view that agents only respond to unexpected changes in the money
supply. In the equilibrium macroeconometric models we will describe, predictable changes in
the money supply do not affect real GNP or total employment. In Keynesian models, they do.
At a general level, it is impossible to discriminate between these two views by observing time

series drawn from an economy described by a stationary vector random process (Sargent
1976b).
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The research line being pursued by some of us involves the attempt to
discover a particular, econometrically testable equilibrium theory of the
business cycle, one that can serve as the foundation for quantitative analy-
sis of macroeconomic policy. There is no denying that this approach is
counterrevolutionary, for it presupposes that Keynes and his followers
were wrong to give up on the possibility that an equilibrium theory could
account for the business cycle. As of now, no successful equilibrium
macroeconometric model at the level of detail of, say, the Federal Re-
serve-MIT-Penn model has been constructed. But small theoretical equi-
librium models have been constructed that show potential for explaining
some key features of the business cycle long thought inexplicable within
the confines of classical postulates. The equilibrium models also provide
reasons for understanding why estimated Keynesian models fail to hold up
outside the sample over which they have been estimated. We now turn to
describing some of the key facts about business cycles and the way the new
classical models confront them.

For a long time most of the economics profession has, with some reason,
followed Keynes in rejecting classical macroeconomic models because they
seemed incapable of explaining some important characteristics of time
series measuring important economic aggregates. Perhaps the most impor-
tant failure of the classical model was its apparent inability to explain the
positive correlation in the time series between prices and/or wages, on the
one hand, and measures of aggregate output or employment, on the other.
A second and related failure was its inability to explain the positive corre-
lations between measures of aggregate demand, like the money stock, and
aggregate output or employment. Static analysis of classical macroeco-
nomic models typically implied that the levels of output and employment
were determined independently of both the absolute level of prices and of
aggregate demand. But the pervasive presence of positive correlations in
the time series seems consistent with causal connections flowing from ag-
gregate demand and inflation to output and employment, contrary to the
classical neutrality propositions. Keynesian macroeconometric models do
imply such causal connections.

We now have rigorous theoretical models which illustrate how these
correlations can emerge while retaining the classical postulates that mar-
kets clear and agents optimize (Phelps 1970; and Lucas 1972, 1975). The
key step in obtaining such models has been to relax the ancillary postulate
used in much classical economic analysis that agents have perfect informa-
tion. The new classical models still assume that markets clear and that
agents optimize; agents make their supply and demand decisions based on
real variables, including perceived relative prices. However, each agent is
assumed to have limited information and to receive information about
some prices more often than other prices. On the basis of their limited
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information—the lists that they have of current and past absolute prices of
various goods—agents are assumed to make the best possible estimate of
all of the relative prices that influence their supply and demand decisions.

Because they do not have all of the information necessary to compute
perfectly the relative prices they care about, agents make errors in estimat-
ing the pertinent relative prices, errors that are unavoidable given their
limited information. In particular, under certain conditions, agents tend
temporarily to mistake a general increase in all absolute prices as an in-
crease in the relative price of the good they are selling, leading them to
increase their supply of that good over what they had previously planned.
Since on average everyone is making the same mistake, aggregate output
rises above what it would have been. This increase of output above what it
would have been occurs whenever this period’s average economywide
price level is above what agents had expected it to be on the basis of
previous information. Symmetrically, aggregate output decreases when-
ever the aggregate price turns out to be lower than agents had expected.
The hypothesis of rational expectations is being imposed here: agents are
assumed to make the best possible use of the limited information they have
and to know the pertinent objective probability distributions. This hy-
pothesis is imposed by way of adhering to the tenets of equilibrium theory.

In the new classical theory, disturbances to aggregate demand lead to a
positive correlation between unexpected changes in the aggregate price
level and revisions in aggregate output from its previously planned level.
Further, it is easy to show that the theory implies correlations between
revisions in aggregate output and unexpected changes in any variables
that help determine aggregate demand. In most macroeconomic models,
the money supply is one determinant of aggregate demand. The new the-
ory can easily account for positive correlations between revisions to aggre-
gate output and unexpected increases in the money supply.

While such a theory predicts positive correlations between the inflation
rate or money supply, on the one hand, and the level of output, on the
other, it also asserts that those correlations do not depict tradeoffs that can
be exploited by a policy authority. That is, the theory predicts that there is
no way that the monetary authority can follow a systematic activist policy
and achieve a rate of output that is on average higher over the business
cycle than what would occur if it simply adopted a no-feedback, X-per-
cent rule of the kind Friedman (1948) and Simons (1936) recommended.
For the theory predicts that aggregate output is a function of current and
past unexpected changes in the money supply. Output will be high only
when the money supply is and has been higher than it had been expected
to be, that is, higher than average. There is simply no way that on average
over the whole business cycle the money supply can be higher than aver-
age. Thus, while the theory can explain some of the correlations long
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thought to invalidate classical macroeconomic theory, it is classical both in
its adherence to the classical theoretical postulates and in the nonactivist
flavor of its implications for monetary policy.

Small-scale econometric models in the standard sense have been con-
structed which capture some of the main features of the new classical
theory (see, e.g., Sargent 1976a).% In particular, these models incorporate
the hypothesis that expectations are rational or that agents use all availa-
ble information. To some degree, these models achieve econometric identi-
fication by invoking restrictions in each of the three categories (@), (#), and
(¢). However, a distinguishing feature of these “classical” models is that
they also rely heavily on an important fourth category of identifying re-
strictions. This category (d) consists of a set of restrictions that is derived
from probabilistic economic theory but plays no role in the Keynesian
framework. These restrictions in general do not take the form of zero re-
strictions of the type (a). Instead they typically take the form of cross-
equation restrictions among the 4;, B;, C; parameters. The source of these
restrictions is the implication from economic theory that current decisions
depend on agents’ forecasts of future variables, combined with the impli-
cation that these forecasts are formed optimally, given the behavior of past
variables. The restrictions do not have as simple a mathematical expres-
sion as simply setting a number of parameters equal to zero, but their
economic motivation is easy to understand. Ways of utilizing these restric-
tions in econometric estimation and testing are rapidly being developed.

Another key characteristic of recent work on equilibrium macroeco-
nometric models is that the reliance on entirely a priori categorizations (¢)
of variables as strictly exogenous and endogenous has been markedly re-
duced, although not entirely eliminated. This development stems jointly
from the fact that the models assign important roles to agents’ optimal
forecasts of future variables and from Sims’ (1972) demonstration that
there is a close connection between the concept of strict econometric
exogeneity and the forms of the optimal predictors for a vector of time
series. Building a model with rational expectations necessarily forces one
to consider which set of other variables helps forecast a given variable, say,
income or the inflation rate. If variable y helps predict variable x, the Sims’

8Dissatisfaction with the Keynesian methods of achieving identification has also led to
other lines of macroeconometric work. One line is the index models described by Sargent and
Sims (1977) and Geweke (1977). These models amount to a statistically precise way of
implementing Wesley Mitchell’s notion that a small number of common influences explain
the covariation of a large number of economic aggregates over the business cycle. This low
dimensionality hypothesis is a potential device for restricting the number of parameters to be
estimated in vector time series models. This line of work is not entirely atheoretical (but see
the comments of Ando and Klein in Sims [1977]), though it is distinctly un-Keynesian. As it
happens, certain equilibrium models of the business cycle do seem to lead to low dimensional
index models with an interesting pattern of variables’ loadings on indexes. In general, mod-
ern Keynesian models do not so easily assume a low-index form. See the discussion in Sargent
and Sims (1977).
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theorems imply that x cannot be regarded as exogenous with respect to y.
The result of this connection between predictability and exogeneity has
been that in equilibrium macroeconometric models the distinction be-
tween endogenous and exogenous variables has not been drawn on an
entirely a priori basis. Furthermore, special cases of the theoretical models,
which often involve side restrictions on the R;’s not themselves drawn from
economic theory, have strong testable predictions as to exogeneity rela-
tions among variables.

A key characteristic of equilibrium macroeconometric models is that as
a result of the restrictions across the 4,’s, B;’s, and C’s, the models predict
that in general the parameters in many of the equations will change if
there is a policy intervention that takes the form of a change in one equa-
tion that describes how some policy variable is being set. Since they ignore
these cross-equation restrictions, Keynesian models in general assume that
all other equations remain unchanged when an equation describing a
policy variable is changed. We think this is one important reason Keynes-
ian models have broken down when the equations governing policy varia-
bles or exogenous variables have changed significantly. We hope that the
new methods we have described will give us the capability to predict the
consequences for all of the equations of changes in the rules governing
policy variables. Having that capability is necessary before we can claim
to have a scientific basis for making quantitative statements about macro-
economic policy.

So far, these new theoretical and econometric developments have not
been fully integrated, although clearly they are very close, both conceptu-
ally and operationally. We consider the best currently existing equilibrium
models as prototypes of better, future models which will, we hope, prove of
practical use in the formulation of policy.

But we should not understate the econometric success already attained
by equilibrium models. Early versions of these models have been estimated
and subjected to some stringent econometric tests by McCallum (1976),
Barro (1977, in press), and Sargent (1976a), with the result that they do
seem able to explain some broad features of the business cycle. New and
more sophisticated models involving more complicated cross-equation re-
strictions are in the works (Sargent 1978). Work to date has already shown
that equilibrium models can attain within-sample fits about as good as
those obtained by Keynesian models, thereby making concrete the point
that the good fits of the Keynesian models provide no good reason for
trusting policy recommendations derived from them.

Criticism of Equilibrium Theory

The central idea of the equilibrium explanations of business cycles
sketched above is that economic fluctuations arise as agents react to unan-
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ticipated changes in variables which impinge on their decisions. Clearly,
any explanation of this general type must imply severe limitations on the
ability of government policy to offset these initiating changes. First, gov-
ernments must somehow be able to foresee shocks invisible to private
agents but at the same time be unable to reveal this advance information
(hence, defusing the shocks). Though it is not hard to design theoretical
models in which these two conditions are assumed to hold, it is difficult to
imagine actual situations in which such models would apply. Second, the
governmental countercyclical policy must itself be unforeseeable by pri-
vate agents (certainly a frequently realized condition historically) while at
the same time be systematically related to the state of the economy. Effec-
tiveness, then, rests on the inability of private agents to recognize system-
atic patterns in monetary and fiscal policy.

To a large extent, criticism of equilibrium models is simply a reaction to
these implications for policy. So wide is (or was) the consensus that ¢ke task
of macroeconomics is the discovery of the particular monetary and fiscal
policies which can eliminate fluctuations by reacting to private sector in-
stability that the assertion that this task either should not or cannot be
performed is regarded as frivolous, regardless of whatever reasoning and
evidence may support it. Certainly one must have some sympathy with
this reaction: an unfounded faith in the curability of a particular ill has
served often enough as a stimulus to the finding of genuine cures. Yet to
confuse a possibly functional faith in the existence of efficacious, reactive
monetary and fiscal policies with scientific evidence that such policies are
known is clearly dangerous, and to use such faith as a criterion for judging
the extent to which particular theories fit the facts is worse still.

There are, of course, legitimate questions about how well equilibrium
theories can fit the facts of the business cycle. Indeed, this is the reason for
our insistence on the preliminary and tentative character of the particular
models we now have. Yet these tentative models share certain features
which can be regarded as essential, so it is not unreasonable to speculate as
to the likelihood that any model of this type can be successful or to ask
what equilibrium business cycle theorists will have in 10 years if we get
lucky.

Four general reasons for pessimism have been prominently advanced:
(a) Equilibrium models unrealistically postulate cleared markets. () These
models cannot account for “persistence” (serial correlation) of cyclical
movements. (¢) Econometrically implemented models are linear (in loga-
rithms). (¢) Learning behavior has not been incorporated in these models.

Cleared Markets

One essential feature of equilibrium models is that all markets clear, or
that all observed prices and quantities are viewed as outcomes of decisions
taken by individual firms and households. In practice, this has meant a
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conventional, competitive supply-equals-demand assumption, though
other kinds of equilibria can easily be imagined (if not so easily analyzed).
If, therefore, one takes as a basic “fact” that labor markets do not clear,
one arrives immediately at a contradiction between theory and fact. The
facts we actually have, however, are simply the available time series on
employment and wage rates plus the responses to our unemployment sur-
veys. Cleared markets is simply a principle, not verifiable by direct obser-
vation, which may or may not be useful in constructing successful hypoth-
eses about the behavior of these series. Alternative principles, such as the
postulate of the existence of a third-party auctioneer inducing wage rigid-
ity and uncleared markets, are similarly “unrealistic,” in the not especially
important sense of not offering a good description of observed labor mar-
ket institutions.

A refinement of the unexplained postulate of an uncleared labor market
has been suggested by the indisputable fact that long-term labor contracts
with horizons of 2 or 3 years exist. Yet the length per se over which con-
tracts run does not bear on the issue, for we know from Arrow and Debreu
that if wfinitely long-term contracts are determined so that prices and
wages are contingent on the same information that is available under the
assumption of period-by-period market clearing, then precisely the same
price-quantity process will result with the long-term contract as would
occur under period-by-period market clearing. Thus equilibrium theoriz-
ing provides a way, probably the only way we have, to construct a model of
a long-term contract. The fact that long-term contracts exist, then, has no
implications about the applicability of equilibrium theorizing.

Rather, the real issue here is whether actual contracts can be adequately
accounted for within an equilibrium model, that is, a model in which
agents are proceeding in their own best interests. Fischer (1977), Phelps
and Taylor (1977), and Hall (1978) have shown that some of the nonac-
tivist conclusions of the equilibrium models are modified if one substitutes
for period-by-period market clearing the imposition of long-term contracts
drawn contingent on restricted information sets that are exogenously im-
posed and that are assumed to be independent of monetary and fiscal
regimes. Economic theory leads us to predict that the costs of collecting
and processing information will make it optimal for contracts to be made
contingent on a small subset of the information that could possibly be
collected at any date. But theory also suggests that the particular set of
information upon which contracts will be made contingent is not immuta-
ble but depends on the structure of costs and benefits of collecting various
kinds of information. This structure of costs and benefits will change with
every change in the exogenous stochastic processes facing agents. This
theoretical presumption is supported by an examination of the way labor
contracts differ across high-inflation and low-inflation countries and the
way they have evolved in the U.S. over the last 25 years.

So the issue here is really the same fundamental one involved in the
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dispute between Keynes and the classical economists: Should we regard
certain superficial characteristics of existing wage contracts as given when
analyzing the consequences of alternative monetary and fiscal regimes?
Classical economic theory says no. To understand the implications of
long-term contracts for monetary policy, we need a model of the way those
contracts are likely to respond to alternative monetary policy regimes. An
extension of existing equilibrium models in this direction might well lead
to interesting variations, but it seems to us unlikely that major modifica-
tions of the implications of these models for monetary and fiscal policy will
follow from this.

Persistence

A second line of criticism stems from the correct observation that if agents’
expectations are rational and if their information sets include lagged val-
ues of the variable being forecast, then agents’ forecast errors must be a
serially uncorrelated random process. That is, on average there must be no
detectable relationships between a period’s forecast error and any previous
period’s. This feature has led several critics to conclude that equilibrium
models cannot account for more than an insignificant part of the highly
serially correlated movements we observe in real output, employment,
unemployment, and other series. Tobin (1977, p. 461) has put the argu-
ment succinctly:

One currently popular explanation of variations in employ-
ment is temporary confusion of relative and absolute prices.
Employers and workers are fooled into too many jobs by unex-
pected inflation, but only until they learn it affects other prices,
not just the prices of what they sell. The reverse happens tempo-
rarily when inflation falls short of expectation. This model can
scarcely explain more than transient disequilibrium in labor
markets.

So how can the faithful explain the slow cycles of unemploy-
ment we actually observe? Only by arguing that the natural rate
itself fluctuates, that variations in unemployment rates are sub-
stantially changes in voluntary, frictional, or structural unem-
ployment rather than in involuntary joblessness due to generally
deficient demand.

The critics typically conclude that the theory only attributes a very minor
role to aggregate demand fluctuations and necessarily depends on disturb-
ances to aggregate supply to account for most of the fluctuations in real
output over the business cycle. “In other words,” as Modigliani (1977) has
said, “what happened to the United States in the 1930’s was a severe
attack of contagious laziness.”
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This criticism is fallacious because it fails to distinguish properly be-
tween sources of impulses and propagation mechanisms, a distinction stressed by
Frisch (1933) in a classic paper that provided many of the technical foun-
dations for Keynesian macroeconometric models. Even though the new
classical theory implies that the forecast errors which are the aggregate
demand impulses are serially uncorrelated, it is certainly logically possible
that propagation mechanisms are at work that convert these impulses into
serially correlated movements in real variables like output and employ-
ment. Indeed, detailed theoretical work has already shown that two con-
crete propagation mechanisms do precisely that.

One mechanism stems from the presence of costs to firms of adjusting
their stocks of capital and labor rapidly. The presence of these costs is
known to make it optimal for firms to spread out over time their response
to the relative price signals they receive. That is, such a mechanism causes
a firm to convert the serially uncorrelated forecast errors in predicting
relative prices into serially correlated movements in factor demands and
output.

A second propagation mechanism is already present in the most classi-
cal of economic growth models. Households’ optimal accumulation plans
for claims on physical capital and other assets convert serially uncorre-
lated impulses into serially correlated demands for the accumulation of
real assets. This happens because agents typically want to divide any un-
expected changes in income partly between consuming and accumulating
assets. Thus, the demand for assets next period depends on initial stocks
and on unexpected changes in the prices or income facing agents. This
dependence makes serially uncorrelated surprises lead to serially corre-
lated movements in demands for physical assets. Lucas (1975) showed how
this propagation mechanism readily accepts errors in forecasting aggre-
gate demand as an impulse source.

A third likely propagation mechanism has been identified by recent
work in search theory (see, e.g., McCall 1965; Mortensen 1970; Lucas and
Prescott 1974). Search theory tries to explain why workers who for some
reason are without jobs find it rational not necessarily to take the first job
offer that comes along but instead to remain unemployed for awhile until
a better offer materializes. Similarly, the theory explains why a firm may
find it optimal to wait until a more suitable job applicant appears so that
vacancies persist for some time. Mainly for technical reasons, consistent
theoretical models that permit this propagation mechanism to accept er-
rors in forecasting aggregate demand as an impulse have not yet been
worked out, but the mechanism seems likely eventually to play an impor-
tant role in a successful model of the time series behavior of the unemploy-
ment rate.

In models where agents have imperfect information, either of the first
two mechanisms and probably the third can make serially correlated



314 Lucas AND SARGENT

movements in real variables stem from the introduction of a serially un-
correlated sequence of forecasting errors. Thus theoretical and economet-
ric models have been constructed in which in principle the serially uncor-
related process of forecasting errors can account for any proportion
between zero and one of the steady-state variance of real output or em-
ployment. The argument that such models must necessarily attribute most
of the variance in real output and employment to variations in aggregate
supply is simply wrong logically.

Linearity

Most of the econometric work implementing equilibrium models has in-
volved fitting statistical models that are linear in the variables (but often
highly nonlinear in the parameters). This feature is subject to criticism on
the basis of the indisputable principle that there generally exist nonlinear
models that provide better approximations than linear models. More spe-
cifically, models that are linear in the variables provide no way to detect
and analyze systematic effects of higher than first-order moments of the
shocks and the exogenous variables on the first-order moments of the en-
dogenous variables. Such systematic effects are generally present where the
endogenous variables are set by risk-averse agents.

There are no theoretical reasons that most applied work has used linear
models, only compelling technical reasons given today’s computer tech-
nology. The predominant technical requirement of econometric work
which imposes rational expectations is the ability to write down analytical
expressions giving agents’ decision rules as functions of the parameters of
their objective functions and as functions of the parameters governing the
exogenous random processes they face. Dynamic stochastic maximum
problems with quadratic objectives, which produce linear decision rules,
do meet this essential requirement—that is their virtue. Only a few other
functional forms for agents’ objective functions in dynamic stochastic opti-
mum problems have this same necessary analytical tractability. Computer
technology in the foreseeable future seems to require working with such a
class of functions, and the class of linear decision rules has just seemed
most convenient for most purposes. No issue of principle is involved in
selecting one out of the very restricted class of functions available. Theo-
retically, we know how to calculate, with expensive recursive methods, the
nonlinear decision rules that would stem from a very wide class of objec-
tive functions; no new econometric principles would be involved in esti-
mating their parameters, only a much higher computer bill. Further, as
Frisch and Slutsky emphasized, linear stochastic difference equations are a
very flexible device for studying business cycles. It is an open question
whether for explaining the central features of the business cycle there will
be a big reward to fitting nonlinear models.
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Stationary Models and the Neglect of Learning

Benjamin Friedman and others have criticized rational expectations mod-
els apparently on the grounds that much theoretical and almost all empir-
ical work has assumed that agents have been operating for a long time in
a stochastically stationary environment. Therefore, agents are typically
assumed to have discovered the probability laws of the variables they want
to forecast. Modigliani (1977, p. 6) put the argument this way:

At the logical level, Benjamin Friedman has called attention to
the omission from [equilibrium macroeconomic models] of an
explicit learning model, and has suggested that, as a result, it can
only be interpreted as a description not of short-run but of long-
run equilibrium in which no agent would wish to recontract. But
then the implications of [equilibrium macroeconomic models]
are clearly far from startling, and their policy relevance is al-
most nil.

But it has been only a matter of analytical convenience and not of
necessity that equilibrium models have used the assumption of stochasti-
cally stationary shocks and the assumption that agents have already
learned the probability distributions they face. Both of these assumptions
can be abandoned, albeit at a cost in terms of the simplicity of the model
(e.g., see Crawford 1971; Grossman 1975). In fact, within the framework of
quadratic objective functions, in which the “separation principle” applies,
one can apply the Kalman filtering formula to derive optimum linear
decision rules with time-dependent coefficients. In this framework, the
Kalman filter permits a neat application of Bayesian learning to updating
optimal forecasting rules from period to period as new information be-
comes available. The Kalman filter also permits the derivation of opti-
mum decision rules for an interesting class of nonstationary exogenous
processes assumed to face agents. Equilibrium theorizing in this context
thus readily leads to a model of how process nonstationarity and Bayesian
learning applied by agents to the exogenous variables leads to time-
dependent coefficients in agents’ decision rules.

While models incorporating Bayesian learning and stochastic nonsta-
tionarity are both technically feasible and consistent with the equilibrium
modeling strategy, we know of almost no successful applied work along
these lines. One probable reason for this is that nonstationary time series
models are cumbersome and come in so many varieties. Another is that the
hypothesis of Bayesian learning is vacuous until one either arbitrarily
imputes a prior distribution to agents or develops a method of estimating
parameters of the prior from time series data. Determining a prior distri-
bution from the data would involve estimating initial conditions and
would proliferate nuisance parameters in a very unpleasant way. Whether
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these techniques will pay off in terms of explaining macroeconomic time
series is an empirical matter: it is not a matter distinguishing equilibrium
from Keynesian macroeconometric models. In fact, no existing Keynesian
macroeconometric model incorporates either an economic model of learn-
ing or an economic mode} in any way restricting the pattern of coefficient
nonstationarities across equations.

The macroeconometric models criticized by Friedman and Modigliani
(1977), which assume agents have caught on to the stationary random
processes they face, give rise to systems of linear stochastic difference equa-
tions of the form (1), (2), and (4). As has been known for a long time, such
stochastic difference equations generate series that “look like” economic
time series. Further, if viewed as structural (that is, invariant with respect
to policy interventions), the models have some of the implications for
countercyclical policy that we have described above. Whether or not these
policy implications are correct depends on whether or not the models are
structural and not at all on whether the models can successfully be carica-
tured by terms such as “long-run” or “short-run.”

It is worth reemphasizing that we do not wish our responses to these
criticisms to be mistaken for a claim that existing equilibrium models can
satisfactorily account for all the main features of the observed business
cycle. Rather, we have simply argued that no sound reasons have yet been
advanced which even suggest that these models are, as a class, imcapable of
providing a satisfactory business cycle theory.

Summary and Conclusions

Let us attempt to set out in compact form the main arguments advanced
in this paper. We will then comment briefly on the main implications of
these arguments for the way we can usefully think about economic policy.

Our first and most important point is that existing Keynesian macro-
econometric models cannot provide reliable guidance in the formulation
of monetary, fiscal, or other types of policy. This conclusion is based in
part on the spectacular recent failures of these models and in part on their
lack of a sound theoretical or econometric basis. Second, on the latter
ground, there is no hope that minor or even major modification of these
models will lead to significant improvement in their reliability.

Third, equilibrium models can be formulated which are free of these diffi-
culties and which offer a different set of principles to identify structural
econometric models. The key elements of these models are that agents are
rational, reacting to policy changes in a way which is in their best interests
privately, and that the impulses which trigger business fluctuations are
mainly unanticipated shocks.

Fourth, equilibrium models already developed account for the main
qualitative features of the business cycle. These models are being subjected
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to continued criticism, especially by those engaged in developing them,
but arguments to the effect that equilibrium theories are in principle un-
able to account for a substantial part of observed fluctuations appear due
mainly to simple misunderstandings.

The policy implications of equilibrium theories are sometimes carica-
tured, by friendly as well as unfriendly commentators, as the assertion that
“economic policy does not matter” or “has no effect.”® This implication
would certainly startle neoclassical economists who have successfully ap-
plied equilibrium theory to the study of innumerable problems involving
important effects of fiscal policies on resource allocation and income distri-
bution. Our intent is not to reject these accomplishments but rather to try
to imutate them or to extend the equilibrium methods which have been
applied to many economic problems to cover a phenomenon which has so
far resisted their application: the business cycle.

Should this intellectual arbitrage prove successful, it will suggest impor-
tant changes in the way we think about policy. Most fundamentally, it
will focus attention on the need to think of policy as the choice of stable
rules of the game, well understood by economic agents. Only in such a
setting will economic theory help predict the actions agents will choose to
take. This approach will also suggest that policies which affect behavior
mainly because their consequences cannot be correctly diagnosed, such as
monetary instability and deficit financing, have the capacity only to dis-
rupt. The deliberate provision of misinformation cannot be used in a sys-
tematic way to improve the economic environment.

The objectives of equilibrium business cycle theory are taken, without
modification, from the goal which motivated the construction of the
Keynesian macroeconometric models: to provide a scientifically based
means of assessing, quantitatively, the likely effects of alternative eco-
nomic policies. Without the econometric successes achieved by the
Keynesian models, this goal would be simply inconceivable. However,
unless the now evident limits of these models are also frankly acknowl-
edged and radically different new directions taken, the real accomplish-
ments of the Keynesian Revolution will be lost as surely as those we now
know to be illusory.
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Estimation of Economic Relationships
Containing Latent Expectations Variables

John F. Muth

It usually happens that behavioral relations in a simultaneous equation
system contain expectations variables which are themselves not ob-
served. Current practice favors representing expectations by some func-
tion of the past history of the series to be predicted. However, if expecta-
tions are reasonably well-informed, then all the variables of the system
are relevant. Maximum likelihood, limited information, and two-stage
least squares give consistent estimators when the distinction between
rational expectations and realizations of endogenous variables is ig-
nored. This fact is an additional reason to doubt the relevance of recur-
sive systems in estimation from time series data.

Econometric studies are plagued by the fact that available statistics bear
no close relationship to the variables appearing in the conceptual model.
Data must usually be adjusted for spurious scale factors (inflation and
population growth in partial equilibrium models), for extraneous varia-
bles or inappropriate weights in aggregated series, and so on. A further
problem arises from the fact that expectations of events (income, prices,
sales) are fully as important in economic models as the realizations them-
selves—and good expectations data are hard to come by.!

Using lagged variables as a substitute for expectations has become al-
most automatic in econometric studies (e.g., Klein and Goldberger 1955;
Cromarty 1959). Although this assumption helps make the equations
identifiable and the parameter estimates easy to compute, there is little
evidence that it is economically meaningful. Exponentially weighted mov-
ing averages have recently been used with good results (Cagan 1936;
Nerlove 1958), and a generalization of the model has already been sug-
gested (Solow 1960).

This paper was written in 1960. References have not been updated.

1Available expectations data, mostly from survey questionnaires, are spotty in their cover-
age and are of doubtful quality. See Ferber (in press).
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I have suggested elsewhere (Muth 1959) some reasons to believe that
expectations are just as rational as other aspects of individual behavior. If
expectations are not much different from the prediction of the model itself,
as rationality would imply, how can the parameters be estimated from
observable data? We shall show in the following sections that the answer is
rather simple.

I. Rational Expectations of Endogenous Variables

The model we will examine first is composed of the following system of
equations:

By, + B y§ +cm =u (1)

where y, is the vector of endogenous variables associated with time ¢ and y¢
the vector of endogenous variables expected to prevail at that time on the
basis of information contained in z,, the vector of exogenous variables.
The error term, u,, is assumed to have a zero mean, a constant covariance
matrix, no serial correlation, and no correlation with the exogenous varia-
bles.

Rationality implies that y¢ be essentially the same as the prediction of
the model, given the same set of information. That is:

7t =Ela) + g (2)

Although the error term »; allows divergences between expectations and
the prediction of the model itself, we assume that the errors are not system-
atically related to the explanatory variables of the system. We also assume
that #{ has a zero mean, a constant covariance matrix, and no serial correl-
ation.

We may find y{ explicitly in terms of the other variables of the system as
follows. Take conditional expectations of equation (1) and substitute from
equation (2) to obtain:

Byt + I'z, = By, 3)
where B = By + B,. Assuming B is nonsingular, the solution to equation
(3) may be written as:2

»¢ = —B-1Tz, + B-'B .. )

Substituting from equation (4) into equation (1), we obtain a system
expressed solely in terms of observable variables:

Byy, + I'iz, = u, (5)
where 'y = ({ — BB~ = B,B~'I' and 4, = u; — B{B~'B,.

%If the latent variables are serially dependent, the analysis is considerably more compli-
cated. See Muth (1939, 1960).
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Assume that ¥, is distributed normally with a constant covariance ma-
trix = = Eu,u” not subject to any identifying restrictions.® After maximiz-
ing the logarithm of the likelihood function with respect to X, we obtain
the concentrated form (see Koopmans and Hood 1953):

L = In|Bo| - 5 In|(Bo, I )M(By, T, ] (®)

except for irrelevant multiplicative and additive constants. M is the mo-
ment matrix of y and z.
Since, by assumption, B is nonsingular:

(B, T'y) = ByB~1(B, ). N

The second term of L in equation (6) may then be written as:

— 5 In1BoB 1| 1(B,T)M(B,TY| |(ByB

8)
= —In|By| +In|B| — %ln (B, T)M(B, ).
Substituting into equation (9) the likelihood function becomes:
L =In|B| - %ln](B, YM(B,T)T. (9)

This is the same likelihood function as would be obtained by ignoring the
distinction between y, and y{ in equation (1). Maximum-likelihood, lim-
ited information, and two-stage least squares (Theil 1958) all give con-
sistent and asymptotically efficient estimates of B and I

Ordinary least squares does not, even if B, = 1. (Two-stage least squares
intuitively seems best because it distinguishes the dependent variable from
the expectations variables.)

The results above are obtained because this is essentially a problem of
errors in endogenous variables.* The connection may be seen as follows.
Subtracting equation (3) from equation (1),

By(y, —2f) = u{ — By, (10)
If B, is nonsingular,
Y =01+ (1)

where v, = Bjlu, — v;. The difference between the models, which evi-
dently turns out to be immaterial, is that o, is correlated both with ¢
and u;.

30f course, we cannot distinguish the variance of «” from that of v’
*Properties of estimates with errors in variables have been known for some time. See

Chernoff and Rubin (1953).
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If relevant expectations data were available, they would of course be
treated as separate (endogenous) variables. The extra information would
allow B, to be distinguished from B, which is not possible with latent
variables.

II. Estimation under More General Conditions

To include the possibility that exogenous variables are unknown but pre-
dicted in the behavioral relations, we augment equation (1) to read as
follows:

Byy, + Byyf +Agx, + Ayxf + Tz, = u; (12)

where x¢ is the vector of exogenous variables predicted on the basis of the
others z,, and x, is the vector of realizations of the variables. If there is some
way to predict the variables x,, exogenous in the original system, then we
might as well assume the set of regression equations:

x, = Hz, + uf (13)

where ;" has a zero mean, a constant covariance matrix, no serial correla-
tion, and no correlation with the independent variables. (z, may, of course,
include variables having zero coefficients everywhere in I'. It is not obvi-
ous, however, why one would wish this.)

Equations (12) and (13) jointly define a system having the same proper-
ties as equation (1) if x, is regarded as an endogenous variable. The results
obtained earlier hold, including the analogy with the errors in variables
model.

The assumption about the predictability of exogenous variables in
equation (12) is a little disquieting, however. For certain variables, e.g.,
weather, there might be enough experience for predictions with reasonable
statistical properties to be made. It makes much less sense, however, to
regard as approximately normal the distribution of the prediction error of
such important exogenous variables as war and other governmental
action. The rational model is better than naive predictors in one respect.
Any advance information about certain legislation, for example, might be
represented by a dummy exogenous variable.

The model is also applicable if expectations for a longer horizon than
one period are relevant. Future data may be included as additional endog-
enous variables. Of course there are severe practical limits to the extent to
which such extensions may be carried out, not the least of which is a
possible lack of identification of the equation. Two examples of the rele-
vance of long expectations spans are as follows: (7) For certain theories of
the consumption function (Friedman 1957; Modigliani and Brumberg
1954), the relevant income variable is not current income or expected
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current income, but either expected permanent or expected lifetime in-
come. (i2) Speculative demand for a commodity by the end of period ¢
depends on the difference between the price expected to prevail during
period ¢ 4+ 1 and the actual price in period ¢ (Mills 1959; Muth 1959).
Such effects should be allowed for if strong time interdependence is an
essential ingredient of the phenomena to be explained.

111. Improved Estimates with Forecasted Exogenous Variables

The coefficients of the model consisting of equations (12) and (13) may be
estimated more efficiently if the restrictions of equation (13) are taken into
account. We shall show that the information may be used in estimating 4,
B, and I" with only a moderate increase in computational difficulty.
The maximum-likelihood estimate of H is the least-squares estimate:

H=M_M_} (14)

Substituting into the likelihood function for the system composed of equa-
tions (12) and (13), the expression reduces to:

1 M M
L=mIn|B|—-=In|(B,AH +T vy vz )| (B,AH + )T 15
18] = gin [@.am + D M) am+oy| 03
where 4 = A, + A; and B = B, + B,.
My, =M, — M, MM,
M;x: yz—Msz;lezw (16)

M.:.l‘ = Mzz - MrzMz_lezz

Equation (15) can be modified in order to incorporate the usual form of
identifying restrictions (the presence or absence of a certain variable of the
relevant equation).

Suppose we are interested in the first equation of the system, whose
coefficients are the row vectors:

B =(p"0)
a = (a*,0) (17
y=(%0)

(The asterisked coefficients refer to the variables appearing in the first
equation.) Corresponding to the partitioning of a, and vy, respectively, we

define
H* I* O**
H=() 1= Tu) 18)
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Also define a new vector of coeflicients as follows:
6 = (a*, ¥*,0) (19)

with the dimensionality of the null subvector large enough that the num-
ber of components of § is the same as that of z (exogenous variables which
are not predicted).

Consider the following matrix of basis vectors of the space spanned by
the rows of H and I:

T = (T* ) (20)
- T**
where
. H*
"= (I* 0**) (21)

and 7*" is composed of the remaining vectors for a basis of the row space
of I. [We assume that H” is linearly independent of (I*, 0**).] One way to
construct 7** is to find

I — T*T(T*T*T)-1T*, 22)

The appropriate number of rows of (22) constitute a basis for the space
orthogonal to the row space of T*; hence these are the desired rows of 77**.
The identity

aH + vy =0T (23)
may be augmented so that
AH + T =0T (24)

where 0O is a variable matrix whose first row is 6.
Substituting from equation (24) into equation (13), we obtain the likeli-
hood function:

L=1In|B| - %m (B, ©)M(B, ©)7) (25)
where
_ Mt M TT
=(Pw Mty 26
M (TMW ™, T’) (26)

Equation (25) is in the form suitable for estimation by either limited
information maximume-likelihood or two-stage least squares. The follow-
ing additional matrices are computed: (1) H, the matrix of regression
coefficients of x on z; (2) M}, from equation (16); (3) 7™, with rows
linearly independent of those of T'*; (4) M according to equation (26).
These additional steps lengthen the computational procedure, but not by
nearly so much as full information methods.
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IV. Some Implications of the Results

It was observed in Section I that even if only one endogenous variable
appears in each equation (i.e., B, = I) rational expectations behavior in-
troduces the problems of simultaneous equation estimation. As long as the
rationality assumption is justified, therefore, our results cast doubt on the
applicability of recursive systems as an estimation model.”

Three kinds of expectations variables have mainly been used in estima-
tion from time-series data. All are based on the past history of the series:
(1) lagged variables, (2) extrapolations of the last (two) observations, and
(3) weighted averages of several prior observations.®

Variations on these have been used to explain certain expectations data,
and tentative steps have recently been taken to use other variables as
measures of expectations.”

Testing the alternative hypotheses is at best rough and qualitative, how-
ever. The main criteria are worth listing here, even at the risk of stating the
obvious:

1. Consistency of the models with (more or less) direct evidence about
expectations, and subject to limitations as to the quality of the data. The
main properties seem to be the following: (7) fair accuracy, (7} somewhat
different characteristics during up- and down-swings, and (i) apparent
regressiveness.

2. Consistency of parameter estimates using the expectations variables
with other information. Two items: (i) agreement of time-series estimates
with cost, budget, or other cross-sectional studies and (¢7) reasonableness of
the implied long- and short-run behavior.

3. Effectiveness of the expectations variable in the estimated equation.
Three items: (¢) how well the expectations variable “interacts” with other
variables of the system, (i) serial correlation of the residuals, and (%)
correlation of the residuals with trend and cyclical variables.
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Econometric Implications of the
Rational Expectations Hypothesis

Kenneth F. Wallis

The implications for applied econometrics of the assumption that unob-
servable expectations are formed rationally in Muth’s sense are exam-
ined. The statistical properties of the resulting models and their dis-
tributed lag and time series representations are described. Purely
extrapolative forecasts of endogenous variables can be constructed, as
alternatives to rational expectations, but are less efficient. Identification
and estimation are considered: an order condition is that no more expec-
tations variables than exogenous variables enter the model. Estimation
is based on algorithms for nonlinear-in-parameters systems; other ap-
proaches are surveyed. Implications for economic policy and economet-
ric policy evaluation are described.

Expectations variables are widely used in applied econometrics, since the
optimizing behavior of economic agents, which empirical research endeav-
ors to capture, depends in part on their views of the future. Directly ob-
served expectations or anticipations are relatively rare, hence implicit fore-
casting schemes are used. Most commonly expectations are taken to be
extrapolations, that is, weighted averages of past values of the variable
under consideration. However, these “are almost surely inaccurate gauges
of expectations. Consumers, workers, and businessmen . . . do read news-
papers and they do know better than to base price expectations on simple
extrapolation of price series alone” (Tobin 1972, p. 14). An alternative
approach is offered by the rational expectations hypothesis of Muth (1961),
which assumes that in forming their expectations of endogenous variables,
economic agents take account of the interrelationships among variables

The first version of this paper was written while I was spending a sabbatical term at the
University of California, San Diego, whose kind hospitality is gratefully acknowledged. It was
circulated as UCSD Department of Economics Discussion Paper no. 77-3, April 1977, and
presented at, among other places, the Econometric Society European Meeting, Vienna,
September 1977. The present version has benefitted from numerous comments, including
those of two anonymous referees.
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described by the appropriate economic theory. “Price movements ob-
served and experienced do not necessarily convey information on the basis
of which a rational man should alter his view of the future. When a blight
destroys half the midwestern corn crop and corn prices subsequently rise,
the information conveyed is that blights raise prices. No trader or farmer
under these circumstances would change his view of the future of corn
prices, much less of their rate of change, unless he is led to reconsider his
estimate of the likelihood of blights,” again quoting Tobin.

This paper examines the implications of the rational expectations hy-
pothesis for applied econometrics, and argues that its full force has yet to
be appreciated in empirical work. The discussion is quite general, proceed-
ing in terms of the standard linear simultaneous equation system, and
pays little attention to specific applications of the hypothesis, such as the
“efficient markets” literature and recent work in macroeconomic theory,
both treated in the survey by Poole (1976). As noted by Barro and Fischer
(1976, p. 156), “it is important to distinguish the rational expectations
hypothesis per se . . . from the models known as rational expectations
models that have usually been constructed so that money is neutral aside
from possible expectations phenomena,” and the statistical implications of
the former are our concern. We therefore set aside a number of topics that
have arisen in theoretical models incorporating rational expectations (or
“perfect foresight” in a nonstochastic context) discussed, for example, by
Shiller (1978). Thus in the face of a model yielding multiple solutions the
econometric student of recent history assumes that the system did make a
choice and the data-generation process did follow a particular path. Like-
wise the assumptions of time invariance and an infinite past conventional
in practical time series analysis leave on one side questions of learning
mechanisms and the transition to rational expectations. The question of
the informational requirements of rational expectations has led some to
doubt the empirical applicability of these models, but this seems to be as
yet unresolved: there may be specific situations in which these require-
ments are approximately met, but until sound empirical investigations
have been carried out, this remains an open question.

Section I describes the statistical properties of models which incorporate
the rational expectations hypothesis, showing the source and nature of the
various distributed lag formulations, and comparing the predictive effi-
ciency of rational expectations and purely extrapolative forecasts. Section
11 is concerned with the identification and estimation of such models, and
fresh approaches to the estimation of complete systems and single equa-
tions are presented. The rational expectations framework is useful for con-
sidering various aspects of economic policy, as in Section III, since it pro-
vides a model for the not uncommon sight of economic agents, having
observed certain economic phenomena, anticipating the impact on the
system of the government policy which they believe will be introduced in



EcoNoMETRIC IMPLICATIONS 331

response to those phenomena. The framework used in the paper allows the
force of Lucas’s (1976) criticism of conventional econometric policy evalu-
ation to be appreciated, yet it permits a practical response to be devised,
by retaining the notion of an economic structure (incorporating the ra-
tional expectations hypothesis) that is invariant to the “structure” of exog-
enous processes.

I. Rational Expectations Models
A. Some Basic Properizes

Our starting point is a “classical” static model in which expected or antici-
pated values of certain endogenous variables are included among the in-
puts:

By, + Al}’;c + I'x, = u,. (1)

The parameter matrices B, 4, and I are of dimension g X g, g X &, and
& X k, respectively, and the vectors y,, »},, x,, and 4, have g, & (<g), k, and
g elements, respectively. The endogenous variables y, and exogenous varia-
bles x, are observable, whereas yJ, represents unobservable anticipations,
formed in period ¢ — 1, about the values of % of the endogenous variables,
which without loss of generality we take to be the first 4 elements of y,.1 All
adjustments are assumed to be completed within a single period; further
dynamic complications such as lagged endogenous variables or the forma-
tion of expectations about fiture values of y,, are held over for the moment.

In order to proceed to empirical implementation of the model, it is
necessary to add a statement concerning the formation of expectations. A
common assumption in applied econometrics has been that expectations
are formed purely extrapolatively, that is, based solely on the past history
of the variable under consideration. The simplest example is the “adaptive
expectations” hypothesis,

)’;z —)’:,:—1 =(1- }‘)(yi,t—l —J’:,t-1)>

which implies that the current expectation is a geometrically weighted
moving average of past observations,

)’:t =(1-X\ Z )\jyi,t—lf;n (2)

=0
although more general forms have come to be used as a result of the
growing influence of the methods of time series analysis popularized by
Box and Jenkins (1970). In contrast, the rational expectations hypothesis

1Observable anticipations variables, such as those based on survey data, may be entered as
endogenous or exogenous variables as appropriate.
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assumes that “expectations, since they are informed predictions of future
events, are essentially the same as the predictions of the relevant economic
theory” and hence depend “specifically on the structure of the relevant
system describing the economy” (Muth 1961, p. 316). Thus the variable
7, is given as the expectation of y;, implied by the model, conditional on
information §,_; available at time ¢ — 1, ie, 3}, = E(y,|Q,_;). The
usual reduced form of the model (1) is
= =By}, — B~ Tx, + B 'u,,
which we partition and rewrite as
2 =Ty py + Hypx, + oy, (3)
Yo = Moy 9%y + Hopx, + vy

Taking conditional expectations in the first matrix equation gives
E(py |8 = U E(py 19 ) + HpE |Q,_y) + E@y,|Q,_y).

Assuming that the disturbances are nonautocorrelated and that the 4 X %
matrix (/ — II,,) is nonsingular, and writing ¥, for E(x,|®,_,), we obtain

o0 = = ) Uk, 4

Thus the rational expectations are given as linear combinations of the
predictions of the exogenous variables, and the relevant information on
which to base these is the set of past values x,_;, x,_,,. . ., assuming that
the list of exogenous variables in the model is correct and complete. On
substituting into (3) we obtain the “observable” reduced form as

1 = Pk + Py + vy, )

~
Yoy = Poyxy + Popxy + vy,

pP= [Pn P12] _ [Hu(l — )", le].
Py Py oy (7 — 1) 'L, Iy

where

Subtracting (4) from (5) gives the error in the rational expectation as

=21 = Ml — %) + oy, (6)
which thus depends simply on the exogenous variable forecast error and
the current-period disturbances.

For certain purposes it is convenient to write the model in an alternative
way, by augmenting the matrix 4, by a g X (g — 4) block of zeroes and
defining 4 = [4,:0]. Then (1) becomes

By, + Ay} + T, = o, (N

and the rational expectation is given as

yi=—(B +4)7'T%, (8)
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There is no difficult in defining the rational expectation of any endoge-
nous variable, even though that expectation does not appear in the model,
provided that (B + A) is nonsingular, an assumption analogous to that
made in deriving (4). The matrix P of observable reduced form coefficients
is then given in terms of structural parameters as

P=[B'A(B+ Ay 'T': =B~
and the counterpart to (6) is
¥, =37 = —B T (x, — %) + B, 9

To complete the stochastic specification of the model, we postulate the
following vector autoregressive moving average (ARMA) model for x,:

O(L)x, = O(LY, (10)

where ¢, is a white noise process independent of u,, and ®(L) and ©(L) are
polynomials in the lag operator L of degree p and g, respectively, viz.,

QL) =1+DL+ - +,LP, OL)y=0,+ 0L+ .- +06,.L

It is assumed that there is no “structural” information available regarding
the generation of the exogenous variables, hence (10) is written in reduced
form, with ®, = 1.2 With respect to the moving average side, normaliza-
tion can be achieved in many ways, and two possibilities used below are
(a) ®y = I, E(g,e;) = = unrestricted, (b) E(g,¢,) = diag {o,;}, O, lower
triangular with unit diagonal; transfer from (a) to (b) is effected by the
Choleski decomposition of =. We take the “invertible” or “minimum-
delay” representation in which all roots of |©(2)] = 0 lie outside the unit
circle. The optimal?® one-step forecasts are given by

=—-0ux_ -~ +Og - +0Op . (11
{Granger and Newbold 1977, sec. 7.5). Alternatively, using the infinite
autoregressive representation based on the expansion

QLY DLy =T — VoL — W L2 — ...,

say (taking the normalization @, = I), we have

X = 2 ¥, 1% = Y(L)x,_y, (12)

i=1

2As an alternative to (10) we could specify a univariate ARMA representation for each x
variable, but such a specification is obtainable as a form of solution of (10) (see Chan and
Wallis [1978] for examples). However separate univariate analyses might be more convenient
in practice, and ignoring the various restrictions and cross-correlations might not lead to
much inefliciency if the exogenous variables are only weakly interconnected.

3Assuming that there is not a third group of variables outside the model and independent
of u that nevertheless contains information useful in forecasting x.
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where

V(L) = Vo + ¥y L+ ¥ol? + - = 1O(L)HO(L) — B(L)).
Substitution of (12) into the observable reduced form (5) yields the “final
form™ relations, in which each endogenous variable is given as a distrib-
uted lag function of the exogenous variables:

Y =Pox, + P ¥ (L)x,_y + o, (13)

First note that for a given exogenous variable the shape of the lag distri-
bution is the same in every equation, with the exception of the leading
coeflicient, this shape being given by the optimal forecasting weights. In
practice this implication of the rational expectations hypothesis might be
tested; more generally one might check the agreement between the distrib-
uted lags and the estimated time series models for the exogenous variables
as an aid to the empirical specification of distributed lag functions. In any
event, note that such data-based distributed lag functions give the final
form equations (13), and not the rational expectations themselves.

Secondly it is clear that the lag distribution depends on and changes
with the stochastic structure of the exogenous variables, described by Sims
(1974, p. 294) as a “negative result” of the rational expectations hypothe-
sis: “what is called the structure in textbook treatments of simultaneous
equation models can change under policy changes which affect only the
time path of exogenous variables,” although we see in Section IIIB that it
is helpful to refine the notion of structure. If the exogenous variables have
a finite-order autoregressive representation, then the distributed lag func-
tions are similarly of finite extent. Any moving average element (i.e., g >0
in [10]) implies that the autoregressive representation and hence the dis-
tributed lag functions are of infinite extent, but if p and ¢ are finite the lag
functions can be written as a ratio of two finite lag polynomials, where-
upon (13) has the standard transfer function or “rational” distributed lag
form. Nevertheless interpretations of such lags in terms of speeds of adjust-
ment, rates of learning, and so forth are entirely out of place in the present
context.

Finally, a univariate time series model for each endogenous variable can
be deduced. Consider the ith equation of the observable reduced form (5):
i = 01X, + phx, + v;,, where pj and p}, are the i th rows of the coefficient
matrices of X, and x,, respectively. The model (10) for x, has the infinite
moving average representation

x, = ALY O(L)e, = |B(L) " adj DLIB(L)e,,
and we take the normalization E(g,¢;) = diag {0;; }. The forecast x, can

similarly be written ¥, = T(L)e,_; where

T(L) =T+ T\ L +ToL2+ .. = %{@(L)-I@(L) —0,).
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Then on substituting and multiplying through by the scalar |®(L)| we
obtain

[B(L)]ys = @D T(L)ery + ppadj (L)O(L)e, + |O(L)lp,
= ¢'(L)e, + |®(L)[z,

say, where the (finite-order) moving average operators §’(L) have leading
coefficients £ = p30,. The right-hand side is a sum of £ + 1 independent
moving average processes, and hence has a moving average representation
in terms of a single innovation 7, (Granger and Morris 1976). The result-
ing ARMA model (taking the invertible moving average representation)
can be written |®(L)| y;, = 8,(L)n;,. This could then form the basis of a
purely extrapolative predictor »};, say, whose one-step forecast error 7;, is
white noise, but the associated forecast error variance is greater than that
of the rational expectation, as we now show.

The ith equation of (6) or (9) gives y;, — ¥}, = P3O0, + v;, = £0e, + 035
thus the error in the rational expectation is serially uncorrelated and un-
correlated with past values of exogenous variables, and has mean square

k
2 JOJJ + 0
ji=1

To compare this with the mean squared error of the extrapolative predic-
tor y;;, we generalize the approach of Pierce (1975). We have

C_lewl _gw) e
T T e W T 6

(14)
= 2 2 L 2 Wi 1,%, 01
i=1li=
where the expansions have leading coefficients w; 4,7 = 1, ..., £, given by
£p,and wy o = 1. Since the g, j = 1,. .., £, and v;, are mutually uncor-

related white noise processes, we have

var (n;,) = 2 z w;l";; + 2 wk+1t°

ji=11=0

k
2 2 2
> > wiooy + wii00;,

i=1
k

* .

- 2 0i0; + 0 = var (3, —Jir);
j=1

hence the error variance of the optimal extrapolative predictor is greater
than that of the rational expectation.

This is discussed in the context of two simple examples by Nelson (1969,
1975a), who remarks that Muth’s initial example “was perhaps an unfor-
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tunate choice” since it was such a special case that the rational expectation
and optimal extrapolative predictor coincided. That example was a two-
equation market model, with no exogenous variables and a single auto-
correlated disturbance. Muth further specialized this by taking the dis-
turbance term to be a random walk, whereupon the rational expectation
obeys the adaptive expectation model (2); perhaps this choice was also
unfortunate, lending unwarranted support to the adaptive expectations
approach. In general the prediction error in both the rational expectation
and the optimal extrapolative predictor is free of autocorrelation, al-
though the extrapolative prediction error, unlike the error in the rational
expectation, is correlated with past values of the exogenous variables.

B. A Simple Example

Choosing ¢ = 2, # = k = 1, and imposing two zero-valued parameters a
priori, we have the just-identified model

[ 1 312] [)’u] + [a O] [)’;t] — [ulc]_

Bay 1 1lyy 0 yllx Uat

The usual reduced form, which cannot be implemented without an as-
sumption about the formation of expectations, is

[)’u] — 1 [ -« 71812] [}};t] + [vu]
Yot U= BB LaBy,  —yllx oy
_ [7711 '7712] [)’;c] + [”u].
Ta1 Tzl X Vg
Taking expectations in the first equation conditional on £,_,, and assum-

ing that the errors are free of autocorrelation, we obtain the rational ex-
pectation of y;, as

T ™ ~
P =EQulQy) = ﬁ;‘E("z 19, _y) = t%x"
where ¥, is the optimal predictor of x, based on x,_;, x, o, . . .. This expres-
sion can be substituted into the structural or reduced form for empirical
implementation, given an appropriate specification for x,. (Note that the
effect of a “fixed regressor” assumption, in which x, is treated as known, is
to remove the identifiability of the model.)
Case (1):
X =¢x,_; + ¢,
In this case the optimal predictor is X, = ¢x,_;, hence the rational expecta-
tion 1s

7
* 12
Ju = P bx,_y
- 11
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and the final form distributed lag relations are

T117 129
11712
Ju = —1———x1—1 + X + gy
— Ty

(15)

217129

Yo = 1“7T11

Xy F TopXy t 0
Since the model is just-identified and the rational expectation depends on
a single past x value, these relations are free of restrictions.

The optimal extrapolative predictor for y,, under the rational expecta-

tions hypothesis can be readily deduced. The first final form equation
(15) is

7119
P = Tl + YL)x, + vy, ¥ = 1—11‘_’
—

and on substituting x, = {1/(1 — ¢L)}¢, and rearranging, we obtain

(1 = ¢L)yy = 75(1 + YL)g, + (1 — ¢L)vy,.

The right-hand side is a sum of two independent first-order moving aver-
age processes, and hence has itself a first-order moving average representa-
tion, giving an ARMAC(1, 1) model for y,,,

(1 —¢L)yy = (1 — 0L,

where 8(|6| < 1) and var (1,) = o2 are obtained in terms of 7y,, 75, ¢, 62,
and 031. (Note that the “coincidental situation” in which ¢ = —1), giving
a lower order ARMA model, cannot arise unless ¢ = 0.) Thus the optimal
extrapolative predictor of y,,, say y3, is 37 = ¢,y — 0, ,, with mean
square error 2. The rational expectation has error y;, — P = Tiok + vy
with mean square 7$,62 + o2 , which is smaller than ¢ by the analysis of

. the previous section.

Case (it):
X =Xy =g — 0y, 0] <1

This is the ARIMA (0, 1, 1) model, in which the optimal predictor is given
as an exponentially weighted moving average of past observations, that is,

)’c\t = (1 —_ 0) z Hjxt_lvj,
j=0

and
(1 — 0) .

]’;t - 0)’1;—1 = 1
— T

-1
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The resulting distributed lag equations are of the standard Koyck form,

Jy = T12 {x 8 —myy
LT 7 N S

_ T Tyl — 9)} ]
Yo T T oL [xt {0 ool — 777) x_q | t oy

xt-—l] + vy
(16)

The denominator lag polynomials are the same in the two equations, and
this restriction might be imposed in estimation.

If # > 0 and 0 < 7y; < 1 so that the distributed lag coeflicients in (16)
are positive, a “mean lag” could be calculated as 7, /(1 — #). Again, how-
ever, interpretations of this quantity in terms of a distributed lag adjust-
ment mechanism are quite out of place—“adjustment” appears more or
less “sluggish” simply as the stochastic specification of the exogenous vari-
able (with respect to the parameter ) changes.

In this case the pure time series model for »; is also ARIMA (0, 1, 1) so
that the optimal extrapolative predictor is of the adaptive expectations
form, but again the prediction error variance is greater than that of the
rational expectation.

If in this simple model it is postulated that y7, is generated by an adapt-
ive expectations mechanism, as an alternative to the rational expectations
hypothesis, then the distributed lag functions relating y, and y, to x are the
same as (16), in that the same lagged variables appear with the same
cross-equation restriction (but the error specification is a little different). In
effect the same final form is relevant to two different models, which is
always possible. Of course this correspondence does not hold for the
autoregressive x of case (1), and the difference between the lag distributions
(15) and (16) results simply from the different autocorrelation properties
of the exogenous variable in the rational expectations context.

C. Dynamic Complications: Future Expectations

We first consider how the above results are modified if the relevant expec-
tations variables relate to a future period (or periods) as of time ¢. Then (1)
becomes

By, + ZAH)’;,:H + Iz =4 (17)

ji=0

where 7 is an “expectations horizon,” and the reduced form is

I = _ZB_lAu)’;,zﬂ' — B™'I'x, + By,
j=0
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of which the block relating to the determination of y; can be written

-
*
Ju = 2 Hn,j)’1,t+j + Iyox, + vy,
j=0
Taking conditional expectations, again assuming nonautocorrelated dis-
turbances, we see that the rational expectations y;,tﬂ' = E(p1,145 184 -1)
satisfy

(- Hn,o))’;t = z Hu,jJ’I,Hj + I E(x, |82, _y).
ji=1
This is a multivariate 7-order difference equation which, if stable, yields a
solution for y], in terms of ;/c\H_j = E(x,;19,_1),7=0,1,2,.... Writing
Cyy = (I = Il o)~ ', ;, the difference equation in companion form is

e Cyi Gy - Gy € y;,t+l
)"1‘,;+1 — I 0 O 0 )’;,_Hz
];,t+'r—l 0 0 I 0 y;,t+‘r

(I — 11y, o) ',
+ ? %
0

oryl, =0 1141 + X;- The stability condition is that the eigenvalues of C
have modulus less than 1, or equivalently that the characteristic equation

(4 — Hu,o)zT - Hn,lzﬂr_1 e = H11,1| =0

has roots with modulus less than 1, and if this is satisfied the solution is

}’I,t = Z Cth+j'
i=0
The first block gives the solution for 7, in terms of the predictions of al!
future values of the exogenous variables, given their past values. The re-
maining blocks give the same expression for yi, , j=1,..., 71,
except that the time subscript on the x forecasts is advanced j periods; the
solution for »7,, is obtained in the same manner. The error in the imme-
diate rational expectation has the same form as in the model of Section IA,

e —J’;t = (Hn,o - I))’:: + z H11,j)’1z+j + Ipx, + 0y,

j=1

= (%, = %) + 24
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and so is free of autocorrelation, while the future expectations variable
71:4; (based on €, ) has an error which depends on ¢, €., ..., &;
together with v, ,.. and so exhibits autocorrelation.

The generalization of the observable reduced form (5) now involves all
future x forecasts, and the general expression is not informative, but the
final form equations are still of the same type. Using the autoregressive
representation for x,, the sequence of forecasts can be calculated recur-
sively from the expression

l ]
Xy = 2 ¥, X+ z VX1
ji=1 ji=0
which generalizes (12). If x, has a finite autoregressive representation of
order p, then each forecast , , is a linear combination of x,_,,. . ., x,_pand
so are the rational expectations y ,,;,7 = 0, ..., 7. Then the same lagged
exogenous variables appear in the final form distributed lag equations as
in the case in which only contemporaneous expectations variables enter
the model; all that changes is their relative weights.

An illustration is obtained by advancing the expectations variable of the
example of Section IB by one period; thus the first reduced form equation
becomes y;, = 71,97 41 + Ty2%, + 0y, Assuming that |7,,|< 1 the solu-
tion for the rational expectations variable is

o

* . i
Y41 = T2 Z T 4 1440 (18)
=0

In case (i), where x, obeys a first-order autoregression, we have Sc\t H=
¢/1x,_,; hence the rational expectation is

2
})* _ 7712‘1’ x
Le+41 — t—1
’ 1 — ¢myy

and the distributed lag relation is
T12T119°
1 — ¢myy

This contains the same variables as (15); only the interpretation of the

coefficient of x,_, has changed.
In case (ii), x, is ARIMA (0, 1, 1) and the optimal predictor based on

Ju = ¥ + Xy t+ Uy

X,_1» X;_g, . . . is the same for any forecast horizon. Thus
oo oo
* ; s
Y41 = T2 2 ™ {(1 —8) 2 0”‘:—1—1’]’
j=0 i=0

giving the same expression as previously, and the final form equations are
identical to (16).
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In this example, to assume that the rational expectation as of time
t + 1, rather than ¢, is relevant to the particular behavioral equation
causes no change at all in the distributed lag relations in case (ii); in case
(i) the form of the relation is unaltered. In general one would not expect
data to be particularly informative on this question. The specification of
different timing relationships amounts to the specification of different
models, which may nevertheless have the same reduced or final form, and
so be observationally indistinguishable. Such specification should be based
on a priori institutional and information flow considerations relevant to
the given context.

Different assumptions about the amount of information available when
expectations are formed are clearly possible, but result in only minor mod-
ifications to the foregoing material. For example, one might include the
expectational variable y7 ,,, as in the above illustration, but assume that
the values of the exogenous variables at time ¢ are known when expecta-
tions are formed. Then in computing the rational expectation (18), the
forecasts are given by %, + = ¢'x, in case (i), so that y] ,,; depends only on
x,, and x,_; drops out of the final form. However in case (ii) the form of
equation (15) remains unaltered, but the coefficients of x, and x,_; change.
While McCallum (1976) begins with such an assumption about what is
known when forecasts are made, some of his empirical results lead him to
suggest “that current values of exogenous variables should perhaps be
excluded . . . as market participants may not possess information on such
values when forming expectations.”

D. Dynamic Complications: Lagged Variables

The second modification to the basic model is to allow lagged values of the
various endogenous to enter, as a result of dynamic adjustment problems,
timing considerations, and so forth. We use the formulation (7), appropri-
ately extended, and so write

B(L)y, + Ay; + T(L)x, = u, (19)
where
B(Ly=B,+ B/,.L+ --- +B.L", F(L)=FO+F1L+---+FSLS.

Taking conditional expectations and assuming nonautocorrelated disturb-
ances as before, we obtain

)’: = —(By + A)_IE[{F(L)xz + Byt + Br)’z—r} 1€2,_4)-

The relevant information set now includes the past values of the endoge-
nous variables; thus the only variable in the braces which needs to be
forecast is x,, and we have

Ji=—-Bo+ Ay YTox, + Fixy

(20)
+ - stt—s + Blyt—l + -+ Br.yt—r}'
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This modifies equation (8) by adding to the previous expression for y; all
predetermined variables in the model, appropriately weighted. Note that
(20) is quite specific about the variables that appear; the maximum lags of
variables are the same as in the structural form (19) and if a particular
endogenous variable does not appear lagged in (19) then it does not ap-
pear at all in (20). Similarly the observable reduced form (5) is augmented
by the same lagged variables that are introduced in (19). Again the error
in the rational expectation depends solely on the unanticipated part of the
current exogenous variables, together with the current disturbances:

=21 = =B5'Ty(x, — %) + Bylu,.

To examine the impact of the rational expectations hypothesis on the
stability of the model, we substitute the expression (20) for y; into (19) and
collect together the terms involving the endogenous variables. These are

B(L),yt - A(BO + A)_l{Blyt—l + -+ Br})t—r}
=By, + By(By + Ay By + - + By}
hence the model is stable provided that all roots of
(Bo+A)+Biz+ - +B21=0

lie outside the unit circle. The stability condition for the model without
rational expectations depends on the roots of |B(z)|, so the only change is
in the constant term of the matrix polynomial. While a general description
of the impact of the introduction of rational expectations on the roots of
the determinantal polynomial is not possible, it is clear that for 4 suffi-
ciently close to — B, a model which appears stable if expectation forma-
tion is assumed to be exogenous can in fact be unstable. On the other
hand it is quite possible for a model that appears unstable according to the
conventional condition to be stable under rational expectations.

I1. Identification and Estimation
A. Identification
We first consider the basic model of Section IA, with structural form
By, + Al.y;t + ', = 4,
and reduced form
210 = % + Hoxy + 2y,
Yo = gy + Hopx, + vy

*A simple illustration is obtained by modifying our example of Section IB so that the
lagged value of y,, instead of the current value, appears in the second structural equation.
Then the conventional stability condition, ignoring the expectations process, is | 81,8., < 1,
but even if this is true the model will be unstable under rational expectations if |1 + a| <
|B12B21], L€, if & is sufficiently close to — 1.
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The nonobservability of »], is overcome by the rational expectations hy-
pothesis

21 = (= Ty Mk,
and equation (5) again gives the observable reduced form:
2= PG + o, €2y

P = [P11 PIZ] — [Hn(I — I, ', le]_
Py Py 18 PSTOAE N U OF) i § SR U PP

where

(22)

By treating X, as observable, this formulation incorporates the implication
of the rational expectations hypothesis that lagged x values enter in a way
dictated by the optimal forecasting equations corresponding to the given x
structure. Other possibilities are discussed below.

It is assumed that interest lies in estimating the parameters of the struc-
tural form, and we consider the case in which the identification restrictions
take the form of knowing specific elements of B, 4;, and I'. Let § be a
column vector consisting of those elements of B, 4;, and I' that are not
known a priori, assumed to be r in number, and let p be the 2gk-dimen-
sional vector of the elements of P. Then the condition for at least local
identifiability of the structural parameters is that the matrix of first partial
derivatives H = 3p/08 has rank r (see, e.g., Rothenberg 1973). Using the
matrix differentiation conventions and theorems given by Neudecker
(1969), and defining 7 = vec (II"), we have

_Op _Om 0p
T8 T 98 o

The r X g(h + k) matrix appearing as the first factor on the right-hand
side arises in the usual consideration of the identification of structural
parameters given II (it is the transpose of Rothenberg’s H,,) and has rank
r if the conventional rank and order conditions for structure identification
are satisfied. To evaluate the second factor it is convenient to form « by
taking vec (11};), vec (Il},), . . . in turn (and p likewise), then by differenti-
ating the relations (22) we find that the g(# + &) X 2gk matrix op/ow is
given as

(I =)' QI =), 0 (=113 UL, & - 11,) 11, 0

(I — T3, ', @ Lk (I — T3 15, ® 1, 0
0 0 [, ® —TI,) I, 0
0 0 0 I(O—h)k

The condition that this matrix be of rank g(4 + £) is in effect a condition
for the identification of the elements of I given no other information but
P. A necessary condition is that the matrix must have at least g(4 + &)
columns, that is £ 2> 4, so that there are no more expectations variables
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than exogenous variables in the model. To derive a rank condition for
identifiability we first note that a simple permutation yields a block-trian-
gular matrix; hence the rank of the matrix is equal to the sum of the ranks
of the diagonal blocks. Recalling also that the rank of a Kronecker prod-
uct is equal to the product of the ranks of the two factors, and retaining the
assumption that the 4 X £ matrix (/ — II;;) is of full rank, we obtain

rank (0p/07) = gk + grank (I1,,).

Thus the rank condition for the identification of II given P is rank
(Py5) = A,% which of course implies /& < £.

With respect to the identification of the structural parameters given P,
consider first the possibility that the structure is just-identified in the usual
sense. Then r = g(h + k), I is unrestricted, and the requirement is again
rank (P;,;) = h: if & = k we have an indirect least-squares type of situation
while if £ < &, P is subject to restrictions. We can also consider the extent to
which a “shortage” of exogenous variables (an “excess” of expectational
variables, # > k) can be traded off against overidentifying restrictions on
the structure. Suppose that there are m of these, so that r = g(h + k) — m.
Then a necessary condition for rank (H) =r is

rank (8p/om) = gk + grank (P},) = 2gk
Zgh+k)—m=r,

that is, m 2> g(h — k), or each expectational variable over and above the
number of exogenous variables should be matched by at least g over-
identifying restrictions.

These results carry over to the model with lagged variables of Section
ID in the same way that the standard identification results carry over to
dynamic models,® with one additional complication. This concerns the
possibility that a linear identity connects the predetermined variables in
the observable reduced form, which would arise, if, for example, x, obeys a
p-order autoregression with p < s so that ¥, is a linear combination of
lagged exogenous variables already in the model. To overcome this prob-
lem the forecast x, should be a function of past x values not present in the
model. The approach does not carry over to the model with future expec-
tations of Section IC, since the observable reduced form is no longer a
good starting point; nevertheless an order condition of the form A < &,
counting in 4 each separate future value of an expected variable, remains
relevant.

SFor “almost all” matrices P,, in the usual sense (compare Malinvaud 1970, Sec. 18.3).
However note that in the case of an overidentified structure and 4 > £, discussed below, it
is not difficult to construct examples in which elements of P, are identically zero.

6By which is meant that if the maximum lags of variables are known, each lagged value
may be treated as a separate predetermined variable when rank and order conditions are

applied, and if they are not known then extensions of the standard conditions such as those
given by Hatanaka (1975) are needed.
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B. System Estimation

We retain the specification for the exogenous variables given in (10),
namely ®(L)x, = @(L),, and assume that the time series model is first
estimated by an appropriate maximum likelihood procedure and that suf-
ficient starting values are available to permit the calculation of the one-
step forecasts x,, t = 1, ..., T (or that the sample period relevant to the
basic model has been appropriately truncated). The estimation of the ob-
servable reduced form coefficients P is then a standard multivariate least-
squares problem. Alternatives to the treatment of the constructed x fore-
casts as data are discussed below.

To estimate the reduced form coeflicients I1 in the case £ < &, we form a
vector 7 of the n = g(h + k) elements and write the observable reduced
form as

», = P(mx, + v, (t=1,...,T),

where X = [x}:x,}. This is an example of the multi-equation linear model
in which elements of the coefficient matrix are continuous functions of a
set of parameters 7, considered by Sargan (1972).7 If £ <k, a test of the
restrictions implicit in the construction of P(7) amounts to a test of the
rational expectations hypothesis in which the maintained hypothesis sim-
ply specifies a menu of variables and not a complete structural form. As-
suming that the vectors z,, t = 1, ..., T, are serially independent and
normally distributed N(0, 2,), the first-order conditions for the concen-
trated likelihood function can be written

fim = —eefogim[ T~ pmEE] 2L — g G=1,...,n),

i

where @, (7) = [Y' — P(#)X'][Y — XP'(w)]/T and the T X g and T X 2k
data matrices ¥, X are given by Y’ = [yy:---: el X = = [xy:--- %)
Sargan describes the following gradient maximization procedure, which
has been found to work well in practice. Writing =, for the value of 7 at

the «th iteration and A7 = 7; ., — 7, , the iteration is
n
> Ly(m) Amy + M(m,) = 0 (t=1,...,n),
=1

where

LU(W):tr[ 1(77) ( TX)%].

7A simple example is the “unobservable independent variables” model of Zellner (1970).
Maximum likelihood estimation of such models is considered by Goldberger (1972), whose
procedure amounts to a slightly different iteration than that presented below. What distin-
guishes the present model from “multiple-indicator, multiple-cause” models is the particular
structure for the unobserved (expectations) variables implied by the rational expectations
hypothesis, involving nonlinear, cross-equation parameter restrictions.
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For structural estimation it is convenient notationally to use the square
matrix A and write the model as in (7), viz.,, By, + 4y} + I'x, = u,. It is
assumed that this structural form satisfies the identification conditions
discussed above. The rational expectation of y, is given by (8) and the
system in terms of observable variables is

By, — A(B + Ay Tx, + 'x, = u, ¢t=1,...,7) (23

Placing the unknown elements of the matrices B, 4, and T into a vec-
tor § the model can be written compactly as A(8)z, = 4, where z; =
[»;:x;x]) and A(8) = [B: —A(B + A)"'':T). This is again a form con-
sidered by Sargan (1972), although slightly simpler than his general case
since our endogenous variable coefficient matrix involves no nonlinearities.
Assuming that the vectors u,, t = 1, ..., 7, are serially independent and
normally distributed N(0, 2,), the log-likelihood function concentrated
with respect to &, is

T'log|det B| —37 log det [A(8)Z'ZA'(8)],

where Z = [Y:X] is the T X (g + 2k) data matrix. Differentiating with
respect to §; gives the first-order condition

T [(B')—l%i—] Tt [9;1(6)1\(3)(%) %/;1] =0

where §,(8) = ABYZ'Z/T)A(8). This can also be written
_ Z'Z\ oN
-T 1 Z2) )=\ =
v [2r@ne(4Z) % 5 | =0

where Z = [Y:X] and BY' = A(B + Ay TX’ — TX".

Experience in solving FIML problems of this kind through a variety of
numerical optimization procedures is described by Sargan and Sylwestro-
wicz (1976). The computer program includes a subroutine which differen-
tiates analytically rational functions A;;(8) of any order; alternatively in
the present context the elements of dA’/98, can be obtained from matrix
derivatives given, for example, by Dwyer (1967).

The use of the constructed x series as data treats the parameters of the
exogenous process as given, but if this is not correct the estimated vari-
ance-covariance matrix of the model’s parameter estimates obtained at the
final iteration will be subject to a common error in two-step-type proce-
dures, namely that of treating as known in the second step a parameter
that has in fact been estimated in the first step. To avoid this the parame-
ters of the model and the exogenous process may be estimated jointly, by
substituting in (21) or (23) the expression (11) for %, and adjoining the
vector ARMA model (10), then estimating the (g + k)-equation system by
an appropriate algorithm as already discussed. (Separate estimates of the x
process and the model as described above would provide convenient start-
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ing values for this joint estimation.) This also achieves fully efficient esti-
mates, since exploiting the parameter restrictions between the x process
and the y process gives an improvement despite the independence of ¢,
and #, (or v,).

The methods of this section are applicable to models containing lagged
variables, while the method of the previous paragraph is applicable to
models containing future expectations variables provided that the pa-
rameter restrictions resulting from the dependence of the rational expecta-
tions on the predictions of all future values of the exogenous variables and
the dependence in turn of such predictions on past values can be conven-
iently expressed. For example, to estimate the parameters of our simple
example as amended in section IC, with rational expectation given by (18)
and autoregressive x, the following three-equation system would be esti-
mated:

ayBi9?
1+ Braya — 1-3 Blz g 1 T e
12021

Boryy +ra + vx, = Uy,
X = 9x_q &

C. Limuted-Information Methods

Under the limited-information heading we include single-equation estima-
tion methods and other procedures that make less than the maximum
possible use of the restrictions implied by the rational expectations hy-
pothesis: some of these procedures will be seen to be applicable to com-
plete systems.

First, we assume that interest centers on estimating the parameters of
the first equation of the structural form, namely

By, + ayy} + yix, = uy,, (24)

where f8,, ay, and vy, are the first rows of B, 4, and T, respectively, and
together contain no more than 4 + & unknown elements. The rational
expectations variables are given by

i = —(B+ 4Tk or yu=Ud- Hll)_lHIZ‘;\t’ (25)

but in the absence of knowledge of the remainder of the system it is not
possible to specify the welghts with which the elements of x, appear. How-
ever, substituting x, = X, + ¢, into the observable reduced form gives

oy = (= Hll)_1H12xt + H12(xt + &) + vy (26)
= (I = M) % + (Mg, + oy,),

hence a set of £ least-squares regressions of the elements of y,, on %, yields
consistent estimates of the coefficients in (25). Again, if it is unrealistic to
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treat the ¥ series as given, the expression (11) may be substituted for X, in
(26), which may then be estimated jointly with the vector ARMA model
(10). The resulting regression estimates 3, can then be substituted into
(24), and treated as predetermined variables. If (24) is to be estimated by
two-stage least squares, then the first stage comprises estimation of certain
equatio*ns of; ihe reduced form (3), where once more 3}, replaces »},. The
error yy, — ¥, comprises coefficient estimation error, which in turn in-
volves the disturbances ¢, and #;,, but this does not deny the consistency of
the final parameter estimates, by an argument analogous to the standard
proof of consistency of 2SLS.

Although this procedure is based on consistent estimates of the rational
expectation coefficients, it does not provide a test of the rational expecta-
tions hypothesis, since having estimated but a single structural equation or
reduced form equation the restrictions on the rational expectations coeffi-
cients cannot be checked. A restriction that has been imposed so far is that
past information on the exogenous variables is used optimally. This can be
relaxed by replacing , in (26) by past values of x,, and no longer estimat-
ing jointly with the x process.? If the correct distributed lag formulations
are employed, as given by the forecasting equations, then estimation using
past x values will provide a better fit than that based on calculated x values
or subject to restrictions, though the difference will not be significant if the
optimality hypothesis is correct. In practice one would expect the distrib-
uted lag specifications to be determined empirically, nevertheless the
agreement (or lack thereof) with the forecasting equations determined by
separate time series analyses of the exogenous variables could then be
checked. Although such regression-based proxies incorporate neither the
rational expectations coeflicient restrictions nor those implied by optimal
forecasting of exogenous variables, they are consistent with the model to
the extent that the correct (and complete) set of exogenous variables is
employed.

Possibly as a result of Muth’s initial special case, one might consider the
use of extrapolative forecasts of endogenous variables. It is then necessary
to heed Nelson’s (19755) warning that a purely extrapolative predictor is
an inadequate proxy for a rational expectations variable. As shown in
Section IA, a univariate ARMA representation for each endogenous varia-
ble can always be derived, providing a purely extrapolative predictor »};,
and the one-step forecast error n;, = y;, — »;; can be written, from (14) as

j=11=1

k k o ®
M = {Z o€ + v“} + {2 z W€, 1 + 2 wk+1,z”i,z—z}- (27)
i=1 =1

8Such regression-based proxies for the expectations variables are employed by Sargent
(1973, 1976).
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The first expression in braces is equal to y;, — y},, hence the second expres-
sion in braces represents the difference between the rational expectation
and extrapolative prediction of y;,. This term is added to the disturbance
term in (24) when y}; is substituted for yj,, and through its correlation
with the exogenous variables removes the consistency of conventional esti-
mators applied to (24). This argument applies equally to a reduced form
equation. In the event that (24) contains more than one endogenous varia-
ble, fewer than g — 1 zero restrictions being imposed on (3;, instrumental
variable or 2SLS procedures are further invalidated by the replacement of
5 by »i;, as Nelson points out, since the potential instruments (exogenous
variables) are now correlated with the composite disturbance term.

McCallum’s (19766) answer to these difficulties is to use as a proxy for
the expectations variable y}, not »j; but the actual value y;,, and then to
use y;; as the associated instrumental variable. Substituting y;, for y}, aug-
ments the disturbance term by the first expression in braces in (27), but
this is not correlated with »;;, which is thereby a valid instrument. It is
correlated with x,, however, so further instruments are required and
McCallum proposes the use of lagged exogenous variables x,_;. Note, how-
ever, that the applicability of this procedure is limited to equations which
do not simultaneously contain an endogenous variable and its own ra-
tional expectation. This difficulty does not arise in McCallum’s discussion
of Nelson’s example, in which y3}, but not y,, appears in the equation for
¥ However, the substitution might still cause loss of identification, as
when the Nelson-McCallum example is regarded as the first equation of
the following just-identified two-equation system:

o 0T+ 05 P =[]

Clearly the use of actual values as proxies for rational expectations is not
restricted to single equations (but may be subject to further identifiability
problems in larger systems), and can also be applied when future expecta-
tions enter the model, as in McCallum’s (1976a) empirical work. In effect
the only information about the rational expectation now being employed
is that it is unbiased, but its further properties clearly influence the choice
of instrumental variables. As a consequence of the result on comparative
forecast variance given in Section IA, the rational expectation is a more
efficient instrumental variable than the extrapolative predictor, and al-
though it cannot be fully implemented in this limited information context,
taking account of its dependence on the past values of specific variables
(and possibly with those past values entering in a specific way) when con-
structing instruments could be expected to lead to an improvement.
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ITI. Economic Policy
A. The Effects of Policy Variables

We now extend the exogenous variable specification to include the possi-
bility that certain variables are policy instruments under the control of
economic policy makers. Writing

x =GE_1) + ¢, (28)

where ,_, denotes information about the values of all variables available
as of time ¢t — 1, allows such policy instruments to be determined by feed-
back control rules, possibly with a superimposed random element. The
relation

=i = =B (% — ;‘\t) + By, (29)

holds for the basic model of Section IA and its subsequent extensions, and
states that only unanticipated movements in exogenous variables (or dis-
turbances) cause endogenous variables to diverge from their previously
expected values. Thus if the public has the same information as the
policymaker including knowledge of G(*), so that x, = G(R,_,), then there
is no choice of G(*), i.e., no feedback rule, that permits the policymaker to
offset expected movements in endogenous (“target”) variables. Of course
the policy in general affects the actual realized values of the endogenous
variables, but the effect is fully anticipated unless the policy contains sur-
prise or random elements, ¢,. From (8) and (9) we have

3= —(B + Ay TGQ,_,) — B-Te, + v, (30)

The conventional view that, for example, under fixed exchange rates a
devaluation must be sprung as a surprise, and that perfect foresight would
frustrate the policy, is then presumably based on the relative signs and
magnitudes of coefficients of ¢, and G(&,_,) in (30).

Special cases arise when for key endogenous variables the coefficients of
certain policy variables G(*) are zero, as in macroeconomic models con-
structed so that output is independent of the particular deterministic
money supply rule in effect, such as that of Sargent and Wallace (1975). A
feature of such models is behavioral relations giving one endogenous vari-
able (output, employment) in terms of the forecast errors in another
(prices, wages); compare also the aggregate supply function of Lucas
(1972), and note that the restriction that the variables y;, and y}, enter a
given equation with coefficients that are equal but opposite in sign can
clearly be tested following estimation as in Section II. In the present
framework suppose that we can rearrange equations and variables so that
in the first g, structural equations the last g, variables y,, and y}, either
appear with equal and opposite coefficients or do not appear at all
(g1 + g2 = g). Then (B + A) is block-lower-triangular and so is its in-
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verse. If given policy instruments do not appear in these g, equations, the
corresponding elements of I being zero (as is true of the Lucas-Sargent-
Wallace models), then the systematic part of policy has no effect on the
first g, endogenous variables, since the relevant elements of (B + 4)" T in
(30) are zero.?

B. Econometric Policy Evaluation

The conventional approach to the quantitative evaluation of alternative
economic policies is to take an estimated macroeconometric model and
examine the implied behavior of the endogenous variables under alterna-
tive specifications of the future values of policy instruments (exogenous
variables.)!® Lucas (1976) criticizes such comparisons of alternative policy
rules on the grounds that the “structure” of econometric models is not
invariant to changes in policy. The elements of such models are behavioral
relationships derived from optimal decision rules of economic agents,
which are based in part on the agents’ views of the future movements of
relevant variables. Changes in the nature of these movements cause
changes in the optimal decision rules, hence “any change in policy will
systematically alter the structure of econometric models” (Lucas 1976,
p- 41). This criticism also applies to ex post analysis of the effectiveness of
an actual policy, where the procedure is first to estimate a model using
data for periods when the policy was not in operation and then to compare
its predictions for the periods when the policy was applied with either the
actual outcomes or the predictions of a model estimated for the policy
period. For such comparisons to be meaningful, it is necessary to assume
that the nature of the economic system’s response is unaltered when sub-
stantially different movements in key variables occur, movements which
are such as to cause the policymakers to act.!

In the linear model context used throughout this paper, the force of the
Lucas criticism and the nature of a practical response can be seen by

9The reassertion of the potential of monetary policy to stabilize fluctuations in output and
employment by Phelps and Taylor (1977) rests on a model in which firms “set their prices
and wage rates / period in advance of the period over which they will apply, hence before the
central bank decides on the money supply for that (latter) period”; thus the policymakers
have a larger information set available to them. Likewise, Fischer’s (1977) model in which
labor contracts are made for fwo periods at a time also admits monetary policy effects on the
short-run behavior of output. As discussed in Section IC, data are unlikely to be informative
about the details of such timing relationships, so that when these models are implemented
empirically, it will be necessary to give careful prior consideration to the relevant institu-
tional and informational arrangements and decision sequences.

Descriptions of the general procedure and its applications are contained in my survey
article and lecture course (Wallis 1969, 1973), but pay no attention to the criticism to be
discussed below.

11Such endogenization of policy may invalidate tests of structural change across policy
regimes, since a division of a sample period into policy regimes is not arbitrary but is related
to the behavior of key variables (Wallis 1972).
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comparing the approaches of Sections I and II. The basic model of Section
IA demonstrates the source of the distributed lag function relating endoge-
nous to exogenous variables and the fact that the stochastic structure of
the exogenous variables determines the nature of the distributed lag. Any
change in the behavior of the exogenous variables perceived by economic
agents changes these distributed lags, hence “old” lag functions do not
provide an appropriate description of behavior in response to “new” exog-
enous shocks. However the focus of attention in estimation is the system (1)
(or [17] or [19]), which is taken to represent the optimal decision rules of
econormic agents prior to the insertion of specific forecasting procedures,
and the structure incorporating the rational expectations hypothesis ts
invariant to changes in the behavior of exogenous variables, since the
parameters of, say, (21) or (23) do not depend on such behavior. To carry
out policy evaluation in this framework it is then necessary to postulate a
new x process and associated forecasts, and evaluate its impact on the
endogenous variables using the estimated structure.

The difficulty in the usual approach is that data-based distributed lags
confuse two separate aspects, namely economic optimization procedures
and forecasting procedures, and the effect of a required change in the
latter on the lag function cannot be perceived without separating the two
components. Distinguishing an underlying economic structure, albeit one
incorporating the rational expectations hypothesis, from a forecasting
scheme relevant for particular exogenous or policy processes and changing
when they do, then permits policy evaluation to proceed. In effect, keeping
the “structure” of exogenous processes separate from the economic struc-
ture allows the traditional view of econometric policy evaluation to be
reasserted. Moreover the cases we have considered amount to those of
prediction under unchanged structure, providing the simpler case in
which knowledge of the reduced form but not the structural form is usu-
ally held to be sufficient.
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Estimation of Rational Expectations Models

Gregory C. Chow

This paper considers the estimation of linear rational expectations mod-
els when the objective function of the decision maker is quadratic. It
presents methods for maximum likelihood estimation in the general case
and in a special case when the decision maker’s action is assumed to
have no effect on the environment (as under perfect competition). It
proposes a family of consistent estimators for the general case. It also
comments on the assumptions of rational expectations models, and ex-
tends the above methods to estimating nonlinear models.

In an optimal control problem where the model is linear
I=Apa+ Cx + bty (1)

and the objective function to be maximized is quadratic

T
—E, 2 (e — a VK, (3, — @), 2

t=1

the optimal feedback rule for the vector x, of the control variables is linear
in the state variables y, ; (see Chow 1975),

X =G+ & (3)

In this paper, we assume K, = B'K and ¢, = ¢'a, § being a discount factor
and ¢ being a diagonal matrix, with some diagonal elements known to be
unity if the targets in g, are time-invariant. We will be concerned with the
estimation of the parameters 8, K, ¢, and 4 in the objective function and
the parameters 4, C, and b of the model, using data on (y,, x,).

In the literature of macroeconomic policy analysis following the tradi-
tion of Theil (1958) and Friedlander (1973), this note would be entitled
the estimation of government preference functions in policy optimization
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problems. Its present title is motivated by the more recent literature on
macroeconomic modeling and analysis which has been stimulated by the
works of Muth (1961) and Lucas (1976), and further extended by Sargent
(1978, 1979), Hansen and Sargent (1980), and Taylor (1979), among oth-
ers. Consider economic agents (firms, households) facing a stochastic envi-
ronment described by (1) and having an objective function (2). They are
assumed to derive their behavioral equations (the demand equations for
inputs, the consumption functions, etc.) given by (3) through the maximi-
zation of (2) subject to the constraint (1). Under the assumption of rational
expectations, the econometrician shares the same functions (1) and (2)
with the economic agents. The econometrician’s problem is to estimate (1)
and (2) by observing the data on x, and y,. It is important to estimate the
parameters of (2) because, as Lucas (1976) has pointed out, when the
government’s policy rule changes, the environment (1) facing the private
economic agents will change. In order to predict the latter’s behavior as
given by their new optimal feedback control equation (3), knowledge of
the parameters of (2) is required; equation (3) will be rederived by the
maximization of (2) given the new environment (1).

This paper presents methods for the maximum likelihood estimation of
linear rational expectations models just described, covering the general
case and the special case when the agent’s action x, does not affect the
economic environment as in the model of perfect competition. The special
case is exemplified by the models used by Sargent (1978, 1979) and by
Hansen and Sargent (1980). We obtain explicit expressions for the coefh-
cients in the agent’s behavioral equation (3) in terms of the parameters of
(1) and (2) using the known results on stochastic control theory in Chow
(1975). To ease the computations in the general case, we propose a family
of consistent estimators which are analogous to the methods of limited-
information maximum likelihood and two-stage least squares for the esti-
mation of linear simultaneous equations. In this paper, we will frequently
be interested in estimating the parameters when the coefficient matrix G,
in (3) reaches a steady state G. The results will be extended to estimating
nonlinear models.

I. Maximum Likelihood Estimation in the General Case

Our problem is to estimate the parameters of (1) and (2) using observa-
tions on », and x,. It is understood that a system involving high-order
autoregressive and moving average processes can be written in the form (1)
where u, are serially uncorrelated and identically distributed, as is done in
Chow (1975). If one is willing to add a random residual to (3) and assume
a multivariate normal distribution for this residual and u,, the likelihood
function based on (1) and (3) is well-known. It has 4, C, 4, G,, g,, and the
covariance matrix of the residuals as arguments. If (1) is a set of reduced-
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form equations derived from a system of linear simultaneous structural
equations, the parameters 4, C, b, and the covariance matrix of u, will be
replaced by the corresponding structural parameters as arguments in the
likelihood function.

What makes our problem different from the standard problem of esti-
mating the parameters of a system of linear structural equations is that we
need to maximize the likelihood function with respect to the parameters,
B, K, ¢, and a of the objective function (with K, = B!K and ¢, = ¢'a)
instead of the coefficients G, and g, in the behavioral equation (3). To
apply any gradient or conjugate gradient method for maximization (see
Goldfeld and Quandt 1972), it is first required to evaluate the likelihood
function in terms of the parameters 4, C, b, B, K, ¢, and a (after the
covariance matrix of the residuals has been concentrated out), where 4, C,
and & will further be written as functions of the coefficients of the struc-
tural equations if necessary. The problem then boils down to the conven-
ient expression of G, and g, as functions of 4, C, b, B, K, ¢, and a.

The coefficients of (3) as solution to the optimal control problem (1)-(2)
are given in Chow (19753, pp. 178-79):

G, = —(C’H,CY"'C'H,A (4)
H =K, + (4 + CG,))H 4(4 + CG,) (3)
g = —(C’HCY'C'(Hpb, — hy) (6)
hy = Kja, + (A + CGy ) (hyyy — Hygbyy) (7

with conditions H,,y = K,y = B¥K, for (5) and k., y = K, ya, .y =
K, . y9¥a, for (7) if the planning horizon is N. To compute G,, we evaluate
the right-hand sides of (4) and (5) backward in time starting from ¢ 4+ N,
using the initial condition H, ,, = B¥K,. Having completed these calcula-
tions, we compute g, by evaluating the right-hand sides of (6) and (7)
backward in time starting from ¢ 4+ N, using the initial condition 4, 5 =
K, wo"a,.

Even for fairly large N, these computations are inexpensive provided
that the (symmetric) matrix H, is not too large—say, with order less than
100. Some computational experience is recorded in Chow and Megdal
(1978). The computations consist mainly of matrix multiplications. The
matrix C’H, C to be inverted is of the same order as the number of control
variables, which is very small as judged by the cost of matrix inversion
using a modern computer. Furthermore, even if N is very large, experience
shows that a steady-state solution for G, and H, from (4) and (5) is often
reached after 4 or 5 time periods backward from ¢ + N, as illustrated in
Chow (1975, pp. 208, 270). Thus only several evaluations of (4) and (5) are
required. If (4) and (5) do converge slowly, the model of rational expecta-
tions adopted to derive a steady-state G in equation (3) should itself be
questioned. The failure for (4) and (5) to converge would mean that a
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rational expectations equilibrium does not exist for the behavior of the
economic agent. A slow convergence means that the economic agent needs
to plan many periods ahead under the questionable assumption of a con-
stant economic structure for all future periods (the same matrices 4 and C
being used in the calculations of [4] and [5] for all future periods). We thus
argue that in practice the coefficients G and g, in (3) can frequently be
computed inexpensively from the parameters 4, C, b, 8, K, ¢, and a.
Since the computation of G and g, is only a first step (the step of evaluat-
ing the likelihood function) in the method of maximum likelihood, the
second step being to maximize numerically, it would be very desirable if G
could be expressed explicitly as a function of the parameters without re-
sorting to repeated calculations of (4) and (5). In the next section, we treat
a special case where this can be done. In the Appendix, we provide a
method to maximize the likelihood function when X, = K and ¢, = a.

II. Estimation When Environment Is Unaffected by Agent’s Action
Let the environment be described by
=415 + (8)

which is not affected by the agent’s action x,. This special case includes the
examples given by Sargent (1978, 1979) and Hansen and Sargent (1980).
These references use an example of a firm trying to determine its optimal
employment of an input while facing a set of stochastic difference equa-
tions (8) which explain the price of the input and a technological coeffi-
cient. To allow for the costs of the control variables and their changes, we
introduce x, and Ax, as state variables in the objective function and write
the model as

Dt 4, 0 Ofty_4 0 %
5 |=10 0 Ofx_y|+|{|x,+ |0 (9)
Ax, 0 —I 0]|4x,_, I 0
which is a special case of (1) with
4, 0 0 0
A=10 0 0o);C=]|17
0o -1 0 I}.

Note the special feature of the matrix € allowing for no effect of x, on 7,.
The objective function is given by (2) with
Ky K 0
K, =B'K=p'|Kjy Ky, O
0 0 Ky
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where K,, and K,; are assumed to be diagonal, the former capturing
increasing marginal costs of using the inputs x, in the example on the
demand for inputs, and the latter measuring the adjustment costs of
changes in the inputs. We are concerned with the steady-state solution of
(4) and (5), namely
G = —(C’HC)"'C'HA (10)
H=K+ B4 + CGYH(4 + CG) an
=K + BA’'H(4 + CG)
where the second equality sign of (11) is due to (10).

Using equation (10) and the definitions for 4 and C, with (symmetric) /7
partitioned into 3 X 3 blocks corresponding to K, we have

G = —(Hyy + Hyg + Hipg + Hyg) [(H1, + Hi)d, (12)
— (Hyz + Hz3)0].
Since A’ has all zeros in its last row, so does 84 'H(A + CG). By equation
(11) the last row of H equals the last row of K, that is,
Hiys = Ki3 =0; Hyy = K3 = 0; Hyy = Ky (13)
Using (13), we write (12) as
G = —(Hy + Kg3) W(H 34, — K3350). (14)
We need to find only H,, and H,, to evaluate G. Using (14) and letting
0 = (Hoy + K33)7 Y, we have
AY(H, — Hp0H 54, A1H;0K33 0
A'HA + CG) = K 0H ,A, Kiq — K3,0K,, 0. (15)
0 0 0
Equations (13) and (11) imply
Hyy = Koy + BK3z — BK33(Hyy + Kg3) 'K (16)
Hyy = Ky + BAH 5 (Hyy + K33) 'Ky, (17)
Since K, and Kj4 are diagonal by assumption, a diagonal H,, is a
solution of (16), with its ith diagonal element satisfying
h22,i = k22,i + Bk33,i - B(k§3,i)/(h22,i + k33,i) or
RSy — (kaoi + kg B — ka3 oss — kg iksz; = 0
which can be solved for 4y, ;. We take the smaller root of the quadratic
equation (18), since we wish to make 4,,; as small as possible. The dy-
namic programming solution to the linear-quadratic control problem (see

Chow 1975) transforms a multiperiod maximization problem into many
one-period problems. For each period ¢, one minimizes the expectation of a

(18)
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quadratic function in y, involving y H, »,, H, >> 0. Hence H,, should be
diagonal with small elements. Having obtained H,,, we use (17) to com-
pute H;, = (hy,;;)- Denoting the diagonal matrix (H,, + K33) K33 by
D = Diag{d, }, and the elements of 4, by ga;;, we have

ijs

hyg 5 = k1o + B 2 aydihyg g (19)
1

The elements £, ;; in the jth column of H, satisfy a set of linear equations
(19). We have thus provided an explicit expression for G as a function of
A,, B, and K by using formulas (14), (18), and (19).

As an illustration for a scalar x, consider the example of Sargent (1979,
p- 335) and Hansen and Sargent (1980) where x, (our notation) denotes
the demand for an input labor; y,, is technology which satisfies a gth order
univariate autoregression

Ju =ty t o by g oty

Jor =V14-1 ++ s Vgt =Vg-1,t—1 aT€ introduced to make the model first-

order; and y,,, , is the wage rate which satisfies an rth-order multivariate

autoregression. This model can certainly be written as our equation (1).
The objective function is, for the current period 0,

T
E, 2 Bt[(Yo + 1 _yq+1,t)xt - ;Yzlx? - g(Axt )2]
t=1

where y; = K,, and & = K, in our notation, both being scalars. Equa-
tions (16) and (18) are identical for a scalar x,. They become
hi, — (v + 88 — 8y — v16 =0, implying Ay, = 1/2[(y, + 88 —
8) — V(y, + 88 — 8)% + 4v,8]. The matrix K,, becomes a column vec-
tor consisting of the coefficients of the products of x, and y;; in the objective
function. Since Hy, + K5 in (17) is the scalar A5, + 8, we can write the
solution of (17) as H,, = [I — B8(hyy + 6)7'4]]7K 5.

The coefficient of x,_; in the optimal feedback control equation (or a
demand for labor equation) is (Hy, + K,45)71K,5 according to equation
(14), or 8/(hyy + 6). This result agrees with the coefficient obtained by
Sargent (1979, p. 336) and Hansen and Sargent (1980) using classic (pre-
1970) control techniques. Their coefficient p, is the inverse of the (smaller)
root of the quadratic equation 68 — (y; + 6 + 88)z + 822 = 0.

The explicit solution of this section breaks down when the matrix C does
not have a submatrix of zeroes, for then (C’HC)™! can no longer be written
as (Hy, + K43) !asin (14) and one cannot solve an equation correspond-
ing to (16) explicitly for the elements of H,, even if K,, is diagonal.

III. A Family of Consistent Estimators for the General Case

A family of consistent estimators is proposed for the general case. It is
based on the observations that the least-squares estimator G of the coefhi-
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cients G in the regression of x, on y,_, (which includes x,_, as a subvector) is
consistent, and that, if the rational expectations model is correct, G should
satisfy equations (10) and (11). The situation is analogous to the estima-
tion of structural parameters (BI') in linear simultaneous equations by the
use of the least-squares estimates 11 of the reduced-form coefficients I1.
The latter are consistent, and, if the model is correct, I1 satisfies BII = T’
which corresponds to (10) and (11) in the present problem. Therefore, if
we solve (10) and (11) for H, K, and B (the structural parameters) using the
least-squares estimate G for G and consistent estimates 4 and C for 4 and
C, we will obtain consistent estimates of the former, as we will obtain
consistent estimates of B and I' by solving Bl =T.

As the first step of this method, we obtain least-squares estimates G of
the coefficients in the multivariate regression of x, on »,_,. If the target
vector a, and the intercept &, in the model are constant through time, 4, is
also a constant satisfying equation (7) with the subscript ¢ + 1 replaced by
t. We have g, = g. Otherwise, the coefficients G will be estimated by add-
ing some smooth trends in the regression equations.

Having obtained G we will find H, K, and B to satisfy equations (10)
and (11), but as in the case of overidentified structural equations, there
may be more equations than unknowns. Defining R = (r;;) = 4+ 60,
we write these equations as

C'HR =0 (20)
K =H — BR'HR. (21)

Let H be a symmetric p X p matrix with elements 4;;, and let Cbea p X ¢
matrix with elements ¢;;. These two equations imply, respectively,

ZCimrﬂhﬁ:O m=1,...,¢;{=1,...,p) (22)

- B 2 TimTahi; =0 if by =0 (23)

Both (22) and (23) are linear equations in #;; = 4. Let & be the column
vector consisting of the p(p + 1)/2elements 4;(: = 1,.. ., p; j = ). Write
(22) and (23) as

Qh = 0. (24)

Exact, over-, or underidentification occurs according as the rank of Q is
equal to, larger, or smaller than p(p + 1)/2 — 1. In the overidentified
case, there will be more equations than unknowns in (24); the elements on
its right-hand side cannot all vanish. Corresponding to the method of
indirect least squares, one can suggest discarding extra equations in (24)
and solving the remaining p(p + 1)/2 homogeneous linear equations
which are made nonhomogeneous by a normalization k,, = 1. This
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method is still consistent but it discards useful information. Corresponding
to the method of two-stage least squares, according to the interpretation of
Chow (1964), we normalize by setting 4, = 1 (or any &;; = 1), partition Q
and /', respectively, as (Q; ¢,) and (4] 1) to write (24) as

Qhy +9,=0 (25)

and estimate 4, by /71 = —(Q:Q2,)7'Q)g. using the method of least
squares.

Corresponding to the method of limited-information maximum likeli-
hood, according to the interpretation of Chow (1964), we normalize sym-
metrically by setting 4’4 = constant and find 4 to minimize #'Q’Qh sub-
ject to this normalization constraint. The minimizing 4 is the characteristic
vector associated with the smallest characteristic root of Q’Q. Unlike the
method of two-stage least squares, this method yields a vector estimate of &
which is invariant with respect to the choice of the variable for normaliza-
tion. However, if the order of Q is very large, the symmetric normalization
is not recommended because it is computationally expensive. If 8 is un-
known, one has to find a scalar to minimize the appropriate sum of
squares, be it A1Q1Q kA, or A’Q’0h, but this is an easy problem. Having
obtained % and B, we use the remaining equations of (21), other than (23),
to compute the nonzero elements of XK. Having estimated G, g, 4, C, b, and
H consistently, we can use (46) in the Appendix to estimate 4. Given H, 4,
and 6, we can obtain a new estimate 6(2) of G by using (10).

If the estimates of H, B, and K by the method of this section are not
accepted as final, they can serve as initial estimates to be used in the (more
expensive) maximization of the likelihood function by the method of Sec-
tion L The consistent estimates of this section can be recommended if the
numerical maximization of the likelihood function is too expensive.

IV. The Assumptions of Rational Expectations Models

Besides providing practical methods, the above discussion has pinpointed
the problems involved in the estimation of linear rational expectations
models. It should be pointed out that even when the problems are over-
come, the estimates by the method of Section I will still not satisfy the
assumptions of rational expectations.

If the economic agents and the econometrician share the same model (1)
and (1) indeed is the true model of the economic environment (two strong
assumptions), the optimal policy for maximizing the expectation of the
objective function (2), correctly specified by the econometrician (another
assumption), is nof equation (3) with coefficients given by (4)-(7) because
the economic agents do not know (and are not assumed to know) the
numerical values of the parameters 4, C, and 4 exactly. Given uncertainty
concerning 4, C, and $, equations (4)-(7) no longer specify the parameters
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of the optimal behavioral equation for the agents to maximize the expec-
tation of (2). In fact, no one knows how to compute the truly optimal
behavioral equation. Some perhaps nearly optimal solutions are given in
chapters 10 and 11 of Chow (1975), for example. Equations (4)-(7) only
specify the certainty-equivalent solution which is not optimal when 4, C,
and b are uncertain. Strictly speaking, a true believer in rational expecta-
tions models should use the optimal behavioral equation which no one
knows, or at least the more complicated, but more nearly optimal behav-
ioral equation as referenced above. Economists who build models other
than rational expectations models have been criticized for their failure to
take optimizing behavior into account. The question is how far one should
push optimizing behavior in building economic models for multiperiod
decision under uncertainty and where one should stop.

As it has been recognized, current practitioners of rational expectations
models often ignore, or fail to model explicitly, the process of learning by
the economic agents about the economic environment (1) and assume, as
in the method of Section II, that a steady state is always observed for the
optimal behavioral equation (3). The modeling of learning will automati-
cally be incorporated if one uses a behavioral equation which is more
nearly optimal than the certainty-equivalent strategy by taking into ac-
count the uncertainty in the model parameters. Such behavioral equation
incorporates the process of learning, is strictly speaking nonlinear in p,_;,
and is time-dependent. The estimation of such models is much more diffi-
cult. Again, how far should one push the assumption of optimal behavior?
How useful are the models based on approximate solutions (how approxi-
mate?) to optimal behavior as exemplified by the methods of this paper?

V. Estimating Nonlinear Rational Expectations Models

It is well recognized that the assumption of rational expectations makes
the construction of nonlinear models difficult (because the expectation of a
nonlinear function is not the nonlinear function of the expectation). Inso-
far as the world is nonlinear, it becomes an unattractive assumption to use.
Since this assumption is not strictly followed by its practitioners even for
linear models with uncertain coefficients, one may boldly apply the cer-
tainty-equivalent strategy to nonlinear stochastic models by first lineariz-
ing the models as suggested in Chow (1975, chap. 12). The methods of this
paper will then be applicable to the estimation of nonlinear models by
introducing the following modifications.

For the methods of Sections I and II: (&) Starting with some estimates of
the parameter vector § of a nonlinear model (1) and the parameters 3, K,
o, and a of the ObJCCthC function (2) linearize the model (1) to yield
I = A:)’t 1+ C X+ b + #,. (b) Compute the coefficients G, and g, of the
optimal linear feedback control equation (3) using the lmear model and
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the parameters of (2). Note that equations (4)-(7) will have time subscripts
for 4 and C. (¢) Evaluate the likelihood function for models (1) and (3).
(d) Take one step in a numerical maximization algorithm and return
to (a).

For the method of Section III: (") Using a consistent estimate 8 of the
parameter vector of a nonlinear model (1), linearize the model as in (a)
above. (") Compute least-squares estimates G and g, of the coefficients
in a regression of x, on y, ; and appropriate trends. (¢’) Define
R, = (A, 4+ C,G). For each t, follow the methods of Section III to form
Q.2 =0, as in (24). Combine these equations by using (1/227Q, ) =
Qh = 0 for (24) and proceed as before.

Appendix: Maximum Likelihood Estimation for K, = K and q, = a

In this appendix, we provide a numerical method to maximize the likelihood
function for the models (1) and (3), where (3) results from the maximization of (2)
subject to the constraint (1), under the assumptions that K, = K, 4, = g, that the
system reaches a covariance stationary state, that the residual #, in (1) is normal
and serially uncorrelated, having a covariance matrix =, and that (3) contains an
additive normal, serially uncorrelated residual which has a covariance matrix V
and is uncorrelated with «,.

Under the stated assumptions, the coefficients G and g in (3) are related to the
parameters of (1) and (2) by the following four equations, as a specialization of

H-~(7).

(C'HC)G + C'HA = 0 (26)
H—~K—(A+CGYH(A + CG) =0 27
(C'HC)g + C'(Hb — k) =0 (28)

(I —A —CGYh — Ka — (A + CGYHb = 0. (29)

The problem is the maximization of the likelihood function subject to the con-
straints (26)-(29). We form a Lagrangian expression which combines the log-
likelihood with these constraints

L = constant — %log IZ| — —;—log (V|

- %tr[E‘I(Y’ —AY' — CX' — bz')(¥ — Y A’ — XC' — 2b")]

- %tr[V‘l(X' — GV, — g2')(X — Y_ G’ — zg")] — tr[(26)]

— Tu[®@)] - W[(28)] - $1(29)] — 5 O[tr(KK) 1]

where Yis an n X p matrix of observations on the endogenous variables; Y_; is an
n X p matrix of observations on the lagged endogenous variables; X is an n X ¢
matrix of observations on the control variables; z represents a dummy variable
being a vector consisting of # ones; & (p X ¢) and & = @’ (p X p) are matrices
of Langrangian multipliers; w (g X 1) and ¢ (p X 1) are vectors of Lagrangian
multipliers; the numbers 26-29 in parentheses denote the corresponding con-
straints; and the last constraint tr(KK) = r serves to normalize the matrix K, r
being the number of target variables, or the number of nonzero diagonal elements
in K. The unknowns in this problem consist of 2, V, 4, C, b, G, H, g, k, K, and a.
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Using the differentiation rules ¢ log [4]|/04 = A~ and ¢tr(4B)/04 = B’, we
differentiate L to obtain

aiszl' =S — (V' =AY, = CX' —b2')(Y — Y_,A' — XC' — 26y =0  (30)
5aT/’gT:nV_(X'—GY'_l—gz’)(X— Y_ G’ —zg) =0 31)
2L YL (Y - YA - XC - S - QCH + (4 + COYH
— ®(Hb — hY =0 (32)
% =X(Y - Y A" — XC' — zb)E7' — Q4 + CGYH — GRC'H
+ GO(4 + CGYH — gw'C'H — wg'C'H (33)
— w(Hb — hY — Go(Hb — hY =0
% =z(Y = Y A" —XC'— 26)S' — w'C'H + ¢4 + CGYH =0 (34)
aaé' =Y (X — Y ,G' —2g)V"' — QC'HC + &(4 + CGYHC )
— $(Hb — h)C
-aa% = —(4 + C6)QC’ — CR(A + CCY —d + (4 + CCYB(4 + CCY
—Caw'C’ — Cwg’C’ — bo'C’ — Cob’ — b'(4 + CGY — (4 + CC)ob’
%é¢+a¢'+¢a’-oxéo (37)
ggL, =2(X = Y_,G' — 2g")V-1 — w'C'HC = 0 (38)
%:Cw—(I—A—CGm:O (39)
’aaaL 2K X0 (40)

Although X is a symmetric p X p matrix and « is a column vector of p elements,
many of the elements in K and a2 are known to be zero. If there are r target
variables, only an r X r submatrix of K and r elements in a are nonzero. The
symbol £ in equations (37) and (40) indicates that only the derivatives of L with
respect to the unknown elements of K and « are set equal to zero. Equations
(26)-(40) will be solved for the unknown parameters.

First, consider equations (39) and (40). They are ¢ + r linear equations in the
p + g unknowns in ¢ and . If the number r of target variables equals or exceeds
the number ¢ of instruments (as we will so assume to make eq. [3] a unique
solution of the economic agent’s optimization problem), both Lagrangian multi-
pliers ¢ and w will be zero provided that the (p + 7) X (p + g) matrix, with K *
composed of the r rows of K corresponding to the nonzero elements of a,

[c —(I—4 - cc)]
0 K*
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is of rank p + ¢. The solution ¢ = 0 and w = 0 from (39) and (40) simplifies
many of the remaining equations.

Second, observe that as usual consistent estimates of the covariance matrices
and V can be obtained from (30) and (31), respectively, where the coefficients
(4 Cb) and (G g) are replaced by the least-squares estimates. We therefore will
treat 2 and V as given for the solution of the remaining equations. A firm believer
in the method of maximum likelihood could always revise these estimates of =
and V after the remaining equations are solved, and iterate until convergence.

Third, given any estimates of (4 Cb), (G g), and K, we will revise them for the
next iteration by solving the following equations. (The initial estimates of [4 C b}
and [G g] are obtained by least squares; the initial K may be a diagonal matrix
with 7 nonzero elements.) Equations (26) and (27) are used to solve for G and H.
On account of (26) and ¢ = 0, the last two terms of (35) vanish, and (35) can be
used to solve for Q. Equation (36) is used to obtain ® by iteration,

® = (4 + CCYDP(4d + CGY — (A + CGIRC’ — CR'(A + CGY.

Equation (37) gives K £ 0-1® for the unknown elements of K, where the La-
grangian multiplier # is found by taking the trace of both sides of ® *® * = §2KK
to yield #% = tr(® *® *)/r where ®* is composed of nonzero elements from ¢ and
zero elements corresponding to the zero elements of XK. Equations (32) and (33) are
solved for 4 and C; they are modified “normal equations” for these coefficients.
Equations (34) and (38) then give, respectively,

b=n(Y' — AY', — CX')z
g=nYX' —GY )=

Now (4 Cb), (Gg), and K are revised, and the iterations continue until conver-
gence.

Fourth, there are only two remaining equations (33) and (34) to be used to solve
for & and a. Solving (34) for £ and substituting the result in (33), we obtain,
denoting 4 + CG by R,

C'[I — R"\Ka = C’"HCg + C'H[I — (I — R'y"'R']Hb.

Since C’ is ¢ X p, this is a system of ¢ linear equations for the 7 unknowns in a.
If the number r of target variables equals the number ¢ of control variables, the
solution for a is unique. If r >> ¢, the solution for & is not unique. This result is
reasonable because the observable behavior of the economic agents which is rele-
vant for the estimation of a consists of a ¢ X 1 vector g in the optimal feedback
control equation. If 2 has more elements than g, it cannot be estimated uniquely.
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