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Preface

We started working on the first edition of this book (Miller and Blair, 1985) in the late
1970s. At that time, input–output as an academic topic (outside of Wassily Leontief’s
Harvard research group) was a little more than 25 years old – 1952–1979, give or
take a year at either end. We use 1952 because that was when the first author was
introduced to input–output analysis in a sophomore-year economics class at Harvard
taught by Robert Kuenne, who later claimed that was the first time input–output had
been included (anywhere) in an undergraduate economics course.

In 1962, the first author joined the faculty of the Regional Science Department at
the University of Pennsylvania. He was asked by then department chair Walter Isard
to teach the graduate course in linear models for regional analysis; this was to include
a strong input–output component. At that time coverage of the topic in texts was to be
found primarily in two chapters of Dorfman, Samuelson and Solow (1958), in Chenery
and Clark (1959), in Stone (1961) and in a long chapter on input–output at the regional
level in Isard et al. (1960); later there were texts by Miernyk (1965), Yan (1969), and
Richardson (1972).

The second author of the current text began teaching an applied course covering
extensions of the input–output approach to energy, environmental, and other contem-
porary policy issues of the time in that same regional science program at Penn in the
early 1970s, and by the end of that decade the need for a comprehensive and up-to-date
textbook became apparent to us. So the first edition of this book very much reflected
our shared experiences with students (primarily graduate or undergraduate submatric-
ulants) in mostly regional science and public policy courses at Penn during the 1960s
and 1970s. In addition to the basics (“foundations”), many of the additional topics
we included (“extensions”) reflected our research interests at that time – interregional
feedbacks for one of us, energy and environmental applications for the other and spatial
aggregation in many-region models as a joint interest.

Over the past decade or so it became increasingly and abundantly clear that the
time was ripe for an update/revision. We began to take this notion seriously around
2000–2001 – almost an additional 25 years further into the input–output timeline, so

xxix
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the subject was essentially twice as old as when we wrote the first edition. Activity in
the field during that quarter century seems to have exploded. For example:

• The International Input–Output Association (IIOA) was founded (1988).
• The IIOA’s journal, Economic Systems Research, began publication (1989).
• International conferences were held with increasing frequency and drawing increas-

ing numbers of participants (summarized at the end of Appendix C) and starting
recently, “intermediate” input–output meetings are held in nonconference years,
co-organized by the IIOA.

• In 1998 Heinz Kurz, Erik Dietzenbacher and Christian Lager published an edited
three-volume set of almost 1,500 pages that reproduces some 85 significant input–
output papers, along with extensive and detailed introductions to each of the volumes
(Kurz, Dietzenbacher and Lager, 1998).

These activities are in part a reflection of enormous increases in computer speed and
capacity since the 1950s. The net result is that there is now considerable new material
to be examined, digested and considered for inclusion and explanation.

Accordingly, around the end of 2000 we communicated with about 30 of our input–
output colleagues throughout the world, asking for help in finding our way through
this maze of material. We listed some new topics that we thought should be included
(e.g., social accounting matrices or SAMs), some that we might emphasize more (e.g.,
commodity-by-industry models), some less (e.g., detailed numerical interregional or
multiregional examples), and we asked for reactions and suggestions. Additionally, we
took into account what we knew of the uses to which the first edition had been put, e.g.,
as a text for teaching purposes or desk reference for practitioners and researchers.

As a result, we have added some discussion of:

• SAMs (and extended input–output models) and their connection to input–output data;
• Structural decomposition analysis (SDA);
• Multiplier decompositions [Miyazawa, additive (Stone), multiplicative (Pyatt and

Round)];
• Identifying important coefficients;
• International input–output models.

We have expanded discussions of:

• The historical background and context for Leontief’s work;
• The connection of input–output accounts and national income and product accounts

(NIPAs);
• Commodity-by-industry accounting and models;
• Multipliers, including Miyazawa multipliers, net multipliers, elasticity measures, and

output-to-output multipliers;
• Location quotients and related techniques for estimating regional technology,

including numerical examples and real-world illustrations;
• Energy input–output analysis to include references to econometric extensions;
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• Environmental applications to include linear programming and multiobjective
programming extensions;

• The hypothetical extraction approach to linkage analysis;
• The Ghosh (supply-side) model;
• The Leontief price model;
• Estimating interregional flows;
• Hybrid methods;
• Mixed exogenous/endogenous models.

In order to keep the new edition to manageable length, there are topics that had to
be excluded or treated only very briefly; these include:

• Econometric/input–output model connections;
• Qualitative input–output analysis;
• Recent developments in dynamic input–output modeling;
• Discussions and comparisons of alternative working models (e.g., REMI and

IMPLAN in the USA and others elsewhere);
• The role and interpretation of eigenvectors and eigenvalues in input–output models.

The historical material on US input–output data has been reworked and updated,
especially to reflect the international movement toward commodity-by-industry for-
mulations. With the ready accessibility of computing capabilities, we have greatly
expanded the end-of-chapter problems to include many more realistic examples as
well as some real-world examples and applications. Because of the higher level of
mathematical competence that we see in our potential readers as compared with 20+
years ago, we have tried to use more compact matrix representations more extensively
and whenever possible.

With appreciation we acknowledge many helpful conversations, face-to-face and
electronic, with Takahiro Akita, William Beyers, Faye Duchin, Geoffrey Hewings,
Takeo Ihara, Andrew Isserman, Randall Jackson, Louis de Mesnard, Jan Oosterhaven,
Karen Polenske, Jeffery Round and Guy West. Anne Carter and Joseph Richter helped
us fill in the historical record of IIOA meetings. Sandra Svaljek and Ivan Rusan at
The Institute of Economics, Zagreb, Croatia, kindly supplied us with a copy of Mijo
Sekulić’s important 1968 article in Ekonomska Analiza, a publication of their Institute.
We are grateful to IDE/JETRO (Tokyo), especially Satoshi Inomata, who provided us
with many of their important input–output tables and studies using those tables and to
leadership and staff of the US Department of Commerce, Bureau of EconomicAnalysis,
especially Mark Planting, who helped us navigate the US input–output tables. Finally,
we single out two colleagues with whom we have had almost continuous interaction for
years: Erik Dietzenbacher, with whom we have had literally hundreds of discussions
and from whom we have had as many suggestions, and Michael Lahr who has been
a constant source of critical observations and has recommended and helped us track
down countless important references.
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1 Introduction and Overview

1.1 Introduction

Input–output analysis is the name given to an analytical framework developed by
Professor Wassily Leontief in the late 1930s, in recognition of which he received the
Nobel Prize in Economic Science in 1973 (Leontief, 1936, 1941). One often speaks
of a Leontief model when referring to input–output. The term interindustry analysis is
also used, since the fundamental purpose of the input–output framework is to analyze
the interdependence of industries in an economy. Today the basic concepts set forth by
Leontief are key components of many types of economic analysis and, indeed, input–
output analysis is one of the most widely applied methods in economics (Baumol,
2000). This book develops the framework set forth by Leontief and explores the many
extensions that have been developed over the last nearly three quarters of a century.

In its most basic form, an input–output model consists of a system of linear equations,
each one of which describes the distribution of an industry’s product throughout the
economy. Most of the extensions to the basic input–output framework are introduced
to incorporate additional detail of economic activity, such as over time or space, to
accommodate limitations of available data or to connect input–output models to other
kinds of economic analysis tools. This book is an updated and considerably expanded
edition of our 1985 textbook (Miller and Blair, 1985).

In this chapter we introduce the basic input–output analysis framework and outline
the topics to be covered in the balance of the text. Appendix C provides a historical
account of the work leading up to Leontief’s formulation and its subsequent devel-
opment and refinement. More detailed historical accounts of the early development
of input–output analysis and input–output accounts are given in Polenske and Skolka
(1976, Chapter 1) and Stone (1984). A fairly complete history of applications of input–
output analysis since Leontief’s introduction of it is provided in Rose and Miernyk
(1989). In the present text we cover many of the developments in input–output since its
widespread application as an analysis tool began in the early 1950s. Leontief himself
participated in a number of these developments and applications, as will be evident
throughout this text (see also Polenske, 1999, 2004).

1
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The widespread availability of high-speed digital computers has made Leontief’s
input–output analysis a widely applied and useful tool for economic analysis at many
geographic levels – local, regional, national, and even international. Prior to the appear-
ance of modern computers, the computational requirements of input–output models
made them very difficult and even impractical to implement. Today, in the USA alone,
input–output is routinely applied in national economic analysis by the US Department
of Commerce, and in regional economic planning and analysis by states, industry, and
the research community. The model is widely applied throughout the world; the United
Nations has promoted input–output as a practical planning tool for developing coun-
tries and has sponsored a standardized system of economic accounts for constructing
input–output tables.

Input–output has been also extended to be part of an integrated framework of employ-
ment and social accounting metrics associated with industrial production and other
economic activity, as well as to accommodate more explicitly such topics as inter-
national and interregional flows of products and services or accounting for energy
consumption and environmental pollution associated with interindustry activity. In this
text, we present the foundations of the input–output model as originally developed
by Leontief, as well as the evolution of many methodological extensions to the basic
framework. In addition, we illustrate many of the applications of input–output and its
usefulness for practical policy questions. Throughout the text, we will review some of
the current research frontiers.

1.2 Input–Output Analysis: The Basic Framework

The basic Leontief input–output model is generally constructed from observed eco-
nomic data for a specific geographic region (nation, state, county, etc.). One is concerned
with the activity of a group of industries that both produce goods (outputs) and consume
goods from other industries (inputs) in the process of producing each industry’s own
output. In practice, the number of industries considered may vary from only a few to
hundreds or even thousands. For instance, an industrial sector title might read “man-
ufactured products,” or that same sector might be broken down into many different
specific products.

The fundamental information used in input–output analysis concerns the flows of
products from each industrial sector, considered as a producer, to each of the sectors,
itself and others, considered as consumers. This basic information from which an input–
output model is developed is contained in an interindustry transactions table. The rows
of such a table describe the distribution of a producer’s output throughout the economy.
The columns describe the composition of inputs required by a particular industry to
produce its output. These interindustry exchanges of goods constitute the shaded portion
of the table depicted in Figure 1.1. The additional columns, labeled Final Demand ,
record the sales by each sector to final markets for their production, such as personal
consumption purchases and sales to the federal government. For example, electricity is
sold to businesses in other sectors as an input to production (an interindustry transaction)
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Figure 1.1 Input–Output Transactions Table

and also to residential consumers (a final-demand sale). The additional rows, labeled
Value Added , account for the other (non-industrial) inputs to production, such as labor,
depreciation of capital, indirect business taxes, and imports.

The formulation of analytical models using the basic input–output data as just
described is the principal purpose of this text. There is a considerable literature devoted
to assembling the basic data used in input–output models from surveys or interpretation
of other primary and secondary sources of economic data. Some of this literature is
referenced in Chapter 4, but, for the most part, in this text we focus on the formulation
of models using available data or on methods to compensate for the lack of available
data.

1.3 Outline for this Text

This text is organized into 14 chapters, beginning with the theory and assumptions of
the basic input–output framework, then exploring many of the extensions developed
over the last half century. The text deals mostly with methodological developments,
but also covers some of the practical issues associated with implementation of input–
output models, including many references to the applied literature. Chapters 2–6
cover the main methodological considerations in input–output analysis. Chapters 7–13
cover many issues associated with the application of input–output analysis to prac-
tical problems. The concluding chapter, Chapter 14, sketches a number of relevant
topics for which available space did not permit a more detailed treatment or that were
beyond the scope of this text. The following describes the main topics covered in each
chapter:

• Chapter 2 introduces Leontief’s conceptual input–output framework and explains
how to develop the fundamental mathematical relationships from the interindustry
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transactions table. The key assumptions associated with the basic Leontief model
and implications of those assumptions are recounted and the economic interpretation
of the basic framework is explored. The basic framework is illustrated with a highly
aggregated model of the US economy. In addition, the “price model” formulation
of the input–output framework is introduced to explore the role of prices in input–
output models. Appendices to this chapter include a fundamental set of mathematical
conditions for input–output models, known as the Hawkins–Simon conditions.

• Chapter 3 extends the basic input–output framework to analysis of regions and the
relationships between regions. First, “single-region” models are presented and the
various assumptions employed in formulating regional models versus national mod-
els are explored. Next, the structure of an interregional input–output (IRIO) model,
designed to expand the basic input–output framework to capture transactions between
industrial sectors in regions, is presented. An important simplification of the IRIO
model designed to deal with the most common of data limitations in constructing
such models is known as the multiregional input–output (MRIO) model. The basic
MRIO formulation is presented and the implications of the simplifying assumptions
explored. Next the balanced regional model is presented, which is mathematically
identical to the IRIO framework, but is designed conceptually to capture the distinc-
tion between industrial production for regional versus national markets as opposed
to delivery to specific regions as in the IRIO framework. In the final section a
number of applied studies are cited in order to illustrate the extraordinary range
of geographic scale reflected in real-world studies – from sub-city neighborhoods
to so-called “world” models. Appendices to this chapter provide additional develop-
ment of mathematical tools helpful for conceptualizing and implementing regional
models.

• Chapter 4 deals with the construction of input–output tables from standardized con-
ventions of national economic accounts, such as the widely used System of National
Accounts (SNA) promoted by the United Nations, including a basic introduction to
the so-called commodity-by-industry or supply-use input–output framework devel-
oped in additional detail in Chapter 5. A simplified SNA is derived from fundamental
economic concepts of the circular flow of income and expenditure, that, as additional
sectoral details are defined for businesses, households, government, foreign trade,
and capital formation, ultimately result in the basic commodity-by-industry formu-
lation of input–output accounts. The process is illustrated with the US input–output
model and some of the key traditional conventions widely applied for such consid-
erations as secondary production (multiple products or commodities produced by a
business), competitive imports (commodities that are also produced domestically)
versus non-competitive imports (commodities not produced domestically), trade and
transportation margins on interindustry transactions, or the treatment of scrap and
secondhand goods. Finally, the chapter concludes with an examination of issues
associated with the level of sectoral and spatial detail in input–output models, e.g.,
the potential bias introduced by the level of aggregation of industries or regions.
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The appendices illustrate the implications of aggregation bias using IRIO and MRIO
models for Japan and the USA.

• Chapter 5 explores variations to the commodity-by-industry input–output frame-
work introduced in Chapter 4, expanding the basic input–output framework to
include distinguishing between commodities and industries, i.e., the supply of
specific commodities in the economy and the use of those commodities by col-
lections of businesses defined as industries. The chapter introduces the fundamental
commodity-by-industry accounting relationships and how they relate to the basic
input–output framework. Alternative assumptions are defined for handling the com-
mon accounting issue of secondary production, and economic interpretations of
those alternative assumptions are presented. The formulations of commodity-driven
and industry-driven models are also presented along with illustrations of vari-
ants on combining alternative assumptions for secondary production. Finally, the
chapter illustrates a variety of special circumstances encountered with commodity-
by-industry models, such as nonsquare commodity–industry systems or the inter-
pretation of negative elements. Appendices to this chapter provide some alternative
derivations of commodity-by-industry transactions matrices, methods for eliminating
negative entries in specific types of commodity-by-industry models where appear-
ance of such entries is most common, and additional observations on nonsquare
commodity-by-industry systems are provided in an appendix on this text’s website
(www.cambridge.org/millerandblair).

• Chapter 6 examines a number of key summary analytical measures known as multipli-
ers that can be derived from input–output models to estimate the effects of exogenous
changes on (1) new outputs of economic sectors, (2) income earned by households
resulting from new outputs, and (3) employment generated from new outputs or (4)
value-added generated by production. The general structure of multiplier analysis
and special considerations associated with regional, IRIO, and MRIO models are
developed. Extensions to capture the effects of income generation for various house-
hold groups are explored, as well as additional multiplier variants and decomposition
into meaningful economic components. Chapter appendices expand on a number of
mathematical formulations of household and income multipliers.

• Chapter 7 introduces approaches designed to deal with the major challenge in input–
output analysis that the kinds of information-gathering surveys needed to collect
input–output data for an economy can be expensive and very time consuming, result-
ing in tables of input–output coefficients that are outdated before they are produced.
These techniques, known as partial survey and nonsurvey approaches to input–output
table construction, are central to modern applications of input–output analysis. The
chapter begins by reviewing the basic factors contributing to the stability of input–
output data over time, such as changing technology, prices, and the scale and scope
of business enterprises. Several techniques for updating input–output data are devel-
oped and the economic implications of each described. The bulk of the chapter is
concerned with the biproportional scaling (or RAS) technique and some “hybrid
model” variants.
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• Chapter 8 surveys a range of partial survey and nonsurvey estimation approaches
for creating input–output tables at the regional level. Variants of the commonly used
class of estimating procedures using location quotients are reviewed, which presume
a regional estimate of input–output data can be derived using some information about
a target region. The RAS technique developed in Chapter 7 is applied to developing
regional input–output tables using a base national table or a table for another region
and some available data for the target region. These are illustrated using data from a
three-region model for China. Techniques for partial survey estimation of commodity
flows between regions are also presented along with discussions of several real-world
multinational applications, including the China–Japan Transnational Interregional
Model and Leontief’s World Model.

• Chapter 9 explores the extension of the input–output framework to more detailed
analysis of energy consumption associated with industrial production, including
some of the complications that can arise when measuring input–output transac-
tions in physical units of production rather than in monetary terms of the value of
production. Early approaches to energy input–output analysis are reviewed and com-
pared with contemporary approaches and the strengths and limitations of alternative
approaches are examined. Special methodological considerations such as adjusting
for energy conversion efficiencies are developed and a number of illustrative appli-
cations are presented, including estimation of the energy costs of goods and services,
impacts of new energy technologies, and energy taxes. Finally, the role of structural
change of an input–output economy associated with changing patterns of energy use
is introduced (more general approaches to structural decomposition analysis using
input–output models are covered in Chapter 13). The appendix to this chapter devel-
ops more formally the strengths and limitations of alternative energy input–output
formulations.

• Chapter 10 reviews the extensions of the input–output framework to incorporate
activities of environmental pollution and elimination associated with economic activ-
ities as well as the linkages of input–output to models of ecosystems. The chapter
begins with a “generalized” input–output framework which assumes that pollution
generation (as well as other measurable factors associated with industrial production,
such as energy or material consumption measured in physical units or employment
measured in person-years) simply vary in direct proportion to the level of industrial
production. Applications are presented of the generalized input–output formulation
to measuring impacts of specified changes to industrial activity and to planning
problems where the objective is to seek an optimal mix of industrial production
subject to input–output relationships between industrial sectors and to constraints
on factors associated with industrial production, such as pollution, energy use and
employment. In exploring the application of the generalized input–output framework
to planning problems, basic concepts of linear and multiobjective programming are
introduced. The chapter also explores augmenting a basic Leontief input–output
model with pollution generation and elimination sectors. Finally, expansion of the
input–output framework to include ecologic sectors to more comprehensively trace
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economic–ecosystem relationships is presented along with a variety of illustrative
applications.

• Chapter 11 expands the input–output framework to a broader class of economic anal-
ysis tools known as social accounting matrices (SAM) and other so-called “extended”
input–output models to capture activities of income distribution in the economy in
a more comprehensive and integrated way, including especially employment and
social welfare features of an economy. The basic concepts of SAMs are explored and
derived from the SNA introduced in Chapters 4 and 5, and the relationships between
SAMs and input–output accounts are presented. The concept of SAM multipliers as
well as the decomposition of SAM multipliers into components with specific eco-
nomic interpretations are introduced and illustrated. Finally, techniques for balancing
SAM accounts for internal accounting consistency are discussed and a number of
illustrative applications of the use of SAMs are presented.

• Chapter 12 presents the so-called supply side input–output model, with which the
name Ghosh is most often associated. It is discussed both as a quantity model (the
early interpretation) and as a price model (the more modern interpretation). Rela-
tionships to the standard Leontief quantity and price models are also explored. In
addition, the fast growing literature on quantification of economic linkages and analy-
sis of the overall structure of economies using input–output data is examined. Finally,
approaches for identifying key or important coefficients in input–output models and
alternative measures of coefficient importance are presented.

• Chapter 13 introduces and illustrates the basic concepts of structural decomposition
analysis (SDA) within an input–output framework. The concept of decomposition
of multipliers introduced in Chapter 6 and in Chapter 10 as applied to SAMs is
revisited as a way to analyze economic structure. The application of SDA to MRIO
is developed to introduce a spatial context, many applications are cited and sum-
maries of their results are presented. Next, mixed endogenous–exogenous models are
explored. These models expand upon the standard input–output model by allowing
for exogenous specification of both (some) final demands and (some) outputs. This
chapter also introduces dynamic input–output models that more explicitly capture
the role of capital investment and utilization in the production process. Appen-
dices develop extended presentations of additional decomposition and mixed-model
results.

• Chapter 14 briefly describes some additional extensions to input–output analysis
for which space does not permit a detailed treatment, including linkages to econo-
metric models, computable general equilibrium models, and measuring economic
productivity.

• Appendix A is an introductory review of matrix algebra concepts and methods used
throughout this text.

• Appendix B presents a highly aggregated series of the US input–output tables
referenced and used in end-of-chapter problems in a number of chapters or in sup-
plementary problems included on the Internet website associated with this book
(www.cambridge.org/millerandblair).
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Table 1.1 Illustrative Real Input–Output Data Locations

Data Location

US Domestic Direct Requirements Matrix, 2003 Table 2.7
US Domestic Total Requirements Matrix, 2003 Table 2.8
Chinese Interregional and Intraregional Transactions, 2000 Table 3.7
Direct Input Coefficients for the Chinese Multiregional Economy, 2000 Table 3.8
Leontief Inverse Matrix for the Chinese Multiregional Economy, 2000 Table 3.9
Four-Region, Three-Sector IRIO Model for the USA and Asia Prob. 3.9
Three-Region, Five-Sector IRIO Model for Japan, 1965 Table A4.1.1
Three-Region, Five-Sector MRIO Model for the USA, 1963 Table A4.1.3
Components of US Total Commodity Final Demand, 2003 Table 5.11
Seven-Sector US Input–Output Tables for 1997, 2003, and 2005 Prob. 7.1
Seven-Sector Direct Input Coefficients Outputs for Washington State, 1997 Prob. 8.10
Input–Output Transactions for the US Economy in Hybrid Units, 1967 Table 9.5
Technical Coefficients for the US Economy in Hybrid Units, 1967 Table 9.6
Leontief Inverse for the US Economy in Hybrid Units, 1967 Table 9.7
Nine-Sector Hybrid Units US Technical Coefficients, 1963 and 1980 Prob. 9.10
Macro SAM for Sri Lanka, 1970 Prob. 11.5
Macro SAM for the US Economy, 1988 Prob. 11.8
SAM with Expanded Interindustry Detail for the USA, 1988 Table 11.22
Selected US Input–Output Tables, 1919–2006 Appendix B

• Appendix C provides an historical account of the early development of input–output
analysis, including a “pre-history” of the concepts that led to Leontief’s work as well
as the many methodological developments and applications since.

1.4 Internet Website and Text Locations of Real Datasets

A website associated with this text, www.cambridge.org/millerandblair, includes sup-
plementary information in three general areas: (1) additional text (appendices) in
selected areas that were not possible to include in the printed text for a variety of
reasons, (2) solutions to end-of-chapter problems as well as supplementary problems,
case studies, and suggested input–output analysis experiments and study projects and
(3) downloadable datasets of many of the examples and problems printed in the text as
well as a library of supplementary real-world datasets and references to additional data
that have come to our attention.

Throughout this text, in various illustrative examples and problems, we employ real
but highly aggregated input–output related data for various regions and nations as
well as illustrative interregional input–output (IRIO) and multiregional input–output
(MRIO) data and social accounting matrices (SAM). For convenience, Table 1.1 shows
a listing of these sets of data and their locations in this text.
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2 Foundations of Input–Output
Analysis

2.1 Introduction

In this chapter we begin to explore the fundamental structure of the input–output model,
the assumptions behind it, and also some of the simplest kinds of problems to which
it is applied. Later chapters will examine the special features that are associated with
regional models and some of the extensions that are necessary for particular kinds of
problems – for example, in energy or environmental studies or as part of a broader
system of social accounts.

The mathematical structure of an input–output system consists of a set of n linear
equations with n unknowns; therefore, matrix representations can readily be used. In
this chapter we will start with more detailed algebraic statements of the fundamen-
tal relationships and then go on to use matrix notation and manipulations more and
more frequently. Appendix A contains a review of matrix algebra definitions and oper-
ations that are essential for input–output models. While solutions to the input–output
equation system, via an inverse matrix, are straightforward mathematically, we will
discover that there are interesting economic interpretations to some of the algebraic
results.

2.2 Notation and Fundamental Relationships

An input–output model is constructed from observed data for a particular economic
area – a nation, a region (however defined), a state, etc. In the beginning, we will
assume (for reasons that will become clear in the next chapter) that the economic area
is a country. The economic activity in the area must be able to be separated into a
number of segments or producing sectors. These may be industries in the usual sense
(e.g., steel) or they may be much smaller categories (e.g., steel nails and spikes) or much
larger ones (e.g., manufacturing). The necessary data are the flows of products from
each of the sectors (as a producer/seller) to each of the sectors (as a purchaser/buyer);
these interindustry flows, or transactions (or intersectoral flows – the terms industry
and sector are often used interchangeably in input–output analysis) are measured for a

10
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particular time period (usually a year) and in monetary terms – for example, the dollar
value of steel sold to automobile manufacturers last year.1

The exchanges of goods between sectors are, ultimately, sales and purchases of phys-
ical goods – tons of steel bought by automobile manufacturers last year. In accounting
for transactions between and among all sectors, it is possible in principle to record
all exchanges either in physical or in monetary terms. While the physical measure is
perhaps a better reflection of one sector’s use of another sector’s product, there are
substantial measurement problems when sectors actually sell more than one good
(a Cadillac CTS and a Ford Focus are distinctly different products with different
prices; in physical units, however, both are cars). For these and other reasons, then,
accounts are generally kept in monetary terms, even though this introduces problems
due to changes in prices that do not reflect changes in the use of physical inputs.
(In section 2.6 we will explore the implications of a data set in which transactions are
expressed in physical units – for example, tons of steel sold to the automobile sector last
year.)

One essential set of data for an input–output model are monetary values of the
transactions between pairs of sectors (from each sector i to each sector j); these are
usually designated as zij. Sector j’s demand for inputs from other sectors during the
year will have been related to the amount of goods produced by sector j over that same
period. For example, the demand from the automobile sector for the output of the steel
sector is very closely related to the output of automobiles, the demand for leather by
the shoe-producing sector depends on the number of shoes being produced, etc.

In addition, in any country there are sales to purchasers who are more external or
exogenous to the industrial sectors that constitute the producers in the economy – for
example, households, government, and foreign trade. The demands of these units –
and hence the magnitudes of their purchases from each of the industrial sectors – are
generally determined by considerations that are relatively unrelated to the amount being
produced. For example, government demand for aircraft is related to broad changes
in national policy, budget levels, or defense needs; consumer demand for small cars is
related to gasoline availability, and so on. The demand of these external units, since it
tends to be much more for goods to be used as such and not to be used as an input to
an industrial production process, is generally referred to as final demand.

Assume that the economy can be categorized into n sectors. If we denote by xi the
total output (production) of sector i and by fi the total final demand for sector i’s product,
we may write a simple equation accounting for the way in which sector i distributes its
product through sales to other sectors and to final demand:

xi = zi1 + · · · + zij + · · · + zin + fi =
n∑

j=1

zij + fi (2.1)

1 In Chapters 4 and 5 we will explore more recent distinctions between “commodities” and “industries” and see
how these observations lead to alternative representations of the input–output model.
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The zij terms represent interindustry sales by sector i (also known as intermediate sales)
to all sectors j (including itself, when j = i). Equation (2.1) represents the distribution
of sector i output. There will be an equation like this that identifies sales of the output
of each of the n sectors:

x1 = z11 + · · · + z1j + · · · + z1n + f1

...

xi = zi1 + · · · + zij + · · · + zin + fi (2.2)

...

xn = zn1 + · · · + znj + · · · + znn + fn

Let

x =
⎡⎢⎣ x1

...
xn

⎤⎥⎦ , Z =
⎡⎢⎣ z11 · · · z1n

...
. . .

...
zn1 · · · znn

⎤⎥⎦ and f =
⎡⎢⎣ f1

...
fn

⎤⎥⎦ (2.3)

Here and throughout this text we use lower-case bold letters for (column) vectors, as in
f and x (so x′ is the corresponding row vector) and upper case bold letters for matrices,
as in Z. With this notation, the information in (2.2) on the distribution of each sector’s
sales can be compactly summarized in matrix notation as

x = Zi + f (2.4)

We use i to represent a column vector of 1’s (of appropriate dimension – here n). This is
known as a “summation” vector (Section A.8, Appendix A). The important observation
is that post-multiplication of a matrix by i creates a column vector whose elements are
the row sums of the matrix. Similarly, i′ is a row vector of 1’s, and premultiplication of
a matrix by i′ creates a row vector whose elements are the column sums of the matrix.
We will use summation vectors often in this and subsequent chapters.

Consider the information in the jth column of z’s on the right-hand side:⎡⎢⎢⎢⎢⎢⎢⎣
z1j
...

zij
...

znj

⎤⎥⎥⎥⎥⎥⎥⎦
These elements are sales to sector j – j’s purchases of the products of the various
producing sectors in the country; the column thus represents the sources and magnitudes
of sector j’s inputs. Clearly, in engaging in production, a sector also pays for other items –
for example, labor and capital – and uses other inputs as well, such as inventoried items.
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Table 2.1 Input–Output Table of Interindustry
Flows of Goods

Buying Sector

1 · · · j · · · n

Selling Sector 1 z11 · · · z1j · · · z1n
...

...
...

...
i zi1 · · · zij · · · zin
...

...
...

...
n zn1 · · · znj · · · znn

All of these primary inputs together are termed the value added in sector j. In addition,
imported goods may be purchased as inputs by sector j. All of these inputs (value added
and imports) are often lumped together as purchases from what is called the payments
sector, whereas the z’s on the right-hand side of (2.2) serve to record the purchases
from the processing sector, the interindustry inputs (or intermediate inputs). Since
each equation in (2.2) includes the possibility of purchases by a sector of its own output
as an input to production, these interindustry inputs include intraindustry transactions
as well.

The magnitudes of these interindustry flows can be recorded in a table, with sectors of
origin (producers) listed on the left and the same sectors, now destinations (purchasers),
listed across the top. From the column point of view, these show each sector’s inputs;
from the row point of view the figures are each sector’s outputs; hence the name
input–output table. These figures are the core of input–output analysis.

2.2.1 Input–Output Transactions and National Accounts
As was suggested by Table 1.1, an input–output transactions (flow) table, such as that
shown in Table 2.1, constitutes part of a complete set of income and product accounts
for an economy. To emphasize the other elements in a full set of accounts, we consider
a small, two-sector economy. We present an expanded flow table for this extremely
simple economy in Table 2.2. (We examine more of the details of a system of national
accounts in Chapter 4.)

The component parts of the final demand vector for sectors 1 and 2 represent, respec-
tively, consumer (household) purchases, purchases for (private) investment purposes,
government (federal, state, and local) purchases, and sales abroad (exports). These are
often grouped into domestic final demand (C+I+G) and foreign final demand (exports,
E). Then f1 = c1 + i1 + g1 + e1 and similarly f2 = c2 + i2 + g2 + e2.

The component parts of the payments sector are payments by sectors 1 and 2 for
employee compensation (labor services, l1 and l2) and for all other value-added items –
for example, government services (paid for in taxes), capital (interest payments), land



14 Foundations of Input–Output Analysis

Table 2.2 Expanded Flow Table for a Two-Sector Economy

Processing
Sectors

Final Total
1 2 Demand Output (x)

Processing 1 z11 z12 c1 i1 g1 e1 x1
Sectors 2 z21 z22 c2 i2 g2 e2 x2

Payments Value Added (v′) l1 l2 lC lI lG lE L
Sectors n1 n2 nC nI nG nE N

Imports m1 m2 mC mI mG mE M

Total
Outlays (x′) x1 x2 C I G E X

(rental payments), entrepreneurship (profit), and so on. Denote these other value-added
payments by n1 and n2; then total value-added payments are v1 = l1+n1, and v2 = l2+n2,
for the two sectors.

Finally, assume that some (or perhaps all) sectors use imported goods in producing
their outputs. One approach is to record these import amounts in an imports row in the
payments sector as m1 and m2.2 Total expenditures in the payments sector by sectors 1
and 2 are l1 + n1 + m1 = v1 + m1 and l2 + n2 + m2 = v2 + m2, respectively. However,
it is often the case that the exports part of the final demand column is expressed as net
exports so that the sum of all final demands is equal to traditional definitions of gross
domestic product, i.e., net of imports. In that case a distinction is often made between
imports of goods that are also domestically produced (competitive imports) and those
for which there is no domestic source (noncompetitive imports), and all the competitive
imports in the imports row will have been netted out of the appropriate elements in a
gross exports column. Under these circumstances it is possible for one or more elements
in the net export column to be negative, if the value of imports of those goods exceeds
the value of exports. (For example, if an economy exported d300 million of agricultural
products last year but imported d350 million, the net exports figure for the agricultural
sector would be d50 million.) Also, if the federal government sells more of a stockpiled
item (e.g., wheat) than it buys, a negative entry in the government column of the final
demand part of the table could result. If the negative number is large enough, it could
swamp the other (positive) final demand purchases of that good, leaving a negative
total final demand figure.

The elements in the intersection of the value-added rows and the final demand
columns represent payments by final consumers for labor services (for example,
lC includes household payments for, say, domestic help; lG represents payments to

2 The treatment of imports in input–output accounts is much more complicated than this, but for the present we
prefer to concentrate on the overall structure of a transactions table. We return to imports in section 2.3.4 below,
and in more detail in Chapter 4.
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government workers) and for other value added (for example, nC includes tax payments
by households). In the imports row and final demand columns are, for example, mG,
which represents government purchases of imported items, and mE , which represents
imported items that are re-exported.

Summing down the total output column, total gross output throughout the economy,
X , is found as

X = x1 + x2 + L + N + M

This same value can be found by summing across the total outlays row; namely

X = x1 + x2 + C + I + G + E

These are simply two alternative ways of summing all the elements in the table.
In national income and product accounting, it is the value of total final product that

is of interest – goods available for consumption, export, and so on. Equating the two
expressions for X and subtracting x1 and x2 from both sides leaves

L + M + N = C + I + G + E

or
L + N = C + I + G + (E − M )

The left-hand side represents gross national income – the total factor payments in the
economy – and the right-hand side represents gross national product – the total spent
on consumption and investment goods, total government purchases, and the total value
of net exports from the economy. Again, national accounts are examined in more detail
in Chapter 4.

In most developed economies, consumption is the largest individual component of
final demand. For example, in the USA in 2003 the percentages of total final demand
were as follows: personal consumption expenditure (PCE), 71 percent; gross private
domestic investment (including producers’ durable equipment, plant construction, res-
idential construction, and net inventory change), 15 percent; government purchases
(federal, state and local), 19 percent; net foreign exports, −5 percent (the value of
imports exceeded the value of exports). [However, in the USA during the 1942–1945
period (World War II), PCE was between 40 and 48 percent and for much of the 1950s
and 1960s it was under 60 percent.]

2.2.2 Production Functions and the Input–Output Model
In input–output work, a fundamental assumption is that the interindustry flows from
i to j – recall that these are for a given period, say a year – depend entirely on the
total output of sector j for that same time period. Clearly, no one would argue against
the idea that the more cars produced in a year, the more steel will be needed during
that year by automobile producers. Where argument does arise is over the exact nature
of this relationship. In input–output analysis it is as follows: Given zij and xj – for
example, input of aluminum (i) bought by aircraft producers (j) last year and total
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aircraft production last year – form the ratio of aluminum input to aircraft output, zij/xj

[the units are ($/$)], and denote it by aij:

aij = zij

xj
= value of aluminum bought by aircraft producers last year

value of aircraft production last year
(2.5)

This ratio is called a technical coefficient; the terms input–output coefficient and
direct input coefficient are also often used. For example, if z14 = $300 and x4 = $15, 000
(sector 4 used $300 of goods from sector 1 in producing $15,000 of sector 4 output),
a14 = z14/x4 = $300/$15, 000 = 0.02. Since a14 is actually $0.02/$1, the 0.02 is inter-
preted as the “dollars’ worth of inputs from sector 1 per dollar’s worth of output of
sector 4.”

From (2.5), aijxj = zij. This is trivial algebra, but it presents the operational form
in which the technical coefficients are used. In input–output analysis, once a set of
observations has given us the result a14 = 0.02, this technical coefficient is assumed to
be unchanging in the sense that if one asked how much sector 4 would buy from sector
1 if sector 4 were to produce a total output (x4) of $45,000, the input–output answer
would be z14 = a14x4 = (0.02)($45, 000)= $900 – when output of sector 4 is tripled,
the input from sector 1 is tripled. The aij are viewed as measuring fixed relationships
between a sector’s output and its inputs. Economies of scale in production are thus
ignored; production in a Leontief system operates under what is known as constant
returns to scale.

In addition, input–output analysis requires that a sector use inputs in fixed pro-
portions. Suppose, to continue the previous example, that sector 4 also buys
inputs from sector 2, and that, for the period of observation, z24 = $750. There-
fore a24 = z24/x4 = $750/$15, 000 = 0.05. For x4 = $15, 000, inputs from sector 1
and from sector 2 were used in the proportion p12 = z14/z24 = $300/$750 = 0.4.
If x4 were $45,000, z24 would be (0.05)($45,000) = $2250; since z14 = $900 for
x4 = $45, 000, the proportion between inputs from sector 1 and from sector 2 is
$900/$2250 = 0.4, as before. This reflects the fact that

p12 = z14/z24 = a14x4/a24x4 = a14/a24 = 0.02/0.05 = 0.4;

the proportion is the ratio of the technical coefficients, and since the coefficients are
fixed, then the input proportion is fixed.

For the reader with some background in basic microeconomics, we can identify the
form of production function inherent in the input–output system and compare it with
that in the general neoclassical microeconomic approach. Production functions relate
the amounts of inputs used by a sector to the maximum amount of output that could be
produced by that sector with those inputs. An illustration is

xj = f (z1j, z2j, . . . , znj, vj, mj)
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Using the definition of the technical coefficients in (2.5), we can see that in the Leontief
model this becomes

xj = z1j

a1j
= z2j

a2j
= · · · = znj

anj

(This ignores, for the moment, the contributions of vj and mj.)
A problem with this extremely simple formulation is that it is meaningless if a par-

ticular input i is not used in production of j, since then aij = 0 and hence zij/aij is
infinitely large. Thus, the more usual specification of the kind of production function
that is embodied in the input–output model is

xj = min

(
z1j

a1j
,

z2j

a2j
, · · · ,

znj

anj

)
where min (x, y, z) denotes the smallest of the numbers x, y and z. In the input–output
model, for those aij coefficients that are not zero, these ratios will all be the same, and
equal to xj – from the fundamental definition of aij in (2.5). For those aij coefficients
that are zero, the ratio zij/aij will be infinitely large and hence will be overlooked
in the process of searching for the smallest among the ratios. This specification of
the production function in the input–output model reflects the assumption of constant
returns to scale; multiplication of z1j, z2j, . . . , znj by any constant will multiply xj by the
same constant. (Tripling all inputs will triple output; cutting inputs in half will halve
output, etc.)

For the reader who is acquainted with the economist’s production function geom-
etry, we show four alternative representations of production functions in input space
for a two-sector economy in Figure 2.1. A linear production function, depicted in
Figure 2.1(a) assumes that output is a simple linear function of inputs, which means
that the inputs are infinitely substitutable for each other for any level of output. The
figure shows a set of isoquants (constant output lines) depicting higher and higher levels
of output.

A classical production function, depicted in Figure 2.1(b), also shows a set of iso-
quants (now constant output curves) depicting higher and higher levels of output. For
a given value of z1j in Figure 2.1(b), increasing z2j leads to increases in xj – intersec-
tions with higher-value isoquants. In this case input substitution is also possible but
not linearly, as indicated by the isoquants showing alternative input combinations that
generate the same level of output. For example, moving rightward along a particular
isoquant in Figure 2.1(b) can be accomplished by reducing the amount of input 2 and
increasing the amount of input 1, or leftward by reducing z1j and increasing z2j.

The shape of the isoquants in Figure 2.1(b) reflects two specific classical assumptions
about how inputs are combined to produce outputs. The negative slopes of the isoquants
represent the fact that as the amount of one input is decreased, the amount of the other
input must be increased in order to maintain the level of production indicated by a
specific isoquant. The fact that the curves bulge toward the origin (mathematically
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z2j

z1j

(a)

z2j

z1j

(b)

z2j

z1j

(c)

z2j

z1j

(d)

Figure 2.1a–d. Production Functions in Input Space. (a) Linear production function. (b) Classical
production function. (c) Leontief production function. (d) Activity analysis production function.

their convexity) reflects the economist’s law of diminishing marginal productivity.3

The “expansion path” representing input combinations that are used for various levels
of output is a curve from the origin through the points of tangency between isocost
(constant cost) lines – dashed in Figure 2.1(b) – and the isoquants.

In the Leontief model, the isoquant “curves” of constant output appear as in
Figure 2.1(c). Once the observed proportion of inputs 1 and 2 is known, as p12 = z1j/z2j,
then additional amounts of either input 1 or input 2 alone are useless from the point of
view of increasing the output of j. Only when availabilities of both input 1 and input
2 are increased can xj increase; and only if the amounts of increase of 1 and 2 are in
the proportion p12 will all the available amounts of both be used up. Of course, the
“true” geometric representation should be in n-dimensional input space, with a sepa-
rate axis for each of the n possible inputs, but the principles are the same when only

3 From basic microeconomics concepts, recall that the slope of an isoquant (assuming that these are smooth
functions) at any point is the ratio of the marginal productivities of inputs 1 and 2. These marginal productivities,
in turn, are the partial derivatives of the production function (also assumed smooth) with respect to each of the

inputs – thus the slope is ∂f /∂x1
∂f /∂x2

. As we move rightward along an isoquant, the amount of input 2 used decreases

and the amount of input 1 used increases. By diminishing marginal productivity, then, ∂f /∂x1decreases and
∂f /∂x2 increases; hence the slope decreases, as is true for the isoquants in Figure 2.1(b).
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two inputs are considered. From the Leontief production function, if z1j, z2j, . . . , z(n−1)j

were all doubled but znj were only increased by 50 percent (multiplied by 1.5), then the
minimum of the new ratios would be znj/anj and the new output of sector j would be
50 percent larger. There would be excess and unused amounts of inputs from sectors
1, 2,. . ., (n − 1). But since inputs are not free goods, sector j will not buy more from
any sector than is needed for its production, and thus the input combinations chosen
by sector j will lie along the ray as represented in Figure 2.1(c). In short, Leontief
production functions require inputs in fixed proportions where a fixed amount of each
input is required to produce one unit of output.

Figure 2.1(d) shows an activity analysis production function, which is a generaliza-
tion of the Leontief production function and is a piece-wise linear approximation of
the classical production function. Each isoquant is represented by a connected set of
line segments. Each segment is a linear production function applicable over a limited
range of combinations of inputs to produce a given level of output.

Once the notion of a set of fixed technical coefficients is accepted, (2.2) can be
rewritten, replacing each zij on the right by aijxj:

x1 = a11x1 + · · · + a1ixi + · · · + a1nxn + f1

...

xi = ai1x1 + · · · + aiixi + · · · + ainxn + fi (2.6)

...

xn = an1x1 + · · · + anixi + · · · + annxn + fn

These equations serve to make explicit the dependence of interindustry flows on the
total outputs of each sector. They also bring us closer to the form needed in input–
output analysis, in which the following kind of question is asked: If the demands of
the exogenous sectors were forecast to be some specific amounts next year, how much
output from each of the sectors would be necessary to supply these final demands?
From the point of view of this equation, the f1, . . . , fn are known numbers, the aij are
known coefficients, and the x1, . . . , xn are to be found. Therefore, bringing all x terms
to the left,

x1 − a11x1 − · · · − a1ixi − · · · − a1nxn = f1

...

xi − ai1x1 − · · · − aiixi − · · · − ainxn = fi

...

xn − an1x1 − · · · − anixi − · · · − annxn = fn
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and, grouping the x1 together in the first equation, the x2 in the second, and so on,

(1 − a11)x1 − · · · − a1ixi − · · · − a1nxn = f1

...

− ai1x1 − · · · + (1 − aii)xi − · · · − ainxn = fi (2.7)

...

− an1x1 − · · · − anixi − · · · + (1 − ann)xn = fn

These relationships can be represented compactly in matrix form. In matrix algebra
notation, a “hat” over a vector denotes a diagonal matrix with the elements of the

vector along the main diagonal, so, for example, x̂ =
⎡⎢⎣ x1 · · · 0

...
. . .

...
0 · · · xn

⎤⎥⎦. From the basic

definition of an inverse, (x̂)(x̂)−1 = I, it follows that x̂−1 =
⎡⎢⎣ 1/x1 · · · 0

...
. . .

...
0 · · · 1/xn

⎤⎥⎦. Also,

postmultiplication of a matrix, M, by a diagonal matrix, d̂, creates a matrix in which
each element in column j of M is multiplied by dj in d̂ (Appendix A, section A.7).
Therefore the n × n matrix of technical coefficients can be represented as

A = Zx̂−1 (2.8)

Using the definitions in (2.3) and (2.8), the matrix expression for (2.6) is

x = Ax + f (2.9)

Let I be the n × n identity matrix – ones on the main diagonal and zeros elsewhere;

I =
⎡⎢⎣ 1 · · · 0

...
. . .

...
0 · · · 1

⎤⎥⎦ so then (I − A) =

⎡⎢⎢⎢⎣
(1 − a11) −a12 · · · −a1n

−a21 (1 − a22) · · · −a2n
...

...
. . .

...
−an1 −an2 · · · (1 − ann)

⎤⎥⎥⎥⎦ .

Then the complete n × n system shown in (2.7) is just4

(I − A)x = f (2.10)

For a given set of f ’s, this is a set of n linear equations in the n unknowns, x1, x2, . . . , xn

and hence it may or may not be possible to find a unique solution. In fact, whether or

4 This is parallel to the form Ax = b that is usually used to denote a set of linear equations. The difference is
purely notational; since it is standard in input–output analysis to define the technical coefficients matrix as A,
then the matrix of coefficients in the input–output equation system becomes (I − A). Similarly, convention is
responsible for denoting the right-hand sides of the input–output equations by f (for final demand) instead of b.
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not there is a unique solution depends on whether or not (I − A) is singular; that is,
whether or not (I − A)−1 exists. The matrix A is known as the technical (or input–
output, or direct input) coefficients matrix. From the basic definition of an inverse for a
square matrix (Appendix A), (I − A)−1 = (1/ |I − A|)[adj(I − A)]. If |I − A| �= 0, then
(I − A)−1 can be found, and using standard matrix algebra results for linear equations
the unique solution to (2.10) is given by

x = (I − A)−1f = Lf (2.11)

where (I − A)−1 = L = [lij] is known as the Leontief inverse or the total requirements
matrix.

In more detail, the equations summarized in (2.11) are

x1 = l11f1 + · · · + l1jfj + · · · + l1nfn
...
xi = li1f1 + · · · + lijfj + · · · + linfn
...
xn = ln1f1 + · · · + lnjfj + · · · + lnnfn

(2.12)

This makes clear the dependence of each of the gross outputs on the values of each of
the final demands. Readers familiar with differential calculus and partial derivatives
will recognize that ∂xi/∂fj = lij.

2.3 An Illustration of Input–Output Calculations

2.3.1 Numerical Example: Hypothetical Figures – Approach I
Impacts on Industry Outputs We now turn to a small numerical example, as

presented in Table 2.3. For the moment, the final demand elements and the value-added
elements have not been disaggregated into their component parts.

The corresponding table of input–output coefficients, Table 2.4, is found by dividing
each flow in a particular column of the producing sectors in Table 2.3 by the total
output (row sum) of that sector. Thus, a11 = 150/1000 = 0.15; a21 = 200/1000 = 0.2;
a12 = 500/2000 = 0.25; a22 = 100/2000 = 0.05. In particular,

A = Zx̂−1 =
[

150 500
200 100

] [
1/1000 0

0 1/2000

]
TheAmatrix is shown in Table 2.4. To add specificity for the remainder of this example,
we assume sector 1 represents “Agriculture” and sector 2 “Manufacturing.”

The principal way in which input–output coefficients are used for analysis is as fol-
lows. We assume that the numbers in Table 2.4 represent the structure of production in
the economy; the columns are, in effect, the production recipes for each of the sectors,
in terms of inputs from all the sectors. To produce one dollar’s worth of manufactured
goods, for example, 25 cents’ worth of agricultural products and 5 cents’ worth of
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Table 2.3 Flows (zij) for the Hypothetical Example

To Processing Sectors

1 2 Final Demand (fi) Total Output (xi)

From 1 150 500 350 1000
Processing Sectors 2 200 100 1700 2000

Payments Sector 650 1400 1100 3150
Total Outlays (xi) 1000 2000 3150 6150

Table 2.4 Technical Coefficients (the A Matrix)
for the Hypothetical Example

Sector 1 Sector 2
(Agriculture) (Manufacturing)

Sector 1 .15 .25
(Agriculture)

Sector 2 .20 .05
(Manufacturing)

manufactures are needed as intermediate ingredients. These are, of course, only the
inputs needed from other producing sectors; there will be inputs of a more “nonpro-
duced” nature as well, such as labor, from the payments sectors. For an analysis of
interrelationships among productive sectors, these are not of major importance.

We can now ask the question: If final demand for agriculture output were to increase
to $600 next year and that for manufactures were to decrease to $1500 – for example,
because of changes in government spending, consumers’ tastes, and so on – how much
total output from the two sectors would be necessary in order to meet this new demand?

We denote this new demand as fnew =
[

f new
1

f new
2

]
=
[

600
1500

]
. In the year of observation,

when f =
[

350
1700

]
, we saw that x =

[
1000
2000

]
, precisely because, in producing to sat-

isfy final demands, each sector must also produce to satisfy the demands for inputs
into the processes of production themselves. Now we are asking, for f new

1 = 600 and

f new
2 = 1500, what are the elements of xnew =

[
xnew

1
xnew

2

]
? To satisfy the demands, xnew

1

can be no less than $600 and xnew
2 no less than $1500. These would be the necessary

outputs – the “direct effects” – if neither product were used in production and all output
were directly available for final demand. But since both products serve as inputs, in a
manner that is reflected in the technical coefficients of Table 2.4, it seems clear that
in the end, more than $600 worth of agriculture goods and more than $1500 worth of
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manufactures will have to have been produced in order to meet the new final demands.
That is, there will be “indirect effects” as well. Both of these effects are captured in the
input–output model.

In the 2 × 2 case, |I − A| = (1 − a11)(1 − a22) − a12a21 (Appendix A) and

adj(I − A) =
[

(1 − a22) a12

a21 (1 − a11)

]

For this example, A =
[

.15 .25

.20 .05

]
so (I − A) =

[
.85 −.25

−.20 .95

]
; hence |I − A| =

0.7575 �= 0 and we know that L = (I − A)−1can be found. Here we have

L =
[

1.2541 .3300
.2640 1.1221

]
Assuming that technology (as represented in A), does not change, the needed total
outputs caused by fnew are then found as in (2.11):

xnew = Lfnew =
[

1.2541 .3300
.2640 1.1221

] [
600

1500

]
=
[

1247.52
1841.58

]
(2.13)

These values – xnew
1 = $1247.52 and xnew

2 = $1841.58 – are one measure of the impact
on the economy of the new final demands.5

With this result for xnew, it is straightforward to examine the changes in all elements
in the interindustry flows table (as in Table 2.3) caused by fnew. From the definition of
coefficients in (2.8), Z = Ax̂. With a constant A matrix and new outputs, xnew, we find

Znew = Ax̂new =
[

187.13 460.40
249.50 92.08

]
; along with fnew =

[
600

1500

]
, we have the results

shown in Table 2.5.
The elements in the Payments Sector are found as the difference between new total

outputs (total outlays) and new total interindustry inputs for each sector. (For the exam-
ple we assume no change in payments sector transactions with final demand.) Notice
that sector 1’s purchases are larger (reflecting an increase in final demand for that sector)
and sector 2’s purchases are smaller (reflecting smaller demand for that sector).

The input–output model allows us to deal equally easily with changes in demands and
outputs instead of levels. Here and throughout, we use superscripts “0” to represent the
initial (base year) situation and “1” for values of variables after the change in demands
(instead of “new” as we did above). Assuming that technology is unchanged means
A0 = A1 = A and L0 = L1 = L, so x0 = Lf0 and x1 = Lf1; letting �x = x1 − x0 and

5 Here xnew
1 and xnew

2 are shown to two decimals for comparison with results from an alternative approach in
section 2.3.2. These xnew values reflect computer calculations carried out with more than four significant digits
and hence often will (as here) differ (to the right of the decimal point) from what the reader will produce
with a hand calculator using the four-digit elements shown for A. In any actual analysis, such detail might be
questionable because of the much less accurate data from which the technical coefficients are derived (compare
the figures in Table 2.3).
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Table 2.5 Flows (zij) for the Hypothetical Example Associated with xnew

To Processing Sectors

1 2 Final Demand (fi) Total Output (xi)

From 1 187.13 460.40 600 1247.52
Processing Sectors 2 249.50 92.08 1500 1841.58

Payments Sector 810.89 1289.11 1100 3200.00
Total Outlays (xi) 1247.52 1841.58 3200 6289.10

�f = f1 − f0

�x = Lf1 − Lf0 = L�f (2.14)

In this example, �f =
[

250
−200

]
, giving �x =

[
247.5

−158.4

]
and so

x1 = x0 + �x =
[

1000
2000

]
+
[

247.5
−158.4

]
=
[

1247.5
1841.6

]
This corresponds to the result in (2.13), except for rounding.

Other Impacts In many cases, the dollar value of each sector’s gross output
may not ultimately be the most important measure of the economic impact following
a change in exogenous demands. Gross output requirements could be translated into
employment effects (in either dollars or physical terms – for example, person-years), or
effects on value-added, or energy consumption (of a particular type, e.g., petroleum),
or pollution emissions (again, of a particular type, e.g., CO2), and so forth. In each
instance, we need a set of appropriate coefficients with which to convert outputs into
associated effects. For illustration we consider employment in monetary terms. Let the
value of employment in the two sectors be denoted as6

e′ = [
e1 e2

]
A vector of employment coefficients contains the base-year employment in each sector
divided by that sector’s base-year gross output, x0

1 and x0
2,

e′
c = [

e1/x0
1 e2/x0

2

] = [
ec1 ec2

]
Then ε = ê′

cx1 = ê′
cLf1 produces a vector whose elements are the total labor income

in each sector that accompanies the new exogenous final demand;

ε =
[

ec1 0
0 ec2

][ x1
1

x1
2

]
=
[

ec1x1
1

ec2x1
2

]
6 Later in this chapter (and still later, in Chapter 6 on multipliers) we will need to alter this notation to be able to

accommodate additional possibilities.
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To continue with the numerical example, suppose that ec1 = 0.30 and ec2 = 0.25
give the dollars’ worth of labor inputs per dollar’s worth of output of the two sectors.
(We will examine the role of labor inputs and household consumption in an input–output
model in some detail in section 2.5, below.) Then

ε = ê′
cx1 =

[
0.30 0

0 0.25

] [
1247.52
1841.58

]
=
[

374.26
460.40

]
This indicates the values of labor inputs purchased by the two sectors.

If, additionally, we have an occupation-by-industry matrix, P, where pij is the pro-
portion of sector j employment that is in occupation i, then ε̃ = Pε̂ gives a matrix of
employment by sector by occupation type. For example, with k occupation types and
two sectors,

P =
⎡⎢⎣ p11 p12

...
...

pk1 pk2

⎤⎥⎦
and

ε̃ = Pε̂ =
⎡⎢⎣ p11ec1x1

1 p12ec2x1
2

...
...

pk1ec1x1
1 pk2ec2x1

2

⎤⎥⎦
Column sums would give total labor use by sector; row sums give total employment of
a particular occupational category across all sectors. (The vector Pε shows employment
by occupational category, aggregated across all sectors.)

Suppose that our economy has three occupational groups: (1) engineers, (2) bankers
and (3) farmers, and

P =
⎡⎣ 0 0.8

0.6 0.2
0.4 0

⎤⎦
(For example, this says that 40 percent of the agricultural labor force is farmers;
80 percent of manufacturing labor force is made up of engineers, etc.) Then

ε̃ = Pε̂ =
⎡⎣ 0 0.8

0.6 0.2
0.4 0

⎤⎦[
374.26 0

0 460.40

]
=
⎡⎣ 0 368.32

224.56 92.08
149.70 0

⎤⎦
Column sums of ε̃ are 374.26 and 460.40, as expected (the elements of ε). Row sums

give the economy-wide (across both sectors) employment of engineers, farmers and
bankers, respectively. If sectoral disaggregation is not necessary, then

Pε =
⎡⎣ 0 0.8

0.6 0.2
0.4 0

⎤⎦[
374.26
460.40

]
=
⎡⎣ 368.32

316.64
149.70

⎤⎦
gives employment by occupational type, across sectors.
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A wide variety of such conversion coefficients vectors (as in e′
c) or matrices (as in

P) is possible. For example, in arid regions, water-use coefficients, w′
c = [

wc1 wc2
]
,

could be used in w′
cx′ to assess the water consumption associated with new outputs

generated by new final demands. We explore these kinds of alternative impacts again
in Chapter 6 on input–output multipliers, and in Chapters 9 and 10, some of the energy
and environmental repercussions of final demand impacts are discussed in detail.

2.3.2 Numerical Example: Hypothetical Figures – Approach II
Consider the same economy, whose 2 × 2 technical coefficients matrix is given in

Table 2.4 and for which the projected f1 vector is

[
600

1500

]
. We can examine the question

of outputs necessary to satisfy this final demand in a more intuitive way that is less
mechanical than finding elements in an inverse matrix.

1. Initially, it is clear that agriculture needs to produce $600 and manufacturing, $1500.
If the sectors are going to meet the new final demands, they could not get away with
producing less than these amounts.

2. However, to produce $600, agriculture needs, as inputs to that productive process,
(0.15)($600) = $90 from itself and (0.20)($600) = $120 from manufacturing. These
figures come from the coefficients in column 1 of the A matrix – the production
recipe for agriculture. Similarly, to produce its $1500, manufacturing will have to
buy (0.25)($1500)= $375 from agriculture and (0.05)($1500) = $75 from itself.
Thus agriculture must, in fact, produce the $600 noted in 1, above, plus another
$(90 + 375) = $465 more, to satisfy the needs for inputs that it has itself and also
that come from manufacturing. Similarly, manufacturing will have to produce an
additional $(120 + 75) = $195 to satisfy its own need plus that of agriculture for
inputs to produce the “original” $600 and $1500.

3. In item 2, above, we found the interindustry needs that resulted from production
of $600 in agriculture and $1500 in manufacturing. These were $465 and $195,
respectively. But now we realize that this “extra” production, above the $600 and
$1500, will also generate interindustry needs – in order to engage in the produc-
tion of $465, agriculture will need (0.15)($465) = $69.75 from itself and (0.20)
($465) = $93 from manufacturing. Similarly, manufacturing will now additionally
need (.025)($195) = $48.75 from agriculture and (0.05)($195) = $9.75 from itself.
The total new demands for the two sectors are thus $(69.75 + 48.75) = $118.50 and
$(93 + 9.75) = $102.75.

4. At this point we realize that it is necessary to treat the additional $118.50 for agri-
culture and $102.75 for manufacturing in the same fashion as the $465 and $195 in
item 3. Hence we find additional required outputs of $43.46 and $28.84 from the
two sectors.

5. Continuing in this way, we find that eventually the numbers become so small that
they can be ignored (less than $0.005).
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Table 2.6 Round-by-Round Impacts (in dollars) of f 1
1 = $600 and f 1

2 = $1500

8 + 9+
Round 0 1 2 3 4 5 6 7 10 + 11 Lf1

Sec. 1 600 465.00 118.50 43.46 13.73 4.60 1.50 0.50 0.24 1247.52
Sec. 2 1500 195.00 102.75 28.84 10.13 3.25 1.08 0.35 0.17 1841.58

Cumulative Total
Sec. 1 1065.00 1183.50 1226.96 1240.64 1245.29 1247.52
Sec. 2 1695.00 1797.75 1826.59 1836.72 1839.97 1841.58

Percent of Total Effect Captured
Sec. 1 85.40 94.90 98.40 99.50 99.80 1247.52
Sec. 2 92.00 97.60 99.20 99.70 99.90 1841.58

Looking at the total impact of a particular set of final demands this way is described
as looking at the “round-by-round” effects. The initial demands generate a need for
inputs from the productive sectors; this is the “first round” of effects, as found in item
2, above. But these outputs themselves generate a need for additional inputs – “second
round” effects – as found in item 3, above; and so forth. For the present example, these
figures have been collected in Table 2.6.

For agriculture, the sum of these round-by-round effects, $647.53, plus the origi-
nal demand of $600, is $1247.53; for manufacturing, the total is $341.57 + $1500 =
$1841.57. These total outputs (except for small rounding errors) are the same as those
found by using the Leontief inverse, where x1

1 = $1247.52 and x1
2 = $1841.58. (It was

for this comparison that the two-decimal accuracy was kept in the Leontief-inverse
approach to this example.)

In this second view of the numerical example we have developed something of
a feeling for the way in which external (final) demands are transmitted through the
productive sectors of the economic system. In fact, we see that the elements of (I−A)−1

are really very useful and important numbers. Each captures, in a single number, an
entire series of direct and indirect effects. (The equivalence between Approaches I and
II is examined for the general case in Appendix 2.1.)

2.3.3 Numerical Example: Mathematical Observations

The inverse in this small example, L =
[

1.2541 .3300
.2640 1.1221

]
, illustrates a general feature

of Leontief inverses for input–output models of any size – the diagonal elements are
larger than 1. This is entirely consistent with the economic logic of the round-by-round
approach. From (2.13)

x1
1 = (1.2541)(600) + (0.3300)(1500)
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Looking at the first product on the right, the new final demand of $600 for agriculture
output is multiplied by 1.2541. This can be thought of as (1 + 0.2541)(600). The
(1)(600) reflects the fact that the $600 new agriculture demand must be met by producing
$600 more agriculture output. The additional (0.2541)(600) captures the additional
agriculture output required because this output is also used as an input to production
activity in both agriculture and also manufacturing. Similarly, from (2.13),

x1
2 = (0.2640)(600) + (1.1221)(1500)

and the same logic explains why the coefficient (1.1221) relating manufacturing output
to new final demand for manufacturing goods, $1500, must be greater than 1.

We examine why both of the diagonal elements in L will be greater than 1 in the
two-sector case. (A more complicated derivation can be used for the general n-sector
input–output model, and it is also apparent from the power series discussion in section
2.4.) For this 2 × 2 example, as we saw in section 2.3.1, above,

L =
[

l11 l12

l21 l22

]
= 1

|I − A| [adj(I − A)]

= 1

(1 − a11)(1 − a22) − a12a21

[
(1 − a22) a12

a21 (1 − a11)

]
So, for example,

l11 = (1 − a22)

(1 − a22)
[
(1 − a11) − a12a21

(1−a22)

] = 1

1 −
[
a11 + a12a21

(1−a22)

]
Assuming that (1 − a22) > 0, l11 > 1 if the denominator on the right-hand side is less
than 1, which it will be when a11 > 0 and/or a12a21 > 0 – since (1 − a22) > 0. Similar
reasoning shows that l22 = (1 − a11)/ |I − A| > 1 under similar reasonable conditions
on the aij.

Whether or not the off-diagonal elements are larger than 1 depends entirely on the
sizes of a12 and a21, relative to |I − A|. In most actual input–output tables, with a rather
detailed breakdown of sectors, the off-diagonal elements in L will be less than 1, as in
(2.13). However, for example, if a21 in Table 2.4 had been 0.70 instead of 0.20, so that
the coefficients matrix had been

A =
[

.15 .25

.70 .05

]
then

L =
[

1.5020 .3953
1.1067 1.3439

]
Notice that a coefficient as large as a21 = 0.7 – which says that there is 70 cents’

worth of sector 2 output in a dollar’s worth of sector 1 output – is not likely to be seen
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Table 2.7 The 2003 US Domestic Direct Requirements Matrix, A

Sector 1 2 3 4 5 6 7

1 Agriculture .2008 .0000 .0011 .0338 .0001 .0018 .0009
2 Mining .0010 .0658 .0035 .0219 .0151 .0001 .0026
3 Construction .0034 .0002 .0012 .0021 .0035 .0071 .0214
4 Manufacturing .1247 .0684 .1801 .2319 .0339 .0414 .0726
5 Trade, Transportation

& Utilities
.0855 .0529 .0914 .0952 .0645 .0315 .0528

6 Services .0897 .1668 .1332 .1255 .1647 .2712 .1873
7 Other .0093 .0129 .0095 .0197 .0190 .0184 .0228

Table 2.8 The 2003 US Domestic Total Requirements Matrix, L = (I − A)−1

Sector 1 2 3 4 5 6 7

1 Agriculture 1.2616 .0058 .0131 .0576 .0037 .0069 .0072
2 Mining .0093 1.0748 .0122 .0343 .0193 .0033 .0073
3 Construction .0075 .0034 1.0047 .0064 .0065 .0111 .0250
4 Manufacturing .2292 .1192 .2615 1.3419 .0692 .0856 .1261
5 Trade, Transportation .1493 .0850 .1371 .1563 1.0887 .0598 .0853

& Utilities
6 Services .2383 .2931 .2700 .2918 .2712 1.4116 .3138
7 Other .0243 .0239 .0231 .0367 .0280 .0297 1.0338

often in real tables. The sizes of the between-sector technical coefficients, aij (i �= j),
and of the off-diagonal elements in L, are related to the level of sectoral detail (that is,
the number of sectors) in the model. We will return to this topic in Chapter 4, when
we consider the effects of aggregating (combining) sectors in an input–output model.
(In Appendix 2.2 we examine the conditions under which a Leontief inverse matrix
will always contain only non-negative elements, as logic suggests should always be the
case.)

2.3.4 Numerical Example: The US 2003 Data
We present a highly aggregated, seven-sector version of the 2003 US input–output coef-
ficients matrix and its associated Leontief inverse in Tables 2.7 and 2.8. (Appendix B
contains a series of such tables over time for the US economy at the seven-sector level
of aggregation.) It is important to note that these data for the US represent domestically
produced inputs; this requires explanation.

Imports are generally divided into two categories: “competitive” and “non-
competitive” imports (or “competing” and “non-competing”).
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Competitive imports are goods that have a domestic counterpart (that is, are also
produced in the USA). For example, grapes from Chile that are used to make grape
jelly in the USA, where domestically grown grapes are also used in grape jelly recipes.

Non-competitive imports have no domestic counterpart. For example, coffee beans
from Brazil used by US coffee roasting firms (coffee beans are not grown in the USA).

Some national tables (the USA is one example) show competitive imports within the
transactions table, so that sales of grapes to jelly producers include both domestic and
foreign sources. This correctly reflects the total amount of grapes needed by domestic
producers. However, it causes problems when input–output models are used for impact
analysis. Briefly put, this is because an analyst is usually interested in the economic
consequences on the domestic (or regional or local) economy of an exogenous demand
change. With Chilean grapes in a transactions matrix, and hence in the associated A
and L matrices, some of the demand repercussions measured by the model would
in fact be felt by Chilean grape growers. For this reason, we present here US data
based on a domestic transactions matrix (ZD) in which the transactions matrix (Z) has
been purged of “competitive” (or “competing”) imports. In matrix terms, ZD = Z − M,
where M is a matrix of competitive imports. This “scrubbing” of the matrix is not
always easy to do if the data are lumped together in a published Z table (as is the
case in the USA), but it is very important when the question is one of impacts of
final demand changes on the domestic economy (and this is usually the question of
interest).7

Spending on non-competitive imports usually appears in a row in the payments
sector (a single value indicating a sector’s payments for all non-competitive imports).
We return to these issues in Chapter 4.

The effects on US output of various final-demand vectors can be easily quanti-
fied using L in Table 2.8. For example, suppose that there were increased foreign
demand (the export component of the final-demand vector) for agricultural and man-
ufactured items of $1.2 million and $6.8 million, respectively. Here (in millions of
dollars)

�f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.2

0

0

6.8

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

7 By contrast, if one is interested in the structure of production (“production recipes”) and if or how they have
changed over time (structural analysis), it may be more useful to have competitive imports included in the Z
matrix and hence reflected in A and L, since such imports are certainly part of those recipes.
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and, using (2.14), we find from L in Table 2.8 that (in millions of dollars)

�x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.9114
0.2444
0.0526
9.1249
1.2421
2.2709
0.2788

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
As might be expected, the greatest effect, $9.125 million, is felt in the manufacturing

sector. The next-greatest effect, $2.271 million, is felt in services. Also, agriculture
output would increase by $1.911 million and trade, transportation and utilities would
increase by $1.242 million. Effects on the remaining three sectors are less than $1
million. The total new output effect throughout the country, obtained by summing
the elements in �x, is $15.125 million; this is generated by a total new exogenous
demand of $8 million. This again illustrates the multiplicative effect in an economy
of an exogenous stimulus via an increase in one or more components of final demand.
These multiplier effects will be discussed in further detail in Chapter 6.

2.4 The Power Series Approximation of (I − A)−1

In preparing input–output tables for many real-world applications of the model, in which
one wants to maintain a reasonable distinction between sectors (e.g., so that sectors
producing aluminum storm windows and women’s apparel are not lumped together
as a single sector labeled “manufacturing”), tables with hundreds of sectors are not
unusual. However, early in the history of input–output studies, computer speed and
capacity posed real problems for implementation of input–output models – inversion
of large matrices was simply not possible.8 The amount of computer capacity and time
needed to invert, say, a 150×150 (I−A) matrix will vary with the particular computer
and the inversion program that is used, and it is quite possible that in some cases the
number of sectors that can be accommodated may be limited. One approach is then
to aggregate the data into a smaller number of sectors. We will say more about such
sectoral aggregation later, but clearly industrial (sectoral) detail is lost in the process.
In addition, the inversion calculations themselves can be carried out sequentially on a
series of smaller submatrices of (I − A).9 However, there is a useful matrix algebra
result generally applicable to (I − A) matrices that makes possible an approximation
to (I − A)−1 requiring no inverses at all; moreover, this approximation procedure has
a useful economic interpretation.

8 In 1939 it reportedly took 56 hours to invert a 42-sector table (on Harvard’s Mark II computer; see Leontief,
1951a, p. 20). In 1947, 48 hours were needed to invert a 38-sector input–output matrix. However, by 1953 the
same operation took only 45 minutes. (Morgenstern, 1954, p. 496; also, see Lahr and Stevens, 2002, p. 478.)
By 1969 a 100-sector matrix could be inverted in between 10 and 36 seconds, depending on the computer used.
(Polenske, 1980, p. 15.)

9 This is possible using a partitioned matrix approach; the details need not concern us at this point.
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By definition, we know that A is a non-negative matrix with aij ≥ 0 for all i and
j. (This characteristic is often written as A ≥ 0, where it is understood that not all
aij = 0.)10 The sum of the elements in the jth column of A indicates the dollars’ worth
of inputs from other sectors that are used in making a dollar’s worth of output of sector
j. In an open model, given the economically reasonable assumption that each sector
uses some inputs from the payments sector (labor, other value added, etc.), then each

of these column sums will be less than one (
n∑

i=1
aij < 1 for all j). (We will see below, in

section 2.6, that this column sum condition need not apply to tables based on physical,
not monetary, measures of transactions and outputs.) For input–output coefficients

matrices with these two characteristics – aij ≥ 0 and
n∑

i=1
aij < 1 for all j – it is possible

to approximate the gross output vector x associated with any final demand vector f
without finding (I − A)−1.

Consider the matrix product

(I − A)(I + A + A2 + A3 + · · · + An)

where, for square matrices, A2 denotes AA, A3 = AAA = AA2, and so on. Premultipli-
cation of the series in parentheses by (I − A) can be accomplished by first multiplying
all terms in the right-hand parentheses by I and then multiplying all terms by (−A).
This leaves only (I – An+1); all other terms cancel – for A2 there is a –A2, for A3 there
is a –A3, and so on. Thus

(I − A)(I + A + A2 + A3 + · · · + An) = (I − An+1) (2.15)

If it were true that for large n (more formally, as n → ∞), the elements in An+1

all become zero, or close to zero (i.e., An+1 → 0), then the right-hand side of (2.15)
would be simply I, and the matrix series that postmultiplies (I − A) in (2.15) would
constitute the inverse to (I − A), from the fundamental defining property of an inverse.

For any matrix, M, if we sum the absolute values of the elements in each column, the
largest sum is called the norm of M – denoted N (M) or ‖M‖.11 For example, for the
coefficients matrix A given in Table 2.4, N (A) = 0.35, the sum of the elements in the
first column. (The sum of the elements in column 2 is 0.30.) For a pair of matrices,
A and B, that are conformable for the multiplication AB, there is a theorem stating
that the product of the norms of A and B is no smaller than the norm of the product
AB – N (A)N (B) ≥ N (AB). By replacing B with A, it follows that N (A)N (A) ≥ N (A2)

10 A more exact characterization of vectors and matrices is often needed for more advanced matrix algebra results.
See section A.9 in Appendix A, where A > 0 is used for the case when A ≥ 0 and A �= 0.

11 A norm is just a measure of the general size of the elements in a matrix. (A measure of the size of the matrix
itself is given by the dimensions of the matrix.) For example, a non-negative m × n matrix that has all elements
smaller than 0.1 will have a smaller norm than one that has all elements larger than 10. There are many possible
definitions of the norm of a matrix. The one used here (maximum column sum of absolute values) is one of the
simplest.
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or [N (A)]2 ≥ N (A2 ) and finally, continuing similarly,

[N (A)]n ≥ N (An) (2.16)

As was noted above, all column sums of an open and “reasonable” value-based A
matrix will be less than one, so we know that N (A) < 1. Moreover, since aij ≥ 0, we
also know that aij ≤ N (A); no element in a non-negative matrix can be larger than
the largest column sum. Thus: (1) since N (A) <1, [N (A)]n → 0 as n → ∞; (2) from
(2.16), this means that N (An) → 0 also as n → ∞; (3) finally, then, all elements in
An must approach zero, since no single element in a non-negative matrix can be larger
than the norm of that matrix. This is the result that we are interested in. The right-hand
side of (2.15) becomes simply I as n gets large and so

L = (I − A)−1 = (I + A + A2 + A3 + · · · ) (2.17)

[This is analogous to the series result in ordinary algebra that 1/(1 − a) = 1 + a +
a2 + a3 + · · · , for |a| < 1.] Notice that the terms on the right-hand side of (2.17)
are all positive. Even if some aij are zero, the increasing number of products of A
virtually guarantees that no zeros will be in evidence at the end of the summation.12

This means that L will contain only positive elements. (Appendix 2.2 looks into the
issue of positivity of L in more detail.)

Then x = (I − A)−1f can be found as

x = (I + A + A2 + A3 + · · · )f (2.18)

Removing parentheses, this is

x = f + Af + A2f + A3f + · · · = f + Af + A(Af) + A(A2f) + · · · (2.19)

Each term after the first can be found as the preceding term premultiplied by A. In
many applications it has been found that after about A7 or A8, the terms multiplying f
become insignificantly different from zero. Even with modern-day computer capacity
and speed, there still may be times when the approximation in (2.18) or (2.19) may
prove useful (for example, since matrix multiplications are much more straightforward
than inversion, especially of a large matrix).13

Returning to the original A matrix and the f vector of the example in section

2.3 (and dropping the “0” superscripts for simplicity), where A =
[

.15 .25

.20 .05

]
and

12 As mentioned, the elements in any particular Ak do approach zero – which is the whole point.
13 Alternatively, some analysts have used the power series approximation as a framework for introducing

“dynamic” concepts into input–output models. We explore these ideas briefly in section 13.4.7.
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f =
[

600
1500

]
, we have

If =
[

600
1500

]
Af =

[
.15 .25
.20 .05

] [
600

1500

]
=
[

465
195

]
A2f =

[
.0725 .0500
.0400 .0525

] [
600

1500

]
=
[

118.50
102.75

]
A3f =

[
.0209 .0206
.0165 .0126

] [
600

1500

]
=
[

43.44
28.80

]
A4f =

[
.0073 .0063
.0050 .0048

] [
600

1500

]
=
[

13.83
10.20

]
A5f =

[
.0024 .0021
.0017 .0015

] [
600

1500

]
=
[

4.59
3.27

]
A6f =

[
.0008 .0007
.0006 .0005

] [
600

1500

]
=
[

1.53
1.11

]
A7f =

[
.0003 .0002
.0002 .0002

] [
600

1500

]
=
[

0.48
0.42

]
We see that the individual terms in the power series approximation (except for round-

ing errors) simply represent the magnitudes of the round-by-round effects, as recorded
in Table 2.6. (The reader should reconsider the algebra of the round-by-round calcu-
lations to be convinced that, in fact, they were equivalent to premultiplication of f by
a series of powers of the A matrix.) Thus it is possible that one may capture “most”
of the effects associated with a given final demand by using the first few terms in the
power series. As illustrated in Table 2.6, for our small example more than 98 percent
of the total effects in both sectors was captured in three rounds.

2.5 Open Models and Closed Models

The model that we have dealt with thus far, x = (I − A)−1f , depends on the existence
of an exogenous sector, disconnected from the technologically interrelated productive
sectors, since it is here that the important final demands for outputs originate. The
basic kinds of transactions that constitute the activity of this sector, as we have seen,
are consumption purchases by households, sales to government, gross private domestic
investment, and shipments in foreign trade (either gross exports or net exports – exports
from a sector less the value of imports of the same goods). In the case of households,
especially, this “exogenous” categorization is something of a strain on basic economic
theory. Households (consumers) earn incomes (at least in part) in payment for their
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Table 2.9 Input–Output Table of Interindustry Flows with Households Endogenous

Buying Sector

1 · · · j · · · n Households (Consumers)

Selling Sector 1 z11 · · · z1j · · · z1n z1,n+1
...

...
...

...
...

i zi1 · · · zij · · · zin zi,n+1
...

...
...

...
...

n zn1 · · · znj · · · znn zn,n+1
Households zn+1,1 · · · zn+1,j · · · zn+1,n zn+1,n+1
(Labor)

labor inputs to production processes, and, as consumers, they spend their income in
rather well patterned ways. And in particular, a change in the amount of labor needed
for production in one or more sectors – say an increase in labor inputs due to increased
output – will lead to a change (here an increase) in the amounts spent by households
as a group for consumption. Although households tend to purchase goods for “final”
consumption, the amount of their purchases is related to their income, which depends
on the outputs of each of the sectors. Also, as we have seen, consumption expenditures
constitute possibly the largest single element of final demand; at least in the US economy
they have frequently constituted more than two-thirds of the total final-demand figure.

Thus one could move the household sector from the final-demand column and labor-
input row and place it inside the technically interrelated table, making it one of the
endogenous sectors. This is known as closing the model with respect to households.
Input–output models can be “closed” with respect to other exogenous sectors as well (for
example, government sales and purchases); however, closure with respect to households
is more usual. It requires a row and a column of transactions for the new household
sector – the former showing the distribution of its output (labor services) among the
various sectors and the latter showing the structure of its purchases (consumption)
distributed among the sectors. It is customary to add the household row and column at
the bottom and to the right of the transactions and coefficients tables. Dollar flows to
consumers, representing wages and salaries received by households from the n sectors
in payment for their labor services, would fill an (n + 1)st row – [zn+1,1, . . . , zn+1,n].
Dollar flows from consumers, representing the values of household purchases of the

goods of the n sectors, would fill an (n + 1)st column:

⎡⎢⎣ z1,n+1
...

zn,n+1

⎤⎥⎦. Finally, the element

in the (n + 1)st row and the (n + 1)st column, zn+1,n+1, would represent household
purchases of labor services. Thus Table 2.1 would have one new row, at the bottom,
and one new column, at the right, as indicated in Table 2.9.
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The ith equation, as shown in (2.1), would now be modified to

xi = zi1 + · · · + zij + · · · + zin + zi,n+1 + f ∗
i (2.20)

where f ∗ is understood to represent the remaining final demand for sector i output –
exclusive of that from households, which is now captured in zi,n+1. In addition to this
kind of modification on each of the equations in set (2.2), there would be one new
equation for the total “output” of the household sector, defined to be the total value of
its sale of labor services to the various sectors – total earnings. Thus

xn+1 = zn+1,1 + · · · + zn+1,j + · · · + zn+1,n + zn+1,n+1 + f ∗
n+1 (2.21)

The last term on the right in (2.21) would include, for example, payments to government
employees.

Household input coefficients are found in the same manner as any other element in
an input–output coefficients table: The value of sector j purchases of labor (for a given
period), zn+1,j, divided by the value of total output of sector j (for the same period),
xj, gives the value of household services (labor) used per dollar’s worth of j’s output;
an+1,j = zn+1,j/xj. For the elements of the household purchases (consumption) column,
the value of sector i sales to households (for a given period), zi,n+1, is divided by the total
output (measured by income earned) of the household sector, xn+1. Thus, household
“consumption coefficients” are ai,n+1 = zi,n+1/xn+1. A drawback to this approach is
that now household behavior is “frozen” in the model in the same way as producer
behavior (constant coefficients).

The ith equation in the fundamental set given in (2.6), above, becomes

xi = ai1x1 + · · · + ainxn + ai,n+1xn+1 + f ∗
i (2.22)

and the added equation which relates household output to output of all of the sectors is

xn+1 = an+1,1x1 + · · · + an+1,nxn + an+1,n+1xn+1 + f ∗
n+1 (2.23)

Similarly, parallel to the equations in (2.7), we now have, rewriting (2.22) for the ith
equation,

−ai1x1 − · · · + (1 − aii)xi − · · · − ainxn − ai,n+1xn+1 = f ∗
i

And, for the household equation, rewriting (2.23),

−an+1,1x1 − · · · − an+1,nxn + (1 − an+1,n+1)xn+1 = f ∗
n+1

Let the row vector of labor input coefficients, an+1,j = zn+1,j/xj, be denoted
by hR = [an+1,1, . . . , an+1,n], the column vector of household consumption coeffi-

cients, ai,n+1 = zi,n+1/xn+1, be hC =
⎡⎢⎣ a1,n+1

...
an,n+1

⎤⎥⎦ and let h = an+1,n+1.14 Denote by Ā

14 In the initial numerical illustration in section 2.3.1, above, for simplicity we used e′
c for the vector of employ-

ment coefficients. These are seen to be the elements in hR, which is the notation frequently used in closed
models. Strictly speaking, we should use a “prime” to denote a row vector, but the subscript “R” reminds us
that this is a row of coefficients.
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the (n + 1) × (n + 1) technical coefficients matrix with households included. Using
partitioning to separate the old A matrix from the new sector,

Ā =
[

A hC

hR h

]

Let x̄ denote the (n + 1)-element column vector of gross outputs

x̄ =

⎡⎢⎢⎢⎣
x1
...

xn

xn+1

⎤⎥⎥⎥⎦ =
⎡⎣ x

xn+1

⎤⎦
Also, let f∗ be the n-element vector of remaining final demands for output of the original
n sectors and f̄ the (n+1)-element vector of final demands, including that for the output
of households

f̄ =

⎡⎢⎢⎢⎣
f ∗
1
...

f ∗
n

f ∗
n+1

⎤⎥⎥⎥⎦ =
[

f∗
f ∗
n+1

]

Then the new system of n + 1 equations, with households endogenous, can be
represented as

(I − Ā)x̄ = f̄ (2.24)

or [
I − A −hC

−hR (1 − h)

][
x

xn+1

]
=
[

f∗

f ∗
n+1

]
(2.25)

That is, we have the set of n equations

(I − A)x − hCxn+1 = f∗

[a matrix rearrangement of (2.22)] and the added one for households

−hRx + (1 − h)xn+1 = f ∗
n+1

[a matrix rearrangement of (2.23)]. Together these determine the values of outputs for
the n original sectors – x1, . . . , xn – and the value of household services used (wages
paid) to produce those outputs – xn+1. If the (n + 1) × (n + 1) coefficients matrix is
nonsingular, the unique solution can be found using an inverse matrix in the usual way:[

x

xn+1

]
=
[

I − A −hC

−hR (1 − h)

]−1 [ f∗

f ∗
n+1

]
(2.26)
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Table 2.10 Flows (zij) for Hypothetical Example, with Households
Endogenous

�������From
To Household Other Final Total

1 2 Consumption (C) Demand (f ∗) Output (x)

1 150 500 50 300 1000
2 200 100 400 1300 2000
Labor

Services (L)

300 500 50 150 1000

Other
Domestic
Payments (N )

325 800 300 250 1675

Imports (M ) 25 100 200 150 475

Total
Outlays (x′)

1000 2000 1000 2150 6150

or

x̄ = (I − Ā)−1f̄ = L̄f̄

Consider again the information given in Table 2.3. Suppose that the household con-
sumption part of final demand and the household labor input part of the payments
sector are as shown in Table 2.10. Of the $650 bought by sector 1 from the payments
sectors (Table 2.3), $300 was for labor services; of the $1400 bought by sector 2, $500
was for labor inputs. Also, of the $1100 which represented purchases of final-demand
sectors from the payments sectors, $50 was paid out by households for labor services
(e.g., domestic help); government purchases of labor was $150. The $300 would record
household payments to government (taxes), and so forth.

The total output of the household sector, as in (2.16), is (here n + 1 = 3),
x3 = z31 + z32 + z33 + f ∗

3 = 300 + 500 + 50 + 150 = 1000. The household input
coefficients, an+1,j = zn+1,j/xj, are: a31 = 300/1000 = 0.3, a32 = 500/2000 = 0.25
and a33 = 50/1000 = 0.05; hR = [

0.3 0.25
]

and h = 0.05. Similarly, house-
hold consumption coefficients, ai,n+1 = zi,n+1/xn+1 are a13 = 50/1000 = 0.05 and

a23 = 400/1000 = 0.4; thus hC =
[

0.05
0.4

]
. Therefore,

Ā =
⎡⎣ .15 .25 .05

.2 .05 .4

.3 .25 .05

⎤⎦, (I − Ā) =
⎡⎣ .85 −.25 −.05

−.2 .95 −.4
−.3 −.25 .95

⎤⎦
and

L̄ = (I − Ā)−1 =
⎡⎣ 1.3651 .4253 .2509

.5273 1.3481 .5954

.5698 .4890 1.2885

⎤⎦ (2.27)
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Consider again the numerical example in section 2.3 (again we ignore the “0” and
“1” superscripts for simplicity). There we assumed a change in the final-demand vector
such that f1 went from 350 to 600 and f2 from 1700 to 1500. Referring now to Table 2.10,
simply for illustration, suppose that this entire final-demand change was concentrated
in the Other Final Demand sector. In fact, let it represent a change in the demands of the
federal government [which are a part of the Other Final Demand column ( f ∗

i ) in Table
2.10]. These new demands of $600 and $1500 represent increases in both cases, from
the current levels of $300 and $1300 for all nonhousehold final-demand categories.

The most straightforward comparison is now to use the 3 × 3 Leontief inverse

(I − Ā)−1 in (2.27) in conjunction with f̄ =
⎡⎣ 600

1500
0

⎤⎦ to find the impact of these

changes in the final demands for the outputs of sectors 1 and 2 on the two original
sectors plus the added impact due to closure of the model with respect to households.
We have⎡⎣ x1

x2

x3

⎤⎦ = x̄ =
⎡⎣ 1.3651 .4253 .2509

.5273 1.3481 .5954

.5698 .4890 1.2885

⎤⎦⎡⎣ 600
1500

0

⎤⎦ =
⎡⎣ 1456.94

2338.51
1075.48

⎤⎦
In the earlier example of section 2.3, with households exogenous to the model, the

new outputs were x1 = $1247.46 and x2 = $1841.55. The new (larger) values –
$1456.94 and $2338.51, respectively – reflect the fact that additional outputs are nec-
essary to satisfy the anticipated increase in consumer spending, as reflected in the
household consumption coefficients column, expected because of the increased house-
hold earnings due to increased outputs from sectors 1 and 2 and hence increased wage
payments. Using the labor input coefficients a31 = 0.3 and a32 = 0.25, the necessary
household inputs for the original gross outputs (when households were exogenous)
would be

a31x1 + a32x2 = (0.3) (1247.46) + (0.25)(1841.55) = 834.63

As would be expected, outputs are increased for all three sectors, due to the introduc-
tion of the formerly exogenous household sector into the model. The example serves to
illustrate an expected outcome – namely that when the added impact of more household
consumption spending due to increased wage income is explicitly taken into consider-
ation in the model, the outputs of the original sectors in the interindustry model (here
sectors 1 and 2) are larger than is the case when consumer spending is ignored.

In this section we have introduced the basic considerations involved in moving
households from final demand into the model as an endogenous sector – closing the
model with respect to households. Similar kinds of data and algebraic extensions would
be needed if other exogenous sectors – for example, federal, or state and/or local
government activities – were to be made endogenous in the model. However, because
the value of consumption tends to be the largest component of final demand and because
of the relatively direct linkage between earned income and consumption and between
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consumption and output, the household sector is the one final-demand sector that is
most often moved inside the model.

In practice, however, the issue is far more subtle, and the procedure is more com-
plicated than might be suggested by the discussion in this section. All of the previous
reservations about the aij apply here as well, if not with greater force. For each addi-
tional dollar of received earnings, households are assumed to spend 5 cents on the output
of sector 1, 40 cents on the output of sector 2, and so on. Those coefficients, which
reflect average behavior during the observation period when household income was
$1000 (a13 = 50/1000 and a23 = 400/1000), are assumed to hold for the additional, or
marginal, amounts of household earnings associated with the new outputs of sectors 1
and 2. One approach, particularly at the regional level, is to divide consumers into two
groups: established residents, for whom the new income associated with new production
would represent an addition to current earnings, and new residents (in-migrants), who
may have moved in search of employment and for whom the new income represents
total earnings. For the former group, a set of marginal consumption coefficients might
be appropriate, while for the latter group average consumption coefficients would be
relevant.

In addition, spending patterns of consumers, especially out of additions to (or reduc-
tions in) disposable income, will depend on the income category in which a particular
consumer is located. An addition of $100 to the spendable income of a worker earning
$20,000 per year is likely to be spent differently than an additional $100 in the hands of
an engineer with an annual income of $150,000, and both will no doubt differ from the
way in which the $100 would be spent by a previously unemployed person. In effect,
this is simply noting that inputs to the household sector (consumption) per dollar of
output (household income) will not be independent of the level of that output. Yet such
independence is assumed in the way that the direct input coefficients are used in an
input–output model; each sector’s production function (column of direct input coeffi-
cients) is assumed to represent inputs per dollar’s worth of output, regardless of the
amount (level) of that output.

Another approach, then, is to disaggregate “the” household sector into several sectors,
distinguished by total income. For example, $0–$10,000, $10,001–$20,000, $20,001–
$30,000; and so on. Consumption coefficients, by sector, could then be derived for
each income class. We will return to this issue in a regional context in Chapter 3 and in
Chapter 10 when examining social accounting matrices. A very thorough discussion of
an approach for incorporating a disaggregated household sector into the endogenous
part of an input–output model, using a good deal of matrix algebra, can be found in
Miyazawa (1976). We explore that model in more detail in Chapter 6.

Further disaggregations of the household sector have been proposed and incorporated
in input–output analysis. These frameworks fall into the category of what are known
as “extended” input–output models. (For a concise overview see Batey, Madden and
Weeks, 1987 or Batey and Weeks, 1989.) The idea is to separate income payments to
and consumption patterns of different household groups – for example, established vs.
new residents (noted above) and currently employed vs. unemployed.
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One could imagine a process of moving, one by one, each of the remaining sectors
from the final-demand vector into the interindustry coefficients matrix, constructing
rows of input coefficients and columns of purchase coefficients until there were no
exogenous sectors at all. This is termed a completely closed model. However, the
economic logic behind fixed coefficients in the case, say, of a government sector is
less easy to accept than for the productive sectors, and completely closed models are
seldom implemented in practice.15

2.6 The Price Model

2.6.1 Overview
Leontief originally developed the input–output model in physical units (bushels of
wheat, yards of cloth, man-years of labor, etc.).16 In particular, he assumed that direct
input coefficients, A, are based on physical quantities of inputs divided by physical
quantities of output. These data were then converted to a table of (base year) transactions
in value terms by using (base year) unit prices – for a bushel of wheat, a yard of cloth
and a man-year of labor. He writes (Leontief, 1986, pp. 22–23):

All figures [in the value transactions table]…can also be interpreted as representing physical quantities
of the goods or services to which they refer. This only requires that the physical unit in which the
entries…are measured be redefined as being equal to that amount of output of that particular sector
that can be purchased for $1 at [base year] prices… In practice the structural matrices are usually
computed from input-output tables described in value terms…In any case, the input coefficients [A] –
for analytical purposes…must be interpreted as ratios of two quantities measured in physical units
[emphasis added].

As already noted, input–output data are usually assembled and input–output studies are
generally carried out in monetary (value) units.

However, with the emergence of energy and environmental concerns, mixed-units
models have been developed, where economic transactions are recorded in monetary
terms and ecological and/or energy transactions are recorded in physical terms (tons,
BTUs, joules, etc.).17 Another line of inquiry has led to input–output tables in common
physical units (e.g., all transactions and outputs measured in tons). Stahmer (2000)
gives an overview of this kind of work, including tables for Germany for 1990 in
both monetary and physical units – sometimes designated MIOTs and PIOTs, respec-
tively. (There are problems in trying to measure outputs of services in physical units.)18

We explore a small illustration in section 2.6.8, below, using an aggregation of the
German data.

15 The original work done by Leontief, however, was in the framework of a completely closed model of the United
States for 1919. See Leontief (1951b).

16 See, for example, Leontief (1951a, 1951b, 1986), Leontief et al. (1953).
17 These issues are explored further in Chapters 9 and 10.
18 Stahmer (2000) also introduces the notion of data measured in time units, leading to TIOTs.
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Table 2.11 Transactions in Physical Units

Physical units
1 2 di qi of measure

1 75 250 175 500 bushels
2 40 20 340 400 tons

Table 2.12 Transactions in Monetary Units (see Table 2.3)

$ Price per
1 2 fi xi physical unit

1 150 500 350 1000 2
2 200 100 1700 2000 5

Table 2.13 Transactions in Revised Physical Units

Revised physical
1 2 di qi units of measure

1 150 500 350 1000 1/2 bushels
2 200 100 1700 2000 1/5 tons

2.6.2 Physical vs. Monetary Transactions
We return to the illustration in section 2.3. Suppose the physical unit measures for
outputs are bushels for sector 1 (agriculture) and tons for sector 2 (manufacturing) and
that transactions measured in these physical units are shown in Table 2.11, where we
now use di for physical amounts delivered to final demand and qi for physical amounts
of total output.

If we know the per-unit prices of the two products, the information in Table 2.11
can be converted to monetary units. For example, if the price per bushel is $2.00 and
the price per ton is $5.00, then the monetary transactions table is exactly as shown
in Table 2.3. Now, redefine the physical units of measurement for each sector to be
the amount that can be bought for $1.00; that is, so that the per-unit price for each
sector’s output is $1.00. This simply means that we measure the physical output of
sector 1 in half bushel units and the physical output of sector 2 in fifths of a ton. Then,
in these revised units, the information in Table 2.12 can be reinterpreted as recording
transactions in physical units, as in Table 2.13 – for example, 500 half-bushels of sector
1 output were bought by sector 2 (for $500), 2000 fifths of a ton of sector 2 output were
delivered to final demand (for $2000), etc.
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Table 2.14 Transactions in Monetary Terms

Sectors

Sectors 1 · · · j · · · n Final Demand Total Output

1 z11 · · · z1j · · · z1n f1 x1
2 z21 · · · z2j · · · z2n f2 x2
...

...
...

...
...

...
n zn1 · · · znj · · · znn fn xn
Labor v1 · · · vj · · · vn fn+1 xn+1

In practice, sectors produce more than one good, and the assumption of one price for
a sector’s output is unrealistic. And in any case, monetary tables are assembled on the
basis of recorded values of transactions; price and quantity are generally not recorded
separately.

2.6.3 The Price Model based on Monetary Data
Monetary transactions are arranged as usual, where for notational simplicity we assume
that all value added is represented by labor (Table 2.14). As we saw in section 2.2.1,
when all inputs are accounted for in the processing and payments sectors, then the jth
column sum (total outlays) is equal to the jth row sum (total output). Thus, summing
down the jth column in Table 2.14,

xj =
n∑

i=1

zij + vj (2.28)

or

x′ = i′Z + v′ (2.29)

where, as earlier, v′ = [v1, . . . , vn], total value-added expenditures by each sector.
Substituting Z = Ax̂, x′ = i′Ax̂ + v′, and postmultiplying by x̂−1,

x′x̂−1 = i′Ax̂x̂−1 + v′x̂−1

or

i′ = i′A + v′
c (2.30)

where v′
c = v′x̂−1 = [v1/x1, . . . , vn/xn]. The right-hand side of (2.30) is the cost of

inputs per unit of output. Output prices are set equal to total cost of production (in the
general case, this will include an allocation for profit and other primary inputs in v′ and
hence in v′

c), so each price is equal to 1 [the left-hand side of (2.30)]. This illustrates
the unique measurement units in the base year table – amounts that can be purchased



44 Foundations of Input–Output Analysis

for $1.00. If we denote these base year index prices by p̃j, so p̃′ = [ p̃1, . . . , p̃n ], then
the input–output price model is:

p̃′ = ˜p′A + v′
c (2.31)

which leads to p̃′(I − A) = v′
c and

p̃′ = v′
c(I − A)−1 = v′

cL (2.32)

Frequently the model is transposed and expressed in terms of column vectors rather
than row vectors. In that case,

p̃ = (I − A′)−1vc = L′vc (2.33)

[The interested reader can show that, given (I − A)−1 = L, then (I − A′)−1 = L′.]
From (2.32), index prices, p̃, are determined by the exogenous values (costs) of

primary inputs. For a two-sector model,

p̃1 = l11vc1 + l21vc2

p̃2 = l12vc1 + l22vc2

The logic is that changes in labor input prices (or, more generally, primary input price
changes) lead to changes in sectoral unit costs (and therefore output prices, not output
quantities) via the fixed production recipes in A, and hence in L and L′. For example,
cost increases are passed along completely as intermediate input price increases to all
purchasers, who in turn pass on these increases by raising their output prices accord-
ingly, etc. As opposed to the demand-pull input–output quantity model earlier in this
chapter, the price model in (2.32) or (2.33) is more completely known as the cost-push
input–output price model (Oosterhaven, 1996; Dietzenbacher, 1997). In it, quantities
are fixed and prices change. Table 2.15 summarizes the two (dual) models where, again,
superscripts “0” and “1” indicate values before and after accounting for the exogenous
change. Examples in the following section illustrate the workings of this model.

2.6.4 Numerical Examples Using the Price Model based on Monetary Data
Example 1: Base Year Prices Table 2.16 contains data from Table 2.10 to

construct an added row to reflect labor as the only primary input. The corresponding
direct inputs matrix is

Ā =
⎡⎣ .15 .25 .11

.20 .05 .54

.65 .70 .35

⎤⎦ (2.34)

Using A for the 2 × 2 submatrix of sector 1 and sector 2 coefficients,

(L0)′ = (I − A′)−1 =
[

1.254 .264
.330 1.122

]
(2.35)
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Table 2.15 The Leontief Quantity and Price Models

Leontief Quantity Model
(Demand-pull)
[Prices fixed; quantities
change]

Exogenous Variables f1 = [f 1
i ]

or
�f = [�fi]

Endogenous Variables x1 = L0f1

or
�x = L0(�f)

Leontief Price Model
(Cost-push)
[Quantities fixed; prices
change]

Exogenous Variables v1
c = (x̂0)−1v1 = [v1

j /x0
j ]

or
�vc = (x̂0)−1(�v) = [�vj/x0

j ]

Endogenous Variables p̃1 = (L0)′v1
c

or
�p̃ = (L0)′(�vc)

Table 2.16 Transactions for
Hypothetical Example with One
Primary Input

1 2 fi xi

1 150 500 350 1000
2 200 100 1700 2000
3 (Labor) 650 1400 1100 3150

From the base year data, v0
c =

[
.65
.70

]
=
[

ā31

ā32

]
– from the bottom row of Ā in (2.34).

Thus, in (2.33),

p̃0 = (L0)′v0
c =

[
1.254 .264
.330 1.122

] [
.65
.70

]
=
[

1.00
1.00

]
(2.36)

This reproduces the base year index prices, as expected.

Example 2: Changed Base Year Prices The value-based cost-push price
model is generally used to measure the impact on prices throughout the economy
of new primary-input costs (or a change in those costs) in one or more sectors. Again,
suppose that these costs consist entirely of wage payments and that wages in sector 1
increase by 30 percent (from 0.65 to 0.845) while those in sector 2 remain unchanged.



46 Foundations of Input–Output Analysis

The vector of new labor costs is

v1
c =

[
.845
.700

]
and, from (2.33),

p̃1 = (L0)′v1
c =

[
1.254 .264
.330 1.122

] [
.845
.700

]
=
[

1.245
1.064

]
(2.37)

Relative to the original index prices (p̃0
1 = 1.00 and p̃0

2 = 1.00), sector 1’s price has gone
up to 1.245 (a 24.5 percent increase), and sector 2’s price has increased by 6.4 percent.

As with the demand-driven input–output model in earlier sections, this exercise can
just as well be carried out in the “�” form of the model, namely

�p̃ = (L0)′�vc (2.38)

In this case, �vc =
[

.195
0

]
, where (0.195) = (0.30)(0.65), and using (2.38),

�p̃ = (L0)′�vc =
[

1.254 .264
.330 1.122

] [
.195

0

]
=
[

.245

.064

]
(2.39)

The results in either (2.37) or (2.39) convey the same information – the economy-
wide effect of the 30 percent wage increase in sector 1 is that the price of sector 1 output
goes up by 24.5 percent and that of sector 2 increases by 6.4 percent. In this cost-push
input–output price model, we find relative price impacts – the absolute values of those
prices, even in the base year, are not explicit in the model.

Notice that if labor costs are only a part of the value-added component for sector
1, then a 30 percent increase in wages in sector j will generate a less than 30 percent
increase in vcj – for example, if wages comprise 40 percent of sector j’s value-added
payments, and no other value-added costs increase, a 30 percent wage increase translates
into a 12 percent increase in vcj. The effects of primary input price decreases can also
be quantified in the same way by the models in (2.32) [or (2.33)] or (2.38).

2.6.5 Applications
An early example of the use of this input–output price model is provided by Melvin
(1979), where the price effects of changes in corporate income taxes are estimated for
both the United States and Canada, using an 82-sector US table for 1965 and a 110-sector
Canadian table for 1966. Another illustration is provided by Duchin and Lange (1995)
who use the price model framework to assess price effects of alternative technologies in
the US economy. Based on US 1963 and 1977 data, they use 1977 technology with 1963
factor prices to assess the price effects of the change in technology over that period.
Similarly, using projections to 2000, they examine the price effects of technology
change over 1977 to 2000. (They also change technology in the A matrix one column
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Table 2.17 Flows in Physical Units

Sectors

Sectors 1 2 · · · n Final Demand Total Output

1 s11 s12 · · · s1n d1 q1
2 s21 s22 · · · s2n d2 q2
...

...
...

...
...

...
n sn1 sn2 · · · snn dn qn
Labor sn+1,1 sn+1,2 · · · sn+1,n dn+1 qn+1

at a time; and this is done in the context of a dynamic price model. We explore dynamic
input–output models in Chapter 13.) A few additional examples include Lee, Blakesley
and Butcher (1977) at a regional level, Polenske (1978) for a multiregional example,
Marangoni (1995) for Italy and Dietzenbacher and Velázquez (2007) who include an
analysis of cost-push effects of changes in water prices.

2.6.6 The Price Model based on Physical Data
In this section we examine the implications of an input–output model based on a set
of data in physical units, as was shown in Table 2.11. Here, in Table 2.17, we let sij

represent the physical quantity of i goods shipped to j [e.g., bushels of agricultural
products (i) sold to manufacturers (j)], di is deliveries to final demand (e.g., in bushels
for agricultural demand) and qi is total sector i production (e.g., total bushels produced
by agriculture). Again, for simplicity, let the exogenous payments (value added) sector
consist exclusively of labor inputs (measured in person-days).

Reading across any row in Table 2.17 we have the basic accounting relationships in
physical units:

qi = si1 + · · · + sij + · · · + sin + di =
n∑

j=1

sij + di (2.40)

[Compare with (2.1) in value terms.] Using obvious matrix definitions, this is

q = Si + d (2.41)

This is the physical-units parallel to (2.4).
Direct input coefficients in physical terms are defined as

cij = sij

qj
or C = Sq̂−1 (2.42)

For the example of agricultural input into manufacturing (Table 2.11), this would be
250/400 = 0.625 (bushels per ton). Then, in a series of steps that parallel the earlier
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development of the value-based model in section 2.2, substitution into (2.41) gives

q = Cq̂i + d = Cq + d

from which

q = (I − C)−1d (2.43)

This is the physical-units model parallel to (2.11).

Introduction of Prices Suppose also that we know the per-unit price for each
sector’s output, pi, and the labor cost per person-hour, pn+1. Then, as Leontief observes
in the quotation above, we can easily convert the basic data to the value units from
earlier in this chapter:

xi = piqi (2.44)

zij = pisij (2.45)

fi = pidi (2.46)

Multiplying (2.40) on both sides by pi gives

xi = piqi =
n∑

j=1

pisij + pidi =
n∑

j=1

zij + fi (2.47)

or x = Zi + f . These are, of course, the original accounting relationships in (2.1) and
(2.3) in value terms.

In section 2.6.1, the representation of total outputs in terms of column sums of Table

2.14 was given in monetary terms in (2.28), namely xj =
n∑

i=1
zij + vj. Column sums

are not meaningful in Table 2.17 since elements in each row are measured in different
units. The objective now is to introduce the results from (2.44) and (2.45) into (2.28).
Assume, for now, that the wage rate is pn+1(dollars per person-hour) across all sectors.
Then zn+1,j = pn+1sn+1,j = vj; this represents sector j’s total expenditure on labor – the
price, pn+1, times total person-hours of labor, sn+1,j. Then (2.28) becomes

pjqj =
n∑

i=1

pisij + pn+1sn+1,j (2.48)

Dividing by qj (which we assume is not zero),

pj =
n∑

i=1

pisij/qj + pn+1sn+1,j/qj =
n∑

i=1

picij + pn+1cn+1,j (2.49)
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In matrix form, this is

p′ = p′C + υ′
c (2.50)

where p′ = [p1, . . . , pn], C is defined in (2.42) and υ′
c = pn+1[cn+1,1, . . . , cn+1,n]. So

υ′
c represents the labor cost (price) per unit of physical output – for example, labor

costs per ton of output [$/ton = ($/person-hour) × (person-hours/ton)].
Labor costs were assumed to be uniform across all sectors; thus we have only pn+1

and not pn+1,j. This can easily be extended to encompass differing labor costs (perhaps
reflecting labor of differing skills) among sectors. Equation (2.50) defines the unit price
for each sector’s output as equal to the total costs (interindustry plus primary inputs)
of producing a unit of that output. (In general there will be more than one component
to primary input costs for each sector, but the principles remain the same.)

From (2.50),

p′ = υ′
c(I − C)−1 (2.51)

As before, we can transpose both sides of (2.50) and (2.51) to have the prices in a
column vector instead of a row vector,

p = C′p + υc and p = (I − C′)−1υc (2.52)

This is the Leontief price model based on physical units. These structures are completely
parallel to those in (2.32) and (2.33) for the monetary-based index-price model, For the
n = 2 case, we have

p1 = p1c11 + p2c21 + υc1

p2 = p1c12 + p2c22 + υc2
(2.53)

and [
p1

p2

]
=
[

(1 − c11) −c21

−c12 (1 − c22)

]−1 [
υc1

υc2

]
(2.54)

Relationship between A and C Direct input coefficients in value terms are

aij = zij

xj
or A = Zx̂−1

Therefore [from (2.44) and (2.45)]

aij = pisij

pjqj
= cij

(
pi

pj

)
(2.55)

In matrix terms19

A = p̂S(p̂q̂)−1 = p̂Cq̂(q̂−1p̂−1) = p̂Cp̂−1 (2.56)

19 When two matrices, M and N, satisfy the relationship M = v̂Nv̂−1, they are said to be similar.
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Either the value-based coefficients, A, or the physical coefficients, C, are assumed
fixed in applications of the input–output model. However, assuming fixed cij (in effect,
a fixed “engineering” production function) has been seen by many as less restrictive
than fixed aij (a fixed “economic” production function), because in the latter case both
a physical coefficient, cij, and a price ratio, pi/pj, are assumed unchanging.20

2.6.7 Numerical Examples Using the Price Model based on Physical Data
Example 1: Base Year Prices Consider again the two-sector economy (agri-

culture and manufacturing) in Table 2.11 closed with an added row showing labor inputs
and final demand (consumption). From that table we can find the physical technical
coefficients [as in (2.42)]

C̄ =
⎡⎣ .15 .625 .556

.08 .05 1.079

.13 .35 .349

⎤⎦ (2.57)

We use C̄ for the (closed) technical coefficients matrix that includes households; C will
represent the 2 × 2 matrix in the upper-left corner – technical coefficients connecting
the two producing sectors in the economy. Note that c̄23 > 1; column sums in C̄ are
meaningless, since each row is measured in different units.

The relationships in (2.54) are

2 = (2)(.15) + (5)(.08) + (10)(.13) = .30 + .40 + 1.30
5 = (2)(.625) + (5)(.05) + (10)(.35) = 1.25 + .25 + 3.50

(2.58)

If we use the base-period value-added-per-unit-of-output figures,

υ0
c1 = p3c̄31 = (10)(.13) = 1.30 and υ0

c2 = p3c̄32 = (10)(.35) = 3.50

along with

(I − C′)−1 =
[

1.243 .106
.825 1.122

]
(2.59)

(from the 2 × 2 upper-left submatrix of C̄) in p = (I − C′)−1υc,[
p0

1

p0
2

]
= (I − C′)−1υ0

c =
[

1.254 .106
.825 1.122

] [
1.3
3.5

]
=
[

2.00
5.00

]
(2.60)

This generates the base year prices, as expected.

20 Economists have held differing opinions on this question of the plausibility of the assumption of stability for
physical vs. value-based coefficients. For early examples, see Klein (1953) who suggests that aij’s may be more
stable than cij’s, and Moses (1974) who argues the opposite.
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Example 2: Changed Base Year Prices Continuing with this physical
coefficients model, suppose that the wage costs in sector 1 increase from $10.00 to
$13.00 (a 30 percent increase) while those in sector 2 remain unchanged (p1

31 = $13.00

and p1
32 = p0

32 = 10.00), so υ1
c =

[
(13)(.13)

(10)(.35)

]
=
[

1.69
3.50

]
. Then

[
p0

1

p0
2

]
= (I − C′)−1υ0

c =
[

1.254 .106
.825 1.122

] [
1.69
3.50

]
=
[

2.49
5.32

]
(2.61)

Specifically, p1
1 = $2.49 (an increase of 24.5 percent over p0

1 = $2.00) and p1
2 = $5.32

(a 6.4 percent increase over p0
2 = $5.00). This illustrates the operation of the cost-push

input–output price model based on physical input coefficients. It generates the new
prices directly (from which percentage changes can easily be found). In section 2.6.4
we found these percentage increases directly from the index-price model in (2.37).

2.6.8 The Quantity Model based on Physical Data
Data in physical units can also form the core of an input–output quantity model, as in
q = (I − C)−1d in (2.43) – before the introduction of prices. Using the data from the
two numerical examples immediately above,

C =
[

.150 .625

.080 .050

]
and (I − C)−1 =

[
1.254 .825
.106 1.122

]
Base year outputs are correctly generated by

q0 = (I − C)−1d0 ⇒
[

1.254 .825
.106 1.122

] [
175
340

]
=
[

500
400

]
and, for example, doubling demand doubles outputs,

q1 = (I − C)−1d1 ⇒
[

1.254 .825
.106 1.122

] [
350
680

]
=
[

1000
800

]
This is completely parallel to the demand-driven model in monetary terms, except

that units of measurement are consistent only across each row. This means that the
new demands (350 bushels and 680 tons) lead to production of 1000 bushels and 800
tons. Notice the units in (I − C)−1. For example, in the first column, 1.254 represents
direct and indirect bushels of output per bushel of final demand, and 0.106 is direct and
indirect output of tons per bushel of final demand.

A real-world illustration of this kind of model based on physical units appears in
Stahmer (2000)21. This consists of a 12-sector input–output data set in physical terms
for Germany in 1990 (an aggregation of a 91-sector model), where all transactions and
outputs are measured in a common physical unit – tons. Hubacek and Giljum (2003)

21 Also available as: “The Magic Triangle of Input–Output Tables,” paper presented to the 13th International
Input–Output Association Conference on Input–Output Techniques, Macerata, Italy, August, 2000.
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Table 2.18 Transactions in Physical Terms (Germany, 1990)
(millions of tons)

Primary Secondary Tertiary Final Demand Total Output

Primary 2248 1442 336 84 4110
Secondary 27 1045 206 708 1986
Tertiary 5 69 51 36 161

generate a three-sector aggregation of these data for the illustrations in their study. In
particular, transactions are shown in Table 2.18, above.

As in the illustration in (2.57), the associated direct inputs matrix, here C, has
coefficients that are larger than 1:

C =
⎡⎣ .5470 .7261 2.0870

.0066 .5262 1.2795

.0012 .0347 .3168

⎤⎦
As we saw above, this does not pose any problems for the usual input–output
calculations; here the Leontief inverse is easily found to be

(I − C)−1 =
⎡⎣ 2.3185 4.7204 15.9220

.0502 2.5486 4.9262

.0067 .1380 1.7425

⎤⎦
As we see, some elements are large; these are associated with the large elements in C,
but they are not inappropriate in the context of this PIOT. The reader can easily check
the validity of this inverse from the base-case data, namely

x =
⎡⎣ 4110

1986
161

⎤⎦ = (I − C)−1f =
⎡⎣ 2.3185 4.7204 15.9220

.0502 2.5486 4.9262

.0067 .1380 1.7425

⎤⎦⎡⎣ 84
708
36

⎤⎦
Despite the unusual elements in C, the power series approximation to the Leontief

inverse – I+C+C2 +C3 +· · · – works just fine, although slowly; it requires 37 terms
to come within four-digit accuracy. Here are some of the terms:

C10 =
⎡⎣ 0.0077 0.0971 0.3551

0.0011 0.0167 0.0616
0.0001 0.0018 0.0067

⎤⎦ , C20 =
⎡⎣ 0.0002 0.0030 0.0111

0.0000 0.0005 0.0018
0.0000 0.0001 0.0002

⎤⎦ ,

C30 =
⎡⎣ 0 .0001 .0003

0 0 .0001
0 0 0

⎤⎦ , C37 = 0

and (
I +

37∑
k=1

Ck

)
=
⎡⎣ 2.3185 4.7204 15.9220

.0502 2.5486 4.9262

.0067 .1380 1.7425

⎤⎦ = (I − C)−1
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The interested reader with access to combinatorial algebra software on a computer

might check that for this illustration, with (I − C) =
⎡⎣ .4530 −.7261 −2.0870

−.0066 .4738 −1.2795
−.0012 −.0347 .6832

⎤⎦,

the Hawkins–Simon conditions are satisfied, meaning that all seven principal minors
of (I − C) are positive (Appendix 2.2).

2.6.9 A Basic National Income Identity
From (2.43), q = (I − C)−1d; from (2.51), p′ = υ′

c(I − C)−1, and postmultiplying
this by d,

p′d = υ ′
c(I − C)−1d = υ ′

cq

The total value of spending (exogenous final demand, p′d) equals the total value of
earnings (payments to exogenous primary inputs, υ ′

cq), or national income spent equals
national income received.

2.7 Summary

We have introduced the basic structure of the input–output model in this chapter. After
investigating the special features of sectoral production functions that are assumed in
the Leontief system, we examined its mathematical features. Importantly, the model
is expressed in a set of linear equations, and we have tried to indicate the connection
between the purely algebraic solution to the input–output equations, using the Leontief
inverse matrix, and the logical, economic content of the round-by-round view of produc-
tion interrelationships in an economy. Both the algebraic details as well as the economic
assumptions needed to close the model with respect to households were discussed.
Some of the special problems associated with the concept of household consumption
coefficients have been addressed in applications, especially at the regional level. We
also introduced the Leontief price model, a logical (and mathematical) companion to
the quantity model, and we explored alternatives to both models when the underlying
data are measured in physical rather than monetary terms. Table 2.19 summarizes the
alternatives. (Information in the monetary row is in Table 2.15.)

We turn to regional input–output models in the next chapter. It is important to add the
regional dimension; many if not most important policy questions are not purely national
in scope. Rather, analysts (even at the national level) are interested in differential
regional effects of, say, a change in national government policy regarding exports.
It is important to know not only the total magnitudes of the new outputs, by sector,
that come about because of stimulation of exports, but also to know something of
their geographical incidence – is a particularly depressed area helped by such export
stimulation, or does the increased output occur largely in regions that are economically
more healthy? Extensions of the basic model to deal with issues of this sort will occupy
us in Chapter 3.
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Table 2.19 Alternative Input–Output Price and Quantity
Models

Measurement Units Quantity Model Price Model

Monetary x = (I − A)−1f
(2.11)

p̃′ = v′
c(I − A)−1

(2.32)
or
p̃ = (I − A′)−1vc
(2.33)

Physical q = (I − C)−1d
(2.43)

p′ = υ′
c(I − C)−1

(2.51)
or
p = (I − C′)−1υc
(2.52)

Appendix 2.1 The Relationship between Approaches I and II

To examine the connection between the two alternative approaches to the numer-
ical example in section 2.3, we consider a general two-sector economy with

A =
[

a11 a12

a21 a22

]
and let f1 and f2 represent values of the new final demands.22

A2.1.1 Approach I

Using the Leontief-inverse, we find (I − A) =
[

(1 − a11) −a12

−a21 (1 − a22)

]
and, provided

that |I − A| �= 0, which means that (1−a11)(1−a22)−(−a12)(−a21) �= 0 (AppendixA)

(I − A)−1 = 1

|I − A| [adj(I − A)] =

⎡⎢⎢⎣
(1 − a22)

|I − A|
a12

|I − A|
a21

|I − A|
(1 − a11)

|I − A|

⎤⎥⎥⎦ (A2.1.1)

The associated gross outputs are found from x = (I − A)−1f , namely

x1 =
[
(1 − a22)

|I − A|
]

f1 +
[

a12

|I − A|
]

f2

x2 =
[

a21

|I − A|
]

f1 +
[
(1 − a11)

|I − A|
]

f2

(A2.1.2)

22 As elsewhere in this chapter, we ignore the “0” and “1” superscripts for notational simplicity when the intended
meaning is clear from the context.
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A2.1.2 Approach II
The round-by-round calculation of total impacts requires only the elements of the A
matrix. The first-round impact on sector 1 – in terms of what it must produce to satisfy
its own and sector 2’s needs for inputs – is a11f1 + a12f2︸ ︷︷ ︸

Sector 1, Round 1

. For sector 2, the first-round

impact is a21f1 + a22f2︸ ︷︷ ︸
Sector 2, Round 1

. (These were $465 and $195 in the numerical example.)

The second-round impacts result from production that is required to take care of
first-round needs. These are easily seen to be

For sector 1: a11 (a11f1 + a12f2)︸ ︷︷ ︸
Sector 1, Round 1

+ a12 (a21f1 + a22f2)︸ ︷︷ ︸
Sector 2, Round 1

For sector 2: a21 (a11f1 + a12f2)︸ ︷︷ ︸
Sector 1, Round 1

+ a22 (a21f1 + a22f2)︸ ︷︷ ︸
Sector 2, Round 1

(These were $118.50 and $102.75 in the numerical example.)
The nature of the expansion is now clear. For sector 1 in round 3, we will have

a11 [a11(a11f1 + a12f2) + a12(a21f1 + a22f2)]︸ ︷︷ ︸
Sector 1, Round 2

+ a12 [a21(a11f1 + a12f2) + a22(a21f1 + a22f2)]︸ ︷︷ ︸
Sector 2, Round 2

and for sector 2 in round 3:

a21 [a11(a11f1 + a12f2) + a12(a21f1 + a22f2)]︸ ︷︷ ︸
Sector 1, Round 2

+ a22 [a21(a11f1 + a12f2) + a22(a21f1 + a22f2)]︸ ︷︷ ︸
Sector 2, Round 2

(These were $43.46 and $28.84 in the numerical example.)
Without going further, we can develop an expression for an approximation to x1 in

terms of f1 and f2 and the technical coefficients on the basis of only three rounds of
effects. Collecting the terms for round-by-round effects on sector 1, we have

x1 ∼= f1 + a11f1 + a2
11f1 + a12a21f1 + a3

11f1 + a11a12a21f1

+ a12a21a11f1 + a12f2 + a11a12f2 + a12a22f2 + a11a11a12f2

+ a11a12a22f2 + a12a21a12f2 + a12a22a22f2
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or

x1 ∼= (1 + a11 + a2
11 + a12a21 + a3

11 + a11a12a21 + a12a21a11)f1

+ (a12 + a11a12 + a12a22 + a11a11a12 + a11a12a22 (A2.1.3)

+ a12a21a12 + a12a22a22)f2

A similar expression can be derived for x2.
The object of this algebra is to make clear that in round 2, the effect is found in

products of pairs of coefficients (e.g., a2
11 and a11a12); in round 3, the effect comes

from products of triples of coefficients (e.g., a3
11 and a11a12a21). Similarly, in round

4, sets of four coefficients will be multiplied together, . . . and in round n, sets of n
coefficients will be multiplied. In monetary terms, all ajj < 1 and aij < 1 since producer
j must buy, from himself and each supplier i, less than one dollar’s worth of inputs per
dollar’s worth of output. Therefore it is clear that eventually the effects in the “next”
round will be essentially negligible. Mathematically, the expression for x1 has the form

x1 = (1 + infinite series of terms involving products of pairs, triples, . . ., of aij)f1

+ (similar infinite series)f2 (A2.1.4)

There would be a parallel expression for x2. If we denote these two parenthetical series
terms for x1 by s11 and s12, and in the similar expression for x2 by s21 and s22, we have
gross outputs related to final demands by

x1 = s11f1 + s12f2
x2 = s21f1 + s22f2

(A2.1.5)

The evaluation of the s terms as four different infinite series would be a difficult and
tedious task.

Alternatively, we could think of the new total output x1 as composed of two parts: (a)
the new final demands for sector 1’s output, f1, and (b) all direct and indirect effects on
sector 1 generated by f1 and f2. (This approach was suggested in Dorfman, Samuelson
and Solow, 1958, section 9.3.) To this end, define F1 = a11f1 + a12f2, the first-round
response from sector 1, and, similarly, let F2 = a21f1 + a22f2 for sector 2. These first-
round outputs will similarly generate second-round outputs, and so on, exactly as did f1
and f2 above. The suggestion is that the final outputs can be looked at as (1) a series of
round-by-round effects on f1 and f2 or as (2) f1 and f2, plus a series of round-by-round
effects on F1 and F2. In this alternative view, a complete derivation similar to that
preceding (A2.1.5) would lead to

x1 = f1 + s11F1 + s12F2

x2 = f2 + s21F1 + s22F2
(A2.1.6)

Substituting F1 = a11f1 + a12f2 and F2 = a21f1 + a22f2 and collecting terms,

x1 = (1 + s11a11 + s12a21)f1 + (s11a12 + s12a22)f2
x2 = (s21a11 + s22a21)f1 + (1 + s21a12 + s22a22)f2

(A2.1.7)
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Both (A2.1.5) and (A2.1.7) show x1 and x2 as linear functions of f1 and f2, so the
coefficients in corresponding positions must be equal. That is,

s11 = 1 + s11a11 + s12a21 s12 = s11a12 + s12a22

s21 = s21a11 + s22a21 s22 = 1 + s21a12 + s22a22

The top two are linear equations in the unknowns s11 and s12, and the bottom two are
linear equations in s21 and s22. Rearranging to emphasize that the s are unknowns and
the a are known coefficients,

(1 − a11)s11 − a21s12 = 1

−a12s11 + (1 − a22)s12 = 0

(1 − a11)s21 − a21s22 = 0

−a12s21 + (1 − a22)s22 = 1

or [
(1 − a11) −a21

−a12 (1 − a22)

] [
s11

s12

]
=
[

1
0

]
(A2.1.8a)[

(1 − a11) −a21

−a12 (1 − a22)

] [
s21

s22

]
=
[

0
1

]
(A2.1.8b)

Both sets of equations have the same coefficient matrix. Since[
(1 − a11) −a21

−a12 (1 − a22)

]−1

= 1

(1 − a11)(1 − a22) − a12a21

[
(1 − a22) a21

a12 (1 − a11)

]
and since (1−a11)(1−a22)−a12a21 = |I − A| [in (A2.1.1) and (A2.1.2)], the solutions
to the two pairs of linear equations in (A2.1.8) are

[
s11

s12

]
=

⎡⎢⎢⎣
(1 − a22)

|I − A|
a21

|I − A|
a12

|I − A|
(1 − a11)

|I − A|

⎤⎥⎥⎦[
1
0

]
and

[
s21

s22

]
=

⎡⎢⎢⎣
(1 − a22)

|I − A|
a21

|I − A|
a12

|I − A|
(1 − a11)

|I − A|

⎤⎥⎥⎦[
0
1

]

That is,

s11 = (1 − a22)

|I − A| , s12 = a12

|I − A| , s21 = a21

|I − A| , s22 = (1 − a11)

|I − A|
These algebraic expressions equate the four infinite series terms, whose complex form

was suggested in (A2.1.3) and (A2.1.4), to very simple functions of the elements of A.
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Moreover, these four simple functions are precisely the four elements of the Leontief
inverse, as found in (A2.1.1). In economic terms, the (I−A)−1 matrix captures in each
of its elements all of the infinite series of round-by-round direct and indirect effects that
the new final demands have on the outputs of the two sectors. (A demonstration along
these lines is much more complex for a three-sector input–output model and unwieldy
for more than three sectors.)

The elements of this Leontief inverse matrix are often termed multipliers. With

(I − A)−1 = L =
[

l11 l12

l21 l22

]
and forecasts for f1 and f2, the total effect on x1 is given

by l11f1+l12f2, the sum of the multiplied effects of each of the individual final demands.
And similarly for x2. Input–output multipliers are explored in Chapter 6.

Appendix 2.2 The Hawkins–Simon Conditions

No matter how many terms we use in the series approximation to (I − A)−1in (2.17), it
is clear that each of the terms contains only non-negative elements, since all aij ≥ 0. As
noted in section 2.4, not only is A ≥ 0, but A2 ≥ 0, . . . , An ≥ 0; therefore (I+A+A2 +
· · · ) is a matrix of non-negative terms. If the elements of f are all non-negative, then the
associated x will contain non-negative elements also. This is what one would expect;
when faced with a set of non-negative final demands it would be meaningless in an
economy to find that one or more of the necessary gross outputs were negative.23 For a
Leontief system with A ≥ 0 and N (A) < 1 [so that the results in (2.17) hold], we know
that negative outputs will never be required from any sector to satisfy non-negative
final demands.

One could also explore conditions under which f ≥ 0 would always generate x ≥ 0
by examining the general definition (I − A)−1 = 1

|I−A| [adj(I − A)] (Appendix A). For
the simplest, two-sector case,

(I − A)−1 =

⎡⎢⎢⎣
(1 − a22)

|I − A|
a12

|I − A|
a21

|I − A|
(1 − a11)

|I − A|

⎤⎥⎥⎦
and all of the elements in (I − A)−1 must be non-negative – the numerators must all
be non-negative and the denominator must be positive (the denominator must not be
zero, either). Or, all numerators could be non-positive and the denominator negative.

We have already noted that aij ≥ 0 and that N (A) < 1 and (also by their defini-
tion) all aij < 1.24 Thus all numerators in (I − A)−1 are non-negative. Therefore, if
|I – A| > 0, all elements in the 2 × 2 Leontief inverse will be non-negative.

23 In some models, as we have seen, negative values could have meaning. When both x’s and f ’s are defined as
“changes in”, namely �x and �f , then a result like �x3 = − 400 is interpreted as a decrease of $400 in sector
3’s output.

24 As we saw in section 2.6, this need not be the case in input–output tables denominated in physical rather than
monetary terms – for example, liters of input per kilogram of output. See also Chapters 9 and 10.
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Hawkins and Simon (1949) investigated the issue of non-negative solutions to more
general equation systems. For a system in which A ≥ 0 (as in the input–output case)
but in which no restriction is placed on the column sums of A, they found for the 2 × 2
case that necessary and sufficient conditions to assure x ≥ 0 are25

(a) (1 − a11) > 0 and (1 − a22) > 0
(b) |I − A| > 0

(A2.2.1)

These conditions have a straightforward geometrical interpretation for the 2 × 2 case.
We examine the solution-space representation. The fundamental relations

(a) (1 − a11)x1 − a12x2 = f1
(b) − a21x1 + (1 − a22)x2 = f2

(A2.2.2)

define a pair of linear equations in x1x2 space. By setting one variable at a time equal
to zero in each equation, it is easy to find the intercepts of each line on each axis. These
are shown in Figure A2.2.1a, for arbitrary (but positive) f1 and f2. (Assume that both
a12 and a21 are strictly positive, i.e., that each sector sells some inputs to the other. In
a highly aggregated model this is virtually certain to be the case.)

As long as (1 – a11) > 0 and (1 – a22) > 0 – the first Hawkins–Simon condition in the
2 × 2 case – for f1 > 0 and f2 > 0, the intercept of (A2.2.2)(a) on the x1-axis will be to
the right of the origin and the intercept of (A2.2.2)(b) on the x2-axis will be above the
origin. Therefore, for non-negative total outputs, it is required that these two equations
intersect in the first quadrant; this means that the slope of equation (a) must be greater

f1/(1–a11)
f1/(–a12)

f2/(–a21)

f2/(1–a22)

x2(a)

x1

(a)
(b)

Figure A2.2.1a Solution Space Representation of (A2.2.2); a12 > 0 and a21 > 0

25 The matrix algebra requirement for a unique solution to (I − A)x = f is that |I − A| �= 0. Now we are further
restricting this determinant to only positive values.
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than the slope of equation (b). These slopes are:

For equation (a)

f1
a12
f1

(1 − a11)

= (1 − a11)

a12

For equation (b)

f2
(1 − a22)

f2
a21

= a21

(1 − a22)

and thus the slope requirement is (1−a11)/a12 > a21/(1−a22). Multiplying both sides
of the inequality by (1 – a22) and by a12 – both of which are assumed to be strictly posi-
tive – does not alter the direction of the inequality, giving (1 − a11)(1 − a22) > a12a21 or
(1 − a11)(1 − a22) − a12a21 > 0, which is just |I –A| > 0, the second Hawkins–Simon
condition in the 2 × 2 case.

The effects of less interdependence in the two-sector economy are illustrated in
Figures A2.2.1b and A2.2.1c. If a21 = 0, meaning that z21 = 0 (sector 1 uses no inputs
from sector 2), then the slope of the line labeled (b) is zero. It is a horizontal line
intersecting the x2-axis at the height f2/(1−a22). This is to be expected; the gross output
necessary from sector 2 depends only on final demand for the output of sector 2, f2, and
the amount of intraindustry input that sector 2 buys from itself, a22 (Figure A2.2.1b).
Similarly, if a12 = 0 – sector 2 buys no inputs from sector 1 – line (a) in the figure will
have an infinite slope; it will be vertical through the point f1/(1 − a11) on the x1-axis
(Figure A2.2.1c).

The geometry of the 2 × 2 case does not generalize easily, at least for n > 3. For this,
we need some matrix terminology. The minor of an element aij in an n × n square

f2/(1–a22)

x2(b)

x1

(a)

(b)

Figure A2.2.1b Solution Space Representation of (A2.2.2); a21 = 0
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f1/(1–a11)

x2(c)

x1

(a)

(b)

Figure A2.2.1c Solution Space Representation of (A2.2.2); a12 = 0

matrix, A, is defined as the determinant of the (n − 1)× (n − 1) matrix remaining when
row i and column j are removed from A (Appendix A). Another kind of minor that
is associated with a matrix (not with a particular element in a matrix) is a principal
minor. If none, or one, or more than one row and the same columns are removed from
A, the determinant of the remaining square matrix is a principal minor of A. Using
the concept of principal minors, the Hawkins–Simon conditions for the 2 × 2 case in
(A2.2.1) can be expressed compactly as the requirement that all principal minors of
(I − A) be strictly positive – (a) in (A2.2.1) results from removing row and column 1
or row and column 2, (b) in (A2.2.1) results from removing no rows and columns. (It
is impossible to remove more than n − 1 rows and columns; if all n are gone, there is
no matrix left.)

For a 3 × 3 matrix A, removal of row and column 1, or row and column 2, or row
and column 3 leaves, in each case, a square 2 × 2 matrix. The determinants of those
three matrices are all principal minors of A (sometimes called second-order principal
minors, because they are determinants of 2 × 2 matrices). Moreover, removal of rows
and columns 1 and 2, or rows and columns 1 and 3, or rows and columns 2 and 3 leaves,
in each case, a square 1 × 1 matrix (the determinant of a 1 × 1 matrix is defined simply
as the value of the element itself); these are the three first-order principal minors of
A. By extension, the third-order principal minor in this case is just the determinant of
the entire 3 × 3 matrix, when no rows and columns are removed. Thus there are seven
principal minors in a 3 × 3 matrix.

This principal minor rule can be generalized; namely, regardless of the size of n, the
parallel to (A2.2.1) is that all principal minors of (I−A) – first-order, second-order, . . .,
nth-order – should be positive. The interested reader might try writing out the seven
principal minors of a 3×3 (I−A) matrix. In the 4×4 case there are 15 principal minors.
(For the reader familiar with the mathematics of combinations, this number is found as
C4

0 + C4
1 + C4

2 + C4
3 = 1 + 4 + 6 + 4 = 15.) This gives some idea of the way in which
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the complexity of these rules increases with the number of sectors in the input–output
model, and extension and application of the results in (A2.2.1) to conditions for an n×n
system with n even modestly large would be cumbersome and tedious, even though
the definition of principal minors of a matrix presents a simple way of expressing the
rule for the general case. These conditions are totally impractical to check for large,
real-world input–output systems. [For example, for a 10-sector model, the number of
principal minors is 1023 (!).]

However, there is a large amount of published work on alternative sets of condi-
tions on A and f that serve to identify when non-negative final demands will generate
non-negative outputs. Dietzenbacher (2005) provides an extremely simple sufficient
condition. If the original data are Z0 > 0 and f0 ≥ 0 (with at least one f 0

i > 0), then
L0 = (I − A0)−1 > 0 and x1 = L0f1 ≥ 0 for any f1 ≥ 0. These requirements on Z0 and
f0 are easily checked by inspection, bypassing the need for the Hawkins–Simon princi-
pal minors. In fact, as noted in Dietzenbacher (2005), the positivity condition, Z0 > 0,
can be relaxed to the requirement of non-negativity, Z0 ≥ 0, using an assumption that
allows Z0 to contain many zeros.26 This allows for the more realistic case, especially in
highly disaggregated models, of zero-valued intermediate flows between some sectors.
An additional benefit is that derivation of these results does not depend on a0

ij < 1. When
tables are based on transactions measured in physical terms it is entirely possible that
some coefficients will be larger than 1 and hence that N (A) > 1 – as we saw in section
2.6, above.

Problems

2.1 Dollar values of last year’s interindustry transactions and total outputs for a two-sector
economy (agriculture and manufacturing) are as shown below:

Z =
[

500 350
320 360

]
x =

[
1000
800

]

a. What are the two elements in the final-demand vector f =
[

f1
f2

]
?

b. Suppose that f1 increases by $50 and f2 decreases by $20. What new gross outputs
would be necessary to satisfy the new final demands?

i. Find an approximation to the answer by using the first five terms in the power
series, I + A + A2 + · · · + An.

ii. Find the exact answer using the Leontief inverse.

26 Both the assumption and the further analysis are considerably more complex and beyond the scope of this
text – involving, for example, Frobenius theorems, indecomposable (irreducible) matrices, eigenvectors, and
eigenvalues. The interested reader is referred to the thorough discussion of these and other mathematical issues
in input–output analysis in Takayama (1985, Chapter 4).
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2.2 Interindustry sales and total outputs in a small three-sector national economy for year
t are given in the following table, where values are shown in thousands of dollars.
(S1, S2 and S3 represent the three sectors.)

Interindustry Sales

S1 S2 S3 Total Output

S1 350 0 0 1000
S2 50 250 150 500
S3 200 150 550 1000

a. Find the technical coefficients matrix, A, and the Leontief inverse matrix, L, for
this economy.

b. Suppose that because of government tax policy changes, final demands for the
outputs of sectors 1, 2 and 3 are projected for next year (year t +1) to be 1300, 100
and 200, respectively (also measured in thousands of dollars). Find the total outputs
that would be necessary from the three sectors to meet this projected demand,
assuming that there is no change in the technological structure of the economy
(that is, assuming that the A matrix does not change from year t to year t + 1).

c. Find the original (year t) final demands from the information in the table of data.
Compare with the projected (year t + 1) final demands. Also, compare the original
total outputs with the outputs found in part b. What basic feature of the input–output
model do these two comparisons illustrate?

2.3 Using the data of Problem 2.1, above, suppose that the household (consumption)
expenditures part of final demand is $90 from sector 1 and $50 from sector 2. Suppose,
further, that payments from sectors 1 and 2 for household labor services were $100
and $60, respectively; that total household (labor) income in the economy was $300;
and that household purchases of labor services were $40. Close the model with respect
to households and find the impacts on sectors 1 and 2 of a final demand of $200 and
$1000 for sectors 1 and 2, respectively, using the Leontief inverse for the new 3 × 3
coefficient matrix. Compare the outputs of sectors 1 and 2 with those obtained without
closing the model to households. How do you explain the differences?

2.4 Consider an economy organized into three industries: lumber and wood products,
paper and allied products, and machinery and transportation equipment. A consulting
firm estimates that last year the lumber industry had an output valued at $50 (assume
all monetary values are in units of $100,000), 5 percent of which it consumed itself;
70 percent was consumed by final demand; 20 percent by the paper and allied products
industry; 5 percent by the equipment industry. The equipment industry consumed 15
percent of its own products, out of a total of $l00; 25 percent went to final demand; 30
percent to the lumber industry; 30 percent to the paper and allied products industry.
Finally, the paper and allied products industry produced $50, of which it consumed
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10 percent; 80 percent went to final demand; 5 percent went to the lumber industry;
and 5 percent to the equipment industry.

a. Construct the input–output transactions matrix for this economy on the basis of
these estimates from last year’s data. Find the corresponding matrix of technical
coefficients, and show that the Hawkins–Simon conditions are satisfied.

b. Find the Leontief inverse for this economy.
c. A recession in the economy this year is reflected in decreased final demands,

reflected in the following table:

Industry
% Decrease
in Final Demand

Lumber & Wood Products 25
Machinery & Transportation Equipment 10
Paper & Allied Products 5

d. What would be the total production of all industries required to supply this year’s
decreased final demand? Compute the value-added and intermediate output vectors
for the new transactions table.

2.5 Consider a simple two-sector economy containing industries A and B. Industry A
requires $2 million worth of its own product and $6 million worth of Industry B’s
output in the process of supplying $20 million worth of its own product to final
consumers. Similarly, Industry B requires $4 million worth of its own product and $8
million worth of Industry A’s output in the process of supplying $20 million worth of
its own product to final consumers.

a. Construct the input–output transactions table describing economic activity in this
economy.

b. Find the corresponding matrix of technical coefficients and show that the Hawkins–
Simon conditions are satisfied.

c. If in the year following the one in which the data for this model was compiled
there were no changes expected in the patterns of industry consumption, and if a
final demand of $15 million worth of good A and $18 million worth of good B
were presented to the economy, what would be the total production of all industries
required to supply this final demand as well as the interindustry activity involved
in supporting deliveries to this final demand?

2.6 Consider the following transactions table, Z, and total outputs vector, x, for two sectors,
A and B:

Z =
[

6 2
4 2

]
x =

[
20
15

]

a. Compute the value-added and final-demand vectors. Show that the Hawkins–Simon
conditions are satisfied.



Problems 65

b. Consider the r-order round-by-round approximation of x = Lf to be x̃ = ∑r
i=0 Aif

(remember that A0 = I). For what value of r do all the elements of x̃ come within
0.2 of the actual values of x?

c. Assume that the cost of performing impact analysis on the computer using the
round-by-round method is given by Cr = c1r + c2(r − 1.5) where r is the order of
the approximation (c1 is the cost of an addition operation and c2 is the cost of a
multiplication operation). Also, assume that c1 = 0.5c2, that the cost of computing
(I−A)−1 exactly is given by Ce = 20c2 and the cost of using this inverse in impact
analysis (multiplying it by a final-demand vector) is given by Cf = c2. If we wish to
compute the impacts (total outputs) of a particular (arbitrary) final-demand vector
to within at least 0.2 of the actual values of x = Lfa, where fa is an arbitrary final-
demand vector, should we use the round-by-round method or should we compute
the exact inverse and then perform impact analysis? The idea is to find the least-cost
method for computing the solution.

d. Suppose we had five arbitrary final-demand vectors whose impact we wanted to
assess. How would you now answer part c?

e. For what number of final-demand vectors does it not make any difference which
method we use (in answer to the question in part c)?

2.7 Given the following transactions table for industries a, b, and c, and the total output as
shown, compute the final-demand vectors and show that the inverse of (I − A) exists.

Industries a b c Total Output

a 3 8 6 22
b 2 4 5 18
c 7 3 9 31

Use the power series to approximate x to within 0.1 of the actual output values shown
above. What was the highest power of A required?

2.8 Consider the following transactions and total output data for an eight-sector economy.

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8, 565 8, 069 8, 843 3, 045 1, 124 276 230 3, 464
1, 505 6, 996 6, 895 3, 530 3, 383 365 219 2, 946

98 39 5 429 5, 694 7 376 327
999 1, 048 120 9, 143 4, 460 228 210 2, 226

4, 373 4, 488 8, 325 2, 729 29, 671 1, 733 5, 757 14, 756
2, 150 36 640 1, 234 165 821 90 6, 717
506 7 180 0 2, 352 0 18, 091 26, 529

5, 315 1, 895 2, 993 1, 071 13, 941 434 6, 096 46, 338

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x′ = [
37, 610 45, 108 46, 323 41, 059 209, 403 11, 200 55, 992 161, 079

]
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a. Compute A and L.
b. If final demands in sectors 1 and 2 increase by 30 percent while that in sector 5

decreases by 20 percent (while all other final demands are unchanged), what new
total outputs will be necessary from each of the eight sectors in this economy?

2.9 Consider the following two-sector input–output table measured in millions of
dollars:

Manuf. Services Final Demand Total Output

Manufacturing 10 40 50 100
Services 30 25 85 140
Value Added 60 75 135
Total Output 100 140 240

If labor costs in the services sector increase, causing a 25 percent increase in value
added inputs required per unit of services and labor costs in manufacturing decrease
by 25 percent, what are the resulting changes in relative prices of manufactured goods
and services?

2.10 For the US direct requirements table given in Table 2.7, what would be the impact on
relative prices if a national corporate income tax increased total value added of primary
industries (agriculture and mining) by 10 percent, construction and manufacturing by
15 percent, and all other sectors by 20 percent?

2.11 Consider an input–output economy with three sectors: agriculture, services, and per-
sonal computers.The matrix of interindustry transactions and vector of total outputs are

given, respectively, by Z =
⎡⎣ 2 2 1

1 0 0
2 0 1

⎤⎦ and x =
⎡⎣ 5

2
2

⎤⎦ so that f = x − Zi =
⎡⎣ 0

1
−1

⎤⎦.

Notice that this is a closed economy where all industry outputs become inputs.
In other words, with the given x, the vector of total value added is found by
v′ = x′ − i′Z = [

0 0 0
]

and, of course, gross domestic product is v′i = i′f = 0.
Does L exist for this economy? Suppose we determine that all of the inputs for the
personal computers sector are imported and we seek to create a domestic transactions
matrix by “opening” the economy to imports, i.e., transfer the value of all inputs to
personal computers to final demand. What are the modified values of Z, f and v?
What is the new value of gross domestic product? Does L exist for this modified
representation of the economy? If so, compute it.
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3 Input–Output Models at the
Regional Level

3.1 Introduction

Originally, applications of the input–output model were carried out at national levels –
for example, to assess the impact on the individual sectors of the US economy of a
change from war to peacetime production as the end of World War II approached. Over
time, interest in economic analysis at the regional level – whether for a group of states
(as in a federal reserve district), an individual state, a county or a metropolitan area – has
led to modifications of the input–output model which attempt to reflect the peculiarities
of a regional (subnational) problem. There are at least two basic features of a regional
economy that influence the characteristics of a regional input–output study.

First, although the data in a national input–output coefficients table are obviously
some kind of averages of data from individual producers located in specific regions,
the structure of production in a particular region may be identical to or it may differ
markedly from that recorded in the national input–output table. Soft drinks of a particu-
lar brand that are bottled in Boston probably incorporate basically the same ingredients
in the same proportions as are present in that brand of soft drink produced in Kansas
City or Atlanta or in any other bottling plant in the United States. On the other hand,
electricity produced in eastern Washington by water power (Coulee Dam) represents
quite a different mix of inputs from electricity that is produced from coal in Pennsyl-
vania or by means of nuclear power or “wind farms” elsewhere. For these reasons, the
early methodology for regional input–output applications – which used national input
coefficients with some minor modifications – has given way to coefficients tables that
are tailored to a particular region on the basis of data specific to that region.

Secondly, it is generally true that the smaller the economic area, the more depen-
dent that area’s economy is on trade with “outside” areas – transactions that cross the
region’s borders – both for sales of regional outputs and purchases of inputs needed for
production. That is, one of the elements that contributed to the exogenous final-demand
sector in the model described in Chapter 2 – exports – now will generally be relatively
much more important and a higher proportion of inputs will be imported from pro-
ducers located outside of the region. To exaggerate, a one-world economy would have
no “foreign trade,” since all sales and purchases would be internal to the worldwide

69



70 Input–Output Models at the Regional Level

“region,” whereas an urban area depends very much on imports and exports (imports
of components to aircraft production and exports of Boeing airliners from the Seattle
area).

In this chapter we will explore some of the attempts that have been made to incorpo-
rate these features of a regional economy into an input–output framework. Such regional
input–output models may deal with a single region or with two or more regions and
their interconnections. The several-region case is termed interregional input–output
analysis (in one version) or multiregional input–output analysis (in another version).
We will examine each of these kinds of regionalized input–output models, as well as
what is known as the balanced regional model.

There has been an enormous amount of input–output work at the regional level.
Examples of some of the earliest single-region applications are found in Moore and
Petersen (1955), Isard and Kuenne (1953), Miller (1957), and Hirsch (1959). A very
thorough discussion and documentation of the details involved in producing a regional
input–output table during the early period in the development of this area of application
is provided by Isard and Langford (1971) – in this case the region was the Philadelphia
Standard Metropolitan Statistical Area – and in Miernyk et al. (1967) for Boulder,
Colorado, and Miernyk et al. (1970) for West Virginia. Overviews of early regional
input–output models can be found in Polenske (1980, Chapter 3) and in Miernyk (1982).
For an idea of the large amount of continuing work in this area, the reader is referred
to annual indexes in such journals as Economic Systems Research, Journal of Regional
Science, International Regional Science Review and Papers in Regional Science.1 In
addition, many regional input–output tables and studies using these tables have been
published by the appropriate sub-national agencies (state and local governments or
their counterparts outside the USA) for whom the analysis was done, or by universities
where the work was done.

In section 3.6 we indicate some examples of how the geographic scale of connected-
region models has evolved in both the micro- and macroscopic directions from these
earliest applications – down to models of as small an area as an inner-city neighborhood
and up to what are often referred to as “world” models, encompassing several blocs
of mega-nations. Examples of regional applications will also be discussed in Chapter
6 on multipliers and in Chapter 8 on estimating regional data. Much of the material
on regional and interregional input–output models in this chapter and several chapters
later in this book is covered (in less detail) in Miller (1998).

3.2 Single-Region Models

3.2.1 National Coefficients
Generally, regional input–output studies attempt to quantify the impacts on the pro-
ducing sectors located in a particular region that are caused by new final demands for

1 Other relevant journals include Environment and Planning A, Annals of Regional Science, Regional Studies,
Growth and Change, Urban Studies, Land Economics, Regional Science and Urban Economics, Regional
Science Perspectives, and Economic Geography.
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products made in the region. Early regional studies (Isard and Kuenne, 1953; Miller,
1957) used a national table of technical coefficients in conjunction with an adjust-
ment procedure that was designed to capture some of the characteristics of the regional
economies, since specific coefficients tables for the particular regions did not exist.2

We use a superscript r to designate “region r” in the same way that subscript i denoted
“sector i” in the discussion in Chapter 2. Thus, just as xi was used to denote the gross
output of sector i, let xr = [xr

i ] denote the vector of gross outputs of sectors in region
r. Similarly, f r = [f r

i ] represents the vector of exogenous demands for goods made in
region r. For example, if r denotes Washington State, one element of f r could be an
order from a foreign airline for commercial aircraft from Boeing in Washington.

The problem in these early regional studies was that only a national technical coeffi-
cients matrix, A, was available, but what was needed, essentially, was a matrix showing
inputs from firms in the region to production in that region. Denote this unknown matrix
by Arr = [arr

ij ], where arr
ij is the amount of input from sector i in r per dollar’s worth of

output of sector j in r. (This anticipates notation later for many-region models, where
we will need two superscripts to identify origin and destination regions, just as i and j
are origin and destination sectors.) Assume, in the absence of evidence to the contrary,
that local producers use the same production recipes as are shown in the national coef-
ficients table, meaning that the technology of production in each sector in region r is
the same as in the nation as a whole. Nonetheless, in order to translate regional final
demands into outputs of regional firms (xr), the national coefficients matrix must be
modified to produce Arr (locally produced goods in local production).

Early studies carried out this modification through the use of estimated regional
supply percentages, one for each sector in the regional economy, designed to show
the percentage of the total required outputs from each sector that could be expected
to originate within the region. One straightforward way to estimate these percentages,
using data that may often be obtainable at the regional level, requires knowledge of
(1) total regional output of each sector i, xr

i , (2) exports of the product of each sector i
from region r, er

i , and (3) imports of good i into region r, mr
i . Then, one can form an

expression for the proportion of the total amount of good i available in region r that
was produced in r (the regional supply proportion of good i). We denote this by pr

i ,
where

pr
i = (xr

i − er
i )

(xr
i − er

i + mr
i )

The numerator is the locally produced amount of i that is available to purchasers in
r; the denominator is the total amount of i available in r, either produced locally or
imported. (Thus pr

i × 100 is an estimate of the regional supply percentage for sector i
in region r – the percentage of good i available in r that was produced there.)

Assuming that we can estimate such proportions for each sector in the economy,
each element in the ith row of the national coefficients matrix could be multiplied by

2 The “regions” were the Greater New York–Philadelphia urban-industrial region (consisting of 2 counties in
Connecticut, 11 in New York, 19 in New Jersey, and 5 in Pennsylvania) in the first case and the states of
Washington, Oregon, and Idaho in the second.
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pr
i to generate a row of locally produced direct input coefficients of good i to each local

producer. If we arrange these proportions in an n-element column vector, pr , then our
working estimate of the regional matrix will be Arr = p̂rA. For a two-sector model,
this is

Arr = p̂rA =
[

pr
1 0

0 pr
2

] [
a11 a12

a21 a22

]
=
[

pr
1a11 pr

1a12

pr
2a21 pr

2a22

]
For any f r we could then find xr = (I − p̂rA)−1f r . This uniform modification of the

elements in a row of A is a strong assumption. It means, for example, that if the aircraft,
kitchen equipment, and pleasure boat sectors in Washington all use aluminum (sector
i) as an input, all three sectors buy the same percentage, pr

i , of their total aluminum
needs from firms located within the state.

In the two-sector example in Chapter 2 we had A =
[

.15 .25

.20 .05

]
. Assume that this is

a national table, and that we want to create Arr from it, and that there is no evidence
that the basic structure of production in the region differs from the national average
structure reflected in A. The unique features of the region, however, are captured in the
regional supply percentages. Using regional output, export and import data, suppose
we estimate that 80 percent of sector 1 goods will come from firms in that sector within
the region, but only 60 percent of sector 2 goods can be expected to be supplied by

regional firms in sector 2, so pr =
[

.8

.6

]
. Suppose that the projected (new) final demand

in the region is f r =
[

600
1500

]
(this is the final demand vector that was used for some of

the numerical examples in Chapter 2). Then

p̂r =
[

.8 0
0 .6

]
, Arr = p̂rA =

[
.8 0
0 .6

] [
.15 .25
.20 .05

]
=
[

.12 .20

.12 .03

]
,

(I − Arr)−1 =
[

1.169 0.241
0.145 1.061

]
and using this regional inverse directly,

xr = (I − Arr)−1f r =
[

1.169 0.241
0.145 1.061

] [
600

1500

]
=

[
1062.90
1678.50

]
(3.1)

This tells us that the total output that will need to be produced in the region by sectors
1 and 2 is $1062.90 and $1678.50, respectively.

In more recent regional input–output analyses, attempts have been made to model
the characteristics of a regional economy more precisely. We examine these briefly in
the following section, and we return to the “regionalization” problem in Chapter 8.

3.2.2 Regional Coefficients
We noted above that electricity produced in Washington will most likely have a dif-
ferent production recipe (column of technical coefficients) from electricity made in
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Pennsylvania. These regionally produced electricities are really two different prod-
ucts – “hydroelectric power” and “coal-fired electrical power.” As another example,
consider the aircraft sector. In a national table, this would include the manufacture of
a mix of commercial, business, and personal aircraft. One input to this sector would
be the huge jet engines used on Boeing commercial airliners. On the other hand, the
aircraft sector in a regional table for the state of Florida might reflect the manufacture
of small personal aircraft, for which the jumbo jet engines are not an input at all; in a
Washington table, however, jet engines are an extremely important input.

Sectors in even very disaggregated national input–output tables will be made up of
a variety of products – as in the aircraft sector example. And firms within that sector,
located in various regions of the country, will generally produce only a small number
of those products – Boeing in Washington does not produce small propeller-driven
airplanes; Piper in Florida does not produce jet airliners that can carry upwards of
300 passengers. This illustrates the so-called product-mix problem in input–output;
firms classified in the same sector actually produce different sets of products. The most
straightforward way to avoid this problem is to survey firms in the region and construct
what is called a survey-based regional input–output table. In conducting such a survey,
one can pose essentially two variants of the basic question. In asking firms in sector j
in a particular region about their use of various inputs, the question can be:

1. How much sector i product did you buy last year in making your output? (For
example, how much aluminum did aircraft manufacturers in Washington State buy
last year?), or

2. How much sector i product did you buy last year from firms located in the region?
(For example, how much aluminum used by aircraft producers in Washington was
purchased from producers in Washington?)3

In the former case a truly regional technical coefficients table would be produced; this
would better reflect production practices in the region than does the national table – it
would eliminate the input of large jet engines into the manufacture of private aircraft in
Florida, for example. But it would not address the question of how much of each required
input came from within the region and how much was imported. On the other hand,
a set of coefficients based on inputs supplied from firms within the region for outputs
of firms in the region would reflect regional production technology. These might be
termed regional input coefficients. They are to be distinguished from regional technical
coefficients since they do not always accurately describe the technology of regional
firms, but rather only the way in which local firms use local inputs. (Intraregional input
coefficients would be an even more precise, although cumbersome, description.4)

Rather than adapt a national coefficients table through application of regional supply
proportions, some regional analysts have tried to derive true regional input coefficient

3 If it is also possible to determine how much came from firms located outside the state then one has the beginnings
of an interregional or multiregional model. These are discussed below in sections 3.3 and 3.4.

4 Tiebout (1969, p. 335) used “direct intraregional interindustry coefficient,” which is completely precise but also
rather cumbersome.
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tables through surveys of regional establishments using variants of question 2. A series
of tables for Washington State illustrates this kind of survey-based modeling effort,
specifically for the state for 1963, 1967, 1972, 1982, 1987, and 2002. (There is also
a Washington table for 1997 produced mainly by a nonsurvey estimating technique;
nonsurvey approaches are explored in Chapters 7 and 8. The 1997 and 2002 tables
are available at www.ofm.wa.gov/economy/io.) The Washington tables can be found
in Bourque and Weeks (1969), Beyers et al. (1970), Bourque and Conway (1977),
Bourque (1987), and Chase, Bourque and Conway (1993). These data have been the
basis of many comparative studies.

To examine this kind of extension, we need more complicated notation. We continue
to use a superscript r for the region in question. Then let zrr

ij denote the dollar flow of

goods from sector i in region r to sector j in region r.5 Just as the order of subscripts
is “from–to” with respect to sectors, the order of superscripts indicates “from–to” with
respect to geographic locations. If we had a complete set of data on zrr

ij for all n sectors
in the regional economy, and also data on gross outputs (xr

j ) of each sector in the region,
a set of regional input coefficients could be derived as

arr
ij = zrr

ij

xr
j

(3.2)

Let Zrr

(n×n)
= [zrr

ij ] and xr

(n×1)
= [xr

j ]; then the regional input coefficients matrix is

Arr = Zrr(x̂r)−1 (3.3)

(This is what was approximated in the early regional studies described above by p̂rA.)
Then the impacts on regional production of a final-demand change in region r would
be found as

xr = (I − Arr)−1f r (3.4)

3.2.3 Closing a Regional Model with respect to Households
The Washington State models noted above were closed with respect to households in the
manner described in Chapter 2 – by adding a household consumption column and a labor
input row. One extension to the process of endogenizing households in an input–output
model is to add more than one row and column to the direct input coefficients matrix.
This approach is frequently implemented at a regional level, although it can apply
equally well to national models. As usual, the impacts of projected increases in final
demand will be increased sectoral outputs and therefore increased payments for labor
services. The basic idea is that a distinction should be made between consumption habits
of various kinds of consumers – for example, at a sub-national level, those of established
residents of the region, who may experience an increase in their incomes (for example,
due to productivity increases) and the consumption patterns of new residents, who may

5 We need double superscripts because later we will also measure interindustry flows between regions – as in zsr
ij .
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move into the region in anticipation of employment (new income). This distinction
apparently originated with Tiebout (1969), where they are designated intensive and
extensive income growth, respectively.

The reason for the distinction is that current residents may spend each dollar of new
income according to a set of marginal consumption coefficients, while new residents
may distribute their purchases according to a set of average consumption coefficients.

The presumption should be clear: as new residents move in to fill jobs at the same wage rate as
established residents, average consumption propensities are relevant. Insofar as regional income rises
because of increased per capita incomes, marginal consumption propensities apply (Tiebout, 1969,
p. 336).

If sales, by sector, could be broken down into those to new residents and those to
existing residents, and if labor payments, by sector, could be similarly disaggregated,
then marginal and average household consumption coefficients could be derived. Sim-
ilarly, knowing each sector’s outputs, “old” and “new” labor inputs per dollar’s worth
of output could be found. These would form two additional rows and columns with
which to close the model.

In practice, such data are not so conveniently available. Tiebout (1969) describes
the derivation of extensive and intensive coefficients in a regional model for the state
of Washington. Miernyk et al. (1967) investigate essentially the same issue for their
pioneering Boulder, Colorado, input–output study.6 In addition, an attempt was made in
the Boulder study to disaggregate the income increases to existing residents by income
class, with lower marginal consumption propensities in higher income classes. (See
Miernyk et al. 1967, esp. Chapter V.)

Instead of disaggregating households into “old” and “new” residents, Blackwell
(1978) proposes a tripartite division into intensive and extensive (current residents and
new residents, respectively, as above) and also redistributive, which is that portion of any
new income that goes to previously unemployed local residents.The distinction between
currently employed and currently unemployed workers is also explored in some detail
by Madden and Batey (1983, and elsewhere).7 The considerable work of Madden and
Batey and their colleagues on “extended” input–output models is representative of a
large body of research linking population and economic models. It is summarized in
Batey and Madden (1999), which also contains references to a great deal of earlier
work by them and by others. Miyazawa (1976) also investigates extensions to multiple
categories of consumption spending and income recipients. We further explore various
model closures (including the Miyawaza formulation) in Chapter 6 when we investigate
input–output multipliers.

6 Tiebout’s contribution in formulating this distinction between extensive and intensive consumption propensities
in a region is noted by Miernyk et al. (1967, p. 104, n. 9). A draft of Tiebout’s paper was completed by 1967
and was published posthumously in 1969, following his death in January, 1968.

7 Other early examples of “extended” models with households included (by no means an exhaustive list) include
Schinnar (1976), Beyers (1980), Gordon and Ledent (1981), Ledent and Gordon (1981), and Joun and Conway
(1983). These combined models are sometimes referred to as demo-economic – or also as eco-demographic.
The demo-economic components reflect inputs from various labor (household) groups, and the eco-demographic
components capture activity such as consumption by various household types.
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3.3 Many-Region Models: The Interregional Approach

Single-region models of the sort described in the previous section represent one
approach to modeling a regional economy in input–output terms. What they fail to do,
however, is to recognize in an operational way the interconnections between regions.
The one region of interest (in the above, this was region r) was essentially “discon-
nected” from the rest of the country within which it is located, in the sense that its
production recipes are reflected in an intraregional matrix, Arr . For a country made up
of several regions, a number of important questions have several-region implications.
Next year’s national defense budget might include a large order for a certain type of
aircraft built in California, the overhaul of one or more ships in Virginia, and modern-
ization and upgrading of an army base in New Jersey. Each of these activities can be
expected to have ramifications not only within the region (state, in this example) where
the activity takes place, but also in other states. The total economic effect is therefore
likely to be larger than the sum of the regional effects in California, Virginia, and New
Jersey. Firms outside California will produce goods that will be imported to California
for aircraft production; those firms, in turn, may import goods from other states for their
production. Materials for ship overhaul will come to Virginia from suppliers outside
that state. Electronic parts for the base upgrading in New Jersey may be imported from
elsewhere and the electronics firms, in turn, will need both local (wherever they are
located) and imported inputs, and so on.

A fundamental problem in many-region input–output modeling is therefore the esti-
mation of the transactions between regions. One approach, the interregional model,
requires a complete (ideal) set of both intra- and interregional data. For the two-region
case, this means knowing xr = [xr

i ], xs = [xs
i ], Zrr = [zrr

ij ] and Zss = [zss
ij ] along with

Zrs = [zrs
ij ] – recording transactions from sector i in region r to sector j in region s –

and Zsr = [zsr
ij ] – in which flows from s to r are captured. It is the last two matrices that

cause the most trouble. In practice, it is never the case that one has such detailed infor-
mation, and the requirements grow quickly with the number of regions – a three-region
model has six interregional matrices, a four-region model has 12, and so on.

Alternative forms of many-region input–output models were created and elaborated
by members of the Harvard Economic Research Project (HERP) under Leontief’s direc-
tion, from its inception through the 1960s.8 Taken chronologically, the interregional
input–output model (IRIO) structure was first described by Isard (1951) and elaborated
in Isard et al. (1960). (This is often labeled the “Isard model”.) Leontief et al. (1953)
sketched the framework of an intranational input–output model (often referred to as
a “balanced regional model;” section 3.5, below). This was later applied to assess the
sectoral and regional impact of a cut in US arms spending in Leontief et al. (1965). The
multiregional input–output model (MRIO) was (almost simultaneously) described in
Chenery (1953) (a two-region model for Italy) and in Moses (1955) (a nine-region US
model) – thus the label “Chenery–Moses model.” Finally, Leontief and Strout (1963)

8 HERP was started at Harvard by Leontief in 1948 and continued until 1972. Thorough accounts of this formative
work can be found in Polenske (1995, 2004).
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Table 3.1 Interindustry, Interregional
Flows of Goods

Purchasing Sector

Region r Region s

Selling Sector 1 2 3 1 2

Region r 1 zrr
11 zrr

12 zrr
13 zrs

11 zrs
12

2 zrr
21 zrr

22 zrr
23 zrs

21 zrs
22

3 zrr
31 zrr

32 zrr
33 zrs

31 zrs
32

Region s 1 zsr
11 zsr

12 zsr
13 zss

11 zss
12

2 zsr
21 zsr

22 zsr
23 zss

21 zss
22

proposed a gravity-model approach to estimation of interregional flows in a connected-
region input–output model.9 In this section we explore the interregional input–output
(IRIO) model.

3.3.1 Basic Structure of Two-Region Interregional Input–Output Models
For purposes of illustration, we consider a two-region economy (for example, in Italy,
northern Italy and southern Italy; or, in the United States, New England and the rest
of the United States). Using r and s, as before, for the two regions, let there be three
producing sectors (1, 2, 3) in region r and two (1, 2) in region s. Suppose that one has
information for region r on both intraregional flows, zrr

ij , and interregional flows, zsr
ij .

There will be nine of the former and six of the latter. Suppose, further, that the same
kind of information is available (perhaps through a survey) on the use of inputs by firms
located in region s, zrs

ij and zss
ij . This complete table of intraregional and interregional

data can be represented as

Z =
[

Zrr Zrs

Zsr Zss

]
Table 3.1 indicates the full set of data.10

In the regional models of section 3.2, we utilized intraregional information only –
as in (3.2), (3.3), and (3.4). We now want to incorporate much more explicitly the
interregional linkages, as represented by information in Zrs and Zsr .

9 Isard et al. (1960, esp. Chapter 11) described gravity models and explored their potential for estimating inter-
regional interactions (including commodity flows) in detail. We explore the gravity approach and others in
section 8.6, below, on estimating interregional flows.

10 To be more consistent with already-familiar subscript notation, one could denote the regions by 1 and 2,
respectively. Then an element such as zsr

13 would be denoted z21
13. However, for purposes of exposition it seems

clearer to use lowercase letters to designate regions; for example, so as to avoid having z’s with four different
numbers attached to them.
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These off-diagonal matrices need not be square. Here Zrs has dimensions 3 × 2 and
Zsr is a 2 × 3 matrix. The on-diagonal matrices are always square; for this exam-
ple, Zrr and Zss are 3 × 3 and 2 × 2, respectively. While the elements in Zrs represent
“exports” from region r and simultaneously “imports” to region s, it is usual in regional
input–output work to refer to these as interregional trade (or simply trade) flows and to
use the terms export and import when dealing with foreign trade that crosses national,
not just regional, boundaries.

By surveying firms in both regions on their purchases of locally produced inputs
and inputs from the other region, one would accumulate the data shown in the various
columns of Table 3.1. On the other hand, the data in Table 3.1 could also be gathered by
asking firms in each region how much they sold to each sector in their region and how
much they sold to sectors in the other region. This would generate the figures shown
in the various rows of Table 3.1.11

Consider again the basic equation for the distribution of sector i’s product, as given
in equation (2.1) of Chapter 2:

xi = zi1 + zi2 + · · · + zij + · · · + zin + fi

One of the components recorded in the final-demand term was exports of sector i goods.
In the two-region interregional input–output model, that part of fi that represents sales
of sector i’s product to the productive sectors in the other region (but not to consumers
in the other region) is removed from the final-demand category and specified explicitly.
For our two-region example, the output of sector 1 in region r would be expressed as

xr
1 = zrr

11 + zrr
12 + zrr

13︸ ︷︷ ︸
Sector 1 intraregional,

interindustry sales

+ zrs
11 + zrs

12︸ ︷︷ ︸
Sector 1 interregional,

interindustry sales

+ f r
1︸︷︷︸

Sector 1 intraregional
sales to final demand

(3.5)

There will be similar equations for xr
2 and xr

3, and also for xs
1 and xs

2. The regional input
coefficients for region r were given in (3.2). There will also be a set for region s,

ass
ij = zss

ij

xs
j

(3.6)

Interregional trade coefficients are found in the same manner, where the denominators
are gross outputs of sectors in the receiving region. Here these are

ars
ij = zrs

ij

xs
j

and asr
ij = zsr

ij

xr
j

(3.7)

Using these regional input and trade coefficients, (3.5) can be re-expressed as

xr
1 = arr

11xr
1 + arr

12xr
2 + arr

13xr
3 + ars

11xs
1 + ars

12xs
2 + f r

1 (3.8)

11 Usually, one has some (not complete) information on purchases and also some (not complete) information on
sales. The problem then is to produce a table from possibly inconsistent data. This reconciliation problem is
discussed in section 8.9.
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Again, there will be similar expressions for xr
2, xr

3, xs
1, and xs

2. [Compare the equations
(2.4) in Chapter 2, where there was no regional dimension – no superscripts r and s –
and where there were n sectors.] Following the same development as in Chapter 2, by
moving all terms involving xr or xs to the left (3.8) becomes

(1 − arr
11)x

r
1 − arr

12xr
2 − arr

13xr
3 − ars

11xs
1 − ars

12xs
2 = f r

1 (3.9)

There are similar equations with f r
2 , f r

3 , f s
1 , and f s

2 on the right-hand sides.
For the present example, Arr [(3.3)] is

Arr =
⎡⎢⎣arr

11 arr
12 arr

13

arr
21 arr

22 arr
23

arr
31 arr

32 arr
33

⎤⎥⎦
Also, for this example, Ass = Zss(x̂s)−1, and the two trade coefficients matrices are
Ars = Zrs(x̂s)−1 and Asr = Zsr(x̂r)−1. Using these four matrices, the five equations
of which (3.9) is the first can be represented compactly as

(I − Arr)xr − Arsxs = f r

− Asrxr + (I − Ass)xs = f s (3.10)

where f r is the three-element vector of final demands for region r goods, and f s is the
two-element vector of final demands for region s goods.

We define the complete coefficients matrix for a two-region interregional model as
consisting of the four submatrices

A =
[

Arr Ars

Asr Ass

]

For the current example, this will be a 5 × 5 matrix. Similarly, let

x =
[

xr

xs

]
, f =

[
f r

f s

]
, I =

⎡⎢⎣ I
(3×3)

0
(3×2)

0
(2×3)

I
(2×2)

⎤⎥⎦
Then (3.10) can be expressed as

(I − A)x = f (3.11)

as in (2.10) in Chapter 2. To highlight the structure of (3.11), it can be expressed less
compactly as {[

I 0

0 I

]
−
[

Arr Ars

Asr Ass

]}[
xr

xs

]
=
[

f r

f s

]
(3.12)
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Note that in using an interregional model of this kind for analysis, not only is stability
of the (intra)regional input coefficients necessary (the elements of Arr and Ass), but
also interregional input coefficients in Ars and Asr are assumed unvarying over time.
Thus both the structure of production in each region and interregional trade patterns
are “frozen” in the model. For a given level of final demands in either or both regions,
the necessary gross outputs in both regions can be found in the usual input–output
fashion as x = (I−A)−1f . As is clear from (3.12), this complete (I−A) matrix will be
larger than that for the single-region model – if both regions are divided into n sectors,
the single-region matrix would be of size n × n and the full two-region interregional
model would be 2n × 2n, which means four times as many (possible) elements of
information are needed (many of which may be zero, of course). However, aside from
these dimensionality effects, the analysis proceeds along similar lines.

The advantage is that the model captures the magnitude of effects on each sector
in each region; interregional linkages are made specific by sector in the supplying
region and by sector in the receiving region. The accompanying disadvantages are
primarily the greatly increased data needs and the necessary assumptions of constancy
of interregional trading relationships. If it is not always easy to accept the idea of
constant input coefficients in general, in the national input–output model, it may be
even more difficult to believe that imports of good i per dollar’s worth of sector j output
in a specific region remain constant, no matter how much sector j’s output changes.

3.3.2 Interregional Feedbacks in the Two-Region Model
Consider an increase in the demand by a foreign airline for commercial aircraft produced
in Washington State (region r). Certain subassemblies and parts will be purchased from
sectors outside the region (for example, jet engines from Connecticut, region s). This
stimulus of new output in Connecticut because of new output in Washington is often
called an interregional spillover. The increased demand for aircraft will increase the
demand for engines and consequently for all of the direct and indirect inputs to the
manufacture of jet engines, one of which might be extruded aluminum components
made in Washington. This idea is illustrated in Figure 3.1.

The downward arrow connecting Washington output to Connecticut output represents
an interregional spillover effect; the upward arrow from Connecticut to Washington

Increased Demand for Washington Aircraft

Increased Output of Connecticut Sectors

Increased Output of Washington Sectors

Figure 3.1 Increases in Washington Final Demands Affecting Washington Outputs via Connecticut
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is also an interregional spillover – the first originates in Washington (r → s), the
second originates in Connecticut (s → r). The loop (two arrows) connecting Wash-
ington output to itself, via Connecticut output, represents an interregional feedback
effect (r → r); in other words, Washington needs more inputs from Connecticut and
therefore Connecticut needs more inputs from everywhere, including Washington. The
interregional model in its two-matrix-equation form [in (3.10)] allows one to isolate
exactly the magnitude of such interregional feedbacks.

Suppose, in (3.10), that we read xr , xs, f r and f s as “changes in” – that is,
�xr , �xs, �f r , and �f s. Given a vector of changes in final demands in the two
regions, we can find the consequent changes in gross outputs in both regions. Assume,
for simplicity, that �f s = 0; we are assessing the impacts in both regions of a change
in final demands in region r only. Under these conditions, solving the second equation
in (3.10) for xs gives

xs = (I − Ass)−1Asrxr

and putting this into the first equation, we have

(I − Arr)xr − Ars(I − Ass)−1Asrxr = f r (3.13)

Note that a single-region model (for region r), as in (3.4), would be (I − Arr)xr = f r .
The “extra” (second) term, subtracted on the left in (3.13),

Ars(I − Ass)−1Asrxr (3.14)

represents exactly the added demands made on the output of region r because of inter-
regional trade linkages; it is an interregional feedback term. Consider the various parts,
starting at the right: (a) Asrxr captures the magnitude of flows from s to r because
of increased output in r [the value of engines that are shipped from Connecticut to
Washington for installation in the new airplanes], (b) (I − Ass)−1Asrxr then translates
these flows into total direct and indirect needs in s to produce the required shipments
from s (Connecticut production in all sectors needed to supply the engines for ship-
ment to Washington), (c) Ars(I−Ass)−1Asrxr indicates the magnitude of the additional
sales from r to s that will be necessary to sustain the total s-based production found in
(b) [new outputs from Washington sectors to satisfy Connecticut demand for inputs to
Connecticut production quantified in (b)].12

Thus the strength and importance of interregional linkages depend not only on the
elements of the interregional input coefficients matrices – Ars and Asr , in this example –
but also on the full set of regional input coefficients in the other region, as represented
by (I − Ass)−1. It is precisely these kinds of spatial linkages that distinguish complete
interregional models from single-region models. Since the feedback term is subtracted
from (I − Arr)xr in (3.13), a given value of f r will generate a larger xr than in a single-
region analysis in order that the required shipments to region s can be met, as well

12 The arrows in Figure 3.1 indicate the directions of transmission of demands to producers. The output responses
to those demands travel in the opposite direction along the arrows.
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Table 3.2 Flow Data for a Hypothetical
Two-Region Interregional Case

Purchasing Sector

Region r Region s

Selling Sector 1 2 3 1 2

Region r 1 150 500 50 25 75
2 200 100 400 200 100
3 300 500 50 60 40

Region s 1 75 100 60 200 250
2 50 25 25 150 100

as the usual intraregional shipments, Arrxr . In terms of outputs, the single- and two-
region models will generate xr = (I − Arr)−1f r and xr = (I − Arr − ArsLssAsr)−1f r ,
respectively.

3.3.3 Numerical Example: Hypothetical Two-Region Interregional Case
To illustrate for the two-region case, suppose that the figures in Table 3.2 represent the
data in Table 3.1. Also, let

f r =
⎡⎣ 200

1000
50

⎤⎦ and f s =
[

515
450

]
, so that f =

[
f r

f s

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
200

1000
50

515
450

⎤⎥⎥⎥⎥⎥⎥⎦
Thus

xr =
⎡⎣1000

2000
1000

⎤⎦, xs =
[

1200
800

]
, and x =

[
xr

xs

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
1000
2000
1000

1200
800

⎤⎥⎥⎥⎥⎥⎥⎦
and Arr is found to be

Arr =
⎡⎣ .150 .250 .050

.200 .050 .400

.300 .250 .050

⎤⎦
Similarly,

Ass =
[
.1667 .3125
.1250 .1250

]
, Ars =

⎡⎣.0208 .0938
.1667 .1250
.0500 .0500

⎤⎦, Asr =
[
.0750 .0500 .0600
.0500 .0125 .0250

]
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so

A =
[

Arr Ars

Asr Ass

]
=

⎡⎢⎢⎢⎢⎢⎣
0.1500 0.2500 0.0500
0.2000 0.0500 0.4000
0.3000 0.2500 0.0500

0.0208 0.0938
0.1667 0.1250
0.0500 0.0500

0.0750 0.0500 0.0600
0.0500 0.0125 0.0250

0.1667 0.3125
0.1250 0.1250

⎤⎥⎥⎥⎥⎥⎦
and define

L =
[

L11 L12

L21 L22

]
=

⎡⎢⎢⎢⎢⎢⎣
1.4234 0.4652 0.2909
0.6346 1.4237 0.6707
0.6383 0.5369 1.3363

0.1917 0.3041
0.4092 0.4558
0.2501 0.3108

0.2672 0.2000 0.1973
0.1468 0.0908 0.0926

1.3406 0.5473
0.2155 1.2538

⎤⎥⎥⎥⎥⎥⎦
We use L11, L12 and so on because later it will be necessary to refer to these individual
submatrices in L, and they are to be distinguished from Lrr = (I −Arr)−1 and Lss =
(I − Ass)−1, which are often used to denote Leontief inverses associated with regional
direct input coefficients matrices.

Impacts on the sectors in both regions of various new final-demand vectors in either
or both regions can now be found. For example, with new demand of 100 for the output
of sector 1 in region r, (fnew)′ = [

100 0 0 0 0
]
, and, using L, above,

xnew =
[

(xr)new

(xs)new

]
= Lfnew =

⎡⎢⎢⎢⎢⎢⎣
142.34
63.46
63.83

26.72
14.68

⎤⎥⎥⎥⎥⎥⎦
The new outputs in region s of sectors 1 (26.72) and 2 (14.68) that result from the new
demand in region r reflect interregional spillovers – economic stimulus in a region
other than the one in which the exogenous change occurs (in this case spillovers from
region r to region s).

It is to be emphasized that the final demands in the interregional input–output model
are for outputs produced in a particular region. That is, f r

1 = 100 means that there is a
final demand of 100 for sector 1 goods that are produced in region r. If sector 1 were
aircraft production and region r were Washington, new orders from a foreign airline
for Boeing commercial airliners would be represented in the value for f r

1 .
Using these hypothetical data, we can illustrate the differences between the results

from a single-region model for region r alone and the results from this two-region
interregional model. From the information on Arr alone we find

Lrr = (I − Arr)−1 =
⎡⎣1.3651 .4253 .2509

.5273 1.3481 .5954

.5698 .4890 1.2885

⎤⎦
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Using this single-region model with (f r)new =
⎡⎣100

0
0

⎤⎦ and ignoring interregional

linkages, as in (3.4), we have

xr
S = Lrrf r =

⎡⎣1.3651 .4253 .2509
.5273 1.3481 .5954
.5698 .4890 1.2885

⎤⎦⎡⎣100
0
0

⎤⎦ =
⎡⎣136.51

52.73
56.99

⎤⎦
We use a subscript S to make clear that these are outputs in the single-region model,
and we drop the superscript “new.” With the complete two-region model we had, for
region r,

xr
T =

⎡⎣142.34
63.46
63.83

⎤⎦
Here, xr

T reminds us that these are outputs in the two-region interregional model. The
difference in results for region r is seen to be

xr
T − xr

S =
⎡⎣142.34

63.46
63.83

⎤⎦ −
⎡⎣136.51

52.73
56.99

⎤⎦ =
⎡⎣ 5.83

10.73
6.84

⎤⎦
Each region r output is larger in the interregional model because the interregional

feedbacks are captured in that model. One measure of the “error” that would be involved
in ignoring these feedbacks – in using a single-region model as opposed to an interre-
gional model – would be given by the percentage of total output in region r that one
fails to capture when using a single-region model only. Total output over all sectors
in region r in the two-region model is i′xr

T = 269.63. Total output estimated in the
single-region model is i′xr

S = 246.23. By this measure, the underestimate that occurs
in using the single-region model is i′xr

T −i′xr
S = 23.40, or (23.40/269.63) × 100 = 8.7

percent of the total true (two-region model) output. Formally, this overall percentage
error measure is found as

OPE = [(i′xr
T − i′xr

S)/i′xr
T ] × 100 = [i′(xr

T − xr
S)/i′xr

T ] × 100

It thus becomes an interesting empirical question to try to assess the importance of
interregional feedbacks in real-world regional input–output models. If it turned out that
the error caused by ignoring interregional linkages when assessing the impact of new
region r final demands on region r outputs was quite small, then one might argue that (at
least for such questions) the apparatus of an interregional model would be unnecessary.
The answer will depend, in part, upon the relative strengths of the interregional link-
ages; in the two-region model this means on the magnitudes of the elements in Ars and
Asr . Precisely this question has been investigated; however, the results are inconclu-
sive. The conclusion from an early set of experiments was that interregional feedback
effects were likely to be very small (less than one half of one percent, using the overall
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percentage error measure presented above for illustration). (See Miller, 1966, 1969.)
Other studies have tended to confirm the relative smallness of interregional feedback
effects by comparing output multipliers from single- and many-region input–output
models. (Chapter 6.) There has been work on derivation of upper limits on the percent-
age error that could be expected in certain interregional input–output models when the
interregional feedbacks are ignored (in particular, Gillen and Guccione, 1980; Miller,
1986; Guccione et al., 1988).

The error caused by ignoring interregional feedbacks is strongly influenced by the
level of self-sufficiency in region r – whether or not region r is relatively dependent on
inputs from region s. This is because higher dependence is reflected in larger coefficients
in Asr which, again as in (3.14), generate a larger feedback term. Self-sufficiency is also
a function of the geographic size of the region. In a two-region model with Nebraska
(region r) and the rest of the United States (region s), the average element in Asr will
be larger than in a two-region model in which region r is the United States west of
the Mississippi and region s is the United States east of the Mississippi. However, in
the Nebraska (r)/rest-of-the-United States (s) example, the elements in Ars (reflecting
rest-of-the-United States dependence on inputs from Nebraska) will be generally much
smaller than in the United States West (r)/United States East (s) example. Thus it is not
easy to generalize on how the geographical size of the respective regions ultimately
influences the size of the interregional feedbacks.

In any case, a single-region model, by definition, cannot capture effects outside of
that region (spillovers) in regional/sectoral detail, and there are many kinds of eco-
nomic impact questions that have important ramifications in more than one region of
a national economy. In these cases, some kind of connected-region model is essential.
The interregional input–output framework provides one such approach. Feedbacks and
spillovers in input–output models will be examined again in Chapter 6 when we discuss
multiplier decompositions.

Some analysts (for example, Oosterhaven, 1981) suggest that measurement of feed-
back effects should be based not on total impacts (direct and indirect) but rather should
be found as percentages of indirect impacts only – without the first term in the power
series or with f netted out from gross outputs in OPE = [(i′xr

T − i′xr
S)/i′xr

T ] × 100.
This means

OPEn = {[(i′xr
T − i′f) − (i′xr

S − i′f)]/(i′xr
T − i′f)} × 100

= [(i′xr
T − i′xr

S)/(i′xr
T − i′f)] × 100

This “net” measure is larger than OPE (except in the trivial case when f = 0);

namely OPEn = (OPE)
(

i′xr
T

i′xr
T −i′f

)
. In our numerical example,

(
i′xr

T
i′xr

T −i′f

)
= 1.59 and

OPEn = 13.8. Alternatively, 100 × (OPE/OPEn) = 10 ×
(

i′xr
T −i′f
i′xr

T

)
indicates the per-

centage of the net measure that is captured by the original measure. In the example,
this is 63 percent.
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3.3.4 Interregional Models with more than Two Regions
The fundamental structure of models with more than two regions is identical to the two-
region case in section 3.3.1, although the numbers of matrices and their sizes increase.
The objective is to capture explicitly the various economic connections between and
among the several regions in a multiregional economy. For example, in a three-region
model (regions 1, 2, and 3), the complete coefficients matrix would be

A =

⎡⎢⎢⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎥⎥⎦ (3.15)

and the parallel to (3.10) is

(I − A11)x1 − A12x2 − A13x3 = f1

− A21x1 + (I − A22)x2 − A23x3 = f2

− A31x1 − A32x2 + (I − A33)x3 = f3
(3.16)

With x =
⎡⎣x1

x2

x3

⎤⎦, f =
⎡⎣ f1

f2

f3

⎤⎦ and I =
⎡⎣ I 0 0

0 I 0
0 0 I

⎤⎦, the complete three-region interregional

input–output model is still represented as (I − A)x = f . The underlying logic is the
same as that for the two-region model, and the equations in (3.16) can be built up in the
same way as were those in (3.10). Also, the magnitudes of the interregional feedback
effects can be made specific.

The extension to a p-region model is straightforward. (For example, there are nine-
region models for Japan, noted in section 3.3.5, below.) The parallel to (3.16) is

(I − A11)x1 − A12x2 − · · · − A1pxp = f1

...
− Ap1x1 − Ap2x2 − · · · + (I − App)xp = fp

(3.17)

(The interested reader can construct the parallel expressions for A, I, f and x.)
The data requirements increase quickly with the number of regions. Assuming that

all regions are divided into n sectors (not a necessary requirement at all – each region
could have a different number of sectors), a complete two-region interregional model
requires data for four coefficients matrices of size n × n, a three-region model contains
nine n × n matrices, a four-region model has sixteen such matrices, and a p-region
model has p2 such n × n matrices. However, interregional models with a relatively
small number of regions may be useful, since one region can always be defined as the
“rest of the country” or the “rest of the world.” A three-region model might concentrate
on a particular county, region 2 could be the “rest of the state” and region 3 the “rest
of the nation” (outside the state).
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3.3.5 Implementation of the IRIO Model
Clearly, the interregional input–output model requires a large amount of detailed data.
For this reason, there have been few real-world applications. Perhaps the most ambitious
attempts at implementation are contained in the impressive series of Japanese survey-
based interregional tables, with nine regions and (ultimately) 25 sectors, beginning with
1960 and updated every five years. [See Ministry of International Trade and Industry
(MITI), various years; this was reorganized as the Ministry of Economy, Trade and
Industry (METI) in 2001.] This very rich data source has generated a number of Japanese
comparative regional studies (see, for example, Akita, 1994, 1999; Akita and Kataoka,
2002).

3.4 Many-Region Models: The Multiregional Approach

While a complete interregional model of the sort described in section 3.3 is generally
impossible to implement for very many regions and/or sectors because of the enormous
amounts of data that it requires, the approach has inspired modifications and simplifi-
cations in the direction of a more operational framework. One attempt in this direction
uses the “Chenery–Moses” approach (noted in section 3.3, above) for consistent esti-
mation of the intra- and interregional transactions required in the IRIO model. It has
come to be known as a multiregional input–output model. It contains counterparts to
the regional input coefficients matrices – as in Arr – and the interregional input (trade)
coefficients matrices – as in Ars. In both cases the attempt has been to specify a model
in which the data are more easily obtained.

Polenske examined and implemented three versions of the MRIO model – the
Chenery–Moses version (also known as a “column-coefficient” model for reasons that
will become clear below), an alternative row-coefficient version, and one using the
gravity model approach of Leontief and Strout (1963).13 Problems with the latter two
approaches ultimately precluded their use, and the column-coefficient model was cho-
sen as the structure on which to develop the US MRIO model. [Polenske, 1970a, 1970b,
1980, 1995 (section 2), 2004 (section 8); Bon, 1984.]

3.4.1 The Regional Tables
The multiregional input–output model uses a regional technical coefficients matrix, Ar ,
in place of the regional input coefficients matrix, Arr . These regional technical coeffi-
cients, ar

ij, can be produced from responses to the question “How much sector i product
did you buy last year in making your output?” [Question (1) in section 3.2], where they
were contrasted with the regional input coefficients, arr

ij . Information regarding the
region of origin of a given input is ignored; one only needs information on the dollars’
worth of input from sector i used by sector j in region r. These transactions are usually

13 Leontief and Strout (1963) “devised the multiregional input–output (MRIO) accounts” (Polenske and Hewings,
2004, p. 274).
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denoted by z·r
ij , where the dot indicates that all possible geographical locations for sector

i are lumped together.14 These coefficients are defined as ar
ij = z·r

ij
xr

j
and Ar = [ar

ij].
In practice, when actual regional data on technology are not available, estimates

of regional technical coefficients matrices are sometimes made using what is known
as the product-mix approach. The basic assumption is that input requirements per
unit of output are constant from region to region at a very fine level of industrial
classification, but that an important distinguishing characteristic of production at the
regional level is the composition of sector outputs, when one is dealing with more
aggregate sectors. To return to our earlier illustration of the product-mix problem,
when two-engine commercial jets are made in Washington (or anywhere else), they
use, among other things, two jet engines as inputs; when single-engine propeller-driven
private aircraft are made in Florida or in any other state, they use one propeller engine as
one of the inputs to production. But the important fact to capture is that the output of the
sector designated “aircraft” in a Washington table is composed of a vastly different mix
of products (commercial jets) than the “aircraft” sector in Florida (private/corporate
airplanes).

To illustrate, assume that sector 2 is food and kindred products, and that it contains
only three subsectors, which can be designated by their outputs: tomato soup (sector
2.1), chocolate bars (sector 2.2), and guava jelly (sector 2.3). Assume that the national
technical coefficients from sector 8, paper and allied products, to each of these sub-
sectors are: 0.005, 0.009, and 0.003. (These represent various aspects of packaging –
labels, wrappers, etc.) Suppose that we want to derive coefficients for inputs from sector
8 to sector 2, a82, for New Jersey (region J ) and for Florida (region F). The data that
we would need are shown in Table 3.3, where N designates national data. The food and
kindred products sector was composed of only tomato soup ($700,000) and chocolate
bars ($300,000) output (no guava jelly) in New Jersey; in Florida it was made up of
tomato soup ($80,000) and guava jelly ($420,000) – no chocolate bars.

Purchases of paper and allied products as inputs to New Jersey food and kindred
products production over the period covered by the output figures in Table 3.3 are then
assumed to be the sum of

aN
8,2.1 xJ

2.1 = (.005)(700, 000) = 3500

aN
8,2.2 xJ

2.2 = (.009)(300, 000) = 2700

aN
8,2.3 xJ

2.3 = (.003)(0) = 0

for a total of $6200 in necessary inputs from sector 8 to production in sector 2 in New
Jersey. Since xJ

2 = xJ
2.1 + xJ

2.2 + xJ
2.3 = 1, 000, 000,

aJ
82 = 6200/1, 000, 000 = .0062

14 Sometimes a small ◦ or a larger dot is used, primarily because it is easier to read.
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Table 3.3 Data Needed for Conversion of National to
Regional Coefficients via the Product-Mix Approach

National Data
To sector 2: Food and Kindred Products
Subsectors 2.1

(tomato soup)
2.2

(chocolate bars)
2.3

(guava jelly)

From sector 8: Paper and Allied Products

aN
8,2.1 = .005 aN

8,2.2 = .009 aN
8,2.3 = .003

Regional Data
Outputs (in 1000 dollars) by subsector of sector 2

(New Jersey)
xJ

2.1 = 700

xJ
2.2 = 300

xJ
2.3 = 0

(Florida)
xF

2.1 = 80

xF
2.2 = 0

xF
2.3 = 420

Total Outputs (Sector 2)
xJ

2 = 1000 xF
2 = 500

Similarly, for Florida,

aN
8,2.1xF

2.1 = (.005)(80, 000) = 400

aN
8,2.2xF

2.2 = (.009)(0) = 0

aN
8,2.1xF

2.3 = (.003)(420, 000) = 1260

The total Florida inputs from sector 8 would be estimated as $1660. Since xF
2 = 500,000,

we have
aF

2 = 1660/500, 000 = .0033

Formally,

aJ
82 = (aN

8,2.1xJ
2.1 + aN

8,2.2xJ
2.2 + aN

8,2.3xJ
2.3)

xJ
2

= aN
8,2.1

(
xJ

2.1

xJ
2

)
+ aN

8,2.2

(
xJ

2.2

xJ
2

)
+ aN

8,2.3

(
xJ

2.3

xJ
2

)

aF
82 = (aN

8,2.1xF
2.1 + aN

8,2.2xF
2.2 + aN

8,2.3xF
2.3)

xF
2

= aN
8,2.1

(
xF

2.1

xF
2

)
+ aN

8,2.2

(
xF

2.2

xF
2

)
+ aN

8,2.3

(
xF

2.3

xF
2

)
The regional coefficients derived in this way are weighted averages of the national
detailed coefficients, where the weights are the proportions of subsector outputs to
total output of the sector (e.g., xJ

2.1/xJ
2 ) in each state.

3.4.2 The Interregional Tables
The interconnections among regions in the multiregional input–output model are cap-
tured in an entirely different way from the interregional input–output framework. Trade
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Table 3.4 Interregional Shipments of
Commodity i

Receiving Region

Shipping Region 1 2 · · · s · · · p

1 z11
i z12

i · · · z1s
i · · · z1p

i

2 z21
i z22

i · · · z2s
i · · · z2p

i
...

...
... · · · ... · · · ...

r zr1
i zr2

i · · · zrs
i · · · zrp

i
...

...
...

...
...

p zp1
i zp2

i · · · zps
i · · · zpp

i
Total T 1

i T 2
i · · · T s

i · · · T p
i

flows in the multiregional model are estimated by sector, again to take advantage of the
kinds of data likely to be available. For sector i, let zrs

i denote the dollar flow of good
i from region r to region s, irrespective of the sector of destination in the receiving
region.15 These flows will include shipments to the producing sectors in region s as
well as to final demand in s. Thus there is, for each sector, a shipments matrix of the
sort shown in Table 3.4.

Note that each of the column sums in this table represents the total shipments of
good i into that region from all of the regions in the model; this total, for column s, is
denoted in the table for good i by T s

i :

T s
i = z1s

i + z2s
i + · · · + zrs

i + · · · + zps
i (3.18)

If each element in column s is divided by this total, we have coefficients denoting the
proportion of all of good i used in s that comes from each region r (r = 1, . . . , p).
These proportions are denoted crs

i :

crs
i = zrs

i

T s
i

For later use, these coefficients are rearranged as follows. For each possible origin-
destination pair of regions, denote by crs the n-element column vector

crs =
⎡⎢⎣crs

1
...

crs
n

⎤⎥⎦
15 To be consistent with the notation z·r

ij or z◦r
ij , above, this should properly be zrs

i· or zrs
i◦ . However, when the

blank space is in the second subscript position, it is easier to distinguish than when it is in the first superscript
position, and so we avoid the double subscript option.
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These elements show, for region s, the proportion of the total amount of each good used
in s that comes from region r. Finally, construct ĉrs,

ĉrs =

⎡⎢⎢⎢⎣
crs

1 0 · · · 0
0 crs

2
...
0 0 · · · crs

n

⎤⎥⎥⎥⎦ (3.19)

for r, s = 1, . . . , p. Note that there will be intraregional matrices in this set. For
example, there will be a matrix ĉss, namely

ĉss =

⎡⎢⎢⎢⎣
css

1 0 · · · 0
0 css

2
...
0 0 · · · css

n

⎤⎥⎥⎥⎦ (3.20)

whose elements, css
i = zss

i /T s
i , indicate the proportion of good i used in region s that

came from within region s.

3.4.3 The Multiregional Model16

Consider a small two-sector, two-region example, where

Ar =
[

ar
11 ar

12

ar
21 ar

22

]
, As =

[
as

11 as
12

as
21 as

22

]

ĉrs =
[

crs
1 0

0 crs
2

]
, ĉss =

[
css

1 0

0 css
2

]
Then the multiregional input–output model uses the matrix

ĉrsAs =
[

crs
1 as

11 crs
1 as

12

crs
2 as

21 crs
2 as

22

]
as an estimate of Ars in the interregional input–output model. Similarly,

ĉssAs =
[

css
1 as

11 css
1 as

12

css
2 as

21 css
2 as

22

]
in the multiregional model replaces Ass in the interregional model. Therefore the mul-
tiregional input–output model embodies the same assumption as was used in the earlier
regional models with estimated supply percentages. Looking at the top rows of the

16 In this section we emphasize the structural parallels between the multiregional model and the interregional
model. In Appendix 3.1 to this chapter the basic relationships in the multiregional model are derived from
standard economic and input–output theory.
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ĉrsAs and ĉssAs matrices, note that both sectors 1 and 2 in region s are assumed to have
the same proportion of their total use of commodity 1 supplied from region r, namely
crs

1 , and the same proportion supplied from within region s – css
1 .

Suppose that sector 1 in both regions r and s is electricity production and sector 2 in
region s is automobile production, then if crs

1 = 0.6, this means that 60 percent of all
electricity used in making electricity in region s comes from region r and 60 percent
of all electricity used in automobile manufacture in region s also comes from region r.
And similarly, since in this two-region model it would be true that css

1 = 0.4, 40 percent
of the electricity used in both electricity production and automobile production in s
comes from within that region.

Since the interregional shipments recorded in Table 3.4 include sales to both pro-
ducing sectors and final-demand users in the receiving region, the final demands in
region s are met in part by firms within the region (ĉssf s) and in part by purchases from
firms in region r (ĉrsf s). To continue the illustration with crs

1 = 0.6, where sector 1 is
electricity production, 60 percent of the final demand for electricity in region s will
also be satisfied by producers in region r.

The multiregional input–output counterpart to (3.10) for the interregional model is
therefore

(I − ĉrrAr)xr − ĉrsAsxs = ĉrrf r + ĉrsf s

− ĉsrArxr + (I − ĉssAs)xs = ĉsrf r + ĉssf s (3.21)

Let

A =
[

Ar 0

0 As

]
, C =

[
ĉrr ĉrs

ĉsr ĉss

]
, x =

[
xr

xs

]
, and f =

[
f r

f s

]

so that (3.21) can be represented as

(I − CA)x = Cf (3.22)

and the solution will be given by

x = (I − CA)−1Cf (3.23)

The extension to more than two regions is straightforward. Equations for the three-
region model would be

(I − ĉ11A1)x1 − ĉ12A2x2 − ĉ13A3x3 = ĉ11f1 + ĉ12f2 + ĉ13f3

− ĉ21A1x1 + (I − ĉ22A2)x2 − ĉ23A3x3 = ĉ21f1 + ĉ22f2 + ĉ23f3

− ĉ31A1x1 − ĉ32A2x2 + (I − ĉ33)A3x3 = ĉ31f1 + ĉ32f2 + ĉ33f3

[Compare (3.16), for the three-region interregional model.] By appropriate extension
of matrices A, C, x, and f to incorporate three regions, the fundamental model is still
(I − CA)x = Cf , as in (3.22), with solution x = (I − CA)−1Cf , as in (3.23).
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Table 3.5 Flow Data for a Hypothetical
Two-Region Multiregional Case

Purchasing Sector

Region r Region s

Selling Sector 1 2 3 1 2 3

1 225 600 110 225 325 125
2 250 125 425 350 200 270
3 325 700 150 360 240 200

Finally, when there are p regions, let

A =

⎡⎢⎢⎢⎣
A1 0 · · · 0
0 A2 · · · 0
...

...
0 0 · · · Ap

⎤⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎣
ĉ11 · · · ĉ1p

ĉ21 · · · ĉ2p

...
ĉ p1 · · · ĉ pp

⎤⎥⎥⎥⎦ , x =

⎡⎢⎢⎢⎣
x1

x2

...
xp

⎤⎥⎥⎥⎦ , and f =

⎡⎢⎢⎢⎣
f1

f2

...
fp

⎤⎥⎥⎥⎦
Then (I − CA)x = Cf and x = (I − CA)−1Cf still represents the system and its
solution; only the dimensions of the matrices have changed.

3.4.4 Numerical Example: Hypothetical Two-Region Multiregional Case
Assume that we have the flow data in Table 3.5, representing total inputs purchased by
producing sectors in each region, regardless of whether these are locally produced or
imported from the other region. These are the Zr = [z·r

ij ] and Zs = [z·s
ij ] data.

Suppose, further, that xr =
⎡⎣1000

2000
1000

⎤⎦ and xs =
⎡⎣1200

800
1500

⎤⎦, so that the regional

technical coefficients matrices, Ar = [ar
ij] and As = [as

ij], are

Ar =
⎡⎣ .225 .300 .110

.250 .063 .425

.325 .350 .150

⎤⎦ , As =
⎡⎣ .188 .406 .083

.292 .250 .180

.300 .300 .133

⎤⎦
For the trade proportions, we need measures of the total amount of each good, i, that

is available in each region – T r
i and T s

i , in (3.18). Table 3.6 provides an example of these
data. (Note that the row sums for each sector in each region must be the total output
for that sector in that region, as recorded in the appropriate x vector.) The proportions
– crs

i = zrs
i /T s

i – are easily found. Here

crr =
⎡⎣ .721

.812

.735

⎤⎦ , crs =
⎡⎣ .183

.583

.078

⎤⎦ , csr =
⎡⎣ .279

.188

.265

⎤⎦ , and css =
⎡⎣ .817

.417

.922

⎤⎦
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Table 3.6 Interregional Commodity Shipments for the Hypothetical Two-Region
Multiregional Case

Commodity 1 Commodity 2 Commodity 3

r s r s r s

r 800 200 1300 700 900 100
s 310 890 300 500 325 1175
T T r

1 = 1110 T s
1 = 1090 T r

2 = 1600 T s
2 = 1200 T r

3 = 1225 T s
3 = 1275

Thus the building blocks in this example for the two-region multiregional input–
output model are

A =
⎡⎣Ar 0

0 As

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

.225 .300 .110 0 0 0

.250 .063 .425 0 0 0

.325 .350 .150 0 0 0

0 0 0 .188 .406 .083
0 0 0 .292 .250 .180
0 0 0 .300 .300 .133

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and

C =
⎡⎣ ĉrr ĉrs

ĉsr ĉss

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

.721 0 0 .183 0 0
0 .812 0 0 .583 0
0 0 .735 0 0 .078

.279 0 0 .817 0 0
0 .188 0 0 .417 0
0 0 .265 0 0 .922

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Therefore

(I − CA)−1C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.127 .447 .300 .478 .418 .153
.628 1.317 .606 .552 1.115 .323
.512 .526 1.101 .335 .470 .247

.625 .369 .250 1.224 .456 .216

.238 .385 .205 .278 .650 .167

.472 .445 .589 .594 .529 1.232

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.24)

and, for example, the impacts of new final demands of 100 for sector 1 outputs by
consumers in each region – that is, with f ′ = [

100 0 0 100 0 0
]

– are found,
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as in (3.23),

x = (I − CA)−1Cf =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

160.50
118.00
84.70

184.90
51.60

106.60

⎤⎥⎥⎥⎥⎥⎥⎥⎦

So, xr =
⎡⎣160.50

118.00
84.70

⎤⎦ and xs =
⎡⎣184.90

51.60
106.60

⎤⎦.

Similarly, if f ′ = [
100 0 0 0 0 0

]
, which represents new final demands of 100

for sector 1 output by consumers in region r only, we find

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

112.70
62.80
51.20

62.50
23.80
47.20

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Exactly as in an interregional model, xs =
⎡⎣62.50

23.80
47.20

⎤⎦ reflects interregional spillovers

in the multiregional system, in this case from region r (the location of the final demand
change) to region s.

It is important to bear in mind, from the general statement of the multiregional input–
output model in (3.22) or (3.23), that both intermediate demands, Ax, and final demand,
f, are premultiplied by the matrix C; this distributes these demands to supplying sectors
across regions. Thus f r and f s represent demands by (shipments to) the final-demand
sectors in regions r and s respectively, not final demands for the products of regions
r and s (as in the interregional input–output model). The operation Cf converts these
demands into a set of shipments by each region to contribute toward satisfaction of the
final demands. In the two-region model here, f r is satisfied in part by shipments from
sectors in region r, ĉrrf r and in part by shipments from sectors in region s, ĉsrf r . An
example of a typical element in f r might be new energy demands by a state government
resulting from a new state office building in region r in that state. Depending upon the
particular region, some or all of that energy demand will be met from within region
r, the rest from outside the region. This is reflected in the appropriate elements in
ĉrr and ĉsr .

Thus, if one wants to assess the impacts of new region-specific final demands (such
as from a foreign airline for Boeing airliners, as in the interregional example in section
3.3) it is necessary to replace Cf by, say, f∗, which represents the new final demands
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already distributed appropriately to the region or regions of interest, and then to find

x = (I − CA)−1f∗ (3.25)

This is to be contrasted with (3.23). Continuing with the data for this example,

(I − CA)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.463 .471 .359 .258 .345 .135
.668 1.483 .720 .526 .600 .290
.604 .572 1.445 .274 .327 .145

.314 .298 .263 1.428 .676 .212

.216 .167 .221 .292 1.326 .162

.409 .376 .329 .636 .734 1.308

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.26)

If ( f ∗)r
1 = 100 represents the value of new foreign airline orders for aircraft produced

in region r, we would find, using (3.25)

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

146.30
66.80
60.40

31.40
21.60
40.90

⎤⎥⎥⎥⎥⎥⎥⎥⎦

3.4.5 The US MRIO Models
The first large-scale implementation of the MRIO framework was initiated at the
Harvard Economic Research Project (HERP) and was further developed by Profes-
sor Karen Polenske and her associates at MIT. In its most detailed form, this is a model
for 1963 with 51 regions (the 50 states and Washington, DC) and 79 sectors in each
region.A thorough description of the model and its construction is provided in Polenske
(1980). There was a second estimation and implementation of the MRIO framework for
the 1977 US economy involving researchers at MIT and also Jack Faucett Associates,
Inc., an economics consulting firm (see Jack Faucett Associates, Inc., 1981–1983).
Since then there have been some additional attempts at creating multiregional input–
output models for the USA. Because of widespread use, this system is viewed as an
alternative to the IRIO model; as we will see below, it could as well be seen as an
approach to estimating the intra- and interregional elements of an IRIO framework.17

Most implementations of interregional/multiregional input–output structures in
recent decades have been generated through a combination of techniques and esti-
mating procedures, all designed to estimate the numbers (especially the interregional
transactions/coefficients) needed for the MRIO framework. These are generally known
as “hybrid” techniques; they are a blend of some survey information, expert opinion
and mechanical approaches. Some of these are explored in more detail in Chapter 8.

17 An early comparison of the MRIO and IRIO models is provided in Hartwick, 1971.
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3.4.6 Numerical Example: The Chinese Multiregional Model for 2000
In 2003 the Institute of Developing Economies (Tokyo) in conjunction with the Japanese
External Trade Organization published an ambitious set of multiregional input–output
data for China in 2000, with 30 sectors and eight regions. (See Okamoto and Ihara, 2005,
for detailed discussions of table construction and a number of comparative regional
economic analyses that use the Chinese multiregional input–output framework.)

Tables 3.7–3.9 contain data for a highly aggregated version of the Chinese work, with
three sectors and three regions (this is for illustration purposes only).18 The transactions
are denominated in 10,000 yuan (CYN) [also known as renminbi, meaning “people’s
currency” (RMB)].19 We can easily trace the effects of hypothesized changes in final
demands throughout the sectors and regions of the Chinese economy in this three-
regional illustration. For example, assume that there is an increase of ¥100,000 in
export demand for manufactured goods from the North. We would use

(�fN )′ = [
0 100 0 0 0 0 0 0 0

]
in conjunction with the total requirements matrix in Table 3.9 to assess the impacts of
this final demand change throughout the economy. We can examine similar implications
of the same amount of increased export demand for manufactured goods in each of the
other regions, using in turn (�fS)′ = [

0 0 0 0 100 0 0 0 0
]

for export

demands in the South and (�fR)′ = [
0 0 0 0 0 0 0 100 0

]
for export

demands in the Rest of China.
Premultiplying each of these vectors, in turn, by the total requirements matrix in Table

3.9 produces the results shown inTable 3.10.The new export demand generates differing
own-region economic effects, depending on the region in which the manufacturing
sector experiences the new export demand. When the demand is for manufactured goods
made in the North, the total output of all sectors in that region increases by ¥215,300.
If the demand is for Southern manufactured goods, the total value of new outputs in
that region is ¥236,100, and when the new demand is for manufactured goods from the
rest of China, output of all sectors there increases by ¥203,900. Interregional spillovers
to each of the other regions are indicated by the other entries in the bottom row of
Table 3.10. Adding spillovers to own-region impacts, we see that total national effects
of the ¥100,000 stimulus for manufactures are ¥259,800, ¥268,500, and ¥240,200,
respectively, when the stimulus is in the North, the South, and the Rest of China,
respectively.

Many other observations can be made with the aid of results like these in Table 3.10.
For example, in terms of interregional spillovers, it is clear that the largest external effect
occurs when the demand is in the North; the ¥40,700 increase in Southern outputs is the
largest effect of any in the bottom row of the table. In this highly aggregated example
from China, it is clear from both the within-South effects (¥268,500) and the North-
to-South spillover effect (¥40,700) that Southern manufacturing occupies a dominant

18 These data are from the Institute of Developing Economies-Japan External Trade Organization (IDE-JETRO),
2003. Details of the regional and sectoral aggregations can be found in Appendix 3.2.

19 The symbol usually seen is ¥, although sometimes with just one horizontal stroke. With two lines it is the same
as the symbol for the Japanese yen.
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Table 3.10 Region- and Sector-Specific Effects (in ¥1000) of a ¥100,000
Increase in Final Demand for Manufacturing Goods, China, 2000

Produced in the North Produced in the South Produced in ROC

Sector North South ROC North South ROC North South ROC

Nat. Res. 25.6 6.8 0.8 5.8 25.0 1.6 1.6 4.6 27.9
Mfg. &Const. 172.8 29.4 2.5 16.0 191.9 4.8 5.3 20.1 156.8
Services 16.9 4.5 0.5 3.1 19.2 1.1 0.9 3.8 19.2
Total 215.3 40.7 3.8 24.9 236.1 7.5 7.8 28.5 203.9

position in the economy. We will explore measures of intra- and interregional impacts
in more detail in Chapter 6.

3.5 The Balanced Regional Model

3.5.1 Structure of the Balanced Regional Model
A model that has a different sort of “regional” character was proposed in Leontief
et al. (1953, Ch. 4) and has been implemented in specific applications, including an
analysis of the effects in the US economy, on both sectors and regions, of a diversion
of production away from military goods and to nonmilitary consumer goods (Leontief
et al., 1965). This has been called a balanced regional model (or intranational model).
The basic mathematical structure of this model is identical to that of the interregional
input–output model, but the interpretation of each of the components of the model is
rather different. The entire analytical structure is based on the observation that in any
national economy there are goods with different kinds of market areas. There are some
goods for which production and consumption are equal (“balance”) only at the national
level. These are goods that have essentially a national (or, indeed, international) market
area – sectors such as automobiles, aircraft (total airliner production in Washington
�= total demand for aircraft in Washington), furniture, and agriculture. On the other
hand, there are other sectors for which production and consumption tend to balance
at a lower geographical level; they serve a regional or local rather than a national
market. Examples might be electricity, real estate, warehousing, and personal and repair
services (the number of shoeshines produced in an urban area equals the demand for
shoeshines in that area). Clearly there is in reality an entire spectrum of possibilities,
from sectors that serve extremely small local markets (shoe repair) to large national
and international markets (aircraft). To illustrate the model structure with a simple
example, we suppose that all sectors can be assigned to either a national (N ) or a
regional (R) category. (One possible criterion for classification of sectors would be the
percentage of interregional as opposed to intraregional shipments of the products of that
sector.)

Then, from a table of national input coefficients, one can rearrange the sectors so that,
for example, all the regional sectors are listed first and all the national sectors follow.
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Let sectors 1, 2, . . . , r represent the regionally balanced sectors and let sectors r + 1,
. . . , n represent nationally balanced sectors. Then, the rearranged table of national input
coefficients will be

A =
[

ARR ARN

ANR ANN

]
(3.27)

Let xR and fR (r-element column vectors) represent total output and final demand for
the regional sectors, and let xN and fN , which are (n − r)-element column vectors,
represent output and final demand for the national sectors. Define

x =
[

xR

xN

]
and f =

[
fR

fN

]

Then, in exactly the same spirit as the two-region interregional input–output model,
we have (I − A)x = f . Here this is

(I − ARR)xR − ARN xN = fR

− ANRxN + (I − ANN )xN = fN (3.28)

It is important to notice that the R and N superscripts do not refer here to specific
geographic locations of sectors, as in the interregional model. Rather, they serve to
partition the sectors into two types – those whose market areas are national and those
whose market areas are regional.20 For example, a typical element aRN

ij xN
j of the vector

ARN xN in (3.28) records inputs from sector i (in the regionally balanced set of sectors)
to sector j (in the nationally balanced set of sectors). This will become clearer in the
numerical example below.

More compactly, in partitioned matrix form,[
(I − ARR) −ARN

−ANR (I − ANN )

][
xR

xN

]
=
[

fR

fN

]

and so [
xR

xN

]
=
[

(I − ARR) −ARN

−ANR (I − ANN )

]−1 [ fR

fN

]
(3.29)

Using regular solution procedures, we find the total outputs of each sector in each
of the two categories, due to an exogenous change in final demand for the outputs
of one or more national sectors and/or one or more regional sectors. For example,
in the arms-reduction study, there was assumed to be a 20 percent across-the-board
decrease in government demand for the output of military-related goods, some of which
were produced by national sectors (e.g., aircraft) and some of which were produced

20 Partitioning of this sort can be done for a wide variety of purposes. For example, if one is particularly interested
in energy-producing sectors, one might want to divide all sectors into two groups – those that produce energy
and those that do not produce energy. Partitioned matrices will be employed frequently in the remainder of this
book. Important results on inverses of partitioned matrices are presented in Appendix A.
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by regional sectors (e.g., warehousing), and an assumed across-the-board increase in
nonmilitary final demands. Hence, elements in both fR and fN experienced change.

Thus far, there is nothing explicitly spatial in the model. The categorization of either
nationally balanced or regionally balanced sectors deals only with the size of the market
areas involved. For regional sectors, we need to have the new final demands, fR, dis-
tributed across regions. That is, we need to have fR(s), the final demand for regionally
balanced goods in region s, where

∑
s

fR(s) = fR. In addition, we need, for each region,

s, an estimate of the proportion of the output of each nationally balanced sector that is
produced in region s, namely

ps =
⎡⎢⎣ps

r+1
...

ps
n

⎤⎥⎦
The vector p̂sxN indicates that part of the output of new national goods, xN , that must
be produced by sectors r + 1 through n in region s. Since the elements of ps are the
proportions of total national output that occur in region s,

∑
s

ps
i = 1 for i = r +1, . . . , n,

or
∑
s

p̂s = I.

Total output in region s is an n-element vector

x(s) =
[

xR(s)

xN (s)

]
(3.30)

where xR(s) contains the outputs of the r regionally balanced goods that are made in
region s, and xN (s)(= p̂sxN ) indicates production of nationally balanced goods that
occurs in region s.

The xR(s) term involves two components: (1) production in region s to meet region-
specific final demand for regionally balanced goods, fR(s) (e.g., production in Michigan
to satisfy interindustry needs and new final demand in Michigan for electricity produced
in that state) and (2) production in region s to turn out that region’s share of nation-
ally balanced goods, xN (s) (e.g., Michigan electricity used as an input to Michigan
production of automobiles to satisfy part of the nationwide demand for automobiles).
That is,

xR(s) = (I − ARR)−1fR(s) + (I − ARR)−1ARN xN (s)

= (I − ARR)−1fR(s) + (I − ARR)−1ARN p̂sxN (3.31)

Remember, from (3.27), that all the coefficients in the A matrices reflect national
technology; the “R” and “N” serve to partition this national technology into two types of
sectors. Production in each particular region is assumed to utilize this same technology,
as reflected in the (I − ARR) matrix and its inverse. In Appendix 3.3, these results are
derived directly from observations on the inverse of the partitioned matrix in (3.29).

For the allocation of region R’s share of production of nationally balanced goods,
found in (3.29), we have

xN (s) = p̂sxN (3.32)



104 Input–Output Models at the Regional Level

In this way, then, the balanced regional model allocates the impacts of new fR and fN

demand to the various sectors in each region.

3.5.2 Numerical Example
An example will illustrate more exactly how this works. Let

A =
[

ARR ARN

ANR ANN

]
=

⎡⎢⎢⎢⎣
.10 .15 .05 .03
.03 .10 .02 .10

.12 .03 .20 .10

.10 .02 .25 .15

⎤⎥⎥⎥⎦ (3.33)

and

f =
[

fR

fN

]
=

⎡⎢⎢⎢⎣
100
100

200
200

⎤⎥⎥⎥⎦
Then x is found as in (3.29)

x =
[

xR

xN

]
=

⎡⎢⎢⎢⎣
168.30
163.40

325.70
354.70

⎤⎥⎥⎥⎦ (3.34)

These figures represent total outputs, throughout the nation, of the four sectors.
Assume that there are three regions in the country and that the region-specific

distribution of final demands fR is

fR(1) =
[

40
30

]
, fR(2) =

[
50
30

]
, fR(3) =

[
10
40

]

and that p1 =
[

0.6
0.3

]
, p2 =

[
0.2
0.4

]
, and p3 =

[
0.2
0.3

]
. We find (I − ARR)−1 from the

data in A;

(I − ARR)−1 =
[

1.117 .186
.037 1.117

]
Using (3.31),

xR(1) =
[

67.47
51.75

]
, xR(2) =

[
72.73
52.97

]
, xR(3) =

[
28.05
58.65

]
(3.35)

[Note, as must be the case in a consistent model, that xR, in (3.34), is indeed xR(1) +
xR(2) + xR(3).] Using p̂1, p̂2, and p̂3, the distribution of nationally balanced goods
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across regions is found as

xN (1) = p̂1xN =
[
195.40
106.40

]
, xN (2) = p̂2xN =

[
65.14

141.90

]
, xN (3) = p̂3xN =

[
65.14

106.40

]
(3.36)

where xN must equal xN (1) + xN (2) + xN (3), because of the way in which the p are
defined.

Putting the results in (3.35) and (3.36) together, as in (3.30), we have

x(1) =

⎡⎢⎢⎢⎣
67.47
51.75

195.40
106.40

⎤⎥⎥⎥⎦ , x(2) =

⎡⎢⎢⎢⎣
72.73
52.97

65.14
141.90

⎤⎥⎥⎥⎦ , x(3) =

⎡⎢⎢⎢⎣
28.05
58.65

65.14
106.40

⎤⎥⎥⎥⎦ (3.37)

The entire outputs in (3.34) have been allocated across the three regions. As noted,
production in each region is assumed to utilize the same technology, as reflected in
(I − ARR). But the model does recognize that production, whether of goods with a
national market area or with a subnational market area, occurs in geographically specific
locations, and the information in the distribution of the fN elements and in the ps vectors
reflects this spatial distribution of production.

3.6 The Spatial Scale of Regional Models

To give the reader a feeling for the vast variety of geographic scales that have been mod-
eled in “regional” input–output applications, we list a few (of very many) references,
starting at the micro-spatial end of the spectrum.

• Cole (1987) describes a model for the city of Buffalo, New York, and Cole (1999)
looks at an inner-city neighborhood in Buffalo.

• Robison and Miller (1988, 1991) consider small Idaho timber economies (log-
ging/sawmills) – in the latter reference consisting of six communities (five containing
sawmills; combined population around 20,000).They term these “community” input–
output models. In Robison (1997) the model is for a rural two-county region in
central Idaho (total population less than 12,000) which was disaggregated into seven
community-centered sub-county regions.

• Hewings, Okuyama and Sonis (2001) present a four-region metropolitan area model.
Three of the regions are sub-divisions of the City of Chicago, and the fourth is
composed of the remaining counties making up the Chicago metropolitan area (six
counties in all).

• Jackson et al. (2006) and Schwarm, Jackson and Okuyama (2006) suggest a new
approach to generating data for the 51-state US model (as in the US MRIO model
discussed above in section 3.4.5).
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• Richardson, Gordon and Moore (2007, and numerous other citations) create a 51-state
US MRIO model.

• Boomsma and Oosterhaven (1992) describe a variety of two-region Dutch models
made up of one region of interest and the rest of The Netherlands as the second
region.

• West (1990) contains a summary of Australian input–output models in single-region
and connected-region frameworks.

• Eurostat (2002), Hoen (2002). These references deal with the construction (and appli-
cation) of a kind of many-region (or many-nation) model for the EC that lies between
the IRIO and MRIO styles.

• IDE-JETRO (2006). Here the focus of attention is the Asian “multinational” or “mul-
tilateral” tables connecting ten countries (China, Indonesia, Japan, Korea, Malaysia,
Philippines, Singapore, Taiwan, Thailand, and the USA). These are produced at
five-year intervals.

• Leontief (1974), Leontief, Carter and Petri (1977), Fontana (2004) and Duchin
(2004). These references discuss various aspects of what has come to be called the
Leontief world model. Originally this was structured in terms of two “mega-regions”
(developed and less developed countries). In Duchin and Lange (1994) the applica-
tion uses a framework of 16 world regions (aggregations of countries) covering 189
countries.

• Inomata and Kuwamori (2007) and Development Studies Center, IDE-JETRO
(2007). These references discuss a ten-sector model that combines a multinational
character – China, Japan,ASEAN5 (Indonesia, Malaysia, the Philippines, Singapore,
and Thailand), East Asia (Korea and Taiwan) and the USA – with regional disaggre-
gations of China into seven regions and Japan into eight regions. Thus there are 18
geographic areas; some are true sub-national regions (the 15 in China and Japan),
one is a nation (the USA) and two are multinational areas (ASEAN5, East Asia). The
originators have called it a transnational interregional input–output (TIIO) model.

Many of these applications are discussed in Chapter 8.

3.7 Summary

In this chapter we have explored some of the most important modifications that need
to be made to the basic input–output model (Chapter 2) when analysis is to be carried
out at a regional level. We have seen that the input–output framework can be used
either to study one single region in isolation, or it can be employed in studying one
or more regions whose economic connections are made explicit in the model. While
the representations of these connected regional models appear quite complicated, the
models are logical extensions of the basic input–output structure that are designed to (1)
reflect possibly differing production practices for the same sectors in different regions
and (2) capture the trade relationships between sectors in different regions.

In more recent decades, work has been carried out with multinational input–output
models, where “region” is replaced by “nation” in the framework. These have come
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about as a result of the increasing economic interdependence of nations – as exemplified,
for example, in the European Union. We will explore some of these models in Chapter 8,
because they generally involve “hybrid” approaches to estimation of the necessary data.
Finally, a “global” model has been proposed as an interconnected set of broad groups
of national economies. In this kind of framework, impacts of alternative development
policies in less-developed countries can be studied for global impacts. (For example,
Leontief, 1974; Leontief, Carter and Petri, 1977.) This will be explored briefly in
Chapter 8 also.

Appendix 3.1 Basic Relationships in the Multiregional Input–Output Model

In standard input–output fashion, the total demand for commodity i in region s is given
by

n∑
j=1

as
ijx

s
j + f s

j (A3.1.1)

The total supply of commodity i in region s is the total that is shipped in from other
regions,

p∑
r=1

zrs
i (r �= s)

plus the amount that is supplied from within the region, zss
i . This is just T s

i , the sum of
the elements in column s in Table 3.8, as defined in (3.18). Since shipments (supplies)
occur only to satisfy needs (demands), we have, for each commodity i

T s
i =

n∑
j=1

as
ijx

s
j + f s

i (A3.1.2)

Total production of i in region r is equivalent to the total amount of i shipped from
r, including that kept within the region

xr
i =

p∑
s=1

zrs
i (A3.1.3)

From the definition of the interregional proportions in section 3.4.2, crs
i = zrs

i /T s
i ,

(A3.1.3) can be rewritten as

xr
i =

p∑
s=1

crs
i T s

i (A3.1.4)

Putting T s
i , as defined in (A3.1.2), into (A3.1.4)

xr
i =

p∑
s=1

crs
i

⎛⎝ n∑
j=1

as
ijx

s
j + f s

i

⎞⎠ (i = 1, . . . , n) (A3.1.5)
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Using familiar matrix notation, let

xr =
⎡⎢⎣xr

1
...

xr
n

⎤⎥⎦ , xs =
⎡⎢⎣xs

1
...

xs
n

⎤⎥⎦ , f s =
⎡⎢⎣ f s

1
...

f s
n

⎤⎥⎦

As =
⎡⎢⎣as

11 · · · as
1n

...
...

as
n1 as

nn

⎤⎥⎦ , ĉrs =

⎡⎢⎢⎢⎣
crs

1 0 · · · 0
0 crs

2
...
0 crs

n

⎤⎥⎥⎥⎦
The reader should be convinced that the entire set of n equations for outputs of goods
in region r can be expressed as

xr =
p∑

s=1

ĉrs(Asxs + f s) =
p∑

s=1

ĉrsAsxs +
p∑

s=1

ĉrsf s (A3.1.6)

There will be p such matrix equations, one for each region r (r = 1, . . . , p). Again
using matrix notation, as in section 3.4, we can construct

x =

⎡⎢⎢⎢⎢⎢⎢⎣
x1

...
xs

...
xp

⎤⎥⎥⎥⎥⎥⎥⎦ , f =

⎡⎢⎢⎢⎢⎢⎢⎣
f1

...
f s

...
fp

⎤⎥⎥⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎢⎢⎢⎣
A1 · · · 0 · · · 0
...

...
0 As 0
...

...
0 · · · 0 · · · Ap

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and

C =

⎡⎢⎢⎢⎢⎢⎢⎣

ĉ11 · · · ĉ1s · · · ĉ1p

...
...

...
ĉr1 · · · ĉrs · · · ĉrp

...
...

...
ĉ p1 · · · ĉ ps · · · ĉ pp

⎤⎥⎥⎥⎥⎥⎥⎦
Then the p matrix equations in (A3.1.6) can be compactly expressed as

x = C(Ax + f) = CAx + Cf

from which

(I − CA)x = Cf (A3.1.7)

and

x = (I − CA)−1Cf (A3.1.8)

as in (3.22) and (3.23) in the text.
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Appendix 3.2 Sectoral and Regional Aggregation in the 2000 Chinese Multiregional
Model

1. Beijing
2. Tianjin
3. Shanghai
4. Chongqing

Southwest

Yunnan

Guizhou

Guangxi Guangdong

Hainan

South

Fujian

JiangxiHunan

Henan

Hubei

Zhejiang

Central

East

Anhui

Jiangsu

Shandong

Hebei
Shanxi

Shaanxi

Sichuan

Gansu

NingxiaQinghai

Tibet

Xinjiang

Northwest

Northeast

North

Heilongjiang

Jilin

Liaoning

Inner Mongolia

3

2

4

1

Figure A3.2.1 Regional Aggregation in the 2000 Chinese Multiregional Model

Table A3.2.1 Regional Classifications in the 2000 Chinese
Multiregional Model

3-Region
Aggregation Regions Provinces and Municipalities

North Northeast Heilongjiang, Jilin, Liaoning
North Beijing, Tianjin, Hebei, Shandong

South South Hainan, Guangdong, Fujian
Central Hunan, Jiangxi, Hubei, Henan, Anhui,

Shanxi
East Jiangsu, Shanghai, Zhejiang

Rest of China Northwest Xinjiang, Qinghai, Gansu, Ningxia,
Shaanxi, Inner Mongolia

Southwest Tibet, Sichuan, Yunnan, Guizhou,
Guangxi, Chongqing



110 Input–Output Models at the Regional Level

Table A3.2.2 Sectoral Aggregation in the 2000 Chinese
Multiregional Model

3-Sector Aggregation Industry Sectors

Natural Resources agriculture
mining & processing

Manufacturing &
Construction

light industry
energy industry
heavy industry & chemical industry
construction

Services & Other
Sectors

transportation & telecommunications services
commercial services
other

Appendix 3.3 The Balanced Regional Model and the Inverse of a Partitioned (I − A)

Matrix

We use the results from Appendix A on the inverse of a partitioned matrix. For the
balanced regional model, let

(I − A) =
[

(I − ARR) −ARN

−ANR (I − ANN )

]
=
[

E F

G H

]
and (I − A)−1 =

[
S T

U V

]
.

Then, from (3.29)

xR = SfR + TfN

xN = UfR + VfN (A3.3.1)

This generates total output throughout the nation of both regionally balanced goods
(xR) and nationally balanced goods (xN ).

In this case, using the partitioned inverse results above, we have

S = (I − ARR)−1(I + ARN U) T = (I − ARR)−1ARN V
U = VANR(I − ARR)−1 V = [(I − ANN ) − ANR(I − ARR)−1ARN ]−1 (A3.3.2)

Substituting for S and T in (A3.3.2), from (A3.3.1),

xR = (I − ARR)−1fR + (I − ARR)−1ARN (UfR + VfN ) (A3.3.3)

But xN , as in (A3.3.2), is just the (UfR + VfN ) term on the right-hand side of (A3.3.3),
so

xR = (I − ARR)−1fR + (I − ARR)−1ARN xN (A3.3.4)

To distribute both xR and xN production to individual regions, we need the regional
distribution of final demands for regional goods – fR(s), for each region s – and we need
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the regional distribution of production of each of the nationally balanced goods – ps –
for each region. Then, to add the spatial dimension, for a specific region s, fR becomes
fR(s) and xN becomes xN (s), which is p̂sxN . Therefore

xR(s) = (I − ARR)−1fR(s) + (I − ARR)−1ARN p̂sxN (A3.3.5)

This is (3.31) in the text.

Problems

3.1 The data in problem 2.2 described a small national economy. Consider a region within
that national economy that contains firms producing in each of the three sectors.
Suppose that the technological structure of production of firms within the region is
estimated to be the same as that reflected in the national data, but that there is need to
import into the region (from producers elsewhere in the country) some of the inputs
used in production in each of the regional sectors. In particular, the percentages of
required inputs from sectors 1, 2, and 3 that come from within the region are 60, 90,
and 75, respectively. If new final demands for the outputs of the regional producers
are projected to be 1300, 100, and 200, what total outputs of the three regional sectors
will be needed in order to meet this demand?

3.2 The following data represent sales (in dollars) between and among two sectors in
regions r and s.

r s

r 40 50 30 45
60 10 70 45

s 50 60 50 80
70 70 50 50

In addition, sales to final demand purchasers were f r =
[

200
200

]
and f s =

[
300
400

]
.These

data are sufficient to create a two-region interregional input–output model connecting
regions r and s. If, because of a stimulated economy, household demand increased
by $280 for the output of sector 1 in region r and by $360 for the output of sector
2 in region r, what are the new necessary gross outputs from each of the sectors in

each of the two regions to satisfy this new final demand? That is, find �x =
[

�xr

�xs

]
associated with �f .



112 Input–Output Models at the Regional Level

3.3 Suppose that you have assembled the following information on the dollar values of
purchases of each of two goods in each of two regions, and also on the shipments of
each of the two goods between regions:

Purchases in Region r Purchases in Region s
zr

11 = 40 zr
12 = 50 zs

11 = 30 zs
12 = 45

zr
21 = 60 zr

22 = 10 zs
21 = 70 zs

22 = 45

Shipments of Good 1 Shipments of Good 2
zrr

1 = 50 zrs
1 = 60 zrr

2 = 50 zrs
2 = 80

zsr
1 = 70 zss

1 = 70 zsr
2 = 50 zss

2 = 50

These data are sufficient to generate the necessary matrices for a two-region multi-
regional input–output model connecting regions r and s. There will be six necessary
matrices – Ar , As, ĉrr , ĉrs, ĉsr and ĉss. All of these will be 2×2 matrices. If the pro-

jected demands for the coming period are f r =
[

50
50

]
and f s =

[
40
60

]
, find the gross

outputs for each sector in each region necessary to satisfy this new final demand; that
is, find xr and xs.

3.4 A federal government agency for a three-region country has collected the following
data on input purchases for two sectors, (1) manufacturing and (2) agriculture, for last
year, in dollars. These flows are not specific with respect to region of origin; that is,
they are of the z·s

ij sort. Denote the three regions by A, B, and C.

Region A Region B Region C

1 2 1 2 1 2

1 200 100 700 400 100 0
2 100 100 100 200 50 0

Also, gross outputs for each of the two sectors in each of the three regions are known.
They are:

xA =
[

600
300

]
, xB =

[
1200
700

]
and xC =

[
200

0

]

The agency hires you to advise them on potential uses for this information.

a. Your first thought is to produce a regional technical coefficients table for each
region. Is it possible to construct such tables? If so, do it; if not, why not?

b. You also consider putting the data together to generate a national technical
coefficients table. Is this possible? If so, do it; if not, why not?

c. Why is it not possible to construct from the given data a three-region multiregional
input–output model?
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d. If the federal government is considering spending $5,000 on manufactured goods
and $4,500 on agricultural products next year, what would you estimate as the
national gross outputs necessary to satisfy this government demand?

e. Compare the national gross outputs for sectors 1 and 2 found in d, above, with
the original gross outputs, given in the data set from last year. What feature of the
input–output model does this comparison illustrate?

3.5 Consider the following two-region interregional input–output transactions table:

North South

Constr. & Const. &
Agric. (1) Mining (2) Manuf.(3) Agric.(1) Mining (2) Manuf. (3) Total Output

North
Agriculture (1) 277, 757 3, 654 1, 710, 816 8, 293 26 179, 483 3, 633, 382
Mining (2) 319 2, 412 598, 591 15 112 30, 921 743, 965
Construction & 342, 956 39, 593 6, 762, 703 45, 770 3, 499 1, 550, 298 10, 931, 024

Manufacturing (3)

South
Agriculture (1) 7, 085 39 98, 386 255, 023 3, 821 1, 669, 107 3, 697, 202
Mining (2) 177 92 15, 966 365 3, 766 669, 710 766, 751
Construction & 71, 798 7, 957 2, 017, 905 316, 256 36, 789 8, 386, 751 14, 449, 941

Manufacturing (3)

a. Find the final-demand vectors and the technical coefficients matrices for each
region.

b. Assume that the rising price of imported oil (upon which the economy is 99 percent
dependent) has forced the construction and manufacturing industry (sector 3) to
reduce total output by 10 percent in the South and 5 percent in the North. What
are the corresponding amounts of output available for final demand? (Assume
interindustry relationships remain the same, that is, the technical coefficients matrix
is unchanged.)

c. Assume that tough import quotas imposed in Western Europe and the USA on
this country’s goods have reduced the final demand for output from the country’s
construction and manufacturing industries by 15 percent in the North. What is the
impact on the output vector for the North region? Use a full two-region interregional
model.

d. Answer the question in part c, above, ignoring interregional linkages, that is, using
the Leontief inverse for the North region only. What do you conclude about the
importance of interregional linkages in this aggregated version of this economy?

3.6 Consider the MRIO transactions table for China given in Table 3.7. Suppose all of the
inputs to the North region from the South region were replaced with corresponding
industry production from the Rest of China region. How would you reflect such a
situation in the MRIO model? What would be the impact on total outputs of all regions
and sectors for a final demand of ¥100,000 on export demand for manufactured goods
produced in the North?

3.7 A three-region, five-sector version of the US multiregional input–output economy is
given in Table A4.1.3 in the next chapter. Suppose that a new government military
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project is initiated in the western United States which stimulates new final demand in
that region of (in millions of dollars) �fW = [

0 0 100 50 25
]′

. What is the impact
on total production of all sectors in all three regions of the United States economy
stimulated by this final demand in the West?

3.8 Consider the three-region, five-sector version of an interregional input–output econ-
omy of Japan for 1965 given in Table A4.1.1 of Appendix 4.1. Suppose the same
final demand vector given in problem 3.7 is placed on goods and services produced in
Japan’s South region. What is the impact on total production of all sectors in all three
regions of Japan of this final demand in the South?

3.9 Consider the year 2000 IRIO model for China, Japan, the United States and an aggrega-
tion of other Asian nations including Indonesia, Malaysia, the Philippines, Singapore,
and Thailand provided in the table below. Assume that annual final demand growth in
China is 8 percent, growth in the USA and Japan is 4 percent, and that of other Asian
nations is 3 percent. Compute the percentage growth in total output corresponding to
the growth in final demand.

United States Japan China Rest of Asia

Nat. Manuf. & Services Nat. Manuf. & Services Nat. Manuf. & Services Nat. Manuf. & Services
2000 Res. Const. Res. Const. Res. Const. Res. Const.

USA
Nat. Res. 75, 382 296, 016 17, 829 351 4, 764 473 174 403 17 103 2, 740 83
Manuf. &

Const.
68, 424 1, 667, 042 960, 671 160 21, 902 3, 775 587 8, 863 1, 710 383 45, 066 4, 391

Services 95, 115 1, 148, 999 3, 094, 357 118 6, 695 807 160 1, 466 296 197 7, 393 953

Japan
Nat. Res. 7 52 53 8, 721 78, 936 11, 206 13 66 2 14 180 27
Manuf. &

Const.
859 41, 484 11, 337 28, 0881, 414, 078 484, 802 764 20, 145 2, 809 462 72, 258 4, 108

Services 97 4, 390 1, 424 24, 901 662, 4881, 001, 832 107 2, 763 335 270 7, 816 1, 189

China
Nat. Res. 72 343 147 50 2, 316 229 49, 496 183, 509 15, 138 102 2, 430 99
Manuf. &

Const.
331 15, 657 6, 442 93 10, 199 1, 989 89, 384 892, 227 181, 932 157 15, 093 1, 237

Services 38 2, 218 1, 099 17 1, 780 280 25, 391 210, 469 136, 961 23 2, 078 132

ROA
Nat. Res. 322 1, 068 203 64 11, 906 266 64 1, 475 14 12, 153 92, 647 6, 402
Manuf. &

Const.
503 56, 287 18, 129 278 35, 418 3, 562 1, 141 41, 496 4, 685 23, 022 566, 274 144, 417

Services 152 4, 578 1, 921 41 3, 982 447 138 3, 669 422 15, 163 213, 470 239, 053

TOTAL OUTPUT 468, 403 5, 866, 935 11, 609, 307 140, 6223, 883, 4554, 658, 191 408, 1532, 000, 741 702, 248 173, 0801, 727, 367 1, 225, 460

3.10 Assume that you have a very limited computer that can directly determine the inverse
of matrices no larger than 2 × 2. Given this limited computer, explain how you could
go about determining L for

A =

⎡⎢⎢⎢⎢⎢⎣
0 0.1 0.3 0.2 0.2

0.1 0.1 0.1 0 0
0.2 0 0.1 0.3 0.1
0.3 0 0 0.1 0.3
0.3 0.2 0.1 0.1 0.2

⎤⎥⎥⎥⎥⎥⎦
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a. Compute the Leontief inverse in this manner.
b. What implications does such a procedure have for the computation of very large

matrices (e.g., n > 1000)?
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4 Organization of Basic Data
for Input–Output Models

4.1 Introduction

Among the most formidable challenges in using input–output analysis in practice is
assembling the detailed basic data needed to construct input–output tables character-
izing the economic area of interest – national, regional, or perhaps multiple-regions.
There are a variety of means by which these data are compiled, either for the specific
area and time period of interest or adapted from other data sources.

In many cases, the data needed for construction of input–output tables are part of
a larger collection of data assembled for a wide variety of socio-economic reasons.
This is the case particularly in national economies where well-developed systems and
standards for collecting economic data exist for such purposes as analyzing economic
impacts of government policy that affects the economy, accountability for distribution
of government revenues, or simply measuring the ongoing health of the economy.
These basic data are often derived from social accounting data assembled in the form
of a system of national (or regional) economic information1 which is often routinely
collected by means of a periodic census or some other survey.

4.2 Observations on Ad Hoc Survey-Based Input–Output Tables

Sometimes data collected for an input–output table result from an ad hoc survey
designed specifically for that purpose. This is especially common at the regional level,
but has seldom led to such data collection becoming a routine part of the region’s
annual collection of socio-economic data for the region. The methods, conventions,
and standards for carrying out ad hoc surveys designed specifically for constructing
input–output tables vary widely depending upon circumstances. Some of the clas-
sic historical efforts in the United States include Leontief’s original work for the US

1 For example, the US National Economic Accounts are routinely compiled by the US Department of Commerce.
The national input–output tables are derived from these accounts periodically. In 1968 the United Nations
published a standardized system of national accounts (SNA) which is consistent with the discussion presented
here; this system is widely applied in the literature (originally in United Nations, 1968, and more recently in
United Nations, 1993). Viet (1994) surveys the common practices adopted by many nations compared with the
SNA and many of the considerations are explored in Chapter 5.
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national input–output tables (summarized in Appendix C), and regional efforts such as
the State of Utah (Moore and Peterson, 1955), the St. Louis Metropolitan Area (Hirsch,
1959), the state of Kansas (Emerson, 1969), the Philadelphia Regional Input–Output
Study (Isard and Langford, 1971) and the Washington State series of input–output
tables (e.g., Chase, Bourque and Conway, 1993). There have been many other cases, of
course, in many regions and nations around the world, and the researchers referenced
above along with many others have published chronicles of their experiences, includ-
ing elaboration of alternative mechanisms for dealing with data shortages, methods for
reconciling inconsistent information, and many other best practices in construction of
these so-called survey-based input–output tables.

4.3 Observations on Common Methods for Generating Input–Output Tables

In planning for virtually any input–output modeling effort, the existence of a statistically
robust data source for precisely the geographic area under consideration, for precisely
the time period of interest, and for precisely the level of sectoral detail of interest is both
the most desirable and the least likely situation. The construction of full survey-based
input–output tables is a major undertaking that is both complex and expensive, often
prohibitively so.

Far more common is the situation where one is faced with adapting previously con-
structed input–output tables to reflect more current conditions or to make assumptions
about the similarity of the geographic area of interest to that of an area where an input–
output table already exists. Techniques for adapting existing tables either over time or
across space are often referred to as nonsurvey methods. Sometimes surveys of selected
industry sectors or other institutions may exist that are only part of what would consti-
tute a complete survey of the economy of interest, in which case many methods have
been developed to incorporate the selected new information into a strategy for con-
structing a new table. Such techniques are often referred to as partial survey methods.
These nonsurvey and partial survey alternatives to full survey-based construction of
input–output tables have been an active area of research for over thirty years and are
explored in Chapters 7 and 8.

As noted above, in many cases where use of input–output models has become a part
of a government’s analysis of economic structure and performance, the collection of
data needed for construction of input–output tables has become part of a larger and
more routine collection of national economic statistics assembled for a wide variety of
socio-economic planning and policy analysis reasons. Since the 1950s many nations
have increasingly adopted common conventions for collecting national economic data.
In the balance of this chapter we examine many of these conventions.

In developing the most common conventions for national economic accounting that
are particularly relevant to input–output analysis, we can also set the stage for some key
enhancements to the input–output framework to deal with complications arising from
collection of data. For example, for practical reasons the data for input–output tables
(and many other purposes) must be collected from business firms or establishments,
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which are subsequently aggregated to characterize a specific industrial sector. However,
it is quite common for a particular firm to produce multiple products or services that
are associated with differently defined industrial sectors. Hence, it is important to have
standardized ways for our accounting conventions to accommodate such situations.
Many of the conventions used in national economic accounting are included in what
has become known as the System of National Accounts (SNA). In Chapter 5 we deal
with many of the important ways to use these conventions to address the complications
of secondary production and other features of the economic accounts, but for now we
develop the basic concepts of the SNA.

4.4 A System of National Economic Accounts

In an appendix to a landmark 1947 United Nations (UN) report entitled Measurement of
National Income and the Construction of Social Accounts, British economist Richard
Stone set forth the basic framework for the standardized system of national economic
accounts that is most commonly used around the world today (United Nations, 1947,
and Stone, 1947). These concepts were formalized in the subsequent 1950 UN report,
A System of National Accounts and Supporting Tables, and, finally, in 1968 Stone led
the team that produced an integrated input–output framework and system of national
accounts (United Nations, 1968), work coupled with his related and subsequent con-
tributions (e.g., Stone, 1961) for which he received the 1984 Nobel Prize in Economic
Science “for having made fundamental contributions to the development of the sys-
tem of national accounts and hence greatly improved the basis for empirical economic
analysis.”2

In Stone’s work on national income and production accounting, he describes input–
output transactions tables as a “bridge between statistics that can actually be collected
about the productive process and the requirements of applied economic analysis”
(Stone, 1961). Fashioning an ability to “build” this bridge in an organized way, how-
ever, was a key development in making input–output the practical tool it has become.
In the following we describe the relationship between input–output tables and national
(or regional) economic accounts and, in the process, show how input–output tables can
be derived from such accounts. We focus on the SNA noted above, which continues
to be developed to refine the methodology and broadly standardize the definitions and
accounting rules that are used widely today. Published updates to the SNA standards
and conventions have appeared in United Nations (1993, 1999, 2004).

A key concept in the development of the SNA throughout its history has been the
adoption of an accounting structure in which not only economic production could be
subdivided so as to display the commodity flows between industries, the traditional
basis for Leontief’s model, but also that such information could be reconciled with all
the relevant information tracing the flows of income and wealth ultimately associated
with those flows. This is accomplished by means of “balance sheets” for the key sectors

2 From the citation announcing the award of The Bank of Sweden 1984 Prize in Economic Sciences in Memory
of Alfred Nobel, awarded December 8, 1984, as reported in Sveriges Riksbank (1984).
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of the economy. For purposes of this text, and in particular in this chapter, we focus on
the use of the SNA to facilitate construction of input–output models, but it is important
to recognize that the SNAprovides the basis for providing a national “balance sheet” and
for describing and analyzing economic change for many forms of economic decision
making.3

The data included in the SNAalso enables expansion of the basic input–output frame-
work to handle systematically such issues as secondary production in the economy, as
noted above. These so-called “commodity-by-industry” concepts, and their implica-
tions for input–output models, are developed in much more detail in Chapter 5 but are
introduced in this chapter. In addition the SNA provides the basis for broader social
accounting modeling, building once again on the Leontief model. These extensions are
examined in Chapters 9, 10, and 11.

4.4.1 The Circular Flow of Income and Consumer Expenditure
As noted earlier the principal goal of the SNA is to provide “a framework within
which the statistical information needed to analyze the economic process in all of its
many aspects could be organized and related.”4 Conceptually, this takes us back to
the fundamental roots of much of economic thought – the notion of a circular flow
of economic resources in an economy introduced by Cantillon and Quésnay in the
eighteenth century. These conceptual beginnings are described in Appendix C.

In the simplest of economies there are businesses that produce goods and services
and household consumers that purchase them. The consumers also manage and work
for the businesses and, hence, receive income from them, the value of which exactly
equals the total value of their purchases (see Figure 4.1). This is the fundamental tenet
of the circular flow of income and expenditures in that the total value of production
can be measured either by the value of all goods and services delivered to households
or by the payments for the factors of production delivered by consumer households, as
depicted in Figure 4.1.

Figure 4.1 The Circular Flow of Income and Expenditures

3 United Nations (1968), Chapter 1, p. 12.
4 United Nations (1968), Chapter 1, p. 13.
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Figure 4.2 Circular Flow Example: Point of Departure

From now on in this chapter we will show only the flow of money associated with
transactions, e.g., in Figure 4.1 the income received by consumers in return for their
labor services and the expenditures made by consumers in return for goods and services
delivered by businesses. We begin with a simple example, depicted in Figure 4.2, where
consumers receive $575 million dollars as income for the labor services that they
provide to businesses (Q) and, in turn, they use that income to purchase the same value
of goods and services from businesses (C). That is, the total of expenditures equals the
total of all income, so in this simplest of economies the circular flow is described as
the equally simple (4.1):

Q = C (4.1)

4.4.2 Savings and Investment
As our first refinement of this most simple of economies, recall that businesses, in the
course of producing the goods and services they deliver to final consumers, also con-
sume inputs other than labor services, such as raw materials and capital equipment.
So, once again as in Chapter 2, we refer to deliveries to final markets as final demand,
deliveries of goods and services to other businesses as intermediate output, and pur-
chases of goods and services by businesses that are not resold as intermediate goods
to other firms or consumers, i.e., they become long-term depreciable assets, as capital
investments.

For the time being, we will leave industrial production and use of intermediate output
in the course of that production, the major focus of input–output analysis, within the
block labeled “Businesses” in our flow diagram. Figure 4.3 depicts the addition of
capital expenditures as a portion of total expenditures in the economy.

In general some portion of consumer income is not spent on final goods, but rather
saved or invested for longer term financial gain. In Figure 4.3 the portion of consumer
income that is not spent on final goods is referred to as personal savings (S) and, in
our simple economy, we add a capital market, to hold personal savings on behalf of
consumers and lend it to businesses to purchase capital goods as investments.

Note that in the example (Figure 4.3) the total income generated by businesses
remains $575 million, but current consumer expenditures are reduced to $525 million,
with a $50 million residual that is not used for current consumption reserved as savings
(S) in the capital markets, which in turn provides that same amount as investment
resources (I ) to businesses acquiring capital goods.
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Figure 4.3 Introduction of Savings and Investment into the Circular Flow of Income and
Expenditures

Figure 4.4 Introduction of Depreciation into the Circular Flow of Income and Expenditures

As we proceed, sequentially unbundling activities to reflect more realistic complexity
in the economy, we will find we need to identify a way to include the valuation of not
only the transactions or flows in the economy, but also we seek to reconcile those
transactions with the valuation of the assets and liabilities or stocks in the economy,
which we will accomplish by means of a national “balance sheet.” For the moment,
however, we will only account for transactions or flows that relate to accumulations of
stocks, not the valuation of the stocks themselves.

Returning to the example, we are generally interested in measuring the key economic
flows in our economy, income, and expenditures, over a standardized period, e.g., a
year. Expenditures on capital, which we can loosely define as the use of goods and
services that extend beyond the standardized period, accumulate in the economy as
a stock, only a portion of which gets “consumed” during the current period. This is
why, in national income accounting parlance, this depreciation of a capital investment
is often referred to as a capital consumption allowance. Figure 4.4 includes a capital
consumption allowance, labeled depreciation (D), to reflect the depreciation of the
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Table 4.1 Basic National Accounts: Example Economy

Debits Credits

Production (Domestic Product Account)
Income (Q) 575 Sales of consumption goods (C) 525

Sales of capital goods (I) 50

Total 575 Total 575

Consumption (Income and Outlay Account)
Purchases of consumption goods
(C)

525 Income (Q) 575

Savings (S) 35 Depreciation (D) −15

Total 560 Total 560

Accumulation (Capital Transactions Account)
Purchase of capital goods (I) 50 Savings (S) 35
Depreciation (D) −15

0

Total 35 Total 35

accumulated stock of capital in the current period. Investment flows to businesses (I )
are then drawn from the stock of capital.

We can begin to keep track of the transactions systematically in our simple econ-
omy by maintaining some traditional accounting balance sheets (sometimes called “T”
accounts), one for each major type of economic activity: (1) production by businesses,
often called the Domestic Product Account, (2) consumption by consumers, often called
the Income and Outlays Account, and (3) capital accumulation in the capital markets,
often called the Capital Transactions Account. For our example so far these accounts
are shown in Table 4.1.5

We can also summarize these double entry bookkeeping accounts by the following
simple balance equations:

Q = C + I (4.2)

C + S = Q + D (4.3)

I + D = S (4.4)

5 For more detailed expositions on the relationship between macroeconomics, national economic accounts, and
input–output analysis, see Gordon (1978), Sommers (1985), and especially United Nations (1968, 1993, 1999,
and 2004).
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Figure 4.5 Addition of the Rest of World Account

4.4.3 Adding Overseas Transactions: Imports, Exports, and Other Transactions
Our next refinement recognizes that if some of the businesses in our simple economy
are located overseas, it will be important for a variety of reasons to account for them
separately. We can do this by defining and adding the various transactions with overseas
businesses as imports (M ) and exports (X ) of goods and services, consumer expendi-
tures overseas (called overseas transfers, O), the net of lending and borrowing of capital
overseas (net overseas lending, L), and consumer income received from overseas (H ).
For our example, these additional transactions are depicted in Figure 4.5, along with
the addition of a new category of economic activity and corresponding balance sheet
called “Rest of World.”

The corresponding balance sheet is often called the Balance of Payments Account,
which is included in Table 4.2 along with the other revised accounts. We can also
summarize these expanded double entry bookkeeping accounts by the following set of
balance equations:

Q + M = C + I + X (4.5)

C + S + O = Q + D + H (4.6)

I + D + L = S (4.7)

X + H = M + O + L (4.8)

Conceptually, a useful way to visualize these balance equations is to draw a circle
around each block in the flow diagram, then calculate the sum of all the transactions
going into the block, which will equal the sum of all the transactions leaving the block
or account.
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Table 4.2 Basic National Accounts Including Rest of World

Debits Credits

Production (Domestic Product Account)
Consumer Income Payments (Q) 550 Sales of consumption goods (C) 500
Purchases of Imports (M ) 50 Sales of capital goods (I) 75

Sales of Exports (X ) 25

Total 600 Total 600

Consumption (Income and Outlay Account)
Purchases of consumption goods
(C)

500 Income (Q) 550

Net Transfers Overseas (O) 10 Depreciation (D) −19
Savings (S) 35 Net Overseas Income (H ) 14

Total 545 Total 545

Accumulation (Capital Transactions Account)
Purchases of capital goods (I) 75 Savings (S) 35
Depreciation (D) −19
Net Lending Overseas (L) −21

Total 35 Total 35

Rest of World (Balance of Payments Account)
Purchases of Exports (X ) 25 Sales of Imports (M ) 50
Net Overseas Income (H ) 14 Net Transfers Overseas (O) 10

Net Borrowing Overseas (L) −21

Total 39 Total 39

4.4.4 The Government Sector
Finally, the major role of government in most economies suggests it should also be
included explicitly as a major activity in our portfolio of national economic accounts,
which we label the Government Account. This involves highlighting government trans-
actions, including taxes paid by consumers (T ), government purchases of goods and
services (G), and government deficit spending (B). For our example these additions
are reflected in Figure 4.6. The corresponding modified national accounts are shown in
Table 4.3.

We can, once again, also summarize these double entry bookkeeping accounts by
the following balance equations:

Q + M = C + I + X + G (4.9)

C + S + O + T = Q + D + H (4.10)
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Figure 4.6 Addition of the Government Account

I + D + L + B = S (4.11)

X + H = M + O + L (4.12)

G = T + B (4.13)

4.4.5 The Consolidated Balance Statement for National Accounts
For convenience we can summarize all the double entry bookkeeping accounts (and
corresponding balance equations) we have accumulated so far much more succinctly
in a single Balance Statement, provided in Table 4.4. Subsequently, and even more
compactly, we can represent the transactions (each of which appears twice in our current
tables) by entries in a matrix with the nature of the transaction (source and destination)
to be inferred from the transaction’s position in the matrix (Table 4.5).

Through this example, the reader may anticipate that we are gradually working our
way to the more familiar input–output table format. This will be apparent ultimately by
subdividing the Production and Consumption transactions to show activities and output
in specific industries and the use of specific products. For example, the Production–
Consumption transaction, instead of being a single number (475 in the example), will
be represented by a matrix (often called the Use matrix) with rows indicating specific
products or commodities and columns indicating specific industries.

At this point we have characterized the major economic activities in our simple
economy by representing them in a matrix that captures the information in the following
basic series of principal national economic accounts:
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1. Production of Goods and Services or the Domestic Product Account
2. Consumption of Goods and Services or the Income and Outlay Account
3. Accumulation of Capital or the Capital Transactions Account
4. Imports and Exports or the Balance of Payments Account
5. Government or the Government Account

So far, with the partial exception of transactions associated with capital accumulation,
we have accounted for only transactions or flows in the economy. We have largely
ignored accounting for the total value of accumulated assets and liabilities or stocks

Table 4.3 Basic National Accounts Including the Government Sector

Debits Credits

Production (Domestic Product Account)
Consumer Income Payments (Q) 550 Sales of consumption goods (C) 475
Purchases of Imports (M ) 50 Sales of capital goods (I) 75

Government Purchases (G) 25
Sales of Exports (X ) 25

Total 600 Total 600

Consumption (Income and Outlay Account)
Purchases of consumption goods
(C)

475 Income (Q) 550

Net Transfers Overseas (O) 10 Depreciation (D) −19
Taxes (T ) 20 Net Overseas Income (H ) 14
Savings (S) 40

Total 545 Total 545

Accumulation (Capital Transactions Account)
Purchase of capital goods (I) 75 Savings (S) 40
Depreciation (D) −19
Government deficit spending (B) 5
Net Lending Overseas (L) −21

Total 40 Total 40

Rest of World (Balance of Payments Account)
Purchases of Exports (X ) 25 Sales of Imports (M ) 50
Net Overseas Income (H ) 14 Net Transfers Overseas (O) 10

Net Borrowing Overseas (L) −21

Total 39 Total 39

Government (Government Account)
Government purchases (G) 25 Taxes (T ) 20

Government deficit spending (B) 5

Total 25 Total 25



130 Organization of Basic Data for Input–Output Models

Table 4.4 Balance Statement for the Basic National Accounts

Debits Credits

Prod. Cons.
Capital
Accum. Govt.

Rest of
World Var.

Economic
Transaction Prod. Cons.

Capital
Accum. Govt.

Rest of
World

475 C Consumption
Goods

475

75 I Capital
Goods

75

25 X Exports 25
50 M Imports 50

550 Q Income 550
−19 D Depreciation −19

14 H Overseas
Income

14

10 O Transfers
Abroad

10

40 S Savings 40
−21 L Net Lending

Abroad
−21

25 G Govt.
Expendi-
tures

25

20 T Taxes 20
5 B Govt. Deficit

Spending
5

600 545 40 25 39 Totals 600 545 40 25 39

Table 4.5 The Basic National Accounts Balance
Statement in Matrix Form

Prod. Cons. Cap. ROW Govt. Total

Production 475 75 25 25 600
Consumption 550 −19 14 545
Capital Accum. 40 40
Rest of World 50 10 −21 39
Government 20 5 25

Total 600 545 40 39 25

in the economy. Conceptually we can accomplish this by incorporating the balance
statement into an accounting balance sheet with a valuation of opening net assets in
the economy, i.e., the depreciated value of tangible assets held plus the excess of any
financial claims held as assets over financial claims issued as liabilities, which is defined
as the “net worth” of the economy.

As always, we measure all of these activities in terms of the value of the transaction,
but so far we have not specified the prices used in valuing these transactions or how we
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can accommodate price changes. Conceptually, we seek to incorporate all the economic
activities we have described so far as well as market changes in prices of goods and
services.As we learned in Chapter 2, in input–output analysis we will most often assume
fixed prices in any given analysis, but we need to be able to account for year-to-year
revaluations of assets and liabilities.

As we devise a “system” of national accounts to track the evolution of the economy
from one period to the next, for any given period of time, we will trace the transformation
of an “opening” balance sheet into a “closing” balance sheet in two equivalent ways: (1)
the net assets at the end of the period are equal to the sum of net assets at the beginning
of the period, net domestic and foreign investment during the period, and revaluations
needed to adjust the value of assets previously acquired or liabilities previously issued
to the prices in place at the closing date; and (2) the net worth at the end of the period
is equal to the net worth at the beginning of the period plus new savings accumulated
during the period and revaluations resulting from price changes.

4.4.6 Expressing Net Worth
Now we can add the notion of Initial and Closing asset values, which in moving from
one to the other are transformed by interaction of consumption, production, capital
accumulation, and net exports, as well as asset and liability revaluations resulting from
price changes of goods and services. With two basic observations it follows that the
opening and closing balance sheets are related by the effect of price revaluations and
the net effect of capital transactions. The two observations are the following: (1) total
saving in the economy is equal to net capital investment and (2) net worth can only be
revalued by applying to it the revaluation determined from the price changes of tangible
assets and financial claims.
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Table 4.6 Matrix of National Accounts Including Net Worth Calculations

NOA Prod. Cons. Cap. ROW Govt. Reval NCA

Net Opening Assets (NOA) 700

Production 475 75 25 25
Consumption 550 −19 14
Capital Accum. 700 40 100 840
Rest of World (ROW) 50 10 −21
Govt. 20 5

Revaluations (Reval) 100
Net Closing Assets (NCA) 840

The relationship between opening and closing balance sheets for our example is
depicted schematically in Figure 4.7. Note that this expanded schematic reflects two
changes: (1) reformatting of Figure 4.6, specifically highlighting (4.11), which is the
balance equation for allocation of savings, i.e., consumer income not spent on current
consumption is otherwise invested either directly as private investments or indirectly
as net taxes (the difference between gross payments for taxes and that portion of taxes
that are returned to consumers, often referred to as welfare transfers). Savings dur-
ing the period become additions to the stock of accumulated capital so the opening
value of assets is increased by the amount of savings, or equivalently the level of
investment diminished by depreciation, net lending abroad, and government deficit
spending, which is

S = I + D + L + B (4.14)

For our example, the accumulated saving is S = 40 and, if revaluations due to price
changes amount to 100, then the opening asset value (net worth) of 700 is increased at the
end of the period by sum of accumulated savings and revaluations, or 700+40+100 =
840. We can express this much more succinctly by expanding the basic matrix presented
in Table 4.5 to include opening net worth or net opening assets (NOA) closing net worth
or net closing assets (NCA), which includes revaluations, as shown in Table 4.6.

We can recap the balance equations, now including the net worth balances, by defining
R as the total of revaluations due to price changes, W1 as the opening net worth, and
W2 as the closing net worth to yield the following:

Q + M = C + I + X + G (4.15)

C + S + O + T = Q + D + H (4.16)

I + D + L + B = S (4.17)

X + H = M + O + L (4.18)

G = T + B (4.19)

W2 = W1 + S + R (4.20)
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4.5 National Income and Product Accounting Conventions

So far in this chapter we have developed the system of national income and product
accounts sufficiently that we can review some of the traditional assumptions and con-
ventions often used in compiling these accounts. For the most part these conventions
are completely consistent with the basic input–output framework developed in Chapter
2, but some of the peculiarities of nomenclature are different and worth noting. Perhaps
the most important characteristic is that the system is a closed system, i.e., the system
taken together accounts for all activities in the economy such that the value of total
production is equal to total consumption (production and consumption are balanced).
This will be of more interest in Chapter 11 when the input–output table is expanded to a
Social Accounting Matrix, which is formulated specifically to represent all components
of the closed system of national accounts.

The following are some basic principles included in most common systems of
national accounts:6

• Double Entry Bookkeeping. The national economic accounts are generally main-
tained as a traditional double entry bookkeeping accounting system, tabulating total
economic output on the debit side and the total resulting income flows on the credit
side. That is, by adopting the financial accounting convention of a “T” account
we can characterize a business establishment’s production account (BEPA) in two
columns, with debits to the account (expenses and profits) recorded in the left-hand
column and credits (sales and other revenue) recorded in the right-hand column. The
two columns are usually separated and labeled with lines resembling a T; hence the
name, “T” account. If net income before taxes is viewed as a payment to capital,
then total income, recorded as employee compensation and earnings from real and
financial property, is equal to total cost including depreciation.

• Output Equals Demand. Total output of the economic system is exactly equal to
total demand or, equivalently, gross national product is the same as gross national
expenditure. Perhaps the key concept is that inventories are essentially a reservoir that
appears as either a slack or surplus variable for output. If demand in final markets (final
demand) falls short of output, inventories would rise – an inventory accumulation.
If demand exceeds output then the result is an inventory drawdown – a negative
demand or inventory liquidation. The result is that output always equals demand with
inventories providing the accounting convention for handling surpluses or shortages
in any given period of time.

• Requiring Total Expenditure to Equal Total Income. We have presumed in our
running example that total output in the economy is equivalent to both total expendi-
tures as well as total income generated. This means if consumers spend less than their
total generated income, then the unspent balance goes into savings, as we derived
from the original concept of a circular flow. Conversely, in current terms businesses
typically spend more than their generated income, which comes in the form of net

6 United Nations (1968, 1993, and 1999), Sommers (1985), Gordon (1978).
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investment. So, in general, the total of savings in the economy is equal to total
investment, as in the example.

• Avoiding Double Counting of Output of Goods and Services. We measure eco-
nomic output as the value of output delivered to final demand. If copper produced
by a copper company is counted both when it is delivered to a circuit board maker
and in the final sale of the circuit board that incorporates the original copper, then
the copper is counted twice. Rather, we think of the value of the copper as embedded
in the value of the circuit board and we measure the value added at each stage of
production, the sum of which is total economic output.

• Valuing Output at Market Value. Generally we assume that all industry output is
valued at the prevailing producers’ market price or the sales price. Some output does
not pass though a market, however, e.g., food produced and consumed on a family
farm. In such cases, the market value is usually estimated and registered as imputed
income or expenditure.

• Measuring Gross Domestic Product. The value of economic output includes the
value of tangible goods as well as new construction and services. It is called the
Gross Domestic Product (GDP) since contributions to GDP are compiled as gross
measures, i.e., recorded prior to accounting for depreciation (or capital consumption
allowances). Note that the GDP measures the total amount of goods and services that
are produced within a country’s geographic borders. A related measure, the Gross
National Product (GNP), measures the total amount of goods and services that a
country’s citizens produce regardless of where they produce them. For example,
GNP for the United States includes such items as corporate profits that multinational
firms earn in overseas markets whereas, in GDP terms, such profits contribute to
GDP overseas.

• Excluding Revaluations.As noted earlier, during any given time period, the national
accounts do not include capital gains and losses – the creation or destruction of value
not attributable to real economic output or income generated. That is, revaluations
resulting from price changes provide the principal connection between periods but
are excluded from valuation during any given period.

4.6 Assembling Input–Output Accounts: The US Case

Our final task in getting us from the basic concept of the circular flow of income and
expenditures and tracing income and expense through the national economic accounts
back to where we started in Chapter 1, namely the input–output transactions table, is
to expand the national economic accounts to include industry and commodity levels
of detail. As noted earlier, in practice compiling the data needed to provide this detail
on interindustry transactions is often accomplished through a census or survey of all
economic activity of establishments or firms involved in the economy. For example, in
the United States, the so-called “benchmark” IO accounts (IOAs) are prepared every
five years for years ending with 2 and 7 (e.g., 1992, 1997, 2002, and 2007) based
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on the quinquennial US economic census and other data sources.7 The basic data are
collected from various government agencies, such as the Department of Labor’s surveys
of prices and the Department of Commerce’s Census Bureau surveys of retailers and
manufacturers, but the IOAs are prepared by the Bureau of Economic Analysis (BEA),
an agency of the Commerce Department.

Historically, a primary goal of the US economic census has been to estimate the
nation’s GDP (and GNP), as reported in the detailed series of Gross Domestic Prod-
uct by Industry (GDPI) Accounts (see, for example, Yuskavage and Pho, 2004) and
ultimately included in the formal national economic accounts recording the nation’s
overall generation of income and production, the National Income and ProductAccounts
(NIPA). The level of industry production and intermediate consumption detail collected
during the census also provides a convenient basis for construction of the interindustry
IOAs as well, but the sequence of preparation of these data is actually reversed from
the order in which we have discussed them so far in this chapter. That is, since the
1950s, in order to provide as much consistency as possible between various economic
accounting systems used by the BEA, the preparation of these systems has been coor-
dinated among data collection processes such that the IOAs are generally assembled
first and comprise the basic building blocks for constructing a wide variety of national
economic accounts, including GDPI and NIPA (see Jaszi, 1986).

The US IOAs are published in the form of two tables defined in terms of production
and consumption of defined goods and services or commodities by industries or groups
of economic establishments that may produce more than one commodity. Both com-
modities and industries are grouped according to a standardized classification scheme,
such as the North American Industrial Classification System (NAICS) adopted in 1997
as a replacement for the former Standard Industrial Classification (SIC) and other
systems for organizing US economic data.8

The first key table of the IOAs is the so-called “Use” table, which provides infor-
mation on the consumption or use of commodities by industries or by final demand
sectors, such as households, government, investment or exports. A column of the Use
table is an industry or final-demand sector and the rows indicate the use of commodi-
ties by that industry or final-demand sector. Also included in the Use table are rows
corresponding to components of value added by industry, such as employee compen-
sation, business taxes, and other value added. The basic organization of the Use table is
provided in Table 4.7. Note that in this table the sectoral designations for industries and
commodities are the same, i.e., the Use matrix is square with the labels of industries and
commodities identical. This simply means that we organize accounting for industries

7 A great deal of the data used in constructing the US benchmark IOAs comes from the quinquennial US economic
census, but additional data is often utilized from other sources, particularly in some economic sectors such as
natural resources and mining, financial activities and services; see Webb (1995), Lawson et al. (2002) and Moyer
et al. (2004a and 2004b).

8 The NAICS was adopted to better reflect the changing structure of North American economies since the early
1980s, including in particular the large growth in services-producing industries. For example, the NAICS defines
575 services-producing industries as opposed to 407 in the SIC.About 250 of the 358 new industries defined in the
NAICS-based IO industry classification system are services-producing industries (see Horowitz and McCulla,
2001, and McCulla and Moylan, 2003).
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and commodities in the economy by the same sector definitions. This is a standard
convention adopted for the US input–output tables and many others for a variety of
reasons, but it need not be, as we will find later in this chapter and in much more detail
in Chapter 5. The numbers of industries and commodities and their definitions can be
different, in which case the Use table may be nonsquare.

The second key table of the IOAs is the so-called Make table, the transpose of which
is also sometimes referred to as the Supply table. The Make table provides information
on industry production of commodities. A column of the Make table corresponds to a
commodity and rows indicate the production of that commodity by different industries.
If there were a one-to-one correspondence between industries and commodities, i.e.,
each industry produces one and only one commodity, then the Make table would be
square and contain nonzero elements only along its main diagonal. Later on in this
chapter, and in much more detail in Chapter 5, we examine alternative ways of com-
bining the information in Make and Use tables to fashion the interindustry transactions
matrix used in input–output models. An illustration of the basic organization of the
Make table is provided in Table 4.8.

Finally, it is common to present the Make and Use matrices as a consolidated set of
IOAs in the format of Table 4.9. In Chapter 2 we noted that final demand and value
added sectors of an input–output economy can be viewed as somewhat exogenous to
the more closely interrelated system of industrial sectors. The principal components
of final demand are usually taken to be personal consumption expenditures (purchases
by households), government purchases, gross private domestic capital investment, and
finally, net exports of goods and services – that is, exports of goods and services less
the value of any imports of those same goods and services. In Table 4.9 all of these
transactions are aggregated into the column labeled Total Final Demand, which specifies
total final demand for commodities.

The income categories comprising value-added inputs to industries usually include
wages and salaries paid to employees, rental and proprietors’ income, profits, taxes,
interest, adjustments to inventories, and noncompetitive imports and, in Table 4.9, all
of these transactions are aggregated into the row labeled Total Value Added, which
specifies the total of value-added inputs for each industry.

4.7 Additional Considerations

An important challenge in assembling IO accounts, beyond simply coping with the
scale and expense of a comprehensive census or survey, has to do with timeliness
for the various uses of these data. If an industry’s technology is changing rapidly,
such as the computer industry over the decades of the 1980s and 1990s, lengthy time
lags in availability of the IO accounts can lead to very misleading results if used in
economic modeling. In such situations, nonsurvey tools or partial surveys of the type
discussed in detail in Chapters 7 and 8 are often used. Specifically, in the US, data
for the years intervening the availability of the US benchmark IOAs are provided by
the Annual Input–Output Accounts (AIOA), such as reported in Okubo, Lawson and
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Table 4.9 Consolidated Make and Use Accounts

Nat. 
Res. Const. Manuf. Transp. Util. Inform. Res. Const. Manuf. Transp. Util. Inform.

Fin. 
Ser.

Other 
Ser.

Nat. Fin. 
Ser.

Other 
Ser.

Natural Resources
Construction
Manufacturing
Transportation
Utilities
Information
Financial Services
Other Services
Natural Resources
Construction
Manufacturing
Transportation
Utilities
Information
Financial Services
Other Services

GDP

Total Output

Use Matrix

Make Matrix

Total Output

Value Added

Total Commodity Output Total Industry Output

Total Value Added
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Planting (2000), Kuhbach and Planting (2001), and Planting and Kuhbach (2001),
where more frequent but more highly aggregated annual surveys are used to update
earlier benchmark input–output accounts.

Conceptually, in constructing an input–output model, the most important components
of a system of national economic accounts are: (1) the national income and product
accounts (NIPAs) where we started and (2) the interindustry or input–output accounts
(IOAs). The former, as we have found so far in this chapter, present the aggregated
productive output of the national9 economy, that is, the GDP both in terms of final
products or final demands and in terms of income categories or value added inputs
to industries.10 The IOAs present interindustry flows of goods and services which,
with a number of adjustments we describe later, ultimately become the interindustry
transactions matrix.

The NIPAs and IOAs comprise perhaps the bulk of the basic data of the national
economic accounts (at least those relevant to input–output analysis) and, as noted
earlier, are often compiled as part of a census and, hence, they are usually collected
by establishment or individual business unit. For the present, we will invoke three
additional simplifying assumptions in order to facilitate our discussion of reconciling
the IOAs with the NIPAs:

• Inventory Adjustments. We ignore, for the time being, the complications of inven-
tory adjustments, that is, we assume no changes in inventories. All automobiles
produced are purchased during the current year and are not held over until the next
year. We saw earlier that inventory adjustments are essential to provide the balance
between total consumption and total output.

9 For the most part, the following discussion will apply to regional as well as to national accounts.
10 Recall from Chapter 2 that the sum of all final demands equals GNP, which also equals the sum of all income

types or “charges against” GNP.
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• Secondary Products. By distinguishing between commodities and industries, we
assume an industry can produce multiple products (called secondary production). In
the basic framework we allowed each industry to produce one and only one distinct
commodity (or service), e.g., automobile manufacturers make only automobiles, not
additional automobile parts which may be classified as a different industry category.
The implications of this distinction will become much clearer in Chapter 5, and ways
of accommodating this distinction in modeling become straightforward by using the
Make matrix to allocate secondary production in an organized way.

• Capital Formation. We ignore, for the present, transactions of capital goods between
industries; they are instead assigned to final demand (gross private domestic capital
formation). New-car assembly equipment purchased by automobile manufacturers
is a capital good acquisition; it is recorded as a final demand for capital by the
manufacturer and not as an interindustry transaction.

These assumptions are somewhat limiting and can be relaxed with some additional
modifications that we address in later chapters. The first of these simplifications will
require relatively minor adjustments later in this chapter, but the last two will require
major changes in the way we construct input–output models. While there are a number
of different ways to deal with the problem of secondary production, ultimately we will
resort to alternative commodity-by-industry model formulations that we introduce later
in this chapter and develop in more detail in Chapter 5. Modeling of capital formation
is the principal concern of dynamic input–output models and is a subject of Chapter 13.

The basic input–output accounts we have focused on in this chapter, by themselves,
are far from adequate for constructing a useful input–output model. In order to make
the derived table a useful analytical tool, we must deal with the simplifications that
were made earlier. We now discuss a number of conventions and modifications to the
basic input–output accounting framework that are designed to deal with several of these
simplifying assumptions (others are addressed in subsequent chapters).

4.7.1 Secondary Production: Method of Reallocation
As noted earlier, in the construction of IOAs we compiled data by establishment or
individual business unit; we assigned an establishment to a defined “industry” category
according to the output of the establishment which comprises the primary source of
revenues (primary product). Many business units, however, may produce substantial
amounts of products that do not belong to the primary product industry classification;
such products are termed secondary products. For example, many automobile manu-
facturers may produce automobile parts in addition to fully assembled automobiles, or
petroleum refiners may produce petrochemicals as a by-product to producing gasoline
or other petroleum products.

Early input–output studies, such as the pre-1972 US national tables, treated secondary
products in the following manner. First, selected secondary products were “reallocated,”
that is, the level of secondary production and its constituent inputs were assigned to
the sector defining that product as primary output. Such treatment was used only for
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Table 4.10 Input–Output Transactions: Example 1
(millions of dollars)

Industry

1 2 3 Total Outputs

Industry 1 266 378 230 1000
Industry 2 267 110 224 1500
Industry 3 340 340 468 1200

industries where secondary production comprised a significant fraction of total output.
All other secondary products in the economy were treated as if they had been sold by the
producing sectors to the sectors for which those products were classified as primary. To
accomplish this, a table of transfers was constructed recording these imaginary sales.
This matrix of transfers was then added to the basic transactions matrix, thereby double
counting the value of secondary products and consequently inflating total output. This
was done in order to ensure that the secondary products were distributed correctly
to consumers, at the expense of inflating the total outputs of some industries that are
secondary producers.

Example 1: Reallocation of Secondary Production Reallocation (sometimes
referred to as redefinition) of secondary production, as just mentioned, involves fac-
toring out the amount of secondary product produced as well as the inputs used in that
production and reassigning both to the industry for which the product is classified as
primary. However, this requires that a firm allocate its inputs between the production
of primary and secondary products; in effect, it is necessary to break the firm into two
independent subfirms – one a producer of the primary product and the other a pro-
ducer of the secondary product. Most firms do not record data in a form that permits
this accounting easily, so a less desirable treatment of secondary production is often
employed in input–output studies. For example, the US Department of Commerce
(prior to preparation of the 1972 national input–output table) reassigned the output of
secondary production to the sector for which the activity was considered primary, but
did not reassign the inputs. This amounted to a double counting of the inputs required
for secondary production, which we see in the following example. (Survey of Current
Business, 1969, 1974; Vaccara, Shapiro and Simon, 1970.)

Consider a three-industry economy; the matrix of interindustry transactions and
vector of total outputs are given in Table 4.10. Suppose that firms in both industries 1
and 3 are secondary producers of product 2, that is, industry 1 produces $100 million
worth of product 2 in addition to $900 million worth of product 1, and industry 3
produces $10 million worth of product 2 as well as $1,190 million worth of product
3. As mentioned earlier, since the proper distribution of output is often desirable in
input–output studies, the convention often employed is to treat the secondary product
as if it were sold to the industry for which the product is classified as primary.
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In this example, if the secondary production for all producers was “transferred” to the
correct primary producer, then the revised transactions matrix, Z̄, and corresponding

total outputs vector, x̄, would be Z̄ =
⎡⎣ 266 378 230

367 110 234
340 340 468

⎤⎦ and x̄ =
⎡⎣ 1000

1610
1200

⎤⎦. Note

that this is accomplished by simply adding the amount of secondary production, termed
a transfer, to the industry for which the secondary product is classified as primary,
that is, the $100 million worth of product 2 produced by industry 1 is added to the
original z21 transaction as if it were sold by industry 2 to the secondary producer,
industry 1. Similarly, the $10 million worth of product 2 produced by industry 3 is
added to the original z23 transaction. Finally, total output of industry 2 is increased
by the sum of all secondary production of product 2. However, the total outputs of
industries 1 and 3 are not decreased, since the inputs required in secondary production
were not reallocated; this inflates total output, since secondary production is counted
twice.

In many earlier input–output studies (prior to about the mid 1980s and especially
prior to widespread adoption of the SNA framework) such transferring of secondary
production was used except where secondary production comprised a large portion of
total output of an industry, in which case both secondary products and inputs were
reallocated.

4.7.2 Secondary Production: Commodity-by-Industry Accounting
A more realistic classification scheme that accounts for industrial production by com-
modity type rather than industry category eliminates the somewhat clumsy and biased
accounting of reallocating secondary production. More recent studies, including the
US National Tables complied for years since 1972, redefine all secondary produc-
tion by establishing a set of “commodity-by-industry” accounts as described earlier. In
Chapter 5 we examine the commodity-by-industry accounting framework in detail. For
the present, we can introduce the basic features of accounting for secondary production
in a commodity-by-industry framework as we expand the way we represent production
and consumption in the national accounting system to include the IOAs.

Example 2: Commodity-by-Industry Accounts We illustrate the use of
commodity-by-industry accounts in fashioning an input–output model with a two-
industry and two-commodity example. Consider the consolidated commodity-by-
industry accounts in Table 4.11. In this example, industries are defined as A and B
corresponding to the primary products of the establishments included in the defini-
tion of these two industries; that is, industry A’s primary product is commodity A
and industry B’s primary product is commodity B. Industry A produces only com-
modity A (all establishments included in defining industry A produce only commodity
A; there is no secondary product). Establishments assigned to industry B, however,
while primarily producing commodity B, also produce, as a secondary product, some
amount of commodity A. In this simple economy industry A produces $90 million
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Table 4.11 Consolidated Input–Output Accounts: Example 2

A B A B

A
B
A
B

100

10
90 0 90

100 110

100 90
68

10
12 8 80 100

7 83 100

95 163
110

Value Added

Total
Commodities Industries Final 

Demand

Total 

Industries

Commodities

Millions of Dollars

worth of commodity A and industry B produces $100 million worth of commodity B
and $10 million worth of commodity A. We define the Make matrix for this exam-

ple as V =
[

90 0
10 100

]
. We found earlier that while the Make matrix is a complete

picture of the economy, it does not provide information about the interindustry activ-
ity in an economy, such as deliveries of commodities to other industries or to final
demand. The interindustry activity is found in the Use matrix, which for the example

is U =
[

12 8
10 7

]
.

Also from Table 4.11 we can define the vector of commodity final demands,

e =
[

80
83

]
, the vector of total commodity outputs, q =

[
100
100

]
, the (row) vector

of total value-added inputs, v′ = [
68 95

]
and the vector of total industry outputs,

x =
[

90
110

]
.

4.7.3 Reconciling with the National Accounts
Recall the matrix version of the summary of the national accounts for our example,
shown in Table 4.5. We can expand our representation of consumption in the economy,
which is currently reflected by a single number indicating the net value of total consump-
tion (545 in our example). The expansion will capture the role of individual industries
and specific products (goods and services). For the example, let us consider an economy
with three industries (Natural Resources, Manufacturing, and Services) which produce
five products (agricultural products, energy, manufactured goods, financial services,
and other services).

We presume that industries consume products (commodities) as interindustry trans-
actions in the course of delivering their own product(s) to other industries as well as
final customers. For our example, in Table 4.11, we allocate total consumption trans-
actions of commodities between interindustry transactions and sales to final customers
as well as the government, the total of which is C = 550 (total domestic consumption)
from Table 4.5. We also allocate capital accumulation and net foreign income, which
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total to D = −19 and H = 14, respectively, from Table 4.5. The total of all outputs then
is 545. There are, of course, many possible interindustry transactions tables such that
the relevant interindustry totals for C, D, and X are consistent with the totals provided
in Table 4.5. One such transactions table is shown as Table 4.12.

The interindustry transactions portion of Table 4.12, shown shaded in the table, the
reader should recognize as the Use matrix, as defined earlier, since it depicts the com-
modities used by each industry in producing its output. This is, of course, as before,
analogous to the interindustry transactions matrix in the input–output analysis frame-
work, except that in the basic framework both rows and columns refer to specific
industries, rather than commodities and industries, respectively, for rows and columns.
While one could easily express the transactions matrix in industry-by-industry terms,
the SNA adopts a commodity level of detail in order to provide a more transparent
picture of industrial production functions. There are other benefits as well that we will
see in the following, and in more detail in Chapter 5. In national accounting parlance,
the commodity-by-industry interindustry transactions tables are also often referred to
as Supply and Use tables. Note that, as before, the Use matrix was constructed in
dimensions of commodities (rows) by industries (columns) and, in matrix terms, the
accounting identities are q = Ui + e and x′ = i′U + v′.

The sources of production or supply in the economy are depicted as before in the
Make matrix. The Make matrix is constructed in dimensions of industries by com-
modities, where as before the row entries indicate the production of commodities by a
particular industry. Hence, recall that the row sums of the Make matrix form the vector
of total industry production in the economy, while the column sums form the vector of
total commodity production in the economy. For our earlier running national accounts
example, there are many possible Make matrices, the only strict requirement being that
the row sums equal total industry output and the column sums equal total commodity
output. One such matrix is given in Table 4.13.

It is now possible to show for our running example a complete consolidated set
of commodity-by-industry accounts that illustrates the relationships between Use and
Make matrices and the measures of total industry value added, commodity final demand,
and total industry and commodity output. This is shown in Table 4.14. Chapter 5
explores construction of input–output models from these accounts. For present pur-
poses, we define the Make matrix as V, the row sums of which comprise the vector of
total industry output, x = Vi, and the column sums of which comprise total commodity
output, q′ = i′V.

4.7.4 Producers’ and Consumers’ Prices
Most input–output studies value the entries in input–output accounts (and subsequently
the transactions matrix) in producers’prices, that is, the prices at which the seller com-
pletes the transaction (sometimes called free-on-board or FOB prices). The purchaser
incurs the producer’s price plus trade and transportation margins (and often excise
taxes). The convention in most input–output studies is to assign the margins on all
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Table 4.13 Industry-by-Commodity Make Matrix: Running Example

Total
Manufactured Financial Other Industry

Agriculture Energy Products Services Services Output

Natural Resources 88 68 0 0 0 156
Manufacturing 45 10 98 10 33 196
Services 0 9 11 117 56 193

Total Commodity Output 133 87 109 127 89

interindustry transactions in a column to the industry responsible for the margin. That
is, all wholesale and retail trade margins on all inputs to an industry are summed and
recorded as the “trade” entry in that column. Similarly, all transportation margins on
inputs are summed and recorded as the input entry for “transportation.” Hence, the trade
and transportation sectors are not really treated as producing and consuming sectors in
the economy, but only as “pass-through sectors.”

These conventions simply mean that the input–output table does not actually trace
flows through the trade and transportation sectors, since this would depict an economy
where industries and final customers would make most of their purchases from and sales
to these two industries alone. Instead, transactions are depicted as flowing directly from
producer to consumer, bypassing trade and transportation. This is done to show the links
between producers, consumers, and final customers.

Since trade and transportation margins for all transactions into an industry are accu-
mulated as single values for each industry, they in effect become service inputs to that
industry. Hence, the sum of all inputs measured in producers’ prices plus the value of
all transportation and trade margins valued as service inputs (hence, valued in de facto
producers’ prices) is then the value of all inputs in consumers’ prices (the column sums
of the transactions matrix).

Example 3: Trade and Transportation Margins Suppose we have a four-sector
input–output economy with two manufacturing sectors, A and B, and two service sec-
tors, trade and transportation (for simplicity we return to the industry-by-industry
accounting framework for the moment). The service sectors act as both interindus-
try sectors in their own right as well as a repository for all markups or margins. The
interindustry transactions paid in millions of dollars including both trade and trans-
portation margins – that is, in purchasers’ or consumers’ prices – are given by Z̃, final
demands including margins by f̄ , and total outputs including margins by x̄ defined by

Z̃ =

⎡⎢⎢⎣
36 46 83 24
76 78 94 35
8 7 8 4
3 1 5 1

⎤⎥⎥⎦ , f̄=

⎡⎢⎢⎣
475
263
120
150

⎤⎥⎥⎦ , and x̄ =

⎡⎢⎢⎣
664
546
147
160

⎤⎥⎥⎦
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Table 4.15 Example Trade and Transportation Margins:
Example 2

Final
A B Trade Transp. Demand

Trade Margins
Industry A 9 10 11 6 50
Industry B 5 8 7 4 20
Transportation 3 1 5 1 20

Total Margins 17 19 23 11 90

Transportation Margins
Industry A 7 4 9 5 75
Industry B 6 8 7 6 13
Trade 8 7 8 4 50

Total Margins 21 19 24 15 138

Suppose that the trade and transportation margins in millions of dollars are given in
Table 4.15.

The sum of the margins in these two tables is the difference between the purchasers’
prices and producers’ prices. For example, the transaction z̃11 = $36 million incurs a
trade markup of $9 million and a transport markup of $7 million, leaving a so-called
direct allocation of $20 million. Likewise, the transaction z̃43 = 5 is transport markup
on trade services, for example, transport costs associated with transactions between
wholesale and retail trade. The direct allocation for this transaction is zero. Similarly,
the transaction z̃34 = 4 is the trade markup on transportation services, for example,
the markup imposed by a principal carrier that subcontracts transport services from
a secondary carrier. If we factor out (subtract) the margins from all the interindustry
transactions in purchasers’ prices, the result is the direct allocations matrix:

� =

⎡⎢⎢⎣
20 32 63 13
65 62 80 25
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , fd =

⎡⎢⎢⎣
350
230
100
100

⎤⎥⎥⎦ , and xd =

⎡⎢⎢⎣
478
462
100
100

⎤⎥⎥⎦
Note that we have also factored the margins out of final demand and total output and

termed these vectors fd and xd respectively. The vector of column sums of the trade
margins, labeled “total margins” in the table, represents the sums of all trade margins
on inputs to industries; for example, the first element of this vector, $17 million, is the
sum of all trade margins on inputs to industry A. If we add this vector to the trade row
of the direct allocations matrix we are, in effect, distributing the trade margins as a
service of the trade sector. Similarly, if we assign the “total transportation margins” to
the transportation row of the direct allocations matrix, we account for transportation
margins as a service of the transportation industry. In this way, we do not trace the flows
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of goods and services through the trade and transportation sectors, but instead, treat
them as service inputs to producing sectors and record the flows directly from producer
to consumer. The result is an interindustry transactions matrix in producers’ prices:

Z =

⎡⎢⎢⎣
20 32 63 13
65 62 80 25
17 19 23 11
21 19 24 15

⎤⎥⎥⎦ , f =

⎡⎢⎢⎣
350
230
190
238

⎤⎥⎥⎦ , and x =

⎡⎢⎢⎣
478
462
260
317

⎤⎥⎥⎦
Methods of valuation in current use in the literature are discussed in more detail in
Bulmer-Thomas (1982).

4.7.5 Accounting for Imports and Exports
As briefly mentioned earlier, imports in an input–output framework are usually divided
into two basic groups: (1) imports of commodities that are also domestically pro-
duced (competitive imports) and (2) imports of commodities that are not domestically
produced (noncompetitive imports).11 The distinction, of course, is that competitive
imports can be represented in a technical coefficients matrix, while noncompetitive
imports cannot. Competitive imports are usually handled by adding transactions to the
domestic transactions matrix (as in the case of transfers of secondary products) as if
they were domestically produced. However, the “domestic port value” (in effect, value
in producers’ prices) of all imports of a particular commodity is included as a negative
entry in final demand. The purpose of this adjustment is to assure that the total out-
put of an industry, computed as the row sum of the interindustry transactions to other
industries and final-demand allocation, is total domestic production, net of imports.

Noncompetitive imports are assigned to a new industry category, but the total value
of all noncompetitive imports is given a negative value in final demand so that, as in
the case of competitive imports, the total output – that is, the row sum of transactions
and final demand – will be total domestic production, which in this case is zero. The
negative final-demand entries in both classes of imports ensure the total production and
GNP of the economy are not incorrectly biased by imports.

Example 4: Competitive and Noncompetitive Imports Table 4.16 shows a
domestic transactions matrix, Z; final demand vector, f; and total outputs vector, x;
for a two-sector (industries A and B) input–output economy in millions of dollars.

In addition to these domestic transactions, industry A consumes $10 million worth
of B that is imported, in addition to the $30 million worth of B that is domestically
produced. Also, both industries A and B consume another product, C, that is only
produced overseas (a noncompetitive import) – $5 million and $4 million worth for A

11 In the literature the terms comparable and noncomparable imports are used interchangeably with competitive
and noncompetitive imports, respectively. Note that the treatment of competitive imports outlined here has been
adopted only in more recent input–output studies such as the 1972 US National Input–Output Table; earlier
studies treated competitive imports in the same manner as secondary products; see Ritz (1979 and 1980).
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Table 4.16 Domestic Interindustry Transactions:
Example 4

Millions of Dollars A B Final Demand Total Output

Industry A 10 20 70 100
Industry B 30 40 30 100

Table 4.17 Modified Interindustry Transactions:
Example 4

Final Demand

Millions of Imports
Dollars A B C Adjustment Other Total Output

Industry A 10 20 0 0 70 100
Industry B 40 40 0 −10 30 100
Imports of C 5 3 0 −9 0 0

and B, respectively. The convention usually adopted in accounting for these imports is
depicted in the modified table of transactions shown in Table 4.17.

Note that the competitive import transaction of B by A is transferred – that is, added –
as in the convention for transferring secondary production, to the zBA transaction and
also recorded as a negative final demand. The noncompetitive imports of C by both A
and B are recorded as a new row in the transactions matrix and the sum of all imports
of C, $9 million, is recorded as a negative final demand. Hence, the final demand, net
of imports, and total outputs are unchanged from the domestic table; final demand and
total outputs are customarily defined to include only domestic production.

4.7.6 Removing Competitive Imports from Total Transactions Tables
In Chapter 2, Tables 2.6 and 2.7, we presented direct and total requirements tables
for the United States 2003 input–output tables where the underlying transactions were
“scrubbed” of competitive imports so that impacts on the domestic economy could
be analyzed. As noted above, the US input–output tables are routinely published with
competitive imports included as part of interindustry transactions with negative entries
for imports added to final demand so that the sum of intermediate production and final
demand equals total domestic production and the sum of all final demands equal total
gross domestic product. In this section we consider several approximation techniques
for removing imports from tables prepared in such a manner.

First we assume that interindustry transactions can be divided into domestic transac-
tions and imports, i.e., Z = D + M where D is the matrix of domestic transactions and
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M is the matrix of competitive imports.12 So the vector comprising the row sums of
M is the vector of total imports, m = Mi. For the US tables the vector of imports, m,
is expressed as a negative final demand, so we define g as the vector of final demand
other than imports such that f = g + (−m). We can also define m̃′ as the vector of
column sums of M, each element of which is the value of all imports to an industry,
m̃′ = i′M.

If M is known then x = Zi + f , so we can write x = (D + M)i + (g − m) and
separating terms, x = Di + Mi + g − m. Since m = Mi, the terms m and Mi cancel
each other out so it follows that x = Di+g. Also, since total value added is computed as
the residual of intermediate production and the value of total output, i.e., v′ = x′ − i′Z,
then it follows that x′ = i′Z + v′. Again separating terms we have x′ = i′(D + M)+ v′
or x′ = i′D + i′M + v′ so we can write x′ = i′D + m̃′ + v′. If we define the new
total valued added (row) vector as ṽ′ = m̃′ + v′, it is easily seen that the total value
of imports has simply been transferred from the interindustry inputs, Z, to value added
since x′ = i′D + ṽ′.

Often we are faced with the situation where m is known but not M. That is, we may
know the total value of steel imports but not the value of steel imports to each industry
individually. The following are the two approximation procedures for estimating the
matrices of domestic transactions and interindustry imports. They both rely on an
assumption commonly referred to as import similarity where for each product the mix of
imports and domestically produced goods is the same across all consuming sectors, but
may be different for each product. For example, the mix of imported and domestically
produced agricultural goods is the same for all consumers of agricultural goods and the
amount of steel imported for use in automobile production is the same fraction of total
steel consumed in automobile production as is amount of imported steel as a fraction
of total steel used in shipbuilding. This assumption may not be very realistic in many
developed economies, but is often necessary due to the limits of available data. These
limitations are discussed in NRC (2006).

Approximation Method I If M is not known, we can approximate it by allo-
cating m proportionately to the distribution of intermediate output by the following.
First create the matrix of intermediate output proportions as B = û−1Z where u is the
vector of intermediate outputs, u = Zi. So we define M̃ = m̂B as an approximation of
M, for which we can guarantee that m = Mi = M̃i. Hence, we can define our approx-
imation of domestic transactions, D̃ = Z − M̃ and from before g = f + m, so that
x = D̃i + g.

Approximation Method II Method I assumes (implicitly) that there are no
imports consumed directly by final demand, i.e., m = Mi, which is probably seldom
the case. If we make the simplifying assumption that for each industry the fraction of
a given input supplied by imports is the same for each industry and that that fraction

12 For the balance of this section we assume that all imports are competitive imports.
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also applies to consumer and government expenditures, then that same fraction of total
output is attributable to imports. That is, assume that for each industry that fraction is

given by ri so that mi = rixi. We multiply through the equation xi =
( n∑

j=1
zij

)
+ fi

by ri to yield rixi =
(

ri

n∑
j=1

zij

)
+ ri fi or, by recalling ui =

n∑
j=1

zij, we can write

mi = rixi = riui + rifi or ri = mi
ui+fi

. We can use ri to define an estimate of the domestic

transactions matrix by dij = zij − rizij = (1 − ri)zij or, in matrix terms, D̄ = Z − r̂Z
and we can define M̄ = r̂Z as the estimate of the matrix of interindustry imports. We
can define m̄ = M̄i as the vector of total interindustry imports. If we define hi = rifi
as the estimate of the vector of imports consumed directly by final demand, which in
matrix terms is given by h = r̂f , then m = h + m̄, so we can use x = Zi + f to write
x = (D̄ + M̄)i + (g − m). Again separating terms, x = D̄i + M̄i + g − h − m̄ or
x = D̄i + M̄i + g − r̂f − m̄. As before, the terms m̄ and M̄i cancel each other out so
that x = D̄i + g − r̂f . In method I we defined g as the vector of final demand other than
imports, which was assumed to be only interindustry imports, so if we now define ḡ as
the vector of final demand other than interindustry imports as well as imports consumed
directly by final demand, i.e., g reduced by imports consumed directly in final demand
(h), then ḡ = g − h and we can write x = D̄i + ḡ.

While it may not be obvious, it is important to observe that method I is equivalent
to method II if we create the matrix of intermediate output proportions as B̄ = x̂−1Z
instead of B̄ = û−1Z and, hence, M̄ = m̂B̄. Method II by either calculation, of course,
is a more realistic approximation of most economies. We illustrate the two methods in
the following example.

Example 5: Import Scrubbing We define an input–output economy with

Z =
⎡⎣ 350 0 0

50 250 150
200 150 550

⎤⎦ and x =
⎡⎣ 1000

500
1000

⎤⎦. From Z and x, we compute the

corresponding values of f = x − Zi =
⎡⎣ 650

50
100

⎤⎦, u = Zi =
⎡⎣ 350

450
900

⎤⎦, A =

Zx̂−1 =
⎡⎣ 0.3500 0.0000 0.0000

0.0500 0.5000 0.1500
0.2000 0.3000 0.5500

⎤⎦, v′ = x′ − i′Z = [
400 100 300

]
and L =

(I − A)−1 =
⎡⎣ 1.5385 0.0000 0.0000

0.4487 2.5000 0.8333
0.9829 1.6667 2.7778

⎤⎦. We presume this is a “US-type” table where

the transactions matrix includes competitive imports, so Z = D + M and f = g − m,

and we define (arbitrarily for this example) M =
⎡⎣ 100 0 0

25 50 30
25 50 100

⎤⎦, which means
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D = Z − M =
⎡⎣ 250 0 0

25 200 120
175 100 45

⎤⎦, m = Mi =
⎡⎣ 100

105
175

⎤⎦, g = f + m =
⎡⎣ 750

155
275

⎤⎦
and the balance equation x = Di + g holds: x =

⎡⎣ 1000
500

1000

⎤⎦ = Di + g =⎡⎣ 250 0 0
25 200 120

175 100 450

⎤⎦⎡⎣ 1
1
1

⎤⎦ +
⎡⎣ 750

155
275

⎤⎦. Then the new total value added vector,

ṽ′ = m̃′ + v′ = x′ − i′D = [
550 200 430

]
, inflates the original vector of total val-

ued added, v′ = [
400 100 300

]
, by the total value of all imports to each industry,

m̃′ = [
150 100 130

]
.

Where m is known but not M, in the following we apply the two approximation
procedures outlined above for estimating the matrices of domestic transactions and
interindustry imports.

ForApproximation Method I, we first generate B = û−1Z =
⎡⎣1.0000 0.0000 0.0000

0.1111 0.5556 0.3333
0.2222 0.1667 0.6111

⎤⎦
to allocate m across interindustry output by M̃ = m̂B =

⎡⎣100.0000 0.0000 0.0000
11.6667 58.3333 35.0000
38.8889 29.1667 106.9444

⎤⎦.

In this technique, m = Mi = M̃i so we can compute

D̃ = Z − M̃ =
⎡⎣250.0000 0.0000 0.0000

38.3333 191.6667 115.0000
161.1111 120.8333 443.0556

⎤⎦
and the balance equation, x = D̃i + g, holds:

x =
⎡⎣ 1000

500
1000

⎤⎦ = D̃i + g =
⎡⎣ 250.0000 0.0000 0.0000

38.3333 191.6667 115.0000
161.1111 120.8333 443.0556

⎤⎦⎡⎣ 1
1
1

⎤⎦ +
⎡⎣ 750

155
275

⎤⎦
Then, in this case, the new total value added vector, ṽ′ = x′ − i′D̃ =
[ 550.5556 187.5000 441.9444 ], inflates the original vector of total value added,
v′ = [

400 100 300
]
, by the total value of all imports to each industry, m̃′ =[

150.5555 87.5 141.9444
]
, but as noted above this assumes that no imports are

consumed directly in final demand.
For Approximation Method II we begin by calculating the scaling factors ri = mi

ui+fi
,

which for the example are the elements of r =
⎡⎣ .1

.21
.175

⎤⎦. We can then compute
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D̄ = Z − r̂Z =
⎡⎣ 315 0 0

39.5 197.5 118.5
165 123.75 453.75

⎤⎦, M̄ = r̂Z =
⎡⎣ 35 0 0

10.5 52.5 31.5
35 26.25 96.25

⎤⎦
and

h = r̂f =
⎡⎣ 65

10.5
17.5

⎤⎦ so that ḡ = g − h =
⎡⎣ 685

144.5
257.5

⎤⎦. We can show that

the balance equation x = D̄i + ḡ still holds: x =
⎡⎣ 1000

500
1000

⎤⎦ = D̄i + ḡ =⎡⎣ 315 0 0
39.5 197.5 118.5
165 123.75 453.75

⎤⎦⎡⎣ 1
1
1

⎤⎦ +
⎡⎣ 685

144.5
257.5

⎤⎦.

This balance equation, x = D̄i + ḡ, now accounts for only domestic transactions,
but interindustry imports are reassigned to total value added.

The new total value added vector, v̄′ = x′ − i′D̄ = [
480.5 178.75 427.75

]
,

inflates the original vector of total value added, v′ = [
400 100 300

]
by only

all interindustry imports to each industry, i.e., this time, m̃′ = [80.5 78.75 127.75],
excluding the value of imports consumed directly in final demand.As noted above, while
perhaps not intuitively obvious, this procedure is equivalent to creating the matrix of
intermediate output proportions as B̄ = x̂−1Z, instead of B = û−1Z defined for Method
I. For the example,

B̄ = x̂−1Z =
⎡⎣ 1/1000 0 0

0 1/500 0
0 0 1/1000

⎤⎦⎡⎣ 350 0 0
50 250 150

200 150 550

⎤⎦
=
⎡⎣ .35 0 0

.1 .5 .3

.2 .15 .55

⎤⎦
Hence,

M̄ = m̂B̄ =
⎡⎣ 100 0 0

0 105 0
0 0 275

⎤⎦⎡⎣ .35 0 0
.1 .5 .3
.2 .15 .55

⎤⎦ =
⎡⎣ 35 0 0

10.5 52.5 31.5
35 26.25 96.25

⎤⎦
and, as before,

D̄ = Z − M̄ =
⎡⎣ 315 0 0

39.5 197.5 118.5
165 123.75 453.75

⎤⎦
The application of the alternative estimation procedures for the example is summarized
in Table 4.18.

Implications of the Estimating Assumptions Method II is perhaps the most
commonly used method for removing imports to create D if M is not known directly.
Examples of its application to the US economy are OTA (1988), Guo and Planting
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(2000), and NRC (2006). Recall that the key assumption for both Methods I and II is
of import similarity, i.e., for each industry product the mix of imports and domestically
produced goods is the same across all consuming sectors for that product, but are or
may be different for each product.

NRC (2006) uses this assumption to analyze the US content of imports and the
foreign content of US exports as one possible way of gauging the implications of the
globalization of industry for the overall health of the US economy. Dietzenbacher,
Albino and Kühtz (2005) propose another alternative to both Methods I and II.

4.7.7 Adjustments for Inventory Change
Inventories in an input–output model are not quite equivalent to the conventional defi-
nition of that term. In input–output models, inventory change is usually taken to mean
the change in inventories of an industry’s primary product, regardless of which industry
or industries hold the inventories. For example, coal inventories held by electric power
plants are classified as coal inventory. The traditional definition is usually restricted
to the inventory actually held by the industry producing the product. This modified
definition is adopted in input–output to ensure that the row total of the transactions and
final demands is equal to total current output of the industry. If we ignore inventory
depletion or addition, then the row totals are total consumption, not output.

4.7.8 Adjustments for Scrap
Input–output accounts typically deal with scrap as a production by-product. That is,
it is assumed that no industry produces scrap on demand, so scrap is the result of
production to meet other demands. This is typically accomplished by calculating the
ratio of nonscrap output to industry output for each industry and then applying these
ratios to the market shares matrix in order to account for total industry output. In Chapter
5 we develop a variety of methods for handling secondary production and by-products,
but one commonly applied technique to adjust for scrap is the following.

First, we recall that g = Vi (the row sums of the Make matrix) and assume some
portion of total commodity production, g, is scrap, h, so we can write g = Vi + h.
If, as noted above, we assume that scrap production is related to total production by
a constant ratio, we can write hi = cigi where ci is the ratio of the value of scrap
produced in industry i to the total output. In matrix terms this is expressed as h = ĉg.
We can rewrite g = Vi + h as g − h = Vi and substitute h = ĉg to yield g − ĉg = Vi
and, hence (I − ĉ)g = Vi. Finally, we multiply through both sides by (I − ĉ)−1 to yield
g = [

(I − ĉ)−1V
]

i where we can define the bracketed quantity as V̄, the Make matrix
adjusted for scrap.

4.8 Valuation and Double Deflation

In comparing input–output data for different years, it is often important to distinguish
changes attributable to prices from other sources of difference. This essentially involves
converting tables originally valued at nominal prices for the year in which the data for
the table were collected (current prices) to corresponding tables valued at constant prices
for some established base time period, usually a base year. A very common method
for accomplishing this is called double deflation, which refers to a two-step process
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(hence the “double”) by which (1) intermediate inputs, final demands, and total outputs
valued at current prices in the accounting period are “deflated” by using (multiplying
by) commodity price indices for all intermediate inputs, final demand, and total output
and then (2) deriving a value added price index that balances the fundamental identity
that the value of total outputs must always be equal to the value of total inputs. All the
output of a particular industry, i.e., deliveries to other industries and to final demand, is
adjusted by a price index for that industry’s output. The price index is simply a ratio of
the price of a commodity in the year for which valuation is sought to the corresponding
price in the base year.

We illustrate the process of double deflation by recalling that interindustry transac-
tions in value terms refer to a physical transaction and a corresponding price, i.e.,

zij = pisij (4.21)

where zij is the dollar transaction of industry i’s output consumed by industry j; pi is
the price per physical unit of industry i’s output; and sij is the physical units transaction
of industry i’s output consumed by industry j. We can rearrange terms in (4.21) to
sij = zij

pi
. If we define a superscript to denote the accounting period, we can write

sij = z1
ij

p1
i

= z2
ij

p2
i

= · · · = zt
ij

pt
i

= · · · = zn
ij

pn
i

for 1, 2, . . . , n accounting periods (usually

years). If we choose any arbitrary year to be the reference or base year (b), we can write

sij = zb
ij

pb
i

= zt
ij

pt
i

or zb
ij =

(
pb

i
pt

i

)
zt

ij. We refer to the term

(
pb

i
pt

i

)
as the price index for industry

i in year t relative to base or reference year b. Similarly, we define final demand and
total output of industry i’s output as di and qi corresponding to those quantities in value
terms, fi and xi. Hence, fi = pidi and qi = pixi and, once again introducing superscripts

to denote accounting periods, we can write di = f 1
i

p1
i

= f 2
i

p2
i

= · · · = f t
i

pt
i
= · · · = f n

i
pn

i
and

qi = x1
i

p1
i

= x2
i

p2
i

= · · · = xt
i

pt
i

= · · · = xn
i

pn
i

. By introducing a base year, b, we can write

di = f b
i

pb
i

= f t
i

pt
i

and qi = xb
i

pb
i

= xt
i

pt
i
. Rearranging terms, f b

i =
(

pb
i

pt
i

)
f t
i and xb

i =
(

pb
i

pt
i

)
xt

i .

This and the earlier expression for transactions allows us to “deflate” transactions,
final demand, and total output from year t to base year b or if we do this for multiple
years we can express all years’ values for these quantities in year b’s prices, or, so-

called constant prices. In sum, if we define π t
i =

(
pb

i
pt

i

)
as the price index or deflator

for industry i, then we can write zb
ij = π t

i zt
ij, f b

i = π t
i f t

i and xb
i = π t

i xt
i . In matrix

terms, we define the vector of price indices as πt = [
π t

1 π t
2 . . . π t

n

]
so that we can write

Zb = (π̂t
)Zt , fb = (π̂t

)f t and xb = (π̂t
)xt .

Since we have deflated Z, f and x all by the same price index, we can be assured the
basic identity, Zt i + f t = xt and Zbi + fb = xb both hold, since for each industry we
have simply multiplied through the distribution of all output to intermediate consumers
and to final demand by the same price. However, we need to ensure that total outputs
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Table 4.19 Double Deflation: Example 6

Industry Transactions Price Price
Final Total

1 2 3 Demand Output Year 1 Year 2

1 10 20 30 65 125 2 7
2 5 25 12 40 82 2 6
3 22 3 7 104 136 3 5

Value Added 88 34 87 209

are equal to total inputs, as well, i.e., the fundamental identity i′Zb + (vb)′ = (xb)′
must hold as well, where (vb)′ is the as yet undetermined deflated vector of value added
inputs – undetermined since we have not yet specified a price index for value added.
We only have a deflator for interindustry inputs. Here we should observe that if an
industry sector experiences price changes for all of its intermediate inputs (including
the price of its own output), then the value added is the only term left that can change
if the value of total inputs is to remain equal to the value of total outputs. Hence, in
order to maintain this identity we can compute the new value added as the residual,
i.e., (vb)′ = (xb)′ − i′Zb; we can define the deflator for value added for each industry

simply as the ratio rt
i =

(
vb

i
vt

i

)
since vb

i = rt
i v

t
i or, in matrix terms, v̂b = r̂t v̂t and,

rearranging terms, we have r̂t = v̂b(v̂t)−1.

Example 6: Double Deflation We define a three-sector economy for year 2
with industry prices for two different years, years 1 and 2, in Table 4.19. To express the
transactions, final demand, and total output in year 1 (which we define as the base year)

prices, first we compute πt as πt =
⎡⎣ 2/7

2/6
3/5

⎤⎦ =
⎡⎣ .286

.333

.600

⎤⎦. Hence, we can compute

Zb = π̂tZt , fb = π̂tf t , xb = π̂txt as

Zb = π̂tZt =
⎡⎣ .286 0 0

0 .333 0
0 0 .600

⎤⎦⎡⎣ 10 20 30
5 25 12

22 3 7

⎤⎦ =
⎡⎣ 2.9 5.7 8.6

1.7 8.3 4.0
13.2 1.8 4.2

⎤⎦
fb = π̂tf t =

⎡⎣ .286 0 0
0 .333 0
0 0 .600

⎤⎦⎡⎣ 65
40

104

⎤⎦ =
⎡⎣ 18.6

13.3
62.4

⎤⎦
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xb = π̂txt =
⎡⎣ .286 0 0

0 .333 0
0 0 .600

⎤⎦⎡⎣ 125
82

136

⎤⎦ =
⎡⎣ 35.7

27.3
81.6

⎤⎦
From the original data, (vt)′ = [

88 34 87
]

and we can compute the necessary
value added to ensure that total inputs remain equal to total outputs as

(vb)′ = (xb)′ − i′Zb = [18.0 11.5 64.8]

Hence, we can find the value added deflator as

r̂t = v̂b(v̂t)−1 =
⎡⎣ 18 0 0

0 11.5 0
0 0 64.5

⎤⎦⎡⎣ 1/88 0 0
0 1/34 0
0 0 1/87

⎤⎦
=
⎡⎣ .204 0 0

0 .338 0
0 0 .745

⎤⎦
The method of double deflation, while widely used (as in United Nations, 1993), has

many disadvantages for deflating input–output tables, perhaps not the least of which is
that all elements in a row of the transactions matrix are deflated by the same index. In
many economies interindustry prices may vary considerably and, hence, deflating by the
same index can be misleading or even wrong. Even without variation in interindustry
prices for a commodity, a single price index for that commodity may only be plausible
at very high levels of sectoral disaggregation where products are more distinct. Such
an assumption can be very misleading at higher levels of aggregation where multiple
products are represented. These and other problems with double deflation are discussed
in Hoen (2002) and Dietzenbacher and Hoen (1999). A perhaps preferable alternative
to double deflation is biproportional scaling (also known as the RAS technique), which
will be explored in detail in Chapter 7.

4.9 The Aggregation Problem: Level of Detail in Input–Output Tables

The number of industrial sectors defined in an input–output table (often referred to
as the level of sectoral aggregation) is usually decided in the context of the problem
being considered, for example, whether or not it is important to distinguish between
fully assembled automobiles and automobile parts produced separately by a specific
automobile manufacturer; a more aggregated sector labeled “automobiles and parts”
may be sufficient. Other factors such as computational expense or availability of data
may also be considerations in such a decision. Similarly, in multiple-region models –
that is, interregional or multiregional models as defined in Chapter 3 – the number
of regions considered in the model (the level of spatial aggregation) must also be
selected in the problem being considered; for example, if we are interested in the
impacts of increased coal development on regions in the United States, how should
states be grouped into regions (assuming the basic data are state-specific) to construct an
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applicable model?An additional and often important consideration is what information,
if any, is lost in performing either a sectoral or spatial aggregation?

Since the early 1950s considerable attention has been given in the literature to estab-
lishing criteria for and measuring the effects of aggregation of sectors in input–output
models. Representative earlier examples include Ara (1959), Balderston and Whitin
(1954), Hatanaka (1952), McManus (1956), Malinvaud (1956), Theil (1957), Mori-
moto (1970), and, more recently, Kymn (1990), Cabrer, Contreras and Miravete (1991)
and Olsen (1993). Many of these efforts were aimed at compensating for limited com-
puting capabilities at the time. Today the issues center more around bias introduced by
sectoral or, in the case of multiregional or interregional models, spatial aggregation or
the definition of regions in input–output models. The questions of the level of aggrega-
tion (number of sectors or regions) is likely to be even more important at the regional
level, where good data are often unavailable or difficult and prohibitively expensive to
obtain (see Doeksen and Little, 1968; Williamson, 1970; Hewings, 1972; and Stevens
and Lahr, 1993). The subject of spatial aggregation is examined in more detail for inter-
regional and multiregional input–output models in Miller and Blair (1981) and Blair
and Miller (1983).

In this section we examine the basic effects of aggregation on input–output mod-
els. In particular, we investigate several measures of the bias or error introduced by
aggregation.

4.9.1 The Aggregation Matrix
Before examining the effects of aggregation, let us develop a systematic way of accom-
plishing aggregation of sectors in an input–output table. First, define a matrix S, the
aggregation matrix, to be a k × n matrix of ones and zeros, where k is the number of
sectors in the to-be-created aggregated version of the input–output table and n is the
number of sectors in the existing unaggregated version of the table. The locations of
ones in row i of S indicate which sectors of the unaggregated table will be grouped
together as sector i in the aggregated table.

For example, let n = 4 and k = 3; suppose that sectors 2 and 3 of the disaggre-
gated table are to be combined. Then the aggregation matrix that accomplishes this is

S =
⎡⎣ 1 0 0 0

0 1 1 0
0 0 0 1

⎤⎦. Let Z denote the unaggregated 4 × 4 transactions matrix and

Z∗ be the corresponding aggregated 3 × 3 transactions matrix. Similarly, f and f∗ are
the unaggregated and aggregated vectors of final demand, respectively. Recall that our
aim is to aggregate sectors 2 and 3 of the unaggregated model; for f this can easily be
accomplished by premultiplying by S:

f∗ = Sf =
⎡⎣ 1 0 0 0

0 1 1 0
0 0 0 1

⎤⎦
⎡⎢⎢⎣

f1
f2
f3
f4

⎤⎥⎥⎦ =
⎡⎣ f1

f2 + f3
f4

⎤⎦ (4.22)
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For Z, this can be accomplished by

Z∗ = SZS′ =
⎡⎣ 1 0 0 0

0 1 1 0
0 0 0 1

⎤⎦
⎡⎢⎢⎣

z11 z12 z13 z14

z21 z22 z23 z24

z31 z32 z33 z34

z41 z42 z43 z44

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0
0 1 0
0 1 0
0 0 1

⎤⎥⎥⎦ (4.23)

Z∗ =
⎡⎣ z11 z12 + z13 z14

z21 + z31 z22 + z23 + z32 + z33 z24 + z34

z41 z42 + z43 z44

⎤⎦
The new corresponding vector of total outputs x∗ can be computed as

x∗ = Z∗i + f∗ (4.24)

where, as before, i is a column vector of ones.
We can also use the aggregation matrix to reorder sectors. For example, the matrix

S given above is the one that introduces the least sector labeling rearrangement into
the aggregated matrix; that is, the original first sector remains sector 1 and the original
“last” sector, 4, becomes the “last” sector, 3, in the aggregated model. Alternatively,

S =
⎡⎣ 0 1 1 0

1 0 0 0
0 0 0 1

⎤⎦ groups original sectors 2 and 3 together and labels them sector

1 in the aggregated matrix, labels original sector 1 as sector 2 in the aggregated matrix,
and the original sector 4 as sector 3 in the aggregated matrix.

If we are given a new set of final demands, f, for which we wish to compute the
corresponding total output needed to support that final demand, we can compute the
Leontief inverse matrices for both unaggregated and aggregated versions of the model:
(I − A)−1 and (I − A∗)−1 where A = Zx̂−1 and A∗ = Z∗(x̂∗)−1.

As in the case of the initial set of final demands, the aggregated vector of new
final demands is f̃∗ = Sf̃ . Hence, impact analysis yields x̃ = (I − A)−1f̃ and x̃∗ =
(I − A∗)−1f̃∗. Note that, except under very special circumstances which we describe
later, x̃∗ �= Sx̃; the difference between x̃∗ and Sx̃ is one indication of the bias introduced
by aggregating the input–output table from four to three sectors.

Example 7: Sectoral Aggregation We begin with a four-sector input–output
model defined by

Z =

⎡⎢⎢⎣
26.5 75.0 46.0 53.0
34.0 5.0 68.0 68.0
41.5 38.0 52.0 83.0
33.5 6.0 53.0 67.0

⎤⎥⎥⎦ , f =

⎡⎢⎢⎣
659.5

1835.0
2515.5
1560.5

⎤⎥⎥⎦ , and x =

⎡⎢⎢⎣
860

2010
2730
1720

⎤⎥⎥⎦
Let us consider two alternative sectoral aggregations of this model, given respectively

by the aggregation matrices S1 =
⎡⎣ 1 0 0 0

0 1 0 0
0 0 1 1

⎤⎦ and S2 =
⎡⎣ 0 1 0 0

0 0 1 0
1 0 0 1

⎤⎦.
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S1 combines sectors 3 and 4 of the four-sector model into sector 3 of a three-sector
model, leaving sectors 1 and 2 unaggregated. S2 combines sectors 1 and 4 of the four-
sector model into sector 3 of a three-sector model and assigns sectors 2 and 3 of the
four-sector model to sectors 1 and 2, respectively, in a three-sector model.

From (4.22), (4.23), and (4.24) we can compute the corresponding aggregated values
of f, Z, and x for the two alternative aggregation schemes. For the S1 aggregation
scheme, we have,

f∗
1 = S1f =

⎡⎣ 659.5
1835.0
4076.0

⎤⎦
Z∗

1 = S1ZS′
1 =

⎡⎣ 26.5 75.0 99.0
34.0 5.0 136.0
75.0 44.0 255.0

⎤⎦
and

x∗
1 = Z∗

1i + f∗
1 =

⎡⎣ 860
2010
4450

⎤⎦ .

Similarly, for the S2 aggregation scheme, we have f∗
2 = S2f =

⎡⎣ 1835.0
2515.5
2220.0

⎤⎦, Z∗
2 =

S2ZS′
2 =

⎡⎣ 5.0 68.0 102.0
38.0 52.0 124.5
81.0 99.0 180.0

⎤⎦ and x∗
2 = Z∗

2i + f∗
2 =

⎡⎣ 2010
2730
2580

⎤⎦.

Let us now compute the technical coefficients matrix and Leontief inverse for each
of the aggregation schemes. For S1, we have

A∗
1 = Z∗

1(x̂
∗
1)

−1 =
⎡⎣ 0.031 0.037 0.022

0.040 0.003 0.031
0.087 0.022 0.057

⎤⎦
and

(I − A∗
1)

−1 =
⎡⎣ 1.036 0.039 0.026

0.044 1.005 0.034
0.097 0.041 1.064

⎤⎦
and for S2 we have

A∗
2 = Z∗

2(x̂
∗
2)

−1 =
⎡⎣ 0.002 0.025 0.040

0.019 0.019 0.048
0.040 0.036 0.070

⎤⎦
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and

(I − A∗
2)

−1 =
⎡⎣ 1.005 0.027 0.044

0.022 1.022 0.054
0.044 0.041 1.079

⎤⎦

Suppose we are given a new final demand, f̃ , which is presented to the economy as

f̃ =

⎡⎢⎢⎣
10
10
10
10

⎤⎥⎥⎦. For the two alternative aggregations, the corresponding final-demand

vectors are f̃∗
1 = S1f̃ =

⎡⎣ 10
10
20

⎤⎦ and f̃∗
2 = S2f̃ =

⎡⎣ 10
10
20

⎤⎦. The corresponding total

output vectors are x̃∗
1 = (I − A∗

1)
−1f̃∗

1 =
⎡⎣ 11.26

11.16
22.52

⎤⎦ and x̃∗
2 = (I − A∗

2)
−1f̃∗

2 =⎡⎣ 11.20
11.51
22.43

⎤⎦.

If we use the unaggregated model in impact analysis, the total output vector is

x̃ = (I−A)−1f̃ =

⎡⎢⎢⎣
11.30
11.20
11.51
11.13

⎤⎥⎥⎦ where A = Zx̂−1 from the original unaggregated matrix

of transactions, Z, and vector of total outputs, x. If we aggregate the vector x̃ by the

two aggregation schemes, we obtain S1x̃ =
⎡⎣ 11.30

11.20
22.64

⎤⎦ and S2x̃ =
⎡⎣ 11.20

11.51
22.43

⎤⎦.

Note that while x̃∗
1 and S1x̃ are quite different, x̃∗

2 and S2x̃ are identical. That is, no
error is introduced in the second aggregation scheme, S2. We will see more formally
later why this is true, but for the time being, we can examine the original unaggregated

matrix of technical coefficients, A = Zx̂−1 =

⎡⎢⎢⎣
0.031 0.037 0.017 0.031
0.040 0.003 0.025 0.040
0.048 0.019 0.019 0.048
0.039 0.003 0.019 0.039

⎤⎥⎥⎦.

Note that the first and last columns of A are identical, that is, the two industries have
identical production characteristics. In the S2 aggregation scheme, these two industries
are aggregated into one; this was not the case in the S1 aggregation scheme. This should
not be surprising, however, since two industries with the same production function are
by definition the same industry and, hence, there should be no bias introduced by
aggregation.
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4.9.2 Measures of Aggregation Bias
Total aggregation bias has been defined – for example, in Morimoto (1970) – as the
difference between the vector of total outputs in the aggregated system and the vector
obtained by aggregating the total outputs in the original unaggregated system. As in
the last example, for some new vector of final demands, f, the total output vector in the
unaggregated model is x =(I−A)−1f . The total output vector in the aggregated model
is x∗=(I − A∗)−1f∗, and the total aggregation bias is defined as

τ = x∗ − Sx (4.25)

That is, τ = (I − A∗)−1f∗ − S(I − A)−1f , or τ = [(I − A∗)−1S − S(I − A)−1]f . Using
the power series results,

τ = [(I + A∗ + A∗2 + · · · )S − S(I + A + A2 + · · · )]f
= [(A∗S − SA) + (A∗2S − SA2) + · · · ]f (4.26)

The first term in this series has been defined as the “first-order” aggregation bias (Theil,
1957); that is,

ϕ = (A∗S − SA)f (4.27)

We present two basic theorems regarding aggregation bias and, in particular, when
it will vanish. One has to do with the nature of the A and A∗ matrices, that is, with
the structural characteristics of the economy; the other has to do with the nature of the
final-demand vectors, f and f∗, being studied. The former is

Theorem 4.1. The total aggregation bias vanishes (i.e., τ = 0) for any ϕ if and only
if A∗S = SA.

This follows from the expression for τ in (4.26) since, if A∗S = SA, then

A∗2S − SA2 = A∗A∗S − SAA = A∗(SA) − (A∗S)A = 0

and similarly, for higher-order terms in the series. This theorem suggests that if two
(or more) sectors have identical interindustry structures (i.e., equal columns in the A
matrix, as we found in the example), then aggregation of these sectors will result in
zero total aggregation bias. For example, consider a three-sector economy in which
sectors 1 and 3 have the same interindustry input structure:

A =
⎡⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎦ , x =
⎡⎣ x1

x2

x3

⎤⎦ .

The corresponding transactions matrix is found by

Z = Ax̂ =
⎡⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎦⎡⎣ x1 0 0
0 x2 0
0 0 x3

⎤⎦ =
⎡⎣ a11x1 a12x2 a13x3

a21x1 a22x2 a23x3

a31x1 a32x2 a33x3

⎤⎦
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The proper aggregation matrix for combining sectors 1 and 3 is S =
[

1 0 1
0 1 0

]
.

Hence, the aggregated transactions matrix and total outputs vector are

Z∗ = SZS′ =
[

1 0 1
0 1 0

]⎡⎣ a11x1 a12x2 a13x3

a21x1 a22x2 a23x3

a31x1 a32x2 a33x3

⎤⎦⎡⎣ 1 0
0 1
1 0

⎤⎦
or

Z∗ =
[

a11x1 + a31x1 + a11x3 + a31x3 a12x2 + a32x2

a21x1 + a21x3 a22x2

]

and x∗= Sx =
[

1 0 1
0 1 0

]⎡⎣ x1

x2

x3

⎤⎦ =
[

x1 + x3

x2

]
. Hence, the aggregated technical

coefficients matrix is found by

A∗ = Z∗(x̂∗)−1 =
⎡⎢⎣

(a11 + a31)(x1 + x3)

x1 + x3

(a12 + a32)x2

x2
a21(x1 + x3)

x1 + x3

a22x2

x2

⎤⎥⎦
=

[
a11 + a31 a12 + a32

a21 a22

]
Theorem 4.1 asserts that there will be no aggregation bias when two columns are

identical, that is, when A∗S = SA. For our general example this can be shown by

A∗S =
[

a11 + a31 a12 + a32

a21 a22

] [
1 0 1
0 1 0

]
=
[

a11 + a31 a12 + a32 a11 + a31

a21 a22 a21

]
and

SA =
[

1 0 1
0 1 0

]⎡⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎦[
a11 + a31 a12 + a32 a11 + a31

a21 a22 a21

]
,

which are the same.
The second theorem on aggregation bias is as follows.
Theorem 4.2. If some sectors are not aggregated and the new final demands occur

only in unaggregated sectors, the first-order aggregation bias will vanish.
For a general three-sector economy, the unaggregated and aggregated technical

coefficients matrices, A and A∗, respectively, are

A =

⎡⎢⎢⎢⎢⎢⎣
z11

x1

z12

x2

z13

x3
z21

x1

z22

x2

z23

x3
z31

x1

z32

x2

z33

x3

⎤⎥⎥⎥⎥⎥⎦ and A∗ =

⎡⎢⎢⎣
z11

x1

z12 + z13

x2 + x3
z21 + z31

x1

z22 + z23 + z32 + z33

x2 + x3

⎤⎥⎥⎦
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The unaggregated sector is sector 1 (in both the aggregated and unaggregated models).
Consider final-demand vectors for which only the unaggregated elements are nonzero:

f =
⎡⎣ f1

0
0

⎤⎦ and f∗= Sf =
[

f1
0

]
. This theorem asserts that the first-order aggregation

bias, ϕ = (A∗S − SA)f is zero for final demands such as those given as f and f∗ above.
For the example:

SA =
[

1 0 0
0 1 1

]
⎡⎢⎢⎢⎢⎢⎣

z11

x1

z12

x2

z13

x3
z21

x1

z22

x2

z23

x3
z31

x1

z32

x2

z33

x3

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎣

z11

x1

z12

x2

z13

x3
z21 + z31

x1

z22 + z32

x2

z23 + z33

x3

⎤⎥⎦

and

A∗S =

⎡⎢⎢⎣
z11

x1

z12 + z13

x2 + x3

z12 + z13

x2 + x3
z21 + z31

x1

z22 + z23 + z32 + z33

x2 + x3

z22 + z23 + z32 + z33

x2 + x3

⎤⎥⎥⎦ .

Hence, the first-order bias, ϕ, as defined earlier, is ϕ = (A∗S − SA)f =

⎡⎢⎢⎣ 0

(
z12 + z13

x2 + x3
− z12

x2

) (
z12 + z13

x2 + x3
− z13

x3

)
0

(
z22 + z23 + z32 + z33

x2 + x3
− z22 + z32

x2

) (
z22 + z23 + z32 + z33

x2 + x3
− z23 + z33

x3

)
⎤⎥⎥⎦
⎡⎣ f1

0
0

⎤⎦ =
[

0
0

]

Thus, if one is studying the effect of new final demand only for sector 1’s output in an
n-sector model, any and all combinations of sectors 2 through n into fewer sectors will
generate no first-order aggregation bias. Although these theorems are stated in terms of
sectoral aggregation, they also have implications for spatial aggregation in interregional
models. In general, the conditions of Theorem 4.1 are almost certain not to be met as
one combines regions in an interregional input–output model, but the conditions of
Theorem 4.2 will be met in many cases.

Aggregation bias in interregional and multiregional input–output models is discussed
in detail in Miller and Blair (1981) and Blair and Miller (1983). Additional theorems
on sectoral aggregation bias based on statistical properties are discussed in Gibbons,
Wolsky and Tolley (1982). Examples of sectoral aggregation for the three-region
Japanese interregional and the US multiregional input–output models are included
for the interested reader in Appendix 4.1.
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4.10 Summary

In this chapter we have explored some of the most important practical issues associated
with applying input–output analysis, namely construction of the basic input–output
tables as part of a system of national accounting conventions and data collection.
The chapter focuses primarily on a System of National Accounts (SNA), including
the integral Input–Output Accounts (IOAs), derived from basic concepts of the circu-
lar flow of income and expenditure. In order to define interindustry production and
consumption within the SNA, the framework includes conventions for distinguish-
ing between commodities and industries, i.e., production and consumption of defined
goods and services or commodities and industries or groups of economic establish-
ments that produce those commodities, with an individual industry perhaps producing
more than one commodity. This commodity-by-industry framework lays the foun-
dation for more detailed examination of commodity-by-industry models in Chapter
5, alternatives to full survey-based construction of input–output tables in Chapters
7 and 8, and extensions to the basic input–output framework in later chapters, such
as the SNA as the basis for broader social accounting in Chapter 11. Finally, this
chapter examines some of the key considerations in defining the level of sectoral
detail in input–output models, especially measures of bias introduced by aggregation of
sectors.

Appendix 4.1 Spatial Aggregation in IRIO and MRIO Models

We consider two examples of spatial aggregation for two multiple region input–output
models: (1) a three-region interregional (IRIO) model for Japan and (2) the US multi-
regional (MRIO) model and using the basic measures of aggregation bias introduced
in Section 4.8.2.

A4.1.1 Spatial Aggregation of IRIO Models
Spatial aggregation of IRIO models is in many respects identical to sectoral aggregation.
As an example for the IRIO case we consider a highly aggregated, three-region, five-
sector version of the Japanese IRIO model defined in Table A4.1.1. In the following
we consider the case of aggregating this model to two regions, the first being region
1 (Central), unaggregated, of the three-region model. The second aggregated model
region is to be composed by combining regions 2 (North) and 3 (South) of the three-
region model. Hence, using the notation of Chapter 3 for IRIO transactions and denoting
the regions of the aggregated model by a (Central) and b (North plus South), the new
transactions matrix is found by (for i, j = 1, 2, . . . , 5 in all cases) zaa

ij = z11
ij , zab

ij =
z12

ij + z13
ij , zba

ij = z21
ij + z31

ij , zbb
ij = z22

ij + z23
ij + z32

ij + z33
ij . Similarly, total outputs are

found by xa
i = x1

i and xb
i = x2

i +x3
i .
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Note that we can easily accomplish this spatial aggregation by constructing an
aggregation matrix, S, as we did in the case of sectoral aggregation:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We can use S to create x∗ = Sx, Z∗ = SZS′ where x∗ is the 10 × 1 aggregated vector
of final demands (the unaggregated vector, x, is 15 × 1); Z∗ is the aggregated 10 × 10
interindustry transactions matrix (the unaggregated transactions matrix, Z, is 15 × 15).

We can subsequently compute the new aggregated total outputs vector as x∗ = Sx =[
1307 123 16400 1342 8591 3440 468 26220 1940 12727

]′
The new aggregated

matrix of IRIO input coefficients is

A∗ = Z∗(x̂∗)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.053 0 .009 .011 .009
0 .001 .001 .001 .002

.428 .723 .25 .24 .18
0 .001 .01 .09 .012

.012 .029 .042 .117 .125

.001 0 .002 0 0
0 0 0 0 0

.015 .005 .045 0 .014
0 0 .001 .009 .001
0 0 .008 .001 .013

.006 0 .002 0 0
0 0 0 0 0

.104 .062 .102 0 .015
0 .002 .001 .038 0

.004 .039 .007 0 .004

.08 0 .013 .021 .012
.001 .004 .001 .003 .006
.456 .655 .299 .258 .184

0 .005 .009 .082 .012
.012 .048 .037 .109 .110

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The corresponding Leontief inverse is

(I − A∗)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.063 .012 .015 .019 .014 .004 .004 .005 .002 .002
.001 1.002 .001 .002 .003 0 .001 .001 0 0
.639 1.016 1.380 .413 .299 .075 .081 .101 .041 .050
.008 .013 .016 1.107 .019 .002 .002 .003 .012 .002
.050 .088 .071 .170 1.161 .012 .016 .021 .011 .023

.013 .008 .007 .004 .002 1.099 .018 .023 .033 .021

.001 .001 .001 0 0 .003 1.007 .003 .005 .007

.267 .267 .217 .092 .076 .754 1.050 1.480 .477 .335

.005 .009 .006 .049 .003 .009 .018 .017 1.098 .018

.021 .064 .020 .015 .010 .049 .105 .065 .155 1.140

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Table A4.1.2 Spatial Aggregation of IRIO Models: Results for Japanese IRIO Table

Aggregated
Gross
Outputs
from the
Three-
Region
Model Sx̃

Outputs
from the
Aggregated
Two-
Region
Model
x̃∗

Aggregation
Error
Sx̃ − x̃∗

Aggregation Error as a
Percent of Gross
Outputs of the
Three-Region Model

100
( |Sx̃−x̃∗|

Sx̃

)
Region a Sector

1
2
3
4
5

116.801
101.649
443.529
121.260
171.553

115.749
101.394
444.330
120.363
170.789

1.052
.255

−.801
.896
.764

.901

.251
−.181

.739

.446
Region a Total

(Absolute)
954.792 952.625 3.768

Region b Sector
1
2
3
4
5

246.876
206.519
853.242
235.381
309.717

242.116
205.343
911.145
238.800
315.778

4.769
1.176

−57.904
−3.418
−6.061

1.928
.570

−6.786
−1.452
−1.957

Region b Total
(Absolute)

1851.735 1913.182 73.319

Total (Absolute) 2806.527 2865.807 77.087

Let us now compute the aggregation bias introduced by grouping regions 2 and 3.
Consider the following vector of final demands for the unaggregated (three-region, five-
sector) model: f̃ = [

100 100 · · · 100
]′

. The corresponding aggregated (two-region,

five-sector) version is f̃∗ = [ 100 100 100 100 100 200 200 200 200 200 ]′.
We can compute x̃∗= (I − A∗)−1f̃∗ and ˜x = (I − A)

−1
f̃ where A is the original

unaggregated technical coefficients matrix. In order to compare x̃∗ and x̃, we must
aggregate x̃, which can be accomplished with the sectoral aggregation matrix, S, given
earlier, that is, Sx̃. TableA4.1.2 gives the vectors x̃∗, Sx̃, and the differences between the
corresponding elements. The sum of absolute differences |Sx̃−x̃∗| for the unaggregated
region a (Central) as a percentage of the total outputs in that region, that is, Sx̃i, is

100
( |Sx̃−x̃∗|i

Sx̃i

)
= 100

(
3.768

954.792

)
= 0.395% and the corresponding value for region b

(North and South) is 100
(

73.319
1851.735

)
= 3.959%. This indicates, as expected, that more

error is introduced into the prediction of outputs in the aggregated region than in the

unaggregated region. The overall error (for both regions) is 100
(

77.087
2806.527

)
= 2.747%.

Notice from the table that the aggregation bias is quite small in all three calculations,
that is, region a, region b, and overall, particularly in the unaggregated region. Miller
and Blair (1981) show that spatial aggregation of IRIO models generally seems to
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introduce only modest bias. This suggests, for example, that if one is interested in the
impacts in one region in an interconnected interregional system of a change in final
demands for some of the sectors in that region (e.g., effects on the California economy
of new federal spending in California, which is one of the interconnected 48 continental
states), then a “two-region” model of California and the rest of the United States may
be sufficient.

A4.1.2 Spatial Aggregation of MRIO Models
Consider a highly aggregated (three-region, five-sector) MRIO input–output model of
the United States given in Table A4.1.3. We consider the case of aggregating regions 2
(Central) and 3 (West) of the basic three-region model, leaving region 1 (East) unaggre-
gated. We designate the regions in the aggregated model by superscripts a (East) and
b (Central plus West) so that the new intraregional flow matrices are found by (for i,
j = 1, . . . , 5 in all cases) the following: za

ij = z1
ij, zb

ij = z2
ij + z3

ij. Similarly, total regional

outputs are xa
i = x1

i , xb
i = x2

i + x3
i . Hence the input coefficients for the aggregated

model are found by aa
ij = za

ij
xa

j
, ab

ij = zb
ij

xb
j
.

The resulting block diagonal aggregated technical coefficients matrix, which we
denote A∗, is given by

A∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.082 .003 .012 .005 .61 0 0 0 0 0

0 .196 .043 0 0 0 0 0 0 0

.156 .211 .302 .076 .110 0 0 0 0 0

.096 .133 .131 .220 .101 0 0 0 0 0

.012 .001 .061 .002 .234 0 0 0 0 0

0 0 0 0 0 .046 .002 .030 .007 .075

0 0 0 0 0 0 .302 .057 .001 0

0 0 0 0 0 .103 .143 .281 .075 .115

0 0 0 0 0 .207 .151 .127 .216 .101

0 0 0 0 0 .010 .001 .075 .002 .230

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The interregional commodity flow matrices for the original unaggregated model are

zi = zrs
i for r, s = 1, 2, 3 regions and i = 1, . . . , 5 sectors, a total of five 3 × 3 matrices.

Aggregation from three to two regions for the commodity flows can be accomplished by
constructing a spatial aggregation matrix R, as in the case of sectoral aggregation; for

this example, R =
[

1 0 0
0 1 1

]
. We define R to be distinct from the sectoral aggregation

matrix, S, defined earlier. The aggregated (2 × 2) interregional flow matrices, Z∗
i , are

found by Z∗
i = RZiR′ for i = 1, . . . , 5 industries.



Table A4.1.3 Five-Sector, Three-Region Multiregional Input–Output Tables
for the United States (1963)

Agriculture Mining
Const. &
Manuf. Services

Transport &
Utilities

Regional Transactions (millions of dollars)
East

Agriculture 2, 013 0 7, 863 44 0
Mining 35 335 3, 432 44 843
Const. & Manuf. 2, 029 400 78, 164 11, 561 2, 333
Services 1, 289 294 19, 699 26, 574 2, 301
Transport & Util. 225 384 7, 232 4, 026 3, 534

Central
Agriculture 10, 303 0 13, 218 97 0
Mining 82 472 8, 686 15 1, 271
Const. & Manuf. 4, 422 1, 132 93, 816 10, 155 2, 401
Services 4, 952 2, 378 21, 974 22, 358 2, 473
Transport & Util. 667 406 9, 296 3, 468 4, 513

West
Agriculture 2, 915 0 3, 452 65 0
Mining 4 292 2, 503 0 353
Const. & Manuf. 1, 214 466 27, 681 4, 925 1, 015
Services 1, 307 721 8, 336 10, 809 991
Transport & Util. 338 160 2, 936 1, 659 1, 576

Commodity Trade Flows and Total Outputs (millions of dollars)
Agriculture East West Central

East 6, 007 2, 124 208
West 3, 845 28, 885 2, 521
Central 403 2, 922 7, 028

Mining East West Central
East 2, 904 415 53
West 1, 108 10, 942 271
Central 71 772 3, 996

Const. & Manuf. East West Central
East 158, 679 42, 150 8, 368
West 44, 589 201, 025 11, 778
Central 4, 702 6, 726 61, 385

Services East West Central
East 146, 336 16, 116 2, 955
West 9, 328 121, 079 3, 185
Central 1, 939 3, 643 58, 663

Transport & Util. East West Central
East 21, 434 4, 974 263
West 4, 396 23, 811 1, 948
Central 1, 009 1, 334 9, 635

Total Output East West Central
Agriculture 10, 259 33, 939 9, 753
Mining 4, 084 12, 129 4, 319
Const. & Manuf. 207, 948 249, 840 81, 512
Services 157, 468 140, 850 64, 803
Transport & Util. 26, 847 30, 130 11, 841
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We can then construct the aggregated trade coefficients cab
i = zab

i

T b
i

. The trade

coefficients matrix for the aggregated MRIC model, C*, is

C∗ =
[

ĉaa ĉab

ĉba ĉbb

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.621 0 0 0 0 .047 0 0 0 0

0 .586 0 0 0 0 .053 0 0 0

0 0 .738 0 0 0 0 .144 0 0

0 0 0 .824 0 0 0 0 .121 0

0 0 0 0 .721 0 0 0 0 .157

.379 0 0 0 0 .953 0 0 0 0

0 .414 0 0 0 0 .947 0 0 0

0 0 .262 0 0 0 0 .856 0 0

0 0 0 .176 0 0 0 0 .879 0

0 0 0 0 .279 0 0 0 0 .843

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The corresponding matrix of MRIO multipliers is

(I − C∗A∗)−1C∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.658 .004 .012 .005 .039 .053 .002 .006 .002 .015

.004 .680 .032 .003 .004 .002 .088 .014 .002 .003

.124 .180 1.007 .084 .129 .045 .078 .271 .037 .071

.103 .142 .161 1.031 .127 .055 .068 .077 .193 .065

.017 .015 .063 .008 .895 .008 .010 .036 .005 .243

.425 .013 .028 .007 .061 1.008 .015 .048 .012 .095

.013 .678 .066 .008 .014 .013 1.358 .100 .010 .017

.118 .202 .493 .064 .128 .153 .264 1.213 .109 .189

.138 .176 .131 .281 .111 .237 .274 .218 1.115 .180

.021 .022 .066 .009 .433 .025 .025 .105 .013 1.083

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We now compute the aggregation bias introduced by this spatial consolida-
tion. Consider the following 15-element vector of hypothesized final demands for
the unaggregated (three-region, five-sector) model f̃ = [

100 100 · · · 100
]′

. The

corresponding aggregated (two-region, five-sector) version is f̃∗ = [100 100 100
100 100 200 200 200 200 200]′. We can compute x̃∗ = (I − C∗A∗)−1C∗f̃∗ and
x̃ = (I − CA)−1Cf̃ where A and C are from the original unaggregated model. In
order to compare x̃∗ and x̃, we must aggregate x̃, which we can accomplish with the
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following sectoral aggregation matrix, S:

Sx̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

117
127
254
240
155

139
192
293
277
175

126
145
191
219
135

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table A4.1.4 Spatial Aggregation of MRIO Models: Results for US MRIO Model

Aggregated
Gross
Outputs
from the
Three-
Region
Model Sx̃

Outputs
from the
Aggregated
Two-
Region
Model
x̃∗

Aggregation
Error
Sx̃ − x̃∗

Aggregation Error as a
Percent of Gross
Outputs of the
Three-Region Model

100
( |Sx̃−x̃∗|

Sx̃

)
Region a Sector

1
2
3
4
5

131.718
109.863
352.078
133.305
215.715

135.265
110.036
358.354
134.171
216.205

.547

.173
6.276

.866

.490

.405

.157
1.751

.645

.226

Region a Total
(Absolute)

954.679 954.031 8.352

Region b Sector
1
2
3
4
5

311.061
229.036
658.678
262.909
392.772

318.149
229.359
633.958
257.744
388.443

7.088
.324

−24.720
−5.164
−4.329

2.228
.141

−3.899
−2.004
−1.115

Region b Total
(Absolute)

1854.456 1827.653 41.625

Total (Absolute) 2800.135 2781.684 49.977
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Table A4.1.4 gives the vectors x̃∗, Sx̃, and the differences between corresponding
elements. The sum of absolute differences Sx̃− x̃∗ for the unaggregated region a (East)

as a percentage of the total outputs in that region, that is, Sx̃i, is 100
( |Sx̃−x̃∗|i

Sx̃i

)
=

100
(

8.352
945.679

)
= 0.883% and the corresponding value for region b (Central plus West)

is 100
(

41.625
1854.456

)
= 2.245%. This indicates, as expected, that more error is introduced

into the prediction of outputs in the aggregated region than in the unaggregated region.

The overall error (for both regions) is 100
(

49.977
2800.135

)
= 1.785%.

As we found with the IRIO model, it appears that spatial aggregation in MRIO
models produces only modest aggregation bias, at least judging from the results of
the example (see Blair and Miller, 1983, for a more detailed discussion). Hence, for
questions pertaining to one or more specific regions, it appears that an MRIO model in
which those regions are distinct, while the rest of the economy is aggregated into the
“remaining” region, is likely to be entirely adequate.

Problems

4.1 Consider a macroeconomy provided in the figure below where transactions are
measured in millions of dollars. Create the corresponding set of “T” accounts for
production, income and capital transactions. Write the account balance equations.

4.2 For the macroeconomy shown in Problem 4.1, add a capital consumption allowance
to account for depreciation of capital investments of 10 percent of total investment
(I). Also add a “rest of world” account to accommodate purchases of imports of $75
million, sales of exports of $50 million, and savings made available to capital markets
from overseas lenders of $25 million (resulting in a new total amount of capital
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available for businesses of $125 million). Construct the modified set of “T” accounts
and the corresponding balance equations.

4.3 The national economic balance sheet for an economy is given by the following:

Debits Credits

Capital Rest of Economic Capital Rest of

Prod. Cons. Accum. Govt. World Transaction Prod. Cons. Accum. Govt. World

475 Consumption
Goods (C)

475

54 Capital
Goods (I)

54

46 Exports (X) 46
46 Imports (M) 46
554 Income (Q) 554

−29 Depreciation
(D)

−29

30 Savings (S) 30
25 Govt.

Expenditures
(G)

25

20 Taxes (T) 20
5 Govt. Deficit

Spending (B)
5

600 525 30 25 46 Totals 600 525 30 25 46

a. Write the compete set of macro balance equations for this economy.
b. Construct the matrix representation of the consolidated national accounts.

4.4 Consider the following four-sector input–output transactions table for the year 2005
along with industry prices for 2000 and 2005.

Industry Transactions
Price Price

1 2 3 4 Total Output Year 2000 Year 2005

1 24 86 56 64 398 2 5
2 32 15 78 78 314 3 6
3 104 49 62 94 469 5 9
4 14 16 63 78 454 7 12

Compute the matrices of interindustry transactions and technical coefficients as well
as the vector of total outputs deflated to year 2000 value terms.
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4.5 Consider the transactions data given in Problem 2.8. One way of assessing the effects
of aggregation is as follows. Using a final-demand vector of all 1’s, determine the effect
on total outputs throughout the entire economy (i.e., summed over all the sectors) of
the following set of increasingly aggregated models. (Remember to aggregate the
final-demand vector appropriately each time you aggregate the sectors.)

• Case 1 (8 × 8) No sectoral aggregation
• Case 2 (7 × 7) Combine sector 6 with sector 2
• Case 3 (6 × 6) Also combine sector 5 with sector 1
• Case 4 (5 × 5) Also combine sector 8 with sector 3
• Case 5 (4 × 4) Also combine sector 7 with previously combined 6 and 2
• Case 6 (3 × 3) Also combine sector 4 with previously combined 5 and I

4.6 Consider the seven-sector input–output table of technical coefficients for the US
economy (1972) given in Appendix B. Given a vector final demands of

�f = [100 100 100 100 100 100 100]

compute the first-order and total aggregation bias associated with combining agricul-
ture with mining, construction with manufacturing, and transportation-utilities with
services and other sectors to yield a new three-sector model.

4.7 Consider the following national accounting equations:

Q + M = C + I + X + G

C + S + T = Q + D

L + I + D + B = S

X = M + L

G = T + B

where Q = total consumer income payments; M = purchases of imports; C = total
sales of consumption goods; S = total consumer savings; T = total taxes paid to
government; I = total purchases of capital goods; D = total capital consumption
allowance (depreciation); L = net lending from overseas; B = total government
deficit spending; X = total sales of exports; G = total government purchases and the
following are known: Q = 500, M = 75, S = 60, T = 20, D = 10, L = 20, and
B = 10. Write the consolidated table of national accounts represented in matrix form.
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4.8 Consider the following table of national accounts.

Prod. Cons. Cap. ROW Govt. Total

Prod. 410 80 55 30 575
Cons. 500 −10 490
Cap. 60 60
ROW 75 −20 55
Govt. 20 10 30

Total 575 490 60 55 30

Suppose the following tables become available providing the interindustry supply and
use detail for this economy.

Use of commodities by industries:

Industry
Total Intermed.

Nat. Res. Manuf. Serv. Output

Commodity
Agriculture 20 12 18 50
Mining 5 30 12 47
Manufacturing 10 13 11 34
Services 12 17 40 69

Final uses of commodity production:

Households Government Investment Exports

Agriculture 30 6 16 5
Mining 60 9 16 17
Manufacturing 50 3 40 22
Services 70 12 8 11

Totals 210 30 80 55

Supply of commodities by industries:

Commodity

Agric. Mining Manuf. Services Total Industry Output

Industry
Natural Resources 99 10 109
Manufacturing 8 143 137 10 298
Services 6 12 150 168

Total Commodity
Output

107 149 149 170 575
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Construct a consolidated set of supply and use accounts including the sector detail for
interindustry transactions.

4.9 We define an input–output economy with Z =
⎡⎣ 500 0 0

50 300 150
200 150 550

⎤⎦ and

x =
⎡⎣ 1000

750
1000

⎤⎦. Suppose this is a “US style” input–output table in which interindustry

transactions include competitive imports but the sum of all imports across all industries
of a particular product is included as a negative component of final demand.

a. If the vector of total value of competitive imports is found to be m =
⎡⎣ 150

105
210

⎤⎦,

using the assumption of import similarity, compute the domestic transactions matrix
where competitive imports are removed from interindustry transactions. Compute
the corresponding A and L.

b. If we subsequently learn that M =
⎡⎣ 100 0 0

25 50 30
25 50 100

⎤⎦, compute the domestic

transactions matrix and the corresponding A and L.
c. Now compute the mean absolute deviation (the average of the absolute value

differences) between the total requirements matrices computed in (a) and (b).
4.10 Consider the three-region, three-sector 2000 Chinese interregional model specified

in Tables 3.7, 3.8, and 3.9, which are Z, A, and L, respectively. Aggregate regions
1 and 2 and leave region 3 unaggregated to yield a two-region model. Calculate the
aggregation bias measured as a percent of gross outputs with a reference vector of
final demands given by f̃ = [100 100 . . . 100]′ for the unaggregated model.
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5 The Commodity-by-Industry
Approach in Input–Output
Models

5.1 Introduction

In this chapter we explore a variation in the underlying data sets from which an input–
output model is constructed. Using a “commodity–industry” format, we are able to
account for the fact that an industry may produce more than one commodity (product).
This was a major reason for the introduction of the commodity–industry accounting
system – to explicitly account for “non-characteristic” production such as secondary
products and by-products. In addition, data organized in this way are more easily inte-
grated with a broader system of national accounts (SNA) for a country, as we saw
in Chapter 4. These commodity–industry accounts lead to input–output models that
have more complicated structures than those in Chapters 2 and 3; commodity–industry
models are the concern of this chapter. The large Eurostat manual (Eurostat/European
Commission, 2008) provides an excellent and comprehensive discussion of this frame-
work. There, as in many other publications, “product” is used instead of “commodity.”
We will use “commodity” in this text because that is the predominant terminology
associated with the early derivations and discussions of this system, in the 1960s and
1970s, and it continues to be used by many analysts.

The commodity-by-industry accounting framework originated largely in the work of
Sir Richard Stone and his associates (Stone, 1961; Cambridge University, 1963). It was
proposed in 1968 by the United Nations as a standard for data gathering in countries
throughout the world (United Nations, 1968), and it subsequently has become a feature
of data collection and input–output statistics virtually everywhere. (United Nations
et al., 1993. Also, Viet, 1994, reviews input–output data collection and assembly prac-
tices in 53 countries during the 1970s and 1980s.) Specific examples include Canada,
where this framework has been used at both a national and a regional scale since the early
1960s (Statistics Canada, 1981) and the USA, where national data have been collected
and presented in commodity-by-industry form starting with the 1972 tables.1 It has
also become the template for countries in the European Community (Eurostat, 1996,
describing the European System of Accounts, ESA, 1995) – Denmark (annual tables

1 For extensive discussions of data collection and modeling efforts and conventions in a number of countries
using some version of commodity–industry accounts, see Franz and Rainer (1989) and Viet (1994).
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since 1966), the Netherlands and Norway provide examples. The commodity–industry
approach indeed provides a framework in which secondary products, by-products, etc.
can be much more explicitly accounted for; however, it also introduces new problems
(including the possibility of negative coefficients or transactions), as we will see below.

The underlying observation is that industries use commodities to make commodi-
ties. It is commodities that are the inputs to industrial processes and that are used to
satisfy final demands. An industry can be thought of as defined by its primary product
(commodity) but some industries also produce additional commodities as secondary
products. (There are several kinds of non-characteristic or secondary products – joint
products, by-products, subsidiary products; we will investigate some of these distinc-
tions later.) In order to highlight the differentiation between commodities and industries,
assume that the commodity index, i, runs from 1 to m and the industry index, j, runs
from 1 to n. If every commodity produced in an economy is primary to some industry
in that economy, then the number of commodities and the number of industries will be
the same, m = n. Initially we will investigate this case in some detail. Complications
can arise when m �= n; we explore these in section 5.6.2

5.1.1 The Use Matrix
In ordinary input–output models with n sectors, an element of the n × n transactions
matrix Z = [zij] represents the value of purchases of industry i output by industry j. In
addition, there is an n-element vector of total industry outputs, x = [xj], where

xj = zj1 + · · · + zjn + fj (5.1)

and fj is industry j’s sales to final demand. In matrix form,

x = Zi + f (5.2)

and direct input (technical) coefficients, A = [aij], are defined as

A = Zx̂−1 (5.3)

Throughout, the adjectives “ordinary” and “original” will be used with “input–output”
to refer to the model that is derived from (5.1)–(5.3), as in Chapter 2 and in (5.11) and
(5.12), below. These are the relationships as Leontief first articulated them and that are
reflected, in the case of the USA, in pre-1972 published input–output data.

In the commodity-by-industry approach, the interindustry transactions matrix, Z, is
replaced, initially, by the Use matrix, U

(c×i)
= [uij], where uij is the value of purchases of

commodity i by industry j.3 Thus the “industries use commodities” part of “industries

2 If m > n, aggregation of commodity accounts could proceed until m = n; similarly, if m < n, industry accounts
could be aggregated. This is often done in practice (again, see the papers in Franz and Rainer, 1989). But of
course aggregation covers up information from the originally more detailed data sets.

3 Normally, the parentheses below a matrix indicate its dimensions – number of rows and number of columns. In
this section we will sometimes use expressions like (c × i) to help us remember which dimension enumerates
commodities (in this case, rows) and which enumerates industries (in this case, columns). Thus we will write
that U has “commodity-by-industry dimensions.”
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Table 5.1 The Use Matrix (U) and Other Data for a Two-Commodity,
Two-Industry Hypothetical Example (in Dollars)

Industry 1 Industry 2
Final Demand for
Commodities (e)

Total Commodity
Output (q)

Commodity 1 12 8 80 100
Commodity 2 10 7 83 100
Value Added (v′) 68 95
Total Industry Outputs (x′) 90 110

use commodities to make commodities” is quantified in U. (U is sometimes called the
absorption or input matrix.) In conjunction with total industry output, x, the parallel to
ordinary technical coefficients, aij, would appear to be

bij = uij/xj

or
B = Ux̂−1 (5.4)

in which column j represents the value of inputs of each commodity per dollar’s worth
of industry j’s output.4 The dimensions of B are therefore commodities-by-industries.
However, we will see that among the other matrices that emerge in this system, some
will have the dimensions “commodity-by-commodity;” others will be of “industry-
by-commodity” or “industry-by-industry” structure. For this reason, in what remains
we will use the general term “commodity–industry” to characterize this accounting
framework and the models that are derived from it. If we also have information on
commodity sales to final demand, this can be arranged as in Table 5.1.

5.1.2 The Make Matrix
As might be expected, the matrix showing how industries make commodities is termed
the Make matrix, usually denoted V (it is also called the output matrix).5 Table 5.2
provides an example.

An element of V, vij, shows the value of the output of commodity j that is produced by
industry i. (Thus, the dimensions of V are industries-by-commodities.) In this example,
industry 1 produces only its primary product, commodity 1, but the output of industry
2 consists of $100 worth of its primary product, commodity 2, and also $10 worth of
commodity 1, which is a secondary product in industry 2. (In an economy in which there

4 The notation B = [bij] is also used for the coefficients matrix in a supply-side model (Chapter 12) and for
capital coefficients in a dynamic input–output model (Chapter 13). Its use in (5.4) in the commodity-by-industry
literature is fairly widespread, and in general the context of any discussion should make clear which meaning is
intended.

5 Use of V for the Make matrix and v′ for the row vector of value added elements is also standard in the input–
output literature and, again, should not lead to confusion when read in appropriate context. As we will see later,
the transpose of the Make matrix, V′, is also known as the supply matrix.
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Table 5.2 The Make Matrix (V) and Other Data for a
Two-Commodity, Two-Industry Hypothetical Example (in Dollars)

Commodity

1 2 Total Industry Output (x)

Industry 1 90 0 90
2 10 100 110

Total Commodity
Output (q′)

100 100

Table 5.3 The Complete Set of Commodity–Industry Data

Commodities Industries

1 2 1 2 Final Demand Total Output

Commodities 1 12 6 80 100
2 10 7 83 100

U e q

Industries 1 90 0 90
2 10 100 110

V x

Value Added 60 95 163
v′

Total Inputs 100 100 90 110
q′ x′

is no secondary production, the Make matrix will be diagonal and, as we will see below,
all of the commodity–industry results reduce to the original Leontief industry-based
approach.) Table 5.3 shows one way of presenting all of the data in a commodity–
industry framework.

5.2 The Basic Accounting Relationships

In the ordinary input–output model, the basic accounting relationship for total (industry)
output is given in (5.1) and (5.2). In the commodity–industry framework, both total
industry output (x) and total commodity output (q) are accounted for. From the data in
the Make matrix, total output of any industry is found by summing over all commodities
produced by that industry. These totals are the row sums of V,

xj = vj1 + · · · + vjm (5.5)
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or
x = Vi (5.6)

Similarly, total output of any commodity can be found by summing over all industries
that produce the commodity. These totals are the column sums of V (or the row sums
of V′)

qj = v1j + · · · + vnj and q′ = i′V (5.7)

or
q = (V′)i (5.8)

Alternatively, from the illustration in Table 5.1,

qj = uj1 + · · · + ujn + ej (5.9)

or
q = Ui + e (5.10)

The original input–output model combines (5.2) and (5.3). From (5.3), Z = Ax̂;
substituting into (5.2) gives

x = Ax + f (5.11)

(since x̂i = x), and the operational form of the model becomes

x = (I − A)−1f = Lf (5.12)

The driving force is the exogenous vector of final demand for industry outputs. In
conjunction with the Leontief inverse (total requirements) matrix, industry outputs
necessary to sustain the final demand are determined.

The commodity–industry approach uses (5.10) and (5.4) in the same way as (5.2)
and (5.3), respectively. From (5.4), U = Bx̂, and substituting into (5.10) gives

q = Bx + e (5.13)

as a parallel to (5.11) in the ordinary input–output model. The problem is that, unlike
(5.11), one cannot generate a total requirements matrix, as in (5.12), because (5.13)
contains commodity output (q) on the left-hand side and industry output (x) on the
right-hand side.

5.3 Technology and Total Requirement Matrices in the Commodity–Industry
Approach

One solution to this problem in (5.13) is to find an expression transforming industry
outputs, x, to commodity outputs, q – or, alternatively, to transform commodity outputs
(and commodity final demand, e) into industry terms. The data needed for such trans-
formations are to be found in the Make matrix, whose row sums are industry outputs
and whose column sums are commodity outputs. Two alternative ways of using the
information in the Make matrix are described below. These algebraic alternatives have
quite different economic interpretations.
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5.3.1 Industry Source of Commodity Outputs
Define dij = vij/qj (each element in column j of V is divided by the jth column sum,
qj), so that dij denotes the fraction of total commodity j output that was produced by
industry i. Forming a matrix of these commodity output proportions, D

(i×c)
= [dij], we

have
D = Vq̂−1 (5.14)

For the numerical example,

D =
[

.9 0

.1 1

]
From column 1, for example, we see that 90 percent of the total amount of commodity
1 made in the economy was produced by industry 1 and 10 percent was produced by
industry 2. (D is often called the market shares matrix.) By definition, each column
sum in D is unity.

5.3.2 Commodity Composition of Industry Outputs
Define cij = vij/xi (each element in row i of V is divided by the ith row sum, xi), so that
cij denotes the fraction of total industry i output that is in the form of commodity j. For
later purposes it will turn out to be convenient to have these industry output proportions
arranged in a matrix with commodities-by-industries dimensions (remember that V has
industry-by-commodity dimensions). Define V′ as the supply matrix, with commodity-
by-industry dimensions; then the matrix of these industry output proportions is found as6

C = V′x̂−1 (5.15)

For the numerical example,

C =
[
1 .0909
0 .9091

]
The second column, for example, says that 90.9 percent of the value of industry 2’s
output consisted of commodity 2 and 9.1 percent was accounted for by commodity
1. (C is sometimes called the product mix matrix or the commodity mix matrix.) By
definition, each column sum in C is unity.

5.3.3 Generating Total Requirements Matrices
The results in (5.14) and (5.15) – in conjunction with (5.6) and (5.8) – provide two
alternative linear transformations between commodity and industry outputs. Using
(5.14),

D = Vq̂−1 ⇒ Dq̂ = V ⇒ Dq̂i = Vi

and from (5.6)
Dq = x (5.16)

6 C is another letter that serves more than one purpose in the input–output literature. Recall from Chapter 3 that
it is also used for the matrix of regional trade proportions.
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This also means

q = D−1x (5.17)

if D is square and nonsingular.7

A compact statement of the relationships in (5.13) and (5.16) is provided as follows:8

from (5.16), x − Dq = 0; from (5.13), −Bx + q = e. These are two matrix equations
in x and q; in partitioned matrix form they can be represented as[

I −D

−B I

][
x

q

]
=
[

0

e

]

Alternatively, using (5.15),

C = V′x̂−1 ⇒ Cx̂ = V′ ⇒ Cx̂i = Cx = (V′)i

and from (5.8)

Cx = q (5.18)

so

x = C−1q (5.19)

again provided that C is square and nonsingular.
A compact statement of the results in (5.13) and (5.18) is: from (5.18), Cx − q = 0,

and from (5.13), again, −Bx + q = e. This pair of relationships in x and q can be
represented in partitioned matrix form as[

C −I

−B I

][
x

q

]
=
[

0

e

]

Using D One solution to the dilemma posed by the presence of both x and
q in (5.13) is provided by (5.16). Substitute Dq for x in (5.13),

q = B(Dq) + e = (BD)q + e

from which

q = (I − BD)−1e (5.20)

The inverse on the right-hand side, which is called a commodity-by-commodity total
requirements matrix, connects commodity final demand to commodity output. It thus
plays the role of (I − A)−1 in the ordinary input–output model, (5.12). It is to be noted
that the “parallel” to the A matrix (direct input requirements) in the ordinary model
appears now to be BD [and not simply B alone, as seemed initially the case when B
was defined in (5.4)].

7 For the moment we will assume that D (and C) are nonsingular. Later we will explore how important (and how
likely) these assumptions are.

8 This parallels the representation in Jack Faucett Associates, Inc. (1981-1983, Vol. 5, pp. 11–4 and 11–5), which
was developed in the context of the US multiregional model for 1977.
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Using (5.20), and since Dq = x,

x = [D(I − BD)−1]e (5.21)

The bracketed matrix on the right connects commodity final demand to industry output.
It is an industry-by-commodity total requirements matrix.

There are alternative possible expressions for total requirements matrices. For
example, premultiplying both sides of (5.13) by D gives, since Dq = x,

x = DBx + De

and
x = [(I − DB)−1D]e (5.22)

so the bracketed expression on the right-hand side is also an industry-by-commodity
total requirements matrix.9

Using C A second transformation of (5.13) is easily accomplished using
(5.19) – as long as C−1exists. Substitute C−1q for x in (5.13),

q = B(C−1q) + e = (BC−1)q + e

from which
q = (I − BC−1)−1e (5.23)

It is apparent that the inverse on the right-hand side is also a commodity-by-commodity
total requirements matrix, connecting commodity final demand to commodity output,
and it differs from the expression in (5.20) which has the same name. Thus another
“parallel” to the A matrix in the ordinary Leontief inverse is BC−1.

Using (5.23), and since C−1q = x,

x = [C−1(I − BC−1)−1]e (5.24)

Here we have an industry-by-commodity total requirements matrix (in brackets) on the
right, and this differs from the expression in (5.21) with the same name.10

To introduce some order into this apparent profusion of alternatives to the Leontief
inverse in the ordinary input–output model, it is instructive to go behind the matrix
algebra and investigate the basic assumptions that underpin these results, as in (5.20) and
(5.21) as compared with (5.23) and (5.24). Recall that transformations of the data in the
Make matrix gave us the industry output proportions, in C, and the commodity output
proportions, in D. In the remainder of this section (5.3) we follow the classification
approach that has traditionally been used since the outset of the commodity–industry
discussion, for example as in the system of national accounts (SNA) described in United
Nations (1968); later (section 5.5.3) we present an alternative and more recent view.

9 This reflects a general matrix algebra result (for nonsingular D). For example, starting at (5.22)
(I − DB)−1D = [D−1(I − DB)]−1 = (D−1 − B)−1 = (D−1 − BDD−1)−1 = [(I − BD)D−1]−1 =
D(I − BD)−1 This is the total requirements matrix in (5.21).

10 Using the same algebra as in footnote 9, this can be expressed as x = [(I − C−1B)−1]C−1e.
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5.3.4 “Industry-Based” Technology
The commodity-by-commodity total requirements matrix in (5.20) was derived from

q = (BD)q + e

The matrix BD plays the role of a technical coefficients matrix, showing commodity
inputs per dollar’s worth of commodity output. For our example,

B =
[

12 8
10 7

] [
1/90 0

0 1/110

]
=
[

.1333 .0727

.1111 .0636

]
and so

BD =
[

.1333 .0727

.1111 .0636

] [
.9 0
.1 1

]
=
[

.1273 .0727

.1064 .0636

]
Using B1 and B2 for the two columns in B, this product can be shown as

BD = [
B1(.9) + B2(.1) B1(0) + B2(1)

]
The columns in BD are seen to be convex combinations of the columns in B, where
the weights come from the elements in each column of D. (This simply means that
BD = α1B1 + α2B2, where α1, α2 ≥ 0 and α1 + α2 = 1.) Thus BD embodies the
assumption that commodity inputs to commodity j production are weighted averages
of commodity inputs to each industry that produces commodity j (from the B matrix),
and the weights are the proportions of each industry’s contribution to total commodity
j output (from the D matrix). A given commodity can have differing input structures
if it is produced by more than one industry. In this example, the first column of BD
reflects the fact that 90 percent of the total amount of commodity 1 that is available
in the economy is produced by industry 1 (using the production recipe embodied in
B1) and 10 percent of total commodity 1 output is produced in industry 2 (using that
industry’s production recipe, as embodied in B2).

All commodities produced by an industry are assumed to have the same input struc-
ture, as given by that industry’s column in the B matrix. This is shown in the example
by the fact that B2, the recipe for industry 2 production, appears in both of the columns
of BD. That part (10 percent) of commodity 1 that is produced in industry 2 and that
part of commodity 2 (100 percent) that is produced in industry 2 are both made accord-
ing to the industry 2 production technology, given in B2.11 For this reason, BD is said
to embody industry-based technology (or simply industry technology hereafter), and
since its dimensions are commodities-by-commodities, it is sometimes denoted AI

(c×c)
:12

AI
(c×c)

= BD

11 It has been argued that this may be an appropriate assumption for commodities that are by-products of an
industry’s production process.

12 This notation may seem cumbersome, but in view of the various alternative direct requirements matrices that
will emerge in this and subsequent sections, it is essential to identify precisely both the dimensions and the
technology assumptions that underpin these matrices.
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The inverse (I − BD)−1 in (5.20) is therefore referred to, more completely, as the
commodity-by-commodity total requirements matrix under industry technology.

Amatrix of technical coefficients that is more parallel toA in the original input–output
model (connecting industry inputs per unit of industry output) arose in the derivation
of (5.22), where

x = (DB)x + De

and it is clear that DB shows inputs from industries per dollar’s worth of industry
production. Its dimensions are industries-by-industries, and it is thus seen to be compa-
rable to the technological coefficients matrices, A, in the original industry-by-industry
input–output models; we will denote it by AI

(i×i)
.

Carrying out the pre-multiplication of B by D in the small numerical example shows
exactly how the commodity inputs (in B) are distributed back to the industries where
they are made:

AI
(i×i)

= DB =
[

.9 0

.1 1

] [
.1333 .0727
.1111 .0636

]
=
[

.1200 .0655

.1244 .0709

]
Using D1 and D2 for the two columns in D,

DB = [
D1(.1333) + D2(.1111) D1(.0727) + D2(.0636)

]
Consider, for example, the second column in DB. It disaggregates b12 = .0727 (com-
modity 1 input per dollar’s worth of industry 2 output) and b22 = .0636 (commodity 2
input per dollar’s worth of industry 2 output) into two components (vectors). The first,[

.9

.1

]
(.0727) =

[
.0655
.0073

]
shows the industry 1 (90 percent) and industry 2 (10 percent) contributions to the total
.0727 needed of commodity 1. Similarly, industry 1 and 2 proportions of the .0636 of
commodity 2 used by industry 2 are 0 and 1 (the elements of D2), and so the vector
showing industry origins of commodity 2 input to industry 2 is[

0
1

]
(.0636) =

[
0

.0636

]
The sum of these two vectors indicates the inputs from industry 1 and 2, respectively,
per dollar’s worth of industry 2 output. This is the second column in AI

(i×i)
; there is a

similar interpretation for the first column.

5.3.5 “Commodity-Based” Technology
With the industry technology assumption, industry input structures (in the columns of
B) are the basic data, and commodity input structures are found as weighted averages
of these columns. An alternative point of view would suggest that a given commodity
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should have the same input structure in all of the industries that produce it.13 In this
case, commodity inputs to industry j production (the elements of the jth column of B)
are viewed as weighted averages of commodity inputs to commodity production for
each of the commodities that industry j makes, and the weights are the proportions of
each commodity in industry j’s total output. This is known as the commodity-based
technology, or simply commodity technology, assumption.

From our small example, we found

C =
[

1 .0909
0 .9091

]
with dimensions commodities-by-industries. We know B, with dimensions
commodities-by-industries also. The (presently unknown) commodity-by-commodity
technological coefficients matrix can be denoted AC

(c×c)
. The commodity technology

assumption is that B = ( AC
(c×c)

)C. For the small example, letting AC
(c×c)

= [
AC1 AC2

]
,

B = [
AC1 AC2

] [ 1 .0909
0 .9091

]
or [

B1 B2
] = [

(AC1)(1) + (AC2)(0) (AC1)(.0909) + (AC2)(.9091)
]

From B = ( AC
(c×c)

)C, the (unknown) matrix of commodity inputs per dollar’s worth

of commodity production is found as AC
(c×c)

= BC−1 (again, provided C is square and

nonsingular). Here

AC
(c×c)

= BC−1 =
[

.1333 .0727

.1111 .0636

] [
1 −0.1
0 1.1

]
=
[

.1333 .0667

.1111 .0589

]
Hence, for example, (I − BC−1)−1 in (5.23) is properly described as the commodity-
by-commodity total requirements matrix under commodity technology.

The matrix of direct commodity inputs per dollar’s worth of commodity output under
the industry technology assumption was

AI
(c×c)

= BD =
[

.1333 .0727

.1111 .0636

] [
.9 0
.1 1

]
=
[

.1273 .0727

.1064 .0636

]
Clearly, the two technology assumptions can and generally will lead to different direct
commodity input matrices, as in this example. The “size” of this difference and, perhaps
more importantly, the resulting differences in the corresponding total requirements

13 This may be an appropriate assumption for subsidiary products that are produced by an industry in a separate
facility, employing a similar technology to that used by the industry to which the commodity is primary.
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matrices – (I − BD)−1 and (I − BC−1)−1 – is a topic of continuing research and
empirical examination with real-world data sets.

From (5.13) and (5.19),
x = C−1Bx + C−1e (5.25)

so under the assumption of commodity technology it is clear that the matrix C−1B
plays the role of DB in an industry technology model and A in the ordinary input–
output models; namely, it records industry inputs per dollar of industry outputs. Let
AC
(i×i)

= C−1B; from the numerical example

AC
(i×i)

= C−1B =
[

1 −0.1
0 1.1

] [
.1333 .0727
.1111 .0636

]
=
[

.1222 .0664

.1222 .0700

]
As expected, this differs from AI

(i×i)
= DB, calculated earlier. (In this particular numerical

example the difference is not great, but in general there is no reason to expect that
DB = C−1B.)

We explore the economic content of the operation C−1B. Let C−1B = T (instead of
AC
(i×i)

, to simplify notation). For the general two-industry case,

T =
[

t11 t12

t21 t22

]
Then

B = CT =
[

1 .0909
0 .9091

] [
t11 t12

t21 t22

]
and, for example,

B2 =
[

b12

b22

]
=
[

1
0

]
(t12) +

[
.0909
.9091

]
(t22)

The vector multiplying t12 disaggregates industry 1 input into commodity inputs –
commodity 1 (100 percent) and commodity 2 (0 percent) – reflecting the commodity
composition of industry 1 output (column 1 of C). Similarly, the vector multiplying
t22 distinguishes industry 2 input as composed of commodity 1 (9.1 percent) and com-
modity 2 (90.9 percent), from column 2 of C. Adding these together gives B2, showing
commodity 1 and 2 inputs per dollar of industry 2 output. A similar analysis of the
composition of B1 can be carried out.

5.3.6 Direct Requirements (Technical Coefficients) Matrices Derived from Basic Data
In the ordinary input–output model, the direct requirements matrix is derived directly
from interindustry flows, Z, and industry outputs, x, as in A = Zx̂−1 in (5.3). In
(5.4), we saw how commodity-to-industry flows, U, and industry outputs, x, were used
to calculate direct requirements in terms of commodity inputs per dollar’s worth of
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industry output – B = Ux̂−1. In the commodity technology models, the matrix that
relates commodity inputs per dollar’s worth of commodity output is AC

(c×c)
= BC−1.

Since C = V′x̂−1, AC
(c×c)

is found directly from the basic data in Tables 5.2 and 5.3 as

AC
(c×c)

= BC−1 = [Ux̂−1][V′x̂−1]−1 = [Ux̂−1][x̂(V′)−1] = U(V′)−1 (5.26)

and the matrix that relates industry inputs per dollar’s worth of industry output is

AC
(i×i)

= C−1B = [x̂(V′)−1][Ux̂−1]

In contrast to (5.26), further simplifications are not possible.
In the industry technology models, AI

(c×c)
= BD relates commodity inputs to each

dollar’s worth of commodity output. Since D = Vq̂−1,

AI
(c×c)

= BD = [Ux̂−1][Vq̂−1] (5.27)

Finally, industry inputs per dollar’s worth of industry output under the industry
technology assumption are found from basic data as

AI
(i×i)

= DB = [Vq̂−1][Ux̂−1]

If one wants to compare direct requirements matrices for, say, the US economy both
before and after 1972, it is AI

(i×i)
= DB and AC

(i×i)
= C−1B that are the comparable to

A, since they have industry-by-industry dimensions of the earlier tables. Notice that
these four definitions of direct requirements matrices will all be equal in the case of
no secondary production in any industry. This means that V is diagonal, V = x̂ = q̂,
Vi = x = i′V = q, and so in all four cases, above, A = UV−1 = U(V′)−1.

5.3.7 Total Requirements Matrices
Approach I: Starting with Technical Coefficients Results thus far for total

requirements matrices [from (5.20)–(5.24)] are collected together in Table 5.4. Since
in each case the exogenous force driving the model is final demand for commodities,
these are called commodity-demand driven models. We continue, for now, to assume
that C is nonsingular. An alternative presentation of the four cases is explored briefly
in section 5.5.3, below.

These commodity-by-commodity results are derived from (5.13) through transfor-
mations that generate either

q = AI
(c×c)

q + e or q = AC
(c×c)

q + e
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Table 5.4 Total Requirements Matrices, Commodity-Demand
Driven Models

Industry Technology Commodity Technology

Commodity-by-Commodity (I − BD)−1 (I − BC−1)−1

Industry-by-Commodity [D(I − BD)−1] [C−1(I − BC−1)−1]

Table 5.5 Total Requirements Matrices, Industry-Demand Driven
Models

Industry Technology Commodity Technology

Industry-by-Industry (I − DB)−1 (I − C−1B)−1

Commodity-by-Industry [D−1(I − DB)−1] [C(I − C−1B)−1]

and then
q = (I − AI

(c×c)
)−1e or q = (I − AC

(c×c)
)−1e

These total requirements matrices have exactly the same structure as the Leontief
inverse in the original input–output model – namely, the inverse of a matrix containing
technical coefficients subtracted from an identity matrix.

It is also possible to derive total requirements matrices for industry-demand driven
models, replacing e by an equivalent expression involving f in appropriate equations
[from among (5.20)–(5.25)]. In commodity–industry models, one of the basic premises
is that commodities are the products of industries, and therefore it is commodities that
are used to satisfy final demand. Hence the notion of “industry final demand,” f (the
exogenous driving force in ordinary input–output models), is not very meaningful in
commodity–industry models. However, for analyses of structural change in an economy
it is necessary to have consistent data sets for two or more years. For example, for
comparisons of US input–output tables across time (in which some of the data are
pre-1972), it is useful to have an industry-by-industry format, since this was inherent
in the original input–output models, and their inverses, as in (5.12).

For industry technology models, in which Dq = x, the assumption can be made
that the same commodity-to-industry transformation is valid for final demands, that is,
De = f . Similarly, for commodity technology models, in which Cx = q, the same
industry-to-commodity transformation can be used for final demands – Cf = e. For
example, from (5.22), since De = f , x = (I − DB)−1f and, using q = D−1x, we have
q = D−1(I−DB)−1f . The latter is the only industry technology result that requires D−1.
Parallel results can be derived for commodity technology models. These are collected
together in Table 5.5. (As in Table 5.4, it is clear that the transformation from industry
technology to commodity technology involves replacement of D by C−1 throughout.)



198 The Commodity-by-Industry Approach

It is worth re-emphasizing that most real-world applications of the commodity–
industry input–output model assume that final demand for commodities is the exogenous
driving force, so the results in Table 5.4 are of primary interest. In Table 5.5 the industry-
by-industry case (first row) is useful principally for studies in which commodity–
industry tables are compared with earlier data in the original input–output format, as in
(5.11) and (5.12). Thus, for example, both (I−DB)−1and (I−C−1B)−1 are candidates
if one is making comparisons with total requirements matrices for the pre-1972 US
economy. The commodity-by-industry results (second row) are included in Table 5.5
primarily for completeness – they are of little practical use.

Approach II: Avoiding C−1 in Commodity Technology Cases The only case
in which D−1 appears in a total requirements matrix in an industry technology model
is in the relatively unimportant commodity-by-industry format. On the other hand, in
the commodity technology model, C−1 is everywhere, and this presents a problem if
C is singular. (It also presents a problem if, as is usual, it contains negative elements,
as we will see below.) However, there is an alternative derivation that circumvents the
singularity issue, although it does not create parallels to a technical coefficients matrix,
as in Approach I. Starting again with (5.13) and (5.18),

Cx = Bx + e ⇒ (C − B)x = e ⇒ x = (C − B)−1e (5.28)

Thus (C − B)−1 also serves as an industry-by-commodity total requirements matrix.14

Also, premultiplying both sides of (5.28) by C, and since Cx = q,

q = C(C − B)−1e (5.29)

This is an alternative to the commodity-by-commodity total requirements matrix in
Table 5.4, (I − BC−1)−1, that does not require a nonsingular C.

Substituting Cf for e on the right-hand sides of (5.28) and (5.29) generates
total requirements matrices with dimensions industry-by-industry and commodity-by-
industry, comparable to the results in Table 5.5:

x = (C − B)−1Cf (5.30)

and
q = C(C − B)−1Cf (5.31)

The important point is that all four of these results for total requirements matrices under
commodity technology – in (5.28) through (5.31) – do not require that C be nonsingular.
(There is a numerical illustration in the next subsection.)

These results are collected together in Table 5.6, along with their counterparts for
industry technology.15 These latter are included primarily for completeness; they are

14 Simple matrix algebra converts (C − B)−1to [C−1(I − BC−1)−1] (or vice versa), but only if C−1exists. The
point is that the total requirements matrix – (C − B)−1 in (5.28) or (5.29) – does not depend on an inverse for
C.

15 The derivations are similar to those for the commodity technology model cases and are left as an exercise for
the interested reader.
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Table 5.6 Rewritten Forms of Total Requirements Matrices

Industry Technology Commodity Technology

Commodity-Demand Driven Models
Commodity-by-Commodity D−1(D−1 − B)−1 C(C − B)−1

Industry-by-Commodity (D−1 − B)−1 (C − B)−1

Industry-Demand Driven Models
Industry-by-Industry (D−1 − B)−1D−1 (C − B)−1C
Commodity-by-Industry D−1(D−1 − B)−1D−1 C(C − B)−1C

of little practical interest since they all require D−1, the very inverse that was avoided
in three out of the four industry technology results in Tables 5.4 and 5.5.

Looking down either column in Table 5.6, it is clear that there is an inverse matrix
that is common to all of the total requirements matrices in that column. For industry
technology this is (D−1−B)−1, for commodity technology it is (C−B)−1. These are the
complete total requirements matrices for the industry-by-commodity case. In the first
column of the table (industry technology), it is clear that the other total requirements
matrices differ from (D−1 − B)−1 through pre- or postmultiplication (or both) by D−1.
As we have seen, under the industry technology assumption, premultiplication by D−1

serves to convert the row dimension of a matrix (or vector) from industries to commodi-
ties. Thus D−1(D−1 − B)−1 changes the industry-by-commodity total requirements
matrix to commodity-by-commodity form. This is the first matrix in Table 5.6.

Postmultiplication of a total requirements matrix by D−1 is equivalent to premulti-
plication of a final demand vector by D−1; in an industry-demand driven model, we saw
that the conversion of final demand to commodity terms is provided by e = D−1f . This
explains the last two matrices in the first column of Table 5.6. A similar relationship
holds for the matrices in the second column (commodity technology). Recall that under
commodity technology premultiplication by C transforms the rows from industry terms
to commodity terms; e = Cf .

Is Singularity Likely to be a Problem in Real-World Models? In the original
numerical example in Table 5.3 we had

V =
[

90 0
10 100

]
, x =

[
90
110

]
and q =

[
100
100

]
From this, we found

C = V′x̂−1 =
[

90 10
0 100

] [
1/90 0
10 1/110

]
=
[

1 .0909
0 .9091

]
D = Vq̂−1 =

[
90 0
10 100

] [
1/100 0

0 1/100

]
=
[

.9 0

.1 1

]
and both C and D are nonsingular.
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For C to be singular, we must have |C| = 0, which means
∣∣V′∣∣ = 0 (or |V| = 0).

Similarly, for D to be singular, the requirement is |D| = 0; this also means |V| = 0.
As an example, suppose that the second column of V is the same as the first, so Ṽ =[

90 90
10 10

]
with an associated x̃ = Ṽi =

[
180
20

]
and C̃ = Ṽ′( ˆ̃x)−1 =

[
.5 .5
.5 .5

]
.16

Clearly, C̃ is singular [as is the associated D̃ = Ṽq̂−1, which the reader can eas-
ily check], and so the total requirements matrices under commodity technology, as
expressed in Tables 5.4 and 5.5, cannot be found.

Since industry output has changed from the original example, so has B, and we now
have

B̃ = U( ˆ̃x)−1 =
[

.0667 .4

.0556 .35

]
and (C̃ − B̃) =

[
.4333 .1
.4444 .15

]
Since (C̃ − B̃) is nonsingular, we can find

(C̃ − B̃)−1 =
[

7.2973 −4.8649
−21.6216 21.0811

]
which appears to serve as the industry-by-commodity total requirements matrix under
commodity technology, as expressed in Table 5.6.

This can be easily checked. For example, using the unchanged commodity final
demand (Table 5.3), we find that

(C̃ − B̃)−1e =
[

7.2973 −4.8649
−21.6216 21.0811

] [
80
83

]
=
[

180
20

]
= x̃

exactly as would be expected (industry output required for commodity final demand).
Similarly,

C̃(C̃ − B̃)−1e =
[

.5 .5

.5 .5

] [
7.2973 −4.8649

−21.6216 21.0811

] [
80
83

]
=
[

100
100

]
= q

and C̃(C̃ − B̃)−1 is the commodity-by-commodity total requirements matrix under
commodity technology (Table 5.6).

The trouble with (C̃ − B̃)−1 is that it contains negative elements. These are implau-
sible; for example, an increase in final demand for commodity 1 leads to a decrease in
industry 2 output. We will explore the issue of negative elements in total requirements
matrices in more detail in section 5.5. Here we simply illustrate the problems that they
create. For example, suppose we were to use (C̃ − B̃)−1 in the standard way – namely
to assess the impact on industry outputs (�x̃) of some change in final demand for com-

modities (�e). As the reader can easily check, for �e =
[

100
85

]
, �x̃ =

[
316

−370

]
,

which is difficult if not impossible to interpret meaningfully. Remember that originally

16 In a 2×2 matrix both rows and columns must be proportional for singularity. Here, for simplicity, we use the only

possible illustration that leaves commodity output (column sums of V and of Ṽ) unchanged at q =
[

100
100

]
.
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e =
[

80
83

]
and x̃ =

[
180
20

]
, so an increase in demands to enew =

[
180
168

]
generates

x̃new =
[

496
−350

]
. As we will see in section 5.5, negative elements are a problem with

commodity technology models even when C is nonsingular.
In any event, how likely is it that C (or D – or V) will be singular in any real-world

model? Not very. In this small illustration, the implication of Ṽ
(i×c)

=
[

90 90
10 10

]
is that

industry 1 produces 90 percent of the output of commodity 1 and also 90 percent of
the output of commodity 2. But if industries are named on the basis of their primary
product, there will only be one primary product per industry, and industry 1 could not
produce 90 percent of the output of commodity 2 which is, by definition, primary to
industry 2. In fact, each industry should produce more than one-half of the output of
its primary commodity, if the commodity is truly “primary” to that industry.

There are matrix algebra results that are very pertinent here. A matrix M is said to
have a dominant diagonal if

∣∣mjj
∣∣ >

n∑
i=1
i �=j

∣∣mij
∣∣ for j = 1, . . . , n

In words, and for a matrix (like V) with non-negative elements (so the absolute value
bars are not needed), in each column the element on the main diagonal is larger than
the sum of all the other elements in that column.17 The important point is that it can be
shown that an n×n matrix with a dominant diagonal is always nonsingular. In the case
of a V matrix, a dominant diagonal means that more than one-half of the output of each
commodity (each column sum in V) would be made by the corresponding industry (row)
to which that commodity is primary. And, as just noted, since industries are named for
their primary commodity, diagonal dominance of V is to be expected. This means that
singularity of C (or D) may not be a problem in most real-world commodity–industry
input–output models.18

5.4 Numerical Examples of Alternative Direct and Total Requirements Matrices

From the numerical example in Table 5.3, we had

B =
[

.1333 .0727

.1111 .0636

]
C =

[
1 .0909
0 .9091

]
D =

[
.9 0
.1 1

]
17 There are several alternative definitions of dominant diagonal matrices but these are not necessary for us at this

point. See, for example, Takayama (1985, Chapter 4) or Lancaster (1968, Chapter R7). Both of these include
discussions of related concepts, including Frobenius theorems and the notion of indecomposable matrices;
these topics are also beyond our needs here.

18 The reader might think about whether diagonal dominance will be more or less likely as the number of
commodities/industries increases. The simplicity of the two-commodity, two-industry case may be misleading.
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C−1 =
[

1 −.1
0 1.1

]
D−1 =

[
1.1111 0
−.1111 1

]
(Notice the negative element in C−1.) We collect together the associated direct and
total input requirements matrices in this section.

5.4.1 Direct Requirements Matrices

AI
(c×c)

= BD =
[

.1273 .0727

.1064 .0636

]
AI

(i×i)
= DB =

[
.1200 .0655
.1244 .0709

]
AC

(c×c)
= BC−1 =

[
.1333 .0667
.1111 .0589

]
AC
(i×i)

= C−1B =
[

.1222 .0664

.1222 .0700

]

5.4.2 Total Requirements Matrices
Commodity-Demand-Driven Models

Industry Technology Commodity Technology

Commodity-by-Commodity

(I − BD)−1 =
[

1.1568 .0898
.1314 1.0782

]
(I − BC−1)−1 =

[
1.1644 .0825
.1375 1.0723

]
Industry-by-Commodity

D(I − BD)−1 =
[

1.0411 .0809
.2471 1.0871

]
C−1(I − BC−1)−1 =

[
1.1507 −.0247
.1512 1.1795

]
Industry-Demand-Driven Models

Industry Technology Commodity Technology

Industry-by-Industry

(I − DB)−1 =
[

1.1478 .0809
.1537 1.0871

]
(I − C−1B)−1 =

[
1.1507 .0821
.1512 1.0861

]
Commodity-by-Industry

D−1(I − DB)−1 =
[

1.2753 .0898
.0262 1.0782

]
C(I − C−1B)−1 =

[
1.1644 .1808
.1375 .9873

]
Notice that a negative element appears in one of these total requirements matrices. This
reflects the negative element in C−1. (In fact, C−1 appears in the other three commodity
technology total requirements matrices also, but the influence of the negative element
is mitigated in the products BC−1 and C−1B.) We will look into negative elements in
commodity–industry models in some detail in the next section.
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5.5 Negative Elements in the Commodity–Industry Framework

In the original input–output model one does not expect to find negative elements, either
in an interindustry transactions matrix (Z) or in a total outputs vector (x). This means
that there will not be any negative elements in the technical coefficients matrix (A) or in
the Leontief inverse.19 However, the commodity–industry format, designed to improve
on the original Leontief framework in accounting for secondary products, introduces a
new problem of its own – the possibility of negatives.

5.5.1 Commodity Technology
Direct Requirements Matrices Consider the structure of AC

(c×c)
= BC−1 =

U(V′)−1 for the general 2 × 2 case:

AC
(c×c)

=
[

u11 u12

u21 u22

] [
v11 v21

v12 v22

]−1

= (1/ |V|)
[

u11 u12

u21 u22

] [
v22 −v21

−v12 v11

]
= (1/ |V|)

[
u11v22 − u12v12 −u11v21 + u12v11

u21v22 − u22v12 −u21v21 + u22v11

]
If V is a dominant diagonal matrix, as it is expected to be, then |V| = v11v22−v12v21 >0,
and the signs of the elements in AC

(c×c)
will depend on the relative sizes of the uij and vij.

As an illustration, suppose that U is as shown in Table 5.3 and that all elements in
V remain the same except for v21. For what values of v21 would at least one element
in AC

(c×c)
be negative? (Notice that v21 only appears in the second column of AC

(c×c)
.)

This means, at what value of v21 would v21 become larger than either (u12v11/u11) or
(u22v11/u21)? In this case, we have v21 > 60 or v21 > 63, respectively, so the point
at which ( aC

(c×c)
)12 becomes negative is when v21 > 60 and ( aC

(c×c)
)22 becomes negative

when v21 > 63. For example, as the reader can easily check, if v21 = 60,

AC
(c×c)

= U(V′)−1 =
[

12 8
10 7

] [
90 60
0 100

]−1

=
[

12 8
10 7

] [
.0111 −.0067

0 .01

]
=
[

.1333 0

.1111 .0033

]

while for v21 = 61, AC
(c×c)

=
[

.1333 −.0013

.1111 .0022

]
and for v21 = 64, AC

(c×c)
=[

.1333 −.0053

.1111 −.0011

]
. So AC

(c×c)
exhibits a kind of unsatisfactory instability; there is no

obvious reason why v21 = 60 is any more economically plausible than v21 = 61,

19 Extensions of the original framework could accommodate negative elements, as in a pollution-generation
model in which a negative zij might indicate the amount of pollutant i generated in conjunction with production
activity in industry j. The associated aij would also be negative (amount of pollutant i released per unit of
industry j output).
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yet this one-unit variation means the difference between a reasonable direct require-
ments matrix and a much less reasonable one. For example, the implication of AC

(c×c)
=[

.1333 −.0013

.1111 .0022

]
is that production of commodity 2 releases rather than consumes

an amount of commodity 1, even though, as shown in U, industry 2 consumes positive

amounts of that commodity as a production input. And AC
(c×c)

=
[

.1333 −.0053

.1111 −.0011

]
,

when v21 = 64, is even more implausible.
From AC

(c×c)
= U(V′)−1 and the basic definition of the inverse of a 2 × 2 matrix –

in this case(V′)−1 = (1/ |V|)[adj(V′)] – we recognize that negative elements in AC
(c×c)

mean that at least one of the off-diagonal elements in V′ will be negative.20 As the
examples above illustrate, a negative element in (V′)−1 may or may not translate into
one or more negative elements in AC

(c×c)
– for v21 = 60 it does not but for v21 = 61 and

larger it does.
It is worth carefully examining the operations involved in AC

(c×c)
for this small 2 × 2

case where AC
(c×c)

= (1/ |V|)
[

u11v22 − u12v12 −u11v21 + u12v11

u21v22 − u22v12 −u21v21 + u22v11

]
. To simplify the

exposition, suppose v12 = 0; that is, industry 1 produces commodity 1 only, whereas
industry 2 produces some of both commodities. In this case, as the reader can check,
AC

(c×c)
becomes

AC
(c×c)

=
[

u11/v11 u12/v22 − (u11/v11)(v21/v22)

u21/v11 u22/v22 − (u21/v11)(v21/v22)

]
Consider the element that measures commodity 1 input per unit of commodity 2 output
– ( aC

(c×c)
)12 = u12/v22 − (u11/v11)(v21/v22). First of all, u12/v22 normalizes the input

of commodity 1 to industry 2, u12, as if all output of industry 2 were in the form of
commodity 2. But some u12 went to industry 2 for production there of commodity 1.
Under the commodity technology assumption, the recipe for commodity 1 production
is the same in both industries, and from the first column in AC

(c×c)
we know that (u11/v11)

represents commodity 1 input per unit of commodity 1 output, wherever produced.
From the second row of V, we know that industry 2 made v21 units of commodity 1
while also producing v22 units of commodity 2 – so (v21/v22) represents commodity 1
production in industry 2 per unit of commodity 2 production there. Hence the per unit
recipe for commodity 1 times the number of units – (u11/v11)(v21/v22) – must be netted

20 Of course if V is diagonal, there will be no off-diagonal elements in (V′)−1. A diagonal V means that all
production in the economy is primary, none secondary, and there is no need for the entire commodity–industry
apparatus. (See section 5.6.) These observations strictly hold only for a two-commodity/two-industry example.
A more general argument is needed for the case of m commodities and n industries, where m = n > 2 and
where both

∣∣V′∣∣ and [adj(V′)] have more complicated structures.
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out of u12/v22 to account for the fact that industry 2 used u12 to make both commodity
2 and commodity 1. And what we want in ( aC

(c×c)
)12 is just that part of commodity 1 input

that was used for commodity 2 production. A similar argument holds for ( aC
(c×c)

)22.21

From column 2 of AC
(c×c)

it is clear that if the negative term in either element exceeds

the positive term a negative coefficient will result.

Transactions Matrices In the original input–output model, the underlying
interindustry transactions matrix is retrieved from A and x as Z = Ax̂ [for example,
from (5.3)]. Similarly, an intercommodity transactions matrix (commodity inputs to
support commodity outputs) in a commodity technology model can be derived; denote
it by ZC

(c×c)
. In section 5.3 we saw q = (BC−1)q + e in which BC−1 serves as a direct

inputs matrix – AC
(c×c)

= BC−1. Then ZC
(c×c)

= AC
(c×c)

q̂ (= BC−1q̂). The implication of

a negative element in AC
(c×c)

is that the underlying transaction is negative, and this is

generally viewed as implausible. Since AC
(c×c)

is postmultiplied by a (positive) diagonal

matrix, any negative element in AC
(c×c)

will immediately translate into a negative element

in the corresponding location in ZC
(c×c)

.

For the modified example in which v21 = 64, so that V =
[

90 0
64 100

]
, we

found AC
(c×c)

=
[

.1333 −.0053

.1111 −.0011

]
. In this case, the associated vector of commod-

ity outputs is q =
[

90
164

]
and so the resulting transactions matrix is ZC

(c×c)
=

AC
(c×c)

q̂ =

[
20.53 −.53
17.11 −.11

]
with negative flows exactly where expected.

Using the definitions of B, C and D in terms of U, V, q and x, along with matrix
algebra facts on transposes and inverses of products and of diagonal matrices, it is easy
to show also that ZC

(c×c)
= U(D′)−1.22 In this form, the original commodity-to-industry

transactions matrix, U, is converted to a commodity-to-commodity transactions matrix
via postmultiplication by a “conversion” matrix. We examine the notion of generat-
ing Z

(c×c)
or Z

(i×i)
via modifications of U

(c×i)
under commodity technology ( ZC

(c×c)
or ZC

(i×i)
)

or industry technology ( ZI
(c×c)

or ZI
(i×i)

) assumptions in Appendix 5.1. In Appendix 5.2,

21 If both v12 �= 0 and v21 �= 0, the economic logic behind the more complicated expressions that will make up
AC

(c×c)
is much more difficult to sort out. And for cases larger than 2 × 2 it is a lot worse.

22 The steps from BC−1 to U(D′)−1 are purely algebraic. Readers who are interested in this kind of matrix
algebra should work through the details.



206 The Commodity-by-Industry Approach

building on a result in Appendix 5.1, we explore an approach to eliminating negative
elements if they should appear in ZC

(c×c)
(as in Almon, 2000).

From (5.25) in section 5.3, we saw that C−1B plays the role of an industry-to-industry
direct inputs matrix in the commodity technology model, and therefore the underlying
transactions matrix is ZC

(i×i)
= AC

(i×i)
x̂ = C−1Bx̂ = C−1U. Again, any (implausible)

negative element in AC
(i×i)

must reflect a corresponding (equally implausible) negative

transaction. Since
AC
(i×i)

= C−1B = x̂(V′)−1Ux̂−1

the influence on the direct requirements matrix of negative elements in (V′)−1 is a little
less straightforward than in the case of AC

(c×c)
. However, using just a bit more algebra,

one can find for this example with v12 = 0 that the possible negative elements will
be located in the top row of AC

(i×i)
, and that they occur if (1) v21 > u11v22/u21 or (2)

v21 > u12v22/u22. These work out to be (1) v21 > 120 and (2) v21 > 114.3, respectively.
In terms of our example, either of these larger values for v21 is highly improbable
because each of them exceeds v11 = 90 – and we expect diagonal dominance in V.23

In particular, using the v21 = 64 case, as above, and the associated new industry output

vector x =
[

154
100

]
(column sums of V), we find AC

(i×i)
=

[
.0622 .0215
.1822 .0700

]
, with no

negative elements.

Total Requirements Matrices Negative elements also appear in total require-
ments matrices.With AC

(c×c)
as above when v21 = 60, one of the total requirements matrices

in the commodity-demand driven model (Table 5.4) contains a negative element:

(I − BC−1)−1 =
[

1.1538 0
.1286 1.0033

]
and C−1(I − BC−1)−1 =

[
1.0767 −.6020
.2058 1.6054

]
However, when v21 = 61, there are negative elements in both matrices

(I − BC−1)−1 =
[

1.1536 −.0015
.1285 1.0021

]
and C−1(I − BC−1)−1 =

[
1.0753 −.6128
.2068 1.6133

]
The same is true for v21 = 64.

The first of these matrices, (I−BC−1)−1, connects commodity final demands to com-
modity outputs, so the negative element in the v21 = 61 case means that an increase
in final demand for commodity 2 generates a decrease in the output of commodity 1.
The second matrix, C−1(I − BC−1)−1, connects commodity final demands to industry
outputs, and so increases in final demand for commodity 2 create a decrease in the

23 These results are of course completely dependent on the specific values in U and V in our small numerical
example.
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output of industry 1. By contrast, as the reader can easily verify, both total require-
ments matrices in the industry-demand driven model (Table 5.5) – (I − C−1B)−1 and
C(I − C−1B)−1 – are non-negative under any of the assumptions about v21. As men-
tioned, however, the commodity-demand driven model is generally the one of interest,
since demands for commodities are usually preferred as the exogenous stimuli in models
built on commodity–industry data sets.

5.5.2 Industry Technology
Direct Requirements Matrices In contrast to the situation under commodity

technology, the direct requirements matrix under industry technology – AI
(c×c)

= BD =
Ux̂−1Vq̂−1, as in (5.27) – can never contain negative elements (as long as there are
none in U and V) since inversion of the diagonal matrices of (positive) industry and
commodity outputs will never generate negative elements. For example, under the
assumption that v21 = 64 – when both elements in the second column of AC

(c×c)
turn out

to be negative – there are no negative elements in AI
(c×c)

:

AI
(c×c)

= Ux̂−1Vq̂−1 = BD

=
[

12 8
10 7

] [
1/90 0

0 1/164

] [
90 0
64 100

] [
1/154 0

0 1/100

]
=
[

.1333 .0485

.1111 .0424

] [
.5844 0
.4156 1

]
=
[

.0982 .0488

.0827 .0427

]

Similarly, AI
(i×i)

= DB = [Vq̂−1][Ux̂−1], and negative elements will never be present.

Again, for the example with v21 = 64,

AI
(i×i)

= DB =
[

.0779 .0283

.1665 .0626

]
Under industry technology we will never have to deal with the problem of possible
negative transactions – either in ZI

(c×c)
or ZI

(i×i)
.

Total Requirements Matrices The fact that direct requirements matrices will
be non-negative under industry technology assures that all but one of the associated
total requirements matrices will also be non-negative. Continuing with the data from
the example with v21 = 64, these matrices are

(I − BD)−1 =
[

1.1139 .0564
.0960 1.0726

]
D(I − BD)−1 =

[
.6510 .0330
.5590 1.0726

]
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(I − DB)−1 =
[

1.0905 .0330
.1937 1.0726

]
D−1(I − DB)−1 =

[
1.8659 .0564
−.5817 1.0492

]
and despite the positivity of the direct requirements matrices, we find that D−1(I −
DB)−1 contains a negative element, reflecting the influence of the negative element in
D−1. It is worth noting, however, that D−1(I − DB)−1 is the only total requirements
matrix under industry technology that might ever contain negative elements and, as
noted earlier, this is the least interesting or important of these matrices.

5.5.3 Making a Model Choice
Which Model to Choose? There is a large literature discussing the merits

and drawbacks of various models in a commodity–industry framework. There is, how-
ever, no consensus of which should be preferred. For example, ten Raa, Chakraborty
and Small (1984) rule out an industry technology model in favor of commodity tech-
nology. Later, ten Raa (1988) rejects the commodity technology model [and hence
also the mixed technology model (section 5.7, below)], leaving “frustration.” Then
Kop Jansen and ten Raa (1990) examine the alternative technical coefficients matrices
that are created from Make and Use matrices – A(U, V) – under the assumptions
of commodity technology [A(U, V) = U(V′)−1, as in (5.26)], industry technol-
ogy [A(U, V) = U〈Vi〉−1V〈V′i〉−1, as in (5.27), and recalling that Vi = x and
V′i = q] and various mixed technologies. They evaluate these against the back-
drop of a set of four “desirable properties:” Material Balance [x = Ax + y becomes
A(U, V)V′i = Ui], Financial Balance [revenues = costs for each sector, expressed as
i′A(U, V)V′ = i′U], Price Invariance [new relative prices, p > 0, imply new values in
the Use and Make matrices, p̂U and Vp̂, and the resulting coefficients matrix should be
A(p̂U, Vp̂) = p̂A(U, V)p̂−1], and Scale Invariance [multiplying all inputs and outputs
of each sector, i, by a constant, si, should leave the coefficients unchanged, so, for
s > 0, A(Uŝ, ŝV) = A(U, V)]. Only the commodity technology model satisfies all four
criteria (among seven different models examined).

The wide variety of opinion continues. The Eurostat Manual (Eurostat/European
Commission, 2008), which sets out recommended standards for data collection for
member countries of the European Union, supports an industry-technology model –
for example, as in AI

(c×c)
= BD = [Ux̂−1][Vq̂−1] [in (5.27)] or AI

(i×i)
= DB =

[Vq̂−1][Ux̂−1]. The Manual recommends a different classification scheme that reflects
observations like those made by Konijn and Steenge (1995, pp. 34–35):

It can relatively easily be understood that these technology assumptions [commodity technology and
industry technology] are not used to construct industry-by-industry tables. In constructing industry-
by-industry tables, assumptions are made on the origins and destinations of products [commodities]
and not on the technology of production. Hence we find the traditional presentation of methods…to
be incorrect.

This leads to an alternative presentation (adapted from Eurostat/European Commission,
2008, Figure 11.3, p. 310):



5.5 Negative Elements in the Commodity–Industry Framework 209

Table 5.7 Alternative Classifications, Total Requirements Matrices,
Commodity-Demand Driven Models

Commodity
Technology

Industry
Technology

Fixed Industry
Sales Structure

Fixed Commodity
Sales Structure

Commodity-by-Commodity (I − BC−1)−1

Model A
(I − BD)−1

Model B
Industry-by-Industry (I − C−1B)−1C−1

Model C
(I − DB)−1D
Model D

Model A: Each commodity is produced in its own specific way, irrespective of the industry where it
is produced. Negative elements may occur.
Model B: Each industry has its own specific way of production, irrespective of its product mix. No
negative elements.
Model C: Each industry has its own specific sales structure, irrespective of its product mix. Negative
elements may occur.
Model D: Each product has its own specific sales structure, irrespective of the industry where it is
produced. No negative elements.

The case is then made for Model D (p. 310):

Industry-by-industry tables which are based on the fixed product sales structure (Model D) do not
involve any technology assumptions (A and B), and do not require the application of sometimes
arbitrary methods to adjust for negatives (A and C).

This Manual contains a wealth of numerical examples illustrating the consequences
of alternative assumptions. It emphasizes the issues surrounding the compilation of
symmetric input–output tables (SIOTs) – meaning tables with dimensions commodity-
by-commodity or industry-by-industry – from the data in Supply and Use tables (SUTs).
The interested reader is referred to the Manual or to Thage (2002, 2005) or Thage and
ten Raa (2006) for details. (There are useful numerical examples in the Manual and in
Thage, 2005.)

The issue is primarily with the negatives that can appear in the commodity technology
model; we turn to these next.

Dealing with Negative Values Researchers working with real-world input–
output data repeatedly find that the commodity technology model generates negative
direct input coefficients and transactions (frequently relatively small). For example:
“There are numerous examples of the [commodity technology] method leading to nega-
tive coefficients which are clearly nonsensical from an economic point of view” (United
Nations et al., 1993, Section 15.147; quoted in Almon, 2000, p. 28). Table 5.8 provides
a few examples.
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Table 5.8 Examples of Negative Elements in Real-World Commodity-Technology
Direct Requirements Matrices [ AC

(c×c)
= BC−1]

Reference Dimensions Country, year
Number of negative
elements

Negative as
percentage of total

ten Raa, Chakraborty
and Small (1984)

43 × 43 Canada, 1977 10a [in (I − ACB)−1] 0.5

ten Raa and van der
Ploeg (1989)

39 × 39 UK, 1975 22b 1.4

Rainer (1989) 175 × 175 Austria, 1976 Negative elements accounted for 1.4
percent of total value of intermediate flows
in c × c model

Steenge (1989) 79 × 79 USA, 1977 116b 1.9
Steenge (1990) 14 × 14 USA, 1977 7b 3.6

aCriterion for selection: > |0.03|.
bCriterion for selection: ≥ |0.001|.

These kinds of “nonsensical” results have generated two reactions. One is to abandon
the commodity technology model entirely – for example, de Mesnard (2004)24 or
Eurostat/European Commission (2008) along with the references by Thage, above.
Others find that rejection of the commodity-technology model is much too harsh a
judgment (for example, Rainer and Richter, 1992). The other reaction is to propose
“adjustments” to commodity-technology models to avoid negative elements and to
deal with such elements when they occur in practice. Examples of additional literature
dealing with both of these reactions, and others, include (in approximately chronological
order): van Rijckeghem (1967), Stahmer (1985), ten Raa and van der Ploeg (1989),
Steenge (1989, 1990), Rainer (1989), Rainer and Richter (1989), Mattey and ten Raa
(1997), Londero (1990, 1999, 2001), ten Raa (1995, 2005), Almon (2000) and ten Raa
and Rueda-Cantuche (2003, 2007). Clearly this continues to be very much an open
question.

When the negative elements are relatively small, they have sometimes simply been
changed to zeros [e.g., in work at the Cambridge (UK) Growth Project, under Stone’s
direction, cited in Armstrong, 1975]. One problem with this approach is deciding what
constitutes a “relatively small” element. Alternatively, in some studies a negative ele-
ment has been replaced by a small positive element, with “compensating adjustments
in other entries in the matrix so that the overall row and column accounting con-
straints were still met” (Armstrong, 1975, p. 80). The “compensating adjustments”
will be somewhat ad hoc, and different researchers might make differing sets of such

24 de Mesnard (2004) argues against any version of a model in which C−1 (with its negative elements) appears.
He does so by viewing various models in terms of economic circuits (directed impulses). The interested reader
is referred to the article for details.
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adjustments. In Appendix 5.2, as an illustration of one approach to dealing with neg-
atives in commodity-based technology, we investigate a procedure that has been used
successfully in many INFORUM studies for decades (Almon, 2000).

5.6 Nonsquare Commodity–Industry Systems

If the number of commodities in the input–output accounts is not the same as the number
of industries, then various matrices in the commodity–industry modeling system will be
“rectangular” rather than square.25 In this section we explore some of the implications
of this m �= n possibility. In principle, this can mean either m > n or m < n.

We consider these in turn. The case of more commodities than industries (m > n) is
seen often in real-world input–output accounts. Less usual is the case of fewer com-
modities than industries (m < n), although it can sometimes be found in disaggregated
versions of data sets – that is, at the data-collection phase, for instance, when “dummy”
industries are used to account for such products as scrap, used/second-hand goods or
import duties. Since it is general practice to aggregate to m ≥ n levels before imple-
menting an input–output model, we will consider only the m > n case in this section.
In Web Appendix 5W.1, brief attention is given to the much less important m < n
situation.

As an illustration, let m = 3 (commodities) and n = 2 (industries). The dimensions
of the matrices that are the building blocks of the commodity–industry model are

U
(3×2)

, V
(2×3)

, x
(2×1)

, and q
(3×1)

. This leads to

B
(3×2)

= U
(3×2)

x̂−1

(2×2)
, C
(3×2)

= V′
(3×2)

x̂−1

(2×2)
, and D

(2×3)
= V

(2×3)
q̂−1

(3×3)

Later in this section we will use the following three-commodity, two-industry data for
illustration (Table 5.9). In this case, one can easily find that

B =
⎡⎣ .1667 .1446

.1852 .1928

.0185 .0723

⎤⎦ , C =
⎡⎣ .8333 .1205

.0926 .7952

.0741 .0843

⎤⎦ and D =
[

.9 .1316 .5333

.1 .8684 .4667

]

5.6.1 Commodity Technology
Under commodity technology, there is an immediate problem when trying to convert x
into a function of q on the right-hand side in (5.13). Recall that the sequence goes from
Cx = q [in (5.18)] to x = C−1q [in (5.19)], in order to convert q = Bx + e [in (5.13)]
into q = BC−1q + e, from which we had AC

(c×c)
= BC−1. Also, again using (5.13), but

now premultiplying both sides by C−1, we had x = C−1q = C−1Bx + C−1e, and so

25 Strictly speaking, a square is a rectangle all of whose sides are the same length. In general, however, in the
commodity–industry literature, “rectangular” is used to indicate a “nonsquare” system in which the number of
commodities does not equal the number of industries.
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Table 5.9 A Three-Commodity, Two-Industry Example

Commodities Industries

1 2 3 1 2 Final Demand Total Output

Commodities 1 18 12 70 100
2 20 16 40 76
3 2 6 7 15

U e q

Industries 1 90 10 8 108
2 10 66 7 83

V x

Value Added 68 49 117
v′

Total Inputs 100 76 15 108 83
q′ x′

AC
(i×i)

= C−1B. Clearly, these operations are in trouble without a well defined C−1. We

explore in Web Appendix 5W.1 (for the reader interested in mathematical detail) why it
is that the mathematical notions of inverses for rectangular matrices are of no help here.
The conclusion is that commodity technology models cannot generate a plausible direct
requirements matrix in the case of more commodities than industries. Consequently,
total requirements matrices also cannot be found. The usual solution is to aggregate
commodities (and perhaps also industries) until some level at which m = n.

Notice that Approach II in section 5.3.7 (avoiding direct requirements matrices com-
pletely) is of no help here. In particular, since B and C are both m × n (here 3 × 2)

matrices, the inverse that is required in (5.28) – (C − B)−1 – is just as problematic as
C−1 alone.

5.6.2 Industry Technology
Direct Requirements Matrices A rectangular format presents no problems

under industry technology. Substitution of (5.16) – Dq = x – into (5.13) – q = Bx+e –
is straightforward and requires no inverse; q = BDq + e. Using B and D from Table

5.9, AI
(c×c)

= B
(3×2)

D
(2×3)

=
⎡⎣ .1645 .1475 .1564

.1859 .1918 .1887

.0239 .0652 .0436

⎤⎦ [as in (5.27)] has the correct 3 × 3

dimensions (commodity-by-commodity) and AI
(i×i)

= D
(2×3)

B
(3×2)

=
[

.1842 .1940

.1861 .2156

]
is, appropriately, a 2 × 2 matrix relating industry inputs to industry outputs.
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Total Requirements Matrices As to total requirements matrices, we know
from Tables 5.4 and 5.5 and the previous section that the only problem under indus-
try technology occurs with the commodity-by-industry matrix in Table 5.5, where
D−1plays a role – in D−1(I − DB)−1. The problem is exactly the same as in the case
when D is singular. It occurs when trying to move from (5.16), Dq = x, to (5.17),
q = D−1x, only now it is because D is rectangular, not because of singularity. We
explore this problem briefly also in Web Appendix 5W.1.

The remaining total requirements matrices, from Tables 5.4 and 5.5, are unhampered
by a rectangular format. The reader can check that for the data in Table 5.9 these are

(I − BD)−1 =
⎡⎣ 1.2599 .2505 .2554

.3020 1.3173 .3093

.0521 .0961 1.0731

⎤⎦
D(I − BD)−1 =

[
1.2014 .4500 .8429
.4126 1.2139 .7949

]
(I − DB)−1 =

[
1.2992 .3214
.3083 1.3511

]

5.7 Mixed Technology in the Commodity–Industry Framework

At even a very detailed level of industry and commodity disaggregation, there are
certain to be many industries that produce more than one commodity. For example,
Danish annual tables (1966–1998) are based on supply and use tables with about 2,750
commodities and 130 industries, and annual tables for the Netherlands start from data
on 800 commodities and 250 industries (Thage, 2002, pp. 3 and 13).

In the USA, correspondences between input–output commodities/industries at the
six-digit level and the four-digit 1987 US Standard Industrial Classification Code
(SIC)26 indicate under SIC 2211, “Broadwoven fabric mills, cotton,” almost four pages
(single spaced) of some 147 individual commodities, among them “Sheets and sheet-
ings, cotton-mitse (“manufactured in the same establishment”), along with such diverse
items as diaper fabrics, mosquito netting, and typewriter ribbon cloth.27 The output of
SIC 2211 (along with four other six-digit SIC industries) is classified under I-O indus-
try 16.0100, “Broadwoven fabric mills and fabric finishing plants.” On the other hand,
under SIC 2392 “House furnishing, except curtains and draperies,” there are 43 com-
modities, including “Sheets, fabric-mfpm (“manufactured from purchased materials”),
along with such products as boat cushions, dust cloths, and shoe bags. The output of
SIC 2392 is counted under I-O industry 19.0200, “House furnishings, except curtains
and draperies.”

26 This has since been redefined as the North American Industrial Classification (NAIC) system, but the principles
remain the same. Correspondences between the 1997 NAIC system and the 1987 SIC system are shown at
www.census.gov:80/epcd/www/naicstab.htm.

27 It is very informative to investigate the contents of various US SIC “industries.” This is easily done at the
website mentioned in the previous footnote and also at www.osha.gov/oshastats/sicser.html.
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Of course, as data are aggregated into fewer commodity and industry classifications,
all of these diverse products get lumped together, making for even more heterogeneity
in an industry’s output – for example, SIC 2392 is combined with SIC 2391, 2393–2397,
and 2399 into three-digit SIC industry 239, “Miscellaneous fabricated textile products,”
which, in turn, is part of two-digit SIC industry 23 “Apparel and other finished products
made from fabrics and similar materials.”

There is an extensive and often contradictory literature on alternative definitions
for classifying, among others, secondary products, subsidiary products, joint products,
and by-products. Generally, the “principal” (or “primary”) output of a multiproduct
production process is the one that accounts for the maximum value of production
(sometimes maximum value added is used); remaining outputs (if any) are classified
as “secondary.” Primary and secondary together are sometimes called “joint products”
and a “by-product” is then sometimes defined as a joint product that is of “distinctly
lesser importance …” than the other joint product(s) [United Nations, 1966, 2.60 as
quoted in Londero, 2001, p. 3928]. These distinctions can play a role in helping to
establish whether a commodity or an industry technology model is more appropriate
for a particular secondary product.

A variation on these classifications identifies several kinds of secondary products in
the following way (for example, Bulmer-Thomas, 1982, Chapter 9).

1. A product whose output level is independent of the level of primary production in
an establishment where it is produced and which is:
a. produced according to the technology used in the industry that produces it

as a primary product. Examples: computer hard drives made by a computer
manufacturer (e.g., IBM) according to the production “recipe” used by other
computer hard drive manufacturers and sold to other computer manufacturers;
cotton sheets that are made in a cotton mill (as noted above). Such secondary
products would be logical candidates for the commodity technology assumption.

b. produced according to the technology used in the industry where it is produced as
a secondary product. Example: computer services developed by an aircraft estab-
lishment (e.g., Boeing, for aircraft design) then marketed as a secondary product.
This would appropriately be treated under an industry technology assumption.

2. A product whose output level is not independent of that of the primary product in
an establishment and for which:
a. there is another industry that makes it as a primary product. This is classified

as a “by-product.” Example: ethylene generated during petroleum refining (but
also produced in “natural gas” plants). This kind of secondary product appears
not to conform well to either technology assumption.

b. there is not another industry making it as a primary product. This is classified as
a joint product. Examples: wool produced in conjunction with sheep ranching;
hides from cattle raising; radioactive waste generated in producing electrical

28 This reference also includes some discussion of the confusing and contradictory language employed in various
publications – including several from the United Nations.
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power at a nuclear plant; ash, generated by coal burning electric power plants,
that is used as a hardening agent in some types of road surfaces (e.g., airport
runways). Here it is at least clear that a commodity technology model is not
appropriate.

In any event, the issue is how to “assign” each of the various secondary products
to a particular production technology in a commodity–industry input–output system.
In practice, there are about as many approaches as there are real-world accounts and
models.29

In years prior to the adoption of commodity–industry accounting systems, input–
output modelers recognized this obvious fact of secondary production in many
industries (“sectors” in pre-commodity–industry days) and dealt with it in a number of
ways. Suppose that industry j produces not only commodity j (its primary product) but
also some of commodity k (which is primary to industry k), as a secondary product.
One general approach was to subtract from the value of industry j’s total output the
amount that represents the value of commodity k production and add this amount to the
value of output of industry k. Do the same for inputs; subtract from industry j’s total
input vector those inputs that were used for commodity k production, and add these to
industry k’s inputs column. This is known as redefinition (or, for reasons that we will
see in a minute, specific redefinition). Usually, this industry redefinition is easier said
than done, especially as regards inputs. An alternative approach created transfers of
secondary production – in input–output parlance this meant that industry j’s output of
commodity k was treated as if sold by industry j to industry k and added to industry
k’s total output.30

The commodity–industry accounting approach introduces a wider range of options.
It generates what has been called a mechanical redefinition of secondary production
– through use of the commodity technology assumption (for example, as in AC

(c×c)
=

BC−1) or the industry technology assumption (as in AI
(c×c)

= BD). And these two

technology approaches can be used in a variety of ways. For example, in the US models,
starting with 1972, secondary products that are “obviously” [however defined; for
example, as in (1)(a)] produced under commodity technology are specifically redefined
to their primary industries and for the remainder the mechanical redefinition of an
industry technology model is employed.31

Another refinement that is available with commodity–industry accounts is to use
both commodity technology and industry technology mechanical redefinitions in the

29 For a comprehensive account of the US procedures in the early commodity–industry years, see Ritz (1980).
Rainer and Richter (1992) examine aspects of the Austrian experience. For an overview in a number of other
countries, see Franz and Rainer (1989) and for a comprehensive classification of approaches see ten Raa and
Rueda-Cantuche (2003, esp. Table 2).

30 Fukui and Seneta (1985) examine and classify four “conventional” methods for dealing with joint products as
of the mid-1980s.

31 In speaking of the adoption of the commodity–industry approach for the US, starting with the 1972 table, Ritz
writes: “The use of the mechanical redefinition for all secondary products other than those which have been
specifically redefined is a substantial improvement over the transfer treatment used in earlier I-O studies” (Ritz,
1980, p. 51).
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same model, thereby bypassing an exclusively commodity technology model or an
exclusively industry technology model. This is accomplished in what are known as
“mixed-technology” or “hybrid” models.

The essential idea is to divide the Make matrix, V, into two components, so that

V = V1 + V2 (5.32)

where V1 records the making of commodities that are best identified with one of the two
technology assumptions and V2 records the making of commodities associated with the
other technology assumption.32 We can define vectors of total industry outputs under
the two technology assumptions as

x1 = V1i and x2 = V2i (5.33)

(where, as usual, i is a column vector of 1’s). Total industry output then is just

x = x1 + x2 = (V1 + V2)i

Similarly, total commodity outputs are identified as

q1 = (V′
1)i and q2 = (V′

2)i (5.34)

so that
q = q1+q2 = (V′

1+V′
2)i

5.7.1 Commodity Technology in V1

We illustrate the general idea by attaching commodity technology to production
recorded in V1 and industry technology to V2. (This is an arbitrary assignment; we could
equally well decide to reflect industry technology in V1 and commodity technology in
V2. This is explored in the next section.) Using V1, define

C1 = (V′
1)(x̂1)

−1 (5.35)

This creates a commodity-by-industry matrix whose i, jth element records the propor-
tion of industry j’s (commodity technology) output that is in the form of commodity i.
This is identical in spirit to the definition of C in (5.15). From (5.35), C1x̂1i = (V′

1)i
and using (5.34), C1x1 = q1, or

x1 = C−1
1 q1 (5.36)

assuming that C1 is nonsingular. This provides a transformation between x1 and q1.
[Without the subscripts, this is completely parallel to the connection between x and q
given by C in the pure commodity technology case, in (5.18) and (5.19).]

32 Detailed derivations, examples, variations, and discussions can be found in, among others, United Nations
(1968), Aidenoff (1970), Gigantes (1970), Cressy (1976), Armstrong (1975), and ten Raa, Chakraborty and
Small (1984).
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To account for the industry technology character of the outputs recorded in V2, define
the industry-by-commodity matrix D2 as

D2 = V2q̂−1 (5.37)

Notice that the “normalization” of V2 is done using total commodity outputs, not just
those recorded in V2. [This is similar to the definition of D, in (5.14), in the pure industry
technology case.]33 The i, jth element in D2 identifies that fraction of all commodity j
production that is made by industry i under an industry technology assumption. Since
x2 = V2i [as in (5.33)], a line of argument similar to that used above for C1 leads to a
transformation between x2 and q (not q2); namely

x2 = D2q (5.38)

If we put the two pieces of x together, from (5.36) and (5.38), we have

x = x1 + x2 = C−1
1 q1 + D2q

Our interest is in the transformation between all of x and all of q; that means that we
need to replace q1 on the right with some function of q.

To do this, we examine the components of q in some detail. As above, q = q1 + q2.
We know that q2 = (V′

2)i and D2 = V2q̂−1, so that q2 = (D2q̂)′i. From matrix algebra
rules on transposes of products of appropriately dimensioned matrices – (MN)′ =
N′M′ – and on the product of two diagonal matrices (order of multiplication makes no
difference), it follows that34

q2 = (D2q̂)′i = 〈D′
2i〉q = 〈i′D2〉q

Since q1 = q − q2 = q − 〈i′D2〉q, this allows x to be expressed as

x = C−1
1 (q − 〈i′D2〉q) + D2q = [C−1

1 (I − 〈i′D2〉) + D2]q
If we define

R = [C−1
1 (I − 〈i′D2〉) + D2] (5.39)

we see the parallel with earlier results. Here the transformation between industry outputs
and commodity outputs is given by x = Rq. Previously, under pure industry technology,
it was x = Dq, and under pure commodity technology, it was x = C−1q. Notice that
R contains elements that are reminiscent of both previous transformations; namely
C−1

1 and also D2. Total requirements matrices under this particular mixed technology
assumption are found as the exact parallels to those under pure commodity technology
or pure industry technology, with C−1 or with D replaced by R.

33 This definition is not “parallel” to that for C1 in the sense that the divisors here are not elements of q2 but
rather of q. The reason for this will become clear as the algebra is worked out. Other definitions for D2 could
be (and have been) used, with different algebraic consequences.

34 The specific steps are: (D2q̂)′i = q̂′D′
2i (transpose of a product) = q̂D′

2i (transpose of a diagonal matrix)
= q̂〈D′

2i〉i (the vector that is created from row sums of a matrix is the same as the vector that is created from
row sums of the diagonal matrix formed from that vector) = 〈D′

2i〉q̂i (order of multiplication of two diagonal
matrices makes no difference) = 〈D′

2i〉q.
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5.7.2 Industry Technology in V1

In order to invoke the industry technology assumption for V1, we define

D1 = V1q̂−1
1 (5.40)

[compare (5.14) and now also (5.37).] This identifies an industry-by-commodity matrix
whose i, jth element records the fraction of total commodity j produced under the
industry technology assumption that is made by industry i using that technology. Along
with the definition x1 = V1i [as in (5.33)], we see that

x1 = D1q1 (5.41)

which provides the transformation between x1 and q1. [Without the subscripts, this is
completely parallel to the definition of D in the pure industry technology case, shown
in (5.16).]

To account for the commodity technology character of the outputs in V2, define a
commodity-by-industry matrix, C2, as

C2 = V′
2x̂−1 (5.42)

[Compare (5.15) and now also (5.35).] Here the “normalization” of V2 has been carried
out using total industry outputs, not just those attributable to production in V2.35 The
i, jth element in C2 represents the fraction of all industry j output that takes the form
of commodity i production under commodity technology. An argument similar to that
above shows that this definition of C2, along with the fact that q2 = (V′

2)i, leads to a
transformation between q2 and x (not x2); namely

q2 = C2x (5.43)

From (5.33) and the definition of C2, x2 = (C2x̂)′i and, following an argument
parallel to that in footnote 29, we find

x2 = 〈C′
2i〉x = 〈i′C2〉x (5.44)

Using q1 = q − q2 = q − C2x allows the components of x to be expressed as

x = x1 + x2 = D1(q − C2x) + 〈i′C2〉x
and rearrangement, putting x alone on the left, gives

x = [(I + D1C2 − 〈i′C2〉)−1D1]q
We can define

T = [(I + D1C2 − 〈i′C2〉)−1D1] (5.45)

35 As in the case of C1 and D2, this definition of C2 is not “parallel” to that for D1 since the divisors are not
elements of x2 but rather of x. Again, as noted in footnote 33, other definitions could be used, with differing
algebraic results.
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and we see the parallel, again, with earlier results. Now the transformation between
industry outputs and commodity outputs is provided by x = Tq. Thus T plays the role
of R from the previous mixed technology case, and of D and C−1 earlier. Again, too,
there are elements of both industry technology, here in D1, and commodity technology,
here in C2, embedded in the transformation matrix, T. Total requirements matrices
under this different mixed technology assumption are found by replacing C−1, D or R
by T in each case.

5.7.3 Numerical Examples with Mixed Technology Assumptions
We continue with the same set of hypothetical data derived from Table 5.3. In particular

B =
[

.1333 .0727

.1111 .0636

]
V=

[
90 0
10 100

]
Suppose that we decompose V as follows:36

V1 =
[

90 0
3 100

]
and V2 =

[
0 0
7 0

]

Example 1: Commodity Technology in V1 Here we assume that V1 reflects
commodity technology and V2 embodies industry technology. The necessary pieces of
information are

x1 =
[

90
103

]
, x2 =

[
0
7

]
, q1 =

[
93

100

]
, q2 =

[
7
0

]
so that

C1 =
[

90 3
0 100

] [
90 0
0 103

]−1

=
[

1 .0291
0 .9709

]

D2 =
[

0 0
7 0

] [
100 0

0 100

]−1

=
[

0 0
.07 0

]
and, from (5.39),

R =
[

.93 −.03

.07 1.03

]
Notice that, for this numerical illustration, i′C1 = i′ and i′R = i′. [Problem 5.6 asks the
reader to show that this is always the case, using the definitions in (5.35) and (5.39).]

36 With such small (2 × 2) examples, there is relatively little flexibility in the ways that the elements of V can be
split between V1 and V2, especially since it is likely that all of the production represented in v11and v22 would
be assigned to either V1 or V2. (Of course, at such a high level of aggregation as we have in 2 × 2 examples,
it is impossible to imagine that either commodity is in fact just one product.)
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From this information, we can find the four total requirements matrices as

Commodity-by-Commodity Commodity-by-Industry

(I − BR)−1 =
[

1.1591 .0876
.1332 1.0764

]
R−1(I − RB)−1 =

[
1.2372 .1211
.0644 1.0469

]
Industry-by-Commodity Industry-by-Industry

R(I − BR)−1 =
[

1.0739 .0492
.2184 1.1148

]
(I − RB)−1 =

[
1.1487 .0812
.1530 1.0868

]
If we compare the matrices in section 5.4.2, we see that these results lie some-

where between those for the “pure” industry technology model and those for the “pure”
commodity technology model.

Example 2: Industry Technology in V1 Now we attribute production in V1 to
the industry technology assumption. In this case, we have

D1 =
[

90 0
3 100

] [
93 0
0 100

]−1

=
[

.9677 0

.0323 1

]

C2 =
[

0 7
0 0

] [
90 0
0 110

]−1

=
[

0 .0636
0 0

]
from which

T =
[

.9656 −.0656

.0344 1.0656

]
These results illustrate that i′D1 = i′ and i′T = i′. [Again, problem 5.6 asks for a
general proof of this, using in this case (5.40) and (5.45).] The four total requirements
matrices are found to be

Commodity-by-Commodity Commodity-by-Industry

(I − BT)−1 =
[

1.1617 .0850
.1354 1.0743

]
T−1(I − TB)−1 =

[
1.1976 .1535
.1041 1.0146

]
Industry-by-Commodity Industry-by-Industry

T(I − BT)−1 =
[

1.1129 .0116
.1842 1.1477

]
(I − TB)−1 =

[
1.1496 .0816
.1521 1.0864

]
Here, also, the total requirements matrices lie between those for the two “pure”
technology model illustrations in section 5.4.2.

5.7.4 Additional Mixed Technology Variants
Yet another variant is what is known as the by-product technology model. Here all
secondary production is categorized as by-products, and these are treated as negative
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inputs. Since uij is total input of commodity i for production by industry j, the net input
of commodity i into industry j becomes uij − vji (for i �= j). Using a hat on a matrix M
(square or otherwise) to denote a diagonal matrix whose elements are the mii elements
in M, and using an “upside down” hat to denote the matrix M but with its mii elements
replaced by zeros (so that M =M̂ + M̌), the net use matrix is seen to be

U − V̌′ =
[

u11 u12

u21 u22

]
−
[

0 v21

v12 0

]
and the technology matrix relating commodity inputs to commodity outputs, under the
by-product technology assumption, can be represented as

AB = (U − V̌′
)(V̂)−1 (5.46)

For our numerical example,

AB =
{[

12 8
10 7

]
−

[
0 10
0 0

]}[
90 0
0 100

]−1

=
[

.1333 −.0200

.1111 .0700

]
and we see that, as in the commodity technology models, negative elements are possible.
The associated total requirements matrix (with a not-surprising negative element) is

(I − AB)−1 =
[

1.1507 −.0247
.1375 1.0723

]
Other variants are also possible. For example, ten Raa, Chakraborty and Small (1984)

suggest a combination of a mixed technology assumption with the by-product technol-
ogy assumption. Letting V1 contain primary and ordinary secondary products (defined
as those for which the commodity technology will be invoked), ten Raa, Chakraborty
and Small propose the by-product technology assumption rather than the industry
technology assumption for V2. In this case, the direct inputs matrix, call it ACB, is

ACB = (U − V′
2)(V′

1)
−1 (5.47)

For the numerical example, this works out to be

ACB =
{[

12 8
10 7

]
−

[
0 7
0 0

]}[
90 3
0 100

]−1

=
[

.1333 .0060

.1111 .0667

]
and

(I − ACB)−1 =
[

1.1548 .0074
.1375 1.0723

]
If the commodity technology model is invoked for all secondary products, then V1 = V,
V2 = 0 and so ACB = AB = AC , as in (5.26). On the other hand, if all secondary products
are by-products for which industry technology is used, then V1=V̂, V2 = V̌ and so
ACB = AB in (5.46). The distinction between which secondary products are ordinary
or by-products is an empirical one; ten Raa, Chakraborty and Small investigate the
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question using regression analysis to examine whether primary and secondary output
of an industry are proportional. If they are, the secondary output is classified as a
by-product; if they are not, it is classified as an ordinary secondary product.

Negative numbers in the direct inputs matrix will arise in the by-product technology
model when an industry produces more of a particular commodity (as a by-product)
than it uses in production. One brute force approach changes these negatives to zeros.
This is equivalent to setting negative elements in the “net transactions” matrix, U−V̌′,
in (5.46), to zero. The logic is: if a particular element uij − vji (i �= j) is non-negative,
then the by-product approach correctly records the net use of commodity i by industry
j; if uij − vji < 0, then as a first approximation one could assume that all of j’s needs
for i goods are met from j’s own production and so j’s net use of commodity i is zero.
Following this approach for our example,

AB1 =
[

.1333 0

.1111 .0700

]
and (I − AB1)

−1 =
[

1.1538 0
.1379 1.0753

]
An even more radical approach would be to just ignore all secondary production,

after netting it out of an industry’s primary production. In this case, V̌ becomes a null
matrix (primary production is the only production that is accounted for), so, from (5.46),

AB2 = UV̂−1 =
[

.1333 .0800

.1111 .0700

]
and (I − AB2)

−1 =
[

1.1667 .1004
.1394 1.0873

]
The most radical approach of all would be to force the assumption of no secondary

production at all by collecting all of the elements in each row of V into the on-diagonal
element. This then simply reduces to the original Leontief system. In this example, V

would be replaced by V = 〈Vi〉 =
[

90 0
0 110

]
. Using V in (5.46) (note that V̂ = V

and V̌ = 0)

AL = UV−1 =
[

12 8
10 7

] [
90 0
0 110

]−1

=
[

.1333 .0727

.1111 .0636

]
(5.48)

and

(I − AL)−1 =
[

1.1655 .0905
.1383 1.0787

]
In this case, V = x̂ = q̂, and all four direct requirements matrices in Section 5.3.6 –
AC

(c×c)
, AC
(i×i)

, AI
(c×c)

, and AI
(i×i)

– will be the same [and equal to AL in (5.48)], and the

commodity–industry accounting has been completely swept under the rug.

5.8 Summary

In this chapter we have explored the issues that are introduced by a commodity-by-
industry accounting approach. This framework was introduced primarily as an attempt
to accommodate the real-world fact that sectors (industries) generally produce more
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Table 5.10 Share of Secondary Product Output in Total
Industry Output (European Union Countries, 60-sector
level)

1995 1999 2003

Highest 19.0
(Czech Republic)

16.7
(Belgium)

12.0
(Hungary)

Lowest 1.8
(France)

1.7
(Greece)

3.1
(Luxembourg)

EU Average 6.1 6.2 7.4

Source: Selected from Eurostat/European Commission, 2008,
Table 11.8, p. 308.

than one product, thereby violating the “one industry/one product” assumption of the
original input–output model (as in Chapter 2). This leads to the possibility of “rectan-
gular” input–output systems, where the number of commodities (products) need not be
the same as the number of industries. In turn, this rectangularity leads to computational
problems insofar as inverse matrices are concerned. However, the commodity-by-
industry approach is also completely valid when the number of commodities and
industries is the same; that is, it still allows for the more realistic representation of
economies in which some industries produce more than one product.

We conclude with Table 5.10, extracted from a larger table in the Eurostat Manual
(Eurostat/Economic Commission, 2008) that records the actual amount of secondary
production in some 24 countries of the EU annually from 1995–2003 (not all countries
are reported for all years). These figures may help to put into perspective how significant
secondary activity is (or is not) in these countries. The Manual concludes (p. 309):

In most European countries the reported level of secondary products of industries as well as the
production of products in secondary industries is relatively low. [Thus] the difference between product-
by-product input–output tables and industry-by-industry input–output tables is relatively small. Both
transformations can be regarded as valid options for impact analysis.

Appendix 5.1 Alternative Approaches to the Derivation of Transactions Matrices

The generation of commodity-by-commodity or industry-by-industry transactions
matrices from the commodity-by-industry transaction data in the Use matrix, U, can
be visualized as a process of “adjusting” U to convert it to the proper commodity-
by-commodity or industry-by-industry dimensions. Since the dimensions of U are
commodities-by-industries, the adjustment must be one that either (1) replaces com-
modity rows by industry rows or (2) replaces industry columns by commodity columns.
In what follows, we assume that the appropriate technical coefficients matrix is known
and we examine the consequent structure of the corresponding transactions matrix.
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A5.1.1 Industry Technology
Commodity-by-Commodity Requirements Here, AI

(c×c)
= BD; therefore (par-

allel to A = Zx̂−1 ⇒ Ax̂ = Z from earlier chapters)

ZI
(c×c)

= (BD)q̂ = [Ux̂−1][Vq̂−1]q̂ = Ux̂−1V (A5.1.1)

Since C = V′x̂−1, then C′ = x̂−1V, and hence, from (A5.1.1),

ZI
(c×c)

= U
(c×i)

C′
(i×c)

(A5.1.2)

The use of D in defining A = BD and the consequent definition of ZI
(c×c)

as BD(q̂) in

(A5.1.1) identifies the industry technology assumption. The matrix C is associated with
the commodity technology assumption; its appearance (C′) in the representation of ZI

(c×c)
in (A5.1.2) is a matter of algebraic convenience; it is simply a result of the algebraic
definition of C and the algebraic rearrangement of (A5.1.1) that this definition makes
possible.

Postmultiplication of U by C′, as in (A5.1.2), serves to rearrange the “destinations”
(columns) of commodity sales (rows) to commodity categories of purchasers rather
than to industries as purchasers. Since, by definition, columns in C all sum to one, row
sums in C′ are also unity. Thus, ZI

(c×c)
i = UC′i = U

(c×i)
i; row sums in ZI

(c×c)
and U

(c×i)

are the same. This is as it should be; the redistribution accomplished by ZI
(c×c)

= UC′

does not change the total intermediate sales of any commodity, only the names that are
given to the purchasers.

Ritz (1980, p. 41) has observed that (A5.1.2) can be re-expressed as

ZI
(c×c)

= U(I + C′ − I) = U + U(C′ − I) (A5.1.3)

and that the operation in the U(C′−I) term “incorporates the ‘mechanical redefinitions’
required to shift inputs and create a commodity-by-commodity use matrix (or, in other
words, to make the industry classification scheme conform precisely to the commodity
classification scheme).” [Since C′i = i and Ii = i, (C′ − I)i = 0 and in this form it
remains true that ZI

(c×c)
i = Ui.] The numerical example that follows illustrates the logic

of this adjustment technique.
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Using the data from the Table 5.3 example, ZI
(c×c)

in (A5.1.3) is found as

ZI
(c×c)

=
[

12 8
10 7

]
+
[

12 8
10 7

]{[
1 0

.0909 .9091

]
−

[
1 0
0 1

]}
=

[
12 8
10 7

]
+
[

12 8
10 7

] [
0 0

.0909 −.0909

]
=
[

12 8
10 7

]
+
[

.7272 −.7272

.6363 −.6363

]
=

[
12.7272 7.2728
10.6363 6.3637

]
(A5.1.4)

Consider, for illustration, the upper-right element; z12 = 8 + (12)(0)+ (8)(−.0909) =
7.2728. The original 8 is modified to reflect the fact that commodity 2 comprises only
90.9 percent of industry 2’s total output. Thus 100 − 90.91 = 9.09 percent of the input
of commodity 1 to industry 2 must have been used for the production of commodity
1 and (8)×(.0909) = .7272 is therefore netted out of the original u12 (commodity-by-
industry) transaction of 8. On the other hand, 12 units of commodity 1 are used as inputs
to industry 1 production (u11). We know from the C matrix that industry 1 produces no
commodity 2, so none of this transaction [(12)×(0) = 0] should be added in to produce
the estimate of z12. The logic behind other elements in Z in (A5.1.4) is similar.

Industry-by-Industry Requirements Here, A = DB; therefore, since U = Bx̂,

ZI
(i×i)

= (DB)x̂ = D
(i×c)

U
(c×i)

(A5.1.5)

Premultiplication of U by D serves to rearrange the “origins” (rows) of industry pur-
chases (columns) to industry categories of sellers rather than commodity categories. By
definition, columns in D all sum to one, i′ ZI

(i×i)
= i′DU = i′ U

(c×i)
. Column sums in ZI

(i×i)
and U

(c×i)
are the same, which is also as it should be; the redistribution accomplished by

ZI
(i×i)

= DU should not change the total intermediate purchases by any industry, only

the names given to the sellers (rows).
Alternatively, since (I + D − I) = D, ZI

(i×i)
in (A5.1.5) can be expressed as

ZI
(i×i)

= (I + D − I)U = U + (D − I)U (A5.1.6)

and in this case the (D − I)U term provides the adjustment elements to convert U to an
industry-by-industry Use matrix. Since i′D= i′ and i′I= i′, i′(D − I)=0, and column
sums in ZI

(i×i)
and U remain equal.
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From the numerical example in the text,

ZI
(i×i)

=
[

12 8
10 7

]
+
{[

.9 0

.1 1

]
−

[
1 0
0 1

]}[
12 8
10 7

]
=

[
12 8
10 7

]
+
[ −.1 1

.1 0

] [
12 8
10 7

]
=
[

12 8
10 7

]
+
[ −1.2 −.8

1.2 .8

]
=

[
10.8 7.2
11.2 7.8

]
(A5.1.7)

Again, consider the upper-right element; z12 = 8 + (−0.1)(8) + (0)(7) = 7.2. The
original 8, which is commodity 1 inputs to industry 2, now needs to be converted
to industry 1 inputs to industry 2. From the D matrix, we know that 90 percent of
commodity 1 is produced by industry 1. Therefore 100 − 90 = 10 percent of the original
8 must be netted out, since it represents industry 2’s production of commodity 1. On
the other hand, 7 units of commodity 2 are also used by industry 2 (u22). But we know
from the D matrix that none of this comes from industry 1, so the second (potential)
adjustment to the original 8 is (0)(7) = 0. Other elements in ZI

(i×i)
in (A5.1.7) can be

interpreted similarly.

A5.1.2 Commodity Technology
Commodity-by-Commodity Requirements Here A = BC−1; therefore

ZC
(c×c)

= (BC−1)q̂ = [Ux̂−1][x̂(V′)−1]q̂ = U(V′)−1q̂ (A5.1.8)

Since D = Vq̂−1, D′ = q̂−1V′ and (D′)−1 = (V′)−1q̂; therefore

ZC
(c×c)

= U
(c×i)

( D′
(i×c)

)−1 (A5.1.9)

This requires that V and hence V′ be nonsingular, so that C and D′ are nonsingular
also. The fact that this is a commodity-by-commodity transactions matrix under the
commodity technology assumption is emphasized by the fact that the matrix C (more
precisely, C−1) is used in defining A = BC−1 and ZC

(c×c)
= (BC−1)q̂ in (A5.1.8).

The matrix D (industry technology assumption) appears only because of the algebraic
rearrangement which the fact that D = Vq̂−1 makes possible. This is parallel to the
way in which the C matrix crept into the commodity-by-commodity requirements
expressions under the industry technology assumption, in (A5.1.1) and (A5.1.2).

As in (A5.1.2), postmultiplication of U serves to rearrange the destinations (columns)
of the commodity sales (rows) – again, the relabeling is from industries to commodities
as purchasers. We know that column sums of D are all unity, so D′i = i from which it
follows that (D′)−1i = i. Therefore, from (A5.1.9), ZC

(c×c)
i = U

(c×i)
i – row sums of ZC

(c×c)
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and U
(c×i)

are the same, as is to be expected and as we also saw was true for ZI
(c×c)

and

U
(c×i)

, in (A5.1.2), above, under the industry technology assumption.

Alternatively, using the same kind of algebraic reasoning as previously, (A5.1.9) can
be written as

ZC
(c×c)

= U[I + (D′)−1 − I] = U + U[(D′)−1 − I] (A5.1.10)

and in this case the matrix [(D′)−1 − I] supplies the adjustment terms to convert the
original Use matrix to commodity-by-commodity terms, but now under the assumption
of a commodity-based technology [as opposed to the adjustment in (A5.1.3), again to
commodity-by-commodity terms, but under an industry technology assumption]. It is
easily shown that [(D′)−1 −I]i = 0, so again row sums are not altered by the relabeling
of the columns of U.

From the numerical example,

ZC
(c×c)

=
[

12 8
10 7

]
+
[

12 8
10 7

]{[
1.1111 −.1111

0 1

]
−

[
1 0
0 1

]}
=

[
12 8
10 7

]
+
[

12 8
10 7

] [
1.1111 −.1111

0 0

]
=

[
12 8
10 7

]
+
[

1.3332 −1.3332
1.1111 −1.1111

]
=
[

13.3332 6.6668
11.1111 5.8889

]
(A5.1.11)

Note that this differs from ZI
(c×c)

in (A5.1.4), which was derived under the assumption

of an industry technology. While the numerical example in (A5.1.11) illustrates the
parallels with the adjustments in (A5.1.4) and (A5.1.7), interpretation of the elements
in [(D′)−1 − I] is not as straightforward as in the case of (C′ − I) in (A5.1.4) or (D − I)
in (A5.1.7). The operations in this case are more easily understood by going back to
(A5.1.8) or (A5.1.9) and noting that

U = ZC
(c×c)

[(V′)−1q̂]−1 or U = ZC
(c×c)

D′ (A5.1.12)

That is, if the commodity-by-commodity Use matrix, ZC
(c×c)

, were known, then post-

multiplication by D′ would serve to rearrange the column labels (purchasers) from
commodity groups to industry groups. From the numerical example,

D′
(c×i)

=
[

.9 .1
0 1

]
and so

U
(c×i)

= ZC
(c×c)

D′
(c×i)

=
[

(z11)(.9) + (z12)(0) (z11)(.1) + (z12)(1)

(z21)(.9) + (z22)(0) (z21)(.1) + (z22)(1)

]
(A5.1.13)
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Consider element u12 in this matrix (total input of commodity 1 to industry 2). The
second term, (z12)(1), reflects the fact that 100 percent of the output of commodity 2 is
made by industry 2, and so all of the sales of commodity 1 to commodity 2 production
(z12) can be thought of equally well as purchases by industry 2. In addition, however,
since 10 percent of the output of commodity 1 is produced by industry 2, 10 percent
of the sales of commodity 1 for commodity 1 production (z11) would be purchased by
industry 2. Thus u12 = (z11)(.1)+(z12)(1). Other elements can be interpreted similarly.

Industry-by-Industry Requirements Here A = C−1B and

ZC
(i×i)

= (C−1B)x̂ = C−1

(i×c)
U

(c×i)
(A5.1.14)

Since i′C = i′, i′C−1 = i′ also, column sums of ZC
(i×i)

and U
(c×i)

are the same. The

premultiplication of U by C−1 serves to relabel the rows from commodities to industries
as sellers. Following the earlier examples, ZC

(i×i)
in (A5.1.14) can be re-expressed as

ZC
(i×i)

= (I + C−1 − I)U = U + (C−1 − I)U (A5.1.15)

and now it is clear that the matrix (C−1 − I) represents the adjustment mechanism for
converting U to an industry-by-industry basis, under the commodity-based technology
assumption. All column sums in the adjustment (second) term in (A5.1.15) are zero, so
the row relabeling leaves column sums of ZC

(i×i)
and U

(c×i)
equal.

Using the numerical example

ZC
(i×i)

=
[

12 8
10 7

]
+
{[

1 −.1
0 1.1

]
−

[
1 0
0 1

]}[
12 8
10 7

]
=

[
12 8
10 7

]
+
[

0 −.1
0 .1

] [
12 8
10 7

]
=
[

12 8
10 7

]
+
[ −1 −.7

1 .7

]
=

[
11 7.3
11 7.7

]
(A5.1.16)

This differs (although in this case only slightly) from the ZI
(i×i)

matrix in (A5.1.7), derived

under the industry technology assumption.
As with the commodity-by-commodity requirements case immediately above, the

logic of this adjustment is easily seen by rewriting (A5.1.14) as

C
(c×i)

ZC
(i×i)

= U
(c×i)

(A5.1.17)
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If the industry-by-industry Use matrix, ZC
(i×i)

, were known, premultiplication by C
(c×i)

would rearrange row labels (sellers) from industries to commodities. Here

C =
[

1 .0909
0 .9091

]
and therefore

U
(c×i)

= C
(c×i)

ZC
(i×i)

=
[

(1)(z11) + (.0909)(z21) (1)(z12) + (.0909)(z22)

(0)(z11) + (.9091)(z21) (0)(z12) + (.9091)(z22)

]
(A5.1.18)

Again, we consider u12, which represents total inputs of commodity 1 into industry
2 production. From the first row of C, we know that 100 percent of industry 1’s output
consists of commodity 1 and that 9.09 percent of industry 2’s output is commodity
1. Thus all of the industry-to-industry transactions z12 can be viewed as commodity
1 sales to industry 2, while the commodity 1 composition of the industry-to-industry
transaction z22 is represented by (.0909) (z22). Thus u12 = (1)(z12) + (.0909)(z22).
Other elements in (A5.1.18) have similar interpretations.

Appendix 5.2 Elimination of Negatives in Commodity Technology Models

A5.2.1 The Problem
A major practical problem with the commodity technology assumption is the very real
possibility of negative entries appearing in the direct requirements matrix and hence
also in the associated transactions matrix. We explored this in section 5.5. Table A5.2.1
summarizes some of the results from the 2 × 2 numerical illustrations in that section.

These examples might be viewed as overly simplistic (too small), or exaggerated,
since 40 percent and more of commodity 1 is produced in industry 2 (v21 is large relative
to v11). Here are some larger examples that also generate negative elements in direct
inputs matrices (not shown) and therefore also in the associated transactions matrices
(shown).

3 × 3 Example

U =
⎡⎣4 2 4

2 5 2
6 1 3

⎤⎦ V =
⎡⎣20 2 1

5 25 7
3 2 15

⎤⎦ ZC
(c×c)

=
⎡⎣ 5.340 −.667 5.327

2.225 4.556 2.219
8.364 −1.778 3.414

⎤⎦
4 × 4 Example

U =

⎡⎢⎢⎣
1 4 5 6
3 1 2 5

10 6 1 7
15 3 4 2

⎤⎥⎥⎦ V =

⎡⎢⎢⎣
30 4 10 10
8 20 5 8
5 1 50 2
5 5 5 60

⎤⎥⎥⎦
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Table A5.2.1 Summary of Two Commodity/Two Industry
Results

U V AC
(c×c)

ZC
(c×c)[

12 8
10 7

] [
90 0
60 100

] [
.1333 0
.1111 .0033

] [
20 0

16.67 .33

]
[

12 8
10 7

] [
90 0
61 100

] [
.1333 −.0013
.1111 .0022

] [
20.13 −.13
16.78 .22

]
[

12 8
10 7

] [
90 0
64 100

] [
.1333 −.0053
.1111 −.0011

] [
20.53 −.53
17.11 −.11

]

ZC
(c×c)

=

⎡⎢⎢⎣
−2.327 4.856 6.882 6.589
3.181 −.443 2.143 6.119

13.961 4.656 −1.079 6.462
23.949 −1.648 2.202 −.503

⎤⎥⎥⎦

5 × 5 Example (from Almon, 2000)

U =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
3 37 0 0 0

15 5 0 0 0
28 72 30 5 0

⎤⎥⎥⎥⎥⎦ V =

⎡⎢⎢⎢⎢⎣
70 20 0 0 0
30 180 0 0 0
0 0 100 0 0
0 0 0 20 0
0 0 0 0 535

⎤⎥⎥⎥⎥⎦

ZC
(c×c)

=

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0

−1.67 41.67 0 0 0
21.67 −1.67 0 0 0

30 70 30 5 0

⎤⎥⎥⎥⎥⎦

A5.2.2 Approaches to Elimination of Negative Elements
Whether or not the reader finds these examples compelling, input–output practitioners
repeatedly find that the commodity technology model generates negative elements in
real-world applications (section 5.5.1, above). Clearly, if one wants to use a commodity
technology input–output model, this is an issue that needs to be addressed. In section
5.5.1 we noted a large amount of literature that addresses this issue in a variety of ways.

Here we examine an approach to negatives that is reported in Almon (2000). He
and his associates have used it repeatedly and successfully to transform an observed
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Use matrix, U
(c×i)

, into a non-negative commodity technology based commodity-by-

commodity transactions matrix, ZC
(c×c)

.37 The building blocks are the usual commodity–

industry accounts – a Use matrix and a Make matrix, V, from which D = Vq̂−1, as
usual. Initially, we will explore the approach for a 3 × 3 model.38

Given

U
(c×i)

=
⎡⎣ u11 u12 u13

u21 u22 u23

u31 u32 u33

⎤⎦ and D
(i×c)

=
⎡⎣ d11 d12 d13

d21 d22 d23

d31 d32 d33

⎤⎦
we want to find an associated

ZC
(c×c)

= Z =
⎡⎣ z11 z12 z13

z21 z22 z23

z31 z32 z33

⎤⎦
that contains no negative elements.

We have simplified the representation of the elements in ZC
(c×c)

(showing them only as

zij) to keep the notation as uncluttered as possible. Equation (A5.1.9) from Appendix
5.1 is our point of departure – Z = U(D′)−1 or

ZD′ = U (A5.2.1)

Rewriting as U − ZD′ = 0 and adding Z to both sides, we have

Z = U + Z(I − D′) (A5.2.2)

This suggests an iterative approach that could be used to construct an estimate of Z.
Let the next [(k + 1)st] estimate, Z(k+1), depend on the current (kth) estimate, Z(k),
and on the elements in U in the following way:

Z(k+1) = U + Z(k)(I − D′) (A5.2.3)

Given the characteristics of D, and hence of (I − D′), it is possible to show that this
kind of sequential procedure will in fact converge.39 The process begins (k = 0) by
assuming

Z(0) = U (A5.2.4)

We know that this will turn out to be wrong, since U has dimensions commodity-
by-industry and our transactions matrix Z must have commodity-by-commodity

37 The procedure has been in use for decades at the University of Maryland’s INFORUM project. It was mentioned
in print at least as early as Almon (1970) and also in Almon et al. (1974). The associated non-negative direct
input coefficients matrix can easily be derived from the non-negative transactions.

38 As will become clear, a two-commodity and -industry illustration is too small to properly illustrate the intricacies
of the technique.

39 Details are beyond what we need here. See Almon (2000) for further discussion.
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dimensions. But notice that because both U and our final Z have commodities in the row
dimension, the transformation from the former to the latter must preserve row sums.
Next, from (A5.2.3)

Z(1) = U + Z(0)(I − D′)
and so on:

Z(2) = U + Z(1)(I − D′)
...

... (A5.2.5)

Z(n) = U + Z(n−1)(I − D′)

Consider the process one row at a time. Let iU = [
ui1 ui2 ui3

]
(the ith row of U,

which is known) and iZ = [
zi1 zi2 zi3

]
(the ith row of Z, which we want to find). Then

(A5.2.2) can be expressed as

iZ = iU + iZ(I − D′) (A5.2.6)

for i = 1, 2, 3. More explicitly,

[
zi1 zi2 zi3

] = [
ui1 ui2 ui3

] + [
zi1 zi2 zi3

]⎡⎣1 − d11 −d21 −d31

−d12 1 − d22 −d32

−d13 −d23 1 − d33

⎤⎦ (A5.2.7)

The iterative process in (A5.2.3) can be carried out on each row. That is,

iZ(k+1) = iU + iZ(k)(I − D′) (A5.2.8)

with

iZ(0) = iU (A5.2.9)

and then (A5.2.8), starting with k = 0

iZ(1) = iU + iZ(0)(I − D′) (A5.2.10)

and so on, as in (A5.2.5).
Specifically, for the 3 × 3 illustration, here are the three linear equations in (A5.2.8)

written out explicitly for the i = 1 case [elements of the first row of Z(k+1)]:

z(k+1)
11 = u11 + (1 − d11)z

(k)
11 − d12z(k)

12 − d13z(k)
13

z(k+1)
12 = u12 − d21z(k)

11 + (1 − d22)z
(k)
12 − d23z(k)

13

z(k+1)
13 = u13 − d31z(k)

11 − d32z(k)
12 + (1 − d33)z

(k)
13

To add further specificity, we use the D matrix from the 3 × 3 numerical example,
above:

D = V(q̂)−1 =
⎡⎣20 2 1

5 25 7
3 2 15

⎤⎦⎡⎣28 0 0
0 29 0
0 0 23

⎤⎦−1

=
⎡⎣.7143 .0690 .0435

.1786 .8621 .3043

.1071 .0690 .6522

⎤⎦
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and so

z(k+1)
11 = 4 + .2857z(k)

11 − .0690z(k)
12 − .0435z(k)

13

z(k+1)
12 = 2 − .1786z(k)

11 + .1379z(k)
12 − .3043z(k)

13

z(k+1)
13 = 4 − .1071z(k)

11 − .0690z(k)
12 + .3478z(k)

13

(A5.2.11)

In general it is not easy to come up with a convincing set of names for commodities
and industries in a small (say 3 × 3) numerical example – “Agriculture,” “Manufac-
turing,” and “Services” are too aggregate to make much sense as “commodities.” And
at a finer level of detail – e.g., “Cheese,” “Ice Cream,” and “Other Foodstuffs” – it is
usually difficult to create a reasonable numerical illustration unless many of the ele-
ments in the Use matrix are zero; for example, ice cream is an unlikely input to cheese
manufacturing.40 At the same time, it is helpful in sorting out what is going on in
Equations (A5.2.11) to have some specificity, so (with apologies to Almon, 2000) we
opt for 1 = cheese, 2 = ice cream, and 3 = other foodstuffs, without going into a
careful analysis of the plausibility of each and every element in U.

Consider how the (k + 1)st estimate of the input of cheese (i = 1) into production of
the commodity other foodstuffs (j = 3) is built up on the basis of the current estimate
(iteration k), i.e. z(k+1)

13 , the third of the three equations in (A5.2.11).
We start on the right with u13 – the original observed input of cheese into the other

foodstuffs industry (4 units). Since the other foodstuffs industry made secondary prod-
ucts – cheese (v31 = 3) and ice cream (v32 = 2) – we need to net out the cheese that
was used by other foodstuffs for both of those non-primary products. (Remember that
we are building a commodity-to-commodity transactions table.) First we deal with the
cheese produced secondarily by other foodstuffs. z(k)

11 is the “current” estimate of com-
modity 1 input into commodity 1 production (cheese into cheese). But 10.71 percent
of cheese production occurs in other foodstuffs. So (.1071)z(k)

11 accounts for the cheese
used by other foodstuffs to make a secondary product, cheese, and it is netted out of
the u13 transaction: (−.1071)z(k)

11 . Similarly, z(k)
12 is the current estimate of commodity

1 input into commodity 2 production (cheese into ice cream). But 6.9 percent of the
ice cream produced is as a secondary product for other foodstuffs, so (−.0690)z(k)

12 nets
out from u13 other foodstuffs’ use of cheese for another of its secondary products.

Finally, we have (+34.78)z(k)
13 . This reflects the fact that 34.78 percent of the commod-

ity other foodstuffs is not made by the other foodstuffs industry but rather by the cheese
industry (4.35 percent; d13 = .0435) and by the ice cream industry (30.43 percent;
d23 = .3043). So we need to add to u13 these amounts of cheese used elsewhere to
make other foodstuffs as a secondary product: (.0435)z(k)

13 for what is made by cheese

and (.3043)z(k)
13 for what is made by ice cream.

By the property of D matrices that column sums are 1, we recognize that the amount
added in z(k+1)

13 – (.3478)z(k)
13 – is exactly right, namely (.0435)z(k)

13 + (.3043)z(k)
13 . The

absolute amount of cheese to other foodstuffs that is netted out of the first two equations

40 With larger examples, it is easier, as we will see below in the 5 × 5 story.
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in (A5.2.11) is exactly what is added back into that transaction in the third equation.
And the same is true for cheese to cheese and cheese to ice cream adjustments in these
equations. The amounts netted out in two of the equations are added back in the other
equation – transactions are simply “rearranged” and nothing is “lost.”

A5.2.3 Results of the Iterative Procedure
3 × 3 Example Here is the commodity technology based commodity-by-

commodity transactions matrix ( ZA

(c×c)
) that results from using the iterative procedure

on the 3 × 3 illustration in section A5.2.1:

ZA

(c×c)
=
⎡⎣ 5.087 0 4.913

2.225 4.556 2.219
7.270 0 2.730

⎤⎦
Table A5.2.2 indicates a number of the steps in the procedure. Iterations stop for

any particular row when some criterion is met – for example, when the differences
between successive values for all z(k)

ij are less than some prespecified level. We show
the results to four decimal places in order to give a feeling for how things develop.
(In practice, each row went through additional iterations, until there were changes in
the sixth decimal place only, but that level of detail is unnecessary for this simple
illustration.)

As we would expect, for rows in ZC
(c×c)

in which there are no negative elements, the

iterative approach generates exactly the same vector (here row 2) in ZA

(c×c)
. As the reader

can verify, in moving from one iteration to the next, the amount(s) that are subtracted
from the original u’s in a given row are exactly balanced (except perhaps for rounding)
by the amount(s) that are added to other u’s in that same row (preservation of row sums
from the original U matrix). For example, for row 1, moving from k = 0 to k = 1,
(4.8310 − 4) + (4.8248 − 4) = 1.6558 = (2 − .3442).41

4 × 4 Example The original transactions matrix

ZC
(c×c)

=

⎡⎢⎢⎣
−2.327 4.856 6.882 6.589
3.181 −.443 2.143 6.119
13.961 4.656 −1.079 6.462
23.949 −1.648 2.202 −.503

⎤⎥⎥⎦
41 There are additional aspects to the Almon procedure that we need not explore here. They influence the “speed”

at which convergence is approached – for example, how much is subtracted, at each iteration, for an element
that turns out to be negative in ZC

(c×c)
.
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is transformed into

ZA

(c×c)
=

⎡⎢⎢⎣
0 4.031 5.966 6.003

2.983 0 2.118 5.899
12.859 4.730 0 6.412
21.646 0 2.354 0

⎤⎥⎥⎦
Table A5.2.2 Steps in the Iterative Procedure for
the 3 × 3 Example

k z(k)
i1 z(k)

i2 z(k)
i3

1Z(k) (Row 1)
0 4 2 4
1 4.8310 .3442 4.8248
2 5.0242 .0475 4.9283
3 5.0693 .0065 4.9241
4 5.0817 .0009 4.9174
5 5.0856 .0001 4.9143
6 5.0868 .0000 4.9132

2Z(k) (Row 2)
0 2 5 2
1 2.1396 4.7238 2.1365
2 2.1927 4.6192 2.1881
3 2.2128 4.5796 2.2076
4 2.2204 4.5647 2.2149
5 2.2233 4.5590 2.2177
6 2.2244 4.5569 2.2188
7 2.2248 4.5560 2.2191

3Z(k) (Row 3)
0 6 1 3
1 6.9834 .1379 2.8787
2 7.2009 .0190 2.7801
3 7.2525 .0026 2.7449
4 7.2654 .0004 2.7342
5 7.2688 .0001 2.7312
6 7.2697 .0000 2.7303

5×5 Example This example is fromAlmon (2000), where the unsatisfactory
Z matrix is shown (with its negative elements) but the modified Z that results from the
iterative procedure (without negatives) is not. We saw above, in the 5×5 example, that
those U and V matrices generated

ZC
(c×c)

=

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0

−1.7 41.7 0 0 0
21.7 −1.7 0 0 0
30 70 30 5 0

⎤⎥⎥⎥⎥⎦
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containing “the infamous negative flows” (Almon, 2000, p. 31).After using the iterative
procedure, we have

ZA

(c×c)
=

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 40 0 0 0

20 0 0 0 0
30 70 30 5 0

⎤⎥⎥⎥⎥⎦
In the relatively plausible story that goes along with this example, the commodities

are: (1) cheese, (2) ice cream, (3) chocolate, (4) rennet,42 and (5) other. Notice that in
ZA

(c×c)
, in particular, there is (thankfully) no chocolate used to make cheese (zA

31 = 0)

nor is there rennet going into (what would turn out to be curdled) ice cream (zA
42 = 0).

As a final illustration, here is a 5 × 5 Use matrix that differs very little from the
original one that we used:

Ũ =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
4 36 0 0 0

14 6 0 0 0
28 72 30 5 0

⎤⎥⎥⎥⎥⎦
There is only a one-unit difference in four elements from their original counterparts
in U – ũ31 and ũ42 are one unit larger, ũ32 and ũ41 are one unit smaller. In this case, in
conjunction with the original V,

Z̃C
(c×c)

=

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 40 0 0 0

20 0 0 0 0
30 70 30 5 0

⎤⎥⎥⎥⎥⎦
This is exactly the same as the ZA

(c×c)
that was derived from the original 5 × 5 U and

V, which makes sense. The one-unit variations that differentiated U from Ũ were
essentially ignored when the iterative procedure created a no-nonsense commodity-to-
commodity transactions matrix from U.

This example contains one further (possible) surprise. If we elect to use the indus-
try technology assumption instead of commodity technology, then we find that the
transactions matrix is

ZI
(c×c)

= BDq̂ =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0

8.25 31.75 0 0 0
11.75 8.25 0 0 0
32.06 67.94 30 5 0

⎤⎥⎥⎥⎥⎦
42 Rennet is a milk curdling agent, used in making cheese but not ice cream.
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This is (appropriately and appealingly) characterized as “massive nonsense,” and to call
this a commodity-to-commodity table “… would be little short of scandalous” (Almon,
2000, p. 31). Why? Because now we find that chocolate is being used as an input to
make cheese and rennet is part of the recipe for ice cream. Bad cooking; and a nice
illustration that neither technology assumption is flawless.

Problems

5.1 In a system of commodity-by-industry accounts, suppose we have defined three com-
modities and two industries. The Make matrix, V, and the Use matrix, U, are given
below.

U =
⎡⎣ 3 5

2 7
2 3

⎤⎦ , V =
[

15 5 10
5 25 0

]

a. Compute the vector of commodity final demands, the vector of industry value added
inputs, the vector of total commodity outputs, and the vector of total industry outputs.

b. Assuming an “industry-based” technology, compute the industry-by-commodity
total requirements matrix.

5.2 Consider the following system of commodity and industry accounts for a region:

Commodities Industries

1 2 1 2 Final Demand Total Output

Commodities 1 1 2 7 10
2 3 4 3 10

Industries 1 10 2 12
2 0 8 8

Value Added 8 2 10
Total Inputs 10 10 12 8

a. Compute the commodity-by-industry matrix of direct requirements.
b. Compute the industry-by-commodity total requirements matrices under both

assumptions of industry-based and commodity-based technology.
c. If a new naval facility is being constructed in the region, represented by commodity

final demands �e = [6 5]′, what would be the total production of each industry in
the region required to support this facility? Do this for both technology assumptions.

5.3 Consider again the system of accounts given in problem 5.1. Suppose we can split V into

two components, V1 =
[

5 5 5
5 5 0

]
and V2 =

[
10 0 5
0 20 0

]
such that V = V1 + V2.

Which of the two “mixed technology” assumptions that were covered in sections 5.7.1
and 5.7.2 can we invoke in computing the industry-by-commodity total requirements
matrix for this system of accounts? Compute the matrix. Why can we not invoke
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the other assumption? Can we invoke either the commodity-based or industry-based
technology assumptions?

5.4 Use both mixed technology assumptions in deriving industry-by-commodity total
requirements matrices for the system of accounts given in problem 5.2.

5.5 In a system of commodity-by-industry accounts, suppose we have defined four com-
modities and three industries. The Make matrix, V, and the Use matrix, U, are given
below:

U =

⎡⎢⎢⎣
20 12 18
5 30 12
10 13 11
12 17 40

⎤⎥⎥⎦ , V =
⎡⎣ 99 0 0 10

8 143 137 10
0 6 12 150

⎤⎦
a. Is it possible to compute the total commodity-by-industry total requirements matrix

using the assumption of industry-based technology? If not, why not. If so, calculate
that matrix.

b. Using the assumption of an industry-based technology, calculate the industry-by-
commodity requirements matrix for commodity-driven demand.

c. Aggregate the first two commodities to one in the Make and Use matrices. Assume
that you can decompose the resulting aggregated V into V1 and V2, where V1 =⎡⎣ 99 0 0

0 10 0
0 0 30

⎤⎦. Assume a commodity-based technology for V1 and an industry-

based technology for V2. Calculate the four total requirements matrices (i.e.,
commodity-by-commodity, industry-by-commodity, commodity-by-industry, and
industry-by-industry) to be used with commodity-driven demand calculations.

5.6 The numerical results in section 5.7.3 illustrate that column sums of both the R and T
matrices are one.

a. Prove that i′C1 = i′ and i′R = i′.
b. Prove that i′D1 = i′ and i′T = i′.

5.7 For the Make and Use matrices specified in problem 5.5, assume that the three indus-
tries are: Agriculture, Oil Production, and Manufacturing. The four commodities are
Agricultural Products, Crude Oil, Natural Gas, and Manufactured Products. We can
interpret this as meaning in this case that natural gas is considered a secondary product
of the oil industry. For a final demand of 100 of manufactured products what levels of
oil industry output are generated and how much natural gas production is generated to
satisfy this final demand?

5.8 Consider the following Make and Use matrices:

U =
⎡⎣ 20 15 18

5 30 12
10 16 11

⎤⎦ , V =
⎡⎣ 30 0 0

10 50 35
0 25 150

⎤⎦
Compute the corresponding commodity-by-commodity transactions table using the
assumption of commodity-based technology. Notice that there are negative elements.
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Use the iterative procedure developed inAppendix 5.2 to generate a revised commodity-
by-commodity transactions table that includes no negative entries.

5.9 Consider the Use and Make matrices for the US input–output tables for 2003 provided
in Appendix B and used to construct an industry-based technology commodity-by-
industry A and L. Table 5.11 gives the detail of the components of total final demand.
Note that the total final demand entry for mining is negative due to a negative trade
balance, i.e., the value of net exports (exports minus imports) is negative and is suffi-
ciently large to offset other components of final demand to render total final demand
negative. Suppose that the value for total imports of manufactured goods is projected
to increase by $1 trillion from its 2003 value with, for simplicity, all other elements of
total final demand remaining identical to those for 2003. What is the impact on gross
national product and on total output of all sectors of the economy?
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6 Multipliers in the
Input–Output Model

6.1 Introduction

One of the major uses of the information in an input–output model is to assess the
effect on an economy of changes in elements that are exogenous to the model of that
economy. For example,

Leontief input–output economics derive their significance largely from the fact that output multipliers
measuring the combined effects of the direct and indirect repercussions of a change in final demand
were readily calculated. (Steenge, 1990, p. 377.)

In Chapters 2 and 3 we presented several numerical illustrations of the ways in which
assumed changes in final-demand elements (e.g., federal government spending, house-
hold consumption, exports) were translated, via the appropriate Leontief inverse, to
corresponding output changes in the industrial sectors of the economy. When the exoge-
nous changes occur because of the actions of only one “impacting agent” (or a small
number of such agents) and when the changes are expected to occur in the short run
(e.g., next year), this is usually called impact analysis. Examples are a change in federal
government defense spending or in consumer demand for recreation vehicles.

On the other hand, when longer-term and broader changes are examined, then we are
dealing with projections and forecasting. If we project the levels of final demand for
outputs of all sectors in an economy five years hence, and estimate, using the Leontief
inverse, the outputs from all sectors that will be needed to satisfy this demand, this
is an exercise in forecasting. As the period of projection gets longer, the accuracy of
such an exercise tends to decrease, both because our ability to forecast the new final
demands accurately (the elements of f) will diminish and also because the coefficients
matrix – the elements of A and hence of L – may have become outdated. (The issue of
temporal stability of input–output coefficients is examined in Chapter 7.) If the model
is built from commodity–industry accounts, then it is the matrices B, C and/or D that
may become out of date.

In either impact analysis or forecasting, the general form of the model is x = Lf [or
�x = L�f ], and the usefulness of the result, x (or �x), will depend on the “correctness”
of both the Leontief inverse and the final-demand vector. Our primary concern in this
section is with the elements aij, and hence with L = (I − A)−1. The f (or �f) vector
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incorporates the assumed or projected behavior of one or more final-demand elements,
and accuracy in the estimation of these elements is also of paramount importance
to generating an accurate result. When the question is one of impact, then the final-
demand value or values are usually completely specified – for example, what is the
impact, by sector, of a new order for $2.5 million worth of sector j output by the federal
government? Then �f contains 2.5 (million) in the jth row and zeros elsewhere.

Alternatively, to find x for some future year requires a projection of both A and f
to that year. We will investigate some of the approaches for changing A over time in
Chapter 7. The projection of f is a problem that is often approached via econometric
models. The input–output forecasts of 1985 industrial outputs (and employment) for the
US economy in Almon et al. (1974, Chapters 8 and 9) depend on detailed and painstak-
ing projections of each of the components of final demand – personal consumption
expenditures, investment in capital equipment, construction, inventories, imports and
exports, and government expenditures (1974, Chapters 2 through 7, respectively). In
some but by no means all “joined” input–output and econometric models, the economet-
ric model provides a forecast of the final demands, which then “drive” the input–output
model. (There is a growing literature on this issue of the interactions between input–
output models and econometric models, particularly at the regional level. Some of this
is explored in Chapter 14.)

A number of summary measures, derived from the elements of L, are often employed
in impact analysis; these are input–output multipliers. We examine multipliers in this
chapter.

6.2 General Structure of Multiplier Analysis

Several of the most frequently used types of multipliers are those that estimate the
effects of exogenous changes on (a) outputs of the sectors in the economy, (b) income
earned by households in each sector because of the new outputs, (c) employment (jobs,
in physical terms) that is expected to be generated in each sector because of the new
outputs and (d) the value added that is created by each sector in the economy because
of the new outputs. We examine these in this section.

The notion of multipliers rests upon the difference between the initial effect of an
exogenous change and the total effects of that change. The total effects can be defined
either as the direct and indirect effects (found from an input–output model that is open
with respect to households) or as direct, indirect and induced effects (found from a
model that is closed with respect to households).1 The multipliers that incorporate
direct and indirect effects are also known as simple multipliers. When direct, indirect
and induced effects are captured, they are often called total multipliers.

1 In some discussions of multipliers in an input–output model, what we have called the initial effect is termed the
direct effect. For later exposition – for example, in looking at shortcut methods for finding multipliers – when
the power series approximation

(I − A)−1 = I + A + A2 + A3 + · · ·
will be used, it seems to us preferable to associate “initial” with the I term, “direct” with A, and “indirect” with
the remaining terms, A2 + A3 + · · ·
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6.2.1 Output Multipliers
An output multiplier for sector j is defined as the total value of production in all sectors
of the economy that is necessary in order to satisfy a dollar’s worth of final demand for
sector j’s output.

Simple Output Multipliers For the simple output multiplier, this total pro-
duction is obtained from a model with households exogenous. The initial output effect
on the economy is defined to be just the initial dollar’s worth of sector j output needed
to satisfy the additional final demand. Then, formally, the output multiplier is the ratio
of the direct and indirect effect to the initial effect alone.

We continue with the small example in Chapter 2, section 2.3, where

A =
[

.15 .25

.20 .05

]
and

L =
[

1.254 .330
.264 1.122

]
(In the remainder of this book we will sometimes keep three figures to the right of
the decimal point and sometimes four, depending on the purposes of the numerical

illustration.) Note that �f(1) =
[

1
0

]
indicates an additional dollar’s worth of final

demand for the output of sector 1 only, and �f(2) =
[

0
1

]
indicates, similarly, an

additional dollar’s worth of final demand for the output of sector 2 only. Consider
�f(1); the implications for sectors 1 and 2 are found as L�f(1). Denote this by
�x(1), so

�x(1) =
[

1.254 .330
.264 1.122

] [
1
0

]
=
[

1.254
.264

]
(6.1)

This is, of course, just the first column of L –

[
l11

l21

]
.

The additional outputs of $1.254 from sector 1 and $0.264 from sector 2 are required
for a dollar of new final demand for the output of sector 1 only. The $1.254 from
sector 1 represents $1.00 to satisfy the original new dollar of final demand plus an
additional $0.254 for intra- and interindustry use. The $0.264 from sector 2 is for
intra- and interindustry use only. The sector 1 output multiplier, m(o)1, is defined
as the sum of the elements in the �x(1) column, namely $1.518, divided by $1;
m(o)1 = $1.518/$1 =1.518, a dimensionless number. The $1 in the denominator is
the initial effect on sector 1 output of the new dollar’s worth of final demand for sector
1’s product; the dollar’s worth of final demand becomes an additional dollar’s worth
of sector 1 output as the first term in the series assessment of total direct and indirect
effects on sector 1 production. Formally, using i′ = [1 1] as usual to generate column
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sums

m(o)1 = i′�x(1) =
n∑

i=1

li1 (6.2)

where n = 2 in this example.
Similarly,

�x(2) =
[

1.254 .330
.264 1.122

] [
0
1

]
=
[

.330
1.122

]
=
[

l12

l22

]
and

m(o)2 = i′�x(2) =
n∑

i=1

li2 (6.3)

Here m(o)2 = 1.452. In general, the simple output multiplier for sector j is

m(o)j =
n∑

i=1

lij (6.4)

Thus, for example, if a government agency were trying to determine the differential
effects of spending an additional dollar (or $100, or $1,000,000, or whatever amount)
on the output of a sector, comparison of output multipliers would show where this
spending would have the greatest impact in terms of total dollar value of output gen-
erated throughout the economy. Note that when maximum total output effects are the
exclusive goal of government spending, it would always be rational to spend all the
money in the sector with the largest output multiplier. Even with anticipated expendi-
tures of $1,000,000, there would be no reason, on the basis of output multipliers alone,
to divide that spending between the sectors.

Of course, there might well be other reasons – taking into account strategic factors,
equity, capacity constraints for sectoral production, and so on – for using some of the
new final-demand dollars on the output of the other sector (or sectors, when n > 2). Note
also that multipliers of this sort may overstate the effect on the economy in question
if some sectors are operating at or near capacity and hence some of the needed new
inputs would have to be imported to the economy and/or outputs from some sectors
would be shifted from exports and kept in the economy for use as inputs. Phenomena
such as these will assume even more importance in regional models.

We see that L is a matrix of sector-to-sector multipliers, lij, relating final demand in
sector j to output in sector i. Output multipliers (column sums of L) represent sector-to-
economy multipliers, relating final demand in sector j to economy-wide output. For an n-
sector model, denote the row vector of these multipliers by m(o) = [m(o)1, . . . , m(o)n].2

2 Strictly speaking, one expects a row vector to include a “prime” in its designation, as with x and x′ in ear-
lier chapters. However, here and throughout this discussion of multipliers we simply define various rows of
multipliers without the prime to save on notational complexity.
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With i′
(1×n)

= [1, . . . , 1], we have

m(o) = i′

Sector-demand-
to-sector-output

multipliers︷︸︸︷
L︸ ︷︷ ︸

Sector-demand-
to-economy-wide-
output multipliers

(6.5)

We will see that many additional input–output multiplier variations build on this rep-
resentation. All that is required is to alter the elements in the multiplier matrix so that
instead of (�fj = 1) → (�xi) they represent (�fj = 1) → (some function of �xi), such
as employment or energy use or pollution emissions.

Total Output Multipliers If we consider the input coefficients matrix closed
with respect to households (as described in section 2.5) we capture in the model the
additional induced effects of household income generation through payments for labor
services and the associated consumer expenditures on goods produced by the vari-
ous sectors. Continuing with the example from section 2.5, the augmented coefficient
matrix, with an added household row and column, was

Ā =
⎡⎢⎣ .15 .25 .05

.20 .05 .40

.30 .25 .05

⎤⎥⎦
and the Leontief inverse, with elements l̄ij, was

L̄ = (I − Ā)−1 =
⎡⎢⎣1.365 0.425 0.251

0.527 1.348 0.595

0.570 0.489 1.289

⎤⎥⎦ =
[

L̄11 L̄12

L̄21 L̄22

]
(6.6)

as in (2.7) but rounded here to three decimals. We have added the partitioned matrix
representation because it will be useful in much of what follows in this chapter. Clearly,
the elements in L̄ = [l̄ij] also relate final-demand changes to sector outputs, only now
these are in a model with households endogenous, and hence the effects tend to be
larger.

To assess the impact of a new dollar’s worth of final demand for sector 1 output,

we would now form the three-element vector �f̄(1) =
⎡⎣1

0
0

⎤⎦ (meaning no exogenous
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change in demand for sector 2 output or for labor services), and find exactly the first
column of L̄, namely

�x̄(1) = L̄�f̄(1) =
⎡⎣1.365

0.527
0.570

⎤⎦
[Compare (6.1) above.] Adding these elements gives a parallel to (6.2),

m̄(o)1 = i′�x̄(1) =
n+1∑
i=1

l̄i1 = 2.462 (6.7)

with n = 2, as before but now with i′ = [1, 1, 1]. (In what follows we assume that i or i′
always has appropriate dimensions for the multiplication in which it is involved.)

Sums of the first n elements in each of the columns of L̄ (n = 2 for our example)
represent the total output multiplier effects over the original n sectors only – the trun-
cated output multipliers. They can be found as i′L̄11. When interest is centered on the
total output multipliers for the original n sectors (for example, to be compared with
the simple output multipliers for these same n sectors), these truncated output multi-
pliers are of interest. Denote these truncated total output multipliers by m̄[o(t)]j; here
m̄[o(t)]1 = 1.892.

The total output multiplier for sector 2 is

m̄(o)2 =
n+1∑
i=1

l̄i2 = 2.262 (6.8)

and m̄[o(t)]2 = 1.773. In general, for sector j, the total output multiplier is given by

m̄(o)j =
n+1∑
i=1

l̄ij (6.9)

and the truncated total output multiplier is m̄[o(t)]j =
n∑

i=1
l̄ij. In compact matrix terms,

m̄(o) = i′L̄ and m̄[o(t)] = i′L̄11 (6.10)

Example: The US Input–Output Model for 2003 We again use the seven-sector
2003 US model. The Leontief inverse was shown as Table 2.7 in Chapter 2 and is not
repeated here. The simple output multipliers are easily found to be

m(o) = [1.9195 1.6051 1.7218 1.9250 1.4868 1.6081 1.5985]
In this case, the largest multipliers are associated with manufacturing (4) and agriculture
(1). This is hardly surprising, considering the seven-sector level of aggregation.
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Table 6.1 Total Requirements Matrices in Commodity–Industry
Models

Industry Technology Commodity Technology

Commodity-Demand Driven Models
Commodity-by-Commodity (I − BD)−1 (I − BC−1)−1

Industry-by-Commodity [D(I − BD)−1] [C−1(I − BC−1)−1]
Industry-Demand Driven Models
Industry-by-Industry (I − DB)−1 (I − C−1B)−1

Commodity-by-Industry [D−1(I − DB)−1] [C(I − C−1B)−1]

Output Multipliers in Commodity–Industry Models With commodity-by-
industry models, no new principles are involved. As usual, output multipliers would
be found as column sums of the relevant total requirements matrices (open or closed
with respect to households). In Table 6.1 we collect the results for total requirements
matrices from Tables 5.4 and 5.5 in Chapter 5.

For example, for the commodity-by-commodity total requirements matrix under
industry technology, the row vector of these output multipliers is i′(I − BD)−1. Notice
that since i′D = i′ (column sums of D are all 1), the same output multipliers will be found
for the industry-by-commodity total requirements matrix: i′[D(I − BD)−1] = i′(I −
BD)−1. The same will be true for any other pair of matrices (vertically) in the table.
This is because (1) i′C = i′ (C is constructed so that is true), (2) i′D−1 = i′ (this is easy to
show, given i′D = i′) and (3) similarly, i′C−1 = i′. This result is what we would expect
– summing down the columns in a total requirements matrix (over all rows) should
give the same result, irrespective of the row labels (“commodities” or “industries”).

The results below are for the total requirements matrices in the numerical examples
from Chapter 5. They illustrate the identical results for pairs of matrices.

Commodity-Demand-Driven Models

Industry Technology Commodity Technology

Commodity-by-Commodity

(I − BD)−1 =
[

1.1568 .0898
.1314 1.0782

]
(I − BC−1)−1 =

[
1.1644 .0825
.1375 1.0723

]
Output Multipliers [ 1.2882 1.1680 ] [ 1.3019 1.1548 ]

Industry-by-Commodity

D(I − BD)−1 =
[

1.0411 .0809
.2471 1.0871

]
C−1(I − BC−1)−1 =

[
1.1507 −.0247
.1512 1.1795

]
Output Multipliers [ 1.2882 1.1680 ] [ 1.3019 1.1548 ]
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Industry-Demand-Driven Models

Industry Technology Commodity Technology

Industry-by-Industry

(I − DB)−1 =
[

1.1478 .0809
.1537 1.0871

]
(I − C−1B)−1 =

[
1.1507 .0821
.1512 1.0861

]
Output Multipliers [ 1.3015 1.1680 ] [ 1.3019 1.1682 ]

Commodity-by-Industry

D−1(I − DB)−1 =
[

1.2753 .0898
.0262 1.0782

]
C(I − C−1B)−1 =

[
1.1644 .1808
.1375 .9873

]
Output Multipliers [ 1.3015 1.1680 ] [ 1.3019 1.16823 ]

6.2.2 Income/Employment Multipliers
Generally an analyst is more likely to be concerned with the economic impacts of
new final demand as measured by jobs created, increased household earnings, value
added generated, etc., rather than simply gross output by sector. In this section we
explore impacts on households; the approach is exactly the same whether we measure
this impact in terms of jobs (physical) or earnings (monetary). In what follows, we
illustrate using income, but this applies equally well to jobs.

Income Multipliers One straightforward approach is simply to convert the
elements in L into dollars’ worth of employment using labor-input coefficients – either
monetary (wages earned per unit of output, as in [an+1,1, . . . , an+1,n]) or physical
(person-years, or some such measure, per unit of output). We begin with transactions
information; let h′ (for households) denote the row vector of these data. In the mone-
tary case, this is h′ = [zn+1,1, . . . , zn+1,n]; in physical terms it would be some measure
of numbers of employees in each sector in the base period. Then h′

c = h′x̂−1 is the
row of associated household input coefficients.4 Again, in monetary terms these are the
elements in [an+1,1, . . . , an+1,n], used in the example above to close the model with
respect to households (an+1, j = zn+1, j/xj), indicating household income received per
dollar’s worth of sector output.

Associated with �f =
[

1
0

]
, we found output effects in the first column of

L –

[
l11

l21

]
, as in (6.1). The conversion of this first column to income terms is accom-

plished by weighting the first element by an+1,1 and the second element by an+1,2,

3 This is not equal to 0.1808 + 0.9873 only because of rounding in the total requirements matrix.
4 We denoted this as hR earlier when closing the model with respect to households. Now we modify the notation

to emphasize that this is a row vector of coefficients and to allow for generalization to other kinds of multipliers.
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giving

[
an+1,1l11

an+1,2l21

]
. In general, then, using m(h)j for the simple household income

multiplier for sector j,

m(h)j =
n∑

i=1

an+1,ilij (6.11)

Again, “simple” refers to the fact that these multipliers are found using elements in the
L matrix, with households exogenous.

Continuing the same example, we had an+1,1 = 0.3 and an+1,2 = 0.25. Thus

m(h)1 = (0.3)(1.254) + (0.25)(0.264) = 0.376 + 0.066 = 0.442

and
m(h)2 = (0.3)(0.33) + (0.25)(1.122) = 0.099 + 0.281 = 0.380

In this illustration, m(h)1 = 0.442 indicates that an additional dollar of final demand for
the sector 1 output would generate $0.442 of new household income, when all direct and
indirect effects are converted into dollar estimates of income. If earnings in individual
sectors are of interest, we see that $0.376 would be earned by employees in sector
1 and $0.066 would be earned by sector 2 employees. And similarly, m(h)2 = 0.380
could be disaggregated into earnings in each of the sectors. From this example, using
this measure of effectiveness, dollars of final demand – for example, new government
purchases – generate more dollars of new household income when they are spent on
the output of sector 1 than when they are spent on the output of sector 2.

If the elements in L̄ are weighted similarly, total (direct plus indirect plus induced)
income effects or household income multipliers are obtained. As before, using an
overbar to denote a multiplier derived from L̄, the parallel to m(h)j in (6.11) is

m̄(h)j =
n+1∑
i=1

an+1,i l̄ij (6.12)

For our numerical example, with an+1,3 = 0.05,

m̄(h)1 = (0.3)(1.365) + (0.25)(0.527) + (0.05)(0.570) = 0.570

and
m̄(h)2 = (0.3)(0.425) + (0.25)(1.348) + (0.05)(0.489) = 0.489

These total income multipliers for sectors 1 and 2 are equal to l̄n+1,1 and l̄n+1,2, the
elements of L̄21 [in L̄ (6.6)]. Recall the interpretation of any element l̄ij; it measures
the total (direct, indirect, and induced) effect on sector i output of a dollar’s worth
of new demand for sector j output. Thus l̄n+1,j is the total effect on the output of the
household sector (the total value of labor services needed) when there is a dollar’s
worth of new final demand for goods of sector j. This is precisely what we mean by the
total household income effect or total household income multiplier. So

m̄(h)j = l̄n+1,j (6.13)
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(In Appendix 6.1, the relationship between the total household income multipliers and
the bottom-row elements of L̄ is shown exactly, using matrix algebra results on the
inverse of a partitioned matrix.) Again, if we are only interested in household income-
generating effects originating in the n original sectors, we would calculate a truncated
total household income multiplier, m̄[h(t)]1, by summing down the columns of L̄11

only. For the example, m̄[h(t)]1 = 0.541 and m̄[h(t)]2 = 0.465.
In this and all subsequent discussions in this chapter, all results hold if A and L

are understood to be direct and total requirements matrices in a commodity–industry
model – as for example with AI

(c×c)
= BD and LI

(c×c)
= (I−BD)−1. We illustrated the case

of output multipliers for various commodity–industry models in section 6.2.1, above.

Type I and Type II Income Multipliers With income multipliers, one has some
choice regarding what should logically be termed the initial effect of new final demand.
With output multipliers it was fairly clear that the initial effect of a new dollar’s worth
of final demand for sector j output is that sector j production must increase by one dollar
(and eventually, of course, by more than that dollar). With income effects, the same
dollar’s worth of new demand for sector j becomes, initially, the same dollar’s worth
of new output by sector j; this is what we considered the initial effect in developing
the household income multipliers, above. However, the initial dollar’s worth of new
output from sector j means an initial additional income payment of an+1,j to workers in
sector j. Hence an+1,j could be viewed as the initial income effect of the new demand
for sector j output.

Thus there is another kind of simple income multiplier, usually called the type I
income multiplier, for any sector j. This has the direct and indirect income effect, or the
simple household income multiplier [(6.11)] as a numerator, and uses as a denominator
not the initial dollar’s worth of output but rather its initial labor income effect, an+1,j.5

Let m(h)I
j represent this type I income multiplier for sector j, so

m(h)I
j =

n∑
i=1

an+1,ilij

an+1,j
= m(h)j

an+1,j
(6.14)

For our numerical example,

m(h)I
1 = 0.442/0.3 = 1.473

m(h)I
2 = 0.380/0.25 = 1.520

Again, if the coefficients matrix is closed with respect to households, income effects
similar to these type I multipliers can be calculated; these are called type II income

5 These have also been called “normalized” multipliers; for example, in Oosterhaven (1981).
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multipliers:6

m(h)II
j =

n+1∑
i=1

an+1,i l̄ij

an+1,j
= m̄(h)j

an+1,j
(6.15)

Again, for the numerical example,

m(h)II
1 = 0.570

0.3
= 1.900

m(h)II
2 = 0.489

0.25
= 1.956

The parallel between this measure and the type I effect in (6.14) is the same as that
between the total and simple household income multipliers – m̄(h)j and m(h)j. The
numerator for m(h)I

j is m(h)j from (6.11); the numerator for m(h)II
j is m̄(h)j from (6.12)

or from (6.13). Thus, for exactly the same reasons as for m̄(h)j, we can alternatively
define m(h)II

j as

m(h)II
j = l̄n+1,j/an+1,j (6.16)

These multipliers show by how much the initial income effects (0.3 and 0.25) are blown
up when direct, indirect, and induced effects (due to household spending because of
increased household income) are taken into account, via L̄. Truncated type II income
multipliers would be found, as usual, by considering columns in L̄11 only. In this
example they are m[h(t)]II

1 = 1.803 and m[h(t)]II
2 = 1.860.

It is generally conceded that Type I multipliers probably underestimate economic
impacts (since household activity is absent) and Type II multipliers probably give
an overestimate (because of the rigid assumptions about labor incomes and attendant
consumer spending). For example, Oosterhaven, Piek and Stelder (1986, p. 69) suggest

These two multipliers [Type II and Type I] may be considered as upper and lower bounds on the
true indirect effect of an increase in final demand; a realistic estimate generally lies roughly halfway
between the Type I and Type II multipliers.

Relationship Between Simple and Total Income Multipliers or Between Type I
and Type II Income Multipliers To the extent that the results of an input–output anal-
ysis with households exogenous tend to underestimate total effects, total or type II
multipliers may be more useful than simple or type I multipliers in estimating poten-
tial impacts. Or some in-between figure might be more realistic, as noted above, but
deciding exactly where between these two limits may be problematic. However, if
one is primarily interested in ranking or ordering the sectors – which sector has the
largest multiplier, which has the next largest, and so on – then type I multipliers are
just as useful as type II (and usually easier to obtain), because the ratio of type II

6 The designations “type I” and “type II” seem to have originated with Moore (1955). Calculation of these measures
(in a regional setting) was pioneered by Moore and Petersen (1955) for Utah and later by Hirsch (1959) for St.
Louis.
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to type I income multipliers can be shown to be a constant across all sectors. Since
m(h)II

j = m̄(h)j/an+1,j and m(h)I
j = m(h)j/an+1,j, m(h)II

j /m(h)I
j = m̄(h)j/m(h)j. What

is now claimed is that m(h)II
j /m(h)I

j = k (a constant) for all j. Moreover, k can be easily

found without any need for L̄. This represents a computational advantage. To show that
this ratio is a constant requires that we apply some facts on the inverse of the partitioned
matrix L̄. This is done in Appendix 6.2, for the interested reader. In our illustra-
tive example we found m(h)1 = 0.442, m̄(h)1 = 0.570, m(h)2 = 0.380, m̄(h)2 = 0.489,
m(h)I

1 = 1.473, m(h)II
1 = 1.900, m(h)I

2 = 1.520, and m(h)II
2 = 1.956. Therefore (to two

decimals), m̄(h)1/m(h)1 = 0.570/0.442 = 1.29, m(h)II
1 /m(h)I

1 = 1.90/1.47 = 1.29, and
the same values can be found for m̄(h)2/m(h)2, and m(h)II

2 /m(h)I
2, so k = 1.29 for this

example.

Which Multiplier to Use? As a practical matter, the choice between multiplier
effects as measured by m(h)j [and m̄(h)j] or by m(h)I

j [and m(h)II
j ] depends on the nature

of the exogenous change whose impact is being studied. If that change is, for example,
an increase in federal government spending on output of the aircraft sector, then the most
useful figures may be those that convert the total dollar value of new government spend-
ing into total new income earned by households in the economy – the income multipliers
m(h)j and m̄(h)j. Using m(h)1 = 0.442 and m(h)2 = 0.380 from the example, we would
estimate that a tariff policy that would increase foreign demand for sector 1 goods
by $100,000 would ultimately lead to an increase of (0.442)($100,000) = $44,200
in new income earned, while a policy that increased export demand for sector 2
goods by $100,000 would generate (0.380)($100,000) = $38,000 in new household
income earned. If we also attempt to capture the consumer spending that is associ-
ated with income earned, in a closed model, we would use m̄(h)1 and m̄(h)2 and find
(0.570)($100,000) = $57,000 and (0.489)($100,000) = $48,900, respectively. In either
case, we find that stimulation of export demand for sector 1 output generates the larger
effect, as expected, because m̄(h)j/m(h)j = k (here 1.29), so the largest simple multiplier
will be the largest total multiplier.

The impacts of decreases can be assessed just as easily. Suppose that management
teams in two different industries, i and j, were considering moving a large assembly plant
out of the country because of lower labor costs abroad. If these plants had annual payrolls
of $pi and $pj, respectively, then a measure of the total household income lost through-
out the national economy because of the contemplated relocations would be given by
m(h)I

i pi and m(h)I
j pj – or by m(h)II

i pi and m(h)II
j pj, if one wants to include induced

households consumption effects. For example, using m(h)I
1 = 1.473 and m(h)I

2 =
1.520 from our example, if a plant in industry 1 with an annual payroll of $100,000 were
to move out of the country, we would estimate a total income loss of (1.47)($100,000) =
$147,300 throughout the economy. Similarly, if a plant in industry 2, with an annual
payroll of $250,000, were to move out of the economy, we could estimate the total
loss to household income throughout the economy because of this out-movement
as (1.520)($250,000) = $380,000. Again, if we capture consumer spending using a
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closed model, our estimates, using m(h)II
1 = 1.900 and m(h)II

2 = 1.956, would be a
(1.900)($100,000) = $190,000 income loss from the out-movement of the plant in
industry 1 and a (1.956)($250,000) = $489,000 income decrease from loss of the plant
in industry 2.

Even More Income Multipliers As noted above (section 3.2.3), in an impor-
tant early study of Boulder, Colorado, Miernyk et al. (1967) implement a model that
distinguishes between consumption propensities of new residents in a region and those
of established residents. In addition, current residents were divided into income classes
(four in this study), and separate regional consumption functions were estimated for
each income class. The results of this approach have been termed type III income mul-
tipliers, and they are smaller, sector by sector, than the type II income multipliers. This
is to be expected, since marginal consumption coefficients, associated with current
residents’ consumption habits, were smaller than average consumption coefficients,
associated with new residents’ consumption habits and which are the exclusive basis
of the type II multipliers.7

Although the ratio of type III to type II income multipliers is not constant across
sectors, the range was only 0.87–0.91, with an average of 0.88. Since the (constant) ratio
of type II to type I income multipliers in this study was 1.34, this means that the ratio of
type III to type I income multipliers averaged 1.18. If a similar narrow range of ratios
of type III to type II income multipliers were found in other regional studies in which
households were similarly disaggregated, it would be possible to approximate type III
income multipliers across all sectors by appropriate “inflation” of the type I multiplier.
In the Boulder study, the inflating factor would be 1.18.

Further, Madden and Batey (1983 and elsewhere) derive a type IV income multiplier.
Like the type III multipliers, these are (generally) larger than type I but smaller than
type II income multipliers. The distinction here is between the spending patterns of
currently employed local residents and the spending patterns of currently unemployed
local residents.8 The models giving rise to these four kinds of multipliers are discussed
and summarized in Batey and Weeks (1989). Table 6.2 provides an overview.

Physical Employment Multipliers All of the above types of multipliers apply
equally well if we are interested in counts of jobs, in physical terms. Our initial infor-
mation, in h′, would be in person-years or some similar unit of measure, and the results

7 In the Boulder study, the average (aggregate) household consumption coefficient, for the products of all 31
sectors of the local economy, is 0.40. (This is i′hC , using the household column in the Boulder study.) The
marginal (aggregate) household consumption coefficients for the products of the same 31 sectors, are 0.31, 0.21,
0.16, and 0.02 for the four income classes; their average is 0.1730. (Calculated from Tables IV-2 and V-4a,
respectively, in Miernyk et al., 1967.) The type III multipliers in the Boulder study were found not from the
Leontief inverse of a model that had been closed with respect to households in this disaggregated way but rather
in an iterative, round-by-round fashion.

8 Conway (1977) proposed applying the terms “type A” and “type B” multipliers to the numerators of “type I”
and “type II” multipliers. The motivation is to facilitate studies of changes in multiplier values over time. When
the multiplier is a ratio in which both numerator and denominator elements change over time, a change in a
multiplier value can reflect changes in either the numerator or in the denominator or in both.
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Table 6.2 Model Closures with Respect to Households

Measured Effects

Model Direct + Indirect Induced* Model Closure Income Multiplier

1 Direct + Indirect None None Type I
2 Direct + Indirect Intensive Single household row

and column
Type II

3 Direct + Indirect Intensive +
Extensive

Two household rows
and columns

Type III

4 Direct + Indirect Intensive +
Extensive +
Redistributive

Three household
rows and columns

Type IV

∗Intensive effects are associated with indigenous workers and marginal consumption coefficients.
Extensive effects are associated with in-migrants and average consumption coefficients. Redistributive
effects are associated with unemployed residents and their consumption propensities based on benefit
payments.

in (6.11) through (6.16) remain valid, with the interpretation in physical rather than
monetary terms.

6.2.3 Value-Added Multipliers
Another kind of multiplier relates the new value added created in each sector in response
to the initial exogenous shock to that initial shock. The principles are identical, and the
results in (6.11) through (6.16) again remain valid. The only new information required
is a set of sectoral value-added coefficients – v′

c = v′x̂−1. We leave it for the reader
to fill in details. It is often argued that value added is a better measure of a sector’s
contribution to an economy than, say, total output, since it truly captures the value that
is added by the sector in engaging in production – the difference between a sector’s
total output and the cost of its intermediate inputs.

6.2.4 Matrix Representations
Matrix representation provides a compact and efficient way to express multipliers.
Output multipliers were represented in (6.5) as

m(o) = i′L

For income multipliers (simple), with h′
c = h′x̂−1, we have

m(h)=[m(h)1, . . . , m(h)n] = h′
cL (6.17)
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Here the summation row, i′ in (6.5), has been replaced by the row of labor-input
coefficients, h′

c. We can deconstruct this in the following way:

m(h) = h′
cL = h′x̂−1L = i′

Sector-demand-
to-sector income

multipliers
[M(h)]︷ ︸︸ ︷

ĥ′x̂−1
L︸ ︷︷ ︸

Sector-demand-
to-economy-wide
income multipliers

[m(h)]

(6.18)

In particular, ĥ′x̂−1L converts the inverse matrix of final demand-to-output multipli-
ers in L into a matrix of final demand-to-income multipliers, M(h). Then i′ĥ′x̂−1L =
h′x̂−1L = h′

cL generates a vector of economy-wide income multipliers, m(h), the
column sums of the converted inverse. Notice that in this generic format, the simple
output multipliers in (6.5) can be thought of as

m(o) = i′L = x′x̂−1L = i′x̂′x̂−1L

For the closed model, the n-element vector of total income multipliers for the n sectors
is

m̄(h) = [m̄(h)1, . . . , m̄(h)n] = [
h′

c an+1,n+1
]

[1×(n+1)]

[
L̄11

L̄21

]
[(n+1)×n]

= h̄′
c

[
L̄11

L̄21

]
(6.19)

This makes clear that m̄(h)j > m(h)j for two reasons: (1) even though the weights in
h′

c are the same for both models, the inverse elements in L̄11 are consistently larger
than those in L, and (2) each m̄(h)j includes the additional term an+1,n+1 l̄n+1,j. [In the
case of truncated multipliers, only (1) is relevant.]

The n-element row vector of type I income multipliers for each sector, m(h)I , can
be compactly represented using m(h) from (6.18), namely

m(h)I= m(h)(ĥ′
c)

−1= h′
cL(ĥ′

c)
−1 (6.20)

A row vector of type II income multipliers for the original n sectors can be defined
using L̄21 = [l̄n+1,1, l̄n+1,2, . . . , l̄n+1,n], namely

m(h)II = L̄21(ĥ′
c)

−1 (6.21)

6.2.5 Summary
Table 6.3 presents a summary of the results in sections 6.2.1–6.2.3. Table 6.4 sum-
marizes these multiplier results in a set of generic templates. We use “z′

c” for the
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Table 6.3 Input–Output Multipliers

Output Effects Income Effectsa

Exogenous
Change

�fj = 1 �fj = 1

Initial Effect (N )

(sector j)
�xj = 1 �xj = 1 � in sector j payments

to labor = an+1,j

Total Effect (T )

in open model
(Direct +
Indirect)

n∑
i=1

lij
n∑

i=1
an+1,ilij

Simple Multiplier
(T/N ) (open
model)

Simple output
multiplier

m(o)j =
n∑

i=1
lij/�fj

=
n∑

i=1
lij

[(6.4)]

Simple income
multiplier

m(h)j

=
n∑

i=1
an+1,ilij/�fj

=
n∑

i=1
an+1,ilij

[(6.11)]

Type I income
multiplier

m(h)I
j

=
n∑

i=1
an+1,ilij/an+1,j

= m(h)j/an+1,j
[(6.14)]

Total Effect (T̄ )

in closed
model (Direct
+ Indirect +
Induced)

n+1∑
i=1

l̄ij
n+1∑
i=1

an+1,i l̄ij

Total Multiplier
(T̄/N ) (closed
model)b

Total output
multiplier

m̄(o)j =
n+1∑
i=1

l̄ij/�fj

=
n+1∑
i=1

l̄ij

[(6.9)]

Total income multiplier
m̄(h)j

=
n+1∑
i=1

an+1,i l̄ij/�fj

=
n+1∑
i=1

an+1,i l̄ij [(6.12)]
= l̄n+1,j [(6.13)]

Type II income
multiplier

m(h)II
j

=
n+1∑
i=1

an+1,i l̄ij/an+1,j

= m̄(h)j/an+1,j [(6.15)]
= l̄n+1,j/an+1,j [(6.16)]

a For income effects, an+1,j = zn+1,j/xj , where zn+1,j = sector j’s payments to households (labor).
For employment effects, replace zn+1,j with sector j’s employment measured in physical units. For
value-added effects, replace zn+1,j with sector j’s value-added payments.

b For truncated total multiplier effects, sum over i = 1, . . . , n rather than i = 1, . . . , n + 1.

appropriate row vector of coefficients, found from transactions (z′) and output (x)
information; z′

c = z′x̂−1. When z′ = x′, z′
c = i′, and we have traditional output

multipliers. [Contrary to subsequent notation, we denoted these as m(o), for “out-
put,” rather than m(x).] Note that Type I and II output multipliers are meaningless;
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Table 6.4 General Multiplier Formulas

Multiplier Matrix Definition

Simple m(z) = z′
cL

Total m̄(z) = z̄′
c

[
L̄11
L̄21

]
where
z̄′

c = [
z′

c zn+1,n+1/xn+1
]

Truncated m̄[z(t)] = z′
cL̄11

Type I m(z)I = z′
cL(ẑ′

c)
−1

Type II m(z)II = L̄21(ẑ′
c)

−1

they are identical to simple and total output multipliers since î′ = I. When z′ = h′or
z′ = v′ we have household (either income or employment) or value-added multipliers,
respectively. Many other kinds of multipliers are possible. For example, if z′ = e′ is
a row measuring amounts of pollution emitted by production in each of the sectors,
we would have an environmental (pollution-generation) multiplier, or if z′ = n′ is a
row indicating energy consumption by sector, we would have energy-use multipliers.
Energy-use, pollution-generation, and other such multipliers are frequently found in
truncated form, as z′

cL̄11, which is equivalent to setting z̄′
c = [

z′
c 0

]
in Table 6.4.

Some of these energy and environmental extensions are discussed in Chapter 10.

6.3 Multipliers in Regional Models

In section 6.2 we presented the basic concepts of various input–output multipliers. All
of these multipliers, which quantify impacts on the economy under study, rely on the
fact that the A matrix (as well as the associated coefficients for income, employment,
value added, etc.) must represent interindustry relationships within that economy. In
particular, if sector i is agriculture and sector j is food processing, aij must represent the
value of inputs of agricultural products produced within the economy (not imported)
per dollar’s worth of output of the food-processing sector in the same economy.

6.3.1 Regional Multipliers
Very often an analyst is interested in impacts at a regional level. For example, the federal
government may be trying to decide where to award a new military contract and have
as one of its concerns the stimulation of economic development in one or more less-
developed regions.Astate government may wish to allocate funds for labor skill training
in one or more industries among several counties with currently above-average levels of
unemployment, and so on. In a single-region input–output model, as in section 3.2, the
Ar = p̂rA matrix represented one way of trying to capture regional interrelationships
among sectors, and the various kinds of multipliers discussed above would acquire a
spatial dimension by using the elements of Ar and its associated Leontief inverse.
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For example, in section 3.2 a national table, A =
[

.15 .25

.20 .05

]
, was modified because

of the assumption that in region r the basic technology of production in sectors 1 and 2
was essentially the same as that reflected in the two columns of A, but the proportions
of inputs required from sectors 1 and 2 that could be expected to come from within the

region were pr
1 = 0.8 and pr

2 = 0.6, so pr =
[

0.8
0.6

]
, and

Ar = p̂rA =
[

.12 .20

.12 .03

]
and Lr = (I − Ar)−1 =

[
1.169 0.241
0.145 1.061

]
Hence the regional simple output multipliers, as in (6.4), are m(o)r

1= 1.314 and
m(o)r

2 = 1.302. Recall from section 6.2.1 that the output multipliers in the original A
matrix were m(o)1 = 1.518 and m(o)2 = 1.452. The difference, of course, is due to
the fact that the elements of A have been reduced, using the regional percentages in pr ,
to reflect the need for imports to supply some of the necessary production. Similarly,
external output multipliers (not regional – denoted r̃) are m(o)r̃

1 = 1.518 − 1.314 =
0.204 for sector 1 and m(o)r̃

2 = 1.452 − 1.302 = 0.150 for sector 2. The interpretation
of these is similar to that for other output multipliers: for each dollar’s worth of final
demand in the region for sector 1 output, 20.4 cents’ worth of inputs will be needed
from firms in all sectors outside of the region. And for each dollar’s worth of final
demand in the region for sector 2 output, this figure is 15 cents.

If we have estimates of household inputs, household consumption, and income earned
in the region, the model can be closed with respect to households, allowing calculation
of regional total output multipliers. If we assume that the household input coefficients in
the region are the same as those for the nation as a whole and that these represent labor
supplied by workers living in the region, then ar

31 = 0.30, ar
32 = 0.25, and ar

33 = 0.05.
Also, if we assume that sectors 1 and 2 supply 80 percent and 60 percent, respectively,
of consumer needs (the same percentages as they supply of the needs for production),
then ar

13 = (0.8)(0.05) = 0.04 and ar
23 = (0.6)(0.40) = 0.24 so

Ār =
⎡⎢⎣ .12 .20 .04

.12 .03 .24

.30 .25 .05

⎤⎥⎦ and L̄r = (I − Ār)−1 =
⎡⎢⎣1.217 0.282 0.123

0.263 1.164 0.305

0.453 0.395 1.172

⎤⎥⎦
Therefore, the regional total output multipliers, as in (6.9), are m̄(o)r

1 = 1.933 and
m̄(o)r

2 = 1.841.
With information on regional labor inputs (in monetary terms) and household con-

sumption coefficients, various income multipliers could be found for the region.
Value-added multipliers could also be found in exactly parallel ways. No new prin-
ciples are involved in assessing multiplier effects with a single-region table instead of
a national table. However, with many-region input–output models, a wider variety of
multipliers is possible. We examine these in the interregional and multiregional cases
in turn.
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6.3.2 Interregional Input–Output Multipliers
With interregional and multiregional input–output models output, various multiplier
effects can be calculated (a) for a single region (region r), (b) for each of the other
regions, (c) for the “rest of the economy” (aggregated over all regions outside of r),
and (d) for the total, many-region (national) economy.

We illustrate the possibilities using a set of hypothetical data for a two-region model.
Consider the following coefficients matrices for an interregional model with (the same)
three sectors in each region

A =
[

Arr Ars

Asr Ass

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

.150 .250 .050 .021 .094 .017

.200 .050 .400 .167 .125 .133

.300 .250 .050 .050 .050 .000

.075 .050 .060 .167 .313 .067

.050 .013 .025 .125 .125 .047

.025 .100 .100 .250 .250 .133

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.22)

and

L =
[

L11 L12

L21 L22

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.462 .506 .332 .259 .382 .147
.721 1.514 .761 .558 .629 .324
.678 .578 1.378 .318 .390 .147

.318 .253 .251 1.428 .649 .190

.177 .123 .124 .268 1.315 .114

.346 .365 .365 .598 .695 1.300

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.23)

Recall from Chapter 3 that we use subscript numbers for elements (submatrices) of a
partitioned interregional L matrix because Lrr and Lss are used for (I − Arr)−1 and
(I − Ass)−1, respectively.

Intraregional Effects For exogenous changes in final demands for region
r goods (the first three elements in a six-element f vector), the elements in the 3×3
submatrix L11 represent impacts on the outputs of sectors in region r. Here

L11 =
⎡⎣1.462 .506 .332

.721 1.514 .761

.678 .578 1.378

⎤⎦ (6.24)

Simple intraregional output multipliers for region r are found as the column sums of
L11;

m(o)rr = i′[L11] = [
2.861 2.598 2.471

]
(6.25)

Similarly, for region s,

m(o)ss = i′[L22] = [
2.294 2.659 1.604

]
(6.26)
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If we had household input coefficients in monetary terms for regions r (arr
n+1,j) and

s (ass
n+1,j), we could find simple intraregional household income multipliers and type I

income multipliers. Note that finding total intraregional output multipliers, household
income multipliers, or type II income multipliers requires that we have labor input coef-
ficients (in monetary terms) and household consumption coefficients for four different
matrices. Initially, the input coefficients matrix for region r – Arr in (6.22) – must be
closed with respect to households. This then adds a row to Ars and a column to Asr .
The former represents inputs of labor from region r to sector 1, 2, and 3 production in
region s (for example, commuters). The latter represents purchases of outputs of sectors
1, 2, and 3 in region s by consumers located in region r (imports of consumer goods).
For complete consistency, in order to capture income-generating effects throughout
the entire (here, two-region) system, the input coefficients matrix for region s – Ass

in (6.22) – should also be closed with respect to households. This then additionally
requires a new row in Asr and a new column in Ars. These new coefficients represent
inputs of labor from region s to production in r and purchases by consumers in s of
goods made in r, respectively. Thus the Ā and L̄ matrices, for our numerical example,
would grow from 6 × 6 to 8 × 8.

Given this L̄ matrix, total intraregional output multipliers, household income multi-
pliers, and type II income multipliers for region r would be found using the elements
from the upper left submatrix – now 4×4 – in L̄. Similarly, using intraregional physical
labor input coefficients or value-added coefficients for both regions, total intraregional
employment or value-added multipliers and type II multipliers could be found.

Interregional Effects The essence of an interregional (or multiregional)
input–output model is that it includes impacts in one region that are caused by changes
in another region; these are often termed the interregional spillover effects. In our
example, these are reflected in the L12 and L21 matrices; here

L21 =
⎡⎣ .318 .253 .251

.177 .123 .124

.346 .365 .365

⎤⎦ (6.27)

Consider, (l21)23 = 0.124; this indicates that for each dollar’s worth of final demand
for the output of sector 3 in region r, 12.4 cents’ worth of output from sector 2 in region
s is required as input.

Thus, in an interregional input–output model, we can calculate simple interregional
multipliers, m(o)sr·j – the total value of output from all sectors in region s used to satisfy
a dollar’s worth of final demand for sector j in region r. Here,

m(o)sr = i′[L21] = [
0.841 0.741 0.740

]
(6.28)

These are output impacts that are transmitted across regional boundaries – here from r
(where the exogenous change occurs) to s (where production occurs). As the reader can
perhaps imagine by now, we have the same set of possibilities for measuring various
interregional income effects, interregional employment effects, and total interregional
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effects using the same kinds of calculations as for intraregional effects, now using
L21 (and L̄21 if the regions were closed with respect to households). Interregional
effects whose origins are in new final demand in region s would be calculated using
the elements of L12 (or L̄12). Here

m(o)rs = i′[L12] = [
1.135 1.401 0.618

]
(6.29)

National Effects Assuming, once again, that there are exogenous increases
in final demands for region r goods and hence in outputs of region r sectors, we can
denote as national effects the sums of columns in both L11 and L21. (These could
logically also be termed total effects, but we have used total, as contrasted with simple,
for effects that are calculated from a matrix that has households endogenous.) Arranged
as row vectors,

m(o)r = i′
[

L11

L21

]
= [

3.702 3.339 3.211
]

m(o)s = i′
[

L12

L22

]
= [

3.429 4.060 2.222
] (6.30)

For the two-region interregional system, let m(o) = [
m(o)r m(o)s

]
. Here

m(o) = i′L = [
3.702 3.339 3.211 3.429 4.060 2.222

]
(6.31)

A policy implication from these figures is that a dollar’s worth of government spending
on the output of sector 2 in region s would have the greatest impact throughout the
two-region economy, as measured by total output (direct plus indirect) required from
all sectors in both regions. Similarly, if the government is interested in acquiring goods
from sector 1 or sector 3, the greatest national (both regions) economic impact will
occur if the purchases are made from firms in region r.

Again, using information on labor inputs or value added in each region, simple and
type I income, employment and value-added effects could be calculated at the national
(all regions) level. Similarly, for a system in which all regions have been closed with
respect to households, total national output, income, employment and value-added
effects and type II multipliers can be found.

Sectoral Effects As a final kind of multiplier, we can find the impact on
sector i throughout the entire country, because of a dollar’s worth of final demand for
sector j in either region. (Since this crosses regional boundaries, it is also a kind of
“national” effect.) Denote this simple output multiplier as m(o)·rij and m(o)·sij . For our
example,

m(o)·r13 = (l11)13 + (l21)13 = 0.332 + 0.251 = 0.583

m(o)·s21 = (l22)21 + (l12)21 = 0.268 + 0.558 = 0.826



264 Multipliers in the Input–Output Model

and so on. With additional region-specific information (labor input or value-added
coefficients) we could find various simple or type I effects; with elements from L̄, we
would find total multipliers and type II effects. (These kinds of sectoral effects are only
meaningful when each region contains the same sectors.)

More Than Two Regions With models of more than two regions, there are no
new principles involved, although the possibilities increase. For example, with three
regions, one can trace interregional effects in now six different ways: (1) exogenous
changes in region 1 affecting outputs in region 2 and/or region 3, (2) exogenous changes
in 2 affecting outputs in 1 and/or 3, and (3) exogenous changes in 3 affecting outputs
in 1 and/or 2.

6.3.3 Multiregional Input–Output Multipliers
All of the multipliers found in the interregional input–output model have their counter-
parts in the multiregional model. This is to be expected, since the multiregional model
is an attempt to capture all of the connections in the interregional model using a sim-
pler set of data. Each of the components in the interregional case – for example, Arr

and Ars – has its counterpart estimate – ĉrrAr and ĉrsAs – in the multiregional case.
A thorough exploration of multipliers in the multiregional input–output model can be
found in DiPasquale and Polenske (1980).

The final form of the multiregional model was

x = (I − CA)−1Cf (6.32)

Here A =
[

Ar 0

0 As

]
is a block diagonal matrix whose submatrices represent regional

technical (not regional input) coefficients and C =
[

ĉrr ĉrs

ĉsr ĉss

]
, where the components

of the submatrices in C represent flows between regions in the form of proportions of
a commodity in a region that come from within the region and from each of the other
regions.

The important point to be recalled is that in the interregional model the exogenous
sectors represent final demands, wherever located, for goods made by producers in
a particular region. In the multiregional model, the f’s represent demands exercised
by exogenous sectors located in a given region for goods, wherever produced. For a
two-region multiregional model, it is the ĉrr and ĉsr matrices that spatially distribute
the final demand in region r between producers in r and producers in s.

For example, assume that there are two sectors in each of the two regions and that
we want to assess the impact throughout the two-region system of an increase of $100
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in final demand for good 1 by households located in region r, so f r =
[

100
0

]
and

f s =
[

0
0

]
;

f =
[

f r

f s

]
=

⎡⎢⎢⎢⎣
100

0

0
0

⎤⎥⎥⎥⎦
Let

ĉrr =
[

0.7 0
0 0.4

]
, ĉrs =

[
0.2 0
0 0.3

]
, ĉsr =

[
0.3 0
0 0.6

]
, ĉss =

[
0.8 0
0 0.7

]

Then

C =
[

ĉrr ĉrs

ĉsr ĉss

]
=

⎡⎢⎢⎢⎣
0.7 0 0.2 0
0 0.4 0 0.3

0.3 0 0.8 0
0 0.6 0 0.7

⎤⎥⎥⎥⎦
and the Cf term that postmultiplies (I − CA)−1 in (6.32) is

Cf =

⎡⎢⎢⎢⎣
0.7 0 0.2 0
0 0.4 0 0.3

0.3 0 0.8 0
0 0.6 0 0.7

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

100
0

0
0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
70
0

30
0

⎤⎥⎥⎥⎦

The impact of the new $100 is not felt exclusively in region r, rather only $70 (70
percent) is presented as new demand for good 1 made in region r, and $30 (30 percent)
turns out to be new demand for good 1 in region s.

The C matrix distributes the final demands in the multiregional model across sup-
plying regions in accordance with the percentages embodied in the components of C.
Premultiplication of Cf by (I − CA)−1 then converts these distributed final demands
into necessary outputs from each sector in each region in the usual way. Thus the
matrix from which the various multipliers are derived in the multiregional model is
(I − CA)−1C.
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In the numerical illustration in section 3.4.4, with two regions of three sectors each,
we found

(I − CA)−1C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.127 .447 .300 .478 .418 .153
.628 1.317 .606 .552 1.115 .323
.512 .526 1.101 .335 .470 .247

.625 .369 .250 1.224 .456 .216

.238 .385 .205 .278 .650 .167

.472 .445 .589 .594 .529 1.232

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
in (3.31). This matrix plays the same role for multiplier analysis in the multiregional

model that L = (I−A)−1 =
[

L11 L12

L21 L22

]
in (6.23) did for the interregional case. We

examine some of these possibilities; the parallels with the interregional case should be
clear, so the illustrations need not be exhaustive. To emphasize the parallel, we define

L = (I − CA)−1C =
⎡⎣L11 L12

L21 L22

⎤⎦

Intraregional Effects Column sums of elements in L11 and L22 are simple
intraregional output multipliers. These multipliers correspond to (6.25) and (6.26),
above; here

m(o)rr = i′L11 = [
2.267 2.290 2.007

]
m(o)ss = i′L22 = [

2.096 1.635 1.615
] (6.33)

As before, income, employment or value-added multipliers could be found if we had
the requisite additional data. Closing the multiregional model with respect to house-
holds, in order to be able to calculate total and type II multipliers, requires the addition of
regional labor input coefficient rows and household consumption coefficient columns to
each of the regional input matrices in A, and it requires estimates of crr

n+1,n+1, crs
n+1,n+1,

and so on – these are the proportions of household demands for labor services that are
expected to be supplied from within and from outside of each region. These coeffi-
cients would be added to the lower right of each diagonal matrix ĉrr , ĉrs, etc. Given
(I − C̄Ā)−1C̄, using overbars to indicate a model in which households have been
made endogenous, we could find these various intraregional multipliers in the usual
way, from the upper left and lower right submatrices. Also, with information on value
added in each sector in each region, value-added multipliers could be found as in the
interregional case.
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Interregional Effects As in the interregional model, these effects are derived
from L12 and L21. Here, corresponding to (6.28) and (6.29), we have

m(o)sr= i′[L21] = [
1.335 1.199 1.044

]
m(o)rs= i′[L12] = [

1.365 2.003 0.723
] (6.34)

National Effects Corresponding to (6.30), we have the following simple
output multipliers that reflect production in all sectors in all (here, the two) regions to
support a dollar’s worth of new final demand for a particular good. Here

m(o)r = i′
[L11

L21

]
= [

3.602 3.489 3.051
]

m(o)s = i′
[L12

L22

]
= [

3.461 3.638 2.338
] (6.35)

Thus, a new dollar’s worth of demand from households located in r for good 2 gen-
erates a total of $3.49 new output throughout the entire multiregional system. Arranged
in a single row vector, and parallel to (6.31), we have

m(o) = i′L = [
3.602 3.489 3.501 3.461 3.638 2.338

]
(6.36)

and similar kinds of policy implications can be drawn from these figures. For example,
assume that the government could stimulate consumer demand in a particular region
for a particular product (e.g., through tax credits, as for insulation and storm windows
in cold regions). The greatest overall (national) effect, as measured by these simple
national output multipliers, would come from consumer demand in region s for good 2.

Sectoral Effects Finally, as with the interregional model, we can assess the
impact on sector i throughout the economy of one dollar’s worth of new final demand in
region r for good j. For example, m(o)·r13 = (�11)13+(�21)13 = 0.300+0.250 = 0.550,
m(o)·s21 = (�22)21 + (�12)21 = 0.278 + 0.552 = 0.830, and so on.

Final Demand for Goods Made in a Particular Region If one is using the ver-
sion of the multiregional input–output model in which impacts of new region-specific
final demands are being assessed (as in the example of a foreign airline’s new order for
Boeing jetliners made in the state of Washington), where

x = (I − CA)−1f∗

as in (3.32) in Chapter 3, then all of the multiplier calculations outlined above would
be found from the elements in (I − CA)−1 rather than (I − CA)−1C. The (I − CA)−1

matrix for this numerical example was given in (3.33) in that chapter. The interested
reader may wish to find the various multipliers, as in (6.33) through (6.35).
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More Than Two Regions As before, with models of more than two regions,
there are no new principles involved, although the possibilities for multiplier calcu-
lations increase. For example, with three regions, there are three possible settings in
which to calculate various intraregional multiplier effects and six in which to calculate
interregional effects.

In section 3.4.6 we introduced a three-sector, three-region aggregation of the Chinese
2000 multiregional model. The L = (I − CA)−1C matrix for that model is repeated
below, in Table 6.5. (This was Table 3.9 in Chapter 3.) The regional aggregations used
in this table result in very large geographic aggregates, and the relative uniformity of the
simple output multipliers across regions, as indicated in the tables to follow, reflects this.
Simple intra- and interregional output multipliers for this Chinese model are presented
in Table 6.6. In addition, simple national (all-region) multipliers are shown.

For example, a ¥1 change in final demand in the North for manufacturing and con-
struction (sector 2) requires ¥0.41 from all sectors in the South and ¥0.04 from the Rest
of China. In view of the sectoral breakdown used in this model it is not surprising that
manufacturing and construction (sector 2) has the largest simple output multiplier in
each region and in the nation as a whole, or that the services sector has the second-largest
multipliers with natural resources a rather distant third.

In terms of regional dependencies, we see that the South is much more dependent on
the North than on the Rest of China for the inputs that would be needed to satisfy one
unit of final demand in each of the sectors in the South – from the sums of the three
elements in the North row for the South, 0.4683, vs. the sums of the three elements in
the Rest of China row, 0.1467. Similar aggregate measures can be derived for the other
regions.

Sector-specific simple output multipliers, m(o)·rij , are shown in Table 6.7. There is
a great deal of uniformity across regions. For example, ¥1 of new demand for manu-
facturing and construction output by households located in the North, South or Rest of
China regions generates a national impact in terms of ¥ worth of new output in sector
1 of 0.3321, 0.3249, or 0.3413 in the three regions. Similarly, ¥1 worth of new final
demand for services generates a need for inputs of ¥0.5801, 0.6157 or 0.5033 worth
of new manufacturing and construction output in the three regions. The figures are
generally similar in other rows of Table 6.7. Again, this is primarily because of the very
large sizes of the three regions in this model illustration.

Hioki (2005) presents an empirical analysis for the Chinese economy, using the same
Chinese MRIO data but at greater levels of disaggregation. This is an analysis of the
magnitude of interregional spread or “trickle down” effects, especially from eastern
Chinese (coastal) regions to the less developed western (inland) regions. The study
calculated intraregional and interregional simple output multipliers for an eight-region,
17-sector version of the CMRIO model. Illustrative of the kinds of conclusions drawn
in this study is the observation that around 20 percent of the total output in the Central
region is induced by final demands of the coastal regions (p. 170). This suggests that the
government’s strategy, begun during the 1980s, favoring development of the coastal
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Table 6.7 Sector-Specific Simple Output Multipliers for the Chinese Multiregional
Input–Output System, 2000

Sector and Region Experiencing a One-Unit Change in Final Demand

Natural Resources Manufacturing and Construction Services

North South RoC North South RoC North South RoC

1 1.1990 1.2208 1.2267 0.3321 0.3249 0.3413 0.1325 0.1464 0.1378
2 0.4300 0.3970 0.3000 2.0462 2.1267 1.8220 0.5801 0.6157 0.5033
3 0.1054 0.1008 0.0906 0.2184 0.2340 0.2384 1.2108 1.2241 1.2022

regions (which it was thought would then lead to spillovers inland) has “actually started
to work to a certain extent” (p. 171).9

6.4 Miyazawa Multipliers

The important work of Miyazawa (1976) on endogenizing households in an input–
output model generates various multiplier matrices.10 Acomprehensive overview of the
explicit demographic-economic interactions in the Miyazawa structure and its applica-
tions can be found in the collection of papers in Hewings et al. (1999). In this section we
depart from some of the notation used elsewhere in this book, in order to be consistent
with that used by Miyazawa, since virtually all subsequent discussion and application
of the Miyazawa framework has continued to use his notation. Specifically, this means
that we will now define B = (I − A)−1 (instead of L, since Miyazawa uses L for
another purpose, as we will see below).

6.4.1 Disaggregated Household Income Groups
We assume that households can be separated into q distinct income-bracket groups and
that payments by producers to wage earners in each of those groups can be identi-
fied. Let V

(q×n)
= [vgj], where vgj represents income paid to a wage earner in income

bracket g (g = 1, . . . , q) per dollar’s worth of output of sector j. This is a general-
ization (to q rows) of the single row of household input coefficients or labor input
coefficients in Chapter 2, hR = [an+1,1, . . . , an+1,n]. Similarly, let C

(n×q)
= [cih], where

cih is the amount of sector i’s product consumed per dollar of income of households
in income group h (h = 1, . . . , q); this is a generalization (to q columns) of the single

9 We examine some of the details of construction of this multiregional model in section 8.7.
10 The definitive work is Miyazawa (1976), although there were several articles preceding that monograph. Most

of these were in the Hitotsubashi Journal of Economics in the 1960s and early 1970s and were not widely
known outside of Japan. More recent work by Sonis and Hewings (1993, 1995) on extended multiregional
Miyazawa multipliers can also be found in that journal, as well as elsewhere (e.g., Sonis and Hewings, 2000).
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column of household consumption coefficients in Chapter 2, hC =
⎡⎢⎣a1,n+1

...
an,n+1

⎤⎥⎦, and yet

another use for C in input–output discussions. So the augmented matrix of coefficients is

Ā =
⎡⎢⎣ A

(n×n)
C

(n×q)

V
(q×n)

0
(q×q)

⎤⎥⎦, and the expanded input–output system is

[
x

y

]
=
[

A C

V 0

][
x

y

]
+
[

f∗

g

]
(6.37)

where y
(q×1)

is a vector of total income for each of the income groups, f∗
(n×1)

is a vector

of final demands excluding household consumption (now endogenized) and g
(q×1)

is a

vector of exogenous income (if any) for the income groups.
Assume that g

(q×1)
= 0; then the two matrix equations in the system in (6.37) are

x = Ax + Cy + f∗ and y = Vx (6.38)

From (6.37), [
x

y

]
=
[

I − A −C

−V I

]−1 [ f∗

0

]
(6.39)

Using results on inverses of partitioned matrices (Appendix A) it is not difficult to show
that the elements of the partitioned inverse in (6.39) can be expressed as[

x

y

]
=
[

B[I + C(I − VBC)−1VB BC(I − VBC)−1

(I − VBC)−1VB (I − VBC)−1

][
f∗

0

]
(6.40)

where, as noted, B = (I − A)−1.
This can be simplified if, following Miyazawa, we define VBC = L and K =

(I − L)−1 = (I − VBC)−1, so that

[
x

y

]
=
⎡⎢⎣B(I + CKVB)

(n×n)

BCK
(n×q)

KVB
(q×n)

K
(q×q)

⎤⎥⎦[
f∗

0

]
(6.41)

Miyazawa defines L as the matrix of “inter-income-group coefficients” and K as the
“interrelational income multiplier” matrix. A typical element of L is lgh = vgibijcjh;
this shows the direct increase in the income of group g resulting from expenditure of
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an additional unit of income by group h. Reading from right to left, household demand
(expenditure) of cjh by group h for the output of sector j requires bijcjh in output from
sector i and this, in turn, means income payments from sector i in the amount of vgibijcjh

to households in group g. Similarly, each element in K = (I − L)−1 indicates the total
increase (direct, indirect and induced) in the income of one group that results from
expenditure of an additional unit of income by another group. (An illustration of this
approach can be found in the matrix of interrelational income multipliers, K, for 11
income groups in the USA for 1987 that is shown in Rose and Li, 1999.)

From (6.41),

x = B(I + CKVB)f∗ (6.42)

and

y = KVBf∗ (6.43)

In (6.42), the effect of final demands on outputs is seen to be the product of two dis-
tinct matrices. The first is the Leontief inverse of the open model, B. The second is
(I + CKVB); this augments the final demand stimulus, If∗, by CKVBf∗, which endo-
genizes the total income spending effect. Again, starting at the right, Bf∗ generates
the initial output (without household spending), VBf∗ indicates the resultant initial
income payments to each group, KVBf∗ multiplies that into total income received in
each group – this is exactly what is described by the result in (6.43) – and, finally,
CKVBf∗ translates that received income into consumption (demand) by each group
on each sector’s output. Miyazawa denotes KVB the “multi-sector income multi-
plier” matrix (or the “matrix multiplier of income formation”), indicating the direct,
indirect and induced incomes for each income group generated by the initial final
demand.

6.4.2 Miyazawa’s Derivation
Miyazawa first derives the results on the interrelational multiplier matrix without ref-
erence to partitioned matrices [in Miyazawa, 1976, Chapter 1, sections II(2)–III(1);
the partitioned inverse structure appears later in Chapter 1, section III(3)]. He makes
extensive use of partitioned matrices later in the book – especially in Part 2 on internal
and external matrix multipliers. This is a direction that has been explored and expanded
considerably in much of the work of Sonis, Hewings and others (summarized in Sonis
and Hewings, 1999, which also contains an extensive set of references to their work).
A second direction of research that extends the input–output framework to incorporate
interactions between economic and demographic components is associated with the
many publications of Batey, Madden and others (summarized in Batey and Madden,
1999, again with many references).

We present Miyazawa’s initial approach here primarily for completeness, and because
the results are often discussed (briefly) in this form in the literature. He begins with

x = Ax + CVx + f∗
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from (6.38). From this,
x = (I − A − CV)−1f∗ (6.44)

and with B = (I − A)−1, straightforward matrix algebra gives

(I − A − CV) = (B−1 − CV)BB−1 = (I − CVB)B−1

Substituting into (6.44),
x = [(I − CVB)B−1]−1f∗

and, from the rule for inverses of products,

x = B(I − CVB)−1f∗ (6.45)

In this form, we find the original Leontief inverse, B, postmultiplied by (I − CVB)−1,
which Miyazawa termed the “subjoined inverse matrix.”

A further variation is possible and is sometimes used. Starting with (6.45) and, as
earlier, with VBC = L and K = (I − L)−1, then

K(I − VBC) = I

Premultiply both sides by C and postmultiply both sides by VB,

CK(I − VBC)VB = CVB or CK(VB − VBCVB) = CVB

Factor out VB to the left and then subtract both sides from I, giving

I − CKVB(I − CVB) = I − CVB or I = CKVB(I − CVB) + I − CVB

Regrouping terms
I = (I + CKVB)(I − CVB)

and so, from the fundamental definition of an inverse,

(I − CVB)−1 = (I + CKVB)

Putting this result into (6.45) gives

x = B(I + CKVB)f∗ (6.46)

as in (6.42).
Miyazawa suggests that if labor input coefficients, in V, and household consumption

coefficients, in C, are less stable than interindustry coefficients (in A and consequently
in B), there is an advantage to using the format in (6.46) instead of (6.45). Namely, a
revised subjoined inverse, (I − CVB)−1, whose order is n, can be found by using K,
whose order is q “… [which] in most cases is very much smaller than n …” (Miyazawa,
1976, p. 7). However, inverting large matrices is no longer the concern that it was in
the 1970s.
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From (6.46), household income, y = Vx, is seen to be

y = VB(I + CKVB)f∗ = (I + VBCK)VBf∗ = (I + LK)VBf∗

But since K = (I − L)−1, (I − L)K = I, LK = K − I, so (I + LK) = K, and

y = KVBf∗ (6.47)

as in (6.43).

6.4.3 Numerical Example
We expand the numerical example from Chapter 2, assuming a three-sector economy
with households divided into two income groups. Let the augmented coefficients matrix
be

Ā =
⎡⎣A C

V 0

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

0.15 0.25 0.05 0.1 0.05
0.2 0.05 0.4 0.2 0.1
0.3 0.25 0.05 0.01 0.1

0.05 0.1 0.08 0 0
0.12 0.05 0.1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
In particular, labor income coefficients for the two household groups are given in the

two rows of V =
[

0.05 0.1 0.08
0.12 0.05 0.1

]
, and consumption coefficients for those same two

groups are given in the two columns of C =
⎡⎣ 0.1 0.05

0.2 0.1
0.01 0.1

⎤⎦.

Given V, C, and B = (I − A)−1 =
⎡⎣1.3651 .4253 .2509

.5273 1.3481 .5954

.5698 .4890 1.2885

⎤⎦, the relevant

Miyazawa matrices are easily found to be

VBC =
[

.0574 .0454

.0601 .0480

]
and K = (I − VBC)−1 =

[
1.0642 .0507
.0671 1.0536

]
For example, in this illustration, a direct increase of $1 in income to households in

group 1 leads to a 6.7 cent (k21) increase in income payments to households in group
2. Similarly,

KVB =
[

.1898 .2162 .1960

.2716 .1894 .2106

]
In this case, for example, an additional unit of final demand for the goods of sector 1
generates 27.16 cents in new income for group 2. Furthermore,

B(I − CVB)−1 =
⎡⎣1.4445 .4994 .3234

.6496 1.4609 .7062

.6577 .5644 1.3648

⎤⎦ and BCK =
⎡⎣ .2476 .1545

.3642 .2492

.1923 .2258

⎤⎦
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(The reader can make appropriate interpretations of the elements in each of these
matrices.)

In this case, the Leontief inverse for the augmented system can easily be found
directly; it is11

(I − Ā)−1 = B̄ =
⎡⎣ B̄11 B̄12

B̄21 B̄22

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

1.4445 .4994 .3234 .2476 .1545
.6496 1.4609 .7062 .3642 .2492
.6577 .5644 1.3648 .1923 .2258

.1898 .2162 .1960 1.0642 .0507

.2716 .1894 .2106 .0671 1.0536

⎤⎥⎥⎥⎥⎥⎥⎦
and the correspondences with elements in B̄ are exactly as expected, namely K = B̄22,
KVB = B̄21, BCK = B̄12 and B(I − CVB)−1 = B̄11.

6.4.4 Adding a Spatial Dimension
We saw in Chapter 3 that interregional or multiregional input–output models were
conveniently represented in partitioned matrix form. To incorporate the Miyazawa
structure into an IRIO- or MRIO-style model, assume that we have p regions (k, l =
1, . . . , p) with n sectors (i, j = 1, . . . , n) each and that we have identified q household
income groups (g, h = 1, . . . , q) in each region. Then the augmented A matrix would be

Ā =

⎡⎢⎢⎣
A

(np×np)
C

(np×pq)

V
(pq×np)

0
(pq×pq)

⎤⎥⎥⎦
where

A
(np×np)

=

⎡⎢⎢⎢⎣
A11

(n×n)
· · · A1p

(n×n)

...
. . .

...
Ap1

(n×n)
· · · App

(n×n)

⎤⎥⎥⎥⎦ = [
akl

ij

]
, C
(np×qp)

=

⎡⎢⎢⎢⎣
C11

(n×q)
· · · Cp1

(n×q)

...
. . .

...
Cp1

(n×q)
· · · Cpp

(n×q)

⎤⎥⎥⎥⎦ = [
ckl

ih

]
,

and

V
(pq×np)

=

⎡⎢⎢⎢⎣
V11

(q×n)
· · · V1p

(q×n)

...
. . .

...
Vp1

(q×n)
· · · Vpp

(q×n)

⎤⎥⎥⎥⎦ = [
vkl

gj

]
.

Notice that consumption coefficients require knowledge of the spending habits of con-
sumers in each income group in each region on goods from each sector in each region.
Similarly, the labor input coefficients require knowledge on payments to laborers in
each income group in each region by each sector in each region.

11 Again, we use B̄ rather than L̄ to be consistent with the Miyazawa literature.
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Table 6.8 Interrelational Interregional Income Multipliers

Region of Income Origin

Region of Income Receipt 1 2 3 4 Row Total

1 1.23 0.12 0.16 0.07 1.57
2 0.11 1.28 0.13 0.05 1.57
3 0.11 0.03 1.06 0.01 1.14
4 0.44 0.56 0.50 1.77 3.28
Column Total 1.81 1.99 1.85 1.90

Source: Hewings, Okuyama and Sonis, 2001, Table 9.

The elements in the partitioned inverse in (6.41) will have the same dimensions as
Ā, namely

[
x

y

]
=
⎡⎢⎣B(I + CKVB)

(np×np)

BCK
(np×pq)

KVB
(pq×np)

K
(pq×pq)

⎤⎥⎦[
f∗

0

]

Clearly, this is potentially very demanding of data. However, an illustrative application
can be found in Hewings, Okuyama and Sonis (2001) for a 53-sector, four-region model
(Chicago and three surrounding suburbs), without division into income groups – that
is, n = 53, p = 4, and q = 1. In this case the income formation impacts are across
regions rather than income groups. In particular, K is a 4 × 4 matrix; it is shown in
Table 6.8.12

Reading down column 1 for illustration, we find that from an increase of $1 in income
in Region 1, an additional $0.23 is generated in Region 1, $0.11 in Regions 2 and 3,
and $0.44 in Region 4. Column sums have an interpretation similar to the more usual
output multipliers; they indicate the new income generated throughout the four-region
system (Chicago metropolitan area) of an additional $1 in income in the region at
the top of the column. Row sums are a measure of additional income in each region
at the left as a result of a $1 income increase in each region. (As with row sums
of the usual Leontief inverse, these are generally less useful results than the col-
umn sums.) Often, results in empirically derived interrelational multiplier matrices
are normalized in some way to account, for example, for differences in sizes of the
regions being studied. A complete interregional Miyazawa analysis would require that
we distinguish several income brackets in each region (that is, q > 1) and then create
consumption coefficients and labor input coefficients for each of those brackets (in each
region).

12 For additional data and details on this application, see Hewings and Parr (2007).
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6.5 Gross and Net Multipliers in Input–Output Models

6.5.1 Introduction
Leontief’s earliest formulations (for the USA in 1919, 1929, and 1939) were in terms
of “net” accounts. The fundamental balance equations had no zii or aii terms; in the
empirical tables the on-diagonal elements were zero.

[The interindustry transactions table] would naturally have many empty squares. Those lying along
the main diagonal are necessarily left open because our accounting principle does not allow for
registration of any transaction within the same firm …” (Leontief, 1951, p. 13)

The output of an industry … is defined with exclusion of the products consumed by the same industry
in which they have been produced. Thus a11 = a22 = · · · = aii = · · · = amm = 0 by definition.

(Leontief, 1951, p. 189)

The 1947 US input–output tables discussed and published in Evans and Hoffenberg
(1952) include on-diagonal transactions, coefficients, and inverse elements; in that sense
these tables are “gross.” They point out that the inverse figures can be adjusted to exclude
intra-sector transactions but they do not suggest that as a preferable alternative.13 In
Leontief et al. (1953, Chapter 2 by Leontief) the equations in the text are gross but the
tables and the equations in the Mathematical Note to Chapter 2 are net. In virtually all
later publications (for example, Leontief, 1966, Chapters 2 and 7) on-diagonal elements
are included.14 (For a thoughtful discussion of net and gross input–output accounts,
see Jensen, 1978.) This net/gross distinction led to the concept of input–output “net”
multipliers, which we explore below.

6.5.2 Multipliers in the Net Input–Output Model
We consider only square systems. Generating a net model simply means that the main
diagonals of Z and A contain only zeros, and that the gross output vector is reduced
by the amount of each sector’s intraindustry transactions. As usual, denote by Ẑ the
diagonal matrix containing the elements zii. Then let Znet = Z − Ẑ, and x̂net = x̂ − Ẑ;
this latter is a diagonal matrix of sectoral outputs in the net system from which on-
diagonal (intrasectoral) transactions have been removed.15 As usual, input coefficients
are found for the net system as

Anet = Znet(x̂net)
−1 = (Z − Ẑ)(x̂ − Ẑ)−1

and

(I − Anet) = I − (Z − Ẑ)(x̂ − Ẑ)−1

13 In contrast, Georgescu-Roegen (1971) argues that diagonal elements in an input–output model (“internal flows”)
must be suppressed.

14 Early input–output tables in the UK (for example, for 1954 and 1963) were presented in “net” form (UK, Central
Statistical Office, 1961 and 1970). Fifteen-sector versions of these tables appear in Allen and Lecomber (1975)
and Barker (1975).

15 Alternative notation uses Ž instead of Znet , and similarly for Anet and xnet . We avoid that convention because
it becomes cumbersome when the vector xnet needs a hat to indicate the associated diagonal matrix – and a
“ ∧ ” on top of a “∨” is just too much.
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We now examine an alternative expression for the right-hand side. [This demonstration
appears to have originated in Weber, 1998 (in German). It is apparently not widely
known, at least outside the German-speaking world.] Using the observation that (x̂ − Ẑ)

(x̂ − Ẑ)−1 = I, it can be shown that16

(I − Anet) = [(I − A)x̂](x̂ − Ẑ)−1

Taking the inverse of both sides,

Lnet = (I − Anet)
−1 = {[(I − A)x̂](x̂ − Ẑ)−1}−1

and using the matrix algebra rule for inverses of products (for appropriately sized
matrices) that (MNP)−1 = P−1N−1M−1,

Lnet = (x̂ − Ẑ)x̂−1(I − A)−1 = x̂net x̂−1L (6.48)

from which
(x̂net)

−1Lnet = x̂−1L (6.49)

[Notice from (6.48) that Lnet = (x̂ − Ẑ)x̂−1L = (I − Â)L, where Â = Ẑx̂−1.]17

Consider household income multipliers for the two systems. Given a vector of
total household income by sector, zh = [zn+1,1, . . . , zn+1,n], then h = zhx̂−1 and
hnet = zh(x̂net)

−1 are the vectors of earnings coefficients in the gross and net systems,
respectively. From (6.49),

zh(x̂net)
−1Lnet = zhx̂−1L

or
hnetLnet = hL

Thus, the income multipliers in the two systems are equal, and therefore for studies
in which these kinds of multiplier results are of interest, it makes no difference which
model is used.

This result is equally valid for most other multipliers – value-added, household
income, pollution-generation, energy use, etc. – associated with productive activity
(Table 6.4). The only exception is for output multipliers – m(o) = i′L and m(o)net =
i′Lnet ; they will not be equal,18 since from (6.48) Lnet = x̂net x̂−1L. However, the
transformation from one to the other is straightforward, namely

m(o)net = i′Lnet = i′x̂net x̂−1L

16 This particular expression for the identity matrix may seem unmotivated, but it cleverly allows for a significant
rewriting of the expression for (I − Anet). For the interested reader, the derivation is:
(I − Anet) = (x̂ − Ẑ)(x̂ − Ẑ)−1 − (Z − Ẑ)(x̂ − Ẑ)−1 = [(x̂ − Ẑ)− (Z − Ẑ)](x̂ − Ẑ)−1 = (x̂ − Z)(x̂ − Ẑ)−1 =
[(I − Zx̂−1)x̂](x̂ − Ẑ)−1 = [(I − A)x̂](x̂ − Ẑ)−1.

17 This fact was noted by Evans and Hoffenberg (1952, p. 140) who used a verbal argument and not a matrix
algebra demonstration.

18 Except for the trivial and uninteresting case when x = xnet .
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or
m(o) = i′L = i′x̂(x̂net)

−1Lnet

(Recall that order of multiplication of diagonal matrices makes no difference.)

Numerical Example19 Let Z =
⎡⎣150 500 50

200 100 400
300 500 50

⎤⎦ so Znet = Z − Ẑ =⎡⎣ 0 500 50
200 0 400
300 500 0

⎤⎦. If x =
⎡⎣1000

2000
1000

⎤⎦, A =
⎡⎣ .15 .25 .05

.2 .05 .4

.3 .25 .05

⎤⎦;

xnet =
⎡⎣ 850

1900
950

⎤⎦, Anet = Znet(x̂net)
−1 =

⎡⎣ 0 .2632 .0526
.2353 0 .4211
.3529 .2632 0

⎤⎦.

Then L =
⎡⎣1.3651 .4253 .2509

.5273 1.3481 .5954

.5698 .4890 1.2885

⎤⎦ and Lnet = (I−Anet)
−1 =

⎡⎣1.1603 .3615 .2133
.5010 1.2807 .5656
.5414 .4646 1.2241

⎤⎦.

In this case,
m(o) = i′L = [

2.4623 2.2624 2.1348
]

m(o)net = i′Lnet = [
2.2026 2.1067 2.0030

]
Here x̂(x̂net)

−1 =
⎡⎣1.1765 0 0

0 1.0526 0
0 0 1.0526

⎤⎦ and so m(o) = i′x̂(x̂net)
−1Lnet =

[
1.1765 1.0526 1.0526

]⎡⎣1.1603 .3615 .2133
.5010 1.2807 .5656
.5414 .4646 1.2241

⎤⎦ = [
2.4623 2.2624 2.1348

]
as expected.

Finally, let zh = [100, 120, 80] (household income payments); then

h = [
0 .10 0.06 0.08

]
and hnet = [

0 .1176 0.0632 0.0842
]

from which
hL = hnetLnet = [

0.2137 0.1625 0.1639
]

again as expected.

6.5.3 Additional Multiplier Variants
(Indirect Effects)/(Direct Effects) A number of analysts have taken the view

that multipliers should not include the initial stimulus, as they do when the basic

19 We use the 3 × 3 example from earlier but now disregard the fact that sector 3 is households and simply treat
this as a general three-sector model illustration.
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definition is “total effects”/“direct effects.” For example, for output multipliers this
means the $1 of new final-demand for sector j which turns into $1 of new sector
j output. The usual resolution is simply to subtract 1 from each of the elements in
m(o). This is equivalent to replacing L by (L − I) in the formula for m(o), since
i′(L − I) = i′L − i′I = m(o) − i′. (For example, see Oosterhaven, Piek and Stelder,
1986.)20 Of course this will not change the rankings of the sectors, but it certainly has
implications for other kinds of calculations in which the multipliers are used.

The same adjustment [subtracting 1 or using (L − I)] is appropriate for any Type I
or Type II multiplier (Table 6.3). As an example, when r = h, the Type I multiplier,
m(h)= hL would be converted to h(L − I)ĥ−1 = hLĥ−1 − hIĥ−1 = m(h) − i′.

“Growth Equalized” Multipliers Policy makers may wish to know the impact
on a particular sector of a general expansion in final demand in all sectors (for example,
to help identify “bottlenecks”) or of changing patterns of final demand. One approach
involves what have been called “growth-equalized” multipliers. (See, for example,
Gray et al., 1979, and Gowdy, 1991, for these and many additional multipliers.) The
motivation is clear: “… size variation among economic sectors prevents meaningful
comparisons of multipliers … to add $1 of output to some sectors represents a much
larger rate of growth than it would for other sectors” (Gray et al., 1979, pp. 68, 72,
respectively).

Consider output multipliers; again, the principles are the same for all the other pos-
sible multipliers. The idea begins with the multiplier matrix M(o) = L. Row sums,
M(o)i = Li, indicate output effects in each sector when final demand for each sector
increases by $1.00. This is generally considered an unlikely scenario; an obvious varia-
tion is to posit an unequal increase in final demand across sectors. For example, instead
of Li one could use L〈f〈i′f〉−1〉i, where 〈f〈i′f〉−1〉 is a diagonal matrix showing each
sector’s final demand as a proportion of total final demand, fj/

∑
j

fj; that is, a measure

of relative sector size (or importance). (Base-year output proportions, xj/
∑

j
xj, could

also be used.) Element (i, j) in the matrix L〈f〈i′f〉−1〉 shows the effect on sector i out-
put of a $(fj/

∑
j

fj) increase in j’s final demand. Then L〈f〈i′f〉−1〉i shows the multiplier

effect on each sector’s output of a $1 final-demand increase distributed across sectors
according to their proportion of total final demand.

Another possibility is to use equal percentage, not absolute, demand increases across
sectors. This is the “growth equalization.” For example, elements of the column vector
[M(o)](0.01)f = (0.01)Lf indicate output effects in each sector when final demand
for each sector increases by one percent, and (0.01)i′Lf = (0.01)[m(o)]f indicates the
economy-wide total output generated. We illustrate with the same three-sector figures.

20 Since (L − I) = L(I − L−1) = LA or (L − I) = (I − L−1)L = AL, these modified multipliers could also
be found as i′AL or i′LA (see de Mesnard, 2002, or Dietzenbacher, 2005).
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For the example,

f =
⎡⎣ 300

1300
150

⎤⎦ and 〈f〈i′f〉−1〉 =
⎡⎣fj/

∑
j

fj

⎤⎦ =
⎡⎣0.1714 0 0

0 0.7429 0
0 0 0.0857

⎤⎦
In this case,

L〈f〈i′f〉−1〉 =
⎡⎣0.2340 0.3159 0.0215

0.0904 1.0015 0.0510
0.0977 0.3633 0.1104

⎤⎦ and [L〈f〈i′f〉−1〉]i =
⎡⎣0.5714

1.1429
0.5714

⎤⎦
Using a one percent increase for the growth equalization illustration,

L〈(0.01)f〉 =
⎡⎣4.0953 5.5284 0.3764

1.5820 17.5250 0.8930
1.7095 6.3576 1.9328

⎤⎦
and

i′L〈(0.01)f〉 = [ 7.3868 29.4110 3.2022 ]

Recall that for this example the simple output multipliers were

m(o) = i′L = [
2.4623 2.2624 2.1348

]
and we see that the relative importance of the sectors is altered (now it is final demand
for sector 2 that is the most stimulative; previously – in m(o) – it was sector 1).

Another Kind of Net Multiplier Standard input–output multipliers (Tables 6.3
and 6.4) are designed to be used with (multiplied by) final demand. Oosterhaven and
Stelder (2002a, 2002b) have observed that in the real world, “practitioners” sometimes
(perhaps often) use them incorrectly, to multiply total sectoral output (or value added
or employment). So they propose net multipliers (the terminology could be confus-
ing; these are not multipliers in a net model, as in section 6.5.2). Essentially, they
simply convert a standard multiplier so that it can be used in conjunction with total
outputs. For example, their Type I net output multipliers are i′Lf̂c, where fc = [ fj/xj]; in
their terms, fj/xj is the fraction of j’s output that may “rightfully be considered exoge-
nous” (Oosterhaven and Stelder, 2002a, p. 536). Specifically, they “decompose” i′Lf
as follows:

i′Lf = m(o)f = m(o)f̂ i = m(o)f̂ x̂−1x̂i = m(o)f̂cx = i′Lf̂cx

The net multiplier matrix is thus Lf̂c and the associated vector of economy-wide
multipliers is i′Lf̂c = m(o)f̂c. Other multipliers can be similarly modified.

This work generated considerable discussion and a lengthy and elaborate exchange
(de Mesnard, 2002, 2007a, 2007b; Dietzenbacher, 2005, Oosterhaven, 2007), with a
variety of interpretations and alternative terminology. In the end, “net contribution”
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or “net backward linkage” indicators were suggested as a more appropriate label than
“multiplier.” We will return to an aspect of this in Chapter 12 on linkage measures in
input–output models.

6.6 Multipliers and Elasticities

6.6.1 Output Elasticity
Another approach to compensating for differences in industry size is one step further
from simply considering percentage increases in final demand (as above, in growth
equalized multipliers). The idea is to measure both the stimulus and its effect in
percentage terms – in this case the percentage change in total output (or income or
employment, etc.) due to a percentage change in a given industry’s final demand.
(See, for example, Mattas and Shrestha, 1991 or Ciobanu, Mattas and Psaltopoulos,
2004.) These (percentage change)/(percentage change) measures are “elasticities” in
economics terms.

In particular, consider a one percent change in fj only, so (�f)′ = [0, . . . ,

(0.01)fj, . . . , 0]. Then �x = L�f =,

⎡⎢⎣ l1j
...

lnj

⎤⎥⎦ (0.01)fj. The economy-wide output change

is i′�x = i′

⎡⎢⎣ l1j
...

lnj

⎤⎥⎦ (0.01)fj = m(o)j(0.01)fj. This percentage change in total output

(across all industries) that is generated by (0.01)fj has been labeled the output elasticity
of industry j (oej) and is defined as

oej = 100 × (i′�x/i′x) = 100 × m(o)j[(0.01)fj/i′x] = m(o)j[fj/i′x]
(It would be more precise to call this an output-to-final demand elasticity, to distinguish
it from other elasticities, below.)

Modification of any of the other multipliers in section 6.2.2 – through multiplica-
tion by [fj/i′x] – produces exactly parallel results, giving income, employment, etc.,
elasticities to final demand. Note that these are very similar to the “growth-equalized”

multipliers above; in that case, the modification was produced by

[
fj
/∑

j
fj

]
while

here it is

[
fj
/∑

j
xj

]
.

6.6.2 Output-to-Output Multipliers and Elasticities
Direct Effects Starting with zij = aijxj, consider the direct effect of an exoge-

nous change in industry j’s output (�xj) – �xj → �zij = aij�xj. This �zij represents
new i output directly required by j, so �xi = �zij, and thus �xi = aij�xj or �xi/�xj =
aij. Now consider a one percent increase in j’s output �xj = (0.01)xj; this means
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�xi = (0.01)aijxj. So the (i, j)th element of the matrix (0.01)Ax̂ measures the direct
effect of j’s one percent increase in output on industry i. Expressed as a percentage of
i’s output, we have 100(�xi/xi) = 100(0.01)aijxj/xi = aijxj/xi. And in matrix form,
this is the (i, j)th element of the matrix x̂−1Ax̂, showing the direct effect on industry i’s
output (percentage change) resulting from a one percent change in industry j’s output.
This is a direct output-to-output elasticity. We will meet the matrix x̂−1Ax̂ again in
Chapter 12, where we explore supply-side input–output models.

Total Effects Elements of the Leontief inverse matrix translate final demand
changes into total output changes – �xi = lij�fj and lij = �xi/�fj. These encompass
direct and indirect effects, and they are at the heart of the multipliers explored in previous
sections in this chapter.Again, it would be slightly cumbersome but completely accurate
to call lij an output-to-final-demand multiplier. Consider ljj, the on-diagonal element in
the jth column of L – ljj = �xj/�fj or �xj = ljj�fj. Define l∗ij as lij/ljj; then

l∗ij = lij/ljj = [�xi/�fj]/[�xj/�fj] = �xi/�xj

or �xi = l∗ij�xj. Thus, l∗ij could be (and has been) viewed as a total output-to-output
multiplier.

The matrix of these multipliers, L∗ = [l∗ij], is created by dividing each element in

a column of L by the on-diagonal element for that column – L∗ = L(L̂)−1(as usual,
L̂ is a diagonal matrix created from the on-diagonal elements in L). Then each of the
elements in column j of L∗ indicates the amount of change in industry i output (the row
label) that would be required if the output of industry j were increased by one dollar.21

Suppose, then, that industry j is projected to increase its output to some new amount,
x̄j. Postmultiplication of L∗ by a vector, x̄, with x̄j as its jth element and zeros elsewhere,
will generate a vector of total new outputs, x∗, necessary from each industry in the
economy because of the exogenously determined output in industry j. That is,

x∗ = L∗x̄ (6.50)

We return to this matrix in Chapter 13 in the context of “mixed” input–output models in
which final demands (for some industries) and gross outputs (for the other industries)
are specified exogenously.

Moving to elasticity terms, the (i, j)th element of (0.01)Lx̂ gives the (total) new output
in industry i caused by a one-percent output increase in industry j. So, exactly parallel to
the direct elasticity case, above, the (i, j)th element of x̂−1Lx̂ gives the percent increase
in industry i total output due to an initial exogenous one percent increase in industry j
output – the “direct and indirect output elasticity of industry i with respect to the output

21 This is equivalent to the “total flow” approach of Szyrmer (for example, Szyrmer, 1992). He makes a case for the
unsuitability of the usual output multipliers (from the standard demand-driven input–output model) for a wide
variety of real-world impact studies. Some analysts argue that the initial exogenous one-dollar stimulus should
be removed from the “total effect” calculation. As was seen above (section 6.5.3), this can be accomplished
by replacing L by (L − I). The interested reader should see de Mesnard (2002) and Dietzenbacher (2005) for
details.
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in industry j” (Dietzenbacher, 2005, p. 426). We will also meet this matrix, x̂−1Lx̂,
again in Chapter 12 in the discussion of supply-side input–output models.

6.7 Multiplier Decompositions

A number of approaches have been suggested for analyzing the economic “structure”
that is portrayed in input–output data. Multiplier decompositions are a prominent part
of this research, and we explore two of these in this section.22

6.7.1 Fundamentals
We start with the fundamental input–output accounting relationship

x
(n×1)

= A
(n×n)

x
(n×1)

+ f
(n×1)

(6.51)

from which x=(I−A)−1f = Lf . We now introduce some algebra that initially appears
unmotivated but it will soon be clear what is accomplished. Given some Ã

(n×n)
, adding

and subtracting Ãx to (6.51) and rearranging produces

x = Ax − Ãx + Ãx + f ⇒ (I − Ã)x = (A − Ã)x + f (6.52)

and, solving23 for x,

x = (I − Ã)−1(A − Ã)x + (I − Ã)−1f

Let A∗ = (I − Ã)−1(A − Ã); then this is

x = A∗x + (I − Ã)−1f (6.53)

Next, premultiply both sides of (6.53) by A∗

A∗x = (A∗)2x + A∗(I − Ã)−1f (6.54)

and substitute this for A∗x in the right-hand side of (6.53)

x = (A∗)2x + A∗(I − Ã)−1f + (I − Ã)−1f = (A∗)2x + (I + A∗)(I − Ã)−1f (6.55)

Again, solving for x,

x = [I − (A∗)2]−1︸ ︷︷ ︸
M3

(I + A∗)︸ ︷︷ ︸
M2

(I − Ã)−1︸ ︷︷ ︸
M1

f (6.56)

In this way the usual Leontief inverse (multiplier) matrix, (I − A)−1, has been
decomposed into the product of three matrices.

22 For an overview of these and several others, see Sonis and Hewings (1988) or additional references noted in
section 14.2, below.

23 Here and throughout we assume nonsingularity of the matrices whose inverses are shown.
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This algebra can be continued. Premultiply both sides of (6.55) by A∗,

A∗x = (A∗)3x + [A∗ + (A∗)2](I − Ã)−1f (6.57)

and, again, substitute for A∗x in the right-hand side of (6.53)

x = (A∗)3x + [I + A∗ + (A∗)2](I − Ã)−1f (6.58)

Solving for x, we now find

x = [I − (A∗)3]−1︸ ︷︷ ︸
M3

[I + A∗ + (A∗)2]︸ ︷︷ ︸
M2

(I − Ã)−1︸ ︷︷ ︸
M1

f (6.59)

[Compare with the results in (6.56).]
In the context of social accounting matrices (Chapter 11), where much of the funda-

mental work on multiplier decompositions originated, M1 is said to capture a “transfer”
effect, M2 embodies “open-loop” effects and M3 contains “closed-loop” effects. (For
example, see Pyatt and Round, 1979.) The logic of these labels will be clear in the
interregional context, below.

These iterations can continue any number of times.After k steps, the parallel to (6.58)
is

x = (A∗)kx + [I + A∗ + (A∗)2 + · · · + (A∗)k−1](I − Ã)−1f (6.60)

and the parallel to (6.59) is

x = [I − (A∗)k ]−1︸ ︷︷ ︸
M3

[I + A∗ + (A∗)2 + · · · + (A∗)k−1]︸ ︷︷ ︸
M2

(I − Ã)−1︸ ︷︷ ︸
M1

f (6.61)

6.7.2 Decompositions in an Interregional Context
For a two-region interregional model (section 3.3) the input–output accounting
relationship x = Ax + f becomes[

xr

xs

]
=
[

Arr Ars

Asr Ass

][
xr

xs

]
+
[

f r

f s

]

With a view toward decompositions, we can isolate the intraregional and interregional
elements in A; let

A =
[

Arr Ars

Asr Ass

]
=
[

Arr 0

0 Ass

]
+
[

0 Ars

Asr 0

]
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Define Ã =
[

Arr 0

0 Ass

]
from which (I − Ã) =

[
I − Arr 0

0 I − Ass

]
. Then, using

the decomposition in (6.56), for example,

M1 = (I − Ã)−1 =
[

(I − Arr)−1 0

0 (I − Ass)−1

]

(from the rule that the inverse for a block-diagonal matrix is made up of the inverses
of the matrices on the main diagonal). Also,

A∗ = (I − Ã)−1(A − Ã)

=
[

(I − Arr)−1 0

0 (I − Ass)−1

][
0 Ars

Asr 0

]

=
[

0 (I − Arr)−1Ars

(I − Ass)−1Asr 0

]

and so, again from (6.56),

M2 = I + A∗ =
[

I (I − Arr)−1Ars

(I − Ass)−1Asr I

]

Finally, from straightforward matrix multiplication,

(A∗)2 =
[

(I − Arr)−1Ars(I − Ass)−1Asr 0

0 (I − Ass)−1Asr(I − Arr)−1Ars

]

and so

M3 = [I − (A∗)2]−1 =[ [I − (I − Arr)−1Ars(I − Ass)−1Asr]−1 0

0 [I − (I − Ass)−1Asr(I − Arr)−1Ars]−1

]

(again from the rule for the inverse of a block-diagonal matrix).
In terms of intra- and interregional effects, the matrices in M1 are seen to capture

intraregional (Leontief inverse or “transfer”) effects, those in M2 contain interregional
spillover (“open-loop”) effects, and the matrices in M3 record interregional feedback
(“closed-loop”) effects (Round, 1985, 2001; Dietzenbacher, 2002).24 As usual, define

Lrr = (I − Arr)−1 and Lss = (I − Ass)−1

24 There have been other definitions of these various effects in the input–output literature, beginning perhaps with
Miller (1966, 1969) but also including, among others, Yamada and Ihara (1969), Round (1985, 2001), or Sonis
and Hewings (2001).
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These are the intraregional effects in each region (M1). The two spillover matrices in
M2 may be represented as

Srs = LrrArs and Ssr = LssAsr

and the two feedback matrices in M3 can be defined as

Frr = [I − LrrArsLssAsr]−1 and Fss = [I − LssAsrLrrArs]−1

or

Frr = [I − SrsSsr]−1 and Fss = [I − SsrSrs]−1

Therefore, in the two-region interregional context, x = M3M2M1f becomes[
xr

xs

]
=
[

Frr 0

0 Fss

][
I Srs

Ssr I

][
Lrr 0

0 Lss

][
f r

f s

]
(6.62)

or, carrying out the multiplications,[
xr

xs

]
=
[

FrrLrr FrrSrsLss

FssSsrLrr FssLss

][
f r

f s

]
(6.63)

6.7.3 Stone’s Additive Decomposition
An alternative decomposition isolates net effects. Starting with the multiplicative result
in (6.56) [or (6.59), or (6.61)], namely x = Mf , where M = M3M2M1, Stone (1985)
proposed the additive form

M = I + (M1 − I)︸ ︷︷ ︸
M̃1

+ (M2 − I)M1︸ ︷︷ ︸
M̃2

+ (M3 − I)M2M1︸ ︷︷ ︸
M̃3

(This is easily seen to be true by simply carrying out the algebra on the right-hand side.)
Therefore,

x = Mf = If + (M1 − I)︸ ︷︷ ︸
M̃1

f + (M2 − I)M1︸ ︷︷ ︸
M̃2

f + (M3 − I)M2M1︸ ︷︷ ︸
M̃3

f (6.64)

To paraphrase Stone (p. 162) – in the context of an interregional model – we start with
a matrix of initial injections, If. The second term (M̃1f) adds on the net intraregional
effects captured in M1. Next (in M̃2f) we add in the net interregional spillover effects
in M2. Finally, the fourth term (M̃3f) captures the net interregional feedback effects in
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M3. In the two-region example, these are

M̃1 = M1 − I =
[

Lrr − I 0

0 Lss − I

]

M̃2 = (M2 − I)M1 =
[

0 Srs

Ssr 0

][
Lrr 0

0 Lss

]
=
[

0 SrsLss

SsrLrr 0

]

M̃3 = (M3 − I)M2M1 =
[

FrrLrr − Lrr FrrSrsLss − SrsLss

FssSsrLrr − SsrLrr FssLss − Lss

]

While these appear (and are) increasingly complex, they serve to disentangle the
complex net of intraregional, spillover, and feedback effects.

6.7.4 A Note on Interregional Feedbacks
Interregional feedback effects in a two-region input–output model were explored in
section 3.3.2. They were defined early on (Miller 1966, 1969) for the specific scenario
of a change in final demand in region r only – so �f r �= 0 and �f s =0. Then a measure
of the interregional feedback effect is found as the difference between the output change
in region r that would be generated by the complete two-region model and the output
change in region r that would be calculated from a single-region model. These outputs
are

�xr
T = [(I − Arr) − ArsLssAsr]−1�f r and �xr

S = (I − Arr)−1�f r

(with subscripts indicating “two-region” and “single-region” models, respectively).
Consider the inverse matrix in �xr

T , [(I − Arr) − Ars(I − Ass)−1Asr]−1.

1. Factoring out (I − Arr) gives

{(I − Arr)[I − (I − Arr)−1Ars(I − Ass)−1Asr]}−1

2. Using the rule that (MN)−1 = N−1M−1, we have

[I − (I − Arr)−1Ars(I − Ass)−1Asr]−1(I − Arr)−1

Using Lrr = (I − Arr)−1 and Lss = (I − Ass)−1, we have

�xr
T = [I − LrrArsLssAsr]−1Lrr�f r and �xr

S = Lrr�f r
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Finally, using Frr = [I − LrrArsLssAsr]−1 from M3, above,

�xr
T − �xr

S = FrrLrr�f r − Lrr�f r = (FrrLrr − Lrr)�f r = (Frr − I)Lrr�f

The FrrLrr term is exactly the upper left element in the multiplier matrix from the
multiplicative decomposition in (6.63), and the (Frr − I)Lrr term (for the difference
in gross outputs in the two models) is exactly the upper left element in M̃3 from the
additive decomposition of net effects.

6.7.5 Numerical Illustration
We reconsider the two-region example from Chapter 3, in light of these decomposition
possibilities. In that example we had

Z =
[

Zrr Zrs

Zsr Zss

]
=

⎡⎢⎢⎢⎢⎢⎣
150 500 50 25 75
200 100 400 200 100
300 500 50 60 40

75 100 60 200 250
50 25 25 150 100

⎤⎥⎥⎥⎥⎥⎦
and

x =
[

xr

xs

]
=

⎡⎢⎢⎢⎢⎢⎣
1000
2000
1000

1200
800

⎤⎥⎥⎥⎥⎥⎦
with associated direct and total requirements matrices of

A =
[

Arr Ars

Asr Ass

]
=

⎡⎢⎢⎢⎢⎢⎣
0.1500 0.2500 0.0500 0.0208 0.0938
0.2000 0.0500 0.4000 0.1667 0.1250
0.3000 0.2500 0.0500 0.0500 0.0500

0.0750 0.0500 0.0600 0.1667 0.3125
0.0500 0.0125 0.0250 0.1250 0.1250

⎤⎥⎥⎥⎥⎥⎦
and

L =

⎡⎢⎢⎢⎢⎢⎣
1.4234 0.4652 0.2909 0.1917 0.3041
0.6346 1.4237 0.6707 0.4092 0.4558
0.6383 0.5369 1.3363 0.2501 0.3108

0.2672 0.2000 0.1973 1.3406 0.5473
0.1468 0.0908 0.0926 0.2155 1.2538

⎤⎥⎥⎥⎥⎥⎦
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In addition,25

Lrr = (I − Arr)−1 =
⎡⎣1.3651 0.4253 0.2509

0.5273 1.3481 0.5954
0.5698 0.4890 1.2885

⎤⎦
and

Lss = (I − Ass)−1 =
[

1.2679 0.4528
0.1811 1.2075

]
From these we can generate the additional components needed for these decompo-

sitions, namely

Srs = LrrArs =
⎡⎣0.1119 0.1937

0.2654 0.2477
0.1578 0.1790

⎤⎦ and Ssr = LssAsr =
[

0.1177 0.0691 0.0874
0.0740 0.0242 0.0411

]

Frr = [I − SrsSsr]−1 =
⎡⎣1.0296 0.0134 0.0191

0.0535 1.0262 0.0359
0.0343 0.0164 1.0228

⎤⎦
and

Fss = [I − SsrSrs]−1 =
[

1.0488 0.0599
0.0228 1.0297

]
The M matrices for the multiplicative decomposition are easily found to be

M1 =

⎡⎢⎢⎢⎢⎢⎣
1.3651 0.4253 0.2509 0 0
0.5273 1.3481 0.5954 0 0
0.5698 0.4890 1.2885 0 0

0 0 0 1.2679 0.4528
0 0 0 0.1811 1.2075

⎤⎥⎥⎥⎥⎥⎦
for intraregional transfer effects, as is expected, since only Lrr and Lss appear in this
matrix. Next

M2 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0.1119 0.1937
0 1 0 0.2654 0.2477
0 0 1 0.1578 0.1790

0.1177 0.0691 0.0874 1 0
0.0740 0.0242 0.0411 0 1

⎤⎥⎥⎥⎥⎥⎦
25 Remember that Lrr does not designate the 3 × 3 submatrix in the upper left of L, and similarly Lss is not the

2 × 2 submatrix in the lower right of L.
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contains interregional spillover (“open-loop”) effects only, transmitted from r to s
(upper right) and from s to r (lower left). Finally

M3 =

⎡⎢⎢⎢⎢⎢⎣
1.0296 0.0134 0.0191 0 0
0.0535 1.0262 0.0359 0 0
0.0343 0.0164 1.0228 0 0

0 0 0 1.0488 0.0599
0 0 0 0.0228 1.0297

⎤⎥⎥⎥⎥⎥⎦
identifies interregional feedback (“closed-loop”) effects.

We first use the multiplicative decomposition to find xnew = M3M2M1fnew

for our example (Chapter 3) with (fnew)′ = [
100 0 0 0 0

]
. This will generate

xnew =

⎡⎢⎢⎢⎢⎢⎣
142.34
63.46
63.83

26.72
14.68

⎤⎥⎥⎥⎥⎥⎦, as we found in that chapter. Now, however, the effects can be

disentangled. Specifically,

1. First, M1fnew =

⎡⎢⎢⎢⎢⎢⎣
136.51
52.73
56.98

0
0

⎤⎥⎥⎥⎥⎥⎦ indicates the initial impact in region r, the origin of the

final demand change.

2. Next, M2M1fnew =

⎡⎢⎢⎢⎢⎢⎣
136.51
52.73
56.98

24.69
13.71

⎤⎥⎥⎥⎥⎥⎦ adds to (1) the increases in the two sectors of region

s because of the spillovers from r. Note that outputs in r are unchanged from (1), since
this calculation is concerned with spillovers only. Clearly the difference between
the results in (2) and (1), M2M1fnew − M1fnew, will be the vector of changes in s
only.

3. Finally, M3M2M1fnew =

⎡⎢⎢⎢⎢⎢⎣
142.34
63.46
63.83

26.72
14.68

⎤⎥⎥⎥⎥⎥⎦ = Lfnew then adds in the feedback effects in

the two regions – in r where the stimulus originated and in s because of the stimulus
from the spillovers. In this case, the difference between the results in (3) and (2),
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⎡⎢⎢⎢⎢⎢⎣
5.83

10.73
6.84

2.03
0.97

⎤⎥⎥⎥⎥⎥⎦, nets out the feedback effects by themselves. The first three elements,

⎡⎣ 5.83
10.73
6.84

⎤⎦, are exactly the interregional feedback amounts that we found for region

r in Chapter 3.

Consider now the components of the additive decomposition

xnew = Mfnew = Ifnew + (M1 − I)︸ ︷︷ ︸
M̃1

fnew + (M2 − I)M1︸ ︷︷ ︸
M̃2

fnew + (M3 − I)M2M1︸ ︷︷ ︸
M̃3

fnew

These provide the net effects. For this example, these multiplier matrices are

M̃1 =

⎡⎢⎢⎢⎢⎢⎣
0.3651 0.4253 0.2509 0 0
0.5273 0.3481 0.5954 0 0
0.5698 0.4890 0.2885 0 0

0 0 0 0.2679 0.4528
0 0 0 0.1811 0.2075

⎤⎥⎥⎥⎥⎥⎦

M̃2 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0.1769 0.2845
0 0 0 0.3814 0.4193
0 0 0 0.2325 0.2876

0.2469 0.1859 0.1833 0 0
0.1371 0.0841 0.0858 0 0

⎤⎥⎥⎥⎥⎥⎦

M̃3 =

⎡⎢⎢⎢⎢⎢⎣
0.0583 0.0400 0.0400
0.1073 0.0756 0.0753
0.0684 0.0478 0.0477

0.0148 0.0195
0.0278 0.0365
0.0176 0.0232

0.0203 0.0141 0.0141
0.0097 0.0067 0.0067

0.0727 0.0944
0.0343 0.0463

⎤⎥⎥⎥⎥⎥⎦
The pieces of the decomposition in (6.64) are:
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1. Ifnew =

⎡⎢⎢⎢⎢⎢⎣
100

0
0

0
0

⎤⎥⎥⎥⎥⎥⎦ is just the initial “shock.”

2. Then M̃1fnew =

⎡⎢⎢⎢⎢⎢⎣
36.51
52.73
56.98

0
0

⎤⎥⎥⎥⎥⎥⎦ accounts for the indirect effects in r; the sum of (1) and

(2) is just M1fnew, by definition.

3. Next, M̃2fnew =

⎡⎢⎢⎢⎢⎢⎣
0
0
0

24.69
13.71

⎤⎥⎥⎥⎥⎥⎦ captures the spillovers; this is M2M1fnew − M1fnew,

also by definition.

4. Finally, M̃3fnew =

⎡⎢⎢⎢⎢⎢⎣
5.83

10.73
6.84

2.03
0.97

⎤⎥⎥⎥⎥⎥⎦ isolates the contribution from the interregional

feedbacks; by definition this is M3M2M1fnew − M2M1fnew.

The matrix components of these decompositions, M and M̃, are multiplier matrices,
and so various multipliers can be calculated in the same way as was done earlier in this
chapter for L – for example, simple column sums, or weighted sums if employment,
value added or other economic impacts are of interest.

An empirical example applying these kinds of decompositions can be found in Zhang
and Zhao (2005). They present a detailed set of decompositions of initial, spillover, and
feedback effects derived from the 17-sector version of the 2000 Chinese multiregional
(CMRIO) model that has been aggregated spatially into two mega-regions – Coastal
and Non-coastal regions.

6.8 Summary

In this chapter we have introduced the reader to a wide variety of multipliers that are
frequently calculated and used in real-world applications of the input–output frame-
work. While the array may seem bewildering at first glance, it is, in fact, incomplete.
For example, instead of using household input coefficients, as in (6.11), to generate
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a household income multiplier, one can weight the elements of a column of L by the
parallel concept of “government input” coefficients, representing dollar’s worth of gov-
ernment payments by a sector per dollar’s worth of that sector’s output. These would be
the elements needed in the added row of an A matrix that was being closed with respect
to government operations, not households. In this way, we would generate government
multipliers. And similarly, other multipliers associated with exogenous sectors can be
calculated – for example, foreign trade multipliers.

The use of the input–output framework for impact analysis, due to changing final
demands, using multipliers, constitutes one of the most frequent uses of the model.
In subsequent chapters we will explore extensions to deal specifically with energy
(Chapter 9) and environmental problems (Chapter 10), and alternative uses of the model,
in which the data are transformed into alternative summary measures of economic
activity such as decomposition of changes over time and linkage analysis, in which the
relative “importance” of sectors is assessed.

We explored the added richness of the Miyazawa formulation of a “closed” model
in which various income-consumption-output impacts can be isolated. And we also
examined some of the many variations on early multiplier formulations – for example,
when the approach is changed from (direct + indirect effects)/(direct effects) to (indirect
effects)/(direct effects) – which essentially means subtracting one from a traditional
multiplier. We also examined the conversion of (multiplier) effects into elasticity terms,
giving percentage changes due to a one percent increase in an industry’s final demand
or output. Finally, we examined two approaches to the decomposition of multiplier
effects; these provide mechanisms that explicitly identify the routes of transmission
of the initial exogenous stimulus. (Additional approaches to disentangling economic
structure are explored briefly in Chapter 14.) We illustrated these in the spatial case, with
interregional spillovers and feedbacks. The approach is equally insightful for extended
input–output models, as illustrated by the Miyazawa structure. This is a feature of many
studies employing social accounting matrices (SAMs) and will be discussed further in
Chapter 11.

Appendix 6.1 The Equivalence of Total Household Income Multipliers and the
Elements in the Bottom Row of (I − Ā)−1

Consider the general representation of our 3×3 model closed with respect to households
(sector 3), and its inverse, similarly partitioned.

(I − Ā) =

⎡⎢⎢⎣
(1 − a11) −a12 −a13

−a21 (1 − a22) −a23

−a31 −a32 (1 − a33)

⎤⎥⎥⎦ =
⎡⎣E F

G H

⎤⎦



296 Multipliers in the Input–Output Model

(I − Ā)−1 = L̄ =

⎡⎢⎢⎣
l̄11 l̄12 l̄13

l̄21 l̄22 l̄23

l̄31 l̄32 l̄33

⎤⎥⎥⎦ =
⎡⎣ S T

U V

⎤⎦
From results on inverses of partitioned matrices inAppendixA, particularly (2) in (A.4),
GS + HU = 0. Here, since H = 1 − a33, we can write U = a33U − GS, or[

l̄31 l̄32
] = a33

[
l̄31 l̄32

] + [
a31 a32

] [ l̄11 l̄12

l̄21 l̄22

]
Written out and rearranged, this is

l̄31 = a31 l̄11 + a32 l̄21 + a33 l̄31

l̄32 = a31 l̄12 + a32 l̄22 + a33 l̄32

The three terms on the right-hand sides are exactly the terms in (6.12) – m̄(h)j =
n+1∑
i=1

an+1,i l̄ij – for j = 1 and j = 2, where the (n + 1) = 3 and i = 3 terms are those in

the household row (or column). Thus, m̄(h)1 = l̄31 and m̄(h)2 = l̄32, and this is always
true, for any m̄(h) j, for a model of any size with households endogenous. This is (6.13),
namely m̄(h) j = l̄n+1,j.

Appendix 6.2 Relationship Between Type I and Type II Income Multipliers

To examine the value of the ratio between type II and type I income multipliers, we
again use results on the inverse of a partitioned matrix. To begin we note, for any sector
j, that both multipliers – in (6.14) and (6.15) – have the same denominator, an+1, j, and
thus the ratio of the two multipliers for sector j is

Rj = m(h)II
j

m(h)I
j

= l̄n+1, j
n∑

i=1
an+1,ilij

(A6.2.1)

In matrix terms, with L̄ =
⎡⎣ L̄11 L̄12

L̄21 L̄22

⎤⎦, the numerator of the ratio in (A6.2.1) is the

jth element of L̄21 and the denominator is the corresponding element of h′
cL. Thus the

n-element row vector of these ratios is

R = [R1, . . . , Rn] = L̄21[〈h′
cL〉]−1 (A6.2.2)

The reader should be clear that this matrix operation divides each l̄n+1,1, . . . , l̄n+1,n by

the corresponding
n∑

i=1
an+1,ilij. (Recall also that the notation 〈x〉 is used instead of x̂
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when the vector being diagonalized is represented by a matrix expression containing
several elements, so that the hat does not fit easily.)

Again using results from Appendix A on the inverse of a partitioned matrix (specif-

ically A.5), and with (I − Ā) =
⎡⎢⎣ (1 − a11) −a12 −a13

−a21 (1 − a22) −a23

−a31 −a32 (1 − a33)

⎤⎥⎦ =
[

E F

G H

]
,

we see that the components in (A6.2.2) are

L̄21 = −L̄22(GE−1) = −L̄22(GL) and h′
cL = −GL

Thus R = − L̄22
(1×1)

( GL
(1×n)

)[〈−GL
(n×n)

〉]−1 = L̄22
(1×1)

[1, . . . , 1]
(1×n)

= L̄22i′; that is, the ratios are

all the same and are equal to the element in the lower-right of the closed model inverse.
For the numerical example in section 6.2.2, we found that the ratio of these multi-

pliers, which we designated k, was 1.29. Recall the inverse for our small example, in

(6.6), namely L̄ =
⎡⎢⎣1.365 0.425 0.251

0.527 1.348 0.595

0.570 0.489 1.289

⎤⎥⎦, where, in particular (to two decimals),

L̄22 = 1.29. (Differences are due to rounding and the detailed precision of the inversion
process.)

This constancy of the ratios of the two types of multipliers was apparently first
demonstrated by Sandoval (1967), in an article in which he showed that the ratio is
equal to

∣∣(I − Ā)
∣∣ / |(I − A)|, the ratio of the determinants of the Leontief matrices

(not inverses) of the closed and open models. [The reader familiar with determinants
can easily verify this for the numerical example in this chapter – |(I − A)| = 0.7575,∣∣(I − Ā)

∣∣ = 0.587875 and (to two decimal places) |(I − A)|/|(I − Ā)| = 1.29.] In
producing his result, Sandoval did not use results from the inverses of partitioned
matrices but rather from the general definitions of inverses in terms of determinants
and cofactors. (Other discussions of these topics can be found in Bradley and Gander,
1969, Katz, 1980, and ten Raa and Chakraborty, 1983.)

Problems

6.1 Rank sectors in terms of their importance as measured by output multipliers in each
of the economies represented by the data in problems 2.1, 2.2, and 2.4–2.9 (include
problem 2.10 if you did it.)

6.2 Consider one (or more) of the problems in Chapter 2. Using output multipliers, from
problem 6.1, in conjunction with the new final demands in the problem in Chapter 2,
derive the total value of output (across all sectors) associated with the new final
demands. Compare your results with the total output obtained by summing the ele-
ments in the gross output vector which you found as the solution to the problem in
Chapter 2. [In matrix notation, this is comparing m(o)�f with i′�x = i′L�f ; we
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know that they must be equal, since output multipliers are the column sums of the
Leontief inverse – m(o) = i′L.]

6.3 Using the data in problem 2.3, find output multipliers and also both type I and type II
income multipliers for the two sectors. Check that the ratio of the type II to the type I
income multiplier is the same for both sectors.

6.4 You have assembled the following facts about the two sectors that make up the econ-
omy of a small country that you want to study (data pertain to the most recent quarter).
Total interindustry inputs were $50 and $100, respectively, for Sectors 1 and 2. Sector
1’s sales to final demand were $60 and Sector 1’s total output was $100. Sector 2’s
sales to Sector 1 were $30 and this represented 10 percent of Sector 2’s total output.
After national elections are held, it may turn out that different government policy will
be forthcoming during the first quarter of the coming year.

a. In which of the two sectors does an increase of $100 in government purchases have
the larger effect?

b. How much larger is it than if the $100 were spent on purchases of the other sector?

6.5 Consider an input output economy defined by Z =
[

140 350
800 50

]
and x =

[
1000
1000

]
.

a. In the situation depicted in that question, if you were asked to design an advertising
campaign to stimulate export sales of one of the goods produced in the country,
would you concentrate your efforts on the product of sector 1 or of sector 2 or on
some combination of the two? Why?

b. If labor input coefficients for the two sectors in the region were found to be a31 = 0.1
and a32 = 0.18, how might your answer to part (a) of this question be changed, if
at all?

6.6 Using the elements in the full two-region interregional Leontief inverse from problem
3.2, find:

a. Simple intraregional output multipliers for sectors 1 and 2 [the vectors
m(o)rr and m(o)ss, as in (6.25) and (6.26)];

b. Simple national (total) output multipliers for sectors 1 and 2 (vectors
m(o)r and m(o)s, as was done in (6.30) in the text];

c. Sector-specific simple national output multipliers for sectors 1 and 2 in regions r
and s. (This means finding the four multipliers in m(o)·r = [m(o)·r11 m(o)·r21 m(o)·r12
m(o)·r22] and m(o)·s, defined similarly.)

6.7 On the basis of the results in problem 6.6, above:

a. For which sector’s output does new final demand produce the largest total
intraregional output stimulus in region r? In region s?

b. For which sector in which region does an increase in final demand have the largest
national (two-region) impact?

c. To increase the output of sector 1 nationally (i.e., in both regions), would it be
better to institute policies that would increase household demand in region r or in
region s?

d. Answer question (c) if the objective is now to increase sector 2 output nationally.
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6.8 Answer problems 6.6 and 6.7, above, for the multiregional case, using the elements
in (I − CA)−1C from problem 3.3.

6.9 The government in problem 3.4 is interested in starting an overseas advertising and
promotion campaign in an attempt to increase export sales of the products of the coun-
try. There is specialization of production in the regions of the country; in particular,
the products are shown in the table below:

Region A Region B Region C

Manufacturing Scissors Cloth Pottery
Agriculture Oranges Walnuts None

For which product (or products) would increased export sales cause the greatest
stimulation of the national economy?

6.10 If you have software (or patience), find
∣∣(I − Ā)

∣∣ / |(I − A)| for our numerical exam-

ple in which A =
[

.15 .25

.20 .05

]
and Ā =

⎡⎢⎣ .15 .25 .05
.20 .05 .40

.30 .25 .05

⎤⎥⎦, demonstrating that it is

equal to (1/g) = 1.29, as in Appendix 6.2.
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7 Nonsurvey and Partial-Survey
Methods: Fundamentals

7.1 Introduction

The heart of any input–output analysis is the table of input–output coefficients describ-
ing the relationships between inputs and outputs for a particular economy. To produce
a table based on a survey of establishments in the economy is an expensive and time-
consuming task, not only at a national level, but also for regions (states, counties,
metropolitan areas, etc.). In this chapter we examine some approaches that attempt to
adapt older tables to reflect more recent economic conditions or to borrow information
in a table for one economy to use for a different economy. In a very general way, these
may be thought of as modifications of tables over time or across space, respectively.

7.2 The Question of Stability of Input–Output Data

One of the most serious concerns of those who use input–output models in applied
work is that the table of technical coefficients available to them for the economy that
they are studying will generally reflect data from a much earlier year. For example, a
survey-based or so-called benchmark US input–output table based upon 2002 transac-
tions was not generally available until 2007. These time lags reflect the fact that when
establishments in different industries are surveyed for information regarding their pur-
chases of inputs and their sales of output, it takes a great deal of time to obtain the
data, organize the information, and reconcile inconsistencies – for example, reported
purchases of sector i goods by sector j establishments may differ from reported sales
by sector i to sector j establishments. (We will return to this reconciliation problem in
section 8.9.) This is a general and continuing problem with survey-based tables.

It is clear that techniques of production will and do change over time, for a variety
of reasons. Among others:

1. There is technological change itself, whereby new techniques of production are intro-
duced in a sector (e.g., replacement of some human labor with robots in automobile
production).

2. If there is a large increase in demand for the products of a particular sector, output
will increase (subject, of course, to capacity constraints), and the producer may
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experience economies of scale. For example, if the scale of operation of a firm was
very small at the time it was surveyed, relatively large material inputs per dollar of its
output might be recorded. Later, after the level of production is increased, economies
of scale might be reflected in lower amounts of at least some inputs per dollar of
output. (In terms of the usual production function geometry, as in Figure 2.1(b),
such scale economies mean that each isoquant represents a higher level of output
than under the original conditions of production.)

3. New products are invented (e.g., plastics) which means both that (a) there may be
an entirely new sector – row and column – in a sufficiently disaggregated table or at
least the product mix will change in an existing sector if the new product is classified
there, and (b) it may be used to replace an older product as an input to production
in other sectors (e.g., plastic bottles rather than glass for soft drinks).

4. Relative prices change, and this may cause substitution among inputs in a production
process (e.g., a switch from oil to natural gas as an energy source after a sharp increase
in oil prices).

5. The more aggregated the input–output table, the greater the number of distinct
products that are encompassed under one sectoral classification. To recall an extreme
example from Chapter 3, if the food and kindred products sector produces mostly
tomato soup in one year, there will be a need for tin cans in which to package
the output. If, in a later year, the output of the food and kindred products sector is
primarily chocolate bars, paper will be required for wrapping the product, not tin.
Thus the relative proportions of products that are mixed together in a sector will
influence the aggregate production recipe (column of input coefficients) for that
sector.

6. Changes from domestically produced to imported inputs – or from imported to
domestically produced – will alter the economic interrelationships between sec-
tors in the domestic economy. This is particularly noticeable in interregional and
multiregional input–output models.

For reasons such as these, an economy’s technical coefficients matrix will change
over time. Attempts to quantify these changes are often termed studies of structural
change. Many of the earliest studies were primarily concerned with measurement of
this change, and we examine several of these in this section. A second avenue of inquiry
has concentrated on the decomposition of changes into two or more components of the
overall change. We explore a number of these studies later, in section 13.1.

7.2.1 Stability of National Coefficients
Leontief (1951, 1953) was the first to use a national input–output model to study struc-
tural change, specifically for the US economy over the period 1919–1939. Structural
change in his view is a change in the technical coefficient matrix of the system. Leontief
also introduced the idea of substituting one or more (ultimately, all) columns of old
input coefficients into a new technical coefficients matrix. Kanemitsu and Ohnishi
(1989) used a similar partial substitution method to study technological change in the
Japanese economy for the l970–1980 period.
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In the 1953 publication, Leontief examined the overall effects of structural change
by forcing (1) the 1919 US economy to satisfy 1929 final demands (and comparing
the result with actual 1929 outputs) and (2) the 1929 US economy to satisfy 1939
final demands (and comparing this result with actual 1939 outputs). This has become
a standard approach to measuring the overall effects of technical change. An early
application is in Rasmussen (1957, esp. Chapter 9), where changes were measured for
the Danish economy over the 1947–1949 period.

Following this approach, Carter (1970) analyzed the changes in the US economy in
some detail as they were reflected in the 1939, 1947, and 1958 US input–output data.
With, say, a 50-sector classification, each year’s table of technical coefficients would
contain some 2500 aij coefficients, or there would be 2500 elements in each of the Leon-
tief inverse matrices. It is not immediately obvious how best to compare three sets of
2500 coefficients in order to judge how “different” they are. In general, then, summary
measures of comparison become necessary. We briefly explore two kinds of compar-
isons; one uses aij coefficients directly, and the other is based on the Leontief inverse.

Comparisons of Direct-Input Coefficients If one constructs two-dimensional
plots, in which the horizontal axis is used to measure the size of particular coefficients
in the earlier year (t0) and the vertical axis measures the size of coefficients in the
later year (t1), where the scales along the two axes are the same, then a particular aij

coefficient will have as its horizontal/vertical coordinates the value of that coefficient
at time t0 and at time t1 – aij(t0) and aij(t1). For an n-sector economy, there will be n2

points in such a figure.
If all coefficients remained unchanged over the period, then all the points would fall

along a 45-degree line. On the other hand, for coefficients that have increased over time
the points will fall above the 45-degree line. Similarly, if coefficients have decreased
over time, the points will tend to fall below the 45-degree line. Carter examined figures
of this sort for given sets of sectors as inputs (that is, the aij for specific i’s) and
found, for example, that input coefficients for the “general inputs” sectors (energy,
transportation, trade, communications, and other services) tended to increase over time,
while those for materials inputs did not. Industry-specific analyses showed, for example,
that coefficients measuring iron and steel inputs to productive sectors (aij, where i = iron
and steel) clustered generally below the 45-degree line, when t0 = 1947 and t1 = 1958;
similarly, those for aluminum inputs (aij, where i = aluminum) tended to cluster above
the 45-degree line, for the same time period. This clearly reflects decreased use of iron
and steel and increased use of aluminum as inputs to productive processes over the
1947–1958 period.

Comparisons of Leontief Inverse Matrices One way to quantify in an aggre-
gate way the effects of input–output coefficient change over time is to compare the total
output vector that would be needed for a given set of final demands, using the Leontief
inverses from various technical coefficients matrices. For example, Carter used actual
US final demand in 1961, f(1961), in conjunction with L(1939) = [I − A(1939)]−1,
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L(1947) and L(1958) to calculate x(1961/1939), x(1961/1947) and x(1961/1958).
For example,

x(1961/1939) = L(1939)f(1961)

Here x(1961/1939) represents the gross output that would be needed from each sector
of the economy to satisfy 1961 final demands if the structure of production were that of
1939. (In all cases, these were technical coefficients matrices that excluded households.)
Representative results (Carter, 1970, Table 4.1, pp. 35–36) were as follows for total
intermediate output – total output, x(1961/19xy), less final demand, f(1961) – to satisfy
known 1961 final demands (in millions of 1947 dollars and for xy = 39, 47, or 58):

• Using 1939 coefficients – 324,288
• Using 1947 coefficients – 336,296
• Using 1958 coefficients – 336,941
• Actual 1961 output – 334,160

The implications are that, over time, intermediate input requirements are relatively
stable. Carter suggests that the small increase in total intermediate input represents
a slight increase in specialization within sectors and a relative decrease in the use
of labor and capital in later years. Overall, while there were noteworthy changes in
specific sectors, it appeared from this study that in most sectors structural change was
very gradual. This, of course, supports the contention that input–output coefficient
tables may remain useful for a number of years, even though the year in which they
were constructed may appear to make them out of date.

A sampling of later studies following this same general approach includes:

• Vaccara (1970). The issue was US structural change over 1947, 1958, and 1961 using
the 1947 and 1958 US input–output models, in this case focusing on both gross and
intermediate output, the latter to remove the possibly dominating influence of sales
to final demand.

• Bezdek (1978) looked at the same question of structural change and extended Vac-
cara’s analysis to 1963 and 1966, using data based on somewhat different conventions
(for example, regarding transfers).1

• Bezdek and Dunham (1978) also employed this line of inquiry. They used an aggre-
gation of 80-order data sets (for 1947, 1958, and 1963) to 11 “functional industries”
and made comparisons of their results on intermediate output change over 1947–1963
with the similar work (using other aggregations) by Carter (1970) for the USA. They
also compared their 1958–1963 results with those reported by Stäglin and Wessels
(1972) in a study with a similar purpose for (what was then) West Germany over
1958–1962.

1 There is a good deal of other work, not all of it published, by Vaccara and/or Bezdek and others who were at one
time associated with the US input–output projects in the Office of Business Economics (OBE) or, more recently,
the Bureau of Economic Analysis (BEA) of the US Department of Commerce.
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In many of these studies that used data from several consecutive time periods, the
objective was often to try to determine whether trends observed in earlier periods
appeared to continue to later periods. To the extent that regularities could be uncovered,
the hope was that they might suggest approaches that could be used to update or project
interindustry data in the absence of complete surveys. In general, that goal proved
elusive; as observed in one study, the changes seemed to be “highly erratic, uneven and
unpatterned.” (Bezdek, 1978, p. 224).

Blair and Wyckoff (1989) examined changes in the US economy over 1963–1980.
They considered not only the endpoint years (the 1963 and 1980 tables, the latter an
update of 1977) but also data from the intervening 1967, 1972, and 1977 survey-
based input–output tables. To assess the effects of changes in final demand, they
held production technology in its 1980 form and forced that structure to satisfy, in
turn, the final demands for 1972, 1977, 1980, and 1984. In addition, they also fixed
a vector of final demands (for 1984) and used it with the varying technical coeffi-
cients matrices for 1972, 1977, and 1980. From these experiments, they concluded
that the two methods for assessing structural changes overall produce roughly similar
results.

Other Summary Measures Column sums of A matrices (with, say, house-
holds exogenous) show how a given sector depends on other sectors for inputs. If∑

i
aij(t0) = 0.32 and

∑
i

aij(t1) = 0.54, we would conclude that sector j became more

dependent upon other sectors in the economy in the period from t0 to t1 and also that
sector j depended less on primary inputs – labor, capital, imports. These represent kinds
of sectoral “linkage” in an economy, as do column sums of Leontief inverse matrices
(output multipliers, Chapter 6). These and other linkage concepts will be taken up in
Chapter 12. The point here is simply to note that they provide alternative kinds of
summary measures by which to examine coefficients over time.

Data for the US Economy Appendix B contains a representative set of his-
torical input–output data for the US economy aggregated to seven sectors. Other data
for the US and additional economies with more sectoral detail are on the website at
www.cambridge.org/millerandblair.

7.2.2 Constant versus Current Prices
In studies such as Carter’s that attempt to identify structural (technological) change
it is appropriate to express the input–output relationships in constant dollars. Suppose
that zij(t0) = $40, xj(t0) = $1000, zij(t1) = $160, and xj(t1) = $2000. Recall (Chapter 2)
that a transaction in value terms, zij, is a physical flow from i to j, sij, multiplied by
the price of input i, pi. Then, in terms of current values (at time t0 and at time t1),
aij(t0) = 0.04 and aij(t1) = 0.08. This doubling of the input coefficient from sector i to
sector j might be interpreted as a reflection of technological change – a doubling of the
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importance of good i in industry j’s production process. However, if the price of input
i increased over the period, then the difference between aij(t0) and aij(t1) would be at
least partly due to this price change, and to the extent that this was the case it would
not reflect any changed technological relationships at all. To cite an extreme case, if
the price of good i had doubled and if the same physical flow was used in time t1,
then the zij(t1) = sij(t1)pi(t1) = $160 reflects entirely a change in the price of i. If this
were reduced to the price level at t0 – if pi(t1) were divided by 2 – then in constant
(t0-level) not current (t1-level) dollars zij(t1) is just $80; thus, expressed in constant
dollars, aij(t1) = $80/$2000 = 0.04, and we would conclude that there has been no
structural change at all in the way input i is used in production by sector j. This is
why constant-dollar comparisons are generally used in studies that attempt to identify
structural change in an economy.

However, in addressing the question of coefficient stability over time (which is,
ultimately, the question of whether or not “old” tables can be used reasonably in “new”
times), current values are appropriate. There are two reasons for this. In the first place,
when input prices increase, the price of the output produced from them will tend to
increase also. Recall that the denominator of aij is xj, which is a physical output, sj,
multiplied by the price of j, pj. In the example above, if good i were the only input
to sector j whose price had increased, it is not likely that the price of j would have
doubled also, but it might well have increased slightly in the period from t0 to t1.
However, if prices of all (or most) inputs to j had increased over the period, then the
price of j is almost certain to have gone up also, so there will be some compensating
movement in the numerators and the denominators of the aij. Thus, coefficients using
current prices are likely to exhibit more stability, since price changes will be reflected
in both numerators and denominators. This has been noted repeatedly; early studies
include Tilanus and Rey (1964) at a national level and Conway (1980) at a regional
level. More recently, in a very large study Shishido et al. (2000) use 45 individual
coefficient tables for 20 countries and one region in China (there were tables for several
different years for many of the countries) to examine coefficient change as an economy
develops.

Secondly, due to the necessity of dealing with aggregated classifications, sectors
contain a wide variety of individual products. Suppose that products a and b are clas-
sified as belonging to sector i (for example, heating oil and natural gas in the energy
sector). If the price of one of these products, say a, rises relative to the other, then
in establishments in sector j where substitution is possible between a and b, there
will tend to be replacement of the higher-priced input, a, by the lower-priced one, b.
This substitution, in turn, will tend to stabilize the value of the transaction zij, when
that value is measured in current dollars, even though the physical composition of
the transaction may be quite different at t1 from what it was at t0. (For example,
if the price of oil rises relative to that of natural gas, a transaction from the energy
sector to sector j may contain relatively more natural gas than oil in t1 as compared
with t0.)
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7.2.3 Stability of Regional Coefficients
In Chapter 3 we saw that a regional technical coefficient, ar

ij, can be broken down to the
sum of the regional input coefficient, arr

ij , and the coefficient representing the amount
of good i produced in other regions that is used per dollar’s worth of output of sector
j in region r, ar̃r

ij (where r̃ indicates regions other than r); arr
ij = ar

ij − ar̃r
ij . (For studies

that concentrate on a specific region, where it is not necessary to use a superscript to
designate the particular region, the simpler notation rij = aij − mij is often used for
regional input coefficients, technical coefficients, and “import” coefficients.)2 Both the
technical coefficients and the import coefficients, which represent trade patterns, are
likely to be subject to variations over time. This has led to the speculation that regional
coefficients are likely to be more unstable than technical coefficients, since they are
made up of two unstable components – technical coefficients and import coefficients.
For example, suppose aij(t0) = 0.1, aij(t1) = 0.2, mij(t0) = 0.05, and mij(t1) = 0.1. Then
rij(t0) = 0.05, rij(t1) = 0.1, and the percentage increases in aij, mij and rij from t0 to t1
are all 100. On the other hand, if mij(t1) = 0.08, then rij(t0) = 0.05, rij(t1) = 0.12, and
the percentage increases are 100, 60, and 140, for aij, mij, and rij, respectively. Thus,
in this case, the regional input coefficient is more unstable than either the technical
coefficient or the import coefficient, even though the latter two moved in the same
direction over t0 to t1.

An early study of coefficient stability at the regional level can be found in Beyers
(1972), who used three survey-based input–output tables for the state of Washington,
for 1963, 1967, and 1972 (Bourque and Weeks, 1969; Beyers et al., 1970; and Bourque
and Conway, 1977, respectively). Results of an examination of the regional input coef-
ficients for the 1963 and 1967 Washington survey-based tables, in current dollars, are
not conclusive (Beyers, 1972, Table 4, p. 372). For example, examination of the 888
coefficients for which aij experienced a change over the 1963–1967 period revealed
that in 21.3 percent of the cases there was no change in mij; the change in rij was the
same as in aij. In 16.2 percent of the cases, aij and mij moved in the same direction
and there was no change in rij; in these cases the presence of both aij and mij in the
definition of rij was “compensating.” In 10.4 percent of the cases, aij and mij moved
in opposite directions and hence led to a more unstable rij. However, in the remain-
ing 52.1 percent of the cases, the effects were ambiguous – either aij, mij, and rij all
moved in the same direction or aij and mij moved in the opposite direction (both of
these kinds of movements may or may not lead to more instability in rij than in either
aij or mij). For example, if aij(t0) = 0.2, aij(t1) = 0.19, mij(t0) = 0.05, mij(t1) = 0.01,
then rij(t0) = 0.15 and rij(t1) = 0.18. While both aij and mij have decreased over time,
rij has increased, and the percentage change in rij (in absolute terms) is larger than
the percentage change in aij – a 20 percent increase versus a 5 percent decrease,
respectively.

2 In interregional and multiregional models we generally distinguish between inputs that come from other regions
in the national economy and those that are imported from outside the nation. In the general discussion of this
chapter, “import” means “not produced in the region.”
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Examination of the Leontief inverses for the regional input coefficients and regional
technical coefficients for the two years showed “the regional [input coefficients]
matrix appears somewhat less stable than the [regional] technical requirements matrix”
(Beyers, 1972, p. 372). However, the amount of change was relatively unimportant
for overall impact analysis. For example, in an analysis of the Leontief–Carter type,
total 1967 output calculated by using the 1963 coefficients matrix and the 1967 final
demand was found to be only 2.3 percent larger than total actual 1967 output; interme-
diate output was 10.5 percent larger. However, the usual caveat applies; namely, some
individual sectoral outputs were badly estimated using the 1963 matrix (the worst being
overestimated by 77 percent). Further analyses of the Washington survey-based data
(Conway, 1977, 1980) arrive at similar conclusions.

Another early study using survey-based state-level data is to be found in Emerson
(1976), based on tables for Kansas for 1965 and 1970, including full import and export
matrices. The results are, like those for Washington, not terribly conclusive. Although
there were some changes in the import coefficients, and consequently in the Kansas
regional input coefficients, the problem was judged to be “not acute but . . . of sufficient
importance to warrant concern” (Emerson, 1976, p. 275). Also, Baster (1980) supplied
some evidence on relative stability of trade coefficients in a study for the Strathclyde
region in Scotland. At the level of the individual firm or establishment, 79 percent of the
coefficients showing imports from the rest of Scotland were constant over the 1974–
1976 period, and an additional 13.5 percent of the coefficients varied by no more than
10 percent over the period. At the sectoral level (that is, aggregating establishments),
over 90 percent of the import coefficients were stable.

7.2.4 Summary
There is no question but that coefficients change over time, at both national and at
regional levels. It is also apparent that for aggregate kinds of measures, such as total
economy-wide output associated with a specific vector of final demand, the error
introduced by using an “old” table may not be large. On the other hand, there are
other much simpler methods for forecasting total output that are not much worse. As an
example, Conway (1975) estimates total Washington 1967 output, i′xW

(1967), using
known total final demands for 1963 and 1967 – i′fW

(1963) and i′fW
(1967) – and total

1963 output, i′xW
(1963). His estimate is simply

i′xW (1967) = [i′xW
(1963)]

[
i′fW

(1967)

i′fW (1963)

]
This is known as a “final-demand blowup” approach; in the Washington case it led to

an overestimate of 3.1 percent (Conway, 1975, p. 67), as opposed to the input–output-
generated error of 2.3 percent noted above (Beyers, 1972, p. 368). That is, there are
much simpler ways to be not much worse off, at this very aggregate level. Of course,
the main point of the input–output model is precisely that it generates results at the
sectoral level, and for this kind of detail out-of-date tables can produce considerable
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error. For this reason, there is ongoing concern with improving techniques for updating
or projecting input–output data. We examine some of these below and in the following
chapter.

7.3 Updating and Projecting Coefficients: Trends, Marginal Coefficients,
and Best Practice Methods

7.3.1 Trends and Extrapolation
Early in the history of input–output models it was thought that analysis of the trends in
input–output coefficients might be a tempting approach to the problem of estimating
probable changes in input–output coefficients over time. Given two or more coefficient
matrices defined for an economy over the same set of sectors, linear (or nonlinear) trends
could be established for each particular coefficient, and then extrapolations could be
made to the year in question (with negative coefficients set equal to zero). For example,
if a particular aij at time t0 equals 0.2 and if the coefficient for the same i and j is 0.15
three years later (t0+ 3), then a linear trend extrapolation would suggest that at t0+ 6, aij

would be equal to 0.10. This is of course a very elementary kind of “analysis.” Two early
studies found, not surprisingly, that such extrapolations generated worse results than
simply using the most recent coefficients table; see Tilanus (1966) for the Netherlands
and Barker (Allen and Gossling, 1975, Ch. 2) for UK tables. This approach is no longer
given much attention.

7.3.2 Marginal Input Coefficients
Suppose that one is forecasting into the future from the current year, t, to some future
year, t + s. Given A(t) and a forecast of f(t + s), one would then estimate x(t + s) as

x(t + s) = L(t)f(t + s) (7.1)

where L(t) = [I − A(t)]−1. Suppose that, in addition to the current-year data, there is
a set of input–output data for a previous year, t − r. Then one could generate a set of
marginal input coefficients, a∗

ij, defined as

a∗
ij(t) = zij(t) − zij(t − r)

xj(t) − xj(t − r)
= �zij

�xj

These coefficients relate the change (from year t − r to year t) in the amount of input
i purchased by industry j to the change (over the same period) in the total amount of
j produced. To the extent that the average and marginal coefficients differ, the latter
may reflect scale effects. The argument can be made that the marginal coefficient better
reflects the inputs from i to j that would be used when the output of sector j changes,
due to new (forecast) final demands.

For example, let zij(t−r) = $500, zij(t) = $560, xj(t−r) = $5000, and xj(t) = $6000,
so that aij(t) = $560/$6000 = 0.0933 and a∗

ij(t) = $60/$1000 = 0.06. Putting ourselves
back to year t − r, aij(t − r) = $500/$5000 = 0.1. If at time t − r we had “forecast”
xj(t) to be $6000, our estimate of zij(t), based on the usual average input coefficient,
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would have been aij(t − r)xj(t) = (0.1)($6000) = $600. However, if we had had a
marginal coefficient at t − r, a∗

ij(t − r), we could have made a forecast of zij(t) as
zij(t) = zij(t − r) + �zij = zij(t − r) + a∗

ij(t − r)�xj = $500 + a∗
ij(t − r)($1000). In

particular, if our estimate of a∗
ij(t − r) had been 0.06 [which is our a∗

ij(t)], our estimate
of zij(t)would have been perfect, at $560. This is the basic idea behind the use of
marginal coefficients for forecasting. The alternative to estimating directly the level of
new output, at time t + s, as in (7.1), is to forecast the change in output, using marginal
coefficients, and add it to the current level; that is

x(t + s) = x(t) + �x = L(t)f(t) + L∗(t)�f (7.2)

where �f = f(t + s)− f(t), L∗(t) = [I − A∗(t)]−1 and A∗(t) is the matrix of marginal
input coefficients. Since the elements in x(t + s) are found using a combination of
current average coefficients, A(t), and marginal coefficients, A∗(t), this is in effect a
way of introducing changing coefficients over time into the analysis.

Although the idea of using marginal coefficients to reflect changes in input–output
structure has a certain logical appeal, early experiments by Tilanus (1967) on a series of
Dutch national input–output tables for 13 consecutive years (1948 through 1960) were
not encouraging. For r = 5 (that is, calculating marginal coefficients over the previous
five-year period) and s = 1, 2, 3, 41/2 and 61/2 (years of projection), using marginal
coefficients in this way gave results that were not as good as when the most recent table
of average coefficients was used – the approach in (7.1) turned out to be better than
that in (7.2).

7.3.3 “Best Practice” Firms
An alternative approach for projecting the technology in an input–output table in the
future is the “best practice” firm idea pioneered by Miernyk (for example, in Miernyk,
1965). In constructing a table for short-term forecasting into the future – say, three to
six years – Miernyk suggested that one not gather current information from all firms
in each sector, or even from some random sample of firms. Rather, one should obtain
data only from the “best practice” firms in a sector – those that are technologically
most advanced at present. Such firms can be defined as those for which the ratios of
employment or wage payments to total gross output are relatively low (“low labor
intensity”) or those with relatively high ratios of profits to total gross output. Firms
could be identified as belonging to the best practice group if they satisfied any one or
only if they satisfied several of these (or similar) criteria simultaneously.

The logic is that these firms, which are somewhat unusual currently (in the sense
of being “better than average” for their sector), probably represent the technology that
will be generally in use in the future – the best of today will be the average of the future.
There are many obvious objections to this idea – why should “best” today be “average”
in five years for all sectors? Is this approach valid for three years, or five years, or seven
years in the future? And so on. But in its favor is the fact that it is a workable, feasible
way of constructing technical coefficients matrices that are more likely to represent the
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future structure of production than would a table that was constructed to represent the
average structure in each sector today.

7.4 Updating and Projecting Coefficients: The RAS Approach
and Hybrid Methods

7.4.1 The RAS Technique
Early work at updating input–output information, done under Stone’s direction, is
reported in Stone (1961); Stone and Brown (1962); Cambridge University, Depart-
ment of Applied Economics (1963); and Bacharach (1970). Because this technique
requires less information than is usually obtained in a survey of the sort that under-
lies survey-based input–output tables, it is often referred to as a partial-survey, or a
nonsurvey method. It is now recognized that full surveys are generally impractical and
that a “hybrid” approach is called for, in which some kinds of superior information
(from small, focused surveys, expert opinion, etc.) are incorporated into an otherwise
“nonsurvey” procedure.3 In this section we examine the widely-used “RAS” procedure
(also known as a “biproportional” matrix balancing technique); the origin of the name
will become clear in what follows. There have been numerous variations – attempts at
refinement and improvement of this procedure – and research continues to be active.4

Later we will see how additional information can be incorporated into the basic RAS
procedure, producing an example of a hybrid technique.

To begin, assume that we have an input–output direct input coefficients table for an
n-sector economy for a given year in the past (in what follows, we will designate this as
year “0”) and that we would like to update those coefficients to a more recent year (for
example, the current year, which we will designate year “1”). Using obvious notation,
we have A(0) and we want A(1), the n2 coefficients for the n sectors in the economy
for the more recent or current year.5

The RAS technique generates an estimate of these coefficients from 3n pieces of
information for the year of interest (year 1). These are: (1) total gross outputs, xj (which
are also needed with survey-based transactions information); (2) total interindustry

(intermediate) sales, by sector – for sector i this is
n∑

j=1
zij, which is the same as total

output of sector i less sector i’s sales to final demand (since xi =
n∑

j=1
zij + fi) and (3)

total interindustry purchases, by sector – for sector j this is
n∑

i=1
zij, which is the same

3 See Lahr (1993) for a thorough discussion and an extensive set of references. As noted by Richardson (1985,
p. 624): “If survey-based models are too expensive, conversion of national coefficients too mechanical, and
short cuts too unreliable, the hybrid approaches are the wave of the future.”

4 An excellent overview of RAS and similar matrix adjustment techniques is to be found in several of the chapters
in Allen and Gossling (1975), which also contains a good list of early references. See also Polenske (1997) for a
thorough critical review. An important newer reference is the June, 2004, issue of Economic Systems Research,
a special issue on “Biproportional Techniques in Input–Output Analysis,” edited by Lahr and de Mesnard. See
especially the lead article by the editors (Lahr and de Mesnard, 2004).

5 The RAS approach is usually presented in the context of updating coefficients, and we maintain that viewpoint
in this section. As we will later see, one can equally well use RAS to update transactions and then derive updated
coefficients from those updated transactions.
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as xj − vj (total output of sector j less total purchases by j from the payments sector –
labor inputs to sector j, imported inputs to sector j, taxes paid for government services,
interest paid on capital loans, rental payments for land, etc.)

It has become conventional in the RAS literature to define ui =
n∑

j=1
zij and vj =

n∑
i=1

zij;

as vectors, these are u =
⎡⎢⎣u1

...
un

⎤⎥⎦ and v =
⎡⎢⎣v1

...
vn

⎤⎥⎦. Since these need to be known for year

1, they will be designated u(1) and v(1). (In using u and v, we are following established
convention in the literature on nonsurvey techniques. Throughout this text we have also,
following convention, used v′ for the value-added (row) vector. Also, in Chapter 5
we followed another convention in using U and V for the Use and Make matrices,
respectively, in a commodity-by-industry input–output accounting framework. The
context should always make clear what is intended.)

Thus, the problem that the RAS procedure addresses is: given an n × n matrix A(0)

and given three n-element vectors for a more recent year – x(1), u(1), and v(1) – estimate
A(1). We denote this estimate as Ã(1). If we are dealing with, say, a 25-sector economy,
we are estimating the 625 coefficients in Ã(1) from 75 pieces of information. These are:
(1) the 25 row sums of the unknown transactions matrix, Z(1), namely u(1) = Z(1)i;
(2) the 25 column sums of the same matrix, v(1)′ = i′Z(1) [or v(1) = Z(1)′i]; and (3)
the 25 year-1 gross outputs, x(1), which are needed to convert an estimate of a zij(1)

into an estimate of a technical coefficient aij(1).
We develop the procedure for the general 3×3 case, and then present a 3×3 numerical

example. The potential usefulness of the technique is in real-world applications, where
the number of sectors is much larger than three and hence the difference between n2

and 3n is large. For example, with an 80-sector table, n2 = 6400, whereas 3n = 240.
For the general 3 × 3 case, we assume that base-year coefficients are known,

A(0) =
⎡⎣a11(0) a12(0) a13(0)

a21(0) a22(0) a23(0)

a31(0) a32(0) a33(0)

⎤⎦ (7.3)

and for the “target” year we have

x(1) =
⎡⎣x1(1)

x2(1)

x3(1)

⎤⎦ , u(1) =
⎡⎣u1(1)

u2(1)

u3(1)

⎤⎦ , v(1) =
⎡⎣v1(1)

v2(1)

v3(1)

⎤⎦ (7.4)

Initially, assume A(0) = A(1), namely that the technical coefficients have remained
stable over time. To test the credibility of this hypothesis, we investigate whether or not
it is consistent with year-1 information on intermediate sales and purchases. These are
row and column sums of the transactions matrix, so it is necessary to convert coefficients
into transactions – here this means that our initial estimate of the target transactions



7.4 Updating and Projecting Coefficients: The RAS Approach 315

matrix is Z0 = A(0)x̂(1).6 Here this is

Z0 = A(0)x̂(1) =
⎡⎣a11(0) a12(0) a13(0)

a21(0) a22(0) a23(0)

a31(0) a32(0) a33(0)

⎤⎦⎡⎣x1(1) 0 0
0 x2(1) 0
0 0 x3(1)

⎤⎦
=
⎡⎣a11(0)x1(1) a12(0)x2(1) a13(0)x3(1)

a21(0)x1(1) a22(0)x2(1) a23(0)x3(1)

a31(0)x1(1) a32(0)x2(1) a33(0)x3(1)

⎤⎦ (7.5)

The issue is whether (or how well) the row sums and the column sums of the matrix
in (7.5) correspond to our information about the target year economy – u(1) and v(1).
Starting with row sums, we need to compare u0 = Z0i = [A(0)x̂(1)]i with u(1).7

If u0 = u(1), Z0 has the correct row sums. It then remains to be seen whether the
column sums of Z0 match the known interindustry purchases given in v(1). If i′Z0 =
v(1), our work is finished, since the old technical coefficient matrix, A(0), in conjunction
with the new gross outputs, x(1), generates the proper target year interindustry sales and
purchases. Since the u(1) and v(1) are row and column sums of the (unknown) Z(1)

matrix, they are sometimes referred to as “marginals” or “row and column margins”
of Z(1).

It is much more likely that the no-change hypothesis fails – that u0 �=
u(1) and/or v0 �= v(1). Specifically, suppose that row sums of the matrix in (7.5)
are unsatisfactory;

a11(0)x1(1) + a12(0)x2(1) + a13(0)x3(1) = u0
1 �= u1(1)

a21(0)x1(1) + a22(0)x2(1) + a23(0)x3(1) = u0
2 �= u2(1)

a31(0)x1(1) + a32(0)x2(1) + a33(0)x3(1) = u0
3 �= u3(1)

(7.6)

If a particular u0
i > ui(1), the elements in row i – ai1(0), ai2(0), ai3(0), in the

example – are larger than they should be, since the x1(1), x2(1), and x3(1) contain
“updated” (target year) information. [Similarly, if u0

k < uk(1), the elements of row k
in A(0) are smaller than they should be.]

Let ui(1)/u0
i = r1

i (the first of what will be a series of adjustment terms); when
u0

i > ui(1), r1
i < 1. Let i = 1 for illustration. If each element in row 1 of A(0) is

multiplied by r1
i , each of those elements will be reduced. In particular, this operation

generates a new set of coefficients in that row which, when multiplied by the x(1), will
sum to u1(1) exactly, which is what we want.8 Letting r1

1a11(0) = a1
11, r1

1a12(0) = a1
12,

6 We use the notation Z0 because this represents an estimate of Z(1) based on no change in A(0). Subsequent
estimates of the true Z(1) will be denoted Z1, Z2, …, Zk .

7 Similarly, u0 = Z0i will be the first of a series of estimates of the true u(1), again based on the no-change
hypothesis.

8 From (7.6) we have a11(0)x1(1)+a12(0)x2(1)+a13(0)x3(1) = u0
1 where u0

1 > u1(1). Letting r1
1 = u1(1)/u0

1,

and multiplying through by r1
1 , we have r1

1a11(0)x1(1) + r1
1a12(0)x2(1) + r1

1a13(0)x3(1) = r1
1u0

1 =(
u1(1)

u0
1

)
u0

1 = u1(1).
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and r1
1a13(0) = a1

13, row 1 of A(0) has been altered to produce a new set of coefficients
that constitute our first estimate of a better set of values, in the sense that they satisfy
the target year information in u1(1) exactly.

Similarly, if u0
2 < u2(1), we form r1

2 = u2(1)/u0
2 > 1. Multiplying the elements in

row 2 of A(0) by r1
2 has the effect of increasing each of them sufficiently so that the

new second row sum will equal the known u2(1). (The demonstration follows exactly
the same argument as in footnote 8.) Letting r1

2a21(0) = a1
21, r1

2a22(0) = a1
22 and

r1
2a23(0) = a1

23, we find a modified second row of A(0), where in this example all
elements in this row have been increased. These are our first estimates of a better set
of values for row 2 of A(0). Similarly, for row 3, since u0

3 �= u3(1) in (7.6), we use
r1

3 = u3(1)/u0
3 to multiply each coefficient in the third row of A(0) – reducing them if

u3(1) < u0
3 and expanding if u3(1) > u0

3 – producing the known target year row sum
u3(1).

This is the logic of the row adjustments. Algebraically, we want to multiply row 1
of A(0) by r1

1, row 2 of A(0) by r1
2 and row 3 of A(0) by r1

3, and this is accomplished
using a diagonal matrix made up of the r1. (As we have seen earlier in this book,
premultiplication of any matrix, M, by a diagonal matrix, D = [di], has the effect of
multiplying row i of M by the element di.) Thus a first estimate of a target-year A
matrix, denoted A1, is given by

A1 =
⎡⎣r1

1 0 0
0 r1

2 0
0 0 r1

3

⎤⎦A(0) (7.7)

The superscripts (at present, 1) in the description of the RAS technique refer to the
“step” in the procedure; A1 is our first estimate, which means our estimate after the
first step of the procedure; A2 will be our second estimate (and not “A squared”), and
so on. This may appear cumbersome at first, but it turns out to be useful notation, as
we will see. Letting r1 = [r1

1, r1
2, r1

3],

r̂1 =
⎡⎣r1

1 0 0
0 r1

2 0
0 0 r1

3

⎤⎦
the result in (7.7) can be expressed as

A1 = r̂1A(0) (7.8)

The composition of r̂1 can easily be described using the “hat” notation once again
to convert a vector into a diagonal matrix and recalling that the inverse of a diagonal
matrix is another diagonal matrix whose elements are the reciprocals of those in the
original matrix. Therefore

r̂1 = [û(1)](û0)−1 (7.9)
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Following this first adjustment of A(0) we have a better estimate of Z(1), namely
Z1 = A1x̂(1) = r̂1A(0)x̂(1), with a set of row sums, u1, that correspond exactly to
u(1). From (7.9) and A(0)x̂(1) = û0, we know that

u1 = Z1i = [r̂1A(0)x̂(1)]i = {[û(1)](û0)−1û0}i = u(1) (7.10)

(It was to ensure this equality that the modification of A(0) to A1 was made; this was
illustrated in the previous footnote.)

The next issue, then, is whether or not the column sum information for the target year
is captured in the improved matrix, A1. For that question we need to compare v(1) and
(Z1)′i = v1 = [

v1
1 v1

2 v1
3

]′
, the new column sums. These are

a1
11x1(1) + a1

21x1(1) + a1
31x1(1) = (a1

11 + a1
21 + a1

31)x1(1) = v1
1

a1
12x2(1) + a1

22x2(1) + a1
32x2(1) = (a1

12 + a1
22 + a1

32)x2(1) = v1
2

a1
13x3(1) + a1

23x3(1) + a1
33x3(1) = (a1

13 + a1
23 + a1

33)x3(1) = v1
3

(7.11)

If v1
1 = v1(1), v1

2 = v2(1), and v1
3 = v3(1), then A1 = Ã(1), since it generates row

and column sums that correspond to the observed u(1) and v(1).
In most cases, however, v1 �= v(1), and so it is now necessary to modify the elements

in A1 column by column. For example, if v1
1 >v1(1) – the first A1 column sum in (7.11)

is larger than it should be – let v1(1)/v1
1 = s1

1 and multiply through the first equation in
(7.11).9 The superscript on s1

1 indicates that this is our first modification of coefficients
in order to meet column sum information. The modified coefficients in column 1 are
then s1

1a1
11, s1

1a1
21, and s1

1a1
31; we denote these a2

11, a2
21, and a2

31. The superscript 2 on
the coefficients denotes that this is our second modification of elements from the original
A(0) matrix.

Similarly, let s1
2 = v2(1)/v1

2 and s1
3 = v3(1)/v1

3. If a particular vj(1) > v1
j , the

associated s1
j > 1 and the elements in the jth column of A1 are all increased when

multiplied by s1
j . On the other hand, if vk(1) < v1

k , then s1
k < 1, and each element in the

kth column of A1 is reduced when it is multiplied by s1
k . When a particular vm(1) = v1

m,
the corresponding s1

m = 1, and the elements in column m of A1 will not be changed.
Algebraically, we now want to multiply column 1 of A1 by s1

1, column 2 by s1
2,

and column 3 by s1
3. Postmultiplication of M by a diagonal matrix has the effect of

multiplying column j of M by the element dj, so we form a second estimate, A2, as

A2 = A1

⎡⎣s1
1 0 0
0 s1

2 0
0 0 s1

3

⎤⎦ (7.12)

Letting s1 = [s1
1, s1

2, s1
3], this is

A2 = A1ŝ1 (7.13)

9 This gives s1
1(a1

11 + a1
21 + a1

31)x1(1) = s1
1v1

1 = [v1(1)/v1
1]v1

1 = v1(1), which is what we want.
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Given v(1) and v1, we see that

ŝ1 = [v̂(1)](v̂1)−1 (7.14)

[Compare r̂1 in (7.9).] With this set of adjustments, we know that the column sums are
correct; Z2 = A2[x̂(1)], and

(Z2)′i = [A2x̂(1)]′i = v(1) (7.15)

precisely, since it was to ensure this equality that the change of A1 to A2 was made.
Note, from (7.8) and (7.13),

A2 = r̂1A(0)ŝ1 (7.16)

Ignoring superscripts, hats, lower-case letters, and the (0), denoting base-year informa-
tion, we have “RAS” on the right-hand side of (7.16). This is the origin of the name
of the technique. The point here is that the R is seen to refer to a diagonal matrix of
elements modifying rows, the A to the coefficient matrix being modified, and the S to
a diagonal matrix of column modifiers.

While A2 in (7.13) now contains elements that, in conjunction with x(1), satisfy
the v(1) margins [as in (7.15)], it will generally be the case that in modifying A1

to A2 we will have disturbed the row sum property of A1, given in (7.10). [Except
in the case where ŝ1 = I, meaning that A1 also satisfies all of the column margins
exactly, and then A1 is our desired Ã(1).] Therefore, we must now test A2 for row
sum conformability, in the same way that we tested A(0), originally, and the reader
can see where this is going. Each subsequent row modification will generally upset the
previous column modification, and vice versa – a column modification will upset the
previous row modification. We explore one more iteration – a row and then a column
modification.

Thus, we now find Z2i; that is⎡⎢⎣a2
11 a2

12 a2
13

a2
21 a2

22 a2
23

a2
31 a2

32 a2
33

⎤⎥⎦
⎡⎢⎣x1(1) 0 0

0 x2(1) 0

0 0 x3(1)

⎤⎥⎦
⎡⎢⎣1

1

1

⎤⎥⎦ =
⎡⎢⎣u2

1

u2
2

u2
3

⎤⎥⎦ (7.17)

and let u2 =
⎡⎢⎣u2

1

u2
2

u2
3

⎤⎥⎦. (The superscript on u indicates our second set of row sum esti-

mates.) If, as is likely, u2 �= u(1), we repeat the steps used in forming the diagonal
row-modifying matrix – r2

1 = u1(1)/u2
1, r2

2 = u2(1)/u2
2 and r2

3 = u3(1)/u2
3 – and define

r̂2 =
⎡⎣r2

1 0 0
0 r2

2 0
0 0 r2

3

⎤⎦ = [û(1)](û2)−1 (7.18)
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[Compare r̂1 in (7.9).] Note that the numerators in the ri ratios are always the same,
namely ui(1) – the number that we want. The denominators change, since they represent
the “latest” estimates – here u2

i instead of u1
i .

The entire procedure now follows the pattern that we have already established. If
r̂2 = I, then A2 contains elements that satisfy both column and row margins, and we
use it as Ã(1). If not – if u2 �= u(1) – then we generate a further estimate of A(0) as

A3 = r̂2A2 (7.19)

The construction of r̂2 assures that the row margins are now met.
The issue then (again) is whether the column sum properties of A3 satisfy the known

target-year information in v(1). Thus v2
1, v2

2, and v2
3 are generated, as in (7.11), with a3

ij

here replacing a1
ij in that equation. Let v2 =

⎡⎢⎣v2
1

v2
2

v2
3

⎤⎥⎦; if v2 = v(1), then we have in A3 a

matrix that satisfies both row and column margins, and we use it for Ã(1). If v2 �= v(1),
we form

ŝ2 = [v̂(1)](v̂2)−1 (7.20)

exactly as in (7.14), but using the elements in v2 rather than those in v1. Then our next
estimate of A(0) is given by

A4 = A3ŝ2 (7.21)

Note, from (7.16) and (7.19), that

A3 = [r̂2r̂1]A(0)[ŝ1] (7.22)

and from (7.21)

A4 = [r̂2r̂1]A(0)[ŝ1ŝ2] (7.23)

Clearly, r̂1, r̂2, ŝ1, and ŝ2 are all diagonal matrices (3 × 3 in this example), so, for
example,

[r̂2r̂1] =
⎡⎣r2

1r1
1 0 0

0 r2
2r1

2 0
0 0 r2

3r1
3

⎤⎦
And similarly for [ŝ1ŝ2]. By repetition of these procedures, we would find

A5 = [r̂3r̂2r̂1]A(0)[ŝ1ŝ2]
A6 = [r̂3r̂2r̂1]A(0)[ŝ1ŝ2ŝ3]
...
A2n = [r̂n · · · r̂1]A(0)[ŝ1 · · · ŝn]

(7.24)
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Letting r̂ = [r̂n · · · r̂1] and ŝ = [ŝ1 · · · ŝn], and, again, ignoring hats, lower-case letters
and the (0), the right-hand side of (7.24) is “RAS.” As mentioned earlier, this is the
origin of the name of the procedure.

One may reasonably ask: how many alterations using row and column balancing
factors will be needed until the adjusted matrix satisfies the row and column marginal
totals for year 1?And, for that matter, do we know that, eventually, they will be satisfied,
or may the sequence of adjustments make things continually worse instead of better? In
general, it has been found that the RAS procedure in fact does converge. That is, after
row adjustment r̂k+1 we are closer to u(1) than we were after the previous adjustment,
r̂k , and after column adjustment ŝk+1 we are closer to v(1) than we were after ŝk .10

The number of adjustments needed depends at least in part on how close one wants the
row and column margins of the adjusted matrix to be to the known target-year values
u(1) and v(1). One criterion is to continue the matrix adjustments until all elements in
both [|u(1)− uk |] and [|v(1)− vk |] are no more than ε, where ε is some small positive
number, say 0.001. This means that each uk

i is within 0.001 of the desired ui(1), and
also that each vk

j is within 0.001 of its associated vj(1).
For cases in which one is interested in assessing impacts on an economy of some

future event, a projection of an existing technical coefficients matrix is called for. One
approach is again to use the RAS procedure, where now the values in the u, v, and x
vectors must be forecast into the future year τ ; these estimates u(τ ), v(τ ), and x(τ )

will then be used along with the current or most recent base matrix, A(0).

7.4.2 Example of the RAS Procedure
We illustrate the mathematics with a 3 × 3 example. Let

A(0) =
⎡⎣.120 .100 .049

.210 .247 .265

.026 .249 .145

⎤⎦ (7.25)

The information necessary for a full survey-based coefficients table for the target year,
A(1), would be interindustry flows, Z(1), and total outputs, x(1). Suppose, in fact, that
we have

Z(1) =
⎡⎣98 72 75

65 8 63
88 27 44

⎤⎦ (7.26)

and

x(1) =
⎡⎣421

284
283

⎤⎦ (7.27)

10 These technical matters, dealing with properties of the RAS technique, including convergence, are beyond the
scope of this book.
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Consequently,

u(1) = [
245 136 159

]′
(7.28)

and

v(1) = [
251 107 182

]′
(7.29)

and

A(1) = [Z(1)][x̂(1)]−1 =
⎡⎣.2328 .2535 .2650

.1544 .0282 .2226

.2090 .0951 .1555

⎤⎦ (7.30)

The point of partial-survey techniques is to develop reasonable estimates of the
elements in A(1) in the absence of this kind of information on the full set of transactions
in Z(1). To use the RAS approach, we need only the marginal information in u(1) and
v(1), along with x(1) – as in (7.27), (7.28), and (7.29) – and the original or base year
coefficients matrix, A(0), as in (7.25).

Beginning with the conjecture that the coefficients have not changed, we first examine
the row sums of A(0)x̂(1), as in (7.5), in light of u(1). Here

Z1 = A(0)x̂(1) =
⎡⎣50.520 28.400 13.867

88.410 70.148 74.995
10.946 70.716 41.035

⎤⎦
and

u1 = Z1i = [
92.787 233.553 122.697

]′
Clearly, this is nowhere near to u(1) in (7.28) and adjustment is needed. To begin, then,
r1

1 = u1(1)/u1
1 = 245/92.787 = 2.6405, r1

2 = 0.5823 and r1
3 = 1.2959. Forming r̂1 as

in (7.9), we have

r̂1 = [û(1)](û1)−1 =
⎡⎣2.6405 0 0

0 0.5823 0
0 0 1.2959

⎤⎦
and our first adjusted matrix, A1, is

A1 = r̂1A(0) =
⎡⎣.3169 .2640 .1294

.1223 .1438 .1543

.0337 .3227 .1879

⎤⎦ (7.31)

The elements in r̂1 assure that the row sums of A1x̂(1) will equal u(1), as in (7.10).
Checking the column sums of A1x̂(1) against v(1), we have

v1 = [A1x̂(1)]′i = [
199.06 207.48 133.46

]′
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and this is wide of the mark, since

v(1) = [
251 107 182

]
Then, as in (7.14),

ŝ1 = [v̂(1)](v̂1)−1 =
⎡⎣1.2609 0 0

0 0.5157 0
0 0 1.3637

⎤⎦
and, following (7.13),

A2 = A1ŝ1 =
⎡⎣.3995 .1219 .1764

.1542 .0661 .2104

.0425 .1664 .2562

⎤⎦
In this example, we arbitrarily set ε = 0.005, meaning that the alternating row and

column adjustments would continue through the kth adjustment, when |ui(1) − uk
i | ≤

0.005 and |vj(1) − vk
j | ≤ 0.005 for i, j = 1, 2, 3. For this example, k = 12 (six row

adjustments and six column adjustments were needed). The final matrix, A12, is

Ã(1) = A12 =
⎡⎣.3924 .1219 .1596

.1509 .0661 .1897

.0592 .1887 .2938

⎤⎦ (7.32)

Rather than print all the present matrices, A1 through A11, Table 7.1 gives the succes-
sive values of two representative coefficients, a11 and a23, beginning with the original
A(0) matrix and continuing through each RAS iteration. In Table 7.2 we record the
three elements in [u(1)−uk ] and the three elements in [v(1)−vk ] (transposed to make
them row vectors, for ease of presentation), for k = 0 through 13. The k = 0 line shows
the row and column differences using A(0)x̂(1) – that is, assuming A(0) = A(1). As
expected, at k = 1 the row margins, in u(1), are satisfied exactly – all zero elements in
[u(1) − u1] – but the column margins, in v(1), are not. Then, step 2 adjusts for these
column constraints – generating zeros in [v(1) − v2] – but throwing the row sums out
of balance with u(1). Therefore, for odd values of k, the u differences are all zero; for
even values of k, the v differences are all zero. At k = 13 (that is, following k = 12),
all differences are less than 0.005 in absolute value (for the first time), and hence the
RAS adjustment is terminated. Finally, in Table 7.3 we present the elements of each of
the matrices, r̂1 through r̂7 and ŝ1 through ŝ7, as in A2n in (7.24).

It is of interest to compare our RAS-generated target-year matrix, Ã(1) with A(1) in
(7.30), which we would have available to us if the entire set of interindustry transactions
in Z(1) had been known.

Ã(1) =
⎡⎣.3924 .1219 .1596

.1509 .0661 .1897

.0529 .1887 .2938

⎤⎦ and A(1) =

⎡⎣.2328 .2535 .2650
.1544 .0282 .2226
.2090 .0951 .1555

⎤⎦
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Table 7.1 Values of a11 and a23 at Each
Step in the RAS Adjustment Procedure

k a11 a23

0 .120 .265
1 .3169 .1543
2 .3995 .2104
3 .3812 .1966
4 .3957 .1913
5 .3902 .1912
6 .3931 .1900
7 .3920 .1900
8 .3926 .1898
9 .3923 .1898
10 .3925 .1897
11 .3924 .1897
12 .3924 .1897

Table 7.2 Differences from Row and Column Margins at Each Step in
the RAS Adjustment Procedure

k [u(1) − uk ]′ [v(1) − vk ]′

0 152.2130 −97.5530 36.3030 101.1240 −62.2640 52.1030
1 0 0 0 51.9376 −100.4759 48.5383
2 −11.8055 −9.5328 21.3383 0 0 0
3 0 0 0 9.2120 −4.1679 −5.0441
4 −3.4458 −.0723 3.5181 0 0 0
5 0 0 0 1.8586 −.6862 −1.1724
6 −.7098 −.0024 .7122 0 0 0
7 0 0 0 .3798 −.1394 −.2404
8 −.1452 −.0007 .1459 0 0 0
9 0 0 0 .0778 −.0286 −.0492
10 −.0297 −.0002 .0299 0 0 0
11 0 0 0 .0159 −.0059 −.0101
12 −.0061 0 .0061 0 0 0
13 0 0 0 .0033 −.0012 −.0021

Even casual inspection shows that there are significant differences in most of the
elements in these two matrices.

Define an error matrix, E(A), as E(A) = Ã(1) − A(1). Here

E(A) =
⎡⎣ .1596 −.1316 −.1054

−.0035 .0379 −.0329
−.1561 .0936 .1383

⎤⎦
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Table 7.3 Elements in the Diagonal Matrices r̂k and
ŝk , for k = 1, . . . , 7

k r̂k ŝk

1 2.6405 .5823 1.2959 1.2609 .5157 1.3637
2 .9540 .9345 1.1550 1.0381 .9625 .9730
3 .9861 .9995 1.0226 1.0075 .9936 .9936
4 .9971 1.0000 1.0045 1.0015 .9987 .9987
5 .9994 1.0000 1.0009 1.0003 .9997 .9997
6 .9999 1.0000 1.0002 1.0001 .9999 .9999
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Notice that column sums of E(A) are zero; this reflects the fact that column sums of
Ã(1) and A(1) are equal, except for rounding in this small example.11

An alternative way to express the errors in each of the coefficients is to convert the
elements in E(A) to percentages. Define P(A) = [p(a)ij] where

p(a)ij = [|ãij − aij(1)|/aij(1)] × 100 = [|e(a)ij|/aij(1)] × 100

These are the absolute values of the errors as a percentage of the corresponding true
coefficients in A(1). For this example,

P(A) =
⎡⎣68.6 51.9 39.8

2.3 134.4 14.8
74.7 98.4 88.9

⎤⎦
Viewed in this way, also, it is clear that some of the RAS-estimated coefficients
are wildly different from their survey counterparts. Six of the nine RAS-generated
coefficients are in error by more than 50 percent – not a very successful estimate.

There are many measures available for quantifying the “difference” between two
matrices. We illustrate several of them. The mean absolute deviation (MAD) simply
averages the elements in E(A), ignoring sign:

MAD = (1/n2)

n∑
i=1

n∑
j=1

|e(a)ij|

In our example, MAD = (1/9)(0.8589) = 0.0954. This represents the average amount
(whether positive or negative) by which an estimated coefficient differs from the true
coefficient. The mean absolute percentage error (MAPE) performs the same averaging

11 The RAS marginal constraints assure that i′Z̃(1) = i′Z(1). Since Z̃(1) = Ã(1)x̂(1) and Z(1) = A(1)x̂(1),
i′Ã(1)x̂(1) = i′A(1)x̂(1) and so (postmultiplying by [x̂(1)]−1), i′Ã(1) = i′A(1).
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on the elements in P(A), namely

MAPE = (1/n2)

n∑
i=1

n∑
j=1

p(a)ij

For this example, MAPE = (1/9)(575.38) = 63.76, which means that, on average,
each coefficient will be either 63.8 percent larger or smaller than its true value; that is,
it will be “in error” by 63.8 percent. [If the direction of error is thought to be important,
then we could generate the elements in the P(A) matrix, retaining the signs. However, in
that case, it is not very meaningful to find an average over all elements, since positive
and negative errors would offset each other.] By these measures (and others, which
we need not explore here), the matrix produced by the RAS procedure in this small
example does not appear to be a particularly good reflection of A(1). At least this is the
implication of these measures that examine the element-by-element accuracy of Ã(1)
as compared with A(1). In larger examples, more representative of real-world input–
output tables, there are more elements available for adjustment in any row or column
and, in that sense, there is more flexibility in producing an estimate of the target-year
matrix.

Another point of view is that while this individual cell accuracy (sometimes called
partitive accuracy) may be important for some kinds of problems, the ultimate test of
a set of input–output coefficients is how well they perform in practice (also sometimes
known as holistic accuracy).12 That is, perhaps we should be more concerned with the
relative accuracy in the Leontief inverse matrices associated with Ã(1) and A(1). Here

L(1) =
⎡⎣1.5651 .4684 .6146

.3463 1.1599 .4144

.4264 .2465 1.3829

⎤⎦ (7.33)

and

L̃(1) = [(I − Ã(1)]−1 =
⎡⎣1.7703 .3298 .4888

.3310 1.1940 .3955

.2210 .3438 1.5583

⎤⎦ (7.34)

The associated error matrices are

E(L) =
⎡⎣ .2052 −.1386 −.1258

−.0153 .0341 −.0189
−.2054 .0973 .1754

⎤⎦
and

P(L) =
⎡⎣13.1 29.6 20.5

4.4 2.9 4.6
48.2 39.5 12.7

⎤⎦
12 These terms are from Jensen (for example, Jensen, 1980).
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For this small example, percentage errors in P(L), associated with the Leontief inverse
matrices, are generally considerably smaller than those in P(A).

Alternatively, consider the output multipliers associated with L(1) and L̃(1), m(o) =[
2.3378 1.8748 2.4119

]
and m̃(o) = [

2.3223 1.8676 2.4426
]
. The vector of

percentage errors, expressing each [m(o)j − m̃(o)j] as a percentage of m(o)j, is
p(m) = [

0.66 0.38 −1.27
]
. This indicates much closer correspondence between

the estimated and true multipliers than might be expected from E(A) and P(A), and
even from E(L) and P(L).

The power series expressions for L and L̃ are helpful here, namely

L = I + A + A2 + A3 + · · · and L̃ = I + Ã + Ã2 + Ã3 + · · ·

From these, the (row) vector of multiplier differences can be expressed as

i′L − i′L̃ = i′(L − L̃) = i′(I − I) + i′(A − Ã) + i′(A2 − Ã2) + i′(A3 − Ã3) + · · ·

Clearly i′(I − I) = 0, and also i′(A − Ã) = i′E(A) = 0, as noted above. Therefore,

i′L − i′L̃ = 0 + 0 + i′(A2 − Ã2) + i′(A3 − Ã3) + · · ·

We see that the first two terms in the expression for the output multiplier differences
are zero. (In the example in Table 2.5 we saw that these two terms in the power series
accounted for between 85 and 92 percent of the total output effect.)

Comparison of multipliers is a test of the model in use, with specific final-demand
vectors – [1, 0, 0]′, [0, 1, 0]′, and [0, 0, 1]′, respectively. We can also compare the

performance using any arbitrarily chosen f(1) vector. For example, let f(1) =
⎡⎣800

700
300

⎤⎦;

then from the Leontief inverses in (7.33) and (7.34),

x(1) =
⎡⎣1764.20

1213.29
928.54

⎤⎦ and x̃(1) =
⎡⎣1793.74

1219.25
884.95

⎤⎦
Again, expressing the differences as a percentage of xi(1),

p(�x) =
⎡⎣ 1.67

0.49
−4.69

⎤⎦
The effect on the gross output of sector 3 is underestimated by almost five percent while
the other two outputs are much more accurately estimated. Of course, results of this
kind depend on the arbitrary f(1)vector used for the illustration.
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Conclusions suggested by this example are: (1) the RAS procedure may generate a
technical coefficients matrix that does not look very much like an associated full-survey
matrix, but (2) an A matrix estimated by RAS may perform relatively well in practice,
that is, when converted to its associated Leontief inverse, in terms of the sectoral gross
outputs that it produces in conjunction with a given f(1) vector. We will examine another
holistic measure of performance in Chapter 8, when we explore differences in output
multipliers in a regional input–output model.

7.4.3 Updating Coefficients vs. Transactions
Early discussions of the technique assumed that one begins with a base year A; this is
explicit in the “RAS” name. It appears that Deming and Stephan (1940) first used the
biproportional adjustment technique that later became known as RAS. Leontief (1941)
suggested a similar pair of influences (on rows and on columns) to account jointly for
coefficient change. Stone and his colleagues at Cambridge apparently were unaware of
this work when they proposed it in 1962 (Bacharach, 1970, p. 4; see also Lahr and de
Mesnard, 2004). The Cambridge work emphasized operations on a base-year coefficient
matrix, even though Bacharach (1970, p. 20) suggests that the ultimate interest was in
a target-year transactions matrix.

In fact, this biproportional matrix balancing approach can be equally well applied
directly to a base-year transactions matrix, Z(0), in conjunction with the required
marginal information, x(1), u(1), and v(1). In this case, there is no need to convert
the coefficients at each step, Ak , to transactions, Zk , in order to check the degree of
conformity with u(1) and v(1). There seems to have been some uncertainty in the lit-
erature on whether or not the end results of the two exercises – directly altering A vs.
directly altering Z – are the same.13

In the former case (updating A), denote ÃA(1) = r̂AA(0)ŝA, leading to Z̃A(1) =
ÃA(1)x̂(1) and in the latter case (updating Z), let Z̃Z (1) = r̂Z Z(0)ŝZ , leading to
ÃZ (1) = Z̃Z (1)x̂(1)−1. The question is whether or not ÃA(1) = ÃZ (1) or Z̃A(1) =
Z̃Z (1) (where superscripts indicate which matrix was used in the updating procedure).
The answer is that it makes no difference which kind of matrix is used as the base for the
updating procedure (coefficients or transactions); the results from the two approaches
are the same. (See Dietzenbacher and Miller, 2009, for a proof).

Numerical Illustration This is the data set for the closed model in Chapter 2.
Call this year 0 data:

Z(0) =
⎡⎣150 500 50

200 100 400
300 500 50

⎤⎦ , x(0) =
⎡⎣1000

2000
1000

⎤⎦ , A(0) =
⎡⎣.15 .25 .05

.20 .05 .40

.30 .25 .05

⎤⎦
13 See for example, the sequence of opinions expressed in Okuyama et al. (2002), Jackson and Murray (2004),

and Oosterhaven (2005).



328 Nonsurvey and Partial-Survey Methods: Fundamentals

Assume that we have the following year 1 information (necessary for RAS):

x(1) =
⎡⎣1200

2500
1400

⎤⎦ , u(1) =
⎡⎣ 780

810
1050

⎤⎦ , v(1) =
⎡⎣ 740

1270
630

⎤⎦
Coefficient updating. Start with A(0). In this case we find

ÃA(1) = r̂AA(0)ŝA =
⎡⎣0.1370 0.2205 0.0460

0.1752 0.0423 0.3529
0.3046 0.2452 0.0511

⎤⎦
For ease of presentation, we have rounded all coefficients to four digits and all
transactions to whole numbers. In this case, the associated transactions matrix is

Z̃(1)A = ÃAx̂(1) =
⎡⎣164 551 64

210 106 494
365 613 72

⎤⎦
Transaction updating. Start with Z(0). RAS provides the update

Z̃Z (1) = r̂Z Z(0)ŝZ =
⎡⎣164 551 64

210 106 494
365 613 72

⎤⎦
illustrating that Z̃A(1) = Z̃Z (1). Also, from this,

ÃZ (1) = Z̃Z (1)[x̂(1)]−1 =
⎡⎣0.1370 0.2205 0.0460

0.1752 0.0423 0.3529
0.3046 0.2452 0.0511

⎤⎦
and ÃA(1) = ÃZ (1). This does not prove but illustrates what is a general result.

7.4.4 An Economic Interpretation of the RAS Procedure
In the preceding sections, we have illustrated the mathematics of the RAS procedure for
sequentially adjusting rows and columns of a given coefficient matrix, A(0), in order
to generate an estimate of a more recent matrix, A(1), where only x(1), u(1), and v(1)

are assumed known for the target year, 1. When the adjustment process is terminated –
because the row and column margins are within the prespecified level of error, ε, from
the elements in u(1) and v(1) – we have

A(1) = r̂A(0)ŝ (7.35)

As we have seen, each element ri in r̂ multiplies each element in row i of A(0) and
each element sj of ŝ multiplies each element in column j of A(0) – for i, j = 1, . . . , n.

In this “updating” procedure, one might well ask why this kind of uniform pro-
portional change should be expected for the elements in rows or columns of A(0).
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In the early development of the RAS procedure, Stone (1961) described the uniform
changes along any row and down any column in A as reflecting what he termed the
economic phenomena of substitution effects and fabrication effects, respectively. The
former refers to the emergence of substitutes as production inputs; that is, the substitu-
tion of one input for another – for example, the use (throughout industrial processes)
of plastic products in place of metal ones. The implication is that all aij in the plastics
row (i) would increase (for example, be multiplied by 1.4) and all akj in the metals
row (k) would decrease (for example, be multiplied by 0.82). The term fabrication
effect refers to the altered proportion of value-added items in a sector’s total purchases.
For example, over time, the product of a particular sector may come to depend more
on high-technology capital equipment and/or skilled labor. Thus, a dollar’s worth of
the product embodies proportionately less of interindustrial inputs and proportionately
more of value-added inputs, and the aij in the column representing the industry in
question would decrease (for example, be multiplied by 0.79).

To the extent that technological change in the style of production may be reflected
in such substitution and fabrication effects, the RAS procedure has a logical economic
basis. However, many researchers discount this oversimplified view of the way in which
such change is distributed throughout an economy. Instead, they view RAS as a purely
mathematical procedure. It can be shown that the RAS technique in fact emerges as the
solution to a constrained optimization problem in which, subject to the row and column
margins given in u(1) and v(1), we want to generate a new coefficient matrix, A(1),
that “differs” as little as possible from our previous observation, A(0). The underlying
logic is simply that, in the absence of any new information, we would assume that A(0)

is still the best representation of interindustrial relationships. However, given some
updated information – in x(1), u(1), and v(1) – a modified matrix, A(1), will usually be
called for.

Two properties of the RAS procedure bear noting. Signs are preserved in the sense that
no aij(0) > 0 will ever be changed to a negative-valued coefficient. As the fundamental
definitions of r̂ and ŝ make clear, all the ri and sj modifiers of A(0) are non-negative.
Thus, no matter how much a particular aij(0) is modified, it will remain non-negative.
Secondly, any aij(0) that equals zero will remain zero throughout the RAS procedure,
since all that happens to it is that it is multiplied by non-negative numbers. Suppose that
sector i represents potatoes and sector j is automobiles; if aij(0) = 0, this represents
the (believable) fact that potatoes were not purchased as direct inputs to automobile
manufacturing in year 0. The RAS technique assures us that in the updated matrix aij(1)

will still be zero. This feature is a mixed blessing. In some cases, such as potatoes and
automobiles, it is probably good that a zero-valued coefficient is preserved; potatoes
were not used as a direct input to automobiles in year 0 and most probably not in
year 1, either. On the other hand, if sector k is plastics and sector j is automobiles,
it may be (if year 0 was long enough ago) that akj(0) = 0, but we know that for our
more recent year 1, akj(1) �= 0. Nevertheless, the RAS procedure by itself will predict
akj(1) = 0.



330 Nonsurvey and Partial-Survey Methods: Fundamentals

7.4.5 Incorporating Additional Exogenous Information in an RAS Calculation
The RAS technique, as discussed above, assumes only target-year information on x, u
and v. Often one may have particular information about specific transactions or specific
coefficients. If a particular zij(1)is exogenously known, then since xj(1) is also known,
so is aij(1). Such information may come from a survey of an “important” industry
in the economy, from an independent forecast of a particular sector’s sales to one or
more sectors, from expert opinions about production practices in a particular sector,
and so on.

Suppose that a particular zij(1) is known. Then one can subtract zij(1) from both
ui(1) and vj(1); this is equivalent to inserting a zero in the i, jth cell of Z(0) and hence
of A(0). Continuing with our general 3 × 3 example, suppose z31(1) is known. Since
x1(1) is also known, a31(1) is known as well.

Define Ā(0) to be the same as A(0) except that a31(0) has been replaced with a zero.
Define a 3 × 3 matrix K as

K =
⎡⎣ 0 0 0

0 0 0
a31(1) 0 0

⎤⎦
This is just the null matrix with k31 replaced by the known target-year coefficient,
a31(1). Then A(0) = Ā(0) + K. Denote by ū(1) and v̄(1) the vectors that remain after
z31(1) is subtracted from u3(1) and v1(1). These become the relevant new margins, and
the RAS procedure is utilized, as usual, but with Ā(0) as the base-year matrix, to be
modified according to the (altered) row and column sum information for the target year,
ū(1) and v̄(1). The RAS technique will leave the new zero element, a31(0), unchanged.
When the approximating technique is completed we construct our estimate of A(1) as14

Ã(1)31 = K + r̂Ā(0)ŝ (7.36)

Clearly, in an economy represented by a larger number of sectors, we may have
estimates of several zij(1) and hence of several of the target-year coefficients, aij(1).
In fact, if there is a “key” sector that is known to play a particularly important role in
the economy, an entire column (intermediate inputs to the key sector) and/or an entire
row (intermediate sales by the key sector) may be known or somehow independently
determined. And indeed there may be more than one key sector. In all of these cases,
there is no difference in the approach outlined. Of course, the matrix K will contain
more nonzero (known) elements, the matrix Ā(0) will contain more zeros, and the
adjustments to u(1) and v(1) – to generate ū(1) and v̄(1) – will be more extensive.15

14 We use the “31” subscript to indicate which element was replaced by its true value. This does not generalize
easily to cases in which more than one element is replaced by exogenous information, but it serves adequately
for present purposes.

15 See section 7.4.8, below, on the role of zeros in creating infeasible problems – where RAS fails to generate a
solution.



7.4 Updating and Projecting Coefficients: The RAS Approach 331

7.4.6 Modified Example: One Coefficient Known in Advance
Here is an illustration. Suppose a31 is known in advance for the example in section
7.4.2; from (7.30), a31(1) = 0.209, and therefore

K =
⎡⎣ 0 0 0

0 0 0
.209 0 0

⎤⎦
and so

Ā(0) =
⎡⎣.120 .100 .049

.210 .247 .265
0 .249 .145

⎤⎦
This is A(0) in (7.25) with a31(1) replaced by 0.

To employ the RAS procedure on Ā(0) we find ū(1) and v̄(1). The (known)
interindustry flow in the target year, from sector 3 to sector 1, is z31(1) =
a31(1)x1(1) = (0.209)(421) = 87.989; this therefore must be netted out of both
u3(1) and v1(1), leading to ū(1) = [

245 136 71.011
]′

and v̄(1) =[
163.011 107 182

]′
. Following (7.36) we find

Ã(1)31 =
⎡⎣.2909 .1892 .2431

.0963 .0884 .2486

.2090 .0992 .1514

⎤⎦ (7.37)

Recall, from (7.30), that

A(1) =
⎡⎣.2328 .2535 .2650

.1544 .0282 .2226

.2090 .0951 .1555

⎤⎦
and the error matrix for this estimate, E(A) = Ã(1)31 − A(1), is

E(A) =
⎡⎣−.0581 −.0643 −.0219

.0581 .0602 .0260
0 .0041 −.0041

⎤⎦
In this case, the reader can easily find that MAD = (1/9)(0.2968) = 0.0330 and MAPE
= 36.5; in the original example, without any prior information on coefficient values, we
found MAD = 0.0954 and MAPE = 63.8. By these measures, then, the RAS estimate
in (7.37), which includes exogenous information on a31(1) in the target year, is more
accurate than was Ã(1) in (7.32).

It turns out, however, that assessment of the performance of modified RAS estimates
depends very much on the measure used to measure the differences between matrices,
specifically Ã(1) − A(1) (no exogenous information) and Ã(1)ij − A(1) [substitution
of the true aij(1)]. Table 7.4 illustrates this sensitivity for the numerical example begun
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Table 7.4 MAD and MAPE when One
Coefficient is Known in Advance in
an RAS Estimate

Element known
in advance MAD (×100) MAPE

None 9.55 63.8
a11 5.52 31.6
a12 7.24 36.6
a13 8.53 62.1
a21 9.49 63.0
a22 8.80 48.6
a23 9.45 60.8
a31 3.30 36.5
a32 9.17 69.4
a33 7.48 47.7

in section 7.4.2 and continued above. This table presents the MAD (multiplied by 100
for easier reading) and MAPE measures associated with each of the Ã(1)ij matrices
generated using prior information on a single aij(1) cell in A(1). In this small example,
there is improvement (over the no-prior-information case) as measured by MAD, but
using the MAPE measure we find that correct prior information on a32 (in bold type)
makes the overall estimate worse. (This sensitivity to alternative “metrics” for com-
paring closeness of matrices is discussed, with numerical examples, in de Mesnard and
Miller, 2006.)

This result (worse results with better information) has been discussed before in the
literature, although the importance of the measure of distance between matrices was
not emphasized. In an early example that was frequently cited, Miernyk (1977) pre-
sented this counterintuitive result, using “mean percentage difference” as the measure
of distance between the predicted and true target-year matrix. The idea was later taken
up by Miller and Blair (1985) in the first edition of this text, where a further example
appeared to illustrate the same point. In fact, both of these results have been shown to
be flawed – there were errors with the RAS procedures (improper computer programs,
stopping criteria that were too loose, etc.).16 Nonetheless, later experiments with data
sets that are much larger and more reflective of real-world applications have identified
examples in which additional (correct) information generates poorer RAS estimates,
under several fairly common distance measures. (Examples can be found in Szyrmer,
1989, and Lahr, 2001.) Nonetheless, the overwhelming majority of the evidence
suggests the contrary. As a general rule, introduction of accurate exogenous informa-
tion in RAS improves the resulting estimates. This is what hybrid models are designed
to do.

16 These are taken up in detail in de Mesnard and Miller (2006).
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7.4.7 Hybrid Models: RAS with Additional Information
In the decades since RAS was first proposed, there have been many applications at
both national and regional levels. These have led to numerous variations, modifica-
tions, and extensions of the technique. An examination of the tables of contents or
annual indexes of many journals in the field – especially Economic Systems Research
and Journal of Regional Science – will reveal a large number of articles with “RAS,”
“partial-survey methods,” “nonsurvey methods,” “biproportional methods” or “hybrid
models” in the title. Among the modifications are methods labeled “TRAS” (identi-
fied by its originators as a “three-stage RAS” or as a “two-stage RAS algorithm”; see
Gilchrist and St. Louis, 1999, p. 186 and Gilchrist and St. Louis, 2004, p. 150, respec-
tively), “GRAS” (for “generalized” RAS, for matrices that include negative numbers;
see Junius and Oosterhaven, 2003) or “ERAS” (for “extended” RAS; see Israilevich,
1986).

Indeed, the preponderance of tables that are currently (beginning of the twenty-
first century) being produced employ the “hybrid” notion of combining some kind of
balancing of tables (usually using RAS or a variant) after “superior” information has
been introduced, in the style of the example in sections 7.4.4 and 7.4.5. For example, the
Bureau of EconomicAnalysis at the US Department of Commerce uses an adjusted RAS
procedure to generate annual input–output tables for non-benchmark-table years in the
USA.17 In Europe, Eurostat is the agency that oversees collection and compilation of
input–output data for the European Union member countries. Tables for non-benchmark
years are produced using the Eurostat method, a modified and expanded RAS approach.
(See Eurostat, 2002, esp. Chapter 14.)

A major trick in these kinds of applications is establishing which sectors (columns,
rows or even individual cells) are most “important” to the economy, since these are the
elements for which superior information would be preferred. In Chapter 12 we examine
some of the approaches to identifying “important” sectors in an economy on the basis of
their input–output data. As noted, this kind of exploration also identifies important (sets
of) coefficients for which one would ideally like to have superior data to combine with
RAS or some similar procedure for the remaining cells. There is an immense literature
on this subject, and we will explore some of it in Chapter 12. Some of the approaches
are essentially mathematical in nature – for example, those that are concerned with
the influence of errors in one or more elements in a matrix on the resulting elements
in the associated inverse matrix – and others are more economic in nature, in which
attempts are made to identify important, or “key,” sectors in an economy. In actuality
this distinction tends to blur, since influential elements often belong to what turn out to
be important sectors.

17 This is described in Planting and Guo, 2004. The authors speak of “… [the] new automated updating and
balancing method …” (p. 157).



334 Nonsurvey and Partial-Survey Methods: Fundamentals

7.4.8 The Constrained Optimization Context
The notion of the “difference” between two matrices is a subtle one; there are many
alternative measures. The RAS procedure can be shown to minimize

D[A(0) : Ã(1)] =
∑

i

∑
i

{
ãij(1) ln

[
ãij(1)

aij(0)

]}
subject to the constraints on row and column sums given by u(1) = [(Ã)(1)x̂(1)]i
and v(1) = i′[(Ã)(1)x̂(1)]. (This is explored in Appendix 7.2 to this chapter.) The
objective function, D[A(0) : Ã(1)], has an interpretation as the “information” measure
of distance between A(0) and Ã(1). In a sense, it generates the Ã(1) which, given A(0)

and the information in x(1), u(1), and v(1), generates the least “surprise.”
Many other potentially attractive measures have been proposed to represent the

difference (or distance) between the estimated matrix and the base-year matrix. These
become an objective function in an associated constrained optimization problem. The
constraints continue to be the row and column margins, as in RAS. However, ãij ≥ 0
for all i and j must be added as an additional n2 constraints because, unlike the RAS
procedure, non-negativity of the solutions to these programming problems cannot be
assured. Sometimes, also, bounds have been set on the sizes of relative change allowed
for the elements. For example, (0.5)aij(0) ≤ ãij(1) ≤ (1.5)aij(0) would assure that
each original coefficient did not increase or decrease by more than 50 percent.

Some of the objectives that have been proposed in this input–output updating context
are:18

• Total absolute deviation:
∑

i

∑
j

∣∣aij(0) − ãij(1)
∣∣. Divided by n2, this is known as

the mean absolute deviation (MAD). This and the following two objectives can be
converted to a linear form, thus creating a linear program which is easily solved.
(Jackson and Murray, 2004.)

• Weighted absolute deviation:
∑

i

∑
j

aij(0)
∣∣aij(0) − ãij(1)

∣∣. (Lahr, 2001.)

• Relative deviation:
∑

i

∑
j

|aij(0)−ãij(1)|
aij(0)

. (Matuszewski, Pitts and Sawyer, 1964.) Mul-

tiplied by 100 and divided by n2, this is known as the mean absolute percentage error
(MAPE).

• Squared (or quadratic) deviation:
∑

i

∑
j

[aij(0) − ãij(1)]2. (Almon, 1968.) This and

the next two objectives require solution of a nonlinear program, which may be
problematic.

• Weighted squared deviation:
∑

i

∑
j

aij(0)[aij(0) − ãij(1)]2. [Canning and Wang,

2005, use a weighted quadratic penalty function in a program designed to estimate
the z·r

ij and zrs
i components of a multiregional input–output model (Chapter 3).]

18 Constraints always include non-negativity of the ãij(1), along with the row and column margins, namely∑
j

ãij(1)xj = ui and
∑
i

ãij(1)xj = vj , respectively.
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• Relative squared deviation:
∑

i

∑
j

[aij(0)−ãij(1)]2

aij(0)
. (Friedlander, 1961.) This is Pear-

son’s Chi-square measure, used early by Deming and Stephan (1940).
• Sign-preserving absolute differences:

∑
i

∑
j

∣∣aij(0) − yijaij(0)
∣∣, where yijaij(0) =

ãij(1). (Junius and Oosterhaven, 2003.)19

The nonlinear alternatives require solution of possibly large and complex nonlin-
ear programs, with their attendant difficulties, including computational issues (despite
powerful computer programs and software), local rather than global optima, etc.
Early overviews of some of these alternative minimization objectives can be found in
Lecomber (Allen and Gossling, 1975, Ch. 1) and Hewings and Janson (1980,Appendix).
Many recent proposals and extensive discussions are contained in Lahr and de Mesnard
(2004), de Mesnard (2004) and Jackson and Murray (2004). In particular, Jackson and
Murray present extensive results for applications of a total of 10 model formulations
(including those listed above) to the problem of estimating the 1972 23-sector US
industry-by-industry data from a 1967 matrix and 1972 margins. They found that,
generally, RAS produced the best results. Canning and Wang (2005) contains a dis-
cussion of the advantages of a mathematical programming approach to constrained
matrix-balancing problems and reviews some of the important contributions in the
literature.

7.4.9 Infeasible Problems
In general, the RAS procedure converges to within acceptable tolerance in a reasonable
number of iterations – often less than 50. However, examples of nonconvergence have
appeared in the literature. The usual explanation is that the matrix being adjusted is too
sparse – contains too many zeros. A very disaggregated transactions matrix (hundreds
of sectors) or interregional trade-flow matrices would have more zeros than, say, a
highly aggregated national table.20 Intuitively, the problem with zeros is that the entire
burden of change is forced onto the remaining, nonzero elements, and they may be
inadequate to the task (depending in large part on the locations of the zeros relative to
the nonzeros).

Here is a very simple illustration of the issue:21 Let

Z(0) =
[

5 0
4 3

]
, u(1) =

[
10
2

]
, and v(1) =

[
7
5

]
19 In this case, the constraints are non-negativity of the yij and margin constraints of

∑
j

yijaij(0)xj = ui and∑
i

yijaij(0)xj = vj . Linearization is possible, as in the first three cases.

20 For example, nonconvergence occurred while working with inter-state trade tables in developing the US 1967
multiregional model (see Möhr, Crown and Polenske, 1987).

21 From de Mesnard (2003).
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The difficulty with the problem is clear when we look at the required new margins in
relation to the structure that Z̃(1) must have, namely[

z̃11(1) 0
z̃21(1) z̃22(1)

] [
10
2

]
[ 7 5 ]

To satisfy u1(1) = 10, it is clear that z̃11(1) = 10, since z̃12(1) = 0 because zeros
are perpetuated in RAS. Clearly, if u1(1) = 10 then z̃21(1) would need to be −3 in
order to satisfy v1(1) = 7, but this is impossible since RAS does not generate negative
elements from those that are positive. One straightforward way out of the problem is to
assign a small positive number to zero-valued cells in the base matrix.22 In this small
illustration, changing z12(0) from zero to, say, 0.5, introduces exactly the flexibility
that is needed, and as a consequence RAS will produce (rounded)23

Z̃(1) =
[

6.5911 3.4089
0.4099 1.5901

]
An argument made in defense of this approach is that the original zero-valued ele-

ments could be the result of rounding; that is, these elements were actually very small
flows that fell below the “reduce to zero” threshold in recording the data. On the other
hand, some zeros represent true technological facts – as above in the illustration of
a zero flow from potatoes to automobiles, which should be maintained in the target
matrix. Moreover, in a large problem it may not be necessary to change all zeros into
small positives, and then the issue is to decide which zeros should be altered. One
approach uses a linear programming problem to select subsets of elements for aug-
mentation (from zero to positive numbers); see Möhr, Crown and Polenske, 1987 for a
discussion and illustration of this approach.

7.5 Summary

In this chapter we have examined approaches to estimating tables of input–output coef-
ficients when a full matrix of interindustry transactions is not available. No nonsurvey
or partial-survey technique can be expected to generate a table that is a perfect copy of
what could be obtained if a complete survey were undertaken. On the other hand, errors
and compromises of many sorts enter into the production of even the best survey-based
table, so it can be argued that even a survey-based table is not a completely accu-
rate snapshot of an economy. The updating problem has given rise to a number of
approaches, usually including an RAS adjustment at some point, often combined with
either survey data or expert opinion on certain key elements – sometimes individual
coefficients, sometimes entire rows or columns. This hybrid strategy is an attempt to
capture the best of several approaches – selective survey information, expert opinion,
and the attractive mathematical features of the RAS technique.

22 Apparently this was first done by Hewings, 1969, in his dissertation. (Cited in de Mesnard, 2003.)
23 After nine iterations, using |ui(1) − uk

i | ≤ 0.001 and |vi(1) − vk
i | ≤ 0.001 for all i as the stopping criterion.
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Appendix 7.1 RAS as a Solution to the Constrained Minimum Information
Distance Problem

The problem is to choose the elements of Ã(1) so as to minimize the information
measure of distance between A(0) and Ã(1), namely

D[A(0) : Ã(1)] =
n∑

i=1

n∑
j=1

ãij(1) ln

[
ãij(1)

aij(0)

]
(A7.1.1)

subject to

n∑
j=1

ãij(1)xj(1) = ui(1) (i = 1, . . . , n) (A7.1.2)

n∑
i=1

ãij(1)xj(1) = vj(1) ( j = 1, . . . , n) (A7.1.3)

Notice that the expression in (A7.1.1) is only defined for aij(0) �= 0. The associated
Lagrangian expression is

L =
n∑

i=1

n∑
j=1

ãij(1) ln

[
ãij(1)

aij(0)

]

−
n∑

i=1

λi

⎡⎣ n∑
j=1

ãij(1)xj(1) − ui(1)

⎤⎦ −
n∑

j=1

μj

[
n∑

i=1

ãij(1)xj(1) − vj(1)

]
(A7.1.4)

and the appropriate first-partial derivatives are

∂L/∂ ãij(1) = 1 + ln ãij(1) − ln aij(0) − λixj(1) − μjxj(1) (A7.1.5)

Setting ∂L/∂ ãij(1) = 0 yields

ln ãij(1) = ln aij(0) − 1 + λixj(1) + μjxj(1)

and, taking antilogarithms,

ãij(1) = aij(0)e[−1+λixj(1)+μjxj(1)]

or, rearranging,

ãij(1) = e[λixj(1)−1/2]aij(0)e[μjxj(1)−1/2] (A7.1.6)

Let

ri = e[λixj(1)−1/2] (A7.1.7)

which is a function of λi only (that is, a row constraint), and let

sj = e[μjxj(1)−1/2] (A7.1.8)
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which is a function of μj only (that is, a column constraint). Then the right-hand side
of (A7.1.6) can be shown as

ãij(1) = riaij(0)sj (A7.1.9)

The new coefficient, ãij(1), is derived as the old coefficient, aij(0), modified by a
row-constraint term, ri, and a column-constraint term, sj.

The constraints of the problem, (A7.1.2) and (A7.1.3), are reproduced in the remain-
ing first-order conditions, as usual, when we set ∂L/∂λi = 0 (i = 1, . . . , n) and
∂L/∂μj = 0 (j = 1, . . . , n). Inserting (A7.1.9) into these two constraints gives

ri = ui(1)/

n∑
j=1

aij(0)sjxj(1)

and

sj = vj(1)/

n∑
j=1

riaij(0)xj(1)

The values of ri and sj are found through iterative solution of these two equations. This
is what the RAS procedure accomplishes. (See Macgill, 1977 or Bacharach, 1970 for
details.)

The matrix equivalent of (A7.1.9) is

Ã(1) = r̂A(0)ŝ (A7.1.10)

as in (7.35) in the text, where

r̂ =

⎡⎢⎢⎢⎣
r1 0 · · · 0
0 r2 0
...

...
0 rn

⎤⎥⎥⎥⎦ and ŝ =

⎡⎢⎢⎢⎣
s1 0 · · · 0
0 s2 0
...

...
0 sn

⎤⎥⎥⎥⎦
Examining second-partial derivatives, we find

∂2L/∂ ãij(1)2 = 1/ãij(1) (A7.1.11)

This is strictly positive for all ãij(1) > 0. From (A7.1.9), this means for all aij(0) > 0,
since ri > 0 and sj > 0 [(A7.1.7) and (A7.1.8)]. Thus the RAS solution minimizes
D[A(0) : Ã(1)] in (A7.1.1).

Problems

7.1 Consider the following US input–output tables for 199724, 2003, and 2005 (in
$ millons).
Produce industry-by-industry transactions tables using the assumption of industry-
based technology for these three years. Suppose historical price indices for these tables

24 The tables for 1997 differ from those provided in Appendix B in that they reflect data assembled “before
redefinitions,” as discussed in Chapter 4.
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are given in the following table (price indices in percent relative to some arbitrary
earlier year):

1997 2003 2005

Agriculture 100 113.5 122.7
Mining 96.6 131.3 201
Construction 181.6 188.9 209.9
Manufactuirng 133.7 150.8 156.9
Trade, Transport & Utilities 200.4 205.7 217.1
Services 129.3 151.6 219.8
Other 140 144.7 161.4

Produce a set of constant price input–output tables for the same years using 2005 as
the base year for prices.

7.2 For the constant price tables constructed in problem 7.1, suppose we measure year-to-
year change as the average of the absolute value of differences between the column
sums of A for the same industry sectors in two different years. Which three sectors
exhibited the most change from 1997 to 2005? How does that compare with the three
most changed sectors measured in nominal dollars rather than constant dollars? Why
are they different?

7.3 Using the current price tables constructed in problem 7.1, compute the marginal input
coefficients between the years 1997 and 2005.

7.4 Consider the following interindustry transactions and total outputs two-sector input–
output economy for the year 2000:

2000 A B Total Output

A 1 2 10
B 3 4 10

VA 6 4

Suppose estimates are generated for the year 2010 for the vectors of total final demand,
total value-added, and total output in the following table.

2010 Final Demand Value Added Total Output

A 12 10 25
B 6 8 20
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Using the 2000 table as a base and using the 2010 projections for final demand, value-
added and total output, compute an estimate of the 2010 technical coefficients table
using the RAS technique.

7.5 Using the 1997 input–output table expressed in 1997 dollars constructed in problem 7.1
and the vectors of intermediate inputs, intermediate outputs, and total outputs from the
corresponding input–output table for 2005, compute an RAS estimate of the 2005 table
using the 1997 table as a base. Compute the mean absolute percentage error (MAPE)
of the RAS-estimated table for 2005 compared with the “real” 2005 table.

7.6 Suppose we have a baseline transactions matrix defined as Z(0) =
⎡⎣ 100 55 25

50 75 45
25 10 110

⎤⎦.

We are provided with estimates of intermediate inputs and outputs, v(1) =
⎡⎣ 265

225
325

⎤⎦
and u(1) =

⎡⎣ 325
235
255

⎤⎦, respectively.

a. Compute an estimate of the transactions table for the next year, Z̃z(1) using Z(0),
v(1) and u(1), using the RAS technique.

b. Suppose we know the vector of total outputs, x(1) =
⎡⎣ 750

500
1000

⎤⎦, corresponding to

Z(0), and we also have an estimate of total outputs for next year, x(1) =
⎡⎣ 1000

750
1500

⎤⎦.

Compute A(0) and use it along with v(0) and u(0) to generate an estimate of the tech-
nical coefficients matrix for next year ÃA(1). Finally, compute Ãz(1) = Z̃z(1)x̂(1)−1.
Is ÃA(1) = Ãz(1)? Why or why not?

7.7 For the economy in problem 7.6, suppose we acquire a survey-based table of techni-

cal coefficients next year of A(1) =
⎡⎣ .2 .1 .033

.035 .167 .05
.03 .033 .133

⎤⎦. At the beginning of the

survey we know only a(1)32 = .033 and we use that along with A(0), v(0), and u(0)
to generate an intermediate estimate of the entire matrix of coefficients, Ã∗(1). If we
measure difference between two matrices as MAPE, which estimate of A(1) is better
– Ã(1) or Ã∗(1)? Suppose early in the survey period we determine a(1)11 = .2 instead
of knowing a(1)32. Which estimate of A(1) is better – Ã(1) or Ã∗(1)? How does this
case differ from the case where a(1)32 is known?

7.8 Consider the transactions matrix Z(0) =
⎡⎣ 100 55 25

0 75 25
25 10 110

⎤⎦ and projected vectors of
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intermediate inputs and outputs, v(1) =
⎡⎣ 125

140
160

⎤⎦ and u(1) =
⎡⎣ 180

100
145

⎤⎦, respectively.

Compute the RAS estimate, Z̃(1). Suppose we learn that v1(0) = 100 instead of 125.
Is it possible to compute Z̃(1) via the RAS technique? Why or why not?

7.9 For the US input–output tables for 1997 and 2005 (from problem 7.1, expressed in cur-
rent year dollars rather than constant year dollars), compute the RAS estimate Ã(2005)
using A(1997), v(2005), and u(2005). Compute the MAPE for Ã(2005) compared with
A(2005). How does that error compare with the MAPE for L̃(2005) = [I− Ã(2005)]−1

when compared with L(2005)?
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8 Nonsurvey and Partial-Survey
Methods: Extensions

8.1 Introduction

Regional input–output tables share with their national counterparts the problem of
becoming outdated simply because of the passage of time. But smaller geographic
scale introduces other problems. For example, if the only automobile assembly plant
in Michigan closes and its replacement opens (as the only such plant) in Tennessee, a
“national” table would still reflect automobile assembly (although perhaps under more
modern methods in the new plant) whereas that activity would disappear entirely from
a Michigan table and appear as a completely new activity in a Tennessee table. In addi-
tion, states or counties or even smaller economic areas may have fewer resources
available for the kinds of data collection needed for survey-based input–output
tables – although since the economy is smaller (in terms of number of square miles
covered, numbers of active plants, etc.) the effort involved in surveying may be less.
In addition, when one is concerned with models in which two or more regions are
connected (or a single region and the rest of the country) shipments out of and into the
regions assume a much more important role – the former providing inputs to production
and the latter representing markets for outputs. Consequently, considerable effort has
been devoted to estimation of interregional flows of goods in an effort to construct
approximations to and estimates of the ars

ij or crs
i· coefficients of the IRIO or MRIO

models (Chapter 3).
As noted in Chapter 3, some of the earliest attempts at estimating interindustry rela-

tionships at a regional level employed national input coefficients along with estimates
of regional supply percentages showing, for each supplying sector, the proportion of
total regional requirements of that good that could be expected to originate within the
region. One procedure for obtaining this estimate for sector i was to find the ratio of
total regional output, less exports, of sector i, to the total output, less exports, plus
imports, of sector i. As in Chapter 3, for a particular region r,

pr
i = xr

i − er
i

xr
i − er

i + mr
i

Thus, when none of good i was imported, pr
i = 1, and the assumption is that all of

the region’s needs for i can be supplied internally. The regional input coefficient matrix

347
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is then estimated as
Arr = p̂An

where p = [pr
i ] and An is the national technical coefficients matrix. As we saw in

Chapter 3, this represents a uniform alteration of each of the coefficients in row i of An

by pr
i .

As we saw in section 3.2, a regional input coefficient, arr
ij , is defined as the difference

between a regional technical coefficient, ar
ij, and a regional import coefficient, asr

ij ,
where s indicates “outside of r.” (When it is clear what particular region is intended,
the simpler notation rij = aij − mij is used.) If we have available a complete set of
intra- and interregional data (as is needed in constructing an interregional input–output
model, for example), then we observe the arr

ij ’s (and asr
ij ’s) directly. However, if we are

trying to estimate arr
ij from national data, the estimation problem can be posed in the

following way: (1) estimate a regional technical coefficient, ar
ij, from the corresponding

national coefficient, an
ij, and then (2) estimate the regional input coefficient, arr

ij , as some
proportion of the regional technical coefficient; that is, arr

ij = pr
ija

r
ij (where 0 ≤ pr

ij ≤ 1).
Instead of estimating, ar

ij and asr
ij we estimate ar

ij and pr
ij. The two steps in this procedure

for estimating arr
ij from an

ij would therefore be: (1) find αr
ij ≥ 0 such that

ar
ij = (αr

ij)(a
n
ij) (8.1)

and (2) find βr
ij (0 ≤ βr

ij ≤ 1) such that

arr
ij = (βr

ij)(a
r
ij) (8.2)

[Of course, if we indeed can find αr
ij and βr

ij for every i and j, this is equivalent to finding
arr

ij = (γ r
ij )(a

n
ij) where γ r

ij = (αr
ij)(β

r
ij)].

The basic point is that in general there is not enough regional information to find
the αr

ij and βr
ij. For example, in the simple procedure described at the beginning of this

section, we see that (1) ar
ij was assumed equal to an

ij; in terms of (8.1), αr
ij = 1 for all

i and j (region r and national production recipes are identical) and (2) each regional
purchaser, j, of input i was assumed to buy the same proportion of those inputs from
within the region; in terms of (8.2), βr

ij = pr
i for all i.

In the absence of specific survey information, it is customary, at least initially, to
invoke assumption (1). This overlooks probable regional differences in product mixes
within a sector (as discussed in Chapter 3), especially at anything but the finest level
of disaggregation; it also ignores relative sizes and ages of firms within a particular
regional sector (with differing efficiencies, for example), differences in quality of capital
stocks, etc. The prevalent view in the mid-1980s was

… in the absence of any information about many of these characteristics, one is left with very few
options but to adopt a very conservative strategy, namely, one in which a minimum of speculation is
applied to the modification process. (Hewings, 1985, p. 47.)

We will now explore a number of nonsurvey techniques for regionalization of national
coefficients – through adjustments based entirely on published information on regional
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employment, income, or output, by industry – and see where they fit in the general
scheme given by (8.1) and (8.2). Later we will examine more recent and more compre-
hensive “regionalization” approaches; but since, historically, the techniques discussed
in section 8.2 have been used in a great many regional studies, it is imperative that we
understand them.

8.2 Location Quotients and Related Techniques

8.2.1 Simple Location Quotients
Let xr

i and xr denote gross output of sector i in region r and total output of all sectors in
region r, respectively, and let xn

i and xn denote these totals at the national level. Then
the simple location quotient for sector i in region r is defined as

LQr
i =

(
xr

i /xr

xn
i /xn

)
(8.3)

(often in the literature these are denoted by SLQi). In cases where regional output data
are not consistently available, or where analysts feel it is appropriate, other measures
of regional and national economic activity are often used – including employment
(probably the most popular), personal income earned, value added, and so on, by sector.

The interpretation of this measure is straightforward. The numerator in (8.3) indicates
the proportion of region r’s total output that is contributed by sector i. The denomi-
nator represents the proportion of total national output that is contributed by sector i,
nationally. If LQr

i = (0.034)/(0.017) = 2, sector i’s output represents 3.4 percent
of all regional gross output while, at the national level, sector i’s output represents
only 1.7 percent of the total national output. In a case like this – in fact, whenever
LQr

i > 1 – sector i is more localized, or concentrated, in the region than in the nation
as a whole. Conversely, if LQr

i = (0.015)/(0.045) = 0.33, we understand that while
sector i’s output is 4.5 percent of the total national gross output, it represents only
1.5 percent of the gross output in the region. In this situation, sector i is less localized,
or less concentrated, in region r than in the nation as a whole.

Note that simple algebra generates an alternative expression, namely

LQr
i =

(
xr

i /xn
i

xr/xn

)
This tells a somewhat different “story.” The numerator measures the proportion of total
national output of commodity i that is produced in region r. The denominator is the
proportion of total national output of all commodities that is produced in region r. But
the interpretation is much the same; LQr

i > 1 indicates a commodity whose production
is relatively localized in region r.

The simple location quotient has been viewed as a measure of the ability of regional
industry i to supply the demands placed upon it by other industries (and by final demand)
in that region, in the following way. If industry i is less concentrated in the region
than in the nation (LQr

i < 1), it is seen as less capable of satisfying regional demand
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for its output, and its regional direct input coefficients, arr
ij ( j = 1, . . . , n) are created

by reducing the national coefficients, an
ij, by multiplying them by LQr

i . However, if
industry i is more highly concentrated in the region than in the nation (LQr

i > 1), then it
is assumed that the national input coefficients from industry i, an

ij ( j = 1, . . . , n), apply
to the region, and the regional “surplus” produced by i will be exported to the rest of
the nation. Thus, for each row i of an estimated regional table,

arr
ij =

{
(LQr

i )a
n
ij if LQr

i < 1
an

ij if LQr
i ≥ 1

}
(8.4)

[If a national sector is not present in the region (LQr = 0), that row and column are
simply deleted from An.]

In terms of the general scheme in (8.1) and (8.2), we see that this procedure is
equivalent to (1) assuming αr

ij = 1 for all i and j and (2) letting βr
ij = LQr

i when
LQr

i < 1 and βr
ij = 1 when LQr

i ≥ 1. Note that there is a distinct asymmetry in this
approach. When a sector is import-oriented (LQr

i < 1), the modification of the national
coefficient varies with the strength of the import orientation – arr

ij = (LQr
i )a

n
ij. When a

sector is export-oriented (LQr
i > 1), the strength of that orientation is not reflected in

the modification – arr
ij = (1)an

ij.
A complication arises if the estimates of regional industry output that are obtained

using LQ coefficients exceed actual output for some industries. In this event, coeffi-
cients developed by this method have often been “balanced” to ensure that they do not
overestimate the regional output of each sector. The notion of a balancing method is
simply that if estimated coefficients generate a regional output for sector i (x̃i) that is too
large (meaning x̃r

i > xr
i ), then the row-i estimates, arr

ij (for all j), should be uniformly
reduced – multiplied by (xr

i /x̃r
i ).

For example, calculate estimated sector i output on the basis of actual regional
industry outputs (these are necessary data for this correction) and the LQ-estimated
regional input coefficients (and regional final-demand purchase coefficients). For sector
i, this is

x̃r
i =

∑
j

arr
ij xr

j +
∑

f

crr
if f r

f (8.5)

where

x̃r
i = estimated regional output of sector i,

f r
f = total regional final demand of final-demand sector f, and

crr
if = estimated regional final-demand purchase coefficient of regional

final-demand sector f from industry i.

The crr
if elements reflect purchases of regionally produced output i by regional

final-demand sector f . Typically, the regional final-demand sectors will be personal con-
sumption expenditures, investment, state and local government, as well as both foreign
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and rest-of-the-country exports (a part of which will be federal government purchases,
except for those purchases made by federal installations located in the region). These
estimates are found in much the same manner as were the arr

ij ; that is, using national
data and the region-specific location quotients. In particular,

crr
if =

{
(LQr

i )c
n
if if LQr

i < 1
cn

if if LQr
i ≥ 1

}
(8.6)

where
cn

if = fif /ff ,

fif = national sales of industry i to final-demand sector f, and
ff = total national purchases of final-demand sector f .

Thus, when LQr
i ≥ 1, it is assumed that purchases of good i by final-demand sector

f are the same proportion of total sector f purchases in the region as in the nation.
For example, if purchases of electricity (sector i) by consumers (final-demand sector
f ) constitute 3 percent of total consumer expenditures nationally (cn

if = 0.03), and
if LQr

i ≥ 1, then it is assumed that 3 percent of the total expenditures by consumers
in region r will be on electricity produced in region r; crr

if = 0.03. When LQr
i < 1,

then the national proportion is modified downward. If LQr
i = 0.67, then it would be

assumed that only 2 percent of the total expenditures by consumers in region r will be
on electricity produced in region r; crr

if = 0.02.
The next step in the balancing procedure is to calculate the ratio of estimated to actual

regional output; denote this by Zr
i . Then

Zr
i = xr

i /x̃r
i (8.7)

Each row of estimated regional input coefficients for which Zr
i is less than one is adjusted

downward. That is, adjusted (“balanced”) regional input coefficients are estimated as

ārr
ij =

{
Zr

i arr
ij if Zr

i < 1
arr

ij if Zr
i ≥ 1

}
(8.8)

As noted above, in this LQ and other quotient approaches, αr
ij = 1 is assumed. The

observed national technology is uniform across regions; regional input coefficients vary
only because of varying regional capacities to satisfy own-region demand. For some
kinds of production, this is quite reasonable; for others it is not. Coca Cola made in
Boston probably has the same production “recipe” as Coca Cola made in San Francisco
(even though local ability to supply any given input may vary). However, an “airplane”
made in Seattle (for example, a Boeing commercial airliner with two jet engines) is quite
a different product from an airplane made in Wichita (for example, a Cessna private
aircraft with one propeller engine). So in a model with a highly aggregated “aircraft”
sector, there is clearly non-uniformity in production recipes for “aircraft” across states
in the USA, and the αr

ij = 1 assumption is invalid. This is the product-mix issue, and the
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level of aggregation is decisive. In a model with a sector labeled “Commercial aircraft,
2 jet engines” it is apparent that wherever produced, two jet engines will be used per
aircraft. Similarly, for the “Private aircraft, one propeller engine” sector, one propeller
engine will be required per aircraft. At that level of disaggregation, the assumption of
constant (national) technology across regions (αr

ij = 1) may be reasonable.
Another complaint made about this approach (and many of its variants, to be exam-

ined below) is that it underestimates regional trade since it ignores cross-hauling –
the situation in which a region exports and imports the same goods. Cross-hauling is
a generally observed phenomenon, but it is also difficult to capture in an estimation
technique. To take a very simple illustration, at a level of aggregation that includes a
sector labeled “agriculture,” a specific region (say Washington State) exports peaches
(to California, for example) and imports avocados (from California); both are products
of the “agriculture” sector. Using an LQ approach, a specific sector in a specific region
must be either a net exporter or a net importer of any particular good. When LQr

i > 1,
industry i is seen as producing more than its share of the national output of i, and region
r is assumed to be a net exporter of the “excess” output of i. Conversely, if LQr

j < 1, the
region is less than self-sufficient in good j and will therefore be a net importer of that
good. (When LQr

k = 1, the region would neither import nor export good k.) This quirk
of the location quotient approach thus leads to a tendency for underestimation of inter-
regional trade (agricultural products cannot be shipped from Washington to California
and also from California to Washington) and thus for overestimation of intraregional
economic activity, and therefore it also tends to generate regional multipliers that are
too large.1 Later in this section we will examine an approach that attempts to overcome
this problem.

There are several variants of the simple location quotient approach, all of which are
used in the same general way in adjusting national to regional coefficients. We examine
some of these in what follows. Since the LQ approach in (8.4) will never increase a
national coefficient (they are either left unchanged or made smaller), this procedure
is also called reducing the national coefficients table, and hence these are sometimes
referred to as reduction techniques.

This arr
ij ≤ an

ij characteristic of the LQ approach has also been called into question
(see, for example, McCann and Dewhurst, 1998). A producer in sector j might use
relatively fewer imported inputs than is reflected in the national coefficients for sector
j, and thus at least some regionally supplied inputs could be larger, per unit of output j
in that region than in the nation as a whole. And in general, if the national coefficient
is an average of observed regional coefficients, then some coefficients in some regions
should be expected to be above average while others in other regions would necessarily
be below average. One of the variants to be examined below (section 8.2.4) allows for
arr

ij > an
ij.

1 Robison and Miller (1991) calculate the amount of overestimation of intraregional trade in a model for a small
multicounty area in Idaho.
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8.2.2 Purchases-Only Location Quotients
The purchases-only location quotient (PLQ) for sector i in region r relates regional to
national ability to supply sector i inputs, but only to those sectors that use i as an input.
That is,

PLQr
i =

(
xr

i /x∗r

xn
i /x∗n

)
(8.9)

where xr
i and xn

i are regional and national output of good i, as before, and where x∗r and
x∗n are total regional and national output of only those sectors that use i as an input. The
idea here is simply that if input i is not used by sector k, then the size of sector k’s output
is not relevant in determining whether or not the region can supply all of its needs for
input i. [For example, whether or not region r can supply all of its needs for potatoes
(sector i) is probably not affected by the amount of automobiles produced (sector k) in
region r, since potatoes are not a direct input to automobile manufacturing.] PLQr

i is
used in the same way as LQr

i to uniformly adjust the elements in row i of a national
coefficients table, as in (8.4).

8.2.3 Cross-Industry Quotients
Another variant is the cross-industry quotient (CIQ). This allows for differing modifiers
within a given row of the national matrix; that is, it allows for differing cell-by-cell
adjustments within An rather than uniform adjustments along each row. What is now
of interest is the relative importance of both selling sector i and buying sector j in the
region and in the nation. Specifically,

CIQr
ij =

(
xr

i /xn
i

xr
j /xn

j

)
(8.10)

Then

arr
ij =

{
(CIQr

ij)a
n
ij if CIQr

ij < 1
an

ij if CIQr
ij ≥ 1

}
(8.11)

The idea is that if the output of regional sector i relative to the national output
of i is larger than the output of regional sector j relative to the national output of
sector j (CIQr

ij > 1), then all of j’s needs of input i can be supplied from within the
region. Similarly, if sector i at the regional level is relatively smaller than sector j at
the regional level (CIQr

ij < 1), then it is assumed that some of j’s needs for i inputs will
have to be imported. Note that CIQr

ij = LQr
i /LQr

j . Note also that CIQr
ii = 1 (along the

main diagonal, when i = j), and hence this technique would make no adjustments to
on-diagonal coefficients. This has been called into question, and often the diagonal ele-
ments are adjusted using their associated LQi’s in place of CIQr

ii (Smith and Morrison,
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1974; Flegg, Webber and Elliott, 1995). More completely, then,

arr
ij =

{
(CIQr

ij)a
n
ij if CIQr

ij < 1
an

ij if CIQr
ij ≥ 1

}
for i �= j

arr
ij =

{
(LQr

i )a
n
ij if LQr

i < 1
an

ij if LQr
i ≥ 1

}
for i = j

8.2.4 The Semilogarithmic Quotient and its Variants, FLQ and AFLQ
Rewrite LQi in (8.3) as LQr

i = (xr
i /xn

i )÷(xr/xn). This clearly distinguishes the measure
of the relative size of the regional (selling) sector (xr

i /xn
i ) and the relative size of the

region (xr/xn), but the sizes of buying sectors are ignored. The cross-industry quotient
includes relative sizes of both selling (xr

i /xn
i ) and buying (xr

j /xn
j ) sectors but contains

no xr/xn term. In the 1970s, Round conjectured that an appropriate approach should
include all three measures. He proposed, among others, a “semilogarithmic quotient
(SLQ)” which he defined (Round, 1978a, p. 182) as

SLQr
ij = LQr

i / log2(1 + LQr
j )

suggesting that it “. . . was devised simply to account for all three ratios in a way
which maintains the basic properties of both the LQ and CIQ methods.”2 Notice that
log2(1+LQr

j ) = 1 when LQr
j = 1 and so in that case SLQr

ij = LQr
i ; for LQr

j > 1, log2(1+
LQr

j ) > 1 and the adjustment means that SLQr
ij < LQr

i and the reverse is the case when
LQr

j < 1. Rewriting SLQr
ij we have

SLQr
ij = [(xr

i /xn
i ) ÷ (xr/xn)]/ log2{1 + [(xr

j /xn
j ) ÷ (xr/xn)]}

and we see that along with relative sizes of both industries, i and j, this includes the
regional size component in both numerator and denominator but not in such a way that
the terms cancel out.

Perhaps surprisingly, applications using this SLQ generally failed to demonstrate
any particular improvement over simpler measures like LQ and CIQ.3 This spurred
attempts to include these three factors in a measure that might perform better. One
approach was developed in several articles by Flegg and others – hence the acronym
FLQ. (See, for example, Flegg, Webber and Elliott, 1995; Flegg and Webber, 1997,
2000, and references cited in those articles.) This measure is generated by modifying
the CIQr

ij to incorporate an additional measure of the relative size of the region; namely,

FLQr
ij = (λ)CIQr

ij

2 “The semilogarithmic form is arbitrary, but is among the simplest functions which maintains basic properties
of the [quotient] values without further parameterization.” (Round, 1978a, p. 182, note 4.) The first mention of
this quotient seems to be in Smith and Morrison (1974, p. 43); they indicate that it was suggested in a personal
communication from Round dated 1971. See also Flegg, Webber and Elliott (1995).

3 For example, in Smith and Morrison (1974) and Harrigan, McGilvray and McNicoll (1981).
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where λ = {log2[1 + (xr
E/xn

E)]}δ , 0 ≤ δ < 1.4 Then

arr
ij =

{
(FLQr

ij)a
n
ij if FLQr

ij < 1
an

ij if FLQr
ij ≥ 1

}
Flegg et al., as well as many other regional analysts, use employment rather than

output as the relevant measures of regional and national activity; these are xr
E and

xn
E for the region and the nation, respectively, so xr

E/xn
E provides an alternative to the

output ratio (xr/xn) as a measure of relative regional size. They also use employment
as the measure of sector i and j activity (output). The general idea is to reduce national
coefficients less for larger regions – on the belief that larger regions import (relatively)
less than smaller ones.5 The problem, however, is that the analyst must specify a value
of δ in advance (β in the earlier formulation in footnote 5), and it is not at all clear what
this value (or range of values) should be. Empirical work has suggested that δ = 0.3
seems to work well in a variety of situations (see the articles by Flegg and associates
cited above). The approach has been shown to be an improvement in at least one study
that compared LQ, CIQ and (the earlier version of) FLQ for a region in Finland for
which there were also survey-based coefficients to serve as a standard against which
to measure the estimates (Tohmo, 2004). (Problem 8.4 asks the reader to examine the
behavior of λ for various values of xr

E/xn
E and δ to see how this adjustment might work.)

An additional variant of the FLQ is designed to reflect regional specialization (Flegg
and Webber, 2000). This was developed in response to the observation (McCann and
Dewhurst, 1998) that such specialization might lead to increased intraregional pur-
chases (by the specialized industry) and hence to intraregional input coefficients that
were larger than their national counterparts. As noted earlier, national coefficients can
never be increased by any of the quotient techniques examined thus far. In this case,
the proposed augmentation of the FLQ (termed AFLQ) is

AFLQr
ij =

{
[log2(1 + LQr

j )]FLQr
ij if LQr

j > 1
FLQr

ij if LQr
j ≤ 1

}
and so

arr
ij =

{
(AFLQr

ij)a
n
ij if LQr

j > 1
(FLQr

ij)a
n
ij if LQr

j ≤ 1

}
This adjustment term, [log2(1 + LQr

j )], is the modifier used for Round’s SLQr
ij, only

now it appears as a multiplier and not a divisor. Now FLQ is increased in those cases
(only) in which sector j is relatively specialized in region r (when LQr

j > 1, so [log2(1+
LQr

j )] > 1). For example, as LQr
j increases from 1 to 5, log2(1 + LQr

j ) goes from 1 to
2.585. (There are some issues regarding the possibility of a national coefficient being

4 Flegg and Webber (1997) use λ∗ in their formulation because they used λ in an earlier and less successful
version of their formula – FLQr

ij = (λβ)CIQr
ij where λ = (xr

E/xn
E)/{log2[1 + (xr

E/xn
E)]}.

5 This logic has been questioned. See Brand (1997), McCann and Dewhurst (1998) and replies from Flegg and
Webber (1997 and 2000, respectively).
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increased to more than 1.0.) The argument is that a large industry ( j) in a particular
region may attract in-movement to the region of firms in other sectors that supply
j; hence j’s intraregional input purchases may be larger than the national coefficient
would suggest. However, limited empirical evidence suggests that not much is gained
in performance over FLQ by this augmentation (Flegg and Webber, 2000).

8.2.5 Supply–Demand Pool Approaches
The supply–demand pool (SDP) technique estimates regional from national coefficients
in much the same way as the procedure that was used to balance the regional coefficients
estimated by the simple location quotient technique. National technical coefficients are
taken as the first approximation to regional coefficients. Regional output by sector
is then found, as above, by multiplying each of these coefficients by the appropriate
actual regional output of that sector (and similarly for final-demand sectors, but using
the national final-demand input proportions, cn

if ) and summing:

x̃r
i =

∑
j

an
ijx

r
j +

∑
f

cn
if f r

f (8.12)

Then the regional commodity balance, br
i , is calculated for industry i as br

i = xr
i − x̃r

i .
If this balance is positive (or zero), using national coefficients as estimates of regional

coefficients does not generate an overestimate of regional production and so arr
ij = an

ij
and crr

if = cn
if are acceptable estimates. However, if the balance is negative, national

coefficients are too large, in the sense that they generate unrealistically high regional
outputs, by sector, so arr

ij = an
ij(x

r
i /x̃r

i ) and crr
if = cn

if (x
r
i /x̃r

i ) – the national coefficients
are reduced by the amount necessary to make the regional balance for that sector exactly
zero. Summarizing,

arr
ij =

{
(xr

i /x̃r
i )a

n
ij if br

i < 0
an

ij if br
i ≥ 0

}
(8.13)

In terms of the general approaches in (8.1) and (8.2), we see that the supply-demand
pool technique assumes that αr

ij = 1, as do all of the quotient techniques mentioned
above. Further, βr

ij = xr
i /x̃r

i when xr
i − x̃r

i < 0 and βr
ij = 1 when xr

i − x̃r
i ≥ 0. As with

the LQ-based techniques, only reductions of national coefficients are possible and
cross-hauling is not captured.

8.2.6 Fabrication Effects
Round (1972, 1978a, 1983) has suggested an adjustment to account for differing
regional “fabrication” effects that reflect differing value-added/output ratios for a
specific sector across regions. Define the regional fabrication effect for sector j in
region r as

ρr
j = 1 − (wr

j /xr
j )

1 − (wn
j /xn

j )
(8.14)
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In the numerator, wr
j is total value-added payments by sector j in region r and xr

j is, as
usual, gross output of sector j in r. Thus (wr

j /xr
j ) is the proportion of the total output

of sector j in region r accounted for by value-added elements, and 1 − (wr
j /xr

j ) is the
proportion of total output that is due to interindustry inputs from the processing sectors
(including imports). Roughly, then, the numerator represents the relative dependence of
sector j in region r on inputs from itself and all other sectors. For example, if wr

j = $400
and xr

j = $1000, then 1−(wr
j /xr

j ) = 0.6; 60 percent of the value of sector j’s total output
is derived from inputs from producing sectors. The denominator in (8.14) is this same
measure of industrial dependence for sector j nationally. Suppose wn

j = $300,000 and
xn

j = $1,000,000, so that the denominator in (8.14) is 0.7; at the national level sector
j is relatively more dependent on industrial inputs and relatively less dependent on
value-added inputs. For this example, ρr

j = 0.6/0.7 = 0.857.
Round suggests that ρr

j be used as αr
ij in (8.1), so that the estimate of ar

ij (for i =
1, . . . , n) is found as

ar
ij = (ρr

j )(a
n
ij)

This is a column modification, as opposed to the row modifications of the quotient-like
techniques – the entire jth column of An is multiplied by ρr

j to generate an estimate
of the jth column of Ar . The idea is that since interindustrial inputs are relatively less
important to industry j’s production in region r than at the national level, national input
coefficients for sector j should be scaled down. Similarly, if ρr

k > 1, then all of the
elements in the kth column of An would be scaled upward, to generate the estimates
of ar

ik(i = 1, . . . , n). Unlike most LQ-based techniques, national coefficients can be
increased with this approach.6 This ar

ij can then be further adjusted to create an estimate
of arr

ij via a quotient-like modification.

8.2.7 Regional Purchase Coefficients
Work at the Regional Science Research Institute (as discussed, for example, in Stevens
and Trainer, 1976, 1980 and in Stevens et al., 1983) concentrated on estimation of what
are essentially the regional supply proportions, pr

i , that were mentioned in section 8.1
(and earlier in Chapter 3). These were termed regional purchase coefficients (RPCs) in
the RSRI work; they operate uniformly across rows, as do LQ-based methods. In terms
of (8.1), αr

ij = 1 and, in (8.2), βr
ij = pr

i (= RPCr
i ).

The regional purchase coefficient for a sector is defined as the proportion of regional
demand for that sector’s output that is fulfilled from regional production. Formally, for
region r and good i,

RPCr
i = zrr

i /(zrr
i + zsr

i )

6 This “fabrication” adjustment is similar in spirit to the column adjustments (the s’s) in the RAS updating
procedure, which multiply all elements in the kth column of the coefficient matrix by sk . This is what Stone
termed the “fabrication effect” – the possibility that there is a change in the proportion of value-added inputs in
a sector’s output over time.
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where, as in Chapter 3, zrr
i accounts for shipments of good i from producers in r to

all buyers in r and zsr
i represents imports of i from outside r to buyers in r.7 Dividing

numerator and denominator by zrr
i ,

RPCr
i = 1/[1 + 1/(zrr

i /zsr
i )]

Effort was concentrated on estimating the magnitude of the relative shipments term,
zrr

i /zsr
i . Assuming that relative terms designate ratios of values in region r to national

values, relative shipments are estimated as a function of relative delivered costs (made
up of relative unit production costs and relative unit shipment costs). These, in turn,
depend on relative wages, relative output levels, and average shipping distances from
producers within and outside region r. Various relationships between RPCr

i and proxies
for these relative terms have been proposed and fitted by regression techniques to
data that are available in US published sources such as County Business Patterns,
Census of Transportation, and Census of Manufactures, as well as a national input–
output technical coefficients table. Comparisons with LQ-based approaches suggest the
superiority of this method (Stevens, Treyz and Lahr, 1989). An alternative approach to
estimation of RPCs (at the county level in the USA) is suggested by Lindall, Olson and
Alward (2006) in the context of a gravity model for estimating intercounty commodity
flows.8

8.2.8 “Community” Input–Output Models
In section 3.6 we cited Robison and Miller (1988, 1991) and Robison (1997) as examples
of “regional” input–output modeling at a very small spatial scale:

Our greatest departure from the traditional I-O approach stems from a fundamental redefinition of
region. The traditional I-O approach models uniform regions, e.g., counties and multicounty areas,
states, and so on. In contrast, we build models for punctiform regions, i.e., models constructed for
individual cities, towns, and hamlets. (Robison, 1997, p. 326.)

Robison and Miller (1991) introduce ideas from Central Place Theory in modeling
such small area economies – here a small Idaho timber (logging/sawmills) economy,
the “rural West-Central Idaho Highlands Highway 55 economy” (six communities, five
containing sawmills, with a combined population around 20,000). The authors suggest
that principles from that theory can help to guide construction of such “intercommu-
nity” input–output models. For example, they consider an intra- and intercommunity

coefficients matrix of the sort A =
⎡⎢⎣ A11 · · · A1m

...
. . .

...
Am1 · · · Amm

⎤⎥⎦, where communities 1, . . . , m

7 In the context of the multiregional input–output model (Chapter 3), these coefficients are the crr
i – for example,

as in (3.27). However, in the MRIO model, they are used to modify a regional matrix, Ar , that is not assumed
simply to be the same as An, the national table. In terms of equations (8.1) and (8.2), in the MRIO model ar

ij �= 1,

at least for some i, j and r, and βr
ij = crr

i for all i.
8 Since these authors use a gravity model formulation, there is further discussion of their work below in

section 8.6.1.
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are arranged from upper left to lower right in descending hierarchical (rank) order. Then
strict hierarchical trade (meaning that goods flow primarily from higher- to lower-order
places) would be reflected in an A matrix that is (close to) upper-triangular (zeros below
the main diagonal).9 In such multiregional economies cross-hauling is much less likely
to be present, and hence estimation techniques that fail to account for cross-hauling
(such as LQ and SDP approaches, as noted above) may be acceptable regionalization
approaches.

Robison (1997) discusses hybrid procedures to estimate trade among such places
in a set of hierarchically structured areas (the upper-right off-diagonal elements in A)
as well as other special features of small-area rural economies such as their extreme
openness and the importance of transboundary income and expenditure flows. In this
case the application was for a rural two-county region in central Idaho (total population
less than 12,000) which was disaggregated into seven community-centered sub-county
regions.

County-level data from IMPLAN (“impact analysis for planning”) form a basis
for much of the estimation, but further disaggregation to subcounty community level
regions is required. For some data, surveys were used; for others, published sources
contribute information (for example, business listings in local telephone directories);
in still others, SDP and/or LQ estimates were generated. Other applications of these
ideas can be found in Hamilton et al. (1994).

8.2.9 Summary
It is worth noting that these approaches (or variants) are frequently used in applied
regional analysis. Even the straightforward location quotients of section 8.2.1 are often
employed. For example, in the USA, multipliers for any selected single- or multi-county
region can be purchased from the Bureau of Economic Analysis of the US Department
of Commerce through their Regional Impact Modeling System (RIMS II).10 This system
uses location quotients to derive estimates of intraregional input coefficients. As noted
earlier, these intraregional coefficients will tend to be overestimated; in fact, Robison
and Miller (1988) advise caution in using either RIMS or IMPLAN estimates in small
area studies – specifically:

We argue that pool and quotient techniques, used in nonsurvey models such as IMPLAN and RIMSII,
should not be applied to a single county situation, or to any aggregation of counties that is not, in some
sense, a functional economic area [p. 1523] . . . Because of the likelihood of cross-hauling when state
and functional economic boundaries diverge, we suspect that many of these models of states [e.g.,
RIMSII] possess overstated multipliers . . . There could be large errors in reported RIMSII multipliers
for states [p. 1529].

9 The authors recognize that there can be shipments up the hierarchy: “What about trade in the opposite direction,
from lower to higher-order places? Examples from rural regions would include agricultural and other raw
materials shipped to higher-order places for processing. Rural economies are simple and normally raw materials
trade will have to be obtained from observation rather than technique” (Robison, 1997, pp. 335–336).

10 Currently these are based on 2004 national input–output accounts and 2004 regional economic accounts. See
US Department of Commerce (1997); also www.bea.gov.
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As another example, the bulk of the discussion in Gerking et al. (2001) deals with
imaginative ways of filling in for “suppressed” data at the county level (due to disclo-
sure concerns), in order to estimate industry-specific employment at the county level.
These employment data are used to calculate county-level location quotients which are
then used in the usual way to regionalize (down to the county level) a national direct
coefficients table. The authors argue that estimating at the lowest possible level of sec-
toral aggregation has the effect of minimizing the consequences of the no cross-hauling
feature of location quotient reduction techniques. The approach is illustrated with an
economic impact analysis of an energy project for a county in Wyoming.

It is generally recognized that the reduction techniques discussed above are less
than totally successful. Yet the need for input–output data at a regional level continues
to increase and has stimulated much discussion and many approaches. Often, these
are hybrid techniques which include use of the RAS procedure (originally devised for
updating national input–output information) along with additional information. We turn
to some of these developments next, looking first at the use of RAS for regionalization
of a national input–output table.

8.3 RAS in a Regional Setting

As we saw in section 7.4, the RAS technique generates a coefficient matrix for a
particular year, A(1), given observations on total outputs, total interindustry sales, and
total interindustry purchases for that year – x(1), u(1), and v(1), and using as a starting
point an earlier coefficient matrix, A(0). While it is inherently a mathematical technique,
we have also seen that the economic notions of uniform substitution and fabrication
effects are compatible with the procedure. Since coefficient tables for regional input–
output models are essential for regional analysis, one way to have a wider variety of
tables available for various regions of a nation is to apply the same RAS principles,
where we utilize a (relatively up-to-date) national input–output table, An, and current
marginal information about regional economic activity – xr , ur , and vr. Or, for that
matter, instead of An, one may have a current input–output table for some other region
in the country, s, and then use the known As as the matrix to be adjusted to satisfy the
observed marginal information for region r. Thus, instead of using the RAS procedure
to adjust coefficient matrices across time (the updating problem), it has also been used
to adjust coefficient matrices across space (the regionalization problem). To the extent
that a national table, An, reflects an average of input–output relationships in various
regions of the nation, the minimization of “information distance” or “surprise” that is
inherent in the RAS technique may also be appropriate at the regional level. Or if there
is an input–output coefficient table for a region, s, that is thought to be economically
similar to the region in question, r, then this same “minimal surprise” characteristic of
the RAS procedure is possibly an attractive one.

On the (different) problem of updating an existing regional table via RAS-like tech-
niques, see, among others, the early work of McMenamin and Haring (1974) (and also
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the Giarratani, 1975, comment on this work)11 and Malizia and Bond (1974). Many
studies have compared results from the RAS approach with one or more of the reduc-
tion techniques in section 8.2 for deriving a regional from a national input–output table.
We illustrate this kind of comparison in the following section. More recently, analysts
have combined both kinds of techniques into hybrid approaches. We examine a few
examples in section 8.5. Later, in section 8.7, we consider the additional problem of
estimating interregional flows in order to create a model for two or more connected
regions.

8.4 Numerical Illustration

In Table 8.1 we present illustrative results from application of some of these techniques
to estimate matrices for Region 1 (North China) from the three-region, three-sector data
set for China for 2000. (These were used for illustration in Chapter 3, section 3.4.6.)
More detailed results – for example, the complete 3 × 3 coefficients matrices and
their associated Leontief inverses, are shown in Web Appendix 8W.1 for the interested
reader. This is done in part because, as always when comparing matrices, a good deal of
individual detail is inevitably lost when summary measures are used. Coefficients and
inverse matrices were estimated using LQ, CIQ, FLQ, AFLQ, RPC, and RAS techniques,
first on an unadjusted national table, An, created by spatial aggregation of the data in
Chapter 3, and then on a regional technical coefficients table, Ar , created using Round’s
fabrication effect adjustment, where Ar = Anρ̂r .

Differences between survey-based total intraregional intermediate inputs and those
in each of the estimated matrices (column sums of Arr and each estimate, Ãrr) are
one way to condense n2 pieces of information (here 9) into n. Differences in column
sums of each of the Leontief inverses, Lrr and each of the L̃rr (intraregional output
multipliers) are another (and more frequently used) summary measure. Both of these
mask individual cell differences in the process of summation down the columns. We also
include one additional measure, the mean absolute percentage error (MAPE), already
used in section 7.4.2. This is the average of the percentage differences in corresponding
cells of Arr and Ãrr or of Lrr and L̃rr (irrespective of whether positive or negative), so
it too masks a wide variety of individual differences.

Notice that RAS always estimates total intraregional intermediate inputs correctly.
In this small set of examples RPC was the best of the quotient techniques and RAS
performed best overall, on the basis of either intermediate inputs or multipliers. The
fabrication adjustment suggested by Round appeared to be a significant help for RPC
only, and only when assessed on the basis of the average percentage difference. It made
no difference for RAS because the initial matrices (with and without the fabrication
adjustment) were very close. These results pertain only to this one small illustration.

11 A particular feature of the McMenamin–Haring approach is that it employs the RAS technique on an entire
transactions table, including the sales to final-demand sectors and the purchases from value-added sectors. That
is, ur and vr are not needed; only xr is used. This relaxes the data requirements but imposes the biproportionality
assumption on not only the interindustry transactions but also on final-demand and value-added data. This is
the basic point raised by Giarratani (1975).
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Table 8.1 Total Intraregional Intermediate Inputs and Intraregional Output Multipliers
for Region 1 (North China) Calculated from Several Regionalization Techniques

Average
Total Intraregional Percentage Percentage
Intermediate Inputs Differencesa Differenceb MAPEc

Survey 0.2891 0.5781 0.3466

Using An

LQ 0.3166 0.6774 0.4019 9.54 17.19 15.96 14.23 12.41
CIQ 0.3169 0.6717 0.4022 9.64 16.20 16.03 13.96 12.54
FLQ 0.2541 0.5189 0.3113 −12.10 −10.23 −10.18 −10.84 13.04
AFLQ 0.2541 0.5290 0.3113 −12.10 −8.50 −10.18 –10.26 12.49
RPC 0.2827 0.5850 0.3495 −2.19 1.19 0.84 1.41d 7.17
RAS 0.2891 0.5781 0.3466 0 0 0 0 6.94

Using Round’s Ar = Anρ̂r

LQ 0.3222 0.6720 0.3943 11.45 16.24 13.75 13.82 12.17
CIQ 0.3225 0.6663 0.3945 11.56 15.27 13.82 13.55 12.31
FLQ 0.2585 0.5148 0.3054 −10.57 −10.95 −11.90 −11.14 13.33
AFLQ 0.2585 0.5247 0.3054 −10.57 −9.23 −11.90 –10.57 12.79
RPC 0.2877 0.5803 0.3429 −0.48 0.38 −1.08 0.65d 7.11
RAS 0.2891 0.5781 0.3466 0 0 0 0 6.94

Average
Intraregional Output Percentage Percentage

Multipliers Differencese Difference MAPEf

Survey 1.5311 2.1115 1.6620

Using An

LQ 1.6765 2.5684 1.9201 9.50 21.63 15.53 15.55 25.06
CIQ 1.6734 2.5480 1.9148 9.29 20.67 15.21 15.06 23.74
FLQ 1.4309 1.9294 1.5515 −6.55 −8.63 −6.65 −7.28 15.93
AFLQ 1.4353 1.9590 1.5578 −6.26 −7.22 −6.27 −6.58 14.81
RPC 1.5108 2.1318 1.6700 −1.33 0.96 0.48 0.92d 3.50
RAS 1.5219 2.1145 1.6618 −0.60 0.14 −0.01 0.25d 2.79

Using Round’s Ar = Anρ̂r

LQ 1.6841 2.5425 1.8933 9.99 20.41 13.92 14.77 23.76
CIQ 1.6810 2.5226 1.8882 9.79 19.47 13.61 14.29 22.46
FLQ 1.4369 1.9172 1.5375 −6.15 −9.20 −7.49 −7.62 16.45
AFLQ 1.4413 1.9463 1.5436 −5.87 −7.82 −7.12 −6.94 15.35
RPC 1.5179 2.1163 1.6524 −0.86 0.23 −0.58 0.56d 3.13
RAS 1.5219 2.1145 1.6618 −0.60 0.14 −0.01 0.25d 2.79

a This is {[(i′Ã − i′A) � i′A] × 100}, where “�” indicates element-by-element division.
b This is a simple, unweighted average. Various kinds of weightings (e.g., using some measure of the size of

each sector) are frequently used.
c Calculated as

(∑n
i=1

∑n
j=1

|aij−ãij|
aij

)
× 100.

d This is the average of the absolute values of the differences, so that the negatives and positives do not cancel out.
e Calculated as {[(i′L̃ − i′L) � i′L] × 100}.
f Calculated as (

∑n
i=1

∑n
j=1

∣∣∣lij−l̃ij
∣∣∣

lij
) × 100.
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Other applications (and other measures of error) could easily generate different out-
comes in terms of rankings of the techniques. Problem 8.9 asks the reader to create
similar results for either (or both) of the other two regions, the South and the Rest of
China, in the Chinese data in Chapter 3. Results for those exercises are shown in the
Solutions, for those who want to bypass the work. As can be seen, the sizes of errors
vary a great deal across the three region results, and in one case FLQ and AFLQ perform
very badly. Generally, RAS is seen to provide the best results.

Over the years there have been many empirical studies, generally much larger than the
illustration in Table 8.1, in which various location quotient approaches to regional coef-
ficient estimation, often along with RAS, have been compared, and, not unexpectedly,
the results have varied. Examples include (but are not limited to) Czamanski and Malizia
(1969), Schaffer and Chu (1969), Hewings (1969, 1971), Round (1972), Morrison and
Smith (1974), Smith and Morrison (1974), Eskelinen and Suorsa (1980), Cartwright,
Beemiller and Gusteley (1981), Alward and Palmer (1981), Harrigan, McGilvray and
McNicoll (1981), Sawyer and Miller (1983), Stevens, Treyz and Lahr (1989), Flegg
and Webber (2000), Tohmo (2004) and Riddington, Gibson and Anderson (2006). As
always, the results often depend on the statistic(s) used to rate the techniques.

8.5 Exchanging Coefficients Matrices

Early in applied regional input–output work it was thought that an alternative to adapting
a national table to reflect the economic characteristics of a particular region might be
to adapt an existing table for some other region or, indeed, simply to use a table for one
region as representing another region as well. For example, a coefficients table for a
particular wheat-growing county in North Dakota might reflect very well the economic
interrelations in another wheat-growing county in North Dakota, or probably also in
South Dakota or Nebraska. However, less plausible would be the use of a survey-
based table for Philadelphia to represent interrelations in the Boston or, less likely, San
Francisco economy. How much and what kind of modifications would be necessary
are much more complicated questions. In this regard, one can only make very broad
and general statements; for example, if in the opinion of experts, two regions are very
similar economically, then it is possible that a coefficients table for one of them may
prove to be useful for the other also. Or it may be useful with appropriate modification;
the problem is always how to decide what needs to be modified and how to go about
doing it.

As an example of coefficient exchange at the regional level, Hewings (1977) used a
survey-based table for Washington State for 1963 (Bourque and Weeks, 1969) to esti-
mate Kansas interindustry structure in 1965; he also used a survey-based Kansas table
for 1965 (Emerson, 1969) to estimate Washington’s structure in 1963. After appropri-
ate classification of the two tables into a comparable set of sectors, it was clear from
inspection that there were many individual coefficients that were vastly different in the
two tables. In a simple coefficient change, estimating Washington output with Kansas
technology, as xW = (I−AKK )−1fW and similarly, estimating Kansas output withWash-
ington technology, xK = (I − AWW )−1fK , it was found that aggregate errors (for total
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output, summed over all sectors) were 4.8 percent (overestimate) for Washington and
−12.6 percent (underestimate) for Kansas. However, as usual with aggregate measures
of error, individual sector estimates were often very far off; the worst in Washington
was overestimated by 336 percent and the worst in Kansas was overestimated by 114
percent. Thus, straightforward coefficient exchange could not be considered a success.

However, using the RAS procedure in conjunction with Kansas survey-based infor-
mation on total intermediate outputs, total intermediate inputs, and total output, by
sector, produced far superior results. That is, the Washington table (instead of a national
table) was “balanced” by the RAS technique to conform to the observed Kansas
marginal information. With the modification, total estimated Kansas output was under-
estimated by only 0.008 percent, and the largest error for an individual sector’s output
was only 0.195 percent.

To emphasize the relative importance of the marginal information in the RAS pro-
cedure, Hewings also “balanced” an artificial coefficient matrix made up of random
numbers (but with column sums less than one). That is, the “base” matrix was a totally
artificial one, which did not correspond to any national or regional table. Using a ran-
domly generated new final-demand vector, he compared “true” gross outputs (using the
actual Kansas table) with the RAS-adjusted Washington table and the RAS-adjusted
random table. In these two cases, the total Kansas output, summed over all sectors,
was overestimated by only 0.028 percent and underestimated by 0.192 percent, respec-
tively. The worst errors in individual sector outputs were 3.7 percent (Washington table)
and 5.6 percent (random table). The main lesson from this experiment appears to be
that information on region-specific sectoral total intermediate outputs, u, and inputs,
v, along with sectoral gross outputs, x, are of dominant importance (as opposed to the
base matrix) in an RAS adjustment procedure. (For a comment on the Hewings study
and a reply, see Thumann, 1978 and Hewings and Janson, 1980. Also, see Szyrmer,
1989, for a discussion of experiments that indicate the importance of correct target-year
marginal information in an RAS procedure.)

8.6 Estimating Interregional Flows

Earlier in this chapter, we examined some techniques that have been proposed and used
to estimate regional input coefficients from existing regional or national tables. If two
or more regions are to be connected in the model, then interregional coefficients are
also needed. In Chapter 3 we saw what data are necessary in both the interregional and
multiregional cases, and an example was provided from multiregional data for China
in 2000 (in section 3.3.5).

Because of the extremely detailed data that are necessary for a full interregional model
and because the US multiregional model was itself an extremely ambitious and time-
consuming project, there are not many existing tables of interregional commodity flows
or their associated coefficients that can be used as “base” tables to be updated, projected,
or exchanged. Rather, a number of proposals have been explored for estimating these
flows between sectors and regions. The techniques are sometimes relatively advanced,
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and a thorough survey is beyond the scope of this book. We indicate only some of the
broad ideas that have been used.

8.6.1 Gravity Model Formulations
Many versions of gravity model formulations have been proposed and explored for
estimating commodity flows between regions. The basic idea is that the flow of good
i from region r to region s can be looked upon as a function of (1) some measure
of the total output of i in r, xr·

i , (2) some measure of the total purchases of i in s, x·s
i ,

and (3) the distance (as a measure of “impedance”) between the two regions, drs. One
straightforward function, taking inspiration from Newton’s observations on gravity
(and hence the name for this class of models), would involve the product of the two
“masses” (xr·

i and x·s
i ) divided by the square of the distance. A bit more generally,

zrs
i = (cr

i xr·
i )(ds

i x·s
i )

(drs)ei
= (krs

i )
xr·

i x·s
i

(drs)ei
(8.15)

where cr
i , ds

i (alternatively, krs
i ) and ei are parameters to be estimated. (In the strictest

Newtonian form, ei = 2.)
As noted in Chapter 3, the gravity approach was suggested initially in an input–output

context in Leontief and Strout (1963); it was also explored in Theil (1967). Leontief
and Strout suggested the relatively simplified form

zrs
i = xr·

i x·s
i

x··
i

Qrs
i (8.16)

where xr·
i is labeled the “supply pool” of good i in region r, x·s

i is labeled the “demand
pool” of good i in region s, x··

i is the total production of commodity i in the system and
Qrs

i is a parameter. The authors write:

The multiplicative form in which the total output of good i in the exporting and its total input in
the importing regions enter into [(8.15)] permits us to characterize it as a special type of Gravity or
Potential Model. It implies that there can be no flow from region r to region s if either one of those two
magnitudes is equal to zero. The introduction of the aggregate output of good i into the denominator
implies that, if the aggregate output [x··

i ], as well as output [xr·
i ] in region r and total input [x·s

i ] in
region s, double, the flow of that good from region r to region s will double too. [Leontief (1966)
p. 226. The authors use g and h in place of r and s.]

Notice that the denominator in this formulation [(8.16)] is aspatial; that is, its magnitude
is unrelated to any measure of “distance” between r and s. Rather, it provides the
flexibility necessary so that if, for good i, the supply pool in r, the demand pool in s and
total output all increase by p percent, then zrs

i increases by that same percent (assuming

Qrs
i > 0). So the Qrs

i term has something of the look of
krs

i
(drs)ei from (8.15).

An important feature of this kind of formulation is that cross-hauling is allowed; that
is, good i can be shipped simultaneously from r to s and from s to r. Specifically, if
xr·

i , x·r
i , xs·

i , and x·s
i are all nonzero, and if Qrs

i > 0 and Qsr
i > 0, then both zrs

i > 0 and
zsr

i > 0.
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The most optimistic scenario is that values of xr·
i , x·s

i , x··
i , and zrs

i are known from some
base period or for some subset of transportation data. In that case, one can evaluate the
parameter Qrs

i from those data, as

Qrs
i = z̄rs

i x̄··
i

x̄r·
i x̄·s

i

where overbars indicate known values. Leontief and Strout also discuss a number of
alternative ways of estimating the Qrs

i in cases where there is no base-case information.
Polenske (1970a) tested the Leontief–Strout gravity approach, using Japanese inter-

regional flow data. She also compared the gravity formulation with the Chenery–Moses
MRIO model (section 3.4) and one other alternative, known as a “row-coefficient” ver-
sion of the MRIO model. The gravity and MRIO estimates were about equally good
and far better than those obtained from the row-coefficient model (Polenske, 1970b).
Estimates based on gravity models have also appeared in Uribe, de Leeuw and Theil
(1966) and Gordon (1976) among others. Lindall, Olson, and Alward (2006) use a
gravity formulation to estimate gross trade flows for some 509 commodities and 3140
counties in the USA. One outcome is that their results allow for estimation of a set
of regional purchase coefficients (RPCs) for each county, using their results for each
county’s commodity i trade with itself divided by total county demand for i.

The gravity approach was embedded in a general entropy-maximizing framework in
a number of papers by Wilson. An overview is provided by Wilson (1970, especially
Chapter 3).12 Connections with information theory have been suggested, and this has
been thoroughly explored by Batten (1982, 1983) and applied in Snickars (1979).
Batten’s empirical studies combine iterative (RAS-like) methods with a maximum
entropy formulation and, if required, additional variations (“minimum information
gain” procedures). (See Batten, 1983, especially Chapter 5 and Appendix E.) Batten
and Boyce (1986) review gravity-based and other spatial interaction models.

8.6.2 Two-Region Interregional Models
Anumber of estimation methods for interregional models are simplifications or variants
of the quotient techniques discussed above. Essentially, they use some measure of a
region’s import or export orientation with respect to each good; and if region r is found
to be an exporter of good i, then it is assumed that all the requirements for i in region r
will be met by local production and hence there will be no imports of i to region r
(no cross-hauling). One important feature in a two-region interregional model is that
one region’s (domestic) exports of a particular good are the other region’s (domestic)

12 A compact discussion of MRIO, gravity, and entropy-maximizing models can also be found in Toyomane
(1988). He also develops and applies two alternative multinomial logit models of trade coefficients to an
Indonesian example. Amano and Fujita (1970) combine MRIO and econometric models to allow both input
coefficients and trade coefficients to change over time. Details of these models are beyond the scope of this
book.
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imports. From (8.4), since

arr
ij =

{
(LQr

i )a
n
ij if LQr

i < 1
an

ij if LQr
i ≥ 1

}

then, in a two-region interregional model (with regions r and s),

asr
ij =

{
(1 − LQr

i )a
n
ij if LQr

i < 1
0 if LQr

i ≥ 1

}

For example, if LQr
i = 0.65, then the assumption is that 35 percent of the needs of

input i by sectors in region r will be met by imports from region s.
A simple procedure of this sort was used in early studies by Nevin, Roe and Round

(1966) for a two-region model in the United Kingdom and by Vanwynsberghe (1976) for
a three-region Belgian model. Examination of a wide variety of nonsurvey techniques
in an (especially two-region) interregional setting is contained in a series of papers
by Round (1972, 1978a, 1978b, 1979, and 1983), to which the interested reader is
referred. An alternative approach used in several Swedish regional studies is outlined
in Andersson (1975) and modifications are suggested in Bigsten (1981). As we will see
below, there have been attempts to modify the two-region approach for cases in which
more than two regions are present.

8.6.3 Two-Region Logic with more than Two Regions
The logic of the “balancing” inherent in two-region models – where one region’s
(domestic) exports of i are the other region’s (domestic) imports of i – appears to have
first been extended to more than two regions by Hulu and Hewings (1993; five regions);
later examples include Hewings, Okuyama and Sonis (2001; four regions) and Bonet
(2005; seven regions). The essential idea is to use location quotients, a sequence of
two-region models, and an RAS balancing approach. A three-region setting is adequate
to illustrate the process.

1. Consider a two-region context where regions 2 and 3 have been aggregated; let
r = region 1 and r̃ = the rest of the economy (the remaining two regions). Use loca-
tion quotients for r to estimate Arr = [arr

ij ] in the usual way from a known national

coefficient matrix, An; arr
ij =

{
(LQr

i )a
n
ij if LQr

i < 1
an

ij if LQr
i ≥ 1

}
. Then import coeffi-

cients from the rest of the economy to r, Ar̃r = [ar̃r
ij ], are found as ar̃r

ij = an
ij − arr

ij .
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Similarly, find Ar̃r̃ = [ar̃r̃
ij ] using location quotients for the aggregate “rest of the

economy” region (regions 2 and 3 in this case). Finally, imports from region 1 to
the rest of the economy, Arr̃ = [arr̃

ij ], are found as arr̃
ij = an

ij − ar̃r̃
ij . The result is⎡⎣ A11 A11̃

A1̃1 A1̃1̃

⎤⎦.

2. Repeat this procedure for each of the other possible two-region partitions (r =

2, r̃ = 1, 3 and r = 3, r̃ = 1, 2), giving

⎡⎣ A22 A22̃

A2̃2 A2̃2̃

⎤⎦ and

⎡⎣ A33 A33̃

A3̃3 A3̃3̃

⎤⎦.

This information can be arranged as in the table below. Missing, of course, are the
interregional coefficients (shaded areas).

A11 A11̃

A22 A22̃

A33 A33̃

A1̃1 A2̃2 A3̃3

3. Convert coefficients to flows. For example, using known outputs x1 and x1̃, find⎡⎣ A11 A11̃

A1̃1 A1̃1̃

⎤⎦⎡⎣ x̂1 0

0 x̂1̃

⎤⎦ =
⎡⎣ Z11 Z11̃

Z1̃1 Z1̃1̃

⎤⎦. Similar calculations can be

made for r = 2 and 3, producing

Z11 Z11̃

Z22 Z22̃

Z33 Z33̃

Z1̃1 Z2̃2 Z3̃3

(The three Zr̃r̃ matrices that are generated in these calculations are ignored.)
4. The (shaded) off-diagonal flow matrices remain to be estimated. If these empty cells

are filled with initial estimates, an RAS procedure can be applied. The extremely
simplifying assumption is made that imports to any particular (on-diagonal) region
come equally from all other (here both) regions; e.g., Z21 = Z31 = (1/2)Z1̃1. Thus
all cells now contain initial estimates.
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Z11 Z12 Z13 Z11̃

Z21 Z22 Z23 Z22̃

Z31 Z32 Z33 Z33̃

Z1̃1 Z2̃2 Z3̃3

5. Eliminate the on-diagonal matrices. Given the row and column margins, which
account only for interregional flows (the shaded portions), use RAS to create a
balanced table. (The table conforms to the column sums by the way in which it was
constructed, but not to the row sums.)

0 Z12 Z13 Z11̃

Z21 0 Z23 Z22̃

Z31 Z32 0 Z33̃

Z1̃1 Z2̃2 Z3̃3

If the presence of null matrices creates convergence problems (as it did in the arti-
cles cited), reintroduce the on-diagonal matrices, alter the margins accordingly, and
reapply RAS.

8.6.4 Estimating Commodity Inflows to a Substate Region
Liu and Vilain (2004) start with known commodity flow data for US states from the
1993 US Commodity Flow Survey (US Department of Commerce, 1993) and national
commodity-by-industry input–output data.They derive commodity inflows to a substate
region using features of a supply-side, commodity-by-industry model and secondary
data on the region’s industrial structure. Their two-step procedure first scales each
commodity’s national “output coefficients” (using the terminology of the supply-side
input–output model which is discussed in Chapter 12) to a state level. These coeffi-
cients are commodity sales to industries as a proportion of the selling sector’s output,
rather than commodity purchases as a proportion of the buying sector’s output; they
represent the distribution across buyers instead of across sellers in the usual input–
output model. The second step then scales the state-level coefficients to a regional
(substate) level. In both cases, the scaling is done using location quotients, but on
these output coefficients, rather than on input coefficients as in the approaches of
section 8.2.

Given a national Use matrix, UN, and total commodity outputs, qN, find BN =
(q̂N )−1UN , where bN

ij indicates the share of total commodity i output that is sold to
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industry j.13 Convert these national output shares to the state-level shares using state-
specific location quotients. [The authors use industry earnings as the basis for their
location quotients but recognize that other alternatives (e.g., employment) are possi-
ble.] That is, create BS = BN 〈lqS〉 where lqS = [LQS

i ] and LQS
i is the earnings-based

location quotient for sector i in the state.14 In contrast to the way in which location
quotients are used for regionalizing national input coefficients (sections 8.2.1–8.2.4),
if a given LQS

i > 1 then the associated bN
ij (for all j) are increased. Next, normal-

ize the elements in each row of BS by dividing by the row sum (so that all row
sums in the normalized matrix will equal 1) − B̃S = BS〈BS i〉−1, so b̃S

ij = bS
ij/

∑
j bS

ij.

Each b̃S
ij is an estimate of the proportion of commodity i shipped into the state that

will be used by industry j in the state.15 Let mS be a vector of inflows to the state
of the m commodities (known from the Commodity Flow Survey). Then the matrix
ρS = m̂S B̃S apportions the inflows of the m commodities among the n industries
(including households); ρS

ij is the amount of commodity i flowing to industry j in the

state. (In the notation of Chapter 3, this is an estimate of z·S
ij , an element in the MRIO

model.)
The next step moves to the regional (substate) level. Estimate another matrix of loca-

tion quotients, LQR, this time for the region, measuring the relative representation of
each industry in the region. Then define ρR = ρS〈lqR〉 = m̂S B̃S〈lqR〉; ρR

ij is an approxi-
mation of the amount of commodity i shipped to the state that is used by industry j in
the region in question.16 In terms of transportation planning, row sums of ρR may also
be of interest; they are estimates of the total amount of each commodity that is shipped
to the region – ϕR = ρRi = [φR

i ], where φR
i is the total regional inflow of commodity i.

The authors apply the method to commodity inflow to seven states and compare
their results with known inflows (from the 1993 Commodity Flow Survey; that is, they
assume the “regions” are in fact states in order to have data with which to compare their
estimates). For six of the seven states, mean absolute percentage errors (MAPEs) were
between 16 and 30 (with large variation among commodities) and for one state, the
MAPE was 71. This method is compared with results from the Jackson et al. approach,
discussed immediately below.

13 We use upper-case superscripts “N,” “S,” and “R” to denote nation, (subnational) state and (substate) region,
respectively, since lower-case superscripts are generally reserved for individual and distinct regions (e.g., “r”
and “s”).

14 This notation is a bit unconventional. The vector of location quotients for the state is denoted by lower-case
bold letters, lqS (our convention for vectors throughout this book), but its elements are upper-case, LQS

i , to
conform with the usual convention for representing location quotients, as in section 8.2.1, even though the
usual notation for elements of the lqS vector would be lqS

i .
15 The normalization is done so that 100 percent of the inflow of each commodity will be used up by purchasing

sectors in the state. The authors work with a closed model, so household consumption of imported commodities
is accounted for.

16 Notice that these are akin to the regional sales coefficients of Oosterhaven and his colleagues in the Netherlands
(section 8.7.2).
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8.6.5 Additional Studies
Commodity Flows among US States

Interregional Social Accounts Model (ISAM). In two articles (Jackson et al., 2006;
Schwarm, Jackson and Okuyama, 2006) single-state SAMs are constructed using
data derived from IMPLAN. (In the second article, the acronym ISAG is used,
for Interregional Social Accounts Generator.) The authors estimate interregional
commodity-by-industry flows connecting the states in an attempt to improve on the
commodity flow survey (CFS) data from the Bureau of Transportation Statistics.
The system consists of 51 regions (states plus DC), 54 industry/commodity sec-
tors, 4 factors of production, and 18 institutions. The primary effort is to derive
an estimating equation to distribute known regional domestic exports (from the
single-region SAMs) from each region to each other domestic region in the model.
(Intraregional flows are generated in the construction of each of the single-region
SAMs, and they are assumed to be correct.) The authors assume that distributions
of exports from one region to all others are fixed, while export levels vary with regional
production.

The preferred estimating equation is a function of transportation costs (interregional
distances) and region-specific commodity demand. It has the form

zrs
i = (ws

i )
αi exp(−βid rs)∑

s
(ws

i )
αi exp(−βid rs)

zr·
i

where ws
i is a measure of region s’s demand for imports of commodity i and drs is

some measure of the distance between r and s, and where α and β are elasticities on
commodity demand and distance, respectively. These elasticities are estimated in an
optimization model in which a measure of total absolute deviation between estimated
flows and their associated observed benchmark flows is minimized. (The many details,
including how a set of benchmark figures is generated, are relatively complex. The
interested reader is referred to Jackson et al., 2006.) At various points, biproportional
(RAS) adjustments are required to ensure consistency with known national figures.

National Interstate Economic Model (NIEMO). An ambitious project to revitalize the
US MRIO model is underway at the University of Southern California in its Center
for Risk and Economic Analysis of Terrorism Events (CREATE). This effort updates
the outdated US MRIO models for 1963 and 1977 (Chapter 3) in a framework of 47
sectors and 52 regions (50 states, the District of Columbia and the Rest of the World)
and uses the model in many empirical applications. There are numerous publications,
beginning around 2005, that discuss the derivation of the model and various extensions
and applications; these include Park et al. (2004) and Richardson, Gordon and Moore
(2007, especially the chapters by Park et al. and Richardson et al.).

The basic model-building idea is to integrate data from 2001 IMPLAN state-level
input–output models (for intrastate coefficients) with commodity flow data from the
US Department of Transportation’s 1997 Commodity Flow Survey (for interregional
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coefficients) in an MRIO framework. There are many issues with the data sets alone –
for example, reconciling the 509 IMPLAN sectors with the 43 sectors in the CFS data
and dealing with the absence of interstate trade in services and many other empty
cells in the CFS data. Instead of a gravity-model approach (as in the work of Jackson
et al., above), NIEMO uses a doubly constrained Fratar model (a biproportional matrix
balancing technique – similar to RAS – from the transportation engineering literature)
to generate interregional coefficients.

This work has been extended in many directions: (a) to a supply-driven model, for
example, to quantify effects of terrorist attacks on ports (import disruptions), (b) to a
price-sensitive supply-side model, incorporating exogenous price elasticities of demand
and (c) to a flexible model, in which input and output coefficients matrices are altered
in an RAS procedure as a result of natural disaster or terrorist attack. Among the several
applications, in addition, are assessments of the sectoral/spatial impact of an outbreak
of mad cow disease, Mexico–US border closure and attacks on theme parks.

An Optimization Model for Interregional Flows In Canning and Wang (2005),
the authors formulate a quadratic programming problem to estimate interregional,
interindustry transaction flows in a national system of regions. They choose a mathe-
matical programming approach because of the flexibility that such a format provides for
incorporating constraints (adding-up constraints, upper and/or lower limits on values
of individual variables, etc.). While the ultimate goal is to estimate the elements of a
several-region interregional input–output (IRIO) model, practical considerations man-
dated that a simpler multiregional (MRIO) model be used. (These models are explored
in Chapter 3.) Variables to be estimated are regional inputs (ignoring regional origin),
z·r

ij , and interregional flows (ignoring sectoral destination), zrs
i . The approach requires

a national input–output table and regional data on gross outputs (xr
i ), value added (vr

i ),
final demand (f r

i ), exports to foreign destinations (er
i ) and imports from abroad (mr

i ).
Specifically, consistency conditions for variables zrs

i and z·r
ij in the MRIO model

require:

1. For each commodity i and region r, total output is completely distributed to users
(intermediate and final) in all regions plus overseas

p∑
s=1

zrs
i + er

i = xr
i

2. For each i and r, the value of gross output is attributable to intermediate inputs
(regardless of their origin) plus primary inputs (value added)

n∑
j=1

z·r
ji + vr

i = xr
i
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3. Total requirements (intermediate plus final) for i in r are completely met by
shipments from all regions (including r) plus imports from overseas

n∑
j=1

z·r
ij + f r

i =
p∑

s=1

zsr
i + mr

i

4. Intermediate purchases of commodity i by sector j in region r, when summed over
all regions, must equal the national (superscript N ) transaction amount

p∑
r=1

z·r
ij = zN

ij

In addition, constraints from the national accounts specify that regional output,
value added, final demand, foreign exports and imports, for each commodity i,
when summed over all regions, are equal to their associated national totals. That
is,

∑p
r=1 xr

i = xN
i ,
∑p

r=1 vr
i = vN

i ,
∑p

r=1 f r
i = f N

i ,
∑p

r=1 er
i = eN

i , and
∑p

r=1 mr
i = mN

i .
These linear equations can be incorporated easily as constraints into a mathematical
programming format.

Subject to these (or similar) constraints, the authors suggest an objective function
in which deviation from prespecified “estimates” of the unknowns is minimized. In
their formulation, this takes the form of a weighted quadratic function. There are many
options for how this is specified, and the details are beyond the scope of this book.

The authors present one application to a 4-region, 10-sector data set.17 The results
for this one application indicated relative success with respect to estimates of the
interregional flows (zrs

i ), with mean average percentage errors (MAPEs) in the
4–7 percent range, while MAPEs for the regional inputs (z·r

ij ) were less impressive (in
the 15–20 percent range). Notice that a two-region model (region r and the rest of
the nation) could be cast in this format, taking advantage of the adding-up constraints
above.

8.7 Hybrid Methods

In this section we summarize a few of the (many) approaches that have been used
by researchers in many parts of the world to derive regional input–output data. This
represents only a small sample of real-world studies, virtually all of which use a hybrid
approach with a combination of “superior data” or partial surveys and RAS or other tech-
niques. As will be seen, these methods often embed the (intra)regional table estimation
problem in a larger several-region system. Because of their tendency to (at least origi-
nally) focus on a regional table, we include them here rather than below, in section 8.8,
on estimating interregional flows. However, the division is rather arbitrary, since some
of the approaches in the later section also generate estimates of intraregional data.

17 The “regions” were large – Japan, the USA, the EU, and the rest of the world.
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8.7.1 Generation of Regional Input–Output Tables (GRIT)
A great deal of work has been done by Jensen and West and their colleagues in Australia
on procedures for deriving input–output tables for various regions of that country,
starting with a national table, employing allocation and quotient methods and paying
attention to “superior data” and expert opinion when and as available. They have named
this the GRIT technique. (See, for example, Jensen, Mandeville and Karunaratne, 1979
or West, 1990.) It has a long history, beginning in the late 1970s (those results are now
known as “GRIT I”). Modifications led to “GRIT II” in the 1980s and then a version
for estimating two or more regional tables and merging them into an interregional table
(“GRIT III”).18 It is generally described as consisting of five steps (see Hewings and
Jensen, 1986, for example):

1. Identify and adjust a “parent” table. Generally this will be a national table from
time (t − 1) for the country in which the region of interest is located. This may
be a transactions table or a coefficients table. Assume that the table incorporates
competitive imports, so that the coefficients are true national technical coefficients,
A·n(t − 1). This will generally need to be updated from time (t − 1) to time t using
RAS or some alternative technique – A·n(t − 1) → A·n(t).19

2. Use some allocation or quotient method to convert national to regional coefficients;
a·r

ij (t) = rr
ija

·n
ij (t) and then adjust for regional imports (e.g., using regional pur-

chase coefficients) to produce an initial estimate of intraregional input coefficients,
arr

ij (t) = ρr
i a·r

ij (t).
3. Insert superior data from surveys, expert opinion, etc.
4. Define the appropriate regional sectors, usually through (weighted) aggregation of

the national sectors. Insert additional superior data again, after the aggregation, in
those cases where such information is known only at this more aggregated level. This
might be done especially for “critical” (e.g., “inverse-important”) cells, however
determined (see section 12.3.3). The results are a prototype regional transactions
table, Zrr(p) = [z(p)rr

ij ], with an associated coefficients matrix Arr(p) and Leontief

inverse, Lrr(p) = [I − Arr(p)]−1.
5. Using superior data and opinion once again – for example, by comparing multipliers

derived from Lrr(p) in step (4) with those for “similar” regions – derive final versions
of Zrr , Arr , and Lrr .

Over the recent past, increasing emphasis has been placed on obtaining superior
data from the outset, including extensive searches of published data (public and private
sources) and special requests to national, state and local government agencies, followed
by surveys.

18 A description of much of this history can be found in West, Morison and Jensen (1982).
19 If the initial tables are national transactions (exports excluded) then the import element for each sector (column)

must be allocated up that column to the individual entries.
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Table 8.2 Components in the DEBRIOT Approach

Intra- and Interregional Regional Sales to
Transactions To Region r To Region s Domestic Markets

From Region r Zrr , Frr Zrs, Frs Zrn, Frn

From Region s Zsr , Fsr Zss, Fss Zsn, Fsn

Regional Use of
Domestic Products Znr , Fnr Zns, Fns

8.7.2 Double-Entry Bi-Regional Input–Output Tables (DEBRIOT)
Researchers in the Netherlands have developed an extensive set of regional (and inter-
regional) input–output tables for that country. [See Oosterhaven, 1981, for work up
until the 1980s, Boomsma and Oosterhaven, 1992, for a description of the DEBRIOT
approach and Eding et al., 1999, for the procedure when one starts with regional Make
(supply) and Use tables.] Most of these are of the two-region sort – the region of
interest (r) and the rest of the country (s). The primary object is to estimate an intrare-
gional transactions matrix, Zrr (the elements in the light gray area in Table 8.2). Toward
that end, the procedure requires estimates of regional sales to domestic markets and
regional use of domestic products, the elements in the dark gray areas. As a result of the
two-region nature of the accounts, the approach also generates Zrs, Zsr , and Zss (the
matrices in the medium gray areas).20

The approach is based on observation that firms in the Netherlands are generally better
informed about the spatial destination of their sales than they are about the spatial origin
of their purchases. Thus attention is directed not primarily to purchase data (as is the
case with regional purchase coefficients) but to information on the sectoral and spatial
destination of sales. Also, there is an almost total absence of quotient methods, and
hence the inherent upward bias associated with the no cross-hauling feature of those
methods may be mitigated.

These major components of DEBRIOT are:

1. Znr = [
znr

ij

]
, the regional domestic use matrix for region r. Here the superscript

n indicates the nation, i.e., r + s.21 So znr
ij is the use by sector j in region r of

i goods produced domestically, in either r or s. Estimate the regional technology
matrix (transactions) by applying national technology coefficients, (z·n

ij /xn
j ), assumed

20 In all cases, F (a matrix) is used to allow for disaggregation of final demand, including possibly households
distinguished by income brackets, etc. In the simplest of models, we would have f (a vector). In this brief
summary we use Z (transactions) matrices. In a commodity-by-industry accounting setting, one would deal
with U (Use) matrices.

21 Recall that notation such as Zrs describes transactions between sectors in two spatially distinct regions, r and
s. Here Znr describes purchases by sectors in r from the national pool of domestic outputs, some of which
come from sectors in r and some from sectors in s.



376 Nonsurvey and Partial-Survey Methods: Extensions

known, to regional total use, also known: z·r
ij = (z·n

ij /xn
j )x

r
j .22 Next, it is assumed

that each z·r
ij can be broken down into its domestic and foreign components: z·r

ij =
znr

ij + mr
ij. This may be done by using the national import coefficients, mn

ij, to reduce
z·r

ij by the national proportion of imports of i to total use of i

znr
ij = z·r

ij − (mn
ij/z·n

ij )z
·r
ij = [1 − (mn

ij/z·n
ij )]z·r

ij

Construct Zns = [
zns

ij

]
similarly from information on rest-of-nation output, xs

j , and
construct Fnr and Fns similarly.

2. Zrn = [
zrn

ij

]
, the regional domestic sales matrix for region r. Survey to find an overall

regional domestic export coefficient for sector i in region r, trs
i = (zrs

i· +f rs
i· )/(xr

i −er
i ).

The denominator is total domestic sales of i made in r, the numerator is the total
amount of i made in r that went to s, and so this ratio is the proportion of r’s total
domestic sales of i that went to s. Similarly, (1 − trs

i ) = trr
i is the proportion that

remained in r.23 Using trs
i , estimate nonsurvey region r domestic sales coefficients

as a weighted average of the demand structure of the rest of the country and the
region of interest:

srn
ij = trs

i [zns
ij /(zns

i· + f ns
i· )] + (1 − trs

i )[znr
ij /(znr

i· + f nr
i· )]

The denominator in the first bracketed expression is the total amount of i from all
domestic sources (r + s) that is demanded in region s, and so the expression in
brackets is the proportion of that total used by sector j in s. Multiplication by trs

i
(the proportion of r’s domestic sales of i that went to s) generates an estimate of the
proportion of domestically supplied i from r used by j in s. The second bracketed
term on the right represents the proportion of the total amount of i from all domestic
sources used by sector j in r. Thus the sum on the right-hand side represents the
proportion of domestically supplied i from r used by j in the nation. Then the
regional sales to the domestic market are estimated as zrn

ij = srn
ij (xr

i − er
i ). Construct

Zsn, Frn, and Fsn similarly.
3. Construction of Zrr , Zrs, and Zsr . Note, initially, that

zrr
ij (max) = min(znr

ij , zrn
ij )

from which

zrs
ij (min) = zrn

ij − zrr
ij (max)

and

zsr
ij (min) = znr

ij − zrr
ij (max)

22 Boomsma and Oosterhaven use z·r
ij = [z·n

ij /(xn
j − vn

j )](xr
j − vr

j ) to account for Round’s fabrication effect (see
above), but that detail need not concern us at this point.

23 These have been called regional sales coefficients (RSC), in contrast to regional purchase coefficients (RPC)
that were discussed in Chapter 3 and earlier in this chapter.
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Survey “important” cells (again, however defined) to find cell-specific domestic
export coefficients trs

ij . Then zrs
ij = trs

ij zrn
ij , from which, by subtraction, zrr

ij = zrn
ij −

zrs
ij = (1 − trs

ij )zrn
ij . For all other cells in Zrr , zrr

ij (max) is decreased until it reaches a
level that is consistent with the overall domestic export coefficient trs

i , from which
zrs

ij and zsr
ij can then also be found.24

4. Finally, Zss = Znn − Zrr − Zrs − Zsr .

8.7.3 The Multiregional Input–Output Model for China, 2000 (CMRIO)
Early work on national input–output tables in China apparently began in the 1960s.
Starting in 1987, the National Bureau of Statistics (NBS) produced survey-based tables
every five years (1987, 1992, 1997, etc.), and regions (provinces) construct their own
regional input–output tables (except Tibet and Hainan), with the same sector classifi-
cations and for the same years as the national tables. (See Chen, Guo and Yang, 2005.
Also see Polenske and Chen, 1991, for a history of Chinese input–output work up to
that time.)

There also was some early work on connected-regional models, with three regions
and ten sectors. A much more ambitious multiregional model for China was produced
for the year 2000 (CMRIO), with eight regions (provinces) and four levels of aggrega-
tion – three, eight, 17, and 30 sectors. [The main references are Institute of Developing
Economies–Japan External Trade Organization (IDE-JETRO), 2003 and Okamoto and
Ihara, 2005.25 The IDE-JETRO publication contains results for three, eight, and 17
sectors; the 30-sector data are on an accompanying CD-ROM disc.] Details concern-
ing the construction of this ambitious data set are contained in Okamoto and Zhang
(2003), who note that regional economic disparity “… has become the main topic for
Central government of China” (p. 9), and this underscored the need for a multire-
gional input–output approach. Similar observations are made in Okamoto and Ihara
(p. 201)26:

Recent studies on the regional development of China have shown that regional disparity has
become a significant problem and this has led many policy makers and researchers to pay atten-
tion to the issue of how we might develop the underdeveloped regions of the nation. It should
be noted, however, that most of the approaches to date have focused on the situations in specific
regions, rather than considering interregional interdependency. Therefore, in order to add some-
thing substantial to these previous studies, we felt the need to consider the interregional feedback
effects and/or spatial interactions quantitatively. This was the main reason why we compiled a full-
scale interregional input-output model for China as a useful analytical tool for considering spatial
economy.

24 Details abound, and can be found in Boomsma and Oosterhaven, 1992.
25 IDE in Tokyo, Japan, was founded in 1960 as an organization under the jurisdiction of the then Ministry of

International Trade and Industry (MITI; now the Ministry of Economy, Trade and Industry) to act as a social
science institute for basic and comprehensive research activities in the areas of economics, politics, and social
issues in developing countries and regions. In July 1998 it merged with the Japan External Trade Organization
(JETRO) and became IDE-JETRO. It is now a major source of input–output data assembly and analysis.

26 The authors use “interregional” in a general sense. The implementation is a hybrid approach but essentially in
the “multiregional” style (estimation of interregional transactions zrs

i , not zrs
ij ).
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The compilation consisted of three broad phases of essentially two steps each:

1. Collection and estimation of exogenous data. Provincial input–output data were
collected (these are unpublished data that cannot be accessed by foreigners), with
attempts to check for consistency with national data. Estimates were required for
provincial value added, final demand, and foreign trade. The final result of this phase
is a collection of regional input coefficients for each region.

2. Estimation of interregional commodity flows. Survey data were collected from over
500 “important” enterprises. For other commodities, estimates were generated using
a Leontief–Strout gravity model approach (section 8.6.1), complemented by superior
data, where available. This phase generates sets of interregional trade coefficients.

3. Compilation of the multiregional model. Here the results of the two earlier phases
were joined together and the (inevitable) discrepancies reconciled.

The various chapters in Okamoto and Ihara (2005) explore a number of applications
of the CMRIO model with the goal of analyzing such important regional economic
phenomena as interregional multipliers, feedbacks and spillovers and spatial linkages.

8.8 International Input–Output Models

8.8.1 Introduction
The notion of extending the several-region input–output model framework to several
countries apparently first appeared in Wonnacott (1961), who created a connected
Canada–USA two-country model. In what follows we explore several more elaborate
applications of this idea – involving more than two countries – including examples
for Asia, the European Community, and other many-country models. The model struc-
tures follow exactly the logical lines of the interregional or multiregional cases. In
some instances, data collection is made easier because of the “national” nature of
the “regions.” For example, while “export” and “import” figures are often sketchy or
nonexistent for regions, they are often available, in various forms, for a nation’s external
trade.27

8.8.2 Asian International Input–Output Tables
The idea of modeling the input–output connections amongAsian nations became attrac-
tive to scholars in that area because of the emerging interdependence of many Asian
economies. Initial work was carried out by researchers at the Institute of Developing
Economies (IDE) in Japan. Their first attempt at an “international” input–output table
began in 1965; it covered six “mega-regions” (North America, Europe, Oceania, Latin
America, Asia, and Japan).28 In various publications, these and subsequent tables have

27 There can be many compatibility issues with regard to a country’s export and import data – for example,
distinguishing competitive vs. noncompetitive imports, valuation of imports at ex customs prices and exports
at producers’ prices.

28 This can be viewed as an early example of a “global” or “world” model. See section 8.8.5, below.
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also been labeled “multinational” and “multilateral.” These are more appropriate labels,
since the work builds on an MRIO (Chenery–Moses) framework.

A comprehensive history of the IDE work on international input–output tables can be
found in Institute of Developing Economies (2006a), especially Part 1: “Compilation
of the Asian international input–output table.” (This material is also covered in the
“Introduction” in Furukawa, 1986.) The historical overview encompasses three phases.

The first phase (1973–1977) launched comprehensive development of an inter-
national input–output structure for East and Southeast Asian countries – three
national tables (Indonesia, Singapore, and Thailand) and three “bilateral” tables
(Korea–Japan, USA–Japan, and Philippines–Japan) were produced.

The second phase (1978–1982) encompassed construction of a 1975 multilateral
table among ASEAN (Association of Southeast Asian Nations) countries, Japan,
Korea, and the USA. This included estimation of national tables for 1975 where
necessary (and updates for Malaysia, Philippines, Singapore, and the USA and
construction of bilateral tables for Indonesia–Japan, Thailand–Japan, and Korea–
Japan). Finally, these were linked together as a single international (multilateral)
table for 1975. This work was completed in 1983.

In the third phase (1988–present) an international table was created for 1985, now
including China and Taiwan. Since then IDE has created multilateral tables every
five years – thus far for 1990, 1995, and 2000 – with 10 countries and 7-, 24-,
and 76-sector levels of aggregation.29

As might be imagined, the data compilation problems are enormous. For example,
the 10 different national tables exhibit a number of differences. These tables must all
be made “consistent” in order to be included (as on-diagonal blocks) in the overall
multinational table.30 In estimating the international transactions, export vectors and
import matrices are created in a very detailed set of procedures (and then converted
to producers’ prices). Import statistics are relied on more heavily than export, because
import data are more carefully collected for customs duties in each country. Details can
be found, for example, in IDE-JETRO (2006a), Part 1, III “Linking of the tables.”

This work provides an extremely rich data set for empirical studies that make use
of analytical methods that depend on input–output data sets. Among these are link-
age analysis (both sectoral and spatial) and other techniques designed to assess relative
importance of sectors (or regions). These topics are covered in some detail in Chapter 12.
Representative examples include Sano and Osada (1998) [sector linkages]; Meng et al.
(2006) [linkages for 1985, 1990, 1995, and 2000 for sectors within each country and
across countries] and Kuwamori and Meng (2006) [sectoral linkages over time within
individual countries, evolution over time of total intermediate inputs (sectoral input

29 The countries are: China, Indonesia, Japan, Korea, Malaysia, Philippines, Singapore, Taiwan, Thailand, and
the USA. The data appear in Institute of Developing Economies (2006b).

30 From IDE-JETRO (2006a, p. 15): “… one of the most complicated, nerve-racking tasks of compilation is the
adjustment of national tables to conform to a common format.”
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structures) and total final demands (sectoral demand structures), linkages between coun-
tries, the impact of Beijing Olympic Games-related investments on regional economic
growth in China]. Using the 1990 and 2000 Asian input–output data sets, Kuwamori
(2007) examines the relative importance of each of the 10 countries on each of the oth-
ers, as well as specific industries in those countries, via the “hypothetical extraction”
process (also Chapter 12). The emerging influence of the Chinese economy is made
clear through comparison of some of the results from the 1990 and 2000 data.

8.8.3 “Hybrid” Many-Region Models for the EC
The formation of the European Community (EC) in 1971 [preceded by the European
Economic Community (EEC) from 1958] generated an interest in and need for con-
sistent economic data on each member country’s economic activities, not only internal
transactions but also intercountry connections. Van der Linden and Oosterhaven (1995)
address the need for a consistent set of intra- and intercountry input–output tables for
the EC in order to address a variety of important policy issues, such as interregional
and intercountry income spillovers.

Presently Eurostat (the statistical office of the EC) produces consolidated tables for
the EC as a whole, including what amounts to Zrr and xr for each of the member states.31

Additional information, including Z·r (where the “.” indicates shipments from all other
EC countries) and other import data, are also available. From these, the authors create a
kind of many-region (or many-nation) model for the EC that lies between the IRIO and
MRIO styles.32 The presence of Zrr and xr permits calculation of intracountry input
coefficient matrices of the IRIO type, namely Arr = Zrr(x̂r)−1. From data on imports,
the authors estimate csr

i = msr
i /m·r

i ; these are used across rows of Z·r to approximate
Zsr(s �= r) in standard MRIO fashion, namely, Zsr = ĉsrZ·r . There are problems
associated with accounting for services and with the kinds of prices in which the data are
available (e.g., producers’ vs. CIF or ex-customs prices). Also, there are discrepancies
with import and export data that are created by the use of the MRIO approach; for
example, initial estimates of country r’s total exports of commodity i to other EC
countries generally differ from the figure found by summing imports of i from r to each
of the countries. The authors use an RAS balancing approach to deal with these issues.

An illustration of the kinds of questions that can be addressed with these intercoun-
try EC models is provided by Hoen (2002), who uses these EC tables as the starting
point for his input–output analysis of the economic effects of European integration.
For example, he examines various multipliers and spillovers, and he presents a decom-
position of value-added growth, among others, all based on the input–output data. For
these purposes, however, he requires a set of data in constant prices, not current (as are
generated in the van der Linden and Oosterhaven work). To achieve this Hoen employs
an RAS approach and compares his results with those from the usual “double deflation”

31 See Eurostat, 2002, for a thorough discussion. Some years do not include tables for all member states. See van
der Linden and Oosterhaven, 1995, or Hoen, 2002, for details.

32 This work builds on Schilderinck, 1984, where the first attempt at a consistent set of connected-country tables
for the EC was presented.



8.8 International Input–Output Models 381

Table 8.3 Structure of the TIIO Model

procedure. In fact, he suggests that double deflation can be viewed as a special case of
a more general RAS approach.

8.8.4 China–Japan “Transnational Interregional” Input–Output (TIIO) Model, 2000
This is another ambitious IDE-JETRO undertaking. It is a ten-sector model that com-
bines a “multinational” character – China, Japan, ASEAN5 (Indonesia, Malaysia, the
Philippines, Singapore, and Thailand), East Asia (Korea and Taiwan) and the USA –
with regional disaggregations of China into seven regions and Japan into eight regions.
Thus there are 18 geographic areas; some are true sub-national regions (the 15 in
China and Japan), one is a nation (USA) and two are multinational areas (ASEAN5,
East Asia). (Primary references are Inomata and Kuwamori, 2007, and Development
Studies Center, IDE-JETRO, 2007.) This is known as the “Transnational Interregional
Input–Output (TIIO)” model.

The tables are compiled from the 2000Asian data (section 8.8.3) and the interregional
tables for China (section 8.7.3) and Japan.As might be expected, there were many issues
regarding data compatibility, and many assumptions were required to translate national
trade data to the regional level (in the cases of China and Japan). The overall structure of
this ambitious project is indicated in Table 8.3. Each cell contains a 10×10 transactions
(or coefficients) matrix. We explore details of estimations in the lighter shaded area –
namely Chinese exports to Japan at the regional level in both countries. Estimation of
elements in the darker shaded area follows the same approach.

Chinese Exports to Japan for Intermediate Demand We use Japan (J ) as an
illustration of the external country – the lighter shaded portion of Table 8.3. Procedures
for ASEAN5, East Asia, and the USA do not involve regional breakdowns for the
receiving (importing) area. The object here is to include region and sector specificity for
the Chinese origins and Japanese destinations of Chinese exports to Japan, as indicated
in Table 8.4, where Zrs = [zrs

ij ] for i, j = 1, . . . , 10.
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Table 8.4 China-to-Japan Intermediate Transactions in TIIO

Japanese Region

J1 · · · Js · · · J8

Chinese C1 Z11 · · · Z1s · · · Z18

Region ...
...

...
...

Cr Zr1 · · · Zrs · · · Zr8

...
...

...
...

C7 Z71 · · · Z7s · · · Z78

The following are known from trade data (
�
m indicates Japanese import data,

�
e

indicates Chinese export data):

zCJ
ij = total Chinese exports of good i to Japanese sector j (= total Japanese imports by sector j of

good i from China),
�
m

Cs
i· = Japanese region s imports of i from China,

�
m

CJ
i· =

8∑
s=1

�
m

Cs
i· = total Japanese imports of i from China,

[(�
m

Cs
i· /

�
m

CJ
i· ) × 100] = percentage of Japanese imports of i from China that goes to region s in Japan

(comparable to the crs
i· data in MRIO models),

�
e

rJ
i· = Chinese region r exports of i to Japan,

�
e

CJ
i· =

7∑
r=1

�
e

rJ
i· = total Chinese exports of i to Japan,

[(�
e

rJ
i· /

�
e

CJ
i· )× 100] = percentage of Chinese exports of i to Japan that comes from region r in China.

Assumptions:

1. Each sector j in region s in Japan gets [(�
m

Cs
i· /

�
m

CJ
i· )×100] percent of its i from China.

(This is the standard MRIO model assumption.) That is,

z̃Cs
ij = (

�
m

Cs
i· /

�
m

CJ
i· )zCJ

ij

Suppose [(�
m

Cs
i· /

�
m

CJ
i· ) × 100] = 12 (meaning that 12 percent of the input of i for

each sector in region s in Japan comes from China); then if zCJ
ij = 2000, z̃Cs

ij = 240.

2. Each region r in China contributes [(�
e

rJ
i· /

�
e

CJ
i· )× 100] percent of China’s exports of

i to Japan. Then

z̃rs
ij = (

�
e

rJ
i· /

�
e

CJ
i· )z̃Cs

ij = (
�
e

rJ
i· /

�
e

CJ
i· )(

�
m

Cs
i· /

�
m

CJ
i· )zCJ

ij

Suppose [(�
e

rJ
i· /

�
e

CJ
i· ) × 100] = 10; this means that 10 percent of Chinese exports of

i to Japan come from region r in China. Then z̃rs
ij = 24.
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The authors recognize that this is admittedly a strong assumption (Development
Studies Center, 2007, p. 67):

In general, it seems unlikely to assume that the proportion of inputs of [sector 1] in region 1 of China
to the inputs as a whole in the industry related to daily lives in Hokkaido [Japan region 1] is identical
to the proportion of the inputs in the industry related to daily lives in the Kanto Region [Japan Region
8]. Even so, since there is no information available which proves that this is “not true”, estimation has
been made under the assumption [that the data on each Chinese region’s input supply proportions]
are applicable to all [eight Japanese regions].

This produces the estimate of one element, z̃rs
ij , of the 100 in Zrs. Similar calculations

are needed for each additional element in Zrs and for each of the remaining 55 matrices
(each 10 × 10) in Table 8.4.

Applications This data set has prompted a large number of studies of interna-
tional linkages, including feedbacks and spillovers (Chapter 3), for individual countries
as a whole (all industries) as well as for individual sectors. Some of these results
appeared in Inomata and Sato (2007) and a large collection of such studies can be
found in Inomata and Kuwamori (2007).33

8.8.5 Leontief’s World Model
Another example illustrating expansion from a “multiregional” to “multinational”
input–output perspective is to be found in Leontief’s world model34. This huge project
from the early 1970s was sponsored by the United Nations as part of its search for “…
possible alternative policies to promote development while at the same time preserving
and improving the environment” (United Nations, 1973, p. 2).

The final version consisted of 15 regions (four advanced industrial countries, four
centrally planned economies and two groups of developing countries (three resource-
rich and four resource-poor), each with 48 sectors, including eight exhaustible resources
as well as eight types of major pollutants and five types of abatement activities (since the
motivation was one of environmental impacts). Data were assembled for the base year
of 1970, and projections were made to 1980, 1990, and 2000. National input–output
tables formed the basis of the intraregional data sets; various accounting practices and
sectoring schemes created many consistency issues.

For the interregional data, Leontief created “world trade pools” to model trading
relationships for each traded good. For each good and each region there are two sets of
parameters: import coefficients and export shares. For good i and region r, an element
of the latter specifies the proportion of the total amount of world exports of good i that
is provided by region r to the world pool of good i, er

i = xr·
i /

∑p
q=1 xq·

i . The import

33 A paper by Oosterhaven and Stelder (2007) contains an extensive and informative comparison of results from
four “hybrid” models with the IDE-JETRO Asian 2000 table. The four alternative approaches reflect the
differing kinds of national import and export data that may be available in real-world situations – such as
with or without separate import matrices (in ex customs prices), with or without export matrices (in producers’
prices), and using RAS procedures at various stages in the process.

34 This is outlined in Leontief, 1974 (his Nobel Memorial Lecture). The evolution of the model is presented in
Fontana, 2004; see also Duchin, 2004, for more background.
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shares indicate the volume of competitive imports as a fraction of domestic production
of the same good, mr

i = x·r
i /xr

i . These parameters are estimated, based on observed
data (the x’s) and expert opinion.

The world pool idea avoided the need for building an input–output international trade model, with
country-to-country flows for each commodity . . . [W]ith Leontief’s idea of world pools . . . nothing
is required to be known about the bilateral relations between regions. (Fontana, 2004, p. 34.)

In effect, this approach carries the simplification of the IRIO model one step beyond
the MRIO formulation: zrs

ij (IRIO) → zrs
i· (MRIO) → zr·

i· and z·s
i· (World Model).

Results from this project were published in Leontief, Carter and Petri (1977). Other
applications include Leontief, Mariscal and Sohn, 1983b, Leontief et al., 1983a and
Leontief and Duchin, 1983. However, as Duchin (2004) noted, the model generated
little in the way of long-term interest.

Among economists, even those in the IO community have paid relatively little attention to the World
Model . . . [T]he descendant of Leontief’s World Model was last used for research completed in the
early 1990s (Duchin and Lange, 1994), and the team that did the analysis has dispersed (p. 59).

In Duchin and Lange (1994) the world model framework was employed to examine
alternative environmental futures for the planet. It consisted of 16 world regions and
about 50 sectors. A sense of the broad-brush approach necessary in such an ambitious
world model is given in Appendix 8.1, where 189 countries are grouped into the 16
geographical classifications used in the model.35

Duchin (2005) presents a generalization of the World Model in a linear programming
format that is designed to be particularly applicable for analyzing scenarios dealing
with environmental impact and sustainable development. As Fontana (2004, p. 37)
notes “The Leontief world model was a stepping stone for explorers of the long-term
future of the world economy.”

8.9 The Reconciliation Issue

In section 7.2 we noted that problems can arise in constructing survey-based interindus-
try transactions tables when the row total for a sector differs from the column total for
that same sector. This happens also in hybrid approaches to both updating and region-
alization. Since one common approach to reconciliation uses an RAS approach, this
discussion was postponed until we had introduced the RAS technique in its more usual
updating or regionalization role.

Some input–output tables (especially at the regional level) have been constructed
exclusively on the basis of information on purchases by sectors in the economy. A
sample of establishments in each sector are asked to identify the magnitudes of their
inputs, by sector and by region – or at least whether the input came from inside the
region in question or was imported from outside that region. This is sometimes known
as the “purchases only” or “columns only” approach, since the transactions table (and

35 The complete list of countries and their geographic assignments to world regions can be found in Appendix C,
“World Model Geographic Classification,” in Duchin and Lange (1994).
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hence the direct-input coefficients matrix) is compiled column by column. It depends
on information from establishments regarding the distribution of their costs. (This
was used in constructing the 496-sector Philadelphia table for 1959; see Isard and
Langford, 1971.) Similarly, a “sales only” or “rows only” procedure depends entirely
upon information on the magnitudes of sales from a particular sector to all other regional
sectors, and to final-demand purchasers. This relies on information from establishments
regarding the distribution of their products. [For a study that used this approach, see
Hansen and Tiebout, 1963, and recall that DEBRIOT (section 8.7.2) emphasizes sales
over purchases information.]

Usually, there will be some (but not complete) information on purchases and some
(but also not complete) information on sales – for example, from a questionnaire in
which firms are asked for data on both sales and purchases. Thus, for many cells
there may be two estimates of the zr

ij transaction. If one has independent estimates of
regional total gross outputs, xr

j , from published sources, this of course means that there
will be two estimates of the regional direct-input coefficient. The issue then is one of
reconciling the two estimates. (Early examples of empirical studies using both row and
column information include Bourque et al., 1967; Beyers et al., 1970; Bourque and
Conway, 1977; Miernyk et al., 1967 and Miernyk et al., 1970.)

Often, the reconciliation is made entirely on the basis of the judgment of the
researchers, reflecting their knowledge of the regional economy and comparisons with
national coefficients; Bourque et al. (1967) provides one such example. Building on
the general discussion in Miernyk et al. (1970), in which an attempt was made to esti-
mate the relative accuracy (reliability) of various pieces of information, Jensen and
McGaurr (1976) propose a two-stage procedure. Let the two transactions estimates for
the i, jth cell be rij and cij, from the “rows-only” and “columns-only” information. On
the basis of knowledge of sampling procedures and other features of the data and of
probable sources of error, a pair of what Jensen and McGaurr termed reliability weights
are chosen for the two estimates. Let kij denote this weight for the rows-only estimate
(kij ≥ 0), then (1 − kij) will be the weight for the columns-only estimate. Then, a first
approximation to the reconciled transactions estimate for the i, jth cell is found as the
simple weighted sum z1

ij = kijrij + (1 − kij)cij. The superscript 1 represents the fact
that this is a first estimate. For example, if one believed that a rows-only estimate rij

was “almost” completely accurate, its kij might be set at 0.9; if, in the judgment of the
researchers, the row and column estimates for a particular cell were equally likely to
be correct, kij would be 0.5 for that cell, and so on.

In addition to the total output vector, xr , suppose that independent estimates have been
made of the magnitudes of final-demand purchases from each sector, so the final-demand
column vector is known, and also assume that there are estimates of all value-added
payments by each sector (including imports), so the value-added row vector, var , is also
known.36 Then the total value of interindustry transactions is given by T r = i′(xr −
f r) = ∑

i (x
r
i − f r

i ), or, equivalently, by T r = (xr − var)i = ∑
j (x

r
j − var

j ). It is then

36 Here we resort to using var
j for value added in sector j in region r because vr

j will be needed for total intermediate
inputs in the RAS balancing technique that follows.
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necessary to check the total of the estimated transactions, Z1 = ∑
i
∑

j z1
ij, against this

(independently estimated) total figure, T r . If, as is very likely, these are not equal, each
z1

ij is scaled upward or downward through multiplication by T r/Z1. This produces a

second set of estimates of reconciled transactions, z2
ij = z1

ij[T r/Z1]. These estimates are

consistent in the aggregate, in that
∑

i
∑

j z2
ij = T r . This concludes stage one.

While the transactions z2
ij have now been adjusted so that they sum to the proper

aggregate flow, they must also be consistent with the individual row and column sums.
This is where RAS comes in. Since xr

i and f r
i have been independently estimated,

then total intermediate output for each sector, ur
i , is found as ur

i = xr
i − f r

i . Similarly,
given estimates of var

j , then total intermediate input for each sector, vr
j , is found as

vr
j = xr

j − var
j . The issue then is whether

∑
j z2

ij = ur
i , for each sector (i = 1, . . . , n)

and also whether
∑

i z2
ij = vr

j , for each sector (j = 1, . . . , n). In general, not all of these

constraining equations will be met, and so the estimates in z2
ij must be further adjusted

to conform to the marginal information for each row and each column. This is exactly
the kind of problem for which the RAS technique is suited, and it is the procedure that
is suggested by Jensen and McGaurr. This is stage two of the adjustment. The result
will be a third and final set of transactions estimates z3

ij. Given the estimates of xr
i the

direct input coefficients can then be estimated.37

This approach has been discussed because it represents one formalized way of
attempting to incorporate subjective judgments (via the reliability weights) and also a
certain amount of objective structure (via the RAS adjustments) in the reconciliation
procedure. Many researchers have incorporated alternative approaches to reconciling
conflicting estimates. An example can be found in step 3 of the DEBRIOT proce-
dure (section 8.7.2), above, and there is considerably more detail in Boomsma and
Oosterhaven (1992).

An entirely different approach was suggested by Gerking, in the context of a stochas-
tic view of input–output models (Gerking, 1976a, b). He proposes that coefficients can
be estimated and that the reconciliation problem can be addressed using regression
techniques (Gerking, 1976c, 1979b). This generated a good deal of critical comment
and response in the literature. (For example, Brown and Giarratani, 1979; Miernyk,
1976, 1979; Gerking, 1979a, c.) The reconciliation issue is far from settled; the range
of possibilities from wholly subjective to entirely mathematical is very wide indeed.

8.10 Summary

In this chapter we have looked at some options that are available for estimating a table
of regional input–output coefficients when a full matrix of regional transactions is not

37 If independent estimates of f r
j and var

j are not available, then one can employ the same procedure as outlined
above on an expanded transactions table; this would include estimates from firms on not only their interindustry
transactions but also on sales to final-demand sectors and purchases from value-added sectors. In this case the
first reconciliation would scale all transactions so that their total was

∑
i xr

i (= i′x), and the second reconciliation
would compare row and column sums against each xr

i and xr
j . This is, in fact, the procedure used by Jensen

and McGaurr (1976, 1977) in their discussion and in their empirical work.
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available. In the regional case, location-quotient like procedures and regional purchase
coefficient information take advantage of comparative economic data on the region
vs. the nation of which it is a part. In addition, the RAS procedure is as applicable to
the regionalization problem as it was to the updating problem of the last chapter. And,
again, it is usual to find a combination of partial-survey information, expert opinion and
RAS (or RAS-like) techniques blended into a hybrid approach that generates superior
results. We also explored some real-world applications of these techniques in both sub-
and super-national studies.

Appendix 8.1 Geographical Classifications in the World Input–Output Model

The 16 world regions covering 189 countries in the World Input–Output Model are
(Duchin and Lange, 1994):

High-income North America (5) Japan
Newly industrializing Latin America (5) Newly industrializing Asia (7)
Low-income Latin America (40) Low-income Asia (16)
High-income Western Europe (23) Major oil producers (15)
Medium-income Western Europe (8) Northern Africa and other Middle East (16)
Eastern Europe (7) Sub-Saharan Africa (34)
Former Soviet Union Southern Africa (5)
Centrally planned Asia (3) Oceania (3)

Problems

8.1 The economy of the Land of Lilliput is described by the following input–output table:

Interindustry
Transactions

Total
A B Outputs

A 1 6 20
B 4 2 15

Land of Brobdingnag is described by another input–output table:

Interindustry
Transactions

Total
A B Outputs

A 7 4 35
B 1 5 15
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The economy of the distant land of the Houyhnhnms is described by yet another
input–output table:

Interindustry
Transactions

Total
A B Outputs

A 20 30.67 100
B 2.86 38.33 15

a. Compute the vectors of value-added, intermediate inputs, final-demand, and
intermediate outputs for each economy.

b. A Lilliputian economist is interested in examining the structure of the Brobdingna-
gian economy. Likewise, a Brobdingnagian economist is interested in examining
the structure of the Lilliputian economy. However, each economist only has avail-
able to him the value-added, final-demand, and total-output vectors for the foreign
economy. Each economist knows the RAS modification procedure and uses it
with the technical coefficients matrix of his own economy serving as the base A
matrix. Which of the two economists calculates a better estimate of the foreign
economy’s technical coefficients matrix in terms of mean absolute deviation (all
elements of A)?

c. An economist in the distant land of the Houyhnhnms learned of the two other
economies from a world traveler. He becomes interested in the economic structures
of these foreign lands but is only able to obtain the final-demand, value-added, and
total-output vectors for each economy from the world traveler. The economist
uses RAS with his own country’s A matrix as a base to estimate the interindustry
structure of the two distant lands. Which economy does he estimate more accurately
in terms of a mean absolute deviation? Do you notice anything peculiar about
the comparative structures of the Lilliputian, Brobdingnagian, and Houyhnhnm
economies?

d. The Land of Lilliput plans to build a new power plant which will require the
following value of output (in millions of dollars) from each of the economy’s
industries (directly, so it can be thought of as a final demand presented to the
Lilliputian economy) of f = [100 150]′. How accurate, measured as an aver-
age mean absolute deviation, is the Houyhnhnms’ estimate of the total industrial
activity (output) in the Lilliputian economy required to construct this power
plant?

8.2 Suppose the economies given in problem 8.1 are really three-sector economies where
the economy of the Land of Lilliput is described by the following input–output table:
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Interindustry
Transactions

A B C Total Outputs

A 1 6 6 20
B 4 2 1 15
C 4 1 1 12

The economy of the neighboring land of Brobdingnag is described by another input–
output table:

Interindustry
Transactions

A B C Total Outputs

A 7 4 8 35
B 1 5 1 15
C 6 2 7 30

The economy of the distant land of Houyhnhnms is described by yet another input–
output table:

Interindustry
Transactions

A B C Total Outputs

A 5.5 33 33 1,101
B 22 11 5.5 82.5
C 22 5.5 5.5 66

Solve parts a, b, and c of problem 8.1 for these new economies.
8.3 Consider the following input–output table for Region 1:

Total
A B Outputs

A 1 2 10
B 3 4 10
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We are interested in determining the impact of a particular final demand in another
region (Region 2). Suppose we have the following data concerning Region 2.

Value Final Total
Added Demand Outputs

A 10 11 15
B 13 12 20

Suppose that the cost of computing an RAS estimate of Region 2’s input–output table
using Region 1’s A matrix as a base table is given by nc1, where n is the number of
RAS iterations. One iteration is defined by one row and one column adjustment, that
is, A′ = RAS (a row adjustment alone as the last iteration would also be counted as an
iteration). We ultimately wish to compute the impact of a new final demand in Region
2. This impact (the total outputs required to support the new final demand) can be
computed exactly or by using the round-by-round approximation of the inverse. We
know that: (1) The cost of computing the inverse exactly on a computer is c1 and the
cost of using this inverse in impact analysis is c2 (let us assume that c2, = 10c1, that is,
the cost of computing the inverse is ten times the cost of using it in impact analysis).
(2) The cost of a round-by-round approximation of impact analysis is mc1, where
m is the order of the round-by-round approximation, that is, f + Af + A2f + · · · +
Amf .

a. Assuming that a fourth-order round-by-round approximation is sufficiently accurate
(m = 4), which method of impact analysis should we use to minimize cost – (1) or
(2)?

b. What is the total cost of performing impact analysis, including the cost of the
RAS approximation (tolerance of 0.01) and of the impact analysis scheme you
chose in a?

c. If the budget for the entire impact-analysis calculation is 7c1, what level of tolerance
can you afford: 0.01, 0.001, 0.0001, 0.00001, or 0.000001?

8.4 Examine the behavior of the adjustment term that converts location-quotient approach
FLQ to FLQA, λ = {log2[1 + (xr/xn)]}δ for values of xr/xn = .01, .1, .25, .5, .75, and
1 cross tabulated with values of δ = 0, .1, .3, .5, and 1.

8.5 The matrix of technical coefficients for a national economy, AN , and the vector of
total outputs, xN , as well as the corresponding values for a target region, AR and xR,
are

AN =
⎡⎣ .1830 .0668 .0087

.1377 .3070 .0707

.1603 .2409 .2999

⎤⎦ xN =
⎡⎣ 518, 288.6

4, 953, 700.6
14, 260, 843.0

⎤⎦

AR =
⎡⎣ .1092 .0324 .0036

.0899 .0849 .0412

.1603 .1170 .2349

⎤⎦ xR =
⎡⎣ 8, 262.7

95, 450.8
170, 690.3

⎤⎦
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Compute the matrix of simple location quotients (SLQ) and the estimate of the matrix
of regional technical coefficients using the SLQ.

8.6 For the national and regional data specified in problem 8.5, compute the matrix of
Cross-Industry Quotients (CLQ) and the estimate of the matrix of regional technical
coefficients using the CLQ.

8.7 Consider once again the national and regional data specified in problem 8.5. Estimate
the matrix of regional technical coefficients using the RAS technique.

8.8 Compare the estimated regional matrices of technical coefficients computed in prob-
lems 8.5, 8.6, and 8.7. In terms of mean absolute deviation from the actual regional
technical coefficients, which technique provides the most accurate estimate?

8.9 Using the three-sector, three-region Chinese MRIO data for 2000 from Table 3.7,
create estimates of the intraregional input coefficients and their associated Leontief
inverses for regions 2 (South China) and 3 (Rest of China), using the same reduction
techniques and measures of difference that appear in Table 8.1 for region 1 (North
China).

8.10 The following are the 1997 matrix of technical coefficients and vector of total outputs
for the State of Washington as well as the 2003 matrix of technical coefficients for the
United States, where the sectors are defined as (1) agriculture, (2) mining, (3) con-
struction, (4) manufacturing, (5) trade, transportation and utilities, (6) services, and
(7) other:

AW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.1154 .0012 .0082 .0353 .0019 .0033 .0016

.0008 .0160 .0057 .0014 .0022 .0002 .0001

.0072 .0084 .0066 .0043 .0074 .0196 .0133

.0868 .0287 .0958 .0766 .0289 .0244 .0205

.0625 .0278 .0540 .0525 .0616 .0317 .0480

.0964 .1207 .0704 .0596 .1637 .1991 .2224

.0020 .0031 .0056 .0019 .0045 .0051 .0066

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
xW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7,681.0
581.7

17,967.1
77,483.7
56,967.2

109,557.6
4,165.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

AUS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.2225 .0000 .0012 .0375 .0001 .0020 .0010

.0021 .1360 .0072 .0453 .0311 .0003 .0053

.0034 .0002 .0012 .0021 .0035 .0071 .0214

.1724 .0945 .2488 .3204 .0468 .0572 .1004

.0853 .0527 .0912 .0950 .0643 .0314 .0526

.0902 .1676 .1339 .1261 .1655 .2725 .1882

.0101 .0140 .0103 .0214 .0206 .0200 .0247

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Using the RAS technique, estimate the Washington State table using the US matrix of
technical coefficients as a starting point. Compute the mean absolute deviation of the
estimated state technical coefficients matrix from the actual state matrix.

8.11 Suppose in problem 8.10 that we do not know all of the technical coefficients for
the Washington State economy, AW , but we do know several, namely aW

11, aW
62, and

aW
65. Using RAS as an estimating procedure, how do we incorporate knowing these



392 Nonsurvey and Partial-Survey Methods: Extensions

coefficients only into the process of estimating the balance of the Washington State
technical coefficients using AUS as the initial estimate using the total outputs and
intermediate inputs and outputs that you found in problem 8.10? Compute a revised
estimate of the Washington State economy. How does it compare with the original
estimate you found in problem 8.10?

8.12 Suppose in problem 8.11 you are able to determine from exogenous sources some
alternative technical coefficients, namely aW

67, aW
42, and aW

54. Compute a revised esti-
mate of the Washington State matrix of technical coefficients using these known
coefficients. Compute another estimate using both these and the previously identified
known coefficients (from problem 8.11). How does this yet again revised estimate of
the Washington State matrix of technical coefficients compare with the estimates you
found in problems 8.10 and 8.11?
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9 Energy Input–Output Analysis

9.1 Introduction

Leontief’s original input–output framework (Leontief, 1936) conceived of industry
production functions, which he frequently referred to as production “recipes,” as mea-
sured in physical units, such as specifying the technical coefficients in tons of coal or
bushels of wheat, as inputs, required per dollar’s worth of an industry’s output or per
ton of steel output. However, the data collection requirements and a number of other
constraints rendered implementation of the framework in physical units too unwieldy,
certainly at the time and even today to a lesser extent. Hence, the basic methodology
for input–output analysis evolved, in both theory and application, through measuring
all quantities in value terms with implicit fixed prices, as detailed in earlier chapters.
Even late in his life, however, Professor Leontief continued to explore ways in which
the framework could be implemented more widely in physical units rather than value
terms (Leontief, 1989). A number of researchers, such as Duchin (1992)1, carried on
with that work and continued to develop it.

The contributions of many researchers have extended the input–output framework
incrementally in the direction of employing physical units and, in the process, have
helped lay the groundwork for new research areas such as industrial ecology and eco-
logical economics, which are topics addressed in more detail in Chapter 10. In addition,
there have been substantial developments in related areas where public policy concerns
have encouraged such development and data have been collected to help implement the
framework. Among these topics, as we will see in this chapter, input–output analysis
provides a useful framework for tracing energy use and other related characteristics such
as environmental pollution or flows of physical materials associated with interindustry
activity.

The generalization of input–output analysis techniques to a much broader conceptual
level, such as accounting for social indicators in so-called social accounting matrices
and other related constructs that capture many different socioeconomic characteristics
of an economy associated with interindustry activity (Chapter 11), began with simpler

1 Other references to this work include Duchin and Lange (1987, 1994), Duchin and Hertwich (2003), and Weisz
and Duchin (2006).
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attempts to link input–output models and other national income accounting techniques
with many measurable quantities associated with interindustry activity, such as energy
use, environmental pollution, and employment. These generalized models are intro-
duced in their most rudimentary form in Chapter 10 as a logical extension to the basic
formulation that evolved to handle energy and environmental factors, but the more cur-
rent, elaborate and general extensions and connections to national economic accounting
systems are explored in Chapter 11.

9.1.1 Early Approaches to Energy Input–Output Analysis
In the late 1960s and 1970s, the United States economy was growing increasingly depen-
dent upon foreign sources of oil and was forced to cope with supply shortages following
embargoes imposed in the early 1970s by principally Arab countries organized into a
cartel known as the Organization of Petroleum Exporting Countries (OPEC). At the
same time there was also growing public concern over the environmental impacts asso-
ciated with increasing energy use, especially air pollution associated with the burning
of coal. Since energy was a critical factor of production for many industries in many
regions of the country, researchers and government policymakers began to focus on the
role of energy in the economy. In particular, input–output models focused on energy
use were developed extensively during the oil crises in the early 1970s and there has
been a resurgence in their use in recent years to analyze the relationship between energy
use and climate change. Cumberland (1966), Strout (1967), Ayres and Kneese (1969),
Bullard and Herendeen (1975b), Griffin (1976), Blair (1979 and 1980) and many others
chronicle the early developments. Since then, considerable attention in the literature
has been focused on extending the Leontief input–output framework to more explicitly
account for energy and related environmental activities. Many of these applications are
noted throughout this chapter and in Chapter 10.

The simplest and most straightforward of the energy extensions to the Leontief
framework is to explicitly account for energy use by simply adding a set of linear
energy coefficients that define energy use per dollar’s worth of output of industrial
sectors. This approach, developed and widely used in the early 1970s, has a number
of methodological and practical limitations but continues to be used frequently today
largely because it is often difficult to obtain additional data necessary to address the
key weaknesses of ensuring internal consistency in accounting for energy supply and
use throughout the economy. The strengths and weaknesses of these early approaches
to energy input–output analysis are discussed in Appendix 9.1. In much of this chapter
we develop a so-called “hybrid units” approach, initially put forward by Bullard and
Herendeen (1975b), that addresses the principal weaknesses in the simplest approaches
to energy input–output analysis.

9.1.2 Contemporary Energy Input–Output Analysis
The hybrid units formulation of energy input–output analysis defines energy coefficients
that inherently conform to a set of “energy conservation conditions.” These conditions
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turn out to be equivalent analytically to ensuring the internal consistency of accounting
for physical energy flows in the economy. The alternative and, as noted earlier due to
available data limitations, more commonly applied formulations outlined in Appendix
9.1 conform to these conditions only when interindustry prices of energy are uniform
across all consuming sectors.

The condition of uniform interindustry energy prices may be present in some appli-
cations such as, for example, in some regional or developing economies, but such
conditions are not common in many other situations, especially in large modern
economies. Bullard and Herendeen’s early work was developed further by others in
the 1980s and 1990s, especially with respect to characterizing the role of structural
change in the economy and its implications for energy and environmental emissions,
e.g., Blair (1980), Wang and Chuang (1987), Blair and Wyckoff (1989), OTA (1990),
Rose and Chen (1991), Han and Lakshmanan (1994), Casler (2001) and Dietzenbacher
and Sage (2006) are also described later in this chapter.

9.2 Overview Concepts of Energy Input–Output Analysis

First we begin with how the basic input–output framework has been extended to account
for interindustry energy flows, applications of which, as noted earlier, were particularly
extensive in the late 1970s and early 1980s in the wake of the Arab oil embargoes
and their effects on the US economy. In Chapter 10 we add other extensions such
as accounting for pollution elimination and generation or recycling of materials. The
mathematical structure of all these extensions almost mirrors the classical Leontief
model that we have discussed in earlier chapters. However, when we seek to ensure
consistency between, for example, measured levels of energy consumption (in physical
units) and economic activity (usually measured in monetary units), we must add to the
basic analytical framework.

In general energy input–output typically determines the total amount of energy
required to deliver a product to final demand, both directly as the energy consumed by
an industry’s production process and indirectly as the energy embodied in that indus-
try’s inputs. In engineering parlance, calculating this total energy requirement is the
result of what is often called a process analysis: a target product is identified either
as a good or service, then a list can be compiled of the goods and services directly
required to deliver the product. These inputs to the target production process include
fuels (direct energy) and other nonenergy goods and services. The nonenergy inputs
are then analyzed to determine the inputs to their production processes, which again
include some fuels and nonenergy goods and services.

This process analysis traces inputs back to primary resources; the first round of energy
inputs is the direct energy requirement; subsequent rounds of energy inputs comprise
the indirect energy requirement. The sum of direct and all indirect energy requirements
comprise the total energy requirement. For example, the energy used in assembling
automobiles would be a direct energy requirement, while the energy embodied in (used
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in providing) the materials employed at the assembly plant (tires, engines, etc.), would
comprise an indirect energy requirement.

Special complications arise when substantial portions of the inputs to a production
process are imported and such situations have been important in historical applications
of these methods. In addition, some sectors produce energy as a by-product or co-
product – the same concept of secondary production used in earlier chapters. By-product
examples include electricity production as a by-product of oil refinery operations or
methane production as a by-product of landfill operations. An example of a co-product
would be co-generation of electricity and steam, where the electricity is supplied to the
utility grid or perhaps used locally in a manufacturing enterprise and the steam is used
as an industrial process heat source. Accommodating these situations will also require
adding to the basic framework. Figure 9.1 is a schematic of energy flows and use in
the US economy in 2002. The input–output framework is well suited to analyzing in a
comprehensive way these energy flows as they relate to interindustry activity.

In the energy input–output framework, computing the total energy requirement of
industries, sometimes called the energy intensity, is analogous to computing the total
dollar requirement or Leontief inverse of the traditional input–output model. In energy
input–output analysis, however, we are most often concerned with energy measured
in physical units – for example, British thermal units (BTUs) or quadrillions of BTUs

Figure 9.1 US Energy Use for 2006 (Quadrillions of BTUs)
Source: Lawrence Livermore Laboratory, 2007.
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(Quads), as in Figure 9.1, barrels of oil, or tons of coal, rather than in dollars or value
terms. As may be expected, one way to obtain these quantities in physical units is to
first compute the total dollar requirement by conventional input–output analysis, and
then convert these values to BTUs or some other appropriate physical units by means
of prices relating dollar outputs to energy outputs. We will eventually see, however,
that such a procedure (which is essentially the commonly used procedure outlined in
Appendix 9.1) introduces inconsistencies in the resultant accounting of energy con-
sumption, necessitating adjustments in the procedure in some circumstances to ensure
reasonable results.

To illustrate the potential problem just outlined, in computing the energy intensity
of a product (as defined above), we will distinguish between primary energy sectors
(e.g., crude oil, coal mining, or solar energy) and secondary energy sectors (e.g., refined
petroleum or electricity). Secondary energy sectors receive primary energy as an input
and convert it into secondary energy forms. Hence, if we compute both the total amount
of primary energy required to produce an industry’s output and the total amount of
secondary energy required to produce that same output, they must be equal, net of any
energy lost in converting energy from primary to secondary energy forms, such as in
producing electric power from coal. Different technologies, of course, have different
energy conversion efficiencies and some energy sources, such as nuclear power or
solar energy, have other complicating characteristics. In general, however, our energy
input–output formulation should include the condition that the total primary energy
intensity of a product should equal the total secondary energy intensity of the product
plus any amount of energy lost in energy conversion or used for some other purpose.2

We refer to this condition as an energy conservation condition. This condition will be a
fundamental determinant in assessing whether or not a particular energy input–output
model formulation accurately depicts the energy flows in the economy.

9.2.1 The Basic Formulation
We begin with the most contemporary framework of energy input–output where we
construct a transactions table in so-called “hybrid units.” That is, we trace energy flows
in the economy in BTUs (or some other convenient energy units) and nonenergy flows
in value terms such as dollars.3 We will see later inAppendix 9.1 that such a formulation
is generally superior to alternative formulations widely applied in the literature, albeit
in some cases less easy to implement practically because of availability of data. We
will explore the circumstances under which use of this framework is important as well
as when alternatives are appropriate or acceptable.

In energy input–output we seek an analogous set of matrices to Z, A, and L, that
is, an energy transactions or flows matrix (this time measured in physical inputs of
energy, e.g., BTUs), a direct energy requirements matrix and finally a total energy
requirements matrix. With only a minor change in the way we represent interindustry

2 For example, some commodities may be used both as an energy source and as a raw material, such as petroleum.
3 This “hybrid” formulation was suggested by Bullard and Herendeen (1975a); it is discussed in Blair (1979),

Griffin (1976), Casler and Wilbur (1984) and others.
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transactions in the basic input–output framework of Chapter 2, we can construct these
energy input–output matrices.

We begin with a traditional input–output accounting identity, Zi + f = x, where Z is
the matrix of interindustry transactions, f is the vector of total final demands and x is
the vector of total outputs, all measured in value terms, e.g., dollars. We are interested
in measuring energy flows in physical units, so presume we have an analogous identity
given by Ei + q = g, where E is the matrix of energy flows from energy-producing
sectors to all sectors as consumers of energy, q is the vector of energy deliveries to final
demand4 and g is the vector of total energy consumption, all once again measured in
physical units. Note that if there are n sectors in the economy, m of which are energy
sectors, then Z will be of dimension n×n, but E will be of dimension m×n. Similarly,
while f and x are of dimension n × 1, q and g will be of dimension m × 1.

If, as before, A is the matrix of technical coefficients then Z = Ax̂ and it follows
that L = (I − A)−1, the familiar Leontief inverse, so that total requirements can be
expressed as x = Lf . We would like to have a matrix analogous to the L that yields
total energy requirements in the equation g = αf where α is that m × n matrix.

9.2.2 The Total Energy Requirements Matrix
If we presume for a moment that the matrix α already exists, we can define a set of
energy conservation conditions in an energy input–output model generally that specify
the relationship between primary and secondary energy sectors. These conditions were
first articulated by Herendeen (1974) and adapted somewhat here as the following:

αkjxj =
n∑

i=1

αkizij + gkj (9.1)

where αkj is the total amount of energy of type k required to produce a dollar’s worth
of sector i’s output; xj is the total dollar output of sector j; and zij is the dollar value
of sector i’s product consumed by sector j. The term gkj is the total energy output of
an energy sector and we define all elements of the m × n matrix G = [gkj] as gk for
elements where energy sector k and industry sector j refer to the same industrial sector
and 0 otherwise. Most elements of G are zero, except for those that correspond to
total energy output for the energy sector designated by the row index. For accounting
convenience, if the energy sectors k = 1, . . . , m are placed first in the index of industry
sectors j = 1, . . . , n, i.e., the series k = 1, . . . , m and j = 1, . . . , m both refer to the
same collection of industry sectors, then the nonzero entries will appear along the
principal diagonal5 of G or, equivalently, the locations of nonzero elements in G are
located where k = j.

4 Note that q here and for most of this chapter should not be confused with its use to designate the vector of
total commodity outputs in the commodity-by-industry accounting framework; it should always be clear in the
context of the discussion which use of q applies.

5 We define the principal diagonal of a nonsquare matrix A to be the aii elements.
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Conceptually, the energy conservation conditions for all economic sectors j ( j =
1, . . . , n) can be described as the energy embodied in any sector output xj is equal to
the amount of energy embodied in all that sector’s inputs, zij for i = 1, . . . , n, plus any
primary energy input, gkj, which is nonzero only for primary energy sectors. Translated
into matrix terms, (9.1) becomes6

αx̂ = αZ + G (9.2)

We illustrate this for the case of three economic sectors (i, j = 1, 2, 3), where the first
two of the industry sectors are also designated by energy sectors (k = 1, 2). Equation
(9.2) is then expressed as

[
α11 α12 α13

α21 α22 α23

]⎡⎣x1 0 0
0 x2 0
0 0 x3

⎤⎦ =
[
α11 α12 α13

α21 α22 α23

]⎡⎣z11 z12 z13

z21 z22 z23

z31 z32 z33

⎤⎦ +
[

g11 0 0
0 0 0

]

Note that in this example there is only one nonzero element in G, which indicates that
there is only one primary energy sector. Expanding this equation yields[

α11x1 α12x2 α13x3

α21x1 α22x2 α23x3

]
=[

α11z11 + α12z21 + α13z31 α11z12 + α12z22 + α13z32 α11z13 + α12z23 + α13z33

α21z11 + α22z21 + α23z31 α21z12 + α22z22 + α23z32 α21z13 + α22z23 + α23z33

]
+
[

g11 0 0
0 0 0

]

Each term of this matrix is defined generally by (9.1); for example, the upper-left term
is α11x1 = (α11z11 +α12z21 +α13z31)+g11, which is identical to (9.1) for k = 1, j = 1
and i = 1, 2, and 3. Since Z = Ax̂, we can write directly from (9.2) αx̂ = αAx̂ + G.
Rearranging terms, we can derive α(I − A)x̂ = G and α(I − A) = Gx−1 or

α = Gx̂−1(I − A)−1 (9.3)

which defines the matrix of total energy requirements.
We have not yet shown the conditions under which a matrix of total energy coeffi-

cients satisfies the energy conservation conditions defined by (9.1), but this will become
clear when we define interindustry transactions in so-called “hybrid units” in the fol-
lowing. Expressing transactions in hybrid units is accomplished by taking the original
interindustry transactions matrix, Z, and replacing the energy rows with the corre-
sponding rows in the energy flows matrix, E. We define a new transactions matrix,

6 In defining energy conservation, the energy inputs depicted in (9.1) as gkj are the only inputs exogenous to the
economy, i.e., primary inputs; all other inputs are embodied in consuming sector j’s inputs i = 1, . . . , n. This
is illustrated later in Example 9.1.
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Z∗, for which the energy rows are measured in energy units and the nonenergy rows
are measured in dollars, as usual. We must, of course, define corresponding vectors of
total output, x∗, and of final demand, f∗, for which the energy and nonenergy sector
quantities are similarly measured in energy units and dollars, respectively. In terms of
our earlier notation these quantities are defined as the following:

Z∗ = [z∗
ij] =

{
zij where i is a nonenergy sector
ekj where k is an energy sector

Z∗ is of dimension n × n;

f∗ = [f ∗
i ] =

{
fi where i is a nonenergy sector
qk where k is an energy sector

f∗ is of dimension n × 1;

x∗ = [x∗
i ] =

{
xi where i is a nonenergy sector
gk where k is an energy sector

x∗ is of dimension n × 1. Finally we define g∗ to be

g∗ = [g∗
i ] =

{
0 where i is a nonenergy sector
gk where k is an energy sector

where g∗ is of dimension n × 1.
The corresponding matrices, A∗ = Z∗(x̂∗)−1 and L∗ = (I − A∗)−1, follow directly

from these definitions. However, some of the characteristics of these matrices differ
from the traditional Leontief model. For example, the column sums of A∗ are not
necessarily less than unity as in the traditional model and are, in fact, meaningless
since the units are not consistent – it is not meaningful to add BTUs per dollar of output
with dollar’s worth of input per dollar of output.

Note also that the units of the direct requirements matrix, A∗, and the total require-
ments matrix, L∗, reflect hybrid units as well. Consider, for example, the two-sector
case where the first sector is an energy sector and the second is a nonenergy sec-
tor. The units of such a model formulated in hybrid units, for each element in the

matrix, are expressed as Z∗ =
[

BTU BTU
$ $

]
, f∗ =

[
BTU

$

]
, x∗ =

[
BTU

$

]
and

g∗ =
[

BTU
0

]
. Hence, we obtain

A∗= Z∗(x̂∗
)−1 =

[
BTU/BTU BTU/$

$/BTU $/$

]
(9.4)

The matrix L∗ will have the same units as A∗ except, of course, that they are in terms
of the requirement (BTUs or dollars) per unit (BTU or dollar) of final demand (i.e.,
total requirement) instead of per unit of total output (direct requirement).
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Table 9.1 Energy and Dollar Flows:
Example 9.1

Final Total
Widgets Energy Demand Output

Value Transactions in Million of Dollars
Widgets 10 20 70 100
Energy 30 40 50 120

Energy Transactions in Quadrillions of BTUs
Energy 60 80 100 240

To obtain the matrices we referred to earlier as the direct energy requirements matrix
and total energy requirements matrix we need only extract the energy rows from A∗
and L∗, respectively. A convenient tool for isolating the energy rows is to construct
the matrix product G(x̂∗)−1, analogous to the matrix product defined earlier as Gx̂−1

but with a special property. Recall that nonzero elements of G are the elements of g
that are energy sectors. Since the nonzero elements of g (and of g∗ for that matter) are
identical to the corresponding values in x∗ (recall also the definition of x∗

i ), the result of
this product is a matrix of ones and zeros, where the ones denote the locations of energy
sectors. If we postmultiply this vector by L∗, the result includes only the rows of the
total energy coefficients, that is, the energy rows of L∗. Similarly, we can premultiply
A∗ by this matrix to retrieve only the direct energy coefficients from A∗, that is, the
energy rows of A∗. Hence, we define the direct and total energy coefficients matrices
(which, of course, in the two-sector illustration are actually row vectors since there is
only one energy sector) to be δ and α, respectively:

δ = G(x̂∗)−1A∗ (9.5)

α = G(x̂∗)−1L∗ (9.6)

Example 9.1: Two-Sector Illustration of Hybrid Units Input–Output Analysis
We consider a two-sector example that will illustrate the essential properties of this
“hybrid units” formulation of the energy input–output problem. Table 9.1 includes a
table of dollar interindustry transactions and a related table showing energy flows in
quadrillions of BTUs corresponding to the dollar transactions from the energy sector
to the other sectors, including deliveries to final demand and total output.

From the conventions just described for the hybrid units formulation we can

define Z∗ =
[

10 20
60 80

]
and x∗ =

[
100
240

]
and then derive A∗ = Z∗(x̂∗

)−1 =[
0.100 0.083
0.600 0.333

]
and L∗ =

[
1.212 1.515
1.091 1.636

]
. From (9.4) and (9.5) we compute

the direct and total energy requirements matrices (for this two-sector example these
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matrices are actually row vectors):

δ = G(x̂∗)−1A∗ = [
0 240

] [ 1/100 0
0 1/240

] [
0.100 0.083
0.600 0.333

]
= [

0.600 0.333
]

or

δ = [
0 1

] [ 0.100 0.083
0.600 0.333

]
= [

0.600 0.333
]

and

α = G(x̂∗)−1L∗ = [
0 240

] [ 1/100 0
0 1/240

] [
1.212 1.515
1.091 1.636

]
= [

1.091 1.636
]

.

Note that in using the energy input–output model in impact analysis – that is, anal-
ogous to x = Lf in the traditional Leontief model – the final demand presented to the
total requirements matrix must be in hybrid units, that is, g = αf∗. We can verify for

this example, since f∗ =
[

70
100

]
, that g = αf∗ = [

1.091 1.636
] [ 70

100

]
= 240.

Example 9.2: Generalization to Several Energy Types In the initial energy
input–output formulation, we defined the vector g to be of length m (the number of
energy sectors) denoting the total energy output (in BTUs) of energy sectors. In devel-
oping the hybrid units notation further, we defined the vector g∗ to be of length n (the
total number of industry sectors, including energy sectors) where the elements repre-
senting energy sectors (m of the n elements) denote total energy output (in BTUs) of
those sectors; the remaining elements were defined to be zero.

Consider a four-sector economy, in which three sectors are energy sectors, namely
crude oil, refined petroleum, and electric power. The fourth sector, automobiles, is the
only nonenergy sector. Note that the only primary energy sector in this economy is
crude oil since the refined petroleum, and electric power sectors both convert oil into
secondary energy products. The dollar transactions for the economy are given in Table
9.2; the energy flows in the economy (measured in 1015 BTUs) are as given in Table 9.3.

For the hybrid units energy input–output formulation using the data in Tables 9.2
and 9.3,

Z∗ =

⎡⎢⎢⎣
0 20 20 0
1 3 0 1

2.5 1.25 1.25 2.5
0 0 0 0

⎤⎥⎥⎦ , f∗ =

⎡⎢⎢⎣
0

15
12.5
20

⎤⎥⎥⎦ , x∗ =

⎡⎢⎢⎣
40
20
20
20

⎤⎥⎥⎦
from which we can derive

A∗ =

⎡⎢⎢⎣
0 1 1 0

0.0250 0.1500 0 0.0500
0.0625 0.0625 0.0625 0.0125

0 0 0 0

⎤⎥⎥⎦
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Table 9.2 Interindustry Economic Transactions: Example 9.2 (millions of
dollars)

Refined Electric Final Total
Crude Oil Petroleum Power Autos Demand Output

Crude Oil 0 5 5 0 0 10
Refined Petroleum 2.5 2.5 0 2.5 12.5 20
Electric Power 2.5 1.25 1.25 2.5 12.5 20
Autos 0 0 0 0 20 20

Table 9.3 Energy Flows: Example 9.2 (1015 BTUs)

Refined Electric Final Total
Crude Oil Petroleum Power Autos Demand Output

Crude Oil 0 20 20 0 0 40
Refined Petroleum 1 3 0 1 15 20
Electric Power 2.5 1.25 1.25 2.5 12.5 20

and

L∗ =

⎡⎢⎢⎣
1.109 1.391 1.183 0.217
0.033 1.217 0.035 0.065
0.076 0.174 1.148 0.152

0 0 0 1

⎤⎥⎥⎦
In deriving the matrix of total energy coefficients,α, which in this case is of dimension

3 × 4, we first compute the matrix G, as defined earlier, describing the total energy

consumption of each type as G =
⎡⎣ x∗

1 0 0 0
0 x∗

2 0 0
0 0 x∗

3 0

⎤⎦ =
⎡⎣ 40 0 0 0

0 20 0 0
0 0 20 0

⎤⎦. Recall

that G is created by taking the values of total energy production for each of the energy
sectors (40, 20 and 20, respectively, for crude oil, refined petroleum, and electricity)
and defining them as the g∗

ii, elements of G. Given G and x∗, we can obtain

G(x̂∗)−1 =
⎡⎣ 40 0 0 0

0 20 0 0
0 0 20 0

⎤⎦
⎡⎢⎢⎣

1/40 0 0 0
0 1/20 0 0
0 0 1/20 0
0 0 0 1/20

⎤⎥⎥⎦ =
⎡⎣ 1 0 0 0

0 1 0 0
0 0 1 0

⎤⎦
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Hence, it follows directly that

α = G(x̂∗)−1(I − A∗)−1 =
⎡⎣ 1 0 0 0

0 1 0 0
0 0 1 0

⎤⎦
⎡⎢⎢⎣

1.109 1.391 1.183 0.217
0.033 1.217 0.035 0.065
0.076 0.174 1.148 0.152

0 0 0 1

⎤⎥⎥⎦
which, as noted earlier, simply retrieves the first three (energy) rows of L∗ or

α =
⎡⎣ 1.109 1.391 1.183 0.217

0.033 1.217 0.035 0.065
0.076 0.174 1.148 0.152

⎤⎦
Note the special properties of α. Adding the second and third rows yields the first row,
except for the first column, which corresponds to the economy’s primary energy sector,
where the difference between the sum of the second and third elements and the first
element is unity. In the following we show that these two results define precisely the
conditions of energy conservation in the economy.

9.2.3 The Hybrid Units Formulation and Energy Conservation Conditions
With (9.1) we formally defined the energy conservation conditions for an energy input–
output model as

αkjxj =
n∑

i=1

αkizij + gkj (9.7)

where, as before, αkj is the amount of energy required to produce a dollar’s worth of
sector i’s output; xj is the total dollar output of sector j; and zij is the dollar value of
sector i’s product consumed by sector j. For this discussion, we restrict gkj to be the
total energy output of only primary energy sectors.7 That is, the energy embodied in
any sector output xj equals the amount of energy embodied in all that sector’s inputs
zij(i = 1, . . . , n) plus the primary energy input, gkj, which is nonzero only for primary
energy sectors. As noted earlier, translated into matrix terms the energy conservation
conditions can be expressed as

αx̂ = αZ + G (9.8)

In the hybrid units formulation, x, A, and g in (9.7) are replaced by corresponding
values of x∗ and A∗ and G or αx̂∗ = αZ∗ + G. Expressing the input–output transac-
tions in hybrid units includes specifying the energy transactions in physical units so that
the energy conservation conditions can be expressed as a set of physical relationships
(independent of the prices of energy), which we illustrate in Example 9.2 (revisited)
below. In Appendix 9.1 we show more generally that the hybrid units model satisfies

7 In defining energy conservation, the energy inputs depicted in (9.1) as gkj are the only inputs exogenous to the
economy, i.e., primary inputs; all other inputs are embodied in consuming sector j’s inputs i = 1, 2, . . . , n.



9.3 Further Methodological Considerations 411

the conditions of energy conservation generally while not specifying these relation-
ships in hybrid units will satisfy the conditions of energy conservation in only limited
circumstances.

Example 9.2: Generalization to Several Energy Types (Revisited) Recall the
total energy requirements matrix from Example 9.2,

α =
⎡⎣ 1.109 1.391 1.183 0.217

0.033 1.217 0.035 0.065
0.076 0.174 1.148 0.152

⎤⎦
The first energy sector, oil, is the primary energy sector while the remaining energy
sectors, refined petroleum and electricity, are secondary energy sectors. Consider the
last column of α, that is, the automobile sector (the only nonenergy sector in this
example). The term α14 = 0.217 is the total primary energy intensity of producing
automobiles in the economy. That is, it takes 0.217 × 109 BTUs of crude oil to produce
(including both direct and indirect energy requirements) one dollar’s worth of output
in the automobile sector. Similarly, α24 = 0.065 and α34 = 0.152 are the secondary
energy intensities of automobile production, namely, it takes 0.065 and 0.152 billion
BTUs of refined petroleum and electricity, respectively, to produce a dollar’s worth of
automobiles. However, since both refined petroleum and electricity ultimately come
from crude oil in this economy (since crude oil is the only primary energy sector), the
energy-conservation condition requires that the sum of secondary energy intensities for
automobile production equals the primary energy intensity (minus any losses in energy
conversion from crude oil to electricity or refined petroleum, which we ignore for the
time being). That is, for this example, α24 + α34 = α14 = 0.217. This condition, of
course, should hold for all sectors in the economy except for the primary energy sectors,
which extract their energy from outside the economy (primary resources).

In other words, if we sum the secondary energy rows (rows 2 and 3 in our example) –
the total secondary energy intensity – the result should be the same as the primary energy
intensity (row 1 in the example). If there were more primary energy sectors, the total
primary energy intensity would be the sum of the primary energy rows. For column
1 (crude oil), however, total secondary energy intensity is α21 + α31 = 0.109 while
α11 = 1.109. The difference can be interpreted as the amount of crude oil received from
outside the economy per unit of output of crude oil, namely all of it, since it is a primary
resource.

9.3 Further Methodological Considerations

We now examine a number of additional methodological considerations that become
important in the application of energy input–output analysis.
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Table 9.4 Interindustry Transactions in Hybrid Units: Example 9.3

Electric Final Total
Coal Power Autos Demand Output

Coal (Quadrillion BTU) 0 300 0 0 300
Electric Power (Quadrillion BTU) 20 20 20 60 120
Automobiles (million dollars) 0 0 0 100 100

9.3.1 Adjusting for Energy Conversion Efficiencies
In the version of the energy input–output model discussed thus far that deals with
secondary energy production, we ignored the effect of energy conversion efficiencies.
For example, in converting coal to electricity, on average across the economy only about
one-third of the energy content of coal burned in coal-fired power plants gets distributed
as electricity. The rest is dissipated as waste heat. Earlier, we assumed that the energy
produced by secondary sources must equal the sum of the amounts of primary sources
consumed in producing that secondary energy. It is a quite straightforward extension
to modify our hybrid units model to account for conversion efficiencies.

This adjustment must first recognize that for secondary energy sources, g∗
k �= x∗

k ,
where the value of g∗

k refers to the total energy input of type k to the production
process and x∗

k refers to the total type k energy output. The ratio, g∗
k to x∗

k , is the energy
conversion efficiency, which means if the amount of output, x∗

k , is known we multiply
by the reciprocal of the conversion efficiency, x∗

k /g∗
k , in order to determine the amount

of primary energy required as input. We illustrate the process of adjusting for energy
conversion efficiencies in Example 9.3.

Example 9.3: Adjusting for Energy Conversion Efficiencies Consider a three-
sector economy with one primary energy sector (coal) and one secondary energy sector
(electricity) as depicted in Table 9.4.

The corresponding total-requirements matrix for this example is

L∗ =
⎡⎣ 1.25 3.75 .75

0.1 1.5 0.3
0 0 1

⎤⎦
In this example the coal sector delivers all of its output to electricity and that
output is 300 × 1015 BTUs, that is, g∗

1 = 300, but the total output of electric-
ity is x∗

2 = 120; hence the implied conversion efficiency of producing electricity

from coal is x∗
2/g∗

1 = 0.4. Therefore we write G(x̂∗)−1 =
[

0 0 0
0 300/120 0

]
and

α = G(x̂∗)−1L∗ =
[

1.25 3.75 .75
0.25 3.75 .75

]
. Each element in α reflects the energy con-

version efficiency implied in G(x̂∗)−1. [Remember that nonzero terms in G(x̂∗)−1 are
defined as the reciprocal of efficiency.] For example, the total amount of coal required
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to deliver the amounts of electricity given in the second row of L∗ is 2.5 times the
amount given in that row, since the energy conversion efficiency is 0.4. Hence, the
second row in α is 2.5 times the second row in L∗.

9.3.2 Accounting for Imports
As described in Chapter 4, many input–output studies include transferred or com-
petitive imports as part of the total output, that is, imported goods competing with
domestically produced goods. To correctly compute the domestic total energy inten-
sity via our total energy requirements matrix, the matrix must be adjusted to reflect
only domestic output. Reducing total outputs, x∗, by transferred imports, x∗

I , we write
D = E(x̂∗ − x̂∗

I )
−1 and A∗ = Z∗(x̂∗ − x̂∗

I )
−1. Recall that α = G(x̂∗)−1L∗ so using the

adjusted total outputs vector, we can derive α = G(x̂∗ − x̂∗
I )

−1[I − Z∗(x̂∗ − x̂∗
I )

−1]−1.
Rearranging and collecting terms, α = G[x̂∗ − x̂∗

I −Z∗]−1. For the case where x∗
I = 0,

α = G(x̂∗ − Z∗)−1. The reader can show that this is equivalent to our previous defini-
tion, α = G(x̂∗)−1L∗. In studies where the domestic production of energy is the central
focus, the adjustment just described would be important. Herendeen (1974) deals with
this adjustment in detail.

9.3.3 Commodity-by-Industry Energy Models
In Chapter 5 we introduced the commodity-by-industry accounting identity, x = Vi.
This equation defined the vector of total industry outputs as the row sums of the Make
matrix, V. Another commodity-by-industry accounting identity was q = Ui + e. This
equation defined q, the vector of total commodity outputs (not to be confused with the
use of q to denote energy final demand throughout much of this chapter), as the sum
of the row sums of the Use matrix of commodity inputs, U, and the vector of final
demands for commodities, e.

In Chapter 5 we examined the two major assumptions for deriving a total require-
ments matrix, either an industry-based or commodity-based definition of technologies
in the input–output economy. For this discussion we assume the former, but similar
results could easily be derived for the latter. Again from Chapter 5, with an industry-
based technology, we have U = Bx̂ and V = Dq̂ from which we can easily derive
q = Bx̂i + e = Bx + e, and hence q = BVi + e. Finally, substituting Dq̂ for V gives
q = BDq̂i + e = BDq + e or q = (I − BD)−1e, where (I − BD)−1 is the matrix of
commodity-by-commodity total requirements.

We now return to the energy-balance equation stated earlier for the traditional Leon-
tief model [shown earlier as (9.8)]: αx̂ = αZ + G. The corresponding equation for
the commodity-by-commodity model is αq̂ = α(BDq̂) + G, where α, as before, is
the matrix of total energy intensities; however, this time we define them as commodity
energy intensities rather than industry energy intensities (G must also be defined in terms
of commodities). Rewriting, by ordinary matrix algebra, we have α(I − BD)q̂ = G,
so α = Gq̂−1(I − BD)−1.
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As before, where we computed Gx̂−1 to identify the energy rows of L∗, Gq̂−1 accom-
plishes the same for (I − BD)−1 if q is measured in “hybrid units,” as before – BTUs
for energy sectors and dollars for nonenergy sectors.

As discussed in Chapter 5, in some industries a significant fraction of total output
(in value terms) can be attributed to secondary production. In such situations the use
of commodity-by-industry accounts is important. Moreover, the secondary production
of energy by nonenergy sectors – for example, industrial cogeneration of electricity –
can be easily accommodated in this framework.

9.4 Applications

We now consider a number of applications of the energy input–output formulation
to several contemporary problems. The intent is not to examine these applications in
detail, but only to illustrate the kinds of questions that have been considered in the
energy input–output framework.

9.4.1 Net Energy Analysis
Many researchers define net energy analysis as a comparison of the energy produced
by a process (or a series of processes) to the energy required to create and sustain that
process (Figure 9.2). As noted earlier in this chapter, we restrict the discussion of net
energy analysis to this purpose as opposed to its occasional use in promoting an “energy
theory of value” (discussed further below). In net energy analysis, the amount of energy
to be processed for a given energy production system is the direct energy requirement,
as we defined it for the energy input–output model. Similarly, the sum of the direct
energy required to create and operate the process and the energy embodied in the
industry’s inputs is interpreted as the total energy requirement. Alternative approaches
to net energy analysis, including the input–output approach summarized below, are
considered in detail in Spreng (1988).

Figure 9.2 Net Energy Analysis
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At the same time as the energy input–output framework evolved in the early 1970s,
a number of researchers were investigating some of the same issues from the per-
spective of thermodynamic efficiency from engineering and chemistry, as in Berry
(1972). Berry, in collaboration with others (Berry, Fels and Makino, 1974) examined
the “energy cost” of automobiles. Berry, Salmon and Heal (1978) subsequently and
more formally explored the relationship between economic efficiency and thermody-
namic efficiency. Exploring the relationship between economics and thermodynamics
led some researchers who are proponents of net energy analysis to develop a contro-
versial “energy theory of value” (Hannon, 1973 or Gilliland, 1975) and perhaps even
more controversially an “entropy theory of value” (Georgescu-Roegen, 1971), which
invokes the Second Law of Thermodynamics (“useful energy gets dissipated”) to assert
that an economy faces limits to growth.

Proponents of an embodied energy theory of value (Odum, 1971, or Costanza and
Herendeen, 1984) assert that the value of goods and services in an economy is assumed
to be related to the direct and indirect energy embodied in them. Most energy ana-
lysts today, however, reject the energy theory of value for many of the same reasons
economists rejected the labor theory of value advanced by the Physiocrats (seeAppendix
C). Nonetheless, many researchers find considerable merit in the orderly way of tracing
energy flows offered in net energy analysis as a complement to more standard economic
analysis frameworks. Examples of moving the framework in this direction can be found
in Proops (1977), Bullard, Penner and Pilati (1978), Blair (1979, 1980), Treloar (1997)
and Cleveland (1999) and in the efforts to analyze structural change in an economy
discussed later in this chapter and in Chapter 13.

Example 9.4: Net Energy Analysis Consider a highly aggregated hybrid units
input–output model of the US economy for 1963 depicted in Table 9.5. In this table
there are five energy sectors: (1) coal, (2) crude oil and gas, (3) refined petroleum, (4)
electricity, and (5) natural gas utilities. The primary energy in the economy consists
of crude oil and gas, coal and the electricity produced from nuclear and hydroelectric
plants. The nuclear and hydroelectric amounts are relatively small, so that for conve-
nience, this energy is often represented in terms of its fossil fuel equivalent by dividing
it by the efficiency of converting fossil fuels to electricity.8

We can write an expression for the total primary energy intensity9 of an industry as
ᾱ = [ᾱj] where ᾱj = α1j + α2j + (β/η) α4j. Since we define primary energy intensity
only in terms of primary energy sectors, for the example economy (Table 9.5) refined
petroleum and natural gas utilities are secondary energy sectors. Hence, only coal,
crude oil and gas and a portion of electric power sectors appear in the equation, i.e.,
terms from rows 1, 2, and 4 of the total energy requirements matrix. The term β is the

8 The US input–output table for 1967 was the first US table for which a full survey-based set of corresponding
energy transactions measured in physical units was generated to implement energy input–output models of the
sort developed in this chapter.

9 This concept is developed in detail in Bullard and Herendeen (1975a) and in many other articles by these authors.
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fraction of electricity produced directly from hydroelectric and nuclear sources; η is the
conversion efficiency of producing electricity from fossil fuels. Recall that αkj is the
total energy intensity of energy type k per dollar’s worth of final demand of industry j.

The A∗ and L∗ matrices for the US transactions shown in Table 9.5 are given in Tables
9.6 and 9.7, respectively. The total primary energy intensities, ᾱ, are given in Table 9.8.
Note that the matrices A∗ and L∗ are given in hybrid units; hence, as discussed earlier,
the column sums of A∗ are not necessarily less than unity. Recall from before that
the energy rows of L∗ comprise the total energy requirements, α. For purposes of our
illustration we assume that β = 0.1, and η = 0.33.

Suppose that we are considering two alternative designs for an electric power plant,
both of which are rated at 1,000 megawatts of electric power output and will operate
approximately 7,000 hours per year for 30 years. This means that each power plant will
produce 21×1010 kilowatt-hours (kwh) of electrical energy (or 0.7×1015 BTUs) over
its lifetime. The lists of materials required for construction, operation, and maintenance
(excluding fuel) for the two plants are given inTable 9.9. We will interpret these expendi-
tures, for impact analysis purposes, as new final demands presented to the US economy.

We refer to the vectors of expenditures for the two power plants in Table 9.9 as rI

and rII, respectively. The aggregate primary energy intensities for the two plants are
found in 1012 BTUs by ᾱrI = 683 and ᾱrII = 962. As a measure of overall “energy
efficiency” of technologies, the energy ratio (ER) is defined to be the ratio of total
energy output of the power plant over its lifetime to the total primary energy intensity.
For our example, the energy ratios of the two plants are 1.025 and 0.728, respectively;
from a net energy standpoint, power plant design I is more efficient than design II. If
the total production is the same for both power plants, then the primary energy intensity
gives the same “ranking” as the ER.

9.4.2 Energy Cost of Goods and Services
We can use the energy input–output framework to estimate the total energy cost of
final demand expenditures such as, for example, the total fuel (direct) and indirect
energy consumed in acquiring and using a family automobile. Bullard and Herendeen
(1975a) show that only about 30 percent of the total energy consumption attributable
to automobile usage is gasoline; the rest includes the “energy cost of energy” (e.g.,
refinery losses), the direct and indirect energy associated with manufacture of the auto,
parts, maintenance, road construction and so on. We can, of course, use this calculation
to compare the energy efficiency of alternative modes of transportation, for example,
automobile use versus urban mass transit. This problem has been examined in detail
by Hannon and Puelo (1974).

Similarly, we might wish to examine the energy intensity of family expenditures as a
function of income (see Herendeen, 1974). The US Bureau of Labor Statistics routinely
compiles personal consumption expenditure data that can be used in energy input–
output analysis. Perhaps the most interesting result of this work is that direct energy
consumption (e.g., gasoline) appears to level off with increasing income. The result,
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Table 9.8 Total Primary Energy Intensities: Example 9.4

Industry Sector Primary Energy Intensity

1. Coal Mining 1.016
2. Crude Oil 1.039
3. Refined Petroleum 0.980
4. Electric Utilities 3.985
5. Gas Utilities 1.405
6. Chemical Products 0.263
7. Agriculture 0.058
8. Mining and Manufacturing 0.057
9. Transportation & Communication 0.069

10. Rest of the Economy 0.028

Table 9.9 Power Plant Inputs: Example 9.4

Industry Sector Power Plant I Power Plant II

1. Coal Mining 0 0
2. Crude Oil 0 0
3. Refined Petroleum 0 0
4. Electric Utilities 100 200
5. Gas Utilities 100 0
6. Chemical Products 100 100
7. Agriculture 0 0
8. Mining and Manufacturing 1, 000 1, 000
9. Transportation & Communication 500 1, 000

10. Rest of the Economy 1, 000 500

when personal consumption expenditures are translated to indirect energy consump-
tion via the energy input–output model, is that total energy consumption attributable
to family expenditure does not level off with increasing income. Hence, Herendeen
argues, estimates of impacts of energy shortfalls on consumers based on direct energy
consumption alone could be quite misleading.

This concept of examining the energy impacts of changes in final demand can, of
course, also be used to investigate changes in final demand other than that part which
comprises personal consumption. Bezdek and Hannon (1974), for example, examined
the impacts of various federal “public works” programs, Blair (1979) examined the
regional impact of constructing new electric-power-generating facilities, Battjes, Noor-
man and Biesiot (1998) explore the energy intensity of imported goods, and Bezdek
and Wendling (2005a, 2005b) examine the implications of fuel economy standards on
automobile fuel consumption.



9.4 Applications 421

Efforts to improve the sustainable use of resources in an economy led researchers
to examine the life cycle costs of products, including perhaps especially energy costs.
Input–output analysis is, of course, an especially suitable tool to examine the total
resource costs of industrial production and use and is used frequently in this type
of analysis, such as in Hendrickson, Lave and Matthews (2006), and in the field of
industrial ecology, such as in Duchin (1992). This subject is examined more generally
and in more detail in Chapter 10.

9.4.3 Impacts of New Energy Technologies
Just (1974) used an input–output model to examine the impact of new energy tech-
nologies such as coal gasification or combined gas-and-steam-cycle electric power
generation on the US economy. His approach was to estimate the column of technical
coefficients, AN , that would describe the new technology. If Aj is the technology that
might be replaced by AN , then the new column Anew

j , reflecting incorporation of the
new technology, would be Anew

j = gAN + (1−g)Aj, where g is the fraction of the total
production of sector j for which replacement is expected. Gowdy and Miller (1968)
employ a similar technique to examine energy efficiency technology in the US and
Japan. Other examples of using input–output analysis to examine the impacts of new
energy technologies include Herendeen and Plant (1981) and Blair (1979) and Casler
and Hannon (1989).

9.4.4 An Energy Tax
Bullard and Herendeen (1975a) examined the impact of a tax on energy use (per BTU).
They assumed that all of the tax would be passed on directly to the consumer. The results
indicate that the tax would be distributed in such a way as to substantially increase the
prices of energy-intensive products. The impacts of such a tax have been estimated for
the US economy based on the 367-sector input–output model developed by Herendeen
(1974). More contemporary models employ combined input–output and econometric
techniques, discussed later in this chapter and in Chapter 14.

9.4.5 Energy and Structural Change
A fascinating time in US economic history was the period from the late 1970s through
the end of the twentieth century, when the US economy began fundamental structural
change from an economy dominated by manufacturing and related activity to one
increasingly dominated by services. The degree to which the accompanying change in
energy use in the economy is viewed as either cause or effect (most likely both) of the
broader structural change in the economy is a matter of some debate and explains at
least in part why energy use patterns associated with economic structural change have
been widely studied since the 1980s and, as one might expect, input–output analysis
was a common tool in many such analyses. Such work includes Park (1982), Proops
(1984, 1988), OTA (1988, 1990), Blair and Wyckoff (1989), Rose and Chen (1991), all
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of which draw on the much earlier work of Strout (1967), Carter (1970) and Reardon
(1976) and others. Many studies attribute the changes in the patterns of US energy
consumption in the 1970s and 1980s to a combination of forces: economic growth,
adoption of more energy-efficient technology, changes in the economic mix of goods
and services away from energy-intensive industry such as steel production and towards
high value-added manufacturing and services, and finally the interaction of these forces
with one another; see Kelly, Blair and Gibbons (1989).

Analyzing energy use and structural change in an economy are really a subset
of a broader collection of work commonly referred to as Structural Decomposition
Analysis (SDA), which generally studies economic changes by fashioning a set of
comparative static adjustments of key data in input–output tables, usually over a period
of years. SDA in its broader context is discussed in detail in Chapter 13. SDA has
been employed widely to explore the relationships between energy use and interindus-
try activity, including the work cited above, but some researchers, such as Rose and
Chen (1991), Ang (1995), Lin and Polenske (1995), Mukhopadhyay and Chakraborty
(1999), Wilting, Biesiot and Moll (1999), Jacobsen (2000), Casler (2001) and Kagawa
and Inamura (2001, 2004) have assembled more elaborate breakdowns of the dif-
ferent sources of energy use changes. As an illustration for purposes of this chapter
we describe a relatively simple process employed in OTA (1990) or Casler and Blair
(1997), although Dietzenbacher and Sage (2006) outlines a number of limitations to
using energy input–output models expressed in hybrid units in SDA.

Consider matrices of total energy coefficients for two different years, 1972 and
1985, as α72 and α85, respectively. Hence we can define g72 = α72f72 and g85 =
α85f85, where f and g are the final demand and total energy consumption vectors
for the corresponding years indicated by the superscripts. Recall that α is m × n,
f is n × 1 and g is m × 1, where m is the number of energy sectors and n is the
total number of industry sectors. If we consider 1972 the base year, then we seek to
measure the sources of the changes of energy consumption resulting from changes in
the production recipe (as reflected in the matrix of technical coefficients, A) and from
changes in final consumption, f, between 1972 and 1985. So, relative to the base year the
consumption for any other year, e.g., 1985, can be written as g85 = (α72+�α)(f72+�f)
or, separating terms, g85 = α72f72 + α72�f + �αf72 + �α�f where �α is the
matrix of changes in technical coefficients and �f is the vector of changes in final
demand between 1972 and 1985. Using this expression for g72 above, we can define
the difference in energy consumption between 1985 and 1972 using the expression
above for g85 as

g85 − g72 = α72f72 + α72�f + �αf72 + �α�f − α72f72

Combining terms, we have g85 − g72 = α72�f + �αf72 + �α�f and if we define
these changes as �α = α85 − α72 and �f = f85 − f72 then we have

g85 − g72 = α72(f85 − f72) + (α85 − α72)f72 + (α85 − α72)(f85 − f72)
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Figure 9.3 Changes in US Energy Consumption: 1972–1985

where α72(f85 − f72) is the effect caused by changing final demand; (α85 − α72)f72 is
the effect caused by changes in production functions; and (α85 − α72)(f85 − f72) the
effect of interaction of final demand and production function changes.

Some simplified results of OTA (1990) are summarized in Figure 9.3. This figure
shows that while total consumption of energy changed relatively little in the US over
the period 1972–1985, the modest net change disguises, on one hand, substantial eco-
nomic growth and associated increases in energy use offset by, on the other hand, large
improvements in energy efficiency (nearly two-thirds of the total effect on reducing
energy consumption) and a shift from more to less energy-intensive industry in the
nation’s economy overall.

9.4.6 Energy Input–Output and Econometrics
The relative analytical simplicity of input–output analysis can be both a strength and
a limitation in its application to public policy problems. On the one hand, the con-
ceptually simplifying assumptions of fixed input requirements and constant relative
prices, both implicit in the classical input–output framework, render implementation
easier, although satisfying the data requirements can still be quite difficult. On the other
hand, these assumptions limit the ability of the framework to deal very effectively with
some fundamental features of a modern economic system, such as prices or elasticities.
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Nonetheless, many modern economic models that can accommodate such features still
have their roots in an input–output framework.

In addition, some of these models seek to make input–output itself more flexible by
formally defining input–output coefficients as a function of relative prices of aggregate
prices of capital, labor, energy and materials, and in more detailed models of more
specific industry output prices. Among the most prominent of these models was applied
to long-term energy policy evaluation in Hudson and Jorgenson (1974) and considerable
subsequent work by those authors and other associates in both energy and environmental
policy applications. The model was also commercially developed and applied for a
number of years as the Data Resources Inc. Long-Term Inter-industry Model (LTIM).

In the following we briefly characterize the key features of the Hudson–Jorgenson
(HJ) model to illustrate one of the extensions to the basic input–output framework that
has developed extensively over the last several decades. Additional discussion of the
development of the broader class of econometric/input–output models is included in
Chapter 14.

In the simplest terms, the HJ model is constructed as the interaction of an econometric
aggregate macroeconomic growth model and an interindustry model with price sensitive
input–output technical coefficients. The macroeconomic growth model is beyond the
scope of this text, but is used to provide aggregated input prices and final demands that
are used by the interindustry model to compute primary input demands to the economy,
as depicted in Figure 9.4.

The HJ model, in its first release (Hudson and Jorgenson, 1974), employed a nine-
sector input–output framework that included four highly aggregated nonenergy sectors
and the five energy sectors common to the aggregation scheme adopted by the Bureau

Figure 9.4 Hudson–Jorgenson Model
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of Economic Analysis: (1) agriculture, nonfuel mining and construction, (2) manufac-
turing (excluding petroleum refining), (3) transportation, (4) communications, trade,
services, (5) coal mining, (6) crude petroleum and natural gas, (7) petroleum refining, (8)
electric utilities and (9) gas utilities. In order to facilitate connection with other model
components, the framework also breaks out value-added inputs into three components:
(1) imports, (2) capital services and (3) labor services. Similarly, total final demand is
disaggregated into (1) personal consumption expenditures, (2) gross domestic private
investment, (3) government purchases of goods and services, and (4) exports.

The HJ model operates by first employing the macroeconomic growth model (or
macro-growth model, for short) noted earlier to produce levels of final demand for all
industries. For the five energy sectors, the prices and levels of imports are taken to be
exogenous, although this feature was modified in later versions of the model, such as
Jorgenson and Wilcoxen (1990, 1993), Jorgenson, Slesnick and Wilcoxen (1992), or
Jorgenson and Stiroh (2000). For the four nonenergy sectors, the prices of imports are
taken to be exogenous (again, in the original version of the model), but the quantities
of imports and of labor and capital services are subsequently determined endogenously
by the interindustry model as modified below.

The prices of capital and labor services are also produced by the macro-growth
model, while the quantities of exports and government purchases of all industry sectors
are taken to be exogenous along with the allocation of total investment among all
industries (although level of total investment itself is generated by the macro-growth
model). Perhaps the unique modification to the classical Leontief framework in the
HJ model is that of incorporating producer behavior into the interindustry model by
specifying production functions (columns of the technical coefficient matrix) in terms
of the relative prices of factor inputs (industry output prices and prices of capital and
labor services).10

The framework still requires the row and column interindustry identities to hold. That
is, the row sums of interindustry transactions plus deliveries to final demand equals total
output and the column sums of the value of interindustry transactions plus value-added
services (in this case, capital and labor services) plus the value of imports also equals

total output. The row sum version is xi =
9∑

j=1
zij + fi for i = 1, . . . , 9 and the column

sum version is pixi =
9∑

j=1
pjzji + pkxki + plxli + prixri for i = 1, . . . , 9, where

xki = quantity of capital services used by industry i,

xli = quantity of labor services used by industry i,

xri = quantity of competitive imports of the output of industry i,

pk = aggregate price of capital services,

10 Another approach to models where production functions respond to prices is Liew (1980) and subsequent work,
which is discussed in Chapter 14.
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pl = aggregate price of labor services and

pri = price of competitive imports to industry i.

In the HJ formulation prices are explicitly identified in the value-added identity since
prices become variables. The prices of capital and labor services actually can differ
among industries (suggesting that pk and pl should each have an additional i subscript),
but they are computed as the product of aggregate prices from the macro-growth model
and the ratios of service prices to each industry that are determined exogenously, so
they are actually completely specified by the macro-growth model and just scaled by
exogenously specified ratios. Hence, for simplicity, we show them here as the aggregate
prices.

The HJ model uses a collection of so-called price possibility frontiers, which econo-
metrically specify a level of output of an industry as a function of the relative prices of
industry inputs and the prices of capital, labor, and imports. In the HJ formulation, for
each of the nine industry sectors, three relationships are specified:

1. The price of a sector’s output as a function of the prices of four aggregate inputs –
capital, labor, energy, and materials.

2. The price of aggregate energy input in each sector as a function of the prices of the
five types of energy specified in the model – coal, crude oil and natural gas, refined
petroleum, electricity and gas delivered by gas utilities.

3. The price of aggregate nonenergy inputs to each sector as a function of the prices
of the five types of nonenergy inputs to each sector – agriculture, manufacturing,
transportation, communications, and competitive imports.

The formal specification of the price possibility frontiers is beyond the scope of
this text, but is covered in detail in Christensen, Jorgenson and Lau (1971, 1973),
where it is postulated that a useful local second-order approximation of any price
possibility frontier can be specified as a function that is quadratic in the logarithms of
the prices of the inputs to that sector. These so-called transcendental logarithmic price
possibility frontiers, or translog price possibility frontiers for short, take, as an example,
the following form:

ln ai + ln pi = αi
0 + αi

K ln pk + αi
L ln pL + αi

E ln pE

+ αi
M ln pM + 1

2

[
βI

KK (ln pK )2 + βI
KL ln pK ln pL + · · · ]

where in this case ai is the relative share of input i, pi is price of commodity i and
pK , pL, pE , and pM are, respectively, the aggregate prices of capital, labor, energy, and
materials. The translog production functions make it possible to include price and in
this instance especially the price of energy, as a variable in this modified interindustry
model. The result is an ability to project energy supply and demand, energy price and
cost and energy imports and exports under a much richer variety of economic conditions
than with the traditional static input–output framework.
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The HJ model was used to explore the potential economic implications of an energy
tax, which at the time was defined as a so-called “BTU tax,” since the rate would be
assessed based on the heating value of all energy fuels or, more specifically, “a uniform
rate of tax levied on the energy content of all fuels used outside the energy generation
sector.” (Hudson and Jorgenson, 1974.) At the time this was one of the policy options
being considered by Congress as a means of seeking to achieve “energy independence”
in the United States. In the HJ model the tax is introduced as a price markup on all energy
sources and new economic and energy use projections are calculated. The authors
conclude that major reductions in energy use (in the early 1970s) were achievable in
the US economy without major economic cost.

9.4.7 Other Applications
The energy input–output model has been used to examine a wide variety of other
problems in addition to those just outlined. These include a detailed characterization of
the US import–export balance (Bullard and Herendeen, 1975b), analysis of the costs
versus benefits of alternative energy conservation programs (Henry, 1977), energy
consumption analysis (Bullard and Herendeen, 1975a), regional energy trade balance
relationships (Bourque, 1981) and others related to the energy implications of specific
policy initiatives, including Almon et al. (1974), Bullard, Penner and Pilati (1978),
Polenske (1976), Proops (1977, 1984, 1988) and Bezdek and Wendling (2005a, b).

Since the early 1990s, applications of input–output analysis to energy issues reported
in the literature have been dominated by three areas: (1) more detailed analysis of energy
and material flows in industrial complexes, such as in Albino, Dietzenbacher and Kühtz
(2003) or Giljum and Hubacek (2004), (2) analyzing the relationship between energy
use and environmental issues in areas such as global climate change and sustainable
development, such as in Lenzen, Pade and Munksgaard (2004), Kratena and Schleicher
(1999), Zhang and Folmer (1998) or the extensions to the Hudson–Jorgenson model
noted earlier (Jorgenson and Wilcoxen, 1990, 1993, or Jorgenson and Stiroh, 2000)
(some of these energy-environment extensions are examined in more detail in Chapter
10) and (3) analyzing changes in economic structure related to changing patterns of
energy use in economies, as in Kagawa and Inamura (2004) and others mentioned
earlier in this chapter. The subject of structural decomposition is explored in more
detail and more generally as well in Chapter 13.

9.5 Summary

In this chapter we have presented an energy input–output model by constructing matri-
ces of direct and total energy coefficients in so-called “hybrid units.” As noted earlier,
alternative approaches are discussed in Appendix 9.1. These approaches were widely
used in the late 1960s and early 1970s and continue to be used commonly today for a
variety of practical reasons. However, these models produce energy coefficients depen-
dent upon the level of final demand that was presented to the energy input–output model,
which we show in Appendix 9.1 to be a fundamental flaw, although the seriousness of
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Table 9.10 Summary of Energy Input–Output Relationships: Initial
Formulation

Economic (n × n) Energy (m × n)

Transactions Z Z∗, E
Zi + f = x Z∗i + g∗ = x∗

Ei + q = g
Direct Requirements A = Zx̂−1 A∗ = Z∗(x̂∗)−1; δ = G(x̂∗)−1A∗

Ax + f = x A∗x∗ + f∗ = x∗; δx∗ + q = g
Total Requirements L = (I − A)−1 L∗ = (I − A∗)−1; α = G(x̂∗)−1L∗

x = Lf x∗ = L∗f∗; g = αf∗

the flaw depends upon the circumstances. The hybrid units approach does not suffer
from this limitation. We show that the hybrid units approach yields energy coefficients
that conform to a fundamental definition of energy conservation conditions; the alter-
native formulations are shown in Appendix 9.1 to conform only to these conditions
when interindustry prices of energy are uniform across all consuming sectors. Table
9.10 summarizes the energy input–output relationships developed in this chapter.

An analogous table is presented in Appendix 9.1 (Table A9.1.4) showing the rela-
tionships among the original Leontief model, the hybrid units as developed here, and
alternative energy input–output formulations reviewed in the appendix.

The energy input–output extensions to the classical Leontief model are widely applied
in the literature and some of those extensions and applications are summarized. Finally,
more advanced extensions are described – such as coupling an interindustry model with
econometric models of demand behavior and macroeconomic growth to provide more
flexibility for dealing with public policy issues. Such models lay the groundwork for
even more flexible general equilibrium models outlined in Chapter 14.

Appendix 9.1 Earlier Formulation of Energy Input–Output Models

A9.1.1 Introduction
In this appendix we present an alternative formulation of the energy input–output model.
While still widely applied in the literature, this approach suffers from limitations that
in some cases should preclude its use. This formulation was initially adopted by Strout
(1967) and Bullard and Herendeen (1975b). In other cases, as we will show, however, the
model can be acceptable or even equivalent to the formulation presented in section 9.2.

First, recall the m × n matrix of energy flows, E, which was defined in the text of
this chapter and used in the basic accounting relationship

Ei + q = g (A9.1.1)

A traditional approach to energy input–output analysis is to define a matrix of direct
energy coefficients, D = [dkj] where dkj = ekj/xj, that is, the amount of energy type k
(in BTUs or some other convenient energy units for k = 1, . . . , m) required directly to
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produce a dollar’s worth of each producing sector’s output ( j = 1, . . . , n). Expressed
in matrix terms this is D = Ex̂−1. This is, of course, directly analogous to the direct
input coefficients, A = Zx̂−1, except that D will in general not be square since m < n.

For purposes that will become clear later, defining a direct energy coefficient is
equivalent to first defining a matrix, P, of implied energy prices, with elements defined
as pkj = zkj/ekj (k = 1, . . . , m; j = 1, . . . , n), defined only for ekj �= 0. The units of pkj

are then dollars paid per unit of energy of type k delivered to consuming sector j. These
prices are “implied” since the prices calculated in this way generally do not necessarily
correspond to the price actually paid for energy, but their significance, nonetheless,
will become clear shortly. For now, implied prices can be used to derive the direct
energy coefficients as dkj = akj

pkj
. This is equivalent to our previous definition of D,

since dkj = akj
pkj

=
(

zkj
xj

) (
ekj
zkj

)
= ekj

xj
or, in matrix terms, D = Ex̂−1. It follows directly

that E = Dx̂ and from the original energy transactions balance equation Ei + q = g,
we obtain Dx̂i + q = g but, since x̂i = x, Dx + q = g, which, as noted earlier, is
directly analogous to Ax + f = x of the traditional Leontief model. The traditional
method continues to develop a matrix of total energy coefficients first by substituting
x = (I − A)−1f to obtain

Dx = D(I − A)−1f (A9.1.2)

The matrix D(I−A)−1 is defined as the matrix of total interindustry energy coefficients.
In order to account for the energy consumed directly by final demand, the second

term in the energy transactions balance equation (A9.1.1), we return to the notion of
implied energy prices, this time for the energy that is delivered to final demand (as
done in earlier interindustry transactions when the p were defined – recall that direct
energy coefficients were defined only for interindustry energy transactions). Now we
have pf = [pkf ] where

pkf = fk/qk (A9.1.3)

Here fk is the final demand in dollars for the output of energy sector k and pkf is the
corresponding implied energy price in units of dollars of final demand per unit of energy
type k (for qk �= 0; for qk = 0 we will define pkf = 0). This relationship allows us to
express final demand and the corresponding energy requirements in a manner similar
to that for interindustry energy requirements associated with interindustry transactions,
by rewriting (A9.1.3) as qk = (1/pkf )fk or in matrix terms as q = Q̃f , where Q̃ = [q̃k ]
is an m × n matrix of implied inverse energy prices for final demand whose elements
are defined as

q̃k =

⎧⎪⎨⎪⎩
1/pkf , when energy sector k and industry sector j

describe the same industrial sector

0, otherwise

There will, of course, be at most m nonzero elements in Q̃ since there are only m
elements in q. By constructing Q̃ of dimension m × n, we can combine it with the
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interindustry energy coefficients to produce a matrix of total (interindustry plus final-
demand) energy coefficients, to obtain g = Dx + q or, substituting (I − A)−1f for x,
we have g = D(I − A)−1f + Q̃f and collecting terms we have

g = [D(I − A)−1 + Q̃] f (A9.1.4)

The bracketed quantity, which we denote by ε, is a matrix of total energy coefficients
analogous to α defined in the course of developing the energy conservation conditions,
which expresses the total amount of energy (BTUs) required of each energy type, g,
both directly and indirectly, as a function of final demand f.

Variations of this approach abound in the literature, sometimes ignoring the energy
consumed directly in final demand, sometimes assuming uniform energy prices across
all consuming sectors, but almost always defining a set of direct energy coefficients in
this manner and thereby ignoring or assuming away the technical energy conservation
relationships between primary and secondary energy sectors.

A9.1.2 Illustration of the Implications of the Traditional Approach
The following example illustrates the inconsistencies introduced by using variations of
the traditional approach just outlined.

Example 9.5: Energy Input–Output Alternative Formulation Consider a sim-
ple three-sector input–output economy where two of the sectors are energy sectors,
coal and electricity. Assume that transactions (in millions of dollars) observed for a

given year are as shown in Table A9.1.1. Here Z, f and x are Z =
⎡⎣ 0 40 0

10 10 10
0 0 0

⎤⎦ ,

f =
⎡⎣ 0

30
10

⎤⎦ and x =
⎡⎣ 40

60
100

⎤⎦. Suppose that the corresponding energy flows of this

economy, expressed in quadrillions of BTUs, are given by Table A9.1.2. Hence, using

notation introduced earlier, E =
[

0 120 0
20 20 20

]
, q =

[
0

60

]
and g =

[
120
120

]
.

Note some of the special characteristics of this energy economy. First, the coal sec-
tor delivers all of its product to the electricity sector, another energy sector. Hence, as
discussed earlier, the coal sector is known as a primary energy sector and electricity
is a secondary energy sector. Note also that the total amount of coal used is the same
as the amount of electricity consumed in the economy, which seems reasonable since
the electricity sector received all of its primary energy from coal (excluding conver-
sion efficiencies, for the moment). Another important peculiarity of this example is

the matrix of implied energy prices, P = [zkj/ekj] =
[

0 40/120 0
10/20 10/20 10/20

]
=[

0 0.333 0
0.5 0.5 0.5

]
and pf = [fk/qk ] =

[
0

0.5

]
. Note that the price of electricity
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Table A9.1.1 Dollar Transactions for Example 9.5
(millions of dollars)

Electric Final Total
Coal Power Autos Demand Output

Coal 0 40 0 0 40
Electric Power 10 10 10 30 60
Automobiles 0 0 0 100 100

Table A9.1.2 Energy Flows for Example 9.5 (1015

BTUs)

Final Total
Electric Energy Energy

Coal Power Autos Demand Output

Coal 0 120 0 0 120
Electric Power 20 20 20 60 120

is the same across all consuming sectors, including final demand (0.5). Hence, by
the earlier development, Q̃, the matrix of inverse energy prices for final demand, and

D, the direct energy coefficients matrix are Q̃ =
[

q1 0 0
0 q2 0

]
=

[
0 0 0
0 2 0

]
and

D =
[

0 120 0
20 20 20

]⎡⎣ 1/40 0 0
0 1/60 0
0 0 1/100

⎤⎦ =
[

0 2 0
0.5 0.333 0.2

]
. Finally, we can

compute A = Zx̂−1 =
⎡⎣ 0 0.667 0

0.25 0.167 0.1
0 0 0

⎤⎦ and (I − A)−1 =
⎡⎣ 1.25 1.00 0.10

0.38 1.50 0.15
0 0 1.00

⎤⎦.

Knowing D, (I − A)−1 and Q̃ and using (A9.1.4) we can find the total energy

requirements, ε = D(I − A)−1 + Q̃ =
[

0.75 3 0.3
0.75 3 0.3

]
.

It should not be surprising, at least for this example, that the rows of ε are identical,
because of the peculiarities of this energy economy noted earlier. Suppose, however,
we change the example only slightly to remove the uniformity of energy prices across
consuming sectors.

Example 9.6: Energy Input–Output Example (Revised) In modifying Example
9.5, only slightly, we redefine only E and Q as shown in Table A9.1.3, i.e., increasing
the amount of electricity consumed by the autos sector from 20 to 30 quads and reducing
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Table A9.1.3 Energy Flows for Example 1 Revised
(1015 BTUs)

Final Total
Electric Energy Energy

Coal Power Autos Demand Output

Coal 0 120 0 0 120
Electric Power 20 20 30 50 120

the amount of electricity consumed by final demand from 60 to 50 quads (denoted in
bold face in the table).

Note that we do not change the total energy consumption of 120 quads in Table
A9.1.2 and we do not change the economic transactions measured in dollars, Z.
However, since some of the energy transactions measured in quads change, the cor-
responding relative interindustry and final-demand energy prices change as well. The
new implied energy prices for interindustry and final-demand sales along with the
matrix of implied inverse energy prices to final demand are then, respectively, given

by P =
[

0 0.333 0
0.5 0.5 0.333

]
, pf =

[
0

0.599

]
and Q̃ =

[
0 0 0
0 1.67 0

]
. Note that

the prices are no longer uniform. Finally ε, the matrix of total energy coefficients,

becomes ε =
[

0.75 3 0.3
0.75 2.667 0.4

]
. Looking at the elements in the third column, this

new total energy requirements matrix specifies that one dollar’s worth of automobiles
requires 0.4 × 1015 BTUs of electricity to produce that output, but only 0.3 × 1015

BTUs of coal. This violates the energy conservation condition for this example, since
the electricity-producing sector received all its primary energy from coal (electricity is
a pass-through sector for coal). In other words, by design for this example the two total
energy requirements matrix rows should be the same.

It should be readily apparent that application of this energy input–output formulation
simply yields the output of the traditional Leontief model multiplied by a set of con-
version factors – the implied energy prices. Such formulations are frequently applied
in the literature, but in the following we show more generally that this formulation pro-
vides internally consistent results only when these energy prices are the same across
all consuming sectors (including final demand) for each energy type or when a new
final demand presented to the economy is very close to that from which the input–
output model was originally derived. Only under such circumstances will the model
always faithfully reproduce the original data. Griffin (1976) shows that the condition
of uniform prices across all energy-consuming sectors does not hold at all historically
for the US economy. Similar results are illustrated in Weisz and Duchin (2006). Pos-
sible cases where it could be more acceptable are discussed later. For reference, Table
A9.1.4 summarizes the alternative energy formulation just described compared with the
analogous “hybrid units” formulation developed in this chapter and so-called physical
input–output models.
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Table A9.1.4 Summary of Energy Input–Output Relationships

Alternative Energy
Economic Hybrid Units Energy Model Model
Model Method II Method I

Transactions Z Z∗, E E
Zi + f = x Z∗i + f∗ = x∗ g = Ei + q

Ei + q = g
Direct A = Zx̂−1 A∗ = Z∗x̂−1; δ = G(x̂∗)−1A∗ D = Ex̂−1

Requirements Ax + f = x A∗x + f∗ = x∗; δx∗ + q = g Dx + q = g
Total (I − A)−1 (I − A∗)−1; α = G(x̂∗)−1(I − A∗)−1 ε = D(I − A)−1 + Q̃
Requirements x = (I − A)−1f x∗ = (I − A∗)−1f∗; g = αf∗ g = εf

We now explore further the conditions of energy conservation and the conditions
under which the alternative model can be applied, first through an example and then
more generally. First, however, for reference, in Table A9.1.4 we summarize the
relationships developed so far for the traditional Leontief model, the hybrid units
interindustry model defined in the text of this chapter, which we will refer to as Method
II and, finally, the alternative energy model just defined, which we will refer to as
Method I.

Extensions of Example 9.1 Recall the two-sector economy given in Example
9.1 of the text of this chapter where we constructed the following hybrid units energy

input–output relationships using Method II: Z∗ =
[

10 20
60 80

]
and x∗ =

[
100
240

]
.

The direct and total energy requirements matrices (Method II) for this example are

A∗ = Z∗(x̂∗
)−1 =

[
0.100 0.083
0.600 0.333

]
and L∗ =

[
1.212 1.515
1.091 1.636

]
so that δ =

G(x̂∗)−1A∗ = [
0.600 0.333

]
and α = G(x̂∗)−1L∗ = [

1.091 1.636
]
. The analo-

gous information for the alternative energy input–output formulation, using Method I, is
given by the energy transactions E = [

60 80
]

and q = [100] and the interindustry

dollar transactions and total outputs by Z =
[

10 20
30 40

]
and x =

[
100
200

]
. Hence, the

direct and total energy requirements matrices are A = Zx̂−1 =
[

0.100 0.167
0.300 0.333

]
and

(I − A)−1 =
[

1.212 0.303
0.546 1.636

]
. Using q, we have Q̃ = [

0 100/50
] = [

0 2
]

and

D = Ex̂−1 = [
60 80

] [ 1/100 0
0 1/120

]
= [

0.600 0.667
]
.

It follows directly from (A9.1.4) that ε = Ex̂−1(I − A)−1 + Q̃ = D(I − A)−1 +
Q̃, which for the example is ε = [

0.600 0.667
] [ 1.212 0.303

0.546 1.636

]
+ [

0 2
] =
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[
1.091 3.273

]
. Note that ε is identical to α, except that the elements involving energy

consumption in α are simply multiplied by the relevant energy price. This is reasonable

because ε is used in conjunction with f and not with f∗. That is, f∗ =
[

70
100

]
with

an energy price of 2 (1015 BTUs/$106) is equivalent to f =
[

70
50

]
, so, we have

εf = [
1.091 3.272

] [ 70
50

]
= 240 and αf∗ = [

1.091 1.636
] [ 70

100

]
= 240. The

first expression, εf , generates the total energy requirement (240 × 1015 BTUs) needed
to support final demand f. The second expression, αf∗, yields the same result but in
terms of supporting the equivalent final demand, f∗, measured in hybrid units.

The result should not be surprising at all, since under conditions of uniform
interindustry energy prices, the computation of ε is simply a price adjustment of α.
To reflect this in our notation, we define a two-element vector r = [1 2] where the
first element is the value that converts the nonenergy units of the original model to the
nonenergy units of the hybrid units model. Clearly these units are the same, so the value
of this element is always unity. The second element is the interindustry inverse energy
price.

Given this vector r, we can easily write f∗ = r̂f . For the example this is f∗ = r̂f =[
70
100

]
=

[
1 0
0 2

] [
70
50

]
. Also, x∗ = r̂x or x = r̂−1x∗. For the example this is

x∗ = r̂x =
[

100
240

]
=

[
1 0
0 2

] [
100
120

]
. The implications of this are as follows. For

the case of uniform interindustry energy prices, there is no need to account for energy in
BTUs at all, since this is equivalent to deriving outputs in dollars and converting to BTUs
by simply multiplying by the energy price. However, as we found before, if prices are
not uniform for all consumers (both interindustry and final-demand consumers), such
procedures are inappropriate.

It is important to note that the above result, i.e., that a vector r exists such that
x∗ = r̂x and f∗ = r̂f , will in general be true only under conditions of uniform energy
prices, which we will illustrate in the following. Recall that in the case of using the
alternative formulation in Example 9.1, when this condition was not met, the model
gave inappropriate results. We can test to see if the hybrid units model fares better
when we relax the condition of uniform energy prices by considering, once again, the
two-sector model of Example 9.1 with new energy flows and corresponding energy
prices.

Note that the dollar quantities, Z, f, x, A and (I − A)−1 do not change at all from
the earlier case. However, the hybrid units quantities change since the energy transac-
tions have changed by reducing the amount of energy delivered to final demand by 20
quadrillion BTUs and increasing the amount of energy consumed by the energy sector
itself by the same amount, thus keeping total energy output the same. With a change
in energy flows but no change in the corresponding dollar transactions, the energy
prices change and are no longer uniform for all consumers, as shown in Table A9.1.6.
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Table A9.1.5 Energy and Dollar Flows for
Example 9.1 (Revised)

Final Total
Widgets Energy Demand Output

Value Transactions in Millions of Dollars
Widgets 10 20 70 100
Energy 30 40 50 120

Energy Transactions in Quadrillions of BTUs
Energy 60 100 80 240

Table A9.1.6 Implied Energy Prices for Example 9.1
(Revised)

1015 BTUs/ Final Total
$106 Widgets Energy Demand Output

Energy 2 2.5 1.6 2

Table A9.1.7 Results for Example 9.1 (Revised)

Method I: Alternative Formulation Method II: Hybrid units Model

Z =
[

10 20
30 40

]
x =

[
100
120

]
Z∗ =

[
10 20
60 100

]
x∗ =

[
100
240

]
A = Zx̂−1 =

[
0.100 0.167
0.300 0.333

]
A∗= Z∗(x̂∗)−1 =

[
0.100 0.083
0.600 0.417

]
L = (I − A)−1 =

[
1.212 0.303
0.546 1.636

]
L∗ = (I − A∗)−1 =

[
1.228 0.175
1.263 1.895

]

As before, from the conventions of the alternative formulation (Method I) and of the
hybrid units formulation (Method II) we can derive the results given in Table A9.1.7.

We can now calculate the total energy coefficients by the two methods.
Method 1

D = Ex̂−1 = [
60 100

] [ 1/100 0
0 1/120

]
= [

0.6 0.833
]

ε = D(I − A)−1 + Q̃ = [
0.6 0.833

] [1.212 0.303
0.546 1.636

]
+ [

0 8/5
] = [

1.182 3.145
]



436 Energy Input–Output Analysis

From this we can verify that, since f =
[

70
50

]
, εf = [

1.182 3.145
] [ 70

50

]
= 240.

Method 2

Gx̂−1 = [
0 240

] [ 1/100 0
0 1/240

]
= [

0 1
]

α = G(x̂∗)−1(I − A∗)−1 = [
0 1

] [ 1.228 0.175
1.263 1.895

]
= [

1.263 1.895
]

From this we can verify that, since f∗ =
[

70
80

]
, αf∗ = [

1.263 1.895
] [ 70

80

]
= 240.

Both methods thus yield the same total energy requirements for the basic data from
which the models were originally formulated. However, this is not generally true.
Consider two cases of new final-demand vectors for which we wish to compute the
total energy requirement by both Methods I and II.

Case 1. Consider two final demand vectors, f and f∗, which describe the same final

demand since the energy price to final demand is 8/5, so that f =
[

100
333.1

]
and f∗ =[

100
533

]
. That is, the relationship between f ∗

2 and f2 is f ∗
2 = f2(8/5) = (333.1)(8/5) =

533. Computing the total energy requirement by the two methods:

Method I Method II

εf = [
1.182 3.145

] [ 100
333.1

]
= 1, 166 αf∗ = [

1.263 1.895
] [100

533

]
= 1, 136

Case 2. Consider another equivalent pair of final demands, defined as f =[
1, 000

10

]
and f∗ =

[
1, 000

16

]
, for which the total energy requirement by the two

methods are:

Method I Method II

εf = [
1.182 3.145

] [1, 000
10

]
= 1, 031.90 αf∗ = [

1.263 1.895
] [1, 000

16

]
= 1, 293.32

Note that in Case 1, using Method I results in a higher total energy requirement than
using Method II and a lower amount in Case 2. In the following we will show that
Method II always computes the total energy requirement correctly. We can then con-
clude that in Cases 1 and 2, Method I overestimates and underestimates, respectively,
the total energy requirement.
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A9.1.3 General Limitations of the Alternative Formulation
We return briefly to the alternative formulation of total energy coefficients derived
earlier and defined in (A9.1.4): g = [D(I−A)−1 +Q̃]f . With an arbitrary final demand,
denoted as fnew, and the corresponding total energy requirement as gnew, then we define
the total output vector used in defining the total energy coefficients as xold . D is
computed as D = E(x̂old )−1. Combining the expressions for gnew and D we obtain

gnew = E(x̂old )−1(I − A)−1fnew + Q̃fnew = E(x̂old )−1xnew + Q̃fnew (A9.1.5)

If xold = xnew, then the product (x̂old )−1xnew will be a column vector of ones. In
addition, by definition, q = Q̃fnew, and, hence, (A9.1.5) becomes gnew = Ei + q,
which is (A9.1.1) from which the total energy coefficients were originally derived. If
xold �= xnew, however, which is the case for most applications, the model does not
reduce to (A9.1.1) and does not accurately reflect the energy flows generated by a new
final demand.

We can conclude that while Method II (the hybrid units formulation) correctly com-
putes in all cases the total energy requirement for any arbitrary vector of final demands
consistent with our energy conservation condition, Method I yields correct results only
for the base case of final demands from which the model was originally derived, or,
as it turns out, if the new final-demand vector is a linear combination of the reference
case of final demands (the same scalar multiplied by every element of the final-demand
vector, which might be interpreted as uniform economic growth). Hence, in general, if
the necessary data are available, the only defense for using Method I in practice is when
impact analysis involves new final demands that are not substantially different from the
basic data from which the model was derived or when there are uniform interindustry
energy prices throughout the economy.11

Problems

9.1 Consider the following three-sector input–output economy; two sectors are energy
sectors (oil is the primary energy sector and refined petroleum is the secondary energy
sector):

Interindustry
Transactions Refined Final Total
($106) Oil Petroleum Manuf. Demand Output

Oil 0 20 0 0 20
Refined Petroleum 2 2 2 24 30
Manufacturing 0 0 0 20 20

The energy sector transactions are also measured in quadrillions of BTUs in the
following table:

11 Herendeen (1974) suggested an ad hoc modification procedure for enforcing consistency.
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Energy Sector
Transactions Refined Final Total
(1015 BTUs) Oil Petroleum Manuf. Demand Output

Oil 0 20 0 0 20
Refined Petroleum 1 1 1 17 20

Given this information, do the following:

a. Compute (1) the matrix of implied inverse energy prices, (2) the direct energy
requirements matrix, and (3) the total energy requirements matrix (including an
accounting for energy consumed by final demand) using the method developed in
Appendix 9.1. Do you notice anything peculiar about the total energy requirements
matrix?

b. Reformulate this problem as a hybrid units input–output model; that is, recompute
the technical coefficients and Leontief inverse using value terms for nonenergy
sectors and energy units (BTUs) for energy sectors. Does this model conform to
the conditions of energy conservation?

9.2 Consider the following input–output transactions table in value terms (millions of
dollars) for two industries – A and B:

A B Total Output

A 2 4 100
B 6 8 100

Suppose we have a direct energy requirements matrix for this economy that is given by:

D =
[

.2 .3

.1 .4

]
1015 BTUs of oil per million dollars of output
1015 BTUs of coal per million dollars of output

a. Compute the total energy requirements matrix (neglecting energy consumption
by final demand).

b. Suppose that the final demands for industries A and B are projected to be $200
million and $100 million respectively for the next year. What is the net increase
in energy (both oil and gas) required to support this new final demand (neglect
energy consumed directly by final demand, since you do not have the information
to do this calculation anyway)? What fraction of this net increase is a direct energy
requirement and what fraction is indirect (total minus direct)?

c. Suppose an energy conservation measure in industry B caused the direct energy
requirement of that industry for coal to be reduced from 0.4 to 0.3 (1015 BTUs



Problems 439

of coal per dollar of output of industry B). How does this change the direct
and total energy requirements needed to support the new final demand given
in b?

9.3 Consider the following input–output table ($106)

Transactions

Autos Oil Electricity Total Output

Autos 2 6 1 10
Oil 0 0 20 20
Electricity 3 2 1 30

Assume that the implied inverse energy price matrix for this economy is given by the
following (in dollars per billion BTU)

Autos Oil Electricity Final Demand

Oil 0 0 0.4082 0
Electricity 0.3333 0.2857 0.5 1.2912

a. Compute the current energy flows matrix, that is, the distribution of each energy
type among the industries in the economy measured in BTUs.

b. Compute the direct energy coefficients matrix.
c. If a final demand vector of $2 million worth of autos and 18 quadrillion BTUs of

electricity is presented to this economy, what would be the total amount of energy
(of each type) required to support this final demand?

d. Compute the total energy requirement using the alternative method of
Appendix 9.1.

9.4 Recall that the conditions for energy conservation in an input–output model can be
expressed as αx̂ = αZ + G where α is the matrix of total energy coefficients, Z is
the matrix of interindustry transactions, x is the vector of total outputs, and G is the
matrix of primary energy outputs.

a. Show that the hybrid units formulation of the energy input–output model – that is,
where x is replaced by x∗ and Z is replaced by Z∗ – satisfies these conditions in
general.

b. Given the following two tables of total energy coefficients, explain which of them
satisfies the conditions of energy conservation and why. Use the convention that
crude oil is a primary energy sector and refined petroleum and electricity are
secondary energy sectors.
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Case 1 Crude Oil Refined Petroleum Electricity Autos

Crude Oil 0 .6 .5 .3
Refined Petroleum 0 .4 .5 .2
Electricity 0 .2 0 .1

Case 2 Crude Oil Refined Petroleum Electricity Autos

Crude Oil 0 .6 .5 .3
Refined Petroleum 0 .4 .2 .1
Electricity 0 .2 0 .1

9.5 An energy input–output model is defined (in $106 units) by Z =
⎡⎣ 0 10 0

5 5 5
0 0 0

⎤⎦ , f =
⎡⎣ 0

25
20

⎤⎦ and x =
⎡⎣ 10

40
20

⎤⎦. Industries I and II are energy industries with patterns of

output allocation expressed in energy terms (1015 BTUs) by E =
[

0 40 0
5 5 15

]
and

g =
[

0
15

]
.

a. Compute ε, the total energy requirements matrix (via the traditional method
outlined in Appendix 9.1).

b. Now compute α, the hybrid units total energy requirements matrix.
9.6 Consider the following hybrid units transactions matrix and vector of total outputs,

i.e., the first three rows of the energy sectors (oil, coal, and electricity) are measured in
millions of BTU and the last row, manufacturing, is measured in millions of dollars:

Z∗ =

⎡⎢⎢⎣
0 0 40 0
0 0 60 0
2 3 12 48
15 20 30 40

⎤⎥⎥⎦ and x∗ =

⎡⎢⎢⎣
40
60
100
200

⎤⎥⎥⎦.

Suppose final demand for manufactured goods increased by $200 billion. What
would be the increase in total primary energy used to satisfy this growth in final
demand?

9.7 For the economy specified in problem 9.6, two alternative technologies are pro-
posed for generating electric power, which involve alternative new specifications
for the technical coefficients matrix depicting different “recipes” for electric power
production in the economy, A∗(I) and A∗(II). The original electric power gener-
ation column of the technical coefficients matrix is given by A∗. Suppose the
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two alternative changed columns of the technical coefficients matrix correspond-

ing to the alternative technologies are given by A∗(I)
·3 =

⎡⎢⎢⎣
.2
.7
.1
.4

⎤⎥⎥⎦ and A∗(II)
·3 =

⎡⎢⎢⎣
.5
.4
.12
.4

⎤⎥⎥⎦ and a change in final demand of �f∗ =

⎡⎢⎢⎣
0
0

20
30

⎤⎥⎥⎦. Which economy [matrix

incorporating the specifications A∗, A∗(I) or A∗(II)] reflects the most energy-intensive
manufacturing, i.e., which one of the two new technologies consumes the least pri-
mary energy per unit of final demand of manufacturing and how much less primary
energy does that technology consume than the other to support final demand �f∗?

9.8 For the original energy-economy defined in problem 9.6 (A∗), suppose an energy-
conserving manufacturing process is developed that can be depicted as a new column

of the technical coefficients matrix for manufacturing, given by A∗(new)
·4 =

⎡⎢⎢⎣
0
0

.12

.20

⎤⎥⎥⎦.

If this new process were adopted, how much primary energy would be saved in the
economy, both directly in terms of fuel used directly in manufacturing, and indirectly
in the energy embodied in the inputs to manufacturing?

9.9 Suppose the original energy economy used in problem 9.6 is faced with an oil supply
shortage of a ten percent reduction in total input of oil available in the economy.
What would be the corresponding reduction in GDP? To do this calculation you will
need to know the energy prices to final demand, which are given by pf = [pkf ] =⎡⎣ 2

1
3

⎤⎦. If new electric power generation technology I from problem 9.7 and the energy

conserving manufacturing process from problem 9.8 were both incorporated into the
economy, what would be the change in GDP with the same oil shortage?

9.10 Below are nine-sector 1963 and 1980 input–output tables for the United States
expressed in hybrid units (quadrillions of BTUs for energy sectors and millions of
dollars for non-energy sectors). The first five sectors are energy sectors: (1) coal, (2)
oil, (3) refined petroleum products, (4) electricity, and (5) natural gas. The remain-
ing four sectors are non-energy sectors: (6) natural resources, (7) manufacturing, (8)
transportation, and (9) services. Using the approach derived in section 9.4.5, determine
the amounts of the change in total energy use of each energy type between 1963 and
1980 and the components of that change that are attributable to change in production
functions, to change in final demand, and to the interaction between the changes in
production functions and final demand.
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Total
1980 1 2 3 4 5 6 7 8 9 Output

1 0.0012 0.0000 0.0007 1.5464 0.0000 0.0000 0.0002 0.0000 0.0000 18, 597
2 0.0001 0.0319 0.8960 0.0001 0.8707 0.0000 0.0001 0.0000 0.0000 36, 842
3 0.0063 0.0024 0.0612 0.3344 0.0008 0.0005 0.0002 0.0023 0.0002 31, 215
4 0.0026 0.0021 0.0035 0.0822 0.0020 0.0000 0.0001 0.0000 0.0001 7, 827
5 0.0006 0.0461 0.0301 0.4856 0.0720 0.0001 0.0003 0.0000 0.0001 19, 244
6 0.2092 1.4027 0.5040 7.8254 0.4350 0.0896 0.0628 0.0355 0.0289 6, 194, 571
7 2.6323 0.8480 2.4090 3.5155 0.1804 0.2672 0.3780 0.0493 0.0626 18, 081, 173
8 0.1773 0.0806 2.1831 4.8195 0.0794 0.0199 0.0251 0.1289 0.0141 2, 240, 904
9 1.8576 2.6159 2.7945 8.5173 1.2302 0.1831 0.1238 0.1224 0.2027 23, 803, 723

1963
1 0.0019 0.0000 0.0008 1.7415 0.0010 0.0000 0.0004 0.0001 0.0000 12, 476
2 0.0000 0.0423 0.7996 0.0007 0.9308 0.0000 0.0003 0.0000 0.0000 30, 384
3 0.0015 0.0011 0.0600 0.1973 0.0031 0.0004 0.0003 0.0021 0.0002 19, 878
4 0.0015 0.0007 0.0018 0.0963 0.0002 0.0000 0.0001 0.0000 0.0000 3, 128
5 0.0001 0.0035 0.0330 0.7046 0.0919 0.0000 0.0003 0.0001 0.0001 13, 194
6 0.0456 0.4582 0.5926 7.9623 0.6565 0.1111 0.0835 0.0415 0.0426 4, 865, 092
7 0.8684 0.4081 1.1700 1.0933 0.0937 0.2340 0.4035 0.0498 0.0496 11, 333, 710
8 0.1105 0.0655 1.1964 4.5632 0.3965 0.0231 0.0256 0.0863 0.0121 1, 131, 226
9 0.4794 2.2388 1.9461 8.0643 1.1016 0.1121 0.0881 0.1203 0.1721 10, 588, 385
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10 Environmental Input–Output
Analysis

10.1 Introduction

Since the late 1960s the input–output framework has been extended by many researchers
to account for environmental pollution generation and abatement associated with
interindustry activity. Leontief (1970) himself provided one of the key methodolog-
ical extensions that has since been applied widely and extended further. In this chapter
we will examine several of the most prominent environmental input–output formula-
tions and discuss many of the features, advantages, and limitations of each. Much like
the discussion in Chapter 9 – modification of the traditional Leontief model to deal
with energy flows – in the environmental extensions we must include some additional
conditions in order to enforce consistency among interindustry production, pollution
generation, and pollution abatement activities.

10.2 Basic Considerations

A principal problem to be resolved in environmental models is the appropriate unit of
measurement of environmental (or ecological) quantities – for example, in monetary
or physical units. In the alternatives we consider here, we will see formulations using
each approach. We will examine three basic categories of environmental input–output
models:

1. Generalized Input–Output Models. These are formed by augmenting the technical
coefficients matrix with additional rows and/or columns to reflect pollution gen-
eration and abatement activities. We explore two variations on such models – one
aimed at analysis of impacts and another aimed at planning applications.

2. Economic–Ecologic Models. These models result from extending the interindustry
framework to include additional “ecosystem” sectors, where flows will be recorded
between economic and ecosystem sectors along the lines of an interregional input–
output model.

3. Commodity-by-Industry Models. Such models express environmental factors as
“commodities” in a commodity-by-industry input–output table, as described in
Chapters 4 and 5.
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10.3 Generalized Input–Output Analysis: Basic Framework

A very common public policy analysis problem is to analyze the implications of a
new spending program (usually government, but certainly not exclusively so) on an
economy, not just the traditional impact analysis developed in earlier chapters, or the
special case of energy consumption examined in the previous chapter, but a more
comprehensive examination of a wide variety of factors associated with that spending
program, such as impacts on employment, pollution, or capital expenditures. In this
section we develop a general framework for tracing these impacts associated with
interindustry production generated in response to a spending program interpreted as a
new vector of final demands presented to the economy.

10.3.1 Accounting for Pollution Impacts
A very straightforward approach to accounting for pollution generation associated with
interindustry activity is to first assume a matrix of pollution output or direct impact
coefficients, Dp = [dp

kj], each element of which is the amount of pollutant type k, e.g.,
sulfur dioxide, generated per dollar’s worth of industry j’s output. Hence, the level of
pollution associated with a given vector of total outputs can be expressed as

xp∗ = Dpx (10.1)

where xp∗ is the vector of pollution levels. Hence, by adding the traditional Leontief
model, x = Lf where L = (I − A)−1, we can compute xp∗ as a function of final
demand, that is, the total pollution of each type generated by the economy directly and
indirectly in supporting that final demand:

xp∗ = [DpL]f (10.2)

We can view the bracketed quantity as a matrix of total environmental impact coef-
ficients; that is, an element of this matrix is the total pollution impact generated per
dollar’s worth of final demand presented to the economy.

10.3.2 Generalized Impacts
Even though we are concerned primarily with environmental extensions to input–output
analysis in this chapter, we could easily replace the pollution coefficients matrix with
a corresponding matrix for virtually any factor associated with interindustry activity
that we assume varies linearly with output, for example, employment or energy con-
sumption (as we did in Chapter 9 in the case of energy in the alternate formulation
developed in Appendix 9.1). The use of employment coefficients is essentially equiv-
alent to the notion of employment multipliers introduced in Chapter 6, and extensions
that incorporate more detailed disaggregation of final-demand and value-added sectors,
and especially how these sectors interact with one another in the economy in so-called
social accounting matrices, are the subject of Chapter 11. In this chapter, however,
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Table 10.1 Input–Output Transactions (millions
of dollars)

Industry

A B
Final
Demand

Total
Output

Industry A 3 2 5 10
Industry B 1 7 2 10

Table 10.2 Direct Impact Coefficients

Industry
Direct Impact per $

Direct Impact Coefficients A B (millions) of Output

Energy
Oil 0.2 0.3 Billion BTUs
Coal 0.1 0.4

Pollution
Sulfur Dioxide 0.5 1.1 Thousand lbs.
Hydrocarbons 0.7 0.7

Employment
Employment 0.1 0.2 Person-years

we restrict the generalized framework to energy use, environmental pollution, and
employment as illustrative of the more general case. We begin with an example.

Example 10.1: Generalized Input–Output Analysis Consider the two-sector
input–output table of transactions shown in Table 10.1. The corresponding tech-

nical coefficient and Leontief inverse matrices are A =
[

0.3 0.2
0.1 0.7

]
and L =[

1.58 1.05
0.53 3.68

]
. We now define three direct-impact coefficient matrices relating energy

requirements, pollution generation, and employment to total output1 (see Table 10.2).
The corresponding direct impact coefficient matrices can be specified for energy,

pollution, and employment by

De =
[

0.2 0.3
0.1 0.4

]
, Dp =

[
0.5 1.1
0.7 0.7

]
, and Dl = [0.1 0.2]

For convenience, we can easily concatenate these matrices (that is, stack these matri-
ces De, Dp, and Dl on top of one another as sub-matrices in a single matrix), to yield a

1 Recall from Chapter 9 that developing such coefficients for energy, in particular, is in effect using the
methodology of Appendix 9.1, which must be applied carefully in order to avoid inconsistent results.
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direct-impact coefficient matrix D:

D =

⎡⎢⎢⎢⎣
De

Dp

Dl

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0.3
0.1 0.4

0.5 1.1
0.7 0.7

0.1 0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
We can similarly define a vector of total impacts, x∗, by concatenating xe∗ = Dex,

xp∗ = Dpx, and xl∗ = Dlx to yield x∗ =

⎡⎢⎢⎣
xe∗

xp∗

xl∗

⎤⎥⎥⎦. Hence, we can write x∗ = Dx. For

accounting convenience, we may wish to record x∗ along with the corresponding final
demands associated with the generation of a particular vector of total impacts, x∗. We
can accomplish this easily by defining a new vector of total impacts and concatenating
the vector of final demands with x∗; we define this expanded vector of total impacts as x̃,

so that x̃ =
[

x∗

f

]
. We can similarly expand the matrix of direct-impact coefficients by

concatenating D with (I − A); we define this new expanded direct-impact coefficients

matrix to be G =
[

D

(I − A)

]
.

In our example, for $10 million worth of total production of each industry, A and
B, a total of 5 million BTUs each of oil and coal is required to support that produc-
tion. Similarly, 16,000 and 14,000 pounds, respectively, of SO2 and hydrocarbons are
generated by this production; 3,000 person-years of employment are also associated
with the level of industrial production. Hence, we can write x̃ = Gx, which, for our
example, is

x̃ = Gx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0.3
0.1 0.4

0.5 1.1
0.7 0.7

0.1 0.2

0.7 −0.2
−0.1 0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
10

10

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
5

16
14

3

5
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[

x∗

f

]
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This formulation is particularly well suited to using input–output with mathematical
programming models as in Thoss (1976) and Blair (1979), one example of which we
develop later in this chapter.

As an alternative to the preceding formulation, we may wish to express total impacts
as a function of final demands. For example, we may wish to employ the coefficients
in impact analysis in much the same way we traditionally use the Leontief inverse.
That is, we may find the total impacts in terms of energy, pollution generation, and
employment associated with some given level of final demand. This formulation was
originally applied by Just (1974) and Folk and Hannon (1974) to examine the impacts of
new energy technologies. Other more recent applications are summarized in Forssell
and Polenske (1998), including, in particular, Qayum (1994), Schäfer and Stahmer
(1989) and Lange (1998).

In this case we can also write our earlier expression for total impacts, x∗ = Dx,
equivalently as x∗ = [DL]f , where, as before for pollution coefficients alone, the
bracketed quantity is the matrix of total-impact coefficients. Let us denote the bracketed
quantity by D∗ so that, for our example, we can find the levels of energy needs, pollution
generation, and employment associated with the basic data:

x̃∗ = D∗f =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0.3
0.1 0.4

0.5 1.1
0.7 0.7

0.1 0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
[

1.58 1.05
0.53 3.68

] [
5
2

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.47 1.32
0.37 1.58

1.37 4.58
1.47 3.32

0.26 0.84

⎤⎥⎥⎥⎥⎥⎥⎥⎦
[

5
2

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

5
5

16
14

3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Note that here we compute x∗ as a function of f while in x∗ = Dx we computed
x∗ as a function of x. Finally, for convenience, we may wish to include x itself in our
vector of total impacts. This can be accomplished easily by concatenating x with the
vector of total impacts in the same manner we concatenated x∗ with f in constructing
x̃; we define a new expanded vector of total impacts to be x̄:

x̄ =
⎡⎣x∗

x

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
5

16
14

3

10
10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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We can similarly expand the total-impacts coefficients matrix by concatenating the
Leontief inverse with the total-impact coefficients; we call the new expanded total-

impacts coefficients matrix, H, so that H =
[

D∗

L

]
. Hence, for the example we have

the following:

x̄ =
[

x∗

x

]
= Hf =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.47 1.32
0.37 1.58
1.37 4.58
1.47 3.32
0.26 0.84

1.58 1.05
0.53 3.68

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

5
2

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
5

16
14
3

10
10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note that x̃ and x̄ are equivalent descriptions of the same situation, since x and f

uniquely define one another in a Leontief model – for every given f, there is one
and only one x, and vice versa. Note also that we can create a matrix of impacts
generated by each industry separately by diagonalizing f to yield Hf̂ . For the last

example, Hf̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.37 2.63
1.84 3.16
6.84 9.16
7.37 6.63
1.32 1.68

7.89 2.11
2.63 7.37

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. Hence, for example, of the 5 × 109 BTUs of oil

consumed by the economy in the course of satisfying final demand f ′ = [
5 2

]
,

2.37×109 BTUs are attributed to industry A; 2.63×109 BTUs are attributed to industry
B. (These sums across the rows of these values do not equal x̄ due to rounding.) This
is analogous to retrieving the matrix of transactions, Z, from Z = Ax̂.

10.3.3 Summary: Generalized Input–Output Formulations
Recall that the generalized input–output model becomes possible with a set of direct
impact coefficients, D = [dkj], each element of which is the amount of an impact
variable k, for example, pollution or energy, generated per dollar’s worth of industry j’s
output. Using D we can pose the generalized input–output model in what we will refer
to as either its impact analysis or planning forms, which we define as the following:

Case I: Impact Analysis Form

x̄ = Hf where H =
[

D∗

L

]
and x̄ =

[
x∗

x

]
and D∗ = DL
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Case II: Planning Form

x̃ = Gx where G =
[

D

(I − A)

]
and x̃ =

[
x∗

f

]

The impact analysis form is the version most traditionally considered in input–output
applications where the question is what industry outputs and factors associated with
interindustry activity, such as energy use, environmental pollution levels, and employ-
ment, result from a given schedule of final demands presented to the economy, as in
Johnson and Bennett (1981), Hannon, Costanza and Herendeen (1983) and many oth-
ers. However, the planning form has advantages in applications where one seeks to
optimize an objective other than the objective implicit in a traditional input–output
model.2 In the following we explore some examples of how to extend this framework
to planning applications.

10.4 Generalized Input–Output Analysis: Extensions of the
Planning Approach

In Chapters 1 and 2 we developed the basic input–output framework as the solution
of a system of n linear equations in n unknowns, which is certainly one of the most
attractive features of the framework – its very straightforward and unique solution.
At various points in this text we relax fundamental assumptions in the framework
in order to adapt it to specific situations, such as allowing technical coefficients to
vary as a function of relative prices in the case of econometric extensions to the basic
model, adding capital coefficients in dynamic input–output models, or adding trade
coefficients in multi- or interregional models, as examples. Similarly, in using input–
output in planning applications, where one seeks to optimize (maximize or minimize)
some objective function related to interindustry activity, it is useful to begin by thinking
of input–output as a very simple linear programming problem.

10.4.1 Linear Programming: A Brief Introduction by Means of the Leontief Model
Recall from Chapter 2 (Figure A2.2.1), the basic two-sector formulation of the Leontief
model; we rearrange and collect terms to yield

(1 − a11)x1 − a12 = f1

−a21x1 + (1 − a22) = f2

This is depicted graphically for the general case in Figure 10.1 – the solution is the
intersection of the two lines. Suppose we relax the equality in this expression to an
inequality, interpreting the change as requiring that the value of total outputs less the

2 We will see later that the implicit objective function in an input–output model is to maximize the sum of all final
demands or, equivalently, to minimize the sum of all value-added inputs.
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x1

(x*1,x*2)

a21x1+ (1–a22)x2= f2

x 2

(1
–a

) 11
x 1

+a 12
x 2

= f 1

Figure 10.1 Two-Sector Leontief Model

value of all interindustry outputs yield at least the value of deliveries to final demand:

(1 − a11)x1 − a12x2 ≥ f1

−a21x1 + (1 − a22)x2 ≥ f2

or, equivalently, we introduce a “surplus variable” (a concept we will use later) that
nets out any excess between the value of total output and its use to satisfy intermediate
inputs plus final demand:

(1 − a11)x1 − a12x2 − s1 = f1

−a21x1 + (1 − a22)x2 − s2 = f2

where s1 and s2 are the surplus variables (≥ 0).

Consider an example where A =
[

0.3 0.2
0.1 0.7

]
and f =

[
5
5

]
. We have Ax + f ≥ x or

(I − A)x ≥ f , which for the example is

[
0.7 −0.2

−0.1 0.3

] [
x1

x2

]
≥
[

5
5

]
or, equivalently,

with the surplus variables to account for the inequalities:

0.7x1 − 0.2x2 − s1 = 5

−0.1x1 + 0.3x2 − s2 = 5

These equations are shown graphically in Figure 10.2. The shaded area of the graph
shows all possible non-negative solutions where final demand is at least satisfied by
some combination of production of x1 and x2 as well as s1 ≥ 0 and s2 ≥ 0. If s1 = s2 = 0
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then there is no surplus production and the two equations can be solved for the two
unknowns, x1 and x2, which is x∗ = (x∗

1, x∗
2) = (13.15, 21.05), the intersection of

the two equations on the graph and, of course, equivalent to the input–output solution
shown in Figure 10.1.

Let us explore more what this solution means in terms of the production possibilities
represented by the shaded region on the graph. Recall from Chapter 2 that the value-
added coefficients for our two-sector economy are defined by vk = 1 − (a1k + a2k),

for k = 1, 2. Hence, we have (I − A)x ≥ f or

[
0.7 −0.2

−0.1 0.3

] [
x1

x2

]
≥

[
5
5

]
and the

total value added in the economy, which here we will call q, can be found by summing
the value added for all sectors, in this case two sectors, q = v1x1 + v2x2 or, for
this example: q = .6x1 + .1x2. Figure 10.3 shows the previous figure but with lines
representing different values of q. We can ask what is the minimum value of q, which
we will call q∗, that satisfies deliveries to final demand or, equivalently, what values of
x1 and x2 minimize q while satisfying final demand? The figure indicates that the value
would be q∗ = 10, which in this example we can verify by recalling from Chapter 2
that in a Leontief economy the GNP is the sum of all value added or the sum of all
final demands; for the example: q∗ = f1 + f2 = 5 + 5 ≡ v1 + v2 = 7.895 + 2.105 =
10. This is the solution to a simple linear programming (LP) problem. The shaded
area is called the feasible region or the set of all possible solutions satisfying the
inequality constraints specified in (I −A)x ≥ f . The objective function, which we seek
to minimize in this LP problem, is the expression for total value added (GNP) defined
above.

x1

s1#0

s2#0

s2$0

s1$0
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–.7
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0
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Figure 10.2 Input–Output and Linear Programming: Example 10.1
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Figure 10.3 Different Values of GNP for Example 10.1

The following notation is often used in specifying an LP problem:

Min q = v1x1 + v2x2

subject to:

(1 − a11)x1 − a12x2 ≥ f1

− a21x1 + (1 − a22x2) ≥ f2

One can imagine that for problems any larger than two variables, the solution to an
LP problem becomes much more complex than the graphical representation given in
Figure 10.3.

The general LP case of m variables and n equations is mathematically described as
minimizing (or maximizing) a linear function over a convex polyhedron and is a very
well-developed tool in the field of operations research (see, for example, Miller, 2000).
More extensive economic interpretations of the Leontief model as a linear programming
problem are included in Dorfman, Samuelson and Solow (1958) and Intriligator (1971).
An important advantage of posing the input–output framework in this way, at least for
the purposes of this chapter, is that we can consider alternative objective functions
and/or additional constraints as part of a planning problem.

As an example, the shaded region depicted in both Figures 10.2 and 10.3 defines
all production possibilities for x1 and x2 that satisfy the structural conditions of the
Leontief economy and it turns out that minimizing total value added as the objective
subject to these conditions is equivalent to the original input–output problem, but we
may be interested in finding combinations of x that satisfy these structural conditions
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but minimize pollution emissions or energy consumption or perhaps any other factor
that is assumed to vary with industry output.

To illustrate this let us return to Example 10.1, but add generalized impact coefficients
as developed in section 10.3. Clever readers will notice that the example Leontief
economy used to illustrate the LP formulation is the same as that used in developing the
generalized input–output framework earlier in this chapter. Recall that the generalized
input–output formulation could be presented either in its impact analysis form or its

planning form. For now we use the planning form: x̃ = Gx =
[

D

(I − A)

]
x, where D

is the matrix of direct impact coefficients relating factors such as energy use, pollution
emissions, and employment to industry output. For our example, we have

x̃ = Gx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0.3
0.1 0.4

0.5 1.1
0.7 0.7

0.1 0.2

0.7 −0.2
−0.1 0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
10
10

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
5

16
14

3

5
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[

x∗

f

]

where x* represents the levels of total impact of energy use, pollution, and employment

associated with output x =
[

10
10

]
and, of course, final demand f =

[
5
2

]
. We use G to

represent the more generalized structural relationships governing not only the Leontief
production possibilities but also the levels of energy consumed, pollution discharged,
and employment generated that are associated with those production possibilities.
Hence, in its simplest form we could rewrite the LP problem as the following:

Min q = v′x
subject to: Gx ≥ x̃

but, more generally, the inequalities for impact coefficients, D, could go in either direc-
tion (≤ or ≥). In some environmental applications, for example, one would likely
be working with a constraint on total emissions for various types of environmental
pollutants associated with industrial activity.3

Since the input–output model has a unique solution for a given level of final demand,
and those conditions are part of the constraint equations, Gx ≥ x̃, then either of two

3 However, recall that for a linear inequality if one multiplies both sides by a negative number, that operation
changes the direction of the inequality, but does not change the nature of the constraint. Hence, without loss of
generality, we can actually use the notation Gx ≥ x̃ to describe all constraints.
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situations apply: 1. the additional constraints beyond the Leontief conditions included
in the constraint equations (e.g., energy, environmental, and employment equations)
over-constrain the problem, i.e., present conflicting constraints, so that there is no
feasible region and, hence, no possible LP solution or 2. the additional conditions are
not binding constraints, i.e., they are fully satisfied by the Leontief conditions. In our
example so far, of course, the latter situation applies and the LP solution is identical
to the impact analysis solution determined earlier. In the former case, however, when
there is no feasible region, we will need to resort to other approaches in order to find a
solution. We explore such an approach later in this chapter.

10.4.2 Multiple Objectives
The LP formulation to the generalized input–output planning problem also gives us the
flexibility to include alternative or even multiple objective functions in approaching
planning problems. For example, one might be interested in minimizing the value-
added cost to meeting a target final demand, minimizing pollution emissions and energy
conservation all as goals. Decision making with multiple objectives is another well-
developed area in operations research with many approaches available. Surveys of
such approaches are found in Cohen (1978), Cochrane and Zeleny (1973), Nijkamp
and Rietveld (1976), Trzaskalik and Michnik (2002), and Tanino, Tanaka and Inuiguchi
(2003). In this text we consider one commonly applied extension to LP to accommodate
multiple objectives known as linear goal programming (GP) that can be used very
straightforwardly to extend the Leontief framework to deal with environmental issues.

10.4.3 Conflicting Objectives and Linear Goal Programming
Consider a very simple LP problem given by

Max q = x1 + 2x2

subject to:
x1 + x2 ≤ 8
x1 ≤ 7
x2 ≤ 4.5

which is shown graphically in Figure 10.4. The reader can verify that the optimal
solution to this LP problem is x∗ = (x∗

1, x∗
2) = (3.5, 4.5) and q∗ = 12.5.

Suppose that there are really two objectives to this linear programming problem. The
first is implicit in a traditional linear programming problem – the optimal solution must
lie within the feasible region (shaded region in Figure 10.4) defined by the inequal-
ity equations. The second objective is to maximize the objective function q subject to
having already satisfied the first objective. Conceptually, the key to converting this LP
problem into a goal programming (GP) problem4 is to consider the implicit objective

4 Goal programming was first suggested by Charnes and Cooper (1961). Useful characterizations of the approach
and further refinements are included in Lane (1970), Lee (1971, 1972, 1973), Ignizio (1976).
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Figure 10.4 Linear Programming Solution

as explicit. To do this, we refine the notion of surplus variables introduced earlier in
developing the linear programming problem to define so-called deviational variables
d1, d2, and d3 that measure “deviation” from the right-hand side values of the con-
straint equations and another, d4, that measures deviation from an established goal for
the explicit objective function, q. In all cases we assume that dk ≥ 0.

We can think of the deviational variables as either exhibiting overachievement or
underachievement of the established goal. For overachievement of goal k we call the
level of overachievement a positive deviation, which is indicated by a non-zero value
for a positive deviational variable, d+

k (like the surplus variable used earlier). Likewise,
for underachievement of the established goal, we call the level of underachievement a
negative deviation from the goal indicated by a nonzero value for a negative deviational
variable, d−

k (sometimes referred to as a slack variable). Note that if d+
k > 0 then

d−
k = 0 and vice versa, i.e., at most one of the paired positive and negative deviational

variables, d−
k and d+

k , can be greater than 0; if both are 0 then, of course, the goal is
achieved exactly.

In GP, to account for the relative order of priority on the objectives, we assign
the objectives to pre-emptive priority classes, each of which is denoted by Pl , for
l = 1, . . . , L where L is the total number of priority classes, which for our example
reduces to P1 and P2 associated with first satisfying all three constraints and then
with maximizing q, respectively. For our example to be consistent with the implicit
priority order in the LP problem we assign the objective functions derived from the
LP constraint equations as within P1 and the explicit objective function, q, in the LP
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problem as within P2. We write this as

Min P1(d
+
1 + d+

2 + d+
3 ) + P2(d

−
4 ) (10.3)

subject to :

x1 + x2 + d−
1 − d+

1 = 8 (10.4)

x1 + d−
2 − d+

2 = 7 (10.5)

x2 + d−
3 − d+

3 = 4.5 (10.6)

x1 + 2x2 + d−
4 − d+

4 = 20 (10.7)

Note that, in general, minimizing positive deviational variables is equivalent to
satisfying a ≤ constraint or minimizing an objective function and minimizing neg-
ative deviational variables is equivalent to satisfying a ≥ constraint or maximizing
an objective function. Hence, seeking to drive d+

k , for k = 1, 2 and 3 to zero is
equivalent to satisfying the constraints originally specified in the LP problem and seek-
ing to drive d−

4 to zero is equivalent to maximizing the objective function specified
in the LP problem. In effect, in GP we no longer really distinguish between what
in the LP formulation were objective and constraint equations5 and, rather, consider
them all goal equations that are optimized in a specified preemptive order of prior-
ity.6 For the example all the former objective and constraint equations are posed as
GP goal equations denoted as (10.4), (10.5), (10.6), and (10.7). Also, in this example,
the right-hand side to the last goal equation, i.e., (10.7), is an arbitrarily large value
(we chose 20 for this example) as a goal, since minimizing negative deviation of the
objective function from an arbitrarily high goal is the same as maximizing the objective
function.

We solve the example graphically in Figures 10.5–10.8. Conceptually we can think of
the solution as successively narrowing the feasible region of solutions until the feasible
region is reduced to a single point – the optimal solution:

• Objective 1: The first objective is to minimize d+
1 . We are able to minimize d+

1 in
(10.4) to zero, which reduces the solution region from the starting point of all non-
negative values of x1 and x2 to those points beneath the line defined by x1 + x2 = 8
in Figure 10.5 (the shaded region).

• Objective 2: The second objective is to minimize d+
2 . We are able to minimize d+

2 in
(10.5) to zero, which reduces the solution region from the shaded portion in Figure
10.5 (all points beneath the line defined by x1+x2 = 8 in that figure) to the intersection
of that region and the region comprised of points to left the line defined by x1 = 7,
shown as the dark shaded region in Figure 10.6.

5 Constraints in LP are generally specified as inequalities, but by introduction of slack or surplus variables, they
can be specified as equations.

6 This applies to the linear version of GP; the features of alternative GP formulations, such as developed in Lane
(1970) or Cohen (1978), address some of the limitations of the linear approach that will be apparent in what
follows, e.g., when problems are very tightly constrained.
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• Objective 3: The third objective is to minimize d+
3 . We are able to minimize d+

3 in
(10.6) to zero, which reduces the solution region from the dark shaded portion in
Figure 10.6 (optimizing all objectives so far) to the intersection of that region and
the region comprised of points to below the line defined by x2 = 4.5, as shown in
Figure 10.7.
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Figure 10.7 Goal Programming Solution: Objective 3

• Objective 4: Finally, the last objective is to minimize d−
4 . We can test successive

values of q = 5, 9, 12.5, 15, and 20, and if we were able to drive d−
4 to zero then

q would be 20. However, at that value we would violate several of the previous,
higher priority objectives. The farthest we can get and still satisfy the higher order
objectives is at q = 12.5 or where d−

4 = 7.5, which is at the point, x∗ = (3.5, 4.5),
as shown in Figure 10.8. This is, of course equivalent to the LP solution since we
expressed the GP pre-emptive priority classes in the same order as that of the implicit
and explicit objectives for the LP problem, respectively. Other solutions are possible,
however, with alternative specifications the pre-emptive priority levels. We leave it
to the reader to experiment with such situations with this example, although we
illustrate this flexibility later as GP is applied to the case of generalized input–output
planning models.

10.4.4 Additional Observations
Specifying Objectives It is important to note that GP provides considerable

flexibility in handling multiple, even conflicting objectives. In LP we are required to
begin with a feasible region in order to find our way to an optimal solution. In GP the
feasible region is essentially unspecified since any point can be completely specified in
terms of the deviational variables and it is the priority order of objectives that determines
the solution, because by specifying a priority order a solution can be found even if the
objectives are conflicting. This places much more of the planning burden on determining
the priority order, which in a policy context is often quite complex, especially with
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sometimes competing policy objectives, such as economic growth and environmental
quality. Blair (1979) employs an approach called analytic hierarchies (Saaty, 1980) for
this purpose. Others use a wide range of multiobjective decision-making approaches,
such as Nijkamp and van Delft (1977) and Cohen (1978).

Tightly Constrained Problems Another commonly cited limitation of linear
goal programming (and linear programming for that matter) is that tightly constrained
problems are insensitive to how close one is to a given target because solutions, at
least as we have developed the methodology so far, are developed by satisfying goals
completely in pre-emptive order (ordinal) or, as it is sometimes called, lexicographic
order. This means that one has to fully satisfy a higher order goal equation before moving
on to the next. This can lead to illogical solutions, especially in tightly constrained
problems. For example, if an employment goal has a higher priority than, say, a pollution
goal, then the last unit of employment achieved could be at the expense of an enormous
amount of pollution. The literature includes many approaches to address this problem,
such as Lane (1970).

Solution Methods As with LP, when the number of variables and equations
increases beyond two, solution procedures become much more complex. However,
there are a variety of solution approaches to GP problems. In GP, as we have just
seen with an example, through sequential imposition of constraints we arrive at a
solution – GP is sometimes referred to as “weighting within constraints.” However, in
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our graphical solution we did not distinguish between different pre-emptive classes of
objectives and objectives within a pre-emptive priority class. In practice, the solution to
objectives within a pre-emptive priority class is determined simultaneously rather than
sequentially. Linear GP problems (the only sort covered in this text) can be solved via
a basic simplex algorithm similar to that commonly used in LP, as in Blair (1979) and
Lee (1971, 1972, 1973). Other approaches are explored in Ijiri (1965), Cohen (1978),
and Ignizio (1976).

10.4.5 Applications to the Generalized Input–Output Planning Problem
Let us return to our generalized input–output planning example (Example 10.1) to
illustrate the GP solution in this context. Recall the constraint equations, which in the
GP context are no longer called constraints, but rather goal equations. We refer to
the relationships among the goal equations collectively as the set of system process
functions:

x̃ = Gx =
[

D

(I − A)

]
x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0.3
0.1 0.4

0.5 1.1
0.7 0.7

0.1 0.2

0.7 −0.2
−0.1 0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
10
10

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
5

16
14

3

5
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[

x∗

f

]

where the partitions of the matrix G are the coefficients for the energy, environment,
employment, and economic (Leontief) equations, respectively.

These relationships are depicted in Figure 10.9, which is a trivial example because
the right-hand-side quantities were derived from the impact analysis version of the
model for the case where the energy, pollution, and employment values were found

from f =
[

5
2

]
in the first place. It will be more interesting if we choose different

values for x∗ and f . We consider the case where there is growth in Industry B, so that

final demand becomes f =
[

5
10

]
and where we consider the energy and environmental

targets to be re-established as xe∗ =
[

20
20

]
and xp∗ =

[
16
20

]
, respectively, which we

seek not to exceed and the employment target xl∗ = 12, which we seek to not drop
below.
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Figure 10.9 Goal Programming Generalized Input–Output Initial Solution

The problem can be restated as

x̃ = Gx =
[

D

(I − A)

]
x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0.3
0.1 0.4

0.5 1.1
0.7 0.7

0.1 0.2

0.7 −0.2
−0.1 0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
x1

x2

]
≤
≤
≤
≤
≥
≥
≥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20
20

16
20

12

5
10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[

x∗

f ′

]

and translated into a GP format, the goal equations become

0.2x1 + 0.3x2 ≤ 20 → 0.2x1 + 0.3x2 + d−
1 − d+

1 = 20 (minimize d+
1 ) (10.8)

0.1x1 + 0.4x2 ≤ 20 → 0.1x1 + 0.4x2 + d−
2 − d+

2 = 20 (minimize d+
2 ) (10.9)

0.5x1 + 1.1x2 ≤ 16 → 0.5x1 + 1.1x2 + d−
3 − d+

3 = 16 (minimize d+
3 ) (10.10)
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0.7x1 + 0.7x2 ≤ 20 → 0.7x1 + 0.7x2 + d−
4 − d+

4 = 20 (minimize d+
4 ) (10.11)

0.11 + 0.2x2 ≥ 12 → 0.1x1 + 0.2x2 + d−
5 − d+

5 = 12 (minimize d−
5 ) (10.12)

0.7x1 − 0.2x2 ≥ 5 → 0.7x1 − 0.2x2 + d−
6 − d+

6 = 5 (minimize d−
6 ) (10.13)

−0.1x1 + 0.3x2 ≥ 10 → −0.1x1 + 0.3x2 + d−
7 − d+

7 = 10 (minimize d−
7 ) (10.14)

The objective function, assuming a specific set of pre-emptive priorities placing (arbi-
trarily for now), say, employment in the highest class with others following in lower
classes, is the following:

P1(d
−
5 ) + P2(d

−
6 + d−

7 ) + P3(d
+
1 + d+

2 ) + P4(d
+
3 + d+

4 ) (10.15)

Graphically, we depict this solution to this problem in Figures 10.10–10.15,
considering the goal equations in priority order:

• Objective 1: The first objective is to minimize d−
5 in (10.12), which restricts the

solution region from the starting point of all non-negative values of x1 and x2 to the
area above the line associated with the equation 0.1x1 + 0.2x2 = 12. We are able to
minimize d−

5 in (10.12) to zero, the result of which is the shaded region in Figure
10.10.

• Objective 2: The next objective is to minimize d−
6 in (10.13), subject to the constraint

already imposed by Objective 1, which restricts the solution region to the intersection
of the region above the line defined by 0.1x1 + 0.2x2 = 12 (optimizing Objective 1)
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Figure 10.10 Generalized Input–Output Goal Programming: Example 10.1 (Objective 1)
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Figure 10.11 Generalized Input–Output Goal Programming: Example 10.1 (Objective 2)

with the region to the right of the line defined by 0.7x1 − 0.2x2 = 5, as shown by the
dark shaded region in Figure 10.11. Hence, we are able to minimize d−

6 to zero.
• Objective 3: The next objective is to minimize d−

7 in (10.14), subject to the earlier
constraints (optimizing Objectives 1 and 2), which restricts the solution region further
by allowing only points above the line defined by −0.1x1 + 0.3x2 = 10, as shown
by the dark shaded region in Figure 10.12.

• Objective 4: The next objective is to minimize d+
1 in (10.8), subject to the constraints

already imposed in satisfying Objectives 1, 2, and 3. This attempts to restrict the
solution region to points below the line defined by 0.2x1 + 0.3x2 = 20, which
restricts the solution region to the darkly shaded region shown in Figure 10.13. We
are able to minimize d+

1 to zero.
• Objective 5: The next objective is to minimize d+

2 in (10.9), subject to the pre-
vious higher priority constraints imposed so far. We cannot minimize d+

2 all the
way to zero – the closest we can get, without compromising higher priority objec-
tives, is to reduce the solution region to the points along the line defined by
0.1x1 + 0.2x2 = 12 (the same line defining the lower boundary of the solution
region satisfying objective 1), as shown in Figure 10.14.

• Objective 6: The next objective is to minimize d+
3 in (10.10). We cannot reduce

d+
3 to zero – the closest we can get, without compromising earlier constraints, is by

restricting the solution region to the point shown as x∗ in Figure 10.15.
• Objective 7: Attempting to move towards any other goal will result in compromising

on a higher order goal. Hence we have found the GP solution, which is at the point
x∗ = (x∗

1, x∗
2) = (21.25, 49.375).
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Figure 10.12 Generalized Input–Output Goal Programming: Example 10.1 (Objective 3)
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Figure 10.13 Generalized Input–Output Goal Programming: Example 10.1 (Objective 4)
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Figure 10.14 Generalized Input–Output Goal Programming: Example 10.1 (Objective 5)
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Figure 10.15 Generalized Input–Output Goal Programming: Example 10.1 (Objective 6)
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If we change the order of priority in the GP objective function, then, of course, a
different solution will result. For example, suppose the highest priority is determined
to be minimizing sulfur dioxide emissions (and we arbitrarily relegate maximizing
employment to the lowest priority class), then the GP objective function would be
P1(d

+
3 )+P2(d

−
6 +d−

7 )+P3(d
+
1 +d+

2 )+P4(d
+
4 )+P5(d

−
5 ). We leave it as an exercise

to the reader to show that the solution to the GP problem with the new objective function
is the point x∗ = (x∗

1, x∗
2) = (10, 10).

10.4.6 Policy Programming
Blair (1979) combines the impact analysis version of the generalized input–output
model along with the planning form and goal programming in an integrated approach
called policy programming. In this approach, first, a number of alternative future
regional energy development scenarios, or future scenarios, for short, are defined.
These scenarios are all defined to satisfy a set of generalized input–output system
process equations, as defined earlier. That is, each future scenario is defined in terms
of values of industry output, energy consumption, pollution emissions, and regional
employment that comply with the basic Leontief identities and accompanying direct
impact coefficients for energy use, environmental pollution emissions, and regional
employment. We define a collection of values of these variables that comply with these
system process functions as a consistent scenario.

In policy programming the method of analytic hierarchies7 is applied to define pref-
erence scenarios, which are simply linear combinations of future scenarios. A set of
relative weights derived from the method of analytic hierarchies is applied to assem-
ble the linear combination of future scenarios that reflect the relative desirability of the
alternative future scenarios. Preference scenarios are assembled for each of a number of
defined policy makers or other significant decision-makers in the planning process, e.g.,
electric utilities, government regulators, or industrial consumers. Since these prefer-
ence scenarios are linear combinations of consistent scenarios, they are also consistent
by the above definition (a theorem from Blair, 1979), and illustrated below.

The variables defined in the system process functions are then divided into clusters,
over which different policy makers (or others relevant to the planning problem) have
differing degrees of relative influence. The methodology of analytic hierarchies is used
again, this time to define weights of relative influence of policy makers over clusters
of decision variables. A composite scenario is then assembled by bringing together
all clusters of variables, with the values derived from the corresponding clusters of
variable values drawn from preference scenarios weighted by the relative influence of
policy makers over those clusters. This composite scenario, however, will not likely
be consistent (by the earlier definition) with the set of system process functions since
the relative weights over clusters are derived independently and the composite scenario

7 The method of analytic hierarchies, often referred to as the Analytic Hierarchy Process, is a theory and method
of decision-making based on deriving priorities from a matrix of pairwise comparisons of alternatives; see Saaty
(1980).
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is not a linear combination of consistent scenarios. We show this by returning to our
example.

In the earlier example (Example 10.1) we defined a basic consistent future scenario.
This scenario can be expressed in either the impact analysis and planning forms that
equivalently describe the same situation as:

Impact Analysis Form

x̄ =
[

x∗

x

]
= Hf =

[
D∗

L

]
f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.47 1.32
0.37 1.58
1.37 4.58
1.47 3.32
0.26 0.84

1.58 1.05
0.53 3.68

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

5
2

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
5

16
14
3

10
10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Planning Form

x̃ =
[

x∗

f

]
= Gx =

[
D

(I − A)

]
x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0.3
0.1 0.4

0.5 1.1
0.7 0.7

0.1 0.2

0.7 −0.2
−0.1 0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

10
10

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
5

16
14

3

5
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We define three new final-demand vectors f1, f2, and f3 that correspond to different

possible future scenarios as f1 =
[

6
3

]
, f2 =

[
2
7

]
, and f3 =

[
4.5
4.5

]
. For each final-

demand vector, we can compute the generalized impact of each as x̄i = Hf i for i = 1,
2 and 3. For convenience, if we define F = [

f1 f2 f3
]

as a matrix, the columns of
which are the final-demand vectors, then it is easy to define X̄ = [x̄1 x̄2 x̄3] as the
matrix of corresponding generalized impact vectors, which can be expressed as

X̄ = HF = [
x̄1 x̄2 x̄3

] =
⎡⎣x∗

1 x∗
2 x∗

3

x1 x2 x3

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.8 10.1 8.1
7 11.8 8.8

21.9 34.7 26.7
18.8 26.1 21.6
4.1 6.4 5

12.6 10.5 11.8
14.2 26.8 18.9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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These scenarios (each of which is specified in a column of X̄) are consistent as
defined earlier, since in each case x∗

i = DLf i for i = 1, 2, and 3. If we define a composite
scenario as a linear combination of these future scenarios, then it is easy to show that
the composite scenario is also consistent. For example, consider the composite scenario

fc defined as a simple average of the future scenarios, i.e., fc =
3∑

i=1
βifi, where βi = 1/3

for i = 1, 2, and 3 (note that
3∑

i=1
βi = 1). It is easy to show that x∗

c = DLf c thereby

confirming that the composite scenario is consistent as defined above. Blair (1979)
shows that this is true for any linear combination of consistent future scenarios (not just
a simple average as above). For example, consider the case where β1 = 0.2, β2 = 0.3,

and β3 = 0.5 (note again that
3∑

i=1
βi = 1, although that also is not necessarily required

for the composite scenario to be consistent):

x̄c = Hf c = H [β1f1 + β2f2 + β3f3] = H
(

.2

[
6
3

]
+ .3

[
2
7

]
+ .5

[
4.5
4.5

])

= H
[

4.05
4.95

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8.4
9.3

28.2
22.4
5.2

11.6
20.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since x̄ =
[

x∗

x

]
, we write x̄c =

[
x∗

c

xc

]
and if x∗

c = Dxc, then the composite scenario is

consistent as defined above; this will be true for any linear combination of consistent
future scenarios.

Now, suppose we now define variable clusters for these scenarios as energy, pollution,
and employment (as in Table 10.2). If we define a different composite scenario as
one in which the relative weights for combining the future scenarios are different
for each cluster, then it is easy to show that the resulting composite scenario is not
necessarily consistent, and in general unlikely. So instead of β1, β2 and β3 we then
define these weights for each cluster of variables as βe

i , β
p
i and β l

i for scenarios i =
1, 2, and 3, where e, p, and l denote, as before, the energy, pollution, and employment
clusters of variables, respectively. Assume for our example these weights (we assume
economic output variables for the three scenarios are equally weighted) are given in
Table 10.3.



472 Environmental Input–Output Analysis

Table 10.3 Policy Programming: Composite Scenario
Weights

Scenario

i = 1 i = 2 i = 3

Variable Cluster
Energy e 0.1 0.7 0.2
Pollution p 0.8 0.1 0.1
Employment l 0.3 0.2 0.5

To account for the variable clusters, we can express each future scenario i as x̄i =⎡⎢⎢⎢⎣
xe

i
xp

i
xl

i

xi

⎤⎥⎥⎥⎦ or equivalently as x̃i =

⎡⎢⎢⎢⎣
xe

i
xp

i
xl

i

fi

⎤⎥⎥⎥⎦. Hence, we can define a composite scenario,

reflecting the different weights for each cluster of variables, as

x̄c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3∑
i=1

βe
i xe

i

3∑
i=1

β
p
i xp

i

3∑
i=1

β l
i xl

i

3∑
i=1

xi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1

[
6.8
7.0

]
+ 0.7

[
10.1
11.8

]
+ 0.2

[
8.1
8.8

]
0.8

[
21.9
18.8

]
+ 0.1

[
34.7
26.1

]
+ 0.1

[
26.7
21.6

]
0.3 [4.1] + 0.2 [6.4] + 0.5 [5]

1/3

[
12.6
14.2

]
+ 1/3

[
10.5
26.8

]
+ 1/3

[
11.8
18.9

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9.4
10.7
23.7
19.5
5.0

11.6
20.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If we now test to see whether or not this new composite scenario is consistent, as defined
earlier, we find it is not, i.e., x∗

c �= Dxc, as one might expect:

x∗
c=

⎡⎢⎢⎢⎢⎣
9.4

10.7
23.7
19.5
5.0

⎤⎥⎥⎥⎥⎦ �= Dxc =

⎡⎢⎢⎢⎢⎣
0.2 0.3
0.1 0.4
0.5 1.1
0.7 0.7
.1 .2

⎤⎥⎥⎥⎥⎦
[

11.6
20.0

]
=

⎡⎢⎢⎢⎢⎣
8.3
9.2

27.8
22.1
5.2

⎤⎥⎥⎥⎥⎦
The problem of defining a consistent composite scenario can be solved via GP,

which can be used to find a consistent scenario that is as close as possible to the
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composite scenario but that complies fully with the defined system process functions.
The literature includes a variety of attempts to extend the input–output framework
applied to environmental problems using various kinds of multiobjective decision-
making tools in addition to the approach illustrated here (one illustrative example is
Hipel, 1992).

10.4.7 Ecological Commodities
In the preceding discussion and in Chapter 9, we defined a set of direct and indirect
impacts as factors – such as energy consumption, pollution generation, and employ-
ment – that are associated with interindustry activity. In evaluating many environmental
issues, we may wish to distinguish between such factors viewed as inputs to an industry
production process, for example, energy and employment, and those factors viewed as
outputs generated by a production process, for example, pollution.

We might view all these factors as flows into and out of the ecosystem in which
the interindustry economic system exists, that is, as ecological input and output com-
modities. Further, we might restrict our consideration of ecological commodities to
nonmarket materials, since we can adequately deal with the marketable commodities
through the Leontief model itself (sometimes with modifications, as we found in earlier
chapters).

We define a set of ecological commodity inputs – for example, water, land, or air –
the magnitudes of which we will capture in a matrix M = [mkj], an element of which
reflects the amount of ecological input of type k used in the production of economic
sector j’s total output. Similarly, we define a set of ecological commodity outputs – for
example, pounds of sulfur dioxide air pollution. The corresponding matrix of ecological
commodity output flows is N = [nkj], an element of which specifies the amount of
ecological commodity output k associated with the output of sector j.

Johnson and Bennett (1981) classify ecological commodities according to the
sources from which they are extracted and the sinks to which they are eventually dis-
charged. For example, consider the table of economic and ecologic commodity flows in
Table 10.4.

For purposes of this illustration, we consider the interindustry transactions to be
measured in monetary units, while ecological commodity inputs and outputs are mea-
sured in physical units such as acre-feet of water, acres of land, and tons of SO2 or
HC. In Table 10.4 we identify the matrices of ecological commodity inputs and out-
puts, respectively, i.e., M and N, as well as the interindustry transactions, Z, vector
of total final demands, f, and the vector of total industry outputs, x, corresponding to
Table 10.4.

We can now define ecological commodity input and output coefficients in much
the same way we defined direct impact coefficients earlier, by first recalling that A =
Zx̂−1, which defines the matrix of technical coefficients; hence, similarly we define the
matrices of ecological commodity input and output coefficients as R = Mx̂−1 which
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Table 10.4 Economic–Ecologic Commodity Flows

Interindustry Transactions Ecological
Commodity

Consuming Sectors Outputs
Final Total

Agriculture Mining Manuf. Demand Output SO2 HC

Producing
Sectors

Agriculture 1 3 5 3 12 0 1
Mining 0 2 10 0 12 0 2
Manufacturing 0 2 6 16 24 4 3

Ecological
Commodity
Inputs

Water 5 4 8
Land 10 10 1

defines the matrix of ecological commodity input coefficients, that is, the elements of
R = [

rkj
]

specify the amount of commodity k required per dollar’s worth of output

of industry j. Also, Q = N′x̂−1 defines the ecological commodity output coefficients,
that is, Q = [

qkj
]

specifies the amount of commodity k generated per dollar’s worth of
output of industry j. Note that N′ is the transpose of the matrix of ecological commodity
output flows. For the data given in Table 10.4, we find

A = Zx̂−1 =
⎡⎣1 3 5

0 2 10
0 2 6

⎤⎦⎡⎣1/12 0 0
0 1/12 0
0 0 1/24

⎤⎦ =
⎡⎣0.083 0.250 0.208

0 0.167 0.417
0 0.167 0.250

⎤⎦

R = Mx̂−1 =
[

5 4 8
10 10 1

]⎡⎣1/12 0 0
0 1/12 0
0 0 1/24

⎤⎦ =
[

0.417 0.333 0.333
0.833 0.833 0.042

]

Q = N′x̂−1 =
[

0 0 4
1 2 3

]⎡⎣1/12 0 0
0 1/12 0
0 0 1/12

⎤⎦ =
[

0 0 0.167
0.083 0.167 0.125

]

Using R and Q as computed above, total impact coefficients – in this case, ecological
commodity input and output coefficients as a function of final demands – can be written
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as R∗ = R(I − A)−1 and Q∗ = Q(I − A)−1, respectively. For the example,

R∗ = R(I − A)−1 =
[

0.417 0.333 0.333
0.833 0.833 0.042

]⎡⎣1.091 0.436 0.545
0 1.350 0.750
0 0.300 1.500

⎤⎦
=
[

0.455 0.732 0.977
0.909 1.501 1.142

]

Q∗ = Q(I − A)−1 =
[

0 0 0.167
0.083 0.167 0.125

]⎡⎣1.091 0.436 0.545
0 1.350 0.750
0 0.300 1.500

⎤⎦
=
[

0 0.050 0.250
0.011 0.299 0.358

]
The elements in R∗ = [r∗

ij] reflect the amount of ecologic input i required directly and
indirectly to deliver a dollar’s worth of industry j’s output to final demand. For example,
r∗

11 = 0.455 indicates that 0.455 units of water are required to deliver a dollar’s worth
of agricultural products to final demand. Similarly, the elements in Q∗ = [q∗

ij] reflect
the amount of ecologic output i associated with delivering a dollar’s worth of industry
j’s output to final demand directly and indirectly. For example, q∗

23 = 0.358 means that
associated with delivering one dollar’s worth of manufacturing goods to final demand
is production of 0.358 units of hydrocarbon pollutants.

10.5 An Augmented Leontief Model

Another straightforward approach to accounting for pollution generation and abatement
in a traditional Leontief model is simply to augment the technical coefficients matrix
with a set of pollution generation and/or abatement coefficients. In the case of pollution
generation, the coefficients reflect the amount of a particular pollutant generated per
dollar’s worth of industry output. Similarly, the pollution abatement coefficients reflect
inputs to pollution-elimination activities. This procedure was first proposed in Leontief
(1970) and has been developed further by Qayum (1991) and Luptacik and Böhm (1994,
1999).

10.5.1 Pollution Generation
Consider the two-sector input–output data presented in Table 10.5 (originally shown
in Chapter 2). Suppose that sector 1, in producing the $1,000 output indicated in Table
10.6, generates 50 units of “pollution” or “waste” – for example, emits 50 pounds of
solid pollutant into the air.8 Sector 2, while producing its $2,000 output, may have been
observed to have generated 80 pounds of the same solid pollutant. Dividing each of

8 Of course, there may (and generally will) be several kinds of pollution generation associated with any production
process. The basic ideas, however, are adequately illustrated with the example of a single pollutant. Extension to
several pollution types is covered in Ayres and Kneese (1969), Gutmanis (1975), and Leontief and Ford (1972).
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Table 10.5 Economic–Ecologic Commodity Flows: Matrix Definitions

Interindustry Transactions Ecological
Commodity

Consuming Sectors Outputs
Final Total

Agriculture Mining Manuf. Demand Output SO2 HC

Producing
Sectors

Agriculture
Z f x NMining

Manufacturing

Ecological
Commodity

Water
M

Land

Table 10.6 Pollution-Generation Example: Dollar
Transactions

Purchasing Sector
Final
Demand

Total
Output1 2

Selling 1 150 500 350 1, 000
Sector 2 200 100 1, 700 2, 000

these by the total output of the sector responsible for their production would give a kind
of pollution-generation or waste-generation coefficient – pounds of pollutant generated
per dollar’s worth of output (as in Q in the last section).

Since these pollutants are outputs or by-products of a given production process,
they could be interpreted as “negative inputs,” in which case we might define them
in the A matrix in the columns of the producing sectors, 1 or 2, with a minus sign.
This is unnecessary, however, if we interpret pollutant generation in terms of the ser-
vices required to dispose of pollution, for example, waste-disposal services. Hence we
measure waste-disposal services in units of pollution disposed of or generated.

Letting p denote pollution generation, zp1 = 50 pounds says that sector 1 gener-
ated 50 pounds of pollutant; similarly, zp2 = 80 indicates that sector 2 generated 80
pounds of pollutant. Thus, the pollution-generation coefficients are zp1/x1 = ap1 =
50/1, 000 = 0.05, and zp2/x2 = ap2 = 80/2, 000 = 0.04; both are in units of pounds
of pollutant per dollar of output.

If the technological relationships implied by these coefficients are assumed to remain
as stable as the others in input–output analysis, then the total amount of solid pollutant
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emitted into the air, xp, for any given values of x1and x2, would be given by xp =
ap1x1 + ap2x2 or, in this example, xp = (0.05)x1 + (0.04)x2.

This relationship, defining the total pollution output, can be added directly to the
general two-sector model. From before we have

(1 − a11)x1 − a12x2 = f1

−a21x1 + (1 − a22)x2 = f2
(10.16)

Adding a third linear equation involving a third variable, xp, which does not appear in
the previous two equations, is accomplished easily:

(1 − a11)x1 − a12x2 + 0xp = f1

−a21x1 + (1 − a22)x2 + 0xp = f2

−ap1x1 − ap2x2 + xp = 0

or, in more compact matrix terms,

⎡⎢⎣(1 − a11) −a12 0
−a21 (1 − a22) 0

−ap1 −ap2 1

⎤⎥⎦
⎡⎢⎣x1

x2

xp

⎤⎥⎦ =
⎡⎢⎣f1

f2

0

⎤⎥⎦. The

original (I − A) matrix is essentially bordered by a row of (the negatives of) pollution-
generation coefficients and a column of zeros, and the x and f vectors are appropriately
expanded. Denote this expanded coefficient matrix as (I − Ap). Note that this is, in
practice, similar to closing the basic Leontief model with respect to households, as we
did in Chapter 2.

Fundamentally, this simply enables the amount of pollution generated, xp, to be
calculated along with x1 and x2 for any given f1 and f2. This could also be done in two
steps, using the smaller two-equation input–output model, (10.16), and then using the
resulting gross outputs, x1 and x2, to evaluate xp via (10.1) – as in section 10.3, with
the matrix of direct-impact coefficients.

With the expanded inverse, and the data from the example in section 2.3 (in particular,
from Numerical Example: Hypothetical Figures – Approach I), and the hypothesized

values for ap1 and ap2, we have

⎡⎢⎣x1

x2

xp

⎤⎥⎦ =
⎡⎢⎣ 0.85 −0.25 0

−0.20 0.95 0

−0.05 −0.04 1

⎤⎥⎦
−1 ⎡⎢⎣ 600

1, 500

0

⎤⎥⎦.

If we calculate the inverse for this numerical example, we find that the elements of
the original (I−A)−1 matrix still appear in the upper-left area of the expanded inverse,

(I − Ap)
−1. This new inverse is (I − Ap)

−1 =
(

1

0.758

)⎡⎢⎣0.950 0.250 0
0.200 0.850 0

0.055 0.046 0.758

⎤⎥⎦ or
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(I − Ap)
−1 =

⎡⎢⎣1.254 0.330 0
0.264 1.122 0

0.073 0.061 1

⎤⎥⎦. Hence,

⎡⎢⎣x1

x2

xp

⎤⎥⎦ =
⎡⎢⎣1.254 0.330 0

0.264 1.122 0

0.073 0.061 1

⎤⎥⎦
⎡⎢⎣ 600

1, 500

0

⎤⎥⎦. Thus the pollution generated during production to meet final demands of

f1 = 600 and f2 = 1, 500 is xp = (0.073)(600) + (0.061)(1, 500) = 43.80 + 91.50 =
135.50 pounds. Rounding to whole numbers gives 44 + 92 = 136 pounds.

Clearly, having x1 = 1, 247 and x2 = 1, 842 from our earlier calculations, and having
the pollution-generation coefficients (ap1 = 0.05, ap2 = 0.04), the pollution generated
by this production could have been found straightforwardly as xp = (0.05)(1, 247) +
(0.04)(1, 842) = 62.35 + 73.68 = 136.03. Again, rounding to whole numbers gives
62+74 = 136 pounds. [The difference in the results from the two approaches is due to
rounding errors that occur in working with decimals in finding the inverse of (I−Ap)].

Since finding(I − Ap)
−1 involves additional calculations, we would expect the

approach using this inverse to have some advantages, and it does. It allows us to
impute the total amount of pollution generated back to the final users, whose demands,
f1 and f2, were responsible for production in the first place. The first two elements in
the bottom row of (I − Ap)

−1 do just that; each dollar of final demand for the output
of sector 1 causes the generation of 0.073 pounds of pollutant, and each dollar of final
demand for the output sector 2 causes 0.061 pounds. Thus, of the 136 pounds pro-
duced, f1 is the cause of 44 pounds and f2 is the cause of 92 pounds. Note that from the
point of view of producers, sector 1’s gross output, x1, generates 62 pounds; sector 2’s
gross output, x2, accounts for the remaining 74 pounds. The division of responsibility
differs, depending on whether one is viewing the production (supply) side or the final
consumption (demand) side. That is, a $100 reduction of sector 1’s gross output means
5 pounds less of solid waste; a $100 reduction of final demand for sector 1’s output
means 7.33 pounds less.

For some kinds of environmental policy questions it is useful to be able to assign
responsibility not to producers themselves but to the ultimate consumers. The “pollution
multipliers” in the bottom row of (I−Ap)

−1give an indication of the effects on pollution
generation that might be expected to accompany, for example, a government tax policy
aimed at decreasing final demands by consumers by, say, a selective sales tax.9

10.5.2 Pollution Elimination
In a similar fashion, pollution abatement or waste disposal could be introduced into a
Leontief framework as one or more columns representing sectors whose function it is
to reduce or eliminate various pollutants. Consider only one such sector in a model that
includes a pollution-generation row, as above. The coefficients in this column (except

9 Chatterji (1975) extends the augmented Leontief model to include the concepts of a balanced regional model
discussed earlier in Chapter 3.
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Table 10.7 Input–Output Transactions: Pollution-Expanded Model Example

Manuf. Services
Pollution
Abatement

Intermediate
Output

Final
Demand

Total
Output

Manufacturing 15 25 0.6 40.6 59.4 100
Services 20 5 1.2 26.2 73.8 100
Pollution Generation 5 4 0 9 −3 6

for the last one) would represent inputs to the technological process that removes (or
disposes of) the pollutant. If the process itself generates additional pollution, this would
appear in the form of a coefficient in the pollution-generation row. Let xp now represent
pollution eliminated. If all pollution is to be eliminated, the appropriate set of equations
would be

(1 − a11)x1 − a12x2 − a1pxp = f1

−a21x1 + (1 − a22)x2 − a2pxp = f2

−ap1x1 − ap2x2 + (1 − app)xp = 0

(10.17)

The coefficients a1p and a2p represent inputs from the other sectors to pollution abate-
ment, and the third equation simply defines the total amount of pollution generated and
eliminated as xp = ap1x1 + ap2x2 + appxp.

If it is not technologically or economically feasible for all waste to be eliminated,
let xp be the amount eliminated, only, and let fp be the amount not eliminated (and
hence, in some way, “tolerated” by society, if not exactly “demanded”). The total
pollution generated is ap1x1 + ap2x2 + appxp, analogous to the intermediate output in
the traditional Leontief model. We must subtract the amount of pollution tolerated (add
a negative value, fp) to yield total pollution eliminated, xp. Then the third equation in
(10.17) would simply be −ap1x1 −ap2x2 + (1−app)xp = −fp. Hence, the relationships
in (10.17) would become

(1 − a11)x1 − a12x2 − a1pxp = f1

−a21x1 + (1 − a22)x2 − a2pxp = f2

−ap1x1 − ap2x2 + (1 − app)xp = −fp

and the total amount of pollution generated would be xp + fp = ap1x1 + ap2x2 + appxp.

Example 10.2: Pollution-Activity-Augmented Leontief Model Consider the
table of transactions, including pollution levels, as given in Table 10.7. The row sums
of the interindustry transactions matrix yield intermediate industry output for the eco-
nomic sectors and total pollution generated for the pollution-generation sector. In the
final-demand column are final demands for the economic sectors and the amount of
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pollution tolerated by society, which is entered as a negative value since xp is a measure
of the total amount of pollution eliminated ; that is, the total amount eliminated, xp = 6
units, should equal the total amount produced, zp1 = 5 plus zp2 = 4 or 9 units, less the
amount tolerated, which is recorded in the table by the value −fp = −3.

Viewing tolerated pollution as a negative final demand allows us to retain the Leontief
identity of intermediate outputs plus final demands equals total outputs for pollution
sectors as well as economic sectors. Note also that for purposes of this example we
presume that the pollution-abatement sector does not generate pollution in the process
of eliminating pollution from other sectors and the final demand (app = 0).

For this example

Ap =
⎡⎣15 25 0.6

25 5 1.2
5 4 0

⎤⎦⎡⎣ 1
100 0 0
0 1

100 0
0 0 1

6

⎤⎦ =
⎡⎣0.15 0.25 0.10

0.25 0.05 0.20
0.05 0.04 0

⎤⎦
The last row, the pollution-generation row, indicates that the economic sectors, man-
ufacturing and services, generate 0.05 and 0.04 units of pollution, respectively,

per dollar’s worth of output. Hence, (I − Ap) =
⎡⎢⎣ 0.85 −0.25 −0.10

−0.20 0.95 −0.20

−0.05 −0.04 1.00

⎤⎥⎦ and

xp = (I − Ap)
−1fp =

⎡⎢⎣1.630 1.806 0.195
0.283 1.138 0.256

0.075 0.063 1.020

⎤⎥⎦
⎡⎢⎣59.4

73.8

−3.0

⎤⎥⎦ =
⎡⎢⎣100

100

6

⎤⎥⎦.

10.5.3 Existence of Non-negative Solutions
In Chapter 2 we presented a set of conditions ensuring the non-negativity of total out-
puts computed in a Leontief model for a set of given (positive vector of) final demands,
the Hawkins–Simon conditions. These conditions will turn out to be much more impor-
tant in the context of environmental input–output models for assuring the existence of
non-negative solutions than they were in the traditional Leontief framework. The corre-
sponding conditions for the Leontief model augmented with pollution-generation and/or
pollution-abatement sectors can be derived directly from original Hawkins–Simon
conditions.

Recall the simple extended model which includes both generation and elimination
of pollution; in matrix terms this is given as

⎡⎢⎣1 − a11 −a12 −a1p

−a21 1 − a22 −a2p

−ap1 −ap2 1 − app

⎤⎥⎦
⎡⎢⎢⎣

x1

x2

xp

⎤⎥⎥⎦ =

⎡⎢⎢⎣
f1
f2

−fp

⎤⎥⎥⎦
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We can rewrite this relationship in terms of its submatrix components as[
1 − a11 −a12

−a21 1 − a22

] [
x1

x2

]
+
[−a1p

−a2p

]
xp =

[
f1
f2

]
[−ap1 −ap2

] [x1

x2

]
+ (1 − app)xp = −fp

Note that in the first equation we can recognize the 2 × 2 submatrix[
1 − a11 −a12

−a21 1 − a22

]
as simply (I − A), the Leontief matrix of economic sectors unex-

panded by the pollution-elimination and -generation sectors. We can assume that (I−A)

alone satisfies the Hawkins–Simon conditions. Rearranging terms in the first equation

above of submatrix components we write

[
x1

x2

]
= (I − A)−1

{[
f1
f2

]
+
[

a1p

a2p

]
xp

}
. We

want to show the conditions for ensuring that all elements of the vector x =
[

x1

x2

]
are

positive. Since we assume that (I−A) by itself satisfies the Hawkins–Simon conditions,

all the elements of (I − A)−1 are positive. Moreover, f =
[

f1
f2

]
is a vector of positive

final demands presented to the economy and, since a1p and a2p represent inputs from
other sectors to the pollution-abatement sector, they are also non-negative. Hence all
elements of the vector x will be non-negative when xp is non-negative. The conditions
for non-negativity of xp are found by first rearranging terms to obtain

xp = (1 − app)
−1

{[
ap1 ap2

] [x1

x2

]
− fp

}
As discussed earlier, the term app is simply the technical coefficient describing

pollution generation associated with pollution-abatement activities; it is therefore non-
negative. Hence the terms (1 − app) and, consequently, 1/(1 − app) are non-negative if
app < 1, that is, if the amount of pollution generated by the pollution-abatement sector
is less than the amount it eliminates. Finally, therefore, xp will be non-negative if the

expression
[
ap1 ap2

] [x1

x2

]
− fp is non-negative, that is, when

[
ap1 ap2

] [x1

x2

]
> fp.

As defined earlier, fp represents the amount of pollution not eliminated, or tolerated,
which by definition is non-negative, the coefficients ap1 and ap2 give the pollution
generated per unit of output x1 and x2, respectively, which are also positive by defini-
tion. This simply implies that xp will be positive; consequently, the Hawkins–Simon
conditions are satisfied for the extended model when the amount of pollution generated
in the economy is greater than the amount desired. More generally, this indicates that
in polluted areas where pollution generally exceeds the tolerated or desired levels, the
augmented model satisfies the Hawkins–Simon conditions. If this is not the case, this
augmented model is not necessary.
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Example 10.2 (Revisited): Pollution-Activity-Augmented Leontief Model We
can expand the Leontief model given in Example 10.2 to obtain[

x1

x2

]
=
[

1.254 0.330
0.264 1.122

]{[
f1
f2

]
+
[

.1

.2

]
xp

}
and xp = (1.0)

{[
.05 .04

] [x1

x2

]
− fp

}
Clearly (I−A), alone, satisfies the Hawkins–Simon conditions (as defined in Chapter

2), namely |I − A| = 0.7575 > 0, 1−a11 = 0.15 > 0, and 1−a22 = 0.05 > 0. There-
fore, all the elements of (I − A)−1 are non-negative, as shown above. Recall that in
this example app = 0 and therefore (1 − app) = 1, which satisfies the Hawkins–Simon
conditions. Since (1 − app) > 0, this ensures that the pollution-abatement sector elim-
inates more pollution than it generates. Finally, since (1 − app) is non-negative, xp will

be non-negative if
[
ap1 ap2

] [x1

x2

]
> fp or, for this case,

[
0.05 0.04

] [x1

x2

]
> fp. We

demonstrate the implications of this condition as follows. First, recall that the expanded

Leontief inverse was found to be (I−Ap)
−1 =

⎡⎣1.630 1.806 0.195
0.283 1.138 0.256
0.075 0.063 1.020

⎤⎦. Consider two

cases, I and II, defined by the following f vectors: f I
p =

⎡⎣ 1.0
1.0

−0.1

⎤⎦ and f II
p =

⎡⎣ 1.0
1.0

−0.5

⎤⎦.

Case I depicts final demands of unity for economic sectors and a level of “tolerated”
pollution output of 0.1. Case II depicts the same economic sector final demands of unity
with an increased level of tolerable pollution generation of 0.5 units. The corresponding

values of xI
p and xII

p are xI
p = (I − Ap)

−1f I
p =

⎡⎣1.591
1.395
0.035

⎤⎦ and xII
p = (I − Ap)

−1f II
p =⎡⎣ 1.513

1.293
−0.373

⎤⎦. In Case II, xp = −0.373, the total amount of pollution eliminated, is

negative. This is difficult to interpret; that is, it violates the Hawkins–Simon conditions.
More specifically, recalling the submatrix equation condition defined earlier, for Case

I,
[
ap1 ap2

] [x1

x2

]
> fp or

[
0.05 0.04

] [1.591
1.395

]
= 0.135 > 0.1. For Case II we have[

ap1 ap2
] [x1

x2

]
< fp or

[
0.05 0.04

] [1.513
1.293

]
= 0.127 < 0.5. In Case I the total

amount of pollution generated is 0.135 units, which is greater than the fp = 0.1 units
tolerated by society. In Case II, however, the total pollution generated is 0.127 units.
This is less than the amount tolerated (fp = 0.5), so the Hawkins–Simon conditions are
not fulfilled, that is, xp can be negative. In this case the augmented model is unnecessary.
The xp = −0.373 thus represents the fact that the amount of pollution generated in
Case II is 0.373 units less than the amount tolerated.

The discussion we have presented here has been restricted to a single pollutant.
The general framework can be easily extended to several pollutants (see Ayres, 1978).
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Table 10.8 Basic Structure of Economic–Ecologic Models

Industries Ecologic Processes

Industries Flows between economic
sectors

Flows from industry to the
ecosystem

Ecologic Processes Flows from the ecosystem
to industry

Flows within the
ecosystem

Additional comments and enhancements to the augmented Leontief model are given
in Flick (1974), Steenge (1978), Lee (1982), Chen (1973) and Rhee and Miranowski
(1984).

Finally, possibilities of recycling (certainly only feasible for certain kinds of gener-
ated pollutants) can be incorporated into the model through changes in the coefficients
in the pollution-generation row. For example, sector 2 might generate only one half
as much pollutant per dollar’s worth of output, due to its ability to use some of the
waste as an input to production (for example ap2 might be 0.02 instead of 0.04). In
addition, entirely new recycling sectors could be introduced. Their output would be the
end product of recycling (scrap metal, for example); their inputs would be purchases
from other productive sectors and from the waste-generation sector.

10.6 Economic–Ecologic Models

In section 10.2 we introduced the notion of ecological commodities, which we defined
as nonmarketable quantities that are either inputs used by or outputs discharged from
a production process. Given this definition, we can quite easily extend the notion of
commodity-by-industry accounts to accommodate environmental activities in terms
of these ecological commodities. Moreover, as an alternative to simply appending
environmental intensity rows to the technical coefficients, as we did in the last section
when dealing with pollution and its elimination, we can account more specifically
for environmental (or ecosystem) flows by creating an “ecosystem submatrix” that is
linked to interindustry economic flows matrix in the same manner that regions are
interconnected in an interregional input–output model. Such a model is often called a
fully integrated model.

10.6.1 Fully Integrated Models
Both Daly (1968) and Isard et al. (1972) developed similar procedures along these
lines for incorporating environmental activities into an input–output framework. Both
approaches employ flow matrices within and between both economic activities and
environmental processes. As shown in Table 10.8, transactions can be grouped into
four basic submatrices; the diagonal submatrices depict flows within the economy and
the ecosystem, and the off-diagonal submatrices depict flows between the economy
and the ecosystem and vice versa.
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Daly’s version employs a highly aggregated industry-by-industry characterization
of the economic submatrix (upper-left submatrix of Table 10.8) and a classification of
ecosystem processes, including life processes such as plants and animals and nonlife
processes such as chemical reactions in the atmosphere. Isard et al. refines this basic
paradigm by recognizing that secondary production of ecologic outputs – for example,
pollution generation – is incompatible with the assumption of one-product industries
inherent in traditional Leontief models.

Instead, Isard et al. adopts the commodity-by-industry accounting scheme along
the lines described earlier in Chapter 5, which permits an accounting of multiple
commodities, economic and ecologic, produced by a single industry. The technical coef-
ficients in the model used by Isard et al. are estimated directly from technical data, but
since this model was never fully implemented, the adequacy of available data for such
estimation is very difficult to judge. Richardson (1972), Victor (1972) and Isard et al.
(1972) discuss the strengths and weaknesses of this approach in more detail. The avail-
ability of data for the ecosystem submatrix appears to be the most troublesome point.

10.6.2 Limited Economic–Ecologic Models
Victor (1972) limits the scope of the fully integrated economic–ecologic model of Isard
et al. to account only for flows of ecological commodities from the environment into
the economy and of the waste products from the economy into the environment. Thus,
by limiting the scope of the analysis, the data are generally available and the model
can be implemented with little difficulty. The basic accounting framework is shown
schematically in Table 10.9.

Table 10.9 is the familiar commodity-by-industry format, but augmented with addi-
tional rows of ecological inputs (T) and columns of ecological outputs (R). The
submatrices are defined as follows:

Economic Subsystem U = [
uij
]

is the economic “Use” matrix; uij represents
the amount of economic commodity i used by industry j. For n industries and m com-
modities, U is m × n. V = [

vij
]

is the economic “Make” matrix; vij represents the
amount of economic commodity j produced by industry i; V is n × m. The vector of
economic commodity final demands is e = [ei]. The vector of economic commodity
gross outputs is q = [qi], where q is m × 1. The vector of industry value-added inputs
is v′ = [

vj
]
; vj represents the total of value-added inputs to industry j and v′ is 1 × n.

(We noted earlier that v is traditionally used for value-added elements and V designates
the Make matrix in commodity–industry models. The context in which they are used
should eliminate any possible confusion.) Finally, as before the vector of industry total
outputs is x = [

xj
]
; xj represents the total output of industry j; x is n × 1. Note that

all of these submatrices of the economic subsystem are defined in the discussion of
commodity-by-industry accounts in Chapter 5.
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Table 10.9 Limited Commodity-by-Industry Economic–Ecologic Model

Economic Subsystem Ecosystem

Commodities Industries Final Demand Total Output Ecologic Commodities

Commodities U e q R
Industries V x
Value Added v′ GNP
Total Output q′ x′
Ecologic

Commodities
T

Ecologic Subsystem R = [rik ] is the matrix of economic commodity by
ecologic commodity outputs; rik is the amount of ecologic commodity k discharged as
a result of production of economic commodity i; for l ecologic commodities, R is m× l.
T = [

tkj
]

is the matrix of ecologic commodity-by-industry inputs; tkj is the amount of
ecologic commodity k used-by-industry j; T is l × n.

Commodity-by-Industry Formulation As before, with the conventional
commodity-by-industry accounts, we can recall from Chapters 4 and 5 that B = Ux̂−1

where B = [
bij
]

is the matrix of economic commodity-by-industry direct requirements;
bij is the amount of economic commodity i required per dollar’s worth of output of

industry j; B is m × n. We also can recall from Chapters 4 and 5 that C = V′x̂−1 where
C = [

cij
]

is the matrix of industry output proportions; cij is the fraction of industry j’s
output that is distributed as commodity i; C is m × n.

With the accounting system expanded to include ecologic commodities, we can
also define G = Tx̂−1 where G = [

gkj
]

is the matrix of ecologic commodity input
coefficients; gkj = tkj/xj is the amount of ecologic commodity k used in the production
of a dollar’s worth of industry j’s output; G is l × n.

Example 10.3: Limited Economic–Ecologic Models To illustrate Victor’s
approach, first we review the system of commodity-by-industry accounts given ear-
lier in the example in section 10.3. To this system we append the ecologic commodity
accounts, that is, the production of ecologic commodities (R) and the use of ecologic
commodities in producing industry output (T) as in Table 10.10.

For purposes of illustration, we restrict the model to an industry-based technology,
as described in Chapter 5. Recall that this simply means we assume that an industry
consumes economic (and ecologic) commodities in fixed proportions. In this case we
need to compute the matrix of commodity input proportions, D, and the matrix of

commodity-by-industry direct requirements, namely B = Ux̂−1 =
[

0.111 0.091
0.111 0.064

]
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Table 10.10 Economic–Ecologic Models: Example 10.3

Commodities Industries
Ecological
Commodities

A B A B Final Demand Total Output SO2 Water

Commodities U f q R
A 10 10 80 100 0 9
B 10 7 83 100 0 0

Industries V x
A 90 0 90
B 10 100 110

Value Added v′ GNP
70 93 163

Total Inputs q′ x′
100 100 90 110 200

T
SO2 0 0
Water 10 7

and D = Vq̂−1 =
[

0.9 0
0.1 1

]
. Hence, as before, the industry-by-commodity total

requirements matrix is D(I − BD)−1 =
[

1.022 0.099
0.243 1.092

]
. The ecologic commodity

input coefficient is G = Tx̂−1 =
[

0 0
0.111 0.182

]
.

We can find the vector of total ecologic commodity inputs for all industries of the
economy as the vector of row sums of T. That is, industry A consumes 10 units of
water in its production process and industry B consumes 20 units of water; total water
consumption is 30 units. We denote the vector of total ecologic commodity consumption

(inputs) by t̄; hence, in matrix terms t̄ = Ti =
[

0 0
10 20

] [
1
1

]
=
[

0
30

]
.

Since T = Gx̂ then t̄ = Gx̂i; but since x̂i = x, t̄ = Gx. Hence, the total ecologic
commodity requirement for a given vector of economic commodity final demands, e, is
found by x = D(I−BD)−1e and t̄ = Gx = [GD(I−BD)−1]e. The bracketed quantity
is the ecologic input intensity (ecologic commodity inputs by economic commodity
total requirements matrix).

Note that by using the alternative commodity-by-industry total requirements matrices
we derived in Chapter 5 we could easily compute, for example, ecologic inputs and
outputs as a function of final demands for industries rather than for commodities, as we
have shown here. Hannon, Costanza and Herendeen (1983) have shown circumstances
under which the commodity-based and industry-based technology assumptions give
equivalent results in specifying ecosystem models.
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10.7 Pollution Dispersion

In the environmental extensions to input–output that we have dealt with so far, we have
measured pollution in terms of total emissions or discharges of various pollutants. The
ultimate effect of pollutant emissions on a region depends not only on the total amount
of pollutant generated, but also on the manner in which that pollutant is discharged
into the environment. For example, sulfur dioxide produced in electric power plants
is emitted and dispersed from tall smokestacks. The concentrations of that pollutant at
various points in the region surrounding the plant depend upon a variety of technical,
climatic, and geographic factors such as the stack height, wind direction and speed, and
local topography.

10.7.1 Gaussian Dispersion Models
A number of researchers – for example, Berlinsky, Carter and First (1973) and Coupé
(1977) – have coupled models of pollution dispersion to input–output models. Most of
these approaches assume that air pollution from point sources (as opposed to mobile
sources, such as automobiles) is dispersed as a “Gaussian plume.” In a Gaussian plume
the pollutant is assumed to disperse symmetrically about a centerline (the x-axis) of the
plume in both the y and z directions (horizontal and vertical, respectively).

The cross section of the plume is an ellipse which indicates that the rate of dispersion is
greater in the horizontal direction than in the vertical direction. Pasquill (1962), Gifford
(1961), Seinfeld (1975), and others derive a formula describing this dispersion, which
gives the pollutant concentration at a “receptor point” (x, y, z) measured downwind
from that pollution source. The x-axis measures distance downwind, the y-axis measures
horizontal distance from the x-axis, and the z-axis measures vertical distance from the
x-axis. The formula for computing pollutant concentrations at ground level (z = 0) is

C(x, y, 0) = Q

2πuσyσz
exp

{
−1

2

[(
y

σy

)2

+
(

H

σz

)2
]}

where

C(x, y, 0) = the pollutant concentration in μg/m3 (micrograms per cubic meter);
H = height of the pollution source (stack height) in meters;
Q = the pollution emission rate in μg/minute;
σy, σz = the standard deviation of the horizontal and vertical dispersion distributions,

respectively (usually a function of x);
u = the wind speed (meters/minute).

The parameters σy and σz are functions of the local meteorology and, in particular, the
stability of the atmosphere or the air turbulence characteristics. Derivation of specific
values of σy and σz are beyond the scope of this book, but the subject is dealt with
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in detail in Seinfeld (1975) and elsewhere in the literature, where in particular, much
more sophisticated characterizations of pollution dispersion are developed.10

10.7.2 Coupling Pollution Dispersion and Input–Output Models
In coupling dispersion models with input–output models, Hordijk (1980) and others
distinguish among pollution emissions (at the source), primary concentrations (at spec-
ified receptor points) and “cumulated” levels of pollution (accumulated over time at the
receptor points). The emission rate is usually assumed to vary linearly with economic
output of the industry. Hence, we can determine the location of a pollution source or a
number of locations over which total emissions of this type of pollutant in the region
are averaged and subsequently dispersed from these locations. We can then select a
number of receptor points for which we wish to record pollutant concentrations. This
could be a collection of several strategic points or an entire map of all points in the
region. We then add the values of pollutant concentration resulting from each pollution
source to yield total concentration of that pollutant at that receptor point.

Example 10.4: Coupling Input–Output and Pollution Dispersion Models Con-
sider the region defined in Figure 10.16. Note that there are two pollution sources and
four receptor points where we wish to measure pollutant concentration. The following
input–output model describes interindustry activity in the region (millions of dollars):

Z =
[

1 2
3 4

]
and x =

[
10
10

]
. The local government has decided to stimulate industrial

activity through fiscal measures which, in terms of the input–output model, translate to

increased final demand activity. Suppose the stimulus amounts to �f =
[
�f1
�f2

]
, where

�f1 and �f2 are $4 million and $3 million, respectively.
Assume that the economic activity is related to pollution emission by average values

of 30.77 grams per second per million dollars’ worth of output from industry A and
27.59 grams per second per million dollars’ worth of output from industry B. Further,
we assume that u = 15 meters/second prevailing from the West, H = 250 meters, and
σy = σz = axb where a = 0.24 and b = 0.88 are empirically derived constants. We
are interested in pollutant concentrations at the receptor points (at ground level, that is,
where z = 0) so we can apply the Gaussian plume equation above. With the increased
interindustry activity, pollutant concentrations increase proportionally with the level of
increased total output. We can compute the region’s new level of total production as the
sum of current production, x, and the production prompted by the new final demand,

xnew = x + (I − A)−1�f =
[

10
10

]
+
[

1.250 0.416
0.625 1.875

] [
4
3

]
=
[

16.250
18.125

]
Since the prevailing wind is from the West, and the pollution sources are east of Receptor
Points 3 and 4, the ambient pollutant concentrations at these points are both zero. The

10 Alternatives to Gaussian dispersion models that are much more sophisticated characterizations of pollution
dispersion are described in Seinfeld (1975), Turner (1961), Jacobson (1998), and Borrego and Schayes (2002).
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Figure 10.16 Location of Air Pollution Sources and Receptor Points

concentrations at receptor points 1 and 2, however, must be computed by the dispersion
formula, so for Receptor Point 1, C = 4.31 × 10−5μg/m3 and for Receptor Point 2,
C = 4.16 × 10−5μg/m3.

10.8 Other Applications

Many researchers have employed input–output analysis to examine the implications
of major environmental policy initiatives, such as efforts to reduce greenhouse gas
emissions from burning fossil fuels, as in Kratena and Schleicher (1999) or Lenzen, Pade
and Munksgaard (2004), the economic and environmental implications of recycling, as
in Nakamura (1999), ecosystem restoration as in Weisskoff (2000), and economic and
environmental issues associated with international trade, as in Reinert and Roland-Holst
(2001) or Ahmad and Wyckoff (2003).

Some researchers expand the environmental input–output framework to analyze the
social costs of environmental pollution production and elimination, as in Steenge and
Voogt (1994) or Steenge (2004), and to adapt national accounting systems to better
accommodate environmental costs and benefits of interindustry activity, as in Duchin
and Lange (1994), Duchin and Steenge (1999) and United Nations (2000). Much work
in the 1970s and 1980s was done specifically in analyzing air pollution issues, as in
Berlinksy, Carter and First (1973), and more recently in Lutz (2000).
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Much recent work in environmental input–output analysis appears in the literature
of ecological economics, which addresses the dynamic and spatial interdependence
between human economies and natural ecosystems, such as Duchin and Lange (1994).
Finally, input–output analysis is a widely used method for examining the life cycle
economic and environmental cost of materials, such as in Lloyd and Lave (2003) or
Hendrickson, Lave and Matthews (2006).

10.9 Summary

In this chapter we examined several approaches to accounting for pollution generation
and elimination in input–output models. The models ranged from using a matrix of
pollution-generation coefficients in conjunction with the Leontief inverse, to coupling
input–output relationships with mathematical programming models, to an economic–
ecologic model that couples a Leontief model of economic flows with an ecosystem
model of environmental commodity flows. Finally we discussed coupling an envi-
ronmental input–output model to a model of pollution dispersion over a geographic
region.

Many input–output models applied to environmental problems appeared in the 1970s,
including the Strategic Environmental Assessment System (House, 1977), Miernyk
and Sears (1974), Cumberland and Stram (1976), Leontief and Ford (1972), Converse
(1971), Page (1973), Stone (1972), and Lowe (1979). More recently applications of
input–output models to evaluating the effectiveness of alternative technology options
for pollution control have appeared in Ketkar (1999), Rose (1983), and Forssell (1998),
which built upon the earlier work of Miernyk (1973), Cumberland (1966), and Giar-
rantani (1974). Finally, the current frontier of environmental models is similar to that
of energy models in the 1970s, where econometric extensions became important (as
described in Chapter 9). More recently extensions have appeared to dynamic models,
as in Duchin (1990, and 1992), general equilibrium models, as in Conrad and Schmidt
(1998) and Zhang (1998), and structural decomposition analysis, as in Wier (1998).

Problems

10.1 Assume that we have the following direct coefficient matrices for energy, air pollution,
and employment (De, Dp, and Dl , respectively) for two industries, 1 and 2: De =[

0.1 0.2
0.2 0.3

]
, Dp =

[
0.2 0.5
0.2 0.3

]
, and Dl = [

0.2 0.5
]
. Notice that industry 2 is both

a high-polluting and high-employment industry. Suppose that the local government
has an opportunity to spend a total of $10 million on a regional development project.
Two projects are candidates: (1) Project 1 would spend appropriated dollars in the
ratio of 60 percent to industry 1 and 40 percent to industry 2; the minimum size of this
project is $4 million; (2) Project 2 would spend appropriated dollars in the ratio of 30
percent to industry 1 and 70 percent to industry 2; the minimum size of this project
is $2 million. The government can adopt either project or a combination of the two
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projects (as long as the minimum size of each project is at least maintained and the total
budget is not overrun). In other words, we might describe the options available to the

government as:

[
βa

βb

]
= α1

[
0.6
0.4

]
+ α2

[
0.3
0.7

]
where α1 and α2 are budgets allocated

to projects 1 and 2, respectively. βa and βb are the total final demands presented to the
regional economy by the combination of projects for industries A and B, respectively.
Suppose that four alternative compositions of these projects are being considered

(1)

{
α1 = 4
α2 = 2

, (2)

{
α1 = 5
α2 = 5

, (3)

{
α1 = 10
α2 = 0

and (4)

{
α1 = 0
α2 = 10

. The following table

of constraints describes the local regulation on energy consumption and environmental
pollution in the region:

Maximum Allowable Changes
Collectively by All Industries

Oil Consumption (1015 BTUs) 3.0
Coal Consumption (1015 BTUs) no limit
SO2 Emissions (tons) 14.5
NOx Emissions (tons) 10

Finally, suppose that the regional economy is currently described by the following
input–output transactions table (in millions of dollars):

A B Total Output

A 1 3 10
B 5 1 10

a. Which of the proposed combinations of projects (1), (2), (3), and (4) permit the
region to operate within the above constraints on energy consumption and air
pollution emission and within the established budget constraint?

b. Which of these “legal” projects that you identified in (a) should be adopted to
maximize the employment in the region?

10.2 Assume that a regional economy has two primary industries: A and B. In producing
these two products it was observed last year that air pollution emissions associated
with this industrial activity included 3 pounds of SO2 and 1 pound of NOx emitted
per dollar’s worth of output of industry A, and 5 pounds of SO2 and 2 pounds of NOx

emitted per dollar’s worth of output of industry B. It was also observed that industries
A and B consumed 1×106 tons and 6×106 tons of coal respectively during that year.
Industry A also consumed 2 × 106 barrels of oil. Total employment in the region was
100,000 (40 percent of which were employed by industry A and the rest by industry
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B). The regional planning agency has constructed the following input–output table of
interindustry activity in the region (in $106):

A B Total Output

A 2 6 10
B 6 12 10

Assume that with growth in the region during the next year the new final-demand
vector will be

[
15 25

]′
. Using what you know about constructing a generalized

input–output model, determine the following:

a. the total consumption of each energy type (coal and oil) during the next year;
b. the total pollution emission (of each type) during the next year; and
c. the level of total employment during the next year.

10.3 A regional planning agency initiates a regional development plan. Four projects are
being considered that would represent government purchases of regionally produced
products, that is, final demands presented to the regional economy (see table).

Project Expenditure (millions of dollars)

Regional Industry Project 1 Project 2 Project 3 Project 4

A 2 4 2 2
B 2 0 0 2
C 2 2 4 3

You are given additional information. The matrix of technical coefficients is A =⎡⎣0.04 0.23 0.38
0.33 0.52 0.47

0 0 0.1

⎤⎦. The relationships between the following quantities and total

output are also known:

Industry

1 2 3

Pollution Emission (grams/$ output) 4.2 7.0 9.1
Energy Consumption (bbls oil/$ output) 7.6 2.6 0.5
Employment (workers/$ output) 7.3 3.3 6.3

a. Which of the four projects contributes most to gross regional output?
b. Which of the projects causes regional consumption of energy to increase the most?
c. Which of the projects contributes most to regional employment?

10.4 Consider an input output economy defined by Z =
[

140 350
800 50

]
and x =

[
1000
1000

]
.

Suppose this is an economy in deep economic trouble. The federal government has
at its disposal policy tools that can be implemented to stimulate demand for goods
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from one sector or the other. Also suppose that the plants in sector 1 discharge 0.3 lbs
of airborne particulate substances for every dollar of output (0.3 lbs/$ output), while
sector 2 pollutes at 0.5 lbs/$ output. Finally, let labor input coefficients be 0.005 and
0.07 for sectors 1 and 2, respectively.

a. Would a conflict of interest arise between unions and environmentalists in deter-
mining the sector toward which the government should direct its policy effort? (You
need not close the matrix with respect to either households or pollution generation
to answer this question.)

b. Can you think of a technological reason why or why not a dispute might arise?
10.5 Consider the following interindustry transactions table:

Purchasing Sector

1 2 Total Output

Selling Sector 1 140 350 2000
2 800 50 1850

The amount of pollution generated by sector 1 is 10 units and by sector 2 is 25 units.
Pollution abatement reduced pollution by 5 units in sector 1 and 12 units in sector 2.
Total pollution permitted by local regulation is 12 units. Using a pollution-activity-
augmented Leontief formulation, what is the level of output for each industry and the
total pollution generated if final demands for both sectors increase by 100?

10.6 In problem 8.5 national and regional input–output tables are defined with
three sectors (natural resources, manufacturing, and services) with the follow-
ing matrices of technical coefficients and vectors of total outputs, respec-

tively, AN =
⎡⎣.1830 .0668 .0087

.1377 .3070 .0707

.1603 .2409 .2999

⎤⎦, xN =
⎡⎣ 518, 288.6

4, 953, 700.6
14, 260, 843.0

⎤⎦, AR =
⎡⎣.1092 .0324 .0036

.0899 .0849 .0412

.1603 .1170 .2349

⎤⎦ and xR =
⎡⎣ 8, 262.7

95, 450.8
170, 690.3

⎤⎦ .

The following table of energy use, pollution, and employment coefficients are defined
that apply to both the regional and national economies:

Industry

Nat. Res. Manuf. Services

Pollution Emission (grams/$ output) 4.2 7 9.1
Energy Consumption (BTUs/$ output) 7.6 2.6 0.5
Employment (person-hrs/$ output) 7.3 3.3 6.3

Suppose a major new public works initiative by the federal government
is characterized by the following vector of increases in federal spending:
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�f ′ = [
250 3, 000 7, 000

]
, of which 20 percent will be spent in the region. How

do the percentage changes in total impacts on pollution, energy use, employment, and
total industrial output of each industry sector for the region compare with those of the
nation as a whole?

10.7 For the regional economy described in problem 10.6 prior to the projected final
demand, if there were a 10 percent shortfall in the availability of energy, what would
be the corresponding impacts on GDP?

10.8 An input–output economy is specified by A =
[

.3 .1

.2 .5

]
and f =

[
4
5

]
. Write the linear

programming (LP) formulation for finding x, the vector of total outputs. Solve this LP
problem graphically. Suppose also that pollution is generated at a rate of 2.5 units per
dollar of output of industry 1 and 2 units per dollar of output of industry 2. Replace
the objective function for the LP problem above with minimizing pollution emissions.
Solve this LP problem graphically and compare the solution with that of the first LP
problem.

10.9 For the economy specified in problem 10.8, suppose that employment is generated at
a rate of 6 and 3 units per dollar’s worth of output for industries 1 and 2, respectively,
and that there is a very high priority employment target of 7.5 units for industry 2.
Find the vector of total outputs that meets the employment target for industry 2 as
the highest priority, then as the next highest priority meets final-demand requirements
while minimizing pollution generation to the extent possible and if possible to a total
level of 10 units of pollution between the two industries.

10.10 For the 1997 US input–output table provided in Appendix B, suppose the vector of
units of carbon dioxide emissions generated per dollar of total output is given by
d = [2 3 4 7 10 5 4]′. Assume that the availability of new technology
enables the manufacturing sector to reduce the emissions per dollar of output in the
year 2005 by 10 percent and the construction sector to reduce emissions by 15 percent.
The input–output table for 2005 is also provided in Appendix B. For this case how
much do total emissions of carbon dioxide increase or decrease in the United States
in 2005 relative to 1997 levels?
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11 Social Accounting Matrices

11.1 Introduction

The System of National Accounts (SNA) described in Chapter 4 was developed from
the basic concepts of the circular flow of income and expenditures in an economy.
As noted in that chapter, the SNA provides a convenient and essentially standardized
framework for compiling and organizing aggregate national statistics that characterize
the economic profile of an economy. When the SNA is combined with the input–output
accounts, which incorporate the interindustry activity associated with intermediate as
well as final production and consumption of goods and services in the economy, the
picture of the economy becomes more comprehensive. However, the framework as
it has been developed so far in this text provides relatively little insight into the role
of people and social institutions in the economy, e.g., labor and households, human
capital, and social welfare.

A logical goal then, and the focus of this chapter, is to extend the SNA/IO framework
to add a more detailed characterization of the roles of labor, households, and the social
institutions of the economy. In particular, we seek to capture in more detail the employ-
ment features of the economy, including such factors as income from employment and
its disposition, labor costs, and the demographics of the work force that comprise the
market for supply and demand of labor. Moreover, in many nations’ compilations of
national statistics, no framework exists to ensure consistency across statistics from vari-
ous sources, let alone reconciling them with basic economic accounts. Both goals can be
accomplished by means of a so-called Social Accounting Matrix (SAM), development
of which is the principal focus of this chapter.

11.2 Social Accounting Matrices: Background

A SAM can be thought of as a generalization of the SNA framework developed in
Chapter 4, but we will find that the principal new feature added is to incorporate
transactions and transfers between institutions related to distribution of income in the

499
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economy.1 In the construction of SAMs we will find similarities with the energy and
environmental input–output extensions developed in Chapters 9 and 10, and especially
with the commodity-by-industry or supply and use2 framework developed in Chapters
4 and 5. In particular, by incorporating SAMs into the supply and use framework, we
can develop an extended input–output model that can be employed for analyzing social
and economic policy in a more comprehensive way.

Auseful conceptual point of departure for the construction of SAMs is to return to the
very simple concept of chronicling the circular flow of income and expenditures in the
economy (Chapter 4, Figure 4.1). If we change the perspective of viewing the circular
flow of income and expenditure to that of transactions between institutions rather than
or perhaps in addition to that associated with industry and commodity flows, it is helpful
to explicitly identify the places where those transactions occur, namely the markets.
That is, consider Figure 11.1, which depicts the flow of income and expenditure, now
including product markets where transactions involving consumption of goods and
services occur and resource markets where the transactions for value added factors of
production occur, such as wages and salaries to employees, entrepreneurship or profits,
taxes, and consumption of fixed capital including land.

In developing SAMs, we seek specifically to elaborate on the detailed accounting
of what goes on in the product and resource markets, and in particular, delineating the
characteristics of the labor force, government policies such as taxation and welfare
transfers, and other allocations of income.

Figure 11.1 Circular Flow of Income, Expenditure, and Market

1 Extensive discussions of the rationale and development of SAMs are provided in Pyatt (1991a, 1991b, 1994a,
1994b and 1999) or Pyatt and Round (1977, 1985a and 1985b).

2 Often in discussions about SAMs the terms supply and use replace the term commodity-by-industry, since
many additional sectors are incorporated beyond interindustry transactions, although conceptually the terms are
identical.
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Table 11.1 The Basic National Accounts Balance
Statement in Matrix Form

Prod. Cons. Cap. ROW Govt.

Production C I X G
Consumption Q D H
Capital Accum. S
Rest of World M O L
Govt. T B

11.3 Social Accounting Matrices: Basic Concepts

We begin by recalling the matrix form of the national economic accounts introduced
in Chapter 4, shown in Table 11.1, where we reintroduce the variables used in defining
the basic national economic accounts using the SNA conventions.

The transactions reflected in the table are the following:

C = total consumption of goods and services in the economy
I = total investment in capital goods

X = total exports of goods and services
G = government expenditures
Q = total income generated in the economy
D = depreciation or consumption of capital goods
H = income generated overseas
S = total private savings

M = total imports of goods and services
O = transfers of money overseas
L = net lending of resources from overseas
T = total direct taxation of consumers
B = total government deficit spending

The reader will also recall from Chapter 4 that the row and column sums of this
matrix constitute a set of macroeconomic accounting balance equations, which also
corresponded to a set of accounting “T accounts” corresponding to each major set of
economic activity:

• Production Account: Q + M = C + I + X + G
• Consumption Account: C + S + O + T = Q + D + H
• Capital Accumulation Account: I + D + L + B = S
• Balance of Payments Account: X + H = M + O + L
• Government Account: G = T + B
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Table 11.2 (Table 4.5 Revisited) The Basic National
Accounts Balance Statement in Matrix Form: Example

Prod. Cons. Cap. ROW Govt. Total

Production 475 75 25 25 600
Consumption 550 −19 14 545
Capital Accum. 40 40
Rest of World 50 10 −21 39
Govt. 20 5 25

Total 600 545 40 39 25

In Chapter 4 the development of the SNA conventions from the basic concept of the
circular flow of income and expenditure was illustrated by means of an example shown
earlier as Table 4.5 (and graphically in Figure 4.6), which we revisit here as Table 11.2.

The reader will recall from Chapter 4 that these tables resulted from gradually expand-
ing the accounting detail, chronicling the circular flow of income and expenditures
between production (defined as the production account) and consumption (defined as
the consumption account) in the economy by sequentially adding new accounts to dis-
tinguish major types of economic activity such as savings and investment (the capital
accumulation account), imports and exports (the balance of payments account), and
the role of government (the government account). Finally, we also expanded the rep-
resentation of the consumption account to capture the role of individual industries and
specific products (goods and services), which also provided the link to input–output
analysis.

In the following we will expand the accounting framework further to include a more
detailed characterization of the roles of labor and households, which will turn out to
be equivalent to defining a SAM. We begin by expanding the consumption account
related to labor and households, but we will subsequently expand the role of labor
and households in the other major accounts as well. Finally, we can also incorporate
non-monetary factors, such as environmental information, in the expanded framework,
which we will refer to more generally as extended input–output models (as in Chapter
9 with energy production and use associated with interindustry activity and in Chapter
10 with environmental pollution generation and mitigation).

11.4 The Households Account

Table 11.3 shows the national accounts matrix expanded to distinguish between current
consumption by intermediate consumers (industries) and final consumers (households)
and to distinguish the role of households as a provider of labor services, a value-added
factor of production. This expansion results in an additional row and column, each
labeled Households, which we record in a new account defined as the households
account.
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Table 11.3 The Basic National Accounts Balance Statement in
Matrix Form Expanded to Include the Households Account

Prod. Cons. Cap. ROW Govt. Households

Production U I X G F
Consumption Q D H
Capital Accum. S
Rest of World M L O
Govt. B T
Households V

Since the principal goal is to distinguish between intermediate consumption by busi-
nesses and final consumption by households, note that several changes have occurred in
the table. First, C – the total consumption of goods and services – has disappeared and
been replaced by three new variables along with some changes in several other variables.
The three new variables, highlighted in boldface in the table, are the following:

U = total “use” of goods and services by businesses
F = total of final consumption of goods and services by households
V = total of “value-added” inputs consumed by businesses

For the present we assume that all value-added inputs, such as labor and capital,
are provided by households. Note also that the values of S, O, and T have moved to
the households column, since these transactions are related to household consumption
rather than intermediate consumption of goods and services by businesses. That is, total
savings (S) refers to the allocation of income to savings by final consumers (principally
households), which accumulates for use by businesses (and others); overseas transfers
(O) refers to overseas transfers of income by households, and taxes (T ) refers to direct
taxes paid by households that provide the principal revenue for government. We will
incorporate taxes paid by businesses later, which are termed indirect taxes since they
are not direct taxes on consumers but, rather, appear as part of the price of goods and
services to consumers.

For the revised table of accounts, now including households, the corresponding
balance equations are:

• Production Account: Q + M = U + F + I + X + G
• Consumption Account: U + V = Q + D + H
• Capital Accumulation Account: I + D + L + B = S
• Balance of Payments Account: X + H = M + O + L
• Government Account: G = T + B
• Households Account: V = F + T + S + O

The corresponding table for the example is given in Table 11.4.
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Table 11.4 The Basic National Accounts Balance Statement in Matrix
Form: Example, Expanded to Include the Households Account

Prod. Cons. Cap. ROW Govt. Households Total

Production 219 75 25 25 256 600
Consumption 550 −19 14 545
Capital Accum. 40 40
Rest of World 50 −21 10 39
Govt. 5 20 25
Households 326 326

Total 600 545 40 39 25 326

11.5 The Value-Added Account

In earlier chapters we defined value-added inputs to industry production as those com-
prising primary factors of production, such as capital and labor, which are drawn from
outside the interindustry network of producers and consumers of intermediate goods
and services. Such primary factors include government services (paid for in taxes,
referred to earlier as indirect taxes), consumption of capital goods (depreciation), land
(rental payments), and entrepreneurship (normal profits of businesses). We now can
introduce to our set of accounts a value-added account to capture these inputs. Many
of these inputs come from households (as we have assumed so far) who are the principal
suppliers of capital and labor, but we need to be able to accommodate other sources as
well, such as government and foreign sources.

As a starting point, Table 11.5 includes the matrix form of the national accounts, this
time expanded to include the value-added account. Note that Table 11.5 includes the
new value added row and column as well as a new variable, W, which is defined as the
total of value-added payments to households (wages and salaries, interest on capital,
etc.) and the corresponding additional balance equation for the value-added account is
simply V = W , at least so far. In addition, the households account balance equation
becomes W = F + T + S + O. The corresponding table for the example is given in
Table 11.6.

The type of SAM represented by Tables 11.5 and 11.6 is often referred to as a
“macro SAM” since it aggregates all of the sectoral details of transactions into a single
macroeconomic transaction. In the next section we explore how to expand the SAM to
include more detailed sector transactions.

11.6 Interindustry Transactions and the Connection to the Input–Output
Framework

In Tables 11.5 and 11.6 the row and column sums from the households and value-added
accounts are the same since we have assumed for the present that all value-added
inputs are generated by households. In addition, so far, we have also implicitly made a
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Table 11.5 The Basic National Accounts Balance Statement in Matrix
Form Expanded to Include the Value-Added Account

Prod. Cons. Cap. ROW Govt. Households
Value
Added

Production U I X G F
Consumption Q D H
Capital Accum. S
Rest of World M L O
Govt. B T
Households W
Value Added V

Table 11.6 The Basic National Accounts Balance Statement in Matrix Form:
Example, Expanded to Include the Value-Added Account

Prod. Cons. Cap. ROW Govt. Households
Value
Added Total

Production 219 75 25 25 256 600
Consumption 550 −19 14 545
Capital Accum. 40 40
Rest of World 50 −21 10 39
Govt. 5 20 25
Households 326 326
Value Added 326 326

Total 600 545 40 39 25 326 326

number of somewhat restrictive assumptions, such as that only households pay taxes and
generate savings. We will return to the framework later to address these assumptions,
but first we expand the consumption account to identify the interindustry transactions
involved in intermediate consumption of goods and services (the total value of which is
U ), as well as the sectoral detail of deliveries to final markets, including the distinction
between types of final markets, i.e., personal consumption expenditures (F), net exports
(X ), government expenditures (G) and investments or capital accumulation (I). These
expansions will allow us to recast input–output relationships in a social accounting
matrix.

Let us begin with a very simple input–output example and recast it as a SAM. Con-
sider the basic input–output transactions table shown in Table 11.7. (The fact that there
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Table 11.7 SAM Framework Example: Input–Output Representation

Nat. Res. Manuf. Services Households Total Output

Natural Resources 50 30 0 60 140
Manufacturing 60 40 40 40 180
Services 0 0 0 100 100
Value Added

Labor 10 70 10
Capital 20 40 50

Total Inputs 140 180 100

Table 11.8 SAM Framework Example Using Social Accounting Conventions

Expenditures

Nat. Res. Manuf. Serv. Labor Capital Households
Total
Output

Income
Natural Resources 50 30 0 60 140
Manufacturing 60 40 40 40 180
Services 0 0 0 100 100
Labor 10 70 10 90
Capital 20 40 50 110
Households 90 110 200

Total Inputs 140 180 100 90 110 200

are no interindustry deliveries of services is arbitrary.) We now recast the input–output
table as a SAM using the conventions we have established so far in Table 11.8.

The difference between the basic input–output table representation and the SAM
representation seems trivial in this simple example, but the key concept as we con-
sider more complex features, such as distinctions between supply and use (industries
and commodities) or adding more detail in value-added or household consumption
categories, is that balance equations are maintained via the requirement that row and
column sums be equal for all entries. As we add detail for the capital, labor, house-
holds, and additional accounts the result will be a much more detailed picture of the
economy including not only the input–output table of interindustry income and output,
but also the institutional income and expenditures associated with Final Demand and
Value Added sectors. As we have seen from the connection to and, indeed, derivation
from the SNA, the framework also provides essentially a complete accounting of the
circular flow of income and expenditure in an economy.
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11.7 Expanding the Social Accounts

Now let us reverse course and begin with the aggregated SNA example developed
earlier in the chapter, the final installment of which was presented in Table 11.6. We
now add sectoral detail for the supply and use of goods and services as well as categories
of value-added income and final consumption. Consider the input–output table in Table
11.9 that is compatible with the SAM depicted in Table 11.6. That is, in Table 11.9 the
production and consumption accounts have been added to include sector and commodity
detail. This example is, of course, one of many possibilities. The lightly shaded portion
of the accounts in the table comprises the Use matrix defined in Chapters 4 and 5 and
the darkly shaded portion comprises the Make matrix.

We can further expand the Value Added and Final Demand sectors in Table 11.9 to
include more detail in the various types of value-added income and in final commodity
consumption patterns. These expanded Value Added and Final Demand accounts are
shown in Tables 11.10 and 11.11, respectively.

Finally, we can specify how the sources of valued-added income relate to final
demands, completing the circulation of income and expenditure in the economy, as
shown in Table 11.12. The corresponding expanded input–output and SAM representa-
tions of these accounts including the new table segments from Tables 11.10, 11.11, and
11.12 that completes the circular flow of income and expenditure are shown in Table
11.13. The SAM representation is shown in Table 11.14.

Note that in Table 11.14, as we expand the accounts to include more sectoral detail,
we have changed the notation for total income to the economy (the transaction between
the consumption row and the production column and until now in this chapter denoted
by Q), by the matrix V to reflect the more familiar input–output notation of the Make
matrix. We have also replaced the notation for the sources of value-added income (until
now denoted by V ) by the matrix R.

11.8 Additional Social Accounting Variables

In the following sections, in order to make the presentation less complex, we simplify the
SAM/SNA framework somewhat by returning to an industry-by-industry framework,
where interindustry transactions are recorded in a single transactions matrix rather
than the complementary pair of Supply and Use matrices of the SNA framework. We
also begin once again with macro-SAMs where we return to the use of Q to denote
total income to the economy (the transaction between the consumption row and the
production column) V to denote total value-added income. However, all the concepts
presented apply also in the commodity-by-industry framework as well.

In Tables 11.5 and 11.6 the row and column sums from the households and value
added accounts are the same since we have assumed for the present that all value-added
inputs are generated by households. In addition, so far, we have also implicitly made
a number of other somewhat restrictive assumptions, such as that only households pay
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Table 11.10 Expanded Value-Added Accounts

Industries

Value Added
Categories

Natural
Resources Manuf. Services

Depreciation −5 −10 −4
Export Income 3 6 5
Taxes 10 45 31
Welfare Transfers 25 33 4
Indirect Taxes 30 55 44
Interest Income 27 45 37
Total Value Added 90 174 117︸ ︷︷ ︸

381

Table 11.11 Expanded Final-Demand Accounts

Final-Demand Categories
Total Final

Commodities Households Investment Govt. Exports Demand

Agriculture 61 9 3 10 83
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Energy 45 6 2 5 58
Manuf. Products 50 12 5 5 72 381
Fin. Services 50 20 10 2 82
Other Services 50 28 5 3 86

Table 11.12 Sources of Value-Added Income

Value-Added Sectors

Deprec.
Exp.
Inc.

Cons.
Taxes

Welfare
Transfers

Indirect
Taxes

Int.
Income Total

Final Demand Sectors
Households 86 51 119 256

⎫⎪⎪⎬⎪⎪⎭ 381
Investment −19 10 84 75
Government 25 25
Exports 14 11 25

Total −19 14 86 62 129 109︸ ︷︷ ︸
381
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taxes and generate savings. We can now begin to relax these assumptions by including
some additional variables:

P = government transfers to households, such as welfare transfers
SG = government savings
SF = foreign savings
TB = indirect taxes or taxes paid by businesses
TI = taxes on imported goods and services

We now introduce in Table 11.15 these variables just defined into our matrix
of national accounts as transactions that affect the relevant accounts involved. For
example, government revenues now result from not only taxes paid by consumers and
deficit spending, but also from indirect taxes paid by businesses as well as taxes on
imported goods and services. Similarly, capital is accumulated not only from private
savings but now also from foreign and government sources. And finally, household
revenues are not only income from remuneration for creation of value-added inputs but
also from welfare transfers from government.

The corresponding balance equations become:

• Production Account: Q + M + TI = U + F + I + X + G
• Consumption Account: U + V + TB = Q + D + H
• Capital Accumulation Account: I + D + L + B = S + SG + SF
• “Rest of World” Account: X + H + SF = M + O + L
• Government Account: G + P + SG = T + B + TB + TI
• Household Account: P + W = F + T + S + O
• Value Added Account: V = W

The table for the example is given in Table 11.16.

11.9 A “Fully Articulated” SAM

Until this point the SAMs we have developed are of a type commonly referred to as
a “macro SAM” since the table aggregates many sectoral details of transactions into
a single macroeconomic transaction, such as all of what will become the Make and
Use matrices into one aggregated number for each. Expanding the macroeconomic
transactions shown in Table 11.16 to include the detailed transactions among sec-
tors and institutions results in what is sometimes referred to as a “fully articulated”
SAM, although this usually also means much more detail is included in the household
and value-added partitions of the matrix assembled to analyze issues related to labor,
households consumption and income, social institutions, human capital, and social
welfare.
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Table 11.15 The Basic National Accounts Balance Statement in Matrix Form
Expanded to Include Additional Macro Transactions

Prod. Cons. Cap. ROW Govt. Households Value Added

Production U I X G F
Consumption Q D H
Capital Accum. SF SG S
Rest of World M L O
Government T I TB B T
Households P W
Value Added V

Table 11.16 Expanded National Accounts Balance Statement in Matrix Form:
Example Expanded to Include Additional Macro Transactions

1 2 3 4 5 6 7

Prod. Cons. Capital
Rest of
World Govt. Households

Value
Added Total

1 Production 219 75 21 17 268 600
2 Consumption 550 −19 14 545
3 Capital Accum. 4 6 30 40
4 Rest of World 48 −21 12 39
5 Government 2 3 5 20 30
6 Households 7 323 330
7 Value Added 323 323

Total 600 545 40 39 30 330 323

11.10 SAM Multipliers

In Chapter 6 we explored one of the principal uses of input–output analysis as assessing
the effect on an economy of changing elements that are exogenous to the model of
economy being studied through a variety of summary measures known as multipliers
that can be derived from the elements of the Leontief inverse matrix. That chapter
focused on multipliers involving total output, income, employment, and value-added
inputs. A key decision in employing multipliers in any given analysis was determining
which sectors would be viewed as exogenous to the input–output model and which
would be incorporated endogenously into the structure of the model – for example,
“closing” the model to the households sector to distinguish so-called Type II from Type
I multipliers. As one might expect, similar decisions must be faced in constructing
multipliers for SAMs.
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Since SAMs are generally designed to try to capture transactions and transfers
between all economic agents in a system, it is a somewhat arbitrary decision as to
which transactions and transfers are considered to be exogenous for modeling purposes.
Round (1988) observes that most often in construction of SAMs used for modeling,
and in particular calculation of multipliers, the government, capital, and “rest of world”
accounts are considered to be exogenous.

11.10.1 SAM Multipliers: Basic Structure
We begin by defining a “fully articulated” SAM, including essentially all economic
transactions and transfers between all economic agents, as the matrix Z̄ similar to the
matrix of interindustry transactions in a closed input–output model. The matrix Z̄ in
a SAM, like a fully closed Leontief model, is a square matrix for which the row and
column sums are identical, which we designate as x̄.

Also in a manner similar to the basic input–output framework, we define part of
the economy to be exogenously specified as in “opening” in the input–output model as

described in Chapter 2. To do this we first define Ḡ =
[

Z̄ F

W B

]
where F is the matrix

of exogenous final expenditures (row indices are of industries and column indices are
of final expenditure categories), W is the matrix of exogenous income generated (row
indices are of exogenous income categories and column indices are of industries), and
B is the matrix of exogenous income allocations to final expenditures (row indices are
exogenous income categories and column indices are of final expenditure categories).
However, columns of F would be only categories of final demand we choose to specify
exogenously such as capital expenditures, government expenditures, or exports. Rows
of W, as with F, would include only categories we choose to specify exogenously –
in this case of value-added categories, such as capital inputs, government subsidies
and imports. Our definition of F, W, and B means we have chosen to treat some
categories of final demand and value added endogenously, in which case we include
them the matrix partition, Z̄, which will comprise the endogenous portion of the SAM.
Hence the row and column indices of Z̄ will be of industries plus any final-demand and
value-added categories we have chosen to treat endogenously. It is common to show
Ḡ normalized by its column sums and defined as the matrix of normalized expenditure
shares G = Ḡĝ−1 where g = Ḡi = i′Ḡ.

Finally, in order to construct a SAM model we need to distinguish in Z̄ between
interindustry transactions and transactions with final-demand and value-added cate-

gories. To do this we further partition as Z̄ =

⎡⎢⎢⎣
Z 0 C̄

V̄ 0 0

0 Ȳ H̄

⎤⎥⎥⎦, where C̄ is the

matrix of final-demand expenditures we choose to specify as endogenous variables,
V̄ is the matrix of value-added inputs we choose to specify endogenously, Ȳ is the
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matrix of transactions distributing income to value-added categories that we choose to
specify endogenously and H̄ is the matrix of transactions distributing institutional and
household income to final-demand sectors that we choose to specify endogenously. We
now define the matrix of SAM coefficients as S = Z ˆ̄x−1 where the partitions of S
corresponding to the partitions of Z̄ are defined by

S =

⎡⎢⎢⎣
A 0 C

V 0 0

0 Y H

⎤⎥⎥⎦ (11.1)

where A is the matrix of interindustry technical coefficients, C is the matrix of endoge-
nous final expenditure coefficients, V is the matrix of endogenous value-added input
shares, Y is the matrix of endogenous coefficients distributing income to value-added
categories and H is the matrix of endogenous coefficients for distributing institution
and household income.

We also define the vector x̄ =

⎡⎢⎢⎣
x

v

y

⎤⎥⎥⎦ where x is the vector of total interindus-

try sector outputs, v is the vector of total value-added inputs, and y is the vector
of total household income. We can now specify the basic SAM model as the
following:

x̄ = Sx̄ + f̄ (11.2)

where f̄ =

⎡⎢⎢⎣
f

w

h

⎤⎥⎥⎦ and f is the vector of exogenously specified commodity demand, w

is the vector of value-added inputs that are exogenously specified and h is the vector
of household income categories, the levels of which we exogenously specify. Since
S = Z ˆ̄x−1 we can rewrite (11.2) as x̄ = (I − S)−1f̄ and we define M = (I − S)−1 as
the matrix of SAM multipliers. The reader should immediately notice the similarity to
L = (I − A)−1 in the Leontief model framework.

With the partitions of S as defined above and their associated vectors relating to
totals for industry output, value-added and household income, we can interpret the
corresponding partitions of M; this is the subject of the following sections. In develop-
ing the discussions it is important to revisit the analogous section on decomposition of
multipliers in section 6.7 and several of the features of inversion of partitioned matrices
from Appendix A.
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11.10.2 Decomposition of SAM Multipliers3

Let us begin with a simplified or reduced version of the SAM model introduced as
(11.1) and (11.2), defined as the following:

S =
[

A C

H 0

]
(11.3)

where A is the matrix of interindustry technical coefficients, C is the matrix of endoge-
nous final consumption coefficients, and H is the matrix of coefficients allocating
household income to value-added categories. (For this simplified version we lump all
of value added into households.)

We can easily define S as the sum of two matrices, Q and R, defined by the following:

S = Q + R Q

[
A 0

0 0

]
R =

[
0 C

H 0

]
(11.4)

so that

x̄ = Sx̄ + f̄ (11.5)

where x̄ =
[

x

y

]
and f̄ =

[
f

g

]
. The vector x is, once again, the vector of total outputs,

y is vector of total household income, f is the vector of exogenous final demand and g
is the vector of exogenous household income. Using the definitions in (11.4), we can
rewrite (11.5) as:

x̄ = Qx̄ + Rx̄ + f̄ =
[

x

y

]
= Q

[
x

y

]
+ R

[
x

y

]
+
[

f

g

]
(11.6)

It follows directly that x̄ − Qx̄ = Rx̄ + f̄ or

x̄ = (I − Q)−1Rx̄ + (I − Q)−1f̄ (11.7)

We define T = (I − Q)−1R so that (11.7) becomes

x̄ = Tx̄ + (I − Q)−1f̄ (11.8)

If we multiply through (11.8) by T we find

Tx̄ = T2x̄ + T(I − Q)−1f̄ = T(Tx̄) + T(I − Q)−1f̄

3 Much more detailed discussions of the decomposition of SAM multipliers are included in Pyatt and Round
(1979 and 1985b), Round (1985), and Thorbecke (1998), although the discussion here more closely parallels
that of Holland and Wyeth (1993) and adopts many of the definitions of that presentation since they relate more
directly to the notation used earlier in this chapter.
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but it also follows directly from (11.8) that Tx̄ = x̄ − (I − Q)−1f̄ so that

x̄ = T[Tx̄ + (I − Q)−1f̄ ] + (I − Q)−1f̄

x̄ = (I − T2)−1(I + T)(I − Q)−1f̄ (11.9)

or, more simply

x̄ = M3M2M1f̄ (11.10)

where M1 = (I − Q)−1, M2 = (I + T), and M3 = (I − T2)−1. This parallels the
discussion of multiplier decomposition in Leontief models in section 6.7. Since we
defined M = (I − S)−1, it is clear that M = M3M2M1, so that M1, M2, and M3

comprise a multiplicative partitioning of M.
We can now use special cases of the partitioned inverse fromAppendixAto determine

the more detailed structure of M1, M2, and M3, in a manner similar to the decomposition
of multipliers that is in terms of the original partitions of S, namely A, C, and H. For the
case of M1 it is straightforward from one of the special cases of inversion of partitioned
matrices from Appendix A4 as

M1 = (I − Q)−1 =
[

(I − A) 0

0 I

]−1

=
[

(I − A)−1 0

0 I

]
(11.11)

This matrix defines what are often called “direct effect” multipliers since they include
what are easily recognized as Leontief output multipliers, but do not include the mul-
tiplier effects associated with other sectors such as value added or households, usually
treated as exogenous in input–output models. These multipliers are also sometimes
referred to as “intragroup” or “own” multipliers.

For the case of M2 we again use the same special case of the partitioned inverse to
obtain

M2 = I + T = I + (I − Q)−1R =
[

I (I − A)−1C

H I

]
(11.12)

The matrix M2 is often referred to as the matrix of indirect multipliers, since it records
how the effects of exogenous inputs of each type get transmitted to the households
sector but not the feedback of those increases (or decreases) in household income
subsequently on commodity consumption. These multipliers are sometimes referred to
as “extragroup” or “open loop” multipliers, since the feedback loop of the impact on
household consumption and value added is not included.

4 In this case if M =
[

E 0

0 F

]
then M−1 =

[
E−1 0

0 F−1

]
so if F = I then M−1 =

[
E−1 0

0 I

]
.



518 Social Accounting Matrices

For the case of M3 we begin with M3 = (I − T2)−1 = (I − [(I − Q)−1R]2)−1.
Using once again the special case of the partitioned inverse we have

M3 = (I − T2)−1 = (I − [(I − Q)−1R]2)−1

or

M3 =
[ [I − (I − A)−1CH]−1 0

0 [I − H(I − A)−1C]−1

]
(11.13)

The matrix of multipliers M3 is often referred to as the matrix of “cross” or “closed
loop” multipliers, since they capture the feedback effects. For example, for an increase
in commodity exports, an exogenous demand, there is an accompanying increase in
interindustry production to satisfy that demand as well as an increase in household
income, which in turn feeds back to further increase demand for commodities, and
so on.

Example 11.1: Reduced Form Case We begin with a basic SAM matrix of
transactions (Table 11.17), which we define to be Z, that includes all economic trans-
actions of interest, some subset of which we will consider for modeling purposes to be
endogenous to the SAM model and others we will consider to be exogenously spec-
ified for the model.5 For this example, we consider the first six defined sectors, the
three industry sectors and three classes of households, as the endogenous sectors, and
we consider the capital, government, and “rest of world” sectors to be exogenously
specified.

For this case we define S = Z ˆ̄x−1 where Z is formed from the upper left six rows and
columns of Table 11.17 (Ḡ) and x̄ is formed from the first six elements in the last column
(g). Equivalently, S can be formed from the upper left six rows and columns of matrix
of normalized expenditure shares, G = Ḡĝ−1. Also, to aid in the interpretation of the
multipliers, we further subdivide S into sectors related to interindustry transactions (A),
endogenous final consumption (C), and household income (H):

S =
[

A C

H 0

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

.246 .003 .005 .012 .009 .008

.345 .253 .215 .845 .756 .691

.049 .14 .296 .121 .058 .115

.03 .042 .032 0 0 0
.059 .143 .134 0 0 0
.123 .154 .14 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
5 This simplified example is adapted from a more complex development of a SAM for the United States using

data for 1982 presented in Holland and Wyeth (1993).
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To specify the multipliers recall we separate S into two additive matrices Q and R,

such that S = Q + R where Q =
[

A 0

0 0

]
=

⎡⎢⎢⎢⎣
.246 .003 .005 0
.345 .253 .215 0
.049 .14 .296 0

0 0 0 0

⎤⎥⎥⎥⎦ and

R =
[

0 C

H 0

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 .012 .009 .008
0 0 0 .845 .756 .691
0 0 0 .121 .058 .115

.03 .042 .032 0 0 0
.059 .143 .134 0 0 0
.123 .154 .14 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Recall that in deriving the three categories of multipliers, it was useful to define

the matrix T = (I − Q)−1R that is frequently used in the expressions defining the
multipliers, which for our example is

T = (I − Q)−1R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 .023 .018 .017
0 0 0 1.265 1.108 1.04
0 0 0 .425 .305 .372

.03 .042 .032 0 0 0
.059 .143 .134 0 0 0
.123 .154 .14 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
We now have all the information for this example to specify the three classes of
multipliers, M1, M2, and M3, as the following:

M1 = (I − Q)−1 =
[

(I − A)−1 0

0 I

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.331 .007 .012 0 0 0
.68 1.423 .44 0 0 0

.229 .284 1.508 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Recall that M1 defines the “direct effect” multipliers, including only the Leontief

output multiplier, so, for example, [M1]12 = .007 reflects the dollar’s worth of natural
resources output generated directly and indirectly to support a dollar’s worth of the
exogenously specified final demand for manufactured products (the sum of capital and
government expenditures on and exports of manufactured products). These multipliers
do not include the multiplier effects associated with other sectors such as value added
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or households, which are usually treated as exogenous in input–output models, but are
incorporated into other components of M as endogenously specified in the SAM:

M2 = I + T =
⎡⎢⎣ I (I − A)−1C

H I

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 .023 .018 .017
0 1 0 1.265 1.108 1.04
0 0 1 .425 .305 .372

.03 .042 .032 1 0 0
.059 .143 .134 0 1 0
.123 .154 .14 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Recall that M2 defines the indirect multipliers and records how the effects of

exogenous inputs of each type get transmitted to the households sector. For example,
[M2]41 = 0.03 reflects the dollar’s worth low income household income attributable
directly and indirectly to a dollar’s worth of exogenously specified final demand for nat-
ural resources. These multipliers do not include the feedback effects of those increases
(or decreases) in household income subsequently on commodity consumption, which
are captured in M3:

M3 = (I − T2)−1 =
[ [I − (I − A)−1CH]−1 0

0 [I − H(I − A)−1C]−1

]

or, for the example,

M3 = (I − T2)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.007 .012 .011 0 0 0
.449 1.721 .648 0 0 0
.146 .23 1.207 0 0 0

0 0 0 1.131 .11 .109
0 0 0 .464 1.389 .387
0 0 0 .499 .418 1.416

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Recall that M3 defines “cross” multipliers since they capture the feedback effects

between households and interindustry transactions. The upper left matrix partition
captures the income-induced increase in production from the increased income itself
reflected in the lower right partition generated in support of exogenously specified
final demand. For example, [M3]44 = 1.131 reflects the dollar’s worth of low income
household income generated by the increased interindustry consumption attributable
to increases in income of all household categories. That is, for any increase in exoge-
nously specified demand there is an accompanying increase in interindustry production
to satisfy that demand as well as an increase in household income generated, which in
turn feeds back to further increase demand for commodities, and so on.
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Finally, the total SAM multiplier matrix is

M = M3M2M1 = (I − S)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.351 .027 .034 .043 .035 .033
1.916 2.628 1.741 2.463 2.113 2.039
.627 .672 1.923 .808 .626 .691

.141 .134 .136 1.131 .11 .109

.439 .47 .51 .464 1.389 .387
.55 .505 .542 .499 .418 1.416

⎤⎥⎥⎥⎥⎥⎥⎥⎦
which accumulates all the effects of M1, M2, and M3.

11.10.3 Multipliers in an Expanded SAM
We now remove the simplification of assuming that value added and households are
indistinguishable and return to the expanded case, the summary version of which was
presented as (11.1):

S =

⎡⎢⎢⎣
A 0 C

V 0 0

0 Y H

⎤⎥⎥⎦
As with the reduced form version, we disaggregate S into two additive matrices, Q

and R so that S = Q + R where Q =

⎡⎢⎢⎣
A 0 0

0 0 0

0 0 H

⎤⎥⎥⎦ and R =

⎡⎢⎢⎣
0 0 C

V 0 0

0 Y 0

⎤⎥⎥⎦.

Hence, following the methodology used for the reduced form, x̄ = Sx̄ + f̄ (11.2) where

x̄ =

⎡⎢⎢⎣
x

v

y

⎤⎥⎥⎦ and f̄ =

⎡⎢⎢⎣
f

w

h

⎤⎥⎥⎦ and x is, once again, the vector of total outputs, v is the

vector of total value added, y is vector of total household income, f is the vector of
exogenous final demand, w is the vector of exogenous value-added income, and h is
the vector of exogenous household income. As with the reduced form version we can
rewrite (11.2) as the following:

x̄ = (R + Q)x̄ + f̄

x̄ = (I − Q)−1Rx̄ + (I − Q)−1f̄ (11.14)
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Once again defining T = (I − Q)−1R, (11.14) becomes

x̄ = Tx̄ + (I − Q)−1f̄ (11.15)

and multiplying through (11.15) by T we find Tx̄ = T2x̄+T(I − Q)−1f̄ . It also follows
directly from (11.15) that Tx̄ = x̄ − (I − Q)−1f̄ so that x̄ = T[Tx̄ + (I − Q)−1f̄ ] +
(I − Q)−1f̄ or

x̄ = T2x̄ + T(I − Q)−1f + (I − Q)−1f (11.16)

which to this point is the same as the reduced form model. Since there are three block
partitions in this expanded form, it turns out to be helpful in the following to expand
the equation further multiplying through yet again by T, substituting the result back
into (11.15), and rearranging terms (see Holland and Wyeth, 1993):

Tx̄ = T
[
T2x̄ + T(I − Q)−1f̄ + (I − Q)−1f̄

]
= T3x̄ + T2(I − Q)−1f̄ + T(I − Q)−1f̄ (11.17)

Substituting this expression for Tx̄ back into (11.16) and using the subsequent results
in (11.15) yields

x̄ = T3x̄ + T2(I − Q)−1f̄ + T(I − Q)−1f̄ + (I − Q)−1f̄

x̄ = (I − T3)−1(I + T + T2)(I − Q)−1f̄ (11.18)

which we can verify by expanding (11.18). Once again, as with reduced form version,
we express this as x̄ = M3M2M1f̄ but in the expanded case, where M1 = (I − Q)−1,
M2 = (I + T + T2), and M3 = (I − T3)−1. We leave it to the reader to verify that
expanding the expressions for M1, M2, and M3 in terms of A, C, Y, V, and H become
the following:

M1 =

⎡⎢⎢⎣
(I − A)−1 0 0

0 I 0

0 0 (I − H)−1

⎤⎥⎥⎦ (11.19)

In comparing this expression for M1 with the reduced form case, note that these multi-
pliers still only capture the “own effects” and do not capture the impact of other major
sectors. The matrix M2 is the following:

M2 =

⎡⎢⎢⎣
I (I − A)−1C(I − H)−1Y (I − A)−1C

V I V(I − A)−1C

(I − H)−1YV (I − H)−1Y I

⎤⎥⎥⎦ (11.20)
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For M2, the “open loop” multipliers capture, once again, the impacts of an exogenous
input on each major sector.

Finally, the matrix M3 is the following:

M3 =
⎡⎢⎣

[
I − (I − A)−1C(I − H)−1YV

]−1
0 0

0
[
I − V(I − A)−1C(I − H)−1Y

]−1
0

0 0
[
I − (I − H)−1YV(I − A)−1C

]−1

⎤⎥⎦

(11.21)

The matrix M3 captures the final feedback effect of the subsequent rounds of impact
on each sector. As before M = M3M2M1.

Example 11.2: The Expanded Case Consider the SAM transactions matrix
in Table 11.18, which is similar to that used in Example 11.1 except we have now
introduced additional value-added and institutional sectors.

For the expanded case, the additive partitioned matrices Q and R, both of which for
this example are of dimension 12 × 12, corresponding to the number of endogenous
sectors, are defined by

Q =

⎡⎢⎢⎣
A 0 0

0 0 0

0 0 H

⎤⎥⎥⎦ and R =

⎡⎢⎢⎣
0 0 C

V 0 0

0 Y 0

⎤⎥⎥⎦
where

A =
⎡⎣ .275 .023 .005

.325 .304 .213

.050 .100 .361

⎤⎦ , Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

.87 0 0
0 .149 0
0 .851 0

0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

V =
⎡⎣ .1 .325 .26

.2 .175 .1
.025 .05 .02

⎤⎦ ,

C =
⎡⎣ 0 0 0 .011 .008 .006

0 0 0 .874 .688 .572
0 0 0 .092 .081 .082

⎤⎦ and H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

.094 .071 .088 0 0 0

.438 .429 .141 0 0 0

.469 .5 .265 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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As noted earlier, to facilitate constructing the multipliers succinctly, we have

T = (I − Q)−1R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 .062 .048 .039
0 0 0 0 0 0 0 0 0 1.396 1.103 .924
0 0 0 0 0 0 0 0 0 .367 .303 .277

.1 .325 .26 0 0 0 0 0 0 0 0 0

.2 .175 .1 0 0 0 0 0 0 0 0 0
.025 .05 .02 0 0 0 0 0 0 0 0 0

0 0 0 .87 0 0 0 0 0 0 0 0
0 0 0 0 .149 0 0 0 0 0 0 0
0 0 0 0 .851 0 0 0 0 0 0 0
0 0 0 .082 .086 0 0 0 0 0 0 0
0 0 0 .38 .184 0 0 0 0 0 0 0
0 0 0 .408 .3 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The multiplier matrices M1, M2, and M3 can then be calculated as follows:

M1 = (I − Q)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.403 .049 .027 0 0 0 0 0 0 0 0 0
.723 1.534 .516 0 0 0 0 0 0 0 0 0
.223 .244 1.648 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 .094 .071 .088 1 0 0
0 0 0 0 0 0 .438 .429 .141 0 1 0
0 0 0 0 0 0 .469 .5 .265 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Like the earlier example, M1 is a block diagonal matrix defining the “direct
effect” multipliers of each of the sector groups – industry, value added, and house-
hold institutions – in response to exogenously specified final demand. For example,
[M1]11,7 = .438 reflects the dollar’s worth of medium income household income gen-
erated directly by a dollar’s worth of final consumption payments to wage earners.
As before, these multipliers do not include the multiplier effects among the product
or service groups so it should not be surprising, for example, that multipliers for the
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value-added group comprise the identity matrix since demand for value added is not
exogenously specified.

M2 = (I + T + T2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 .039 .026 0 0 0 0 .062 .048 .039
0 1 0 .91 .6 0 0 0 0 1.396 1.103 .924
0 0 1 .258 .17 0 0 0 0 .367 .303 .277

.1 .325 .26 1 0 0 0 0 0 .555 .442 .376

.2 .175 .1 0 1 0 0 0 0 .293 .233 .197
.025 .05 .02 0 0 1 0 0 0 .079 .062 .53

.087 .283 .226 .87 0 0 1 0 0 0 0 0
.03 .026 .015 0 .149 0 0 1 0 0 0 0
.17 .149 .085 0 .851 0 0 0 1 0 0 0

.025 .042 .03 .082 .086 0 0 0 0 1 0 0

.075 .156 .117 .38 .184 0 0 0 0 0 1 0

.101 .185 .136 .408 .3 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The matrix M2 once again defines the indirect multipliers. That is, for an exoge-
nously specified demand in a sector group – again, industry, value added, or household
institutions – these multipliers specify the impact generated in other groups. Hence,
the block diagonal elements are all identity matrices since those partitions relate
to impacts within the group. For example, if we define the partitions of M as

M =

⎡⎢⎢⎣
MAA MAY MAC

MYA MYY MYC

MCA MCY MCC

⎤⎥⎥⎦ then MCA and MCY capture the interindustry out-

put and value added output groups generated by a dollar’s worth final demand in the
households institutions group.

M3 = (I − T3)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.018 .034 .025 0 0 0 0 0 0 0 0 0
.417 1.792 .586 0 0 0 0 0 0 0 0 0
.118 .225 1.166 0 0 0 0 0 0 0 0 0

0 0 0 1.725 .478 0 0 0 0 0 0 0
0 0 0 .381 1.251 0 0 0 0 0 0 0
0 0 0 .102 .067 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 .924 .76 .646
0 0 0 0 0 0 0 1 0 .86 .069 .058
0 0 0 0 0 0 0 0 1 .492 .391 .332
0 0 0 0 0 0 0 0 0 1.139 .111 .094
0 0 0 0 0 0 0 0 0 .524 1.417 .355
0 0 0 0 0 0 0 0 0 .621 .494 1.42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The matrix M3 once again defines “cross” multipliers since they capture the feedback
effects among sector groups. These multipliers are sometimes called “closed loop”
multipliers since the capture effects of demands generated in one group produces an
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effect in another group that, in turn, generates an effect in the original group. Hence
only the block diagonal partitions will be nonzero.

Finally, once again, M captures the cumulative effect of all three types of multipliers
with M = M3M2M1:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.459 .109 .087 .077 .051 0 .089 .088 .045 .12 .094 .079
2.011 2.912 1.901 1.798 1.185 0 2.068 2.045 1.034 2.741 2.174 1.834
.588 .635 2.041 .51 .336 0 .586 .581 .293 .749 .607 .535

.952 1.122 1.157 1.725 .478 0 .833 .824 .417 1.098 .874 .743

.703 .595 .554 .381 1.251 0 .438 .434 .219 .579 .46 .39

.149 .161 .138 .102 .067 1 .117 .116 .059 .155 .123 .104

.828 .976 1.006 1.5 .415 0 1.725 .717 .363 .954 .76 .646

.105 .089 .083 .057 .186 0 .065 1.065 .033 .086 .069 .058

.598 .506 .472 .324 1.065 0 .373 .369 1.187 .492 391 .332

.138 .143 .142 .173 .146 0 .199 .176 .141 1.139 .111 .094

.492 .536 .542 .726 .412 0 .835 .822 .34 .524 1.417 .354

.599 .636 .638 .817 .57 0 .94 .966 .5 .621 .494 1.42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For the example, we leave it as an exercise to the reader to verify that M =
M3M2M1 = (I − S)−1, but we can interpret the multipliers in this example in a
variety of ways. One simple way is to explore the linkage between aggregate levels
of interindustry activity, final-demands and value-added sectors. For example, using
the definitions of the partitions of M noted earlier, the average of the column sums
of MAA = 3.91 would reflect how connected total industrial output is to aggregate
final demand for industrial output (the traditional Leontief multipliers from Chapter 6)
compared with the average of the column sums of MCA = 2.84, which would reflect
how connected overall household income is to aggregate final demand for industrial
output.

11.10.4 Additive Multipliers
In many kinds of analysis involving multipliers, it is convenient to formulate them so
that their sum rather than their sequential multiplication yields the total multipliers.
These “additive” multipliers were first proposed by Stone (1985) and further devel-
oped by Pyatt and Round (1985a). Following the development in section 6.7, Stone
formulated the following construction:

M = (I − S)−1= N1+N2+N3

where N1, defined as matrix of direct or “own” multipliers, is the same as M1, i.e.,
N1 = M1. The matrix of indirect or “open loop” multipliers, N2, is defined as N2 =
M2M3M1 −M3M1, and the matrix of cross or “closed loop” multipliers, N3, is defined
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as N3 = M3M1 − M1. We can verify that M = N1 + N2 + N3 by the following:

M = N1 + N2 + N3

M = M1 + [M2M3M1 − M3M1] + [M3M1 − M1]
M = M1 + M2M3M1 − M3M1 + M3M1 − M1

M = M2M3M1

Since the multiplicative form of the multipliers was derived as M = M3M2M1, we
must prove that M2M3= M3M2, which follows directly from the special cases of the
partitioned inverse described in Appendix A and noted earlier so that

M = (I − S)−1 = N1 + N2 + N3 = M2M3M1 = M3M2M1

For Example 11.1 above, the matrix of total multipliers, M, was computed earlier;
the additive multipliers for this example are the following:

N1 = M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.331 .007 .012 0 0 0
.68 1.423 .44 0 0 0

.229 .284 1.508 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

N2 = M2M3M1 − M3M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 .043 .035 .033
0 0 0 2.463 2.113 2.039
0 0 0 .808 .626 .691

.141 .134 .136 0 0 0

.439 .47 .51 0 0 0
.55 .505 .542 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

N3 = M3M1 − M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

.021 .02 .022 0 0 0
1.236 1.214 1.301 0 0 0
.398 .388 .415 0 0 0

0 0 0 .131 .11 .109
0 0 0 .464 .389 .387
0 0 0 .499 .418 .416

⎤⎥⎥⎥⎥⎥⎥⎥⎦
We leave it as an exercise for the reader to verify that the additive multipliers sum to
the product of the multiplicative multipliers and are both equal to the total multipliers
for the expanded case and Example 11.2.
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11.11 The Relationship between Input–Output and SAM Multipliers

Input–output multipliers and SAM multipliers have many similarities and seek to cap-
ture the same effects. Their relationship to one another parallels that of the development
of Miyazawa’s model and multipliers examined in section 6.4. In this section we
explicitly illustrate the relationship.

Recall the simple input–output example provided in Table 11.7 and recast as a SAM
in Table 11.8. The matrix of input–output technical coefficients and the Leontief inverse

are A=
⎡⎣ .357 .167 0

.429 .222 .4
0 0 0

⎤⎦ and (I−A)−1 =
⎡⎣ 1.815 .389 .156

1 1.5 .6
0 0 1

⎤⎦. The corresponding

matrix of total expenditure shares, S̄, and corresponding matrix of SAM coefficients,
S, assuming households as the exogenous sector are

S̄ =
[

S F

W 0

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

.357 .167 0 0 0 .3

.429 .222 .4 0 0 .2
0 0 0 0 0 .5

.071 .389 .1 0 0 0

.143 .222 .5 0 0 0

0 0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and further, S is partitioned as S =
[

A C

H 0

]
=

⎡⎢⎢⎢⎢⎢⎣
.357 .167 0 0 0
.429 .222 .4 0 0

0 0 0 0 0

.071 .389 .1 0 0

.143 .222 .5 0 0

⎤⎥⎥⎥⎥⎥⎦. In this

case, the computation of the SAM multipliers is quite simple. The additive partitioning
of S in Q and R is

Q =

⎡⎢⎢⎢⎢⎢⎣
.357 .167 0 0 0
.429 .222 .4 0 0

0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ and R =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

.071 .389 .1 0 0

.143 .222 .5 0 0

⎤⎥⎥⎥⎥⎥⎦
so that the corresponding computation of the multipliers becomes

M1 = (I − Q)−1 =
[

(I − A)−1 0

0 I

]
=

⎡⎢⎢⎢⎢⎢⎣
1.815 .389 .156 0 0

1 1.5 .6 0 0
0 0 1 0 0

0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦



11.11 The Relationship between Input–Output and SAM Multipliers 531

M2 = I + T = I + (I − Q)−1R =
[

I (I − A)−1C

H I

]
=

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

.071 .389 .1 0 0

.143 .222 .5 0 0

⎤⎥⎥⎥⎥⎥⎦

M3 = (I − T2)−1 =
[

I − (I − A)−1CH 0

0 I − H(I − A)−1C

]−1

=

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

M = (I − S)−1 = M3M2M1 =

⎡⎢⎢⎢⎢⎢⎣
1.815 .389 .156 0 0

1 1.5 .6 0 0
0 0 1 0 0

.519 .611 .344 1 0

.481 .389 .656 0 1

⎤⎥⎥⎥⎥⎥⎦
where the frequently used expression for T noted earlier is defined by

T = (I − Q)−1R =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

.071 .389 .1 0 0

.143 .222 .5 0 0

⎤⎥⎥⎥⎥⎥⎦
This case may not seem very interesting because there is no endogenous final demand,

i.e., C = 0, since the feedback between the final demand and value added does not
exist, a fundamental assumption of the input–output model unless we “close” the model
to households, which is essentially the same as constructing a SAM with an endogenous
final-demand component. Note that since there are no endogenous final demands it
should not be surprising that the columns of the lower left partition of M each sum to
unity. If we divide the existing vector of final demand into endogenous and exogenous
components, we can generate a more interesting result.

To do this we define a new SAM transactions table, Z̄, given in Table 11.19. Note
that the sum of endogenous and exogenous final demands from households is the same
as the total household figures in Table 11.18 above.
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The corresponding matrix of normalized total expenditure shares is

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.357 .167 0 0 0 .727 .138

.429 .222 .4 0 0 .273 .172
0 0 0 0 0 0 .69

.071 .389 .1 0 0 0 0

.143 .222 .5 0 0 0 0

0 0 0 .5 .091 0 0
0 0 0 .5 .909 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and we can employ the expanded form for computing the SAM multipliers, beginning
by specifying the SAM coefficients by the following partitioned matrix:

S =

⎡⎢⎢⎢⎣
A 0 C

V 0 0

0 Y H

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.357 .167 0 0 0 .727

.429 .222 .4 0 0 .273
0 0 0 0 0 0

.071 .389 .1 0 0 0

.143 .222 .5 0 0 0

0 0 0 .5 .091 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.357 .167 0 0 0 0

.429 .222 .4 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 .727
0 0 0 0 0 .273
0 0 0 0 0 0

.071 .389 .1 0 0 0

.143 .222 .5 0 0 0

0 0 0 .5 .091 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and T = (I − Q)−1R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1.426
0 0 0 0 0 1.136
0 0 0 0 0 0

.071 .389 .1 0 0 0

.143 .222 .5 0 0 0

0 0 0 .5 .091 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
so that the
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corresponding computation of the multipliers becomes as follows:

M1= (I − Q)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.815 .389 .156 0 0 0
1 1.5 .6 0 0 0
0 0 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

The Leontief inverse, once again, is the upper left partition of M1, and in this economy
there is no direct multiplier effect on output of value added and households since the
only exogenous expenditures are from households on industry output:

M2= I + T + T2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 .713 .13 1.426
0 1 0 0 .568 .103 1.136
0 0 1 0 0 0 0

.071 .389 .1 1 1 0 .544

.143 .222 .5 0 0 1 .456

.049 .215 .095 .5 .091 .091 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

The indirect multipliers, M2, once again have identity matrices for the block diagonal
partitions.

M3= (I − T3)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.101 .446 .198 0 0 0
.081 1.355 .158 0 0 0

0 0 1 0 0 0

0 0 0 1.396 .072 0
0 0 0 .332 1.06 0

0 0 0 0 0 1.456

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Finally, the closed loop multipliers, M3, reflect the feedback loops among the sector
groups. In particular, in this example, this shows a substantial impact associated with
treating a portion of the final demand from households as an endogenous variable in
the SAM model.
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Table 11.20 Comparative Input–Output and SAM Multipliers

Multiplier Type Nat. Res. Manuf. Services

Input–Output 2.815 1.889 1.756
SAM (no endog. final demand) 3.815 2.889 2.756
SAM (with endog. final demand) 5.828 5.154 4.296

The matrix of total multipliers is found, once again, as M = (I − S)−1 = M3M2M1

and for the example we have

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.444 1.097 .637 1.038 .189 2.077
1.502 2.064 .984 .827 .15 1.655

0 0 1 0 0 0

.758 .881 .528 1.396 .072 .792

.683 .615 .81 .332 1.06 .664

.441 .496 .338 .728 .132 1.456

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table 11.20 shows the differences among the average total multipliers for the three
classes of multipliers computed for this example.

Note that since the SAM endogenizes transactions not previously included in the
input–output interindustry accounts, the SAM multipliers will generally be larger than
the input–output multipliers and with endogenized final demand as well the multipliers
will be larger still.

11.12 Balancing SAM Accounts

SAMS, by their structural requirements and conventions, e.g., requiring a square trans-
actions matrix with row and column totals equal, are useful for reconciling different
sources of data that may be inconsistent. The RAS technique developed in Chapter 7
is often employed to balance a SAM. For example, consider the “unbalanced” SAM in
Table 11.21 – it is unbalanced since the row and column totals are not the same. In the
following we consider two cases of balancing the SAM in Table 11.21. We employ the
RAS technique using the transactions matrix developed in Section 7.4.3.

11.12.1 Example: Balancing a SAM
Suppose we determine that the best estimate of total outputs is the average of the row
and column totals, x̄′ = [780 670 40 60], which we then use as the row and

column totals for applying the RAS procedure. Since Z̄ =

⎡⎢⎢⎣
0 600 65 45

700 0 −25 15
0 40 0 0

50 10 0 0

⎤⎥⎥⎦ the
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Table 11.21 Unbalanced SAM: Examples 11.12.1
and 11.12.2

Prod. Cons. Capital ROW Totals

Producer 0 600 65 45 710
Consumers 700 0 −25 15 690
Capital 0 40 0 0 40
Rest of World 50 10 0 0 60
Totals 750 650 40 60 1500

RAS adjustment result using x̄′ for both the row and column constraints is Z̄RAS =⎡⎢⎢⎣
0 630 40 60

670 0 0 0
0 40 0 0

50 10 0 0

⎤⎥⎥⎦. This result may seem implausible since consumer transactions

to capital and exports are driven to zero, so constraining the RAS procedure to fix
additional information, if there is any such information, may be warranted, which we
explore in the next example.

11.12.2 Example: Balancing a SAM with Additional Information
Suppose we have high confidence in the estimates of consumer capital investment in
Table 11.21, i.e., g23 = −25. We apply the RAS procedure again, but fixing cell g23 to
−25 using the procedure outlined in Section 7.4.7 to result in

Z̄ =

⎡⎢⎢⎣
0 620 65 45

680 0 −25 15
0 40 0 0

50 10 0 0

⎤⎥⎥⎦
Notice this time the RAS adjustment yields a much more plausible balanced SAM since
the capital and exports entries are not driven to zero.

11.13 Some Applications of SAMs

SAMs are widely applied in the literature, particularly in the area of reconciliation of
social accounting data, as originally conceived by Richard Stone and chronicled in his
Nobel Memorial Lecture published in Stone (1997) and in Stone (1985), Stone and
Croft-Murray (1959) and Stone et al. (1962), as well as in the work of many other
authors such as Pyatt (1985, 1988, 1991a, 1991b, 1994a, 1994b, 1999), Round (1985)
and Keuning (1991).

Applications of SAMs to many other policy problems have appeared as well, such as
in regional development policy in Pyatt and Round (1977, 1985b), Pyatt and Thorbecke
(1976) and Round (1988, 2003), the implications of market integration across Europe
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in Round (1991), analysis of labor productivity in European Commission (2003), in
analyzing spatial patterns of income and wealth generation in Denmark in Masden and
Jensen-Butler (2005), and extensions to social and environmental indicators in Bolivia
(Alarcón, van Heemst and de Jong, 2000).

11.14 Summary

In this chapter we have introduced the fundamental assumptions and conventions of a
social accounting matrix (SAM) and examined how it relates to the system of national
accounts and input–output analysis. We explored the essential additional information
provided in SAMs compared with input–output tables in terms of a more detailed
accounting of the characteristics of the households and labor, government taxation and
welfare transfers, and allocations of income. Finally, we examined the concept of SAM
multipliers and how they relate to traditional input–output multipliers.

Problems

11.1 Consider a macro economy represented by Figure 11.2, Construct a “macro-SAM”
representation of this economy. What is the missing value for sales of exports, X ?
Show the SAM in two forms: (a) with the Final Consumers sector included as part
of the Consumers sector and (2) with the Final Consumers sector included as a
separately defined sector.

Figure 11.2 Sample Macroeconomy: Problem 11.1
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11.2 For the economy depicted in problem 11.1, suppose the following input–output
accounts are collected:

Commodities Industries
Final Grand

Manuf. Services Manuf. Services Demand Totals Total

Commodities
Manuf. 94 96 110 300

}
660

Services 94 117 148 360
Industries

Manuf. 295 0 295
}

660
Services 5 360 365

Value Added 106 152 260
Totals 300 360 295 365
Grand Total ︸ ︷︷ ︸

660
︸ ︷︷ ︸

660

Construct the “fully articulated” SAM, i.e., including the interindustry detail provided
by these input–output accounts. Allocate final demand as part of consumer demand
and assign commodity imports to vii for competitive imports to industry i. There is
no unique solution.

11.3 For the fully articulated SAM in problem 11.2 expand the SAM to include sectors
defined for consumer demand and exports. Again there is no unique solution, but the
SAM must be balanced, i.e., row and column sums equal.

11.4 For the SAM developed in problem 11.3:

a. Compute the matrix of total expenditure shares.
b. Assume final-demand and value-added sectors are considered exogenous trans-

actions to this economy. Compute the SAM coefficient matrix.
c. Compute the “direct effect” for this SAM.

11.5 Consider the following SAM for the developing nation of Sri Lanka:6

Sri Lanka
SAM 1970

Value
Added

Insti-
tutions

Indirect
Taxes

Surplus/
Deficit Production

Rest of
World Total

Value Added 11473 11473
Institutions 11360 2052 1368 3 14783
Indirect Taxes 389 885 94 1368
Surplus/Deficit −425 425 0
Production 11312 4660 2113 18085
Rest of World 113 1455 1067 2635
Total 11473 14783 1368 0 18085 2635

If we consider Surplus/Deficit and Rest of World as external to the SAM, compute
the direct, indirect, cross, and total multipliers in the additive form.

6 Adapted from Pyatt and Round (1979), pp. 852–853.



Problems 539

11.6 Consider the unbalanced SAM given in the table below. Independent analysis indi-
cates the total output of each sector; these are given in the additional column specified
in the table. Use biproportional scaling to produce a balanced SAM with rows and
columns both summing to the independent sector output estimates.

Prod. Cons. Capital ROW Totals
Estimated
Totals

Producers 0 600 65 45 710 660
Consumers 700 0 −25 15 690 600
Capital 0 40 0 0 40 40
Rest of World 50 10 0 0 60 60
Totals 750 650 40 60 1500 1360

11.7 For the unbalanced SAM given in problem 11.6, if in addition to the estimated
totals we become aware that the elements z23 = −25, z24 = 15, and z42 = 10 in
the balanced SAM are fixed, use the method of biproportional scaling fixing these
selected elements to produce a balanced SAM.

11.8 Consider the following “macro-SAM” for the US economy for 19887:

US SAM 1988 Prod. Comm. Labor Property
Enter-
prises

House-
holds Govt. Capital

Rest of
World Taxes Errors Total

Production 4831 4831
Commodities 3235 970 750 431 5386
Labor 2908 2908
Property 1556 117 1673
Enterprises 1589 95 93 1777
Households 2463 1045 556 4064
Government 377 445 138 587 96 18 1661
Capital 594 145 117 −10 846
Rest of World 537 84 2 42 665
Taxes 18 18
Errors &

Omissions
−10 −10

Total 4831 5386 2908 1673 1777 4064 1661 846 665 18 −10

If we consider the first five sectors as the endogenous sectors, compute the direct,
indirect, cross, and total multipliers in their multiplicative form.

11.9 For the macro-SAM specified in problem 11.8, compute the direct, indirect, and total
multipliers in their additive form. What do you notice about the direct multipliers in
the additive form compared with the direct multipliers in their multiplicative form?

11.10 Consider the SAM for the USA (1988) expanded with interindustry detail shown in
Table 11.22. If we consider the first nine sectors as the endogenous sectors, compute
the total multipliers.

7 As reported in Reinert and Roland-Holst (1992), pp. 173–187.
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12 Supply-Side Models, Linkages,
and Important Coefficients

12.1 Supply Side Input–Output Models

12.1.1 The Early Interpretation
In 1958 Ghosh presented an alternative input–output model based on the same set of
base-year data that underpin the demand-driven model in earlier chapters, namely Z,
f, and v, from which x follows as x = Zi+f or as x′ = i′Z + v′. In the demand-driven
model, direct input coefficients are defined in A = Zx̂−1, leading to x = (I −A)−1f =
Lf . In this case the Leontief inverse relates sectoral gross outputs to the amount of final
product (final demand) – that is, to a unit of product leaving the interindustry system
at the end of the process. The alternative interpretation that Ghosh suggests relates
sectoral gross production to the primary inputs – that is, to a unit of value entering the
interindustry system at the beginning of the process.

This approach is made operational by essentially “rotating” or transposing our ver-
tical (column) view of the model to a horizontal (row) one. Instead of dividing each
column of Z by the gross output of the sector associated with that column, the sug-
gestion is to divide each row of Z by the gross output of the sector associated with
that row. We use B to denote the direct-output coefficients matrix that results.1 For a
two-sector example, this means

B =
[

b11 b12

b21 b22

]
=
[

z11/x1 z12/x1

z21/x2 z22/x2

]
=
[

1/x1 0

0 1/x2

][
z11 z12

z21 z22

]
= x̂−1Z

(12.1)
These bij coefficients represent the distribution of sector i’s outputs across sectors j that
purchase interindustry inputs from i; these are frequently called allocation coefficients,
as opposed to technical coefficients, aij. Using

x′ = i′Z + v′

1 Early presentations used
→
A for these coefficients and A↓ for the traditional demand-side coefficients, which

we have denoted simply by A. This served to make visually explicit the two points of view: A↓ resulting from

uniform division of all elements in each column of Z by the associated column output, and
−→
A resulting from

division of all elements in each row of Z by the associated row output.

543
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where v′ = [v1, . . . , vn] – this is (2.29) in Chapter 2 – and

Z = x̂B (12.2)

from (12.1), we have
x′ = i′x̂B + v′ = x′B + v′ (12.3)

since i′x̂ = x′. From this,
x′ = v′(I − B)−1 (12.4)

Define
G = (I − B)−1 (12.5)

with elements gij. This has been called the output inverse, in contrast to the usual
Leontief inverse, L = [lij] = (I − A)−1 (the input inverse). Element gij has been
interpreted as measuring “the total value of production that comes about in sector j per
unit of primary input in sector i.” (Augustinovics, 1970, p. 252.) Then, (12.4) is

x′ = v′G (12.6)

In terms of changes in v, we would find the associated output changes as

�x′ = (�v′)G (12.7)

As we have seen earlier with the Leontief price model (section 2.6), we can equally
well transpose all elements so that the resulting vector of gross outputs is a column
rather than a row. In that case, (12.3) will be

x = B′x + v (12.8)

from which
x = (I − B′)−1v (12.9)

Since2 G′ = (I − B′)−1, (12.9) is

x = G′v (12.10)

This is the version of the model that we will use in what follows. However, many
analysts use the form in (12.6) and (12.7). Again, in terms of changes in v we would
have

�x = G′(�v) (12.11)

The basic assumption of the supply-side approach is that the output distributions
in bij are stable in an economic system, meaning that if output of sector i is, say,
doubled, then the sales from i to each of the sectors that purchase from i will also be
doubled. Instead of fixed input coefficients, fixed output coefficients are assumed in the
supply-side model.

2 This follows from matrix algebra results that (A ± B)′ = A′ ± B′ and (A′)−1 = (A−1)′.
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For sector j in the n-sector case, from (12.10) we have

xj = v1g1j + · · · + vigij + · · · + vngnj (12.12)

Recall the typical equation in the solution to the demand-driven model, from (2.15) in
Chapter 2:

xi = li1 f1 + · · · + lij fj + · · · + lin fn

The effect on output of sector i, �xi, of a $1.00 change in final demand for sector j
goods (�fj = 1), is given by lij. (Again, for readers who are familiar with differential
calculus, ∂xi/∂fj = lij.) Column sums of L = [lij] were seen (Chapter 6) to be output

multipliers;
n∑

i=1
lij denotes the total new output throughout all n sectors of the economy

that is associated with a $1.00 increase in final demand for sector j. Row sums of L can

also be interpreted;
n∑

j=1
lij shows the total new sector i intermediate sales to all sectors

that would be needed if there were a $1.00 increase in the final demands for the outputs
of each of the n sectors in the economy.

From (12.12), the effect on sector j output, �xj, of a $1.00 change in the availability
of primary inputs to sector i (�vi = 1) is given by gij. (In calculus terms, ∂xj/∂vi = gij;
note that the order of the subscripts in this partial derivative is the opposite of that for
lij). For example, if gij = 0.67, this has been interpreted to mean that if there is $1.00
less labor available to sector i as an input to production (due, say, to a strike), then
the amount of reduction in sector j output will be $0.67. The reduction comes about
because, in the input–output framework, a decrease in the available labor to sector i
means a decrease in sector i output and hence in the outputs of all sectors that depend
on sector i’s product as an input to their own production processes. This represents the
same kind of effect, originating in an exogenous supply change, as is captured in the
usual input–output system, which responds to exogenous demand changes.

In this (early) view of the Ghosh model, row and column sums in the output inverse,
G = (I − B)−1 = [gij] were given interpretations that parallel those in the Leontief

quantity model. Row sums,
n∑

j=1
gij = gi1 + · · · + gin (=∂x1/∂vi + · · · + ∂xn/∂vi), were

taken to represent the effect on total output throughout all sectors of the economy that
would be associated with a $1.00 change in primary inputs for sector i. This is the
supply-side model’s analog to an output (or demand) multiplier – a column sum in L.
These supply model row sums were termed input (or supply) multipliers. Also, column

sums,
n∑

i=1
gij = g1j +· · ·+gnj (= ∂xj/∂v1 +· · ·+∂xj/∂vn), were interpreted as the total

effect on sector j output if there were a $1.00 change in the supply of primary factors for
each of the n sectors in the economy. These column sums were the supply-side model’s
parallel to the row sums of L in the demand model.
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Numerical Illustration (Hypothetical Data) Let

Z =
⎡⎣225 600 110

250 125 425
325 700 150

⎤⎦ , x =
⎡⎣1200

2000
1500

⎤⎦ , f =
⎡⎣ 265

1200
325

⎤⎦
Then

B = x̂−1Z =
⎡⎣1/1200 0 0

0 1/2000 0
0 0 1/1500

⎤⎦⎡⎣225 600 110
250 125 425
325 700 150

⎤⎦
=
⎡⎣.188 .5 .092

.125 .063 .213

.217 .467 .1

⎤⎦
and

G = (I − B)−1 =
⎡⎣1.484 .982 .383

.316 1.418 .367

.521 .971 1.394

⎤⎦ and G′ =
⎡⎣1.484 .316 .521

.982 1.418 .971

.383 .367 1.394

⎤⎦
Thus, for example, if there were $100 less labor available for sector 1 production

and $300 less for both sector 2 and sector 3 production, we would find, as in (12.11),⎡⎣�x1

�x2

�x3

⎤⎦ =
⎡⎣1.484 .316 .521

.982 1.418 .971

.383 .367 1.394

⎤⎦⎡⎣−100
−300
−300

⎤⎦ =
⎡⎣−399.53
−815.06
−566.47

⎤⎦
These figures, �x1 = −400, �x2 = −815 and �x3 = −566, would then be interpreted
as the amounts by which the outputs of the three sectors would be reduced, given the
decreases in labor inputs to the sectors.

If �v1 = 1 and �v2 = �v3 = 0,⎡⎣�x1

�x2

�x3

⎤⎦ =
⎡⎣1.484

.982

.383

⎤⎦
These figures represent the total additional outputs possible in each of the three sectors
due to the availability of one more unit of primary inputs to sector 1. If �v1 = −1
and �v2 = �v3 = 0, these numbers will be negative, representing reduced output in the
sectors. As suggested above, the sum of the elements in row 1 of G [column 1 of G′],
2.849, represents the total potential impact throughout the economy of a $1.00 change in
the availability of primary inputs to sector 1. Again, as was noted above, this is parallel
to the concept of the output multiplier for sector 1 in the ordinary, demand-driven input–
output model. It is, in the context of this supply-side model, an input multiplier for sector
1. Similarly this kind of input multiplier for sector 2 is 2.101 and for sector 3 it is 2.886.
In this view of the supply-side model, one might use these figures to decide where an
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additional dollar’s worth of provision of primary resources (labor, etc.) would be most
beneficial to the total economy, in terms of potential for supporting expanded output.
Conversely, these input multipliers can indicate the potential contracting effects of
shortages in primary inputs to a particular sector. From this point of view, a reduction by
$1.00 in the availability of a scarce resource could lead to a reduction in economy-wide
output of $2.849, $2.101, or $2.886, depending on where the primary input reduction
occurs.

Numerical Application (US Data) Giarratani (1978) presents an application
of the Ghosh model. He calculated output coefficients, B, and the associated output
inverse matrix, G, using 78-sector 1967 US data. Supply multipliers ranged from a
high of 4.01 for iron and ferroalloy-ores mining to 1.09 for medical and educational
services and nonprofit organizations. With rankings of sectors such as this, it is possible
to determine where primary factor constraints would have the greatest potential for
limiting aggregate economic output – for example, a contemplated labor strike in one
or more sectors.

Looking down the jth column of G allows one to identify supply linkages that have
potential for significantly limiting the output of sector j. Among others, Giarratani con-
sidered an energy sector, petroleum refining and related industries (sector 31, the only
secondary energy sector in the 78-sector 1967 US table). Examination of column 31 in
the output inverse identifies the following among the largest coefficients: for sector 8,
crude petroleum and natural gas, g8,31 = 0.8605; for sector 27, chemicals and chemi-
cal products, g27,31 = 0.0513; and for sector 12, maintenance and repair construction,
g12,31 = 0.0504. The suggested interpretation is that interruptions in primary inputs to
these sectors have the largest potential for disruptions in refined petroleum output.

Other examples of this kind of empirical analysis using the Ghosh model include
Chen and Rose (1986) on the role of bauxite as a critical input in the Taiwanese economy
and Davis and Salkin (1984) on the importance of water as an input in a county in
California.

12.1.2 Relationships between A and B and between L and G
Given A = Zx̂−1and B = x̂−1Z, Z = (x̂)B; putting this into the definition of A,

A = x̂Bx̂−1 (12.13)

(When two matrices, P and Q, are connected by the relation P= MQM−1, they are said
to be similar; this is denoted P ∼ Q. Thus we see that A and B are similar matrices.)
Of course, it also follows straightforwardly that

B = x̂−1Ax̂ (12.14)

Recall in section 6.6.2 on elasticities that element (i, j) in the matrix x̂−1Ax̂ was
shown to capture the direct effect on industry i’s output (percentage change) resulting
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from a one percent change in industry j’s output. This was termed a direct output-to-
output elasticity. Hence, from (12.14), these elasticities are precisely the elements in
B = [bij].3

Consider (I − A). From (12.13), (I − A) = I − x̂Bx̂−1. Since x̂Ix̂−1 = I,

(I − A) = x̂(I − B)x̂−1

That is, (I − A) ∼ (I − B). Using a basic result on the inverse of a product of matrices
– (PQR)−1 = R−1Q−1P−1 – we find that since (I − A)−1 = [x̂(I − B)x̂−1]−1

(I − A)−1 = x̂(I − B)−1x̂−1 (12.15)

or
L = x̂Gx̂−1 (12.16)

Thus L ∼ G. [The interested reader might confirm these similarity relationships in
(12.13) and (12.15) for the small numerical illustration above.] The results in (12.16)
can equally well be written as

G = x̂−1Lx̂ (12.17)

Again referring to section 6.6.2, we saw that element (i, j) in the matrix x̂−1Lx̂ gives
the percent increase in industry i total output due to an initial exogenous one percent
increase in industry j output – the total output-to-output elasticity of industry i output
with respect to output in industry j. From (12.17) these elasticities are exactly the
elements in G = [gij].

From these results it is clear that any measures defined for A – such as output
multipliers or backward linkages (section 12.2.1) – can be found from B, provided that
x is also known. Conversely, input multipliers or forward linkages (section 12.2.2) –
defined on B – can be found using A and x.4

12.1.3 Comments on the Early Interpretation
An early application of the Ghosh model is to be found in Augustinovics (1970), where
direct-input coefficients (A) and direct-output coefficients (B) are compared for a num-
ber of countries and over time. However, reservations to this model began to appear in
the early 1980s – for example in Giarratani (1980, 1981). The issue is: essentially what
kind of economic behavior is represented by a system with constant supply distribution
patterns? Ghosh had in mind the context of a planned economy experiencing severe
excess demand, with government-imposed restrictions on supply patterns. This is prob-
ably not a very general situation in much of the modern world. However, Giarratani
(1981, p. 283) suggested a possibly broader context:

3 Using this interpretation, de Mesnard (2001) refers to the aij and bij coefficients as reflecting the absolute and
relative direct influence of sector j on sector i, respectively.

4 It is easily shown that A and B have the same main diagonal elements; the same is true for L and G. Using M̂
to denote the diagonal matrix whose elements are the main diagonal of a square matrix M, Â = x̂B̂x̂−1 = B̂,
from (12.13), since order of multiplication of diagonal matrices makes no difference and x̂x̂−1 = I. Exactly the
same line of argument shows that L̂ = Ĝ.
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More interesting perhaps is the prospect that this behavior may be the result of voluntary supply
decisions in the same context or, alternatively, given the disruption of some basic commodity. Firms
may well attempt to maintain their existing markets … by allocating available product on the basis
of deliveries in more normal times. Casual evidence on the U.S. experience would seem to support
this hypothesis.

It was in this spirit that the application noted above (Giarratani, 1978) was carried out.
Oosterhaven (1980) raised reservations about the plausibility of the Ghosh model and

then in the late 1980s a more vigorous exchange took place, particularly in Oosterhaven
(1988, 1989), Gruver (1989) and Rose and Allison (1989). In essence, the problem is
that primary input increases in sector j are transmitted forward in the Ghosh model to
output increases in all sectors that buy from j, without any corresponding increases in
primary input use in those sectors. This is because �v is viewed as exogenous and (in
this example) is fixed at �v′ = [0, . . . , 0, �vj, 0, . . . , 0]. This wreaks havoc with the
notion of sectoral production functions where material inputs plus primary inputs are
used in fixed proportions.

12.1.4 Joint Stability
The Issue When the demand-driven input–output model is used in standard

fashion for impact analysis – as in �x = (I − A)−1�f – a crucial assumption is
that the direct-input coefficients matrix, A, remains constant. As a consequence of the
connections between A and B, or between L and G, this means that in general B (and
therefore G) cannot remain constant. This came to be known as the “joint stability”
problem.5 A numerical example illustrates the problem nicely. From the data for the
three-sector hypothetical illustration in section 12.1.1, we also find6

A =
⎡⎣.188 .3 .073

.208 .063 .283

.271 .35 .1

⎤⎦ and L =
⎡⎣1.484 .589 .306

.527 1.418 .489

.651 .729 1.394

⎤⎦
It will be useful at this point to use superscripts “0” to represent the base-year data,

i.e., the given A, B, L, and G matrices, as well as the initial output, x, will be denoted
A0, B0 and so forth. Vectors and matrices that result from some exogenous change will

be given superscripts “1”. Suppose, for illustration, �f =
⎡⎣100

40
30

⎤⎦; using the demand-

driven model – �x = L0�f – we find �x(d) =
⎡⎣181.166

124.057
136.095

⎤⎦ and x1(d) =
⎡⎣1381.2

2124.1
1636.1

⎤⎦.

[We use (d ) to indicate that these are results from the demand-driven model, in which a
constant A matrix is assumed.] From these results, we find the new transactions matrix

5 See, among others, Dietzenbacher (1989), Miller (1989), Rose and Allison (1989), and Chen and Rose (1991).
6 These matrices, along with B and G in section 12.1.1, illustrate the relationships shown in footnote 2, above.



550 Supply-Side Models, Linkages, and Important Coefficients

associated with A and the new outputs; namely,

Z1(d) = A0[x̂1(d)] =
⎡⎣258.969 637.217 119.980

287.743 132.754 463.560
374.066 743.420 163.610

⎤⎦
[The reader can easily check that Z1(d)i + f1 = x1(d).] The direct-output coefficients
matrix associated with these new transactions and new total outputs is found, as in
(12.1), as

B1 = [x̂1(d)]−1Z1(d) =
⎡⎣.188 .461 .087

.136 .063 .218

.229 .454 .1

⎤⎦
Recall from above that

B0 =
⎡⎣.188 .5 .092

.125 .063 .213

.217 .467 .1

⎤⎦
and clearly B1 �= B0. [One simple measure of the difference is the average of all of

the (absolute) percentage differences – (1/n2)
n∑

i=1

n∑
j=1

[∣∣∣b0
ij − b1

ij

∣∣∣ /b0
ij

]
× 100. Here this

is 3.58 percent.] The upshot is that, at least in this example (but actually in general),
the assumption of a constant A matrix, used in an impact analysis, carries with it the
requirement that B change as a result of the impact.

An exactly similar problem occurs if one uses the supply-driven model to assess
the impact of a change in primary inputs. For example, from the data for this three-
sector example, v′ = [

400 575 815
]
. Suppose that (�v)′ = [

50 100 20
]
; using

(12.11) to assess the output effects of this change in primary inputs, we find
[�x(s)]′ = [

116.221 210.325 83.720
]

and [x1(s)]′ = [
1316.2 2210.3 1583.7

]
[Now (s) denotes results from the supply-driven model.] Parallel to the demand-driven
example, there is now a new transactions matrix,

Z1(s) = [x̂1(s)]B0 =
⎡⎣246.792 658.111 120.654

276.291 138.145 469.694
343.139 739.069 158.372

⎤⎦
In conjunction with the associated x1(s), this Z1(s) defines the corresponding direct-
input coefficients matrix, A1, namely

A1 = Z1(s)[x̂1(s)]−1 =
⎡⎣.188 .3 .076

.210 .063 .3

.261 .334 .1

⎤⎦
Originally,

A0 =
⎡⎣.188 .3 .073

.208 .063 .283

.271 .35 .1

⎤⎦
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and A1 �= A0. (In this case, the average absolute difference is 2.06 percent.)7

This apparent inconsistency – the fact that the requirement of a constant A (for
demand-driven model impact analysis) implies a non-constant B in the related supply-
driven model or that the constant B needed for supply-driven model impact analysis
carries with it the implication of a non-constant A in the related demand-driven model –
led to several empirical studies on relative joint stability (see, for example, Rose and
Allison, 1989, or Chen and Rose, 1991). In general, the conclusion drawn was that
instability in actual empirical applications was not a major issue.

Conditions under which both A and B will be Stable Assume that we have
found the new outputs resulting from new final demands using the demand-driven
model – x1 = (I − A0)f1, so A1 = A0. From (12.14),

B1 = (x̂1)−1A0x̂1

and substituting A0 from (12.13)

B1 = (x̂1)−1x̂0B0(x̂0)−1x̂1

Let ê = x̂1(x̂0)−1 where ei = x1
i /x0

i can be thought of as a kind of “growth rate” for
sector i (remember that order of multiplication makes no difference when the matrices
are diagonal); then

B1 = ê−1B0ê

A similar story holds if the supply-driven model is used, with B1 = B0; namely

A1 = êA0ê−1

If each sector’s output changes at the same rate – ei = x1
i /x0

i = λ for all i – then ê = λI
and B1 = [(1/λ)I]B0(λI) = B0. A similar argument shows that A1 = A0 under the
same conditions, after an impact analysis with the supply-driven model.8

12.1.5 Reinterpretation as a Price Model
In order to overcome the criticisms and implausibilities in the original view of the Ghosh
model, Dietzenbacher (1997) proposed an alternative interpretation by suggesting that
the model be viewed not as a quantity model but as a price model (see also extensive
discussions on alternative interpretations of the Ghosh model in Oosterhaven, 1996 and
de Mesnard, 2007). We illustrate the idea by looking again at results from the numerical
example in the previous section. Specifically, for

(v1)′ = (v0)′ + (�v)′ = [
400 575 815

] + [
50 100 20

] = [
450 675 835

]
7 For exactly the same reasons as shown in footnote 3, above, Â0 = Â1 and B̂0 = B̂1. These relationships are

illustrated by the matrices in this section.
8 For much more detail on these matters see Dietzenbacher (1989, 1997).
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we found, using x1(s) = (G0)′v1 [(12.10)],

[x1(s)]′ = [
1316.2 2210.3 1583.7

]
Suppose that we view the elements in the supply-driven model not as quantities (in

which case elements in �v are interpreted as changes in the amounts of primary inputs
available to the economy and elements in �x are interpreted in changes in quantities
produced) but rather as values (in which case elements in �v reflect changes in the
prices or costs of primary inputs and elements in �x reflect changes in the values of
outputs). In the demand-driven model of earlier chapters all prices are assumed fixed
in an impact analysis and quantities change as a result of changes in the quantities of
final demands. Now we assume that all quantities are fixed and use the Ghosh model to
assess the repercussions throughout the economy of changes in primary input prices.
In that reinterpretation, we can use the term Ghosh price model, which can reasonably
be looked upon as a cost-push input–output model. Changes in primary input costs are
transmitted throughout the economy as they are passed on (completely) by producers
in the prices of their products that are purchased by other intermediate users, who in
turn increase their prices accordingly, etc.

With this interpretation, we identify the relative price changes easily as the ratios of
elements in x0 to those in x1(s), since quantities are fixed and only valuations change.
Define π as the vector of these price ratios,

π = (x̂0)−1[x1(s)] (12.18)

where πj = x1
j (s)/x0

j = p1
j q0

j /p0
j q0

j = p1
j /p0

j (where q0
j is a physical measure of the

output of sector j in the base period). For this three-sector example,

π =

⎡⎢⎢⎣
x1

1(s)/x0
1

x1
2(s)/x0

2

x1
3(s)/x0

3

⎤⎥⎥⎦ =
⎡⎣1316.2/1200

2210.3/2000
1583.7/1500

⎤⎦ =
⎡⎣1.0968

1.1052
1.0558

⎤⎦ (12.19)

This indicates that (unit) prices of the products of sectors 1, 2, and 3 would rise
by 9.68, 10.52, and 5.58 percent, respectively, in response to primary input cost
increases of 12.5 [=(50/400) ×100] percent, 17.39 [= (100/575) ×100] percent and
2.45 [=(20/815) ×100] percent, for the three sectors respectively.

Similarly, when �v1 = 1 and �v2 = �v3 = 0, we found

⎡⎣�x1

�x2

�x3

⎤⎦ =
⎡⎣1.484

.982

.383

⎤⎦ so

x1(s) =
⎡⎣1201.48

2000.98
1500.38

⎤⎦. This can now be interpreted in terms of price ratios for the three

sectors of

π =
⎡⎣1201.48/1200

2000.98/2000
1500.38/1500

⎤⎦ =
⎡⎣1.0012

1.0005
1.0003

⎤⎦
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This says that prices would be expected to increase by 0.12, 0.05, and 0.03 percent in
the three sectors, respectively, in the face of a 0.25 percent [=(401/400)×100] increase
in the cost of primary inputs to sector 1 only.

Connection to the Leontief Price Model (Algebra) It is straightforward to
show that the Ghosh price model and the Leontief price model (section 2.6) generate
exactly the same results. The Ghosh price model finds

π = (x̂0)−1[x1(s)]
Since [x1(s)] = (G0)′(v1)[(12.10)],

π = (x̂0)−1(G0)′v1

From G = x̂−1Lx̂ in (12.17), G′ = x̂L′x̂−1, and so we have

π = (x̂0)−1[x̂0(L0)′(x̂0)−1]v1 = (L0)′(x̂0)−1v1

Finally, since primary input coefficients are found as v1
ci = v1

i /x0
i , or v1

c = (x̂0)−1v1,

π = (L0)′(x̂0)−1x̂0v1
c = (L0)′v1

c (12.20)

In the Leontief price model of section 2.6, it is also the case that primary input price
changes generate relative price changes [as in (2.33), which is repeated below]:

p̃ = [I − (A0)′]−1v1
c = (L0)′v1

c (12.21)

As (12.20) and (12.21) make clear, π = p̃. The Leontief price (cost-push) model (section
2.6) and the Ghosh price (cost-push) model generate the same results; the former directly
in terms of the vector of relative price changes, p̃, and the latter in terms of new outputs,
x1(s), from which π is found as the ratio of new to old output values.

Connection to the Leontief Price Model (Numerical Illustration) Using data
from the hypothetical example in section 12.1.1 and 12.1.5, we find the base-year
primary input coefficients as

v0
c =

⎡⎣400/1200
575/2000
815/1500

⎤⎦ =
⎡⎣.3333

.2875

.5433

⎤⎦
As expected,

p̃0 = (L0)′v0
c =

⎡⎣1.4840 0.5266 0.6514
0.5893 1.4179 0.7287
0.3064 0.4893 1.3936

⎤⎦⎡⎣.3333
.2875
.5433

⎤⎦ =
⎡⎣1.0

1.0
1.0

⎤⎦
verifies that all prices are one (“per dollar’s worth of output”) in the base-year Leontief
model.
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Now consider the primary input price increases from the example above, namely

(v1)′ = (v0)′ + (�v)′ = [
400 575 815

] + [
50 100 20

] = [
450 675 835

]
In terms of primary input coefficients, we have

v1
c =

⎡⎣450/1200
675/2000
835/1500

⎤⎦ =
⎡⎣.3750

.3375

.5566

⎤⎦
and using (12.21),

p̃1 = (L0)′v1
c =

⎡⎣1.4840 0.5266 0.6514
0.5893 1.4179 0.7287
0.3064 0.4893 1.3936

⎤⎦⎡⎣.3750
.3375
.5566

⎤⎦ =
⎡⎣1.0968

1.1051
1.0558

⎤⎦
As expected, these are precisely the same results as we found above for π in (12.19).

Either exercise produces the result that price increases of 9.68, 10.51, and 5.58
percent are to be expected for the output of the three sectors as a result of the primary
input cost increases given in (�v)′ = [

50 100 20
]
.

A Ghosh Quantity Model Thus far we have seen a Leontief quantity model,
a Leontief price model, and a Ghosh price model. It is logical to expect that a Ghosh
quantity model also exists (Dietzenbacher, 1997). From the familiar Leontief quantity
model, x1 = L0f1, and L0 = x̂0G0(x̂0)−1 [(12.16)], we have

x1 = x̂0G0(x̂0)−1f1

Define the new final-demands as proportions (coefficients) of base-period outputs –
( f 1

c )i = [f 1
i /x0

i ] and f1
c = (x̂0)−1f1 – and premultiply both sides by (x̂0)−1,

x̃ = (x̂0)−1x1 = (x̂0)−1x̂0G0(x̂0)−1f1 = G0f1
c

where x̃i = x1
i /x0

i . In this case changes in final-demand proportions (of gross outputs)
are translated into relative output measures; that is, an index showing new outputs, x1,
as proportions of base-period outputs, x0.

This is the straightforward algebraic derivation of a Ghosh quantity model. The reader
can explore the logic of the “story” behind it. Table 12.1 gathers together some of the
relevant information about these four models. The quantity and price models – either
Leontief or Ghosh – are often described as “dual” to each other9, while the Leontief
variant of the quantity model has been described as the “mirror image” of the Ghosh
quantity model, and similarly for the Leontief and Ghosh price models. (Some of this
material appeared earlier in Table 2.13.)

9 There are some rather detailed mathematical discussions on what constitutes a pair of “dual” models. For our
input–output models we simply take the term to mean that one model determines quantities (with prices fixed),
the other determines prices (with quantities fixed) and the fundamental structural relationships (in L0 or in G0)

are at the heart (although transposed) of each model and its dual.
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Table 12.1 Overview of the Leontief and Ghosh Quantity and Price Models

Model Leontief Ghosh

Price (Cost-push) [Quantities fixed;
prices change]

Exogenous
Variables

v1
c = (x̂0)−1v1

= [v1
j /x0

j ]
v1 = [v1

j ]

Endogenous
Variables

p̃1 = (L0)′v1
c

[ p̃i = x1
i (d)/x0

i ]
x1(s) = (G0)′v1

Coefficient
Stability

A1 �= A0 B1 = B0

Quantity (Demand-pull) [Prices fixed;
quantities change]

Exogenous
Variables

f1 = [f 1
i ] f1

c = (x̂0)−1f1

= [ f 1
i /x0

i ]
Endogenous

Variables
x1(d) = L0f1 x̃ = G0f1

c
[x̃i = x1

i (s)/x0
i ]

Coefficient
Stability

A1 = A0 B1 �= B0

12.2 Linkages in Input–Output Models

In the framework of an input–output model, production by a particular sector has two
kinds of economic effects on other sectors in the economy. If sector j increases its
output, this means there will be increased demands from sector j (as a purchaser) on
the sectors whose goods are used as inputs to production in j. This is the direction
of causation in the usual demand-side model, and the term backward linkage is used
to indicate this kind of interconnection of a particular sector with those (“upstream”)
sectors from which it purchases inputs. On the other hand, increased output in sector
j also means that additional amounts of product j are available to be used as inputs to
other sectors for their own production – that is, there will be increased supplies from
sector j (as a seller) for the sectors that use good j in their production. This is the
direction of causation in the supply-side model. The term forward linkage is used to
indicate this kind of interconnection of a particular sector with those (“downstream”)
sectors to which it sells its output.

Measures have been proposed to quantify such backward and forward linkages, or
economic “connectedness.” Comparisons of the strengths of backward and forward
linkages for the sectors in a single economy provide one mechanism for identifying
“key” or “leading” sectors in that economy (those sectors that are most connected
and therefore, in some sense, most “important”) and for grouping sectors into spatial
clusters. And if data are available for more than one time period, the evolution of these
interconnections can be studied.Also, examination of these measures for similar sectors
in different countries provides one method of making international comparisons of the
structure of production.
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If the backward linkage of sector i is larger than that of sector j, one might conclude
that a dollar’s worth of expansion of sector i output would be more beneficial to the
economy than would an equal expansion in sector j’s output, in terms of the productive
activity throughout the economy that would be generated by it. Similarly, if the forward
linkage of sector r is larger than that of sector s, it could be said that a dollar’s worth
of expansion of the output of sector r is more essential to the economy than a similar
expansion in the output of sector s, from the point of view of the overall productive
activity that it could support.

There have been numerous suggestions for differing definitions and refinements of
these linkage and key sector measures and others of economic connectedness. Early
work includes Rasmussen (1957),10 Hirschman (1958), Chenery and Watanabe (1958),
Yotopoulos and Nugent (1973), Laumas (1975) and Jones (1976), and there has been,
and continues to be, a good deal of discussion [for example, on the “proper” definition,
see the debate among several authors in the May 1976 issue of the Quarterly Journal
of Economics, or the Diamond (1976), Schultz and Schumacher (1976) and Laumas
(1976a) exchange in Kyklos]. Questions on the exact role of linkage measures and the
identification of key sectors in development planning have been raised in McGilvray
(1977) and Hewings (1982), among others. Our purpose here is simply to introduce the
reader to some of the most prevalent of these measures and, in particular, to indicate
how they are derived from information in either the demand-side or the supply-side
input–output model.

There also have been numerous suggestions for various ways of combining forward
and backward linkage measures (examples can be found in Hübler, 1979; Loviscek,
1982; Meller and Marfán, 1981; Cella, 1984; Clements, 1990 and Adamou and Gowdy,
1990). Generally these combined measures have been superseded by the rankings that
emerge from the “hypothetical extraction” approach, to which we turn in section 12.2.5.

12.2.1 Backward Linkage
In its simplest form, a measure of the strength of the backward linkage of sector j –
the amount by which sector j production depends on interindustry inputs – is given
by the sum of the elements in the jth column of the direct input coefficients matrix,

namely
n∑

i=1
aij. Since the coefficients in A are measures of direct effects only, this is

called the direct backward linkage:11

BL(d)j =
n∑

i=1

aij (12.22)

10 Hirschman (1958) cites an edition of this book (same title) published by Einar Harcks in Copenhagen in 1956.
This must be a precursor to the 1957 North-Holland edition (also under the Einar Harcks imprint) which is
identified as a “second printing.”

11 It would be more consistent with standard vector-matrix notation to use some lower-case designation such as
bj for sector j’s backward linkage (a scalar), but BLj seems to have become standard.
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In terms of transactions (Z, not A), this is simply the value of total intermediate inputs

for sector j

(
n∑

i=1
zij

)
as a proportion of the value of j’s total output (xj). This definition,

in transactions terms, was first proposed by Chenery and Watanabe (1958). If we define
b(d) = [BL(d)1, . . . , BL(d)n], then

b(d) = i′A (12.23)

To capture both direct and indirect linkages in an economy, column sums of the total
requirements matrix, L = [lij], were proposed as a total backward linkage measure
(Rasmussen, 1957); these are output multipliers (Chapter 6). For sector j we have

BL(t)j =
n∑

i=1

lij (12.24)

The corresponding row vector of direct and indirect backward-linkage measures for
each sector is

b(t) = i′L (12.25)

There is some disagreement in the literature on whether the on-diagonal elements in
A or L should be included or netted out of the summations (see, for example, Harrigan
and McGilvray, 1988). To the extent that these “internal linkages” constitute part of
Hirschman’s (1958, p. 100) “… input-provision, derived demand … effects,” they are
appropriately included. On the other hand, if one is specifically interested in a sector’s
“backward dependence” on or linkage to the rest of the economy, they should be
omitted.

Also, various normalizations of these measures have been proposed and used in
empirical studies. For example, let

___
BL(d)j = BL(d)j

(1/n)
n∑

j=1
BL(d)j

=

n∑
i=1

aij

(1/n)
n∑

i=1
aij

n∑
j=1

aij

(where the overbar suggests a normalized measure). In this case, sector j’s backward
linkage is divided by the (simple) average of all backward linkages. (Various weighted
averages have also been suggested.) In (row) vector form, these normalized direct
backward linkages are (note that i′Ai is a scalar)

b̄(d) = i′A
(i′Ai)/n

= ni′A
i′Ai

(12.26)

The average value of b̄(d) is unity – [b̄(d)]i(1/n) = [
ni′A/i′Ai

]
[i/n] = 1 – so that

sectors with “above average” (stronger) direct backward linkages have indices that are
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greater than one and that those with “below average” (weaker) direct backward linkages
have indices that are less than one. The same logic generates

b̄(t) = ni′L
i′Li

(12.27)

as a normalized total backward linkage index, also with an average value of unity. (This
is the “Index of the Power of Dispersion” suggested by Rasmussen, 1957.)

12.2.2 Forward Linkage
An early measure of direct forward linkage was also proposed, based on A and L, as
the row sums Ai, along with an associated total forward linkage measure, the row sums
Li.12 Both of these have been viewed with skepticism, because they are generated by
a peculiar stimulus – a simultaneous increase of one unit in the gross outputs of every
sector in the case of Ai and an increase of one unit in the final demands of every sector
in the case of Li.13

This dissatisfaction led to the suggestion that elements from the Ghosh model would
be more appropriate as forward linkage measures (Beyers, 1976; Jones, 1976). The
row sums Bi were suggested as better measures of direct forward linkage. In terms of
transactions (Z, not B), this is simply the value of total intermediate sales by sector

i

(
n∑

j=1
zij

)
as a proportion of the value of i’s total output (xi). (This also was first

proposed in Chenery and Watanabe, 1958). In addition, row sums of the Ghosh inverse,
G = [gij], were suggested as a better measure of total forward linkages. As with
backward linkage measures, inclusion or exclusion of on-diagonal elements is an issue,
and normalizations are usual.

Thus, the parallels to (12.22) and (12.24) for direct forward linkages are

FL(d)i =
n∑

j=1

bij (12.28)

and

FL(t)i =
n∑

j=1

gij (12.29)

In addition, the same two normalized versions for forward linkages can be found. Matrix
expressions for all these results are collected in Table 12.2.

12.2.3 “Net” Backward Linkage
Another linkage measure was proposed by Dietzenbacher (2005) in his interpretation
of the content of the Oosterhaven and Stelder net multiplier formulation (section 6.5.3).

12 In normalized form, nLi/i′Li, this is Rasmussen’s (1957) “Index of Sensitivity of Dispersion.”
13 Among the first to make an issue of weightings in linkage measures was Laumas (1976b). Others before him

(e.g., Hazari, 1970; Diamond, 1974), however, had used sets of weights other than unit vectors.
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Table 12.2 Linkage Measures

BL FL BL FL

Direct i′A Bi
ni′A
i′Ai

nBi
i′Bi

Total i′L Gi
ni′L
i′Li

nGi
i′Gi

Start with the observation that Lf̂ is a matrix whose i, jth element represents output of
i generated by fj. Row sums of Lf̂ are given by Lf̂i = Lf = x; the ith element of this
column vector is simply xi, the output of i generated by all final demands – the standard
interpretation of x. Column sums of Lf̂ are given by i′Lf̂ ; the jth element of this row
vector is the output needed from all sectors to satisfy fj. The Oosterhaven–Stelder net
output multiplier was defined as i′Lf̂c = i′Lf̂ x̂−1 (a row vector). Replacement of x̂ by
〈Lf̂i〉 leads to

i′Lf̂c = i′Lf̂ x̂−1 = (i′Lf̂)〈Lf̂i〉−1

The jth element in this row can be seen to be a ratio, namely

(i′Lf̂c)j = jth column sum of Lf̂

jth row sum of Lf̂

In words: the output generated in all industries by fj divided by the output generated
in j by all final demands. This suggests a kind of “net” backward linkage or net key
sector measure. In particular, if (i′Lf̂c)j > 1 then economy-wide output generated by
final demand in j is larger than the amount of j’s output that is generated by all the other
industries’ final demands. So industry j can be said to be more important for the others
than the others are for industry j, and j would thus be identified as a key sector by this
measure.

12.2.4 Classifying Backward and Forward Linkage Results
Studies that attempt to identify key sectors from their backward and forward linkage
measures usually calculate both (generally in normalized form) and then select those
sectors with a high score on both measures.14 In normalized form, this means sectors
with both backward and forward linkages greater than one.

Often, sectors are distributed over a four-way classification as (1) generally indepen-
dent of (not strongly connected to) other sectors (both linkage measures less than 1),
(2) generally dependent on (connected to) other sectors (both linkage measures greater
than 1), (3) dependent on interindustry supply (only backward linkage greater than 1)

14 There have been suggestions for “combined” measures to capture “total” linkage. For example, Hübler (1979)
proposed column sums from [I − (0.5)(A + B′)]−1 for this purpose. More comprehensive measures of total
linkage come from hypothetical extraction approaches (section 12.2.6).
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Table 12.3 Classification of Backward and Forward Linkage Results

Direct or Total Forward Linkage

Low (<1) High ( > 1)

Direct or Total
Backward
Linkage

Low ( < 1) (I) Generally independent (II) Dependent on
interindustry demand

High ( > 1) (IV) Dependent on
interindustry supply

(III) Generally dependent

and (4) dependent on interindustry demand (only forward linkage greater than 1). This
can be displayed in a 2 × 2 table, such as shown in Table 12.3.15 With data for two or
more time periods, a table of this sort for each period will give one indication of the
evolution of the economy.16

12.2.5 Spatial Linkages
Exactly the same kinds of measures can be applied to multiregional input–output data
to assess the types and intensities of spatial interdependence or connectedness. These
address the issue of strength of economic connections among regions in an economy
and, if data for more than one period are available, how those connections are changing
over time – for example, increasing regional self-sufficiency or increasing interregional
dependence. These measures can be aggregate – that is, is region r in general dependent
on imports or exports (or both) or relatively self-sufficient? Or they can be sector/region
specific – assessing the import- or export-dependence of sector i in region r on one
sector (or all sectors) in another region (or regions). Recalling that total backward
linkage is measured by the output multiplier, it is clear that the interregional multipliers
discussed in section 6.3 get at exactly these kinds of questions. (Early presentations
of the spatial form of linkage measures are in Miller and Blair, 1988 and Batten and
Martellato, 1988.)

In the two-region (nation) context, we have A =
⎡⎣Arr Ars

Asr Ass

⎤⎦, L =
⎡⎣Lrr Lrs

Lsr Lss

⎤⎦
and G =

⎡⎣Grr Grs

Gsr Gss

⎤⎦. One straightforward set of spatial linkage measures closely

parallels the sectoral linkage cases above. In this two-region case, the direct backward
linkage of sector j in region r will have both an intraregional and an interregional

15 This two-way table arrangement appears to have originated with Chenery and Watanabe (1958).
16 Further subtleties are possible. Each quadrant can be further subdivided; for example, quadrant III could be

divided into four more categories, those above and those below one standard deviation above the mean (of 1).
And similarly for the other three numbered quadrants.
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component. Specifically,

BL(d)r
j = BL(d)rr

j + BL(d)sr
j =

n∑
i=1

arr
ij +

n∑
i=1

asr
ij

One measure of the relative strength of intra- vs. interregional (internal vs. external)
direct backward dependence is given by the percentages

100[BL(d)rr
j /BL(d)r

j ] and 100[BL(d)sr
j /BL(d)r

j ]
or, using an alternative normalization,

BL(d)rr
j /xr

j and BL(d)sr
j /xr

j

Parallels can be found for total backward linkages, namely

BL(t)r
j = BL(t)rr

j + BL(t)sr
j =

n∑
i=1

lrr
ij +

n∑
i=1

lsr
ij

and

100[BL(t)rr
j /BL(t)r

j ] and 100[BL(t)sr
j /BL(t)r

j ]
BL(t)rr

j /xr
j and BL(t)sr

j /xr
j

In compact matrix form, direct and total intra- and interregional backward linkages
for each sector in region r are given by the n elements in the following vectors [the
parallels are (12.23) and (12.25)]

b(d)rr = i′Arr and b(d)sr = i′Asr

b(t)rr = i′Lrr and b(t)sr = i′Lsr

and

b(d)r = b(d)rr + b(d)sr and b(t)r = b(t)rr + b(t)sr

Ignoring the sectoral detail, one aggregate measure of a region’s direct and total
backward linkage to itself and to the other region(s) is found by summing (or averaging)
over all sectors. For example,

B(d)rr = i′Arri or B(d)rr = (1/n)i′Arri

and similarly for B(d)sr , B(t)rr , and B(t)sr . Spatial versions of forward linkages follow
the same kind of pattern. These are summarized in Table 12.4.

Examples of applications for single countries can be found in, among others, Blair
and Miller (1990) and Shao and Miller (1990) for the US economy, Dietzenbacher
(1992) for the Netherlands, Pan and Liu (2005) and Okamoto (2005) for China. The
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study by Chow, Lee and Ong (2006) for Singapore was based on 144-sector input–
output data for 1990, 1995, and 2000. The authors chose to calculate (total) forward
linkages using row sums of A rather than B.

With the emergence of international input–output data sets (for example, for
the European Union and for Asia-Pacific economies, as described in section 8.8),
these spatial measures are pertinent to questions of international economic con-
nections and dependencies and their evolution over time. Illustrative applications
here include Dietzenbacher and van der Linden (1997) for the countries of the
European Community (see below) and Wu and Chen (2006) on backward link-
ages Taiwan ← Japan, Korea←Japan, China←Japan, and also Japan←Taiwan,
Japan←Korea, Japan←China, in 1985, 1990, 1995, and 2000.

Alternative definitions for interregional economic connections are grounded in the
notions of interregional feedbacks and spillovers (Miller and Blair, 1988; see also
Chapters 3 and 6, above). These are closely related to the “hypothetical extraction”
method. It provides a general framework for linkage analysis, and we turn to it next.

12.2.6 Hypothetical Extraction
The objective of the hypothetical extraction approach is to quantify how much the total
output of an n-sector economy would change (decrease) if a particular sector, say the jth,
were removed from that economy. Initially, this was modeled in an input–output context
by deleting row and column j from the A matrix.17 Using Ā( j) for the (n − 1)× (n − 1)

matrix without sector j and f̄( j) for the correspondingly reduced final-demand vector,
output in the “reduced” economy is found as x̄( j) = [I − Ā( j)]−1f̄( j).18 (Instead of
physically deleting row and column j in Aand element j in f, they can simply be replaced
by zeros.) In the full n-sector model, output is x = (I−A)−1f , so Tj = i′x− i′x̄( j) is one
aggregate measure of the economy’s loss (decrease in value of gross output) if sector j
disappears – as such, it is a measure of the “importance” or total linkage of sector j. It
has been argued that the first term, i′x, should not include the (original) output xj. If xj

is omitted, (i′x − xj)− i′x̄ would measure j’s importance to the remaining sectors in the
economy. In either case, normalization through division by total gross output (i′x) and
multiplication by 100 produces an estimate of the percentage decrease in total economic
activity; T̄j = 100[(i′x − i′x̄( j))/i′x]. (Web Appendix 12W.1 presents hypothetical
extractions in detail in the context of partitioned matrix versions of the Leontief and
Ghosh models, along with citations to much more of the relevant literature.)

The hypothetical extraction approach has also been used to measure backward and
forward linkage components separately (for example, in Dietzenbacher and van der
Linden, 1997). Taking inspiration from the discussion of backward linkage in section
12.2.1 and forward linkage in section 12.2.2, A is used for this backward measure and
B is used for the forward measure.

17 The original idea seems to have appeared in Paelinck, de Caevel and Degueldre, 1965 (in French) or Strassert,
1968 (in German). The first discussion in English known to us is in Schultz (1976, 1977; the latter paper is a
longer version of the former).

18 We use x( j) to distinguish this linkage measure from xj which is the jth element in x.
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Backward Linkage Assume that sector j buys no intermediate inputs from
any production sector; that is, remove sector j’s backward linkages. This is done by
replacing column j in A by a column of zeros. Denote this new matrix Ā(cj). (We used
Ā( j) above to denote A with both row and column j deleted; now we need the “c” to
indicate that it is column j only that is gone.) Then x̄(cj) = [I−Ā(cj)]−1f and i′x− i′x̄(cj)

is one measure of (aggregate) backward linkage for sector j. If more detail is of interest,
each element xi − x̄(cj)i in x− x̄(cj) can be viewed as the backward dependence of sector
j on sector i. Normalizations are possible and often used. For example, [xi − x̄(cj)i]/xj,
puts this measure on a per-unit-of-output basis, or 100×[xi−x̄(cj)i]/xj to avoid relatively
small numbers.

Forward Linkage A parallel to eliminating column j in A as a way of iden-
tifying backward linkages might appear to be the elimination of row j in A in order to
quantify forward linkages. But the discussion in section 12.2.2 suggests that forward
linkages of sector j can be more appropriately identified through elimination of that
sector’s intermediate sales in the B matrix. That is, replace row j of the output coef-
ficients matrix by a row of zeros. Denote this matrix as B̄(rj). Then x′ = v′(I − B)−1

and x̄′
(rj) = v′[I − B̄(rj)]−1 indicate pre- and post-extraction outputs, and x′i − [x̄′

(rj)]i
is an aggregate measure of sector j’s forward linkage. Again, each element in x′ − x̄′

(rj)
is an indication of j’s dependence on sector i as an intermediate output buyer, and
normalizations are usual, as in [xi − x̄(rj)i]/xj or 100 × [xi − x̄(rj)i]/xj.

In Table 12.5 we summarize the main hypothetical extraction results. [We (arbi-
trarily) use B(t)j and F(t)j instead of BL(t)j and FL(t)j to indicate results from the
hypothetical extraction approach and to distinguish them from the linkage measures in
(12.24) and (12.29).] The interested reader can work through the exercise of extending
these extraction possibilities to the spatial context in which a region is hypothetically
extracted from its many-region system in order to assess that region’s backward, for-
ward and/or total spatial linkages to the rest of that system. (This would amount to
filling in boxes in the style of Table 12.5 for “Region r Backward or Forward Linkage”
and “Region r Total Linkage.”)

When linkages are being measured in order to make comparisons of the structure of
production between countries, the underlying coefficients matrices, whether A or B,
should be derived from total interindustry transactions data – that is, a particular zij

should include good i used by sector j, whether good i comes from domestic producers
or is imported. This is simply because interest is concentrated on how things are made
in various economies, not on where the inputs come from. On the other hand, if linkages
are being used to define “key” sectors in a particular economy, then the A or B matrices
should be derived from a flow matrix that includes only domestically supplied inputs,
since it is the impact on the domestic economy that is of interest. In studying the
economies of less developed countries, it has been suggested (Bulmer-Thomas, 1982,
p. 196) that “linkage analysis for LDCs is probably the most common use to which
their input–output tables have been put.”
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Table 12.5 Hypothetical Extraction Linkages

Sector j Backward or Forward Linkage

Total Backward Total Forward

B(t)j = i′x − i′x̄(cj) where

x̄(cj) = [I − Ā(cj)]−1f
F(t)j = x′i − [x̄′

(rj)]i where

x̄′
(rj) = v′[I − B̄(rj)]−1

Normalizations include (1) division of each element by xj , or

(2) division by
n∑

j=1
xj to create the percentage decrease in total output,

B̄(t)j = 100{[i′x − i′x̄(cj)]/i′x} and F̄(t)j = 100{[x′i − x̄′
(rj)i]/x′i}

or (3) values relative to the average, B̃(t)j = nB̄(t)j/i′B̄(t)j and F̃(t)j = nF̄(t)j/i′F̄(t)j

Sector j Total Linkage

Tj = i′x − i′x̄( j) or (i′x − xj) − i′x̄( j)

where x̄( j) = [I − Ā( j)]−1f( j)

Normalize to create percentage decrease in total output,

T̄j = 100{[i′x − i′x̄( j)]/i′x} or ¯̄Tj = 100{[i′x − i′x̄( j) − xj]/i′x}
or to indicate values relative to the average,

T̃j = nT̄j/
n∑

j=1
T̄j or ˜̃Tj = n ¯̄Tj/

n∑
j=1

¯̄Tj

An applied study that uses both backward and forward linkages (as in sections 12.2.1
and 12.2.2) as well as incorporating a spatial dimension (section 12.2.4) along with
hypothetical extraction (section 12.2.5) is found in Dietzenbacher and van der Linden
(1997). This application is based on 1980 intercountry data for seven countries and
17 sectors of the European Community. It begins with backward and forward sectoral
linkages for each country. These are then split into domestic and external linkages (the
other six countries). Summations over all sectors give average (backward or forward)
linkage of each country to each other. Then hypothetical extraction is applied to each
country – for example, removal of sector j in Germany leads to an output reduction in
Germany and an output reduction in the other six countries. These are translated into
percentages (domestic vs. intercountry), giving a measure of each country’s importance
in the European Community economic system.Also sums (and averages) over all sectors
in each country generate linkages between each pair of countries.

12.2.7 Illustration Using US Data
Results for the US 2003 seven-sector tables (Chapter 2) are collected in Table 12.6.
As expected, the elements in b(t) are the total output multipliers that were found in
Chapter 6. Normalized backward linkages (either direct or total) identify the sectors
with the three strongest (above average) normalized backward linkages (BL > 1) as
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Table 12.6 Linkage Results, US 2003 Data

Sector b(d) b(t) f(d) f(t) b̄(d) b̄(t) f̄(d) f̄(t)

1 0.51 1.92 0.75 2.46 1.26 1.13 1.78 1.42
2 0.37 1.61 0.64 2.11 0.90 0.95 1.51 1.21
3 0.42 1.72 0.13 1.20 1.03 1.02 0.30 0.69
4 0.53 1.93 0.46 1.76 1.30 1.14 1.08 1.01
5 0.30 1.49 0.38 1.63 0.74 0.88 0.90 0.94
6 0.37 1.61 0.45 1.74 0.91 0.95 1.05 1.00
7 0.36 1.60 0.16 1.27 0.88 0.94 0.38 0.73

Table 12.7 Classification of Linkage Results, US 2003 Data

Direct [f̄(d)] or Total [f̄(t)] Forward Linkage

Low ( < 1) High ( > 1)

Direct [b̄(d)] or
Total [b̄(t)]
Backward
Linkage

Low ( < 1) 5 (Trade, Transp., Utilities),
7 (Other)

2 (Mining),
6 (Services)

High ( > 1) 3 (Construction) 1 (Agriculture),
4 (Manufacturing)

Table 12.8 Hypothetical Extraction Results, US 2003 Data

Sector B̄(t)j F̄(t)j T̄j
¯̄Tj

1 1.02 1.61 2.12 0.73
2 0.69 1.27 1.84 0.61
3 3.87 1.06 17.78 12.39
4 13.59 11.20 30.02 10.30
5 6.47 8.42 25.51 13.03
6 19.95 24.44 59.69 13.38
7 6.64 2.98 25.85 14.38

Sector B̃(t)j F̃(t)j T̃j
˜̃Tj

1 0.14 0.22 0.09 0.08
2 0.09 0.17 0.08 0.07
3 0.52 0.15 0.76 1.34
4 1.82 1.54 1.27 1.11
5 0.87 1.16 1.17 1.41
6 2.67 3.36 2.54 1.44
7 0.89 0.41 1.10 1.55
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Table 12.9 Classification of Hypothetical Extraction Results, US 2003 Data

Total Forward Linkage [F̃(t)j]
Low (<1) High (>1)

Total
Backward
Linkage
[B̃(t)j]

Low (<1) 1 (Agriculture), 2 (Mining)
3 (Construction), 7 (Other)

5 (Trade, Transp., Utilities)

High (>1) 4 (Manufacturing),
6 (Services)

(4) Manufacturing, (1) Agriculture, and (3) Construction, in that order. In the case of
normalized forward linkages, the three largest (above average) are (1) Agriculture, (2)
Mining, and (4) Manufacturing, in that order. These results are arranged in Table 12.7.

Hypothetical extraction results for the seven sectors are shown in Tables 12.8 and
12.9. With so few sectors it is perhaps not surprising that the orderings are similar
across these hypothetical extraction measures, although netting out xj does produce
some changes in rankings. Sectors 6 (Services) and 4 (Manufacturing) are identified as

the two “most important” to the economy – with B̃(t)j > 1, F̃(t)j > 1, T̃j > 1, and ˜̃Tj > 1.
However, as the reader can verify, the four-way classifications differ considerably from
those in Table 12.7.

12.3 Identifying Important Coefficients

There is a long history and an enormous amount of published work, both theoretical and
empirical, on the impact (transmission, propagation) of errors or changes or uncertainty
in basic input–output data on the model outcomes. This has appeared under a variety of
titles (“probabilistic” or “stochastic” input–output, “error” analysis and “sensitivity”
analysis, and so on). Examples in the “probabilistic” vein go back at least to Quandt
(1958, 1959).19 Approaches that investigate the impacts of discrete changes in one or
more model components go back at least to the early 1950s (Dwyer and Waugh, 1953;
Evans, 1954). It is beyond the scope of this book to explore all of this literature. (A
brief review and a large set of pertinent references can be found in Lahr, 2001.) Instead,
we concentrate on the concept of “important coefficients.”

Early mathematical work on the notion of “important” coefficients (ICs) in an input–
output model explored ways of identifying aij coefficients that have a particularly strong
influence on one or more elements in the model, usually on the associated Leontief
inverse matrix and/or on one or more gross outputs – meaning that �aij → a “large”
�lrs or that �aij → a “large” �xr for one or more r and s. (We will explore below what

19 Also representative of this line of inquiry are Simonovits (1975), Lahiri (1983), West (1986), Jackson and
West (1989), Roland-Holst (1989), Kop Jansen (1994), ten Raa (1995, Chapter 14; 2005, Chapter 14), or
Dietzenbacher (1995, 2006) and the many additional publications cited in these references.
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Table 12.10 Number of Important Transactions in the 2000 China MRIO
Model

Criterion Number of cells
Percentage of total
number of cells

> (i′Zi/n2) 4,715 8.19
> (10) × (i′Zi/n2) 1,042 1.81
> (100) × (i′Zi/n2) 84 0.15
> (200) × (i′Zi/n2) 32 0.06

constitutes “large” and what measures of “change” are used in these investigations.)
Identification of such coefficients can be helpful in deciding where to expend effort
in obtaining superior information for updating or regionalizing a known input–output
table using a hybrid model. And ICs contribute to some studies of key sectors and
of what has come to be known as “fundamental economic structure.” Jackson (1991)
suggests that a distinction should be made between coefficient error (e.g., estimation
error) and coefficient change (e.g., technological change).

In what follows, we examine the mathematical underpinnings of these approaches
and then several kinds of studies – primarily influences on inverse elements and on
gross outputs. Reviews of much of this work can be found in Xu and Madden (1991),
Casler and Hadlock (1997) and Tarancón et al. (2008). There are many more published
studies than we are able to cite. A large amount of work was done in Germany in the
1970s and 1980s and published in German, making it somewhat less accessible to a
segment of the English-speaking audience – for example, Schintke (1979, 1984), Maaß
(1980) and numerous references therein.

One very straightforward way to assess “importance” of individual cells in input–
output data is simply to compare each transaction (zij) with the average transaction
amount (i′Zi/n2). This is done in Okamoto (2005) for the 2000 China multiregional
input–output data (CMRIO) made up of eight regions with 30 sectors each – a total of
57,600 potential elements in Z. Table 12.10 shows results for this particular data set
(adapted from Okamoto, 2005, p. 141). A similar approach could also be used on the
data in coefficients matrices (A or B) or total requirements matrices (L or G).

12.3.1 Mathematical Background
These investigations build on early results in Sherman and Morrison (1949, 1950)
and Woodbury (1950) – hereafter SMW – who studied how changes in elements in
a (nonsingular) matrix were transmitted to changes in elements in the inverse of that
matrix. (Basic results and additional details are presented in Appendix 12.1.) Given
a nonsingular matrix, M, and its inverse, M−1 = [μij], assume that one (or more)
elements of M are changed, i.e., m∗

ij = mij + �mij, producing M∗ = M + �M. SMW

show how the elements of (M∗)−1 = [μ∗
ij] can be found by “adjusting” the known
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elements μij. This is addressed by Sherman and Morrison (1950) for the case when
only one element is changed, by Sherman and Morrison (1949) for changes in several
elements in a given column or row and by Woodbury (1950) for changes in elements
in several rows (or columns).20

For the simplest situation, when a single element mij is changed (increased or
decreased) by an amount �mij, the value of the element in row r and column s of
the new inverse is found to be

μ∗
rs = μrs − μriμjs�mij

1 + μji�mij
(12.30)

Building on this result, it is possible to trace the influence of a change (or “error”) in
an element of an A matrix – and hence in (I − A) – on the associated Leontief inverse,
L = (I − A)−1. In this case, we begin with A∗ = A + �A. Since our interest is in
L∗ = (I − A∗)−1, the parallel to M∗ = M + �M is

(I − A∗) = [I − (A + �A)] = (I − A) + (−�A)

For individual elements in the new inverse, l∗rs, the result in (12.30) becomes

l∗rs = lrs + lriljs�aij

1 − lji�aij
(12.31)

[This is (A12.1.4) in Appendix 12.1.] Notice that the signs are reversed from those in
(12.30) because of the way in which �A enters the expression for (I − A∗).

12.3.2 Relative Sizes of Elements in the Leontief Inverse
The following observations on Leontief inverse elements are relevant to the problem
of identifying important coefficients. As we will see, they help to reduce the number of
coefficients that need to be examined when ranking those elements for importance.

Observation 1 From the power series approximation, it is clear that all on-
diagonal elements in a Leontief inverse are larger than one. Also, it is virtually always
observed in real-world Leontief inverse matrices that lrs < 1 (r �= s) (off-diagonal
elements are less than one);21 thus lii > 1 > lrs for all r �= s. This will be of use for the
results below in (12.32).

20 For much more detail on all of these results, see Miller (2000, Appendices 5.2 and 6.1).
21 This is not to say that a counterexample cannot be constructed, but rather that they do not seem to occur in

practice. For example

A =
⎡⎣0.02 0.4 0.4

0.3 0.05 0.3
0.4 0.30 0.01

⎤⎦ ⇒ L =
⎡⎣1.7767 1.0779 1.0445

0.8711 1.6925 0.8649
0.9818 0.9484 1.6942

⎤⎦.

As an illustration, all the US Leontief inverses in Miller and Blair (1985, Appendix B), from 1947 through
1977, at both 23- and seven-sector levels of aggregation, exhibit the properties of Observation 1.
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Observation 2 In (12.33) and (12.42), it will be of interest to identify the
largest of the ratios lriljs/lrs for a given i and j. Schnabl (2003, p. 497) reports on results
in Maaß (1980, in German)

Maaß’s calculation showed that the maximum [of these ratios] is attained if r = i and s = j because
then the main diagonal element of the inverse is involved twice and since the main diagonal element
is usually the biggest one in a row or column this gives the maximum.

Thus Max
r,s=1,..., n

lriljs/lrs = liiljj/lij.

Observation 3 Finally, Max
r=1,...,n

lri/xr = lii/xi. It is not at all obvious that this

should be the case, since the sizes of sectors (as measured by their gross outputs) can
vary greatly in real-world models. Nonetheless, it was observed in some early empirical
observations and is proven to always be the case in Tarancón et al. (2008)22. This is
useful for the results in (12.38).

12.3.3 “Inverse-Important” Coefficients
For the remainder of this section, it will be useful to complicate the notation in order
to be explicit about the element in A that is changed. From (12.31),

�lrs(ij) = l∗rs(ij) − lrs = lriljs�aij

1 − lji�aij
= lriljsk

1
(ij) (12.32)

where k1
(ij) = �aij/(1 − lji�aij), a constant for a given i and j, and L∗

(ij) = [l∗rs(ij)]
reminds us that the change is in aij. From Observation 1, above,�aij will exert the largest
influence on lij when r = i and s = j, since then both elements multiplying k1

(ij) are larger
than one [when lri is lii( > 1) and ljs is ljj ( > 1)]. Similarly, next-largest influences will
be felt in row i or column j of L, since then either lri → lii > 1 or ljs → ljj > 1. In
virtually all other cases (not row i or column j) both elements of the product lriljs are
less than one.

From (12.32), the expression for relative changes in Leontief inverse elements is

�lrs(ij)

lrs
= lriljs�aij

lrs(1 − lji�aij)
= lriljs

lrs
k1
(ij) (12.33)

This is where Observation 2 becomes relevant. Since Max
r, s=1,...,n

lriljs/lrs = liiljj/lij, it is

clear that, again, �aij will create the largest relative change on lij.
In addition, the elements �lrs(ij)/lrs in column i and row j of the matrix of relative

changes will all be identical. In column i (when s = i), �lri(ij)/lri = (lrilji/lri)k1
(ij) =

ljik1
(ij), and in row j (when r = j), �ljs(ij)/ljs = (ljiljs/ljs)k1

(ij) = ljik1
(ij) = �lri(ij)/lri.

22 Sekulić (1968) observed this to be true for the Yugoslav economy in the early 1960s. Similar observations are
made in Schintke (1979 and elsewhere) based on German data. See also results from US data in Table 12.12,
below.



12.3 Identifying Important Coefficients 571

Finally, the percentage changes are

prs(ij) = 100

[
�lrs(ij)

lrs

]
= 100

[
lriljs�aij

1 − lji�aij

] [
1

lrs

]
= 100

[
lriljs
lrs

k1
(ij)

]
(12.34)

Again, pij(ij) will be the largest percentage change caused by �aij.
It has been suggested (for example, Hewings, 1981) that aij may be viewed as

“inverse-important” if, for a specified “threshold” amount of change in an inverse
element, β, prs(ij) ≥ β for one or more r and s, that is, if

prs(ij) = 100

[
lriljs�aij

1 − lji�aij

] [
1

lrs

]
≥ β (12.35)

Denote the percentage change in aij by α, so that �aij = [α/100] aij; then we have[
lriljsαaij

100 − ljiαaij

] [
100

lrs

]
≥ β (12.36)

for any lrs and a given α and β. For example, let α = 20 and β = 10. This means that
aij will be considered inverse-important if a 20 percent change in its value generates a
10 percent or larger change in one or more elements in the Leontief inverse. The analyst
must specify α and β, on the basis of the particular problem under study.

Given Observations 1 and 2, establishing inverse importance for each aij in an n-
sector A matrix requires only one application of (12.35) [or (12.36)] – for r = i and
s = j. 23 The virtue of the SMW method is that it finds this information about the inverse
by working exclusively with known elements in L and avoiding direct calculation of
the new inverse. This was the whole point of the formulation.

At present, however, finding inverses is not quite the task it was in 1950 when
the SMW approach was developed; at least this is true for matrices that are not
“too large.” Then a straightforward alternative to applying (12.35) or (12.36) is to
calculate directly the L∗

(ij) associated with each �aij and then find the correspond-
ing matrix of percentage changes, P(ij) = [ prs(ij)] = 100{[L∗

(ij) − L]�L}, where “�”
indicates element-by-element division.

This line of work, formulating the notion of inverse-important coefficients, was
taken up initially in the early 1980s by Hewings, Jensen, West, and others. Exam-
ples are Jensen and West (1980), Hewings (1981), Hewings and Romanos (1981) and
Hewings (1984). For hybrid (partial-survey) models, the idea is to identify coefficients
(or sectors) for which additional information (survey, expert opinion) would be particu-
larly useful. But of course identifying inverse importance implies that a relevant matrix
of coefficients already exists to supply the elements in results like (12.35). For updating,

23 If one wants not simply to establish inverse-importance, but also extent [that is, for a given �aij , how many

(and which) prs(ij) exceed the β threshold], then [n2 − (2n − 1)] calculations like those in (12.35) or (12.36)

would be needed – the n2 inverse elements, lrs, for a given aij , less those in row j and column i that are all
identical – and these calculations must be made n times, once for each of the aij . The “field of influence”
approach (section 12.3.6) accomplishes this in one matrix operation.
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there is a base matrix to be updated, and the premise is that important coefficients at
time “t” will also be important at time “t + 1.” However, there is no hard evidence to
support that argument. In fact, Hewings (1984, p. 325), cautioned that “…only 3 of
the cells deemed inverse-important in 1963 [the Washington State 49-sector model]
were similarly identified in 1967.” For regional models there is often not an “earlier”
regional table. In the context of estimating a coefficients table in a regional context,
Boomsma and Oosterhaven (1992, p. 276, n. 3) observed:

Here we have a typical “chicken or egg” problem. Without a regional table one cannot determine
the inverse-important cells and without that information one cannot construct a decent regional table.
Hence, we suggest use of the national table as second best information on inverse-importance.

12.3.4 Numerical Example
We use the two-sector example closed with respect to households from section 2.5,
namely24

A =
⎡⎣.15 .25 .05

.20 .05 .40

.30 .25 .05

⎤⎦ and L =
⎡⎣1.3651 .4253 .2509

.5273 1.3481 .5954

.5698 .4890 1.2885

⎤⎦

Consider �a12 = (0.2)a12 (that is, α = 20); then A∗ =
⎡⎣.15 .30 .05

.20 .05 .40

.30 .25 .05

⎤⎦, and we can

easily calculate L∗
(12) directly as

L∗
(12) =

⎡⎣1.4021 .5198 .2926
.5416 1.3846 .6115
.5853 .5285 1.3060

⎤⎦
Then

P(12) =
⎡⎣2.7080 22.2225 16.6345

2.7080 2.7080 2.7080
2.7080 8.0667 1.3521

⎤⎦
As expected, with the change �a12, all elements in column 1 and row 2 are identical.

Further, in this illustration ljj > 1 ( j = 1, . . . , 3), lij < 1 (i = 1, . . . , 3; i �= j) (Obser-
vation 1, above) and indeed the largest change caused by �a12 is in l12 – here this is
p12(12) = 22.2 percent. If we specify β = 10 as our criterion in (12.36) for inverse-
importance – namely when a change of 10 percent or more is experienced by at least
one inverse coefficient – then we see that a12 would be classified as inverse-important
because �a12 = (0.2)a12 causes both l12 and l13 to be changed by more than 10 per-
cent. In this small three-sector case, it is relatively easy to modify each element in A,

24 In section 2.5 these matrices contained overbars to indicate a model closed with respect to households and to
distinguish them from the earlier open model. At this point the overbars just get in the way of other notation
and will be dropped.
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in turn, by 20 percent, find the associated Leontief inverse and then the associated P
matrix. (Readers are encouraged to do this, at least for several additional aij.) If we
continue to use β = 10 in that series of calculations – for �a11 = (0.2)a11, . . . , �a33 =
(0.2)a33 – we will identify a21, a23, a31, and a32 also as important.25 (Higher values of
β serve to raise the bar on eligibility for importance. For example, with β = 20, only
a12 and a23 would be labeled important.)

“Importance” could be identified in many other ways, for example, with respect to
changes in output multipliers – as in 100{[i′L∗

(ij) − i′L] � i′L} = 100{[i′�L(ij)] � i′L}.
If β now refers to percentage change in multipliers, only a23 is found to be important
with β = 10; however, at β = 5 the same five coefficients as above are identified.

As noted, the point of the SMW result is that these percentage changes in inverse
coefficients can be found without knowing the new inverse at all. Continuing with
�a12 = (0.2)a12, consider the percentage change in l13 [p13(12) in P(12), above]. Using
(12.35) with i = 1, j = 2, r = 1, s = 3, and �a12 = 0.05, we have

p13(12)=
[

l11l23�a12

1 − l21�a12

] [
100

l13

]
=
[
(1.3651)(.5954)(0.05)

1 − (.5273)(0.05)

] [
100

(.2509)

]
=16.6359

Except for rounding (and the number of significant digits carried in the inversion pro-
grams used to find L and L∗

(12)), this corresponds to the p13(12) found above. Any other
value in P(12) could be found in the same way.

The designation of inverse-importance depends crucially on the choice of α and β. In
a study of several of the Washington State 49-sector tables, Hewings (1984) used α = 30
and β = 20. Out of 49×49 = 2401 direct input coefficients, between 24 and 42 (1.0–1.7
percent) were judged inverse-important. In a similar study in Sri Lanka (also Hewings,
1984), 3.5 percent were found important in a 12-sector model (apparently using the
same α and β). There were interesting although not surprising variations in a two-region
Sri Lanka interregional input–output model between intraregional and interregional
coefficients (now with a 24×24 matrix); 3.3 percent of the (possible) 288 intraregional
coefficients were important and 0.9 percent of those 288 in the interregional matrices
were important. In a similar study (Hewings and Romanos, 1981) using a 22-sector
model for the rural Evros region in Greece, 18 of 484 possible coefficients (3.7 percent)
were important – only here, because of the less-developed nature of the economy, the
critical values used were α = 20 and β = 1. With those same values, a 22-sector model
for the Greek national economy had 38 important coefficients (7.9 percent).

12.3.5 Impacts on Gross Outputs
Early applications of these ideas to the impact of coefficient change on gross outputs
are found in Sekulić (1968) and Jílek (1971).26 In matrix terms, �x(ij) = x∗

(ij) − x =
25 In each of the eight cases the largest change caused by that �aij was in the associated lij , as expected, but four

of those were below the β = 10 threshold.
26 Sekulić (1968) and later Jílek (1971) attribute the approach to E. B. Yershof who contributed a chapter of a

1965 Moscow publication on planning (in Russian). The bases of the approach are in the work of SMW, some
15 years earlier.
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L∗
(ij)f − Lf = �L(ij)f . From (12.31), we see that row r of �L(ij) is

[
�lr1(ij) · · · �lrn(ij)

] = lri�aij

1 − lji�aij

[
lj1 · · · ljn

]
and therefore

�xr(ij) = [
�lr1(ij) · · · �lrn(ij)

]⎡⎢⎣f1
...
fn

⎤⎥⎦ =
[

lri�aij

1 − lji�aij

] [
lj1 · · · ljn

]⎡⎢⎣f1
...
fn

⎤⎥⎦

But since
[
lj1 · · · ljn

]⎡⎢⎣f1
...
fn

⎤⎥⎦ = xj, this is just

�xr(ij) = lrixj�aij

1 − lji�aij
= lrik

2
(ij) (12.37)

where k2
(ij) = xj�aij/(1 − lji�aij). Compared with the expression for �lrs(ij) in (12.32),

ljs has been replaced on the right-hand side by xj. Again, from Observation 1, lii > lri

(for r = 1, . . . , n; r �= i), so (12.37) indicates that the largest gross output change from
�aij will be in sector i (that is, when r = i).27

The relative change in xr is then

�xr(ij)

xr
= lrixj�aij

xr(1 − lji�aij)
=
[

lri

xr

]
k2
(ij) (12.38)

Here the largest relative change in gross output for a given �aij will be in sector s
for which lsi/xs = Max

r=1,...,n
(lri/xr), and from Observation 3, this will be for sector i.

The interested reader can easily show this to be true for the numerical example, above.
Table 12.11 presents the same calculations for the 2003 US seven-sector data from
Chapter 2, showing that the largest ratios (in bold) are on the main diagonal.

Finally, multiplication in (12.38) by 100 creates a percentage change,

100

[
�xr(ij)

xr

]
= 100

[
�aij

1 − lji�aij

] [
lrixj

xr

]
(12.39)

Table 12.12 contains these percentages for x1, x2, and x3 from the hypothetical example
as a result of �aij = (0.2)aij for all nine direct input coefficients (i, j = 1, 2, 3).

As expected, for any �aij, the largest changes are found in xi; in the row for i = 1,
this means �x1 > �x2 and �x1 > �x3, and so on in the rows for i = 2 and i = 3. Also,
with α = 20, if the criterion for “importance” is that one or more outputs changes by

27 If xi is small relative to other outputs, then a large �xi may not have much economy-wide importance. There
have been attempts to take this aspect of relative output size into account, but we do not consider this level of
detail. The interested reader might speculate on how this could be done.
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Table 12.11 (lri/xr) × 106 for the 2003 US Seven-Sector Model

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

r = 1 4.5868 0.0211 0.0477 0.2093 0.0136 0.0253 0.0263
r = 2 0.0381 4.4187 0.0501 0.1408 0.0794 0.0136 0.0301
r = 3 0.0071 0.0032 0.9449 0.0060 0.0061 0.0105 0.0235
r = 4 0.0589 0.0306 0.0672 0.3449 0.0178 0.0220 0.0324
r = 5 0.0523 0.0297 0.0480 0.0547 0.3811 0.0209 0.0298
r = 6 0.0261 0.0321 0.0295 0.0319 0.0297 0.1544 0.0343
r = 7 0.0107 0.0105 0.0102 0.0162 0.0124 0.0131 0.4566

Table 12.12 Percentage Change in x Resulting from
�aij = (0.2)aij

j = 1 j = 2 j = 3

i = 1

⎡⎣4.27
0.82
1.78

⎤⎦ ⎡⎣14.02
2.71
5.85

⎤⎦ ⎡⎣1.37
0.27
0.57

⎤⎦

i = 2

⎡⎣1.73
2.74
1.99

⎤⎦ ⎡⎣0.86
1.37
0.99

⎤⎦ ⎡⎣3.54
5.61
4.07

⎤⎦

i = 3

⎡⎣1.53
1.81
7.85

⎤⎦ ⎡⎣ 2.59
3.07

13.28

⎤⎦ ⎡⎣0.25
0.30
1.31

⎤⎦

β = 10 percent, then a12 and a32 would be labeled most and second-most important.
These percentage changes are indicated in bold in the table. [The interested reader
might speculate on why it is not surprising that coefficients judged important by the
criterion in (12.35) are likely to be tagged as important by the criterion in (12.39).]

Again, the “importance” of any aij could be defined in terms of the impact of relative
or percentage changes in aij on the associated relative or percentage changes in each
xr . Using γr for the (user-specified) threshold on percentage changes in xr ,[

100�aij

1 − lji�aij

] [
lrixj

xr

]
≥ γr

[Compare (12.35).] Again, with �aij = [α/100] aij, we have[
αaij

1 − lji
[

α
100

]
aij

][
lrixj

xr

]
=
[

100αaij

100 − ljiαaij

] [
lrixj

xr

]
≥ γr
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Table 12.13 Upper Threshold on �aij/aij for γ = 1
Percent

j = 1 j = 2 j = 3

i = 1 4.90 1.47 14.71
i = 2 7.46 14.92 3.73
i = 3 2.58 1.55 15.50

Much of the empirical work in this area is based on a rearrangement of (12.39).
Putting �aij on the left and converting to relative change in aij, we have

�aij

aij
= �xr(ij)/xr

aij[(lji�xr(ij)/xr) + (lrixj/xr)]
Define an allowable error limit, γ , for all sectors r which is just fulfilled by positive
relative deviations �aij/aij. This is often called a “tolerable limit, TL” and hence the
name “tolerable limits approach.” As is frequently done, let γ = 100(�xr(ij)/xr) = 1
percent; then in percentage terms

�aij

aij
= 100�xr(ij)/xr

aij[(lji100�xr(ij)/xr) + 100(lrixj/xr)] = 1

aij[lji + 100(lri/xr)xj]
Expressed in this way, we see that the larger the denominator on the right-hand side, the
smaller �aij/aij. So the upper threshold on �aij/aij will be determined by Max

r=1,...,n
lri/xr ,

�aij

aij
≤ 1

aij[lji + 100 Max
r=1,...,n

(lri/xr)xj]

As noted (Observation 3) Max
r=1,...,n

lri/xr = lii/xi, so

�aij

aij
≤ 1

aij[lji + 100(lii/xi)xj] (12.40)

establishes an upper limit on the relative change in aij that assures that no gross output
will be changed by more than one percent.28 The smaller �aij/aij, the more important
the coefficient aij. Table 12.13 shows the right-hand sides of (12.40) for our small
numerical example.

From the upper-left element in the table, we learn that a11 could change by as much
as 4.9 percent before any output would be changed by more than one percent. Similarly,

28 This can be found in Sekulić (1968). Forssell (1989, p. 431) describes it as a measure “developed by Mäenpää
(1981)” but it seems to have been suggested much earlier. The Jugoslav journal in which the Sekulić paper
appeared may not be well known, but the paper was also presented at the Fourth International Conference on
input–output Techniques in Geneva in 1968.
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Table 12.14 Average Values in US Total
Requirements Matrices

Number of Sectors i′ L̂i/n i′Ľi/(n2 − n)

n = 7 1.1739 0.0868
n = 16 1.1290 0.0429
n = 61 1.1113 0.0133

a12 (1.47) is identified as the most important coefficient (smallest value in Table 12.13),
followed by a32 (1.55), a31(2.58) and so on. While perhaps not of much interest, we
would also conclude that a33 is least important, since it could change by as much as 15.5
percent before any gross output would be changed by more than one percent. [Since the
result in (12.40) comes directly from the result in (12.39), it should not be surprising
that the importance rankings of the nine coefficients in our numerical example that are
shown in Tables 12.12 and 12.13 are exactly the same.]29

The denominator on the right in (12.40),

aij[lji + 100(lii/xi)xj]

has been described as a measure of the “degree of importance” of aij (for exam-
ple, by Schintke and Stäglin, 1984). In real-world applications it turns out that
lji � 100(lii/xi)xj, especially for relatively disaggregated input–output models, again
because of Observation 1 (lii > 1 > lij). In fact, there are usually quite large differences
between the lii and the lij. For example, average values of on-diagonal elements (in L̂)
and off-diagonal elements (in Ľ) in Leontief inverses for 2003 US input–output data
are shown in Table 12.14.

This suggests that, for any given aij and irrespective of xi and xj,30 the first term can
be ignored and the measure can be approximated as

aij[lji + 100(lii/xi)xj] ≈ 100aij(lii/xi)xj

Using bij = zij/xi = aijxj/xi (the usual “output coefficient” from the Ghosh model)
this has also been expressed as

aij[lji + 100(lii/xi)xj] ≈ 100bijlii

29 Empirical examples identifying important coefficients for a variety of tolerable limits can be found in Aroche-
Reyes (1996, 2002) for Mexico (1970, 1980) in the first case and for Mexico (1971, 1990), Canada (1972,
1990) and the US (1971, 1990) in the second.

30 Of course one could generate counter examples with very large xi and very small xj so that lji > 100(lii/xi)xj .
The point is that this does not seem to happen in real-world applications.
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12.3.6 Fields of Influence
In a number of articles, Sonis and Hewings and their colleagues have developed and
applied the concept of a “field of influence” associated with each coefficient in an
A matrix.31 This is essentially an extension of the Sherman–Morrison approach that
generates in one operation the entire matrix of changes in the Leontief inverse associated
with a given change in a particular aij. Recall that �lrs(ij) is related to �aij through

�lrs(ij) = l∗rs(ij) − lrs = lriljs�aij

1 − lji�aij
= lriljsk

1
(ij)

[This is (12.32), above.] Finding all the n2 elements in the n×n matrix�L(ij) = [�lrs(ij)]
would require [n2 −(2n−1)] operations, as we saw above (footnote 21). Instead, Sonis
and Hewings propose an efficient alternative.

Let column i and row j of L be denoted L.i =

⎡⎢⎢⎢⎣
l1i

l2i
...

lni

⎤⎥⎥⎥⎦ and Lj· =
[

lj1 lj2 · · · ljn
]
.

Then the first order (direct) field of influence of the incremental change �aij is defined
by Sonis and Hewings as the matrix32

F[i, j] = L·iLj· =

⎡⎢⎢⎢⎣
l1i

l2i
...

lni

⎤⎥⎥⎥⎦[
lj1 lj2 · · · ljn

] =

⎡⎢⎢⎢⎣
l1ilj1 l1ilj2 · · · l1iljn
l2ilj1 l2ilj2 · · · l2iljn

...
...

...
lnilj1 lnilj2 · · · lniljn

⎤⎥⎥⎥⎦
Thus, F[i, j] = [lriljs] for r, s = 1, . . . , n is the expanded version of the product lriljs on
the right-hand side of (12.32), and the matrix showing the change in each element of
L caused by �aij is just �L(ij) = F[i, j]k1

(ij). Therefore

L∗
(ij) = L + �L(ij) = L + [(�aij)/(1 − lji�aij)]F[i, j] = L + F[i, j]k1

(ij)

Since k1
(ij) is a constant for any specific�aij, corresponding elements of�L(ij) and F[i, j]

are proportional and will have the same ordering – for example, largest to smallest.

In the numerical example, L·i = L·1 =
⎡⎣ 1.3651

0.5273
0.5698

⎤⎦ and

31 The publications are numerous, going back at least to Sonis and Hewings (1989).Afairly compact statement can
be found in Sonis and Hewings (1992) and an application (to the Chicago economy) is presented in Okuyama
et al. (2002).

32 Sonis and Hewings used F
(

i
j

)
to indicate a field of influence in early publications; later (for example, Sonis

and Hewings, 1999) this became F[i, j].
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Lj· = L2· = [
0.5273 1.3481 0.5954

]
so

F[1, 2] = L·1L2· =
⎡⎣ 0.7198 1.8402 0.8127

0.2781 0.7109 0.3139
0.3005 0.7682 0.3393

⎤⎦
Further, �a12 = 0.05 and k1

(12) = [(�a12)/(1 − l21�a12)] = 0.0514 so

�L(12) = F[1, 2](0.0514) =
⎡⎣ 0.0370 0.0945 0.0417

0.0143 0.0365 0.0161
0.0154 0.0395 0.0174

⎤⎦
and it is easily verified that L∗

(12) = L + �L(12).
Sonis and Hewings suggest that inverse-important coefficients can be identified by

comparing their fields of influence.33 The problem is how to reduce the n2 pieces of
information in each F[i, j] in order to make comparisons across the �aij.34 The norms
of these matrices offer one possible compact measure; the trouble is that there are
many different definitions of a matrix norm. Among those that they mention (Sonis and
Hewings, 1992, p. 147) are

‖F‖ = max
ij

∣∣ fij
∣∣ (largest individual element)35

‖F‖ = ∑
ij

∣∣ fij
∣∣ (sum of all elements)

‖F‖ =
[∑

ij

∣∣ fij
∣∣]1/2

In Chapter 2 we used a largest column sum norm; ‖F‖ = max
j

∑
i

∣∣ fij
∣∣. Further,

[t]he choice of norm ‖F‖ is the basis of the construction of the rank-size sequence of the elements aij
of the matrix A according to the numerical sizes of the norms ‖F[i, j]‖. The decision or cutting rule
must be formulated in such a way that only a relatively small number of the elements of the rank-size
sequence will comprise the set of inverse-important coefficients. (p. 147).

Returning to our numerical example, we generated fields of influence for each of the
nine coefficients in A using �aij = (0.2)aij – namely, �a11 = (0.2)a11, then �a12 =
(0.2)a12, and so on. Tables 12.15 and 12.16 present two summary measures (norms)
from these nine F[i, j] matrices. Table 12.15 contains the column sums, and the ‖F‖ =
33 In other publications they also propose higher-order fields of influence when two or more coefficients change

(with associated mathematical representations that are much more complicated), and they also use some of
these concepts to characterize the fundamental structures of economies and provide alternative kinds of model
decompositions.

34 Generally, for comparability, each aij is changed by the same percentage, α, so that �aij =
(α/100)aij for all i, j. In presenting applications identifying important coefficients Sonis and Hewings (1992)
do not specify either their choice of norm or their coefficient alteration mechanism.

35 There is no need to generate the entire field of influence matrix if one is then going to summarize the information
by using the max

ij

∣∣ fij
∣∣ norm of that matrix. We know that the largest �lrs(ij) is �lij(ij) and that frs(ij) is

proportional to �lrs(ij) so this can be found using the Sherman–Morrison results in (12.32) for �lij(ij) only.
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Table 12.15 Column Sums of |F[i, j]| for Numerical Example

aij j = 1 j = 2 j = 3

i = 1
[
3.3612 1.0471 0.6178

] [
1.2984 3.3193 1.4659

] [
1.4031 1.2042 3.1727

]
i = 2

[
3.0884 0.9621 0.5676

] [
1.1930 3.0499 1.3469

] [
1.2892 1.1064 2.9152

]
i = 3

[
2.9142 0.9078 0.5356

] [
1.1257 2.8779 1.2710

] [
1.2165 1.0440 2.7508

]

Table 12.16 Sum of all Elements in |F[i, j]| (‖F‖ = ∑
ij

∣∣ fij
∣∣)

aij j = 1 j = 2 j = 3

i = 1 5.0261 6.0837 5.7800
i = 2 4.6181 5.5898 5.3108
i = 3 4.3577 5.2746 5.0113

max
j

∑
i

∣∣ fij
∣∣ norm is obvious by inspection in each case. Table 12.16 contains the ‖F‖ =∑

ij

∣∣ fij
∣∣ norm for the nine coefficients.

12.3.7 Additional Measures of Coefficient Importance
Converting Output to Employment, Income, etc. As noted many times ear-

lier in this book, gross outputs may not ultimately be the most important measure of
economic impact. Gross output requirements can be translated into employment (for
example, person-years) using employment coefficients (for example, person-hours per
dollar’s worth of each sector’s output). If these coefficients are denoted ec and total

employment in each sector is represented by ε =
⎡⎢⎣ε1

...
εn

⎤⎥⎦, then �ε = êc�x converts

changes in outputs to changes in employment. For example, from (12.36),

�εr = (ec)r�xr(ij) = (ec)rlrixj�aij

1 − lji�aij
= (ec)rlrik

2
(ij) where k2

(ij) = xj�aij

1 − lji�aij

The largest employment impact of �aij will thus be in the sector with the largest
(ec)rlri, and this is no longer assured to be sector i. Numerous other conversions are also
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possible – for example, to changes in income, value added, energy use, environmental
impacts, and so forth.36

Elasticity Coefficient Analysis Several authors have suggested a variation of
the measure of relative change that parallels the concept of elasticity in economics (see
section 6.6), namely the relative change in lrs(ij) divided by the relative change in aij

ηlrs(ij) =
�lrs(ij)

lrs
�aij
aij

=
�lrs(ij)
�aij

lrs
aij

=
(

�lrs(ij)

�aij

)(
aij

lrs

)
(12.41)

From (12.33), this is

ηlrs(ij) = lriljsaij

lrs(1 − lji�aij)
= lriljs

lrs
k3
(ij) (12.42)

where k3
(ij) = aij/(1 − lji�aij). Notice that this differs from the expression for

�lrs(ij)/lrs in (12.33) only in that �aij has been replaced by aij in the numerator. For
any aij, there will be n2 of these elasticities. Then Maaß (1980; cited in Schnabl, 2003)
proposed the maximum of these elasticities as another measure of the importance of
aij – Maxrs(ηlrs(ij)). From Observation 2, again, it is clear that

Maxrs(ηlrs(ij) ) = liiljjaij

lij(1 − lji�aij)

So, as noted by Schnabl, this elasticity analysis generates the same results as the
important coefficient analysis above.

Replacement of �lrs(ij)/lrs in the numerator in (12.41) by �xr(ij)/xr will lead to an
expression for the elasticity of gross output with respect to �aij. And, just as gross
output impacts can be translated into employment, income, value-added, etc. effects,
these variations too can be converted to elasticity measures.

Relative Changes in All Gross Outputs A straightforward error measure that
takes into account changes in all outputs is

E(ij) = i′
∣∣�x(ij)

∣∣ =
n∑

k=1

∣∣�xk(ij)
∣∣

Or, to take account of the relative sizes of the sectors, Siebe (1996) suggests

SUM(ij) =
n∑

k=1

∣∣�xk(ij)/xk
∣∣

36 Tarancón et al. (2008) discuss in some detail the identification of important coefficients using alternative
measures of economic welfare.
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as a measure of importance of each coefficient, aij. As with previous measures,
this could be transformed into an aggregate effect on employment, income,
value-added, etc.

Impacts of Changes in more than One Element of the A Matrix Assessing the
importance of each aij relative to all the others is carried out using one or more of the
one-at-a-time approaches that we explored above. There has also been considerable
work on the impacts of simultaneous changes (errors) in many or all aij coefficients.
Indeed Sherman and Morrison (1949) considered cases with more than one change, but
concentrated in a single row (or column). This was also explored in many publications
by Schintke (1979 and elsewhere) and Schintke and Stäglin (1984 and elsewhere).
Since this is somewhat peripheral to our “important coefficient” interests, we confine
some of the background and results to Web Appendix 12W.2.

12.4 Summary

Initially in this chapter we explored the supply-side (Ghosh) model with both its early
and later interpretations, in terms of quantity and price models, respectively. Various
approaches to measuring linkages in an input–output system were the topic of section
12.2. Early approaches identified backward and forward linkages through appropriate
row and column sums of the Leontief and Ghosh coefficient matrices (A and B) or
their counterpart inverses, L and G. An alternative and more comprehensive view of
linkage measurement grew out of the notion of hypothetical extraction, which can be
implemented for backward, forward or total linkage measures. A detailed classification
of hypothetical extraction possibilities is presented in Web Appendix 12W.1. The final
topic considered in this chapter is the problem of how to define (conceptually) and
identify (mathematically) “important” coefficients in an input–output system. Many
approaches have been suggested. A major reason for interest in this topic is that it
helps to identify where one might concentrate resources when trying to improve (for
example, update) an input–output model’s data base. Some historical background and
details on this issue are relegated to Appendix 12.1 and Web Appendix 12W.2.

Appendix 12.1 The Sherman–Morrison–Woodbury Formulation

A12.1.1 Introduction
Given a nonsingular matrix, M, and its inverse, suppose that one or more elements
of M are changed, producing M∗. The question is: can we find (M∗)−1 = [μ∗

ij] by

“adjusting” M−1 = [μij], which is already known? This is addressed by Sherman and
Morrison (1949, 1950) for the case in which only one element is changed and by
Woodbury (1950) for the case in which more than one element is changed. The answer
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is “yes,” and the adjustment is relatively simple.37 (Hereafter we will refer to the
“SMW” results.)

Here is an illustration for the case of a change in one element only (Miller, 2000,
pp. 281–286). Given

M =
⎡⎣1 1 1

2 0 6
3 7 1

⎤⎦ and M−1 =
⎡⎣ 3.5 −0.5 −0.5

−1.3333 0.1667 0.3333
−1.1667 0.3333 0.1667

⎤⎦
consider an M∗ that differs from M only in that 3 has been added to m23, changing it

from a 6 to a 9. Let M∗ = M + �M where, in this case, �M =
⎡⎣0 0 0

0 0 3
0 0 0

⎤⎦. For later

reference, we can easily find

(M∗)−1 =
⎡⎣ 2.625 −0.25 −0.375

−1.0417 0.0833 0.2917
−0.5833 0.1667 0.0833

⎤⎦
The idea is to find an alternative to the direct computation of (M∗)−1, making use only
of M−1 and of the size of the change (here �m23 = 3).38

The heart of the procedure is contained in two matrices (for this example, these are

vectors). Let C =
⎡⎣0

1
0

⎤⎦ and R =[
0 0 3

]
; then �M = CR. The trick is to let C be

the ith column of an identity matrix (the same size as M), where i identifies the row in
M in which the change occurs, and where R is an appropriately sized null row vector
with the jth element replaced by �mij. The fundamental result is

(M∗)−1 = M−1 − �M−1 = M−1 − (M−1C)(RM−1)

(1 + RM−1C)
(A12.1.1)

This is not as complex as it might appear. The numerator of �M−1 is the product of a
column vector M−1C and a row vector RM−1 and the denominator is simply a scalar.39

The expression for an individual element in (M∗)−1 follows directly from (A12.1.1).
For a matrix M in which element mij is changed (increased or decreased) by �mij, the
value of the element in row r and column s of the new inverse, μ∗

rs, is

μ∗
rs = μrs − μriμjs�mij

1 + μji�mij
(A12.1.2)

37 Henderson and Searle (1981) is an important reference on inverses of sums of matrices that seems generally
ignored in the input–output literature. It includes at least six different variations on the SMW results and an
extensive set of references.

38 If changes in each of several aij are to be examined, it is helpful to use the notation M∗
ij in order to identify the

specific case under consideration.
39 A similar result can be derived with the roles of R and C interchanged (see Miller, 2000, Appendix 5.2).
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The new elements in column i and row j of (M∗)−1 will be strictly proportional to
the corresponding elements in M−1. For column i, when s = i,

μ∗
ri = μri − μriμji�mij

1 + μji�mij
= μri + μriμji�mij − μriμji�mij

1 + μji�mij
= μrikij

where kij = 1/(1 + μji�mij) is a constant for a given �mij, and exactly similar algebra
shows that when r = j, μ∗

js = μjskij.
For the numerical example,

M−1C =
⎡⎣ −0.5

0.1667
0.3333

⎤⎦ , RM−1 = [−3.5 1 0.5
]

and RM−1C = 1

so that, from (A12.1.1),

�M−1 = (0.5)

⎡⎣ 1.75 −0.5 −0.25
−0.5833 0.1667 0.0833
−1.1667 0.3333 0.1667

⎤⎦ =
⎡⎣ .875 −0.25 −0.125

−0.2917 0.0833 0.0417
−0.5833 0.1667 0.0833

⎤⎦
and

(M∗)−1 = M−1 − �M−1

=
⎡⎣ 3.5 −0.5 −0.5

−1.3333 0.1667 0.3333
−1.1667 0.3333 0.1667

⎤⎦ −
⎡⎣ .875 −0.25 −0.125

−0.2917 0.0833 0.0417
−0.5833 0.1667 0.0833

⎤⎦
=

⎡⎣ 2.625 −0.25 −0.375
−1.0417 0.0833 0.2917
−0.5833 0.1667 0.0833

⎤⎦
This is exactly the inverse that was found directly earlier in this Appendix. The reader
can easily check the results in (A12.1.2) for any of the elements in (M∗)−1.

The (obvious) point is that a change (here an increase of 50 percent) in the value of
just one element in M leads to changes in all elements in M−1. Note that some changes
are increases, as with μ12 (and three other elements), and some are decreases, as with
μ11 (and four other elements). Absolute values of the percentage changes can be found

as40
∣∣ pij

∣∣ = 100
∣∣∣(μ∗

ij − μij)/μij

∣∣∣, or

|P| = 100
∣∣∣[(M∗)−1 − M−1] � M−1

∣∣∣
where “�” indicates element-by-element division. Here

|P| =
⎡⎣ 25 50 25

21.875 50 12.5
50 50 50

⎤⎦
40 Frequently the changes are expressed as (μij − μ∗

ij)/μij . This simply reverses signs. If absolute values are
used, it makes no difference.
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As expected for this example with a change in m23, the elements in column 2 and row
3 of (M∗)−1are proportional to the corresponding elements in M−1, and hence the
percentage changes are all the same.41

A12.1.2 Application to Leontief Inverses
The relevance to input–output models is that one can investigate the influence of changes
(or “errors”) in one or more elements of an A matrix on the associated Leontief inverse,
L = (I − A)−1. Here we begin with A∗ = A +�A but since our interest is in L∗ = (I −
A∗)−1, the parallel to M∗ = M + �M is

(I − A∗) = [I − (A + �A)] = (I − A) + (−�A)

and the result in (A12.1.1) becomes

L∗ = L + (LC)(RL)

1 − RLC
(A12.1.3)

Notice that negative and positive signs are interchanged, compared to (A12.1.1).
In terms of an individual element in the new inverse, l∗rs, the parallel to (A12.1.2) for

a change �aij is (with notation to remind us of which element in A is changed)

l∗rs(ij) = lrs + lriljs�aij

1 − lji�aij
(A12.1.4)

Again, note the changes in signs, this time compared to (A12.1.2). Define percentage
differences in Leontief inverse elements as �lrs(ij) = (l∗rs(ij) − lrs)/lrs; then

100

[
�lrs(ij)

lrs

]
= 100

[
lriljs�aij

1 − lji�aij

] [
1

lrs

]
(A12.1.5)

As before, all elements in row j and in column i of the matrix of absolute percentage
differences will be the same.

Problems

12.1 The centrally planned economy of Czaria is involved in its planning for the next
fiscal year. The technical coefficients and total industry outputs for Czaria are given
below:

a. Compute the output inverse for this economy.
b. If next year’s value-added inputs for agriculture, mining, military manufactured

products, and civilian manufacturing in Czaria are projected to be $4,558 million,
$5,665 million, $2,050 million and $5,079 million, respectively, compute the
projected GDP for Czaria next year.

41 The fact that all these changes are 50 percent (the same as the increase in m23) is a coincidence of this example
only. Moreover, some of the changes are 50 percent increases (μ12 and μ31) and some are 50 percent decreases
(μ22, μ32, and μ33).
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1 2 3 4 Total Output

1. Agriculture 0.168 0.155 0.213 0.212 12,000
2. Mining 0.194 0.193 0.168 0.115 15,000
3. Military Manufacturing 0.105 0.025 0.126 0.124 12,000
4. Civilian Manufacturing 0.178 0.101 0.219 0.186 16,000

c. Compute the new total gross production for each economic sector. Note that this
is the “old view” of the Ghosh model as described in section 12.1.1.

12.2 Consider a case where Z =
⎡⎣ 13 75 45

53 21 48
67 68 93

⎤⎦ and f =
⎡⎣ 130

150
220

⎤⎦ for base year.

a. If final demands for the next year are projected to be f1 =
⎡⎣ 200

300
500

⎤⎦ and the change

in interindustry transactions is expected to be �Z =
⎡⎣ 0 5 0

10 0 0
0 0 15

⎤⎦ what is the

mean absolute percentage difference (MAPD) between the output coefficients for
the base year and next year?

b. Now compute MAPD between the corresponding output inverses.

12.3 For input–output transactions matrix of Z =
⎡⎣ 384 520 831

35 54 530
672 8 380

⎤⎦ and total outputs

of x =
⎡⎣ 2500

1200
3000

⎤⎦ for a base year, if additional growth in value added for the next

year is projected to result in vnew =
⎡⎣ 2000

1000
1500

⎤⎦, what are the price changes of output

for the three industries for the new year relative to the base year?
12.4 For the economy shown in problem 12.3, compute the value-added coefficients for

next year using the supply model. Compute L and show that the Leontief price model
from Chapter 2 produces the same relative price changes of industrial output for the
new year relative to the base year as found in problem 12.3.

12.5 Consider the case of Z =

⎡⎢⎢⎣
418 687 589 931
847 527 92 654
416 702 911 763
263 48 737 329

⎤⎥⎥⎦ and f =

⎡⎢⎢⎣
2000
3000
2500
1500

⎤⎥⎥⎦.

a. Compute the direct and total backward linkages.
b. Compute the direct and total forward linkages.
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12.6 Consider the three-region IRIO table for Japan given in Table A4.1.1. Using the
measure of spatial backward linkage of B(d)rr = (1/n)i′Arr i (and analogous mea-
sures for direct forward and total backward and forward linkage), which of the three
regions is the “least backward linked” to the other regions and, similarly, which
region is the least “forward linked”?

12.7 Consider the 2005 US input–output table provided in Appendix B.

a. If the agriculture sector were hypothetically extracted from the economy, what
would be the decrease in total output of the economy?

b. Which of the sectors would create the largest decrease in total output if it were
hypothetically extracted?

12.8 Consider an economy with Z =
⎡⎣ 8 64 89

28 44 77
48 24 28

⎤⎦ and x =
⎡⎣ 300

250
200

⎤⎦. Examine element

a13 for “inverse importance” if the criteria are:

a. α = 30 and β = 5 – that is, if a 30 percent change in a13 generates a 5 percent
change in one or more elements in the associated Leontief inverse.

b. α = 20 and β = 10.
c. α = 10 and β = 10.
This illustrates the sensitivity of the results to the values of α and β specified by the
analyst.

12.9 Create a supply-driven model for the US economy for 2005 using the data that are
presented in Appendix B. Determine the sensitivity of the national economy to an
interruption in a scarce-factor input – for example, a strike – in one of the sectors.

12.10 Using the input–output data for the United States presented in Appendix B, find both
the direct and the total forward and backward linkages for the sectors in the US
economy and examine how these linkages may have changed over time.
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13 Structural Decomposition,
Mixed and Dynamic Models

13.1 Structural Decomposition Analysis

When there are two or more sets of input–output data for an economy, analysts are
often interested in trying to disaggregate the total amount of change in some aspect
of that economy into contributions made by its various components. For example, the
total change in gross outputs between two periods could be broken down into that
part associated with changes in technology (as reflected, initially, in the changes in the
Leontief inverse for the economy over the period) and that part related to changes in
final demand over the period.

At the next level, the total change in the Leontief inverse matrix could be disaggre-
gated into a part that is associated with changes in technology within each sector (as
reflected in changes in the direct input coefficients matrix) and that part associated with
changes in product mix within each sector. Similarly, the change in final demand could
be further disaggregated into a part that reflects changes in the overall level of final
demand and a part that captures changes in the composition of final demand. And there
are numerous additional options – for example, there is no need to use only two con-
tributing factors; changes in employment, value added, energy use, etc. may be of more
economic interest than changes in gross outputs; and so on. For a general overview of
this literature, see Rose and Casler (1996) or Dietzenbacher and Los (1997, 1998). Two
early empirical examples of this kind of work can be found in Feldman, McClain and
Palmer (1987) for the USA and Skolka (1989) for Austria.1

13.1.1 Initial Decompositions: Changes in Gross Outputs
To get a general idea of the structural decomposition analysis (SDA) approach, we
initially explore gross output changes. Assume that there are two time periods for
which input–output data are available. Using superscripts 0 and 1 for the two different
years (0 earlier than 1), our illustration of structural decomposition in an input–output

1 Schumann (1994), expanding on Schumann (1990), argues for the superiority of semi-closed models (for exam-
ple, to household consumption) in general but also claims that structural decomposition analyses with such
models lead to inferior results because they isolate sources of structural change that are less clear cut and more
complex.
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model focuses on the differences in the gross output vectors for those two years. As
usual, gross outputs in year t, xt(t = 0, 1), are found in an input–output system as

x1 = L1f1 and x0 = L0f0 (13.1)

where f t = the vector of final demands in year t, and Lt = (I−At)−1. Then the observed
change in gross outputs over the period is

�x = x1 − x0 = L1f1 − L0f0 (13.2)

The task is to decompose the total change in outputs into changes in the various com-
ponents – in (13.2) that would (at least initially) mean separation into changes in
L (�L = L1 − L0) and changes in f (�f = f1 − f0).2 In order to remove the influence
of price changes, we assume that all data are expressed in prices for a common year.

A number of alternative expansions and rearrangements of the terms in (13.2) can
be derived. For example, using only year-1 values for L and only year-0 values for
f – replacing L0 with (L1 − �L) and f1 with (f0 + �f) in (13.2) – we have

�x = L1(f0 + �f) − (L1 − �L)f0 = (�L)f0 + L1(�f) (13.3)

This simple algebra produces a straightforward decomposition of the total change in
gross outputs into (1) a part that is attributable to changes in technology, �L, in this
case weighted by year-0 final demands (f0), and (2) a part that reflects final-demand
changes, �f , which are here weighted by year-1 technology (L1).

Notice that each term on the right-hand side of (13.3) has a certain amount of intuitive
appeal – for example, (�L)f0 = L1f0 − L0f0. The first term quantifies the output that
would be needed to satisfy old (year-0) demand with new (year-1) technology; the
second term is, of course, the output needed to satisfy old demand with old technology.
So the difference is one reasonable measure of the effect of technology change. And
L1(�f) in (13.3) has a similar kind of interpretation.

Alternatively, using only year-0 values for L and only year-1 values for f , which
means replacing L1 with (L0 + �L) and f0 with (f1 − �f), (13.2) becomes

�x = (L0 + �L)f1 − L0(f1 − �f) = (�L)f1 + L0(�f) (13.4)

In this case, the technology change contribution is weighted by year-1 final demands
and the final-demand change contribution is weighted by year-0 technology.

These alternatives, in (13.3) and (13.4), are equally valid in the sense that both are
“mathematically correct,” given (13.2) and the definitions �L = L1−L0 and �f = f1−
f0. Yet clearly the measures in (13.3) of the individual contributions from changed
technology and from changed final demands will be different from those in (13.4),
except in the totally uninteresting and implausible case where L1 = L0 and/or f1 = f0 –

2 In section 7.2.1 we explored some of the most frequently used approaches to assessing overall structural change.
One frequently used measure was to compare x1 = L1f1 with L0f1, the output that f1 would have generated
with L0 technology.
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no change in technology or no change in demand (or no change in either) over the period.
The results in (13.3) and (13.4) can be derived from (13.2) in another way. For example,
adding and subtracting L1f0 to (13.2), and rearranging, gives (13.3). Similarly, adding
and subtracting L0f1 (outputs needed if year-1 demands were satisfied using year-0
technology) to (13.2) gives (13.4), after rearrangement.

And there is more. Other expressions emerge if only year-0 or only year-1 values are
used for weights on both change terms. If we use year-0 weights exclusively, so that
L1 and f1 are replaced by (L0 + �L) and (f0 + �f), then (13.2) becomes

�x = (L0 + �L)(f0 + �f) − L0f0 = (�L)f0 + L0(�f) + (�L)(�f) (13.5)

In this case, both technology and final-demand changes are weighted by year-0 values,
but an additional (“interaction”) term – (�L)(�f) – has appeared. Unlike the first
two terms in (13.5), this new interaction term does not have an intuitively appealing
interpretation.3

Finally, using only year-1 weights means putting L0 = (L1−�L) and f0 = (f1−�f)
into (13.2), which becomes

�x = L1f1 − (L1 − �L)(f1 − �f) = (�L)f1 + L1(�f) − (�L)(�f) (13.6)

again with the same interaction term, only this time it is subtracted rather than added.4

Various researchers have worked with one or more of these four alternatives. For
example, Skolka (1989) presented the first three decompositions;5 Rose and Chen
(1991) work only with the expression in equation (13.5), although ultimately in an
expanded form. Vaccara and Simon (1968) used the factorizations in (13.3) and (13.4),
then averaged the two measures of final-demand change and the two measures of
coefficient change. This is also the approach of Feldman, McClain and Palmer (1987),
Miller and Shao (1994) and others. Dietzenbacher and Los (1998) examine a wide
variety of possible decompositions and conclude that using an average of results from
(13.3) and (13.4) is often an acceptable approach.6

We can view this as follows. Adding (13.3) and (13.4) gives

2�x = (�L)f0 + L1(�f) + (�L)f1 + L0(�f)

and so
�x = (1/2) (�L)(f0 + f1)︸ ︷︷ ︸

Technology change

+(1/2) (L0 + L1)(�f)︸ ︷︷ ︸
Final-demand change

(13.7)

3 Derivation of this result by adding and subtracting like terms in (13.2) is possible but more complicated. In fact,
it requires that L1f0, L0f1, and L0f0 all be both added and subtracted and then (considerably) rearranged.

4 This result can be derived by adding and subtracting L1f0, L0f1, and L1f1 in (13.2) and (again) extensive
algebraic rearrangement.

5 He also classifies much of the pre-1989 work in this area according to which version of the decomposition was
used.

6 Not everyone would agree. Fromm (1968) discusses the index number issues that are involved in finding averages
of measures with weights from different years. In terms of (13.3), the (�L)f0 term is a kind of Laspeyres index
(original year weights, in f0) and the L1(�f) term is a kind of Paasche index (terminal year weights in L1); in
(13.4) the Laspeyres and Paasche terms are reversed. He suggests that averaging the two – (13.3) and (13.4) –
gives a “. . . bastard measure of beginning- and end-point quantities and prices” (p. 65).
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[The average in (13.7) is the same as the average of the results in (13.5) and (13.6), as
the reader can easily show.]7

Numerical Example Here is a small numerical illustration of these decom-
positions. Let

Z0 =
⎡⎣10 20 25

15 5 30
30 40 5

⎤⎦, f0 =
⎡⎣45

30
25

⎤⎦, Z1 =
⎡⎣12 15 35

24 11 30
36 50 8

⎤⎦, f1 =
⎡⎣50

35
26

⎤⎦
From x0 = Z0i + f0 and x1 = Z1i + f1, L0 and L1 are easily found, as are

�L =
⎡⎣.0649 −.0941 .0320

.1447 .0607 .0116

.1448 .0342 .0586

⎤⎦, �f =
⎡⎣5

5
1

⎤⎦ and �x =
⎡⎣12

20
20

⎤⎦
The alternative decompositions of �x, for this example, are shown in Table 13.1.8

It should be noted at the outset that input–output structural decomposition studies
generate, by definition, results at the sectoral level. For an n-sector model, each ele-
ment in the n-element vector of changes – �x in the case of gross outputs – will be
decomposed into two or more constituent elements. This means that there is an inherent
problem in finding appropriate summary measures of results in these studies. One obvi-
ous solution is to use total (economy-wide) figures – in the case of the decomposition
in (13.7), this would be9

i′(�x) = i′[(1/2)(�L)(f0 + f1)]︸ ︷︷ ︸
Economy-wide technology change effect

+ i′[(1/2)(L0 + L1)(�f)]︸ ︷︷ ︸
Economy-wide final-demand change effect

Alternatives include grouping sectors into categories and then finding averages (sim-
ple or weighted) over the smaller numbers of elements in these groupings. For example:
“fastest growing sectors” (say the top x percent), “slowest growing (fastest declining)
sectors” (the bottom x percent) and other sectors [the middle (100 − 2x) percent], or
primary (natural resource related), secondary (manufacturing and processing) and ter-
tiary (support and service oriented) sectors. As will be clear from this small example
and from the empirical studies examined in section 13.2.5, any such economy-wide or

7 There is some not very illuminating discussion in the literature about terms in (13.3) or (13.4) “absorbing” the
interaction term. Starting with a rearranged (13.5), [(�L)f0 + (�L)(�f)] + L0(�f) ⇒ (�L)f1 + L0(�f),
which is (13.4), and so (�L)f1incorporates the interaction term [+(�L)(�f)]. Equally plausible, however, is
viewing (13.5) as (�L)f0 +[L0(�f)+ (�L)(�f)] ⇒ (�L)f0 +L1(�f) which is (13.3), and now it is L1(�f)
that has absorbed [+(�L)(�f)]. Similar rearrangements of (13.6) will show that (�L)f0 in (13.3) or L0(�f) in
(13.4) could be viewed as absorbing [−(�L)(�f)]. Mathematically, the result in (13.7) allocates one-half of the
interaction term to technical change and one-half to final-demand change. See also Casler (2001) for thoughts
on the interaction term.

8 The reader can easily identify the various “absorptions” in the previous footnote in terms of the results in this
table.

9 Dividing both sides by n would generate one kind of “average” figure.
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Table 13.1 Alternative Structural Decompositions

Technology Final-Demand
Change Change Interaction
Contribution Contribution Term

Equation (13.3)

⎡⎣0.90
8.62
9.01

⎤⎦ ⎡⎣11.10
11.38
10.99

⎤⎦ ⎡⎣0
0
0

⎤⎦

Equation (13.4)

⎡⎣0.78
9.66
9.96

⎤⎦ ⎡⎣11.22
10.34
10.04

⎤⎦ ⎡⎣0
0
0

⎤⎦

Equation (13.5)

⎡⎣0.90
8.62
9.01

⎤⎦ ⎡⎣11.22
10.34
10.04

⎤⎦ +
⎡⎣−0.12

1.04
0.95

⎤⎦

Equation (13.6)

⎡⎣0.78
9.66
9.96

⎤⎦ ⎡⎣11.10
11.38
10.99

⎤⎦ −
⎡⎣−0.12

1.04
0.95

⎤⎦

Equation (13.7)

⎡⎣0.84
9.14
9.49

⎤⎦ ⎡⎣11.16
10.86
10.51

⎤⎦ ⎡⎣0
0
0

⎤⎦

Table 13.2 Sector-Specific and Economy-Wide Decomposition Results
[Equation (13.7)]

Output Technology Change Final-Demand
Change Contribution Change Contribution

Sector 1 12 0.84 (7) 11.16 (93)
Sector 2 20 9.14 (46) 10.86 (54)
Sector 3 20 9.49 (47) 10.51 (53)
Economy-wide Total 52 19.47 (37) 32.53 (63)

averaging figures sweep an enormous amount of detail (and, usually, variation) under
the rug.

Table 13.2 emphasizes the results from (13.7). Figures in parentheses indicate per-
centages of the total output change in each row. (Since these are hypothetical figures
for illustration only, there is no need to be compulsive about detail in the percentages.
We use no places to the right of the decimal.)

Of the economy-wide total output change in this example, 37 percent is seen to
be attributable to technological change and 63 percent results from changes in final
demand. But variation across sectors is large. The technology change contribution to
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individual sector output growth varies from 7 to 47 percent and (therefore) the final
demand contribution varies from 53 to 93 percent.

13.1.2 Next-Level Decompositions: Digging Deeper into �f and �L
Of course the story need not and does not end with the decompositions in (13.3)–
(13.7). Changes in final demands, for example, may be the result of a change in the
overall level of final demand or of a change in the relative proportions of expenditure
on the various goods and services in the final-demand vector (the final-demand mix).
Or, indeed, final-demand data may be collected and presented in several vectors, one
for each final-demand category, such as household consumption, exports, government
spending (federal, state, and local), and so on, and the relative importance of these
categories may change.

Similarly, changes in the Leontief inverse result from changes in the economy’s A
matrix – which, in turn, may reflect various aspects of technology change, such as
changes in production recipes (replacing metals with plastics in automobiles), substi-
tutions caused by relative price changes (for domestically produced inputs and also for
imports), reductions in a sector’s materials inputs per unit of output brought about by
economies of scale, and so on – as noted in section 7.2. We examine some approaches
to account for these “next-level” effects. Before doing that, we need to generalize the
decomposition results.

Additive Decompositions with Products of more than Two Terms The results
in (13.7), above, can be looked at in the following way, which lends itself to gen-
eralization. Let yt = xt

1xt
2 represent the general case in which the product of two

variables (scalars, vectors, matrices or appropriate combinations) defines a depen-
dent variable; the particular example here is xt = Ltf t . Then the decompositions of
�y = x1

1x1
2−x0

1x0
2 in (13.3) and (13.4) are seen to be of the form�y = (�x1)x0

2+x1
1(�x2)

and �y = (�x1)x1
2 +x0

1(�x2), respectively. Specifically, year-0 weights are to the right
of a change term and year-1 weights are to the left in (13.3), and the year-0 and year-1
terms are reversed for (13.4).

An approach for the case of more than two terms, as in yt = xt
1xt

2 . . . xt
n, is to extend

the logic of these two alternatives.10 We begin with the case of n = 3, where yt =
xt

1xt
2xt

3 and hence �y = x1
1x1

2x1
3 − x0

1x0
2x0

3. Persistent and tedious substitutions from

x1
1 = x0

1 + �x1, x1
2 = x0

2 + �x2 and x1
3 = x0

3 + �x3 will lead to

�y = (�x1)x
0
2x0

3 + x1
1(�x2)x

0
3 + x1

1x1
2(�x3) (13.8)

Alternative substitutions and rearrangements will generate

�y = (�x1)x
1
2x1

3 + x0
1(�x2)x

1
3 + x0

1x0
2(�x3) (13.9)

10 These are not the only options. See Dietzenbacher and Los (1998) for a very thorough discussion of alternatives.
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The usual averaging leads to

�y = (1/2)(�x1)(x
0
2x0

3 + x1
2x1

3)

+ (1/2)[x0
1(�x2)x

1
3 + x1

1(�x2)x
0
3] + (1/2)(x0

1x0
2 + x1

1x1
2)(�x3) (13.10)

[Notice that the (1/2) terms result from averaging the two expressions for �y in (13.8)
and (13.9). They are unrelated to the number of elements in each of the terms on the
right-hand sides of �y.]

There are similar results for n > 3. The pattern is the same in the equations parallel to
(13.8) and (13.9) – year-0 (year-1) weights always appear on the right of the �x term and
year-1 (year-0) weights always appear on the left. The generalization is straightforward
but, again, the algebra is tedious. The parallel to (13.8) is

�y = (�x1)(x
0
2 . . . x0

n) + x1
1(�x2)(x

0
3 . . . x0

n)

+ · · · + (x1
1 . . . x1

n−2)(�xn−1)x
0
n + (x1

1 . . . x1
n−1)(�xn) (13.11)

The parallel to (13.9) has exactly the structure of (13.11) with superscripts “0” and “1”
reversed. We write out the n-variable extension of (13.10), for completeness.

�y = (1/2)(�x1)[(x0
2 . . . x0

n) + (x1
2 . . . x1

n)]
+ (1/2)[x0

1(�x2)(x
1
3 . . . x1

n) + x1
1(�x2)(x

0
3 . . . x0

n)]
+ · · · + (1/2)[(x0

1 . . . x0
n−2)(�xn−1)x

1
n + (x1

1 . . . x1
n−2)(�xn−1)x

0
n]

+ (1/2)[(x0
1 . . . x0

n−1) + (x1
1 . . . x1

n−1)](�xn) (13.12)

Changes in Final Demand Among the factors that may contribute to changes
in final demands between two periods are: (1) the total amount of all expenditures
for final demands – the final-demand level; (2) the distribution of total expenditure
across final-demand categories – for example, the total value of household consumption,
exports (possibly broken down by countries of destination), government expenditures
(possibly separated into federal, state, and local), and other final demands, as propor-
tions of total final-demand expenditure; and (3) the product mix within each particular
final-demand category – for example, the proportion of total household consumption
expenditure that goes to computers and computer services. This is reflected in the
coefficients in the bridge matrix (see below).

In an n-sector input–output model, if there are p categories of final demand –
instead of a single final-demand vector, f t

(n×1)
– then we have a final-demand matrix,

Ft

(n×p)
= [f t

1, . . . , f t
p], where f t

k =
⎡⎢⎣f t

1k
...

f t
nk

⎤⎥⎦, and f t
ik records the amount of expenditure by
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final-demand category k on the product of sector i in year t. In particular,

a. Ft i = f t , the n-element vector of total final-demand deliveries from each sector in
year t.

b. i′Ft i = i′f t = f t , the level (total amount) of final-demand expenditure over all sectors
in year t.

c. Let yt = (i′Ft
)′ =

⎡⎢⎣yt
1
...

yt
p

⎤⎥⎦, where yt
k = total final-demand expenditure by final-

demand category k in year t).

The vector that indicates the distribution of f t across the p final-demand categories
is found as the column sums of Ft divided by f t , or

dt

(p×1)
= [dt

k ] = (1/f t)yt =
⎡⎢⎣yt

1/f t

...
yt

p/f t

⎤⎥⎦ (13.13)

So dt
k represents the proportion of total final-demand expenditure in year t that

originated in category k. Finally, the bridge (product mix) matrix, Bt

(n×p)
, is

Bt = [bt
ik ] = (Ft)(ŷt)−1 (13.14)

So Bt is Ft normalized by its column sums – bt
ik = f t

ik/yt
k indicates the proportion of

total expenditures by final-demand category k that was spent on the product of sector
i in year t.11

With these definitions,

f t = f tBtdt = Btyt (13.15)

and so

�f = f1 − f0 = f 1B1d1 − f 0B0d0 = B1y1 − B0y0 (13.16)

This holds for data with either only one final-demand vector (p = 1) or with

several final-demand categories (p > 1). In the former case, Ft = f t =
⎡⎢⎣f t

1
...

f t
n

⎤⎥⎦, f t = yt

(a scalar), Bt is a column vector (bt
i = f t

i /f t = f t
i /yt) and dt = 1. In the latter case, the

final-demand matrix, disaggregated by categories, is seen to be Ft = Bt ŷt .

11 This use of B is not to be confused with the output coefficients matrix in the Ghosh model.
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Decomposing the final-demand change in (13.16) as in (13.8), (13.9), and (13.10)
gives

�f = (�f )B0d0 + f 1(�B)d0 + f 1B1(�d) (13.17)

�f = (�f )B1d1 + f 0(�B)d1 + f 0B0(�d) (13.18)

and

�f = (1/2)(�f )(B0d0 + B1d1)︸ ︷︷ ︸
Final-demand level effect

+ (1/2)[ f 0(�B)d1 + f 1(�B)d0]︸ ︷︷ ︸
Final-demand mix effect

+ (1/2)( f 0B0 + f 1B1)(�d)︸ ︷︷ ︸
Final-demand distribution effect

(13.19)

When p = 1, �d = 0, and the third terms disappear from (13.17)–(13.19); in fact,
(13.19) is simplified to

�f = (1/2)(�f )(B0 + B1)︸ ︷︷ ︸
Final-demand level effect

+ (1/2)(f 0 + f 1)(�B)︸ ︷︷ ︸
Final-demand mix effect

(13.20)

13.1.3 Numerical Examples
One Category of Final Demand (p = 1) Continuing with the same numerical

illustration,12

B0 =
⎡⎣.45

.3
.25

⎤⎦, B1 =
⎡⎣.4505

.3153

.2342

⎤⎦, �B =
⎡⎣ .0005

.0153
−.0158

⎤⎦, f 1 = 111, f 0 = 100

Notice that (by definition) the column sums in B0 and B1 must be one and so the column
sum in �B must be zero; there must be one or more negative elements in �B to balance
one or more positive elements. This means that the final-demand mix effect for at least
one sector – the second term in (13.20) – must be negative. In this numerical illustration,
sector 3 has become relatively less important in total final-demand spending. Using
(13.20) leads to the results shown in Table 13.3.

Two Categories of Final Demand (p = 2) Suppose that data are available on
two categories of final demand – for example, households and all other final demand.

12 It is necessary to work with more than two decimal places in these calculations, but results will continue to be
rounded to two.
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Table 13.3 Sector-Specific and Economy-Wide Decomposition Results (with
Two-Factor Final-Demand Decomposition Detail)a

Final-Demand Change Contribution
Output
Change Level Mix Total

Sector 1 12 11.05 (92) .11 (1) 11.16 (93)

Sector 2 20 9.35 (47) 1.51 (7) 10.86 (54)

Sector 3 20 11.45 (57) −.94 (−5) 10.51 (53)

Total 52 31.85 (61) .68 (1) 32.53 (63)

a In this and later tables, percentages are shown with no decimal places, so there may be
(small) discrepancies between the total effect and the sum of its parts.

Consistent with the numerical illustration, let

F0 = [f0
1 f0

2 ] =
⎡⎣20 25

10 20
15 10

⎤⎦ and F1 = [f1
1 f1

2 ] =
⎡⎣25 25

15 20
18 8

⎤⎦
Then

d0 =
[
45/100
55/100

]
=
[
0.4500
0.5500

]
and d1 =

[
58/111
53/111

]
=
[
0.5225
0.4775

]
and the bridge matrices are

B0 =
⎡⎣20 25

10 20
15 10

⎤⎦[
1/45 0

0 1/55

]
=
⎡⎣0.4444 0.4545

0.2222 0.3636
0.3333 0.1818

⎤⎦ and

B1 =
⎡⎣25 25

15 20
18 8

⎤⎦[
1/58 0

0 1/53

]
=
⎡⎣0.4310 0.4717

0.2586 0.3774
0.3103 0.1509

⎤⎦
Finally,

�d =
[

.0725
−.0725

]
, �B =

⎡⎣−.0134 .0172
.0364 .0137

−.0230 −.0309

⎤⎦, �f = 11

The decomposition in (13.19) generates the results in Table 13.4. Notice that, again
by definition, column sums in �d (as with �B) must be zero. This introduces negative
elements into both the final-demand mix and distribution effects [the second and third
terms in (13.19)].

13.1.4 Changes in the Direct Inputs Matrix
Decomposition of �L Changes in the Leontief inverse between two time

periods reflect, of course, changes in the underlying direct inputs matrices. One
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Table 13.4 Sector-Specific and Economy-Wide Decomposition
Results (with Three-Factor Final-Demand Decomposition Detail)

Final-Demand Change Contribution
Output
Change Level Mix Distribution Total

Sector 1 12 11.05 (92) .31 (3) −.21 (−2) 11.16 (93)
Sector 2 20 9.35 (47) 2.42 (12) −.91 (−5) 10.86 (54)
Sector 3 20 11.45 (57) −1.65 (−8) .71 (4) 10.51 (53)
Total 52 31.85 (61) 1.08 (2) −.41 (−1) 32.53 (63)

approach to translating �A into �L proceeds as follows. Given L1 = (I − A1)−1

and L0 = (I − A0)−1, postmultiply L1 through by (I − A1)

L1(I − A1) = I = L1 − L1A1 (13.21)

and premultiply L0 through by (I − A0)

(I − A0)L0 = I = L0 − A0L0 (13.22)

Rearrange (13.21) and postmultiply by L0

L1 − I = L1A1 ⇒ L1L0 − L0 = L1A1L0 (13.23)

Similarly, rearrange (13.22) and premultiply by L1

L0 − I = A0L0 ⇒ L1L0 − L1 = L1A0L0 (13.24)

Finally, subtract (13.24) from (13.23)

�L = L1 − L0 = L1A1L0 − L1A0L0 = L1(�A)L0 (13.25)

This expression relates the change in the Leontief inverse to the change in A; the
decomposition is a multiplicative one in which �A is “doubly weighted” – in this case
by L1 on the left and by L0 on the right. The reader can verify that changing each
premultiplication to a postmultiplication, and vice versa, in deriving (13.21) through
(13.24) will generate the (possibly surprising13) result that, in addition,

�L = L1 − L0 = L0A1L1 − L0A0L1 = L0(�A)L1 (13.26)

Since there is only one term on the right in either (13.25) or (13.26), there is no need
to express �L as the average of the two expressions; either one will do.

Again, interaction terms will appear if we choose to have only year-0 (L0) or only
year-1 (L1) weights. For example, replacing L1 with L0 + �L in (13.25) leads to

13 The result is surprising in the sense that the order in which matrices appear in matrix multiplication usually
makes a difference in the outcome (in contrast to scalar multiplication).
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�L = L0(�A)L0 + (�L)(�A)L0. Making the same replacement in (13.26) generates
�L = L0(�A)L0+L0(�A)(�L). This identifies another instance in which the general
“order makes a difference” rule in matrix algebra is violated; since the second terms
must be equal, we see that (�L)(�A)L0 = L0(�A)(�L). Also, substituting L1 −�L
for L0 in both (13.25) and (13.26) will produce �L = L1(�A)L1 −L1(�A)(�L) and
�L = L1(�A)L1 − (�L)(�A)L1, respectively. In these two cases, we also find that
the interaction terms are equal – (�L)(�A)L1 = L1(�A)(�L).

In what follows, we will use the result in (13.25) to convert changes in the Leontief
inverse into changes in the A matrix.14

Decomposition of �A There are many ways to create decompositions of �A.
For example, the RAS procedure has been proposed as a descriptive device to identify
the underlying causes of coefficient change between A0 and A1 when both matrices are
known. This is entirely different from the usual use of RAS, which is to estimate an
unknown A1 when only u1, v1, and x1 are known.15 [A general introduction to RAS is
given in Chapter 7; there we used A(0), u(1) and so on rather than A0, u1, etc.] From
Ã1 = r̂A0ŝ and when Ã1 �= A1 (as is generally the case), let D = A1−Ã1 = A1− r̂A0ŝ
or dij = a1

ij − ã1
ij = a1

ij − ria0
ijsj; so A1 = Ã1 + D = r̂A0ŝ + D and a1

ij = ria0
ijsj + dij.

This allows the separation of coefficient changes into those that are column-specific
(fabrication effects for sector j, captured in sj), row-specific (substitution effects in
sector i, reflected in ri) and cell-specific (that part of the change in aij that is caused by
other circumstances, dij).16

Here we illustrate a straightforward disaggregation into column-specific changes
only. Since each column in A reflects a sector’s production recipe, identifying the
changes column by column is one way of disentangling the effects of input changes
in each of the sectors in the economy. For expositional simplicity, we denote these
as technology change. (The interested reader might refer again to section 7.2 where
alternative and more aggregate approaches to measuring changes in coefficients were
explored.)

For an n-sector economy,

A1 = A0 + �A =
⎡⎢⎣a0

11 + �a11 · · · a0
1n + �a1n

...
...

a0
n1 + �an1 · · · a0

nn + �ann

⎤⎥⎦
14 A continuous version of this approach has been noted (for example, Afrasiabi and Casler, 1991, Rose and

Casler, 1996). As in (13.21), with L(I − A) = L − LA = I, use the product rule for differentiation, (dL/dt) −
(dL/dt)A − L(dA/dt) = 0 or (dL/dt)(I − A) = L(dA/dt). Postmultiplying by L, (dL/dt) = L(dA/dt)L.

15 For example, see van der Linden and Dietzenbacher, 2000, Dietzenbacher and Hoekstra, 2002; also de Mesnard,
2004, 2006.

16 As argued in van der Linden and Dietzenbacher (2000, pp. 2208–2209), a poor RAS performance simply
indicates that other [cell specific] determinants need to be taken into account. These provide the necessary cor-
rections whenever the fabrication effects and substitution effects alone do not adequately capture the coefficient
changes.
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Let �A(j) =
⎡⎢⎣0 · · · �a1j · · · 0

...
...

...
0 · · · �anj · · · 0

⎤⎥⎦ represent changes in sector j’s technology – the

superscript “( j)” identifies the sector (column) in which coefficients change.17 Then

�A = �A(1) + · · · + �A(j) + · · · + �A(n) =
n∑

j=1

�A(j)︸ ︷︷ ︸
Technology change

in sector j

(13.27)

This decomposition of �A can be introduced into (13.25), and the resulting expression
for �L can then be used in (13.7), which now looks like this:

�x = (1/2)(�L)(f0 + f1) + (1/2)(L0 + L1)(�f)

= [(1/2)L1(�A)L0](f0 + f1) + (1/2)(L0 + L1)(�f)

= [(1/2)L1(�A(1) + · · · + �A(n))L0](f0 + f1) + (1/2)(L0 + L1)(�f)

= (1/2)[L1(�A(1))L0](f0 + f1)︸ ︷︷ ︸
Effect of technology change in sector 1

+ · · · + (1/2)[L1(�A(n))L0](f0 + f1)︸ ︷︷ ︸
Effect of technology change in sector n

+ (1/2)(L0 + L1)(�f)︸ ︷︷ ︸
Effect of final-demand change

(13.28)

Numerical Illustration (continued) For our numerical example,

A0 =
⎡⎣.1000 .2500 .2500

.1500 .0625 .3000

.3000 .5000 .0500

⎤⎦ and A1 =
⎡⎣.1071 .1500 .2917

.2143 .1100 .2500

.3214 .5000 .0667

⎤⎦
so

�A =
⎡⎣.0071 −.1 .0417

.0643 .0475 −.0500

.0214 0 .0167

⎤⎦
and, in particular,

�A(1) =
⎡⎣.0071 0 0

.0643 0 0

.0214 0 0

⎤⎦ A(2) =
⎡⎣0 −.1 0

0 .0475 0
0 0 0

⎤⎦ A(3) =
⎡⎣0 0 .0417

0 0 −.0500
0 0 .0167

⎤⎦

17 The superscript parentheses serve to distinguish A1, the direct inputs matrix in period 1, from �A(1), the matrix
that reflects the technology change in sector 1 only.
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Table 13.5 Sector-Specific and Economy-Wide Decomposition Results (with
Additional Technology and Final-Demand Decomposition Detail)

Technology Change Contribution Final-Demand Change Contribution

Output
Change Sector 1 Sector 2 Sector 3 Total Level Mix

Distri-
bution Total

Sector 1 12 6.64
(55)

−10.25
(−85)

4.45
(37)

.84
(7)

11.05
(92)

.31
(3)

−.21
(−2)

11.16
(93)

Sector 2 20 12.42
(62)

1.28
(6)

−4.56
(−23)

9.14
(46)

9.35
(47)

2.42
(12)

−.91
(−5)

10.86
(54)

Sector 3 20 11.37
(57)

−2.85
(−14)

.97
(5)

9.49
(47)

11.45
(57)

−1.65
(−8)

.71
(4)

10.51
(53)

Total 52 30.43
(59)

−11.82
(−23)

.86
(2)

19.47
(37)

31.85
(61)

1.08
(2)

−.41
(−1)

32.53
(63)

Table 13.5 indicates the additional results from using this technology change decom-
position for our numerical illustration. As usual, percentages of row totals are in
parentheses. (Final-demand results repeat those in Table 13.4.)

13.1.5 Decompositions of Changes in Some Function of x
A number of studies have decomposed not simply gross output change but rather
changes in some variable that depends on output. For example, if we have a set of
labor input coefficients – employment per dollar of output in sector j at time t (et

j) – let
(et)′ = [et

1, . . . , et
n]. Then the vector of employment, by sector, associated with output

at t will be εt = êtxt = êtLtf t , and the vector of changes in employment is

�ε = ε1 − ε0 = ê1L1f1 − ê0L0f0 (13.29)

Decomposition into contributions by the three elements now follows the standard
pattern shown in (13.10). Here this means

�ε = (1/2) (�ê)(L0f0 + L1f1)︸ ︷︷ ︸
Labor input coefficient change

+ (1/2) [ê0(�L)f1 + ê1(�L)f0]︸ ︷︷ ︸
Technology change

+ (1/2) (ê0L0 + ê1L1)(�f)︸ ︷︷ ︸
Final-demand change

(13.30)

Of course, additional decompositions of �L and/or �f as in section 13.1.2 are possible.
Exactly the same principles apply for any economic variable that is related to output by
a similar set of coefficients per dollar of sectoral output – pollution generation, energy
consumption, value added, etc.
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13.1.6 Summary for �x
For �x we assemble both the final-demand decomposition (including distribution
across final-demand categories) and the technology change decomposition in the same
expression, primarily for completeness. The expression includes all six of the change
components.

�x = (1/2)(�L)(f0+ f1) + (1/2)(L0+ L1)(�f)

= (1/2)[L1(�A(1))L0](f0+ f1)︸ ︷︷ ︸
Effect of technology change in sector 1

+ (1/2)[L1(�A(2))L0](f0+ f1)︸ ︷︷ ︸
Effect of technology change in sector 2

+ (1/2)[L1(�A(3))L0](f0+ f1)︸ ︷︷ ︸
Effect of technology change in sector 3

+ (1/4)(L0+ L1)(�f )(P0d0+ P1d1)︸ ︷︷ ︸
Effect of change in final-demand level

+ (1/4)(L0+ L1)[f 0(�P)d1+ f 1(�P)d0]︸ ︷︷ ︸
Effect of change in final-demand mix

+ (1/4)(f0P0 + f1P1)(�d)︸ ︷︷ ︸
Effect of change in final-demand distribution

(13.31)

13.1.7 SDA in a Multiregional Input–Output (MRIO) Model
The standard form of the MRIO model (Chapter 3) is x = (I − CA)−1Cf = L̃Cf ,
where L̃ = (I − CA)−1, A is a technical coefficients matrix indicating intermediate
inputs for each region from both within and outside of the region and C contains input
proportions (both intraregional and interregional shipments). The distinctive feature of
this formulation is that the Leontief-like inverse contains both technical coefficients
and trade proportions.

Following (13.10), for x = L̃Cf we have

�x = (1/2)(�L̃)(C0f0 + C1f1) + (1/2)[L̃0(�C)f1 + L̃1(�C)f0]
+ (1/2)(L̃0C0 + L̃1C1)(�f) (13.32)

To disentangle the trade proportions and technical coefficients in L̃ we follow (13.25)
and then (13.7), namely

�L̃ = L̃1(�CA)L̃0

and

�CA = (1/2)(�C)(A0 + A1) + (1/2)(C0 + C1)(�A) (13.33)

First, using �L̃ = L̃1(�CA)L̃0 in (13.32),

�x = (1/2)[L̃1(�CA)L̃0](C0f0 + C1f1) + (1/2)[L̃0(�C)f1 + L̃1(�C)f0]
+ (1/2)(L̃0C0 + L̃1C1)(�f)



608 Structural Decomposition, Mixed and Dynamic Models

and then using (13.33) (and rearranging)

�x = (1/4)[L̃1(C0 + C1)(�A)L̃0](C0f0 + C1f1)︸ ︷︷ ︸
Effect of technology change

+ (1/4)[L̃1(�C)(A0 + A1)L̃0](C0f0 + C1f1)︸ ︷︷ ︸
One effect of trade coefficient change

+ (1/2)[L̃0(�C)f1 + L̃1(�C)f0]︸ ︷︷ ︸
A second effect of trade coefficient change

+ (1/2)(L̃0C0 + L̃1C1)(�f)︸ ︷︷ ︸
Effect of final-demand change

(13.34)

Notice in particular that the change in trade proportions exerts influence in conjunction
with both the technical coefficients (A0 and A1) and also the final demands (f0 and f1).
This is logical, since in the MRIO model both A and f are transformed – into CA
and Cf.

Embellishments are possible. For example, the final-demand effect might be further
decomposed into level, mix and/or distribution, as in section 13.1.2. Furthermore, some
models may feature (or at least propose) separate trade proportions for intermediate
inputs and for final demands, leading to x = (I − CaA)−1Cf f = L̃∗Cf f . In that
case, �Ca and �Cf must be treated separately. This simply leads to more complexity
(more terms) in (13.34). In Appendix 13.1 we explore the implications of alternative
groupings of the terms in x = L̃Cf (as has been done in some published studies) into
either x = Mf , where M = L̃C, or x = L̃y, where y = Cf .

13.1.8 Empirical Examples
Analysts are generally interested in structural decompositions because they offer a
means of quantifying the relative importance of various components in an “explana-
tion” of some observed economic change – in early studies this was usually changes in
industry outputs; more recently, changes in labor use, value added, energy use, pollu-
tion emissions, service industry outputs, etc. have also been decomposed. The results
of empirical SDA studies are often used to inform policy decisions – the relative impor-
tance of trade (and hence trade policy) to an economy, the relative importance of one or
more components of final demand (and hence tax or subsidy policy), and so forth. As
noted earlier, decompositions generate results at a sectoral level and summary measures
are needed. In Tables 13.6, 13.7, and 13.9, below, virtually all of the rich detail in each
of the studies cited has been foregone in favor of simple averages in order to present
figures that are comparable across studies.

Studies Using National Models The first study known to us that uses this
approach is Chenery, Shishido and Watanabe (1962), for Japan over the periods 1914–
1935 and 1935–1954.18 The authors were interested in deviations of later year output

18 This builds on earlier work by Chenery (for example, Chenery, 1960). A thorough summary of this kind of
analysis in the economic development literature can be found in Syrquin (1988). Illustrative examples include
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from what it would have been under a regime of proportional growth from an earlier
year. These deviations were decomposed into the effects of (1) changes in domestic final
demand, (2) changes in exports, (3) changes in imports and (4) changes in technology
(as represented by changes in elements of the A matrix).

A study by Vaccara and Simon (1968), to the best of our knowledge, represents the
first application of this kind of decomposition approach to the US economy. Using 42
industry groups, they measured the amount of output change that was attributable to
final-demand change and the amount due to coefficient change over the 1947–1958
period. As a (very) general conclusion, they found final-demand changes somewhat
more important than changes in technical coefficients in contributing to overall output
change over the period.

Bezdek and Wendling (1976) continued this kind of analysis. They factored �x
into final-demand and coefficient change in a 75-sector model of the US economy
for the 1947–1958, 1958–1963, and 1963–1966 periods. In addition, they compared
their decomposition results for 1958–1963 with those reported for Germany (1958–
1962) in Stäglin and Wessels (1972) at a 35-sector level. They found similarity in the
industry-specific influences of final-demand change but not of coefficient change.

The late 1980s and early 1990s saw the beginnings of an explosion of empirical
studies using SDA. The work of Feldman, McClain and Palmer (1987) is frequently
cited.19 This study also examined the relative importance in the US economy of changes
in final demands and changes in technology – this time over the 1963–1978 period using
a very disaggregated 400-sector level of analysis. (The 1978 table was an updated
version of the 1972 survey-based national table.)

They use the form x = Ax + Bf ⇒ x = LBf and then define C = LB so that
x = Cf , where B

(n×p)
is the bridge matrix that connects the outputs of some n =

400 sectors to p = 160 categories of final demand.20 Thus their decomposition takes
the form �x = (�C)f0 + C1(�f) or �x = (�C)f1 + C0(�f) – as in (13.3) and
(13.4). They define structural change broadly – “including changes in the structure of
production (technical change, reflected in changes in A) and in the microstructure of
expenditure (reflected in changes in B)” (p. 504).21 Generally speaking, the contribution
made by coefficient change was larger than the contribution made by final-demand
change for many of the fastest growing (termed “emerging”) and fastest declining
industries. At the same time, for most industries (almost 80 percent), the coefficient
change component accounted (in absolute terms) for less than half of the gross output
change.22

Fujita and James (1990) – and many other publications by these authors – at the national level and Siegel,
Alwang and Johnson (1995) for a “growth accounting” study at the regional level.

19 And, less frequently, Feldman and Palmer (1985).
20 This use of C is not to be confused with the trade proportions matrix of the MRIO model.
21 They recognize that an alternative would be to group B with f and to use x = L(Bf), leading to �x =

[�L](B0f0) + L1(�Bf) and �x = [�L](B1f1) + L0(�Bf). See comments on the effect of alternative
groupings on decompositions in Appendix 13.1.

22 Wolff (1985) used the same mode of analysis to study trends in productivity in the US economy.
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A second frequently cited study from this period is that by Skolka (1989). It describes
the structural decomposition methodology in some detail and applies it to a 19-sector
data set forAustria (1964–1976). Both net output (value added) change and employment
change were decomposed into an intermediate demand (technology) component (with
separate domestic and imports parts) and a final-demand component (with separate
domestic and exports parts).

In what follows, we present brief overviews of several (from among many) addi-
tional empirical SDA studies concerned with identifying components of total output
change (in chronological order). The main characteristics of these (and other studies)
are summarized in Table 13.6.

1. Fujimagari (1989). Fujimagari suggests that bundling L and B together (as in
Feldman, McClain and Palmer) is inappropriate. Instead he uses two tripartite
decompositions and averages their results. These are

�x = (�L)B0f0 + L1(�B)f0 + L1B1(�f) and

�x = (�L)B1f1 + L0(�B)f1 + L0B0(�f)

[as in (13.8) and (13.9)] in a 189-sector Canadian model for 1961–1971 and 1971–
1981. This approach has been used by others in later studies.

2. Barker (1990). Changes over 1979–1984 in the output of market service indus-
tries in the UK are investigated – including distribution, transport, communications,
business services, and others. The decomposition – into changes internal to the
services group, external to the group in the rest of manufacturing and external
in the rest of industry – uses partitioned matrices extensively. Each of these is
further decomposed into changes in: input–output coefficients, total final demand
(level) and the structure of final demand (the distribution, as reflected in the bridge
matrix).

3. Martin and Holland (1992). Changes over 1972–1977 in the output of some 477 US
industries are decomposed from the defining equation

xt = (I − ûtAt)−1(ûtf t + et) = Lt(ûtf t + et)

in which (all for year t) û is a diagonal matrix containing the domestic supply ratio
for each sector, A is the technical coefficient matrix (including imports), f is the
domestic final-demand vector and e is a vector of exports. Thus ûtAt is an estimate
of the domestic direct input coefficients matrix and ûtf t is an estimate of the vector
of domestic final demand that is satisfied from domestic sources. The decomposition
used is essentially that in (13.9), namely

�x = (�L)(û1f1 + e1) + L0(�u)f1 + L0û0(�f) + L0(�e)
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After a good deal of algebra this can be expressed as

�x = L0û0(�f) + L0(�e) + L0(�u)(f1 + A1x1) + L0û0(�A)x1

(No alternative decompositions were used and so the results were not averages.) The
decomposition is thus apportioned to changes due to: domestic final demand, export
demand, import substitution, and input–output coefficients. With results for 477
sectors, groupings were necessary – these included aggregations into: (1) primary (25
natural resource related industries), secondary (409 manufacturing and processing
industries) and tertiary (43 support and service oriented industries); (2) nine sectors
that represent the BEA one-digit aggregation level; and (3) the 30 fastest growing
and the 30 slowest growing industries.

When commodity sectors were categorized according to 1972–1977 growth rates,
the importance of the technical change contribution was seen to increase with cat-
egories of increasing growth or decline – results consistent with those in Feldman,
McClain and Palmer (1987). At the same time, examination of the specific decom-
positions for the 30 fastest growing and 30 fastest declining sectors indicated that
final demand was the dominant component in output change in 60 and 67 percent
of the cases, respectively, whereas technical coefficient change was dominant in
about 30 percent of the cases (both for rapidly growing and rapidly declining sec-
tors). This view of their results is at variance with those of Feldman, McClain and
Palmer.

4. Liu and Saal (2001). This study examines changes in gross outputs in South
Africa over 1975–1993. It employs essentially the same decomposition as Martin
and Holland (1992), except that final demand is separated into changes in pri-
vate consumption, investment spending, government spending, exports, and import
substitution.

5. Dietzenbacher and Hoekstra (2002). This study focuses on output change for 25 sec-
tors in the Netherlands over 1975–1985. The Netherlands data are embedded in an
intercountry model for the European Union, and final-demand categories include
separate columns for exports to each of five EU member countries (Germany, France,
Italy, Belgium, and Denmark), the rest of the EU, the rest of the world, household
consumption, and other final demand. As might be expected, large differences were
observed across sectors, countries, and final-demand categories.

6. Roy, Das and Chakraborty (2002). The particular interest of this study is to identify
sources of growth in the information sectors in a 31-sector input–output model
of the Indian economy over 1983–1984 to 1989–1990. Instead of partitioning the
matrices into quadrants of information and non-information sectors (as in some
of the energy studies noted below), the authors simply define a matrix ẑ, created
from an identity matrix by replacing the main-diagonal ones with zeros for all non-
information sectors (so the remaining on-diagonal elements – and all off-diagonal
elements – are 0). Then ẑx selects only the information rows from the results of
various decompositions.
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Table 13.6 Selected Empirical Structural Decomposition Studies

Author(s) and
Source  

Details
(country; dates; changed
variable(s); aggregation

level)    

Decomposition Components
(percentage of total changea)  

Technology       Final Demand 

Feldman
McClain
and Palmer
(1987,
Table 1)

US; 1963–1978; Δx; 400
sectors (results for 15

fastest growing industries)    

62  38 

Skolka (1989,
pp. 59–60)  

Austria; 1964–76;
Δ (value added) and

also Δ (employment); 19
industries     

26 (v.a.),
34 (emp.)  

 74 (v.a.), 66 (emp.) 

Domestic
18 (v.a.)

 46 (emp.)

Foreign
56 (v.a.)

20 (emp.)   

Fujimagari
(1989, Tables 1
and 2)   

Canada; 1961–71 and 1971–
81; Δx; 189 industries

(results for 15 fastest and 15 
slowest growing industries) 1961–71

28 (top 15),
–86 (bottom 15)

1971–81
22 (top 15),

159 (bottom 15)

1961–71
72 (top 15)

186 (bottom 15)   

1971–81
78 (top 15)

–59 (bottom 15)   

Level
1961–71

38 (top 15)
69 (bottom 15)

1971–81
61 (top 15)

–120 (bottom 15)

Mix
1961–71

34 (top 15)
117 (bottom 15)

1971–81
17 (top 15)

61 (bottom 15)

Barker (1990,
Table 4)  

UK; 1979–84;
Δx (service industries); 101

ind., 13 serv. ind.
(aggregated to 5 serv. ind.)     

63  18 

Level
–1  

Mix
20  

Martin and
Holland (1992,
Table 1)   

US; 1972–77; Δx; 477
sectors   

6  94 

Domestic
81  

Export
23  

Import
Use

–10   

Liu and Saal
(2001, Table 5)  

South Africa; 1975–93; Δx;
34 and 10 sectors; results

for 10 sectors only    

28  72 
(Pvt. Cons., 61; Gov. Cons., 7;

 Inv., –32; Exp. 29, Imp. Subs., 7)   
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Table 13.6 (cont.)

Dietzenbacher
and Hoekstra
(2002, Table
10.2)    

The Netherlands; 1975–85;
Δx; 25 sectors  

21b

(–201, 135) 
79 b

(–35, 301) 

Level
78

(–118,
 2458)

Category
1

(–2594,
257)

Product
Mix

0
(–39,
 236)

Roy, Das and 
Chakraborty
(2002, Table 4)  

3  97

Info.
coeffs.

3   

Non-
info.

coeffs.
0   

Domestic
91  

Exports
6 

Import
Substitution

0    Level
65  

Mix
26  

Author(s) and
Source  

Details
(country; dates; changed
variable(s); aggregation

level)    

Decomposition Components
(percentage of total changea)  

Technology       Final Demand 

India; 1983/4–89/90;
Δx (information sectors);

30 non-information sectors
plus 5 information sectors

aFigures may not add to 100 percent due to rounding.
bFigures in parentheses indicate boundaries in the range of values across the 25 sectors in the study.

There have been many SDAstudies concerned with energy and environmental issues;
some are noted in Table 13.7.23 Brief overviews of some of these are given below.

1. Office of Technology Assessment (US Congress, OTA, 1990). The primary interest
of this study is to investigate the components of the change in energy use in the USA
between 1972 and 1985. Final-demand level and mix along with changes in tech-
nology, disaggregated into energy inputs and non-energy inputs, are investigated.
The decompositions are carried out for five energy types: coal, crude oil and gas,
refined petroleum, primary electricity, and utility gas.

The calculation of the change in energy use due to different economic factors
was achieved by using 1985 as a base year and systematically varying one factor
over time while holding all other factors constant in their 1985 form. The model
separated energy sectors and other sectors and uses hybrid-units form (Chapter 9).
The first k sectors (here k = 5) are energy commodities and energy industries. In
partitioned form, the units in the four quadrants of the model are

A =
⎡⎣A11(BTU/BTU) A12(BTU/$)

A21($/BTU) A22($/$)

⎤⎦ ,

23 Early energy-use decomposition studies can be found in Casler and Hannon (1989), or Casler, Afrasiabi and
McCauley (1991) who studied changes in energy input–output coefficients. There are many other energy-related
studies in which Casler is a contributor.
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L =
⎡⎣L11(BTU/BTU) L12(BTU/$)

L21($/BTU) L22($/$)

⎤⎦ ,

f =
⎡⎣fe(BTU)

f$($)

⎤⎦

So x =
⎡⎣xe

x$

⎤⎦ =
⎡⎣L11 L12

L21 L22

⎤⎦⎡⎣f1

f2

⎤⎦, where xe
(k×1)

represents output of the energy

sectors and x$
[(n−k)×1]

is a vector of outputs of the other sectors. In particular, xe =

[
L11 L12

] [f1

f2

]
. For example, to assess the influence on energy sectors of changing

final demands, the authors use

�x1985/1972
e = [(L1985

11 )f1985
1 + (L1985

12 )f1985
2 ] − [(L1985

11 )f1972
1 + (L1985

12 )f1972
2 ]

Further decompositions into final-demand level and mix and technology change
in energy and in non-energy inputs are found following the framework in earlier
sections of this chapter. There is an interaction term at each decomposition level.
The authors admit that there is no consistent set of guidelines regarding what to do
with it, so they just report it as a separate component.24

2. Rose and Chen (1991). This study is also concerned with changes in energy use.
Here final-demand contributions were also broken down into level and mix, and
changes in technology were decomposed into a large number of either individual or
interactive effects involving capital (K), labor (L), energy (E), and materials (M),
along the lines of a two-tier KLEM production function. Coal, petroleum, natural
gas, and electricity are examined separately. (There were 14 change components
in all.)

3. Lin and Polenske (1995). This study focuses on changes in energy use in China over
1981–1987. The usual input–output accounting equation x = Ax+f is accompanied
by the energy accounting identity E = Eg + Ed [total energy consumption equals
intermediate energy consumption (used in production activities) plus final energy
consumption]. This is expressed as mx = mAx + mf , where m is created from an
identity matrix by keeping a 1 only in those column locations that correspond to
energy sectors; that is, m selects the energy rows in Ax, f, and x. This approach was
already noted, above, in Roy, Das and Chakraborty (2002), but the Lin and Polenske
study precedes that. [This is an alternative to rearranging (renumbering) sectors so
that the energy sectors are all together – for example, the first k, as in the OTA study,

24 They cite (a) Wolff (1985), who ignores it; (b) Feldman, McClain and Palmer (1987) and others, who allocate
it equally among the other sources of change; and (c) Casler and Hannon (1989) and others, who “treat it
separately and report its magnitude” (US Congress, OTA, 1990, p. 56).
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above.] A little algebra shows that

Eg = mAx = m[(I − A)−1 − I]f
Decompositions are then carried out in the usual way.

4. Wier (1998). The concern of this study is to identify environmental effects of produc-
tion, in particular the sources of emissions of carbon dioxide (CO2), sulphur dioxide
(SO2), and nitrogen oxide (NOx) in the Danish economy between 1966 and 1988,
using a 117-sector input–output model for that country. The decompositions identify
the following contributors: changes in energy intensity, changes in fuel-mix in pro-
duction sectors, changes in fuel-mix in energy production sectors, input coefficient
change (the A matrix), changes in final-demand level, and final-demand mix.

5. Kagawa and Inamura (2001). This model, for Japan, is in commodity-by-commodity
format (Chapter 5), so the defining equation takes the form q = (I − BC−1)−1e,
relating commodity final demand to commodity output. Changes in total energy
requirements over 1985–1990 are analyzed. Partitioned matrices are used (as in
OTA, 1990) to distinguish between energy-supplying industries and other industries.
The commodity technology assumption (where the simple technical coefficients
matrix, A, is replaced by BC−1) allows for an additional decomposition into both
�B and �C−1 components (for both energy-supplying and non-energy sectors) –
thereby reflecting changes in input structure and in product mix, respectively.

Many of the studies noted in Tables 13.6 and 13.7 were published in Economic
Systems Research, and often they contain, in their references, a number of additional
examples of SDA applications to which the interested reader can turn. It is important to
remember that the figures presented in these tables are aggregates over all (frequently
very many) sectors, or a subset of sectors, and of course all the rich sectoral detail is
lost in such summary measures.25 In general, analysts will often be interested in the
more detailed results for individual sectors (or groups of sectors). This is the reason for
including the detail on range of values in the Dietzenbacher and Hoekstra (2002) study
in Table 13.6, where each of the figures in the table is an average over 25 values.

It also should be noted that percentage figures (as in these tables) are extremely
sensitive to the differences between various changes. When a large positive effect (for
example, final demand contribution) is nearly offset by a large negative effect (for
example, technology change contribution), the percentages can be enormous. A simple
table with several hypothetical results illustrates this fairly obvious fact.

Studies Using a Single-Region or Connected-Region Model

Washington State. Holland and Cooke (1992) used the structural decomposition frame-
work at a regional (state) level to study the sources of change in the economy of
Washington over 1963–1982, using the survey-based Washington input–output tables

25 Most of the numbers in the tables were obtained by (simple) averaging over the more disaggregated results –
either in value terms or in percentages – presented in the studies.
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Table 13.7 Selected Empirical Structural Decompositions of Changes in Energy Use
or Pollution Emissions

Author(s) and
Source  

Details
(country; dates;

changed variable(s);
aggregation level)

Decomposition Components
(percentage of total changea)  

Technology  Final Demand 

US
Congress,
OTA (1990,
Tabs. 2, 3, 6)    

US; 1972–85;
Δ (primary energy

use); 88 sectors

–975 720b

Level
885

Mix
–290

Inter-
action
125   

Rose and
Chen (1991)  

US; 1972–82;
Δ (energy use);

80 sectors

Coal, 64; Petroleum, 231;
 Natural gas, 65;
Electricity, 56

Coal, 9; Petroleum, –370; Natural
gas, –50; Electricity, 65c 

Level
Coal, 60;

Petr.,–520;
Nat. gas, –92;

Elec., 70

Mix
Coal, –51;
Petr., 150;

Nat. gas, 42;
Elec., –5

Lin and
Polenske
(1995, Table 3)    

China; 1981–87;
Δ (energy use);

18 sectors

–85  185 

Energy inputs
–106  

Non-energy
inputs

21

Energy inputs
4  

Non-energy
inputs

–4

Energy 
8

Non-energy
92d

Level
196

Mix
3

Distribution
–13  

Wier (1998,
Tables 3–5)  

Denmark; 1966–88;
Δ (pollution
emissions);
117 sectors

–53 (CO2)
373 (SO2)
6 (NOx)  

153 (CO2); –274 (SO2); 95 (NOx) 

Level
175 (CO2);
 –308 (SO2)
112 (NOx)

Mix
–22 (CO2);
34 (SO2)

–17 (NOx)

Kagawa and
Inamura
(2001, Table 5)    

Japan; 1985–90;
Δ (total energy
requirements);
94 sectors      

0 100 

Energy
inputs
–770   

Non-
energy
inputs
–185  

Inter-
action
–20   

a Figures may not add to 100 percent due to rounding.
b Technology plus final-demand figures do not add to 100 percent because an interaction term between

those two components is included in this study; in this case the interaction term is not small at
355%.

c Again, technology plus final-demand figures do not add to 100 percent because of an interaction term
between the two components. This term is: Coal, 27; Petroleum, 39; Natural gas, 15; Electricity,
−21.

d This figure is further decomposed into the following percentages: Household consumption (49),
Non-household consumption (3), Capital formation, public (10), Capital formation, private (52);
Other (−22).
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Table 13.8 SDA Percentage Change Sensitivities

Technology
Change

Final-
Demand
Change

Total
Change

Technology
Change as a
Percentage of
Total Change

Final-Demand
Change as a
Percentage of
Total Change

−50 51 1 −5000 5100
−50 52 2 −2500 2600
−48 52 4 −1200 1300
−55 45 10 −550 450

for 1963 and 1982. Reflecting a concern with the importance of trade for the Washing-
ton economy, they separated out the role of changes in demand (intermediate and final)
within the state, within the rest of the USA (national markets), and outside the USA
(international markets).

The US Multiregional Model (Miller and Shao, 1994). Two implementations of a mul-
tiregional input–output (MRIO) model for the US economy are available – for 1963
(t = 0) and 1977 (t = 1). The 1963 model takes the form

x0 = (I − C0A0)−1C0f0

and the 1977 model is
x1 = (I − D1C1B1)−1C1f1

The C0 and C1 matrices contain the interregional trade proportions for the two years.
However, matrices D1 and B1 reflect technology in the 1977 model (only), which is
based on commodity–industry input–output accounting.26 Similarly, A0 is a matrix of
technical coefficients in the 1963 model (only). Therefore, for simplicity, the super-
scripts on D, B, and A can be eliminated, giving the following equation for gross
output change over the period:

�x = x1 − x0 = (I − DC1B)−1C1f1 − (I − C0A)−1C0f0 (13.35)

The two total requirements matrices (transforming final demands into outputs) can
be denoted L̃1 = (I − DC1B)−1C1 and L̃0 = (I − C0A)−1C0.27 Then

�x = L̃1f1 − L̃0f0 (13.36)

This parallels (13.2), only now the two total requirements matrices are more complicated
than the usual Leontief inverses, Lt = (I − At)−1. In particular, they incorporate both

26 To be consistent with the 1963 model, in which industry final demands drive industry outputs, the 1977 model
is in industry-by-industry format under the industry-based technology assumption.

27 Appendix 13.1 indicates alternative ways of decomposing x = (I − CA)−1Cf .
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technology coefficients (D and B in one case, A in the other) and trade proportions
(C1 and C0, respectively). In any event, following (13.7),

�x = (1/2)(�L̃)(f0 + f1) + (1/2)(L̃0 + L̃1)(�f) (13.37)

where now (�L̃) = L̃1 − L̃0.
In (13.7) the two terms on the right captured the effects of technology change and

final-demand change, respectively. Here, where

�L̃ = (I − DC1B)−1C1 − (I − C0A)−1C0 (13.38)

the (1/2)(�L̃)(f0 + f1) term encompasses changes in both technology and trade.

Digging Deeper into �L̃: Technical Coefficients, Trade Structure

Decomposition 1. Create M = (I − DC0B)−1C0. This represents a kind of hybrid
total requirements matrix that combines 1977 technology (in B and D) with 1963 trade
structure (in C0). By subtracting and adding this term in (13.38),

�L̃ = [(I − DC1B)−1C1 − (I − DC0B)−1C0]
+ [(I − DC0B)−1C0 − (I − C0A)−1C0] (13.39)

The first term is a measure of the contribution to �L̃ made by changing trade proportions
(with constant 1977 technology) and the second measures the effect on �L̃ of changing
technology (with constant 1963 trade proportions). Then (13.39) can be written as

�L̃ = (L̃1 − M)︸ ︷︷ ︸
Trade change,
1977 technology

+ (M − L̃0)︸ ︷︷ ︸
Technology change,
1963 trade patterns

(13.40)

Decomposition 2. Consider, instead, N = (I − C1A)−1C1. This is a kind of total
requirements matrix that combines 1963 technology (in A) with 1977 trade structure
(in C1). Subtracting and adding this term in (13.38) gives

�L̃ = [(I − DC1B)−1C1 − (I − C1A)−1C1]
+ [(I − C1A)−1C1 − (I − C0A)−1C0] (13.41)

In this case, the first term is a measure of the influence on �L̃ that is due to technology
change (with constant 1977 trade proportions) and the second captures the effect on �L̃
of trade proportions change (assuming 1963 technology). Now, (13.41) can be written as

�L̃ = (L̃1 − N)︸ ︷︷ ︸
Technology change,
1977 trade patterns

+ (N − L̃0)︸ ︷︷ ︸
Trade change,
1963 technology

(13.42)
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Averaging. Averaging the results in (13.40) and (13.42) in the usual way gives

�L̃ = (1/2)(L̃1 + M − L̃0 − N)︸ ︷︷ ︸
Technology change effect

+ (1/2)(L̃1 + N − L̃0 − M)︸ ︷︷ ︸
Trade change effect

(13.43)

and, putting this result into (13.37)

�x = (1/4)(L̃1 + M − L̃0 − N)(f0 + f1)︸ ︷︷ ︸
Technology change effect

+ (1/4)(L̃1 + N − L̃0 − M)(f0 + f1)︸ ︷︷ ︸
Trade change effect

+ (1/2)(L̃0 + L̃1)(�f)︸ ︷︷ ︸
Final-demand change effect

(13.44)

Digging Deeper into �f : Level and Mix

The decompositions of �f given in (13.20) – into level and mix – were also carried
out. The final expression for �x is

�x = (1/4)(L̃1 + M − L̃0 − N)(f0 + f1)︸ ︷︷ ︸
Technology change effect

+ (1/4)(L̃1 + N − L̃0 − M)(f0 + f1)︸ ︷︷ ︸
Trade change effect

+ (1/4)(L̃0 + L̃1)(�f )(B0 + B1)︸ ︷︷ ︸
Final-demand level effect

+ (1/4)(L̃0 + L̃1)(f 0 + f 1)(�B)︸ ︷︷ ︸
Final-demand mix effect

(13.45)

This was used originally for a 70-sector, 51-region version of the model. The article
presents results for a version aggregated to 10 sectors and nine regions. This means that
in the original study there were 3,570 separate results for each of the decompositions.
The results from this study noted in Table 13.9 below are averages over 90 outcomes
for each decomposition. This illustrates again that a structural decomposition analysis
for a reasonably large sized model generates an enormous amount of detail.

A Multicountry Model for the European Community (Oosterhaven and van der
Linden, 1997). Here the authors are concerned with changes in value added that are
associated with changes in output in a multicountry input–output setting. The model
is a variant of the MRIO model, with 25 sectors, 8 countries and 4 categories of final
demand in each country. Their decomposition follows the general structure of (13.34),
with embellishments. Letting vt and ct represent column vectors of value added and
value added per dollar of output at t, they work with

xt = Ltf t = LtBtyt and vt = ĉtxt = ĉtLtBtyt

(The bridge matrix, Bt , and yt , which contains final-demand expenditures by final-
demand category k in year t, were examined in section 13.1.2.)
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Table 13.9 Selected Empirical Structural Decompositions at a Regional, Interregional
or Multiregional Level

Author(s)
and Source

Details Decomposition Components (percentage of total changea)  

Technology/Trade  Final Demand

Holland and
Cooke (1992,
Table 2)   

Washington
state; 1963–82;
Δx; 51 sectors   

5  95 

Washington
39  

Rest of US and
world

56

Miller and
Shao (1994,
Table 4)   

US MRIO
model; 1963–

77; Δx; 51
regions, 70

sectors;
(aggregated to
9 regions, 10

sectors) 

34 67 

Intraregional
coefficients

28
(19, 59)b

Interregionalb

coefficients
6

(–43, 19) 

Level
65

(53, 79)

Mix
2

(–5, 13)

Oosterhaven
and van der
Linden
(1997)

Intercountry
model for EC;

1975–85;
Δ (value
added); 8

countries, 25
sectors

–2  102 

Intra-
regional

coeff.
4 

Inter-
regional

coeff.
–2   

Value-
added
coeff.
–3   

Level
102c

Mix
–1

a Figures may not add to 100 percent due to rounding.
b Figures in parentheses indicate the range of values across the nine regions in the study.
c This figure is further decomposed into the following percentages: Household consumption, 47;

Government consumption, 20; Investment, 13; Exports to other EC countries, 9; Exports outside
the EC, 12.

Then, following (13.12) for n = 4,

�v = (1/2)(�ĉ)(L0B0y0 + L1B1y1) + (1/2)[(ĉ0)(�L)(B1y1) + (ĉ1)(�L)(B0y0)]
+ (1/2)[(ĉ0L0)(�B)(y1) + (ĉ1L1)(�B)y0)] + (1/2)(ĉ0L0B0 + ĉ1L1B1)(�y)

(13.46)

This accounts for the four components that contribute to the change in value added.
The embellishments come from further decompositions of �L and �B.

The European Union. The Dietzenbacher and Hoekstra study (Table 13.6) also has a
spatial component because the data used came from intercountry input–output tables
for the European Union (EU). This made it possible to disaggregate their final-demand
component into: household consumption, other domestic final demands (government
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consumption, capital stock formation, inventory stock changes) and exports – to
Germany, France, Italy, Belgium, Denmark, the rest of the EU, and the rest of the world.

Results from some of these studies are collected together in Table 13.9.

13.2 Mixed Models

In the usual form of the standard demand-side input–output model – (I − A)x = f
and x = (I − A)−1f – the final-demand elements, f, are the exogenous compo-
nents. Changes in the fj come about as a result of forces that are outside the model
(e.g., changes in consumer tastes, government purchases), and it is the effects of these
changes on the economy’s gross outputs, x, that are quantified through the input–output
model.

In certain situations a mixed type of input–output model may be appropriate, in
which final demands for some sectors and gross outputs for the remaining sectors are
specified exogenously. For example, due to a strike of a major supplier, output from
a particular sector might be fixed at the amounts currently on hand in warehouses,
awaiting transportation and delivery to buyers. Or, in a planned economy, a target
might be to increase agricultural output by 12 percent by the end of the next planning
period.

Mixed input–output models have often been applied in empirical studies in agri-
cultural and resource economics. Some examples (discussed in Steinback, 2004) are:

• Agriculture [Johnson and Kulshreshtha, 1982 (economic importance of different
farm types); Findeis and Whittlesey, 1984 (impacts of two irrigation development
projects); Tanjuakio, Hastings and Tytus, 1996 (contribution of agriculture to the
Delaware economy); Papadas and Dahl, 1999 (relative importance of 16 different
US farm commodities); Roberts, 1994 (effects of milk production quotas)],

• Mining [Petkovich and Ching, 1978 (effects of partial elimination of mining in
Nevada due to ore depletion)],

• Forestry [Eiser and Roberts, 2002 (relative economic importance of four different
woodland types)],

• Fisheries [Leung and Pooley, 2002 (impacts of reduction in fishing areas in order to
protect certain turtle populations)].

Most of these contain references to numerous additional studies.
All of the analysis in what follows is equally valid if we wish to model exogenous

changes in some final demands and changes in gross outputs of the remaining sectors –
that is, if the model is represented in �f and �x terms. We illustrate both scenarios
below.

13.2.1 Exogenous Specification of One Sector’s Output
Rearranging the Basic Equations As an example, in a three-sector model,

assume that f1, f2, and x3 are treated as exogenous. (Since the numbering of sectors is
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arbitrary, we can always assume that sector n is the one whose output, not final demand,
is fixed.) The basic input–output relationships are still embodied in the following three
equations:

(1 − a11)x1 − a12x2 − a13x3 = f1

−a21x1 + (1 − a22)x2 − a23x3 = f2

−a31x1 − a32x2 + (1 − a33)x3 = f3

Rearrange all three equations in order to have the exogenous variables (f1, f2, and x3)
on the right-hand side and the endogenous variables (x1, x2, and f3) on the left. This
gives

(1 − a11)x1 − a12x2 + 0f3 = f1 + a13x3

−a21x1 + (1 − a22)x2 + 0f3 = f2 + a23x3

−a31x1 − a32x2 − f3 = −(1 − a33)x3

It is clear that not only f1 but now also a13x3 (for a fixed x3) serve as exogenous “demand”
for sector 1 (first equation) and similarly both f2 and a23x3 are now exogenous drivers
for sector 2. To facilitate later generalization, we rewrite these equations to include all
variables in each equation. This gives

(1 − a11)x1 − a12x2 + 0f3 = f1 + 0f2 + a13x3

−a21x1 + (1 − a22)x2 + 0f3 = 0f1 + f2 + a23x3

−a31x1 − a32x2 − f3 = 0f1 + 0f2 − (1 − a33)x3

In matrix form (we use partitioned matrices and vectors to emphasize differences
from the standard input–output model) these two equations are

⎡⎢⎣(1 − a11) −a12 0
−a21 (1 − a22) 0

−a31 −a32 −1

⎤⎥⎦
⎡⎢⎣x1

x2

f3

⎤⎥⎦ =
⎡⎢⎣ f1 + a13x3

f2 + a23x3

−(1 − a33)x3

⎤⎥⎦ (13.47)

and ⎡⎢⎣(1 − a11) −a12 0
−a21 (1 − a22) 0

−a31 −a32 −1

⎤⎥⎦
⎡⎢⎣x1

x2

f3

⎤⎥⎦ =
⎡⎢⎣1 0 a13

0 1 a23

0 0 −(1 − a33)

⎤⎥⎦
⎡⎢⎣f1

f2

x3

⎤⎥⎦ (13.48)
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Let M =
⎡⎢⎣(1 − a11) −a12 0

−a21 (1 − a22) 0

−a31 −a32 −1

⎤⎥⎦ and N =
⎡⎢⎣1 0 a13

0 1 a23

0 0 −(1 − a33)

⎤⎥⎦. Then (13.47)

and (13.48) can be expressed as

M

⎡⎢⎣x1

x2

f3

⎤⎥⎦ =
⎡⎢⎣ f1 + a13x3

f2 + a23x3

−(1 − a33)x3

⎤⎥⎦ (13.49)

and

M

⎡⎢⎣x1

x2

f3

⎤⎥⎦ = N

⎡⎢⎣f1
f2

x3

⎤⎥⎦ (13.50)

with solutions ⎡⎢⎣x1

x2

f3

⎤⎥⎦ = M−1

⎡⎢⎣ f1 + a13x3

f2 + a23x3

−(1 − a33)x3

⎤⎥⎦ (13.51)

and ⎡⎢⎣x1

x2

f3

⎤⎥⎦ = M−1N

⎡⎢⎣f1
f2

x3

⎤⎥⎦ (13.52)

Using results on partitioned matrix inverses (Appendix A), it can be shown that

M−1 =

⎡⎢⎢⎣
l(2)
11 l(2)

12 0

l(2)
21 l(2)

22 0

β1 β2 −1

⎤⎥⎥⎦
where L(2) =

[
l(2)
11 l(2)

12

l(2)
21 l(2)

22

]
=
[
(1 − a11) −a12

−a21 (1 − a22)

]−1

, the Leontief inverse for a two-

sector model.28 The important result to notice is that the inverse of the smaller model
is a component in M−1. Carrying out the multiplication M−1N, (13.52) is⎡⎢⎢⎣

x1

x2

f3

⎤⎥⎥⎦ =

⎡⎢⎢⎣ L(2) L(2)

[
a13

a23

]
[
β1 β2

]
γ

⎤⎥⎥⎦
⎡⎢⎢⎣

f1
f2

x3

⎤⎥⎥⎦ (13.53)

28 Here and in Appendix 13.2 we will sometimes find it helpful to use A(k) and L(k) = (I − A(k))−1to identify
coefficient and Leontief inverse matrices for a k-sector input–output model.
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The exact values of β1, β2, and γ need not concern us at this point.
Of particular interest is the result for the endogenous outputs, x1 and x2,[

x1

x2

]
= L(2)

[
f1
f2

]
+ L(2)

[
a13

a23

]
x3 = L(2)

[
f1 + a13

f2 + a23

]
x3 (13.54)

Suppose that a decision has been made to increase sector 3 output to some amount, x̄3,
for whatever reason (for example, to fill back orders, or because of anticipated new
demand, etc.). Using (13.54), we have f1 = 0, f2 = 0, and x3 = x̄3, and the effects on
sectors 1 and 2 are found as[

x1

x2

]
= L(2)

[
a13

a23

]
x̄3 =

⎡⎣l(2)
11 l(2)

12

l(2)
21 l(2)

22

⎤⎦[
a13

a23

]
x̄3 (13.55)

The vector

[
a13x̄3

a23x̄3

]
translates the new sector 3 output into sector 3’s increased demands

for inputs from sectors 1 and 2, and the inverse for the two-sector model converts these
input demands into total necessary gross outputs from those two sectors.

“Extracting” the Sector There is an alternative approach that leads to pre-

cisely the same algebraic results for the impact of

[
f1
f2

]
and x3 on

[
x1

x2

]
. If we modify

the A matrix for the three-sector model by setting all the coefficients in row 3 equal to

zero – Ã =
⎡⎢⎣a11 a12 a13

a21 a22 a23

0 0 0

⎤⎥⎦ – we generate (I − Ã) =
⎡⎢⎣1 − a11 −a12 −a13

−a21 1 − a22 −a23

0 0 1

⎤⎥⎦
and, importantly,29

(I − Ã)−1 =
⎡⎢⎣ L(2) L(2)

[
a13

a23

]
[
0 0

]
1

⎤⎥⎦
This result depends, again, on properties of inverses to partitioned matrices
(Appendix A). It is explored further in Appendix 13.2 to this chapter.

Consequently, ⎡⎢⎣x1

x2

x3

⎤⎥⎦ =
⎡⎢⎣ L(2) L(2)

[
a13

a23

]
[
0 0

]
1

⎤⎥⎦
⎡⎢⎣f1

f2

x3

⎤⎥⎦
and the results for

[
x1

x2

]
are identical to those in (13.53) or (13.54). (We show inAppendix

13.2 that this approach is valid for the general case of n − k sectors with exogenized
outputs.)

29 Notice that although Ã is singular (a row of all zeros), (I − Ã) is not; and it is the latter matrix whose inverse
is needed.
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In a regional context, this approach seems to have first been discussed in Tanjuakio,
Hastings and Tytus (1996); it is also featured in Steinback (2004). The economic logic,
at the regional level, is that the regional purchase coefficients for the exogenized sectors
are set equal to zero, thereby creating zero rows in A and eliminating those sectors as
suppliers of (additional) interindustry inputs. It may be particularly helpful in regional
situations where the A matrix of a ready-made input–output model is available (e.g.,
IMPLAN) and can be easily altered by zeroing out appropriate rows.30

13.2.2 An Alternative Approach When f 1, . . ., f n−1 and xn Are Exogenously
Specified31

This alternative makes use of the concept of an “output-to-output” multiplier

(section 6.5.3). Recall that L∗ = [l∗ij] = LL̂
−1

, where

l∗ij = lij/ljj = [�xi/�fj]/[�xj/�fj] = �xi/�xj

These elements, l∗ij , are viewed as “output–to–output” multipliers. Each of the elements
in column j of L∗ indicates the amount of sector i output (the row label) that would be
required if the output of sector j were one dollar.

If sector j increases its output to some new amount, x̄j, then L∗x̄ (where x̄ =
[0, . . . , 0, x̄j, 0, . . . , 0]′) will generate a vector of total new outputs necessary from each
sector in the economy because of the exogenously determined output in sector j. That is,

x∗ = L∗x̄ (13.56)

This calculation gives the same result for the endogenous xi as found using the approach
in (13.55), above, as is demonstrated in the following examples. This result is shown
to hold for the general case in Appendix 13.2.

The structure of L∗ makes clear that a standard Leontief inverse, L, can easily be
used to capture impacts when any sector’s output is made exogenous. If the output of
sector j is specified exogenously, then all that is needed is that the elements in column j
of L (known) be divided by ljj (known). Put otherwise, standard demand-driven output
multipliers for sector j will uniformly overestimate output–to–output multipliers for
sector j by [(ljj−1)×100] percent. [The reader can easily show that (lij−l∗ij)/l∗ij = ljj−1,

given that l∗ij = lij/ljj.]32

30 This approach is closely related to variants of the “hypothetical extraction” method for assessing a sector’s
importance to an economy through measures of sectoral “linkage” (a topic explored in section 12.2.5).

31 This approach is apparently first discussed in Evans and Hoffenberg (1952) and again in Ritz and Spaulding
(1975, p. 14).

32 Roberts (1994) provides a numerical illustration in an empirical application with both standard output multi-
pliers (final demand driven, from L) and those from L∗ (output driven) for the case in which the milk sector’s
output is made exogenous. The (constant) percentage overestimation in the L model is 8.09, and the milk
sector’s on-diagonal element in L is 1.0809.
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13.2.3 Examples with xn Exogenous33

Suppose, as above, that we have a three-sector model in which f1, f2, and x3 are treated

as exogenous. Let A =
⎡⎣.15 .25 .30

.20 .05 .18

.20 .20 .10

⎤⎦ (the first two rows and columns repeat the

two-sector example in Chapter 2). In the format of (13.50), we have⎡⎢⎢⎣
.85 −.25 0

−.20 .95 0

−.20 −.20 −1

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

f3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 .30
0 1 .18

0 0 −.9

⎤⎥⎥⎦
⎡⎢⎢⎣

f1
f2

x3

⎤⎥⎥⎦
In particular,

M =
⎡⎢⎣ .85 −.25 0

−.20 .95 0

−.20 −.20 −1

⎤⎥⎦ , N =
⎡⎢⎣1 0 .30

0 1 .18

0 0 −.9

⎤⎥⎦ and

M−1 =
⎡⎢⎣1.2541 .3300 0

.2640 1.1221 0

−.3036 −.2904 −1

⎤⎥⎦
so

M−1N =
⎡⎢⎣1.2541 .3300 .4356

.2640 1.1221 .2812

−.3036 −.2904 .7566

⎤⎥⎦
Notice that the 2 × 2 upper-left submatrix in M−1 and in M−1N is indeed just the

inverse of

[
.85 −.25

−.20 .95

]
from the two-sector model in Chapter 2:

L(2) =
[
1.2541 .3300

.2640 1.1221

]
Example 1: f1 = 100, 000, f2 = 200, 000, x3 = 150, 000 In this case, from

(13.53), ⎡⎢⎣x1

x2

f3

⎤⎥⎦ =
⎡⎢⎣ 1.2541 .3300 .4356

.2640 1.1221 .2812

−.3036 −.2904 .7566

⎤⎥⎦
⎡⎢⎣100, 000

200, 000

150, 000

⎤⎥⎦ =
⎡⎢⎣256, 750

293, 000

25, 050

⎤⎥⎦
33 Even though we will use four figures to the right of the decimal in the numerical illustrations, comparisons

of alternative techniques will still display small differences due to rounding, especially when matrices are
inverted.
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If we are only interested in the effects on the gross outputs of sectors 1 and 2, then,
from (13.53), [

x1

x2

]
= L(2)

[
f1
f2

]
+ L(2)

[
a13

a23

]
x3 = L(2)

[
f1 + a13x3

f2 + a23x3

]
and for this example,

[
f1 + a13x3

f2 + a23x3

]
=
[
145, 000
227, 000

]
, so[

x1

x2

]
=
[
1.2541 .3300

.2640 1.1221

] [
145, 000
227, 000

]
=
[
256,755
292,997

]
(The differences between these values and those for x1 and x2 in the three-sector version
come about because of rounding in the computation of M−1N, in particular in the
elements in the third column of that matrix.)

Example 2: f1 = f2 = 0, x3 = 150, 000

Approach I. Suppose that only x3 = 150, 000 is exogenously specified; then f1 = f2 =
0, and (13.53) leads to⎡⎢⎢⎣

x1

x2

f3

⎤⎥⎥⎦ =
⎡⎢⎣ 1.2541 .3300 .4356

.2640 1.1221 .2812

−.3036 −.2904 .7566

⎤⎥⎦
⎡⎢⎣ 0

0

150, 000

⎤⎥⎦ =
⎡⎢⎣ 65, 340

42, 180

113, 490

⎤⎥⎦
Again, if only the gross outputs of sectors 1 and 2 are of interest, and since f1 = f2 = 0,[

x1

x2

]
= L(2)

[
a13x3

a23x3

]
=
[
1.2541 .3300
.2640 1.1221

] [
45, 000
27, 000

]
=
[
65, 345
42, 177

]
(Differences are again due to rounded elements in the third column of M−1N.)

Approach II. Continuing with the same numerical example but using the alternative
approach, we create L∗ for our three-sector illustration. Here,

L = (I − A)−1 =
⎡⎣1.4289 .4973 .5758

.3769 1.2300 .3716

.4013 .3838 1.3216

⎤⎦
and so

L∗ = LL̂−1 =
⎡⎣ 1 .4043 .4356

.2637 1 .2812

.2808 .3121 1

⎤⎦
Consider again the case in which sector 3’s output is set at $150,000. Here, then,

x̄ =
⎡⎣ 0

0
150, 000

⎤⎦
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and, as in (13.56),

x∗ =
⎡⎣x1

x2

x3

⎤⎦ =
⎡⎣ 1 .4043 .4356

.2637 1 .2812

.2808 .3121 1

⎤⎦⎡⎣ 0
0

150, 000

⎤⎦ =
⎡⎣ 65, 340

42, 180
150, 000

⎤⎦
These values for x1 and x2 are the same as in our earlier results for the three-sector
model (Approach I), and of course x3 = 150, 000, which is part of the stipulation of
the problem and is assured by the fact that l∗33 = 1. (By definition, all l∗jj = 1.)

In Appendix 13.2 we demonstrate that these two approaches for the case when
xn is exogenously specified must always give the same results for the outputs of x1

through xn−1. (Again, results on the inverse of a partitioned matrix turn out to be
useful.)

Example 3: f1 = 100, 000, f2 = 200, 000, x3 = 100, 000 Consider the same
three-sector model, with exogenous values f1 = 100, 000, f2 = 200, 000 (both as
before), but x3 = 100, 000 (instead of 150,000). Using (13.53), we have⎡⎢⎣x1

x2

f3

⎤⎥⎦ =
⎡⎢⎣ 1.2541 .3300 .4356

.2640 1.1221 .2812

−.3036 −.2904 .7566

⎤⎥⎦
⎡⎢⎣100, 000

200, 000

100, 000

⎤⎥⎦ =
⎡⎢⎣ 234, 970

278, 940

−12, 780

⎤⎥⎦
This simply means that the exogenously specified values of f1, f2, and x3 in this

example cannot possibly be satisfied unless f3 is negative. If all variables represent
changes in (�x and �f) then to increase final demand for sectors 1 and 2 by 100,000 and
200,000, while increasing output of sector 3 by only 100,000, can only be accomplished
by decreasing final demand for sector 3 by 12,780. This is not unusual in planned
economies; increased production targets (�xi > 0) may be attainable only through
decreases in allocations to consumption (�fi < 0). Similarly, in the case of a shortage
(due to a strike, for example), increases in consumption in other sectors may require a
decrease in consumption of the product that is in short supply. Whether or not negative
values for f3 make sense depends entirely on the context of the problem. If all x’s and
f ’s are not changes in, it may still be possible to attach meaning to a negative fj. For
example, if the exports component of final demand is defined as net exports, then a
negative value here for fj would mean net imports of j-type goods.

Example 4: The Critical Value of x3 From the solution in (13.53), using the
example values of f1 = 100, 000 and f2 = 200, 000, we can find the critical value of x3

(call it x̄c
3) that makes f3 = 0. (For x3 above this value, f3 will be positive; for x3 below

this value, f3 will be negative.) Replacing 100,000 by x̄c
3 and setting f3 = 0, we have⎡⎢⎣x1

x2

0

⎤⎥⎦ =
⎡⎢⎣ 1.2541 .3300 .4356

.2640 1.1221 .2812

−.3036 −.2904 .7566

⎤⎥⎦
⎡⎢⎣100, 000

200, 000

x̄c
3

⎤⎥⎦
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From the third equation, 0 = (−.3036)(100, 000) + (−.2904)(200, 000) + (.7566)x̄c
3

or x̄c
3 = 116, 891.

Multipliers From the discussion thus far and from these numerical examples,
we recognize that M−1N is a multiplier matrix that relates the exogenously given

values, xex = [x3] and f ex =
[
f1
f2

]
in our examples, to those remaining x’s and f ’s

that are endogenous, xen =
[
x1

x2

]
and f en = [f3] in our examples. The elements in this

matrix have the same kind of multiplier interpretation as we explored in Chapter 6 for
the usual input–output system – x = Lf . In this example,

M−1N =
⎡⎢⎣1.2541 .3300 .4356

.2640 1.1221 .2812

−.3036 −.2904 .7566

⎤⎥⎦
So, for example, if �f1 = 1, �f2 = �x3 = 0, we see that �x1 = 1.2541, �x2 = 0.2640
and �f3 = −0.3036; if only final demand for sector 1 increases, then output in sectors 1
and 2 must increase while final demand for sector 3 goods must decrease. The elements
in the second column have a similar interpretation. The third column contains elements
that multiply changes in sector 3’s output to generate consequent changes in outputs of
sectors 1 and 2 (and final demand for sector 3). Specifically, �f1 = �f2 = 0, �x1 =
(.4356)�x3 and �x2 = (.2812)�x3. These third column elements in M−1N are thus
exactly the “output–to–output” multipliers that we created in deriving L∗. Notice in
particular (Example 3, above) that l∗13 = 0.4356 and l∗23 = 0.2812; these are precisely
the elements in corresponding positions in M−1N. This is no accident; Appendix 13.2
demonstrates why this will always be the case.

13.2.4 Exogenous Specification of f 1, . . ., f k , xk+1, . . ., xn

The reader can easily work out the matrix representation of, say, a four-sector model
with f1, f2, x3, and x4 exogenous, starting from the basic (I − A)x = f relationships to
generate the parallel to, say, (13.48). For the general n-sector case, assume that sectors
have been labeled so that the outputs of the first k sectors are endogenous:34

xen =
⎡⎢⎣x1

...
xk

⎤⎥⎦
34 Sectors in an n-sector model can always be numbered so that the first k are those with endogenous gross outputs

and the remaining (n − k) have exogenous gross outputs.
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and the corresponding final demands are exogenous:

f ex =
⎡⎢⎣f1

...
fk

⎤⎥⎦
Similarly the last (n − k) sectors are those whose gross outputs are exogenous:

xex =
⎡⎢⎣xk+1

...
xn

⎤⎥⎦
and corresponding final demands are endogenous:

f en =
⎡⎢⎣fk+1

...
fn

⎤⎥⎦

Partition the coefficients matrix as A =
[

A11 A12

A21 A22

]
, where A11 = A(k,k) denotes

the submatrix made up of the first k rows and the first k columns of A [this can also
be denoted A(k) (see footnote 24)], A12 = A[k,−(n−k)] denotes the submatrix made
up of the first k rows and the last (n − k) columns of A, A21 = A[−(n−k),k] denotes
the submatrix made up of the last (n − k) rows and the first k columns of A, and
A22 = A[−(n−k),−(n−k)] denotes the submatrix containing the last (n − k) rows and
columns of A, and where the I and 0 matrices are of appropriate dimension in each
case. The notation in the last three cases is necessary in order to distinguish specific row
and column composition of a matrix from the general notation A(k) for the coefficient
matrix of a k-sector input–output model.

The generalization of (13.48) for (n − k) exogenous outputs is

[
(I − A(k)) 0

−A21 −I

][
xen

f en

]
=
[

I A12

0 −(I − A22)

][
f ex

xex

]
(13.57)

The solution procedure is the same as for any square set of linear equations. Using
the same notation as earlier, in the case when only xn was exogenous, we have

M =
[
(I − A(k)) 0

−A21 −I

]
and N =

[
I A12

0 −(I − A22)

]
, so the solution to M

[
xen

f en

]
=
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N

[
f ex

xex

]
, namely

[
xen

f en

]
= M−1N

[
f ex

xex

]
, becomes35

⎡⎢⎣ xen

(k×1)

f en

[(n−k)×1]

⎤⎥⎦ =
[

L(k) L(k)A12

−A21L(k) (I − A22) − A21L(k)A12

]⎡⎢⎣ f ex

(k×1)

xex

[(n−k)×1]

⎤⎥⎦ (13.58)

where (I−A(k))−1 = L(k). (We indicate the dimensions of exogenous and endogenous
vectors as an aid for what follows.) The parallel result for the earlier case is in (13.53).

As a check on the logic of the results in (13.57), notice that the two “extreme cases”
correspond exactly to the basic input–output model.

Case 1: No exogenous outputs. Here k = n, L(k) = L(n), xen =
⎡⎢⎣x1

...
xn

⎤⎥⎦, f ex =
⎡⎢⎣f1

...
fn

⎤⎥⎦, and A21, A12, (I − A22), xex, and f en do not exist, so (13.57) is just the standard

input–output model (I − A(n))xen = f ex.

Case 2: All outputs exogenous. Here k = 0, (I − A22) = (I − A(n)), xex =⎡⎢⎣x1
...

xn

⎤⎥⎦, f en =
⎡⎢⎣f1

...
fn

⎤⎥⎦, and L(k), A21, A12, xen, and f ex disappear from (13.57), leaving

−If en = −(I − A(n))xex or (I − A(n))xex = f en. In words, if you specify all n outputs
in the standard model, the n final demands are uniquely determined.

Consider also the two “less extreme” cases, which make more sense when we are
dealing with the model in “changes in” (�) form, namely in which either �xex = 0 or
�f ex = 0.

Case 3: �xex = 0. Here the model is driven only by changes in final demands
for sectors 1, . . . , k; �f ex �= 0. Then �xen = L(k)�f ex, which is a standard k-sector
input–output model. As a consequence, �f en = −A21L(k)�f ex = −A21�xen. This
is a perfectly logical but not very interesting case. Here if �f ex > 0, then �xen ≥ 0
and �f en = −A21�xen ≤ 0, meaning that the changes in at least some of the n − k
endogenous final demands are necessarily negative. In words, since �xex = 0, the needs
of sectors 1, . . . , k for inputs from sectors k +1, . . . , n, as itemized in A21, must be met
by reductions in the amounts available for final demands for those remaining sectors.

Case 4: �f ex = 0. Here the model is driven only by changes in outputs of sectors
k + 1, . . . , n; �xex �= 0. In this case,

�xen = L(k)A12�xex (13.59)

35 This depends on results for the inverse of a partitioned matrix and also on the straightforward rules for
multiplication of partitioned matrices. See Appendix A.
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where A12 = A[k,−(n−k)] =
⎡⎢⎣a1,k+1 · · · a1n

...
...

ak,k+1 · · · akn

⎤⎥⎦. For example, the first element in

A12�xexwill be a1,k+1�xk+1 +a1,k+2�xk+2 +· · ·+a1n�xn; this represents the inputs
that are needed from endogenous sector 1 to allow production of the fixed amounts of
output in sectors k + 1, . . . , n. [In an early application of input–output analysis at the
regional level, Tiebout (1969) specified (projected) the outputs of 13 out of 57 local
sectors exogenously and found the consequent outputs of the remaining 44 sectors in
the regional economy in just this way.]

At the same time, in this scenario �f en = [(I − A22) − A21L(k)A12]�xex. This
is exactly the structure as we saw earlier in examining interregional feedback effects
in an interregional input–output model (Chapter 3) and in multiplier decompositions
(Chapter 6). Here the logic is essentially the same: (a) A12�xex identifies inputs
from endogenous sectors to satisfy �xex; (b) L(k)A12�xex converts those needs into
total endogenous sector production (direct plus indirect effects); (c) A21L(k)A12�xex

then translates that production into necessary inputs from exogenous sectors; and
(d) since �xex has already been fixed, this added amount must be netted out of
what would have otherwise been available for final demands in sectors k + 1, . . . , n,
(I − A22)�xex.

We will see in section 13.4 that a mix of x’s and f ’s in the endogenous and exogenous
categories can also be a useful framework for assessing the impact of a new industry
on an economy.

13.2.5 An Example with xn−1 and xn Exogenous
Example 5 (Example 2 expanded)

Approach I. Suppose now that both x2 and x3 are exogenous; along with f1 = 0 and
x3 = 150, 000 (as in Example 2), let x2 = 100, 000. Then, in terms of (13.57) (the reader
might want, for practice, to check each of these submatrices as well as the subsequent
matrix multiplications),

M =
[
(I − A(1)) 0

−A21 −I

]
=
⎡⎢⎣ .85 0 0

−.2 −1 0
−.2 0 −1

⎤⎥⎦
and

N =
[

I A12

0 −(I − A22)

]
=
⎡⎢⎣1 .25 .3

0 −.95 .18
0 .2 −.9

⎤⎥⎦
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giving⎡⎢⎢⎣
x1

f2
f3

⎤⎥⎥⎦ =
⎡⎢⎣ 1.1765 .2941 .3530

−.2535 .8912 −.2506
−.2535 −.2588 .8294

⎤⎥⎦
⎡⎢⎣ 0

100, 000
150, 000

⎤⎥⎦ =
⎡⎢⎣82, 360

51, 530
98, 530

⎤⎥⎦ (13.60)

These results can be verified by noticing that

⎡⎢⎢⎣
x1

f2
f3

⎤⎥⎥⎦ =
⎡⎢⎣82, 360

51, 530
98, 530

⎤⎥⎦, along with f1 =

0, x2 = 100, 000 and x3 = 150, 000, satisfy (except for rounding) the basic input–output
equations, at the beginning of section 13.2.1.

Approach II. Alternatively, if we tried using L∗, we would find

x∗ =

⎡⎢⎢⎣
x1

x2

x3

⎤⎥⎥⎦ = L∗x̄ =
⎡⎢⎣ 1 .4043 .4356

.2637 1 .2812

.2808 .3121 1

⎤⎥⎦
⎡⎢⎣ 0

100, 000
150, 000

⎤⎥⎦ =
⎡⎢⎣105, 770

142, 180
181, 210

⎤⎥⎦ (13.61)

which is totally wrong – neither x2 nor x3 is at its prespecified exogenous value and
x1 is wildly different from the result in (13.60). As already mentioned, we indicate in
Appendix 13.2 why the L∗ approach is only possible when just one sector’s output is
specified exogenously.

13.3 New Industry Impacts in the Input–Output Model

The input–output model provides a framework within which to assess the economic
impact associated with the introduction of a new industry into an economy – for exam-
ple, a basic manufacturing activity in a less-developed country, an export-oriented
industry in a region, and so on. A quantitative approach to this kind of problem is
extremely important. Individuals responsible for planning economic development (for
a nation or a region) need to be able to make quantitative estimates of the total amount
of economic benefit that can be expected from policies designed to attract certain kinds
of industry to an area. Then the costs associated with attracting the activity – for exam-
ple, reduced business taxes as an incentive, possible environmental degradation – can
be weighed against the benefits of the new economic activity associated with the new
industry. For convenience, in this section we will consider that the in-movement of the
new industry is to a region, whether studied in isolation or as part of an interregional or
multiregional system. It will be clear that the same principles apply if the “region” is in
fact an entire country. In the input–output literature, one finds discussions of essentially
two ways of introducing a new production activity into an economic area – through
a new final-demand vector only and through the addition of new elements into the
technical coefficients table for the economy. We examine these in turn.
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13.3.1 New Industry: The Final-Demand Approach
For illustration, we again consider a two-sector regional economy, for which we have

a 2 × 2 input coefficient matrix, A =
[

a11 a12

a21 a22

]
. If a firm in a different industry, which

we will denote sector 3, were to locate in the region, one way of attempting to quantify
the impact of this in-movement on the region is as follows.36 From an input–output
coefficient table for another region of the country, or from a national table, or from
surveys, assume that it is possible to estimate what the inputs will be from sectors 1
and 2 per dollar’s worth of output of the new sector 3; that is, a13 and a23.

In order to quantify the impact of the in-movement of sector 3 to the economy, we
must have some measure of the magnitude of new economic activity associated with
sector 3. In input–output terms, this means that either sector 3’s level of production
(gross output), x3, or of sales to final demand, f3, must be specified. For this example,
assume that the measure of new activity by sector 3 is gross output; denote this proposed
level of sector 3 production by x̄3. This is often the case. A new firm plans to build, say,
a $2.5 million plant with a planned annual output of $850,000, for example. Then the
new demand on sectors 1 and 2 that arises because of production by the new sector 3 is
a13x̄3 and a23x̄3, respectively. That is, we can view these new demands as an exogenous

change imposed on the original two sectors; �f =
[
a13x̄3

a23x̄3

]
, and so the impacts, in terms

of the outputs from these two sectors, will be given by �x = L�f :

�x =
[

l11 l12

l21 l22

] [
a13x̄3

a23x̄3

]
=
[

l11a13x̄3 + l12a23x̄3

l21a13x̄3 + l22a23x̄3

]
(13.62)

Given that there are also the usual kinds of final demands, f̄1 and f̄2, for the products
of the two sectors, total gross outputs in sectors 1 and 2 will be[

x1

x2

]
=
[

l11 l12

l21 l22

] [
f̄1 + a13x̄3

f̄2 + a23x̄3

]
=
[

l11( f̄1 + a13x̄3) + l12( f̄2 + a23x̄3)

l21( f̄1 + a13x̄3) + l22( f̄2 + a23x̄3)

]
(13.63)

This is exactly the structure of the model in (13.55), and for the same reason. We are
specifying f̄1 and f̄2 and, in addition, the value of x3. When x̄3 = 0, that is, without the
new sector in the region, this is a standard input–output exercise. When f̄1 = 0 and
f̄2 = 0, then in (13.63) we find the impact of the new industry alone – as in (13.62).

For example, using the same illustration, let A =
[
.15 .25
.20 .05

]
. Then (I − A)−1 =[

1.253 .330
.264 1.122

]
. Assume that our estimates of the direct input coefficients for the new

sector 3 are a13 = 0.30 and a23 = 0.18, and that the plant in the new sector 3 that
is moving into the region expects to produce at a level of $100,000 per year. So x̄3 =

36 This is essentially the approach used by Isard and Kuenne (1953) and by Miller (1957) in early applications of
the input–output framework at a regional level.
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100,000, �f =
[
30, 000
18, 000

]
, and, as in (13.62),

�x =
[
1.253 .330

.264 1.122

] [
30, 000
18, 000

]
=
[
43, 560
28, 116

]
(13.64)

Sector 1, in satisfying the new demand for $30,000 worth of its product, will ultimately
have to increase its output by $43,560. Similarly, the new demands on sector 2 from
sector 3 are $18,000, but in the end sector 2 will need to produce a total of $28,116
more output. These figures represent one way of measuring the impact on an economy
that comes about from the in-movement of new industrial activity.

With a13 and a23 assumed known, but a31 = a32 = a33 = 0, the basic equations in
this approach are

(1 − a11)x1 − a12x2 − a13x3 = f1

−a21x1 + (1 − a22)x2 − a23x3 = f2

0x1 + 0x2 + x3 = f3

The first two equations reflect the fact that sector 1 and 2 outputs are used as inputs to
(the new) sector 3. The third equation shows that all of sector 3’s output can be used to
satisfy final demand, since it is not used as an input to production in the region. (For
example, a sector may move to a region to be closer to the sources of inputs, while
continuing to produce a product for export.)

In matrix terms, with

Ā =
⎡⎢⎣a11 a12 a13

a21 a22 a23

0 0 0

⎤⎥⎦ and (I − Ā) =
⎡⎣(1 − a11) −a12 −a13

−a21 (1 − a22) −a23

0 0 1

⎤⎦
we have partially included the new sector in the A matrix. To assess the impact of new
sector 3 production, x̄3, we let f1 = 0 and f2 = 0. Also, f3 = x3 = x̄3, from the third
equation above. Thus

x = L̄

⎡⎣0
0
x̄3

⎤⎦
where L̄ = [l̄ij] = (I − Ā)−1. Because of the zeros in f, x1 = l̄13x̄3, x2 =
l̄23x̄3, and x3 = l̄33x̄3. That is, only the third column of the inverse is of interest.
Using results on the inverse of a partitioned matrix (Appendix A) it is easily shown that[

l̄13

l̄23

]
=
[

l11 l12

l21 l22

] [
a13

a23

]
and l̄33 = 1

In particular, then, [
x1

x2

]
=

[
l11 l12

l21 l22

] [
a13

a23

]
x̄3

exactly as in (13.62), above. Note also that, as expected, x3 = (1)x̄3.
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13.3.2 New Industry: Complete Inclusion in the Technical Coefficients Matrix
The estimate of the impact of the new industry that was given above is clearly con-
servative; the complete impact of a new sector of an economy would reflect the fact
that not only would the new industry buy inputs from existing sectors, but it would
probably also sell its own product as an input to other producing sectors in the econ-
omy and ultimately the entire technical structure of the economy may change. In the
first place, there will be a new column and row of direct-input coefficients associated
with purchases by and sales of the new sector. In addition, there may be changes in
the elements of the original A matrix, reflecting, for example, substitution of the newly
available input for one previously used.

To completely “close” the previous 2 × 2 coefficient matrix with respect to the new
industry, we need a13 and a23 (which we have already assumed can be estimated), and
we also need a31 and a32, estimates of how much each of the old industries (1 and
2) will buy from the new sector (3) per dollar’s worth of their outputs, plus a33, the
intrasectoral input coefficient for the new industry. For in-movement of a new industry
into a region with n original sectors, the previous approach required that we estimate
n new coefficients (a column for the new sector, except for the last element). For
the present approach we need an additional (n + 1) coefficients (a row for the new
sector, including intraindustry use per dollar’s worth of output); we need (2n + 1) new
coefficients in all.

Again, assuming that x3 is known, our three-equation model, relating the endogenous
variables x1, x2, and f3 to the values f̄1, f̄2, and x̄3, is still

(1 − a11)x1 − a12x2 − a13x̄3 = f̄1

−a21x1 + (1 − a22)x2 − a23x̄3 = f̄2 (13.65)

−a31x1 − a32x2 + (1 − a33)x̄3 = f3

Rearranging, to put exogenous variables on the right-hand side,

(1 − a11)x1 − a12x2 + 0f3 = f̄1 + a13x̄3

−a21x1 + (1 − a22)x2 + 0f3 = f̄2 + a23x̄3 (13.66)

−a31x1 − a32x2 − f3 = −(1 − a33)x̄3

The matrix representation for (13.66) is⎡⎣(1 − a11) −a12 0
−a21 (1 − a22) 0
−a31 −a32 −1

⎤⎦⎡⎣x1

x2

f3

⎤⎦ =
⎡⎣ f̄1 + a13x̄3

f̄2 + a23x̄3

−(1 − a33)x̄3

⎤⎦ (13.67)

This is exactly the structure of the model in (13.48), in the previous section, and so
solution possibilities are the same as we saw in the examples of that section. In parti-
cular, there is no guarantee that the f3 associated with given values f̄1, f̄2, and x̄3 will
be positive.

Instead of specification of the level of gross output of the new sector, one could
quantify the magnitude of the new operation by exogenously fixing the level of sales
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to final demand – that is, by specifying f3 at f̄3, instead of x3 at x̄3. But then, from
(13.65), with x3 now a variable to be determined (not specified at x̄3), we see that this
is a standard kind of input–output problem. Whether f̄1 = 0 or not, and whether f̄2 = 0
or not, given some f̄3 > 0, we find the associated values of the necessary gross outputs,
x1, x2, and x3, through the use of the Leontief inverse to the 3 × 3 (I − A) matrix in
(13.67). Thus, when the level of new sector activity is specified in terms of sales to
final demand rather than gross output, no new principles are involved in assessing the
impact on the economy into which the industry moves.

For example, for our illustrative problem, the 3 × 3 technical coefficients matrix is

Ā =
⎡⎣.15 .225 .30

.20 .05 .18

.20 .20 .10

⎤⎦
(using an overbar to distinguish this from the original 2 × 2 A matrix). Thus the matrix
of coefficients in the equations in (13.67) is

(I − Ā) =
⎡⎣ .85 −.25 −.30

−.20 .95 −.18
−.20 −.20 .90

⎤⎦ (13.68)

and the corresponding inverse is

L̄ =
⎡⎣1.429 .497 .576

.377 1.230 .372

.401 .384 1.322

⎤⎦ (13.69)

Given f̄1 = 100, 000, f̄2 = 200, 000, and, say, f̄3 = 50, 000, we find that⎡⎣x1

x2

x3

⎤⎦ =
⎡⎣1.429 .497 .576

.377 1.230 .372

.401 .384 1.322

⎤⎦⎡⎣100, 000
200, 000

50, 000

⎤⎦ =
⎡⎣271, 100

302, 300
183, 000

⎤⎦ (13.70)

in standard input–output fashion.

13.3.3 A New Firm in an Existing Industry
If the firm that moves into a region belongs to a sector that is already established in the
region, so that the effect is to augment the production capacity of a particular existing
industry, not introduce it into the local economy for the first time, the assessment of its
impact is fairly straightforward. In particular, an input–output table for the economy in
question will already include interindustry and intraindustry relationships for the sector
in which the new firm is classified.

Assume that we have a three-sector economy and that the new firm is classified as a
member of sector 3. Thus 3×3Aand Lmatrices are known. If the level of activity in the
new firm is specified as a certain total amount of production, then we have a positive x∗

3,
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and the relationships among sectors are exactly those shown in (13.65), above, where
now we use x∗

3 in place of x̄3 to distinguish the two cases (x̄3 when the industry was
new to the region, x∗

3 when the new firm only represents an increase in capacity of the
existing sector). The new demands on the three original sectors are found as⎡⎣a13x∗

3
a23x∗

3
a33x∗

3

⎤⎦ (13.71)

and impacts on all three sectors are found in the standard input–output way:

�x = L

⎡⎣a13x∗
3

a23x∗
3

a33x∗
3

⎤⎦ (13.72)

If the level of new capacity in sector 3 is specified through an additional amount of
sales to final demand, that is, as �f3, then the impact is found in the usual input–output

way. The new final-demand vector is

⎡⎣ 0
0

�f3

⎤⎦ and

�x = L

⎡⎣ 0
0

�f3

⎤⎦ (13.73)

which is just

�x1 = l13�f3, �x2 = l23�f3, �x3 = l33�f3 or �x =
⎡⎣l13

l23

l33

⎤⎦ (�f3) (13.74)

For example, assume that the Leontief inverse for the three-sector economy is as
shown in (13.69). If a new firm in sector 3 moves into the economy and its projected
level of annual production is $120,000 (x∗

3 = 120, 000), then, using the elements in
the third column of the technical coefficients matrix, we find the new final demands in
(13.71) as ⎡⎣(.30)(120, 000)

(.18)(120, 000)

(.10)(120, 000)

⎤⎦ =
⎡⎣36, 000

21, 600
12, 000

⎤⎦
and, as in (13.72)

�x =
⎡⎣1.429 .497 .576

.377 1.230 .372

.401 .384 1.322

⎤⎦⎡⎣36, 000
21, 600
12, 000

⎤⎦ =
⎡⎣69, 127

44, 604
38, 594

⎤⎦
Notice that the total new output from sector 3 is $158,594. This figure includes the
$120,000 from the new firm and $38,594 of additional output from the old (existing)
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firms in sector 3. On the other hand, if increased capacity in sector 3 is specified as,
say, $70,000 more sales to final demand for sector 3 goods, then, as in (13.73),

�x =
⎡⎣1.429 .497 .576

.377 1.230 .372

.401 .384 1.322

⎤⎦⎡⎣ 0
0

70, 000

⎤⎦ =
⎡⎣40, 320

26, 880
92, 540

⎤⎦

which is just

⎡⎣ .576
.372

1.322

⎤⎦(70,000), as in (13.74).

13.3.4 Other Structural Changes
As already mentioned, when a new industry moves into an economic area, or when the
capacity of an existing sector is increased, it is entirely possible that current transaction
patterns for existing sectors in the region will change. For example, sector j, which
formerly bought input i from a firm located outside the region, may now purchase
some (or all) of input i from the new local establishment. Or, indeed, sector j may
replace formerly used input k, bought from a producer in the region, with input i
bought from the new establishment in the region. Such changes in transactions, the
elements of the Z matrix, will generate changes in direct-input coefficients in columns
and rows other than those for the new sector (or for the sector whose capacity has been
increased.)

It should be clear that out-movement of a firm or an entire sector from a local econ-
omy can be treated in much the same way. Usually output, income, employment or
value-added multipliers provide an adequate approach to quantifying such decreases
in economic activity – particularly if, say, one plant closes but other plants in the
same sector remain. If all economic activity in a sector is stopped – for example, all
shoe manufacturing leaves Massachusetts and moves to the South – then the column
and row for that sector disappear from the Massachusetts A matrix, and local pro-
ducers in other sectors that use the product as an input will either have to import the
good that has disappeared from the local economy or else they will substitute alter-
native locally produced inputs. Similarly, local firms that previously supplied inputs
to the now-absent sector will find their sales patterns altered. Again, changes will
occur in other columns and/or rows of the A matrix. However, it is extremely diffi-
cult to predict exactly where these changes will be and exactly what their magnitude
will be.

13.4 Dynamic Considerations in Input–Output Models

13.4.1 General Relationships
Thus far, we have considered analysis using the A matrix of technical coefficients
derived from measured flows of goods between sectors, purchased to serve current
production needs during a particular period of time. Each of the flows, zij, is viewed
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as serving as an input for current output, xj, and these relations are reflected in the
technical coefficients, aij = zij/xj. Actually, however, some input goods contribute
to the production process but are not immediately used up during that production –
machines, buildings, and so on. In other words, a sector has a certain capital stock that
is also necessary for production. If one could measure the value of the output of sector
i that is held by sector j as stock, kij, then one could estimate a “capital coefficient,” by
dividing this holding of stock by the output of sector j, over some period. Along with
fixed investment items such as buildings and machinery, goods bought as inventory
by sector j, to use as inputs to later production, may also be included in the kij term.
Let bij = kij/xj; this coefficient is interpreted as the amount of sector i’s product
(in dollars) held as capital stock for production of one dollar’s worth of output by
sector j.37

For example, if sector i is the construction industry and sector j is automobiles, bij

might represent the dollars’ worth of factory space per dollar’s worth of automobiles
produced. Clearly, for current production, the machinery, buildings, and so forth must
already be in place. But if an economy is growing, then anticipated production (next
year) is different from current production (this year), and the amount of supporting
capital may change: one simple assumption (often used) is that the amount of new
production from sector i for capital stocks in sector j in time period t + 1 (say next
year) will be given by bij(x

t+1
j − xt

j), where the superscripts denote time periods (here
years); that is, the amount of sector i production necessary to satisfy the added demand
in sector j for goods from sector i as capital stocks for next year’s production is given
by the observed capital coefficient, bij, times the change in sector j output between
this year and next year, (xt+1

j − xt
j ). This use of the capital coefficients assumes that

production is at or near effective capacity in sector j, since the anticipated increase in
production, if (xt+1

j − xt
j ) is positive, requires new capital goods.38

The typical equation for the output of sector i in period t would become

xt
i =

n∑
j=1

aijx
t
j +

n∑
j=1

bij(x
t+1
j − xt

j) + f t
i (13.75)

or

xt
i −

n∑
j=1

aijx
t
j +

n∑
j=1

bijx
t
j −

n∑
j=1

bijx
t+1
j = f t

i (13.76)

37 It has become traditional to use bij , and later B = [bij], for capital coefficients in a dynamic input–output
model. It is also traditional to use B in the Ghosh model, as we saw in section 12.1, and to represent a “bridge”
matrix, as in section 13.1.8. The context should make clear which meaning is intended.

38 The xt+1
j − xt

j term could also be negative or zero. Thus, if bij = 0.02 and xt+1
j − xt

j = $100, there will be a

need for $2 more output from sector i for sector j; if xt+1
j − xt

j = −$300, the model would forecast a decrease

of $6 in purchases from i by j. In general, we are usually concerned with sectoral consequences of economic
growth, so that the usual setting in which the dynamic model is used is when xt+1

j − xt
j is strictly positive.
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The matrix form, using an n × n capital coefficients matrix B = [bij], is

(I − A)xt − B(xt+1 − xt) = f t or (I − A + B)xt − Bxt+1 = f t (13.77)

One rearrangement of this result is

Bxt+1 = (I − A + B)xt − f t (13.78)

for t = 0, 1, . . . , T . For example, if the time superscripts denote years, this represents a
set of relationships between gross outputs and final demands starting now (year t = 0)
and extending T years into the future.39

These are linear difference equations, since the values of the variables – the xj –
are related for different periods of time via the coefficients in A and B and the final
demands. Solution methods for sets of difference equations, and analysis of the values
of the variables over time, are topics that go beyond the level of this text. The intention
here is primarily to acquaint the reader with the notion of capital coefficients and with
one of the ways in which the existence of stocks of capital goods for production have
been incorporated into input–output analysis.40 Clearly, the assumptions inherent in
this model – for example, the stability of capital coefficients over time – deserve just
as careful scrutiny as those in the static model. Moreover, data and measurement prob-
lems for estimating capital coefficients are even more severe than those for technical
coefficients.

From (13.77) it is possible to derive either a “forward looking” or a “backward
looking” expression. Solving for xt in terms of xt+1 gives xt = (I−A+B)−1(Bxt+1 +
f t); letting G = (I − A + B), this is xt = G−1(Bxt+1 + f t).41 Each period’s outputs
depend on the outputs of the following period (and current period final demands). This
kind of solution is possible as long as G−1 exists, and in practice (I − A + B) is not
likely to be singular. On the other hand, from (13.77) or (13.78) we can equally well
find xt+1 as a function of xt , namely xt+1 = B−1(Gxt − f t), and now each period’s
outputs depend on the outputs from the previous period (and, again, current period final
demands). This approach requires that B be nonsingular, and, in fact, singularity of the
B matrix is a problem in dynamic input–output models. It is easy to see why it might be
that |B| = 0. In a model with a fairly large number of sectors (a relatively disaggregated
model), it is very likely that there will be sectors that do not supply capital goods to any
sectors – that is, sectors whose row in the B matrix will contain all zeros. (For example,
if there were a sector labeled “Agriculture, potatoes.”) When one or more rows of a

39 In some discussions of dynamic input–output models, the time superscripts are shifted “backward” by one
period, leading to (I − A + B)xt−1 − Bxt = f t−1. There have also been differing labeling suggestions –
“backward-lag” vs. “forward-lag” models – which need not concern us.

40 For the reader who is familiar with differential calculus, there is a continuous version of this model. As the time
interval between periods becomes very small, the difference xt+1

j − xt
j approaches the derivative dxj/dt. The

continuous analog to (13.75) is thus xi =
n∑

j=1
aijxj +

n∑
j=1

bij(dxj/dt) + fi , and, denoting the time derivative of

the vector x by ẋ, we would have Bẋ = (I − A)x − f . These are linear differential equations for which solution
procedures and stability analysis are also possible but beyond the level of this text.

41 Recall than G is also used in the Ghosh model, but the context should make clear which meaning is intended.
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matrix contains all zeros, the determinant of the matrix is zero and so the matrix has
no inverse.42 In later examples we will see that even when B is nonsingular, it may be
somewhat “ill-conditioned” and contain unusually large elements in its inverse.

In developing capital coefficients, one may also wish to distinguish between “replace-
ment capital” – for example, investment for replacing depreciated equipment – which is
a function of current production, xt , and “expansion capital” – for example, investment
in new equipment for expanded production capacity – which is a function of industry
growth (the difference between current and past production, xt+1 − xt). In this case we
might write the analog to (13.77) as

(I − A − D + B)xt − Bxt+1 = f t

where D is the newly added matrix of replacement capital coefficients and B is now
the matrix of expansion capital coefficients.

At a regional level, several operational models have been formulated, such as those
found in Miernyk et al. (1970), which examines alternative economic development
strategies for the state of West Virginia, and Miernyk and Sears (1974), where the
impacts of pollution-control technologies on regional economies are analyzed, using a
dynamic input–output model.

13.4.2 A Three-Period Example
Consider (13.77) again with G = (I − A + B) and let T = 3. Then the difference
equation relationships are

Gx0 − Bx1 = f0

Gx1 − Bx2 = f1

Gx2 − Bx3 = f2

Gx3 − Bx4 = f3

or ⎡⎢⎢⎣
G −B 0 0 0
0 G −B 0 0
0 0 G −B 0
0 0 0 G −B

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣
f0

f1

f2

f3

⎤⎥⎥⎦ (13.79)

Notice that there are four matrix equations involving five unknown vectors, x0

through x4. If there are n sectors in the economy, we have 4n linear equations in
5n variables. An issue that arises in many dynamic models, including the input–output
system, is which values to specify as fixed in the dynamic process. Generally, there are
initial values, at the beginning (t = 0), when one starts with a given amount of, say,

42 There is a large literature on singularity in the dynamic Leontief model and variations in the model that attempt
to avoid the problem. This subject is vast and beyond the scope of this book. An interested reader might want
to refer to Leontief (1970), Duchin and Szyld (1985), Leontief and Duchin (1986) or to Steenge and Thissen
(2005) for critical summaries of many of these attempts to avoid or counteract the singularity problem.
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output in the economy, or else there are terminal values, specifying desired character-
istics of the system at the end of the period over which the model is being used (t = T
or T + 1). We investigate several possibilities in the case where T = 3.

Terminal Conditions In (13.79), when T = 3, this means xT+1 = x4. In
some versions of the dynamic input–output model (for example, Leontief, 1970), it is
simply assumed that we cannot (or don’t care to) see beyond year T ; it is the last year
that is of interest, and so xT+1 = 0.43 In that case, the equations in (13.79) become⎡⎢⎢⎣

G −B 0 0
0 G −B 0
0 0 G −B
0 0 0 G

⎤⎥⎥⎦
⎡⎢⎢⎣

x0

x1

x2

x3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
f0

f1

f2

f3

⎤⎥⎥⎦ (13.80)

Since x4 = 0, it disappears from the x vector in (13.79), and the last column of the
coefficient matrix in (13.79) is also unnecessary.

Given a set of final demands in the current year and in the next three years –
f0, f1, f2, and f3 – we could find the associated gross outputs in each of those years –
x0, x1, x2, and x3 – using the inverse of the matrix on the left in (13.80), provided that
it exists. In fact, it can be shown – using results for the inverses of partitioned matrices
(Appendix A) and letting R = G−1B – that

⎡⎢⎢⎣
G −B 0 0
0 G −B 0
0 0 G −B
0 0 0 G

⎤⎥⎥⎦
−1

=

⎡⎢⎢⎣
G−1 RG−1 R2G−1 R3G−1

0 G−1 RG−1 R2G−1

0 0 G−1 RG−1

0 0 0 G−1

⎤⎥⎥⎦ (13.81)

For an n-sector economy this will be a square matrix of order 4n. For a time horizon
of T years, this matrix will be of order (T + 1)n; that is, it can become fairly large for
“reasonable” problems. For a ten-year planning problem in a 100-sector economy this
matrix will be 1100 × 1100.

The particular structure of these equations when xT+1 = 0, as in (13.80), allows for
a simple recursive solution procedure. Given f3, find x3 from

x3 = G−1f3 (13.82)

Using this value for x3, find x2 from the third equation in (13.79) as

x2 = G−1(Bx3 + f2) = G−1(BG−1f3 + f2) = RG−1f3 + G−1f2 (13.83)

43 Bródy (1995) calls this the “doom” or “doomsday” scenario (meaning, essentially, that the world ends at the
end of period T ). This reference includes an examination of alternative “truncations” of the matrix in (13.79)
and discusses the alternative scenarios that they reflect.
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In similar fashion, knowing x3 and x2,

x1 = G−1(Bx2 + f1) = G−1[B(RG−1f3 + G−1f2) + f1]
= R2G−1f3 + RG−1f2 + G−1f1 (13.84)

and finally

x0 = G−1(Bx1 + f0) = G−1[B(R2G−1f3 + RG−1f2 + G−1f1) + f0]
= R3G−1f3 + R2G−1f2 + RG−1f1 + G−1f0 (13.85)

This approach moves backward in time, starting at the end (x3) and finishing at the
beginning (x0).44 As the reader can see, this sequential solution procedure simply
carries out the computations embedded in the upper triangular inverse matrix (zeros
below the main diagonal).

Instead of assuming that xT+1 = 0 in (13.79), we could have some target value of x
for the first post-terminal year; that is, we could specify that x4 = x̄4. Then the matrix
structure in (13.80) would be altered only in that f3 on the right-hand side would be
replaced by f3 + Bx̄4. The solution could still be found using the inverse of the matrix
on the left of (13.80), or the recursive solution, as in (13.82)–(13.85), could proceed as
before.

Alternatively, one can specify that xT+1 = HxT , where H is a diagonal matrix whose
elements are exogenously set growth rates for each of the sectors in the first post-
terminal year. In that case, the last equation in (13.79) would be Gx3 − BHx3 = f3.
The matrix structure would be⎡⎢⎢⎣

G −B 0 0
0 G −B 0
0 0 G −B
0 0 0 (G − BH)

⎤⎥⎥⎦
⎡⎢⎢⎣

x0

x1

x2

x3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
f0

f1

f2

f3

⎤⎥⎥⎦ (13.86)

and solution procedures would be as above.

Initial Conditions Alternatively in assessing future impacts of current events,
it is often assumed that the initial (t = 0) values of all elements in the system are known
and then the usefulness of the model comes from its description of the values to be taken
by the variables of interest in subsequent years. From that point of view, we would
assume that both f0 and x0 have given initial values. This reduces the system in (13.79)

44 A particular special case emerges from (13.85). If we are interested in a τ -year planning period with produc-
tion to satisfy a constant level of final demand, f∗, each year, an extension of the result in (13.85) leads
to x0 = [I + R + R2 + · · · + Rτ ]G−1f∗. If, as τ gets large, the power series in brackets converges
– as we saw in Chapter 2 for the case of (I + A + A2 + · · · + Am) – then x0 = (I − R)−1G−1f∗.
Using N−1M−1 = (MN)−1, and since R = G−1B, this is x0 = [G(I − R)]−1f∗ = (G − B)−1f∗ and
so, with G = (I − A + B), x0 = (I − A)−1f∗. Finally, as τ → ∞, x0 = x1 = · · · = x = x∗, so
x∗ = (I − A)−1f∗. This reflects the logical limiting case. When final demand is constant and the time horizon
infinite, the output level is constant and there is no need for capital growth.
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to 4n linear equations in 4n variables. Then, given exogenous values for f1, f2, and f3,
we could proceed sequentially from x1 to x4. As opposed to the backward sequence in
(13.82) through (13.85), this one moves forward in time. From (13.79),

x1 = B−1(Gx0 − f0)

x2 = B−1(Gx1 − f1)

x3 = B−1(Gx2 − f2) (13.87)

x4 = B−1(Gx3 − f3)

This sequential solution procedure depends on the existence of B−1.
The results found sequentially in (13.87) can also be found in matrix form if the

system in (13.79) is written as⎡⎢⎢⎣
−B 0 0 0
G −B 0 0
0 G −B 0
0 0 G −B

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
f0 − Gx0

f1

f2

f3

⎤⎥⎥⎦ (13.88)

This reflects the fact that x0 is now exogenously determined; it disappears from the top
of the x vector on the left and hence the first column in the coefficient matrix in (13.79)
also is removed. Then x1 through x4 can be found by premultiplying both sides of
(13.88) by the inverse of the coefficient matrix on the left, provided that inverse exists.
As before, the matrix on the left-hand side of (13.88) will be nonsingular if and only
if the matrix on its main diagonal, here B, is nonsingular. Again, repeated use of the
results on inverses of partitioned matrices will demonstrate that (letting S = B−1G)⎡⎢⎢⎣

−B 0 0 0
G −B 0 0
0 G −B 0
0 0 G −B

⎤⎥⎥⎦
−1

=

⎡⎢⎢⎣
−B−1 0 0 0
−SB−1 −B−1 0 0
−S2B−1 −SB−1 −B−1 0
−S3B−1 −S2GB−1 −SB−1 −B−1

⎤⎥⎥⎦ (13.89)

As opposed to the inverse matrix in the terminal conditions example, above, this inverse
is lower triangular (zeros above the main diagonal), and this feature also suggests a
recursive approach to solution that is illustrated by the sequence in (13.87), above.

13.4.3 Numerical Example 1
We illustrate the general workings of the dynamic input–output model using hypothet-
ical figures for a two-sector economy. Let

A =
[
.1 .2
.3 .4

]
and B =

[
.05 .001
.001 .05

]
; then G =

[
.95 −.199

−.299 .65

]
.

For simplicity, let T = 2.
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Terminal Conditions Suppose that f0 =
[
100
100

]
, f1 =

[
120
150

]
, and f2 =[

140
200

]
. If we assume that x3 = 0, then, as in (13.82)–(13.85) – but with T = 2 rather than

T = 3 – we can find the backward sequence x2, x1, x0. Here G−1 =
[
1.1649 0.3566
0.5358 1.7025

]
,

so

x2 = G−1f2 =
[
234.41
415.51

]
(13.90)

Then

x1 = G−1(f1 + Bx2) =
[
214.91
361.94

]
(13.91)

and

x0 = G−1(f0 + Bx1) =
[
171.62
260.96

]
(13.92)

Alternatively, using the full matrix form, as in (13.80), where

⎡⎣G −B 0
0 G −B
0 0 G

⎤⎦−1

=

⎡⎢⎢⎢⎣
G−1 G−1BG−1 (G−1B)2G−1

0 G−1 G−1BG−1

0 0 G−1

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.1649 .3566 .0784 .0532 .0061 .0061
.5358 1.7025 .0791 .1560 .0090 .0149

0 0 1.1649 .3566 .0784 .0532
0 0 .5358 1.7025 .0791 .1560

0 0 0 0 1.1649 .3566
0 0 0 0 .5358 1.7025

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.93)

we could find, simultaneously, these same values for x0, x1, and x2.

If, instead of x3 = 0, we specify x3 =
[
250
450

]
(target values for outputs in the first

post-terminal year), then Bx3 =
[
12.95
22.75

]
, so that only the equation for x2 changes
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slightly from the sequence in (13.90)–(13.92), and

x2 = G−1(f2 + Bx3) =
[
257.60
461.18

]
x1 = G−1(f1 + Bx2) =

[
217.13
366.52

]
x0 = G−1(f0 + Bx1) =

[
171.83
261.41

]
In comparison with the x0, x1, and x2 found above when x3 = 0, the initial-year
outputs are affected very little by this change in post-terminal year conditions. However,
x1 is changed more than x0 and x2 more than x1. In matrix form,⎡⎣G −B 0

0 G −B
0 0 G

⎤⎦⎡⎣x0

x1

x2

⎤⎦ =
⎡⎣ f0

f1

f2 + Bx3

⎤⎦
and, using (13.93), the same values of the gross outputs from both sectors in each period
can be found simultaneously.

Using the x3 = 0 example again, let f0 = f1 = f2 =
[
100
100

]
. Then, from the inverse

in (13.93), or from the backward recursive procedure, as above, we can find

x =
⎡⎣x0

x1

x2

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

166.53
249.73

165.31
247.34

152.15
223.83

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.94)

Recall (footnote 39) that with constant final demands, f∗, as the time period lengthens,

the results in each xt approach (I − A)−1f∗. Here A =
[
.1 .2
.3 .4

]
, so

(I − A)−1
[
100
100

]
=
[
1.2500 .4167

.6250 1.8750

] [
100
100

]
=
[
166.67
250.00

]
which is closely approximated by x0 in (13.94), the outputs in the earliest year. As T

gets larger, subsequent values of xt will also approach

[
166.67
250.00

]
. (The interested reader

can confirm this by letting T = 3, T = 4, and so on, using the same A and B and
constant final demand of 100 for both sectors.)
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Initial Conditions Taking an alternative point of view, suppose

f0 =
[
100
100

]
, f1 =

[
120
150

]
, f2 =

[
140
200

]

as before, but let x0 =
[
180
270

]
. Originally, with these final demands and x0 deter-

mined endogenously, we found x0 =
[
171.61
260.96

]
, as in (13.92). We now select an

x0 that is larger. Here, using the forward recursive procedure of (13.87), with

B−1 =
[
20.008 −0.4
−0.4 20.008

]
, we find

x1 = B−1(Gx0 − f0) =
[
336.87
426.87

]
and

x2 = B−1(Gx1 − f1) =
[
2291.66

488.91

]
Essentially the same values are found, using the inverse of

[−B 0
G −B

]
, as in (13.88).

Here this inverse is⎡⎢⎢⎢⎣
−20.008 0.4 0 0

0.4 −20.008 0 0

−384.395 92.522 −20.008 0.4
132.538 −264.347 0.4 −20.008

⎤⎥⎥⎥⎦
This example illustrates that the dynamic input–output model, at least in the simplified
form presented here, is very sensitive to the specification of initial conditions. We return
to this point in Numerical Example 2, below.

If we use the same structure as in (13.87) and (13.88), but with x0 =
[
171.62
260.96

]
, which

is the actual initial output found in (13.92) when x0 is endogenous, we will generate
exactly the values of x1 and x2 that were found initially in (13.91) and (13.90). Similarly,

if we use x0 =
[
166.53
249.73

]
from (13.94), in conjunction with f0 = f1 = f2 =

[
100
100

]
,

we generate exactly the sequence of outputs already found for that example – x1 and
x2 in (13.94). For either of these earlier examples, if we take the forward sequential
approach but with an initial x0 that is less than that found with x0 endogenous (and
using the same final demands), we will generate one or more negative gross outputs in
years after t = 0. The values for x0 in (13.92) and (13.94) represent what is necessary
to satisfy the specified sequences of final demands with an economy whose structure
is reflected in the given A and B matrices, so any initial output that is less than that x0
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will produce a sequence of additions to capital stock that eventually become inadequate
for future production. (Recall that, unlike the static input–output case, in the dynamic
model it is assumed that all sectors are producing at full capacity.)

13.4.4 Numerical Example 2
In order to illustrate a particularly sensitive feature of the dynamic input–output model
in its forward sequential form (starting from initial conditions), we select an alternative
capital coefficients matrix. In this new case, sector 1 is far more important as a supplier

of capital goods than is sector 2; here B =
[

.05 .06
.0004 .0007

]
. Using the same A matrix

as in the preceding example, we find G =
[

.95 −.14
−.2996 .6007

]
. Note that while B is quite

different from the preceding example, the current G matrix is close to that in Example 1.
This is because G = (I − A + B), and A is unchanged in the two examples.

Terminal Conditions We use the same sequence of final demands – namely

f0 =
[
100
100

]
, f1 =

[
120
150

]
, and f2 =

[
140
200

]
Again, letting x3 = 0, we can find x2, x1, x0 sequentially, exactly as in (13.90) through

(13.92). Here G−1 =
[
1.1361 .2648
.5667 1.7968

]
(which is not a great deal different from G−1

in the previous example) and

x2 =
[
212.01
438.70

]
, x1 =

[
218.10
359.15

]
, x0 =

[
177.05
255.35

]
These results are different from those in the previous example, as is to be expected, but
not by much.

Initial Conditions Using the same f0, f1 and f2 along with x0 =
[
180
270

]
from

the previous example illustrates the sensitivity problem. Here, because B has a row of
elements that are smaller than any of the elements in the previous capital coefficients
matrix, its inverse can be expected to contain at least some larger elements.And indeed it

does; here B−1 =
[

63.636 −5454.545
−36.364 4545.455

]
, which is very different from its counterpart

in the previous example. Thus

x1 = B−1(Gx0 − f0) = B−1
[
33.20
8.26

]
=
[−42942

36338

]
and, much worse (the results have been rounded),

x2 = B−1(Gx1 − f1) = B−1
[−45882

24694

]
=
[−192, 000, 000

159, 000, 000

]
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This illustrates that as the elements in one or more rows of B become small, B−1 contains
very large numbers. Here |B| = 0.000011; if one were working with four-decimal
accuracy, one would conclude that B was singular.

Consider the determination of x1. Rewriting, Bx1 = Gx0 − f0, and with A and B
(and hence G) given, along with f0, the choice of x0 then specifies the right-hand side
vector for this set of two linear equations in two unknowns. Denote a specific right-
hand side vector as r0. In the easily visualized two-variable case, we could explore the
solution-space geometry of the pair of equations. Here

B =
[

b11 b12

b21 b22

]
, x1 =

[
x1

1

x1
2

]
, r0 =

[
r0

1

r0
2

]
so

b11x1
1 + b12x1

2 = r0
1

b21x1
1 + b22x1

2 = r0
2

We leave it to the interested reader to make sketches in solution space. However, it
is easy to show that both lines will have positive intercepts on the vertical axis (when
r0 > 0, which by definition it must be) and that both will have negative slopes. Then
the conditions for the intersection of the two lines to be in the positive quadrant or on
its boundaries (that is, x1 ≥ 0) can be derived. The values of x0

1 and x0
2 must be chosen

so that r0
1/r0

2 lies within the bounds set by b11/b21 and b12/b22. The generalization
to more sectors and to non-negativity of outputs further in the future – x2, x3, and so
on – is beyond this text. The point of the illustration is simply to highlight the kinds
of problems that can arise in the dynamic model when one wants to calculate forward
from initial conditions, using B−1.

Note that in the first numerical example, b11/b21 = 50 and b12/b22 = 0.02. In that

example, in fact, (Gx0 − f0) = r0 =
[
18.77
21.71

]
so that r0

1/r0
2 = 0.86, which is indeed

within the bounds. In the second example, b11/b21 = 125 and b12/b22 = 85.7. For

our initial choice of x0 =
[
180
270

]
, r0

1/r0
2 = 33.2/8.26 = 4.02, which is outside the

admissible range. A choice of x0 =
[

180
256.8

]
, however, would lead to x1 ≥ 0, since

r0
1/r0

2 = 105.6, while an initial x0 =
[

180
256.7

]
generates r0

1/r0
2 = 129.1, which means

that x1 will not be non-negative. By any reasonable definition, this would appear to be
extreme sensitivity to initial values.

13.4.5 “Dynamic” Multipliers
The structure of the inverse in (13.81) suggests the possibility of distributing impacts
backward over time. (This is described in Leontief, 1970, and it is also discussed in
C. K. Liew, 1977, for a regional model and further elaborated in C. J. Liew, 2000 and
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2005.) In these cases, it is usual to designate the current (or “target”) period as period 0
and the preceding periods as −1, −2, etc. For example, consider the model in (13.80)
and (13.81) in “�” form⎡⎢⎢⎣

�x−3

�x−2

�x−1

�x0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
G−1 RG−1 R2G−1 R3G−1

0 G−1 RG−1 R2G−1

0 0 G−1 RG−1

0 0 0 G−1

⎤⎥⎥⎦
⎡⎢⎢⎣

�f−3

�f−2

�f−1

�f0

⎤⎥⎥⎦
Let �f0 �= 0, �f−1 = �f−2 = �f−3 = 0; then the last column of the inverse on
the right is seen to distribute the direct and indirect input requirements backward over
time from period 0 in which the deliveries are made to final users. Here, �x−3 =
R3G−1�f0, �x−2 = R2G−1�f0 and �x−1 = RG−1�f0; present demands require
both current inputs and adequate capital stock to support production of those inputs,
meaning production of capital goods in the preceding period, which in turn depends in
part on production two periods back, etc.

Notice that this intertemporal influence is not a result of the fact that production
takes time, it is entirely the result of the capital goods component of the model in which
production for those goods depends on the changes in outputs over time, as reflected in
B(xt+1−xt) in (13.77).Approaches to incorporating production lags in an input–output
model will be explored below, in section 13.4.6.

13.4.6 Turnpike Growth and Dynamic Models
In Chapter 2 we introduced the notion of a completely closed input–output model
as (I − A)x = 0 or Ax = x. Recall that such an input–output model is in fact a
homogeneous system of linear equations which has a nontrivial solution (one other
than x = 0) if and only if |I − A| = 0.

The corresponding closed dynamic model is

Axt + B(xt+1 − xt) = xt (13.95)

If we assume for simplicity that we can find an xt+1 and xt such that all industries grow
at the same rate in the economy, say, at rate λ, then

xt+1 = λxt (13.96)

This rate, λ, is often referred to as a turnpike growth rate (all industries are growing
or declining on the same path – the “turnpike”), and it is interpreted as a general
indicator of the “health” of the economy, that is, λ > 1 indicates that the economy is
expanding, 0 < λ < 1 indicates that the economy is contracting, and λ < 0 indicates that
the economy is unstable, that is, experiencing periods of both decline and growth over
time. Since λ is really only a theoretical number, how can it be computed? Substituting
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(13.96) into (13.95), we obtain

Axt + B(λxt − xt) = xt

Bλxt = (I − A + B)xt

B−1(I − A + B)xt = λxt

or

Qxt = λxt (13.97)

where Q = B−1(I − A + B). Note that (13.97) has the very interesting feature that a
scalar, λ, multiplied by xt , yields precisely the same value as a matrix, Q, postmultiplied
by xt .

Such a problem is well known in applied mathematics as an eigenvalue problem
where λ is the eigenvalue (sometimes called a characteristic value or latent root), and
xt corresponding to λ in (13.97), is the eigenvector (sometimes called characteristic
vector or latent vector). This problem is closely related to the solution of systems of
homogeneous linear equations. Note that we can rewrite (13.97) as

(Q − λI)x = 0 (13.98)

for which there is a nontrivial solution if and only if

|Q − λI| = 0 (13.99)

We consider the 2 × 2 case, with Q =
[

q11 q12

q21 q22

]
so that

|Q − λI| =
∣∣∣∣[q11 − λ q12

q21 q22 − λ

]∣∣∣∣ = (q11 − λ)(q22 − λ) − q12q21 = 0 = λ2 + bλ + c

where b = −(q11 + q22) and c = q11q22 − q12q21. We find the solution to Qx = λx by
solving |Q − λI| = 0 or λ2 + bλ + c = 0. This is a polynomial (sometimes called the
characteristic polynomial) which, when set equal to zero, is called the characteristic
equation; in this case it has two solutions, given by

λ = −(q11 + q22) ± [(q11 + q22)
2 − 4(q11q22 − q12q21)]1/2

2

Denote these solutions as λ1 and λ2. The turnpike growth rate is defined to be the largest
eigenvalue found (see Carter, 1974), which we define as λmax.
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Example

Suppose Q = B−1(I − A + B) =
[
1.0 .5
2.0 1.0

]
, then

|Q − λI| = (1 − λ)(1 − λ) − 1 = 0

λ2 − 2λ = 0

λ(λ − 2) = 0

so λ1 = 0 and λ2 = 2. The turnpike growth rate is λmax = λ2 = 2. As mentioned earlier,
if λmax < 0 then the economy is unstable, that is, oscillating. The interpretation of
negative λ’s can be specified more precisely by relating it to the solution of a system of
ordinary differential equations, but this is beyond the scope of this text. Carter (1974)
and Leontief and Duchin (1986) examine the notion of turnpike growth as an indicator
economic stability resulting from changes in technology in the United States.

13.4.7 Alternative Input–Output Dynamics
In the standard input–output model, x = Lf , there is no consideration of the fact that
production takes time; results are independent of time in the sense that fnew leads to
xnew (via xnew = Lfnew). This is generally interpreted in something like the following
fashion: “new demands, fnew, next period will lead to new outputs, xnew, next period,”
ignoring that sectors will generally have production lags (of differing length for different
sectors). This missing temporal characteristic of the input–output model was noted in
the early work of Dorfman, Samuelson and Solow (1958, pp. 253–254) where the
authors comment on the absence of a “time” aspect to the round-by-round process of
the power series for the Leontief inverse.

Needless to say, the rounds of which we speak do not take place in calendar time, with the second
round following the first . . . Artificial computational time is involved, and if we insist on giving a
calendar-time interpretation we must think of the . . . process as showing how much production must
be started many periods back if we are to meet the new consumption targets today.

However, as observed by Mules (1983, p. 197), with respect to the assumptions implicit
in using input–output multipliers,

The traditional multiplier does not stipulate the time taken to realize effects, assuming instead that they
usually occur almost immediately or within the space of one year (a year being the usual accounting
period for which input–output data is compiled).

Starting around the mid-1980s, research emerged on ways to incorporate the notion
of time lags in production in an input–output framework. [References include Mules,
1983; ten Raa, 1986, 2005 (Chapter 13); Romanoff and Levine, 1986, 1990; and Cole,
1988, 1997, 1999b.] Mules (p. 199) makes the assumption that each round of the power
series process does in fact take a finite period of (calendar) time, suggesting that a
typical period may be a month or a quarter. He further assumes that each sector is able
to respond in each period to the demands made upon it in the previous period, but with
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varying lags in this production response. As an illustration, he suggests a five-period
lag for primary sectors, one period for manufacturing and no lag (that is, delivery next
period) for services. Simulation exercises lead to the conclusion that “. . . on some
occasions there may be a significant proportion of multiplier effects still outstanding
after one year has elapsed. We may be in error if we assume that all effects have occurred
near the time of the original stimulus” (Mules, 1983, p. 204).

This problem was also addressed in the work of Romanoff and Levine. A good deal
of their work on what they call the sequential interindustry model (SIM) appears in
unpublished discussion papers from the Regional Science Research Center (initially in
Cambridge, Mass. and later in Lexington, Mass.). Possibly the first is dated 1980, so it
precedes (and is cited by) Mules. The authors recognize the fact that “. . . it takes time
for each industry to produce its product beforehand and supply its own final demand
and that of the directly demanding industries, for the latter to use as inputs to their own
production” (Romanoff and Levine, 1990, pp. 1–2).Agiven aij is modeled as distributed
backward (over discrete time intervals); aij(k)(k = 0, −1, −2, . . .) is the fraction of aij

(per-unit input of i by j) that occurs k periods before completion of production by j.
Ten Raa (1986) and Cole (1988) identify technical coefficients as non-negative (con-

tinuous) distributions along the negative time axis (that is, backwards in time from
“now”). As in the dynamic models in sections 13.4.1–13.4.5, ten Raa also considers
capital accumulation. The specific nature, characteristics, and properties of the assumed
distributions are beyond the level of this text. The interested reader is referred to the
cited literature and additional references in those articles. Cole has successfully applied
his distributed-lag framework in a number of studies, especially at the small-area level.
In Cole (1989) the illustration is a plant closure in Western New York. Assumed lags
are: 3 months for production sectors, 4 months for households, 18 months for local gov-
ernment activities and 36 months for investments.45 In Cole (1999a) there is a stylized
illustration, including Miyazawa interrelational multiplier aspects, for a community (an
inner-city neighborhood in Buffalo, New York).46

13.5 Summary

In this chapter we have explored several applications and variations of the input–output
framework. Structural decomposition analysis presents an approach to disentangling
the sources of change in some aspect of an economy into its component parts – for
example relating output changes to changes in demand and technology. We saw that
it is further possible to decompose the demand and technology changes into further
underlying components. And further layers of decomposition are also possible. In a
large (many-sector) input–output model this approach rapidly generates a very large
set of results which are generally difficult to interpret without some kind of aggregation

45 In comparing his approach with that of ten Raa or Romanoff and Levine, Cole (1989, p. 106) suggests that the
required computations needed in either of those approaches “. . . are still complex in any practical situation.”

46 A vigorous exchange in print – Jackson, Madden and Bowman (1997) → Cole (1997) → Jackson and Madden
(1999) → Cole (1999b) – provides several illustrations of Cole’s approach and comparisons of Cole’s work
with that of ten Raa and of Romanoff and Levine.
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(for example, finding averages); this, as usual, removes much of the detail which the
input–output model provides.

We also explored the variations that arise when the model is used to assess the impact
of exogenously specified outputs for one or more sectors (rather than final demands),
or when a new sector is introduced into the economy. Finally, we sketched the basic
features of the dynamic version of an input-model, where production for current input
use is coupled with production for capital goods. The dynamic model has been much
less widely embraced in real-world applications, although there have been notable
exceptions – including the work of Miernyk and his associates at the regional level
in the 1970s, Almon (1970, and other publications associated with the long-running
INFORUM project at the University of Maryland) and Leontief and Duchin as well
as Duchin and her associates (for example, Leontief and Duchin, 1986; Duchin and
Szyld, 1985). An alternative approach to dynamics is represented in the sequential
input–output model and its variants that include the recognition of production lags in
an economy.

Appendix 13.1 Alternative Decompositions of x = LBf

Alternative views of an input–output equation like x = LBf will generate somewhat
different decompositions. We explore three variations in this Appendix.

1. Using (13.10) directly on x = LBf gives

�x = (1/2)(�L)(B0f0 + B1f1)︸ ︷︷ ︸
Effect of�L

+ (1/2)[L0(�B)f1 + L1(�B)f0]︸ ︷︷ ︸
Effect of�B

+ (1/2)(L0B0 + L1B1)(�f)︸ ︷︷ ︸
Effect of�f

2. If we combine L and B, so that M = LB and x = Mf , and then use (13.7),

�x = (1/2)(�M)(f0 + f1) + (1/2)(M0 + M1)(�f)

Since M = LB,

�M = (1/2)(�L)(B0 + B1) + (1/2)(L0 + L1)(�B)

so that

�x = (1/2)[(1/2)(�L)(B0 + B1) + (1/2)(L0 + L1)(�B)](f0 + f1)

+ (1/2)(M0 + M1)(�f)

= (1/4)(�L)(B0 + B1)(f0 + f1)︸ ︷︷ ︸
Effect of�L

+ (1/4)(L0 + L1)(�B)(f0 + f1)︸ ︷︷ ︸
Effect of�B

+ (1/2)(M0 + M1)(�f)︸ ︷︷ ︸
Effect of�f
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And, again since M = LB, the last term is (1/2)(L0B0 + L1B1)(�f)︸ ︷︷ ︸
Effect of�f

, as in (1).

3. If we combine B and f, so that y = Bf and x = Ly, and then use (13.7),

�x = (1/2)(�L)(y0 + y1) + (1/2)(L0 + L1)(�y)

Since y = Bf ,

�y = (1/2)(�B)(f0 + f1) + (1/2)(B0 + B1)(�f)

so that

�x = (1/2)(�L)(y0 + y1) + (1/2)(L0 + L1)[(1/2)(�B)(f0 + f1)

+ (1/2)(B0 + B1)(�f)]
= (1/2)(�L)(y0 + y1)︸ ︷︷ ︸

Effect of�L

+ (1/4)(L0 + L1)(�B)(f0 + f1)︸ ︷︷ ︸
Effect of�B

+ (1/4)(L0 + L1)(B0 + B1)(�f)︸ ︷︷ ︸
Effect of�f

and since y = Bf , the first term is (1/2)(�L)(B0f0 + B1f1)︸ ︷︷ ︸
Effect of�L

, as in (1).

Table A13.1.1 summarizes these results. Terms that do not appear in Equation (1) are
boxed. For example, in Equation (2), �L appears in two terms – (�L)(B0f0+B1f1) and
(�L)(B0f1 +B1f0) – but each is weighted by (1/4) instead of the (1/2) in Equation (1).
The amount by which (1/2)(�L)(B0f0+B1f1) differs from (1/4)[(�L)(B0f0+B1f1)+
(�L)(B0f1 + B1f0)] depends entirely on the difference between (B0f0 + B1f1) and
(B0f1+B1f0). Similar observations can be made for the weightings on �B in Equations
(2) and (3) vs. Equation (1) and on the weighting on �f in Equation (3) vs. Equations
(1) and (2).

Appendix 13.2 Exogenous Specification of Some Elements of x

A13.2.1 The General Case: An n-sector Model with k Endogenous Outputs
The general representation for an n-sector model with (the first) k gross outputs and
(the last) (n − k) final demands endogenous was given in (13.57) in the text as

⎡⎣(I − A(k)) 0

−A21 −I

⎤⎦
⎡⎢⎣ xen

(k×1)

f en

[(n−k)×1]

⎤⎥⎦ =
⎡⎣I A12

0 −(I − A22)

⎤⎦
⎡⎢⎣ f ex

(k×1)

xex

[(n−k)×1]

⎤⎥⎦ (A13.2.1)
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Letting M =
⎡⎣(I − A(k)) 0

−A21 −I

⎤⎦ and N =
⎡⎣I A12

0 −(I − A22)

⎤⎦, and using results

from Appendix A on inverses of partitioned matrices,

M−1 =
⎡⎣ L(k) 0

−A21L(k) −I

⎤⎦
[where (I − A(k))−1 = L(k)] and so

M−1N =
⎡⎣ L(k) L(k)A12

−A21L(k) (I − A22) − A21L(k)A12

⎤⎦
This product reflects not only the results on inverses of partitioned matrices but also
the specific structure of those matrices in (A13.2.1) – especially the locations of 0 and
I submatrices and their influence in the partitioned matrix multiplication. Thus⎡⎣xen

f en

⎤⎦ =
⎡⎣ L(k) L(k)A12

−A21L(k) (I − A22) − A21L(k)A12

⎤⎦⎡⎣f ex

xex

⎤⎦ (A13.2.2)

[This is (13.58) in the text.]
If f ex = 0, the influence of the specified exogenous outputs, xex, on the endogenous

outputs, xen, is given by

xen = L(k)A12xex (A13.2.3)

which was (in “�” form) (13.59) in the text.

A13.2.2 The Output-to-Output Multiplier Matrix
For a three-sector model, we saw that an “output–to–output” multiplier matrix was
created from L(3) through division of each element in a column by the on-diagonal
element for that column, namely

L(3) =

⎡⎢⎢⎢⎢⎢⎣
l(3)
11 l(3)

12 l(3)
13

l(3)
21 l(3)

22 l(3)
23

l(3)
31 l(3)

32 l(3)
33

⎤⎥⎥⎥⎥⎥⎦ and L(3)∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l(3)
11

l(3)
11

l(3)
12

l(3)
22

l(3)
13

l(3)
33

l(3)
21

l(3)
11

l(3)
22

l(3)
22

l(3)
23

l(3)
33

l(3)
31

l(3)
11

l(3)
32

l(3)
22

l(3)
33

l(3)
33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
1

l(3)
12

l(3)
22

l(3)
13

l(3)
33

l(3)
21

l(3)
11

1
l(3)
23

l(3)
33

l(3)
31

l(3)
11

l(3)
32

l(3)
22

1

⎤⎥⎥⎥⎥⎥⎥⎦
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A13.2.3 The Inverse of a Partitioned (I − A(n)) Matrix
Let

(I − A(n)) =
⎡⎣(I − A(k)) −A12

−A21 (I − A22)

⎤⎦ =

⎡⎢⎢⎣
E

(k×k)
F

[k×(n−k)]

G
[(n−k)×k]

H
[(n−k)×(n−k)]

⎤⎥⎥⎦ (A13.2.4)

Then, again using results on inverses of partitioned matrices,

(I − A(n))−1 = L(n) =

⎡⎢⎢⎣
S

(k×k)
T

[k×(n−k)]

U
[(n−k)×k]

V
[(n−k)×(n−k)]

⎤⎥⎥⎦ (A13.2.5)

The important result from Appendix A is that T = −E−1FV, or

−E−1F = TV−1 (A13.2.6)

A13.2.4 The Case of k = 2, n = 3
We now use the results in the preceding sections of this Appendix to examine the
specific case of a three-sector model with x3 = x̄3. This was the subject matter of the
examples in section 13.2.3 in the text. In this case, (A13.2.3) becomes

xen =
[
x1

x2

]
= L(2)A12x̄3 =

[
l(2)
11 l(2)

12

l(2)
21 l(2)

22

][
a13

a23

]
x̄3 (A13.2.7)

In terms of (A13.2.4), E = (I − A(2)) and F =
[−a13

−a23

]
, so (A13.2.7) can be written

xen = −E−1Fx̄3 (A13.2.8)

In the alternative approach, the exogenous specification of x3 = x̄3 is represented by

the 3 × 1 vector x̄ =
⎡⎢⎣0

0

x̄3

⎤⎥⎦ and

x∗
(3×1)

= L(3)∗
(3×3)

x̄
(3×1)

(A13.2.9)



660 Structural Decomposition, Mixed and Dynamic Models

where x∗ =
⎡⎢⎣x1

x2

x3

⎤⎥⎦. Here

L(3)∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
l(3)
12

l(3)
22

l(3)
13

l(3)
33

l(3)
21

l(3)
11

1
l(3)
23

l(3)
33

l(3)
31

l(3)
11

l(3)
32

l(3)
22

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎣L(3)∗

11 L(3)∗
12

L(3)∗
21 L(3)∗

22

⎤⎦

and (A13.2.9) can be alternatively expressed as⎡⎢⎣x1

x2

x3

⎤⎥⎦ =
⎡⎣L(3)∗

11 L(3)∗
12

L(3)∗
21 L(3)∗

22

⎤⎦
⎡⎢⎢⎣

0
0

x̄3

⎤⎥⎥⎦
In particular,

xen =
[
x1

x2

]
= L(3)∗

12 x̄3 (A13.2.10)

and

x3 = L(3)∗
22 x̄3 = x̄3

From (A13.2.5), T =
[

l(3)
13

l(3)
23

]
, V = [l(3)

33 ] and so TV−1 =

⎡⎢⎢⎣
l(3)
13

l(3)
33

l(3)
23

l(3)
33

⎤⎥⎥⎦ =
[

l(3)∗
13

l(3)∗
23

]
. Therefore,

the results in (A13.2.10) can be expressed as

xen =
[

l(3)∗
13

l(3)∗
23

]
x̄3 = TV−1x̄3 (A13.2.11)

Conclusion: since −E−1F = TV−1 (A13.2.6), the results in (A13.2.8) and (A13.2.11)
are equivalent. This will be true for an input–output model of any size in which xn is
made endogenous. It will not be true in an input–output model in which more than one
output is made exogenous. We examine why in the next section.

A13.2.5 The Case of k = 1, n = 3
The case in which more than one output is exogenous can be illustrated for a three-sector
model in which x2 = x̄2 and x3 = x̄3. The results generalize to any n with k < (n − 1).
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For this example, where (n − k) = 2,

M =
⎡⎢⎣(1 − a11) 0 0

−a21 −1 0
−a31 0 −1

⎤⎥⎦ , N =
⎡⎢⎣1 a12 a13

0 −(1 − a22) a23

0 a32 −(1 − a33)

⎤⎥⎦ ,

and M−1 =

⎡⎢⎢⎢⎣
l(1)
11 0 0

−a21l(1)
11 −1 0

−a31l(1)
11 0 −1

⎤⎥⎥⎥⎦
The parallel to (A13.2.7) is

xen = [x1] = L(1)A12

[
x̄2

x̄3

]
= (1 − a11)

−1 [a12 a13
] [x̄2

x̄3

]
From section A13.2.3, it is easily established that E−1 = (1 − a11)

−1 and
F = [−a12 −a13

]
and so

[x1] = −E−1F
[
x̄2

x̄3

]
Here we find

T =
[
l(3)
12 l(3)

13

]
, V =

[
l(3)
22 l(3)

23

l(3)
32 l(3)

33

]
and TV−1 =

[
l(3)
12 l(3)

13

] [l(3)
22 l(3)

23

l(3)
32 l(3)

33

]−1

Notice how the dimensions of T and V have been altered in this case. Because of
(A13.2.6), we can write

[x1] = TV−1
[
x̄2

x̄3

]
=
[
l(3)
12 l(3)

13

] [l(3)
22 l(3)

23

l(3)
32 l(3)

33

]−1 [
x̄2

x̄3

]
(A13.2.12)

On the other hand, now

L(3)∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

l(3)
11

l(3)
11

l(3)
12

l(3)
22

l(3)
13

l(3)
33

l(3)
21

l(3)
11

l(3)
22

l(3)
22

l(3)
23

l(3)
33

l(3)
31

l(3)
11

l(3)
32

l(3)
22

l(3)
33

l(3)
33

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
l(3)
12

l(3)
22

l(3)
13

l(3)
33

l(3)
21

l(3)
11

1
l(3)
23

l(3)
33

l(3)
31

l(3)
11

l(3)
32

l(3)
22

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎣L(3)∗

11 L(3)∗
12

L(3)∗
21 L(3)∗

22

⎤⎦

(notice how the matrix partitions have moved), and the parallel to the result in
(A13.2.10) becomes

xen = [x1] = L(3)∗
12

[
x̄2

x̄3

]
=
[
l(3)∗
12 l(3)∗

13

] [x̄2

x̄3

]
=
[

l(3)
12

l(3)
22

l(3)
13

l(3)
33

] [
x̄2

x̄3

]
(A13.2.13)
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Clearly, the results in (A13.2.12) differ from those in (A13.2.13). Only the results
in (A13.2.12) are valid, because they are derived from the fundamental input–output
model for mixed exogenous/endogenous variables – (13.57) in the text.

The problem occurs because when more than one output is made exogenous – k <

(n − 1) [or (n − k) > 1] – the immediate consequence is that T changes from a column
vector to a matrix (with n − k columns) and V−1 changes from the reciprocal of a
scalar to the inverse of an (n − k) × (n − k) matrix. As a result, the operation TV−1

no longer produces a column of elements that have been divided by the on-diagonal
element in that column but rather a matrix of elements that differ from the elements in
L∗. (Notice that if V were a diagonal matrix then the operation TV−1 would in fact
produce a matrix with elements from L∗; but since V is a submatrix from L(n) it will
not be diagonal.)

A13.2.6 “Extracting” the Last (n − k) Sectors
Assume, again, that outputs for the last (n − k) sectors in an n-sector input–
output model have been made exogenous. Then modify the A(n) coefficient
matrix by replacing all coefficients in the last (n − k) rows with zeros, creating

Ã(n) =
⎡⎢⎣ A11

(k×k)

A12
[k×(n−k)]

0
[(n−k)×k]

0
[(n−k)×(n−k)]

⎤⎥⎦ with an associated

(I − Ã(n)) =
[
(I − A(k)) −A12

0 I

]
=
[

E F

G H

]
and

(I − Ã(n))−1 = L̃(n) =
[

S T

U V

]

Using results from Appendix A, G = 0 means that U = 0 and S = (I−A(k))−1 = L(k).
Also, since H = I, V = I. Finally, T = L(k)A12 and so

L̃(n) =
[

L(k) L(k)A12

0 I

]

Finally, then, [
xen

f en

]
= L̃(n)

[
f ex

xex

]
=
[

L(k) L(k)A12

0 I

][
f ex

xex

]
and the results for xen will be exactly the same as given in (A13.2.2) since the upper two
submatrices here are identical to those in that equation. [We leave it as an exercise for
the interested reader to show that it is immaterial whether the sectors with exogenous
outputs are represented as the last (n−k) sectors, as here, or as the first (n−k) sectors.]
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Problems

13.1 Consider two input–output economies specified by

Z0 =
⎡⎣ 10 20 30

5 2 25
20 40 60

⎤⎦ , f0 =
⎡⎣ 60

40
55

⎤⎦ , Z1 =
⎡⎣ 15 25 40

12 7.5 30
10 30 40

⎤⎦ , f1 =
⎡⎣ 75

55
40

⎤⎦
We seek to measure how the economy has changed in structure in one year, specified
by Z1 and f1, relative to an earlier year for the same economy, specified by Z0 and
f0. Compute for each sector the change in total output between the two years that
was attributable to changing final demand or to changing technology.

13.2 Consider an input–output economy specified by Z =
⎡⎣ 14 76 46

54 22 5
68 71 94

⎤⎦ and f =
⎡⎣100

200
175

⎤⎦ where the three industrial sectors are manufacturing, oil, and electricity.

a. Suppose economic forecasts determine that total domestic output for oil and elec-
tricity will remain unchanged in the next year and final demand for manufactured
goods will increase by 30 percent. What would be the input–output projections
of final demand for oil and electricity and the total output of manufacturing?

b. If instead the final demand for manufactured goods increased by 50 percent instead
of 30 percent, what are the new projections of final demand for oil and electricity
and the total output of manufacturing?

13.3 Consider the impact on the economy of Problem 2.1 of the establishment of a new
economic sector, finance, and insurance (sector 3).

a. Suppose you know that the total output of this new sector will be $900 during
the current year (its first year of operation), and that its needs for agricultural
and manufactured goods are represented by a13 = 0.001 and a23 = 0.07. In the
absence of any further information, what would you estimate to be the impact of
this new sector on the economy?

b. You later learn (1) that the agriculture and manufacturing sectors bought $20 and
$40 in finance and insurance services last year from foreign firms (i.e., that they
imported these inputs), and (2) that sector 3 will use $15 of its own product for
each $100 worth of its output. Assuming that they will now buy from the domestic
sector, how might you now assess the impact of the new sector on this economy?

13.4 Recall the Czaria economy from problem 12.1. Next year’s projected total outputs
in millions of dollars for agriculture, mining, and civilian manufacturing in Czaria
are 4,558, 5,665, and 5,079, respectively, and final demand of military manufac-
tured products is projected to be $2,050 million. Compute the GDP and total gross
production of the economy next year.
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13.5 Consider an input–output economy with technical coefficients defined as A =[
0.3 0.1
0.2 0.5

]
and capital coefficients defined as B =

[
.01 .003

.005 .020

]
. Current final

demand is f0 =
[

100
100

]
and the projections for the next three years for final demand

are given by f1 =
[

125
160

]
, f2 =

[
150
175

]
and f3 =

[
185
200

]
. We are not interested in

total output for beyond the projection three years, but what would be the projections
of total output for this economy in the next three years?

13.6 Consider the following closed dynamic input–output model, Ax + B(xt − x) = x

where xt = future outputs, x = current outputs, and where A =
[

0.5 0.1
0.1 0.5

]
and

B =
[

0 0.1
0.1 0

]
. Assume that xt = λx, where λ is some scalar (the turnpike growth

rate); compute λ.
13.7 Given the closed dynamic input–output model Ax + B(xt − x) = x, where

A =
[

0.1 0.2
0.3 0.4

]
and B =

[
0.1 0
0 0.1

]
,

a. Compute the turnpike growth rate for this example.
b. If both the capital coefficients for the first industry (the first column of B) are

changed to 0.1, then what is the new turnpike growth rate and what has happened
to the apparent “health” of the economy?

13.8 Consider an input–output economy with technical coefficients defined as A =[
0.2 0.1
0.3 0.5

]
and capital coefficients defined as B =

[
.02 .002

.003 .01

]
. Current final

demand is f0 =
[

185
200

]
and final demands for the previous three years are given

by f−1 =
[

150
175

]
, f−2 =

[
125
160

]
, and f−3 =

[
100
100

]
. Compute the “dynamic”

multipliers for this economy that show how direct and indirect input requirements
for final demands in period 0 are distributed backward over time for the previous
three years.

13.9 Consider A, L, and f for the US economy provided in Appendix B for the years 1972
and 2002. Compute the changes in total output between 1972 and 2002 for all sectors
attributed to changes in final demand and to changes in technology.

13.10 Consider the 2005 US input–output table provided in Appendix B. Suppose our
economic forecast projects for 2010 a 10 percent growth in final demand for agricul-
ture, mining, and construction, a 5 percent growth in final demand for manufactured
goods, and a 6 percent growth in total output for the trade, transportation, utilities,
services, and other economic sectors. What are the corresponding input–output esti-
mates of total output for agriculture, mining, construction, and manufacturing as well
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as the estimates of final demand for trade, transportation, utilities, services, and other
economic sectors?
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14 Additional Topics

14.1 Introduction

There has been an enormous output of research, developments, extensions, and applica-
tions of input–output models in the decades since the late 1940s and early 1950s, when
the subject first entered an academic curriculum at Harvard University. The increasing
capacity and speed of modern computers has contributed to this work by facilitating
large-scale data-intensive experiments that were unthinkable in the early days. Through-
out the text we have identified many of these extensions and applications, but there are
many topics that we have not been able to include or reference in the preceding chapters.
So, in addition to those topics to which we have referred but not developed further for
one reason or another in previous chapters, here we explore several additional areas,
primarily to give some possible guidance to the relevant literature, should the reader
wish to explore one or more of these topics. (To sort out the appropriate literature, we
depart from the practice in earlier chapters and include references at the end of each
individual section.)

In particular, in this chapter, we survey a number of topics that presently are either
frontier areas in input–output analysis or that relate input–output to other types of
economic analysis that we have not included or only briefly addressed in previous
chapters. We do not cover these topics in as much detail as those covered in previous
chapters, in some cases because the topic involves methods beyond the scope of the
present volume, such as statistics, econometrics, or mathematical programming. In
other cases we consider the topics difficult to place logically in other chapters or to be
emerging research or application areas where a substantial body of literature has not yet
appeared but we felt it important to identify the topic as a frontier area in input–output
analysis.

The range of topics which we have covered throughout this volume along with the
overview of those included in this chapter underscore how much input–output analysis
has matured in the last half century and how broadly input–output has influenced other
areas of economic analysis, including often providing a fundamental point of departure
for collecting economic data used in the construction of economic models addressing
a wide range of policy questions.

669
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14.2 Input–Output and Measuring Economic Productivity

A key source of growth and health in many economies is the rate of growth in its
economic productivity, broadly defined as the level of output of an industry or of
the economy as a whole per unit of input. Exploring different methods of measur-
ing this economic productivity has been an active area of analysis for the last two
decades (Jorgenson and Griliches, 1967). A number of measures of productivity can be
expressed easily in input–output terms – see, for example, Baumol and Wolff (1984),
Wolff (1985, 1994, 1997) and ten Raa (2005). In this section we explore one such
formulation, the concept of total factor productivity (TFP), which is defined generally
as the growth in total output that is not attributable to growth in inputs.1

14.2.1 Total Factor Productivity
We begin with the matrix of technical coefficients, aij, and value-added coefficients,2

vj, and total industry outputs, xj, and recalling the fundamental input accounting
relationship

xj =
n∑

i=1

aijxj + vjxj =
(

n∑
i=1

aij + vj

)
xj (14.1)

Using the rule for the differential of a product

dxj = d

[(
n∑

i=1

aij + vj

)
xj

]
=
(

n∑
i=1

aij + vj

)
dxj +

(
n∑

i=1

daij + dvj

)
xj (14.2)

The rate of TFP growth is often defined as

τj = −
(

n∑
i=1

daij + dvj

)
(14.3)

so that (14.2) becomes

dxj =
(

n∑
i=1

aij + vj

)
dxj − τjxj (14.4)

Often in the TFP literature, expressions in continuous (differential) form are trans-
formed into logarithmic terms, from the calculus rule that d ln(z) = (1/z)(dz) or
dz = z(d ln z). This generates

τj = −
[

n∑
i=1

aij(d ln aij) + vj(d ln vj)

]
(14.5)

1 Economic Systems Research (2007) contains articles summarizing developments in this area up until that date.
2 In previous chapters we have used vc to denote value-added coefficients. In this section we drop the subscript

to simplify the notation.
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Also, in TFP analyses vj is usually decomposed into at least its labor and capital com-
ponents, lj and kj. This is then cited as a continuous version of a measure of sectoral
technical change first proposed by Leontief in Leontief et al. (1953); for example, see
Wolff (1994, p. 77) or Aulin-Ahmavaara (1999, p. 352).

In order to make use of available input–output data, it is usual to express the rela-
tionships in (14.2) and (14.3) in finite-difference form, where dxj ∼= �xj = x1

j − x0
j ,

daij ∼= �aij = a1
ij − a0

ij and dvj ∼= �vj = v1
j − v0

j . Ignoring “second-order” effects,3

(14.2) becomes

x1
j −x0

j = �xj = �

[(
n∑

i=1

aij + vj

)
xj

]
=
(

n∑
i=1

a0
ij + v0

j

)
�xj+

(
n∑

i=1

�aij + �vj

)
x0

j

(14.6)
or

x1
j − x0

j = �xj =
(

n∑
i=1

a0
ij + v0

j

)
x1

j −
(

n∑
i=1

a0
ij + v0

j

)
x0

j︸ ︷︷ ︸
Portion of change accounted for by using old technology,

as reflected in a0
ij and v0

j , to meet new input needs

+
(

n∑
i=1

a1
ij + v1

j

)
x0

j −
(

n∑
i=1

a0
ij + v0

j

)
x0

j︸ ︷︷ ︸
Portion of change accounted for by using new technology,

as reflected in a1
ij and v1

j , to meet old input needs

Productivity studies are often concerned with the rate of productivity change relative
to the initial output, which can be found by normalizing (dividing) by the total initial
output, x0

j .
In finite-difference form (14.3) is

τj = −
(

n∑
i=1

�aij + �vj

)
(14.7)

so

�xj = �

[(
n∑

i=1

aij + vj

)
xj

]
=
(

n∑
i=1

aij + vj

)
�xj − τjx

0
j

In matrix terms �x = [〈i′A〉 + v̂]�x + [〈i′�A〉 + 〈�v〉]x and

τ = −[(i′�A)′ + �v] = −
[(

n∑
i=1

�aij + �vj

)]
(14.8)

3 Such effects were labeled “interaction terms” in section 13.1 on structural decomposition methods. Much of this
total factor productivity analysis bears a close resemblance to the approaches in section 13.1, especially those
decompositions that include the influence of changes in the elements of A.
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14.2.2 Numerical Example: Total Factor Productivity
Consider an input–output economy for which technical coefficients and value added in
three successive years are defined by

A(0) =
⎡⎢⎣ .233 .323 .326

.116 .242 .13

.186 .274 .38

⎤⎥⎦ and v(0) =
⎡⎣ .465

.161

.163

⎤⎦ for year 0;

A(1) =
⎡⎢⎣ .12 .244 .246

.06 .183 .098

.096 .207 .287

⎤⎥⎦ and v(1) =
⎡⎣ .723

.366

.369

⎤⎦ for year 1;

A(2) =
⎡⎢⎣ .078 .108 .109

.039 .081 .043

.062 .091 .127

⎤⎥⎦ and v(2) =
⎡⎣ .465

.161

.163

⎤⎦ for year 2.

Here dv(10) ∼ �v(10) = v(1) − v(0) and dv(21) ∼ �v(21) = v(2) − v(1) for the changes
in value-added coefficients between years 0 and 1 and between years 1 and
2, respectively. Also dA(10) ∼ �A(10) = A(1) − A(0) and dA(21) ∼ �A(21) = A(2) −
A(1). Hence we can rewrite (14.8) as τ(ts) = − (

(�A(ts))′i + �v(ts)
)
, and for our

example �A(10) =
⎡⎢⎣ −.112 − .079 − .08

−.056 − .059 − .032

−.09 − .067 − .094

⎤⎥⎦, �v(10) =
⎡⎢⎣ .258

.205

.206

⎤⎥⎦, �A(21) =

⎡⎣ −.043 −.137 −.137
−.021 −.102 −.055
−.034 −.116 −.16

⎤⎦ and �v(21) =
⎡⎣ −.258

−.205
−.206

⎤⎦. Notice that both �A(10) and

�A(21) contain only negative elements, indicating that fewer intermediate inputs were
required in each subsequent year; the positive elements in �v(10) reflect increasing use
of value-added inputs in year 1 compared to year 0, but the negative elements in �v(21)

indicate the opposite, namely decreased use of value-added inputs in year 2 compared
to year 1. For this example,

τ(10) = −
(
(�A(10))′i + �v(10)

)
= −

⎡⎣ −.112 − .056 − .09
−.079 − .059 − .067
−.08 − .032 − .094

⎤⎦⎡⎣ 1
1
1

⎤⎦
−
⎡⎣ .258

.205

.206

⎤⎦ =
⎡⎣ 0

0
0

⎤⎦
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and

τ(21) = −
(
(�A(21))′i + �v(21)

)
= −

⎡⎣ −.043 −.021 −.034
−.137 −.102 −.116
−.137 −.055 −.16

⎤⎦⎡⎣ 1
1
1

⎤⎦
−
⎡⎣ −.258

−.205
−.206

⎤⎦ =
⎡⎣ .357

.559

.558

⎤⎦
Note that no sector experienced TFP growth from year 0 to year 1, but all sectors

experienced TFP growth between years 1 and 2. It is easy to see why this is the case
for this simple example by examining the underlying transactions matrices for each
period:

Z(0) = A(0)x̂(0) = Z(1) = A(1)x̂(1) =
⎡⎣ 10 20 30

5 15 12
8 17 35

⎤⎦ and

Z(2) = A(2)x̂(2) =
⎡⎣ 30 60 90

15 45 36
24 51 105

⎤⎦
while the vectors of value-added inputs are

v̂(0)x(0) =
⎡⎣ 20

10
15

⎤⎦ and v̂(1)x(1) = v̂(2)x(2) =
⎡⎣ 60

30
45

⎤⎦
Between year 0 and year 1, the increase in productivity of intermediate inputs (nega-

tive elements in �A(10)) were wiped out by the decreases in productivity of value-added
elements (positive elements in �v(10)), whereas between years 1 and 2 both intermedi-
ate inputs and value-added inputs exhibited increased productivity (negative elements
in both �A(21) and �v(21)).

14.2.3 Accounting for Prices
In most applications there are changes in prices between years as well, and as a con-
sequence all data are usually deflated to prices in some reference year. Also, we can
separate value added into labor and capital coefficients, lj and kj, respectively, with
known wage rate, w, and profit rate for capital, r, which serve as prices for those
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value-added categories (for simplicity w and r are treated as scalars).4 In the end, this
leads to

τj = −

[
n∑

i=1
pidaij + wdlj + rdkj

]
pj

as the parallel to (14.3), or

τ = −p̂−1 [(dA)′ p + wdl + rdk
]

in matrix form. The reader is referred to Wolff (1985) for numerous details. Also, it
is fairly straightforward to express the formulation of TFP presented in this section in
commodity-by-industry terms, as in ten Raa (2004) or Wolff (1985 or 1997).
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14.3 Graph Theory, Structural Path Analysis, and Qualitative Input–Output
Analysis (QIOA)

The idea that potentially interesting properties of input–output matrices can be derived
without knowing individual cell values in great detail seems to go back at least as far
as Solow (1952, p. 41):

4 Here again for simplicity denote lj and kj as coefficients, i.e., value per unit, rather than as total values as in
previous chapters.
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The particular nature of these properties [e.g., indecomposability (a property of connectedness)] is
illustrated by the fact that they can be investigated with no knowledge of the value of aij other than
which … are zero and which are not. To test whether an [A] matrix is decomposable one needs only
the matrix with the aij replaced by, say, + and 0.

“Qualitative” input–output analysis (QIOA) builds on this observation. The general
approach is that a binary (Boolean) transformation is performed on either transactions
(Z) or coefficients (A) to generate matrices with a “1” in cells for which zij �= 0 (or
aij �= 0), and a “0” elsewhere. (See Bon, 1989, for a brief overview. Some discussions,
including Bon’s, use “+” instead of “1.”) Frequently, a nonzero “filter” is used to
determine whether to set a cell value to 0 – if zij < f z (or aij < f a), set it to 0, otherwise
set it to 1. The idea is that if zij < f z (or aij < f a), the values are relatively insignificant in
the overall economic picture and can be ignored. In the case of direct input coefficients,
a filter of size (1/n) is often used (Aroche-Reyes, 2001).

These Boolean (adjacency) matrices are frequently represented in the literature by
W. In graph-theory terms, W has an associated directed graph (digraph) in which each
industry (sector) is represented by a vertex in the graph and each nonzero entry in column
j is represented by an arc (or arrow) pointing from the demanding sector ( j in the case of
zij or aij) to the supplying sector (i). These arcs indicate flows of intermediate demand
that originate in the demanding sector. Graph-theoretical methods and operations can
be applied to such graphs. These methods identify various direct and indirect links
(chains or paths) of transmission between and among vertices. The intent is to reveal
paths of influence in the transmission of economic impulses in the input–output system
– to reveal the “underlying ‘characteristic structure’of an input–output table” (Schnabl,
2001, p. 245).5

For example, let A =
⎡⎣ 0 .2 0

.2 .3 .1

.3 0 0

⎤⎦; with a filter of 0, we have W(1) =⎡⎣ 0 1 0
1 1 1
1 0 0

⎤⎦, where W(1) denotes the Boolean matrix associated with A ( = A1).

Higher powers of W reflect the an indirect connections that exist among sectors (for
example, as represented in the power series approach to finding a Leontief inverse,

as in Chapter 2). Here A2 =
⎡⎣ .04 .06 .02

.09 .13 .03
0 .06 0

⎤⎦, so W(2) =
⎡⎣ 1 1 1

1 1 1
0 1 0

⎤⎦. Notice

w(1)
13 = 0 but w(2)

13 = 1, reflecting the fact that a1
13 = 0 but a2

13 = .02. [The notation a2
13

identifies element (1,3) in A2; it is not (a13)
2.] This comes about because there is an

indirect link from sector 3 to sector 1 via sector 2. This is known as a path of length 2.
The matrix multiplication AA makes clear the exact composition of this link. Element

5 In view of the fact that information is lost in converting data to binary form, the approach is certainly not without
its critics. For example, see de Mesnard, 1995.
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a2
13 in A2 is generated by the usual matrix multiplication of corresponding elements in

appropriate rows and columns, here row 1 and column 3 of A, and then adding. In this

case,
[

0 .2 0
]⎡⎣ 0

.1
0

⎤⎦ = .02, or

[
a11 a12 a13

]⎡⎣ a13

a23

a33

⎤⎦ = (a11)(a13)︸ ︷︷ ︸
0

+ (a12)(a23)︸ ︷︷ ︸
.02

+ (a13)(a33)︸ ︷︷ ︸
0

= .02

Thus, sector 3’s demand on sector 1 is transmitted via sector 2 – 3 demands from 2
(a23) and as a result 2 demands from 1 (a12), thereby connecting 3 to 1.

If instead of W(2) we calculate W squared we have W2 =
⎡⎣ 0 1 0

1 1 1
1 0 0

⎤⎦
⎡⎣ 0 1 0

1 1 1
1 0 0

⎤⎦ =
⎡⎣ 1 1 1

2 2 1
0 1 0

⎤⎦. Compared with W(2) we see that nonzero entries

are in exactly the same locations; the difference is that the elements in W2 indicate the
number of different links connecting a column (demanding) sector to a row (supplying)
sector. For example, w2

21 = 2 reflects the fact that a2
21 = .09. From matrix operations,

w2
21 = 2 comes from

[
.2 .3 .1

]⎡⎣0
.2
.3

⎤⎦ = [
a21 a22 a23

]⎡⎣a11

a21

a31

⎤⎦ = a21a11︸ ︷︷ ︸
0

+ a22a21︸ ︷︷ ︸
.06

+ a23a31︸ ︷︷ ︸
.03

= .09

This identifies the two paths of length two that connect destination 1 with origin 2 –
a23a31︸ ︷︷ ︸

.03

, a connection via sector 3, and a22a21︸ ︷︷ ︸
.06

, via a “loop” at 2 (a21 indicates the demand

from 1 to 2 and a22 the response from 2).
By contrast, w2

31 = 0, while one step earlier w31 = 1. In this case, the origins of w2
31

are

[
.3 0 0

]⎡⎣0
.2
.3

⎤⎦ = [
a31 a32 a33

]⎡⎣a11

a21

a31

⎤⎦ = a31a11︸ ︷︷ ︸
0

+ a32a21︸ ︷︷ ︸
0

+ a33a31︸ ︷︷ ︸
0

= 0

So, while there is a direct path from 1 to 3, there are no indirect paths of length two
that connect destination 1 to origin 3.

Higher powers of the Boolean matrices identify the numbers of such indirect con-
nections at each level but they do not identify exactly what those paths are. Clearly, the
size of the filter used is critical in determining how many links will be uncovered in
the process of finding length-two, length-three, … paths in the structure. A filter that is
too low results in graphs that are cluttered with connections, many of them very small,
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and a large filter generates a very sparse picture. (See Aroche-Reyes, 2001, for graphic
illustrations of the influence of filter size.)

Early applications of this approach in an interindustry setting can be found in
Campbell (1972, 1974, 1975) using Washington State input–output data to illustrate the
ideas.6 Also the early 1970s saw the beginnings of a very large output of work in this
area in French, pioneered by Lantner and others. (Lantner and Carluer, 2004, provide
references to some of this early work.) Defourny and Thorbecke (1984), in discussing
their closely-related structural path analysis approach, include extensive historical
background and references also to this early work (see also Kahn and Thorbecke,
1988). Holub and Schnabl (1985) and Schnabl (1994, 2001 and additional cited refer-
ences) propose minimal flow analysis, a variant also based on adjacency matrices. A
number of papers in Lahr and Dietzenbacher (2001) discuss variants and applications
of the qualitative approach.7 For example, Aroche-Reyes (2002) identifies “important
coefficients” (section 12.3, above) in Mexican (1970, 1990), Canadian (1971, 1990)
and US (1972, 1990) economies and creates Boolean matrices for those economies
by setting the identified important coefficients to 1, others to 0. He then analyzes the
interconnections in the three economies and their evolution over time.8 All of this work
contributes to the research area concerned with measurement of economic “intercon-
nectedness,” linkages, and structural change as illuminated by input–output data. Sonis
and Hewings and their colleagues, and many others, have written much and often on
the subject (see, as examples, Sonis, Hewings and Lee, 1994, and Strassert, 2001, and
the many references in the relevant chapters of Lahr and Dietzenbacher, 2001).
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14.4 Fundamental Economic Structure (FES)

The concept of fundamental economic structure was apparently first suggested by
Jensen, West and Hewings (1988). The objective is to identify more comprehensive,
whole-table concepts from the vast array of detail embodied in the n2 elements of an
input–output table. (In Jensen’s terminology, what is sought is a “holistic” as opposed to
“partitive” view of the data.) In a spatial context, the idea is to identify regularities across
regions. To that end, cells containing flows that are consistently present at predictable
levels over a range of economies are classified as “fundamental;” that is, they iden-
tify economic activity that is inevitably required in all economies. These constitute the
fundamental economic structure (FES). Other cells with data for more region-specific
sectors (for example, mining) define the nonfundamental economic structure (NFES).

The authors illustrate with an application using regional tables for ten regions in
the 1978/1979 11-sector Queensland, Australia economy. Sectors were ordered in a
consistent “primary-secondary-tertiary” continuum. Individual transactions (zr

ij) were
then regressed against regional total gross output or regional total value added (as a
measure of regional “size”), across all regions (r). The authors report (Jensen, West
and Hewings, 1988, p. 219) that about 75 percent of the cells were “…‘predictable’
in that a statistical relationship (linear or logarithmic) to at least the 10 percent level
exists between the size of these cells and the size of the economy…” Also “…it can be
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reasonably concluded that the regression equations applied to a system of tables can
provide very reasonable and workable estimates for significant portions of the table”
(p. 215). These were cells for sectors that lie toward the tertiary end of the continuum.

The identifiable patterns of predictable cells constitute the fundamental economic
structure. The authors suggest that the research implication of these findings is that
predictable cells (FES) can be estimated using regression techniques and that a higher
commitment of resources might be appropriate for other, unpredictable cells (NFES).
The approach is also suggested in a temporal setting; that is, for updating input–
output data. The reader is directed to Jensen et al. (1991) and to West (2001) for
very comprehensive overviews of this topic.

14.4.1 References for Section 14.4
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14.5 Input–Output, Econometrics, and Computable General Equilibrium Models

Robert Kuenne in Kuenne (1963) notes: “One of the most fruitful of many economic
adoptions from the field of mechanics is the concept of ‘economic equilibrium,’ or a
specific solution characterized by a state of balance between opposed forces acting upon
economic variables.” Leontief (1951) notes that the concept of economic equilibrium is
implicit in Quesnay’s Tableau Économique. Kuenne, in the work cited above, provides
a straightforward way of conceptualizing Leontief’s open input–output model as an
equilibrium model rooted in the feature that the relative prices of inputs are completely
determined by the fixed technical coefficients. We provide a somewhat simplified ver-
sion below following the description of Intriligator (1971) or Dorfman, Samuelson and
Solow (1958).

In the nineteenth and early twentieth centuries as economists such as Walras (1874),
Pareto (1906) and Cassel (1924) refined the concepts of economic equilibrium, the role
of prices became central to defining a state of competitive equilibrium. (The historical
context is discussed much more in Appendix C.) A more general model of economic
equilibrium relies on methods for specifying elasticities – dimensionless parameters
that capture behavioral responses in an economy as functions of relative prices of inputs.

The task of expanding the input–output framework as a model of economic equi-
librium has been among the most active areas in the last several decades relating
input–output to other types of economic analysis, especially in its connection to a
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variety of applications to econometric analysis as a means of specifying elasticities.
A principal goal of such a connection is to relax the input–output assumption of fixed
technical coefficients by specifying technical coefficients econometrically as a func-
tion of relative prices of inputs. The functional specifications are estimated statistically
based on surveys of price data over some historical period. Of course such specifica-
tions carry their own limitations in terms of available data and assumptions about the
functional relationship between prices and consumption.

The first implementation of an applied general equilibrium model that did not use
fixed technical coefficients was Johansen (1960). In that work Johansen retained fixed
coefficients for demand of intermediate goods, but employed linear logarithmic pro-
duction functions in modeling capital, labor, and technical change. Since the time of
Johansen’s work many researchers have expanded the framework to model producer
behavior via transcendental price functions as described in Christiansen, Jorgenson
and Lau (1971) and Jorgenson (1982, 1983). One such application discussed already in
Chapter 9, the Hudson–Jorgenson (HJ) model, was among the first attempts to include
such econometric specifications in a fully integrated way. This kind of formulation has
been at the heart of many national and regional econometric models in addition to those
applied to specific policy areas such as energy, the subject of the HJ model outlined
in Chapter 9 (Hudson and Jorgenson, 1974), and extensions of that work into areas
such as the economic implications of alternative policies for limiting greenhouse gas
emissions in the United States in Jorgenson and Wilcoxen (1993) and analyzing the role
of information technology in the changing structure of the US economy in Jorgenson
(2002).

14.5.1 The Variable Input–Output Model
In a large number of articles, Chong K. Liew and Chung J. Liew have introduced,
explored and extended what they call a Variable Input–Output model (VIO), in
which changes in industrial structure occur in response to changing input costs. (See
C. K. Liew, 1980; C. K. Liew and C. J. Liew, 1984a, 1984b; C. J. Liew, 1984; or
C. J. Liew and C. K. Liew, 1988, for representative examples.) Technical coefficients are
derived from the basic duality between production and price possibility frontiers. Liew
and Liew cite Hudson and Jorgenson (1974), noted above and discussed in more detail
in Chapter 9, who start with a translog production function whereas the Liew and Liew
models emerge from the duality of the two frontiers. Extensions of the model include
household utility-maximizing behavior of consumers (Household Interaction VIO;
HIVIO), versions including pollution generation, a multiregional framework (MRVIO),
multi-product sectors, modal choices and dynamics (all with appropriate acronyms).

The Dynamic VIO model is a time-varying cost sensitive single region input–output model which
incorporates a computable general equilibrium model … [in] Leontief’s input–output model. The
MRVIO or VIO model is also a Computable General Equilibrium (CGE) model (a partial CGE model
in the sense that it is a demand driven model) which enables it to be cost-sensitive … In the Dynamic
VIO model, demands for intermediate goods are price-sensitive and therefore, not fixed but variable.
(C. J. Liew, 2000, p. 592.)
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The articles cited below in the references to this section are only a small sample of the
work by these researchers and similar research by others, such as Lahiri (1976).

14.5.2 Regional Input–Output Econometric Models
Integrated input–output/econometric models at the national level have been in use for
many years, such as the INFORUM family of models (Almon, 1991) or the line of appli-
cations begun with Hudson and Jorgenson (1974) discussed above, where the aim is to
retain the detailed sectoral specification of an input–output framework but to include
endogenous econometric relationships specifying demand elasticities. At the regional
level, where data availability often constrains the model design more severely, the inte-
grated input–output econometric models are even more common, but vary considerably
in structure depending upon the region of interest and the purpose of the model, e.g.,
impact analysis, analysis of fiscal policy, forecasting or analysis of income distribution.
One of the first examples of an integrated regional input–output/econometric model can
be found in Conway (1990). A comparison of regional input–output models with inte-
grated input–output/econometric models and computable general equilibrium (CGE)
models (discussed more below) is provided in West (1995, 2002) and a survey of many
regional CGE models is given in Partridge and Rickman (1998) or Haddad, Hewings
and Peter (2002).

14.5.3 Computable General Equilibrium Models
All of the formulations discussed in this section are often loosely referred to as
computable general equilibrium (CGE) models. It is common to build CGE models
around an input–output technical coefficients table or increasingly a social accounting
matrix where coefficients of interindustry, factor inputs, and final demand can all be
econometrically specified.

A simplified way to conceptualize the basic input–output model as a CGE model
is by defining competitive equilibrium as the situation where there can be no profits
earned by production processes (which translates in realistic terms to “normal” profits
of enterprises) and that the average cost of producing any good is greater than or equal
to the price of that good, which we express as

n∑
i=1

piaij +
m∑

k=1

wkbkj ≥ pj

for i = 1, 2, . . . , n industries, k = 1, 2, . . . , m factor or value-added inputs; aij and bkj are
technical and value-added coefficients, respectively; and finally pi and wi are commod-
ity prices and value-added prices, respectively. In matrix terms this is p′A + w′B ≥ p′
or p′(I − A) ≤ w′B. If we define vk as the availability of value-added factor k then

we insist that use of that factor cannot exceed its availability, i.e.,
n∑

i=1
bkjxj ≤ vk or, in

matrix terms, Bx ≤ v′. And finally, we require that industry production be non-negative
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– xj ≥ 0 or, in matrix terms, x ≥ 0 and define fj as the final demand for commodity j
(an element of f ).

We can formulate the competitive general equilibrium problem as a linear program-
ming problem (introduced conceptually in Chapter 10) of maximizing the value of total
final demand (or maximizing gross domestic product) subject to the technical coeffi-
cients and supply availability of value-added factors or Max p′f subject to x = Ax+ f ,
Bx ≤ v and x ≥ 0. Since f = (I − A)x we can rewrite this in standard linear
programming form as

Max p′(I − A)x

subject to Bx ≤ v

x ≥ 0

It turns out that this linear programming problem is also equivalent to the following:

Min w′v
subject to w′B ≥ p′(I − A)

w ≥ 0

These so-called primal and dual linear programming problems, respectively, have solu-
tions (the methods for which are beyond the scope of this text, although a graphical
solution to a related problem is outlined in Chapter 10) such that p′f = w′v, i.e., the
maximized value of final demand equals the minimized cost of value-added factors
and that value is the gross domestic product, or the familiar equality of national prod-
uct to national income. CGE models formulated this way can add constraints, such as
commodity or primary factor supply constraints, relationships for distributing income
(in input–output parlance, closing the model to some final-demand and value-added
sectors), time lags, adjustment of capital stocks, and many others.
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14.6 Additional Resources for Input–Output Extensions and Applications

The literature of extensions and applications of the basic input–output framework and
of its connections to other areas of economic analysis continues to expand. In this
section we recap a number of the surveys of these extensions and applications by
means of several chronological lists of major edited collections, special journal issues
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dedicated to overviews of applications and extensions, and special collections of journal
reprints, all of which have appeared in the literature since the early 1980s. Many, but
not all of these collections were referenced throughout this text as we explored various
input–output extensions in preceding chapters.

In reviewing this literature, as we have in the course of writing this text, one can’t help
notice many of the key milestones that have appeared along the way, from which many
extensions and applications followed. Some of these milestones include the connection
of input–output concepts to social accounts in Stone (1961), subsequently leading the
way to the now routinely applied commodity-by-industry framework; the solid foun-
dation for regional and interregional analysis pioneered by Isard et al. (1960); the first
applications to analyzing economic structural change by Carter (1970); the explosion
of nonsurvey estimation techniques launched by Stone (1961) and Stone and Brown
(1962); the path of extensions for tracing environmental pollution generation and elim-
ination conceived by Leontief (1970a); the path toward practical implementation of
physical input–output models originally conceived by Leontief in his earliest work but
perhaps first implemented with Bullard and Herendeen (1975) in tracing energy use in
the US economy; the connection to social accounting matrices envisioned by Stone and
developed by Pyatt and Round (1985); the connections to planning formulations and
linear programming outlined in Dorfman, Samuelson and Solow (1958); the extension
to dynamic models first conceived by Leontief (1970b) and then extended by con-
nections to econometric models advanced by Jorgenson (1982); and, of course, many
others. We examine the basic history of the field in Appendix C, but the collections in
this section provide an extensive, albeit not exhaustive, overview of how the field has
evolved over the past half century.

14.6.1 Edited Collections9
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Analysis. New York: Oxford University Press.
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Press.

Hewings, Geoffrey J. D., Michael Sonis, Moss Madden and Yoshio Kimura (eds.). 1999. Under-
standing and Interpreting Economic Structure. Berlin: Springer.
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Extensions. Basingstoke, UK: Palgrave.

9 Note that in this section we present the bibliographic references in chronological rather than alphabetical order.
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Gilchrist and Larry V. St. Louis; Thijs ten Raa and Pierre Mohnen.)
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Interindustry Modelling.” (Articles by Stefano Casini Benvenuti, Dino Martellato and Cristina
Raffaelli; Dirk Stelder; Johannes Bröcker; Ping-Cheng Li and Adam Rose; Donald A.
Gilchrist and Larry V. St. Louis; Peter G. McGregor, J. K. Swales and Ya Ping Yin; Guy R.
West.)
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Lendjel; Heinz D. Kurz and Neri Salvadori; Olav Bjerkholt and Mark Knell; Christian
Langer.)
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14.6.3 Collections of Reprints
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14.7 Some Concluding Reflections

In this text we have developed the basic framework of input–output analysis and many
of the extensions and applications that followed Professor Leontief’s seminal work
defining the field over a half century ago. To this day input–output and its extensions
endure by themselves as tools for many kinds of economic analysis. The basic frame-
work often comprises a fundamental component of many other types of economic
analysis as well, such as econometric general equilibrium and planning models. The
extensions also include applications to broader social accounting problems as well as
ecological analysis and tracing material and energy use and flow throughout an econ-
omy measured in physical terms. We have captured many and perhaps most but not all
of these extensions and applications in this text.

Input–output is often taken for granted as a point of departure for many types of
analysis because it is rooted in traditions of real data observations, around which even
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many basic statistical systems today are designed, and a well understood theoretical
underpinning, which was perhaps Professor Leontief’s key insight. The combination
of these two features of the input–output framework provides for empirical verifica-
tion, which was one of Leontief’s principal requirements for legitimizing theoretical
economic developments.

Advancing computational capabilities in the past half century have contributed most
substantially to making input–output the practical tool it has become today, and at scales
scarcely imaginable when Leontief was conceiving his “economy as a circular flow.”
Looking forward we can only expect that such capabilities will continue to advance
as will conceptual developments in extending the basic input–output framework, and
perhaps in particular in tying the framework even more intimately to other economic
analysis tools. The discipline of insisting on empirical validation of such tools will
likely continue to be a fundamental challenge for researchers and practitioners alike
who should certainly not shirk from that challenge.



AppendixA Matrix Algebra for
Input–Output Models

A.1 Introduction

Amatrix is a collection of elements arranged in a grid – a pattern of rows and columns. In
all cases that will be of interest to the topics in this book, the elements will be numbers
whose values either are known or are unknown and to be determined. Matrices are
defined in this “rectangular” way so that they can be used to represent systems of linear
relations among variables, which is exactly the structure of an input–output model.

The general case, then, will be a matrix with m rows and n columns. If m = 2 and
n = 3, and using double subscript notation, aij, to denote the element in row i and
column j of the matrix, we have

A =
[

a11 a12 a13

a21 a22 a23

]

A particular example of such a matrix might be

M =
[

2 1 3
4 6 12

]

These are said to be 2 × 3 (read “2 by 3”) matrices or matrices of dimension 2 by 3.
Dimensions are often denoted in parentheses underneath the matrix, as in M

(2×3)
.

When m = n the matrix is square; in this case it is often referred to as a matrix of
order m (or of order n, since they are the same). If m = 1 (a matrix with only one row)
it is called a row vector; if n = 1 (a matrix with only one column) it is called a column
vector.1 We adhere to the convention of using upper-case bold letters for matrices,
lower-case bold letters for vectors, and italicized letters for elements of matrices and
vectors. (In matrix algebra, an ordinary number is called a scalar.)

1 The ultimate in shrinkage is when m = n = 1, a matrix with only one element. These will not be needed for
input–output models.

688
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A.2 Matrix Operations: Addition and Subtraction

A.2.1 Addition
Addition of matrices, say A+B, is accomplished by the simple rule of adding elements
in corresponding positions. This means aij + bij for all i and j; and this, in turn, means
that only matrices that have exactly the same dimensions can be added. Given M,

above, and N
(2×3)

=
[

1 2 3
3 2 1

]
, their sum, S = M + N, will be

S
(2×3)

=
[

3 3 6
7 8 13

]

A.2.2 Subtraction
Subtraction is defined in a completely parallel way, namely subtraction of elements in
corresponding positions. So, again, only matrices of exactly the same dimensions can
be subtracted. For example, D = M − N will be

D
(2×3)

=
[

1 −1 0
1 4 11

]

A.2.3 Equality
The notion of equality of two (or more) matrices is also very straightforward. Two
matrices are equal if they have the same dimensions and if the elements in corresponding
positions are equal. So A = B when aij = bij, for all i and j.

A.2.4 The Null Matrix
A zero in ordinary algebra is the number which, when added to (or subtracted from)
another number leaves that number unchanged. The completely parallel notion in matrix
algebra is a null matrix, simply defined as a matrix containing only zeros. Define

0 =
[

0 0 0
0 0 0

]
; then it is obvious that M + 0 = M − 0 = M.

A.3 Matrix Operations: Multiplication

A.3.1 Multiplication of a Matrix by a Number
If a matrix is multiplied by a number (called a scalar in matrix algebra), each element
in the matrix is simply multiplied by that number. For example

2M =
[

4 2 6
8 12 24

]

A.3.2 Multiplication of a Matrix by another Matrix
Multiplication of two matrices is defined in what appears at first to be a completely
illogical way. But we will see that the reason for the definition is precisely because
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of the way in which matrix notation is used for systems of linear relations, especially

linear equations. Using M, again, and a 3 × 3 matrix Q =
⎡⎣ 2 0 4

1 1 2
3 4 5

⎤⎦, the product

P = MQ, is found as

P =
[

2 1 3
4 6 12

]⎡⎣ 2 0 4
1 1 2
3 4 5

⎤⎦ =
[

14 13 25
50 54 88

]
This comes from [

(4 + 1 + 9) (0 + 1 + 12) (8 + 2 + 15)

(8 + 6 + 36) (0 + 6 + 48) (16 + 12 + 60)

]
The rule is: for element pij in the product, go across row i in the matrix on the left

(here M) and down column j in the matrix on the right (here Q), multiplying pairs of
elements and summing. So, for p23 we find, from row 2 of M and column 3 of Q,
(4)(4) + (6)(2) + (12)(5) = (16 + 12 + 60) = 88. In general, then, for this example

pij = mi1q1j + mi2q2j + mi3q3j (i = 1, 2; j = 1, 2, 3)

This definition of matrix multiplication means that in order to be conformable for
multiplication the number of columns in the matrix on the left must be the same as
the number of rows in the matrix on the right. Look again at pij above; for the three
elements in (any) row i of M – mi1, mi2, and mi3 – there must be three “corresponding”
elements in (any) column j of Q – q1j, q2j, and q3j.

The definition of matrix multiplication also means that the product matrix, P, will
have the same number of rows as M and the same number of columns as Q. In general,

P
(m×n)

= M
(m×r)

Q
(r×n)

(A.1)

It also means that, in general, order of multiplication makes a difference. In this example,
the product the other way around, QM, cannot even be found, since there are three
columns in Q but only two rows in M.2 For that reason, there is language to describe
the order of multiplication in a matrix product. For example, in P = MQ, M is said to
premultiply Q (or to multiply Q on the left) and, equivalently, Q is said to postmultiply
M (or to multiply M on the right).

A.3.3 The Identity Matrix
In ordinary algebra, 1 is known as the identity element for multiplication, which means
that a number remains unchanged when multiplied by it. There is an analogous concept
in matrix algebra. An identity matrix is one that leaves a matrix unchanged when the
matrix is multiplied by it.

2 Try to carry out the multiplication in the order QM to easily see where the trouble arises.
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If we use M =
[

2 1 3
4 6 12

]
, by what matrix could M be postmultiplied so that it

remained unchanged? Denote the unknown matrix by I (this is the standard notation
for an identity matrix); we want MI = M. We know from the rule in (A.1) that I must
be a 3 × 3 matrix; it needs three rows to be conformable to postmultiply M and three
columns because the product, which will be M with dimensions 2 by 3, gets its second
dimension from the number of columns in I. The reader might try letting I be a 3 × 3
matrix with all 1’s. It may seem logical but it is wrong. In fact, the only I for which

MI = M will be I3 =
⎡⎣ 1 0 0

0 1 0
0 0 1

⎤⎦. The reader should try this and other possibilities, to

be convinced that only this matrix will do the job. (Subscripts are often used, as here,
to indicate the order of the identity matrix.)

An identity matrix is always square and can be of any size to satisfy the conforma-
bility requirement for the particular multiplication operation in which it appears. It has
1’s along its main diagonal, from upper left to lower right, and 0’s everywhere else.
We could find another identity matrix by which to premultiply M so that it remains

unchanged. In this case we need the 2 × 2 identity matrix I2 =
[

1 0
0 1

]
.

A.4 Matrix Operations: Transposition

Transposition is a matrix operation for which there is no parallel in ordinary algebra. It
plays a useful and important role in certain input–output operations. The transpose of
an m×n matrix M, denoted M′, is an n×m matrix in which row i of M becomes column
i of M′. (Sometimes Mt or MT are used to denote transposition.) For our example

M′ =
⎡⎣ 2 4

1 6
3 12

⎤⎦
Notice that the transpose of an n-element column vector (dimensions n × 1) is an
n-element row vector (dimensions 1 × n).

A useful result, for matrices that are conformable for multiplication, is that (AB)′ =
B′A′. The reader can easily see why this is the case by examining a small general

example with, say, A =
[

a11 a12 a13

a21 a22 a23

]
and B =

⎡⎣ b11 b12

b21 b22

b31 b32

⎤⎦.

A.5 Representation of Linear Equation Systems

Here are two linear equations in two unknowns, x1 and x2:

2x1 + x2 = 10
5x1 + 3x2 = 26

(A.2)
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Define A as a 2 × 2 matrix that contains the coefficients multiplying the x’s in exactly
the order in which they appear, so

A =
[

2 1
5 3

]
Define a two-element column vector, x, containing the unknown x’s and another two-
element column vector, b, containing the values on the right-hand sides of the equations
exactly in the order in which they appear, namely3

x =
[

x1

x2

]
and b =

[
10
26

]
Then, precisely because of the way in which matrix multiplication and matrix equality
are defined, the equation system in (A.2) is compactly represented as

Ax = b (A.3)

[Writing out the system represented in (A.3) will show exactly why this is true.]
In ordinary algebra, when we have an equation like 3x = 12, we “solve” this equation

by dividing both sides by 3 – which is the same as multiplying both sides by (1/3), the
reciprocal of 3 (sometimes denoted 3−1); multiplication of a number by its reciprocal
generates the identity element for multiplication. So, in more detail, we go from 3x = 12
to x = 4 in the logical sequence

3x = 12 ⇒ (1/3)3x = (1/3)12 [or (3−1)3x = (3−1)12] ⇒ (1)x = 4 ⇒ x = 4

In ordinary algebra the transition from 3x = 12 to x = 4 is virtually immediate. The
point here is to set the stage for a parallel approach to systems of linear equations, as
in (A.2).

Given the representation in (A.3), it is clear that a way of “solving” this system for
the unknowns would be to “divide” both sides by A, or, alternatively, multiply both
sides by the “reciprocal” of A. Parallel to the notation for the reciprocal of a number,
this is denoted A−1. If we could find such a matrix, with the property that (A−1)(A) = I
(the identity element for matrix multiplication), we would proceed in the same way,
namely

Ax = b ⇒ (A−1)Ax = (A−1)b ⇒ Ix = (A−1)b ⇒ x = A−1b

and the values of the unknowns, in x, would be found as the matrix operation in which
the vector b is premultiplied by the matrix A−1, which is usually called the inverse
of A.

3 The usual convention is to define all vectors as column vectors (as here), so row vectors are formed by
transposition.
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A.6 Matrix Operations: Division

In matrix algebra, “division” by a matrix is represented as multiplication by the inverse.4

Finding inverses can be a very tedious mathematical procedure, but modern computers
do it very quickly, even for relatively large matrices. Even though this can easily be
done with computer software, we examine a few matrix algebra definitions involving
determinants and their role in inverses in order to provide a rudimentary understanding
of the important concept of a singular matrix – one that has no inverse. (The reader unin-
terested in mathematical details can skip directly to the result on the general definition
of an inverse.)

Determinant of a matrix: the 2 × 2 case

A determinant is a number associated with any square matrix. For A =
[

a11 a12

a21 a22

]
,

the determinant, |A|, is defined as |A| = a11a22 − a12a21. Unfortunately, determinants
of larger matrices cannot be found by obvious extensions of this simple expression, and
additional definitions are needed – specifically minors, cofactors and adjoints.

Minor of an element. The minor of an element aij in a square matrix A (denoted mij) is
the determinant of the matrix remaining when row i and column j are removed from
A. So the n2 minors of the elements in A

(n×n)
will be determinants of (n − 1)× (n − 1)

matrices.
Cofactor of an element. The cofactor of an element aij in a square matrix A (denoted

Aij) is defined as Aij = (−1)i+jmij . When i + j is an even number, Aij = mij , when
i + j is an odd number, Aij = −mij .

Determinant of a matrix: the general case

For A
(n×n)

, |A| can be found as

(a) |A| =
n∑

j=1
aijAij (for any i) or (b) |A| =

n∑
i=1

aijAij (for any j).

In words: |A| can be found by summing the products of elements and their corresponding
cofactors in any row [from (a)] or any column [from (b)].

Adjoint of a matrix

The adjoint of A [often denoted (adj A)] is defined as adj A = [A′
ij]. In words: the adjoint

is the matrix whose elements are the cofactors of the transpose of A.

4 In this appendix we will look at inverses for square matrices only. This means that if we are dealing with the
coefficient matrix for an equation system, as in (A.2) or (A.3), there are the same number of unknowns as
equations in the system. There are more advanced concepts of “pseudo” inverses for nonsquare matrices, but
they need not concern us at this point.
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Properties of determinants

1. |A| = ∣∣A′∣∣.
2. If any row or column of A contains all zeros, |A| = 0.
3. Multiplication of all the elements in any row or column of A by a constant, k, creates a

new matrix whose determinant is k |A|.
4. If A∗ is generated from A by interchanging any two rows or columns of A, |A∗| =

− |A|.
a. If any two rows or columns in A are equal, |A| = 0.
b. If any two rows or columns in A are proportional, |A| = 0.

5. a.
n∑

j=1
aijAi′j = 0 (where i �= i′) and

b.
n∑

i=1
aijAij′ = 0 (where j �= j′).

In words: evaluation of a determinant using alien cofactors – elements from row i and
cofactors from some other row (which is what makes them alien) or elements from column
j and cofactors from some other column – always yields a value of zero. This is not difficult
to show.

1. Use aij and Akj (i �= k) and write out the alien cofactor expression
n∑

j=1
aijAkj .

2. Replace row k in A by row i; call this matrix Ã. Then
∣∣∣Ã∣∣∣ = 0 [from (4a)].

3. Find
∣∣∣Ã∣∣∣, which we know to be 0 [from (ii)], by ordinary expansion across its row k;

this is
∣∣∣Ã∣∣∣ =

n∑
j=1

aijAkj . But this is exactly the alien cofactor expression in (i), thus

demonstrating (5a) for i′ = k.

Inverse

The general expression for an inverse builds on the preceding concepts. For

the n × n case, where adj A =

⎡⎢⎢⎢⎣
A11 A21 · · · An1

A12 A22 · · · An2
...

...
. . .

...
A1n A2n · · · Ann

⎤⎥⎥⎥⎦, form the product

A(adj A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

a1jA1j

n∑
j=1

a1jA2j · · ·
n∑

j=1
a1jAnj

n∑
j=1

a2jA1j

n∑
j=1

a2jA2j · · ·
n∑

j=1
a2jAnj

...
...

. . .
...

n∑
j=1

anjA1j

n∑
j=1

anjA2j · · ·
n∑

j=1
anjAnj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
– the reason for doing

this will soon be apparent. Each of the on-diagonal elements in this prod-
uct is |A|, found by cofactor expansions – across each of the rows in turn;
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each off-diagonal element in the product is 0 because it is an expansion by alien cofactors.
Therefore

A (adj A) =

⎡⎢⎢⎢⎣
|A| 0 · · · 0
0 |A| · · · 0
...

...
. . .

...
0 0 · · · |A|

⎤⎥⎥⎥⎦ = |A| In, so A(1/ |A|)(adj A) = In, meaning that

A−1 = (1/ |A|)︸ ︷︷ ︸
scalar

(adj A)︸ ︷︷ ︸
(n×n) matrix

.

Linear combinations; linear dependence and independence

A more general requirement for nonsingularity of A involves the concepts of linear depen-
dence and independence. A complete examination of this topic, including the associated
vector geometry, is beyond the level of this discussion, but the main ideas are important. We
consider only the case of square matrices because our interest is in the inverses of the matri-
ces associated with input–output models.5 Consider a series of n vectors, either columns or
rows; we deal with columns simply for illustration. Let the columns of an n × n A matrix be
denoted a(c)

1 , a(c)
2 , . . . , a(c)

n . Multiply each column by a scalar and add, generating another
n-element column vector;

s1a(c)
1 + s2a(c)

2 + · · · + sna(c)
n = c or

n∑
i=1

sia
(c)
i = c

The vector c is called a linear combination of a(c)
1 , a(c)

2 , . . . , a(c)
n . If not all the scalars in

the linear combination are zero and if c = 0 – that is,
n∑

i=1
sia

(c)
i = 0 – a(c)

1 , a(c)
2 , . . . , a(c)

n

are said to be linearly dependent. Using three-element vectors for illustration, suppose a(c)
3

is a linear combination of a(c)
1 and a(c)

2 . For example, let A =
⎡⎣ 1 5 17

2 4 16
3 7 27

⎤⎦; a(c)
1 =

⎡⎣ 1
2
3

⎤⎦,

a(c)
2 =

⎡⎣ 5
4
7

⎤⎦ and 2a(c)
1 + 3a(c)

2 = a(c)
3 . Then, equivalently,

2a(c)
1 + 3a(c)

2 + (−1)a(c)
3 = 0

and the vectors a(c)
1 , a(c)

2 , a(c)
3 are (by definition) linearly dependent. Whenever some a(c)

i
can be expressed as a linear combination of the other (n − 1) A vectors, the n vectors
a(c)

1 , a(c)
2 , . . . , a(c)

n are linearly dependent. The important fact is that if A
(n×n)

contains linearly

5 In input–output work, we are usually concerned with finding the inverse of (I − A). We use a generic “A”
matrix in the discussion in this appendix for simplicity of exposition.
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dependent columns, A is singular.6 This provides an additional case in which |A| = 0; it
supplements the relatively simpler observations in (2), (4a), and (4b), above. Moreover,
all of this holds true if “rows” are substituted for “columns” throughout the discussion; in
particular, if A contains linearly dependent rows, |A| = 0.

On the other hand, if the only scalars for which
n∑

i=1
sia

(c)
i = 0 holds are (all) si = 0,

the vectors are termed linearly independent. These ideas are used to define the important
concept of the rank of a matrix, ρ(A). In a nutshell, the rank of A is the number of linearly
independent rows (or columns) in A. And so, if ρ(A) = n, A is nonsingular. Computer
programs find ranks of matrices with very little effort.

One immediate application of these observations can be found with the completely closed
input–output model, where i′A = i′. As a consequence i′(I − A) = 0′ [the rows of (I − A)

are linearly dependent], |(I − A)| = 0, and no Leontief inverse can be found.

Thus A−1 can be found only when |A| �= 0. This is similar to the problem with “0”
in ordinary algebra; you cannot divide by it (the reciprocal of 0, 1/0, is not defined).

The matrix A from (A.2) is nonsingular; namely

A =
[

2 1
5 3

]
and A−1 =

[
3 −1

−5 2

]

which the reader can easily check. An example of a singular matrix is C =
[

2 4
6 12

]
,

where |C| = 24 − 24 = 0 (proportional rows and columns). There is no matrix by

which C can be pre- or postmultiplied to generate I2 =
[

1 0
0 1

]
.

Since we have found A−1 for the equations in (A.2), the solution is exactly

x = A−1b =
[

3 −1
−5 2

] [
10
26

]
=
[

4
2

]
The reader can easily check that x1 = 4 and x2 = 2 are the (only) solutions to the two
equations in (A.2).

An important fact about inverses is that, for nonsingular matrices M and N that are
conformable for multiplication, (MN)−1 = N−1M−1.

A.7 Diagonal Matrices

Identity matrices are examples of diagonal matrices. These are always square, with
elements on the diagonal from upper left to lower right and zeros elsewhere. In general,

6 Illustration and proof of this statement is beyond the level of this text. The interested reader should turn to any
good book on linear algebra.
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an n × n diagonal matrix is

D =

⎡⎢⎢⎢⎢⎣
d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...

0
... · · · dn

⎤⎥⎥⎥⎥⎦
A useful notational device is available for creating a diagonal matrix from a vector.

Suppose x =
⎡⎣ x1

x2

x3

⎤⎦; then the diagonal matrix with the elements of x strung out along

its main diagonal is denoted by putting a “hat” over the x (sometimes “〈” and “〉” are
used to bracket the x), so

x̂ = 〈x〉 =
⎡⎣ x1 0 0

0 x2 0
0 0 x3

⎤⎦
A hat is also used with a square matrix to indicate the diagonal matrix formed from

the square matrix when all off-diagonal elements are set equal to zero, and an upside
down hat is used for the square matrix that is left when all diagonal elements are set
equal to zero. For example, using Q from above,

Q̂ =
⎡⎣ 2 0 0

0 1 0
0 0 5

⎤⎦ and Q̌ =
⎡⎣ 0 0 4

1 0 2
3 4 0

⎤⎦
One useful fact about diagonal matrices is that the inverse of a diagonal matrix is

another diagonal matrix, each of whose elements is just the reciprocal of the original
element. For x̂ this means

x̂−1 =
⎡⎣ 1/x1 0 0

0 1/x2 0
0 0 1/x3

⎤⎦
and the reader can easily check that in this case

x̂x̂−1 = x̂−1x̂ = I3 =
⎡⎣ 1 0 0

0 1 0
0 0 1

⎤⎦
Notice also that transposition of a diagonal matrix leaves the matrix unchanged; x̂′ = x̂.

When a diagonal matrix, D, postmultiplies another matrix, M, the jth element in
D, dj, multiplies all of the elements in the jth column of M, and when a diago-
nal matrix premultiplies M, dj multiplies all of the elements in the jth row of M.
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For example,

[
2 1 3
4 6 12

]⎡⎣ d1 0 0
0 d2 0
0 0 d3

⎤⎦ =
[

2d1 d2 3d3

4d1 6d2 12d3

]

and [
d1 0
0 d2

] [
2 1 3
4 6 12

]
=
[

2d1 d1 3d1

4d2 6d2 12d2

]
Putting the facts about inverses of diagonal matrices together with these observations

about pre- and postmultiplication by a diagonal matrix, we see that postmultiplying M
by D−1 will divide each element in column j of M by dj, and premultiplying M by D−1

will divide each element in row j of M by dj.7

A.8 Summation Vectors

If M
(m×n)

is postmultiplied by an n-element column vector of 1’s, the results will be an

m-element column vector containing the row sums of M. If M is premultiplied by an
m-element row vector of 1’s, the result will be an n-element row vector containing the
column sums of M. For example,

[
2 1 3
4 6 12

]⎡⎣ 1
1
1

⎤⎦ =
[

6
22

]
and

[
1 1

] [ 2 1 3
4 6 12

]
= [

6 7 15
]

Usually, a column vector of 1’s is denoted by i, and so a corresponding row vector is i′
(sometimes 1 or e is used in place of i). These are summation vectors.

A.9 Matrix Inequalities

Amore exact characterization of vectors and matrices is often needed for more advanced
matrix algebra statements when inequalities are involved. Using vectors as an example,
x ≥ 0 (x is “non-negative,” meaning xi ≥ 0 for all i; note that this allows x = 0),
x > 0 (x is “semipositive,” meaning x ≥ 0 and x �= 0; that is, at least one xi > 0) and
x � 0 (x is “positive,” meaning xi > 0 for all i).8 The definition of “semipositive” is
needed for cases in which x = 0 must be ruled out. The same comparisons can apply
to matrices. Also, the same notation can be used to compare any pair of vectors or
matrices with the same dimensions – x ≥ y, x > y, and x � y, and so forth.

7 This is particularly useful in defining direct input coefficients matrices (technical coefficients matrices) in
input–output models.

8 Alternative notations have been used (for example, in Lancaster, 1968, p. 250, and Takayama, 1985, p. 368).
We follow the notation used in Dietzenbacher (1988 and many subsequent publications).
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A.10 Partitioned Matrices

Often it is useful to divide a matrix into submatrices, especially if there is some logical
reason to distinguish some rows and columns from others.9 This is known as partition-
ing the matrix; the submatrices are sometimes separated by dashed or dotted lines. For
example, we might create four submatrices from a 4 × 4 matrix A, as

A
(4×4)

=

⎡⎢⎢⎢⎢⎣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤⎥⎥⎥⎥⎦ =
⎡⎣ A11 A12

A21 A22

⎤⎦

In the discussion of linear combinations (section A.6), we viewed A as composed of

a series of column vectors, A =
[

a(c)
1 a(c)

2 · · · a(c)
n

]
. It can equally well be

thought of as a “stack” of row vectors, a(r)
i – namely, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(r)
1

a(r)
2

...

a(r)
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A.10.1 Multiplying Partitioned Matrices
If matrices are partitioned so that submatrices are conformable for multiplication, then
products of partitioned matrices can be found as products of these submatrices. For
example, suppose that in conjunction with A, above, we have

B
(4×3)

=

⎡⎢⎢⎢⎢⎣
b11 b12 b13

b21 b22 b23

b31 b32 b33

b41 b42 b43

⎤⎥⎥⎥⎥⎦ =
⎡⎣ B11 B12

B21 B22

⎤⎦

Then

AB
(4×3)

=
⎡⎣A11 A12

A21 A22

⎤⎦⎡⎣B11 B12

B21 B22

⎤⎦=
⎡⎣A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

⎤⎦
(The reader can check that all conformability requirements for addition and for
multiplication are met.)

9 An example is in the representation of interregional or multiregional input–output models.
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A.10.2 The Inverse of a Partitioned Matrix
Inverses of partitioned matrices play an important role in many input–output repre-

sentations. Given a partitioned n × n matrix A =

⎡⎢⎢⎣
E

(p×p)
F[p×(n−p)]

G[(n−p)×p]
H[(n−p)×(n−p)]

⎤⎥⎥⎦
(note that E and H are square), elements of the inverse can be similarly partitioned

as A−1 =

⎡⎢⎢⎣
S

(p×p)
T[p×(n−p)]

U[(n−p)×p] V[(n−p)×(n−p)]

⎤⎥⎥⎦. Notice that submatrices in corresponding

locations in the original matrix and the inverse have the same dimensions. This means
that

⎡⎣ E F

G H

⎤⎦⎡⎣ S T

U V

⎤⎦ = I =

⎡⎢⎢⎣
I

(p×p)
0[p×(n−p)]

0[(n−p)×p]
I[(n−p)×(n−p)]

⎤⎥⎥⎦
That is, the product (the identity matrix) can also be partitioned similarly. This matrix
statement can be expanded into four matrix equations, using the usual rules for matrix
multiplication and matrix equality. These matrix equations are

(1) ES + FU = I (3) ET + FV = 0
(2) GS + HU = 0 (4) GT + HV = I

(A.4)

(The reader can easily check that all matrices are conformable for the multiplications
and additions in which they are involved.)

Assume that E−1 can be found; then (1) yields S = E−1(I−FU). Putting this into (2),
after considerable rearrangement, gives U = −(H − GE−1F)−1GE−1. The important
fact is that U is expressed as a function of only the known matrices E, F, G, and H;
and once U is found, it can be substituted back into the expression for S. Similarly,
equations (3) and (4) can be solved to yield T = −E−1FV and V = (H − GE−1F)−1.
As with the first pair of equations, V is a function of known matrices only, and once V
is found, it can be used to find T. Collecting these results,

S = E−1(I − FU) T = −E−1FV

U = −VGE−1 V = (H − GE−1F)−1 (A.5)

In this way, the inverse of an n × n matrix is found from the inverses of two smaller
matrices – E

(p×p)
and V[(n−p)×(n−p)]

– along with a number of matrix multiplications.
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An alternative set of results can be derived if one begins with the assumption that
H−1 is known. These are

S = (E − FH−1G)−1 T = −SFH−1

U = −H−1GS V = H−1(I − GT) (A.6)

Again, inverses of two (different) smaller matrices are required – S
(p×p)

and H[(n−p)×(n−p)]
.

For A matrices with particular structures the solution via (A.5) or (A.6) may be
particularly simple. Here are several alternatives that arise in input–output models.

1. If A =
⎡⎣ E 0

0 H

⎤⎦ then, using either (A.5) or (A.6), it is easily established that

A−1 =
⎡⎣ E−1 0

0 H−1

⎤⎦; only the two smaller inverses, E−1 and H−1, are needed.

2. In the even more special case when A =
⎡⎣ E 0

0 I

⎤⎦, A−1 =
⎡⎣ E−1 0

0 I

⎤⎦.

3. If A =
⎡⎣ E 0

G I

⎤⎦, then A−1 =
⎡⎣ E−1 0

−GE−1 I

⎤⎦.

The interested reader can easily construct additional variations on these special cases.
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Appendix B Reference Input–Output
Tables for the United
States (1919–2006)

B.1 Introduction

In this appendix we present 16 historical input–output accounts for the United States,
aggregated to 7 industry/commodity sectors. The 2005 and 2003 tables are annual
updates of the 1997 benchmark input–output tables prepared by the Bureau of Economic
Analysis (BEA), formerly the Office of Business Economics, of the US Department of
Commerce. The 2006 table was prepared as part of an annual series of updated tables
based on the most recently available benchmark or comprehensive survey-based table.
The tables for 2002, 1997, 1992, 1987, 1982, 1977, 1972, 1967, 1963, and 1958 are all
BEA benchmark tables. The 1947 table was prepared originally by the Bureau of Labor
Statistics (BLS) and reworked by Vaccara, Shapiro and Simon (1970) to conform with
the industry classification and other conventions of the subsequent tables up to that time.
The 1939, 1929, and 1919 tables are derived from Leontief (1941c, 1941b, and 1941a).
Additional information on all these tables can be found in the references to the appendix.
The original tables were all published at several different levels of aggregation – the
tables since 1963 at approximately 85-, 365- and 496-sector classifications.

The transactions table provided in section B.2 are all expressed in millions of US
current year dollars. With 1972 and the tables for subsequent years BEA assembled
the transactions tables in the industry-by-commodity format as outlined in Chapters 4
and 5, so instead of interindustry transactions, Z, the accounts include Make (V) and
Use (U) tables, vectors of total industry outputs (Vi) and of total commodity outputs
(V′i). Also included for each set of commodity-by-industry transactions is the vector
of competitive commodity imports so that a domestic use table can be constructed by
the methods provided in section 4.7.6.

In section B.3 we provide the matrices of technical coefficients, A, and total require-
ments, L, for all of the transactions accounts in section B.2. For 1972 and the tables for
subsequent years, we employ the industry based technology assumption (see Chapter
5) and construct A and L in industry-by-industry terms, i.e., A = V(V̂′i)−1U(V̂i)−1

and L = (I − A)−1. Most of these tables are available at higher levels of sector
disaggregation at the internet website, www.bea.gov.
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B.3 Matrices of Technical Coefficients and Total Requirements

US Technical Coefficients 2006 1 2 3 4 5 6 7

1 Agriculture 0.2403 0.0000 0.0014 0.0345 0.0001 0.0018 0.0007
2 Mining 0.0028 0.1307 0.0079 0.0756 0.0310 0.0004 0.0066
3 Construction 0.0035 0.0002 0.0010 0.0019 0.0039 0.0072 0.0242
4 Manufacturing 0.1858 0.0959 0.2673 0.3311 0.0581 0.0558 0.1027
5 Trade, Transport

& Utilities
0.0774 0.0379 0.1063 0.1003 0.0698 0.0329 0.0439

6 Services 0.0875 0.1298 0.1262 0.1239 0.1846 0.2889 0.2029
7 Other 0.0102 0.0096 0.0095 0.0233 0.0223 0.0192 0.0225

US Total Requirements 2006 1 2 3 4 5 6 7

1 Agriculture 1.3365 0.0101 0.0238 0.0735 0.0075 0.0101 0.0118
2 Mining 0.0482 1.1716 0.0566 0.1470 0.0525 0.0162 0.0306
3 Construction 0.0091 0.0036 1.0058 0.0081 0.0079 0.0120 0.0286
4 Manufacturing 0.4275 0.2064 0.4650 1.5972 0.1424 0.1438 0.2173
5 Trade, Transport

& Utilities
0.1728 0.0823 0.1826 0.2013 1.1076 0.0719 0.0911

6 Services 0.3041 0.2799 0.3294 0.3829 0.3344 1.4661 0.3698
7 Other 0.0346 0.0239 0.0323 0.0525 0.0359 0.0342 1.0382

US Technical Coefficients 2002 1 2 3 4 5 6 7

1 Agriculture 0.2638 0.0020 0.0027 0.0379 0.0004 0.0008 0.0008
2 Mining 0.0032 0.0468 0.0099 0.0381 0.0236 0.0004 0.0042
3 Construction 0.0043 0.0359 0.0007 0.0032 0.0058 0.0081 0.0204
4 Manufacturing 0.1491 0.0934 0.2450 0.3510 0.0500 0.0472 0.0959
5 Trade, Transport

& Utilities
0.0852 0.0640 0.0968 0.0913 0.0794 0.0254 0.0452

6 Services 0.1333 0.2457 0.1440 0.1386 0.1844 0.2682 0.2026
7 Other 0.0087 0.0138 0.0073 0.0150 0.0267 0.0162 0.0193

US Total Requirements 2002 1 2 3 4 5 6 7

1 Agriculture 1.3780 0.0149 0.0265 0.0846 0.0077 0.0079 0.0120
2 Mining 0.0243 1.0615 0.0322 0.0704 0.0331 0.0070 0.0151
3 Construction 0.0128 0.0438 1.0076 0.0133 0.0116 0.0131 0.0257
4 Manufacturing 0.3712 0.2182 0.4325 1.6253 0.1263 0.1190 0.1996
5 Trade, Transport

& Utilities
0.1795 0.1151 0.1643 0.1884 1.1140 0.0548 0.0851

6 Services 0.3854 0.4461 0.3441 0.4077 0.3301 1.4167 0.3571
7 Other 0.0295 0.0292 0.0249 0.0385 0.0383 0.0270 1.0315
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US Technical Coefficients 1997 1 2 3 4 5 6 7

1 Agriculture 0.2618 0.0001 0.0015 0.0401 0.0013 0.0020 0.0008
2 Mining 0.0017 0.1150 0.0062 0.0306 0.0236 0.0003 0.0036
3 Construction 0.0039 0.0002 0.0011 0.0020 0.0052 0.0060 0.0101
4 Manufacturing 0.1740 0.1162 0.2372 0.3627 0.0758 0.0583 0.0424
5 Trade, Transport

& Utilities
0.0731 0.0643 0.0975 0.0980 0.0847 0.0288 0.0267

6 Services 0.1110 0.2570 0.1376 0.1232 0.2294 0.2146 0.0902
7 Other 0.0063 0.0181 0.0086 0.0177 0.0212 0.0169 0.0167

US Total Requirements 1997 1 2 3 4 5 6 7

1 Agriculture 1.3795 0.0166 0.0269 0.0920 0.0130 0.0111 0.0068
2 Mining 0.0226 1.1433 0.0270 0.0638 0.0369 0.0070 0.0089
3 Construction 0.0094 0.0046 1.0051 0.0074 0.0089 0.0089 0.0117
4 Manufacturing 0.4361 0.2745 0.4365 1.6687 0.1849 0.1373 0.0953
5 Trade, Transport

& Utilities
0.1704 0.1271 0.1683 0.2038 1.1298 0.0594 0.0472

6 Services 0.3253 0.4617 0.3094 0.3612 0.3785 1.3206 0.1521
7 Other 0.0264 0.0368 0.0262 0.0424 0.0350 0.0267 1.0226

US Technical Coefficients 1992 1 2 3 4 5 6 7

1 Agriculture 0.2339 0.0003 0.0061 0.0419 0.0005 0.0036 0.0004
2 Mining 0.0018 0.1654 0.0090 0.0329 0.0274 0.0002 0.0030
3 Construction 0.0122 0.0170 0.0009 0.0061 0.0208 0.0187 0.0230
4 Manufacturing 0.1667 0.0787 0.2992 0.3454 0.0560 0.0673 0.0135
5 Trade, Transport &

Utilities
0.0914 0.0810 0.1061 0.1057 0.1048 0.0427 0.0160

6 Services 0.0900 0.1514 0.1139 0.0712 0.1555 0.2039 0.0134
7 Other 0.0038 0.0105 0.0048 0.0119 0.0201 0.0112 0.0034

US Total Requirements 1992 1 2 3 4 5 6 7

1 Agriculture 1.3284 0.0135 0.0378 0.0893 0.0104 0.0150 0.0030
2 Mining 0.0254 1.2119 0.0382 0.0712 0.0443 0.0098 0.0063
3 Construction 0.0280 0.0311 1.0143 0.0214 0.0313 0.0278 0.0247
4 Manufacturing 0.3955 0.2062 0.5204 1.6101 0.1479 0.1587 0.0391
5 Trade, Transport &

Utilities
0.1993 0.1531 0.2008 0.2189 1.1559 0.0866 0.0278

6 Services 0.2336 0.2852 0.2427 0.2139 0.2536 1.2951 0.0310
7 Other 0.0169 0.0218 0.0184 0.0272 0.0286 0.0185 1.0049
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US Technical Coefficients 1987 1 2 3 4 5 6 7

1 Agriculture 0.3016 0.0002 0.0062 0.0400 0.0003 0.0040 0.0003
2 Mining 0.0023 0.0541 0.0093 0.0396 0.0204 0.0006 0.0040
3 Construction 0.0076 0.0173 0.0006 0.0058 0.0206 0.0217 0.0292
4 Manufacturing 0.1376 0.0715 0.2945 0.3419 0.0533 0.0836 0.0184
5 Trade, Transport &

Utilities
0.0834 0.0602 0.1029 0.0950 0.1144 0.0461 0.0256

6 Services 0.0933 0.1486 0.1118 0.0558 0.1446 0.2158 0.0123
7 Other 0.0042 0.0095 0.0045 0.0143 0.0165 0.0124 0.0036

US Total Requirements 1987 1 2 3 4 5 6 7

1 Agriculture 1.4545 0.0117 0.0397 0.0927 0.0105 0.0191 0.0039
2 Mining 0.0233 1.0672 0.0358 0.0716 0.0317 0.0115 0.0076
3 Construction 0.0233 0.0275 1.0139 0.0199 0.0313 0.0326 0.0314
4 Manufacturing 0.3641 0.1704 0.5108 1.5950 0.1448 0.1954 0.0513
5 Trade, Transport &

Utilities
0.1934 0.1081 0.1911 0.1970 1.1645 0.0964 0.0408

6 Services 0.2426 0.2398 0.2279 0.1776 0.2371 1.3162 0.0334
7 Other 0.0179 0.0176 0.0185 0.0296 0.0248 0.0211 1.0057

US Technical Coefficients 1982 1 2 3 4 5 6 7

1 Agriculture 0.2853 0.0002 0.0019 0.0455 0.0005 0.0045 0.0047
2 Mining 0.0025 0.0467 0.0078 0.0780 0.0486 0.0006 0.0041
3 Construction 0.0093 0.0247 0.0010 0.0050 0.0194 0.0238 0.0221
4 Manufacturing 0.1806 0.0637 0.3201 0.3505 0.0764 0.0877 0.0194
5 Trade, Transport &

Utilities
0.0683 0.0414 0.0973 0.1042 0.1255 0.0454 0.0351

6 Services 0.0816 0.1561 0.0980 0.0542 0.1210 0.1700 0.0071
7 Other 0.0035 0.0046 0.0043 0.0150 0.0164 0.0110 0.0043

US Total Requirements 1982 1 2 3 4 5 6 7

1 Agriculture 1.4305 0.0126 0.0405 0.1065 0.0148 0.0211 0.0104
2 Mining 0.0517 1.0677 0.0653 0.1469 0.0771 0.0229 0.0118
3 Construction 0.0259 0.0347 1.0149 0.0222 0.0315 0.0337 0.0246
4 Manufacturing 0.4663 0.1670 0.5691 1.6465 0.1953 0.2043 0.0559
5 Trade, Transport &

Utilities
0.1843 0.0877 0.1983 0.2246 1.1868 0.0961 0.0526

6 Services 0.2108 0.2300 0.2023 0.1812 0.2056 1.2426 0.0261
7 Other 0.0177 0.0116 0.0189 0.0316 0.0253 0.0187 1.0065
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US Technical Coefficients 1977 1 2 3 4 5 6 7

1 Agriculture 0.2463 0.0004 0.0035 0.0470 0.0011 0.0052 0.0007
2 Mining 0.0022 0.0712 0.0093 0.0575 0.0288 0.0005 0.0048
3 Construction 0.0107 0.0375 0.0011 0.0064 0.0190 0.0293 0.0193
4 Manufacturing 0.2021 0.0950 0.3722 0.3816 0.0645 0.0885 0.0126
5 Trade, Transport &

Utilities
0.0716 0.0478 0.1148 0.0855 0.1058 0.0498 0.0228

6 Services 0.0864 0.0999 0.0724 0.0482 0.1200 0.1510 0.0083
7 Other 0.0029 0.0049 0.0043 0.0141 0.0137 0.0090 0.0040

US Total Requirements 1977 1 2 3 4 5 6 7

1 Agriculture 1.3607 0.0169 0.0490 0.1093 0.0143 0.0223 0.0038
2 Mining 0.0410 1.0951 0.0594 0.1137 0.0473 0.0176 0.0091
3 Construction 0.0289 0.0496 1.0176 0.0252 0.0307 0.0399 0.0213
4 Manufacturing 0.5156 0.2374 0.6842 1.7280 0.1774 0.2178 0.0425
5 Trade, Transport &

Utilities
0.1757 0.0983 0.2131 0.1926 1.1536 0.0966 0.0344

6 Services 0.2000 0.1623 0.1680 0.1524 0.1830 1.2118 0.0204
7 Other 0.0159 0.0118 0.0190 0.0295 0.0205 0.0157 1.0055

US Technical Coefficients 1972 1 2 3 4 5 6 7

1 Agriculture 0.3141 0.0003 0.0028 0.0542 0.0010 0.0053 0.0012
2 Mining 0.0019 0.0542 0.0091 0.0296 0.0160 0.0002 0.0020
3 Construction 0.0069 0.0282 0.0003 0.0043 0.0156 0.0263 0.0166
4 Manufacturing 0.1436 0.0943 0.3522 0.3771 0.0407 0.0892 0.0078
5 Trade, Transport &

Utilities
0.0616 0.0481 0.1043 0.0786 0.0980 0.0442 0.0202

6 Services 0.0865 0.1471 0.0686 0.0591 0.1157 0.1621 0.0105
7 Other 0.0023 0.0063 0.0042 0.0117 0.0118 0.0096 0.0033

US Total Requirements 1972 1 2 3 4 5 6 7

1 Agriculture 1.4913 0.0204 0.0552 0.1353 0.0125 0.0262 0.0044
2 Mining 0.0182 1.0665 0.0326 0.0563 0.0232 0.0087 0.0037
3 Construction 0.0206 0.0387 1.0117 0.0172 0.0237 0.0351 0.0179
4 Manufacturing 0.3979 0.2261 0.6256 1.6905 0.1187 0.2087 0.0292
5 Trade, Transport &

Utilities
0.1503 0.0936 0.1854 0.1704 1.1327 0.0850 0.0286

6 Services 0.2078 0.2216 0.1642 0.1683 0.1723 1.2272 0.0212
7 Other 0.0121 0.0128 0.0157 0.0241 0.0168 0.0155 1.0043



B.3 Matrices of Technical Coefficients 719

US Technical Coefficients 1967 1 2 3 4 5 6 7

1 Agriculture 0.3016 0.0000 0.0025 0.0508 0.0061 0.0022 0.0177
2 Mining 0.0022 0.0515 0.0090 0.0280 0.0085 0.0001 0.0044
3 Construction 0.0095 0.0229 0.0003 0.0041 0.0248 0.0088 0.0534
4 Manufacturing 0.1360 0.0935 0.3634 0.3894 0.0418 0.1577 0.2452
5 Trade, Transport &

Utilities
0.1225 0.1726 0.1221 0.0834 0.1432 0.1438 0.2661

6 Services 0.0278 0.0228 0.0526 0.0325 0.0548 0.0694 0.0703
7 Other 0.0183 0.0962 0.0088 0.0408 0.0444 0.0286 0.0455

US Total Requirements 1967 1 2 3 4 5 6 7

1 Agriculture 1.4663 0.0275 0.0581 0.1339 0.0250 0.0329 0.0744
2 Mining 0.0187 1.0666 0.0328 0.0554 0.0166 0.0133 0.0269
3 Construction 0.0274 0.0414 1.0150 0.0222 0.0363 0.0214 0.0749
4 Manufacturing 0.4126 0.2877 0.6904 1.7694 0.1643 0.3504 0.5737
5 Trade, Transport &

Utilities
0.2911 0.3066 0.2624 0.2515 1.2314 0.2499 0.4478

6 Services 0.0822 0.0677 0.1039 0.0906 0.0867 1.1087 0.1367
7 Other 0.0639 0.1370 0.0586 0.0984 0.0694 0.0620 1.1019

US Technical Coefficients 1963 1 2 3 4 5 6 7

1 Agriculture 0.3100 0.0000 0.0038 0.0574 0.0087 0.0006 0.0322
2 Mining 0.0022 0.0553 0.0086 0.0314 0.0085 0.0002 0.0077
3 Construction 0.0099 0.0202 0.0003 0.0030 0.0315 0.0093 0.0550
4 Manufacturing 0.1330 0.0812 0.3700 0.3983 0.0401 0.1496 0.2574
5 Trade, Transport &

Utilities
0.1054 0.1935 0.1330 0.0807 0.1415 0.1544 0.2570

6 Services 0.0246 0.0143 0.0429 0.0267 0.0473 0.0604 0.0662
7 Other 0.0198 0.0982 0.0075 0.0360 0.0439 0.0340 0.0380

US Total Requirements 1963 1 2 3 4 5 6 7

1 Agriculture 1.4900 0.0334 0.0706 0.1565 0.0329 0.0358 0.1073
2 Mining 0.0203 1.0721 0.0359 0.0631 0.0177 0.0147 0.0339
3 Construction 0.0287 0.0412 1.0163 0.0217 0.0443 0.0236 0.0787
4 Manufacturing 0.4116 0.2713 0.7085 1.7924 0.1664 0.3419 0.6041
5 Trade, Transport &

Utilities
0.2621 0.3284 0.2729 0.2462 1.2290 0.2600 0.4390

6 Services 0.0699 0.0530 0.0865 0.0757 0.0745 1.0939 0.1231
7 Other 0.0628 0.1375 0.0551 0.0908 0.0678 0.0657 1.0928
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US Technical Coefficients 1958 1 2 3 4 5 6 7

1 Agriculture 0.2954 0.0000 0.0034 0.0703 0.0095 0.0003 0.0414
2 Mining 0.0019 0.0616 0.0109 0.0374 0.0077 0.0005 0.0084
3 Construction 0.0116 0.0006 0.0001 0.0021 0.0357 0.0124 0.0680
4 Manufacturing 0.1158 0.0794 0.3828 0.3802 0.0422 0.2247 0.2935
5 Trade, Transport

& Utilities
0.1122 0.1611 0.1368 0.0877 0.1420 0.1387 0.2581

6 Services 0.0230 0.0232 0.0428 0.0245 0.0451 0.0662 0.0714
7 Other 0.0207 0.1067 0.0055 0.0392 0.0430 0.0292 0.0414

US Total Requirements 1958 1 2 3 4 5 6 7

1 Agriculture 1.4634 0.0399 0.0850 0.1853 0.0392 0.0565 0.1410
2 Mining 0.0208 1.0806 0.0440 0.0740 0.0187 0.0231 0.0429
3 Construction 0.0325 0.0230 1.0180 0.0230 0.0505 0.0296 0.0967
4 Manufacturing 0.3680 0.2723 0.7290 1.7633 0.1839 0.4834 0.6954
5 Trade, Transport

& Utilities
0.2677 0.2938 0.2877 0.2635 1.2333 0.2652 0.4670

6 Services 0.0655 0.0615 0.0874 0.0741 0.0734 1.1050 0.1343
7 Other 0.0631 0.1475 0.0579 0.0985 0.0682 0.0692 1.1050

US Technical Coefficients 1947 1 2 3 4 5 6 7

1 Agriculture 0.3272 0.0000 0.0031 0.1212 0.0146 0.0053 0.0141
2 Mining 0.0010 0.0835 0.0094 0.0334 0.0098 0.0013 0.0032
3 Construction 0.0122 0.0015 0.0002 0.0026 0.0440 0.0081 0.0639
4 Manufacturing 0.0949 0.0980 0.3795 0.3733 0.0522 0.1709 0.2733
5 Trade, Transport &

Utilities
0.1080 0.1091 0.1462 0.0735 0.1212 0.1254 0.3043

6 Services 0.0081 0.0088 0.0436 0.0161 0.0387 0.0660 0.0433
7 Other 0.0011 0.0046 0.0070 0.0232 0.0389 0.0338 0.0145

US Total Requirements 1947 1 2 3 4 5 6 7

1 Agriculture 1.5446 0.0429 0.1388 0.3160 0.0617 0.0812 0.1415
2 Mining 0.0152 1.1010 0.0394 0.0658 0.0206 0.0179 0.0317
3 Construction 0.0312 0.0116 1.0189 0.0217 0.0581 0.0241 0.0915
4 Manufacturing 0.2913 0.2141 0.7037 1.7200 0.1875 0.3697 0.6016
5 Trade, Transport &

Utilities
0.2322 0.1712 0.2739 0.2187 1.2006 0.2219 0.4627

6 Services 0.0306 0.0229 0.0744 0.0455 0.0589 1.0908 0.0840
7 Other 0.0191 0.0179 0.0375 0.0515 0.0544 0.0552 1.0510



B.3 Matrices of Technical Coefficients 721

US Technical Coefficients 1939 1 2 3 4 5 6 7

1 Agriculture 0.1074 0.0000 0.0788 0.0802 0.0209 0.0146 0.0232
2 Mining 0.0032 0.2228 0.1804 0.0294 0.0247 0.0020 0.0203
3 Construction 0.0214 0.0085 0.0000 0.0115 0.0304 0.0636 0.1379
4 Manufacturing 0.1593 0.0561 0.2187 0.2319 0.1837 0.1724 0.3142
5 Trade, Transport

& Utilities
0.2352 0.2575 0.0304 0.2653 0.1129 0.0017 0.0460

6 Other Industries 0.0386 0.0029 0.0003 0.0123 0.0217 0.0217 0.0419
7 Other 0.0594 0.1764 0.0083 0.1762 0.2443 0.1732 0.0426

US Total Requirements 1939 1 2 3 4 5 6 7

1 Agriculture 1.2035 0.0845 0.1590 0.2025 0.1160 0.0873 0.1296
2 Mining 0.0765 1.3652 0.2859 0.1332 0.1131 0.0682 0.1241
3 Construction 0.1021 0.1118 1.0615 0.1260 0.1293 0.1305 0.2110
4 Manufacturing 0.5716 0.5152 0.5543 1.7869 0.6335 0.4931 0.7430
5 Trade, Transport

& Utilities
0.5338 0.6034 0.3412 0.6596 1.4116 0.2152 0.3684

6 Other Industries 0.0815 0.0493 0.0334 0.0690 0.0664 1.0521 0.0797
7 Other 0.3458 0.5154 0.2668 0.5477 0.5179 0.3551 1.3224

US Technical Coefficients 1929 1 2 3 4 5 6 7

1 Agriculture 0.3440 0.0057 0.0439 0.0882 0.0168 0.0067 0.0178
2 Mining 0.0009 0.0794 0.1693 0.0516 0.0514 0.0098 0.0169
3 Construction 0.0006 0.0045 0.0000 0.0077 0.0250 0.0000 0.0718
4 Manufacturing 0.0949 0.0755 0.2443 0.2590 0.2188 0.0630 0.2553
5 Trade, Transport

& Utilities
0.0600 0.1971 0.0000 0.0280 0.0194 0.0143 0.0679

6 Other Industries 0.0022 0.0000 0.0146 0.0007 0.0000 0.0228 0.0140
7 Other 0.0676 0.2903 0.1179 0.2708 0.1991 0.5214 0.0000

US Total Requirements 1929 1 2 3 4 5 6 7

1 Agriculture 1.5817 0.0895 0.1579 0.2411 0.1122 0.0884 0.1115
2 Mining 0.0367 1.1442 0.2339 0.1180 0.1082 0.0610 0.0751
3 Construction 0.0244 0.0525 1.0351 0.0542 0.0609 0.0555 0.0944
4 Manufacturing 0.3369 0.4072 0.5472 1.6288 0.5076 0.3899 0.5079
5 Trade, Transport

& Utilities
0.1307 0.2829 0.0989 0.1216 1.0910 0.0919 0.1206

6 Other Industries 0.0076 0.0087 0.0217 0.0101 0.0073 1.0346 0.0194
7 Other 0.2416 0.5154 0.3798 0.5275 0.4047 0.6936 1.2121
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US Technical Coefficients 1919 1 2 3 4 5 6 7

1 Agriculture 0.4009 0.0091 0.0802 0.1469 0.0129 0.0079 0.0397
2 Mining 0.0006 0.0716 0.1980 0.0380 0.0811 0.0124 0.0170
3 Construction 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0581
4 Manufacturing 0.0746 0.0693 0.3189 0.2275 0.2530 0.0034 0.3359
5 Trade, Transport

& Utilities
0.0441 0.1969 0.0000 0.0158 0.0158 0.0090 0.0622

6 Other Industries 0.0009 0.0000 0.0274 0.0008 0.0000 0.0000 0.0108
7 Other 0.0350 0.4010 0.1050 0.2928 0.2070 0.5130 0.0000

US Total Requirements 1919 1 2 3 4 5 6 7

1 Agriculture 1.7558 0.2066 0.3555 0.4466 0.2091 0.1525 0.2586
2 Mining 0.0273 1.1461 0.2684 0.0935 0.1349 0.0552 0.0766
3 Construction 0.0105 0.0403 1.0280 0.0326 0.0274 0.0389 0.0740
4 Manufacturing 0.2876 0.5361 0.7294 1.6363 0.6061 0.3554 0.6541
5 Trade, Transport

& Utilities
0.1002 0.2910 0.1121 0.1005 1.0920 0.0751 0.1179

6 Other Industries 0.0040 0.0092 0.0342 0.0087 0.0065 1.0087 0.0165
7 Other 0.1805 0.6930 0.4824 0.5609 0.4711 0.6686 1.2719
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Appendix C Historical Notes on
the Development of
Leontief’s
Input–Output
Analysis

C.1 Conceptual Foundations

The original idea of developing a detailed accounting of interindustry activity in an
economy is certainly much older than Leontief’s model. Leontief himself describes
input–output as an analytical formalization of basic concepts set forth over a century
and three quarters earlier by the French economist François Quesnay. Quesnay, in turn,
was heavily influenced by earlier eighteenth century economists dating back to the
beginning of that century. Perhaps the key precursor idea was the recognition of the
concept of a “circular flow” of productive interdependences in an economy, which is a
notion that can be traced to as far back as the early perspectives of Sir William Petty in
the mid seventeenth century. We begin the story of input–output with this “pre-history.”

When British forces led by Oliver Cromwell invaded Ireland in the 1650s, Sir William
Petty, a physician and Oxford professor of anatomy accompanying the British army,
was assigned the task of assessing the spoils of war. In the history of economic thought
Petty is often described as the first econometrician, since he portrayed his thinking as
“political arithmetick,” although the term econometrics was not adopted until well into
the twentieth century.1 Petty’s account, documented in Petty (1690, 1691), described
the characteristics of production, distribution, and disposal of the wealth of a nation as
closely interconnected, and the problem of assessing the value of that wealth as properly
reflecting the interrelationships among these characteristics.2 He also recommended in
this work that “just accounts might be kept of the People, with the respective increases
and decreases of them, their wealth and foreign trade,” which led to the first reported
estimates of national economic accounts (Stone, 1973, p. 143).

1 The term econometrics was first coined in the 1920s by Ragnar Frisch, the winner of the very first Nobel
Prize in Economic Science awarded in 1969 (Frisch died in 1973, the year Leontief won the Nobel Prize). The
Econometric Society was founded in 1930, at the initiative of Frisch and Yale economist Irving Fisher.

2 This is reported in the interpretation of Kurz and Salvadori (2000a). Davenant (1699) as reported in Stone (1973)
described Petty’s “political arithmetick” as “the art of reasoning by figures upon things related to government.”

724
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Petty was a pupil of philosopher Thomas Hobbes3 and became known as one of the
so-called Mercantilists who dominated economic thinking during a substantial period of
what is usually referred to as Pre-Classical economics (1500–1676). The Mercantilists
believed that a nation’s wealth came primarily from the accumulation of gold and silver.
The Mercantilist view held that nations without native sources of such resources could
obtain them only by selling more goods than they bought from abroad and, hence,
the political leaders of such nations must intervene extensively in the marketplace,
imposing import tariffs and subsidizing exports to improve the competitiveness of
domestically produced goods abroad. In this sense, mercantilism represented the earliest
elevation of commercial interests to the level of national policy interest, which, of
course, remains an essential element of modern economic policy today. Among the
most enduring concepts of the Mercantilists was Petty’s concept of chronicling the
details of the interdependence of industry, which Charles Davenant (Davenant, 1699),
a contemporary of Petty’s and a fellow Mercantilist, described as the following:4

And perhaps this art alone can show the links and chains by which one business hangs upon another,
and the dependence which all our various dealings have upon each other. (Pyatt, 2000, p. 426.)

While Petty was a Mercantilist in his perspectives and policies, his work included
the first rudiments of what would later become the so-called labor theory of value.
Richard Cantillon, a disciple of Petty and an Irish financier who lived in Paris in the
early eighteenth century, wrote that the intrinsic value of a commodity

is the measure of the quantity of land and of labor entering into its production, having regard to the
fertility or produce of the land and to the quality of labor (Cantillon, 1755, p. 29).

However, Cantillon argued even further that market prices may deviate from the
intrinsic value of a commodity due to a mismatch of demand and availability of that
commodity. He attributed the gross product of an economy to proprietors of land,
farmers, and artisans, emphasizing, for the most part, that all of society subsists on the
basis of the production from the land. Hence, he reasoned, essentially breaking with the
Mercantilists, that the source of any surplus that could account for increasing economic
value can only be attributable to agriculture.

C.2 Quesnay and the Physiocrats

The primacy of agriculture became a central tenet of the Physiocrats, who were a group
of eighteenth century French philosophers known in their time as les economists –
the first economic thinkers to call themselves economists. Physiocracy (tr. “the rule of
nature”), as their school of thought became known, was deeply influenced by “natural
law.” The American economist George Soule describes the Physiocrats as the first

3 The seventeenth century political philosophy of Thomas Hobbes asserts that men in a state of nature, i.e., without
civil government, are in “a war of all against all in which life is hardly worth living.” Hobbes’s solution to such
a dismal state of affairs was to fashion a social contract that establishes the authoritarian state to keep peace and
order (see Routh, 1975).

4 As discussed in Pyatt (2000).
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school of economic thinkers to consider their craft a science, i.e., to “regard their
theory as objectively scientific and to develop a complete and self-contained view of
the economic order as a whole” (Soule, 1952, p. 33).

The Physiocrats were led by French court physician François Quesnay.5 The Phys-
iocrats opposed the Mercantilist policy noted earlier of promoting trade at the expense
of agriculture because they believed that agriculture was the sole source of wealth in
an economy, which they termed produit net, or the net product of the economy. Instead
of heavy government intervention advocated by the Mercantilists, the Physiocrats, like
their contemporary Cantillon, advocated a policy of laissez-faire, which called for
minimal government interference in the economy.6

As the Physiocrats continued to develop their economic theories into the middle of
the eighteenth century, Quesnay, in 1758, conceived his seminal Tableau Économique,
subsequently published in Quesnay (1759), which depicted income flows between eco-
nomic sectors. The Tableau is most remembered for its diagrammatic representation of
how expenditures can be traced through an economy in a systematic way (see Figure
C.1). Quesnay illustrated his thinking by describing how a landowner who receives
a sum of money as rent spends half of this sum on agricultural products and half on
products of artisans. In turn, farmers buy industrial products, artisans buy food and raw
materials, and so on.

Many of Quesnay’s and the Physiocrats’views were considered quite controversial in
their time. For example, as their ideas developed, they stubbornly held to the idea that the
wealth of a nation lies in the size of its produit net, and, as a result, that manufacturing and
commerce added no value to the economy, referring to them as “sterile expenditures.”
This meant that the value of the output of manufacturing and commerce was equal
only to the value of their inputs. In modern parlance this would mean that there was
no “value added” attributable to such enterprises. Virtually all economic theorists have
since concluded that produit net is flawed reasoning. Nonetheless, one concept of lasting
value advanced by the Physiocrats is the idea of the economy as a circular flow of income
and output among economic sectors as reflected in Quesnay’s Tableau. Even the Tableau
was controversial, however, perhaps because of its association with the collection of
the Physiocrats’ controversial ideas, and there were mixed reactions among economic
theorists for the next century and a half, ranging from “genius” (Mirabeau, 1766, and
Marx, 1905) to ignoring it entirely, as it was by most economists for decades, or opining
that “it should be reduced to an embarrassed footnote” (Gray, 1931). As it turned out,
the key to recognizing the lasting value of the notion of circular flow and the Tableau
lay in finding a way to express the underlying ideas mathematically.

5 For most of his life Quesnay was a physician, including serving as the court physician to King Louis XV and his
mistress, the Madame de Pompadour. Quesnay’s interest in economics arose late in his life, at 63 in 1756, when
he was asked as a respected physician and scientist to prepare several articles on the role of agriculture in the
economy. Quesnay drew on the work of Cantillon and many others to advance his ideas. In 1757, his admirers
included the Marquis de Mirabeau and Samuel DuPont de Nemours among others, who continued to champion
his work for many years thereafter (Taylor, 1960, and Meek, 1965).

6 The Physiocrats slogan, often repeated in summarizing their views, was “Laissez faire et laissez passer, le monde
va de lui-même” or, essentially, “don’t interfere, the world will take care of itself” (Soule, 1952).
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Figure C.1 François Quesnay’s Tableau Économique
Source: Alexander Gray. 1931. The Development of Economic Doctrine. London: Longman’s,
Green and Co. Reproduced here with permission of the publisher.
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C.3 Mathematical Formalization

Achille-Nicholas Isnard, a well-known French engineer and another contemporary of
the Physiocrats, was among the strongest critics of the doctrine that only agriculture
was productive. In supporting his position, Isnard (1781) further developed the concept
of production as a circular flow, referring to surplus value as “disposable wealth.”
As reported in Kurz and Salvadori (2000a), who provide detailed accounts of these
developments, Isnard wrote:

In the whole of riches, and setting aside values, there are in reality two parts, one required in production,
the other destined to enjoyments …. The latter is the noble part of goods and the part which is nobly
enjoyed by the proprietors. (Kurz and Salvadori, 2000a, p. 159, from Isnard, 1781, pp. 35–36.)

This notion that the accumulation of wealth depended upon the technical condition of
production as well as the “exigence of nature” challenged the conclusion that industry
is generally not productive. In addition, and most importantly for present purposes,
Isnard was perhaps the first to represent the circular flow of income and expenditure as
a system of simultaneous algebraic equations.

The framework advanced and formalized by Isnard contributed to the conceptual
thinking of English classical economistsAdam Smith (1776) and David Ricardo (1810–
1824) in the late 1700s and early 1800s, but it was a contemporary of Ricardo’s, Robert
Torrens, who, in 1820, seemed to set the stage for Leontief’s eventual breakthroughs.
Torrens was a British army officer and owner of the influential London Globe news-
paper who wrote extensively on economics and was an independent discoverer of
Ricardo’s principle of “comparative advantage” in international trade. Torrens (1820,
1821) postulated that the concept of economic surplus provides the key to an expla-
nation of the share of income attributable to sources other than wages and the rate of
profit.

For present purposes, the key concept in Torrens’s work, described in his essay on
the corn trade (Torrens, 1820), was that when one defines the agricultural rate of profit
in physical terms as the ratio between net corn output and corn input (corn used as seed
and consumed as food for workers) that “the exchange value of manufactured goods
relative to corn is adjusted such that the same rate of profit obtains in manufacturing”
(Kurz and Salvadori, 2000a, p. 161). Showing this relationship, perhaps ironically, on
the one hand, essentially debunked the Physiocrats’ produit net theory while, on the
other hand, refined the analytical connection between profits and various factors of
production as depicted in the Tableau Économique.

Later on in the century, now more than a century after Quesnay’s work and nearly
half a century since Torrens’s ideas were put forth, another French economist, Léon
Walras, applied concepts of Isaac Newton’s mechanics of motion in developing the
early notions of a theory of what we call today general equilibrium in economics,
although some historians of economic thought credit Quesnay’s Tableau as “the first
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method ever devised in order to convey an explicit conception of the nature of economic
equilibrium” (Schumpeter, 1954, p. 217).

Walras’s work, presented mostly in Walras (1874), utilized a set of production coef-
ficients that related the quantities of factors required to produce a unit of a particular
product to levels of total production of that product. Walras’s ideas were heavily
influenced by Isnard’s earlier algebraic formulation.

At the turn of the twentieth century the published work of Karl Marx (probably the
most influential socialist thinker to emerge in the nineteenth century but whose work
was largely published posthumously near the turn of the century), revealed that Marx
was an outspoken champion of the Physiocrats’ theories in perhaps another twist of
irony in this historical path – a socialist espousing laissez-faire. Marx considered the
Physiocrats to be “the true fathers of modern political economy” (Marx, 1894 and 1905,
with additional discussion in Kurz and Salvadori, 2000a). Marx argued that the concept
of the Tableau was unduly neglected by the classical economic theorists for most of
the nineteenth century and essentially resurrected it in his own work.

Marx developed a sequential or what he termed “successivist” procedure for deter-
mining profits and then prices, which was ultimately proved flawed by Russian
mathematical economists Vladimir K. Dmitriev (1898) and Ladislaus von Bortkiewicz
(1907), who demonstrated that the rate of profit and prices must be determined simul-
taneously rather than successively, consistent with the emerging ideas that would
ultimately become the modern concept of general equilibrium.

Von Bortkiewicz, born in St. Petersburg but of Polish ancestry, was among the most
ardent critics of Marx’s work. He spent much of his career teaching economics and
statistics at the University of Berlin, where one of his students was the young Wassily
Leontief. Von Bortkiewicz (1907) was instrumental in demonstrating the concept of
general equilibrium, contradicting Marx’s view, and most importantly expressing his
framework mathematically in an algebraic form. In particular, he assumed that com-
modities are produced from a fixed level of each input for each unit for commodity
output, i.e., what we now often refer to as a linear production function.

C.4 Leontief and the “Economy as a Circular Flow”

Wassily Wassilievich Leontief was born in 1905 in Munich into an intellectual Russian
family and spent his childhood in St. Petersburg during the years leading up to the
Russian Revolution in 1917. In 1921, at the age of fifteen, he was arrested for opposing
the communist dictatorship as it was emerging. The young Leontief was a brilliant
student and was released to enter the University of Leningrad that same year to study
economics following in the footsteps of his father. Following surgery on his jaw in
1925, he was permitted to leave Communist Russia under an exit visa to obtain follow-
up diagnosis and treatment in Berlin (Samuelson, 2004, and Kaliadina and Pavlova,
2006).
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Leontief decided not to return to Russia and entered the University of Berlin to work
with von Bortkiewicz and social scientist Werner Sombart on his doctorate, which he
received in 1929.7 In the late 1920s Leontief began to assemble the ideas for his doctoral
thesis, which he described as “the national economy as a circular process,” drawing
on Quesnay’s Tableau and on Walras’s formalization of general equilibrium, although
Leontief preferred the term “interdependence,” concluding that an economy is never in
equilibrium (DeBresson, 2004). In 1928 he published part of his thesis in the paper, “The
Economy as a Circular Flow” (Leontief, 1928), where he set forth a two-sector “input–
output” system that depicted production, distribution, and consumption characteristics
of an economy as a single integrated system of linear equations. Complete exposition
of his analytical framework would not come for nearly another decade in Leontief
(1936).

Concepts similar to Leontief’s were being conceived at the time of his original work
by the Italian economist Piero Sraffa (Sraffa, 1960, and described in Kurz and Salvadori,
2000b and 2003). In addition a French mathematician, Father Maurice Potron, devel-
oped similar ideas in his writings between 1911 and 1941 (Abraham-Frois and Lendjel,
2006). Despite the somewhat parallel tracks of Leontief, Sraffa, and Potron, it was likely
the intense focus on empirical implementation that ultimately led to widespread use of
Leontief’s framework (Kurz and Salvadori, 2006, and Bjerkholt and Kurz, 2006). Some
theorists characterize Leontief’s model as an approximation of the Walrasian model8

introduced a century earlier, but with several important simplifications that allowed a
theory of general equilibrium to be applied and implemented empirically. Leontief felt,
even very early in his career, that economists placed far too little attention on empirical
verification (DeBresson, 2004).9

Leontief (1941, p. 9) introduces his later empirical work by stating that “this work
may be best described as an attempt to construct a Tableau Économique of the United
States.” Indeed, in Quesnay’s later work (discussed in Phillips, 1955, and more recently
in Steenge and van den Berg, 2007), he placed his observations about circular flow
transactions in the form of a table that resembles the input–output table developed by
Leontief. Quesnay’s original schematic is shown as Figure C.1. However, Leontief’s
contributions went far beyond that of constructing the Tableau or the table of trans-
actions. As can be seen in this volume, in particular, Leontief devised the analytical
foundations that transformed the descriptive nature of the Tableau into an empirical
analytical tool and, today, Leontief’s input–output analysis has become one of the most
widely applied methods in economics (Baumol, 2000).

7 Some fascinating anecdotes of this impressionable time in Leontief’s life are provided in DeBresson (2004).
8 In Leontief’s first book (Leontief, 1941), The Structure of American Economy, he referred to only three other

economists’ works: François Quesnay, Léon Walras, and David Ricardo.
9 In 1971 Leontief, serving as president of theAmerican EconomicAssociation that year, delivered his presidential

address entitled “Theoretical Assumptions and Non-observed Facts,” which took the economics profession to
task for failing to underscore the need for empirical verification of economic theory.
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C.5 Development of Input–Output Analysis

Following his graduate studies in Berlin, Leontief joined the staff of the Institute of
World Economics in Kiel in 1927 where he carried out research on derivation of sta-
tistical demand and supply curves. After a year-long assignment as an advisor to the
China Ministry of Railroads, Leontief moved to New York to join Simon Kuznets
at the National Bureau of Economic Research in 1931. In the following year Joseph
Schumpeter brought Leontief to the faculty at Harvard University where he began work
on the first input–output tables for the US economy.

With Leontief’s arrival at Harvard also came the university’s first mathematical
lectures on economics, although he seldom included his own research in his lectures
(Solow, 1998, and Samuelson, 2004). In 1936 Leontief presented the theoretical frame-
work for input–output analysis and US interindustry transactions tables for 1919 and
1929 (Leontief, 1936), followed somewhat later by his first book on the input–output
structure of the US economy (Leontief, 1941).

Beginning in 1941, just prior to US entry into World War II, Leontief in collaboration
with the US Government’s Bureau of Labor Statistics (BLS), began preparation of a US
transactions table for 1939, which was essentially completed in 1943 (Kholi, 2000 and
2001) to be used by the War Mobilization Board for planning postwar demobilization
and, in particular, analyzing the implications of decreases in war spending and increases
in personal consumption through detailed projections of employment by industry in the
US economy.

Also during the war, Leontief was called upon to work for the Office of Strategic
Services (OSS), an early predecessor of today’s Central Intelligence Agency, to assem-
ble a classified input–output table for Germany for war planning and, later, to analyze
the issue of postwar German reparations.10

In implementing his empirical work Leontief made use of the first large scale mechan-
ical computing machinery in 1935 and later the first commercial electro-mechanical
computer, the IBM Automatic Sequence Controlled Calculator (called the Mark I),
originally designed under the direction of Harvard mathematician Howard Aiken in
1939, built and operated by IBM engineers in Endicott, New York for the US Navy,
and eventually moved to Harvard in 1944.

Following World War II, in 1948, as the Cold War loomed, a government interagency
project funded by the Air Force’s Planning Research Division, known as Scientific
Computation of Optimum Programs (SCOOP), was initiated to update the 1939 US
interindustry transactions table to 1947. In that same year Leontief founded the Harvard
Economics Research Project (HERP), which focused on continuing to develop the
input–output framework and applications. Project SCOOP’s activities were greatly
expanded as the Korean War erupted in 1950 to include analysis of possible obstructions

10 According to Leontief’s second protégé at Harvard, Paul Samuelson, the OSS involvement of Leontief’s work
during World War II was initiated with the help of Leontief’s first protégé, Abram Bergson, who during the war
had become head of the OSS Russian desk (Samuelson, 2005).
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to wartime mobilization (Kohli, 2001) and much progress was made in the ability to
work with large-scale input–output tables of more than 500 industrial sectors (Klein,
2001), although Leontief and others published only much more aggregated tables at
the time. For example, Leontief’s 1951 revision of his 1941 book (Leontief, 1951) was
enlarged and expanded and included the US input–output table for 1939 (previously
unpublished by BLS) and Evans and Hoffenberg (1952) published the 1947 table.

In the postwar period, input–output accounts began to be routinely developed in
the United States and elsewhere around the world, although ironically for a period
during the Cold War era, the US suspended work on constructing input–output tables
because it smacked of communist “central planning” while, at around the same time,
the Chinese Government shut down its preparation of input–output tables because it
considered input–output to be a tool of capitalism (Polenske, 1999). The US Bureau of
Economic Analysis (BEA) began preparing the US national input–output tables with
the 1958 table published in 1964, and since then so-called “benchmark” tables have
been published every five years corresponding to the quinquennial national economic
census (every five years for years ending with 2 and 7, e.g., 1992, 1997, 2002, and
2007)11, since the primary source of data for the input–output accounts is the national
economic census. A key use of the input–output accounts in the United States since
BEA began preparing them was and continues to be as a tool for, and a check on the
accuracy and consistency of, a variety of other economic accounts (Landefeld and
McCulla, 1999). Since 1957, input–output tables have also been routinely constructed
in the United Kingdom, Norway, Denmark, the Netherlands, Italy, Canada, Japan and
increasingly many other countries around the world.

Of particular importance in making input–output analysis a widely applied tool of
economic analysis was the development of a standardized system of economic accounts
built around input–output concepts developed under the direction of Richard Stone
(Stone, 1961) in recognition of which he received the Nobel Prize in Economic Science
in 1984 (Stone, 1997).

Further additional developments to Leontief’s original model are presented in, among
others, Leontief et al. (1953) and Leontief (1966a, 1966b, and 1974) and in volumes of
proceedings of many international conferences on input–output techniques summarized
in Table C.1. Summaries of many of these developments are included in Stone (1984)
and Rose and Miernyk (1989).

Leontief’s work as HERP’s director continued until 1973 (Polenske, 1999) and, after
44 years, he left Harvard in 1975, but continued his research and teaching on input–
output at New York University until his death at age 93 in 1999. Professor Leontief’s
legacy is rich and vast, as illustrated by the scale and scope of the topics that have
followed from his original work that are described in this volume.

11 Highly aggregated versions of these tables are included in Appendix B.
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Table C.1 Selected International Conferences on Input–Output Analysis

Conference Publication (Selected Papers)

Date Location Sponsor(s) Title Editor(s) Publisher, Date

1 1950 Driebergen,
The
Netherlands

Netherlands
Economic Institute

Input–Output
Relations

Netherlands
Economic
Institute

H. E. Stenfert
Kroese, 1953

2 1954 Varenna, Italy University of Pisa;
Varenna Foundation

The Structural
Interdependence of
the Economy

Tibor Barna Chapman and
Hall, 1956

3 1961 Geneva,
Switzerland

United Nations;
Harvard Economic
Research Project

Structural
Interdependence
and Economic
Development

Tibor Barna Macmillan,
1963;
St. Martin’s
Press, 1967

4 1968 Geneva,
Switzerland

United Nations;
Harvard Economic
Research Project

Vol. 1:
Contributions to
Input–Output
Analysis
Vol. 2: Applications
of Input–Output
Analysis

Anne P. Carter
and András
Bródy

North-Holland,
1970

5 1971 Geneva,
Switzerland

Secretariat of the
United Nations;
Harvard Economic
Research Project

Input–Output
Techniques

András Bródy
and Anne P.
Carter

North-Holland,
1972

6 1974 Vienna,
Austria

United Nations
Industrial
Development
Organization
(UNIDO)

Advances in
Input–Output
Analysis

Karen R.
Polenske and
Jiří V. Skolka

Ballinger, 1976

7 1979 Innsbruck,
Austria

UNIDO Proceedings of the
Seventh
International
Conference on
Input–Output
Techniques

UNIDO, 1984

8 1986 Sapporo,
Japan

UNIDO; University
of Hokkaido

Advances in
Input–Output
Analysis.
Technology,
Planning, &
Development∗

William
Peterson

Oxford
University Press,
1991

9 1989 Keszthely,
Hungary

IIOA; Hungarian
Academy of Sciences;
UNIDO

10 1993 Seville, Spain IIOA;
Economic and
Finance Department
of the Andalusian
Government
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Table C.1 (cont.)

Conference Publication (Selected Papers)

Date Location Sponsor(s) Title Editor(s) Publisher, Date

11 1995 New Delhi,
India

IIOA

12 1998 New York,
USA

IIOA;
C.V. Starr Center for
Applied Economics,
New York University;
Faculty of Economics,
University of
Groningen;
US Depart-
ment of Agriculture;
US Depart-
ment of Commerce,
Bureau of Economic
Analysis

Selected papers online
at IIOA website
(www.iioa.org)

13 2000 Macerata,
Italy

IIOA; University of
Macerata

Selected papers online
at IIOA website
(A few conference
papers also appear in
Wassily Leontief and
Input–Output
Economics)

Erik
Dietzenbacher
and Michael
L. Lahr

Palgrave, 2004

14 2002 Montreal,
Canada

IIOA; Université du
Québec à Montréal;
Statistics Canada

Selected papers online
at IIOA website and
also in Changement
Climatique, Flux
Technologiques,
Financiers et
Commerciaux

L. Martin
Cloutier,
Christian
DeBresson
and Erik
Dietzenbacher

Presses de
l’Université du
Québec, 2004

15 2005 Beijing, China IIOA; Renmin
University of China;
Chinese Input–Output
Association

Conference program,
book of abstracts and
selected papers online
at IIOA website

16 2007 Istanbul,
Turkey

IIOA; Department of
Management, Istanbul
Technical University

Conference program
and selected papers
online at IIOA website

Notes: Anne Carter and Josef Richter contributed information used in compiling this table.
∗At least one paper from the Sapporo Conference is included in Ronald E. Miller, Karen
R. Polenske and Adam Z. Rose (eds.). 1989. Frontiers of Input–Output Analysis. New York: Oxford
University Press – Chapter 11 by Wolff and Howell.
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Table C.1 (cont.)

Conference Reports
Gelei, Anna. 1990. “On the Ninth International Conference on Input-Output Techniques,” Economic

Systems Research, 2, 96–100.
Schumann, Jochen. 1994. “Report on the Tenth International Conference on Input-Output Techniques

in Seville,” Economic Systems Research, 6, 110–116.
Rainer, Norbert. 1996. “Report on the New Delhi Conference 1995,” Economic Systems Research, 8,

422–430.
Dietzenbacher, Erik. 1998. “Report on the 1998 IIOA Conference in New York,” Economic Systems

Research, 10, 371–378.
Lahr, Michael L. 2001. “Report on the Macerata Conference,” Economic Systems Research, 13,

317–329.
Dietzenbacher, Erik. 2003. “Report on the Montreal Conference,” Economic Systems Research, 15,

399–414.
Sakurai, Norihisa. 2006. “Report on the 15th International Input-Output Conference, 27 June – 1 July
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