
THE INADEQUACY OF TESTING DYNAMIC THEORY BY 
COMPARING THEORETICAL SOLUTIONS AND 

OBSERVED CYCLES* 

By TRYGVE HAAVELMO 

IN MODERN business-cycle research the following proceeding is being 
commonly used: First, a mathematical model (a determinate dynamic 
system) is set up, as an attempt to describe approximately the inter- 
connections between a set of economic variables, their time derivatives, 
lagged values, and so on, in terms of strict functional relations. By 
some statistical procedure the constants in the system are estimated 
from the corresponding observed time series. Then the system is 
"solved," i.e., the variables are expressed as explicit functions of time, 
involving the estimated parameters. The degree of conformity between 
these theoretical solutions and the corresponding observed time series 
is used as a test of the validity of the model. In particular, since most 
economic time series show cyclical movements, one is led to consider 
only mathematical models the solutions of which are cycles correspond- 
ing approximately to those appearing in the data.' This means that 
one restricts the class of admissible hypotheses by inspecting the 
apparent form of the observed time series. 

This condition for a "good" theory is of course not a sufficient one, 
since there are in general many different a priori setups of theory which 
are capable of reproducing approximately the observed cycles. But, 
what is more important, it may not even be a necessary condition, and 
its application may result in a dangerous and misleading discrimina- 
tion between theories. The whole question is connected with the type 
of errors we have to introduce as a bridge between pure theory and 
actual observations. Compared with actual observations, each equa- 
tion in a dynamic model splits the observed variations into two parts, 
one part which is "explained" by the equation, and another part 
which is not accounted for, and which is ascribed to external factors. 
This kind of splitting is common to all theory. We usually consider 
such equations as "good" and "useful" theories if, in order to get full 
agreement between theory and observations, it is and continues to be 
sufficient to allow for only relatively small and random external factors. 

There are two main ways in which such external factors may be 
* The author feels much indebted to Dr. J. Marschak and Dr. A. Wald for 

reading the manuscript and for many valuable comments. 
1 E.g., M. Kalecki, ("A Macrodynamic Theory of Business Cycles," ECONO- 

METRICA, Vol. 3, No. 3, July, 1935, p. 336), goes so far as to impose on his system 
not only the condition of cyclical solutions, but also the condition of constant 
amplitude (no damping) in order to produce maintained oscillations which can 
be directly compared with the observed cycles. 
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TESTING DYNAMIC THEORY 313 

combined with the theoretical setup, and they have fundamentally 
different consequences for our "explanation" of observed cycles. 

One way is to consider the set of fundamental equations as exact 
equations without errors, i.e., they describe an ideal hypothetical 
model. We may perform certain elimination operations in order to get 
a set of final equations, each containing only one unknown time func- 
tion. Solving these final equations we obtain the general theoretical 
form of the time expansions of each variable. Then we may adjust the 
parameters at our disposal in these general solutions so as to make the 
theoretical solutions fit the observed time series "as well as possible."2 
Following this approach we are led to consider the difference between 
theoretical and observed series as additive errors superimposed on the 
theoretical time movement of the variables. (This assumption under- 
lies the method of periodogram analysis and other mechanical "decom- 
posing" methods.) If these superimposed errors are supposed to be 
random, and if the observed series show clear cycles, there must be 
cycles in the theoretical ("error-free") time expansions. If not, we may 
be justified in rejecting the theory as unrealistic. 

Another way is to introduce the errors explicitly in the original 
set of fundamental equations describing our model. Then we have to 
carry these errors along in the elimination process, and we end up 
with final equations which contain certain stochastical elements. This 
latter scheme turns out to be the one actually chosen in most of the 
modern studies of dynamic systems.3 Usually this is not explicitly 
stated; but it is implied in the commonly used proceeding of fitting the 
fundamental equations in a dynamic system to data in order to get 
estimates of the coefficients. All such fittings admit some unexplained 
residuals-in the best case-of a random character. Such errors may 
not seriously affect the "explanatory" value of each fundamental equa- 
tion taken separately, i.e., we may get a close connection between 
"calculated" and "observed" values for each of these equations. Here 
the unexplained residuals enter merely as errors of estimation, and 
they may be small. But the same does not apply to the form of the 
solution we obtain from the final stochastical equations. Here the 

2 See, e.g., F. W. Dresch, "A Simplified Economic System with Dynamic Ele- 
ments," Cowles Commission for Research in Economics, Report of Fifth Annual 
Research Conference .... ,1939, pp. 18-21. He writes (p. 20): "In such a solution 
each variable of the system will be expressed as a function of time in terms of the 
constants defining the assumed functions. By choosing the values of these 
constants in such a way that the theoretical time curves for these variables cor- 
respond as well as possible (in some sense or other) to the observed time series 
for these variables, one can "fit" such a model to the actual economy." 

3 See, in particular, several recent works of Professor Tinbergen and his fol- 
lowers. 
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error terms play a much more fundamental role. Indeed, the form of 
the final solutions (the time series) obtained if errors are neglected 
throughout and the form obtained when the errors are taken account 
of may show widely different patterns. From the fact that each funda- 
mental equation taken separately shows only small random errors 
(i.e., our model is realistic) there does not necessarily follow any close 
similarity between the form of the observed series and that of the 
theoretical solutions obtained by neglecting the errors. In particular, 
the solutions obtained by neglecting all error terms may not show 
cycles at all, while clear cycles appear as soon as the error terms are 
included. Therefore, if we admit certain error terms in the system of 
fundamental equations, we have to investigate the effect of these 
errors upon the shape of the final solutions. It must be noticed that 
the assumption of errors in the system of fundamental equations is- 
except in very particular cases-incompatible with an assumption of 
simple superimposed errors in the final solutions as described above. 

We shall now consider a constructed example which will throw some 
light upon these questions. We shall choose a very simple scheme, fre- 
quently occurring in economic dynamics. 

Let x(t) be an observable economic time series, and let the elimina- 
tion result of a dynamic system be 

(1) x(t) + aix(t- 1) + a2x(t-2) = E(t-1) (t = to + 2, to + 3, . ), 

where a, and a2 are constants and e(t) a random variable with expecta- 
tion equal to zero and constant finite variance for all integral values of 
t and zero elsewhere; to is the initial point of time. This means that 
x(t) is not uniquely determined by the past, because each "year" new 
things happen. Such assumptions, in one form or another, underlie all 
dynamic theories which claim to have some relevance to facts. We 
write E(t - 1) instead of E(t) because it is more realistic to assume that 
the external factors do not have immediate consequence for the variable 
considered. Moreover, it simplifies our example as shown below. 

Now let us first consider the solution of (1). The principal solution of 
the homogeneous equation 

(2) x(t) + aix(t - 1) + a2x(t- 2) = 0 

is 

(3) xi(t) = AeP(t-to) + BeP2(t-to) 

where 

- a, + V/a2 - 4a2 - a, - V\a2 - 4a2 
(4) ep = ep2 = 

2 2 
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pi and P2 being real or complex numbers, and A and B arbitrary con- 
stants. Now let 

(5) X(r) (T > 0) 

be a particular integral of (2) obtained from (3) by assigning to A and 
B certain specific values to be disposed of later. X(T) therefore satisfies 
the difference equation 

(6) X (r + 2) + aiX (r + 1) + a2X (T) =0 (? >_ 0). 

Consider the expression: 

t-to 

(7) v(t) = ETX(T) e (t - r). 
0 

We may write down the identity 

t-to 

v(t) + aiv(t - 1) + a2v(t - 2) -EX(r)E(t-T) 

(8) -t--1 t-to-2 

+ a, Z1X&r)E(t - -1) + a2 ZX(r) c- (t -T 2). 
0 o 

The right-hand side of (8) may be written 

t-to-2 t-to-2 

EZX(r + 2)E(t - T - 2) + a, ETX(r + 1)E(t - r - 2) 
0 0 

t-to-2 

+ a2 J>X(r)E(t - T - 2) 
0 

+ X(O)e(t) + X(l)E(t - 1) + a1X(O)E(t-1) 
t-to-2 

= E { (t - T - 2) [X(T + 2) + a1X(T + 1) + a2X(T)]} 
0 

+ X(O)E(t) + [a1X(O) + X(1)I3E(t - 1), 

where the first expression in square brackets =0 because of (6). Hence 

(9) v(t) + a1v(t - 1) + a2v(t - 2) = X(O)E(t) + [a1X(0) + X(1) ]e(t - 1). 

Now we shall dispose of the arbitrary constants in X(T) so that 

(10) W~~~~~(O) = 0, 

(10) X(1) = 1. 

Then v(t) satisfies a difference equation which is identical with (1). 
The complete solution of (1) is therefore, by adding (3) and (7), 

This content downloaded from 193.54.67.91 on Sun, 1 Sep 2013 14:57:27 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


316 TRYGVE HAAVELMO 

t- to 

(11) X(t) = Xj(t) + ETX(r)E(t - r). 
0 

X(r) is here completely determined by (6) and (10). It is seen that, if 
(3) represents a damped sine curve or two damped exponentials, then 
xl(t) will practically vanish after some time and then x(t) depends al- 
most entirely upon the cumulation process v(t). Now v(t), being a 
linear combination of E's, is a random variable with expectation equal 
to zero for each point of time taken separately. But v(t) and v(t -1) will 
in general be serially correlated, the correlation depending upon the 
weights X(r). When the weights X(r) are damped the variances a2v(t) of 
v(t) will be finite for every t, and for large (t-to) they approach the 
upper limit 

00 

(12) (v2- =.2. ET X2(r) 
0 

where the sum is certainly convergent when X(r) is damped exponen- 
tially. The smaller the damping the greater will be the average ampli- 
tude of x(t). It is well known that, when X(r) is a damped sine curve, 
the series v(t) will show distinct cyclical movements with a principal 
period corresponding on the average to that of the harmonic factor in 
X(r). But also when X(r) is a sum of pure damped exponentials there 
will in general be some cyclical movements in v(t). Intuitively this may 
be seen by the following simple considerations: When X(r) is damped, 
v(t- K) and v(t) will, for sufficiently large K, be practically independent 
in the probability sense. Therefore, as v(t) has expectation zero, the 
average of v(t) over a long period must tend to zero as the variance of 
v(t) is finite. But because v(t) is certainly not always zero, as is seen 
from (12), v(t) will have to oscillate in some way around zero, and 
because of the serial correlation in v(t) these oscillations will show some 
"stickiness." For example, positive serial correlation between v(t) and 
v(t- 1) increases the probability of iterations, i.e., consecutive positive 
or consecutive negative terms in v(t) as compared with E(t).4 

We shall discuss a constructed example corresponding to scheme (1) 
where the solution of the homogeneous equation (2) is a sum of two 
damped exponentials. The example is 

(13) x(t) - 1.2x(t - 1) + 0.3x(t - 2) = E(t - 1). 

The random series e(t) was constructed from results of drawings in the 
Danish Class Lottery. Each e(t) is the average of 10 independent ob- 

4 Methods for determining a priori the principal characteristics of such cumula- 
tive cycles have been worked out by Professor Frisch at the Institute of Eco- 
nomics, Oslo, but they have not yet been published. 
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TESTING DYNAMIC THEORY 317 

servations from a rectangular distribution of the integers 0, 1, 2, 
9. The expected value, 4.5, was subtracted; therefore 

(14) E(e) = 0, 

(15) 2= 8.25. 

The series e(t) is shown in Figure 2. 
The homogeneous equation 

(16) x(t) - 1.2x(t - 1) + 0.3x(t - 2) = 0 

has the solution 

(17) x1(t) = Ae-17t + Be-104t 

where A and B are arbitrary constants. Choosing X(O)=0, X(1)=1, 
the weights X(r) become 

(18) X(r) = 2.04(e-O.17T -e-1.O4T) 

the graph of which is shown in Figure 1. This curve shows (apart 
from a constant factor) the time development of x(t) which would fol- 

1.0 

0.5 

0 5 10 15 X 

FIGURE 1.-The structural movement of the system [formula (18)]. 

low if x(t) had been zero for two or more years, then suddenly received 
a positive impulse, and later were allowed to move uninterruptedly. 

Now there are hardly any economic series the movements of which 
show resemblance to those of Figure 1: "The theory does not describe 
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TESTING DYNAMIC THEORY 319 

the facts." But here we must distinguish between two different ways 
of using the theory (16). When we want to calculate x(t) in terms of the 
previously observed values x(t- 1) and x(t-2), E(t) plays only the role 
of errors of estimation, and if the E's are small (16) is a "good" theory. 
But when we want to study the observed form of x(t) we must consider 
the general equation (13). In Figure 2 the series x(t) has been calculated 
step by step by means of (13), starting from two arbitrary initial con- 
ditions chosen close to zero. When we speak of cycles in economic data, 
we hardly think of more regular waves than the 9-10 "years" cycle 
shown by this curve. The series has a longer wave too, and none of 
these characteristic movements appear in the series X or E. The argu- 
ment that a theory giving noncyclical theoretical solutions should be 
rejected when the observations show cycles, therefore, cannot be as- 
sumed to have general validity.5 

Let us assume that the theory (2) has been well established on care- 
ful a priori considerations. And suppose, for example, that our observa- 
tion material is the curve x(t) in Figure 2 for the 52 years from t= 10 
to t=61, inclusive, the later observations being in the future. This 
part of the curve has very distinct cycles, and it also seems to have an 
approximately linear "trend." This "trend" looks unfavorable to our 
a priori theory. Nevertheless, having the general equation (1) in mind, 
and fitting the equation (2) to the observations, we shall obtain a 
useful result. Indeed, taking the regression of x(t) on x(t-1) and 
x(t-2), which gives a consistent estimate of the coefficients, since 
x(t-1) and x(t-2) do not depend upon E(t-1), we obtain 

(19) x(t) - 1.1x(t - 1) + 0.26x(t - 2) = 0. 

A period covering 52 observations (t = 10 to t = 61) was used in order 
to have 50 observations net of each variable in (19). The solution of 
(19) gives two damped exponentials, e-0 29t and e-l0-Ot, showing a little 
heavier damping than the theoretical. Taking the deviations between 
observed and calculated values of x(t), we should see that they are 
random, and having the general equation (1) in mind, we should con- 
clude that it is sufficient to allow for some random events in order to 
have full agreement between our theory and the observations. The 
fitting to data has added to our knowledge the fact that the structural 
movements of the system are exponentials, not cycles. This question 
was left open in the a priori theory. The theory was also capable of 
giving cycles. 

5 For actual examples from economic data where the theoretical solutions 
turned out to be pure damped exponentials, see the author's article "The Method 
of Supplementary Confluent Relations, Illustrated by a Study of Stock Prices," 
ECONOMETRICA Vol. 6, No. 3, July, 1938, pp. 216-218. 
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The usefulness of (19) for prediction purpose is shown in the dotted 
curve (t=62, 63, ) in Figure 2, where x(t) is forecasted one year 
ahead by means of (19), using observed values of x(t- 1) and x(t-2). 
It is seen that the "best" forecast comes almost to the same as assum- 
ing that the value of x "next year" will be equal to the value "this 
year." 

Now let us again suppose that (2) is the a priori theory, but turning 
to our data, i.e., x(t) (t = 10, 11, , 61), we become doubtful. There 
"must" be a trend, and we change our theory to take account of it. 
Frequently this is done even if there are no justified a priori arguments 
for any sort of trend. The "trend" looks fairly linear, and the cycles 
around it are striking. Suppose, therefore, one assumes the trend to be 

(20) x(t) = kt + b (k and b constant). 

The theory (2) is now assumed to hold in the data adjusted for trend, 
i.e., 

(21) [x(t)-x(t)]+al[x(t-1)-x(t-1) ]+a2 [x(t-2)-x(t-2) O=, 

or, by introducing (20), 

(22) x(t) + a1x(t - 1) + a2x(t - 2) = clt + c2, 

where 

(23) cl= (1+ a + a2)k, c2= (1+ a + a2)b- (a? + 2a2)k. 

Now, fitting the equation (22) to the data x(t), (t=10, 11, . , 61) 
by taking the regression of x(t) on x(t-1), x(t-2), and t (=12, 13, 
14, . , 61), we get 

(24) x(t) - 0.96x(t - 1) + 0.37x(t - 2) = 0.031t - 0.71. 

The fit to the data within the observation period is of course here better 
than, or at least as good as, that obtained by (19), since we now have 
had two more parameters (cl and c2) at our disposal. Using (23) we 
obtain: 

(25) x(t) = 0.076t - 1.78 (t = 12, 13, . . , 61). 

This "trend" is shown in Figure 2. 
Solving the homogeneous equation (21) and inserting a =-0.96, 

a2=0.37, we get: 

(26) x (t) (t) = Ce- 049t sin (m + 0.66t), 

where C and m are arbitrary constants. This is a damped cycle, the 
period of its harmonic factor being 
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2ir 
(27) P = 0 = about 9.5 "years, 

0.66 

which is fairly close to the apparent period in the observed series. Al- 
though we still should need some external forces to outweigh the 
damping, since the observed cycle is not systematically damped, we 
now seem to have some "explanation" of the cycle. In our case we 
know of course from the construction of the example that this "expla- 
nation" has no sense at all. We have obtained this "explanation" by 
using the apparent form of the data to formulate our theory. By doing this 
we have introduced into the theory and explained as structure things which 
are merely the effect of cumulation of random events. 

Using the equation (24) for forecast one "year" ahead in the same 
way as we did in the first case, we obtain the curve with cross bars 
(t = 62, 63, ) in Figure 2. The formula (24) is clearly useless 
for forecast purpose. It may be of interest to notice that the coefficients 
0.37 and 0.031 in (24) are about three times their standard errors, and 
the coefficient 0.96 is about seven times its standard error. The co- 
efficient of multiple correlation between x(t) and the other variables 
is 0.88. 

CONCLUSIONS 

It seems possible to explain observed cyclical movements by the 
combination of a structure which is noncyclic, but which contains 
inertial forces, and outside influences of random events. This possibility 
should not be excluded a priori; it should be left to be determined by 
fitting to data. 

"Correction" of the form of a priori theory by pure inspection of the 
apparent shape of time series is a very dangerous proceeding and may 
lead to spurious "explanations." In particular, the fitting of apparent 
trends which are not strongly justified on a priori reasons may lead 
to nonsensical results. Frequently such trend fittings will lead to the 
conclusion that there are later changes in structure (for example during 
the period t =65 to t =68 in our constructed example) when the real 
explanation is the disappearance of spurious elements introduced in 
our theory by the trend fitting. 

University Institute of Economics 
Oslo 
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