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Editors’ Introduction
Terence C. Mills and Kerry Patterson

The Palgrave Handbook of Econometrics was conceived to provide an understand-
ing of major developments in econometrics, both in theory and in application.
Over the last twenty-five years or so, econometrics has grown in a way that few
could have contemplated, and it became clear to us, as to others, that no sin-
gle person could have command either of the range of technical knowledge that
underpins theoretical econometric developments or the extent of the application
of econometrics. In short, econometrics is not, as it used to be considered, a set of
techniques that is applied to a previously well-defined problem in economics; it is
not a matter of finding the “best” estimator from a field of candidates, applying
that estimator and reporting the results. The development of economics is now
inextricably entwined with the development of econometrics.

The first Nobel Prize in Economics was awarded to Ragnar Frisch and Jan Tinber-
gen, both of whom made significant contributions to what we now recognize as
applied econometrics. More recently, Nobel Prizes in Economics have been awarded
to Clive Granger, Robert Engle, James Heckman and Daniel McFadden, who have
all made major contributions to applied econometrics. It is thus clear that the dis-
cipline has recognized the influential role of econometrics, both theoretical and
applied, in advancing economic knowledge.

The aim of this volume is to make major developments in applied economet-
rics accessible to those outside their particular field of specialization. The response
to Volume 1 was universally encouraging and it has become clear that we were
fortunate to be able to provide a source of reference for others for many years to
come. We hope that this high standard is continued and achieved here. Typically,
applied econometrics, unlike theoretical econometrics, has always been rather
poorly served for textbooks, making it difficult for both undergraduate and post-
graduate students to get a real “feel” for how econometrics is actually done. To
some degree, the econometric textbook market has responded, so that now the
leading textbooks include many examples; even so, these examples typically are
of an illustrative nature, focusing on simple points, simply exposited, rather than
on the complexity that is revealed in practice. Thus our hope is that this vol-
ume will provide a genuine entry into the detailed considerations that have to be

xi
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xii Editors’ Introduction

made when combining economics and econometrics in order to carry out serious
empirical research.

As in the case of Volume 1, the chapters here have been specially commissioned
from acknowledged experts in their fields; further, each of the chapters has been
reviewed by the editors, one or more of the associate editors and a referee. Thus,
the process is akin to submission to a journal; however, whilst ensuring the highest
standards in the evaluation process, the chapters have been conceived of as part
of a whole rather than as a set of unrelated contributions. It has not, however,
been our intention to provide just a series of surveys or overviews of some areas of
applied econometrics, although the survey element is directly or indirectly served
in part here. By its very nature, this volume is about econometrics as it is applied
and, to succeed in its aim, the contributions, conceived as a whole, have to meet
this goal.

We have organized the chapters of this volume of the Handbook into ten parts.
The parts are certainly not watertight, but serve as a useful initial organization of
the central themes. Part I contains three chapters under the general heading of
“The Methodology and Philosophy of Applied Econometrics.” The lead chapter is
by David Hendry, who has been making path-breaking contributions in theoretical
and applied econometrics for some forty years or so. It is difficult to conceive how
econometrics would have developed without David’s many contributions. This
chapter first places the role of applied econometrics in an historical context and
then develops a theory of applied econometrics. As might be expected, the key
issues are confronted head-on.

In introducing the first volume we noted that the “growth in econometrics is to
be welcomed, for it indicates the vitality and importance of the subject. Indeed,
this growth and, arguably, the dominance over the last ten or twenty years of
econometric developments in taking economics forward, is a notable change from
the situation faced by the subject some twenty-five years or so ago.” Yet in Chapter
1, Hendry notes that, next to data measurement, collection and preparation, on the
one hand, and teaching, on the other, “Applied Econometrics” does not have a high
credibility in the profession. Indeed, whilst courses in theoretical econometrics or
econometric techniques are de rigueur for a good undergraduate or Masters degree,
courses in applied econometrics have no such general status.

The intricacies, possibly even alchemy (Hendry, 1980), surrounding the mix of
techniques and data seem to defy systematization; perhaps they should be kept
out of the gaze of querulous students, who may – indeed should – be satisfied with
illustrative examples! Often to an undergraduate or Masters student undertaking a
project, applied econometrics is the application of econometrics to data, no more,
no less, with some relief if the results are at all plausible. Yet, in contrast, leading
journals, for example, the Journal of Econometrics, the Journal of Applied Economet-
rics and the Journal of Business and Economic Statistics, and leading topic journals,
such as the Journal of Monetary Economics, all publish applied econometric articles
having substance and longevity in their impact and which serve to change the
direction of the development of econometric theory (for a famous example, see
Nelson and Plosser, 1982). To some, applying econometrics seems unsystematic
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and so empirical results are open to question; however, as Hendry shows, it is
possible to formalize a theory of applied econometrics which provides a coher-
ent basis for empirical work. Chapter 1 is a masterful and accessible synthesis and
extension of Hendry’s previous ideas and is likely to become compulsory reading
for courses in econometrics, both theory and applied; moreover, it is completed by
two applications using the Autometrics software (Doornik, 2007). The first appli-
cation extends the work of Magnus and Morgan (1999) on US food expenditure,
which was itself an update of a key study by Tobin (1950) estimating a demand
function for food. This application shows the Autometrics algorithm at work in a
simple context. The second application extends the context to a multiple equation
setting relating industrial output, the number of bankruptcies and patents, and real
equity prices. These examples illustrate the previously outlined theory of applied
econometrics combined with the power of the Autometrics software.

In Chapter 2, Fabio Canova addresses the question of how much structure there
should be in empirical models. This has long been a key issue in econometrics, and
some old questions, particularly those of identification and the meaning of struc-
ture, resurface here in a modern context. The last twenty years or so have seen
two key developments in macroeconometrics. One has been the development of
dynamic stochastic general equilibrium (DSGE) models. Initially, such models were
calibrated rather than estimated, with the emphasis on “strong” theory in their
specification; however, as Canova documents, more recently likelihood-based esti-
mation has become the dominant practice. The other key development has been
that of extending the (simple) vector autoregression (VAR) to the structural VAR
(SVAR) model. Although both approaches involve some structure, DSGE models,
under the presumption that the model is correct, rely more on an underlying the-
ory than do SVARs. So which should be used to analyze a particular set of problems?
As Canova notes: “When addressing an empirical problem with a finite amount of
data, one has . . . to take a stand on how much theory one wants to use to structure
the available data prior to estimation.” Canova takes the reader through the advan-
tages and shortcomings of these methodologies; he provides guidance on what to
do, and what not to do, and outlines a methodology that combines elements of
both approaches.

In Chapter 3, John DiNardo addresses some philosophical issues that are at
the heart of statistics and econometrics, but which rarely surface in economet-
ric textbooks. As econometricians, we are, for example, used to working within
a probabilistic framework, but we rarely consider issues related to what probabil-
ity actually is. To some degree, we have been prepared to accept the axiomatic
or measure theoretic approach to probability, due to Kolgomorov, and this has
provided us with a consistent framework that most are happy to work within.
Nevertheless, there is one well-known exception to this unanimity: when it comes
to the assignment and interpretation of probability measures and, in particular, the
interpretation of some key conditional probabilities; this is whether one adopts a
Bayesian or non-Bayesian perspective. In part, the debate that DiNardo discusses
relates to the role of the Bayesian approach, but it is more than this; it concerns
metastatistics and philosophy, because, in a sense, it relates to a discussion of the
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theory of theories. This chapter is deliberately thought-provoking and certainly
controversial – two characteristics that we wish to encourage in a Handbook that
aims to be more than just an overview. For balance, the reader can consult Volume
1 of the Handbook, which contains two chapters devoted to the Bayesian analysis of
econometric models (see Poirier and Tobias, 2006, and Strachan et al., 2006). The
reader is likely to find familiar concepts here, such as probability and testing, but
only as part of a development that takes them into potentially unfamiliar areas.
DiNardo’s discussion of these issues is wide-ranging, with illustrations taken from
gambling and practical examples taken as much from science, especially medicine,
as economics. One example from the latter is the much-researched question of the
causal effect of union status on wages: put simply, do unions raise wages and, if so,
by how much? This example serves as an effective setting in which to raise issues
and to show that differences in approach can lead to differences in results.

For some, the proof of the pudding in econometrics is the ability to forecast
accurately, and to address some key issues concerning this aspect of economet-
rics Part II contains two chapters on forecasting. The first, Chapter 4, by Michael
Clements and David Harvey, recognizes that quite often several forecasts are avail-
able and, rather than considering a selection strategy that removes all but the best
on some criterion, it is often more fruitful to consider different ways of combining
forecasts, as suggested in the seminal paper by Bates and Granger (1969). In an
intuitive sense, one forecast may be better than another, but there could still be
some information in the less accurate forecast that is not contained in the more
accurate forecast. This is a principle that is finding wider application; for example,
in some circumstances, as in unit root testing, there is more than one test available
and, indeed, there may be one uniformly powerful test, yet there is still potential
merit in combining tests.

In the forecasting context, Clements and Harvey argue that the focus for mul-
tiple forecasts should not be on testing the null of equal accuracy, but on testing
for encompassing. Thus it is not a question of choosing forecast A over forecast B,
but of whether the combination of forecasts A and B is better than either individ-
ual forecast. Of course, this may be of little comfort from a structuralist point of
view if, for example, the two forecasts come from different underlying models; but
it is preferable when the loss function rewards good fit in some sense. Bates and
Granger (1969) suggested a simple linear combination of two unbiased forecasts,
with weights depending on the relative accuracy of the individual forecasts, and
derived the classic result that, even if the forecasts are equally accurate in a mean
squared error loss sense, then there will still be a gain in using the linear combina-
tion unless the forecasts are perfectly correlated, at least theoretically. Clements and
Harvey develop from this base model, covering such issues as biased forecasts, non-
linear combinations, and density or distribution forecasts. The concept of forecast
encompassing, which is not unique in practice, is then considered in detail, includ-
ing complications arising from integrated variables, non-normal errors, serially
correlated forecast errors, ARCH errors, the uncertainty implied by model estima-
tion, and the difficulty of achieving tests with the correct actual size. A number of
recent developments are examined, including the concept of conditional forecast
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evaluation (Giacomini and White, 2006), evaluating quantile forecasts, and relax-
ing the forecast loss function away from the traditional symmetric squared error.
In short, this chapter provides a clear, critical and accessible evaluation of a rapidly
developing area of the econometrics literature.

Chapter 5 is by Stephen Hall and James Mitchell, who focus on density forecast-
ing. There has been a great deal of policy interest in forecasting key macroeconomic
variables such as output growth and inflation, some of which has been institution-
ally enshrined by granting central banks independence in inflation targeting. In
turn, there has been a movement away from simply reporting point forecasts of
inflation and GDP growth in favor of a fan chart representation of the distribution
of forecasts. A density forecast gives much more information than a simple point
forecast, which is included as just one realization on the outcome axis. As a corol-
lary, forecast evaluation should also include techniques that evaluate the accuracy,
in some well-defined sense, of the density forecast. However, given that generally
we will only be able to observe one outcome (or event) per period, some thought
needs to be given to how the distributional aspect of the forecast is evaluated. Hall
and Mitchell discuss a number of possibilities and also consider methods of eval-
uating competing density forecasts. A further aspect of density forecasting is the
ability of the underlying model to generate time variation in the forecast densi-
ties. If the underlying model is a VAR, or can be approximated by a VAR, then,
subject to some qualifications, the only aspect of the forecast density which is able
to exhibit time variation is the mean; consequently, models have been developed
that allow more general time variation in the density through, for example, ARCH
and GARCH errors and time-varying parameters. This chapter also links in with the
previous chapter by considering combinations of density forecasts. There are two
central possibilities: the linear opinion pool is a weighted linear combination of
the component densities, whereas the logarithmic opinion pool is a multiplicative
combination. Hall and Mitchell consider the problem of determining the weights
in such combinations and suggest that predictive accuracy improves when the
weights reflect shifts in volatility, a characteristic of note for the last decade or so
in a number of economies.

Part III contains four chapters under the general heading of “Time Series Appli-
cations.” A key area in which the concept of a time series is relevant is in
characterizing and determining trends and cycles. Chapter 6, by Stephen Pollock,
is a tour de force on modeling trends and cycles, and on the possibilities and
pitfalls inherent in the different approaches. In the simplest of models, cyclical
fluctuations are purely sinusoidal and the trend is exponential; although simple,
this is a good base from which to understand the nature of developments that
relax these specifications. Such developments include the view that economic time
series evolve through the accumulation of stochastic shocks, as in an integrated
Weiner process. The special and familiar cases of the Beveridge–Nelson decompo-
sition, the Hodrick–Prescott filter, the Butterworth filter and the unifying place of
Weiner–Kolgomorov filtering are all covered with admirable clarity. Other consid-
erations include the complications caused by the limited data that is often available
in economic applications, contrary to the convenient assumptions of theory. In an
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appealing turn of phrase, Pollock refers to obtaining a decomposition of compo-
nents based on the periodogram “where components often reside within strictly
limited frequency bands which are separated by dead spaces where the spectral
ordinates are virtually zeros.” The existence of these “spectral dead spaces” is key
to a practical decomposition of an economic time series, however achieved. In
practice, trend fitting requires judgment and a clear sense of what it is that the
trend is capturing. Other critical issues covered in this chapter include the impor-
tance of structural breaks, a topic that has been influential elsewhere (for example,
in questioning the results of unit root testing: Perron, 1989); and to aid the reader,
practical examples are included throughout the exposition.

Chapter 7, by Joe Cardinale and Larry Taylor, continues the time series theme of
analyzing economic cycles whilst focusing on asymmetries, persistence and syn-
chronization. This is a particularly timely and somewhat prophetic chapter given
that we are currently experiencing what is perhaps the deepest recession in recent
economic history. How can we analyze the critical question “When will it end?”
This chapter provides the analytical and econometric framework to answer such a
question. The central point is that cycles are much more interesting than just mark-
ing their peaks and troughs would suggest. Whilst “marking time” is important, it
is just the first part of the analysis, and should itself be subjected to methods for dis-
tinguishing phases (for example, expansions and contractions of the output cycle).
Once phases have been distinguished, their duration and characteristics become
of interest; for example, do long expansions have a greater chance of ending than
short expansions? Critical to the analysis is the hazard function: “the conditional
probability that a phase will terminate in period t , given that it has lasted t or more
periods.” Cardinale and Taylor consider different models and methods of estimat-
ing the hazard function and testing hypotheses related to particular versions of it.
They also consider tests of duration dependence, the amplitudes of cycles, and the
synchronization of cycles for different but related variables; for example, output
and unemployment. Their theoretical analysis is complemented with a detailed
consideration of US unemployment.

No handbook of econometrics could be without a contribution indicating the
importance of cointegration analysis for non-stationary data. In Chapter 8, Kate-
rina Juselius considers one of the most enduring puzzles in empirical economics,
namely, if purchasing power parity (PPP) is the underlying equilibrium state that
determines the relationship between real exchange rates, why is there “pronounced
persistence” away from this equilibrium state? This has been a common finding of
empirical studies using data from a wide range of countries and different sample
periods. Juselius shows how a careful analysis can uncover important structures in
the data; however, these structures are only revealed by taking into account the
different empirical orders of integration of the component variables, the identifi-
cation of stationary relationships between non-stationary variables, the dynamic
adjustment of the system to disequilibrium states, the appropriate deterministic
components, and the statistical properties of the model. As Juselius notes, and
in contrast to common approaches, the order of integration is regarded here as
an empirical approximation rather than a structural parameter. This opens up a
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distinction between, for example, a variable being empirically I(d) rather than
structurally I(d); a leading example here is the I(2) case which, unlike the I(1)
case, has attracted some “suspicion” when applied in an absolute sense to empiri-
cal series. The challenging empirical case considered by Juselius is the relationship
between German and US prices and nominal exchange rates within a sample that
includes the period of German reunification. The methodology lies firmly within
the framework of general-to-specific modeling, in which a general unrestricted
model is tested down (see also Hendry, Chapter 1) to gain as much information
without empirical distortion. A key distinction in the methodological and empir-
ical analysis is between pushing and pulling forces: in the current context, prices
push whereas the exchange rate pulls. PPP implies that there should be just a sin-
gle stochastic trend in the data, but the empirical analysis suggests that there are
two, with the additional source of permanent shocks being related to speculative
behaviour in the foreign exchange market.

In an analysis of trends and cycles, economists often characterize the state of
the economy in terms of indirect or latent variables, such as the output gap, core
inflation and the non-accelerating rate of inflation (NAIRU). These are variables
that cannot be measured directly, but are nevertheless critical to policy analysis.
For example, the need to take action to curb inflationary pressures is informed by
the expansionary potential in the economy; whether or not a public sector bud-
get deficit is a matter for concern is judged by reference to the cyclically adjusted
deficit. These concepts are at the heart of Chapter 9 by Tommaso Proietti, entitled
“Structural Time Series Models for Business Cycle Analysis,” which links with the
earlier chapters by Pollock and Cardinale and Taylor. Proietti focuses on the mea-
surement of the output gap, which he illustrates throughout using US GDP. In the
simplest case, what is needed is a framework for decomposing a time series into a
trend and cycle and Proietti critically reviews a number of methods to achieve such
a decomposition, including the random walk plus noise (RWpN) model, the local
linear trend model (LLTM), methods based on filtering out frequencies associated
with the cycle, multivariate models that bring together related macroeconomic
variables, and the production function approach. The estimation and analysis of a
number of models enables the reader to see how the theoretical analysis is applied
and what kind of questions can be answered. Included here are a bivariate model
of output and inflation for the US and a model of mixed data frequency, with quar-
terly observations for GDP and monthly observations for industrial production, the
unemployment rate and CPI inflation. The basic underlying concepts, such as the
output gap and core inflation, are latent variables and, hence, not directly observ-
able: to complete the chapter, Proietti also considers how to judge the validity of
the corresponding empirical measures of these concepts.

To complete the part of the Handbook on Times Series Applications, in Chapter
10 Luis Gil-Alana and Javier Hualde provide an overview of fractional integration
and cointegration, with an empirical application in the context of the PPP debate.
A time series is said to be integrated of order d, where d is an integer, if d is the min-
imum number of differences necessary to produce a stationary time series. This is
a particular form of non-stationarity and one which dominated the econometrics
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literature in the 1980s and early 1990s, especially following the unit root litera-
ture. However, the integer restriction on d is not necessary to the definition of an
integrated series (see, in particular, Granger and Joyeux, 1980), so that d can be a
fraction – hence the term “fractionally integrated” for such series. Once the integer
restriction is relaxed for a single series, it is then natural to relax it for the multivari-
ate case, which leads to the idea of fractional cointegration. Gil-Alana and Hualde
give an overview of the meaning of fractional integration and fractional cointegra-
tion, methods of estimation for these generalized cases, which can be approached
in either the time or frequency domains, the underlying rationale for the existence
of fractionally integrated series (for example, through the aggregation of micro-
relationships), and a summary of the empirical evidence for fractionally integrated
univariate series and fractionally cointegrated systems of series. The various issues
and possible solutions are illustrated in the context of an analysis of PPP for four
bivariate series. It is clear that the extension of integration and cointegration to
their corresponding fractional cases is not only an important generalization of the
theory, but one which finds a great deal of empirical support.

One of the most significant developments in econometrics over the last twenty
years or so has been the increase in the number of econometric applications involv-
ing cross-section and panel data (see also Ooms, Chapter 29). Hence Part IV is
devoted to this development. One of the key areas of application is to choice sit-
uations which have a discrete number of options; examples include the “whether
to purchase” decision, which has wide application across consumer goods, and the
“whether to participate” decision, as in whether to enter the labor force, to retire, or
to join a club. Discrete choice models are the subject of Chapter 11 by Bill Greene,
who provides a critical, but accessible, review of a vast literature. The binary choice
model is a key building block here and so provides a prototypical model with which
to examine such topics as specification, estimation and inference; it also allows the
ready extension to more complex models such as bivariate and multivariate binary
choice models and multinomial choice models. Models involving count data are
also considered as they relate to the discrete choice framework. A starting point
for the underlying economic theory is the extension of the classical theory of con-
sumer behavior, involving utility maximization subject to a budget constraint, to
the random utility model. The basic model is developed from this point and a host
of issues are considered that arise in practical studies, including estimation and
inference, specification tests, measuring fit, complications from endogenous right-
hand-side variables, random parameters, the use of panel data, and the extension
of the familiar fixed and random effects. To provide a motivating context, Greene
considers an empirical application involving a bivariate binary choice model. This
is where two binary choice decisions are linked; in this case, in the first decision
the individual decides whether to visit a physician, which is a binary choice, and
the second involves whether to visit the hospital, again a binary choice: together
they constitute a bivariate (and ordered) choice. An extension of this model is to
consider the number of times that an individual visits the doctor or a hospital. This
gives rise to a counts model (the number of visits to the doctor and the number of
visits to the hospital) with its own particular specification. Whilst a natural place to
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start is the Poisson model, this, as Greene shows, is insufficient as a general frame-
work; the extension is provided and illustrated with panel data from the German
health care system. A second application illustrates a mixed logit and error com-
ponents framework for modeling modes of transport choice (air, train, bus, car).
Overall, this chapter provides an indication, through the variety of its applications,
as to why discrete choice models have become such a significant part of applied
econometrics.

The theme of panel data methods and applications is continued in Chapter 12
by Andrew Jones. The application of econometrics to health economics has been
an important area of development over the last decade or so. However, this has not
just been a case of applying existing techniques: rather, econometrics has been able
to advance the subject itself, asking questions that had not previously been asked
– and providing answers. This chapter will be of interest not only to health eco-
nomics specialists, but also to those seeking to understand how treatment effects in
particular are estimated and to those investigating the extent of the development
and application of panel data methods (it is complemented by Colin Cameron
in Chapter 14). At the center of health economics is the question “What are the
impacts of specific health policies?” Given that we do not observe experimental
data, what can we learn from non-experimental data? Consider the problem of
evaluating a particular treatment; for an individual, the treatment effect is the dif-
ference in outcome between the treated and the control, but since an individual is
either treated or not at a particular time, the treatment effect cannot be observed.
“Treatment” is here a general term that covers not only single medical treatments
but also broad policies, and herein lies its generality, since a treatment could equally
be a policy to reduce unemployment or to increase the proportion of teenagers
receiving higher education. In a masterful understanding of a complex and expand-
ing literature, Jones takes the reader through the theoretical and practical solutions
to the problems associated with estimating and evaluating treatment effects, cov-
ering, inter alia, identification strategies, dynamic models, estimation methods,
different kinds of data, and multiple equation models; throughout the chapter
the methods and discussion are motivated by practical examples illustrating the
breadth of applications.

A key development in econometrics over the last thirty years or so has been the
attention given to the properties of the data, as these enlighten the question of
whether the underlying probability structure is stationary or not. In a terminologi-
cal shorthand, we refer to data that is either stationary or non-stationary. Initially,
this was a question addressed to individual series (see Nelson and Plosser, 1982);
subsequently, the focus expanded, through the work of Engle and Granger (1987)
and Johansen (1988), to a multivariate approach to non-stationarity. The next
step in the development was to consider a panel of multivariate series. In Chapter
13, Anindya Banerjee and Martin Wagner bring us up to date by considering panel
methods to test for unit roots and cointegration. The reader will find in this chapter
a theoretical overview and critical assessment of a vast and growing body of meth-
ods, combined with practical recommendations based on the insights obtained
from a wide base of substantive applications. In part, as is evident in other areas

mailto: rights@palgrave.com


xx Editors’ Introduction

of econometric techniques and applications, theory has responded to the much
richer sources of data that have become available, not only at a micro or indi-
vidual level, as indicated in Chapter 12, combined with increases in computing
power. As Banerjee and Wagner note, we now have long time series on macroeco-
nomic and industry-level data. Compared to just twenty years ago, there is thus a
wealth of data on micro, industry and macro-panels. A panel dataset embodies two
dimensions: the cross-section dimension and the time-series dimension, so that,
in a macro-context, for example, we can consider the question of convergence not
just of a single variable (say, of a real exchange rate to a comparator, be that a
PPP hypothetical or an alternative actual rate), but of a group of variables, which
is representative of the multidimensional nature of growth and cycles. A starting
point for such an analysis is to assess the unit root properties of panel data but,
as in the univariate case, issues such as dependency, the specification of determin-
istic terms, and the presence of structural breaks are key practical matters that, if
incorrectly handled, can lead to misleading conclusions. Usually, the question of
unit roots is a precursor to cointegration analysis, and Banerjee and Wagner guide
the reader through the central methods, most of which have been developed in
the last decade. Empirical illustrations, based on exchange rate pass-through in
the euro-area and the environmental Kuznets curve, complement the theoretical
analysis.

Whilst the emphasis in Chapter 13 is on panels of macroeconomic or industry-
level data, in Chapter 14, Colin Cameron, in the first of two chapters in Part
V, provides a survey of microeconometric methods, with an emphasis on recent
developments. The data underlying such developments are at the level of the
individual, households and firms. A prototypical question in microeconometrics
relates to the identification, estimation and evaluation of marginal effects using
individual-level data; for example, the effect on earnings of an additional year of
education. This example is often used to motivate some basic estimation meth-
ods, such as least squares, maximum likelihood and instrumental variables, in
undergraduate and graduate texts in econometrics, so it is instructive to see how
recent developments have extended these methods. The development of the basic
methods include generalized method of moments (GMM), empirical likelihood,
simulation-based methods, quantile regression and nonparametric and semipara-
metric estimation, whilst developments in inference include robustifying standard
tests and bootstrap methods. Apart from estimation and inference, Cameron con-
siders a number of other issues that occur frequently in microeconometric studies:
in particular, issues related to causation, as in estimating and evaluating treatment
effects; heterogeneity, for example due to regressors or unobservables; and the
nature of microeconometric data, such as survey data and the sampling scheme,
with problems such as missing data and measurement error.

The development of econometrics in the last decade or so in particular has been
symbiotic with the development of advances in computing, particularly that of per-
sonal computers. In Chapter 15, David Jacho-Chávez and Pravin Trivedi focus on
the relationship between empirical microeconometrics and computational consid-
erations, which they call, rather evocatively, a “matrimony” between computing
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and applied econometrics. No longer is it the case that the mainstay of empirical
analysis is a set of macroeconomic time series, often quite limited in sample period.
Earlier chapters in this part of the volume emphasize that the data sources now
available are much richer than this, both in variety and length of sample period.
As Jacho-Chávez and Trivedi note, the electronic recording and collection of data
has led to substantial growth in the availability of census and survey data. However,
the nature of the data leads to problems that require theoretical solutions: for exam-
ple, problems of sample selection, measurement errors and missing or incomplete
data. On the computing side, the scale of the datasets and estimation based upon
them implies that there must be reliability in the high-dimensional optimization
routines required by the estimation methods and an ability to handle large-scale
Monte Carlo simulations. The increase in computing power has meant that tech-
niques that were not previously feasible, such as simulation assisted estimation
and resampling, are now practical and in widespread use. Moreover, nonparamet-
ric and semiparametric methods that involve the estimation of distributions rather
than simple parameters, as in regression models, have been developed through
drawing on the improved power of computers. Throughout the chapter, Jacho-
Chávez and Trivedi motivate their discussion by the use of examples of practical
interest, including modeling hedonic prices of housing attributes, female labor
force participation, Medicare expenditure, and number of doctor visits. Interest-
ingly, they conclude that there are important problems, particularly those related
to assessing public policy, such as identification and implementation in the con-
text of structural, dynamic and high-dimensional models, which remain to be
solved.

In Part VI, the theme of the importance of economic policy is continued, but
with the emphasis now on monetary policy and macroeconomic policy, which
remain of continued importance. Starting in the 1970s and continuing into the
1990s, the development of macroeconometric models for policy purposes was a
highly regarded area; during that period computing power was developing pri-
marily through mainframe computers, allowing not so much the estimation as the
simulation of macroeconomic models of a dimension that had not been previously
contemplated. Government treasuries, central banks and some non-governmental
agencies developed their own empirical macro-models comprising hundreds of
equations. Yet, these models failed to live up to their promise, either wholly or in
part. For some periods there was an empirical failure, the models simply not being
good enough; but, more radically, the theoretical basis of the models was often
quite weak, at least relative to the theory of the optimizing and rational agent and
ideas of intertemporal general equilibrium.

In Chapter 16, Carlo Favero expands upon this theme, especially as it relates to
the econometrics of monetary policy and the force of the critiques by Lucas (1976)
and Sims (1980). A key distinction in the dissection of the modeling corpse is
between structural identification and statistical identification. The former relates to
the relationship between the structural parameters and the statistical parameters in
the reduced form, while the latter relates to the properties of the statistical or empir-
ical model which represents the data. Typically, structural identification is achieved
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by parametric restrictions seeking to classify some variables as “exogenous,” a task
that some have regarded as misguided (or indeed even “impossible”). Further, a
failure to assess the validity of the reduction process in going from the (unknown)
data-generating process to a statistical representation, notwithstanding criticisms
related to structural identification, stored up nascent empirical failure awaiting the
macreconometric model. Developments in cointegration theory and practice have
“tightened” up the specification of empirical macromodels, and DSGE models, pre-
ferred theoretically by some, have provided an alternative “modellus operandi.”
Subsequently, the quasi-independence of some central banks has heightened the
practical importance of questions such as “How should a central bank respond to
shocks in macroeconomic variables?” (Favero, Chapter 16). In practice, although
DSGE models are favored for policy analysis, in their empirical form the VAR
reappears, but with their own set of issues. Favero considers such practical develop-
ments as calibration and model evaluation, the identification of shocks, impulse
responses, structural stability of the parameters, VAR misspecification and factor
augmented VARs. A summary and analysis of Sims’ (2002) small macroeconomic
model (Appendix A) helps the reader to understand the relationship between an
optimizing specification and the resultant VAR model.

In Chapter 17, Gunnar Bårdsen and Ragnar Nymoen provide a paradigm for
the construction of a dynamic macroeconometric model, which is then illus-
trated with a small econometric model of the Norwegian economy that is used
for policy analysis. Bårdsen and Nymoen note the two central critiques of “failed”
macroeconometric models: the Lucas (1976) critique and the Clements and Hendry
(1999) analysis of forecast failure involving “location” shifts (rather than behav-
ioral parameter shifts). But these critiques have led to different responses; first, the
move to explicit optimizing models (see Chapter 16); and, alternatively, to greater
attention to the effects of regime shifts, viewing the Lucas critique as a possibility
theorem rather than a truism (Ericsson and Irons, 1995). Whilst it is de rigueur
to accept that theory is important, Bårdsen and Nymoen consider whether “the-
ory” provides the (completely) correct specification or whether it simply provides a
guideline for the specification of an empirical model. In their approach, the under-
lying economic model is nonlinear and specified in continuous time; hence, the
first practical steps are linearization and discretization, which result in an equilib-
rium correction model (EqCM). Rather than remove the data trends, for example
by applying the HP filter, the common trends are accounted for through a cointe-
gration analysis. The approach is illustrated step by step by building a small-scale
econometric model of the Norwegian economy, which incorporates the ability to
analyze monetary policy; for example, an increase in the market rate, which shows
the channels of the operation of monetary policy. Further empirical analysis of the
New Keynesian Phillips curve provides an opportunity to illustrate their approach
in another context. In summary, Bårdsen and Nymoen note that cointegration
analysis takes into account non-stationarities that arise through unit roots, so that
forecast failures are unlikely to be attributable to misspecification for that reason.
In contrast to the econometric models of the 1970s, the real challenges arise from
non-stationarities in functional relationships due to structural breaks; however,
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there are ways to “robustify” the empirical model and forecasts from it so as to
mitigate such possibilities, although challenges remain in an area that continues
to be of central importance in economic policy.

One of the key developments in monetary policy in the UK and elsewhere in
the last decade or so has been the move to give central banks a semi-autonomous
status. In part, this was thought to avoid the endogenous “stop–go” cycle driven by
political considerations. It also carried with it the implication that it was monetary
policy, rather than fiscal policy, which would become the major macroeconomic
policy tool, notwithstanding the now apparent practical limitations of such a
move. In Chapter 18, Brian Henry provides an overview of the institutional and
theoretical developments in the UK in particular, but with implications for other
countries that have taken a similar route. The key question that is addressed in
this chapter is whether regime changes, such as those associated with labor market
reforms, inflation targeting and instrument independence for the Bank of Eng-
land, have been the key factors in dampening the economic cycle and improving
inflation, unemployment and output growth, or whether the explanation is more
one of beneficial international events (the “good luck” hypothesis) and monetary
policy mistakes. Henry concludes, perhaps controversially, that the reforms to the
labor market and to the operation of the central bank are unlikely to have been the
fundamental reasons for the improvement in economic performance. He provides
an econometric basis for these conclusions, which incorporates a role for interna-
tional factors such as real oil prices and measures of international competitiveness.
Once these factors are taken into account, the “regime change” explanation loses
force.

The growth of financial econometrics in the last two decades was noted in the
first volume of this Handbook. Indeed, this development was recognized in the
award of the 2003 Nobel Prize in Economics (jointly with Sir Clive Granger) to
Robert Engle for “methods of analyzing economic time series with time-varying
volatility (ARCH).” Part VII of this volume reflects this development and is thus
devoted to applications in the area of financial econometrics.

In Chapter 19, George Dotsis, Raphael Markellos and Terence Mills consider
continuous-time stochastic volatility models. What is stochastic volatility? To
answer that question, we start from what it is not. Consider a simple model of an
asset price, Y(t), such as geometric Brownian motion, which in continuous time
takes the form of the stochastic differential equation dY(t) = μY(t)+ σY(t)dW(t),

where W(t) is a standard Brownian motion (BM) input; then σ (or σ2) is the volatil-
ity parameter that scales the stochastic BM contribution to the diffusion of Y(t).
In this case the volatility parameter is constant, although the differential equation
is stochastic. However, as Dotsis et al. note, a more appropriate specification for
the accepted characteristics of financial markets is a model in which volatility
also evolves stochastically over time. For example, if we introduce the variance
function v(t), then the simple model becomes dY(t) = μY(t) + √v(t)Y(t)dW(t),
and this embodies stochastic volatility. Quite naturally, one can then couple this
equation with one that models the diffusion over time of the variance function.
ARCH/GARCH models are one way to model time-varying volatility, but there are
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a number of other attractive specifications; for example, jump diffusions, affine
diffusions, affine jump diffusions and non-affine diffusions. In motivating alterna-
tive specifications, Dotsis et al. note some key empirical characteristics in financial
markets that underlie the rationale for stochastic volatility models, namely fat
tails, volatility clustering, leverage effects, information arrivals, volatility dynam-
ics and implied volatility. The chapter then continues by covering such issues as
specification, estimation and inference in stochastic volatility models. A compar-
ative evaluation of five models applied to the S&P 500, for daily data over the
period 1990–2007, is provided to enable the reader to see some of the models “in
action.”

One of the most significant ideas in the area of financial econometrics is that the
underlying stochastic process for an asset price is a martingale. Consider a stochas-
tic process X = (Xt , Xt−1, . . .), which is a sequence of random variables; then the
martingale property is that the expectation (at time t−1) of Xt , conditional on the
information set It−1 = (Xt−1, Xt−2, . . .), is Xt−1; that is, E(Xt |It−1) = Xt−1 (almost
surely), in which case, X is said to be a martingale (the definition is sometimes
phrased in terms of the σ -field generated by It−1, or indeed some other “filtra-
tion”). Next, define the related process Y = (�Xt ,�Xt−1, . . .); then Y is said to be a
martingale difference sequence (MDS). The martingale property for X translates to
the property for Y that E(Yt |It−1) = 0 (see, for example, Mikosch, 1998, sec. 1.5).
This martingale property is attractive from an economic perspective because of its
link to efficient markets and rational expectations; for example, in terms of X, the
martingale property says that the best predictor, in a minimum mean squared error
(MSE) sense, of Xt is Xt−1.

In Chapter 20, J. Carlos Escanciano and Ignacio Lobato consider tests of the
martingale difference hypothesis (MDH). The MDH generalizes the MDS condition
to E(Yt |It−1) = μ, where μ is not necessarily zero; it implies that past and current
information (as defined in It ) are of no value, in an MSE sense, in forecasting future
values of Yt . Tests of the MDH can be seen as being translated to the equivalent
form given by E[(Yt − μ)w(It−1)], where w(It−1) is a weighting function. A useful
means of organizing the extant tests of the MDH is in terms of the type of functions
w(.) that are used. For example, if w(It−1) = Yt−j, j ≥ 1, then the resulting MDH
test is of E[(Yt − μ)Yt−j] = 0, which is just the covariance between Yt and Yt−j.
This is just one of a number of tests, but it serves to highlight some generic issues.
In principle, the condition should hold for all j ≥ 1 but, practically, j has to be
truncated to some finite value. Moreover, this is just one choice of w(It−1), whereas
the MDH condition is not so restricted. Escanciano and Lobato consider issues such
as the nature of the conditioning set (finite or infinite), robustifying standard test
statistics (for example, the Ljung–Box and Box–Pierce statistics), and developing
tests in both the time and frequency domains; whilst standard tests are usually
of linear dependence, for example autocorrelation based tests, it is important to
consider tests based on nonlinear dependence. To put the various tests into context,
the chapter includes an application to four daily and weekly exchange rates against
the US dollar. The background to this is that the jury is out in terms of a judgment
on the validity of the MDH for such data; some studies have found against the

mailto: rights@palgrave.com


Terence C. Mills and Kerry Patterson xxv

MDH, whereas others have found little evidence against it. In this context, applying
a range of tests, Escanciano and Lobato find general support for the MDH.

Chapter 19 by Dotsis et al. was concerned with models of stochastic volatility,
primarily using the variance as a measure of volatility. Another measure of volatil-
ity is provided by the range of a price; for example, the trading day range of an
asset price. In turn, the range can be related to the interval between consecutive
trades, known as the duration. Duration is a concept that is familiar from counting
processes, such as the Poisson framework for modeling arrivals (for example, at a
supermarket checkout or an airport departure gate).

Chapter 21 by Ruey Tsay provides an introduction to modeling duration that
is illustrated with a number of financial examples. That duration can carry infor-
mation about market behavior is evident not only from stock markets, where a
cluster of short durations indicates active trading relating to, for example, informa-
tion arrival, but from many other markets; for example, durations in the housing
market and their relation to banking failure. The interest in durations modeling
owes much to Engle and Russell (1998), who introduced the autoregressive con-
ditional duration (ACD) model for irregularly spaced transactions data. Just as the
ARCH/GARCH family of models was introduced to capture volatility clusters, the
ACD model captures short-duration clusters indicating the persistence of periods
of active trading, perhaps uncovering and evaluating information arrivals. To see
how an ACD model works, let the ith duration be denoted xi = ti − ti−1, where
ti is the time of the ith event, and model xi as xi = ψiεi, where {εi} is an i.i.d
sequence and β(L)ψi = α0 + α(L)xi, where α(L) and β(L) are lag polynomials; this is
the familiar GARCH form, but in this context it is known as the exponential ACD
or EACD. To accommodate the criticism that the hazard function of duration is
not constant over time, unlike the assumption implicit in the EACD model, alter-
native innovation distributions have been introduced, specifically the Weibull and
the Gamma, leading to the Weibull ACD (WACD) and the Gamma ACD (GACD).
The chapter includes some motivating examples. Evidence of duration clusters is
shown in Figures 21.1, 21.4 and 21.7a for IBM stock, Apple stock and General
Motors stock, respectively. The development and application of duration models
can then exploit the development of other forms of time series models, such as
(nonlinear) threshold autoregressive (TAR) models. ACD models have also been
developed to incorporate explanatory variables; an example is provided, which
shows that the change to decimal “tick” sizes in the US stock markets reduced the
price volatility of Apple stock.

The determination of exchange rates has long been an interest to econo-
metricians and, as a result, there is an extensive literature that includes two
constituencies; on the one hand, there have been contributions from economists
who have employed econometric techniques and, on the other, to risk a simple
bifurcation, the modeling of exchange rates has become an area to test out advances
in nonlinear econometrics. Chapter 22, by Efthymios Pavlidis, Ivan Paya and David
Peel, provides an evaluative overview of this very substantial area. As they note,
the combination of econometric developments, the availability of high-quality
and high-frequency data, and the move to floating exchange rates in 1973, has led
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to a considerable number of empirical papers in this area. Thus, the question of
“Where are we now?” is not one with a short answer. Perhaps prototypically, the
econometrics of exchange rates is an area that has moved in tandem with devel-
opments in the economic theory of exchange rates (for the latter, the reader is
referred to, for example, Sarno and Taylor, 2002). An enduring question over the
last thirty years (at least), and one that is touched upon in two earlier chapters
(Juselius, Chapter 8, and Gil-Alana and Hualde, Chapter 10), has been the status of
PPP, regarded as a bedrock of economic theory and macroeconomic models. One
early finding that has puzzled many is the apparent failure to find PPP supported
by a range of different exchange rates and sample periods. Consider a stylized ver-
sion of the PPP puzzle: there are two countries, with a freely floating exchange
rate, flexible prices (for tradable goods and services), no trade constraints, and
so on. In such a situation, at least in the long run, the nominal exchange rate
should equal the ratio of the (aggregate) price levels, otherwise, as the price ratio
moves, the nominal exchange rate does not compensate for such movements and
the real exchange rate varies over time, contradicting PPP; indeed, on this basis
the exchange rate is not tied to what is happening to prices. Early studies used an
essentially linear framework – for example, ARMA models combined with unit root
tests – to evaluate PPP, and rarely found that it was supported by the data; more-
over, estimated speeds of adjustment to shocks were so slow as to be implausible.
Another puzzle, in which tests indicated that the theory (of efficient speculative
markets) was not supported, was the “forward bias puzzle.” In this case, the pre-
diction was that prices should fully reflect publicly available information, so that
it should not be possible to make a systematic (abnormal) return; however, this
appeared not to be the case. In this chapter, Pavlidis et al. carefully dissect this and
other puzzles and show how the move away from simple linear models to a range
of essentially nonlinear models, the development and application of multivariate
models, and the use of panel data methods, has provided some explanation of the
exchange rate “puzzles.”

Part VIII of this volume of the Handbook is comprised of three chapters related to
what has become referred to as “growth econometrics”; broadly speaking, this is the
area that is concerned with variations in growth rates and productivity levels across
countries or regions. Chapters 23 and 24 are a coordinated pair by Steven Durlauf,
Paul Johnson and Jonathan Temple; in addition, looking ahead, Chapter 27 by
Serge Rey and Julie Le Gallo takes up aspects of growth econometrics, with an
emphasis on spatial connections. In Chapter 23, Durlauf et al. focus on the econo-
metrics of convergence. Of course, convergence could and does mean a number of
things: first, the convergence of what? Usually this is a measure of income or out-
put but, in principle, the question of whether two (or more) economies are/have
converged relates to multiple measures, for example, output, inflation, unemploy-
ment rates, and so on, and possibly includes measures of social welfare, such as
literacy and mortality rates. The first concept to be considered in Chapter 23 is
β-convergence (so-called because the key regression coefficient is referred to as β):
consider two countries; there is β-convergence if the one with a lower initial income
grows faster than the other and so “catches up” with the higher-income country.
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Naturally, underlying the concept of convergence is an economic model, typi-
cally a neoclassical growth model (with diminishing returns to capital and labor),
which indicates the sources of economic growth and a steady-state which the
economy will (eventually) attain. At its simplest, growth econometrics leads to
cross-country regressions of output growth rates on variables motivated from the
underlying growth model and, usually, some “control” variables that, additionally,
are thought to influence the growth rate. It is the wide range of choice for these
control variables, and the resultant multiplicity of studies, that has led to the, per-
haps pejorative, description of this activity as the “growth regression industry.”
One response has been the technique of model averaging, so that no single model
will necessarily provide the empirical wisdom. A second central convergence con-
cept is σ -convergence. As the notation suggests, this form of convergence relates
to the cross-section dispersion of a measure, usually log per capita output, across
countries. As Durlauf et al. note, whilst many studies use the log variance, other
measures, such as the Gini coefficient or those suggested in Atkinson (1970), may
be preferred. In this measure of convergence, a reduction in the dispersion mea-
sure across countries suggests that they are getting closer together. As in Chapter
22 on exchange rates, an important methodological conclusion of Durlauf et al. is
that nonlinearity (due in this case to endogenous growth models) is likely to be
an important modeling characteristic, which is not well captured in many existing
studies, whether based on cross-section or panel data.

Having considered the question of convergence in Chapter 23, in Chapter 24
Durlauf et al. turn to the details of the methods of growth econometrics. Whilst
concentrating on the methods, they first note some salient facts that inform the
structure of the chapter. Broadly, these are that: vast income disparities exist despite
the general growth in real income; distinct winners and losers have begun to
emerge; for many countries, growth rates have tended to slow, but the dispersion
of growth rates has increased. At the heart of the growth literature is the one-sector
neoclassical growth model, transformed to yield an empirical form in terms of the
growth rate of output per labor unit, such that growth is decomposed into growth
due to technical progress and the gap between initial output per worker and the
steady-state value. Typically, an error is then added to a deterministic equation
derived in this way and this forms the basis of a cross-country regression, usu-
ally augmented with “control” variables that are also thought to influence growth
rates. However, as Durlauf et al. note, there are a number of problems with this
approach; for example, the errors are implicitly assumed to be exchangeable, but
country dependence of the errors violates this assumption; the plethora of selected
control variables leads to a multiplicity of empirical models; and parameter hetero-
geneity. To assess the question of model uncertainty an extreme bounds analysis
(Leamer, 1983) can be carried out, and model averaging as in a Bayesian analysis
can be fruitful. Parameter heterogeneity is related to the Harberger (1987) criti-
cism that questions the inclusion of countries with different characteristics in a
cross-country regression. The key to criticisms of this nature is the meaning of
such regressions: is there a DGP that these regressions can be taken as empirically
parameterizing? The chapter continues by providing, inter alia, an overview of the
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different kinds of data that have been used and an assessment of the econometric
problems that have arisen and how they have been solved; the conclusion evaluates
the current state of growth econometrics, and suggests directions for future
research.

A concern that has long antecedents is the relationship between financial devel-
opment and growth: is there a causal relationship from the former to the latter? In
Chapter 25, Thorsten Beck evaluates how this key question has been approached
from an econometric perspective. Do financial institutions facilitate economic
growth, for example by reducing information asymmetries and transaction costs?
Amongst other functions, as Beck notes, financial institutions provide payment
services, pool and allocate savings, evaluate information, exercise corporate gov-
ernance and diversify risk. It would seem, a priori, that the provision of such
services must surely move out the aggregate output frontier. However, just finding
positive correlations between indicators of financial development, such as mon-
etization measures, the development of banking institutions and stock markets,
and economic growth is insufficient evidence from an econometric viewpoint.
One of the most fundamental problems in econometrics is the problem of iden-
tification: by themselves, the correlations do not provide evidence of a causal
direction. Beck takes the reader through the detail of this problem and how it has
been approached in the finance-growth econometric literature. A classical method
for dealing with endogenous regressors is instrumental variables (IV) and, in this
context, some ingenuity has been shown in suggesting such variables, including
exogenous country characteristics; for example, settler mortality, latitude and eth-
nic fractionalization. Early regression-based studies used cross-section data on a
number of countries; however, more recent datasets now include dynamic panels
and methods include GMM and cointegration. More recent developments have
been able to access data at the firm and household level, and this has led to much
larger samples being used. For example, Beck, Dermirgüç-Kunt and Makisimovic
(2005) use a sample of over 4,000 firms in 54 countries to consider the effect of
sales growth as a firm-level financing obstacle as well as other variables, including a
country-level financial indicator. As Beck notes, the evidence suggests a strong case
for a causal link between financial development and economic growth, but there
is still much to be done both in terms of techniques, such as GMM, and exploiting
advances at the micro-level.

In Volume 1 of the Handbook, we highlighted recent developments in theoretical
econometrics as applied to problems with a spatial dimension; this is an area that
has grown in application and importance, particularly over the last decade, and
it is natural that we should continue to emphasize its developmental importance
by including two chapters in Part IX. These chapters show how spatial economet-
rics can bring into focus the importance of the dimension of space in economic
decisions and the particular econometric problems and solutions that result. In
Chapter 26, Luc Anselin and Nancy Lozano-Gracia consider spatial hedonic mod-
els applied to house prices. Hedonic price models are familiar from microeconomics
and, in particular, from the seminal contributions of Lancaster (1966) and Rosen
(1974). In the context of house prices, there are key characteristics, such as aspects
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of neighborhood, proximity to parks, schools, measures of environmental quality,
and so on, that are critical in assigning a value to a house. These characteristics
lead to the specification of a hedonic price function to provide an estimate of the
marginal willingness to pay (MWTP) for a characteristic; a related aim, but one
not so consistently pursued, is to retrieve the implied inverse demand function
for house characteristics. Two key problems in the estimation of hedonic house
price functions, in particular, are spatial dependence and spatial heterogeneity. As
Anselin and Lozano-Gracia note, spatial dependence, or spatial autocorrelation,
recognizes the importance of geographical or, more generally, network space in
leading to a structure in the covariance matrix between observations. Whilst there
is an analogy with temporal autocorrelation, spatial autocorrelation is not simply
an extension of that concept, but requires its own conceptualization and methods.
Spatial heterogeneity can be viewed as a special case of structural instability; two
(of several) examples of heterogeneity are spatial regimes (for example, ethnically
based sub-neighorhoods) and spatially varying coefficients (for example, different
valuations of housing and neighborhood characteristics). In this chapter, Anselin
and Lozano-Gracia provide a critical overview of methods, such as spatial two-stage
least squares and spatial feasible GLS, a summary of the literature on spatial depen-
dence and spatial heterogeneity, and discussion of the remaining methodological
challenges.

In Chapter 27, Serge Rey and Julie Le Gallo consider an explicitly spatial analysis
of economic convergence. Recall that Chapter 23, by Durlauf et al., is con-
cerned with the growing interest in the econometrics of convergence; for example,
whether there was an emergence of convergence clubs, perhaps suggesting “win-
ners and losers” in the growth race. There is an explicitly spatial dimension to
the evaluation of convergence; witness, for example, the literature on the con-
vergence of European countries or regions, the convergence of US states, and so
on. Rey and Le Gallo bring this spatial dimension to the fore. The recognition of
the importance of this dimension brings with it a number of problems, such as
spatial dependence and spatial heterogeneity; these problems are highlighted in
Chapter 26, but in Chapter 27 they are put in the context of the convergence of
geographical units. Whilst Rey and Le Gallo consider what might be regarded as
purely econometric approaches to these problems, they also show how exploratory
data analysis (EDA), extended to the spatial context, has been used to inform the
theoretical and empirical analysis of convergence. As an example, a typical focus
in a non-spatial context is on σ -convergence, which relates to a cross-sectional
dispersion measure, such as the variance of log per capita output, across regions or
countries. However, in a broader context, there is interest in the complete distri-
bution of regional incomes and the dynamics of distributional change, leading to,
for example, the development of spatial Markov models, with associated concepts
such as spatial mobility and spatial transition. EDA can then provide the tools to
visualize what is happening over time: see, for example, the space-time paths and
the transition of regional income densities shown in Figures 27.5 and 27.6. Rey and
Le Gallo suggest that explicit recognition of the spatial dimension of convergence,
combined with the use of EDA and its extensions to include the spatial element,
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offers a fruitful way of combining different methods to inform the overall view on
convergence.

Part X comprises two chapters on applied econometrics and its relationship
to computing. In Chapter 28, Bruce McCullough considers the problem of test-
ing econometric software. The importance of this issue is hard to understate.
Econometric programs that are inaccurate, for any reason, will produce misleading
results not only for the individual researcher but, if published, for the profession
more generally, and will lead to applications that are impossible to replicate. The
development of sophisticated methods of estimation means that we must also be
ever-vigilant in ensuring that software meets established standards of accuracy. A
seminal contribution to the development of accuracy benchmarks was Longley
(1967). As McCullough notes, Longley worked out by hand the solution to a lin-
ear regression problem with a constant and six explanatory variables. When run
through the computers of the time, he found that the answers were worryingly
different. Of course, the Longley benchmark is now passed by the economet-
ric packages that are familiar to applied econometricians. However, the nature
of the problems facing the profession is different (sophisticated estimators, large
datasets, simulation-based estimators) and McCullough’s results imply that there
is no reason for complacency. Many econometric estimators involve problems of
a nonlinear nature – for example, the GARCH and multivariate GARCH estima-
tors and the probit estimator – and it is in the case where a nonlinear solver is
involved that the user will find problems, especially when relying on the default
options. Another area that has seen substantial growth in the last two decades has
been the use of Monte Carlo experimentation, an area that makes fundamental
use of random numbers, and hence any package must have a reliable random
number generator (RNG). But are the numbers so generated actually random?
The answer is, not necessarily! (The reader may wish to refer to Volume 1 of this
Handbook, which includes a chapter by Jurgen Doornik on random number gener-
ation.) The importance of maintaining standards of numerical accuracy has been
recognised in the National Institute of Standards and Technology’s Statistical Ref-
erence Datasets, which has resulted in a number of articles using these datasets to
evaluate software for econometric problems. To illustrate some of the issues in soft-
ware evaluation, for example in establishing a benchmark, McCullough includes
a study of the accuracy of a number of packages to estimate ARMA models. The
central methods for the estimation of such models include unconditional least
squares (UCLS), conditional least squares (CLS), and exact maximum likelihood.
The questions of interest are not only in the accuracy of the point estimates from
these methods in different packages, but also what method of standard error cal-
culation is being used. Overall, McCullough concludes that we, as a profession,
have some way to go in ensuring that the software that is being used is accurate,
that the underlying methods are well-documented, and that published results are
replicable.

In Chapter 29, Marius Ooms takes a historical perspective on the nature of
applied econometrics as it has been represented by publications and reviews of
econometric and statistical software in the Journal of Applied Econometrics (JAE).
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Over the 14-year review period, 1995–2008, there were 513 research articles pub-
lished in the JAE, of which 253 were categorized as applications in time series, 140
as panel data applications and 105 as cross-section applications. Ooms notes that
there has been a gradual shift from macroeconometrics to microeconometrics and
applications using panel data. The software review section of the JAE has been a
regular feature, so enabling an analysis of the programmes that have been in use –
and continue to be in use, reflecting the development policy of the providers. This
section is likely to be a very useful summary for research and teaching purposes.
Ooms also notes the growth of high-level programming languages, such as Gauss,
MATLAB, Stata and Ox, and illustrates their use with a simple program. In com-
bination, the profession is now very much better served for econometric software
than it was twenty years ago. Of course, these developments have not taken place in
isolation but rather as a response to developments in theoretical and applied econo-
metrics. A leading example in this context, noted by Ooms, is the Arellano and
Bond (1991) approach to the estimation of applications using panel data (dynamic
panel data, or DPD, analysis), which led to the widespread implementation of new
code in existing software and many new applications; an example in the area of
time series applications is the growth of ARCH and GARCH-based methods and the
implantation of estimation routines in econometric software. As noted in Chapter
28 by McCullough, reproducibility of results is a key aspect in the progression and
reputation of applied econometrics. Results that are irreproducible by reason of
either inaccurate software or unavailability of data will do long-term harm to the
profession. In this respect, the JAE, through Hashem Pesaran’s initiative, has been
a leader in the context of requiring authors to provide the data and code which
they used. The JAE archive is indexed and carefully managed, and provides the
standard for other journals.

As a final comment, which we hope is evident from the chapters contained in
this volume, one cannot help but be struck by the incredible ingenuity of those
involved in pushing forward the frontiers of applied econometrics. Had this volume
been compiled even, say, just twenty years ago, how different would it have been!
Viewed from above, the landscape of applied econometrics has changed markedly.
Time series econometrics and macroeconometrics, whilst still important, are not
predominant. The combination of the availability of large datasets of a microeco-
nomic nature, combined with enormous increases in computing power, has meant
that econometrics is now applied to a vast range of areas. What will the next twenty
years bring?

Finally, thanks are due to many in enabling this volume to appear. First, our
thanks go collectively to the authors who have cooperated in contributing chapters;
they have, without exception, responded positively to our several and sometimes
many requests, especially in meeting deadlines and accommodating editorial sug-
gestions. We hope that the quality of these chapters will be an evident record of
the way the vision of the Handbook has been embraced. We would also like to
record our gratitude to the Advisory Editors for this volume: Bill Greene, Philip
Hans Franses, Hashem Pesaran and Aman Ullah, whose support was invaluable,
especially at an early stage.
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Thanks also go the production team at Palgrave Macmillan, only some of whom
can be named individually: Taiba Batool, the commissioning editor, Ray Addicott,
the production editor, and Tracey Day, the indefatigable copy-editor. A special
mention goes to Lorna Eames, secretary to one of the editors, for her willing and
invaluable help at several stages in the project.
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1
The Methodology of Empirical
Econometric Modeling:
Applied Econometrics Through
the Looking-Glass
David F. Hendry

Abstract

This chapter considers the methodology of empirical econometric modeling. The historical back-
ground is reviewed from before the Cowles Foundation to the rise of economic theory-based
econometrics and the decline of data concerns. A theory for “Applied Econometrics” suggests
reinterpreting the role of economic theory given that the intrinsic non-stationarity of economic
data vitiates analyses of incomplete specifications based on ceteris paribus. Instead, the many steps
from the data-generation process (DGP) through the local DGP (LDGP) and general unrestricted
model to a specific representation allow an evaluation of the main extant approaches. The poten-
tial pitfalls confronting empirical research include inadequate theory, data inaccuracy, hidden
dependencies, invalid conditioning, inappropriate functional form, non-identification, parameter
non-constancy, dependent, heteroskedastic errors, wrong expectations formation, misestimation
and incorrect model selection. Recent automatic methods help resolve many of these difficulties.
Suggestions on the teaching of “Applied Econometrics” are followed by revisiting and updating the
“experiment in applied econometrics” and by automatic modeling of a four-dimensional vector
autoregression (VAR) with 25 lags for the numbers of bankruptcies and patents, industrial output
per capita and real equity prices over 1757–1989.
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1.1 Introduction

“Now, here, you see, it takes all the running you can do, to keep in the
same place. If you want to get somewhere else, you must run at least
twice as fast as that!” (Quote from the Red Queen in Through the Looking-
Glass and What Alice Found There, Lewis Carroll, Macmillan & Co., 1899,
[henceforth cited as “Lewis Carroll, 1899”])

Most econometricians feel a bit like Alice did at having to run fast even to stand still.
Handbooks are an attempt to alleviate the problem that our discipline moves for-
ward rapidly, and infoglut can overwhelm, albeit that one has to run even faster for
a short period to also find time to read and digest their contents. That will require
some sprinting here, given that the contents of this Handbook of Econometrics pro-
vide up-to-date coverage of a vast range of material: time series, cross-sections,
panels, and spatial; methodology and philosophy; estimation – parametric and
nonparametric – testing, modeling, forecasting and policy; macro, micro, finance,
growth and development; and computing – although I do not see teaching. Such
general headings cross-categorize “Applied Econometrics” by types of data and
their problems on the one hand – time series, cross-sections, panels, high frequency
(see, e.g., Barndorff-Nielsen and Shephard, 2007), limited dependent variables (see,
e.g., Heckman, 1976), or count data (excellently surveyed by Cameron and Trivedi,
1998), etc. – and by activities on the other (modeling, theory calibration, theory
testing, policy analysis, forecasting, etc.). The editors considered that I had written
on sufficiently many of these topics during my career to “overview” the volume,
without also noting how markedly all of them had changed over that time. The
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main aim of an introductory chapter is often to overview the contents of the vol-
ume, but that is manifestly impossible for the Handbook of Econometrics given its
wide and deep coverage. In any case, since the Handbook is itself an attempt to
overview Applied Econometrics, such an introduction would be redundant.

Thus, my focus on empirical econometric modeling concerns only one of the
activities, but I will also try to present an interpretation of what “Applied Econo-
metrics” is; what those who apply econometrics may be trying to achieve, and how
they are doing so; what the key problems confronting such applications are; and
how we might hope to resolve at least some of them. Obviously, each aspect is con-
ditional on the previous one: those aiming to calibrate a theory model on a claimed
set of “stylized facts” are aiming for very different objectives from those doing
data modeling, so how they do so, and what their problems are, naturally differ
greatly. This chapter will neither offer a comprehensive coverage, nor will it be an
uncontroversial survey. En route, I will consider why “Applied Econometrics” does
not have the highest credibility within economics, and why its results are often
attacked, as in Summers (1991) among many others (see Juselius, 1993, for a reply).
Evidence from the contents of textbooks revealing the marginal role of “Applied
Econometrics” and “economic statistics” within the discipline has been provided
recently by Qin (2008) and Atkinson (2008) respectively. Since two aspects of our
profession with even lower status than “Applied Econometrics” are data (measure-
ment, collection and preparation), and teaching, I will try and address these as well,
as they are clearly crucial to sustaining and advancing a viable “Applied Economet-
rics” community. Economic forecasting and policy are not addressed explicitly,
being uses of empirical models, and because the criteria for building and selecting
such models differ considerably from those applicable to “modeling for under-
standing” (see, e.g., Hendry and Mizon, 2000; and for complete volumes on fore-
casting, see Clements and Hendry, 2002a, 2005; Elliott, Granger and Timmermann,
2006).

Economists have long been concerned with the status of estimated empirical
models. How a model is formulated, estimated, selected and evaluated all affect
that status, as do data quality and the relation of the empirical model to the ini-
tial subject-matter theory. All aspects have been challenged, with many views still
extant. And even how to judge that status is itself debated. But current challenges
are different from past ones – partly because some of the latter have been success-
fully rebutted. All empirical approaches face serious problems, yet the story is one
of enormous progress across uncharted terrain with many mountains climbed –
but many more to surmount. I will recount some of that story, describe roughly
where we are presently located, and peer dimly into the future. Why “Applied Econo-
metrics Through the Looking-Glass”? Lewis Carroll was the pseudonym for Charles
Dodgson, a mathematician who embodied many insights in the book which is
cited throughout the present chapter: a Looking-Glass is a mirror, and applied
findings in economics can only reflect the underlying reality, so obtaining a robust
and reliable reflection should guide its endeavors.

Following the brief section 1.2 on the meaning of the topic, section 1.3 sum-
marizes some of the history of our fallible discipline. Then section 1.4 proposes a
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“theory of Applied Econometrics” which highlights some of the problems empirical
modeling confronts in a non-stationary environment, where non-stationary is used
throughout in the “wide sense” to denote any changes in the distributions of the
random variables modeled by economists. Section 1.5 discusses a recent tool for
automatic modeling, Autometrics, based on the last decade of research into model
selection (see Doornik, 2007a; Hendry and Krolzig, 2005; Hendry, with Doornik
and Nielsen, 2007). Section 1.6 comments on teaching Applied Econometrics, and
section 1.7 revisits the experiment in applied econometrics conducted by Magnus
and Morgan (1999). Section 1.8 then looks at automatic modeling of a four-variable
dynamic system related to industrial output since 1700, with 25 lags in its initial
formulation and many outliers over more than 250 years. Section 1.9 concludes.
Throughout, I draw heavily on a number of my previous papers. Despite there
being almost 200 citations to other scholars, I am conscious that documentation
is bound to be incomplete, and apologize for omitting many contributions.

1.2 What is “Applied Econometrics”?

“When I use a word,” Humpty Dumpty said in rather a scornful tone,
“it means just what I choose it to mean – neither more nor less.” (Lewis
Carroll, 1899)

At the superficial level, “Applied Econometrics” is “any application of economet-
rics,” as distinct from theoretical econometrics. If it were not for the imperialist
tendencies of econometricians, that would suffice, but econometrics has been
applied in space science, climatology, political science, sociology, epidemiology,
marketing, inter alia, not to mention the claim in How the Laws of Physics Lie (see
Cartwright, 1983) that econometrics is the key methodology for all of science . . .

Sorry to disappoint the eager reader, but I will not be covering even a wide range
of the economic applications, never mind that plethora of outside studies.

Some applied econometricians would include any applications involving anal-
yses of “real economic data” by econometric methods, making “Applied Econo-
metrics” synonymous with empirical econometrics. However, such a view leads
to demarcation difficulties from applied economics on the one hand and applied
statistics on the other. Defining “econometrics,” as in Frisch (1933), to comprise
only studies involving the unification of economic theory, economic statistics
(data), and mathematics (statistical methods) helps in demarcation, but limits its
scope and inadvertently excludes (say) developing econometric theory itself, or
just improving data measurement and collection.

Outsiders might have thought that “Applied Econometrics” was just the appli-
cation of econometrics to data, but that is definitely not so; virtually no journal
editor would publish such a piece. Rather, the notion of mutual penetration domi-
nates – but as a one-way street. Economic theory comes first, almost mandatorially.
Perhaps this just arises from a false view of science, namely that theory precedes
evidence, even though, apart from a few famous occasions, science rarely proceeds
by imposing a preconceived theory on evidence, and evidence regularly shapes and
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stimulates theory. Yet the latter is rarely the case in applied econometrics – and to
see how we arrived at such a state, we need to consider the contingent history of
our discipline.

1.3 Historical background

“The time has come,” the Walrus said, “To talk of many things: Of shoes
– and ships – and sealing-wax – Of cabbages – and kings – And why the
sea is boiling hot – And whether pigs have wings.” (Lewis Carroll, 1899)

The histories of statistics and econometrics are now reasonably well documented:
on the former, see, e.g., the books by Stigler (1986, 1999) and Hald (1990, 1998);
and for the latter, see Epstein (1987), Morgan (1990), Qin (1993), Klein (1997),
and Le Gall (2007); also see Christ (1994), Spanos (2006), Farebrother (2006) and
Gilbert and Qin (2006); and for reprints of key papers, see Darnell (1994) and
Hendry and Morgan (1995), with related material in Caldwell (1993), Hamouda
and Rowley (1997), Mills (1999) and Campos, Ericsson and Hendry (2005). These
books provide overall bibliographic perspective.

1.3.1 Pre-Cowles

The shop seemed to be full of all manner of curious things – but the oddest
part of it all was, that whenever she looked hard at any shelf, to make out
exactly what it had on it, that particular shelf was always quite empty:
though the others round it were crowded as full as they could hold. (Lewis
Carroll, 1899)

An aspect of that history which is still somewhat under-emphasized, despite being
stressed by Hendry and Morgan (1995), is the role that empirical studies have
played as a driver of new econometric concepts, theories and methods, stand-
ing in some contrast to its direct impact on economics. Certainly, early attempts
were replete with what we would now view as blunders – William Stanley Jevons’
sunspot, and Henry Moore’s Venus, theories of business cycles are regularly trotted
out as examples of how silly econometricians can be, yet Jevons (1875) and Moore
(1923) respectively need to be contrasted with other careful and insightful empir-
ical analyses in Jevons’ research, edited by Foxwell (1884), and in Moore (1911).
On the former, see the appraisal in Peart (2001); and on the latter, e.g., Stigler
(1962) comments: “Moore’s standard of craftsmanship is high: the basic data are
fully reported and the work was carefully done.” Also, note the cited comment
from Alfred Marshall to Moore in 1912 that “the ‘ceteris paribus’ clause – though
formally adequate seems to me impracticable,”a point that will recur below. The
“upward sloping demand curve” for pig-iron in Moore (1914) is perhaps the most
notorious misinterpretation, but in fact led to many later insights – in particu-
lar, reactions to it helped unravel the whole complicated and intertwined issues
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of simultaneity, identification, exogeneity, and partial effects (see Wright, 1915,
1929; Working, 1927; Tinbergen, 1930, inter alia).

Equally importantly, many “strange” empirical correlations had been found that
stimulated the unraveling of both spurious, and later nonsense, regressions in
works such as Yule (1897), Hooker (1901), and especially the famous explanation
in Yule (1926), leading first to a distinction between short-run and long-term rela-
tionships, then unit roots, and eventually cointegration, as in Granger (1981),
and dozens of later contributions surveyed in Hendry and Juselius (2000, 2001).
Despite obvious progress – Stigler (1962) begins his article about Moore by “If one
seeks distinctive traits of modern economics, traits which are not shared to any
important degree with the Marshallian or earlier periods, he will find only one:
the development of statistical estimation of economic relationships” – trouble lay
ahead.

The attack by Robbins (1932) on the empirical studies of Schultz (1928) – por-
trayed as the feckless Dr. Blank studying the demand for herring (rather than
sugar) – was the first of several critiques which sought to deny any substantive
role for econometrics in economics.1 Tinbergen’s attempts to build empirical mod-
els of investment activity brought down the wrath of John Maynard Keynes (see
Tinbergen, 1939, 1940; Keynes, 1939, 1940), who insisted that the economist had
to be “in the saddle” with the econometrician as the “patient ass,” and sarcastically
demanded that Tinbergen satisfy:

an experiment on his part. It will be remembered that the seventy translators
of the Septuagint were shut up in seventy separate rooms with the Hebrew text
and brought out with them, when they emerged, seventy identical translations.
Would the same miracle be vouchsafed if seventy multiple correlators were shut
up with the same statistical material? And anyhow, I suppose, if each had a
different economist perched on his a priori, that would make a difference to the
outcome.

We will return in section 1.4 both to that issue, which may well now be possible,
and to Keynes’ general claims – one might like to ponder whether 70 economic
theorists asked to tackle the same puzzle would derive precisely the same model?
As ever, other more constructive outcomes followed from that debate, especially
the memorandum by Frisch (1938), and it certainly did not discourage Haavelmo
(1944).

1.3.2 War and post-war

“I’ll tell you all my ideas about Looking-glass House. First, there’s the room
you can see through the glass – that’s just the same as our drawing-room,
only the things go the other way.” (Quote from Alice in Lewis Carroll,
1899)

Despite Koopmans (1937) being a key precursor to the establishment of modern
econometrics in Haavelmo (1944), the attack by Koopmans (1947) on Burns and
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Mitchell (1946) allowed the assertion of “measurement without theory” to become
capable of dismissing empirical work without further serious consideration. The
vigorous reply by Vining (1949a, 1949b) still merits reading. With a few honorable
exceptions (such as Atkinson, 2005), even the use of the word “measurement” as a
title for economics’ papers seems to have decreased since (other than in “measure-
ment errors”). Tress (1959) offers a near contemporary analysis of the acrimony
between economics and econometrics at that time, and a possible reconciliation.

Keynes (1939) had asserted that a long list of “preconditions” had to be satisfied
to validate empirical inferences, implicitly arguing that empirical econometrics
must fail unless everything was known in advance (see, e.g., Hendry, 1980). But if
it was impossible to empirically uncover things not already known theoretically,
then no science could have progressed; rather, scholasticism would still rule. There
are several flaws in Keynes’ claims, of which three are the most important.

First, “partial knowledge” can be valuable, and can be learnt from evidence, with
or without prior theories, albeit being subject to revision later. Our understanding
of gravity remains incomplete, but has advanced greatly since Aristotle’s early view
of objects’ natural places (smoke rises, stones fall, as natural to go to heaven or
the centre of the earth, respectively), through Ptolemy’s epicycle theory of plane-
tary motions, Descartes’ vortex theory, and Newtonian inverse-square laws, which
Adam Smith (1795) presciently noted was just a model and not the “truth” (as
most of his contemporaries assumed). Einstein’s relativity theory is still not the
“final answer.” Retrospectively, Aristotle’s theory did not go beyond “explaining”
the phenomena themselves, whereas Newtonian theory, while closely based on
Kepler’s laws of motion of planetary bodies, explained many additional aspects, so
was a clear advance in knowledge, even if later it too was found to be incomplete,
and at relativistic speeds, incorrect. Moreover, despite neither Aristotle’s nor New-
ton’s theories being “true,” both were at least consistent with the observed facts
of their time. The relevant empirical regularities persisted through many theories,
which provided better explanations, often with unanticipated predictions of new
phenomena – genuine “mutual penetration.” Thus, progress is the key to science,
not one-off forging of true laws that hold forever.

Second, if there are invariant features of reality – as in physics and chemistry –
then empirical research can discover them without prior knowledge, as happened
historically in many branches of science. Conversely, if nothing is invariant (an
extreme of Heraclitus of Ephesus supposed view that “reality is change”), neither
economic theories nor econometric models would be of any practical value (see
Hendry, 1995b). Following Bachelier (1900), equity prices have long been viewed
as close to random walks, which may be thought to entail the absence of any
invariants, but if correct – as suggested by some modern theories and empirical
tests of efficient markets – is actually a powerful invariant, as contrasted with a
data generating process whose structure alters every period.

Third, empirical econometrics could still “advance” by rejecting economic the-
ories. This would at least allow economists to focus on theories that were not
yet rejected, if any, and improve those that faced discordant evidence. However,
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progress might be somewhat inefficient when new theories are easily generated as
variants of previous incarnations.

Similar comments apply to Koopmans’ claim that “without resort to theory, in
the sense indicated, conclusions relevant to the guidance of economic policies can-
not be drawn.” Such an argument is not sustainable in general. Originally, aspirin
was a folk remedy for hangovers, derived from brewing willow-tree bark – of which
acetylsalicylic acid, aspirin’s active ingredient, is a natural constituent – without
any theory as to how or why that policy intervention worked (see Weissmann,
1991). A less well known example is the use in folk medicine of fungal-based prod-
ucts, some of which contain natural antibiotics such as penicillin: over 3,000 years
ago, the Chinese had used moldy soybean curd for treating skin infections, again
with no theory on which to base that policy. Theories can be invaluable, and can
enhance the credibility of proposed policies, but they are not essential, especially
when they are incorrect.

1.3.3 The rise of economic theory-based econometrics

“If you’ll tell me what language ‘fiddle-de-dee’ is, I’ll tell you the French
for it!” she exclaimed triumphantly. (Quote from Alice to the Red Queen
in Lewis Carroll, 1899)

Another critique of empirical modeling follows from the joint dependence of eco-
nomic events, namely the resulting issues of endogeneity and identification. It
seems widely believed that identification restrictions must be given a priori by eco-
nomic theory, especially in simultaneous systems, yet that belief also does not have
a substantive basis, as shown in section 1.4.7 on identification.

Together, the cumulative critiques just noted led to an almost monolithic
approach to empirical econometric research: first postulate an individualistic, inter-
temporal optimization theory; next derive a model therefrom; third, find data with
the same names as the theory variables; then select a recipe from the econometrics
cookbook that appropriately blends the model and the data, or if necessary, develop
another estimator; finally report the newly forged empirical law. Thus, we have a
partial answer to the issue posed in section 1.2: the contingent history of econo-
metrics suggested that the only viable route for applied research in economics,
where all current-dated variables are potentially endogenous, was to provide the
quantitative cloth for a completely pre-specified theoretical formulation derived
from general economic principles. But that approach too is problematic and not
without its critics. Economic theory has progressed dramatically over the past
century – imagine being forced to impose 1900’s economic theory today as the
basis for empirical research. If you recoil in horror at that idea, then you have
understood why much past Applied Econometrics research is forgotten: discard
the economic theory that it quantified and you discard the empirical evidence.
Instead of progress, we find fashions, cycles and “schools” in research. The prob-
lem is not that early pioneers ignored economic theory, but that the available
theory was seriously incomplete – as it still is today. Indeed, the Cowles Commis-
sion research was essentially predicated on the belief that the relevant economic
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theory already existed, so complicated issues of model choice could be avoided
by imposing valid restrictions derived from correct economic theories: on discov-
ering that such theory was not available, many turned to help develop it (see,
e.g., Qin, 2008; Bjerkholt, 2007 (Bjerkholt, 2005, is a useful precursor). Koop-
mans, Hurwicz and Arrow all made major contributions to economic theory, and
to quote Bjerkholt (2007): “Haavelmo stated later on various occasions that eco-
nomic theory needed further development for the econometric methods to become
fully applicable” (also see Moene and Rødseth, 1991). Indeed, to quote Haavelmo
(1989) himself:

The basis of econometrics, the economic theories that we had been led to believe
in by our forefathers, were perhaps not good enough. It is quite obvious that
if the theories we build to simulate actual economic life are not sufficiently
realistic, that is, if the data we get to work on in practice are not produced the
way that economic theories suggest, then it is rather meaningless to confront
actual observations with relations that describe something else.

He reiterated that view in his presidential address to the Econometric Society
(published as Haavelmo, 1958):

What I believe to be true, however, is this: The training in the technical skills
of econometrics can represent a powerful tool for imaginative speculation upon
the basic phenomena of economic life; and, furthermore, it would be fruitful to
bring the requirements of an econometric “shape” of the models to bear upon
the formulation of fundamental economic hypotheses from the very beginning.

Once model choice cannot be avoided, methodology becomes a salient issue,
and it would seem every conceivable methodology has at least one advocate. Pagan
(1987) considered what he viewed as the three main econometric methodologies,
relating mine to Leamer (1978) and Sims (1980), yet the ubiquitous “theory-based”
approach was not mentioned, albeit that there are really many variants thereof.

1.3.4 The decline of data concerns

“You’re travelling the wrong way.” (Train guard to Alice in Lewis Carroll,
1899)

At about the same time that a priori theory-based econometrics became dominant,
data measurement and quality issues were also relegated as a central component of
empirical publications. Early on, data series were often published in their entirety,
with careful caveats about accuracy, but later, at best, were recorded in appendices,
or not at all. For example, Clark (1932) allowed the first famous estimate of the
size of the Keynesian “multiplier.” Although computerized databases have recently
started to compensate for the absence of the printed record, electronic data are
sometimes revised in situ, making it difficult for later investigators to duplicate
previously-published findings. In a detailed study of a number of cases, Atkinson

mailto: rights@palgrave.com


12 Methodology of Empirical Econometric Modeling

(2008) emphasizes that the outcomes reported would change substantively if data
had been more carefully evaluated prior to the econometric analysis. To quote:

my concern (is) with the status, within economics, of economic statistics.
By “economic statistics,” I mean the study of how we create, use and assess
economic data – what one might call “data appreciation.” . . . It is true that
economists are using empirical data to an unprecedented extent, and applying
tools of great sophistication. Economics is a much more data-driven subject than
it was in the past. But, I shall argue, economists have too often come to take data
for granted, without critical examination of their strengths and weaknesses.

With that caveat about data firmly in mind, let us turn to methodology: mea-
surement is reconsidered in section 1.4.3, and an illustration of some effects of
substantial revisions in section 1.7.1.

The route ahead views all models as arising from reductions of whatever pro-
cess generated the data, which is a combination of the economic outcome and
the measurement system. We discuss these reductions in relation to their impact
on the parameters that actually governed the economic decisions of the relevant
agents. Most reductions occur implicitly, as investigators usually approach mod-
eling from the opposite perspective, namely what to include in their analysis,
although its success or failure will depend on whether the sub-set of variables
considered allows a model to capture the salient and constant characteristics of
the data-generating process (DGP). What to include and how to include it cer-
tainly depends on the economics behind the analysis; but what is found depends
on the unknown data-generating process and the losses of information from the
reductions that were necessary to derive the postulated model.

1.4 A theory of Applied Econometrics

“Why, sometimes I’ve believed as many as six impossible things before
breakfast.” (Quote from the White Queen in Lewis Carroll, 1899)

If only it were just six! To believe that he or she has ascertained the “truth,”
an applied econometrician would have to believe at least the following dozen
impossible (composite) assumptions:

1. a correct, complete, and immutable underlying economic theory derivation
2. a correct, comprehensive choice of all relevant variables, including all dynamic

specifications
3. exact data measurements on every variable
4. the absence of any hidden dependencies, including collinearity and

simultaneity
5. the validity and relevance of all conditioning variables (including instruments)
6. the precise functional forms for every variable
7. that all parameters of interest are identified in the resulting model specification
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8. that all entities treated as parameters are constant over time, and invariant to
all potentially omitted variables and regime changes

9. the errors have “independent,” homoskedastic, distributions
10. all expectations formulations are correct, or agents’ expectations are accurately

measured
11. the choice of estimator is appropriate at relevant sample sizes
12. a valid and non-distortionary method of model selection is used.

If all of these assumptions had to be perfectly correct to produce useful empirical
evidence, there would be no hope of ever doing so. In Hendry (1987), I suggested
the four “golden prescriptions” of econometrics, abbreviated here as:

(i) think brilliantly: if you think of the right answer before modeling, then the
empirical results will be optimal and, of course, confirm your brilliance;

(ii) be infinitely creative: if you do not think of the correct model before
commencing, the next best is to think of it as you proceed;

(iii) be outstandingly lucky: if you do not think of the “true model” before starting
nor discover it en route, then luckily stumbling over it before completing the
study is the final sufficient condition. This may be the most practical of these
suggestions. Failing this last prescription:

(iv) stick to doing theory.

Lest the reader thinks the list of a dozen requirements above is overly dramatic, or
even new, Hendry and Morgan (1995) record:

In the thesis as a whole, Koopmans (1937) assembles together and confronts
most of the major issues in econometrics, which we have translated into current
terminology as:
1. the joint occurrence of errors-in-variables and errors-in-equations
2. the need for a complete set of determining variables to leave an innovation

error
3. a reductionist approach of proceeding from general to simple
4. the distinctions between the activities of specification, estimation and

distribution, as spelt out by R.A. Fisher
5. the non-experimental nature of economic data
6. the need to condition on systematic components with independently

varying error terms
7. the choice of functional form, using linearity for convenience
8. the formulation of the parameters of interest
9. the need to test underlying assumptions

10. the importance of incorporating all relevant information
11. the avoidance of unnecessary assumptions
12. the need for the general model to be estimable
13. the need for the model specification to be robust.
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We now consider each of the twelve assumptions in turn, devoting the separate
section 1.5 to the last, namely model selection.

1.4.1 Economic theory

“It seems very pretty,” she said when she had finished it, “but it’s rather
hard to understand.” (Alice after reading the Jabberwocky poem in Lewis
Carroll, 1899)

Economic theory has created many major ideas that have in turn changed the
world, from the “invisible hand” in (Smith, 1759, p. 350), understanding the gains
from trade and the problems with mercantilism, through the effects of tariffs and
taxes, to modern insights into issues such as welfare economics, option pricing,
auctions, contracts, principal–agent and game theories, trust and moral hazard,
asymmetric information, institutions, and all their attendant impacts on market
functioning and industrial, and even political, organization. In doing so, eco-
nomics has evolved dramatically over time, and will undoubtedly continue doing
so, hence at no instant can it be claimed to be correct, complete and immutable.
For example, most theories take preferences as a given – sometimes even as “deep
parameters” – but there are many endogenous determinants, from learning, adap-
tation, and advertising among others (see, e.g., von Weizsacker, 2005), with
psychological, behavioral, and neuro-economics bidding fair to play key roles in
the future (see, inter alia, Fehr and Falk, 2002; Fehr, Fischbacher, Kosfeld, 2005;
Camerer, 2007).

Theories need to be distinguished in terms of their “levels’, where low-level
theories are well established and widely accepted (e.g., the optical theory behind
the design of telescopes and the interpretation of their evidence), whereas high-
level theories usually assume the validity of many lower levels, but are subject to
doubt (as in theories of the accelerating expansion of the universe as due to “dark
energy”). Facts are items of empirical information which depend only on low-level
theories and measurements, and can be reliably replicated. Since all empirical evi-
dence is theory laden to some degree, albeit often just from very low-level theories,
“measurement without theory” is trivially impossible, and must relate to the lack of
use of high level theories – the appropriate blend of theory and empirical evidence
affects research efficiency, not necessarily the validity of any resulting findings
(see, e.g., Gilbert and Qin, 2007). Many low-level statements are correct, complete
and immutable, such as 1 + 1 = 2, and although essential to arithmetic, cannot
“explain” economic behavior. Conversely, testing theories just by their predictions
is problematic, as false assumptions can entail correct conclusions: assume 1 = 2,
then 2 = 1, so adding both sides, 3 = 3, which is valid and presumably thereby
establishes that 1 = 2 (also see Ericsson and Hendry, 1999).

General theories that do “explain” the Gestalt of empirical evidence are a boon,
but are not essential. Similarly, although experimentation can be helpful, it is far
from the only source of evidence: observational science is not an oxymoron. The
progressivity of science – its cumulation of findings that cohere, are consolidated in
theoretical explanations, and suggest where next to investigate – is its most salient
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attribute. There is simply no case that we understand no more than (say) Aristotle,
or Kepler, etc.: lights work, computers run, planes fly. Moreover, it is possible to
“predict” with considerable accuracy what changes to chips will speed up calcula-
tions, and what putative aircraft will not fly, which are inferences beyond any local
set of experiments and evidence, are not purely inductive, and can be generalized,
though doubtless with limits. Science seeks progress, whether by new experiments,
new instruments or observations, new theories or refutations of extant ones. We
now know that ulcers are caused by helicobacter pylori bacteria – not by stress –
so cheap, painless antibiotics can cure ulcers, replacing life-threatening operations
or expensive drugs. The path that led to that idea is irrelevant to its validity, and
could be serendipity, careful testing, or a theory prediction, whereas stringent eval-
uation and replicability are crucial. In turn, such advances can lead to radical new
thinking, albeit that initially they often face considerable opposition – sometimes
even derision: scientists are humans, and rarely change their views until evidence
overwhelms. Even then, theories are usually not rejected by evidence, but rather
are replaced when “better” theories develop that explain more, especially if they
account for previous anomalies.

Statistical analyses become essential in observational sciences, such as astron-
omy and economics, where “field” experiments are almost impossible to control.
Then theory and modeling difficulties both explode and certainty declines, espe-
cially when behavioral change is possible: despite rendering previous analyses less
than fully relevant to new settings, progress remains the key. It is widely recognized
that special factors may intrude on a theory-based model (e.g., changes in credit
rationing, nationalization, deregulation, price controls, wars, etc.), but less recog-
nized that such special factors can dominate when accounting for data variability.
Morgan (1990), Spanos (1995), Hendry (1995b) and Hendry and Mizon (2000)
discuss some of the problems involved in testing theories using observational
data.

Economists have not formally justified the principle of deriving empirical mod-
els from theory – most seem to assume it is obvious – so a substantial proportion of
empirical econometric evidence is “high level” in that its credibility depends on the
prior credibility of the theoretical model from which it was derived. Given any con-
jecture, we can usually test its empirical validity, thereby sustaining a destructive
approach (see, e.g., Popper, 1963, on conjectures and refutations), although issues
of inference from small and heterogeneous data samples complicate the analysis.
If a theory implementation is simply discarded when it is rejected, the process fails
to incorporate learning from the evidence. Conversely, if it is not discarded, some
or all of the empirical model, the measurements and the theory must be revised,
although there is no unique or even structured way of doing so. It is a non sequitur to
assume that the particular alternative considered is true when the null is rejected. A
progressive research approach of successively encompassing congruent (see section
1.4.2.4) models consolidated by empirically-relevant theories offers one possibility.

Alternative approaches to “macroeconomic theory” abound in the literature:
Samuelson (1947) initiated a tradition of models based on constrained optimiza-
tion, implemented by Hall (1978) as Euler equations; Kydland and Prescott (1990,
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1991) formulate real-business cycle theories with rational expectations, leading to
dynamic stochastic general equilibrium (DSGE) models as in Smets and Wouters
(2003), whereas Hildenbrand (1994, 1999) emphasizes heterogeneity of endow-
ments; Stiglitz (2003) stresses that asymmetric information can induce Keynesian
effects, and Aghion et al. (2002) argue that agents only have imperfect-knowledge
expectations. Moreover, many aspects of economic theory models can be chosen
freely, such as the units of time and forms of utility functions: indeed, Stigum
(1990) views theories as characterizing “toy agents in toy economies.” However,
when data are non-stationary, few transformations will be able to characterize the
evidence in a constant relationship. For example, linear relationships between vari-
ables, which often arise in Euler equations, seem unlikely to be good descriptions
in growing economies (see Ermini and Hendry, 2008, and Spanos, Hendry and
Reade, 2008, for tests of log versus linear dependent variables in I(1) processes).

The absence from many economic theories of some of the main sources of data
variability occurs across most research areas in economics, and although it differs
in form, is probably part of the reason for the rash of “puzzles” (i.e., anomalous
or even contradictory evidence) so beloved of the present generation of journal
editors. In microeconomics, low R2 values reveal that much of the variability is
not accounted for by the postulated models. That outcome is usually ascribed to
individual heterogeneity and idiosyncrasies, which can indeed generate high lev-
els of unexplained variability, but there has to be some doubt that all the major
factors have been included. In panel data studies, much observed data variation is
attributed to “individual effects,” which are removed by (e.g.) differencing or devi-
ations from individual means. However, if the evidence that most micro-variability
is due to individual heterogeneity is correct, then “representative” agent theories
cannot be the best basis for macro-behavior, although aggregation could sustain
some approaches (see, e.g., Granger, 1987; Blundell and Stoker, 2005), but not
others (Granger, 1980). Finally, cross-country studies rarely account for key insti-
tutional differences between the constituent economies, and often use averages
of data over historical epochs where considerable changes occurred between peri-
ods (see, e.g., Sala-i-Martin, 1997, and the criticisms in Hoover and Perez, 2004;
Hendry and Krolzig, 2004).

1.4.1.1 Non-stationarity and ceteris paribus

“You don’t know how to manage Looking-glass cakes,” the Unicorn
remarked. “Hand it round first, and cut it afterwards.” (Lewis Carroll,
1899)

A time series process is non-stationary if its moments or distributional form change
over time. Two important forms of non-stationarity are unit roots and structural
breaks, both of which lead to permanent changes. The former induce stochastic
trends, which can be eliminated by differencing, or cointegration can also remove
unit roots and retain linear combinations of levels of the variables (however, unit
roots and cointegration are only invariant under linear transformations of vari-
ables). There is a vast literature, and recent surveys include Hendry and Juselius
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(2000, 2001) and Johansen (2006). Structural breaks matter most when they induce
location shifts in the processes under analysis, but those can also be removed in
part by differencing or co-breaking (see Hendry and Massmann, 2007). Forecast
failure – defined as a significant deterioration in forecast performance relative to its
anticipated outcome, usually based on historical performance – is all too common,
and is almost certainly due to structural breaks (see, e.g., Clements and Hendry,
1998, 1999, 2002b).

Because much observed data variability is due to factors absent from economic
theories, a serious gap exists between macroeconomic theory models and applied
econometric findings (see Spanos, 1989; Juselius, 1993; Hendry, 1995b; Nymoen,
2002). All economic theories rely on implicit ceteris paribus clauses, as “controls
in thought experiments,” although in a general equilibrium system in which
everything depends on everything else, ceteris paribus is suspect. In empirical
modeling, ceteris paribus cannot apply under non-stationarity even if the rele-
vant variables are strongly exogenous, since “other things” will not be “equal.”
Cartwright (2002) describes ceteris paribus as roughly equivalent to “if nothing
interferes then . . . some regularity is observed.” In non-stationary processes, noth-
ing will interfere only if all other factors are irrelevant, not because they will not
change. Many sources of wide-sense non-stationarity impinge on economic data,
including technical progress, R&D, new legislation, institutional changes, regime
shifts, financial innovation, shifting demography, evolving social and political
mores, as well as conflicts and other major catastrophes, inducing both evolu-
tion and structural breaks, all of which change the distributional properties of
data.

Two resolutions are possible to wide-sense non-stationarity. First, a “minor influ-
ence” theorem could show on theoretical or evidential grounds that all omitted
factors can be neglected, either because changes in them are of a smaller order
of importance than included effects, or because they are orthogonal to all the
effects that matter (see Hendry, 2005, and compare Boumans, 2005, who refers
to ceteris neglectis and ceteris absentibus). Neither condition is plausible unless at
least all the major influences have been included. Doing so brings us anyway
to the second solution, namely including all potentially relevant variables at the
outset, embedding theory models in more general systems that also allow for all
the empirically-known influences, as well as the many historical contingencies
that have occurred. Thus, institutional knowledge and economic history become
essential ingredients in Applied Econometrics. Far from diminishing the impor-
tance of economic reasoning as a basis for empirical econometrics, including all
non-stationarities seems the only way to reveal the underlying economic behav-
ior uncontaminated by excluded changes. Of course, theory models of the likely
behavioral reactions of economic agents to major changes would also help. As
macro-data are the aggregates of the economic microcosm, these problems must
afflict all empirical econometric studies, and are not merely a problem for time
series analysts. Since the need to model all non-stationarities if empirical results
are to be useful is important for both economics and econometrics, the next section
considers its prevalence.
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Figure 1.1 Historical time series for the UK

1.4.1.2 Long-run change

“I see you’re admiring my little box,” the Knight said in a friendly tone.
“It’s my own invention – to keep clothes and sandwiches in. You see I
carry it upside-down, so that the rain can’t get in.”

“But the things can get out,” Alice gently remarked. “Do you know the
lid’s open?” (Lewis Carroll, 1899)

Figure 1.1 records some historical time series for the UK over the period from about
1700 to 1991 (the dates differ for the various variables). Many other variables man-
ifesting dramatic non-stationarities are shown in Hendry (2001a, 2001b, 2005) and
Clements and Hendry (2001), where the first and last examine UK industrial output
in more detail. Here we focus on numbers of bankruptcies and patents, industrial
output per capita, and real equity prices (deflated by a cost of living price index)
(see Feinstein, 1972; Mitchell, 1988; Crafts and Mills, 1994, inter alia).

These four variables were selected from a range of alternatives as being related
to advances in technology and medicine, their implementation, incentives for
progress through intellectual property, and one source of financing (see Siegel and
Wright, 2007, for a recent review and bibliographic perspective). Technological
change is sometimes modeled as an “exogenous” random walk. While that is an
improvement over a deterministic trend, it is hardly a convincing representation
of a process which requires substantial inputs of human and physical capital, as
highlighted by endogenous growth models (see, e.g., Crafts, 1997). At the very
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Figure 1.2 Logs of historical UK time series

start of the industrial revolution, Smith (1776, Ch. 1) notes the key develop-
ment of specialists in R&D: “In the progress of society, philosophy or speculation
becomes, like every other employment, the principal or sole trade and occupation
of a particular class of citizens.”

The non-stationarities in Figure 1.1 are blatant, and reflect more than just unit
roots. Major historical events are clear: e.g., real equity prices exploded in the
South Sea Bubble, not regaining such levels again for 200 years, collapsed in
the Napoleonic and both world wars, as well as the first oil crisis, and today are
little above pre-industrial revolution levels. Frankly, it is almost infeasible to build
sensible empirical models of these levels series.

Figure 1.2 records the same four series in logs. Non-stationarity remains clear,
but one can at least imagine ways of sucessfully modeling such data. Figure 1.3
reports their data densities separately in each of (approximately) the three centuries
involved. The shifts in means and variances are marked, even if the presence of
heterogeneity and dependence within each century can distort such histograms.
Nor is the non-stationarity restricted to the levels of the variables, as Figure 1.4
illustrates for the annual changes in the four variables. Variance changes are clear,
which also serves to make the densities of the changes look much more alike, as
seen in Figure 1.5. Differencing alone can be insufficient to induce stationarity.

We will analyze the log transformations of these data in section 1.8.
In the absence of complete theoretical guidance on all relevant and irrelevant

variables, functional forms, exogeneity, dynamics, and non-stationarities, empir-
ical determination is essential. Consequently, the initially postulated models of
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Figure 1.3 Three centuries of data distributions of levels
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Figure 1.5 Three centuries of data distributions of changes

empirical research should usually involve many variables, although final selections
may prove to be parsimonious (an implication is considered in section 1.5): we now
consider that route.

1.4.2 Incomplete specifications

“What am I to do?” exclaimed Alice, looking about in great perplexity as
first one round head, and then the other, rolled down from her shoulder,
and lay like a heavy lump in her lap. (Lewis Carroll, 1899)

Economies are so high dimensional, interdependent, heterogeneous, and evolv-
ing that a comprehensive specification of all events is impossible: the number of
economy-wide relevant variables is uncountable in a human lifetime. Reducing
that high dimensionality by aggregation over any or all of time, space, com-
modities, agents, initial endowments, etc., is essential, but precludes any claim
to “truth.” So if one cannot get at the “truth,” what is on offer in economics?
Three alternatives are: imposing theory-based models; constructing partial mod-
els, which aim to estimate some parameters associated with a theory, usually by
generalized method of moments (GMM); or seeking the local DGP guided by eco-
nomic theory. All three could operate, but depend on different assumptions. We
first outline how empirical models must arise, then evaluate the three approaches
in general against that basis.
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1.4.2.1 From DGP to LDGP

“The prettiest are always further!” she said at last. (Quote from Alice in
Lewis Carroll, 1899)

Granted a stochastic basis for individual agent decision taking, such that any eco-
nomic transaction can be described as an event in an event space, which could
have been different for a myriad of reasons, then outcomes are measurable ran-
dom variables with (possibly different) distributions at each point in time. Let

U1
T = (u1, . . . , uT ) be the complete set of random variables relevant to the econ-

omy under investigation over a time span t = 1, . . .T , defined on the probability
space (�, F , P), where � is the sample space, F the event space and P the probability
measure. Denote the vast, complex, and ever-changing joint distribution of

{
ut
}

conditional on the pre-sample outcomes U0 and all necessary deterministic terms

Q1
T = (q1, . . . , qT ) (like constants, seasonal effects, trends, and shifts) by:

DU

(
U1

T | U0, Q1
T , ξ1

T

)
, (1.1)

where ξ
1
T ∈ � ⊆Rk are the parameters of the agents’ decision rules that led to

the outcomes in (1.1). Then DU (·) is the unknown, and almost certainly unknow-
able, data-generation process of the relevant economy. The theory of reduction
discussed in, inter alia, Hendry (1987), Florens, Mouchart and Rolin (1990) and
Hendry (1995a, Ch. 9) shows that a well-defined sequence of operations leads
to the “local” DGP (LDGP), which is the actual generating process in the space
of the variables under analysis. The resulting LDGP may be complex, non-linear
and non-constant from aggregating, marginalizing (following the relevant data
partition), and sequential factorization (the order of these reductions below is
not a central aspect), so the choice of the set of variables to analyze is crucial
if the LDGP is to be viably “captured” by an empirical modeling exercise. In
turn, that LDGP can be approximated by a “general unrestricted model” (GUM)
based on truncating lag lengths, approximating the functional form (perhaps after
data transformations) and specifying which parameters are to be treated as con-
stant in the exercise. Finally, a further series of reductions, involving mapping to
non-integrated data, conditioning, and simultaneity, lead to a parsimonious rep-
resentation of the salient characteristics of the dataset. Tests of losses from all these
reductions are feasible, as discussed in section 1.4.2.4.

Aggregation. Almost all econometric data are aggregated in some way, implicitly
discarding the disaggregates: although some finance data relate to point individual
transactions, their determinants usually depend on aggregates (such as inflation).

We represent this mapping as U1
T → V1

T , where the latter matrix is a mix of the data
to be analyzed and all other variables. The key issue is the impact of that mapping

on ξ
1
T → φ

1
T , where the latter set may include more or fewer constant parameters

depending on the benefits or costs of aggregation. Aggregates are linear sums, so

their means have variances proportional to population size: if xi,t ∼ IN
[
μt , σ

2
t

]
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then xt = N−1
t

∑Nt
i=1 xi,t ∼ IN

[
μt , N−1

t σ
2
t

]
. Log transforms of totals and means,

x > 0, only differ by that population size as ln
∑Nt

i=1 xi,t = ln xt + ln Nt , so stan-
dard deviations of log aggregates are proportional to scaled standard deviations of

means: SD[ln∑Nt
i=1 xi,t ] � N−1

t σt/μt (see, e.g., Hendry, 1995a, Ch. 2). Thus logs
of aggregates can be well behaved, independently of the underlying individual
economic behavior.

Data transformations. Most econometric models also analyze data after transfor-

mations (such as logs, growth rates, etc.), written here as W1
T = g(V1

T ). Again,

the key impact is on φ
1
T → ϕ

1
T and the consequences on the constancy of, and

cross-links between, the resulting parameters. At this stage we have created:

DW

(
W1

T | U0, Q1
T ,ϕ1

T

)
. (1.2)

The functional form of the resulting representation is determined here by the
choice of g(·). Many economic variables are intrinsically positive in levels, a prop-
erty imposed in models by taking logs, which also ensures that the error standard
deviation is proportional to the level.

Data partition. No reduction is involved in specifying that W1
T = (W

1
T : R1

T ),

where R1
T denotes the n × T data to be analyzed and W

1
T the rest. However, this

decision is a fundamental one for the success of the modeling exercise, in that the

parameters of whatever process determines R1
T must deliver the objectives of the

analysis.

Marginalizing. To implement the choice of R1
T as the data under analysis neces-

sitates discarding all the other potential variables, which corresponds to the

statistical operation of marginalizing (1.2) with respect to W
1
T :

DW

(
W

1
T , R1

T | U0, Q1
T ,ϕ1

T

)
= DW

(
W

1
T | R1

T , U0, Q1
T ,ϕ1

T

)
DR

(
R1

T | U0, Q1
T ,ω1

T

)
.

(1.3)

While such a conditional-marginal factorization is always possible, a viable

analysis requires no loss of information from just retaining ω
1
T . That will occur

only if
(
ϕ

1
T ,ω1

T

)
satisfy a cut, so their joint parameter space is the cross-product

of their individual spaces, precluding links across those parameters. At first sight,
such a condition may seem innocuous, but it is very far from being so: implic-

itly, it entails Granger non-causality of (all lagged values of) W
1
T in DR (·), which

is obviously a demanding requirement (see Granger, 1969; Hendry and Mizon,
1999). Spanos (1989) calls the marginal distribution DR (·) in (1.3) the Haavelmo
distribution.
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Sequentially factorizing. Next, letting R1
t−1 = (r1, . . . , rt−1), the retained marginal

density from (1.3) can be sequentially factorized as (see, e.g., Doob, 1953):

DR

(
R1

T | U0, Q1
T ,ω1

T

)
=

T∏
t=1

Drt

(
rt | R1

t−1, U0, qt , λt

)
. (1.4)

The right-hand side of (1.4) completes the intrinsic reductions from the DGP to
the LDGP for the set of variables under analysis (generally, the effects of the initial
conditions U0 are ignored and assumed to be captured by R0). The sequential
densities in (1.4) create a martingale difference (or innovation) process:

εt = rt − E
[
rt | R1

t−1, U0, qt

]
, (1.5)

where E[εt |R1
t−1, U0, qt ] = 0 by construction.

Parameters of interest. These are the targets of the modeling exercise, and are
hypothesized – on the basis of prior reasoning, past studies, and institutional
knowledge – to be the features of interest. We denote them by θ ∈ �, and any
later reduction choices must be consistent with obtaining θ from the final specifi-
cation. To the extent that the economic theory supporting the empirical analysis
is sufficiently comprehensive, the

{
λt
}

in (1.4) should still contain the required

information about the agents’ decision parameters, so θ = h(ω
1
T ). The next stage is

to formulate a general model of (1.4) that also retains the necessary information.

1.4.2.2 From LDGP to general unrestricted model

The LDGP in (1.4) can be approximated by a model based on a further series of
reductions, which we now discuss. Indeed, (1.4) is often the postulated basis of
an empirical analysis, as in a vector autoregression, albeit with many additional
assumptions to make the study operational. There are no losses when the LDGP
also satisfies these reductions, and if not, evidence of departures can be ascertained
from appropriate tests discussed in section 1.4.2.4, so that such reductions are then
not undertaken.

Lag truncation. The potentially infinite set of lags in (1.4) can usually be reduced

to a small number, so R1
t−1 � Rt−s

t−1 = (rt−s . . . rt−1), where the maximum lag length

becomes s periods, with initial conditions R1−s
0 . Long-memory and fractional inte-

gration processes are considered in, e.g., Granger and Joyeux (1980), Geweke and
Porter-Hudak (1983), Robinson (1995) and Baillie (1996). Letting frt (·) denote the
resulting statistical model of the

{
rt
}
, which could coincide with the LDGP when

the reduction is without loss, then the mapping is:

T∏
t=1

Drt

(
rt | R1

t−1, U0, qt , λt

)
⇒

T∏
t=1

frt

(
rt | Rt−s

t−1, R1−s
0 , qt ,ψt

)
. (1.6)
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The obvious check on the validity of such a reduction is whether longer lags matter;
and as before, the key criterion is the impact on {ψt }.

Parameter constancy. The parameters in question are those that characterize the
distribution fr(·) in (1.6). Then their constancy entails that the {ψt } depend on
a smaller set of parameters that are constant, at least within regimes. Complete
constancy requires ψt = ψ0 ∀t , and while unlikely in economics, is often the
assumption made, at least until there is contrary evidence. When there is no loss,
θ = f(ψ0), so all parameters of interest can be recovered from the model.

Linearity. The distribution in (1.6) may correspond to the linear Normal when the
functional form is chosen appropriately to ensure that a homoskedastic process also
results:

frt

(
rt | Rt−s

t−1, R1−s
0 , qt ,ψ0

)
ãpp INk

⎡⎣ s∑
i=1

�irt−i +�s+1qt ,�

⎤⎦. (1.7)

The LDGP distribution need not be Normal, but that is partly dependent on the
specification of qt , especially whether breaks in deterministic terms are mod-
eled therein. The constancy of the coefficients of any model also depends on
the functional forms chosen for all the data transformations, and an opera-
tional GUM presumes that

{
rt
}

has been transformed appropriately, based on
theoretical and empirical evidence. Checks for various nonlinear alternatives and
homoskedasticity are merited.

1.4.2.3 From the general to the specific

Providing that a viable set of basic parameters is postulated (and below we will
allow for the possibility of many shifts), then a variant of (1.7) can act as the GUM
for a statistical analysis. When the LDGP is nested in the GUM, so none of the
reductions above led to important losses, a well-specified model which embeds the
economic theory and can deliver the parameters of interest should result. When the
LDGP is not nested in the GUM, so the reductions in the previous sub-section entail
losses, it is difficult to establish what properties the final specific model will have,
although a well-specified approximation at least will have been found. Because
wide-sense non-stationarity of economic variables is such an important problem,
and within that class, location shifts are the most pernicious feature, section 1.5
considers the recent approach of impulse saturation (see Hendry, Johansen and
Santos, 2008; Johansen and Nielsen, 2008).

Mapping to a non-integrated representation. Many economic variables appear to be
integrated of at least first order (denoted I(1)), so there is a mapping rt → (�rp,t :

β
′rt ) = xt , where there are n − p cointegrating relations and p unit roots, so xt is

now I(0). Processes that are I(2) can be handled by mapping to second differences
as well (see, e.g., Johansen, 1995). This reduction to I(0) transforms ψ0 to ρ0 (say)
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and leads from (1.6) to:

T∏
t=1

fxt

(
xt | Xt−s

t−1, X1−s
0 , qt , ρ0

)
. (1.8)

VARs like (1.7) are often formulated for rt , rather than xt , as occurs in the first stage
of some cointegration analyses.

Contemporaneous conditioning. Conditioning concerns both contemporaneous
variables in models and current-dated instrumental variables (IVs), so let x′t =
(y′t : z′t ), where the former are the k variables to be modeled and the latter n− k are
taken as given. Then for ρ0 = (κ1 : κ2):

fxt

(
xt | Xt−s

t−1, X1−s
0 , qt , ρ0

)
= fyt |zt

(
yt | zt , Xt−s

t−1, X1−s
0 , qt , κ1

)
fzt

(
zt | Xt−s

t−1, X1−s
0 , qt , κ2

)
. (1.9)

A viable analysis from the conditional distribution alone in (1.9) requires that
θ = h1(κ1); and there will be no loss of information only if (κ1, κ2) satisfy a cut
so (κ1, κ2) ∈ K1 × K2, in which case zt is weakly exogenous for θ . When (1.7)
holds, both conditional and marginal distributions in (1.9) will be Normal, and
the relationships linear. The former leads to VAR-type modeling as noted, whereas
the conditional representation in (1.9) underpins more “structural” approaches
when the zt are instruments: we return to conditioning in section 1.4.5 below.

Simultaneity. Finally, at least for the order of reductions considered here, simul-
taneity can allow a more parsimonious representation of the conditional distribu-
tion by modeling in terms of �yt , where � is a non-singular matrix that captures the
current-dated interdependencies. If zt does not enter the conditional distribution,
�xt could be modeled directly relative to lagged information (see, e.g., Demiralp
and Hoover, 2003).

1.4.2.4 Implications

Five important issues are clarified by these reductions from the DGP down to a
specific model of a sub-set of the variables.

Econometric concepts. First, there exists an LDGP as in (1.4) for whatever choices
are made of xt . When all reductions are without loss, the statistical model fyt |zt

(·) in
(1.9) could also be the LDGP. Although most empirical analyses seem to commence
by specifying what is included, rather than what is eliminated, almost all the central
concepts in econometrics (in italics below) correspond to when reductions (in bold
face) can be achieved without loss of relevant information:

• Aggregation entails no loss of information on marginalizing with respect to
disaggregates when the formulation retains sufficient statistics for θ .

• Data transformations have no associated reduction, but relate to parameters of
interest, θ , and hence the need for these to be invariant and identifiable.
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• Data partition determines which variables to include and which to omit in the
model specification, a decision that is dependent on the purpose of the modeling
exercise, but is fundamental to the success of the empirical model.

• Marginalizing with respect to vt is without loss if X1
T is sufficient for θ ; and

marginalizing with respect to V1
t−1 is without loss if it is Granger non-causal for

xt and the conditional-marginal parameters satisfy a cut.
• Sequential factorization induces no loss as εt from (1.5) is an innovation relative

to R1
t−1.

• Parameter constancy over time is fundamental to most uses of a model, and
invariance (constancy across interventions to the marginal process) is essential
for policy.

• Lag truncation leads to no loss if εt remains an innovation against X1
t−1.

• Integrated data can be reduced to I(0) by cointegration and differencing, sustain-
ing a more parsimonious representation, and supporting conventional inference.

• Functional form specification may or may not entail a reduction, and does
not when the two densities are equivalent (e.g., logs of log-normal variables are
normal).

• Conditional factorizations entail no loss of information when zt is weakly
exogenous for θ , addressed in section 1.4.5.

• Simultaneity can allow one to parsimoniously capture joint dependence.

Testing reductions. Second, reductions are testable against any preceding, less
reduced, distributions. Indeed, there is an accompanying taxonomy of evaluation
information that seeks to ascertain the statistical significance of the losses imposed
by the various reductions. This leads to six major null hypotheses about the final
model’s specification: homoskedastic innovations {εt }; zt weakly exogenous for
θ ; constant, invariant θ ; data-admissible formulations on accurate observations;
theory consistent, identifiable structures; encompassing rival models. While this
exhausts the nulls to test, there are many alternatives to each. Models which
satisfy the first and third are well specified on the available information, and if
satisfying the first three are said to be (empirically) congruent. One model (parsimo-
niously) variance dominates another if it has a smaller unexplained variance (and
no more parameters): the notion of one model explaining the results of other mod-
els extends variance dominance to account for all other parameters. The principle
of encompassing was formalized in Hendry and Richard (1982), and the theory of
testing developed by Mizon (1984) and Mizon and Richard (1986) (see Hendry and
Richard, 1989, and Hendry, Marcellino, and Mizon, 2008, for surveys). An admis-
sible, theory-consistent, encompassing, congruent model satisfies all six criteria.

Choosing the Haavelmo distribution. Third, knowledge of the LDGP is the “opti-
mum” one can achieve for the given set of variables. Different choices of {rt },
and hence the Haavelmo distribution, will lead to different LDGPs with more or
less constancy and congruence with the available evidence. If (1.7) were indeed
the LDGP, then model selection could target its variables. The congruence of
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an empirical model corresponds to its encompassing the LDGP (so not deviating
significantly from it in any of the first five directions) (see Bontemps and Mizon,
2003). Testing the selected model against all extant models of the same variables
allows a rigorous evaluation of its “closeness” to the LDGP (see, inter alia, White,
1990; Mayo and Spanos, 2006).

Parameter dependence. Fourth, the resulting coefficients in (1.7) or (1.9) remain
dependent on the initial DGP parameters. If those DGP parameters change, induced
shifts can occur in the parameters of the LDGP. The extent to which these shifts
occur, and when they do so, whether they can be anticipated, modeled or even
understood, will depend on how usefully the reduced representation captures the
structure of the relevant sub-set of the economy under analysis. Here, “structure”
denotes invariance under extensions of the information set over (i) time (i.e., con-
stancy), (ii) regimes (i.e., changes to marginal distributions or policy variables) and
(iii) variables (so the reductions did not eliminate any important explanatory fac-
tors). When the initial economic analysis that led to the specification of {xt } (i.e.,
the transformed sub-set of data under analysis) actually captured the main features
of the behavior of the agents involved, then ρ0, or κ1, should be an invariant that

also throws light on the agents’ decision parameters underlying ϕ
1
T in (1.2). Thus,

properly embedded in a general congruent model, the economics should carry
through.

Minimizing reductions. Finally, given the inertial dynamics of a high dimensional,
interdependent and non-stationary system like an economy, reductions seem likely
to be costly in practice and involve real information losses. These will manifest
themselves through non-constant models, empirical “puzzles” and poor forecasts,
so general systems seem generically preferable. “Errors” on empirical models are
created by reductions, so will be highly composite, reflecting many components.
It is unclear whether that also favors disaggregation, given problems posed by
measurement errors and heterogeneity difficulties as disaggregation increases, or
whether a “law of large numbers” may induce substantial offsets (as discussed
above).

1.4.2.5 Evaluating the three main approaches

We now consider how the three basic approaches fare against the above analysis.
Given their assumptions, each would of course work well; and with sufficiently
rigorous testing, the choice of approach becomes a matter of research efficiency (see
White, 1990). But efficiency is important, as the assumptions may not adequately
characterize reality, and rigorous attempts to reject are not always undertaken.

Imposing economic theory. First, if one simply imposes an a priori theory on the data,
then the outcome will be excellent when the theory is complete (relative to the
issue under analysis) and “correct” (in that all omissions are relatively negligible).
Otherwise, it is difficult to ascertain in general how poor the outcome will be (see,
e.g., Juselius and Franchi, 2007). If no testing occurs, that strategy is both highly
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risky and theory dependent. The risk is that a major discrepancy is not detected,
leading to a poor description of the underlying agents’ behavior: we addressed
the issue of “ceteris paribus” in section 1.4.1.1, but if economies are inherently
wide-sense non-stationary, then other things will not stay constant. When theories
lack precise formulations of lag lengths, functional dependencies, other potential
determinants, breaks, and non-economic factors of importance, such difficulties
seem all too likely. The problem with theory dependence is that since no economic
analysis has yet proved immutable, the empirical results will be discarded when the
theory is altered, so there is no progressive knowledge accumulation. This is the real
reason that Summers (1991) finds little contribution from empirical econometrics
– it was not really allowed to make one, being restricted to providing empirical
cloth for a pre-designed framework.

Partial use of economic theory. Second, a partial use of economic theory often leads
to pre-specified moment conditions linking variables, xt , and parameters, ϕ, usu-
ally being zero for the “true” value of the parameter, ϕ0, in the form (sometimes
without conditioning):

E
[
h
(
xt ,ϕ0 | X1

t−1

)]
= 0 ∀t , (1.10)

enabling GMM estimation of ϕ (see, e.g., Smith, 2007) (also, Smith, 1992, develops
non-nested tests applicable after GMM). Equally often, inference has to be based
on heteroskedastic and autocorrelation-consistent covariance (HAC) matrices (see
White, 1980a; Andrews, 1991), which assume that the residuals reflect precisely
those problems in the errors. Unfortunately, residuals can be heteroskedastic and
autocorrelated for many other reasons, including unmodeled breaks, measurement
errors, incorrect dynamics, omitted variables, or an inappropriate functional form
inter alia, most of which would invalidate the estimates derived from (1.10), and
possibly refute the underlying theory. Thus, rigorous testing against that range
of hypotheses would seem necessary, leading to three important difficulties. First,
unless a joint test is used, non-rejection of each may occur when there are several
failures. Second, if any test rejects at the chosen significance level (controlling
for the number of tests undertaken), the validity of all the other tests is cast into
doubt. Third, if rejection does occur, it remains a non sequitur to assume that the
hypothesis which was rejected was the source of the failure, so model revision may
require a theory revamp. Again, there seem to be distinct advantages to beginning
with general formulations that can be simplified when evidence permits, subject
to maintaining identifiability – which can also be a problem with GMM (section
1.4.7 discusses identification).

Economic theory guidelines. Finally, seeking a congruent model of the LDGP based
on economic theory guidelines by embedding the theory-based model in a more
general GUM for the set of candidate variables, with a range of possible spec-
ifications of lags, functional forms, breaks, etc., offers many advantages, not
least avoiding restrictive assumptions dependent on hope rather than evidence.
Such a general-to-specific (Gets) approach can be demanding, and while it can
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help mitigate problems of under-specification, it is no free lunch, as it leads to a
different set of possible problems relating to data-based model selection, discussed
in section 1.5. However, the criticism that the LDGP is too complicated for Gets to
work well must also apply to all other approaches, as they will not fare any better
in such a state of nature unless some remarkable requirements chance to hold (e.g.,
the complexity of the LDGP happens to lie in directions completely unrelated to
the aspects under study). In general, even if one simply wants to test an economic
hypothesis as to whether some effect is present, partial inference cannot be con-
ducted alone, unless one is sure about the complete absence of all contaminating
influences.

1.4.3 Data exactitude

“She can’t do Addition,” the Red Queen interrupted. “Can you do Subtrac-
tion? Take nine from eight.” “Nine from eight I can’t, you know,” Alice
replied very readily. (Lewis Carroll, 1899)

No agency produces perfect data measures on every variable, and although some
observations may be both accurate and precise (e.g., specific stock market, or for-
eign exchange, transactions), most are subject to measurement errors. These can be
difficult to handle, especially when there are both revisions and changes in exacti-
tude over time, which thereby introduce an additional source of non-stationarity.
Moreover, in any given sample of time series, more recent data will be subject to
potentially larger later revisions: section 1.7.1 considers the impact of one example
of considerable data revisions.

Mapping theoretical constructs to data counterparts and measuring (or model-
ing) latent variables both raise further issues. Many commonly used macro variables
do not have established measurements, e.g., output gaps, business cycles, capacity
utilization, trade union power, etc. Even those that do, such as constructs for con-
sumption, user costs, etc., are open to doubt. These types of measurement errors are
not directly caused by inaccurate data collection, but both impinge on empirical
studies, and can change over time.

Incentives to improve data quality, coverage and accuracy were noted in section
1.3.4 (see Boumans, 2007, for recent discussions of various measurement issues).
In the absence of exact data, there must remain trade-offs between using theory to
impose restrictions on badly-measured data, using such data to reject theory spec-
ifications, or building data-based models. Again, a balance utilizing both theory
and evidence in a progressive process seems advisable.

1.4.4 Hidden dependencies

“Why, it’s a Looking-glass book of course! And if I hold it up to a glass, the
words will all go the right way again.” (Quote from Alice in Lewis Carroll,
1899)

Hidden dependencies abound in all data forms, including cross-sections, time
series and panels. An important aspect of sequential conditioning in time series
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is to explicitly remove temporal dependence, as (1.4) showed, where a martin-
gale difference process is created by the sequential conditioning. In principle, the
same concepts apply to cross sections. It must be stressed that “random sampling”
by itself does not justify factorizing a joint density or likelihood function. As an
extreme form of cross-section dependence, put 1,000 copies of the number “1” in
a hat, then draw a random sample of 100 therefrom: one learns nothing after the
first draw, although all are “randomly drawn.” Sequential factorization correctly
reveals that difficulty. Denote the randomly-drawn data sample by (r1 . . . rN ); then
for any ordering when τ is the mean value of all the numbers in the hat:

Dr
(
r1 . . . rN | τ

) = N∏
i=1

Dri

(
ri | ri−1 . . . r1; τ

) = Dr1

(
r1; τ

)
, (1.11)

since all the other probabilities are precisely unity. As r1 = 1, we correctly deduce
τ = 1. Certainly, the other N − 1 draws add the information that all the numbers
are unity, but would do so even if not randomly drawn.

More generally, the order of an independent sample does not matter, so unlike
(1.11), for any ordering the joint density should factorize as:

Dr
(
r1 . . . rN | τ

) = N∏
i=1

Dri

(
ri | ri−1 . . . r1; τ

) = N∏
i=1

Dri

(
ri | τ

)
. (1.12)

Consequently, potential dependence is testable by conditioning on s “neighbors”
after a suitable exogenous ordering to check if their influence is non-zero; i.e., to
see whether:

N∏
i=1

Dri

(
ri | ri−1 . . . ri−s; τ

) �= N∏
i=1

Dri

(
ri | τ

)
. (1.13)

Suitable tests for the absence of dependence would seem essential before too great
a weight is placed on results that base (1.12) on the claim of random sampling,
especially when the units are large entities like countries. More generally, when all
units are affected in part by macro-forces and their attendant non-stationarities,
dependence like (1.13) is likely. If an ordering based on an outside variable is avail-
able, then models of Dri

(
ri | ri−1 . . . ri−s; τ

)
could be investigated directly, similar

to some cases of spatial dependence (see Anselin, 2006).
There is a large literature on panel data analysis recently discussed in Choi (2006)

and Baltagi (2006).

1.4.5 Conditioning variables

“I’m afraid he’ll catch cold with lying on the damp grass,” said Alice, who
was a very thoughtful little girl. (Lewis Carroll, 1899)

Instrumental variables are a key part of any conditioning set, so require weak
exogeneity as well as correlation with the relevant endogenous variables (or
the auxiliary assumptions of orthogonality to any unknown vector of excluded
influences and independence from the “true” model’s errors).
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1.4.5.1 Weak exogeneity

The notion of exogeneity, or synonyms thereof, in relation to econometric
modeling dates back to the origins of the discipline (see, e.g., Morgan, 1990;
Hendry and Morgan, 1995), with key contributions by Koopmans (1950) and
Phillips (1957). Weak exogeneity was formalized by Engle, Hendry and Richard
(1983), building on Richard (1980) (see Ericsson, 1992, for an exposition), and is a
fundamental requirement for efficient conditional inference, which transpires to
be at least as important in integrated systems as in stationary processes (see Phillips
and Loretan, 1991). Weak exogeneity is equally relevant to instrumental variables
estimation, since the marginal density of zt then relates to the distribution of the
claimed instruments: asserting orthogonality to the error term is often inadequate,
as shown by the counter-examples in Hendry (1995a).

Further, zt is strongly exogenous for θ if zt is weakly exogenous for θ , and:

Dzt

(
zt | Xt−s

t−1, X1−s
0 , qt , κ2

)
= Dzt

(
zt | Zt−s

t−1, X1−s
0 , qt , κ2

)
. (1.14)

When (1.14) is satisfied, zt does not depend upon Yt−1 so y does not Granger-
cause z, following Granger (1969). This requirement sustains marginalizing

Dzt
(zt |Xt−s

t−1, X1−s
0 , qt , κ2) with respect to Y1

t−1, but does not concern condition-
ing. Consequently, Granger causality alone is neither necessary nor sufficient for
weak exogeneity, and cannot validate inference procedures (see Hendry and Mizon,
1999).

The consequences of failures of weak exogeneity can vary from just a loss of
estimation efficiency through to a loss of parameter constancy, depending on the
source of the problem (see Hendry, 1995a, Ch. 5). We now illustrate both extreme
cases and one intermediate example.

Outperforming Gauss–Markov. First, consider a standard regression setting where
Gauss–Markov conditions seem satisfied:

y = Zβ + ε with ε ∼ NT

[
0, σ2

ε I
]

, (1.15)

when Z = (z1 . . . zT )
′ is a T × k matrix, rank(Z) = k, and ε

′ = (ε1 . . . εT ), with:

E[y | Z] = Zβ,

and hence E[Z′ε] = 0. OLS estimates of β, the parameter of interest here, are:

β̂ = β +
(
Z′Z

)−1
Z′ε ∼ Nk

[
β, σ2

ε

(
Z′Z

)−1
]

.

However, ordinary least squares (OLS) need not be the most efficient unbiased
estimator of β, and an explicit weak exogeneity condition is required to preclude
that possibility when Z is stochastic. For example, let:

zt = β + νt where νt ∼ INk [0,�] ,

estimated by the mean vector:

β = β + ν ∼ Nk

[
β, T−1

�
]

,
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then it is easy to construct scenarios where β is much more efficient than β̂.
Consequently, even in simple regression, for the Gauss–Markov theorem to be
of operational use one needs the condition that β cannot be learned from the
marginal distribution.

Weak exogeneity in cointegrated systems. Second, cointegrated systems provide a
major forum for testing one aspect of exogeneity. Formulations of weak exogeneity
conditions and tests for various parameters of interest in cointegrated systems are
discussed in, inter alia, Johansen and Juselius (1990), Phillips and Loretan (1991),
Hunter (1992), Urbain (1992), Johansen (1992), Dolado (1992), Boswijk (1992)
and Paruolo and Rahbek (1999). Equilibrium-correction mechanisms which cross-
link equations violate long-run weak exogeneity, confirming that weak exogeneity
cannot necessarily be obtained merely by choosing the “parameters of interest.”
Conversely, the presence of a given disequilibrium term in more than one equation
is testable. Consider an apparently well-defined setting with the following bivariate
DGP for the I(1) vector xt =

(
yt : zt

)′ from Hendry (1995c):

yt = βzt + u1,t (1.16)

zt = λyt−1 + u2,t , (1.17)

where: (
u1,t
u2,t

)
=
(

0 0
ρ 1

)(
u1,t−1
u2,t−1

)
+
(

ε1,t
ε2,t

)
, (1.18)

and: (
ε1,t
ε2,t

)
∼ IN2

[(
0
0

)
,

(
σ

2
1 γ σ1σ2

γ σ1σ2 σ
2
2

)]
= IN2 [0,�] . (1.19)

The DGP in (1.16)–(1.19) defines a cointegrated vector process in triangular form
(see Phillips and Loretan, 1991) which can be written in many ways, of which the
following equilibrium-correction form is perhaps the most useful:

yt = βzt + ε1,t

�zt = λ�yt−1 + ρ
(
yt−1 − βzt−1

)+ ε2,t , (1.20)

where εt =
(
ε1,t : ε2,t

)′
is distributed as in (1.19).

The parameters of the DGP are
(
β, λ, ρ, γ , σ1, σ2

)
. When cointegration holds,

β and σ1 can be normalized at unity without loss of generality, and we also set
σ2 = 1. The parameter of interest is β, which characterizes the long-run relation-
ship between yt and zt . Let It−1 denote available lagged information (the σ -field
generated by Xt−1). Then, from (1.19) and (1.20), the conditional expectation of
yt given

(
zt , It−1

)
is:

E
[
yt | zt , It−1

] = βzt + γ�zt − γρ
(
yt−1 − βzt−1

)− γ λ�yt−1. (1.21)
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For some parameter values in the DGP, the conditional expectation will coincide
with (1.16), whereas for other parameter configurations, (1.16) and (1.21) will dif-
fer, in which case it is unsurprising that (1.16) is not fully informative. However, an
exact match between the equation to be estimated and the conditional expectation
of the dependent variable given It−1 is not sufficient to justify least squares estima-
tion, even when the error is an innovation against It−1. Indeed, when λ = γ = 0,
but ρ �= 0, there is a failure of weak exogeneity of zt for β, even though the
conditional expectation is:

E
[
yt | zt , It−1

] = βzt . (1.22)

Nevertheless, zt is not weakly exogenous for β when ρ �= 0 since:

�zt = ρ
(
yt−1 − βzt−1

)+ ε2t , (1.23)

so a more efficient analysis is feasible by jointly estimating (1.16) (or (1.22)) and
(1.23). Here the model coincides with both the conditional expectation and the
DGP equation, but as shown in Phillips and Loretan (1991) and Hendry (1995c),
the violation of weak exogeneity can lead to important distortions to inference
when estimating the parameters of (1.16), highlighting the important role of weak
exogeneity in conditional inference.

1.4.5.2 Super exogeneity and structural breaks

Next, processes subject to structural breaks sustain tests for super exogeneity and
the Lucas (1976) critique (following Frisch, 1938): (see, e.g., Hendry, 1988; Fischer,
1989; Favero and Hendry, 1992; Engle and Hendry, 1993; Hendry and Santos,
(2009). Formally, super exogeneity augments weak exogeneity with the require-
ment that the parameters of the marginal process can change (usually over some
set) without altering the parameters of the conditional. Reconsider (1.9), written
with potentially non-constant parameters as:

Dxt

(
xt | Xt−s

t−1; X1−s
0 , qt , ρt

)
= Dyt |zt

(
yt | zt , Xt−s

t−1, X1−s
0 , qt , κ1,t

)
Dzt

(
zt | Xt−s

t−1; X1−s
0 , qt , κ2,t

)
. (1.24)

When θ enters both κ1,t and κ2,t in (1.24), inference can again be distorted if weak
exogeneity is falsely asserted. When conditional models are constant despite data
moments changing considerably, there is prima facie evidence of super exogeneity
for that model’s parameters; whereas, if the model as formulated does not have
constant parameters, resolving that failure ought to take precedence over issues
of exogeneity. However, while super exogeneity tests are powerful in detecting
location shifts, changes to “reaction parameters” of mean-zero stochastic variables
are difficult to detect (see, e.g., Hendry, 2000b). Hendry and Santos (2009) propose
a test for super exogeneity based on impulse saturation (see Hendry, Johansen and
Santos, 2008) to automatically select breaks in the marginal processes, then test
their relevance in the conditional. When none of the breaks enters the conditional
model, that provides evidence in favor of zt causing yt , since the same response
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occurs to changes across different “regimes” (see, e.g., Heckman, 2000; Hendry,
2004; and the references therein).

1.4.5.3 Weak exogeneity and economic theory

Much economic theory concerns relationships between means such as:

μy = β
′
μz. (1.25)

A famous example is the permanent income hypothesis (PIH), where μy is per-
manent consumption and μz is permanent income, so the income elasticity of
consumption is unity ∀β. Most demand and supply functions relate to expected
plans of agents; expectations and Euler equation models involve conditional first
moments, as do GMM approaches; policy relates planned instruments to expected
targets, etc. Since constructs like μy and μz are inherently unobservable, additional
assumptions are needed to complete the model. For example, Friedman (1957) uses:

yt = μy + εy,t and zt = μz + εz,t where E
[
εy,tεz,t

]
= 0, (1.26)

which precludes weak exogeneity of zt for β given the dependence between the
means in (1.25). Allowing μy to also depend on second moments would not alter
the thrust of the following analysis.

Econometrics, however, depends on second moments of observables. Consider
the regression:

yt = γ
′zt + vt where vt ∼ IN

[
0, σ2

v

]
. (1.27)

For zt ∼ INn
[
μz,�zz

]
with E

[
zt vt

] = 0 ∀t :
E
[
yt | zt

] = γ
′zt , (1.28)

then, for y′ = (
y1 . . . yT

)
and Z′ = (

z1 . . . zT
)
:

γ̂ =
(
Z′Z

)−1
Z′y, (1.29)

so that second moments are used to estimate γ . Here, (1.27) entails E[yt ] = γ
′E[zt ],

and from (1.28):

E
[
zt yt

] = E
[
ztz

′
t

]
γ or σyz = �zzγ , (1.30)

both of which involve γ . Thus, there seems to be no difference between how means
and variances are related, which is why second moments can be used to infer about
links between first moments. However, when any relation like (1.25) holds, then
σyz and �zz in (1.30) must be connected by β, not γ , if valid inferences are to result
about the parameters of interest β. Weak exogeneity is needed, either directly in
(1.27), or indirectly for “instrumental variables.” This is more easily seen from the
joint distribution: (

yt
zt

)
∼ INn+1

[(
μy
μz

)
,

(
σyy σ

′
yz

σzy �zz

)]
, (1.31)
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so given (1.25):

E
[
yt | zt

] = μy − γ
′
μz + γ

′zt = (β − γ )
′
μz + γ

′zt , (1.32)

which coincides with (1.28) only if γ = β, so means and variances are then related
by identical parameters.

Note from (1.31):

zt = μz + ut , (1.33)

so impulse responses cannot be identified uniquely as originating from perturbing
ut or μz. But from (1.32), the response of yt to these perturbations in (1.33) will
differ unless γ = β, so weak exogeneity is essential for unique impulse responses,
which cannot be based on an arbitrary choice of Cholesky decompositions (only
one variant could coincide with valid conditioning).

1.4.6 Functional form

Alice began to remember that she was a Pawn, and that it would soon be
time to move. (Lewis Carroll, 1899)

In practice, one cannot expect every functional form specification to coincide
with that which generated the data, however well-based its logic or theory creden-
tials. There are theories of what various linear and other approximations deliver
(see, e.g., White, 1980b, 2008), but such approximations cannot ensure non-
systematic residuals. Automatic model selection has been extensively applied to
select functional forms from quite large classes using data evidence (see, inter alia,
Perez-Amaral, Gallo and White, 2003, 2005; Castle, 2005; Castle and Hendry, 2005,
and section 1.5). In low-dimensional models, semiparametric and nonparamet-
ric methods are often used to avoid specifying the functional form, but can be
susceptible to unmodeled outliers and breaks.

1.4.7 Identification

. . . watching one of them that was bustling about among the flowers, pok-
ing its proboscis into them, “just as if it was a regular bee,” thought Alice.
However, this was anything but a regular bee: in fact, it was an elephant.
(Lewis Carroll, 1899)

Identification has three attributes of uniqueness, interpretation, and correspon-
dence to reality (see, e.g., Hendry, 1995a), which we discuss in turn. Since
unidentified parameters entail a non-unique model specification – so what is esti-
mated need not match the parameters of the generating process – identification is
a fundamental attribute of a parametric specification.

First, a general understanding of identification as uniqueness has been developed
(see, e.g., Fisher, 1966; Rothenberg, 1971; Sargan, 1983: Hsiao, 1983, provides an
overview), building on the rank and order conditions so well known to be necessary
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and sufficient in simultaneous systems when the restrictions are given by subject-
matter theory: we could call this a technical issue. Cowles Commission researchers
showed that the “reduced form” (or statistical system) was always identified in their
formulation, and that all just-identified models were isomorphic to that statistical
system, hence tests of overidentified “structural forms” could be derived by com-
paring their two likelihoods. Their analysis, therefore, entailed that the “structural
form” is actually a reduction of the statistical system, so logically can be obtained
from it without any prior knowledge of the relevant restrictions. Thus, when a
model is identified relative to an identified system, the identification restrictions
in question do not have to be known a priori, but can be found by a suitable algo-
rithm (see, e.g., Hendry and Krolzig, 2005) – indeed, several overidentified, but
distinct, representations can coexist (see, e.g., Hendry, Lu and Mizon, 2008). Such
a conclusion is predicated on the statistical system itself being identified, which
requires sufficient explanatory variables – the vexed topic of “exogeneity” discussed
in section 1.4.5 above. Moreover, for an overidentification test to be valid, the sta-
tistical system must be well specified, so needs to be modeled and evaluated first
(see, e.g., Spanos, 1990), after which it can be reduced to a “structural form.” Never-
theless, that prior identification restrictions must be known in advance remains the
dominant belief, which if true, would preclude empirical modeling not preceded
by a rigorous theory derivation that entailed sufficient restrictions.

Second, interpretation is a regular seminar question along the lines: “How do
you know you have identified the demand curve” (as opposed to some other
entity)? This is essentially an economic theory issue, and only substantive theory
can resolve such a debate. It is separate from uniqueness: a regression of price on
quantity is always unique, but hardly qualifies as a demand curve just because the
regression coefficient is negative.

Third, even if both uniqueness and interpretation are confirmed, the result still
need not correspond to reality, which is an empirical issue (and related to the usage
of the word “identification” in, say, Box and Jenkins’, 1976, analysis, as well as the
quote above). An estimated equation may be unique and interpretable but not the
relevant relation. Thus, all aspects of model building are involved in establishing
satisfactory identification.

Recently, problems of weak instruments, and the resulting issue of identification,
have become salient (see, among others, Staiger and Stock, 1997; Stock and Wright,
2000; Stock, Wright and Yogo, 2002; Kleibergen, 2002; Mavroeidis, 2004).

1.4.8 Parameter constancy

“Yes, all his horses and all his men,” Humpty Dumpty went on. “They’d
pick me up again in a minute, they would!” (Lewis Carroll, 1899)

Parameters are the entities which must be constant if the specified model is to
be a useful characterization of reality. However, that does not preclude the coef-
ficients in any model formulation from changing, as in “random coefficients”
models or “structural time series” (see, e.g., Hildreth and Houck, 1968; Harvey,
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1993). The main problem for economic forecasting using econometric models is
that coefficients of deterministic terms do not seem to stay constant, but suffer loca-
tion shifts, which in turn induce forecast failure (see, e.g., Clements and Hendry,
2005, 2006). While changes in zero-mean variables seem less damaging to forecasts
(see, e.g., Hendry and Doornik, 1997), such breaks nevertheless remain pernicious
for policy analyses.

1.4.9 “Independent” homoskedastic errors

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it
were so, it would be: but as it isn’t, it ain’t. That’s logic.” (Lewis Carroll,
1899)

Joint densities can always be factorized into sequential forms, as with martin-
gale difference sequences. Moreover, equations can often be standardized to be
homoskedastic by dividing by contemporaneous error variances (when these exist),
so this category may be one of the least stringent requirements.

1.4.10 Expectations formation

“What sort of things do you remember best?” Alice ventured to ask. “Oh,
things that happened the week after next” the Queen replied in a careless
tone. (Lewis Carroll, 1899)

Surprisingly little is known about how economic agents actually form their expec-
tations for variables relevant to their decisions. Almost no accurate expectations
data exist outside financial market traders, so resort is usually needed to proxies
for the unobserved expectations, or to untested assumptions, such as “rational”
expectations (RE), namely the correct conditional expectation E[·] of the variable
in question (yt+1) given the available information (It ). There is a large gap between
economic theory models of expectations – which often postulate that agents hold
RE – and the realities of economic forecasting, where forecast failure is not a rare
occurrence. The “rational” expectation is often written as (see Muth, 1961):

yre
t+1 = E

[
yt+1 | It

]
, (1.34)

which implicitly assumes free information and free computing power as available
information is vast. The usual argument, perhaps loosely worded to avoid contra-
dictions, is that otherwise there would be arbitrage opportunities, or agents would
suffer unnecessary losses. But expectations are instrumental to agents’ decisions,
and the accuracy thereof is not an end in itself, so agents should just equate the
marginal benefits of improved forecast accuracy against the extra costs of achiev-
ing that, leading to “economically rational expectations” (ERE) (see Aghion et al.,
(2002)). “Model consistent expectations” instead impose the expectations forma-
tion process as the solved estimated model specification, so – unless the model is
perfect – suffer the additional drawback of imposing invalid restrictions.

While ERE may be more realistic than RE, it still assumes knowledge of the form
of dependence of yt+1 on the information used: as expressed in E

[
yt+1|It

]
in (1.34),
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that assumption corresponds to agents knowing precisely what the conditioning
operator is. In a stationary world, one could imagine learning mechanisms that
eventually led to its discovery (see, e.g., Evans and Honkapohja, 2001). However,
in a wide-sense non-stationary environment, an explicit statement of the form of
(1.34) is:

yre
t+1 = Et+1

[
yt+1 | It

] = ∫
yt+1ft+1

(
yt+1 | It

)
dyt+1. (1.35)

Thus, when ft (·) �= ft+1 (·), agents need to know the future conditional density
function ft+1(yt+1|It ), given present information, to obtain the appropriate con-
ditioning relation, since only then will yre

t+1 be an unbiased predictor of yt+1. That
ft (·) �= ft+1 (·) is precisely why forecasting is so prone to problems. Unfortunately,
knowing ft+1 (·) virtually requires agents to have crystal balls that genuinely “see
into the future.” When distributions are changing over time, agents can at best
form “sensible expectations,” yse

t+1, based on forecasting ft+1(·) by f̂t+1(·) from
some rule, such that:

yse
t+1 =

∫
yt+1 f̂t+1

(
yt+1 | It

)
dyt+1. (1.36)

There are no guaranteed good rules for estimating ft+1(yt+1|It ) when
{
yt
}

is
wide-sense non-stationary. In particular, when the conditional moments of
ft+1(yt+1|It ) are changing in unanticipated ways, setting f̂t+1(·) = ft (·) could be a
poor choice, yet that underlies most of the formal derivations of RE, which rarely
distinguish between ft (·) and ft+1 (·). Outside a stationary environment, agents
cannot solve (1.34), or often even (1.35). The drawbacks of (1.34) and (1.35), and
the relative success of robust forecasting rules (see, e.g., Clements and Hendry,
1999; Hendry, 2006), suggest agents should use them, an example of imperfect-
knowledge expectations (IKE) (see Aghion et al., 2002; Frydman and Goldberg,
2007). IKE acknowledges that agents cannot know how It enters ft (·) when pro-
cesses are evolving in a non-stationary manner, let alone ft+1(·), which still lies in
the future. Collecting systematic evidence on agents’ expectations to replace the
unobservables by estimates, rather than postulates, deserves greater investment
(see, e.g., Nerlove, 1983).

Finally, take expectations conditional on the available information set It−1 in a
regression model with valid weak exogeneity:

yt = β
′zt + εt , (1.37)

so that:

E
[
yt | It−1

] = β
′E
[
zt | It−1

]
, (1.38)

as E
[
εt |It−1

] = 0. Writing (1.38) as ye
t = β

′ze
t , the conditional model (1.37)

always has an expectations representation, although the converse is false. Impor-
tantly, therefore, contemporaneous conditioning variables can also be expectations
variables, and some robust forecasting rules like �p̂t+1 = �pt have that property.
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The New Keynesian Phillips curve is perhaps the best-known model which
includes expected inflation to explain current inflation. Models of this type are
usually estimated by replacing the expected value by the actual future outcome,
then using IV or GMM to estimate the resulting parameters, as in, say, Galí, Gertler
and Lopez-Salido (2001). As shown in Castle et al. (2008), since breaks and regime
shifts are relatively common, full-sample estimates of equations with future val-
ues can deliver spuriously significant outcomes when breaks are not modeled, a
situation detectable by impulse saturation (see section 1.5).

1.4.11 Estimation

“I was wondering what the mouse-trap was for,” said Alice. “It isn’t very
likely there would be any mice on the horse’s back.”

“Not very likely, perhaps,” said the Knight; “but if they do come, I don’t
choose to have them running all about.” (Lewis Carroll, 1899)

Developing appropriate estimators comprises a major component of extant econo-
metric theory, and given any model specification, may seem an uncontentious
task. However, only in recent decades has it been clear how to avoid (say) nonsense
correlations in non-stationarity data, or tackle panel dependencies, so unknown
pitfalls may still lurk.

1.5 Model selection

In another moment Alice was through the glass, and had jumped lightly
down into the Looking-glass room. (Lewis Carroll, 1899)

Model selection is the empirical route whereby many of the simplifications in
sections 1.4.2.2 and 1.4.2.3 are implemented in practice. In that sense, it is not
a distinct step per se, but a way of carrying out some of the earlier steps, hence our
treating the topic in a separate section.

Selection remains a highly controversial topic. It must be granted that the best
approaches cannot be expected to select the LDGP on every occasion, even when
the GUM nests the LDGP, and clearly cannot do so ever when the LDGP is not a
nested special case. However, that statement remains true when the GUM is exactly
the LDGP, but conventional inference is nevertheless undertaken to check that
claim. If the LDGP were known at the outset of a study, apart from the unknown
values of its parameters, then if any specification or misspecification testing was
undertaken, one could only end by doubting the claim that the initial formula-
tion was indeed the LDGP. The least worst outcome would be weak confirmation
of the prior specification, and otherwise either some included variables will be
found insignificant, or some assumptions will get rejected, casting doubt on the
claim. That is the risk of undertaking statistical inference. The alternative of not
testing claimed models is even less appealing, namely never learning which ones
are useless. To quote Sir Francis Bacon: “If a man will begin with certainties, he
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shall end in doubts; but if he will be content to begin with doubts he shall end in
certainties.”

Conversely, the list at the beginning of section 1.4 makes it clear that “model
uncertainty” comprises much more than whether one selected the “correct model”
from some set of candidate variables that nested the LDGP. If, say, 1,000 possibly
lagged, nonlinear functions of a set of candidate exogenous variables in a model
with many breaks are checked for relevance at a significance level of 0.1%, and
all are indeed irrelevant, then on average one will be retained adventitiously, so
uncertainty is greatly reduced by eliminating about 999 potential influences. The
entire point of model selection is to reduce some of the uncertainties about the
many aspects involved in model specification, and the cost for doing so is a “local
increase” in uncertainty as to precisely which influences should be included and
which excluded around the margin of significance. Thus, embedding the claimed
theory in a more general specification that is congruent with all the available evi-
dence offers a chance to both utilize the best available theory insights and learn
from the empirical evidence. Since such embedding can increase the initial model
size to a scale where a human has intellectual difficulty handling the required
reductions, we next consider computerized, or automatic, methods for model
selection.

1.5.1 Automatic model selection

“Does – the one – that wins – get the crown?” she asked, as well as she
could, for the long run was putting her quite out of breath.

“Dear me, no!” said the King. “What an idea!” (Alice to the White King
in Lewis Carroll, 1899)

The many alternatives now available include, but are not restricted to, Phillips
(1994, 1995, 1996), Tibshirani (1996), Hoover and Perez (1999, 2004), Hendry
and Krolzig (1999, 2001), White (2000), Krolzig (2003), Kurcewicz and Mycielski
(2003), Demiralp and Hoover (2003), and Perez-Amaral et al. (2003); also see the
special issue on model selection edited by Haldrup, van Dijk and Hendry (2003)
(the references cited therein provide bibliographic perspective on this huge litera-
ture). Complaints about model selection have a long pedigree, from Keynes (1939)
about “data-based modeling” and Koopmans (1947) on “measurement without
theory,” through “pre-test biases” from test-based selection in Judge and Bock
(1978); “repeated testing” inducing adventitious significance in Leamer (1978,
1983) and Lovell (1983) criticizing selection rules seeking “significance,” to Pagan
(1987) on the potential “path dependence of any selection”; Hendry, Leamer and
Poirier (1990) debating “arbitrary significance levels”; Chatfield (1995) criticizing
“ignoring selection effects” as misrepresenting uncertainty, and Faust and White-
man (1997) on “lack of identification,” but most have now been rebutted (see,
e.g., Hendry, 2000a). Concerning Keynes’ comment quoted above, not only should
everyone get the same answer from an automatic algorithm applied to the same
GUM using the same selection criteria, investigators with different GUMs, which
differed only by irrelevant variables, could also end with the same model.
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Here we consider Autometrics, an Ox package (see Doornik, 2006, 2007a) imple-
menting automatic Gets modeling based on the theory of reduction discussed
above. The present implementation of Autometrics is primarily for linear regres-
sion models, but extensions have been derived theoretically to automatically
model dynamic, cointegrated, simultaneous systems; nonlinear equations; struc-
tural breaks; more variables (N) than observations (T); and testing exogeneity (see,
e.g., Hendry and Krolzig, 2005; Castle and Hendry, 2005; Hendry, et al., 2008;
Johansen and Nielsen, 2008; Doornik, 2007b; and Hendry and Santos, 2009,
respectively). Given any available theoretical, historical, institutional, and mea-
surement information, as well as previous empirical evidence, a GUM must be
carefully formulated, preferably with a relatively orthogonal parameterization, a
subject-matter basis, and must encompass existing models. When T  N, the
GUM can be estimated from all the available evidence, and rigorously tested for
congruence. If congruence fails, a new formulation is required: but at least one has
learned the general inadequacy of a class of models. If congruence is accepted, it
is then maintained throughout the selection process by not following simplifica-
tion paths which are rejected on diagnostic checking (using the same statistics),
ensuring a congruent final model. When N > T , as must happen when impulse
saturation is used and can occur more generally (discussed below), misspecification
testing can only be undertaken once a feasible model size n < T has been reached.

Statistically insignificant variables are eliminated by selection tests, using a tree-
path search in Autometrics, which improves on the multi-path procedures in
Hoover and Perez (1999) and Hendry and Krolzig (2001). Checking many paths
prevents the algorithm from becoming stuck in a sequence that inadvertently
eliminates a variable which actually matters, and thereby retains other variables
as proxies (as in stepwise regression). Path searches terminate when no variable
meets the elimination criteria. Non-rejected (terminal) models are collected, then
tested against each other by encompassing: if several remain acceptable, so are
congruent, undominated, mutually encompassing representations, the search is
terminated using, e.g., the Schwarz (1978) information criterion, although all are
reported and can be used in, say, forecast combinations.

To understand why an automatic search procedure might work, consider a case
where the complete set of N candidate regressors is mutually orthogonal, but which
ones are relevant is unknown a priori, and T  N. The postulated GUM nests the

LDGP. Estimate the GUM, then, squaring to eliminate signs, rank the resulting t2i
statistics from the largest to the smallest. When cα is the criterion for retention,

let n be such that t2n ≥ cα when t2n+1 < cα . Then select the model with those n
regressors. That required precisely one decision – what to include, and hence what
to exclude. No issues of search, repeated testing, path dependence, etc., arise.
Goodness-of-fit is not directly used to select models; and no attempt is made to
“prove” that a given number of variables matters. In practice, the role of the tree
search is to ascertain “true” relevance when orthogonality does not hold; and the

choice of cα affects R2 and n through retention of t2n. Generalizations to other
maximum likelihood estimators, or approximations thereto such as IV, are feasible
(see Hendry and Krolzig, 2005; Doornik, 2007a).
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However, it does matter that selection occurs: the selected model’s estimates do
not have the same properties as if the LDGP equation had been estimated without
any testing. Sampling vagaries entail that some variables which enter the LDGP will

by chance have a sample t2 < cα (low power). Since they are only retained when

t2 ≥ cα , their estimated magnitudes will be biased away from the origin, and hence
selected coefficients need to be bias corrected, which is relatively straightforward

(see Hendry and Krolzig, 2005). Some variables which are irrelevant will have t2 ≥
cα (adventitiously significant), where the probability of that event is α

(
N − n∗

)
when n∗ variables actually matter. Fortunately, bias correction will also drive such
estimates sharply towards the origin. Thus, despite selecting from a large set of
potential variables, nearly unbiased estimates of coefficients and equation standard
errors can be obtained with little loss of efficiency from testing many irrelevant
variables, and some loss for relevant, from the increased value of cα . The normal
distribution has “thin tails,” so the power loss from tighter significance levels is
usually not substantial, whereas financial variables may have fat tails, so power
loss could be more costly at tighter α.

Impulse saturation is described in Hendry et al. (2008) and Johansen and Nielsen
(2008) as including an indicator for every observation, entered (in the simplest case)
in blocks of T/2, with the significant outcomes retained. This approach both helps
remove outliers, and is a good example of why testing large numbers of candidate
regressors does not cost much efficiency loss under the null that they are irrelevant.
Setting cα ≤ 1/T maintains the average false null retention at one “outlier,” and
that is equivalent to omitting one observation, so is a tiny efficiency loss despite
testing for the relevance of T variables. Since all regressors are exact linear functions
of T impulses, that effect carries over directly in the independent and identically
distributed (i.i.d.) setting, and in similar ways more generally. Thus, N > T is not
problematic for automatic model selection, opening the door to large numbers of
new applications.

Since an automatic selection procedure is algorithmic, simulation studies
of its operational properties are straightforward. In the Monte Carlo experi-
ments reported in Hendry and Krolzig (2005), commencing from highly over-
parameterized GUMs (between 8 and 40 irrelevant variables; zero and 8 relevant),
PcGets recovered the LDGP with an accuracy close to what one would expect
if the LDGP specification were known initially, but nevertheless coefficient tests
were conducted. To summarize its simulation-based properties, false rejection fre-
quencies of null hypotheses (measured as retention rates for irrelevant variables)
can be controlled at approximately the desired level; correct rejections of alter-
natives are close to the theoretical upper bound of power (measured as retention
rates for relevant variables); model selection is consistent for a finite model size
as the sample size grows without bound; nearly unbiased parameter estimates can
be obtained for all variables by bias-correction formulae, which also reduce the
mean square errors of adventitiously retained irrelevant variables; and reported
equation standard errors are nearly unbiased estimates of those of the correct spec-
ification (see, e.g., Hendry and Krolzig, 2005). Empirically, automatic Gets selects
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(in seconds) models at least as good as those developed over several years by their
authors (see Ericsson, 2007, for several examples). Although automatic model selec-
tion is in its infancy, exceptional progress has already been achieved (see Hoover
and Perez, 1999; Hoover and Perez, 2004, provide additional evidence).

1.5.2 Costs of inference and costs of search

“Don’t keep him waiting, child! Why, his time is worth a thousand pounds
a minute!” (Train passengers to Alice in Lewis Carroll, 1899)

Costs of inference are inevitable when tests have non-zero size and non-unit power,
even if investigators commence from the LDGP – but do not know that is the correct
specification, so have to test for congruence and significance. Costs of search are
due to commencing from any GUM that is over-parameterized relative to the LDGP.
Under-specification ensures that an invalid model of the LDGP will result. Given
the many criticisms of model selection, it may surprise readers that costs of search
are small in comparison to costs of inference: the main difficulty is not selection
per se, but the vagaries of sampling. In selecting a model from a GUM, there are two
possible mistakes. The first is including irrelevant variables (ones not in the LDGP),
the second is omitting relevant variables. Since the first group are absent when the
DGP is the GUM, that is purely a cost of search. The second is primarily a cost of
inference, with possible additional search costs if there are lower probabilities of
retaining relevant variables when commencing from the GUM.

When the nominal rejection frequency of individual selection tests is set at α ≤
1/N → 0 as T →∞, on average at most one irrelevant variable will be retained
as adventitiously significant out of N candidates. Thus, there is little difficulty in
eliminating almost all of the irrelevant variables when starting from the GUM (a
small cost of search). The so-called overall “size” of the selection procedure, namely

1−(1− α)
N , can be large, but is uninformative about the success of a simplification

process that on average correctly eliminates (1− α)N irrelevant variables.
Conversely, even for a loose significance level like α = 0.05, and commencing

from the LDGP, there is only a 50% chance of keeping a relevant variable where the
t-test on its coefficient has a non-centrality of 2 (a high cost of inference). A more
stringent critical value (say α = 0.01, so cα � 2.63) worsens the costs of inference
as the retention probability falls to 27% despite the correct specification being
postulated. Costs of inference usually exceed costs of search, the exception being
when all relevant variables have large non-central t-statistics (in excess of about
±5), so there are no costs of inference. The probabilities of locating the LDGP
commencing from the GUM are reasonably close to the corresponding outcomes
when the search commences from the LDGP. Since the LDGP is sometimes never
retained even when it is the initial specification, the apparent problem of a search
algorithm may be a cost of inference.

The limits of automatic model selection must also be clarified. If the LDGP
equation would not be reliably selected by the given inference rules applied to
itself as the initial specification, then selection methods cannot rectify that. Many
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apparent criticisms of selection have failed to note that key limitation. In the sim-
ulations described above, the same algorithm and selection criteria were always
applied to commencing from both the GUM and the LDGP, and only the addi-
tional costs attributable to starting from the former comprise search costs. Also,
when there are relevant variables with small t-statistics because the parameters are
O(1/

√
T), especially if they are highly correlated with other regressors (see Pötscher,

1991; Leeb and Pötscher, 2003, 2005), then selection is not going to work well: one
cannot expect success in selection if a parameter cannot be consistently estimated.
Thus, although uniform convergence seems infeasible, selection works for parame-
ters larger than O(1/

√
T) (as they are consistently estimable) or smaller than O(1/T)

(as they vanish), yet 1/
√

T and 1/T both converge to zero as T → ∞, so “most”
parameter values are unproblematic. If the LDGP would always be retained by the
algorithm when commencing from it, then a close approximation will generally
be selected when starting from a GUM which nests that LDGP.

Additional problems for any empirical modeling exercise arise when the LDGP is
not nested in the GUM, due to the regressor set being incomplete, the functional
form misspecified or structural breaks and other non-stationarities not being fully
accommodated, as well as serious measurement errors contaminating the data or
endogenous variables being incorrectly treated as regressors. For very high levels of
collinearity between relevant and irrelevant variables, the selected approximation
may use the incorrect choice if that is undominated, but in a progressive research
strategy when there are intermittent structural breaks in both relevant and irrele-
vant variables, such a selection will soon be dominated. Phillips (2003) provides
an insightful analysis of the limits of econometrics.

1.6 Teaching “Applied Econometrics”

“Manners are not taught in lessons,” said Alice. “Lessons teach you to do
sums, and things of that sort.”

“And you do Addition?” the White Queen asked. “What’s one and one
and one and one and one and one and one and one and one and one?”

“I don’t know,” said Alice. “I lost count.” (Lewis Carroll, 1899)

Both economic theory and theoretical econometrics are relatively structured sub-
jects to teach, whereas applied econometrics is not, so many approaches are extant.
The obvious way might be to include substantive empirical findings in the relevant
subject-matter part of other economics courses, and so effectively abolish the need
to teach what applied econometrics has established. This certainly happens in part,
usually with a lag after the relevant study was published, but seems less common
than courses specifically oriented to applied econometrics. I was taught in such a
course, the bulk of which concerned studying how the “masters” had conducted
their investigations, and what they found – essentially an apprenticeship. Other
courses focus more on the economic and econometric theory behind key studies,
with less attention to their empirical outcomes: systems of demand equations seem
to be addressed that way. Presumably the aim is to explicate the relation between
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economics and its applications in particular cases. Finally, some courses require
students to undertake empirical work themselves, often replicating or evaluating
existing studies rather than novel research. Combinations of some or all of these
also happen.

If the objective is one where completing students are to be able to reliably tackle
a new application, then teaching applied econometrics becomes very demanding.
A wide range of skills and insights need to be conveyed, many of which concern
“auxiliary” issues such as data availability, its quality and its correspondence to
the target of the analysis, including frequency, seasonality, transformations, etc.;
institutions and policy agencies that impinge on the economic process; impor-
tant historical and non-economic contingencies that occurred; the specification
of the candidate list, their dynamics, exogeneity, functional forms and constancy
of possible models; and the use of software. When the first attempt fails on the
desired criteria, a revision process is needed, so difficulties of expanding searches
and sequentially correcting problems with a model must be confronted, all too
often leaving the student floundering.

A key job of an applied econometrician is to formulate the general model that
underpins the analysis, which includes the specification of all candidate variables
that might influence the “target” variables of interest in the modeling problem,
their general functional forms (e.g., logs), and putative exogeneity assumptions.
General economic reasoning plays a substantive part at this stage. Further, one
must collect and carefully check all the data series to be modeled, and investigate
their historical context. Finally, the easier part is using appropriate software to
congruently model the relevant series. Yet, many studies by “experts” remain clever
“detective exercises” in which a feel for the evidence helped point towards a viable
conclusion. The approach in Hendry and Nielsen (2007a), summarized in Hendry
and Nielsen (2007b), is to first prepare students to understand the elements of
likelihood theory, using likelihood ratio tests for inference and evaluation – testing
the assumptions for the validity of those inferences – leading to model selection
in the econometric theory part of the course. A sequence of increasingly realistic
theoretical models is developed from i.i.d. binary data through to cointegrated
equations with structural breaks. On the applied part of the course, we thoroughly
examine an agreed data set, and after teaching the relevant software, students can
rapidly move from simple models to general ones using automatic methods. Our
focus is on developing well-specified empirical models of interesting economic
issues. Given a new problem, students then have a structured approach to follow
in their investigations. We consider there has been a marked improvement in their
resulting empirical studies.

An example of my own approach is recorded in Hendry (1999): there may be
some “tacit knowledge” therein (and I hope there is value added), but most of
the above steps can be formalized without the need for an extensive apprentice-
ship. The next section focuses on comparing how well automatic model selection
does without any “prior” historical knowledge or empirical modeling experi-
ence. The results reported in section 1.7 took about 20 minutes of real time,
including the write-up: even granted that the data were pre-prepared and the log
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transformations were entailed by the pre-analysis, the efficiency gains over my pre-
vious “handcrafted” study are huge. In addition, hypotheses that were previously
imposed or sequentially investigated can be evaluated jointly.

1.7 Revisiting the “experiment in applied econometrics”

“If I wasn’t real,” Alice said – half-laughing though her tears, it all seemed
so ridiculous – “I shouldn’t be able to cry.”

“I hope you don’t suppose those are real tears?” Tweedledum interrupted
in a tone of great contempt. (Lewis Carroll, 1899)

The recent huge increases in the prices of many foods makes the exercise of
re-examining US food expenditure over 1931–89 (based on the update of Tobin,
1950, by Magnus and Morgan, 1999) of more than just historical interest. If the
various price and income elasticities estimated below are approximately correct,
then substantial responses can be anticipated (indeed, could this be the long-
sought solution to society’s burgeoning obesity problem?). Hendry (1999) sought
to explain why other contributors to Magnus and Morgan (1999) had found their
models were non-constant over the combined inter-war and post-war samples, so
had eschewed modeling the 1930s data. Impulse dummies for a food program
and post-war de-rationing allowed a constant equation to be developed over the
sample 1931–89. While an indicator variable is a crude level of measurement, the
converse strategy of not modeling major institutional interventions seems even less
attractive. Theory and common sense suggest that food programs and switches in
rationing matter; but few theory models allow for such factors in a way suitable for
empirical implementation (although the original analyst of this data also published
on rationing in Tobin, 1952).

The per capita variables are as follows (lower case denotes logs):

ef : constant-price expenditure on food
pf − p: real price of food
e: total constant-price expenditure
s = log Y − log E: (an approximation to the savings ratio)
a: average family size.

Figure 1.6 shows the time series, and reveals considerable changes over the
period. After falling sharply at the commencement of the Great Depression, both
ef and e rise substantially till World War II, fall after, then resume a gentle rise
(panels (a) and (c)), so �ef ,t is vastly more volatile pre-war (panel (e)) (�et has a
similar but less pronounced pattern). Next, pf −p is quite volatile till after the war,
then is relatively stable (panel (b)), whereas the dramatic rise in s from “forced
saving” during the war is manifest (panel (d)).

The earlier study of a cointegrated VAR for the system established that e, s, and
pf − p were weakly exogenous in the food demand equation. Here, the general
conditional model allowed for two lags on each of ef , e, pf − p, s and one lag
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Figure 1.6 Food expenditure and related time series

on a, and was selected by Autometrics at 1% for all candidate variables, including
impulse saturation. All diagnostic tests were insignificant, and the PcGive unit root
test strongly rejected the null of no cointegration (tur = −11.37∗∗: (see Banerjee
and Hendry, 1992; Ericsson and MacKinnon, 2002) with the long-run solution:

c0 = ef + 7.99− 0.4e + 0.36(pf − p). (1.39)

Transforming to differences and the equilibrium-correction term from (1.39),
Autometrics selected over 1931–89 (at 2.5%, again including impulse saturation):

�ef ,t = 0.34
(0.02)

st−1 − 0.32
(0.02)

c0,t−1 + 0.67
(0.04)

�et + 0.13
(0.03)

�et−1

− 0.64
(0.03)

�(pf − p)t − 0.09
(0.01)

I31 − 0.10
(0.01)

I32 + 0.04
(0.01)

I34

+ 0.03
(0.01)

I41 + 0.05
(0.01)

I42 + 0.03
(0.01)

I51 + 0.02
(0.01)

I52 + 0.03
(0.01)

I70

(
R∗
)2 = 0.96 FM(13, 45) = 94.9∗∗ σ̂ = 0.0078 Far(2, 44) = 1.34

χ
2
(2) = 1.04 Farch(1, 44) = 2.25 Freset(1, 45) = 0.35

Fhet(18, 27) = 0.48 FChow(9, 37) = 0.99. (1.40)
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In (1.40),
(
R∗
)2

is the squared multiple correlation when a constant is added,

FM(13, 45) is the associated test of the null, and σ̂ is the residual standard devia-
tion, with coefficient standard errors shown in parentheses. The diagnostic tests
are of the form Fj(k, T − l), which denotes an approximate F-test against the
alternative hypothesis j for: kth-order serial correlation (Far: see Godfrey, 1978),
kth-order autoregressive conditional heteroskedasticity (Farch: see Engle, 1982),
heteroskedasticity (Fhet: see White, 1980a); the RESET test (Freset: see Ramsey, 1969);
parameter constancy (FChow (see Chow, 1960) over k periods; and a chi-square test

for normality (χ2
nd(2) (see Doornik and Hansen, 2008). No misspecification test

rejects.
The result in (1.40) is to be contrasted with the equation reported earlier, which

had a similar equilibrium correction term based on Johansen (1988):

c2 = ef + 7.88− 0.4e + 0.4
(
pf − p

)
, (1.41)

leading to (D3133 and D4446 are dummies with the value unity over the periods
1931–33 and 1944–46 respectively):

�ef ,t = 0.27
(0.04)

st−1 − 0.34
(0.02)

c2,t−1 − 0.019
(0.004)

+ 0.24
(0.05)

�st

+ 0.53
(0.05)

�et − 0.46
(0.04)

�(pf − p)t − 0.12
(0.01)

D3133+ 0.038
(0.010)

D4446

R2 = 0.936 FM(7, 51) = 107.2∗∗ σ̂ = 0.0098 Far(2, 49) = 0.18

χ
2
(2) = 0.21 Farch(1, 49) = 0.59 Freset(1, 50) = 0.26 Fhet(13, 37) = 0.47. (1.42)

Thus, six additional outliers have been detected in (1.40), whereas none of the
components of D4446 was found, nor was I33: neither dummy is remotely sig-
nificant if added to (1.40). Consistent with that result, when (1.42) and (1.40)
are denoted models 1 and 2 on encompassing tests, FEnc1,2

(10, 41) = 4.83∗∗

and FEnc2,1
(5, 41) = 2.18, so (1.42) is encompassed by (1.40) but not vice versa.

Nevertheless, both models are rejected against the other on Cox (1961) and Ericsson
(1983) non-nested tests with σ̂J = 0.0074.

Another recent development that can be implemented based on impulse satura-
tion is to test for the super exogeneity of the parameters of the conditional model in
response to changes in the LDGPs of the two main conditioning variables, �et and
�(pf − p)t (see section 1.4.5 and Hendry and Santos, 2009). The latter’s equation
revealed no significant breaks, but commencing from one lag of �e, �(pf − p), �s
and �a, the former produced:

�et = 0.016
(0.003)

+ 0.256
(0.081)

�et−1 − 0.302
(0.083)

�(pf − p)t−1 − 0.11
(0.02)

I31

− 0.19
(0.02)

I32 + 0.10
(0.02)

I34
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+ 0.06
(0.02)

I35 + 0.07
(0.02)

I36 − 0.08
(0.02)

I38 + 0.07
(0.02)

I41 + 0.08
(0.02)

I43

+ 0.10
(0.02)

I46 − 0.06
(0.02)

I80

R2 = 0.86 FM(12, 46) = 23.9∗∗ σ̂ = 0.019 Far(2, 44) = 0.14

χ
2
(2) = 1.27 Farch(1, 44) = 4.42∗ Freset(1, 45) = 0.01 Fhet(14, 31) = 0.69. (1.43)

Almost all the inter-war and war years are revealed as discrepant, with four
impulses in common with (1.40). Adding the 6 additional impulses found in (1.43)
to (1.40) and testing their significance yields FSExog(6, 40) = 1.14, not rejecting.
Nevertheless, that there are four impulses in common is strongly against the exo-
geneity of �et in (1.40), especially as their signs all match, and even the magnitudes
are not too far from 0.67 times those in (1.43). It is not surprising that major shifts
in total expenditure are associated with shifts in expenditure on a subcomponent,
but since �et is included in (1.40), the conclusion must be that agents altered their
decision rules more than that effect. Since a food program was in place for several
of the common impulses and rationing for the other, additional shifts do not nec-
essarily invalidate the economics behind the equation, so the overall outcome is
inconclusive.

An alternative check on the commonality of the inter-war and post-war periods is
to use the former to predict the latter, given the actual outcomes for the regressors.
We have implicitly done so via impulse saturation, which revealed only one post-
war outlier in 1970. The F-test of constancy, FChow(37, 10) = 2.02, does not reject.
Figure 1.7 shows the outcomes: panel (a) reports the fitted and actual values till
1952 and the predicted thereafter, with the full-sample fit shown immediately
below in panel (c), the residuals and forecast errors in panel (b), and one-step 95%
forecast intervals in panel (d). The outlier in 1970 is obvious, and otherwise there
is little difference between the sub-sample and full-sample fit. Such constancy in
the face of changing data behavior supports both the specification in (1.40) and
the use of the whole sample to estimate and evaluate these models.

1.7.1 An update

Everything was happening so oddly that she didn’t feel a bit surprised.
(Lewis Carroll, 1899)

The obvious extension is to update the data, and test the model on the extended
information. Unfortunately, Applied Econometrics is never that easy: the data have
been extensively revised. It came as a surprise even to an experienced empirical
modeler that data back to 1929 could differ so much between a 1989-based set
(denoted by a subscript 0 in the graphs) and a 2008 update when extending the
data to 2000 (denoted 1), but Figures 1.8 (data) and 1.9 (deviations) show the extent
of the revisions. Both food and total real expenditure have changed, the latter by
up to 15%, and savings have shifted by up to 5%, whereas the relative price of
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Figure 1.7 Fitted and actual values, residuals and forecasts for �ef ,t

1920 1940 1960 1980 2000

–12.75

–12.50

–12.25

–12.00 ef, 1  
ef, 0  

1920 1940 1960 1980 2000

–11.5

–11.0

–10.5

–10.0 e0  
e1  

1920 1940 1960 1980 2000

0.0

0.1

0.2

0.3
s0  
s1  

1920 1940 1960 1980 2000

1.0

1.2

1.4

a1  
a0  

Figure 1.8 Revised data on food expenditure time series
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Figure 1.9 Deviations between old and revised data on food expenditure time series

food is unaltered – yet family size is unrecognizably different. The impacts on the
equilibrium-correction terms, c0 in (1.39), that calculated for the revised data c∗0,
and c1 in (1.45) below, are also shown (see Hendry, 1994; Cook, 2008, on possible
approaches for cross-data-vintage encompassing).

First, enforcing the identical specification to (1.40) but on the revised data over
1930–89, testing on the 11 new years led to:

�ef ,t = 0.34
(0.04)

st−1 − 0.27
(0.02)

c0,t−1 + 0.57
(0.06)

�et + 0.09
(0.05)

�et−1

− 0.40
(0.04)

�(pf − p)t − 0.10
(0.01)

I31 − 0.12
(0.01)

I32 + 0.04
(0.01)

I34

+ 0.02
(0.01)

I41 + 0.05
(0.01)

I42 + 0.03
(0.01)

I51 + 0.02
(0.01)

I52 + 0.04
(0.01)

I70

(
R∗
)2 = 0.93 FM(13, 45) = 94.9∗∗ σ̂ = 0.011 Far(2, 44) = 5.74∗∗

χ
2
(2) = 2.40 Farch(1, 44) = 2.79 Freset(1, 45) = 0.01

Fhet(18, 27) = 0.82 FChow(11, 46) = 1.42. (1.44)

The revisions have altered the coefficients to some extent, the fit is poorer and there
is significant residual autocorrelation, but (without “correcting” the standard errors
for that problem), the Chow test does not reject, although as Figure 1.10 reveals,
the forecast errors are clearly autocorrelated.
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Figure 1.10 Old model revised data fitted and actual values, residuals and forecasts for �ef ,t

Next, automatic remodeling at 1% on the revised data up to 1989 (with impulse
saturation to remove the outliers) led to:

c1 = ef + 8.49− 0.35e + 0.21(pf − p), (1.45)

with a much simpler final equation being selected:

�ef ,t = 0.35
(0.032)

st − 0.25
(0.02)

c1,t−1 + 0.65
(0.05)

�et − 0.29
(0.04)

�(pf − p)t

− 0.05
(0.01)

I30 − 0.08
(0.01)

I31 − 0.08
(0.01)

I32 + 0.03
(0.01)

I70

(
R∗
)2 = 0.90 FM(8, 51) = 60.4∗∗ σ̂ = 0.012 Far(2, 50) = 0.65

χ
2
(2) = 2.09 Farch(1, 50) = 0.13 Freset(1, 51) = 0.11

Fhet(18, 33) = 0.89 FChow(11, 52) = 0.68 (1990− 2000). (1.46)

Nevertheless, despite the revisions, the model in (1.46) has many features in com-
mon with both its predecessors, and is constant over the next 11 years as Figure
1.11 reports, and FChow(11, 52) confirms. The short-run elasticities still exceed their
long-run counterparts, but by less than previously.
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Figure 1.11 New model on revised data fitted and actual values, residuals and forecasts
for �ef ,t

1.8 Automatic modeling of a VAR4 (25)

“The Eighth Square at last!” she cried as she bounded across . . . “Oh, how
glad I am to get here! And what is this on my head?” she exclaimed . . . It
was a golden crown. (Quote from Alice in Lewis Carroll, 1899)

To illustrate that automatic modeling is not restricted to single equations (see,
e.g., Krolzig, 2003), we now model the four variables in section 1.4.1.1, namely
industrial output per capita, yc,t , numbers of bankruptcies, bt , and patents, pt ,
and real equity prices (deflated by a cost of living index), et , using a VAR with 25
lags, augmented by impulse saturation over the common sample T =1757–1989 at
α = 0.0025 (so on average about one variable will be retained by chance as there are
337 candidates in the initial general model). The marginal critical t-ratio is about
3.1, and only about 3 regressors (other than impulses) were near or below that in the
four finally-selected models. Most diagnostic tests were insignificant in those final
models (but not computable at the start). The entire exercise took under two hours,
including this write-up: technical progress in undertaking empirical econometrics
is huge, as such an analysis would have been simply impossible (conceptually and
practically) when I first started empirical modeling in 1967.

�yc,t = − 0.128
(0.031)

yc,t−1 + 0.143
(0.037)

yc,t−5 − 0.152
(0.037)

yc,t−19 + 0.135
(0.034)

yc,t−23

+ 0.016
(0.004)

pt − 0.016
(0.005)

bt−3 + 0.081
(0.013)

et − 0.084
(0.013)

et−2
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+ 0.129
(0.038)

I1827 − 0.206
(0.039)

I1921 + 0.119
(0.037)

I1927

σ̂ = 0.0368 FAR1−2(2, 220) = 1.08 FARCH1(1, 220) = 0.14

χ
2
nd (2) = 1.09 FHet(19, 202) = 2.24∗∗ FRESET(1, 221) = 5.97∗

pt = 3.32
(0.65)

+ 0.87
(0.03)

pt−1 − 0.46
(0.22)

yc,t−4 + 0.68
(0.22)

yc,t−5

− 0.19
(0.04)

bt−11 + 0.18
(0.04)

bt−12

− 0.16
(0.05)

et−17 + 0.67
(0.16)

I1757 − 0.51
(0.15)

I1759 − 0.57
(0.15)

I1761+ 0.58
(0.15)

I1766

− 0.43
(0.15)

I1771 − 0.63
(0.15)

I1775 + 0.43
(0.15)

I1783 − 0.65
(0.15)

I1793 − 0.46
(0.15)

I1826

− 0.49
(0.15)

I1884 − 0.45
(0.15)

I1940 − 0.46
(0.15)

I1942 − 0.52
(0.15)

I1984 + 0.60
(0.15)

I1985

σ̂ = 0.148 FAR1−2(2, 210) = 1.46 FARCH1(1, 210) = 0.57

χ
2
nd (2) = 4.88 FHet(26, 185) = 1.41 FRESET(1, 211) = 0.19

bt = 1.10
(0.05)

bt−1 − 0.29
(0.05)

bt−2 − 0.41
(0.10)

yc,t−2 − 0.41
(0.18)

yc,t−17 + 0.80
(0.16)

yc,t−23

+ 0.42
(0.06)

pt−1 − 0.23
(0.06)

pt−2 − 0.46
(0.09)

et + 0.55
(0.10)

et−1 − 0.23
(0.05)

et−5

+ 0.64
(0.21)

I1757 + 0.50
(0.19)

I1766 − 0.56
(0.18)

I1822 − 0.65
(0.19)

I1838 + 0.83
(0.18)

I1884

σ̂ = 0.18 FAR1−2(2, 216) = 1.60 FARCH1(1, 216) = 2.48

χ
2
nd (2) = 5.25 FHet(25, 192) = 1.64∗ FRESET(1, 217) = 1.59

et = 1.12
(0.06)

et−1 − 0.17
(0.06)

et−2 + 0.69
(0.16)

yc,t − 0.69
(0.16)

yc,t−1

− 0.10
(0.03)

bt + 0.12
(0.03)

bt−1 + 0.35
(0.10)

I1802 + 0.31
(0.11)

I1922

+ 0.31
(0.10)

I1959 − 0.31
(0.10)

I1973 − 0.58
(0.11)

I1974
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σ̂ = 0.10 FAR1−2(2, 220) = 2.59 FARCH1(1, 220) = 0.01

χ
2
nd (2) = 3.72 FHet(17, 204) = 1.21 FRESET(1, 221) = 3.72.

Most of the effects found make economic sense in the context of the limited
information set used here as an illustration. In reverse order, real equity prices are
near a random walk, but respond positively to changes in output, and negatively to
changes in bankruptcies. In turn, bankruptcies fall with increased output or equity
prices, but rise with patent grants. Neither equation has many outliers, whereas the
patents equation does, especially in the eighteenth century. Patents fall initially as
output, equity prices, bankruptcies rise, but adjust back later. Finally, changes in
output respond positively to patents and changes in equity prices, but negatively
to bankruptcies.

A substantive exercise would involve additional variables like interest rates and
human and physical capital; would check whether bankruptcies and patents should
also be per capita; and investigate cointegration reductions. Are the long lags
‘spurious’? The general historical record suggests that major innovations are both
creative and destructive of output, the former by the enlargement of the production
frontier, and the latter through the negative impact on those already engaged in
the occupations concerned (spinners, weavers, etc., initially; clerks and secretaries
in more modern times), so a “generation” is required for the new state to dominate
– that motivated the original choice of 25 lags. Innovations take time to develop
and be adopted; and the seeds for bankruptcy are often sown well before the reap-
ing, even if the span is not quite “clogs to clogs in three generations.” Notably,
the equation for equity prices still has short lags despite the “opportunity” to find
other correlations.

1.9 Conclusion

Ever drifting down the stream –
Lingering in the golden gleam –
Life, what is it but a dream? (Lewis Carroll, 1899)

“Applied Econometrics” has a vast range of empirical issues to investigate: the very
non-stationarity of economies keeps creating new topics for analysis. However,
so long as “Applied Econometrics” is just a calibration of extant economic the-
ory, it will never make much of an independent contribution: in that sense, one
must agree with Summers (1991) but for completely opposite reasons. Much of
the observed data variability in economics is due to features that are absent from
most economic theories, but which empirical models have to tackle. Ceteris paribus
conditions can sometimes be justified for theoretical reasoning, but do not provide
a viable basis for empirical modeling: only a “minor influence” theorem, which
must be established empirically, will suffice.

This implication is not a tract for mindless modeling of data in the absence of
economic analysis, but instead suggests formulating more general initial models
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that embed the available economic theory as a special case, consistent with our
knowledge of the institutional framework, historical record, and the data proper-
ties. Once a congruent encompassing general model is established, an automatic
model selection approach based on general-to-simple principles could help bring
objectivity and credibility to empirical econometric modeling.

Economic observations are far from perfect, being subject to revision, and even
to conceptual changes, with important variables unobserved, and available prox-
ies of unknown quality. Theory constructs (such as “consumption,” or “user cost
of capital”) and their measured counterparts (consumers’ expenditure or after-tax
real interest rates adjusted for depreciation) can differ markedly, especially after
aggregation. Thus, a “pure” data-based approach can lack substance.

Economics has delivered a range of invaluable insights into individual deci-
sion taking, market functioning, and system-wide economies, with a vast body
of theory, which has made rapid technical and intellectual progress – and will con-
tinue to do so. Applied econometrics cannot be conducted without an economic
theoretic framework to guide its endeavors and and help interpret its findings.
Nevertheless, since economic theory is not complete, correct, and immutable, and
never will be, one also cannot justify an insistence on deriving empirical models
from theory alone. That paradigm encourages covert data mining, so the credibility
of existing evidence is unclear.

Data “mining” does not have pernicious properties when using a structured
approach, using appropriate significance levels that decline with both the number
of candidate variables and sample size: at 1% significance, one irrelevant variable
in 100 will be significant by chance, at the cost of raising the selection t-ratio from
around±2.0 to±2.7. Parsimony is not a justification for arbitrarily excluding many
potentially relevant contenders, not even when doing so to avoid more initial vari-
ables than observations. While it is essential that the final model is much smaller
than the sample size, that does not preclude starting general and making the max-
imum use of our best available theory and econometrics to guide our empirical
endeavors and then interpret their outcomes. Thus, Frisch (1933) remains our best
advice: “mutual penetration’, which entails using economic analysis to guide an
applied study, but letting the empirical evidence play a real role.
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Note

1. Atkinson (2008) notes Robbins’ apparent dismissal of Richard Stone (1951) as “not
economics.”

mailto: rights@palgrave.com


58 Methodology of Empirical Econometric Modeling

References

Aghion, P., R. Frydman, J. Stiglitz and M. Woodford (eds.) (2002) Knowledge, Information and
Expectations in Modern Macroeconomics. Princeton: Princeton University Press.

Andrews, D.W.K. (1991) Heteroskedasticity and autocorrelation consistent covariance matrix
estimation. Econometrica 59, 817–58.

Anselin, L. (2006) Spatial econometrics. In T.C. Mills and K.D. Patterson (eds.), Palgrave
Handbook of Econometrics, Volume I: Econometric Theory, pp. 901–69. Basingstoke: Palgrave
Macmillan.

Atkinson, A.B. (2005) Measurement of Government Output and Productivity for the National
Accounts: The Atkinson Review Final Report. London: Palgrave Macmillan.

Atkinson, A.B. (2008) Economic data and the distribution of income. Stone lectures, 2008,
Department of Economics, University of Oxford.

Bachelier, L. (1900) Théorie de la spéculation. Annales Scientifiques de l’École Normale Supérieure
3, 21–86.

Baillie, R.T. (1996) Long memory processes and fractional integration in econometrics. Journal
of Econometrics 73, 5–59.

Baltagi, B.H. (2006) Panel data models. In T.C. Mills and K.D. Patterson (eds.), Palgrave
Handbook of Econometrics, Volume I: Econometric Theory, pp. 633–61. Basingstoke: Palgrave
Macmillan.

Banerjee, A. and D.F. Hendry (1992) Testing integration and cointegration: an overview.
Oxford Bulletin of Economics and Statistics 54, 225–55.

Barndorff-Nielsen, O.E. and N. Shephard (2007) Financial Volatility in Continuous Time.
Cambridge: Cambridge University Press. Forthcoming.

Bjerkholt, O. (2005) Frisch’s econometric laboratory and the rise of Trygve Haavelmo’s
probability approach. Econometric Theory 21, 491–533.

Bjerkholt, O. (2007) Writing “the probability approach” with nowhere to go: Haavelmo in
the United States, 1939–1944. Econometric Theory 23, 775–837.

Blundell, R. and T.M. Stoker (2005) Heterogeneity and aggregation. Journal of Economic
Literature 43, 347–91.

Bontemps, C. and G.E. Mizon (2003) Congruence and encompassing. In B.P. Stigum (ed.),
Econometrics and the Philosophy of Economics, pp. 354–78. Princeton: Princeton University
Press.

Boswijk, H.P. (1992) Cointegration, Identification and Exogeneity, Volume 37 of Tinbergen
Institute Research Series. Amsterdam: Thesis Publishers.

Boumans, M.A. (2005) Measurement in economic systems. Measurement 38, 275–84.
Boumans, M.A. (ed.) (2007) Measurement in Economics: A Handbook. Amsterdam: Elsevier.
Box, G.E.P. and G.M. Jenkins, (1976) Time Series Analysis, Forecasting and Control. San

Francisco: Holden-Day (first published 1970).
Burns, A.F. and W.C. Mitchell (1946) Measuring Business Cycles. New York: NBER.
Caldwell, B.J. (ed.) (1993) The Philosophy and Methodology of Economics, Volume II. Aldershot:

Edward Elgar.
Camerer, C.F. (2007) Neuroeconomics: using neuroscience to make economic predictions.

Economic Journal 117, C26–42.
Cameron, A.C. and P.K. Trivedi (1998) The Analysis of Count Data. Cambridge: Cambridge

University Press.
Campos, J., N.R. Ericsson and D.F. Hendry (eds.) (2005) Readings on General-to-Specific

Modeling. Cheltenham: Edward Elgar.
Carroll, L. (1899) Through the Looking-Glass and What Alice Found There. London: Macmillan

& Co.
Cartwright, N. (1983) How the Laws of Physics Lie. Oxford: Clarendon Press.
Cartwright, N. (2002) In favor of laws that are not ceteris paribus after all. Erkenntnis 57,

425–39.

mailto: rights@palgrave.com


David F. Hendry 59

Castle, J.L. (2005) Evaluating PcGets and RETINA as automatic model selection algorithms.
Oxford Bulletin of Economics and Statistics 67, 837–80.

Castle, J.L., J.A. Doornik, D.F. Hendry and R. Nymoen (2008) Testing the invariance
of expectations models of inflation. Working Paper, Economics Department, Oxford
University.

Castle, J.L. and D.F. Hendry (2005) Extending the boundaries of automatic Gets to non-linear
models. Mimeo, Economics Department, Oxford University.

Chatfield, C. (1995) Model uncertainty, data mining and statistical inference. Journal of the
Royal Statistical Society, A 158, 419–66. With discussion.

Choi, I. (2006) Non-stationary panels. In T.C. Mills and K.D. Patterson (eds.), Palgrave
Handbook of Econometrics, Volume I: Econometric Theory, pp. 511–39. Basingstoke: Palgrave
Macmillan.

Chow, G.C. (1960) Tests of equality between sets of coefficients in two linear regressions.
Econometrica 28, 591–605.

Christ, C.F. (1994) The Cowles Commission’s contributions to econometrics at Chicago,
1939–1955. Journal of Economic Literature 32, 30–59.

Clark, C. (1932) The National Income 1924–31. London: Macmillan.
Clements, M.P. and D.F. Hendry (1998) Forecasting Economic Time Series. Cambridge: Cam-

bridge University Press.
Clements, M.P. and D.F. Hendry (1999) Forecasting Non-stationary Economic Time Series.

Cambridge, Mass.: MIT Press.
Clements, M.P. and D.F. Hendry (2001) An historical perspective on forecast errors. National

Institute Economic Review 177, 100–12.
Clements, M.P. and D.F. Hendry (eds.) (2002a) A Companion to Economic Forecasting. Oxford:

Blackwell.
Clements, M.P. and D.F. Hendry (2002b) Explaining forecast failure in macroeconomics. In

M.P. Clements and D.F. Hendry (eds.), A Companion to Economic Forecasting, pp. 539–71.
Oxford: Blackwell.

Clements, M.P. and D.F. Hendry (2005) Guest Editors’ introduction: Information in economic
forecasting. Oxford Bulletin of Economics and Statistics 67, 713–53.

Clements, M.P. and D.F. Hendry (2006) Forecasting with breaks in data processes. In G. Elliott,
C.W.J. Granger and A. Timmermann (eds.), Handbook of Ecometrics on Forecasting, pp. 605–
57. Amsterdam: Elsevier.

Cook, S. (2008) Cross-data vintage encompassing. Oxford Bulletin of Economics and Statistics.
Forthcoming.

Cox, D.R. (1961) Tests of separate families of hypotheses. In Proceedings of the Fourth Berke-
ley Symposium on Mathematical Statistics and Probability, Volume 1, pp. 105–23. Berkeley:
University of California Press.

Crafts, N.F.R. (1997) Endogenous growth: lessons for and from economic history. In D.M.
Kreps and K.F. Wallis (eds.), Advances in Economics and Econometrics: Theory and Applications.
Seventh World Congress, Volume 2. Cambridge: Cambridge University Press.

Crafts, N.F.R. and T.C. Mills (1994) Trends in real wages in Britain, 1750–1913. Explorations
in Economic History 31, 176–94.

Darnell, A. (ed.) (1994) The History of Econometrics. Aldershot: Edward Elgar.
Demiralp, S. and K.D. Hoover (2003) Searching for the causal structure of a vector autoregres-

sion. Oxford Bulletin of Economics and Statistics 65, 745–67.
Dolado, J.J. (1992) A note on weak exogeneity in VAR cointegrated systems. Economics Letters

38, 139–43.
Doob, J.L. (1953) Stochastic Processes (1990 edition). New York: John Wiley Classics Library.
Doornik, J.A. (2006) Object-Oriented Matrix Programming using Ox (fourth edition). London:

Timberlake Consultants Press.
Doornik, J.A. (2007a) Autometrics. Working Paper, Economics Department, University of

Oxford.

mailto: rights@palgrave.com


60 Methodology of Empirical Econometric Modeling

Doornik, J.A. (2007b) Econometric modelling when there are more variables than observa-
tions. Working paper, Economics Department, University of Oxford.

Doornik, J.A. and H. Hansen (2008) A practical test for univariate and multivariate normality.
Oxford Bulletin of Economics and Statistics. Forthcoming.

Elliott, G., C.W.J. Granger and A. Timmermann (eds.) (2006) Handbook of Econometrics on
Forecasting. Amsterdam: Elsevier.

Engle, R.F. (1982) Autoregressive conditional heteroscedasticity, with estimates of the
variance of United Kingdom inflation. Econometrica 50, 987–1007.

Engle, R.F. and D.F. Hendry (1993) Testing super exogeneity and invariance in regression
models. Journal of Econometrics 56, 119–39.

Engle, R.F., D.F. Hendry and J.-F. Richard (1983) Exogeneity. Econometrica 51, 277–304.
Epstein, R.J. (1987) A History of Econometrics. Amsterdam: North-Holland.
Ericsson, N.R. (1983) Asymptotic properties of instrumental variables statistics for testing

non-nested hypotheses. Review of Economic Studies 50, 287–303.
Ericsson, N.R. (1992) Cointegration, exogeneity and policy analysis: an overview. Journal of

Policy Modeling 14, 251–80.
Ericsson, N.R. (2007) Econometric Modeling. Oxford: Oxford University Press. Forthcoming.
Ericsson, N.R. and D.F. Hendry (1999) Encompassing and rational expectations: how

sequential corroboration can imply refutation. Empirical Economics 24, 1–21.
Ericsson, N.R. and J.G. MacKinnon (2002) Distributions of error correction tests for cointe-

gration. Econometrics Journal 5, 285–318.
Ermini, L. and D.F. Hendry (2008) Log income versus linear income: an application of the

encompassing principle. Oxford Bulletin of Economics and Statistics. Forthcoming.
Evans, G.W. and S. Honkapohja (2001) Learning and Expectations in Macroeconomics. Princeton:

Princeton University Press.
Farebrother, R.W. (2006) Early explorations in econometrics. In T.C. Mills and K.D.

Patterson (eds.), Palgrave Handbook of Ecometrics, Volume I: Econometric Theory, pp. 88–116.
Basingstoke: Palgrave Macmillan.

Faust, J. and C.H. Whiteman (1997) General-to-specific procedures for fitting a data-
admissible, theory-inspired, congruent, parsimonious, encompassing, weakly-exogenous,
identified, structural model of the DGP: a translation and critique. Carnegie–Rochester
Conference Series on Public Policy 47, 121–61.

Favero, C. and D.F. Hendry (1992) Testing the Lucas critique: a review. Econometric Reviews
11, 265–306.

Fehr, E. and A. Falk (2002) Psychological foundations of incentives. European Economic Review
46, 687–724.

Fehr, E., U. Fischbacher and M. Kosfeld (2005) Neuroeconomic foundation of trust and social
preferences. Dp. 5127, CEPR, London.

Feige, E.L. and D.K. Pearce, (1976) Economically rational expectations. Journal of Political
Economy 84, 499–522.

Feinstein, C.H. (1972) National Income, Expenditure and Output of the United Kingdom, 1855–
1965. Cambridge: Cambridge University Press.

Fischer, A.M. (1989) Policy regime changes and monetary expectations: testing for super
exogeneity. Journal of Monetary Economics 24, 423–36.

Fisher, F.M. (1966) The Identification Problem in Econometrics. New York: McGraw-Hill.
Florens, J.-P., M. Mouchart and J.-M. Rolin (1990) Elements of Bayesian Statistics. New York:

Marcel Dekker.
Foxwell, H.S. (ed.) (1884) Investigations in Currency and Finance. London: Macmillan.
Friedman, M. (1957) A Theory of the Consumption Function. Princeton: Princeton University

Press.
Frisch, R. (1933) Editorial. Econometrica 1, 1–4.
Frisch, R. (1938) Statistical versus theoretical relations in economic macrodynamics. Mimeo-

graph dated July 17, 1938, League of Nations Memorandum. Reprinted in D.F. Hendry

mailto: rights@palgrave.com


David F. Hendry 61

and M.S. Morgan (eds.), The Foundations of Econometric Analysis. Cambridge: Cambridge
University Press, 1995.

Frydman, R. and M.D. Goldberg (eds.) (2007) Imperfect Knowledge Economics: Exchange Rates
and Risk. Princeton: Princeton University Press.

Galí, J., M. Gertler and J.D. Lopez-Salido (2001) European inflation dynamics. European
Economic Review 45, 1237–70.

Geweke, J.F. and S. Porter-Hudak (1983) The estimation and application of long memory time
series models. Journal of Time Series Analysis 4, 221–38.

Gilbert, C.L. and D. Qin (2006) The first fifty years of modern econometrics. In T.C. Mills
and K.D. Patterson (eds.), Palgrave Handbook of Econometrics, Volume I: Econometric Theory,
pp. 117–55. Basingstoke: Palgrave Macmillan.

Gilbert, C.L. and D. Qin (2007) Representation in econometrics: a historical perspective.
In M.A. Boumans (ed.), Measurement in Economics: A Handbook, Ch. 10. Amsterdam:
Elsevier.

Godfrey, L.G. (1978) Testing for higher order serial correlation in regression equations when
the regressors include lagged dependent variables. Econometrica 46, 1303–13.

Granger, C.W.J. (1969) Investigating causal relations by econometric models and cross-
spectral methods. Econometrica 37, 424–38.

Granger, C.W.J. (1980) Long memory relationships and the aggregation of dynamic models.
Journal of Econometrics 14, 227–38.

Granger, C.W.J. (1981) Some properties of time series data and their use in econometric model
specification. Journal of Econometrics 16, 121–30.

Granger, C.W.J. (1987) Implications of aggregation with common factors. Econometric Theory
3, 208–22.

Granger, C.W.J. and R. Joyeux (1980) An introduction to long memory time series models
and fractional differencing. Journal of Time Series Analysis 1, 15–30.

Haavelmo, T. (1944) The probability approach in econometrics. Econometrica 12, 1–118.
Supplement.

Haavelmo, T. (1958) The role of the econometrician in the advancement of economic theory.
Econometrica 26, 351–7.

Haavelmo, T. (1989) Prize Lecture. Sveriges Riksbank: Prize in Economic Sciences in Memory
of Alfred Nobel.

Hald, A. (1990) A History of Probability and Statistics and Their Applications before 1750.
New York: Wiley.

Hald, A. (1998) A History of Mathematical Statistics from 1750 to 1930. New York: Wiley.
Haldrup, N., H. H. van Dijk and D.F. Hendry (eds.) (2003) Model selection and evaluation.

Oxford Bulletin of Economics and Statistics 65.
Hall, R.E. (1978) Stochastic implications of the life cycle-permanent income hypothesis:

evidence. Journal of Political Economy 86, 971–87.
Hamouda, O.F. and J.C.R. Rowley (1997) The Reappraisal of Econometrics. Aldershot: Edward

Elgar.
Harvey, A.C. (1993) Time Series Models (second edition; first edition 1981). Hemel Hempstead:

Harvester Wheatsheaf.
Heckman, J.J. (1976) The common structure of statistical models of truncation, sample selec-

tion and limited dependent variables and a simple estimator for such models. Annals of
Economic and Social Measurement 5, 475–92.

Heckman, J.J. (2000) Causal parameters and policy analysis in economics: a twentieth century
retrospective. Quarterly Journal of Economics 115, 45–97.

Hendry, D.F. (1980) Econometrics: alchemy or science? Economica 47, 387–406.
Hendry, D.F. (1987) Econometric methodology: a personal perspective. In T.F. Bewley (ed.),

Advances in Econometrics, pp. 29–48. Cambridge: Cambridge University Press.
Hendry, D.F. (1988) The encompassing implications of feedback versus feedforward mecha-

nisms in econometrics. Oxford Economic Papers 40, 132–49.

mailto: rights@palgrave.com


62 Methodology of Empirical Econometric Modeling

Hendry, D.F. (1994) HUS revisited. Oxford Review of Economic Policy 10, 86–106.
Hendry, D.F. (1995a) Dynamic Econometrics. Oxford: Oxford University Press.
Hendry, D.F. (1995b) Econometrics and business cycle empirics. Economic Journal 105, 1622–

36.
Hendry, D.F. (1995c) On the interactions of unit roots and exogeneity. Econometric Reviews

14, 383–419.
Hendry, D.F. (1999) An econometric analysis of US food expenditure, 1931–1989. In J.R.

Magnus and M.S. Morgan (eds.), Methodology and Tacit Knowledge: Two Experiments in
Econometrics, pp. 341–61. Chichester: John Wiley and Sons.

Hendry, D.F. (2000a) Epilogue: The success of general-to-specific model selection. In Econo-
metrics: Alchemy or Science? (new edition), pp. 467–90. Oxford: Oxford University
Press.

Hendry, D.F. (2000b) On detectable and non-detectable structural change. Structural Change
and Economic Dynamics 11, 45–65.

Hendry, D.F. (2001a) How economists forecast. In D.F. Hendry and N.R. Ericsson (eds.),
Understanding Economic Forecasts, pp. 15–41. Cambridge, Mass.: MIT Press.

Hendry, D.F. (2001b) Modelling UK inflation, 1875–1991. Journal of Applied Econometrics 16,
255–75.

Hendry, D.F. (2004) Causality and exogeneity in non-stationary economic time series. In
A. Welfe (ed.), New Directions in Macromodelling, pp. 21–48. Amsterdam: North-Holland.

Hendry, D.F. (2005) Bridging the gap: linking economics and econometrics. In C. Diebolt
and C. Kyrtsou (eds.), New Trends in Macroeconomics, pp. 53–77. Berlin: Springer
Verlag.

Hendry, D.F. (2006) Robustifying forecasts from equilibrium-correction models. Journal of
Econometrics 135, 399–426. Special Issue in Honor of Clive Granger.

Hendry, D.F. and J.A. Doornik (1997) The implications for econometric modelling of forecast
failure. Scottish Journal of Political Economy 44, 437–61. Special Issue.

Hendry, D.F. (with J.A. Doornik and B. Nielsen) (2007) Econometric Model Selection: Arne Ryde
Lectures. Lund University, Sweden.

Hendry, D.F., S. Johansen and C. Santos (2008) Automatic selection of indicators in a fully
saturated regression. Computational Statistics 33, 317–35. Erratum, 337–9.

Hendry, D.F. and K. Juselius (2000) Explaining cointegration analysis: Part I. Energy Journal
21, 1–42.

Hendry, D.F. and K. Juselius (2001) Explaining cointegration analysis: Part II. Energy Journal
22, 75–120.

Hendry, D.F. and H.-M. Krolzig (1999) Improving on “Data mining reconsidered” by K.D.
Hoover and S.J. Perez. Econometrics Journal 2, 202–19.

Hendry, D.F. and H.-M. Krolzig (2001) Automatic Econometric Model Selection. London:
Timberlake Consultants Press.

Hendry, D.F. and H.M. Krolzig (2004) We ran one regression. Oxford Bulletin of Economics and
Statistics 66, 799–810.

Hendry, D.F. and H.-M. Krolzig (2005) The properties of automatic Gets modelling. Economic
Journal 115, C32–61.

Hendry, D.F., E.E. Leamer and D.J. Poirier (1990) A conversation on econometric methodol-
ogy. Econometric Theory 6, 171–261.

Hendry, D.F., M. Lu and G.E. Mizon (2008) Model identification and non-unique structure.
In J.L. Castle and N. Shephard (eds.), The Methodology and Practice of Econometrics. Oxford:
Oxford University Press. Forthcoming.

Hendry, D.F., M. Marcellino and G.E. Mizon (eds.) (2008) Encompassing. Oxford Bulletin of
Economics and Statistics. Special Issue. Forthcoming.

Hendry, D.F. and M. Massmann (2007) Co-breaking: recent advances and a synopsis of the
literature. Journal of Business and Economic Statistics 25, 33–51.

mailto: rights@palgrave.com


David F. Hendry 63

Hendry, D.F. and G.E. Mizon (1999) The pervasiveness of Granger causality in econometrics.
In R.F. Engle and H. White (eds.), Cointegration, Causality and Forecasting. Oxford: Oxford
University Press.

Hendry, D.F. and G.E. Mizon (2000) Reformulating empirical macro-econometric modelling.
Oxford Review of Economic Policy 16, 138–59.

Hendry, D.F. and M.S. Morgan (eds.) (1995) The Foundations of Econometric Analysis.
Cambridge: Cambridge University Press.

Hendry, D.F. and B. Nielsen (2007a) Econometric Modeling: A Likelihood Approach. Princeton:
Princeton University Press.

Hendry, D.F. and B. Nielsen (2007b) Teaching undergraduate econometrics using OxMetrics.
Mimeo, Economics Department, University of Oxford.

Hendry, D.F. and J.-F. Richard (1982) On the formulation of empirical models in dynamic
econometrics. Journal of Econometrics 20, 3–33.

Hendry, D.F. and J.-F. Richard (1989) Recent developments in the theory of encompassing.
In B. Cornet and H. Tulkens (eds.), Contributions to Operations Research and Economics. The
XXth Anniversary of CORE, pp. 393–440. Cambridge, Mass.: MIT Press.

Hendry, D.F. and C. Santos (2009) An automatic test of super exogeneity. In M.W. Watson,
T. Bollerslev and J. Russell (eds.), Volatility and Time Series Econometrics. Oxford: Oxford
University Press. Forthcoming.

Hildenbrand, W. (1994) Market Demand: Theory and Empirical Evidence. Princeton: Princeton
University Press.

Hildenbrand, W. (1998) How relevant are the specifications of behavioural relations on the
micro-level for modelling the time path of population aggregates? European Economic Review
42, 437–58.

Hildreth, C. and J.P. Houck (1968) Some estimators for a linear model with random
coefficients. Journal of the American Statistical Association 63, 584–95.

Hooker, R.H. (1901) Correlation of the marriage rate with trade. Journal of the Royal Statistical
Society 64, 485–92. Reprinted in D.F. Hendry and M.S. Morgan (eds.), The Foundations of
Econometric Analysis. Cambridge: Cambridge University Press, 1995.

Hoover, K.D. and S.J. Perez (1999) Data mining reconsidered: encompassing and the general-
to-specific approach to specification search. Econometrics Journal 2, 167–91.

Hoover, K.D. and S.J. Perez (2004) Truth and robustness in cross-country growth regressions.
Oxford Bulletin of Economics and Statistics 66, 765–98.

Hsiao, C. (1983) Identification. In Z. Griliches and M.D. Intriligator (eds.), Handbook of
Econometrics, Volume 1, Ch. 4. Amsterdam: North-Holland.

Hunter, J. (1992) Cointegrating exogeneity. Economics Letters 34, 33–5.
Jevons, W.S. (1875) The solar period and the price of corn. In H.S. Foxwell (ed.), Investigations

in Currency and Finance, pp. 194–205. London: Macmillan.
Johansen, S. (1988) Statistical analysis of cointegration vectors. Journal of Economic Dynamics

and Control 12, 231–54.
Johansen, S. (1992) Testing weak exogeneity and the order of cointegration in UK money

demand. Journal of Policy Modeling 14, 313–34.
Johansen, S. (1995) Likelihood-based Inference in Cointegrated Vector Autoregressive Models.

Oxford: Oxford University Press.
Johansen, S. (2006) Cointegration: an overview. In T.C. Mills and K.D. Patterson (eds.),

Palgrave Handbook of Econometrics, Volume I: Econometric Theory, pp. 540–77. Basingstoke:
Palgrave Macmillan.

Johansen, S. and K. Juselius (1990) Maximum likelihood estimation and inference on co-
integration – with application to the demand for money. Oxford Bulletin of Economics and
Statistics 52, 169–210.

Johansen, S. and B. Nielsen (2008) An analysis of the indicator saturation estimator as a robust
regression estimator. In J.L. Castle and N. Shephard (eds.), The Methodology and Practice of
Econometrics. Oxford: Oxford University Press. Forthcoming.

mailto: rights@palgrave.com


64 Methodology of Empirical Econometric Modeling

Judge, G.G. and M.E. Bock (1978) The Statistical Implications of Pre-Test and Stein-Rule Estimators
in Econometrics. Amsterdam: North-Holland.

Juselius, K. (1993) VAR modelling and Haavelmo’s probability approach to econometrics.
Empirical Economics 18, 595–622.

Juselius, K. and M. Franchi (2007) Taking a DSGE model to the data meaningfully. Economics:
The Open-Access, Open-Assessment E-Journal 1, 4.

Keynes, J.M. (1939) Professor Tinbergen’s method. Economic Journal 44, 558–68. Reprinted in
D.F. Hendry and M.S. Morgan (eds.), The Foundations of Econometric Analysis. Cambridge:
Cambridge University Press, 1995.

Keynes, J.M. (1940) Statistical business-cycle research: Comment. Economic Journal 50, 154–6.
Kleibergen, F. (2002) Pivotal statistics for testing structural parameters in instrumental

variables regression. Econometrica 70, 1781–803.
Klein, J.L. (1997) Statistical Visions in Time. Cambridge: Cambridge University Press.
Koopmans, T.C. (1937) Linear Regression Analysis of Economic Time Series. Haarlem:

Netherlands Economic Institute.
Koopmans, T.C. (1947) Measurement without theory. Review of Economics and Statistics 29,

161–79.
Koopmans, T.C. (1950) When is an equation system complete for statistical purposes? In

T.C. Koopmans (ed.), Statistical Inference in Dynamic Economic Models, No. 10 in Cowles
Commission Monograph, Ch. 17. New York: John Wiley & Sons.

Krolzig, H.-M. (2003) General-to-specific model selection procedures for structural vector
autoregressions. Oxford Bulletin of Economics and Statistics 65, 769–802.

Kurcewicz, M. and J. Mycielski (2003) A specification search algorithm for cointegrated
systems. Discussion paper, Statistics Department, Warsaw University.

Kydland, F.E. and E.C. Prescott (1990) Business cycles: real facts and a monetary myth. Federal
Reserve Bank of Minneapolis, Quarterly Review 14, 3–18.

Kydland, F.E. and E.C. Prescott (1991) The econometrics of the general equilibrium approach
to business cycles. Scandinavian Journal of Economics 93, 161–78.

Le Gall, P. (2007) A History of Econometrics in France: From Nature to Models. London: Routledge.
Leamer, E.E. (1978) Specification Searches. Ad-Hoc Inference with Non-Experimental Data. New

York: John Wiley.
Leamer, E.E. (1983) Let’s take the con out of econometrics. American Economic Review 73,

31–43.
Leeb, H. and B.M. Pötscher (2003) The finite-sample distribution of post-model-selection

estimators, and uniform versus non-uniform approximations. Econometric Theory 19,
100–42.

Leeb, H. and B.M. Pötscher (2005) Model selection and inference: facts and fiction. Econometric
Theory 21, 21–59.

Lovell, M.C. (1983) Data mining. Review of Economics and Statistics 65, 1–12.
Lucas, R.E. (1976) Econometric policy evaluation: a critique. In K. Brunner and A. Meltzer

(eds.), The Phillips Curve and Labor Markets, Volume 1 of Carnegie-Rochester Conferences on
Public Policy, pp. 19–46. Amsterdam: North-Holland.

Magnus, J.R. and M.S. Morgan (eds.) (1999) Methodology and Tacit Knowledge: Two Experiments
in Econometrics. Chichester: John Wiley and Sons.

Mavroeidis, S. (2004) Weak identification of forward-looking models in monetary economics.
Oxford Bulletin of Economics and Statistics 66, 609–35.

Mayo, D.G. and A. Spanos (2006) Severe testing as a basic concept in a Neyman–Pearson
philosophy of induction. British Journal for the Philosophy of Science 57, 323–57.

Mills, T.C. (ed.) (1999) Economic Forecasting (two volumes). Cheltenham: Edward Elgar.
Mills, T.C. and K.D. Patterson (eds.) (2006) Palgrave Handbook of Econometrics, Volume 1:

Econometric Theory. Basingstoke: Palgrave Macmillan.
Mitchell, B.R. (1988) British Historical Statistics. Cambridge: Cambridge University Press.

mailto: rights@palgrave.com


David F. Hendry 65

Mizon, G.E. (1984) The encompassing approach in econometrics. In D.F. Hendry and K.F.
Wallis (eds.), Econometrics and Quantitative Economics, pp. 135–72. Oxford: Basil Blackwell.

Mizon, G.E. and J.-F. Richard (1986) The encompassing principle and its application to non-
nested hypothesis tests. Econometrica 54, 657–78.

Moene, K.A. and A. Rødseth (1991) Nobel Laureate: Trygve Haavelmo. Journal of Economic
Perspectives 5, 175–92.

Moore, H.L. (1911) Laws of Wages: An Essay in Statistical Economics. New York: Macmillan.
Moore, H.L. (1914) Economic Cycles – Their Law and Cause. New York: Macmillan.
Moore, H.L. (1923) Generating Economic Cycles. New York: Macmillan.
Morgan, M.S. (1990) The History of Econometric Ideas. Cambridge: Cambridge University Press.
Muth, J.F. (1961) Rational expectations and the theory of price movements. Econometrica 29,

315–35.
Nerlove, M. (1983) Expectations, plans, and realizations in theory and practice. Econometrica

51, 1251–79.
Nymoen, R. (2002) Faulty watch towers – “structural” models in Norwegian monetary policy

analysis. Unpublished paper, University of Oslo.
Pagan, A.R. (1987) Three econometric methodologies: a critical appraisal. Journal of Economic

Surveys 1, 3–24.
Paruolo, P. and A. Rahbek (1999) Weak exogeneity in I(2) systems. Journal of Econometrics 93,

281–308.
Peart, S.J. (2001) “Facts carefully marshalled” in the empirical studies of William Stanley

Jevons. History of Political Economy 33, 252–76.
Perez-Amaral, T., G.M. Gallo and H. White (2003) A flexible tool for model building: the rele-

vant transformation of the inputs network approach (RETINA). Oxford Bulletin of Economics
and Statistics 65, 821–38.

Perez-Amaral, T., G.M. Gallo and H. White (2005) A comparison of complementary automatic
modelling methods: RETINA and PcGets. Econometric Theory 21, 262–77.

Phillips, A.W.H. (1957) Stabilization policy and the time form of lagged response. Economic
Journal 67, 265–77.

Phillips, P.C.B. (1994) Bayes models and forecasts of Australian macroeconomic time series.
In C. Hargreaves (ed.), Non-stationary Time-Series Analyses and Cointegration. Oxford: Oxford
University Press.

Phillips, P.C.B. (1995) Automated forecasts of Asia-Pacific economic activity. Asia-Pacific
Economic Review 1, 92–102.

Phillips, P.C.B. (1996) Econometric model determination. Econometrica 64, 763–812.
Phillips, P.C.B. (2003) Laws and limits of econometrics. Economic Journal 113, C26–52.
Phillips, P.C.B. and M. Loretan (1991) Estimating long-run economic equilibria. Review of

Economic Studies 58, 407–36.
Popper, K.R. (1963) Conjectures and Refutations. New York: Basic Books.
Pötscher, B.M. (1991) Effects of model selection on inference. Econometric Theory 7, 163–85.
Qin, D. (1993) The Formation of Econometrics: A Historical Perspective. Oxford: Clarendon Press.
Qin, D. (2008) Consolidation of the Cowles Commission paradigm. Unpublished paper,

Queen Mary College, London.
Ramsey, J.B. (1969) Tests for specification errors in classical linear least squares regression

analysis. Journal of the Royal Statistical Society B 31, 350–71.
Richard, J.-F. (1980) Models with several regimes and changes in exogeneity. Review of

Economic Studies 47, 1–20.
Robbins, L. (1932) An Essay on the Nature and Significance of Economic Science. London:

Macmillan.
Robinson, P.M. (1995) Log-periodogram regression of time series with long range dependence.

Annals of Statistics 23, 1048–72.
Rothenberg, T.J. (1971) Identification in parametric models. Econometrica 39, 577–92.

mailto: rights@palgrave.com


66 Methodology of Empirical Econometric Modeling

Sala-i-Martin, X.X. (1997) I have just run two million regressions. American Economic Review
87, 178–83.

Samuelson, P.A. (1947) Foundations of Economic Analysis. Cambridge, Mass.: Harvard Univer-
sity Press.

Sargan, J.D. (1983) Identification and lack of identification. Econometrica 51,
1605–33.

Schultz, H. (1928) The Theory and Measurement of Demand: Chicago: University of Chicago
Press.

Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics 6, 461–4.
Siegel, D.S. and M. Wright (2007) Intellectual property: the assessment. Oxford Review of

Economic Policy 23, 529–40.
Sims, C.A. (1980) Macroeconomics and reality. Econometrica 48, 1–48.
Smets, F. and R. Wouters (2003) An estimated stochastic dynamic general equilibrium model

of the Euro Area. Journal of the European Economic Association 1, 1123–75.
Smith, A. (1759) Theory of Moral Sentiments. Edinburgh: A. Kincaid & J. Bell.
Smith, A. (1776) An Inquiry into the Nature and Causes of the Wealth of Nations. London: W.

Strahan & T. Cadell.
Smith, A. (1795) The history of astronomy. In D. Stewart (ed.), Essays on Philosophical Subjects

by Adam Smith, pp. 33–105. Edinburgh: W. Creech. Liberty Classics edition, by I.S. Ross,
1982.

Smith, R.J. (1992) Non-nested tests for competing models estimated by generalised method
of moments. Econometrica 60, 973–80.

Smith, R.J. (2007) Efficient information theoretic inference for conditional moment restric-
tions. Journal of Econometrics 138, 430–60.

Spanos, A. (1989) On re-reading Haavelmo: a retrospective view of econometric modeling.
Econometric Theory 5, 405–29.

Spanos, A. (1990) The simultaneous equations model revisited: statistical adequacy and
identification. Journal of Econometrics 44, 87–105.

Spanos, A. (1995) On theory testing in econometric modelling with non-experimental data.
Journal of Econometrics 67, 189–226.

Spanos, A. (2006) Econometrics in retrospect and prospect. In T.C. Mills and K.D. Pat-
terson (eds.), Palgrave Handbook of Econometrics, Volume I: Econometric Theory, pp. 3–58.
Basingstoke: Palgrave Macmillan.

Spanos, A., D.F. Hendry and J.J. Reade (2008) Linear vs. log-linear unit root specification: an
application of mis-specification encompassing. Oxford Bulletin of Economics and Statistics.
Forthcoming.

Staiger, D. and J.H. Stock (1997) Instrumental variables regression with weak instruments.
Econometrica 65, 557–86.

Stigler, G.J. (1962) Henry L. Moore and statistical economics. Econometrica 30, 1–21.
Stigler, S.M. (1986) The History of Statistics: The Measurement of Uncertainty before 1900.

Cambridge, Mass.: Harvard University Press.
Stigler, S.M. (1999) Statistics on the Table. Cambridge, Mass.: Harvard University Press.
Stiglitz, J. (2003) Is Keynes dead? Reviving a sensible macroeconomics. Clarendon lectures,

Department of Economics, University of Oxford.
Stigum, B.P. (1990) Towards a Formal Science of Economics. Cambridge, Mass.: MIT Press.
Stock, J.H. and J.H. Wright (2000) GMM with weak identification. Econometrica 68, 1055–96.
Stock, J.H., J.H. Wright and M. Yogo (2002) A survey of weak instruments and weak iden-

tification in generalized method of moments. Journal of Business and Economic Statistics
20, 518–29.

Stone, J.R.N. (1951) The Role of Measurement in Economics. Cambridge: Cambridge University
Press.

Summers, L.H. (1991) The scientific illusion in empirical macroeconomics. Scandinavian
Journal of Economics 93, 129–48.

mailto: rights@palgrave.com


David F. Hendry 67

Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, B, 58, 267–88.

Tinbergen, J. (1930) Determination and interpretation of supply curves: an example [Bestim-
mung und Deutung von Angebotskurven: ein Beispiel]. Zeitschrift fur Nationalökonomie 1,
669–79. Reprinted in D.F. Hendry and M.S. Morgan (eds.), The Foundations of Econometric
Analysis. Cambridge: Cambridge University Press, 1995.

Tinbergen, J. (1939) Statistical Testing of Business-Cycle Theories. Volume I: A Method and its
Application to Investment Activity. Geneva: League of Nations.

Tinbergen, J. (1940) Statistical Testing of Business-Cycle Theories. Volume II: Business Cycles in
the United States of America, 1919–1932. Geneva: League of Nations.

Tobin, J. (1950) A statistical demand function for food in the U.S.A. Journal of the Royal
Statistical Society A 113(2), 113–41.

Tobin, J. (1952) A survey of the theory of rationing. Econometrica 26, 24–36.
Tress, R.C. (1959) The contribution of economic theory to economic prognostication.

Economica 26, 194–211.
Urbain, J.-P. (1992) On weak exogeneity in error correction models. Oxford Bulletin of

Economics and Statistics 54, 187–207.
Vining, R. (1949a) Koopmans on the choice of variables to be studied and of methods of

measurement. Review of Economics and Statistics 31, 77–86.
Vining, R. (1949b) A rejoinder. Review of Economics and Statistics 31, 91–4.
von Weizsacker, C.C. (2005) The welfare economics of adaptive preferences. Preprint

2005/11, Max Planck Institute, Bonn.
Weissmann, G. (1991) Asprin. Scientific American, January, 58–64.
White, H. (1980a) A heteroskedastic-consistent covariance matrix estimator and a direct test

for heteroskedasticity. Econometrica 48, 817–38.
White, H. (1980b) Using least squares to approximate unknown regression functions.

International Economic Review 21, 149–70.
White, H. (1990) A consistent model selection. In C.W.J. Granger (ed.), Modelling Economic

Series, pp. 369–83. Oxford: Clarendon Press.
White, H. (2000) A reality check for data snooping. Econometrica 68, 1097–126.
White, H. (2008) Approximate nonlinear forecasting methods. Mimeo, Economics Depart-

ment, University of California at San Diego.
Working, E.J. (1927) What do statistical demand curves show? Quarterly Journal of Economics

41, 212–35.
Wright, P.G. (1915) Review of Moore, “Economic Cycles” (1915). Quarterly Journal of Economics

29, 631–41. Reprinted in D.F. Hendry and M.S. Morgan (eds.), The Foundations of Econometric
Analysis. Cambridge: Cambridge University Press, 1995.

Wright, P.G. (1929) Review of H. Schultz: “Statistical Laws of Demand and Supply” (1915).
Journal of the American Statistical Association 24, 207–15.

Yule, G.U. (1897) On the theory of correlation. Journal of the Royal Statistical Society 60, 812–38.
Yule, G.U. (1926) Why do we sometimes get nonsense-correlations between time-series? A

study in sampling and the nature of time series (with discussion). Journal of the Royal Sta-
tistical Society 89, 1–64. Reprinted in D.F. Hendry and M.S. Morgan (eds.), The Foundations
of Econometric Analysis. Cambridge: Cambridge University Press, 1995.

mailto: rights@palgrave.com


2
How much Structure in
Empirical Models?
Fabio Canova

Abstract

This chapter highlights the problems that structural methods and SVAR approaches have when
estimating DSGE models and examining their ability to capture important features of the data.
We show that structural methods are subject to severe identification problems due, in large
part, to the nature of DSGE models. The problems can be patched up in a number of ways,
but solved only if DSGEs are completely reparameterized or respecified. The potential mis-
specification of the structural relationships gives Bayesian methods an edge over classical ones
in structural estimation. SVAR approaches may face invertibility problems but simple diagnos-
tics can help to detect and remedy these problems. A pragmatic empirical approach ought
to use the flexibility of SVARs against potential misspecification of the structural relationships
but must firmly tie SVARs to the class of DSGE models which could have generated the
data.
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2.2 DSGE models 71

2.2.1 Identification 73
2.2.1.1 Example 1: observational equivalence 75
2.2.1.2 Example 2: identification problems in a New Keynesian

model 76
2.3 Structural VARs 85

2.3.1 Invertibility 88
2.3.1.1 Example 3: a Blanchard and Quah economy 91
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2.4 Some final thoughts 93

2.1 Introduction

The 1990s witnessed a remarkable development in the specification of stochastic
general equilibrium models. The literature has added considerable realism to the
popular workhorses of the 1980s; a number of shocks and frictions have been intro-
duced into first-generation Real Business Cycle (RBC) models driven by a single

68
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technological disturbance; and our understanding of the propagation mechanism
of structural shocks has been considerably enhanced. Steps forward have also been
made in comparing the quality of the models’ approximation to the data. While a
few years ago it was standard to calibrate the parameters of a model and informally
evaluate the quality of its fit to the data, now full information likelihood-based
estimation of the structural parameters has become common practice (see, for
example, Smets and Wouters, 2003; Ireland, 2004; Canova, 2005; Rabanal and
Rubio-Ramirez, 2005; Gali and Rabanal, 2005) and new techniques have been
introduced for model evaluation purposes (see Del Negro et al., 2006). Given the
complexities involved in estimating stochastic general equilibrium models and
the difficulties in designing criteria which are informative about their discrepancy
with the data, a portion of the literature has also considered less demanding limited
information methods and focused on whether a model matches the data only along
certain dimensions. For example, following Rotemberg and Woodford (1997) and
Christiano, Eichenbaum and Evans (2005), it is now common to estimate struc-
tural parameters by quantitatively matching the conditional dynamics in response
to certain structural shocks. Regardless of the approach a researcher selects, the
stochastic general equilibrium model one uses to restrict the data is taken very
seriously: in both estimation and testing, it is in fact implicitly assumed that the
model is the data-generating process (DGP) of the actual data, up to a set of seri-
ally uncorrelated measurement errors. Despite the above-mentioned progress, such
an assumption is still too heroic to be credibly entertained. As a consequence,
estimates of the parameters may reflect this primitive misspecification and, as
the sample size grows, parameter estimates need not converge to those of the
true DGP.

The 1990s also witnessed an extraordinary development of vector autoregres-
sive (VAR) techniques: from simple reduced form models, VARs have evolved into
tools to analyze questions of interest to academics and policy makers. Structural
VARs have enjoyed an increasing success in the profession for two reasons: they are
easy to estimate and the computational complexities are of infinitesimal order rel-
ative to those of structural techniques; structural inference can be performed with-
out conditioning on a single, and possibly misspecified, model. Clearly, there is
no free lunch and robustness against misspecification comes at the cost of limit-
ing the type of policy exercises one can entertain. One additional advantage of
structural VARs needs to be mentioned. While techniques to deal with param-
eter variations are sufficiently well developed in this literature (see Cogley and
Sargent, 2005; Primiceri, 2005; Canova and Gambetti, 2007), they are still at an
infant stage when it comes to structurally estimating time variations in the param-
eters of a stochastic general equilibrium model (see Justiniano and Primiceri, 2008;
Fernandez-Villaverde and Rubio-Ramirez, 2007).

When addressing an empirical problem with a finite amount of data, one has
therefore to take a stand on how much theory one wants to use to structure the
available data prior to estimation. If the former approach is taken (which we will
call “structural” for simplicity), model-based estimation can be performed, but
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inference is valid only to the extent that the model correctly represents the DGP
of the data. If the latter approach is taken (which we call “SVAR” for simplicity),
one can work with a class of structural models and use implications that are com-
mon to the members of this class to identify shocks and trace out their effects
on the endogenous variables of the system, but cannot say much about prefer-
ence or production function parameters, nor conduct certain policy exercises that
involve changes in expectation formation. The choice between the two alternatives
is easy in two extreme and unlikely situations: the stochastic models one writes
down are in fact the DGP of the actual data; there is a unique mapping between
the structural models to reduced form ones. Under these two conditions, direct
(structural) or indirect (SVAR) estimation will give similar answers to a set of core
questions investigators like to study (transmission of certain disturbances, effects
of shocks to certain policy rules, and so on) and for these questions, accuracy and
computational time become the most important factors that determine the choice
of technique.

Unfortunately, the reality is far from the ideal and both approaches have
important shortcomings. Current dynamic stochastic general equilibrium (DSGE)
models, even in the large-scale versions that are now used in central banks and
international institutions, are still too simple to capture the complexities of the
macro-data. In addition, because they are highly nonlinear in the structural param-
eters and the mapping between structural parameters and the coefficients of the
aggregate decision rules is analytically unknown – the exact mapping is known only
in a few but uninteresting cases – the identification of the structural parameters
from the data is far from clear. Structural VAR estimation also faces identification
problems. The identification restrictions researchers use are often conventional,
have little economic content, and are not derived from any class of models
that macroeconomists use to interpret the results. Furthermore, there are DSGE
models which do not admit a finite order VAR representation and others which
cannot be recovered when the Wold decomposition is used to set up a VAR. Omit-
ted variables may play an important role in SVAR results and the use of small-scale
systems may distort the conclusions one draws from the exercise. In both cases,
small samples, or samples which contain different regimes, may further complicate
the inferential problem. All in all, the issues of misspecification, identification, low
signal-to-noise ratio, invertibility, omitted variables and reduced number of shocks
and, last but not least, small samples, should always be in the back of the mind of
an investigator who is interested in studying an applied problem and/or suggesting
policy recommendations from his/her analysis.

The scope of this chapter is to highlight the problems one faces when using
either of the two methodologies to conduct policy analyses, and to address ques-
tions concerning the validity of models and their ability to capture features of
the data and, in general, empirical issues of interest to academics and to policy
makers. In particular, we discuss identification problems and problems connected
with the potential non-representability of the aggregate decision rules with VARs.
The problems we describe do not have a solution yet and standard approaches
to deal with them may make the problems worse. We provide a list of “dos and
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don’ts” which applied investigators may want to keep in mind in their work and
outline a methodology, combining ideas from both types of approaches, which
can potentially avoid some of the problems we discuss and allow useful inference
on interesting economic questions. Nevertheless, it should be clear that asking too
much from a model is equivalent to asking for trouble. One should use theory as a
flexible mechanism to organize the data and to avoid questions that the data, the
nature of the model, or the estimation approach employed cannot answer.

2.2 DSGE models

DSGE models are consistent theoretical laboratories where the preferences and the
objective functions of the agents are fully specified, the general equilibrium interac-
tions are taken into account, the stochastic structure of the driving forces is exactly
defined, the expectations of the agents are consistently treated and the equilibrium
of the economy is clearly spelled out. The economic decisions of the agents are
derived under the assumption that they maximize their objectives in a rational,
forward-looking manner. Individual optimality conditions are highly nonlinear
functions of the parameters of agents’ objective functions and constraints and
of the variables that are predetermined and exogenous to their actions. Given
the complicated nature of these conditions, explicit decision rules, expressing the
choice variables as a function of the predetermined and exogenous variables and
the parameters, are not generally available in a closed form. Hence, it is typical to
use numerical procedures to approximate these functions, either locally or globally.
The solutions to the individual problem are then aggregated into total demand and
supply curves, the equilibrium for the economy is computed, and perturbations
produced by selected disturbances are analyzed to understand both the mechanics
and the timing of the adjustments back to the original equilibrium.

Under regularity conditions, we know that a solution to agents’ optimization
problems exists and is unique. Hence, one typically guesses the form of the solu-
tion, uses a particular functional form to approximate the guess and calculates
the coefficients of the approximating function which, given the stationarity of the
problem, must be the same for every t . For most situations of interest, (log-)linear or
second-order approximations, computed around a carefully selected pivotal point,
suffice. The optimality conditions of agents’ problems in (log)-linearized deviations
from the steady-state are:

0 = Et [A(θ)xt+1 + B(θ)xt + C(θ)xt−1 +D(θ)zt+1 + F(θ)zt ] (2.1)

0 = zt+1 −G(θ)zt − et , (2.2)

where θ is a vector which includes the parameters of preferences, technologies, and
policies; A(θ), B(θ), C(θ), D(θ), F(θ), G(θ) are continuous and differentiable func-
tions of θ ; xt are the endogenous variables of the model; and zt the uncontrollable
driving forces, which are typically assumed to follow an AR(1) process with possibly
contemporaneously correlated errors et . These approximate individual optimality
conditions are numerically solved to produce individual decisions rules which can
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be equivalently written in a restricted state space format:

x1t = J(θ)x1t−1 + K(θ)et

x2t = G(θ)x1t , (2.3)

where x1t are the predetermined and exogenous variables and x2t are the choice
variables of the agents, or in a restricted VAR format:

A0(θ)xt = H1(θ)xt−1 +H2(θ)Et , (2.4)

where:

A0(θ) =
[

I 0
I −G(θ)

]
, H1(θ) =

[
J(θ) 0
0 0

]
, H2(θ) =

[
K(θ) 0

0 0

]
, Et =

[
et
0

]
.

(2.5)
The solution of a log-linearized DSGE model therefore has the same format as

well-known time series models and this makes it particularly attractive to applied
macroeconomists with some time series background. However, several unique fea-
tures of the individual decision rules produced by DSGE models need to be noted.
First, (2.3)–(2.4) are nonlinear in the structural parameters θ , and it is θ and not J ,
K or G that a researcher is typically interested in. Second, the decision rules fea-
ture cross-equation restrictions, in the sense that the θi, i = 1, 2, . . ., may appear
in several of the elements of the matrices J , K and G. Third, the number of struc-
tural shocks is typically smaller than the number of endogenous variables that the
model generates. This implies singularities in the covariance of the xt s, which are
unlikely to hold in the data. Finally, H1 and H2 are of reduced rank. Note that if
A0 is invertible, (2.4) can be transformed into:

xt = M1(θ)xt−1 + vt , (2.6)

where M1(θ) = A0(θ)
−1H1(θ), vt = A0(θ)

−1H2(θ)Et and a (reduced form) VAR
representation for the theoretical model could be derived. As we will see, the
nonlinearity in the mapping between θ and J , K, G makes identification and estima-
tion difficult, even when cross-equation restrictions are present. System singularity,
on the other hand, is typically avoided by adding measurement errors to the deci-
sion rules or by considering only the implications of the model for a restricted
number of variables – in this case the number of variables is equal to the number
of exogenous variables. Finally, rank failures are generally avoided by integrat-
ing variables out of (2.4) and obtaining a new representation featuring invertible
matrices. As we will see, such an integration exercise is not harmless. In fact, this
reduction process will in general produce a VAR moving average (VARMA) repre-
sentation for the individual decision rules of the DSGE model. Hence, aggregate
decision rules may not be always representable with a finite order VAR.

Given the linearity of (2.3) or (2.4) in the predetermined and exogenous vari-
ables, aggregate decision rules will also be linear in predetermined and exogenous
variables. Therefore, given values for the θ vector, time series can be easily sim-
ulated, responses to exogenous impulses calculated and sources of business cycle
fluctuations examined.
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How does one select the θ vector used in simulation exercises? Until a few years
ago, it was common to calibrate θ so that selected statistics of the actual and simu-
lated data were close to each other. This informal selection process was justified by
the fact that DSGE models were too simple and stylized to be faced with rigorous
statistical estimation. In recent years the complexity of models has increased; a
number of frictions have been introduced on the real, the monetary and, at times,
the financial side of the economy; a larger number of disturbances has been con-
sidered and a number of more realistic features added. Therefore, it has become
more common to attempt structural estimation of the θ using limited information
approaches, such as impulse response matching exercises, or full information ones,
such as likelihood-based methods.

A clear precondition for any structural estimation approach to be successful is
that the parameters of interest are identifiable from the chosen objective function.
In the next sub-section we discuss why parameter identifiability may be hard to
obtain in the context of DSGE models and why, perhaps, calibration was originally
preferred by DSGE modelers.

2.2.1 Identification

Identification problems can emerge in three distinct situations. First, a model may
face identification problems in population, that is, the mapping between the struc-
tural parameters and the parameters of the aggregate equilibrium decision rule is
ill-conditioned. We call this phenomenon the “solution identification” problem.
Since the objective functions are typically a deterministic transformation of either
(2.3) or (2.4), failure to identify θ from the entries of the aggregated versions of the
J(θ), K(θ), G(θ) matrices (or from the aggregate versions of the A0(θ), H1(θ), H2(θ)

matrices) is sufficient for having population identification problems for all possible
choices of objective functions.

Second, it could be that identification pathologies emerge because the selected
objective function neglects important model information – for example, the
steady-states or the variance-covariance matrix of the shocks. In other words, one
can conceive situations where all the structural parameters are identifiable if the
whole model is considered, but some of them cannot be recovered from, say, a
sub-set of the equations of the model or a sub-set of the responses to shocks. We
call this phenomenon the “limited information identification” problem. As an
example of why this may happen, suppose you have two variables, say output
and inflation, and two shocks, say technology and monetary shocks. Obviously,
the responses to technology shocks carry little information for the autoregressive
parameter of the monetary shock. Hence, this parameter is unlikely to be identi-
fied from the dynamics induced by technology shocks. It should also be clear that
limited information and solution identification problems are independent of each
other and therefore may appear in isolation or jointly.

Finally, difficulties in identifying parameters may be the result of small samples.
That is to say, even if the mapping between the structural parameters and the
parameters of the aggregate decision rules is well behaved and even if the objective
function considers all the implications of the model, it may be difficult to recover
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structural parameters because the sample does not contain enough information to
invert the mapping from J(θ), K(θ), and G(θ) or from the objective function to θ . To
understand why this problem may emerge, consider the likelihood function of one
parameter for a given dataset. It is well known that, as the sample size increases, the
shape of the likelihood function changes, becoming more sharply peaked around
the mode. Therefore, when the sample is small, the likelihood function may fea-
ture large flat areas in a relevant portion of the parameter space and this may
make it difficult to infer the parameter vector which may have been generating
the data.

Econometricians have long been concerned with identification problems (see,
for example, Liu, 1960; Sims, 1980, among others). When models are linear in
the parameters, and no expectations are involved, it is relatively straightforward to
check whether the first two types of problems are present: it is sufficient to use rank
and order conditions and look at the mapping between structural parameters and
the aggregate decision rules. It is also easy to measure the extent of small sample
issues – the size of the estimated standard errors or an ill-conditioned matrix of
second-order derivatives of the objective function evaluated at parameter estimates
give us an indication of the importance of this problem. For DSGE models none
of these diagnostics can really be used. Since the mapping between θ and the
parameters of (2.3) or (2.4) is nonlinear, traditional rank and order conditions
do not apply. Furthermore, the size of estimated standard errors is insufficient to
inform us about identification problems.

If identification problems are detected, what can one do? While for the first type
of problems there is very little to be done, except going back to the drawing board
and respecifying or reparametrizing the model, the latter two problems could in
principle be alleviated by specifying a full-information objective function and by
adding external information. If one insists on using a limited information crite-
ria, one then needs to experiment with the sub-set of the model’s implications to
be used in estimation. Such experimentation is far from straightforward because
economic theory offers little guidance in the search, and because certain variables
produced by the model are non-observable (for example, effort) or non-measurable
(for example, capital) by the applied researcher. Information from external sources
may not always be available; it may be plagued by measurement errors or not very
informative about the parameters of interest (see Boivin and Giannoni, 2005).

DSGE models face a large number of population identification problems. Canova
and Sala (2005) provide an exhaustive list of potentially interesting pathologies.
To summarize their taxonomy: a number of DSGE models, with potentially differ-
ent economic implications, may be observationally equivalent in the sense that
the aggregate decision rules they produce will be indistinguishable; they may be
subject to under- or partial identification of their parameters, that is, a set of param-
eters may disappear from the aggregate decision rules or enter only in a particular
functional form; and they may face weak identification problems – the mapping
between structural parameters and the coefficients of the aggregate decision rules
may display little curvature or be asymmetric in some direction. All these problems
could occur locally or globally in the parameter space. However, given the common
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practice of obtaining estimates using optimization routines which constrain the
search of the maximum to an interval, we will consider only local problems in
what follows. Also, while the econometric literature has often considered the lat-
ter as a small sample problem, weak identification problems easily occur in the
population. In other words, while it is generally true that when the sample size is
small the curvature of the mapping may not be sufficient to recover the underlying
vector of structural parameters from the coefficients of the aggregate decision rules,
there is nothing that ensures that such a mapping in DSGE models will be better
behaved with an infinitely large sample.

Next, we present two examples which show the pervasiveness of population
identification problems in standard DSGE models. While the models are of small
scale, it should be remembered that most of the larger-scale DSGE models used in
the literature feature the equations of these models as building blocks. Therefore,
the problems we highlight are likely to emerge also in more complex set-ups.

2.2.1.1 Example 1: observational equivalence

Consider the following three equations:

yt = 1
λ2 + λ1

Etyt+1 +
λ1λ2

λ1 + λ2
yt−1 + vt (2.7)

yt = λ1yt−1 +wt (2.8)

yt = 1
λ1

Etyt+1 where yt+1 = Etyt+1 + et , (2.9)

where λ2 ≥ 1 ≥ λ1 ≥ 0 and vt , wt and et are independent and identically distributed

(i.i.d.) processes with zero mean and variance σ
2
v , σ

2
w, σ

2
e respectively. It is well

known that the unique stable rational expectations solution of (2.6) is yt = λ1yt−1+
λ2+λ1

λ2
vt and that the stable solution of (2.8) is yt = λ1yt−1 + et . Therefore, if

σw = σe = λ2+λ1
λ2

σv , a unitary impulse in the three innovations will produce the
same responses for yt+j, j = 0, 1, . . ., in the three equations, and these are given by

[λ2+λ1
λ2

, λ1
λ2+λ1

λ2
, λ2

1
λ2+λ1

λ2
, . . . ].

What makes the three processes equivalent in terms of impulse responses?
Clearly, the unstable root λ2 in (2.6) enters the solution only contemporane-
ously. Since the variance of the shocks is not estimable from normalized impulse
responses (any value simply implies a proportional increase in all the elements of
the impulse response function), it becomes a free parameter which we can arbi-
trarily select to capture the effects of the unstable root. Turning things around,
the dynamics produced by normalized impulses to these three processes will be
observationally equivalent because λ2 is left underidentified in the exercise.

While equations (2.6)–(2.8) are stylized, it should be kept in mind that many
refinements of currently used DSGE models add some backward-looking compo-
nent to a standard forward-looking one, and that the current Great Moderation
debate in the US hinges on the existence of determinate versus sunspot solutions
(see, for example, Lubik and Schorfheide, 2004). What this example suggests is
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that these features may be indistinguishable when one looks just at normalized
impulse responses.

How can one avoid observational equivalence? Clearly, part of the problem
emerges because normalized impulse responses carry no information for the unsta-
ble root λ2. However, the variance of the shocks does have this information and,
for example, the likelihood function of the first process will be different from those
of the other two. Hence, adding information could help limit the extent of obser-
vational equivalence problems. In the case where one is not willing to or cannot
use this information and only employs the dynamics in response to normalized
shocks to recover structural parameters, information external to the models needs
to be brought in to disentangle various structural representations (as it is done, for
example, in Boivin and Giannoni, 2006).

2.2.1.2 Example 2: identification problems in a New Keynesian model

Throughout this sub-section we assume that the investigator knows the correct
model and the restrictions needed to identify the shocks. Initially, we assume that
he/she chooses as an objective function the distance between the responses in the
model and in the data. Later on, we examine how identification is affected when
additional information is brought into the estimation process.

We consider a well-known small-scale New Keynesian (NK) model, which has
become the workhorse in academic and policy discussions and constitutes the
building block of larger-scale models currently estimated in the literature. Several
authors, including Ma (2002), Beyer and Farmer (2004), Nason and Smith (2005)
and Canova and Sala (2005), have pointed out that such a structure is liable to
identification problems. Here we discuss where and how these problems emerge.

The log-linearized version of the model consists of the following three equations
for the output gap yt , inflation πt and the nominal rate rt :

yt =
h

1+ h
yt−1 +

1
1+ h

Etyt+1 +
1
φ
(it − Etπt+1)+ v1t (2.10)

πt =
ω

1+ ωβ
πt−1 +

β

1+ ωβ
Etπt+1 +

(φ + ν)(1− ζβ)(1− ζ )

(1+ ωβ)ζ
yt + v2t (2.11)

it = λr it−1 + (1− λr )(λππt−1 + λyyt−1)+ v3t , (2.12)

where h is the degree of habit persistence, φ is the relative risk aversion coeffi-
cient, β is the discount factor, ω is the degree of price indexation, ζ is the degree
of price stickiness, and ν is the inverse elasticity of labor supply, while λr , λπ , λy
are monetary policy parameters. The first two shocks follow an AR(1) process with
parameters ρ1, ρ2, while v3t is i.i.d. The variances of the shocks are denoted by

σ
2
i , i = 1, 2, 3. For the sake of presentation, we assume that the shocks are con-

temporaneously uncorrelated even though, in theory, some correlation must be
allowed for.

Since the model features three shocks and three endogenous variables, we can
construct several limited information objective functions, obtained by considering
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the distances of all the responses to only one type of shock, the distance of the
responses of a sub-set of the endogenous variables to all shocks, and the distance
of the responses of all variables to all shocks.

The model has 14 parameters: θ1 = (σ
2
1 , σ2

2 , σ2
3 ) is underidentified from scaled

impulse responses, just as in the previous example, the parameters of θ2 = (ν, ζ )
cannot be identified separately as they enter only in the slope of the Phillips
curve (2.10) and in a multiplicative fashion, while θ3 = (β,φ, h,ω, λr , λπ , λy , ρ1, ρ2)

contains the parameters of interest.
To construct aggregate decisions rules numerically, we set β = 0.985,φ = 2.0, ν =

1.0, ζ = 0.68,ω = 0.75, h = 0.85, λr = 0.2, λπ = 1.55, λy = 1.1, ρ1 = 0.65, ρ2 =
0.65. With the aggregate decision rules we compute population responses and use
20 equally weighted responses to construct the distance function. We explore the
shape of the distance function in the neighborhood of this parameter vector by
tracing out how it changes when we change either one or two parameters belong-
ing to θ3 at a time, keeping the others fixed at their chosen values. As we have
mentioned, identification problems could be due to solution or objective function
pathologies. Here we convolute the two mappings, and directly examine how the
shape of the objective function varies with θ , because the graphical presentation
of these separate mappings is cumbersome.

Figure 2.1 plots the shape of the distance function when we vary β,φ,ω, h. Col-
umn 1 presents the distance function obtained using the responses of all three
variables to monetary shocks; column 2 the distance function obtained using the
responses of inflation to all shocks; and column 3 the distance function obtained
using the responses of all variables to all the shocks. The range for the parame-
ters considered is on the x-axis, while the height of the distance function for each
parameter value is on the y-axis.

It is easy to see that monetary shocks have a hard time to identify the four struc-
tural parameters over the chosen intervals (the distance function is extremely flat
in each of the parameters), that considering the responses of inflation to all shocks
still leaves the coefficient of relative risk aversion pretty much underidentified, and
that considering all the responses to all the shocks makes the distance function
much better behaved. Still, asymmetries in the mapping between the risk aver-
sion coefficient and the distance function remain even in this latter specification.
Hence, taking a limited information approach, either in the sense of consider-
ing the responses of all variables to one shock or of one variable to all shocks, is
problematic from an identification point of view.

One may wonder if this behavior is due to the choice of the parameters around
which we map the distance function. The answer is negative. Canova and Sala

(2005) construct the concentration statistic, defined as Cθ0
(i) = ∫

j �=i
g(θ)−g(θ0)dθ∫

(θ−θ0)dθ
, i =

1, . . . , 9, where g represents the distance function and θ0 the pivot point, and
let θ0 vary over a reasonable range. Such a statistic synthetically measures how
the multidimensional slope of the distance function changes around the selected
parameter vector (see Stock, Wright and Yogo, 2002). Canova and Sala show that
the minimum and maximum of this statistic in the range of θ0 they consider varies
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Figure 2.1 Shape of the distance function

very little, suggesting that the problems present in Figure 2.1 are not specific to the
selected parameter vectors.

Since Figure 2.1 considers one dimension at a time, partial identification prob-
lems, where only combinations of parameters are identifiable, cannot be detected.
Figure 2.2 shows that ridges indeed exist: for example, responses to monetary
shocks carry little information about the correct combination of λy and λπ ; IS
shocks cannot separately identify the risk aversion coefficient φ and the habit
persistence parameter h, while Phillips curve shocks have little information about
the discount factor β. What is interesting is that when the responses to all shocks
are considered, some problems are reduced. For example, there appear to be fewer
difficulties in identifying the parameters of the policy rule when all the responses to
all shocks are considered – the distance function is more bell-shaped even though
there is a significantly large flat area. However, even in this case, the true values of
β, φ and h are difficult to pin down.

This model, in addition to partial, weak and underidentification problems, faces
generic observational equivalence problems. For example, it would be hard to
detect whether the data are generated by an indeterminate version of the model
(which would be the case if λπ < 1) or a determinate one (λπ > 1), so long
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Figure 2.2 Distance function and contour plots

as the other parameters are allowed to be adjusted. Figure 2.3, which is repro-
duced from Canova and Gambetti (2007), shows that the shape and, in many
cases, the size of the responses at almost all horizons to the three shocks are
similar in the two regimes. Hence, if this were the only information available
to the investigator, it would be difficult to detect which regime has generated
the data.

This latter problem is a special case of a general pathology that applied investiga-
tors often face when dealing with DSGE models: the objective functions that one
constructs from the aggregate decision rules may display multiple peaks, which
may be clearly separated (as is the case in the above example; see also Lubik and
Schorfheide, 2004) or not (see the example discussed in section 5 of Canova and
Sala, 2005). Observational equivalence, probably more than any other identifica-
tion problem, prevents attaching any meaningful economic interpretation to the
outcomes of the estimation process and, obviously, conducting any meaningful
policy analysis with the estimated model.

What generates the identification problems we have detected? All the non-
linear transformations, which are necessary to go from the structural parameters
to the distance function, contribute. For example, consider the case of the price
indexation parameter ω, which enters nonlinearly in the model and in several of
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Figure 2.3 Impulse responses: determinate versus indeterminate equilibrium

the coefficients of the aggregate decision rules, but always in combination with
other parameters. The coefficients of the restricted VAR solution are inverted to
compute impulse responses and their distance from the “truth” is then squared
and summed. One would guess that it is just by chance that such a complex set
of operations will allow the mapping from ω to the objective function to be well
behaved.

The standard answer to the problems shown in Figures 2.1 and 2.2 is to fix param-
eters with difficult identification features (after all, it does not matter what value
we select) and estimate the remaining ones. While this approach is common, there
is no guarantee that it will give meaningful answers to the questions of interest.
In fact, while such a mixed calibration-estimation approach will be successful, at
least in population, if the parameters that are treated as fixed are set at their true
value, setting them at values which are only slightly different from the true ones
may lead estimation astray. Intuitively this happens because, for example, setting
β to the wrong value implies adjustments in parameters which enter jointly with β

in the coefficients of the aggregate decision rules and this may move the minimum
of the function in a somewhat unpredictable way. Canova and Sala (2005) show,
in the context of a simple RBC example, that these shifts may be significant and
may drive inference the wrong way.
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Figure 2.4 Distance function, likelihood and posterior plots

What can one then do to conduct structural estimation? The distance function
we have employed can be obtained by approximating the likelihood function of the
model. Therefore, the resulting estimators can be thought of as quasi-maximum
likelihood (ML) estimators of the structural parameters. However, there is no rea-
son to use such an approximation. Once the decision rules are written in a state
space format, the likelihood function can be easily and efficiently computed with
the Kalman filter. Therefore, identification problems could be reduced if informa-
tion about the covariance matrix of the shocks or the steady-states of the model –
which are not used when normalized impulse response matching is performed – are
brought into the estimation. Figure 2.4, which plots the distance function when
all the shocks are considered and the likelihood function in β and ω, and φ and h,
indeed suggests that these parameters could be better identified from the likelihood
than from the distance function – the curvature of the latter is much larger than
the curvature of the former. Nevertheless, the problem with ridges remains. Since
the likelihood has all the information that the model delivers, one can conclude
that it is the solution mapping, rather than the objective function mapping, that
induces under- and partial identification problems in this example.

It has become quite common to estimate the parameters of a DSGE model by
Bayesian methods. Bayesian methods attempt to trace out the shape of the posterior
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distribution of the structural parameters, which is proportional to the likelihood
times the prior. The use of prior information could add curvature to the likelihood
function, therefore making identification problems apparently disappear. We show
how this can happen in the last column of Figure 2.4. A sufficiently tight prior has
given the posterior a nice bell-shaped appearance with round contours in (β,ω).
Clearly, the use of Bayesian methods are not the solution to the identification
problems we have highlighted in this sub-section – it could, however, help when
identification problems are caused by small samples. Achieving identification via
prior restrictions does not change the fact that the likelihood function constructed
through the lenses of the aggregate decision rules of the model has little infor-
mation about the structural parameters. In this case the shape of the posterior
distribution will, to a large extent, mimic the shape of the prior, so that structural
estimation is nothing more than sophisticated calibration – rather than calibrat-
ing to a point, we calibrate to an interval, and within the interval we assume that
some parameter values are more likely than others. When population identification
problems exist and a researcher is interested in estimating the structural parame-
ters, it is necessary to reparametrize the model. If this is infeasible or undesirable,
then informal calibration is one simple and internally consistent device to make
the model operative for inference and forecasting. The deep issue here is that DSGE
models are not typically designed with an eye to the estimation of their parameters
and this is clearly reflected in the identification problems they display.

Prior information on the parameters of macroeconomic models may come from
different sources. It may be accumulated knowledge about a phenomenon repeat-
edly studied in the literature (for example, the properties of the transmission of
monetary policy shocks), evidence obtained from micro-studies, or from the expe-
rience of other countries. All this information may be valuable to the applied
investigator and should be formally introduced in the structural estimation of the
model, if available. However, if the likelihood has little information about the
structural parameters, and this additional information was all that was available
to identify the parameters, structural estimation would not be particularly use-
ful – it would resemble confirmatory analysis where prior expectations are verified
a posteriori. In this situation, policy exercises are difficult to interpret, and the alter-
native of measuring the range of outcomes produced by the model using a selected
range of parameters, as suggested in Canova (1995), is a feasible and more plausible
approach.

What are the consequences of the identification problems we have described?
For the sake of presentation, we will focus on estimates obtained by matching
responses to monetary policy shocks, which appear to produce the distance func-
tion with the worst identification properties, and are those on which the literature
has paid most attention. In this exercise we still assume that shocks are cor-
rectly identified – in our model, reduced-form interest rate innovations are the
true monetary policy shocks. If this were not true, additional problems, such
as those discussed in, for example, Canova and Pina (2005), would be com-
pounded by those discussed here. We consider different sample sizes, on the
one hand, to highlight some of the properties of the estimates of parameters
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with problematic identification features and, on the other, to examine whether
additional identification problems may emerge just because of small samples.

We simulate 200 time series for interest rates, the output gap and inflation for T =
120, 200, 1000, fixing ν = 1 and σ

2
i = 1.0 in all cases; we estimate an unrestricted

VAR(2), which is the correct empirical reduced form model to use in this case, and
compute impulse responses and bootstrap confidence bands which are then used
to build a diagonal matrix of weights: the weights are inversely proportional to
the uncertainty in the estimates. Table 2.1 presents a summary of the estimation
results. It reports the true parameters, the mean estimate, the numerical standard
errors computed across replications (in parentheses) and the percentage bias (in
square brackets).

A few features of the table are worth commenting upon. First, biases are evi-
dent in the estimates of the partially identified parameters (λπ , λy), the weakly
identified parameters (ζ ,ω, h), and the underidentified parameters (ρ1, ρ2). Note
that even with 250 years of quarterly data, major biases remain. Second, numer-
ical standard errors are large for the partially identified parameters and invariant
to sample size for the underidentified ones. Third, parameter estimates do not
converge to population values as T increases. Finally, and concentrating on
T = 200, estimates suggest economic behavior which is somewhat different
from that characterizing the DGP. For example, it appears that price stickiness
is stronger and central bank reaction to the output gap and inflation is equally
strong.

In sum, identification problems lead to biased estimates of certain structural
parameters (see also Choi and Phillips, 1992), to inappropriate inference when
conventional asymptotic theory is used to judge the significance of estimated
parameters, and, possibly, to wrong economic interpretations. For unconditional
forecasting, identification problems are unimportant: as long as the fit and the
forecasting performance is the same, the true nature of the DGP does not mat-
ter. However, policy analyses and conditional forecasting exercises conducted
with estimated parameters may lead to conclusions which are very different from

Table 2.1 NK model: matching monetary policy shocks

True T = 120 T = 200 T = 1000

β 0.985 0.984 (0.007) [0.6] 0.985 (0.007) [0.7] 0.986 (0.008) [0.7]
φ 2.00 2.39 (2.81) [95.2] 2.26 (2.17) [70.6] 1.41 (1.19) [48.6]
ζ 0.68 0.76 (0.14) [19.3] 0.76 (0.12) [17.5] 0.83 (0.10) [23.5]
λr 0.20 0.47 (0.29) [172.0] 0.43 (0.27) [152.6] 0.41 (0.24) [132.7]
λπ 1.55 2.60 (1.71) [98.7] 2.22 (1.51) [78.4] 2.18 (1.38) [74.5]
λy 1.1 2.82 (2.03) [201.6] 2.56 (2.01) [176.5] 2.16 (1.68) [126.5]
ρ1 0.65 0.52 (0.20) [30.4] 0.49 (0.21) [34.3] 0.50 (0.19) [31.0]
ρ2 0.65 0.49 (0.20) [32.9] 0.48 (0.21) [34.8] 0.48 (0.21) [34.7]
ω 0.25 0.76 (0.39) [238.9] 0.73 (0.40) [232.3] 0.65 (0.38) [198.1]
h 0.85 0.79 (0.35) [30.9] 0.76 (0.37) [32.4] 0.90 (0.21) [21.3]
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those obtained with the true one. Hence, it is generally unwise to attach any
economic interpretation to the estimates or draw conclusions about how the
economy works from structural exercises which are plagued by identification
problems.

What is left for the applied investigator to do? Apart from attempting to
reparametrize the model, not much. One interesting issue still unexplored in the lit-
erature is to take population identification problems as being the norm rather than
the exception, and try to find estimation techniques or objective functions which,
given a sample size, are able to minimize the distortions produced by identification
pathologies. While some progress has been made in the context of moment esti-
mation (see Stock and Wright, 2000; Rosen, 2006), these procedures are applicable
only in restrictive situations (the weighting matrix must be chosen in a particular
way) and are awkward to use in DSGE models, which are highly parameterized and
nonlinear.

How does one detect identification problems? The univariate and bivariate
exploratory analysis we have presented, for example, in Figures 2.1 and 2.2 can
definitely help in spotting potential problems and this analysis could easily be
complemented with local derivatives of the objective function in the dimensions
of interest. Alternatively, numerically computing the Hessian of the objective func-
tion around particular parameter values and calculating the size of its eigenvalues
can give more formal indications on how flat or how information-deficient the
objective function is locally. For example, if the rank of the Hessian is less than
the number of structural parameters, one of its eigenvalues is zero and at least one
parameter is underidentified. If the rank of the Hessian is close to deficient, one
or more of its eigenvalues is close to zero and either weak or partial identification
problems, or both, are likely to be present. Experimentation with the number of
shocks used to construct the objective function and the number of variables can
also give useful information about what statistic may identify a particular struc-
tural parameter, as is experimentation with different objective functions and with
different features of the data (for example, steady-state versus dynamics).

Clearly, diagnostics of this type have to be run prior to estimation, but such
an exercise is not much more complicated or time consuming than the type of
exercises one performs to measure the sensitivity of the results to the selection of
calibrated parameters. In general, the following rules of thumb are useful to limit
the extent of identification problems: given a model, always choose a likelihood-
based objective function, which has the highest informational content; given a
model and the likelihood function, and if it is the sample which is problematic, add
information in the form of additional data or prior restrictions, which synthetically
reproduces it.

It is important to stress that looking at the minimized value of the objective
function, at standard errors of the estimates or at the resulting impulse responses,
is not generally useful as an ex post device to detect identification problems. The

distance function is within the tolerance level (10−7) for all the parameter combi-
nations generating Table 2.1, and the practice of blowing up the objective function
by appropriately choosing the matrix of weights will not change the fact that the
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gradient or the Hessian display problematic features. Furthermore, it can be shown
that population responses fall within a 68% band centered around the estimates
of the responses to monetary shocks computed with the parameter estimates, even
when the sample size is T = 120. Therefore, the practice of showing that the
model’s responses computed using the estimated parameters lie within the confi-
dence bands of the responses estimated from the data is not particular informative
as far as identification problems are concerned. Large standard errors do emerge
when identification failures exist, but also when other problems are present (for
example, very noisy data or regime switches). Hence, associating large standard
errors with identification issues is, in general, incorrect.

It is also important to stress that the addition of measurement errors for estima-
tion purposes can distort the identification properties of structural parameters. It is
not particularly difficult to conceive situations where a parameter that was identi-
fied by certain features of the model becomes free to move and fit other properties
of the data it was not designed for, once measurement error is added. Therefore,
while there is some logic in adding measurement errors to link the model variables
to the observables, one should be careful and investigate the consequences that
such a process has on the identification properties of the parameters.

2.3 Structural VARs

Structural VAR inference is typically perceived to be at the extreme opposite to
structural model-based inference. SVAR models take a minimalist approach to the
estimation problem and consider only a very limited sub-set of the large number
of restrictions that DSGE models impose on the data. For example, the fact that
the matrices H1 and H2 in (2.4) depend on θ is typically neglected and only a part
of the information present in A0(θ) is used. Furthermore, the singularity that the
model imposes on the data is completely disregarded.

This minimalist approach has one obvious disadvantage: if less structure is
imposed on the data, fewer interesting economic questions can be asked. However,
such a limited information approach is advantageous when some of the model’s
restrictions are dubious, which would be the case if the model is misspecified in
some dimensions, or fragile, which would be the case if the restrictions depend on
the functional forms or the parameter values one specifies. In this case, neglecting
these restrictions can robustify estimation and inference.

As we have mentioned in the introduction, and despite recent attempts to make
them more realistic, the current generation of DSGE models is still far from repro-
ducing the DGP of the actual data in many respects: models fail to capture, for
example, the heterogeneities present in the actual world; important relationships
are modeled with black-box frictions; timing restrictions are used to make them
compatible with the dynamics observed in the data; and ad hoc shocks are often
employed to dynamically span the probabilistic space of the data. Since mis-
specification is likely to be pervasive, system-wide and even limited-information
classical structural methods are problematic, even when identification problems
are absent.
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Bayesian methods have an edge in structural estimation when model misspecifi-
cation is present. Inference in this context, in fact, does not require the asymptotic
correctedness of the model under the null. Furthermore, these methods can
potentially deal with model misspecification, for example, by imposing prior distri-
butions over models and weighting the posterior information contained in each of
them by their posterior probability. However, this potential advantage of Bayesian
methods is often unexpressed: except for Schorfheide (2000), it is very unusual for
researchers to consider an array of models, all of which can potentially be useful
to answer the question of interest. In this situation, one is often left wondering
what posterior estimates obtained from a misspecified model mean in practice
and whether policy makers could and should trust these estimates when taking
important policy decisions.

The difficulties of the current generation of DSGE models in representing the
DGP of the data have been highlighted by Del Negro et al. (2006), who take a
workhorse model, popular among academics and central bankers, and show that it
is possible to improve its fit by considerably relaxing the cross-equation restrictions
that it imposes on the matrices H1(θ) and H2(θ). Their approach, which uses a DSGE
model as a prior for a VAR, is useful for designing a metric to assess the distance
between the model and the VAR of the data, and represents a promising way to
evaluate model fit, to suggest ways to bring models in closer contact with the data
and, in general, to conduct structural inference in misspecified models.

If one takes the inherent misspecification that the current generation of DSGE
models display seriously and heavily weights inferential mistakes, one may then
want to proceed in a more agnostic way. Rather than conditioning on one model
and attempting to estimate its structural parameters, one could be much less
demanding in the estimation process, and employ a sub-set of the model restric-
tions, which are either uncontroversial or likely to be shared by a class of economies
with potentially different features, to identify structural shocks. One way of doing
this is to neglect the restrictions present in the matrices H1 and H2, which are
often not robust, and use some of those present in A0(θ), for which a strong a priori
consensus can be found in theory, and then trace out the dynamics of the variables
of interest in response to disturbances or measure the relative importance of each
shock for business cycle fluctuations. Therefore, with such an approach, most of the
detailed cross-equation restrictions imposed by a model will be eschewed from the
estimation process and only constraints which are likely to hold in many models
are used to identify structural shocks. Unfortunately, it has become common in the
literature to employ constraints which are unrelated to any specific class of models
or are so generic that they lack economic content. While 20 years ago researchers
spent considerable time and effort justifying their identification restrictions from a
theoretical point of view (see, for example, Sims, 1986; Bernanke, 1986), now it is
often the case that these restrictions are not even spelled out in detail, and the only
justification for them a reader can find is that they are used because someone else
in the literature has used them before. In general, delay-type restrictions, which
use the flow of information accrual to agents in the economy, and placing zeros in
the impact matrix of shocks, are the preferred identification devices.
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Canova and Pina (2005) have shown that delay-type restrictions do not naturally
arise in general equilibrium models, are often inconsistent with their logic, and
one has to work hard to cook up general equilibrium environments with such
features (see, for example, Rotemberg and Woodford, 1997). Long-run restrictions
have been hailed in the past as the answer to these problems, since restrictions
of this type are common to a variety of theories (for example, money neutrality
or the idea that technological progress explains the long-run path of variables are
features which are shared by macro-models with different micro-fundations) and
allow inference without tying one’s hand to a particular specification for the short-
run dynamics around these long-run paths. However, this alternative identification
approach is non-operative: long-run restrictions are scarce relative to the number
of shocks researchers are interested in recovering. Therefore, when four or five
shocks need to be identified, one is forced to use a mixture of long-run and delay
restrictions. Furthermore, as pointed out by Faust and Leeper (1997), long-run
restrictions are weak and prone to observational equivalence problems.

The sign and shape approach, suggested in Canova and De Nicoló (2002) and
Uhlig (2005), is advocated in the next section and can bridge SVAR and DSGE
models in a more solid way and provide a constructive answer to the quest for
identification restrictions. Unfortunately, such an approach does not yet have
widespread use in the profession (exceptions are, among others, Dedola and Neri,
2007; Pappa, 2005) and the science of identification in SVARs is still very much the
craft of finding restrictions that would not bother anyone in the profession.

Apart from identification issues, which have received attention in the VAR liter-
ature since, at least, Cooley and LeRoy (1985), a number of authors have recently
questioned the ability of structural VARs to recover the true DGP of the data, even
when an appropriate identification approach is used. To see why this could be the
case, consider the following alternative restricted state space representation for the
log-linearized aggregate decision rules of a DSGE model:

x1t = J(θ)x1t−1 + K(θ)et

x2t = N(θ)x1t−1 +M(θ)et , (2.13)

where et ∼ iid(0,�e). The questions we ask are the following: (i) Does a VAR rep-
resentation for a subset of the variables of the model, say x2t , exist? (ii) Would
the resulting VAR be of finite order? (iii) What would happen to inference if only
a sample of limited size is available? We have already mentioned that, if both x1
and x2 were observable, (2.12) is simply a restricted, though reduced rank, VAR(1).
However, this is not a very realistic set-up: usually x1t includes non-observable
variables; furthermore, only a sub-set of the variables appearing in x2t may be of
interest, could be reasonably measured, or have relevant information for the exer-
cises one may want to conduct. Therefore, it is legitimate to ask what the process of
integrating out non-observable, uninteresting or badly measured variables would
imply for the restricted time series representation of the aggregate decision rules of
the model.
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2.3.1 Invertibility

If M(θ) is a square matrix, and if J(θ) − K(θ)M(θ)
−1N(θ) has a convergent inverse

(for example, if all its eigenvalues are less than 1 in absolute value), it is easy to
show that:

x2t = N(θ){[1− (J(θ)− K(θ)M(θ)
−1N(θ)]−1K(θ)M(θ)

−1}x2t−1 + ut , (2.14)

where ut ∼ (0, M(θ)
′
�eM(θ)). Therefore, if only x2t is observable, the aggregate

decision rules have a restricted VAR(∞) representation. If instead N(θ) is a square
matrix, then:

x2t = N(θ)J(θ)N(θ)
−1x2t−1 + (I + (N(θ)K(θ)M(θ)

−1 −N(θ)J(θ)N(θ)
−1

)�)ut , (2.15)

where � is the lag operator. Under this alternative assumption, the aggregate
decision rule for x2t therefore has a VARMA(1,1) representation.

Hence, if a reduced number of variables is considered, the aggregate decision rules
of the model have a much more complicated structure than a restricted VAR(1).
The question of interest is whether we can still use a VAR with a finite number of
lags to approximate the aggregate decision rules for x2t . Straightforward algebra
can be used to show that if the exogenous driving forces are AR(1) and if both
the predetermined states and x2t are observed, then the correct representation for
the vector of predetermined states and choice variables is a restricted VAR(2) with
singular covariance matrix. On the other hand, if only x2t is observable and the
dimension of x2t is the same as the dimension of et , Ravenna (2006) has shown
that the aggregate decision rules for x2t can be approximated with a finite order

VAR if and only if the determinant of {I − [J(θ)K(θ)M(θ)
−1N(θ)]�} is of degree zero

in �.
What does this all mean? It means that the aggregate decision rules for a sub-set

of the variables of the model can be represented with a finite order VAR only under
a set of restrictive conditions. These conditions include invertibility of the mapping
between structural shocks and the variables included in the VAR, a fundamental-
ness condition, which implies that the information contained in the observables
is the same as the information contained in disturbances of the model, and the
condition that random perturbations produce fluctuations around the steady-state
that are not too persistent.

Note that the condition we have used to derive (2.13), is never satisfied in prac-
tice. One can think, at best, of four or five truly structural sources of disturbances
and this typically is much less than the size of the vector x2t . Therefore, it is only
after ad hoc disturbances and/or measurement errors are ex post included that M(θ)

is a square matrix. Similarly, the restriction that N(θ) is a square matrix is difficult
to satisfy in practice – the number of states is typically smaller than the number
of endogenous variables. The other conditions clearly depend on the structure
of the model but, for example, specifications in which agents react to news that
may materialize in the future fail to satisfy the first condition – the resulting MA
representation of the model is nonfundamental. Finally, the convergence of the
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economy to its steady-state when perturbed by shocks depends on the details of
the specification. Therefore, it is difficult to assess how important in practice this
assumption is. Given that many DSGE models have fairly weak internal propa-
gation mechanisms, and as long as the structural shocks are stationary, such a
condition is likely to be satisfied in practice.

In sum, one should not be surprised to find DSGE models featuring aggregate
decision rules for a sub-set of the variables that are not representable with a finite-
order VAR (see Fernandez-Villaverde et al., 2007, for examples). Nevertheless, a large
class of models does have aggregate decision rules with these properties. To be sure
that SVAR inference is valid, one must first select a class of models which could
have generated the data and check whether the required conditions are satisfied
for alternative parameterizations. While this requires a SVAR investigator to take
a certain class of models much more seriously before drawing any inference from
his/her analysis, it also makes SVAR estimation less straightforward and more time
consuming since the number of parameters, functional form and friction permuta-
tions that need to be checked before the analysis is conducted is large. Furthermore,
since bizarre counter-examples can always be found, it may become difficult for an
applied macroeconomist to assess in practice whether a finite order VAR is a good
approximation to the class of DSGE models one is interested in or not.

For the final question, Chari, Kehoe and McGrattan (2006) have recently shown
that one may be led astray when evaluating the relevance of economic theories
using SVARs simply because, with small samples, the population properties of the
aggregate decision rules may be very poorly approximated with a VAR. That is to
say, even when there exists a VAR representation for the variables in x2t , when
this representation is of finite order, and when identification of shocks is properly
performed, small sample biases in the estimates of the reduced form parameters and
the covariance matrix of the shocks may make inference whimsical. For example,
they show that a short sample of data simulated from an RBC model driven by a
neutral technology shock may lead a researcher to believe that it could have been
generated by a model with different microfundations – in the population, hours
worked increases in response to a technology shock, but in small samples hours
may fall in response to the correctly identified technology shocks.

An applied investigator has to live with small sample biases. Long samples, even
when they are available, are rarely used because causal relationships are often sub-
ject to important regime shifts, and when regime shifts are absent, changes in the
definition or in the way the data is sampled or computed make empirical analysis
difficult. Econometrics can help here: it is well known that in a variety of experi-
mental designs and with samples of about 100 observations, estimates of the AR(1)
coefficient are downward biased by up to 30%. While this type of analysis could be
easily extended to more realistic and interesting economic models – for example,
to measuring the size of the bias in the largest autoregressive root of the aggregate
decision rule (which roughly determines the dynamics of the system) and in the
eigenvalues of the covariance matrix of reduced form shocks (which determines
the size of the impact effects) – one needs to consider models where the impact
effect is fairly weak to have important sign reversals in small samples. Therefore,
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while such an issue should be kept in mind, its practical relevance appears to be
limited.

There is another way of seeing these representation problems from a different
and probably more informative viewpoint – that of omitted variables and shock
misaggregation, which have a long tradition in the VAR literature (see, for example,
Braun and Mittnik, 1993; Faust and Leeper, 1997). Suppose the aggregate decision
rules for the endogenous variables of a DSGE model can be written as a VAR(1):[

I − A11� A12�

A21� I − A22�

][
y1t
y2t

]
=
[

B1
B2

]
et ,

where y1t are the variables included and y2t the variables excluded from the empir-
ical model and where these vectors do not necessarily coincide with those of the
state variables x1t and the choice variables x2t . Then the representation for y2t is:

(I −A22�−A21A12(1−A11�)
−1

�
2
)y2t = [B2− (A21(1−A11�)

−1B1�]et ≡ υt . (2.16)

When y1t and y2t are of the same dimensions, this simplifies to:

[I−(A11+A22)�+(A11A22−A21A12)�
2]y2t = [B2+(A21B1−A11B2)�]et ≡ υt . (2.17)

What does this reduced system representation imply? First, it is easy to see that the
model for y2t is an ARMA(∞,∞) and the lagged effect of the disturbances mixes
up the contemporaneous effects of different structural shocks (B1et−1 has smaller
dimension than et−1). Furthermore, it is clear that even if the et s are contempo-
raneously and serially uncorrelated, the υt s are contemporaneously and serially
correlated and that two small-scale VARs featuring different y2t s will have different
υt s. Finally, since υt is a linear combination of current and past et , the timing of the
innovations in y2t is not preserved unless A11 and A21 are both identically equal
to zero, which is true, for example, if y2t includes the states and y1t the controls
of the problem.

In other words, (2.16) implies that shocks extracted from a SVAR featuring a
reduced number of the model’s variables are likely not only to confound structural
shocks of different types, but also to display time series properties which are dif-
ferent from those of the true shocks to these variables. Hence, even if the correct
identifying restrictions are used, VAR models which are small relative to the uni-
verse of variables potentially produced by a DSGE model are unlikely to be able
to capture either its primitive structural disturbances or the dynamics they induce
unless some strong and not very practically relevant conditions hold.

Contrary to the previous representation of the invertibility problem, which pro-
vides little guidance on how to check for failures, this latter representation does
give researchers a way to measure the importance of potentially omitted variables.
In fact, if omitted variables are important, reduced form VAR residuals will be cor-
related with them. Therefore, for any given set of variables included in the VAR, it
is sufficient to check whether variables potentially belonging to y1t display signif-
icant correlation with the residuals. If so, they should be included in the VAR and
estimation repeated; if not, they can be omitted without further ado.
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To conclude, we present two examples below illustrating the issues we have
discussed in this section. In the first example, noninvertibility emerges because
the model has a nonfundamental representation. In the second, the MA of the
model is invertible, but the dynamics of the reduced system are different from
those of the full one.

2.3.1.1 Example 3: a Blanchard and Quah economy

The example we present belongs to the class of partial equilibrium models popular
in the late 1980s. While it is not difficult to build general equilibrium models
with the required features, the stark nature of this model clearly highlights how
invertibility problems could occur in practice. The model that Blanchard and Quah
(1989) consider has implications for four variables (gross domestic product (GDP),
inflation, hours and real wages) but the solution is typically collapsed into two
equations, one for GDP growth (�GDP), the other for the unemployment rate
(UNt ), of the form:

�GDPt = ε3t − ε3t−1 + a(ε1t − ε1t−1)+ ε1t (2.18)

UNt = −ε3t − aε1t , (2.19)

where ε1t is a supply shocks, ε3t a money supply shock and a is a parameter mea-
suring the impact of supply shocks on aggregate demand. Hence, the aggregate
decision rule for these two variables is a VMA(1). It is easy to check that a finite-order
VAR may approximate the theoretical dynamics of this model only if a > 1.

To see this, we set a = 0.1 and plot in Figure 2.5 the theoretical responses of
output and unemployment to the two shocks and the responses obtained using a
VAR(1) and a VAR(4), where the econometrician uses the correct (but truncated)
vector autoregressive representation of the model. Note that, while the signs of
the responses are correct, the dynamics are very different. Also, while there is
some improvement in moving from a VAR(1) to a VAR(4), some of the theoretical
responses are very poorly approximated even with a VAR(4). Since a VAR(q), q > 4,
has responses which are indistinguishable from those of a VAR(4) – as the matrices
on longer VAR lags are all very close to zero – no finite-order VAR can capture (2.17)
and (2.18).

What generates this result? When a < 1 the aggregate decision rules of the model
are nonfundamental, that is, innovations to output growth and unemployment do
not have the same information as the variables themselves. Therefore, there is no
convergent VAR representation for these two variables where the roots of the VAR
are all less than one in absolute value, and this is true even when an infinite lag
length is allowed for.

2.3.1.2 Example 4: an RBC model

We work with the simplest version of the model since more complicated structures
do not bring additional insights into the problem. The social planner maximizes:

E0

∞∑
t=0

β
t c1−φ

t
1− φ

− ANt , (2.20)
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Figure 2.5 Responses in the Blanchard and Quah model

and the resource constraint is:

ct + kt + gt = kηt−1N1−η
t zt + (1− δ)kt−1, (2.21)

where ct is consumption and φ is the risk aversion coefficient, A is a constant
and Nt are hours worked; zt is a first-order autoregressive process with persistence

ρz, steady-state value zss and variance σ
2
z ; gt is a first-order autoregressive pro-

cess with persistence ρg , steady-state value gss and variance σ
2
g ; kt−1 is the current

capital stock; η is the share of capital in production, and δ the depreciation rate
of capital. Using the method of undetermined coefficients, and letting output be

yt ≡ kηt−1N1−η
t zt , and investment be it = kt − (1 − δ)kt−1, the aggregate deci-

sion rules for (kt , ct , Nt , yt , rt , it ), where rt is the real rate, imply standard dynamics
in response to the two shocks. In particular, as zt increases, hours, consumption,
output, the real rate and investment increase contemporaneously while the dynam-
ics of the capital stock have a hump-shaped pattern. On the other hand, as gt
increases, consumption falls, hours, output, the real rate and investment increase
contemporaneously and the capital stock has a hump-shaped pattern.

What would the dynamics induced by the two shocks in a system which includes
only the interest rate and investment look like? That is, what would happen if we
integrate out the effect of the shocks on the other four variables? Figure 2.6 plots
the responses of the two variables of interest to the two shocks in the full and the
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Figure 2.6 Dynamics in an RBC model

reduced systems. Clearly, while the impact effect is identical, lagged dynamics are
very different.

What is the reason for this result? Mechanically, since A11 and A21 are not small,
shocks last more than one period and persist for a number of periods. Notice that
the persistence in the reduced system is strong (see, for example, the effect of
technology shocks on the real rate), suggesting that the process of marginalizing
part of the system has serious consequences on the responses of the variables to
shocks, at least in this example.

It goes without saying that it makes a lot of difference which of the two systems
one uses as a benchmark to represent the DSGE model and in trying to see whether
actual and simulated data are similar or not.

2.4 Some final thoughts

The previous two sections may have given the reader a rather pessimistic view about
the possibility of conducting meaningful inference with DSGE models and the
impression that not many alternatives are left to the applied investigator. If struc-
tural estimation is pursued, misspecification of the structural relationships may
make the interpretation of estimates difficult; identification problems are likely to
be widespread and even in the unlikely case when they are not present, a number
of additional statistical and specification assumptions need to be made, making it
very difficult to judge what is causing what. The alternative of using SVARs seems
to be equally problematic. While VARs are less prone to misspecification of the
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structural relationships, identification problems are still present and noninvert-
ibility of the DSGE models aggregate decision rules may also make SVAR analyses
uninterpretable.

Chari, Kehoe and McGrattan (2007) have suggested using the so-called busi-
ness accounting method to evaluate DSGE models, but the logic of the approach
represents a step backward relative to what we discuss here – only reduced form
relationships are used to judge what is missing from the model – and it is hard
to avoid important observational equivalence problems when judging different
structural models of the business cycle.

What, then, should one do? No matter which approach one takes, one should
be very careful and learn how to interpret the information contained in the
diagnostics obtained from experimenting with the structure of the model and
investigating the properties of the data. If structural estimation is performed, meth-
ods which allow for misspecification should be preferred and extra information,
in the form of micro-data or data from other countries, may help to break the
deadlock of parameter identification when problems are due to small samples.
We have suggested that to solve population identification problems it is neces-
sary to reparameterize or respecify DSGE models, but obviously this is a more
long-term goal, since such an approach brings us back to the very basic foun-
dation of DSGE-based exercises. Nevertheless, if theorists would build models
bearing in mind that they will be estimated, certain issues could be completely
avoided.

If SVAR analysis is preferred, one should link the empirical model to DSGE theo-
ries much better than has been done so far, explicitly write down the class of models
one will employ to interpret its results (as done, for example, in Canova and De
Nicoló, 2002), and perform the preliminary analysis necessary to check whether
the aggregate decision rules of such a class of models do have a finite-order VAR
format for the sub-set of relevant variables used in the VAR. Identification should
also be clearly linked to the class of structural models of interest and artificial delay
restrictions avoided. One way of doing this is described in Canova (2002), where
robust restrictions on the sign of responses to shocks derived from a class of models
are used to identify shocks, and the results of the analysis are discussed through the
lenses of such models. Canova and Paustian (2007) show that such an approach
has good size and power properties against local alternatives and gives reasonable
results in inappropriately marginalized systems.

Integrating structural and VAR analyses, as suggested by Del Negro and
Schorfheide (2004, 2005, 2006), also provides an interesting avenue for future
research, where structural models and empirical analyses can cross-fertilize each
other.

From the point of view of policy makers, DSGE models are useful if they can
forecast well, since it is much easier to tell stories with estimates of their parameters
than with SVAR estimates or estimates of pure time series models. However, to
forecast at least as well as more unrestricted models, the DSGE models popular in
the academic literature must produce restrictions which are not rejected in the data,
and this is pretty hard to do when one considers, for example, prices rather than
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quantities and financial or monetary variables rather than real ones. In addition,
to test the quality of these restrictions one needs substantial “cosmetic surgery”
in the form of additional shocks, frictions and other black-box jingles, which are
difficult to justify from a theoretical point of view and make any hypothesis a
joint test of the restrictions and the chosen add-ons. Realizing these facts should
probably lead academics and policy makers to be less demanding of the models
they write down and use. Typically, small models forecast better than larger ones
and different models can be used for different purposes. Having an array of models
at one’s disposal, which are built to answer different economic questions, and
averaging their forecasting results may not only robustify the outcomes of the
investigation but also give an entirely different perspective on the reasons driving
certain economic phenomena.

While one can envision the disappearance of the “model” of the economy as
conceived in the 1970s, constructed by patching up pieces of theoretical structures
and a lot of empirical wisdom, and used to answer all possible questions policy
makers may have, it is very likely that smaller scale, more or less structurally ori-
ented models will coexist in the portfolio of research departments of central banks
and international institutions for a while, serving different purposes and different
objectives.

To go back to the main question of this chapter, how much structure should
there be in an empirical model? The solomonic and, probably, obvious answer,
is that it depends on the scope of the analysis and the information available in
the data. Different models can have different structural content if they serve dif-
ferent purposes. Nevertheless, it should be clear that certain policy exercises can
be conducted only in models where expectations and general equilibrium features
are fully taken into account and where the predictive content of pure time series
models is close to nonexistent as the horizon of the forecast surpasses one year.
Small-scale structural models that allow a large number of policy exercises and at
the same time offer some indication of the potential developments one to two
years ahead are probably the ones that will survive the dust of time in the longer
run.
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3
Introductory Remarks on Metastatistics
for the Practically Minded Non-Bayesian
Regression Runner
John DiNardo

Abstract
It would appear that much debate among practically minded researchers in economics, social
science, and in other fields, is rooted in (frequently) unstated assumptions about the underlying
philosophical justification for the statistical procedures being debated. In this chapter, I try to
provide a simple non-technical introduction to some long-standing debates about “metastatisti-
cal” questions, especially those that divide (some) “Bayesians” from (some) non-Bayesians while
attempting to draw out some implications for the “practically minded non-Bayesian regression
runner.” Some of the issues which have prompted the most raucous debate in philosophical cir-
cles include: the meaning of “probability,” the importance or unimportance of pre-designation
(pre-specified research design), the role of “models,” and the practical value of hypothesis testing
and other common statistical practices. I discuss some of the links between these philosophical
views and actual practice and consider two different case studies – one from medicine and another
from labor economics.
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3.5.3 If the DGP is irrelevant is the likelihood really everything? 127
3.5.4 What probabilities aren’t – the non–bayesian view 129
3.5.5 What should “tests” do? 131
3.5.6 Randomization and severity 132

3.6 Case study 1: “medication overuse headache” 136
3.6.1 What is medication overuse headache? Nosology and

dubious ontology 137
3.6.2 Some salient background 137

3.6.2.1 Early history 137
3.6.2.2 The evidence 138
3.6.2.3 First criticism 139

3.6.3 Redefining MOH to avoid a severe test 139
3.7 Case study 2: “union wage premium” 142

3.7.1 Early history 142
3.7.2 A battery of severe tests 142

3.8 Concluding remarks 146
3.8.1 Bayesian doesn’t have to mean “not severe” 146
3.8.2 Non-Bayesian doesn’t have to mean “severe” 148

3.1 Introduction

“Everything has already been said, but perhaps not by everyone and to

everyone.”1

The purpose of the somewhat silly title of this chapter is to warn the reader what
not to expect. This is not intended as a “proper” introduction to metastatistics,
which I could not write, of which there are several very good ones.2 Given the
enormous amount of writing on the subject, it is not surprising then that none of
the ideas or arguments will be original.3

An even sillier title that some might use to describe the following is: “A jaundiced
appraisal of some extreme Bayesian views by someone who just doesn’t get it.”

That is, of course, not my intent. Rather, I think that it is sometimes useful for
the practically minded non-Bayesian regression runner (like myself) to consider
some of the basic “philosophical” issues at the heart of statistics and econometrics.
My purpose is also to bring some of the issues debated in metastatistics or the “phi-
losophy of induction” literature “back to earth” from the somewhat airy realms in
which they often dwell and toward the more messy realms of the low sciences,
addressing them to an audience, like myself, who aren’t philosophers but don’t
think that philosophy is necessarily a synonym for “useless.” It is true that the
discussion is often very mathematical, sometimes filled with obscure polysyllabic
words of Greek or Latin origin, and pages and pages of definitions where the reader
is expected to suspend disbelief before something of practical import seems to enter
the discussion. Partly as a consequence, I will talk about ideas that a philosopher
would define with much more precision: if you have philosophical inclinations,
consider yourself forewarned.
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That discussion about metastatistics often dwells in the “airy realms” is unfortu-
nate. First, many of the issues discussed in this literature are of practical import. In
economics, Bayesian approaches are becoming increasingly popular: in the United
States, for example, the Food and Drug Administration (FDA) issued a call for com-
ments on a proposal about increased use of Bayesian methods (Food and Drug
Administration, US Department of Health and Human Services, 2006). Second,
it seems to me that much of the debate among practically minded researchers
is rooted in (frequently) unstated assumptions about the underlying philosoph-
ical justification for statistical procedures being debated. Consider the following
statement of the advantages of adopting a Bayesian approach to FDA testing:

1. If we turn to Bayesian methods, difficult issues will be discussed in the right way
by the right people.

2. Some of the dilemmas that FDA decision makers face are artifacts of the (non-
Bayesian) statistical methods they use, and not due to demands of the scientific
method.

3. The Bayesian perspective provides the best way to think about evidence
(Goodman, 2004).

4. (In contrast to the usual approach) the Bayesian approach is ideally suited to
adapting to information that accrues during a trial, potentially allowing for
smaller, more informative, trials and for patients to receive better treatment.
Accumulating results can be assessed at any time, including continually, with
the possibility of modifying the design of the trial: for example, by slowing (or
stopping) or expanding accrual, imbalancing randomization to favour better-
performing therapies, dropping or adding treatment arms, and changing the
trial population to focus on patient subsets that are responding better to the
experimental therapies (Berry, 2006).

Such arguments are becoming increasingly common in domains outside of
medicine and are most easily understood by using some of the metastatistical
background.

3.1.1 Life, death, and statistical philosophy: an example

The issue of whether to use Bayesian or non-Bayesian methods has sometimes
quite literally involved life or death issues. The case of ECMO (extracorporeal
membrane oxygenation) is a useful example for those skeptical of the potential
importance of the debate.

ECMO was a therapy developed for use with infants with persistent pulmonary
hypertension: an ECMO machine circulates blood through an artificial lung back
into the bloodstream. The idea is described as providing adequate oxygen to the
baby while allowing time for the lungs and heart to rest or heal. The mortality
rate using conventional therapy was believed to be 40% (Ware, 1989), although
there is debate about whether that number was reasonable.4 A possibly important
consideration is that the notion of providing additional oxygen for infants was
not obviously “safe.” See the British Journal of Ophthalmology (1974) and Silverman
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(1980), for example, for a discussion of the case of “oxygen therapy” for infants
which, far from being harmless, caused blindness.5

Concern about the ethics of a conventional randomized trial (RCT), where half
the patients are randomized into treatment and half to control, led the surgeons
who had developed the therapy to use a “randomized play-the-winner” statistical
method to evaluate the treatment. The purpose of this convoluted randomization
scheme was to evade

the ethical problem aris[ing] from the fact that during a “successful” random-
ized clinical trial (i.e., one that demonstrates a significant advantage to one
treatment) about half of the trial subjects will receive a treatment which, at the
end of the trial, will be known to be inferior. The recipients of the inferior treat-
ment are individuals whose own outcomes are, in some sense, sacrificed to the
greater good of knowing, with far more certainty than before the trial, the value,
lack of value, or actual harm of the treatments under investigation. (Paneth and
Wallenstein, 1985)

The randomization procedure is too elaborate to be described fully, but this gloss
should be sufficient.6 The essence of their “modified randomized play-the-winner”
method is that “the chance of randomly assigning an infant to one treatment or
the other is influenced by the outcome of treatment of each patient in the study.
If one treatment is more successful, more patients are randomly assigned to that
treatment” (Bartlett et al., 1985).

Call ECMO “Treatment A” and conventional treatment “Treatment B.” Initially, a
group of biostatisticians prepared a sequence of blinded random treatment assign-
ments. When the outcome of a treatment was known, this information would be
sent to the biostatisticians, who would then create another sequence of blinded
random treatment assignments; the probability of being assigned to A or B, how-
ever, was now a function of the success or failure of the treatment. In their
study,

1. The first infant – with even odds – was randomly assigned to ECMO and
survived.

2. The second infant – again with even odds – was randomly assigned to conven-
tional treatment and died.

3. The third infant – with better-than-even odds in favor of being placed in ECMO
as a result of the first two experiences – was randomized to ECMO and survived.

4. With now even higher odds the next infant was randomized to ECMO and
survived.

This continued until there was a (pre-specified) total of 12 events. The result
of this unusual randomization was that only one child was randomized to the
conventional treatment and the 11 others received the ECMO treatment.

The outcome of this experiment was that the 11 infants randomized to ECMO
treatment survived; the one infant randomized to conventional treatment died.
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The debate revolved around whether the evidence from that trial and the previous
history of non-randomized studies was “sufficient” or whether any other studies
involving randomization were necessary. The researchers were reluctant to con-
clude that the single trial and the previous studies using “historical controls” were
enough. Ware (1989), among others, observed that the randomization wasn’t
satisfactory and that one couldn’t rule out other explanations for the observed
outcomes. For instance, the sole infant not randomized to treatment was, coinci-
dentally, the most severely ill patient in the study. The implication was that, had
this one patient been randomized to ECMO, it is quite likely the child still wouldn’t
have survived.

Berry (1989), an advocate of Bayesian methods, harshly condemned the decision
to continue further study as unethical.7

Most of the debate focused on the structure of the randomization, and revolved
around a very narrow “binary” question: “Did ECMO work?” or, possibly, “What
was the probability that ECMO works?” Both sides focused on whether the answer
was “yes” or “no.” The debate did not include, for example, a heated discussion
about the necessary prerequisites to be considered “eligible” for treatment. Even
if the researchers had used a more conventional randomization scheme, the study
would not have been able to provide a good answer to that much more difficult
question.8

3.1.2 The metastatistics literature

It is likely that much of the philosophical discussion on “induction” or “metastatis-
tics” is somewhat unfamiliar to regression runners – it was to me. Moreover, often
the metastatistics debate seems to involve few participants of the practical sort. As
a consequence, many of the case study examples debated by philosophers of induc-
tion or statistics are drawn from physics; I am sure this is true in large part because
physics has had some success – it is easier to debate “how to get the answer right”
in a science when a consensus exists that, at some point, someone got it right.
Such cases are rare (non-existent?) for low sciences like medicine and economics.
As part and parcel of this general tendency, the types of problems considered
in the metastatistics literature often seem far removed from the types of prob-
lems confronted by economists of my stripe – the “practically minded regression
runner.”9

When (by accident) I began reading about the philosophy of statistics I was
surprised to discover:

1. the vehemence of the debate, and
2. the almost near-unanimous consensus that almost everything someone like

me – a “practically minded non-Bayesian regression runner” – understands
about statistics is wrong or profoundly misguided at best.

Concerning (2), consider the “stupid” inferences people like myself are “supposed
to draw” on account of not adopting a Bayesian point of view. One example is
inspired by an example from Berger and Wolpert (1988). Consider computing the
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standard error of a measurement that occurs in the following way:
Flip a fair coin.

• If heads, use measuring device A for which the measurement is distributed
normally with variance one and expected value equal to the truth.

• If tails, use measuring device B which has zero measurement error.

What is the right standard error if B is chosen? Although I had not given the matter
a lot of thought before, it seemed obvious to me, a non-Bayesian, that the answer
would be zero. Thus it came as a surprise to learn that, on some accounts, a non-
Bayesian is “supposed” to give an answer of 1+0

2 .10 By way of contrast, the Bayesian
is described as someone who “naturally” avoids this inference, being “allowed” to
“condition” on whether the measurement was made with machine A or B.11

As to the vehemence of the debate, LeCam (1977), a thoughtful non-Bayesian,
prefaced his (rare) published remarks on “metastatistics”12 by observing:

Discussions about foundations are typically accompanied by much unnecessary
proselytism, name calling and personal animosities. Since they rarely contribute
to the advancement of the debated discipline one may be strongly tempted to
brush them aside in the direction of the appropriate philosophers. However,
there is always a ghost of a chance that some new development might be spurred
by the arguments. Also the possibly desirable side effects of the squabbles on
the teaching and on the standing of the debated disciplines cannot be entirely
ignored. This partly explains why the present author reluctantly agreed to add
to the extensive literature on the subject.

It is also a literature which (until recently) seemed almost entirely dominated
by “Bayesians” of various stripes – the iconoclastic Bayesian I.J. Good (Good,
1971) once enumerated 45,656 different varieties of Bayesianism. There are also
“objective” Bayesians and radical subjectivists. We might also choose to distinguish
between “full-dress Bayesians” (for whom estimation and testing is fully embed-
ded in a decision-theoretic framework) as well as a “Bayesian approach in mufti”
(Good and Gaskins, 1971). As I discuss below, this variety and depth results in part
from the view that probability and statistics are tools that can and should be used
in a much broader variety of situations than dreamed of by the usual non-Bayesian
regression runner: “Probability is the very guide to life.” The non-Bayesian rarely
thinks of statistics as being an all-purpose way to think (see Surprising Idea 3 in
section 3.2).

This is not to suggest that there is no non-Bayesian philosophy involving statis-
tics. Most notably, Mayo (1996) has recently stepped in to present a broader view of
the philosophical underpinnings of non-Bayesian statistics that I find helpful, espe-
cially her notion of “severe testing.” And there is an older tradition as well: Peirce
(1878a, 1878b) and Venn (1888) are notable examples. The latter still remains an
exceptionally clear exposition of non-Bayesian ideas; the articles by Peirce in Popu-
lar Science Monthly are insightful as well, but probably a slightly more difficult read.
Nonetheless, such examples are few and far between.
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In what follows, when I describe something as “Bayesian” I do not mean to
suggest any writer in particular holds all the views so attributed here. There is
considerable heterogeneity: some view concepts like “the weight of evidence” as
important, others do not. Some view expected utility as important, others do not.
This is not intended to be a “primer” on Bayesian statistics. Neither is it intended
to be a “critique” of Bayesian views. There are several very good ones, some dating
as far back as Venn (1888) (although some of these arguments will appear in what
follows). Indeed, I will admit that, given the types of questions I typically find
interesting, I don’t find Bayesian ideas particularly helpful (and sometimes harm-
ful). On the other hand, I can imagine situations where others might find formal
Bayesian reasoning helpful. Indeed, given the prominent role that “models” play
in economics, I am frankly a bit surprised that Bayesian techniques are not more
popular than they are.

My purpose is not to do Bayesian ideas justice (or injustice!) but, rather, to try to
selectively choose some implications of various strands of Bayesianism and non-
Bayesianism for actual statistical practice that highlight their differences so as to
be clear to a non-Bayesian perspective.

After having surveyed the metastatistics literature, one feels it is almost impos-
sible to use the English language to label or describe the practically minded
non-Bayesian regression runner.13 When not being dismissed as belaboring
under fallacious reasoning (Howson, 1997), she has been variously described as a
“frequentist” – someone who is congenial to the notion of probability being about
“relative frequency,” or an NP (Neyman–Pearson) statistician – even though, as
Mayo and Spanos (2006) observe, there is a great deal of confusion about what
this means. Indeed, in my experience, most regression runners are not entirely
sure what it means to be a user of “NP theory” (which is not surprising given
that it is not clear that either Neyman or Pearson practiced or believed NP statis-
tical theory!) Most congenial is Mayo’s (1996) term “error statistician” – someone
engaged in “severe testing.” On the other hand, as a firm adherent of LeCam’s
Basic Principle Zero – “Do not trust any principle” – I will settle on the term
“non-Bayesian.”14

My hope is that consideration of some of the underlying metastatistics will make
it easier to detect some sources of methodological disagreement. Put differently,
one focus of what follows is to consider a claim, from Mayo and Kruse (2002), that
“principles of inference have consequences” for actual practice.

More on this subsequently, but to ground the discussion, let me list the types of
research questions I would like to consider as the aims of the practically minded
regression runner:

1. What is the “causal effect” of some new medical treatment?
2. What are the the iatrogenic effects of morphine use? Does the use of pain

medicine cause more pain?
3. Does (US) unionization lead to business failures?
4. Do “unions raise wages?”,

as well as the types of questions I am not going to consider:
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1. What is a good estimate of next quarter’s GDP?
2. Does this structural model of the US labor market provide representation

adequate enough for the purposes of evaluating potential policies?
3. What are the causes and consequences of black culture?

In my experience, what type of questions one is interested in asking often suggests
what type of statistics one finds useful. While both types of questions are routinely
asked by economists, the types of problems entailed seem very different to me
(even if they do not appear this way to some Bayesians). This is not to imply that
the second set of questions are necessarily illegitimate: I wouldn’t want to suggest
that people stop trying to estimate next quarter’s GDP!

Indeed, when and where probability and statistics are most “useful” is one sub-
ject which divides many Bayesian and non-Bayesians and one that we explore in
section 3.3.2.

3.2 Six surprising ideas and one puzzle

It may seem hard to believe that one’s views on the metaphysics of statistics have
consequences. In this section I enumerate six “surprising ideas” that I think go
to the heart of many differences between non-Bayesians and Bayesians. For my
purposes, I will focus on suggestions for practice that are most frequently invoked
by Bayesians or radical subjectivists that are at furthest remove from my own non-
Bayesian views. Despite this, my goal isn’t to criticize them. Indeed, if they strike
you as sensible, perhaps you are a (closet) Bayesian!

3.2.1 Six surprising ideas

1. The absence or presence of data-mining strategies, specification mining, non-
random sampling, or non-random assignment are (should be) irrelevant to the
inference of a set of data. Put differently, what could have happened, but didn’t,
in an experiment should make no difference to the evidential import of the
experiment:

considerations about samples that have not been observed, are simply not
relevant to the problem of how we should reason from the one that has been
observed. (Jaynes, 1976, p. 200)

Unbiased estimates, minimum variance properties, sampling distributions,
significance levels, power, all depend on something . . . that is irrelevant in
Bayesian inference – sample space. (Lindley, 1971, p. 426)

2. Pre-specified research design is a waste of time:

In general, suppose that you collect data of any kind whatsoever – not neces-
sarily Bernoullian, nor identically distributed, nor independent of each other
– stopping only when the data thus far collected satisfy some criterion of a
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sort that is sure to be satisfied sooner or later [such as the requirement that a
“t-statistic” exceed some critical value], then the import of the sequence of
n data actually observed will be exactly the same as it would be had you
planned to take exactly n observations in the first place. (Edwards et al.,
1963, pp. 238–9).

3. The problem of “how to reason” has been solved:

Determining which underlying truth is most likely on the basis of the data
is a problem in inverse probability, or inductive inference, that was solved
quantitatively more than 200 years ago by the Reverend Thomas Bayes.
(Goodman, 1999)

[They are mistaken,] those who have insinuated that the Doctrine of Chances
. . . cannot have a place in any serious inquiry . . . [it can] shew what reason we
have for believing that there in the constitution of things fixt laws according
to which things happen, and that, therefore the frame of the world must be
to the effect of the wisdom and power of an intelligent cause; and thus to
confirm the argument taken from final causes for the existence of the Deity.
It will be easy to show that the problem solved in this essay [by the Reverend
Bayes] is more directly applicable to this purpose. (Bayes, 1958)

4. Usual (non-Bayesian) practice is very badly wrong:

. . . almost every frequentist [non-Bayesian] technique has been shown to be
flawed, the flaws arising because of the lack of a coherent underpinning that
can only come through probability, not as frequency, but as belief. (Lindley,
2000)

Why it is taking the statistics community so long to recognize the essentially
fallacious nature of NP [Neyman–Pearson, or non-Bayesian] logic is difficult
to say, but I am reasonably confident in predicting that it will not last much
longer. Indeed, the tide already seems strongly on the turn. (Howson, 1997)

I explore the historical and logical foundations of the dominant school of
medical statistics, sometimes referred to as frequentist statistics, which might
be described as error-based. I explicate the logical fallacy at the heart of this
system. (Goodman, 1999)

5. Randomization rarely makes sense in those contexts where it is most often
employed:

Physicists do not conduct experiments as Fisher would have them do. For
instance, a simple experiment to determine the acceleration due to gravity
might, say, require a heavy object to be dropped close to the earth. The
conditions would be controlled by ensuring that the air is still, that the space
between the object and the ground is free of impediments, and so on for
other factors that are thought to interfere with the rate at which the object
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descends. What no scientist would do is to divide the earth’s surface into
small plots and select some of these at random for the places to perform the
experiments. Randomizers might take one of two attitudes to this behavior of
scientists. They could either say it is irrational and ought to be changed or else
claim that experiments in physics and chemistry are, in some crucial respect,
unlike those in biology and psychology, neither of which would appear to
be very promising lines of defence. (Urbach, 1985, p. 273)

6. Probability does not exist:

The abandonment of superstitious beliefs about the existence of the Phlogis-
ton, the Cosmic Ether, Absolute Space and Time, . . . or Fairies and Witches
was an essential step along the road to scientific thinking. Probability, too, if
regarded as something endowed with some kind of objective existence, is no
less a misleading misconception . . . . (deFinetti, 1974, p. 3)

3.2.2 An introductory puzzle

One of the most unusual aspects of metastatistics is that people on different
sides of the debate cite the same example to make the case that the other side
is wrong.

Consider the following example. Mayo (1979) and Mayo and Kruse (2002) have
cited it as an example of a flaw in the usefulness of Bayesian reasoning while
Bayesians routinely cite such examples (see Poirier, 1995) to argue that this is evi-
dence of a flaw in non-Bayesian reasoning! It consists of a comparison of what
inferences are justified in two different “experiments.”

In both cases, suppose you are interested in the fraction of black balls μ in a huge
urn (we ignore the complications arising from issues of sampling with or without
replacement) that is “well-mixed” and has only red and black balls. Denote the
null hypothesis as H0 : μ = 0.5 and the alternative as H1 : μ > 0.5. Denote the
random variable “number of black balls” by X and the sample size as n.

Experiment A Experiment B

Method: Declare in advance that you
are going to pick 12 balls randomly
from the urn.

Method: Instead of predesignating or
deciding in advance of the experiment
that you are going to draw 12 observa-
tions, you decide that you are going to
keep drawing balls from the urn until
you get at least 3 red balls.

Result: 9 of the 12 balls are black. The
usual estimate is μ = 3

4 .
Result: You draw the third red ball on
the 12th attempt. 9 of the 12 are black
and the usual estimate is μ = 3

4 .

In both experiments, 12 balls were drawn. In both experiments, 9 of the 12 were
black. There are several different “loaded” questions one can ask when comparing
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the two experiments:

1. Are the two “experiments” different?
2. Does the “evidential import” of the two experiments for your beliefs about the

true value μ differ when presented with either experiment A or B?
3. Does your evaluation of the experiment depend on the “mental state” of the

investigator?

If your instinct is that “the evidential import” of both “experiments” is the same,
you may be Bayesian. To many Bayesians such an example is a demonstration of
a logical flaw in non-Bayesian statistics: in both cases someone has drawn 9 black
balls and 3 red balls. Why should I bother to consider which experiment was being
performed? If the “mental state” of the experimenter is “locked up” in his/her
head and, say, inaccessible by someone else analyzing the data, doesn’t such a
case represent a fundamental problem for the non-Bayesian? I will return to this
problem below, but before I do it will be helpful to sketch out some generalizations
about the differences between Bayesians and non-Bayesians regarding the role of
statistics.

3.3 What is statistics good for?

First, the Bayesian is typically more ambitious about the goals of statistics: “Accord-
ing to the Bayesian view, scientific and indeed much of everyday reasoning is
conducted in probabilistic terms” (Howson and Urbach, 1993, p. 17).

John Maynard Keynes, for example, an exponent of “logical probability,”
deployed statistics to a very diverse range of subjects, including teleological ques-
tions – whether perceived order could be used to provide evidence of the existence
of God. He concluded that, although such questions were well suited to study
by Bayes’ law, the problem was that such evidence could only make the exis-
tence of God more credible if it were supported by other evidence for God’s
existence (Keynes, 1921, p. 267).

To understand this point of view it is helpful to think of probability and statistics,
for the Bayesian, as tools to bridge the gap between deductive and inductive logic.15

Deductive logic is about the validity of “risk-free” arguments.

All men are mortal.
John is a man.
Conclusion: John is mortal. (*)

Such an argument is deductively valid since if the premises are true, then so is the
conclusion. A sound argument is a valid argument that has true premises. There
are many types of risky arguments. Consider the following example. Imagine you
are given the option of randomly selecting an orange from a box known to contain
mostly good oranges and a few bad oranges.
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Most of the oranges in the box are good.
Conclusion: The orange I randomly select will be good. (**)

This argument (**) is risky. Even if the premise is true, the conclusion may be
wrong; you may be unlucky and draw one of the few bad oranges.

While probability seems of little value for non-risky arguments such as (*), even
a non-Bayesian can easily see how probability might be helpful for arguments such
as (**). For example, if we know 90% of the oranges in the box are good, the
conclusion “There is a 90% chance that the orange I select will be good” seems
less risky than the conclusion “There is a 90% chance that the orange will be bad.”
Probability and statistics for the Bayesian can be viewed as a way to tame risky
arguments and make them amenable to the types of reasoning more commonly
found in situations requiring merely deductive logic.

As I discuss in section 3.4.2, a Bayesian is typically more comfortable thinking
about the probability of most propositions – which can be true, false, or uncer-
tain – than a non-Bayesian. The non-Bayesian is most comfortable thinking about
probability as the relative frequency of events. In the above example, neither the
Bayesian nor the non-Bayesian is that uncomfortable talking about the event of a
randomly chosen orange being good or bad. On the other hand, a non-Bayesian is
more likely to feel unclear about a statement like “There is a 90% chance that an
asteroid shower is the source of the Chicxulub impactor that produced the Creta-
ceous/Tertiary (K/T) mass extinction of the dinosaurs 65 million years ago.”16 The
proposition that “The mass extinction of the dinosaurs was caused by a piece of an
asteroid” is either true or false.17 It is not a statement about relative frequency, or
the fraction of times that the proposition is true in different “worlds.”

The divergence between the two points of view becomes clearest when we begin
discussing propositions much more generally. If probability is understood as being
useful in induction – one version of the argument goes – it is a small step from this
example to considering probability as useful whenever one is faced with making a
risky decision. By these sorts of notions, most decisions in life become subject to
the probability calculus because most propositions that are risky can and should be
reasoned about using probability.

Indeed, once you’ve moved from reasoning about beliefs to reasoning about deci-
sions, notions of “utility” can often become important. Many (including some
Bayesians) have difficulty with this step: the relationship between “beliefs” and
“actions” is not always obvious. I, for example, tend to think of them as rather
distinct.18 I think of Voltaire’s quip – “I am very fond of truth, but not at all of
martyrdom” – as a (perhaps extreme) example of the possible divergence between
beliefs and actions. Hacking (1965, p. 16) observes that:

beliefs do not have consequences in the same way in which actions do . . . [For
example] we say that a man did something in consequence of his having certain
beliefs, or because he believed he was alone. But I think there is pretty plainly
a crucial difference between the way in which his opening the safe is a con-
sequence of his believing he was unobserved, and the way in which the safe’s
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opening is a consequence of his dialing the right numbers on the combination.
It might be expressed thus: simply having the belief, and doing nothing further,
has in general no consequences, while simply performing the action, and doing
nothing further does have consequences.

While the connections between Bayesian probability and Bayesian decision
theory are a matter of debate as well, the connections seem tighter.19 More impor-
tantly, an example from “decision theory” will, I think, highlight an important
difference between Bayesians and non-Bayesians.

A useful case study comes from L.J. Savage, an important figure in the devel-
opment of Bayesian ideas, who argued that the role of a mathematical theory of
probability “is to enable the person using it to detect inconsistencies in his own
real or envisaged behavior. It is also understood that, having detected an incon-
sistency, he will remove it” (Savage, 1972, p. 57). Indeed, the first seven chapters
of Savage (1972) are an introduction to the “personalistic” tradition in probability
and utility.

3.3.1 What’s utility got to do with it?

To me, the idea of probability as primarily a tool for detecting inconsistencies
sounds strange; nonetheless, it appears to be a view held by many. Savage him-
self provides an interesting example of “detecting an inconsistency” and then
removing it. This case study was the result of a “French” complaint about crazy
“American” ideas in economics. The Frenchman issuing the complaint, Allais
(1953), wrote a hotly contested article arguing against the “American” School’s
view of a “rational man.”20

Savage, like some Bayesians, argued that maximizing expected utility is good
normative advice. Although the ideas will probably be familiar as the “Allais para-
dox,” it may be a good idea to sketch the main idea. If we consider x1, x2, . . . xk
mutually exclusive acts that occur with probability p1, p2, . . . pk, respectively, where∑k

i=1 pi = 1, and we can define utility over these acts with a single utility func-
tion U(x) with the “usual” properties (increasing in x, and so on), we can define
expected utility as:

E[U ] =
k∑

i=1

U(xi)pi.

If utility is, say, increasing in money, then a “rational” person “should” prefer
the gamble that yields the highest expected utility. (Note we postpone a discussion
of what probability is until the next section.)

One of the gambles Allais devised to demonstrate that maximization of Expected
Utility (what Allais referred to as the “Principle of Bernoulli”) wasn’t necessarily a
good idea went as follows:

Imagine 100 well-shuffled cards, numbered from 1 to 100, and consider the two
following pairs of bets and determine which you prefer.
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First gambling situation The second pair of gambles

[A.] You win $500,000 if you draw a
card numbered 1–11 (11% chance).
If you draw a number from 12–100,
you get the status quo (89% chance).
[B.] You win $2,500,000 if you draw
a card numbered 2–11 (10% chance.)
Draw a number from 12–100 or 1 and
you get the status quo (90% chance).

[C.] You win $500,000 for certain.
[D.] You win $2,500,000 if you draw
a card numbered 1–10 (10% chance),
$500,000 if you draw a card from
11–99 (89% chance), and the status
quo if you draw the card numbered
100.

As Allais found (and has been found repeatedly in surveys posing such gambles),
for most people B � A (B is preferred to A) and C � D and, as Savage reports, the
same was true for him (Savage, 1972, pp. 101–4)!

As most economists will recognize, this is a “paradox” since, from C � D:

U(500, 000) > 0.1U(2, 500, 000)+ 0.89U(500, 000)+ 0.01U(0),

and from B � A:

0.1U(2, 500, 000)+ 0.9U(0) > 0.11U(500, 000)+ 0.89U(0),

and it is obvious that both inequalities can’t be true.21 There are two ways to
handle this “paradox.”

1. One possibility (the one that appeals to me) is that – even after continued reflec-
tion – my original preferences are just fine. For me, the fact that at the stated
sums of money, etc., the comparison is inconsistent with Expected Utility The-
ory is merely too bad for the theory, however plausible it sounds. Indeed, as
is well-known, it is possible to axiomatize preferences so that Allais paradox
behavior is consistent with “rational” behavior (Chew, 1983).

2. A second possibility is to conclude that something is “wrong” with your
“preferences.” That was Savage’s conclusion; his solution was to “correct
himself.”

Indeed, as befits a Bayesian, Savage analyzed the situation by rewriting the
problem in an equivalent, but different way:

Ticket number
1 2–11 12–100

First pair Gamble A 5 5 0
Gamble B 0 25 0

Second pair Gamble C 5 5 5
Gamble D 0 25 5
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After writing down the problem this way, he then observed that if he were to
draw a number from 12 to 100 he would be indifferent between the outcomes, so
he decided to “focus” on what would happen if he should draw between 1 and
11. By doing so, he decided that, in the case of a subsidiary problem – ignoring
outcomes higher than 11 – the correct answer depended on whether he would “sell
an outright gift of $500,000 for a 10 to 1 chance to win $2,500,000 – a conclusion
that I think has a claim to universality, or objectivity.” He then concluded that,
while it was still true that C � D, upon reflection A � B, not the other way around.

As Savage himself noted: “There is, of course, an important sense in which pref-
erences, being entirely subjective, cannot be in error; but in a different, more subtle
sense they can be.”

We put aside the frequently knotty subject of “prior beliefs” for the moment, and
contrast this Bayesian view with a typical non-Bayesian view about “what statistics
is good for.”

3.3.2 What is statistics good for? A non-Bayesian view

In its most restricted form [statistical] theory seems to be well adapted to the
following type of problem. If two persons disagree about the validity, correctness
or adequacy of certain statements about nature they may still be able to agree
about conducting an experiment “to find out”. For this purpose they will have
to debate which experiment should be carried out and which rule should be
applied to settle the debate. If one of them modifies his requirements after the
experiment, if the experiment cannot be carried out, or if another experiment is
used instead, or if something occurs that nobody had anticipated, the original
contract becomes void. Since the classical theory is essentially mathematical
and clearly not normative it is rather unconcerned about how one interprets
the probability measures . . . The easiest interpretation is probably that certain
experiments such as tossing a coin, drawing a ball out of a bag, spinning a
roulette wheel, etc., have in common a number of features which are fairly
reasonably described by probability measures. To elaborate a theory or a model
of a physical phenomenon in the form of probability measures is then simply
to argue by analogy with the properties of the standard “random” experiments.

The classical statistician will argue about whether a certain mechanism of
tossing coins or dice is in fact adequately representable by an “experiment” in
the technical stochastic sense and he will do that in much the same manner and
with the same misgivings as a physicist asking whether a particular mechanical
system is in fact isolated or not. (LeCam, 1977, p. 142)

A non-Bayesian doesn’t view probability as a singular mechanism for deciding
the probability that a proposition is true. Rather, it is a system that is helpful for
studying “experimental” situations where it might be reasonable to assume that
the experiment is well described by some chance set-up. Even when attempting to
use “non-experimental” data, a non-Bayesian feels more comfortable when he/she
has reason to believe that the non-experimental situation “resembles” a chance set-
up. Indeed, from a strict Bayesian viewpoint it is hard to understand why, in the
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low sciences, there is a great deal of interest in “natural experiments.” Put another
way, one wants to try to draw a contrast between “experience” and “experiment.”
In the case of the former, statistical tools may or may not be particularly helpful,
and other methods for gaining insight might easily dominate. In the latter case,
one generally feels more hopeful that statistical reasoning might help.

3.4 A few points of agreement, then . . .

Statistics and probability, as we understand them today, got a surprisingly late start
in the (European) history of ideas.22 Before the seventeenth century a major use
of the word “probability” in English was to describe a characteristic of an opinion
and dealt with the authority of the person who issued the opinion. “Thus [it could
be said] Livy had more of probability but Polybius had more of truth.” Or, “Such a
fact is probable but undoubtedly false,” relying on the implicit reference of what
is “probable” to authority or consensus (Barnouw, 1979).

A theme that will recur frequently is the notion that everything in metastatistics
is a topic of debate. As I discuss in section 3.4.2, even the definition of probability
is the subject of considerable debate. However, it will be helpful to have at least
some terminology to work with before enjoining the metaphysics.

3.4.1 Kolmogorov’s axioms

One place to begin is a review of a few of Kolmogorov’s axioms which Bayesians and
non-Bayesians (generally) accept, although they interpret the meaning of “prob-
ability” very differently. Though they can be defined with much more care and
generality, we will define them crudely for the discrete case:

1. Given a sample space � of possible events A1, A2, . . .Ak such that:

� ≡
k∑

i=1

⋃
Ai for i = 1, 2, . . . k.

2. The probability of an event Ai is a number which lies between 0 and 1.

0 < P(Ai) < 1.

An event which cannot happen has a probability of zero, and a certain
outcome has a probability of 1.23 Two events, A1 and A2, are mutually
exclusive if P(A1

⋂
A2) = 0.

3. For any two mutually exclusive events probability is additive:

P(A1
⋃

A2) = P(A1)+ P(A2).
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The same is true for pairwise mutually exclusive events so, for example, we can
write:

P(A1
⋃

A2
⋃

. . .
⋃

Ak) =
k∑

j=1

P(Aj)

= 1. (3.1)

If we were intending a proper introduction to probability, even here complications
arise. Is k finite, for example? To address that issue properly one would introduce
a set of measure theoretic considerations, but there is no need to cavil about such
issues at present.24

The most important observation to make is that these are, so far, simply axioms.
At this level, they are mere statements of mathematics. Indeed, we don’t even have
to consider them to be “probabilities.” They may or may not be readily associated
with anything “real” in the world. As Feller (1950, p. 1) explains:

Axiomatically, mathematics is concerned solely with relations among undefined
things. This property is well illustrated by the game of chess. It is impossible to
“define” chess otherwise than by stating a set of rules . . . The essential thing
is to know how the pieces move and act. It is meaningless to talk about the
“definition” or the “true nature” of a pawn or a king. Similarly, geometry does
not care what a point and a straight line “really are.” They remain undefined
notions, and the axioms of geometry specify the relations among them: two
points determine a line, etc. These are rules, and there is nothing sacred about
them. We change the axioms to study different forms of geometry, and the
logical structure of the several non-Euclidean geometries is independent of their
relation to reality. Physicists have studied the motion of bodies under laws of
attraction different from Newton’s, and such studies are meaningful if Newton’s
law of attraction is accepted as true in nature.25

In sum, these axioms don’t commit you to believing anything in particular. One
reason you might adopt such axioms (and the reason I do) is because they seem
convenient and useful if you are interested in the properties of chance set-ups or
things that resemble chance set-ups.

I belabor this obvious point because I think it useful to consider that we could
begin with different axioms. A nice example comes from Hacking (2001). Consider
representing the probability of a certain event, A, as P(A) = ∞, and if A were
impossible, P(A) = −∞. In such a system:

• If the event A and Ã (the event “not A”) have the same probability, then P(A) =
P(̃ A) = 0

• If the event A is more probable than Ã, then P(A) > 0
• If the event Ã is more probable than A, then P(A) < 0.
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This too could form the basis of a theory of probability, but it is one we choose not
to adopt because it seems “inconvenient” to work with and makes it more difficult
to study the behavior of chance set-ups.

3.4.2 Definitions of probability

DeFinetti’s declaration in Surprising Idea 6 that “PROBABILITY DOES NOT EXIST” may,
at minimum, appear to be a bit intemperate. Indeed, it presupposes that many
practically minded non-Bayesian regression runners are in the grips of some bizarre
hallucination. It will help to consider two broad classes of definitions of probability
that are sometimes referred to as:

1. “aleatory” or frequency-type probabilities
2. “epistemic” or belief-type probabilities.

Aleatory probabilities are perhaps what is most familiar to the non-Bayesian. For
many, the notion of any other type of probability may not have been seriously
entertained. It is interesting to observe that criticism of aleatory probability began
at the inception of modern statistics and, as Hacking (1975, p. 15) observes,
“philosophers seem singularly unable to put asunder the aleatory and the episte-
mological side of probability. This suggests that we are in the grip of darker powers
than are admitted into the positivist ontology.”

I began my presentation with Kolomogorov’s axioms since everyone seems to
agree on something like these; disputants disagree on what they are useful for,
or what, precisely, they are “about.” I won’t do a complete survey, but a few
moments of reflection may be all that is required to consider how slippery a notion
probability could be.26

3.4.3 Aleatory or frequency-type probabilities

When we say “the probability that a fair coin will land as heads is 1
2 ” we could take

it as a statement of fact, which is either true or not. When we do so, we are generally
thinking about probability as describing something that results from a mechanism
that tosses coins and the geometry of the coin, perhaps. This mechanism can be
described as a “chance set-up.” We might go on to describe the physics of the
place containing our coin-toss mechanism. A mechanism that would be perfectly
useful in Ann Arbor, Michigan, might not work somewhere in the deep reaches of
outer-space.

Nonetheless, most non-Bayesians, it would seem, are content to harbor little
doubt that, at some fundamental level – whether we know the truth or not – it
is meaningful to talk about the probability of a tossed coin falling heads. When
pressed to explain what they mean when they say that the probability is 1

2 that a
fair coin will turn up heads, such a person might say “In the long run, if I were to
repeatedly toss the coin in the same way, the relative frequency of heads would be
1
2 .” We’ve yet to worry about “the long run” but, even at this level, for example,
we would like to exclude the following deterministic but infinite series as being a
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prototype for what we have in mind:

H T H T H T . . .H T . . .

In such an example, if we know the last coin toss was “H” we are certain that the
next coin toss will be “T .” An “intuitive” definition that excludes such a possibility
was given by Venn (1888), who talked about a probability as a characteristic of a
series as “one which exhibits individual irregularity along with aggregate regular-
ity.” If we denote the number of “Trials” by N and the number of times the event
“Heads” occurs as m(N), we might go on to define the probability of “Heads” as:

P(Head) = lim
N→∞

m(N)

N
.

An apparent weakness of this definition is, of course, that infinity is rarely
observed. The derisive term about such thought exercises is sometimes referred to
as “asymptopia” – which suggests something both unrealistic and unattainable.27

3.4.4 Objective, subjective, or “it depends”

Whether such a concept corresponds to something “real” or “objective,” or
whether it is “in the mind,” is a subject on which much has been written. Some-
times such probabilities have been described as “objective” in order to contrast
them with Bayesian “probabilities.” However, one Bayesian objection is that there
is no such thing as an “objective probability” – any such probability depends on
purely subjective beliefs:

To calculate a frequency, it is necessary to consider a repetitive phenomenon
of a standardized variety. The appropriate meaning of “repetitive” and “stan-
dardized” is not obvious. To calculate a relative frequency it is necessary to
subjectively define (possibly only conceptually) a class of events (known as a
collective) over which to count the frequency. The relative frequency of the event
[“Heads”] should also tend to the same limit for all subsequences that can be
picked out in advance.28

To the extent that individuals agree on a class of events, they share an
objective frequency. The objectivity, however, is in themselves, not in nature.
(Poirier, 1995)

Poirier, a Bayesian, stresses the (implicit) “subjectivity” of the frequentist notion of
probability, specifically the notion of a “collective.” The non-Bayesian von Mises
(1957, p. 12), for example, defines a collective as a “sequence of uniform events
or processes which differs by certain observable attributes, say colours, numbers,
or anything else. Only when such a collective is defined, then a probability can
be defined. If it is impossible to conceive of such a collective, then it is impossible
to talk about probability.” For von Mises, the notion of collectives with infinite
numbers of entities was an abstraction to make the mathematical representation
of reality “tractable” (Gillies, 2000, p. 90). While an extensive discussion of a
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“collective” is beyond our scope, it is important to acknowledge that there can
be “legitimate” disagreements about whether certain probabilities can be said to
“exist.” Von Mises argues that the reason it is possible to talk about the probability
of a tossed coin turning up “Heads” is because it is easy to think of the “collec-
tive”; it is not possible, he says, to consider “the probability of winning a battle
. . . [which] has no place in our theory of probability because we cannot think of a
collective to which it belongs.”

I personally share von Mises discomfort with defining the “probability of
winning a battle,” but I imagine others do not. Whether or not it would be “mean-
ingful” to do so, or whether it “has no place in our theory of probability,” the
ultimate criterion in the non-Bayesian context is: “Would doing so help in under-
standing?” The salient issue is not that different, in principle, from the qualms a
physicist might feel about “whether a particular mechanical system is in fact iso-
lated or not.” Whether that is a “defect” of the theory of probability or whether
it introduces an undisciplined element of “subjectivity” is a subject upon which
there has been much philosophical debate.29

3.4.5 Epistemic probability

The difficulties that a non-Bayesian might feel about conceiving of the appropriate
collective are largely avoided/evaded when we consider a different notion of prob-
ability – epistemic. A nice place to start is a description from Savage, often called a
“radical subjectivist:”

You may be asking, “If a probability is not a relative frequency or a hypothetical
limiting relative frequency, what is it? If, when I evaluate the probability of
getting heads when flipping a certain coin as .5, I do not mean that if the coin
were flipped very often the relative frequency of heads to total flips would be
arbitrarily close to .5, then what do I mean?” We think you mean something
about yourself as well as about the coin. Would you not say, “Heads on the next
flip has probability 0.5” if and only if you would as soon guess heads as not,
even if there were some important reward for being right? If so, your sense of
“probability” is ours; even if you would not, you begin to see from this example
what we mean by “probability.” (Savage, 1972)

What is also interesting is that instead of Kolomogorov’s axioms reflecting a
(possibly) arbitrary set of axioms about unknown concepts which (one hopes)
resemble some real world situation, they can also be derived from “betting rules.”
Again quoting Savage:

For you, now, the probability P(A) of an event A is the price you would just be
willing to pay in exchange for a dollar to be paid to you in case A is true. Thus,
rain tomorrow has probability 1/3 for you if you would pay just $0.33 now in
exchange for $1.00 payable to you in the event of rain tomorrow. (ibid.)
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As when we encountered Expected Utility, viewing probability as a device that
allows one to make sensible “bets” is not necessary. The important distinction
between aleatory and epistemic probability is that epistemic probabilities are num-
bers which obey something like Kolmogorov’s axioms but do not refer to anything
“real” in the world, but to a (possibly) subjective “degree of belief.” Here’s one
definition from Poirier (1995, p. 19):

Let κ denote the body of knowledge, experience or information that
an individual has accumulated about the situation of concern, and let A denote
an uncertain event (not necessarily repetitive). Then the probability afforded by
κ is the “degree of belief” in A held by the individual in the face of κ.

Given this definition of probability, stating that the probability that a fair coin
lands heads is not stating some property of a chance set-up – rather, it is an
expression of belief about what the coin will do.30 It is important to point out
that opinions about this subject vary amongst Bayesians. I.G. Good, for instance,
maintains that “true” probabilities exist but that we can only learn about them by
using subjective probabilities. DeFinetti, as we saw, believes that it is unhelpful to
postulate the existence of “true” probabilities.

How does this differ from the aleatory- or frequency-type probability we
discussed above? Again quoting from Poirier (1995, p. 19):

According to the subjective . . . interpretation, probability is a property of
an individual’s perception of reality, whereas according to the . . . frequency
interpretations, probability is a property of reality itself.

Among other things, in this view the probability that a fair coin-toss is heads
differs across individuals.31

3.4.6 Conditional probability, Bayes’ rule, theorem, law?

Is it Bayes’ rule, law, or theorem? Is it one of the most powerful ideas of all time,
or the source of much mischief? Dennis Lindley (as cited in Simon, 1997) observes
that “[Bayes’] theorem must stand with Einstein’s E = mc2 as one of the great, sim-
ple truths.” Putting aside the intractable issue of what the Reverend Bayes meant,
this has been the subject of considerable controversy and study.32

For the typical non-Bayesian, R.A. Fisher and William Feller, for example, Bayes’
rule is nothing but a manipulation of the law of conditional probability.

Everyone starts with a definition of conditional probability:

P(Ai|B) = P(Ai
⋂

B)

P(B)
if P(B) > 0. (3.2)

Provided the necessary probabilities exist, we can do the same thing in reverse:

P(B|Ai) =
P(Ai

⋂
B)

P(Ai)
if P(Ai) > 0. (3.3)
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Then there is the “conditional” version of the law of total probability: as before,

let the Aj be mutually exclusive events, for j = 1 . . . k and
∑k

j=1 P(Aj) = 1 and, if
0 < P(B) < 1:

P(B) =
k∑

j=1

P(B|Aj)P(Aj).

What this says is that if P(B) is the probability of some event, and it can be
accompanied by some of the k mutually exclusive events Aj in some way, then
the probability that P(B) occurs is merely the sum of the different ways B can occur
with Aj times the probability of P(Aj).

Using equations (3.2), (3.3) and (3.1), rearranging, and applying this last
operation to the denominator yields:

P(Ai|B) = P(B|Ai)P(Ai)

P(B)
(3.4)

P(Ai|B) = P(B|Ai)P(Ai)∑k
j=1 P(B|Aj)P(Aj)

. (3.5)

So far, there seems nothing particularly remarkable. However, here the agreement
ends. Consider a “Note on Bayes’ rule” by the non-Bayesian Feller (1950, p. 125):

In [the above formulas] we have calculated certain conditional probabilities
directly from the definition. The beginner is advised always to do so and not to
memorize the formula [Bayes’ rule, equation (3.5)] . . . Mathematically, [Bayes’
rule] is a special way of writing [the definition of conditional probability] and
nothing more. The formula is useful in many statistical applications of the type
described in [the above] examples and we have used it there. Unfortunately,
Bayes’s rule has been somewhat discredited by metaphysical applications . . .

In routine practice this kind of argument can be dangerous. A quality control
engineer is concerned with one particular machine and not with an infinite
population of machines from which one was chosen at random. He has been
advised to use Bayes’s rule on the grounds that it is logically acceptable and cor-
responds to our way of thinking. Plato used this type of argument to prove the
existence of Atlantis, and philosophers used it to prove the absurdity of New-
ton’s mechanics. But for our engineer the argument overlooks the circumstance
that he desires success and that he will do better by estimating and minimizing
the sources of various types of errors in prediction and guessing.

Feller’s suggestion that the engineer will do better by minimizing the various
types of errors is one issue where, at least rhetorically, non-Bayesians differ from
Bayesians. For Feller, the focus is on using statistics (or other methods) to put
ideas to the test, rejecting those that fail and advancing provisionally with those
that survive. Bayes rule is a formula about revising one’s epistemic probabilities
incrementally. This distinction will become apparent when we apply Bayes’ rule to
estimation.
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3.4.7 Reasoning or estimating with Bayes’ rule?

Not surprisingly, Bayes’ rule is viewed differently by Bayesians: it is a multi- (or all-)
purpose tool of reasoning. Consider first the version given by equation (3.4). To fix
ideas, let us consider one example of “Bayesian inference.” In the above notation,
let Ai be a specific hypothesis about the world and let B refer to some “data” that
has somehow come in to our possession. For example, Ai might be the hypothesis
that a coin is fair and B is the fact that you observed a single toss of the coin and it
landed “heads.” Your job is to ascertain how you should revise your beliefs in light
of the data.

1. The “model” or likelihood for the behavior of N tosses of a coin is given by the
following likelihood:

L(θ |N, h) =
(

N
h

)
θ

h
(1− θ)

N−h. (3.6)

As described by Poirier (1995), L is a “window” by which to view the world –
perhaps an “approximation” to the truth. We might debate what window is
appropriate but, in the usual context, it isn’t something to be “tested” or “eval-
uated.” Moreover, the likelihood is a function which tells us “how likely we
were to have observed the data we did (N, h)” given the truth of the model and
a specific value of θ . (NB: here the likelihood is a device that tells you, given the
parameter θ , what is the probability of observing the occurrence of h heads in
N tosses of a coin.)

Instead of using the coin toss mechanism to help you randomize, you are
going to study the coin (and the mechanism) and learn about it.

2. The next step is to specify a prior distribution – one particularly convenient
choice is the beta distribution. Priors are subtle things, but let us consider our
beliefs about the value of θ to be describable by the following two parameter
distribution:

f (θ ;α, δ) = �(α + δ)

�(α)�(δ)
θ
α−1

(1− θ)
δ−1

= 1
B(α, δ)

θ
α−1

(1− θ)
δ−1, (3.7)

where �(·) is the gamma function and B(·) is the beta function. This is a very flex-
ible distribution which can put weight on all values between 0 and 1. Figure 3.1
displays some of the wide variety of shapes the prior distribution can take for
different values of α and δ.

Different values of α and δ correspond to different beliefs. One way to get
some intuition about what type of beliefs the parameters correspond to is to
observe, for example, that the mode of the prior distribution (when it exists)
occurs at:

α − 1
α + δ − 2

.

mailto: rights@palgrave.com


John DiNardo 121

0
5

10

0 .2 .4 .6 .8 1
θ

α = 1, δ = 1 α = 0.5, δ = 0.5
α = 2, δ = 10 α =10, δ = 2
α = 15, δ = 15 α = 95, δ = 95

Figure 3.1 Different priors using the Beta distribution

It is sometimes helpful to think of α − 1 as the number of heads “previously”
observed, δ − 1 the number of tails, and α + δ − 2 as the total number of coin
flips previously observed from the experiment. On the other hand, it is not clear
how someone could verify that a particular choice of prior was a good or bad
description of one’s beliefs.

3. In the third step, we merely plug our prior and our likelihood into Bayes’ rule
and what we come up with is33

1
B((a+ h), (δ + (N − h)))

θ
α+h−1

(1− θ)
δ−1+N . (3.8)

Given the usual caveats, equation (3.8) is a statement of your personal beliefs
about the value of θ , modified in light of the observed coin-toss. The beta distribu-
tion is a nice example because it is easier than usual to characterize the resulting
“beliefs.”

The left panel of Figure 3.2 shows two different prior distributions – one labeled
“less informative” and the other “very informative.” The first prior distribution
corresponds to Beta(199,1) and the second to Beta(2,2). A convenient fiction to
appreciate these prior beliefs is to imagine that, in the first case, you have previously
observed 200 observations, 199 of which were heads. In the second case, you have
previously observed four observations, two of which were heads. The first case
corresponds to having “more prior information” than the second.
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Figure 3.2 Different prior and different posterior distributions

The mode of the posterior distribution occurs at:

α + h− 1
α + δ +N − 2

.

This can be fruitfully compared to the usual non-Bayesian maximum likelihood
(or method of moments) estimator, which is merely the sample mean:

h
N

.

The difference between the posterior mode and the usual non-Bayesian
estimator is that the former “adds” α−1 heads to the numerator and “adds” α+δ−2
observations to the denominator.34

To see what effect this has, the right-hand panel of Figure 3.3 shows the
resulting posterior distributions updated with 200 coin tosses, 100 of which are
heads.

For a slightly different type of comparison one can consider two situations:

Prior Data
Beta(99,99) 2 heads, 2 tails
Beta(2,2) 99 heads, 99 tails

In this case, although the experiments are very different, our conclusions are
exactly the same (see Figure 3.3).

The role of the prior distribution and the sufficiency of the posterior distribution
or likelihood are among the longest-standing debates in metastatistics. While a
complete review is impossible, some of the most frequently enumerated difficulties
are:

1. There is no way to verify whether the prior one has chosen adequately char-
acterizes one’s beliefs. Also, there is no unique way to translate ignorance or
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Figure 3.3 Different prior distributions, same posterior

“no information” into a prior distribution.35 Consider the problem of estimat-
ing the length of a square garden which has sides of length between 1 and 5
feet. Based on this information, it seems “natural” to say that there is a 0.5 prob-
ability that the garden has sides of length between 1 and 3 feet. Equivalently,
the information could be cast as saying that the area of the garden is between 1
and 25 square feet. In that case, it would appear just as natural to say that the
probability is 0.5 that the area of the garden is between 1 and 13 square feet.
This natural assignment of probability, however, implies that the probability
is 0.5 that the length of the sides is between 1 and ≈ 3.61 feet (

√
13). How-

ever, it would be personally inconsistent to believe both claims and there is no
principled method to reconcile the two different priors.

2. Even if a prior distribution is useful to the person holding it, it is not clear
that it is useful to anyone else. LeCam (1977) observes that, for the bino-
mial experiment, for arbitrary positive constant C, “if we follow the theory

and communicate to another person a density Cθ
100

(1 − θ)
100 this person

has no way of knowing whether (1) an experiment with 200 trials has taken
place or (2) no experiment took place and this is simply an a priori expres-
sion of opinion. Since some of us would argue that the case with 200 trials
is more ‘reliable’ than the other, something is missing in the transmission of
information.”

3.5 The importance of the data-generation process

3.5.1 An idealized hypothesis test

Ultimately we would like to return to the “introductory puzzle,” but before we do,
let us introduce some context. The value of hypothesis testing has been frequently
debated among non-Bayesians, but it may help to consider an idealized notion of
how it is supposed to be done – this version is from Kmenta (2000) – when wishing
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to make a statement about a population from a “random sample”:

Preamble State the maintained hypothesis [for example, the random

variable X is normally distributed with σ
2 equal to . . .].

Step 1 State the null hypothesis and the alternative hypothesis [for
example, H0 : μ = μ0 and HA : μ �= μ0].

Step 2 Select the test statistics [for example, X based on sample size
n = . . .].

Step 3 Determine the distribution of the test statistic under the null
hypothesis [for example,

√
n(X − μ0)/σ is distributed N(0, 1) –

normal, with mean zero and variance 1].
Step 4 Choose the level of significance and determine the acceptance

and the rejection region [for example, “do not reject H0 if−1.96 ≤√
n (X−μ0)

σ ≤ 1.96; otherwise reject it”].
Step 5 Draw a sample and evaluate the results [for example, “the value

of X is . . . which lies inside (outside) the acceptance region”].
Step 6 Reach a conclusion [for example, “the sample does (does not) pro-

vide evidence against the null hypothesis”]. To distinguish between
5% and 1% levels of significance we may add the word “strong”
before “evidence” when using the 1% level.

It will be worth noting Kmenta’s observations about the procedure: “According to
the above scheme, the planning of the test and the decision strategy are set before
the actual drawing of the sample observations, which does not occur until step 5.
This prevents rejudging the verdict to suit the investigator’s wishes.”

This observation comes up frequently in non-Bayesian discourse, but less fre-
quently among Bayesians: does the investigator want to ensure him/herself against
“rejudging the verdict?” Perhaps they should “rejudge the verdict?” As we will see,
this points to a notion of severity as being primary, as opposed to merely a con-
cern about the correctness of the various statistical tests (although the two are not
unrelated).

3.5.2 The introductory puzzle revisited

With this in mind, we can now reintroduce the puzzle. Specifically, the puzzle
arises because, by using some variant of the above procedure, under one experi-
ment observing 9 black of 12 balls allows one to reject the null hypothesis; in the
other, observing 9 black of 12 balls would not permit the researcher to reject the
null. Some Bayesians point to this example as evidence of a flaw in non-Bayesian
reasoning: why should what is “locked up in the head” of the researcher – his/her
intentions about what he/she was going to do – matter? In both cases, he/she has
the same “data.” This problem appears in many guises: in clinical trials there is a
debate about what should be done if, for example, “early” evidence from a trial
suggests that a drug is effective. The non-Bayesian response is that the Bayesian
view misconstrues the purpose of error probabilities.
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First, let’s illustrate the problem. In experiment A, the question is: “How often
would we expect to see 9 black balls out of 12 balls under the null hypothesis?”:

P(μ̂ ≥ 3
4
|H0) ≡ P(X ≥ 9|H0)

=
12∑

x=9

(
12
x

)
μ

x
(1− μ)

12−x

=
(

12
9

)
1
2

9
(1− 1

2
)
3 +

(
12
10

)
1
2

10
(1− 1

2
)
2 + . . .

= 220+ 66+ 12+ 1

212

= 299

212

= 0.073.

In experiment B, the question is: “Under the null hypothesis, what is the prob-
ability of drawing 9 or more black balls before drawing a third red ball?” Let r = 3
be the pre-specified number of red balls to be drawn before the experiment is to be
stopped. Let x index the number of black balls drawn, and let n = x+ r.

This is a straightforward application of the negative binomial distribution
where:

P(X ≥ 9|H0) =
∞∑

x=9

(
r + x− 1

r − 1

)
μ

x
(1− μ)

r

=
∞∑

x=9

(
x+ 2

2

)
μ

x
(1− μ)

r .

It is very helpful to observe in doing the calculation that:

∞∑
x=j

(
x+ 2

2

)
(
1
2
)
x = 8+ 5j + j2

2j
.

We can then write:

=
∞∑

x=9

(
x+ 2

2

)
μ

x
(1− μ)

3

=
(

1
2

)3 8+ 5(9)+ 92

29

= 1
8

(
134
512

)
= 0.0327.
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There are several points to make about these “experiments” from a non-Bayesian
perspective.

1. One point to emphasize is that in experiment A, the sample size is fixed. In
experiment B, it was possible that the same experimenter would have continued
to draw balls from the urn if a third red ball had not been drawn.

2. In neither case is it correct to make a statement such as “Given the experimental
results (of 9 black and 3 red) there is a 7.3% probability in experiment A (3.3%
probability in experiment B) that the null hypothesis is true.” The hypothesis
is presumably either true or false. The probability statements are statements
about one particular “property” of a procedure. Whether it is a “good” procedure
depends on a great deal more.

3. For many purposes, neither experiment is particularly “good.” It depends on
the alternative hypothesis that is the salient rival, but it is easy to come up with
cases where Type I and II errors are going to be rather large. Figure 3.4 displays
the sampling distribution of the two estimators. Neither experiment is going to
be good, for example, at detecting the difference between a true mean of 0.5
and 0.51.

Indeed, this was the non-Bayesian reaction to our earlier examination of
ECMO: these experiments aren’t likely to settle a well-meaning debate. Some-
times one is faced with a situation where one is trying to squeeze some inferential
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Figure 3.4 The introductory puzzle – which data-generation process?
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blood from an experimental rock. In many such cases, we will not be able to
put any proposition to a “severe test.”

For the Bayesian the resolution of the problem is quite different – the data-
generation process (DGP) doesn’t (and shouldn’t) matter. This if often referred to
as “the likelihood principle.” To see how this works, recall the statement of Bayes’
rule in equation (3.5):

P(Ai|B) = P(B|Ai)P(Ai)∑k
j=1 P(B|Aj)P(Aj)

.

Consider two different likelihoods such that:

zP(B|Ai) = P∗(B|Ai) ∀Ai, z > 0.

Now use Bayes’ rule to show that one’s inference is unaffected by use of P∗(B|Ai)

instead of P(B|Ai):

P(Ai|B) = P∗(B|Ai)P(Ai)∑k
j=1 P∗(B|Aj)P(Aj)

= zP(B|Ai)P(Ai)∑k
j=1 zP(B|Aj)P(Aj)

= zP(B|Ai)P(Ai)

z
∑k

j=1 P(B|Aj)P(Aj)

= P(B|Ai)P(Ai)∑k
j=1 P(B|Aj)P(Aj)

.

Indeed, because of this property, Bayes’ rule is often written as:

P(Ai|B)︸ ︷︷ ︸
Posterior

∝ P(B|Ai)︸ ︷︷ ︸
Likelihood

P(Ai)︸ ︷︷ ︸
Prior

. (3.9)

Consequently, how the data was generated does not matter for the typical Bayesian
analysis. It is also why a Bayesian would view the information in the binomial
versus negative binomial experiment as being the “same.”

This property of Bayesian inference has been frequently cited as being one of the
most significant differences between Bayesians and non-Bayesians.36

3.5.3 If the DGP is irrelevant is the likelihood really everything?

A great deal more follows from the Bayesian approach. Unlike the previous exam-
ple, which might discomfit some non-Bayesians, another implication seems a
bit more problematic. One significant difficulty with the simplest versions of
Bayesian analysis concerns the distinction between “theorizing after the fact” and
“predesignation.”
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There exist many discussions of this problem. Our discussion follows Sober
(2002), who poses a problem involving a deck of cards with 52 different types
of cards. Suppose 5 cards are randomly drawn from a typical 52-card deck. Call the
configuration of cards that results X. We are now going to use data on X to revise
our beliefs about various theories of the world.

Two theories that can “explain” X include:

1. Theory A. The particular 5 cards were randomly drawn from a deck of 52 cards.
2. Theory B. A powerful demon intervened to ensure that the configuration A was

drawn.

The essence of Bayesian analysis requires calculating the likelihood of observing
X if theory A is true and calculating the likelihood of observing X if theory B is
true. Your actual priors aren’t particularly important, but assume that P(A) > 0 and
P(B) > 0, although the probability you attach to them can be small.

The problem arises because the likelihood of the second (silly) theory is higher
in the second (false) theory than in the first (true) theory. Since there are
2,598,960 different 5-card hands that can result:

P[X|A] = 1/2, 598, 960

P[X|B] = 1.

Regardless of your prior beliefs about A or B, whatever you believed before,
equation (3.9) instructs you to increase the “weight” you give to the demon hypoth-
esis! (Of course, your posterior density might assign little weight to B, but our
interest is merely in the fact that the “experiment” induces you to give more weight
than you did before to B.) If we continued drawing 5-card hands, and continued
to elaborate our demon hypothesis after the fact, we could in principle move you
even closer to believing that hypothesis!

If that example strikes you as fanciful, consider a more familiar example, usually
called the “optional stopping” problem. To fix ideas, imagine being interested in
whether some normally distributed variable (with a known variance of 1) has a
mean of zero or otherwise.

1. Take a sample of size 100 and do the usual non-Bayesian hypothesis test in the

manner suggested by Kmenta earlier. In this case compute z =
∑N

i=1 Xi√
N

.

2. Continue sampling until |z| ≥ k0.05 or N = 1000, whichever comes first, where
k0.05 is the appropriate 5% critical value.

As the non-Bayesian knows, the first procedure provides a far more reliable indi-
cator that the mean is zero than the second test. With the sampling size fixed in
advance, if |z| turns out to be greater than the appropriate critical value, the usual
conclusion is that either the null is false or “something surprising happened.”
Under the second DGP, the probability of Type I error is 53% (see Mayo and Kruse,
2002).
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What the results of the experiment would do to a non-Bayesian’s beliefs is a
separate matter, but it is clear that he/she would find a “rejection” much more
informative in the first case.

By contrast, for the Bayesian who adheres to the Likelihood Principle, both exper-
iments provide the same information: the posterior probability assigned to the
null hypothesis should be the same, regardless of which experiment is performed.
The Bayesian is free to ignore the “intentions” of the experimenter (that is, the
DGP), presumably “locked up” in the mind of the experimenter. Confronted with
the evidence consistent with the usual rejection of the null for the non-Bayesian,
the change in the posterior beliefs of the Bayesian would be the same under both
experiments.

An interesting debate on “optional stopping” can be found in the famous Savage
forum (1962, p. 70 ff.), where precisely this example is discussed. For Armitage, a
non-Bayesian, the DGP is very important and a flaw of Bayesian reasoning:

I think it is quite clear that likelihood ratios, and therefore posterior probabili-
ties, do not depend on a stopping rule. Professor Savage, Dr Cox and Mr Lindley
[participants in the forum] take this necessarily as a point in favour of the
use of Bayesian methods. My own feeling goes the other way. I feel that if a
man deliberately stopped an investigation when he had departed sufficiently
far from his particular hypothesis, then “Thou shalt be misled if thou dost not
know that.” If so, prior probability methods seem to appear in a less attractive
light than frequency methods, where one can take into account the method of
sampling. (Savage et al., 1962, p. 72)

G.A. Barnard, another forum participant – who originally proposed that the
two experiments should be the same (Barnard, 1947a, 1947b) and introduced the
notion to Savage – expressed the view that the appropriate mode of inference would
depend on whether the problem was really a matter of choosing among a finite set
of well-defined alternatives (in which case ignoring the DGP was appropriate) or
whether the alternatives could not be so clearly spelled out (in which case ignoring
the DGP was not appropriate.)37

3.5.4 What probabilities aren’t – the non-Bayesian view

In a phrase, a Bayesian is more congenial to the notion that probabilities generated
in the course of hypothesis testing represent the “personal probability that some
claim is true or not,” while such probabilities are merely devices that help “guide
inductive behavior by assessing the usefulness of an experiment in revealing an
‘error.”’38 One problem sometimes cited by Bayesians is that non-Bayesians don’t
understand what “probability” means. To put it succinctly, a “p-value” is not :

• “The probability of the null hypothesis.
• The probability that you will make a Type I error if you reject the null hypothesis.
• The probability that the observed data occurred by chance.”(Goodman, 2004)
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The usual set-up begins with a “null hypothesis” and an “alternative hypothesis.”
Hypotheses can be simple or composite: an example of a simple hypothesis is
“The population mean of a binomially distributed random variable is 0.5.” That
is, we can completely characterize the distribution of the random variable under
the hypothesis. A “composite” hypothesis is a hypothesis that does not completely
characterize the distribution of the random variable. An example of such a hypoth-
esis is “The population mean of a binomially distributed variable is greater than
0.5.” In addition to a set of “maintained hypotheses” (“the experimental appara-
tus is working correctly”), the next step is specifying a test statistic. In the usual
hypothesis testing procedure, the distribution of this test statistic under the null
hypothesis is known.

There are many ways to demonstrate that the probabilities that are used in
hypothesis testing do not represent the probability that some hypothesis is true. A
distinction that is sometimes made is “before trial” and “after trial” views of power
and size. The following example comes from Hacking (1965).

Consider two hypotheses, a null (H0) and an alternative (H1), which are the only
two possible states of the world. Let E1, E2, E3, E4 be the four possible outcomes
and let the following be true about the world:

P(E1) P(E2) P(E3) P(E4)

H0: 0 0.01 0.01 0.98
H1: 0.01 0.01 0.97 0.01

We are interested in two tests, R and S, and specifically the power and size of the
tests. Let the size of a test be the probability of incorrectly rejecting the null when
it is true, and let the power of the test be 1 less the probability of Type II error
(not rejecting H0 when it is false). For tests of a given size, more powerful tests are
“better.” The caveat about “a given size” is necessary since we can always minimize
size by deciding on a rule that always rejects.

Before trial
Size Power

Test R Reject H0 if and only if E3 occurs 0.01 0.97
Test S Reject H1 if and only if E1 or E2 occurs 0.01 0.02

If one takes a naive view of “power” and “size” of tests, the example is problem-
atic. The size of both tests are the same, but test R is much more powerful – much
less likely to fail to reject the null when it is false. Before the trial, we would surely
pick test R.

What about after the trial? Consider the case when E1 occurs. In that case test
R instructs us to “accept” the null when after the trial we know with complete
certainty that the null is false. The standard “evasion” of the problem for non–
Bayesians is to observe (as Hacking, 1965, and Mayo, 1979, observe), that this is
not a test that would usually be countenanced since there exist uniformly more
powerful tests than R. This evasion, however, does not get to the heart of the
problem.
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3.5.5 What should “tests” do?

The previous discussion has attempted to be clear about why the “probabilities”
of the usual hypothesis testing procedures should not be conflated with the
“probability that the hypothesis is true.”

What, then, is the “heart of the problem”? One argument, now associated with
Mayo (1996), is that hypothesis tests should be used to put propositions to “severe”
tests. The purpose of the probabilities for the non-Bayesian is to ascertain, as much
as one can, how reliable specific procedures are at detecting errors in one’s beliefs.

What is a severe test? In C.S. Peirce’s words:

[After posing a question or theory], the next business in order is to commence
deducing from it whatever experimental predictions are extremest and most
unlikely ...in order to subject them to the test of experiment. The process of
testing it will consist, not in examining the facts, in order to see how well they
accord with the hypothesis, but on the contrary in examining such of the prob-
able consequences of the hypothesis as would be capable of direct verification,
especially those consequences which would be very unlikely or surprising in
case the hypothesis were not true. When the hypothesis has sustained a testing
as severe as the present state of our knowledge . . . renders imperative, it will
be admitted provisionally . . . subject of course to reconsideration. (Peirce, 1958,
7.182 and 7.231, as cited in Mayo, 1996)

Perhaps no better account can be given than Peirce’s quotation. A nice quick gloss
of a slightly more formal version of this idea is given in Mayo (2003):

Hypothesis H passes a severe test T with x if :

(i) x agrees or “fits” H (for a suitable notion of fit).
(ii) with very high probability, test T would have produced a result that fits H

less well than x, if H were false or incorrect.

Mayo (1996) gives a nice example of why error probabilities of themselves are not
enough, and why specification of an “appropriate” test statistic is a key ingredient.
Mayo’s example involves testing whether the probability of heads is 0.35 (H0)
against the alternative that it is 0.10 (H1). It is an “artificial” example, but doesn’t
suffer the defect of the previous example – namely that the test is not the best in
its class.

Suppose it is agreed that four coins will be tossed and that the most powerful
test of size 0.1935 will be chosen. The following table shows the likelihood of
observing various outcomes in advance of the experiment:

# Heads 0 1 2 3 4
P(H0|·) 0.1785 0.3845 0.3105 0.1115 0.0150
P(H1|·) 0.6561 0.2916 0.0486 0.0036 0.0001
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Consider the following two tests:

Test 1 Reject H0 ⇐⇒ h = 0, 4 Size = 0.1935 Power = 1− 0.3438
Test 2 Reject H0 ⇐⇒ h = 0 Size = 0.1785 Power = 1− 0.3439

Given the set-up, the most powerful test of size 0.1935 is Test 1 – it is (slightly) more
powerful than Test 2. But preferring Test 1 clearly doesn’t make sense: if one sees
all heads, it is surely more likely that H0 is true, yet Test 1 instructs you to reject.
Mayo’s solution is to observe that Test 1 fails to use an appropriate test statistic –
one that measures how well the data “fits” the hypothesis. Even though one is
searching for tests of size 0.1935 or better with the most “power,” one chooses Test
1 at the cost of a nonsensical test statistic. The usual sort of test statistic might be
the fraction of heads (F) less 0.35. Such a statistic has the property of punishing
the hypothesis in a sensible way.

In this case, the test statistic takes on the following values:

# Heads F − 0.35
0 −0.35
1 −0.10
2 0.15
3 0.40
4 0.65

In this account, Test 2 corresponds to the decision rule “Reject if F − 0.35 < −0.1”
and the outcomes are now ordered by their departure from the null (in the direction
of the alternative). The use of an appropriate sense of “fit” serves to show that the
probabilities per se are not important – they don’t directly correspond to a measure
of belief. Rather, they are one step in assessing how good the test is at revealing
an “error” (Mayo, 2003). The theory doesn’t tell you in most non-trivial cases,
however, how to generate a sensible test statistic – that depends on context.

While this example is admittedly superficial, it helps explain why, in con-
structing a good experiment, the importance of other (possibly not well defined)
alternatives cannot be ignored. How severe a test is is always relative to some other
possible alternatives. Suppose we collect data on unaided eyesight and the use of
corrective glasses or contact lenses. If one proposed to “test” the theory that eye
glass wearing caused unaided eyesight to get worse and found a “significant” rejec-
tion of the null of no correlation in favor of the alternative that the correlation was
negative the “p-value” might be small but it would fail to be a severe test against
the hypothesis that people with poor uncorrected vision are more likely to wear
eye glasses.

3.5.6 Randomization and severity

One place where Bayesians and non-Bayesians differ is on the usefulness of
randomization. Here, we can only introduce the problem.
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Consider a case where the true state of the world can be characterized simply by
the following:

y = β0 + β1T + β2X + ε, (3.10)

where, for simplicity, the β are unknown parameters, the X are things that “cause”
y and are observed, ε are things that “cause” y but are not observed, and T =
1(received treatment).

For the non-Bayesian, one of the benefits of randomization is that the X variables
available are usually very inadequate. Also ε is some convolution of omitted vari-
ables and functional form misspecification: it is not generally plausible to make
a statement like “ε follows the normal distribution,” although statements like
that are often found in the literature. Hence, though one could write down a
“likelihood,” it isn’t necessary for the non-Bayesian.

A caricature might make this clear: it is not the case that “on the first day, God
created y and made it a linear deterministic function of T and X; on the second day,
in order to make work for econometricians, God appended a normally distributed
error term with mean 0.”

Indeed, in a randomized controlled trial (RCT), when the experimenter can inter-
vene and assign T randomly, the “model” the experimenter estimates is often
much less complicated:

y = β0 + β1T + ε. (3.11)

For purposes of estimation one could write down a normal likelihood for this
model:

y = 1

σ
√

2π
exp

(
−yi − β0 − β1Ti

2σ2

)
. (3.12)

With this likelihood, one could then specify prior beliefs about the fixed parameters
β0 and β1, stipulate the form of heterokedasticity (that is, that the variance of ε

was a constant for all observations, or model the heteroskedasticity), and so on.
After seeing the data a Bayesian could update his/her beliefs about the values of
these two parameters. Note that, in this formulation, there appears to be nothing
special about the likelihood to distinguish it from any other comparison of means
– nothing tells us, for example, that T was assigned randomly.

Nonetheless, writing down the likelihood seems a bit bizarre for the non-
Bayesian. For example, if the treatment, T , was a nicotine patch and y was some
outcome like “quit smoking successfully,” no one thinks that only the patch mat-
ters and nothing else that can be observed matters – clearly the price of cigarettes,
social norms, and so on, play a role. Indeed, available covariates are usually not
used except to “test” the validity of the design. Specifically, in repeated samples:

E[y1] − E[y0] = β1 (3.13)

E[X1] − E[X0] = 0 (3.14)

E[ε1] − E[ε0] = 0, (3.15)
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where y1 ≡ 1
N1

∑
i;T=1 yi, y0 ≡ 1

N0

∑
i;T=0 yi, the subscript 1 refers to the

treatment group, the subscript 0 refers to the control group, and so on.
Taken literally, (3.14) suggests that, on average, in repeated samples, the mean

for any pre-treatment variable should be the same. An auxiliary implication is that
if one ran the regression but also included pre-treatment variables, the estimate of
the effect of the treatment should not change. If it does change substantially, this
is evidence against the design, and a cause for concern.

To fix ideas, suppose the treatment under consideration is ECMO (which we
considered in section 3.1.1) and suppose a standard randomization scheme was
employed on a large sample of children. A standard procedure is to report the
averages for several variables. Table 3.1 is a hypothetical table.

Table 3.1 Hypothetical RCT on the efficacy of
ECMO pre-treatment values of key variables
(standard errors in parentheses)

Pre-treatment variable Treatment Control

Birth weight (grams) 3.26 3.21
(0.22) (0.23)

Age (days) 52 54
(13) (14)

Usually researchers report whether there are any “significant” differences
between the treatment and control group means. The intended purpose is to ensure
that the two groups satisfy a ceteris paribus condition: in ways we can observe,
are the two groups roughly the same? – this is sometimes referred to as “bal-
ance.” If sample sizes are large enough, more frequently than not the values in
the two columns will not be “significantly” different. It serves as a “check” that
the randomization achieved its intended purpose.

What variables should be included in this “check”? Presumably such a list does
not include hair color, although this, in principle, should be balanced as well.
The usual rule is to consider “pre-treatment variables which are predictive of the
outcome.” These may or may not be part of a proper “model” of infant death,
but are there to assure one that, if there is a large difference in the groups after
treatment, the researcher will not mistakenly attribute to the treatment what was
really a failure of the ceteris paribus condition.

Bayesians frequently point to a flaw in this argument:

My doubts were first crystallized in the summer of 1952 by Sir Ronald Fisher.
“What would you do,” I had asked, “if, drawing a Latin Square at random for
an experiment, you happened to draw a Knut Vik square?” Sir Ronald said he
thought we would draw again and that, ideally, a theory explicitly excluding
regular squares should be developed . . .
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The possibility of accidentally drawing a Knut Vik square or accidentally putting
just the junior rabbits into the control group and the senior ones into the experi-
mental group illustrates a flaw in the usual . . . argument that sees randomization
as injecting “objective” or gambling-device probabilities into the problem of
inference. (Savage et al., 1962, p. 88)

Savage’s example of having all the young rabbits in the control group and all
the older rabbits in the treatment group is perhaps more recognizable than the
distinction between Latin squares and Knut Vik squares, which come from clas-
sical agricultural experimentation. It is also related to the problem of random or
pseudo-random number generation. If generating a sequence of random 0s and
1s, for instance, by chance (if only infrequently), some of these sequences will be
undesirable – for example, if drawing a sequence of 1,000 numbers, it is possible
that one draws all zeroes or all ones.

In the context of the RCT, the analogous problem, loosely based on our ECMO
example, is described in Table 3.2. Assignment to the two groups was randomized
but “bad luck” happened and the control group was comprised of the lightest birth-
weight babies (and viewed by the doctors as usually the least healthy) who were,
on average, potentially in need of ECMO at much older ages (again, viewed by the
doctors as an indicator of general frailty).

Table 3.2 Bad luck in a hypothetical RCT on
the efficacy of ECMO pre-treatment values of key
variables (standard errors in parentheses)

Pre-treatment variable Treatment Control

Birth weight (grams) 3.26 2.1
(0.22) (0.23)

Age (days) 52 140
(13) (14)

In this example, the problem is that the treatment and control groups are not
“balanced.” The treatment babies are (before treatment) healthier on average than
the control babies. The typical non-Bayesian would generally find the numbers
in Table 3.2 evidence against the validity of the design.39

For Bayesians, this suggests that the logic of randomization is flawed. If “balance”
is the primary reason for randomization, why not deliberately divide into groups
which look similar (and would “pass” a balancing test) without randomization per
se. How does introducing uncertainty into treatment assignment help? Indeed, to
some Bayesians, all it can do is lower the value of the experiment. From Berry and
Kadane (1997):

Suppose a decision maker has two decisions available, d1 and d2. These two
decisions have current (perhaps posterior to certain data collection) expected
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utilities U(d1) and U(d2) respectively. Then a randomized decision, taking d1
with probability λ and d2 with probability 1 − λ would have expected utility
λU(d1)+ (1− λ)U(d2). If the randomization is non-trivial, i.e. if 0 < λ < 1, then
randomization could be optimal only when U(d1) = U(d2), and even then a
non-randomized decision would be as good.

Savage goes further: “It has been puzzling to understand, why, if random choices
can be advantageous in setting up an experiment, they cannot also be advantageous
in its analysis.”

There is much more to say: for instance, it may be useful to think about this class
of problems in terms of the severity concept that we introduced earlier. However,
it may be more instructive to consider two examples from real research. In one, I
identify the problem as lack of severe testing. In the second, I identify the problem
that the world is a “complicated place”: assertions that were felt to be well-grounded
by numerous studies seem less so in the face of a well-designed experiment.

3.6 Case study 1: “medication overuse headache”

In section 3.1.1 I briefly mentioned the case of ECMO – a treatment for infants
with persistent pulmonary hypertension whose success was initially uncertain,
but retrospectively seems of great benefit. Here I would like to consider a poten-
tially “mirror-image” case: a treatment is being administered that, in my view,
is potentially quite harmful. Also, I would argue, the literature is of unbeliev-
ably low quality. I locate the problem with the theory in the fact that, instead
of behaving like Mayo’s “error statistician” or engaging in “Peircean severe test-
ing,” the researchers began with a prior belief and then set about “updating” it.
It should be noted that none of the studies involving this topic used “Bayesian
statistics.”40 Rather, the question is “Is there enough evidence to proceed with the
expert consensus or is more ‘severe’ testing necessary?”

This case is particularly useful because, as with many problems in medicine and
social sciences (and elsewhere), it involves a problem of dubious ontology (is there
“really” such a thing as medication overuse headache (MOH)?) as well as the prob-
lem of “new hypotheses” that “accommodate” the evidence instead of having a
theory held in advance that “predicted” the evidence (much like our “demon”
example in section 3.5.3).

A road map for what follows is:

1. During a period of time when the field was considered a “backwater” a diagnosis
of MOH was developed. This theory argued that people with chronic severe
headache pain caused their pain by taking pain medication “too frequently”
and that, if they merely stopped taking the medication, their pain condition
would improve.

2. The evidence for this theory was that patients who agreed to stop their pain
medication had higher rates of improvement than those who didn’t. These
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studies typically ignore serious selection bias due to non-random attrition and
regression to the mean.

3. In one of the few published critiques of the theory, it was noted that millions of
users of analgesics, for reasons other than headache, do not develop migraine. In
response, the theory evolved to state that only those individuals “predisposed”
to migraine get MOH.

4. When a definition of the diagnosis that required improvement in pain after
cessation of the offending medication was proposed it was strongly criticized.
The definition was revised to empty it of potentially refutable content.

Every challenge to the theory that pain medication causes pain has been met by
“accommodating” the evidence. Rather than reject the theory, at every turn the
theory has accommodated the new evidence by making it more difficult to test.
Furthermore, there is a complete absence of “severe testing.”

3.6.1 What is medication overuse headache? Nosology and
dubious ontology

The essence of “medication overuse headache” as a term for a certain class of
chronic headache pain42 is the idea that the patient causes his/her pain by taking
pain (or other headache) medication in excess of arbitrary norms (set by researchers
in the area) of appropriate use. The “offending” medication, as it is often referred
to, can be any of a very diverse set with very different effects and mechanisms
of action. These include ergotamine, caffeine, morphine, sumatriptan, and many
other drugs. Opioids (morphine and related medications) are generally thought to
be more of a problem than the other medications (Saper and Lake, 2006a).42 Ober-
mann and Katsarava (2007) cite a global prevalence rate of 1% and describe it as the
“third most frequent headache type after tension-type headaches and migraine.”43

There are two ways to account for this phenomenon. The obvious one is that
these people take chronic daily analgesics because they have chronic daily
headaches. This is the explanation embraced by our patients and, until recently,
by most physicians [who are not headache specialists]. (Edmeads, 1990)44

I believe this case study is illuminating because it suggests that the problem is not
one of failing to view probability as epistemic, but is because researchers in the
area have systematically not confronted their long-held views with severe testing.

3.6.2 Some salient background

3.6.2.1 Early history

In a recent review of the subject, Obermann and Katsarava (2007) date the first
clear identification of MOH to a 1951 study, without a control group or ran-
domization, which described 52 patients who took daily amounts of ergotamine
and improved after “the ergotamine was withdrawn. A recommendation of the
first withdrawal program followed and was introduced in 1963.” The view that
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medication overuse was a cause of migraine pain “became well-established” in the
early 1980s (Capobianco et al., 2001). It was first officially defined by the Inter-
national Headache Society (1988) – the international association of neurologists
with a specialty in headache – as “drug induced headache” in the International
Classification of Headache Disorders (ICHD-1) (Obermann and Katsarava, 2007).

The view that medication use caused head pain was developed during a period
of time when it was widely held that “migraine was a disorder of neurotic women”
(Silberstein, 2004).45

3.6.2.2 The evidence

While a complete review of the evidence is not possible, let me take one represen-
tative example: Mathew et al. (1990).46 Figure 3.5 is a modified version of a table
from Mathew et al. The title of the table is also from the original article. Patients
were assigned47 to different treatment groups and their progress was observed.48

As Mathew et al. report, the data in the figure were based only on those patients
who remained in the study – 90% in the group which continued to receive medica-
tion but only 50% in the group which had the medication withdrawn. With slight
variations, Mathew et al.’s conclusions have become standard.49 As far as I have
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Figure 3.5 The evidence in a nutshell
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been able to determine, the literature has not concerned itself with the problem of
non-random attrition. One might expect that a patient who fails to improve after
stopping the offending medication might be more likely to drop out than one who
has improved (for some reason possibly unrelated to treatment). One possible rea-
son for improvement might be mere “regression to the mean.” For evidence that
strongly suggests this is a problem see Whitney and Von Korff (1992).

3.6.2.3 First criticism

In one of the first (and extremely rare50) criticisms of research in this area, Fisher
(1988) observed:

As I understand it, analgesics beget more headache by making more brain sero-
tonin available, which paradoxically increases the pain. My question is whether
it holds only for headache or for other pains as well? In our arthritic clinic aspirin
was used in doses of 8 to 14 tablets a day for about 15 years. I asked physicians
who attended that clinic in those years whether they had ever noticed [the devel-
opment of headache pain] . . . in any of the patients and they never had. Also 3 to
5 million people in the United States are taking aspirin daily to prevent arterial
thrombosis. Should we expect headache . . . under these circumstances?51

As Fisher understood, the answer to his questions was “no” and advocated a ran-
domized trial on the effect of withdrawal from headache medications where the
control group would be subject to sham double-blind withdrawal. One can think
of this as a proposal for a “severe test.”

The response in the literature was to maintain that the theory was, in the main,
correct and to merely amend the theory to accommodate the troubling fact high-
lighted by Fisher.52 A typical amendment stated that “‘analgesic abuse headache’
may be restricted to those patients who are already headache sufferers [and
that] individuals with . . . migraine, are predisposed to developing chronic daily
headache in association with regular use of analgesic” (Bahra et al., 2003).

3.6.3 Redefining MOH to avoid a severe test

The process of defining MOH provides a clear example of researchers avoiding
a severe test. A useful place to start is the initial International Classification of
Headache Disorders – 2 (ICHD-2).53 The initial ICHD-2 definition of “medication
overuse headache” is displayed in Table 3.3 (Headache Classification Commit-
tee of the International Headache Society, 2006).54

A key aspect of the definition is criterion C: the patient’s decision to continue
using analgesics at more than the approved rate.55 This was immediately recog-
nized to be a problem: existing standards of treatment for other forms of migraine,
such as “menstrual migraine,” required the use of analgesics at a rate which could
then (inappropriately) be described as MOH.56

Another important aspect of the definition of MOH that was the subject of great
dispute was item D – the requirement that, after removing the patient from the
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Table 3.3 Initial 2004 International Headache Society classification criteria for analgesic-
overuse headache

A. Headache present on ≥ 15 days/month with at least one of the following characteristics
and fulfilling criteria C and D:
1 bilateral
2 pressing/tightening (non-pulsating) quality
3 mild or moderate intensity

B. Intake of simple analgesics on ≥ 15 days/month for > 3 months
C. Headache has developed or markedly worsened during analgesic overuse
D. Headache resolves or reverts to its previous pattern within 2 months after discontinua-

tion of analgesics

Table 3.4 Revised ICHD-2 criteria for MOH

A. Headache present on ≥ 15 days per month
B. Regular overuse for > 3 months of one or more acute/symptomatic treatment drugs as

defined under sub forms of 8.2
1. Ergotamine, triptans, opioids, or combination analgesic medication on ≥ 10

days/month on a regular basis for ≥ 3 months
2. Simple analgesics or any combination of ergotamine, triptans, analgesic, opioids on
≥ 15 days/month on a regular basis for ≥ 3 months without overuse of any single
class alone

C. Headache has developed or markedly worsened during medication overuse

offending medication, the patient would improve. As reported in the literature,
the problem was that such a requirement vitiated using MOH as a “diagnosis” in
the traditional sense: “the problem is that medication overuse headache cannot
be diagnosed until the overuse has been discontinued and the patient has been
shown to improve. This means that when patients have it, it cannot be diagnosed.
It can be diagnosed only after the patient does not have it any more.”

After a meeting of experts in Copenhagen, this offending section (D of Table 3.3)
– requiring improvement after going off the “causal” medications – was quickly
removed to produce a revised version (Table 3.4). Whatever their intent, however,
this redefinition seemed to make a MOH diagnosis impossible to refute.57 Indeed,
it was immediately noted that “the revision [to the definition of MOH] has elimi-
nated the need to prove that the disorder is caused by drugs, that is, the headache
improves after cessation of medication overuse” (Ferrari et al., 2008). Although they
suggested that “probable MOH” be introduced, their main focus was that sub-forms
of MOH be defined for different types of medications, with opioids singled out as
particularly problematic.58

The case of opioids is especially interesting since it is generally believed that
opioid-related MOH is more worrisome and it has been argued that “sustained opi-
oid therapy should rarely be administered to headache patients” (Saper and Lake,
2006b). This case is also useful since it might be falsely assumed that individu-
als doing research in this area (and supporting the idea of MOH) are incapable
of, or not disposed to, putting hypotheses to severe testing. As noted previously,
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researchers in this area routinely make no adjustment of any sort for the high rates
of attrition in studies looking at chronic headache pain.

An illustrative exception to non-severe testing involves, not a test of MOH, but
rather a study of the efficacy of sustained opioid therapy – opioids being considered
a particularly pernicious cause of MOH (Saper and Lake, 2006a, 2006b). Although
Saper et al. (2004) had no control group, the researchers treated individuals who
dropped out for any reason, died for non-opioid related reasons, were suspected of
“cheating” (using more opioids than allowed by the doctors), and so on, as treat-
ment failures. This also included some patients who reported a substantial improve-
ment but were considered to have “failed” to satisfy the researchers’ definition of a
significant reduction in functional impairment. In defining treatment failure more
broadly, the researchers were essentially using a “worst case” bound.59 While the
use of “worst case bounds” is infrequent (or nonexistent) in the MOH literature,
the argument for doing so has validity: it is entirely consistent with the notion
of “severe testing.” Indeed, leading researchers in MOH are aware of the potential
value of such bounds. Saper and Lake (2006b), for example, harshly criticize a meta-
analysis of RCTs on the efficacy of opioids for non-cancer pain for failure to adhere
to “intent-to-treat” principles. In this instance, this meant treating as failures those
individuals who began opioid treatment but then stopped for any reason.60

The severity of the tests to which opioid efficacy has been confronted is in sharp
contrast to extant studies of MOH (sometimes by the same researchers), where
a failure of a patient to reduce his medications is not treated as a failure of MOH
therapy. Indeed, where attrition rates of 40% or higher are common, were the litera-
ture to treat those who were unwilling or unable to abstain from the offending med-
ication as failures of “MOH therapy,” it would appear that few, if any, of the studies
in Zed et al. (1999) that purport to provide evidence favorable to the existence of
MOH would continue to do so. Indeed, although plagued by non-random attrition
and written by advocates of MOH, it has been observed that patients with MOH
who “lapse” and re-establish medication overuse have higher measured “quality
of life” on average than those with MOH who do not lapse (Pini et al., 2001).

It might fairly be argued that an intelligent Bayesian might not have moved
his/her posterior much in light of the foregoing discussion. Moreover, it is certainly
the case that no formal Bayesian analysis has been employed. At least superfi-
cially, the “usual” statistical analysis was employed. What this literature doesn’t do,
however, is:

1. test the theory in such a way that the observed result would be unlikely if the
obvious alternative (the one “favored by patients”) was true – that it is chronic
pain that causes use of pain relieving medication, not the other way around

2. employ the “usual” techniques to make tests more “severe” – the failure to
use worst-case bounds, for instance, to deal with the problem of non-random
attrition

3. react to each threat to the theory as potential reason to abandon the theory.
Instead, the reaction of researchers has been continued modification of the
theory until it is no longer capable of being refuted by evidence.
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3.7 Case study 2: “union wage premium”

I would now like to consider an econometrically sophisticated literature – the liter-
ature on union wage effects. Two comprehensive and influential surveys are Lewis
(1963, 1986). In these works, Lewis literally cites hundreds of studies attempting to
estimate the causal effect of union status on wages.61 See also the useful discussion
in Heckman (1990).

3.7.1 Early history

The idea that labor unions might raise wages is one of the oldest debates in eco-
nomics and was one of the earliest motivating examples for the famous “supply
and demand” cross in a study by Jenkin (1870) (see Humphrey, 1992, for a short
history). Ironically, although Jenkin (1868) concluded that the supply and demand
analysis wasn’t particularly relevant for explaining the consequences of union
wage-setting, subsequent neoclassical theorizing in the main focused on the simple
model depicted in Figure 3.6, where W is the real wage, L is the quantity of labor,
D is the employer demand curve, Sc is the supply curve without unionization and
Su is the supply curve with unionization. Until Lewis’ influential survey, opinions
diverged between those who believed that unions could rarely control the supply
of labor, such as Milton Friedman, and those that thought they could and therefore
acted to create unemployment, such as Paul Samuelson (see Friedman, 1950).

3.7.2 A battery of severe tests

The analysis of union wage effects has become more sophisticated with the advent
of large micro-datasets, but let me highlight some of the comparisons researchers
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Figure 3.6 Union wage effects in the neoclassical model
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have employed to analyze the question:

• Ashenfelter (1978) constructs control groups based on industry, race, and worker
type (that is, craftsmen, operatives, laborers).

• Freeman (1984) compares wage rates for the same individual at different points in
time. At one point in time the worker is in a unionized job; at a different point
in time the worker is in a non-unionized job.

• Lemieux (1998) compares wage rates for the same individual who holds two jobs,
one of which is unionized, the other which is not.

• Krashinsky (2004) compares wage rates of identical twins, one who is unionized
and one who is not.

• Card (1992) constructs control groups, based on observable characteristics,
which tend to receive the same wage in the non-union sector, as well as con-
trolling for differences in permanent characteristics (that is, person-specific fixed
effects).

• DiNardo and Lemieux (1997) and Card et al. (2003) compare US and Canadian
workers, exploiting differential timing in the decline of unionization in the two
countries.

Depending on the precise context, the union wage effect as measured in these
studies ranges from 5% to 45%, with the vast majority of studies being at the higher
end. All of the aforementioned studies adopt a distinctly non-Bayesian approach
to the econometric analysis. The variety of research designs was not motivated
by an attempt to “refine” posterior beliefs, but to put the hypothesis that unions
raise wages to the most severe test possible with existing data. Each of the papers
described above tried to “rule out” other explanations for the difference in union
and non-union wages. (Perhaps this is why the posterior distribution of estimates
of the union wage effect are as tight as they are – a survey of labor economists
found remarkable unanimity on the average size of the effect (Fuchs et al., 1998).
The posterior mode of the economists surveyed was that unions raised wages 15%
relative to similar non-union workers.)

What is also useful about this example is that there exists at least one Bayesian
analysis, Chib and Hamilton (2002), which helpfully contrasts some unsophisti-
cated non-Bayesian estimates from a small sample of workers. These non-Bayesian
estimates vary from about 16% to 25%. If one treats these as “average treatment
effects on the treated (ATOT),” these estimates are similar to their Bayesian posterior
distributions.62

To put it a bit too simply, the basic empirical model has long been some variant
of the following:

log wi = Xβ0 + αi + ε0 if Ui = 0

= Xβ1 + ψαi + ε1 if Ui = 1

P(Ui = 1) = F(Zγ ),
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where Ui is the union status indicator for worker i, wi is the wage of worker i, β

and γ are parameters – the first two differ depending on whether the worker is
unionized or not – X and Z are observed covariates, the ε are unobserved terms,
and ψ is the ratio of the return to unobserved time invariant individual specific
characteristics in the union to the non-union sector. The function F(·) is some type
of cumulative density function and the elements of Z may overlap with X.

The Bayesian analysis of Chib and Hamilton (2002) takes a variant of the above
model and is focused on how the effect of unions on wages varies across individuals.
As has long been recognized, however, to a great extent unionization in the US
occurs at the establishment level (this is in contrast to unionization in Europe, which
frequently adheres to most workers in an industry). As Krashinsky (2004) observes,
this has meant that the aforementioned empirical work has been unable to rule out
the possibility of a “firm or enterprise specific fixed effect”: a worker’s union status
could merely be a marker, for instance, for the profitability or generosity of the
employer.63 Put in other words, the list of “ceteris paribus” conditions considered
in previous research did not include “working at the same firm.”

As Freeman and Kleiner (1990) observe about the estimates of union wage
effects with individual data, the “treatment effect” of most interest comes from
an experiment on “firms” and not on “individuals” per se:

While it is common to think of selectivity bias in estimating the union wage
effect in terms of the difference between the union premium conditional on the
observed union (and nonunion) sample and the differential that would result
from random organization of a set of workers or establishments, we do not
believe that this is the most useful way to express the problem. What is relevant
is not what unionization would do to a randomly chosen establishment but
rather what it would do to establishments with a reasonable chance of being
unionized – to firms close to the margin of being organized rather than to the
average nonunion establishment.

DiNardo and Lee (2004) use a regression discontinuity design, which, in their
context, provides a very good approximation to an RCT of the sort discussed in
the quote from Freeman and Kleiner (1990). Like previous work in this area, one of
the motivating ideas was to put the hypothesis “do unions raise wages” to a more
severe test, one that would allow for, among other things, a firm-specific effect.

This was possible in this research design since it used data on “firms.” The
research design essentially focused on comparing firms where the union “barely
won” to those who “barely lost.”

We can only be brief here, but the experiment is a “regression discontinuity
design” based on an aspect of (US) labor law. Workers most often become unionized
as the result of a highly regulated secret ballot. If more than 50% of the workers vote
for the union, the workers win collective bargaining rights. If 50% or fewer do so,
the workers do not win the right to collective bargaining. By comparing outcomes
for employers at firms where unions barely won the election (for example, by one
vote) with those where the unions barely lost, one comes close to the idealized RCT.
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The test is severe against the hypothesis that unobserved differences in the firms
that are unionized versus those that are not unionized can explain the different
wages, and soon, of unionized workers.

It is rather easy to display the data from regression discontinuity designs.
Figure 3.7 plots an idealized version of the key displays: in each, the average value
of some outcome, where these averages are computed for different values of the
vote share. The figure on the left corresponds to the case where unionization has
an effect on the outcome in question. In the figure on the right (and one that
resembles the figures in DiNardo and Lee, 2004), there is no detectable effect of
unionization.

Figure 3.8 plots an idealized version of the key displays that correspond to ensur-
ing the validity of the research design or “balance”: in each the average value of
some pre-treatment outcome (in the study by DiNardo and Lee this included firm
size and measures of the health of the firm) are plotted for different values of the
vote share. The graph on the left corresponds to the good case: firms in establish-
ments where the union barely lost the election look the same as those where the
union barely won. This corresponds to what was found in DiNardo and Lee. The
figure on the right corresponds to a situation which is evidence against the design:
firms in establishments where the union barely lost look much different than firms
where the union barely won. In this case, the ceteris paribus conditions would seem
to be violated.

To summarize the results of the study, the authors find (perhaps surprisingly
given the huge literature documenting significant union wage effects) no effect of
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Figure 3.7 Two types of findings in a regression discontinuity design
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Figure 3.8 Evidence for or against “balance” in a regression discontinuity design

unionization on the myriad of outcomes they examine, such as wages, enterprise
solvency, productivity, and so on. Limitations of scope prevent elaborating in more
detail, but the study by DiNardo and Lee points to an important problem with any
“non-severe” test of a hypothesis – Bayesian or non-Bayesian. If one takes the results
from DiNardo and Lee seriously, it is hard to see how the problem could even be
addressed with individual data – irrespective of whether Bayesian or non-Bayesian
statistics were employed.

3.8 Concluding remarks

What I have written has only scratched the surface of longstanding disagreements.
For any suggestion of dissent with any “Bayesian” views discussed in this chapter,
there exists volumes of counter-arguments. Likewise, the debates among those who
do not employ Bayesian methods are no less voluminous. I, myself, don’t have a
single “theory of inference” to which I adhere.

As I have sought, for reasons of clarity, to highlight the differences between
Bayesian and non-Bayesian perspectives, I risk overstating them. It seems fit-
ting, therefore, to conclude by illustrating that one can often find “non-Bayesian
features” in Bayesian work and “Bayesian features” in non-Bayesian work.

3.8.1 Bayesian doesn’t have to mean “not severe”

The idea that only non-Bayesians look for “severe tests,” or “try to learn from
errors,” is not correct. One nice example comes from a recent careful study by Kline
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and Tobias (2008), which is interested in estimating the “effect” of the Body Mass
Index (BMI) on earnings.

Their point of departure is a two-equation model:

yi = f (si)+ xiβ + εi (3.16)

si = ziθ + ui, (3.17)

where yi is log average hourly wages, x is a vector of demographic characteristics
(schooling, experience, and so on) thought to have an effect on wages, si is the
BMI of an individual, and f (·) is some continuous function of s which the authors
introduce to allow for the reasonable possibility that, if BMI has an effect on wages,
it is not necessarily linear.64

The most obvious possible problem is “confounding” – the relationship we
observe between BMI and wages might merely represent the influence of other
omitted factors that are correlated with BMI: in their model this is represented
by a correlation between ε and u.65 One such confounder they consider is “pref-
erences for long-term investments, which we mean to represent characteristics
that simultaneously impact decisions affecting both health and human capital
accumulation.”

One solution to this confounding problem is the identification of an “instru-
mental variable” that provides “exogenous” variation in BMI (that is, a variable
which is correlated with BMI but not correlated with the unobserved determi-
nants of wages). The authors discuss two possible instrumental variables for BMI
– mother’s BMI and father’s BMI – and argue for their validity in several ways,
including references to other literature.

In the case where f (s) is linear in s, usual non-Bayesian practice is two-stage least
squares or the method of instrumental variables. One test which sometimes seems
to capture the notion of a“severe” test of the hypothesis that the instrumental
variables are valid is an “overidentification test.” Specifically, if both instrumental
variables are valid, the estimated effect of BMI should be similar whether mother’s
BMI is used alone as an instrumental variable, father’s BMI is used alone, or both
are used (Newey, 1985). If the test rejects, it is unclear how to proceed, but as the
authors note:

From a theoretical perspective, however, it seems reasonable that the BMIs of
the parents are either jointly valid as instruments, or jointly invalid, thus poten-
tially calling into question what is actually learned from this procedure. On the
empirical side, however, the correlation between parental BMI was found to
be reasonably small (around .16), suggesting that something can be learned
from this exercise, and that its implementation is not obviously redundant or
“circular.”

The authors’ observation that the correlation between parental BMI is small seems,
to me, to suggest the importance of “severity.” Had the correlation been much
higher, one might have been tempted to conclude that the proposed test was
“obviously redundant” or “circular.”
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Consequently, Kline and Tobias (2008) provide an “informal test” of the valid-
ity of the “exclusion restriction” by asking whether, after using one instrumental
variable, a model which excludes the other instrumental variable from the “struc-
tural equation” (equation (3.16) above) is well supported. Indeed, they calculate
the Bayes factor associated with the hypothesis that the effect of father’s BMI on
wages is zero while maintaining the validity of mother’s BMI as an instrumental
variable and find strong support for that hypothesis. They also find strong support
for the reverse.

While this does not exhaust the “specification testing” performed in the study, it
does indicate an attempt to put a hypothesis to the severest test possible. Interest-
ingly, although the study is clearly a “Bayesian” analysis, the authors found it useful
to conduct such a test in an “informal” way – without attempting to “shoehorn”
the specification testing into a complete Bayesian analysis.66

3.8.2 Non-Bayesian doesn’t have to mean “severe”

My personal view is that statistical theory is often useful for situations in which we
are attempting to describe something that looks like a “chance set-up.” How one
might go from information gleaned in such situations to draw inferences about
other different situations, however, is not at all obvious. Some Bayesians might
argue that one merely needs to formulate a prior, impose a “window on the world”
(a.k.a. a likelihood) and then use Bayes’ rule to revise our posterior probability. I
am obviously uncomfortable with such a view and find LeCam’s summary to the
point: “The only precept or theory which seems relevant is the following: ‘Do the
best you can’. This may be taxing for the old noodle, but even the authority of
Aristotle is not an acceptable substitute” (LeCam, 1977). This view also comports
well with C.S. Peirce’s classic description of a “severe test” I discussed earlier.

However, even at this level of vagueness and generality, it is worth observing
that such views are not shared by non-Bayesians, or if they are, there is no com-
mon vision of what is meant by severe testing. Except for the most committed
Bayesians, nothing in statistical theory tells you how to “infer the truth of var-
ious propositions.” As I have argued elsewhere (DiNardo, 2007), often the types
of theories economists seem interested in are so vague that it is often impossi-
ble to know what, in principle, would constitute “evidence” even in an “ideal”
situation.

Certainly it is the case that non-Bayesian researchers are frequently unwilling
to use statistical tools to change their views about some assessments. For one clear
example, compare Glaeser and Luttmer (1997) and Glaeser and Luttmer (2003).
The latter paper is a revised version of the former paper. The paper “develops a
framework to empirically test for misallocation. The methodology compares con-
sumption patterns for demographic subgroups in rent-controlled and free-market
places. [They] find that in New York City, which is rent-controlled, an economi-
cally and statistically significant fraction of apartments appears to be misallocated
across demographic subgroups”(Glaeser and Luttmer, 2003, p. 1027).

A significant difference between the two papers is that the latter, Glaeser and
Luttmer (ibid.), includes an interesting falsification test (not included in Glaeser
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and Luttmer, 1997). If the methodology works as intended, then when perform-
ing the same analysis on data from cities without rent control – they consider
Chicago, Illinois, and Hartford, Connecticut – they should consistently estimate
no welfare loss due to rent control. Contrary to such a presumption, however,
for both cities they estimate large amounts of apartment misallocation (although
these estimates are smaller than their estimate for New York City) that are statisti-
cally quite precise. Indeed, they acknowledge that “strictly interpreted, the results
reject the identifying assumptions. In both cities, the procedure finds statistically
significant misallocation” (Glaeser and Littmer, 2003, p. 1044). Nonetheless, while
there are differences between the two versions of the paper, it is not clear whether
such a rejection played any role in changing the inferences they draw. Indeed, they
argue: “While this is disturbing, the large difference between our New York results
and the results for these placebo cities suggests that even though our identifying
assumptions may not exactly be true, the failure of the assumptions is unlikely to
fully account for the observed misallocation in New York” (ibid., p. 1044). What
does it mean to say a set of assumptions fails to “fully account for the observed
misallocation” and why should the results be viewed as “disturbing” (if indeed
they should be)? In such a case, I think it is fair to say that we should have little
confidence that their proposed methodology has a “truth preserving virtue.” Note,
however, this is only weakly related to one’s views about the merits of rent control
in New York City.

Much of the variation among non-Bayesians in their reaction to such statistical
information seems to involve the “primacy” of certain types of (economic) models.
Very roughly speaking, one can point to “a design-based approach” which focuses
on creating or finding situations which resemble “chance set-ups” and where an
analysis of the DGP proceeds separately from a single, specific, highly articulated,
theoretical economic model. Historically, this approach has been associated with
an emphasis on such issues as pre-specified analysis, “serious” specification testing,
replicability, avoiding “confounding,” identification, and so on.67

By contrast, one can also identify at least one strand of so-called “structural
approaches” where there is little or no distinction between a DGP and a highly artic-
ulated “theoretical economic model.”68 An archetypal example of this approach,
perhaps, is the multinomial logit of McFadden (1974) in which the consumer
choice model – utility function, specification of heterogeneity in tastes, and so
on – delivers a complete DGP in the form of a likelihood function. A feature of
such an approach is that, in principle, once the model has been estimated, one
can study “counterfactual policy simulations” or “experiments” which may have
never been performed but can be described within the model.

This line of research gave birth to further developments which have yielded a
wide variety of attitudes toward what might be called “severe testing.” At one
extreme, some researchers, such as Edward Prescott, apparently “completely reject
econometrics as a useful scientific tool. Instead [Prescott] promotes calibration as the
preferred method for ‘uncovering’ the unknown parameters of structural models
and for evaluating and comparing their ability to fit the data” (Rust, 2007, p. 4).
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While not rejecting the usefulness of statistics outright, Keane argues:

that determinations of the usefulness of …“well-executed” structural models –
both as interpreters of existing data and vehicles for predicting the impact of
policy interventions or changes in the forcing variables – should rest primarily
on how well the model performs in validation exercises. By this I mean: (1) Does
the model do a reasonable job of fitting important dimensions of the historical
data on which it was fit? (2) Does the model do a reasonable job at out-of-sample
prediction – especially when used to predict the impact of policy changes that
alter the economic environment in some fundamental way from that which
generated the data used in estimation?

My use of the word “reasonable” here is unapologetically vague. I believe that
whether a model passes these criteria is an intrinsically subjective judgment, for which
formal statistical testing provides little guidance. This perspective is consistent with
how other sciences treat validation. (Keane, 2007, p. 32; emphasis added)

Indeed, Keane provides an illuminating illustration of this view by discussing an
example of estimating the parameters of a life-cycle human capital investment
model. After describing how the simplest version of the model fails to fit the data,
he goes on to explain:

by adding a number of extra features that are not essential to the model, but
that seem reasonable (like costs of returning to school, age effects in tastes for
schooling, measurement error in wages, and so on), we were able to achieve
what we regard as an excellent fit to the key quantitative features of the data
– although formal statistical tests still rejected the hypothesis that the model
is the “true” data generating process (DGP). Despite these problems, there is
nothing to indicate that the profession might be ready to drop the human capital
investment model as a framework for explaining school and work choices over
the life-cycle. (ibid., p. 33)

As one might expect, Keane does not set forth a specific context in which one
might find estimates of such a model “useful,” or to what extent, if any, the infer-
ences drawn from such an approach should influence the choices we make or
what we advocate to others. Surely the model with or without amendments can’t
be “reasonable” for all contexts.

The “metastatistical” question is “How much confidence should one have in a
judgment supported by such an approach?” The answer, to say the least, is not
obvious.

Notes

1. The original author(s) of the quote are unknown. “The very model of the anonymous
aphorism” (Koenker, 2007).

2. The number of Bayesian discussions are too numerous to list; nearly every book by a
Bayesian has some discussion of metastatistics. A few books I found helpful: Berger and
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Wolpert (1988), deFinetti (1974), Earman (1992), Good (1983), Howson and Urbach
(1993), Joyce (1999), Keynes (1921), Savage (1972). Economists in particular may find
Poirier (1995) useful for it’s comparative approach, as well as Zellner (1984). Non-Bayesian
discussions are not nearly as numerous but there are still many useful ones. Hacking
(1965, 2001) are excellent introductions, as are Mayo (1996) and Venn (1888). Mayo
(1996) has helped inspire a large literature trying, among other things, to provide a
“philosophy of experiment.” Useful articles with a broad focus include Freedman (1995)
and LeCam (1977). The former includes some nice examples where economists and
sociologists come off rather badly.

Occasionally all sides agree to get together and sometimes even agree to discuss issues.
The famous “Savage Forum” (Savage et al., 1962) is a nice introduction to a lot of the
issues. Kyburg and Thalos (2003) has a nice collection of different approaches.

3. Even the term “introductory” is not mine. Hacking (1983) wrote: “Introductory topics
should be clear enough and serious enough to engage a mind to whom they are new,
and also abrasive enough to strike sparks off those who have been thinking about these
things for years.”

4. Paneth and Wallenstein (1985) observe, for example, that the survival rate among the 34
children who were considered for the trial, but did not enter because of a failure to meet
one of the threshold criteria, was 100%.

5. It is also helpful to observe that the “prior” view of most ophthalmologists was that
supplemental oxygen therapy was not a potential cause of Retrolental Fibroplasia (RLF)
(now referred to as Retinopathy of Prematurity). From the British Journal of Ophthalmology
(1974): “In the early days of research into the cause of RLF it was not uncommon at any
meeting where oxygen was suggested as the cause, for an indignant ophthalmologist to
rise from the floor and report a typical case where to his certain knowledge no supple-
mental oxygen was given. He would then sink back convinced that he had delivered the
coup de grace to the oxygen theory. Equally challenging were those who claimed to have
seen the condition in full-term infants, which seemed to deny any special vulnerability
of growing retinal vessels. Although we now know these claims to have been valid, at
the time they were stumbling blocks to the early acceptance of the vital importance of
prematurity and oxygen.”

Much like the case of ECMO, the debate continues, as does the need for randomized
controlled trials. Also, like ECMO, the debate has moved to more subtle questions, for
example, about the appropriate threshold for starting oxygen in very low birth-weight
children (Askie and Win, 2003; Silverman, 2004; Davis et al., 2004; Hansmann, 2004;
Shah, 2005; Vanderveen et al., 2006).

6. See Bartlett et al. (1985), Wei and Durham (1978) and Zelen (1969) for a complete
description of the variant of the “randomized play-the-winner” statistical method
used.

7. See the several comments in Statistical Science 4(4), 1989, and Ware’s rejoinder in that
issue. See Bartlett (2005) for a review of some of the history by one of the surgeons. The
ethical issues don’t end there; see also Couzin (2004): “Some companies seek out Berry
Consultants [a small company founded by Bayesian advocate Donald Berry and his son]
in the wild hope that a drug or device that’s performed poorly in traditional trials can
somehow undergo a Bayesian resurrection. (Such a ‘rescue analysis’ is rarely a possibility,
both Berrys agree.)”

8. Indeed, while ECMO is used much more liberally today, who should get ECMO is a
subject of considerable controversy (Allan et al., 2007; Lequier, 2004; Thourani et al.,
2006). ECMO is now frequently employed but is still considered risky: “ECMO can
have dangerous side-effects. The large catheters inserted in the baby’s neck can pro-
vide a fertile field for infection, resulting in fatal sepsis” (Groopman, 2007). See ibid.
for a case study where ECMO was begun, but then stopped because it was the “wrong
treatment.”
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9. As it turns out, not even this sentiment is original. From Bickel and Lehmann (2001):
“A chemist, Wilson (1952), [considering some issues in inference] pleads eloquently
that ‘There is a great need for further work on the subject of scientific inference. To
be fruitful it should be carried out by critical original minds who are not only well-
versed in philosophy but also familiar with the way scientists actually work (and not just
with the way some of them say they work).’ Wilson concludes pessimistically: ‘Unfor-
tunately the practical nonexistence of such people almost suggests that the qualities
of mind required by a good philosopher and those needed by a working scientist are
incompatible.’ ”

10. Of course, a non-Bayesian would feel that 1
2 is a perfectly good estimator of the variance

if you can’t know which machine produced the measure.
11. Apparently, many examples of this specific type of inference can be avoided if one is a

“conditional frequentist” (Poirier, 1995, p. 344).
12. The subtitle of LeCam’s remarks “Toward Stating a Problem in the Doctrine of Chances”

in part was an ironic twist on the title of Bayes’ 1763 classic, “Toward Solving a Problem
in the Doctrine of Chances” (Bayes, 1958).

13. A term frequently employed instead of “metastatistics” is the philosophy of “induc-
tion,” and there is even debate on whether it is meaningful to talk about inductive
inference. See Neyman (1957) and LeCam (1977), as well as Hacking (2001) and Mayo
(1982).

14. LeCam’s Basic Principle Zero (LeCam, 1990) was also intended to apply “in particular to
the principles and recommendations listed below and should be kept in mind any time
one encounters a problem worth studying.” LeCam’s principles seem quite sensible to
me, and capture a lot of what I think non-Bayesians have in the back of their minds,
including problems with the use of asymptotic approximations:

1. Have clear in your mind what it is that you want to estimate.
2. Try to ascertain in some way what precision you need (or can get) and what you are

going to do with the estimate when you get it.
3. Before venturing an estimate, check that the rationale which led you to it is compatible

with the data you have.
4. If satisfied that everything is in order, try first a crude but reliable procedure to locate

the general area in which your parameters lie.
5. Having localized yourself by (4), refine the estimate using some of your theoretical

assumptions, being careful all the while not to undo what you did in (4).
6. Never trust an estimate which is thrown out of whack if you suppress a single

observation.
7. If you need to use asymptotic arguments, do not forget to let your number of

observations tend to infinity.
8. J . Bertrand said it this way: “Give me four parameters and I shall describe an elephant;

with five, it will wave its trunk.”
15. A nice and more complete discussion can be found in Hacking (2001). Much of what

follows is an abbreviated version of Hacking’s discussion.
16. The Cretaceous/Tertiary Boundary is the boundary between the Cretaceous period and

the Tertiary period. The Cretaceous period is the last period of the Mesozoic Era, which
ended with the sudden extinction of the dinosaurs inter alia.

17. Even here, there is a possible non-Bayesian version of characterizing the probability: if we
could re-run the world 100,000 times, in about 90% of cases an asteroid of size necessary
to lead to mass extinction of the dinosaurs occurs. Perhaps ironically, on this precise
question Bottke et al. (2007, p. 52) seem to arrive at their conclusion this way: “Using
these [estimated] impact rates as input for a Monte Carlo code, we find there is a ≤ 10%
chance that the K/T impactor was derived from the background and a ≥ 90% chance it
came from the BAF [Baptistina Asteroid family]. Accordingly, we predict that the most
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likely cause of the K/T mass extinction event was a collision between the Earth and a
large fragment from the Baptistina asteroid shower.”

18. In this regard, it is notable that there is a considerable body of non-Bayesian decision
theory, the “Neyman–Pearson” framework being the best known. What is frequently
referred to as the “Neyman–Pearson” statistical framework, however, is rarely explicitly
invoked in most micro-empirical research, even though discussions about the “power”
and “size” of tests are sometimes themselves the subject of debate. See, for example,
McCloskey (1985), McCloskey and Ziliak (1996) and Hoover and Siegler (2008a, 2008b)
for one debate on the subject.

19. There are many subtleties about the distinctions between beliefs and actions that I am
ignoring. For instance, in describing Pascal’s thesis, Joyce (1999, p. 21) – a “Bayesian” – is
“careful to formulate [the thesis] as a norm of rational desire that governs the fair pricing
of risky wagers [those that obey conventional axioms of probability].” In doing so he is
explicit that he is making a statement about desires and not actions (ibid., p. 19). “The
old guard still insists that the concept of a fair price can only be understood in terms of
behavioral dispositions, but it has become clear that the theoretical costs far outweigh
benefits.”

20. Ragnar Frisch’s remarks, which accompanied Allias’ article, suggest a fairly heated debate
(emphasis added): “The problem discussed in Professor Allais’ paper is of an extremely
subtle sort and it seems to be difficult to reach a general agreement on the main points
at issue. I had a vivid impression of these difficulties at the Paris colloquium in May,
1952. One evening when a small number of the prominent contributors to this field
of study found themselves gathered around a table under the most pleasant exterior
circumstances, it even proved to be quite a bit of a task to clear up in a satisfactory way mis-
understandings in the course of the conversation. The version of Professor Allais’ paper,
which is now published in ECONOMETRICA emerged after many informal exchanges
of views, including work done by editorial referees. Hardly anything more is now to
be gained by a continuation of such procedures. The paper is therefore now published as
it stands on the author’s responsibility. The editor is convinced that the paper will be a most
valuable means of preventing inbreeding of thoughts in this important field. – R.F.”

21. By simple rearranging of terms, B � A yields:

0.11U(500, 000) < 0.10U(2, 500, 000)+ 0.01U(0),

and from C � D we get:

0.10U(2, 500, 000)+ 0.01U(0) < 0.11U(500, 000).

Hence, a contradiction.
22. For example, although games of chance greatly antedate anything resembling modern

notions of probability – “someone with only modest knowledge of probability math-
ematics could have won himself the whole of Gaul in a week” – anything like our
modern notions of probability did not “emerge permanently in discourse” until 1660 (see
Hacking, 1975, 1990). Perhaps not surprisingly, the history of probability is the sub-
ject of much debate as well. For one criticism of Hacking’s account see Garber and
Zabell (1979).

23. Even at this point a fuller treatment would include a discussion of the problem of “logical
omniscience.” All I can do is cite a statement from Savage (1967): “For example, a person
required to risk money on a remote digit of π would have to compute that digit, in order
to comply fully with the theory [of personal probability], though this would really be
wasteful if the cost of computation were more than the prize involved. For the postulates
of the theory imply that you should behave in accordance with the logical implication of
all that you know. Is it possible to improve the theory in this respect, making allowance
within it for the cost of thinking, or would that entail paradox, as I am inclined to believe
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but unable to demonstrate?” (As cited in Hacking, 1967. The published versions seems
to have omitted some of the text.) See Hacking (1967) for a very useful discussion of the
issue.

24. For instance, although it is easy to see how to partition a set of events, it is not always
possible to see how to partition a set of propositions.

25. See Einstein (1920) for a thought-provoking discussion of Euclidean geometry as mathe-
matical statements versus Euclidean geometry as statements about things in the world. As
to Feller’s observation about alternatives to Newton’s law of attractions, see Cartwright
(1984) for a provocative discussion of how even “the laws of physics lie” and physi-
cists often fruitfully use different and mutually inconsistent models that makes a related
point.

26. For a marvelous introductory exposition see Ch. 21 of Hacking (2001). For a more com-
plete discussion that includes a bit more mathematical formalism and may be congenial
to economists, see 2.1 of Poirier (1995).

27. There is much debate about the utility of defining probability as the limiting behavior of a
sequence. This debate is intimately related to the debate about commending an estimator
because, in repeated applications and in the long run, it would do well. The canonical
problem is the “single case” exception (Hacking, 2001, Ch. 22) in which we are asked to
consider a situation where, for example, there are two decks of cards: one, “the redder
pack,” has 25 red cards and 1 black card. The other “blacker pack” has 25 black cards and
1 red card. You are presented with two gambles. In the first gamble, you “win” if a red
card is drawn randomly from the “redder” pack and lose otherwise (P(Win) = 25/26). In
the second gamble, you “win” if a red card is drawn randomly from the “blacker” pack
(P(Win) = 1/26). If you “win” you will be transported to “eternal felicity” and, if you
lose, you will be “consigned to everlasting woe.” As Hacking (and C.S. Peirce) and most
people would choose the first gamble and hope, but not because of the long run; if we
are wrong, there will be no comfort from the fact that we would have been right most of
the time! Peirce’s “evasion of the problem of induction” is to argue that we should not
limit ourselves to merely “individualistic” considerations. “[Our interests] must not stop
at our own fate, but must embrace the whole community. This community, again, must
not be limited but extend to all races of beings with whom we can come in to immediate
or mediate intellectual relation. It must reach, however vaguely, beyond this geological
epoch, beyond all bounds. He would not sacrifice his own to save the whole world is,
as it seems to me, illogical in all his inferences collectively. Logic is rooted in the social
principle” (Peirce, 1878b, pp. 610–11).

28. Such a condition rules out, for example, the deterministic series (H , T , H , T . . .H , T)
discussed above.

29. See Gillies (2000) for a nice discussion.
30. It is thus easier to understand Poirier’s emphasis in the quotation above on whether the

probability is “in nature” or “in themselves”: that “to the extent that individuals agree
on a class of events, they share an objective frequency. The objectivity, however, is in
themselves, not in nature.”

31. Again I have ignored “logical” probabilities, which are a class of epistemic probabili-
ties which incorporate the notion of evidence. In this view, a probability is a “rational
degree-of-belief” about a proposition or a measure of the degree of “credibility” of a
proposition.

32. For three mutually exclusive analyses of what Bayes meant, and whether or not he suc-
ceeded in proving what he set out to establish, see Hacking (1965, Ch. 12). On whether
Bayes’ understanding is consistent with subsequent Bayesian interpreters (beginning with
the rediscovery by Laplace, 1795), see Stigler (1982).

33. We have omitted one detail in this exposition, which is that the expression we are
required to evaluate is:

L(θ |N, h)f (θ)∫ 1
0 L(θ |N, h)f (θ)

.
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In our previous notation, the denominator corresponds to P(B) or
∑k

j=1 P(B|Aj)P(Aj).

One “nice” feature of the beta distribution is that it serves as the “natural conjugate prior”
for the binomial distribution. Loosely speaking, the functional form of the prior and the
likelihood are the same, which means one can treat the denominator as an integrating
constant and it does not have to be computed directly.

34. The posterior mode can be rewritten as a weighted average of the sample mean and a prior
mean, with the role of the prior vanishing as the number of actual sample observations
grows large.

35. There are many variants of the following example. This particular variant is slightly
adapted from Sober (2002).

36. Poirier (1995) provides a useful parody of the non-Bayesian view as he depicts a satisti-
cian’s constantly evolving inference changing as he discovers more about the intent of
the investigator.

37. Savage, before becoming familiar with the arguments in Barnard (1947a, 1947b), viewed
the DGP as relevant (“I then thought it was a scandal that anyone in the profession could
advance an idea – [that the DGP was irrelevant] – so patently wrong”). By the time of
the forum he had come around to exactly the opposite point of view – “I [can] scarcely
believe that people resist the idea [that the DGP was irrelevant] that is so patently right.”

38. It should be noted than many Bayesians would argue that hypothesis testing per se is
not a terribly sensible framework. They would also probably argue, nonetheless, that
hypothesis tests are best interpreted in a Bayesian way.

39. There are many solutions to the problem of “inadmissible” samples in practice (unbal-
anced samples; see Jones, 1958, for example). One could merely conduct two experiments
with more homogeneous samples. That is, one could conduct an experiment on low birth-
weight babies and a separate experiment on high birth-weight babies. Sometimes block
randomization is employed: the children might be sub-divided into groups according to
their “healthiness” and the randomization might be performed separately within blocks.

40. See Zed et al. (1999) and Headache Classification Committee of the Interna-
tional Headache Society (2004) for extensive bibliographies.

41. The nosology of headache is elaborate and I can only coarsely define two types of
headache here. According to the National Headache Foundation (http://www.headaches.
org/consumer/tension_type.html, accessed December 10, 2007), “Tension-type headache
is a nonspecific headache, which is not vascular or migrainous, and is not related to
organic disease. The most common form of headache, it may be related to muscle tight-
ening in the back of the neck and/or scalp [and is] characterized as dull, aching and
non-pulsating pain [that] affect[s] both sides of the head.

Symptoms … may include:

• Muscles between head and neck contract
• A tightening band-like sensation around the neck and/or head which is a ‘vice-like’

ache
• Pain primarily occurs in the forehead, temples or the back of head and/or

neck.”

Migraine headaches are most commonly associated with severe unilateral head pain,
often accompanied by nausea and vomiting, photophobia (fear of light) and phono-
phobia (fear of sound), that can last from a few hours to several days. In some fraction of
migraine patients the head pain is preceded or accompanied by visual disturbances called
auras.

42. In the US, opioids were the standard of care as late as the nineteenth century until they
were supplanted by aspirin in the early twentieth century at roughly the same time as
over-the-counter use of such medications was made illegal (Meldrum, 2003). Moreover,
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outside of the MOH literature it is generally viewed that opioids are under-prescribed
because of (sometimes irrational) fears of promoting addiction, censure by police, and
so on (Lipman, 2004). “The history of opioid use (or nonuse) in neuropathic pain is
instructive. The natural reluctance to prescribe opioids to patients with neuropathic pain
of benign cause was, for many years, reinforced by the received wisdom that opioids
were ineffective in neuropathic pain [such as headache], based on weak evidence. It took
many years before this ‘truth’ was questioned. Reexamination in the later 1980s was
followed by controlled studies that clearly substantiated an important analgesic action
of morphine and fentanyl and, later, other opioids in neuropathic pain” (Scadding,
2004).

43. Medication overuse headache has gone by several different names, including analgesic
rebound, ergotamine rebound, medication induced headache, transformed migraine, chronic
migraine, daily headache, drug-induced headache, painkiller headache, medication-misuse
headache, analgesic-dependent headache (Obermann and Katsarava, 2007; Silberstein et al.,
1994, and so on).

44. As is widely recognized, severe chronic daily migraine occurred before the use of offend-
ing medications was common or even possible. The most widely cited example comes
from the important neurologist Thomas Willis (1683), who recorded his treatment of
Viscountess Anne (Finche) Conway in the seventeenth century.

45. Even current scholars in the field are negative about early developments in the field of
headache. “Prior to the 1980s, the field of headache was rarely influenced by what would
be generally accepted as scholarly, credible research” (Saper, 2005).

46. In describing the work as “representative,” however, the view among experts in the field
is considerably more favorable. Ward (2008) describes it as “his favorite article” in a recent
review. Mathew (2008) responds by noting: “The impact of this article on the American
and European headache communities was substantial. Until then, the Europeans had not
appeared to appreciate the clinical significance of medication overuse or the existence of
chronic daily headache . . . One enduring fact continues to disappoint me. In spite of
the extensive effort made to emphasize the importance of medication overuse in manag-
ing the headache population, many practitioners – including neurologists – continue to
overprescribe symptomatic medications, thereby condemning their patients to treatment
failure.” For a more recent systematic review, see Zed et al. (1999).

47. No randomization appears to be involved. The patients were merely “grouped.”
48. The measurement of “improvement” is not clear, but it appears to have been asymmetric.

Improvement was measured as a percentage change in a headache index if the patient
improved, and was given a value of zero if the patient did not improve.

49. One definition of MOH is:

1. Occurs in a patient with a primary headache disorder who uses symptomatic
or immediate relief medications very frequently (daily), often in excessive
quantities.

2. Tolerance to symptomatic medications develop and headaches become worse on
continuing the treatment.

3. The patient may show symptoms of withdrawal on discontinuing the medication,
with increased headache lasting for a variable period of time, as long as three to four
weeks.

4. Headache ultimately improves after stopping the offending medications even though
the primary headache disorder needs continuing prophylactic treatment.

50. The only other criticism I have been able to locate are letters to the editors (Gupta, 2004a,
2004b, 2004c).

51. Using language evocative of severe testing, Fisher remarked that “Claude Bernard, in
speaking of an hypothesis, said that it is not sufficient to merely gather all the facts that
support it but even more importantly, one must go out of one’s way to find every means
of refuting it.”
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52. While Fisher’s challenge has never been even approximately met, the question of whether
headaches arise de novo from analgesic headache has been investigated and substantiates
Fisher’s claim. It has been conceded that Fisher was correct (Bahra et al., 2003; Lance
et al., 1988).

53. For a brief history of the ICHD, see Gladstone and Dodick (2004).
54. Boes and Capobianco (2005) and Ferrari et al. (2007) describe some of the tangled history

as well. It should be noted that the history is a matter of some dispute.
55. The rate of analgesic use is usually defined in terms of treatment days per month, such

that treatment occurs at least two or three days each week, with intake of the drug on at
least ten days per month for at least three months.

56. From Schuster (2004): “The definition does not apply to headache in women who take
medications for five or six consecutive days for menstrually associated migraines but are
treatment-free the rest of the month, acknowledged Fred D. Sheftell, MD, who partici-
pated in updating the classification. He said that if a woman took medications just four
other days of the month, she would inappropriately meet the 10-days-a-month rule. For
that reason, she must also be taking the drugs at least two to three days each week to
meet the criteria.”

57. Among the reasons given was the fact that “patients could become chronic due to med-
ication overuse, but this effect might be permanent. In other words, it may not be
reversible after discontinuation of medication overuse. Finally, a system whereby medica-
tion overuse headache became a default diagnosis in all patients with medication overuse
would encourage doctors all over the world to do the right thing, namely, to take patients
off medication overuse as the first step in a treatment plan.”

58. See, for example, Saper and Lake (2006a) for a proposal to distinguish opioid using MOH
patients from the remaining “less complicated” cases.

59. See Horowitz and Manski (1998) for a detailed discussion of such bounds. It should be
noted that where such bounds are used, common practice is to report both “best case”
and “worst case” bounds.

60. Indeed, the notion of “intent-to-treat” can be seen as part of an attempt to test a hypothe-
sis severely and not a notion that is an inevitable consequence of adopting “frequentist”
probability notions. See Hollis and Campbell (1999) for a discussion.

61. He referred to the union premium in wages between otherwise identical workers as the
wage “gap” to distinguish it from what might obtain in a world without unions.

62. The distinction between ATOT and other estimands is important since it isn’t particularly
meaningful to consider the effect of union status on, say, the CEO of a large multina-
tional, to take a stark example (US law, for example, prohibits this possibility). The paper,
unfortunately, takes a naive approach to characterizes the treatment heterogeneity: in
considering the variation in the effect of union status, it characterizes it by the estimated
probability of being unionized. That is, the effect of unionization is allowed to vary across
workers whose demographic characteristics put them at the same “risk” of being union-
ized. This conflates the treatment effect for workers with extremely low levels of observed
human capital (who typically have very low probabilities of being unionized) with the
treatment effects for those who can’t be unionized (bosses) or those with high levels of
education who are generally hostile to unionization. For an arguably much more sensible
characterization of the heterogeneity in treatment effects, see Card (1992), for example.
Card (ibid.) also deals with the problem of measurement error in union status, which is
ignored in the empirical example in Chib and Hamilton (2002) but has long been an
important issue in non-Bayesian analyses: see Freeman (1984), Jakubson (1991), or Card
(1992) for three examples.

63. This possibility wasn’t ignored, however. The problem was the lack of data. See, for
example, Abowd and Farber (1982), Freeman and Kleiner (1990, 1999), who take the
possibility quite seriously.
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64. Although this is an important focus of their paper, it is one that I will not focus on
since my interests in using this example lie elsewhere. To quote from their paper: “again,
it is important to recognize that many applied studies in the treatment-response litera-
ture, and to our knowledge all of those that have been conducted on this specific topic,
assume the relationship between the treatment variable and the outcome variable is lin-
ear (i.e., f (s) = α0 + α1s), and define the slope of this function as the causal effect of
interest. The assumption of linearity is likely made on computational considerations, as
IV [instrumental variables] is simple to use in this context.”

65. Again because my interests lie elsewhere, one might not wish to stipulate that it is possible
to talk clearly about a “causal effect” of BMI on wages, because such an effect seems to pre-
suppose that, in whatever manner we “manipulate” an individual’s BMI, we would expect
that the “effect” of BMI on wages would be the same. However, it is possible to imagine
that the causal arrow runs from BMI to wages because (1) high BMI is equivalent to “bad
health” and “bad health” lowers wages, or (2) high BMI is equivalent to “unattractive,”
and employers discriminate against those who are “unattractive” for reasons possibly
unrelated to “productivity.” If the latter were true, a “successful” but “unhealthy diet”
that lowered BMI would raise wages; if the former were true, such a diet would lower
wages. See DiNardo (2007) for a discussion.

66. It is also interesting to observe that this Bayesian “overidentification test” is arguably
better-suited to “severity” than recent non-Bayesian interpretations of such overidenti-
fication tests. In the linear instrumental variables model, for example, the failure of the
overidentification test has been recently reinterpreted not as a rejection of the premises of
the estimated model but as evidence of “treatment effect” heterogeneity (Angrist, 2004).
In this context, one possible cause (though not the only possible cause) of “treatment
effect heterogeneity” is that the true relationship between BMI and wages is, say, quadratic
but the investigator specifies a linear relationship. In such a case, one could no longer
ensure that the estimated relationship would be invariant to the choice of instrumental
variables even if the instrumental variables were “valid.” The informal test proposed by
Kline and Tobias (2008), however, easily accommodates such a situation since it allows
f (s) to be nonlinear without exhausting any overidentification.

67. Some of this discussion draws from a brief discussion in unpublished lecture notes by
David Card, although for reasons of focus and brevity my account is not the same (Card,
2007).

68. It should not be surprising that the term “structural model” encompasses a wide array
of activities which have very different emphases, including – to take just one example –
classic studies of demand systems, and so on (see, for example, Deaton and Muellbauer,
1980). Moreover, some work involving “structural estimation” occurs in studies that also
involve a design-based approach. For a simple illustration see DiNardo and Lemieux,
(1992, 2001). Consequently, I use the phrase “single strand” advisedly.
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Forecast Combination and
Encompassing
Michael P. Clements and David I. Harvey

Abstract

Forecast combination is often found to improve forecast accuracy. This chapter considers different
types of forecast combination and tests of forecast encompassing. The latter indicate when a com-
bination is more accurate than an individual forecast ex post, in a range of circumstances: when the
forecasts themselves are the objects of interest; when the forecasts are derived from models with
unknown parameters; and when the forecast models are nested. We consider forecast encom-
passing tests which are framed in terms of the model’s estimated parameters and recognize that
parameter estimation uncertainty affects forecast accuracy, as well as conditonal tests of encom-
passing. We also look at the conditions under which forecast encompassing can be established
irrespective of the form of the loss function.
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4.1 Introduction

In this chapter we consider the closely related topics of forecast combination
and tests of forecast encompassing. A test for forecast encompassing is just one
of the many tests of predictive ability that might be considered. For example,
one might test whether a set of forecasts are unbiased, or efficient (e.g., Mincer
and Zarnowitz, 1969; Figlewski and Wachtel, 1981; Zarnowitz, 1985; Keane and
Runkle, 1990) or as accurate given some loss function as a rival set of forecasts.
Assuming a squared-error loss function, the approach of Granger and Newbold
(1977) (sometimes known as the Morgan–Granger–Newbold test in recognition of
Morgan, 1939) is one such test of whether differences between rival forecasts can

169
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be attributed to sampling variability, or whether the differences are statistically
significant once sampling variability has been taken into account. If we assume
that the forecast errors are zero mean, normally distributed and serially uncor-
related (implying one-step-ahead forecasts), the Morgan–Granger–Newbold test is
uniformly most powerful unbiased. A test of equal accuracy that dispenses with the
restrictive assumptions that underpin this test, including that of squared-error loss,
is due to Diebold and Mariano (1995). Although assessing the relative accuracy of
forecasts is fundamental to forecast evaluation, from a practical or operational per-
spective the most useful way of doing this is not to test the null of equal accuracy
but to test whether one set of forecasts encompasses the rival set. A set of forecasts
is said to encompass a rival set if the rival set of forecasts do not contribute to a
statistically significant reduction in forecast loss when used in combination with
the original set of forecasts. Forecast encompassing is due to Chong and Hendry
(1986) and is an application of the principle of encompassing (see, e.g., Mizon and
Richard, 1986; Hendry and Richard, 1989) to the evaluation of forecasts, although
it is formally equivalent to the earlier notion of conditional efficiency of Nelson
(1972) and Granger and Newbold (1973).

The importance of testing for forecast encompassing (as opposed to equal accu-
racy) is that forecast combination is often found to improve forecast accuracy. That
is, a linear combination of two or more forecasts may often yield more accurate
forecasts than using a single forecast. If one is prepared to take a combination
of forecasts rather than requiring that only one is selected, then it matters little
whether one forecast is more or less accurate than another. Regression-based tests
of forecast encompassing are a way of testing whether ex post a linear combination
of forecasts results in a statistically significant reduction in (say) mean squared fore-
cast error relative to using either individual forecast. Such tests can also be used
as an indicator of when combinations might be useful ex ante. If neither set of
forecasts encompasses the other, then subsequent forecasts should be constructed
as a combination of those of the two individual sets.

If the goal is forecasting (as opposed to some other econometric endeavor, such as
building a model that describes or quantifies the relationships between economic
variables), then we suspect it would seldom be the case that the forecaster would be
unwilling to take a combination of the available forecasts and would instead insist
on selecting the single best forecasting model, or set of forecasts. Granger and Jeon
(2004) present forecast combination as an example of “thick modeling,” whereby
the investigator pools the values of estimates of interest (parameter estimates,
impulse responses, or forecasts, etc.) from a number of alternative specifications
rather than seeking to select a single specification. Forecast combination has a long
history: Granger and Jeon (2004) advocate the principle of thick modeling more
generally. The principle of encompassing would suggest forecast encompassing be
used to improve the forecasting model in the sense of re-specifying the model in
an attempt to match the process that generated the data as closely as possible.
However, it has been established that, even if this goal were attainable, it would
not necessarily be beneficial from a forecasting perspective when there are breaks
(see, e.g., Clements and Hendry, 2006).
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There are a number of explanations as to why forecast combination works.
Perhaps the most common is the portfolio diversification argument that under-
pinned the original analysis of Bates and Granger (1969), as recently discussed by
Granger and Jeon (2004) and Timmermann (2006), amongst others. The idea is
simply that the individual forecasts are each based on partial, and incompletely
overlapping, information sets, as might be the case if they reflect private informa-
tion, for example. The degree of overlap in the information sets is key, as is apparent
in the discussion of Bates and Granger (1969) in section 4.2. An explanation
stressed by Hendry and Clements (2004) is that of forecasts based on misspeci-
fied models when there are structural breaks and, as noted by Timmermann (2006,
p. 138), a number of other papers discuss the roles of model misspecification and
structural breaks. Hendry and Clements (2004) and Timmermann (2006) discuss a
number of other reasons that would justify pooling.

Our survey is the latest of a number of recent reviews of the large literatures on
the topics of forecast combination and on forecast encompassing. These include
Clemen (1989), Diebold and Lopez (1996), Newbold and Harvey (2002) and
Timmermann (2006). One of the key ways in which it differs from the others
is the emphasis on the testing of forecast encompassing alongside the treatment of
forecast combination. We are also able to include some of the important develop-
ments that have only recently found their way into the literature. For expositional
convenience we focus on two forecasts, but in general more than two forecasts
may be combined, and the notion of forecast encompassing can be generalized to
the case of multiple forecasts (see Harvey and Newbold, 2000).

The plan of the rest of the chapter is as follows. Section 4.2 outlines the historical
development of forecast combination and encompassing, and fills in some of the
details. Section 4.3 describes the key developments when the forecasts are based on
models and one wishes to compare the forecasting models. As the forecasts are gen-
erated from models in which the unknown parameters are replaced with estimates,
an allowance is made for the true values having been replaced by random variables
when the forecasts are compared. Section 4.4 considers forecasting from nested
models, which is not covered by the analysis in section 4.3 and requires a separate
treatment. Section 4.5 describes forecast encompassing tests within a framework of
conditional testing of predictive ability, and where the emphasis shifts to testing
forecasting methods rather than models. Thus far, we have maintained an assump-
tion of symmetry of the loss function: the implications of dispensing with this
assumption form the material of section 4.6. Section 4.7 offers some concluding
remarks.

4.2 Historical development

4.2.1 Forecast combination

The notion of combining different forecasts of the same quantity in order to
improve predictive accuracy was first proposed by Bates and Granger (1969).
Suppose we have available two h-steps-ahead forecasts, f1t and f2t , of the quantity
yt . In this section, in line with the early literature on forecast combination (and
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encompassing), we take the forecasts as given, and do not consider issues related
to the method employed in obtaining the predictions, for example those of model
estimation uncertainty and nesting considered in later sections. Assuming the fore-
casts to be unbiased, i.e., that the forecast errors eit = yt − fit (i = 1, 2) have zero
mean, Bates and Granger (1969) suggest the use of a combined forecast, fct , of the
following form:

fct = (1− λ)f1t + λf2t . (4.1)

When 0 ≤ λ ≤ 1, fct comprises a simple weighted average of the two individual
forecasts.

The optimal choice for the weighting parameter λ depends on the relative accu-
racy of the individual forecasts f1t and f2t , and can easily be obtained for a given
loss, or cost of error, function. By far the most commonly assumed cost of error
function in the literature is that of squared error loss, with forecast accuracy deter-
mined by the mean squared forecast error (MSFE) measure. Denoting the forecast
error associated with fct by εt = yt − fct , we obtain the following expression for the
MSFE of the combined forecast:

E(ε2
t ) = (1− λ)

2
σ

2
1 + λ

2
σ

2
2 + 2λ(1− λ)ρσ1σ2, (4.2)

where σ
2
1 and σ

2
2 denote, respectively, the MSFEs of f1t and f2t , and ρ denotes

the correlation between the forecast errors e1t and e2t . The optimal combination
weight associated with a squared error loss function is then derived by choosing λ

to minimize (4.2), i.e.:

λopt =
σ

2
1 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
. (4.3)

The expected squared error associated with the optimal combination weight λopt
is given by:
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t
(
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1 σ

2
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where, of necessity, E
(
ε
2
t
(
λopt

)) ≤ min
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1 , σ2

2

}
. Suppose that f1 and f2 are equally

accurate, i.e., σ2
1 = σ

2
2 . Then:

E
(
ε
2
t
(
λopt

)) = 1
2
σ

2
1
(
1+ ρ

)
.

Given that |ρ| ≤ 1, 1
2σ

2
1 (1+ ρ) < σ

2
1 for all values of ρ other than ρ = 1. So there

are diversification gains when the forecasts are equally accurate unless the forecasts
are perfectly correlated.

In practice the optimal weight parameter, and its constituent parameters ρ, σ
2
1

and σ
2
2 , will not be known. However, given time series data on past forecasts and

actuals, these quantities can be estimated, resulting in a sample analogue of the
population weight parameter (4.3). Denoting the time series of past h-steps-ahead
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forecast errors by e1t , e2t , t = 1, . . . , n, the obvious estimator is given by:

λ̂opt =
∑n

t=1 e2
1t −

∑n
t=1 e1t e2t∑n

t=1 e2
1t +

∑n
t=1 e2

2t − 2
∑n

t=1 e1t e2t
. (4.4)

This estimated weight can then be used in the future to produce out-of-sample
combined forecasts. The above estimator could equally be obtained from ordinary
least squares estimation of the regression:

e1t = λ(e1t − e2t )+ εt , (4.5)

or, equivalently:
yt = (1− λ)f1t + λf2t + εt , (4.6)

which is essentially a rearrangement of (4.1) with the error of the combined
forecast, εt , now interpreted as a regression error.

The above analysis assumes that the individual forecasts are unbiased. However,
it may well be the case that the individual forecasts are biased, as has been observed
empirically for some macroeconomic forecasts (see, e.g., Zarnowitz and Braun,
1993; Stekler, 2002; Harvey and Newbold, 2003). In order to allow for bias in the
forecasts, an intercept can be added to the regression (4.5) or (4.6):

e1t = α + λ(e1t − e2t )+ εt ,

which ensures that the implied combination:

fct = α + (1− λ)f1t + λf2t , (4.7)

is unbiased.
In addition to the possibility of biased forecasts, forecasts may also be inefficient

in the sense of Mincer and Zarnowitz (1969). A generic forecast ft is said to be
Mincer–Zarnowitz efficient if α = 0 and β = 1 in a regression yt = α+βft+εt , which
implies that the forecast and forecast error are uncorrelated (see, e.g., Clements and
Hendry, 1998, Ch. 3, for a discussion). If the individual forecasts are inefficient, the
appropriate generalization of the combined forecast involves relaxing the implicit
assumption that the combination weights sum to one. This results in an efficient
combined forecast, with the more general formulation advocated by Granger and
Ramanathan (1984):

fct = α + β1f1t + β2f2t . (4.8)

The weights are now obtained from the corresponding regression:

yt = α + β1f1t + β2f2t + εt . (4.9)

Clearly (4.7) and (4.1) are special cases of (4.8), where the restrictions β1 + β2 = 1,
and α = 0,β1 + β2 = 1 are imposed, respectively. Note that when the actuals and
forecasts are non-stationary integrated processes, (4.9) should be specified using
actual and predicted changes, rather than levels.
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The above methods of combining forecasts are simple and straightforward to
implement, but the literature also contains many extensions to these simple
approaches, the relatively early contributions of which are summarized by Clemen
(1989). For example, Diebold (1988) and Coulson and Robins (1993) argue that,
when estimating weights based on (4.9), account should be taken of the likely
autocorrelation present in εt , either by allowing for ARMA residuals or includ-
ing yt−1 as an additional regressor. The possibility of time-varying combination
weights could also be entertained, reflecting the potentially evolving behavior of
the process governing the actuals, and also of the individual forecasters. At a simple
level, this might involve using recent data only to estimate the combination
weights, while more sophisticated approaches are proposed by Diebold and Pauly
(1987), LeSage and Magura (1992), and Deutsch, Granger and Teräsvirta (1994).

Relatively sophisticated methods of forecast combination inherently entail a
greater data requirement, and are therefore most applicable when a reasonably
long history of forecast performance is available. When, as is very often the case,
only small samples of historical data exist, sampling variability plays a significant
role in the estimation of the combination weights. This can temper the gains that
could be realized relative to when the weights are known, potentially even giv-
ing rise to forecast combinations that are less accurate than simpler approaches
that do not require combination weight estimation. For example, many authors
(see, e.g., Makridakis and Winkler, 1983; Stock and Watson, 1999; Fildes and Ord,
2002) have found that simple averaging of individual forecasts very often outper-
forms more elaborate combination techniques, while Harvey and Newbold (2005)
demonstrate that situations exist where the optimal weight on, say, f2t is non-zero,
but sampling variability affects the weight estimates to the extent that the result-
ing combination has a larger MSFE than that associated with just f1t alone. The
Bayesian combination methods of, inter alia, Clemen and Winkler (1986), Diebold
and Pauly (1990) and Min and Zellner (1993) provide a means of formally estimat-
ing the combination weights, while mitigating the effects of sampling variability
by shrinking the weights towards some prior mean. The widely observed robust
performance of simple averages of forecasts motivates a prior of equal weights in
this setting.

Another extension to combining forecasts is to allow nonlinear combination
methods. Such methods may be useful when relatively large samples of forecasts
are available, and/or when the nature of the forecasts suggests methods other than
linear combination. Given a large number of forecasts, an attractive way of consid-
ering nonlinear combination schemes is via Artificial Neural Networks (ANNs), as
ANNs are able to approximate large classes of nonlinear functions. Donaldson and
Kamstra (1996) use single hidden-layer ANNs to combine forecasts of the volatil-
ity of daily stock returns from GARCH and moving-average variance models, and
compare the results to traditional linear combination. Specifically, the ANNs are of
the form:

fct = α +
k∑

j=1

βjfjt +
p∑

i=1

δi!
(
ztγi

)
,

mailto: rights@palgrave.com


Michael P. Clements and David I. Harvey 175

where:
!
(
ztγi

) = (
1+ exp

[− (γ0i + γ1iz1t + γ2iz2t
)])−1 ,

and zit = s−1
y

(
fit − ȳ

)
, i = 1, 2, i.e., the fit are normalized by the in-sample mean

and standard deviation of yt . When p = 0 and k = 2, the ANN specializes to
standard linear combination of the two sets of forecasts. Donaldson and Kamstra
(1996) allow values of p up to p = 3, and find values of 1 or 2 are typically selected
by their cross-validation procedure. The combinations are estimated by choosing
the γi as random drawings from a U (−1, 1) distribution, and then estimation of α,
β, δ can be carried out by ordinary least squares (OLS).

Finally, for forecasts other than point forecasts, other forms of combination are
used. For example, experts’ subjective probability distributions are often combined
using the logarithmic opinion pool, or LoOP (see, e.g., Genest and Zidek, 1986;
Clemen and Winkler, 1999), which for discrete probability distributions is given by:

f j =
∏N

i=1

(
f j
i

)βi

∑M
j=1

∏N
i=1

(
f j
i

)βi
=

exp
(∑N

i=1 βi log f j
i

)
∑M

j=1 exp
(∑N

i=1 βi log f j
i

) ,

where f j
i is individual i’s probability of “class cj,” where there are M classes. The

denominator is a scaling factor, and typically
∑N

i=1 βi = 1. Clements and Harvey
(2007) consider a form of LoOP for probability forecasts (M = 2) and two rival
forecasts (N = 2), and Kamstra and Kennedy (1998) (henceforth, KK) suggest a
form of combination for probability forecasts that involves the combining of log
odds ratios by logit regressions. The KK combination of f1t and f2t is:

fct =
exp

[
α + β1 ln

(
f1t

1−f1t

)
+ β2 ln

(
f2t

1−f2t

)]
1+ exp

[
α + β1 ln
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f1t

1−f1t

)
+ β2 ln

(
f2t

1−f2t

)]

=
exp (α)

(
f1t

1−f1t

)β1
(

f2t
1−f2t

)β2

1+ exp (α)
(

f1t
1−f1t

)β1
(

f2t
1−f2t

)β2
, (4.10)

where β1 and β2 are the maximum likelihood estimates of the slope coefficients

from a logit regression of yt on a constant, ln
(

f1t
1−f1t

)
and ln

(
f2t

1−f2t

)
. Clements and

Harvey (2007) show that the KK combination is optimal when the data-generating
process has the form:

yt = 1
(

exp(δ1X1t + δ2X2t )

1+ exp(δ1X1t + δ2X2t )
> vt

)
(4.11)

f1t =
exp(θ11X1t )

1+ exp(θ11X1t )

f2t =
exp(θ12X2t )

1+ exp(θ12X2t )
,
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with X1t and X2t scalar explanatory variables underpinning the two forecasts,
although KK combination is a computationally attractive method of combining
forecasts whilst ensuring ft ∈ (0, 1) more generally.

4.2.2 Forecast encompassing

The concept of forecast encompassing relates to whether or not one forecast
encapsulates all the useful predictive information contained in a second forecast.
Formally, using a squared error loss function as above, f1t is said to encompass f2t
if, in a linear combination of the two forecasts, f2t optimally receives zero weight,
so that combining f1t with f2t does not lead to a reduction in the MSFE. Thus, using
the simplest Bates and Granger (1969) form of linear combination, f1t encompasses
f2t if the optimal value of λ in (4.1) is zero. This concept was originally proposed
by Nelson (1972) and Granger and Newbold (1973), with f1t referred to as being
conditionally efficient with respect to f2t ; the terminology has subsequently been
modified by Chong and Hendry (1986) to that of forecast encompassing, adopting
the language of the model encompassing literature (see, inter alia, Mizon, 1984;
Mizon and Richard, 1986).

Chong and Hendry (1986) focus on the fact that, if f1t encompasses f2t , the
forecast errors of the encompassing forecast, e1t , should be uncorrelated with the
encompassed forecast f2t . This obtains since e1t should be uncorrelated with infor-
mation available at the time of the forecast, while, on the other hand, correlation
between e1t and f2t would imply that the accuracy of f1t could be improved by
linear combination with f2t . This approach results in an alternative definition of
forecast encompassing, namely that f1t encompasses f2t if the optimal value of λ

is zero in a regression:
e1t = λf2t + εt .

The two definitions of forecast encompassing presented thus far implicitly
assume that the forecasts are unbiased and efficient. To account for potential fore-
cast bias and inefficiency, alternative forecast encompassing specifications can also
be derived by defining encompassing as f2t receiving zero optimal weight in a more
general forecast combination such as (4.7) or (4.8). Both approaches have been pro-
posed in the literature, with Fair and Shiller (1989, 1990) using (4.8), allowing for
the forecasts to be both biased and inefficient, and Andrews, Minford and Riley
(1996) advocating use of (4.7), an in-between case allowing for forecast bias while
retaining the assumption that the combination weights sum to one.

The alternative forecast encompassing definitions can be summarized and
given a regression interpretation as follows. Beginning with the most general
formulation, the Fair and Shiller (1989) definition of f1t encompassing f2t equates
to β2 = 0 in the regression:

FE(1): yt = α + β1f1t + β2f2t + εt .

Relative to this specification, the Nelson (1972) and Granger and Newbold (1973)
approach imposes the restrictions α = 0 and β1 + β2 = 1, with encompassing
defined by λ = 0 in the regression:

FE(2): e1t = λ(e1t − e2t )+ εt .
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The Chong and Hendry (1986) definition can be obtained by assuming f1t in FE(1)
to be efficient, i.e., imposing α = 0 and β1 = 1, with encompassing then defined
by λ = 0 in the regression:

FE(3): e1t = λf2t + εt .

The FE(2) and FE(3) cases can also be modified to allow for forecast bias by
relaxing the α = 0 assumption, yielding the Andrews, Minford and Riley (1996)
regression:

FE(2′): e1t = α + λ(e1t − e2t )+ εt ,

and a modified Chong–Hendry regression:

FE(3′): e1t = α + λf2t + εt .

In the remainder of this chapter, we focus on the more commonly used definitions
FE(1), FE(2) and FE(3).

It is clear that if the restrictions imposed by FE(2) and FE(3) are not satisfied,
the three definitions of encompassing are not equivalent, and the forecast f1t may
encompass f2t according to one definition, but not another. FE(1) is the most
general approach of the three, and allows an analysis of the forecast encompassing
hypothesis without the additional requirements that the individual forecasts are
unbiased and efficient. Note that if the optimal value of β2 in FE(1) is zero, it
does not follow that the optimal forecast is simply f1t : the correct inference is
that a linear function of f1t , i.e., α + β1f1t , cannot be improved (in terms of MSFE)
through combination with f2t . If the restrictions underlying FE(2) and FE(3) do
hold, tests based on these approaches should be more powerful.

When the actuals and forecasts are integrated time series processes, FE(1) should
be implemented using actual and predicted changes rather than the levels of the
series, as otherwise the test statistics will not have their standard distributions.
When the data (and forecasts) are integrated, the FE(3) approach can be problem-
atic, as noted by Ericsson (1992). Because a forecast f1t would be expected to be
cointegrated with yt , the resulting forecast error e1t is integrated of order zero. The
regression FE(3) is then unbalanced in the sense that the dependent and explana-
tory variables have differing orders of integration, and Phillips (1995) shows that
the resulting forecast encompassing tests have an asymptotic size of one.

Tests of the null hypothesis of forecast encompassing can be conducted using
any of the above definitions. In terms of the more general FE(1) definition, the
null and alternative can be expressed as:

H0 : β2 = 0 (f1t encompasses f2t )

H1 : β2 > 0 (f1t does not encompass f2t ).

The alternative hypothesis is often chosen to be one-sided, to rule out the possi-
bility of negative combination weights. Note, however, that negative weights can
arise: from (4.3) it is apparent that the weight on f2t in the Bates–Granger combi-
nation will be negative if σ2ρ > σ1 (and the weight on f1t will exceed unity). For
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FE(2) and FE(3), the null and alternative hypotheses take the same form as above
but with the parameter λ replacing β2.

The most straightforward approach to testing would be to simply estimate the
relevant regression, FE(1), FE(2) or FE(3), by OLS, and then perform a standard
t-test of the null that β2 = 0 or λ = 0. However, as Harvey, Leybourne and New-
bold (1998) show in the context of the FE(2) regression, such an approach is not
robust to properties of the forecast errors that one might expect to encounter
in practice. First, an implicit assumption of the regression error εt being identi-
cally and independently distributed (i.i.d.) is not plausible for forecasts at horizons
greater than one, since even optimal forecasts in this setting would be expected to
have errors that follow a moving-average process of order h − 1. Second, in some
applications it is likely that the forecast errors are non-normally distributed (for
example, Harvey and Newbold, 2003, find substantial evidence of non-normality
in US macroeconomic forecast errors). Non-normality in the errors induces con-
ditional heteroskedasticity in the regression FE(2), resulting in oversized tests if
conventional t-tests are applied.

Harvey, Leybourne and Newbold (1998) consider two ways of obtaining asymp-
totically correctly-sized tests in these situations. One is to continue with a
regression-based t-test, but using standard errors that are robust to heteroskedas-
ticity and autocorrelation. Specifically, assuming the forecast errors are at most lag
(h−1) dependent (in line with forecast optimality), they propose the use of a rect-
angular lag window for long-run variance estimation, as in Diebold and Mariano
(1995). This approach yields the test statistic:

R1 =
λ̂√√√√√∑h−1

j=−(h−1)
∑n

t=|j|+1(e1t − e2t )ε̂t (e1,t−|j| − e2,t−|j|)ε̂t−|j|[∑n
t=1(e1t − e2t )

2
]2

,

where λ̂ is the least squares estimate of λ in the FE(2) regression. Alternatively, one
could impose the information that λ = 0 under the null, replacing ε̂t with e1t in
the variance estimator:

R2 =
λ̂√√√√√∑h−1

j=−(h−1)
∑n

t=|j|+1(e1t − e2t )e1t (e1,t−|j| − e2,t−|j|)e1,t−|j|[∑n
t=1(e1t − e2t )

2
]2

.

Under standard assumptions about the forecast errors, both R1 and R2 are
asymptotically standard normally distributed.

The second approach proposed by Harvey, Leybourne and Newbold (1998)
observes that the null hypothesis under the FE(2) specification requires:

E[e1t (e1t − e2t )] = 0.

This motivates testing for forecast encompassing via a test for whether the series
dt = e1t (e1t − e2t ) has zero mean, along the lines of Diebold and Mariano (1995),
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who presented such an approach for testing the null of equal forecast accuracy.
Under standard assumptions:

√
n[d̄ − E(dt )] ⇒ N(0, S), (4.12)

where S denotes the long-run variance of dt , giving rise to the statistic:

DM = nd̄√∑h−1
j=−(h−1)

∑n
t=|j|+1(dt − d̄)(dt−|j| − d̄)

, (4.13)

where d̄ = n−1∑n
t=1 dt and the implied estimator of S uses a rectangular lag win-

dow as above. This statistic has an asymptotic standard normal distribution under
the null of forecast encompassing, and is robust to the aforementioned forecast
error properties of autocorrelation and non-normality. Harvey, Leybourne and
Newbold (1998) propose a small modification of this test which has improved finite
sample properties, drawing on work by Harvey, Leybourne and Newbold (1997).
The modified statistic is:

MDM = n−1/2[n+ 1− 2h+ n−1h(h− 1)]1/2DM , (4.14)

and the recommendation is to use critical values from the tn−1 distribution rather
than those from the limiting standard normal. Simulation results in Harvey,
Leybourne and Newbold (1998) show that MDM has better finite-sample size
properties than the regression-based variants R1 and R2, although some loss in
size-adjusted power relative to R1 is observed for small samples.

In addition to forecast errors being autocorrelated (for h > 1) and possibly non-
normally distributed, it may also be the case that the errors exhibit autoregressive
conditional heteroskedasticity (ARCH – see, e.g., Engle, 1982), with the squared
forecast errors following a dependent sequence. Intuitively, this describes the sit-
uation where, if a variable proves difficult to forecast in one period, it is likely to
prove difficult to forecast in the next period as well. In such circumstances, and
again in the context of FE(2), Harvey, Leybourne and Newbold (1999) show that the
forecast encompassing tests suffer asymptotic size distortions, rejecting the forecast
encompassing null too frequently. They also propose a simple modification which
largely overcomes the size problem; this involves computing MDM as above, but

replacing h in (4.13) and (4.14) with �0.5n1/3� + h, where �.� denotes integer part.
This modification should be employed whenever ARCH in the forecast errors is
suspected, or is detected through prior testing.

Although Harvey, Leybourne and Newbold (1998) propose the MDM test (4.14)
in the context of FE(2), the test can also be applied using the forecast encompassing
specifications FE(1) and FE(3), the only difference being the specification of dt . For
FE(1), application of the Frisch–Waugh theorem shows that β2 is identical to that in
the regression η1t = β2η2t+νt , where η1t and η2t denote the errors from regressions
of yt and f2t , respectively, on a constant and f1t . This allows us to write the null
hypothesis as:

E(η1tη2t ) = 0,
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with the corresponding specification for dt being dt = η1tη2t ; in practice, η1t and
η2t can be replaced with their residual counterparts η̂1t and η̂2t , respectively. For
FE(3), testing can proceed by setting dt = e1t f2t .

1 Variants of R1 and R2 can also
be constructed for FE(1) and FE(3) in a straightforward manner; see, for example,
Newbold and Harvey (2002) for FE(1).

Tests for forecast encompassing can also be devised for the ANN combina-
tion. This would require the computationally more burdensome estimation of

θ =
(
α,β1, . . . βk, γ1, . . . γp, δ1, . . . δp

)
by NLS, rather than choosing the γi as random

draws from a U (−1, 1) distribution: i.e., minimizing Qn (θ) =∑n
t=1

[
yt − ft (θ)

]2 to
give θ̂n. We can then use the results that, under general conditions, θ̂n converges
to θ

∗, where:
θ
∗ = arg min

θ

E
[
yt − ft (θ)

]2 ,

and that
√

n
(
θ̂ − θ

∗)⇒ N
(
0,�θ

)
, where �θ can be consistently estimated, to con-

duct inference. The null hypothesis that f1t encompasses f2t based on the ANN
combination can be constructed as a test of the joint significance of all the param-
eters related to f2t , i.e., β2 = γ21 = . . . = γ2p = 0: see White (1989), Kuan and
White (1994) and the discussion by Franses and van Dijk (2000, pp. 230–2) for
details.

4.3 Model-based forecasts

The analysis and forecast encompassing tests considered in the previous section
treat the forecasts as given. However, in many practical applications forecasts are
obtained using estimated regression models, and the impact of estimation uncer-
tainty on the encompassing tests then needs to be examined if we wish to assess the
predictive ability of the underlying models. West and McCracken (1998) and West
(2001) study the impact of estimation uncertainty for the forecast encompassing
specifications FE(3) and FE(2) respectively, drawing on the work of West (1996),
although the general results are equally applicable to FE(1). Suppose, by way of a
simple example, that the forecasts f1t and f2t are generated using the non-nested
regression models:

Model 1: yt = θ1X1t + e1t

Model 2: yt = θ2X2t + e2t ,

where the scalar regressors X1t and X2t are assumed to be stationary and well
behaved, and where E(e1tX1t ) = E(e2tX2t ) = 0. Given estimates of the model
parameters (θ̂1t and θ̂2t ) using data prior to time t , the corresponding forecasts can
then be constructed as:

f̂1t = θ̂1tX1t

f̂2t = θ̂2tX2t .
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As in the previous section, assume that a record of n past forecasts and actuals
are available for evaluation, denoting the corresponding forecast errors by ê1t and
ê2t . The n forecasts can be derived using model parameter estimates obtained in
one of three main ways. First, a fixed estimation scheme involves a one-off esti-
mation of θ̂1t and θ̂2t using data from, say, t = 1, . . . , R, and then using that same
set of estimates to produce n forecasts from t = R + h to R + n + h − 1. Second, a
recursive estimation scheme might be adopted, where the sample used for estima-
tion uses all available information at each point, increasing by one observation per
period, i.e., the models are first estimated over t = 1, . . . , R to produce forecasts for
t = R+ h, then the model parameters are re-estimated over t = 1, . . . , R+ 1 to give
forecasts for t = R+1+h, etc. Finally, a rolling scheme uses a moving window of R
observations to estimate the models, so that recent data is included, but more dis-
tant observations discarded, i.e., the initial estimation sample is again t = 1, . . . , R
for forecasts of the period t = R + h, then t = 2, . . . , R + 1 for use in forecasts for
t = R+ 1+ h, etc.

The encompassing tests of the previous section must now be constructed using
d̂t , defined as dt for the appropriate forecast encompassing specification FE(1),
FE(2) or FE(3), but based on the quantities f̂1t , f̂2t , ê1t and ê2t , which embody the
estimated parameters θ̂1t and θ̂2t . The results of West and McCracken (1998) and
West (2001) show that the additional uncertainty implicit in d̂t affects the

asymptotic variance of d̂. We now have:

√
n[d̂ − E(dt )] ⇒ N(0,�), (4.15)

where d̂ = n−1∑R+n+h−1
t=R+h d̂t and:

� = S + δdg (DBS′dg + SdgB′D′)+ δggDBSggB′D′, (4.16)

with S denoting the long run variance of dt as before, and:

D = E
[

∂dt/∂θ1 ∂dt/∂θ2

]
B =

[
[E(X2

1t )]−1 0

0 [E(X2
2t )]−1

]

Sgg =
∑∞

j=−∞ E(gt g
′
t−j), gt =

[
e1tX1t
e2tX2t

]
Sdg =

∑∞
j=−∞ E{[dt − E(dt )]g ′t−j},
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and where the parameters δdg and δgg are given in the following table:

Estimation scheme δdg δgg

Fixed 0 π

Recursive 1− π−1 ln(1+ π) 2
[
1− π−1 ln(1+ π)

]
Rolling, π ≤ 1 π/2 π − π2/3
Rolling, π > 1 1− (2π)−1 1− (3π)−1

with π = limR,n→∞(n/R), 0 ≤ π < ∞. Note that BSggB′ in the last term of (4.16)
defines the asymptotic (R →∞) variance-covariance matrix of the estimator of the
parameter vector θ = [θ1, θ2]′, denoted Vθ . The above results can also be general-
ized beyond the example considered of scalar linear regression models estimated by
least squares, provided the models continue to be non-nested. For results pertain-
ing to multiple regressors in a linear framework, and also more general models and
estimation techniques, see West and McCracken (1998) and West (2001). Essen-
tially, (4.15) and (4.16) continue to hold, but involve more general representations
for the constituent components of �.

Comparing (4.12) and (4.15)–(4.16), it can be seen that the uncertainty involved
through estimation of the model parameters gives rise to additional terms in the

asymptotic variance of d̂. To see how this arises, consider the FE(2) MDM test for the
simple example above, assuming the forecasts have been obtained via the fixed esti-

mation scheme, so that θ̂it = θ̂i =
∑R

t=1 ytXit/
∑R

t=1 X2
it , t = R+h, . . . , R+n+h−1,

i = 1, 2. In this case, the expression (4.16) simplifies to � = S + πDVθD′ with
D = [E(e2tX1t ), E(e1tX2t )]. Now the forecast errors can be written as êit = eit
−(θ̂i − θi)Xit , i = 1, 2, resulting in the decomposition:

d̂ = d̄ + n−1∑R+n+h−1
t=R+h

[
(θ̂1 − θ1)e2tX1t + (θ̂2 − θ2)e1tX2t

+(θ̂1 − θ1)
2X2

1t − (θ̂1 − θ1)(θ̂2 − θ2)X1tX2t − 2(θ̂1 − θ1)e1tX1t

]
.

It then follows that:

V
[√

n[d̂ − E(dt )]
]
= V

[√
n[d̄ − E(dt )]

]
+ nE

{
n−2

[
(θ̂1 − θ1)

2(
∑R+n+h−1

t=R+h e2t X1t )
2

+ (θ̂2 − θ2)
2(
∑R+n+h−1

t=R+h e1t X2t )
2

+2(θ̂1 − θ1)(θ̂2 − θ2)
∑R+n+h−1

t=R+h e2t X1t
∑R+n+h−1

t=R+h e1t X2t

]}
+ op(1)

= V
[√

n[d̄ − E(dt )]
]
+ (n/R)E

{
[R1/2(θ̂1 − θ1)]2(n−1∑R+n+h−1

t=R+h e2t X1t )
2

+ [R1/2(θ̂2 − θ2)]2(n−1∑R+n+h−1
t=R+h e1t X2t )

2
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+2R1/2(θ̂1−θ1)R
1/2(θ̂2−θ2)(n

−1∑R+n+h−1
t=R+h e2t X1t )(n

−1∑R+n+h−1
t=R+h e1t X2t )

}
+ op(1)

⇒ S + π{Vθ ,11[E(e2t X1t )]2 + Vθ ,22[E(e1t X2t )]2 + 2Vθ ,12E(e2t X1t )E(e1t X2t )}
= S + πDVθD′,

where Vθ ,ij denotes the (i, j) element of Vθ .
If forecast encompassing tests are conducted without taking account of the addi-

tional terms present in �, i.e., by simply using d̂t in place of dt in the tests in
the previous section, and using the usual implicit long run variance estimator
that only estimates S, then asymptotic size distortions are generally obtained. For
example, simulations by West (2001), using the example considered above with
θ1 = 1, θ2 = 0 and (e1t , X1t , X2t )

′ i.i.d. normal with variance-covariance matrix
diag(1, 1, 2), show that the FE(2) MDM test of the previous section, run at the
nominal 5% significance level against a two-sided alternative, has empirical size
around 25% for large n when n/R = 2.

In order to obtain asymptotically correctly-sized tests in general, the variance
estimators implicit in the forecast encompassing tests must be modified so as to
consistently estimate �. Consistent estimation of � can be obtained by estimating
the constituent quantities S, Sdg , Sgg , B and D using their natural sample coun-
terparts, and using n/R in place of π for determining δdg and δgg . To illustrate,
consider again the FE(2) MDM test for the simple example above, assuming the
forecasts have been obtained via the fixed estimation scheme. A further simplifi-
cation of � is possible, since under the encompassing null hypothesis, e1t cannot
be predicted by model 2, so E(e1tX2t ) = 0, yielding D = [E(e2tX1t ), 0] and:

� = S + πVθ ,11[E(e2tX1t )]2.

A consistent estimator is:

�̂ = Ŝ + (n/R)V̂θ ,11

[
n−1∑R+n+h−1

t=R+h
ê2tX1t

]2
,

where:

Ŝ = [n+ 1− 2h+ n−1h(h− 1)]−1∑h−1

j=−(h−1)

∑R+n+h−1

t=|j|+R+h
(d̂t − d̂)(d̂t−|j| − d̂),

and V̂θ ,11 is the heteroskedasticity consistent estimator of the asymptotic variance

of θ̂1:

V̂θ ,11 =
R
∑R

t=1 ê2
1tX

2
1t(∑R

t=1 X2
1t

)2
.

The resulting MDM statistic is then given by:

MDM = n1/2d̂√
�̂

.
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There are, however, a number of special cases where the forecast encompass-
ing tests do not require correction for model parameter estimation uncertainty.
First, if π = 0, then the parameters δdg and δgg are zero regardless of the model
estimation scheme, ensuring that � in (4.16) reduces to S. Thus if the ratio n/R is
very small, a case could be made for abstracting from the issue of model estimation
uncertainty and proceeding with the unadjusted tests of the previous section. Intu-
itively, this arises because, if R is very large compared to n, the model parameter
estimation uncertainty becomes relatively insignificant compared to the uncer-
tainty that would be present in the testing problem even if the model parameters
were known.

A second case where model estimation corrections are not required is when the
two models are linear, estimated by least squares, with each involving just a single
regressor, as in the example above, and the forecast encompassing approach is
FE(1). This case is considered by Clements and Harvey (2006). As noted in the
previous section, for the FE(1) MDM test, dt = η1tη2t , with η1t and η2t the errors
from regressions of yt and f2t , respectively, on a constant and f1t . Hence, letting
C (., .) denote a covariance:

dt =
{
[yt − E(yt )] −

C(yt , f1t )

V(f1t )
[f1t − E(f1t )]

}
×
{
[f2t − E(f2t )] −

C(f1t , f2t )

V(f1t )
[f1t − E(f1t )]

}
.

For forecasts from linear single regressor models, results such as E
(
fit
) = θiE

(
Xit

)
,

i = 1, 2, are obtained, so that dt can be written as:

dt = θ2

{
[yt − E(yt )] −

C(yt , X1t )

V(X1t )
[X1t − E(X1t )]

}
×
{
[X2t − E(X2t )] −

C(X1t , X2t )

V(X1t )
[X1t − E(X1t )]

}
.

Clearly, ∂dt/∂θ1 = 0, and:

E
(
∂dt
∂θ2

)
= C(yt , X2t )−

C(X1t , X2t )C(yt , X1t )

V(X1t )
. (4.17)

The null hypothesis of β2 = 0 in the FE(1) regression implies that:

V(f1t )C(yt , f2t )− C(f1t , f2t )C(yt , f1t ) = 0.

Substituting for f1t and f2t in this expression, and dividing both sides by θ
2
1 θ2

(noting that θ1 �= 0, θ2 �= 0), the right-hand side of (4.17) equals zero. So D = (0, 0)
under the null, and estimation uncertainty is irrelevant asymptotically for FE(1),
contrasting with the findings using the MDM variants of the FE(2) and FE(3) tests.

Finally, West and McCracken (1998) show that while tests based on the FE(3)
specification do require adjustment for estimation uncertainty, an alternative to
directly estimating � exists when the models are linear. Consider augmenting
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the FE(3) regression with the regressors from Model 1, i.e., in the above example,
replacing the FE(3) regression with:

ê1t = λf̂2t + γX1t + εt .

West and McCracken (1998) show that tests of λ = 0 from this augmented regres-
sion only require standard autocorrelation and heteroskedasticity robust variance
estimators, such as those of the previous section, and do not need estimators that
explicitly account for the model parameter estimation uncertainty. In terms of an
MDM-type testing approach, this augmented version of FE(3) can be executed by
computing (4.14) with d̂t = û1t û2t in place of dt , where û1t and û2t denote the
residuals from regressions of ê1t and f̂2t , respectively, on X1t .

4.4 Nested model comparisons

The results of the previous section apply in the case where the rival forecasting
models are non-nested. However, it is also common in forecast evaluation exercises
for the forecasts under consideration to be obtained from models that are, in fact,
nested. The primary situation where this arises is when forecast encompassing
tests are employed to help determine whether a particular variable is useful for
prediction, by testing whether a forecast based on a model including that variable
as a regressor is encompassed by a forecast from the same model with that variable
excluded. In such situations, the forecasts are asymptotically equivalent under the
encompassing null hypothesis, and this affects the usual asymptotic results derived
under a non-nested model assumption.

Clark and McCracken (2001) examine the asymptotic properties of FE(2)-based
forecast encompassing tests for the special case of one-step-ahead forecasts (h = 1),
when the models are nested, linear and estimated by OLS. Consider the following
nested models:

Model 1: yt = X′1tθ11 + e1t

Model 2: yt = X′1tθ21 +X′2tθ22 + e2t ,

where the vectors X1t and X2t contain k1 and k2 regressors, respectively. The
corresponding forecasts are denoted by:

f̂1t = X′1t θ̂11t

f̂2t = X′1t θ̂21t +X′2t θ̂22t ,

where the parameter vectors are first estimated from the above models, using data
prior to time t . Under the null hypothesis that f1t encompasses f2t , Model 2 con-
tains k2 redundant variables (those in X2t ), and the population forecasts f1t and
f2t are identical. Under the conditions outlined by Clark and McCracken (2001),
which include conditionally homoskedastic forecast errors, the asymptotic null
distribution of the FE(2) MDM statistic (4.14) (with d̂t replacing dt ), for the general
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case 0 < π <∞ (with π = limR,n→∞(n/R) as before), is given by:

MDM ⇒ �1√
�2

, (4.18)

where the terms �1 and �2 depend on the estimation scheme as follows:

Estimation scheme �1 �2

Fixed λ−1[W(1)−W(λ)]′W(λ) πλ−1W(λ)′W(λ)

Recursive
∫ 1
λ r−1W(r)′dW(r)

∫ 1
λ r−2W(r)′W(r)dr

Rolling λ−1 ∫ 1
λ [W(r)−W(r − λ)]′dW(r) λ−2 ∫ 1

λ [W(r)−W(r − λ)]′
[W(r)−W(r − λ)]dr

with λ = (1 + π)
−1 and W(r) a (k2 × 1) vector standard Brownian motion. In

the case of the fixed estimation scheme, (�2)
−1/2

�1 ∼ N(0, 1), so that standard
critical values can be employed. However, for the recursive and rolling estimation
schemes, the forecast encompassing statistic no longer has a standard limit dis-
tribution under the null; critical values for these non-standard distributions are
provided for a range of values of k2 and π by Clark and McCracken (2000, 2001).

The above results assume the presence of model estimation uncertainty, with
0 < π < ∞. If, on the other hand, π = 0, Clark and McCracken (2001) show that
the MDM statistic is again standard normally distributed in the limit under the
null hypothesis. Thus, if the ratio n/R is very small, standard normal critical values
may be employed.

In the more general case where h > 1 and conditionally heteroskedastic fore-
cast errors are permitted, the above results no longer hold in general. Clark and
McCracken (2005) analyze this situation for predictions from nested linear mod-
els, where the forecasts are obtained using direct multi-step methods (see, e.g.,
Bhansali, 2002; Marcellino, Stock and Watson, 2006), as opposed to forecasts
obtained by iterated one-step methods. They find that, for 0 < π < ∞, FE(2)
MDM-type test statistics do not have pivotal asymptotic null distributions, instead
depending on nuisance parameters that vary with the second moments of the fore-
cast errors, the model regressors, and the orthogonality conditions implicit in the
OLS model estimations.

Two exceptions exist where FE(2) MDM-type forecast encompassing tests do
possess pivotal limit distributions under the null for h > 1. First, if k2 = 1, then the
nuisance parameters vanish and the limit distribution of the test statistics reduces
to that for h = 1, as given by (4.18) above. Second, if π = 0, the test statis-
tics are standard normally distributed. Aside from these exceptions, however, no
nuisance parameter-free asymptotic distributions exist from which critical values
can be obtained. In such cases, critical values must instead be generated by sim-
ulation or bootstrap methods. Clark and McCracken (2005) outline a method for
simulating the asymptotic critical values using estimates of the nuisance parame-
ters, and also an algorithm for obtaining critical values via a parametric bootstrap;
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simulation evidence suggests that the latter approach yields considerably better
finite sample size control.

Finally, Clark and McCracken (2001, 2005) also propose a new FE(2)-based
encompassing test for use with nested linear model forecasts, which is shown to
be more powerful than the corresponding MDM-type tests. The test statistic is
given by:

ENC-F = nd̂

n−1∑R+n+h−1
t=R+h ê2

2t

.

When h = 1 and the forecast errors are conditionally homoskedastic, the statistic
has the following limit distribution for 0 < π <∞ under the null:

ENC-F ⇒ �1,

and critical values from this distribution are provided by Clark and McCracken
(2000, 2001) for the fixed, recursive and rolling estimation schemes. When h > 1,
the ENC-F statistic does not have a pivotal asymptotic distribution, even when
k2 = 1; in this more general case of multi-step prediction, therefore, critical values
must be obtained by bootstrapping. When π = 0, ENC-F is degenerate, and needs

to be rescaled by (R/n)1/2 to obtain a limit distribution under the null.

4.5 Conditional tests of forecast encompassing

Hitherto, we have considered tests of forecast encompassing that are based on
the notion of unconditional expected loss. Giacomini and White (2006) present a
general framework for out-of-sample predictive ability testing which is character-
ized by the formulation of tests (such as tests for forecast encompassing) based on
conditional expected loss. Tests of forecast encompassing based on unconditional
expected loss indicate whether f1t encompasses f2t on average, i.e., over the whole
sample, whereas a conditional evaluation would indicate that f1t encompasses f2t
if it were not possible to predict whether the combination of f1t and f2t would
outperform f1t based on information known at t − 1. The approach of Giacomini
and White (2006) also differs from the standard approach to testing for predic-
tive ability in that it compares forecasting methods rather than forecasting models.
Following the seminal contribution of West (1996), the underlying aim is to com-
pare the forecast performance of the models in population. Although forecasts are
derived from models with estimated parameters, hypotheses concerning predic-
tive ability are framed in terms of forecasts based on the population values of the
model parameters, necessitating an allowance for the impact of estimation uncer-
tainty, as discussed in section 4.3. Instead, the approach of Giacomini and White
(2006) compares the forecast performance of the methods, where the method com-
prises the method of estimation and the number of observations to include in
the estimation window, in addition to the specification of the model. Estimation
uncertainty is thus a key feature of the forecasting method and affects forecast
performance.
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An implication of evaluating methods rather than models is that it may be opti-
mal to combine forecasts from the data-generating process with those from other
models. This situation is ruled out when models are compared. Clements and
Hendry (1998, Ch. 10) provide the following illustration based on an AR(1) pro-

cess, yt = ψyt−1 + vt , where vt ∼ i.i.d. N(0, σ2
v ) and |ψ | < 1. Then the h-step-ahead

conditional MSFE, assuming an in-sample size of R observations, is:

E[ê2
R+h | yR] = σ

2
v
(
1− ψ

2h)(
1− ψ2

) + E[
(
ψ

h − ψ̂
h)2]y2

R, (4.19)

where ψ̂ is the OLS estimator of the unknown parameter ψ . The first term is the con-
tribution of future disturbances, and the second is due to parameter uncertainty.
Using the asymptotic formula in Baillie (1979, equation 1.6, p. 676):

E
[
ê2
R+h | yR

]
=

σ
2
v

(
1− ψ

2h
)

(
1− ψ2

) + h2
ψ

2(h−1)R−1
(
1− ψ

2
)

y2
R. (4.20)

Chong and Hendry (1986) note that h2
ψ

2(h−1) in the second term of (4.20) has a
maximum at h = −1/ lnψ , and so is not monotonic. It is straightforward to show

that (4.20) will exceed the unconditional variance of the process (σ2
y = E

(
y2
t

)
=

σ
2
v

(
1− ψ

2
)−1

) when:

y2
R

σ2
y

>
Rψ

2

h2
(
1− ψ2

) ,

where the unconditional variance can be viewed as the expected squared forecast
error of a forecast of zero (the unconditional mean), ȳ = 0. This establishes that
the data-generating forecast can be beaten in terms of (squared-error loss) accuracy
when there is estimation uncertainty. Moreover, consider the combined forecast:

ỹR+h = βȳ + (1− β) ŷR+h = (1− β) ŷR+h, (4.21)

where 0 ≤ β ≤ 1, with h-step-ahead forecast error:

ẽR+h = yR+h − ỹR+h = β ēR+h + (1− β) êR+h, (4.22)

where êR+h ≡ yR+h − ŷR+h and ēR+h ≡ yR+h − ȳ = yR+h. Minimizing E
[
ẽ2
R+h | yR

]
with respect to β yields:

β
∗
h =

(
1+ Rψ

2

h2
(
1− ψ2

))−1

. (4.23)

Clements and Hendry (1998) compare the performance of ŷR+h, ȳ and ỹR+h in
terms of the unconditional MSFE, and establish that there are gains to forecast
combination.

The key differences between Giacomini and White (2006) and the approach of
Diebold and Mariano (1995) and West (1996) (DMW) to testing predictive ability
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become apparent by contrasting their null hypotheses for a general test of equal
forecast accuracy for a general loss function L (.). The DMW null is that:

H0 : E
[
L
(
Yt , f1t

(
β
∗
1

))
− L

(
Yt , f2t

(
β
∗
2

))]
= 0,

so that L is defined over the random variable Yt and the one-step forecast based on
information up to t−1 from Model i with population parameter vector β∗i , denoted

fit
(
β
∗
i

)
. The expectation of the loss differential is unconditional. By contrast, the

Giacomini and White (2006) null is:

H0 : E
[
L
(
Yt , f1t

(
β̂1

))
− L

(
Yt , f2t

(
β̂2

))
| �t−1

]
= 0, (4.24)

so that loss depends on the estimates, and the expectation is with respect to an
information set �t−1.

In terms of testing for forecast encompassing with standard squared-error loss

(i.e., L
(
Yt , fit

(
β
∗
i

))
= e2

it , where eit = Yt − f ∗it ), the DMW null becomes:

H0 : E(dt ) = 0,

where dt = e1t
(
e1t − e2t

)
for the null that Model 1 encompasses Model 2 using

FE(2). Assuming β
∗
1 and β

∗
2 are known, under standard conditions (see Diebold

and Mariano, 1995; Harvey, Leybourne and Newbold, 1998; West and McCracken,
1998) we obtain (4.12), namely:

√
n[d̄ − E(dt )] ⇒ N(0, S).

When β
∗
1 and β

∗
2 are not known and the forecasts are based on β̂1 and β̂2, the

variance of the limiting normal distribution will in general include an additional
term for the effect of estimation uncertainty, as described in section 4.3.

To test for forecast encompassing using (4.24), let d̂t = ê1t
(
ê1t − ê2t

)
, where êit =

yt − fit (β̂i) to make explicit the use of parameter estimates. Then E(d̂t | �t−1) = 0

is equivalent to E(ht−1d̂t ) = 0 when �t−1 = Ft−1 (where Ft is the information
available at time t) and ht−1 is a Ft−1-measurable function of dimension q. Stan-
dard asymptotic normality arguments then give rise to the (one-step) Conditional
Forecast Encompassing Test (see Giacomini and White, 2006, Theorem 1, p. 1553):

Th
n = nZ̄′n�̂

−1
n Z̄n,

where Z̄n = n−1∑n
t=1 Zt , Zt = ht−1d̂t , and �̂n is the standard variance estimator,

�̂n = n−1∑n
t=1 ZtZ

′
t . Under the null:

Th
n ⇒ χ

2
q ,

as n →∞. The sequences of forecasts are based on rolling estimation windows of
fixed size to ensure non-vanishing parameter estimation uncertainty as the sam-
ple of forecasts (n) goes to infinity. (This aspect is suppressed in the notation for
convenience.) The choice of ht−1 is crucial, in that the test will have no power

if E(d̂t | �t−1) �= 0 for some elements of �t−1, but an injudicious choice of ht−1
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leads to those elements not being included in ht−1 : ht−1 should include variables
that are thought likely to distinguish between the two forecasting methods: such
variables are likely to include indicators of past performance, as well as context-
specific variables, such as business cycle indicators if it is thought that the relative
performance of the two sets of forecasts may vary systematically with the busi-
ness cycle. Further details of conditional forecast encompassing tests are provided
in the discussion of the application of these methods to quantile forecasts in the
following section.

4.5.1 Quantile forecasts

Giacomini and Komunjer (2005) present an application of the general approach of
Giacomini and White (2006) to forecasting tests for quantile forecasts. The condi-
tional aspect of their approach can be brought to the fore by considering the tests of
correct conditional and unconditional coverage of Christoffersen (1998). Accord-
ing to Christoffersen (1998), a set of quantile forecasts is efficient with respect to
an information set (denoted �t ) if E

(
α − 1

(
Yt − q̂t < 0

) |�t−1
) = 0, where q̂t is

a forecast of Qt ,α , the α-quantile of the distribution of Yt conditional on Ft−1,

namely Qt ,α ≡ F−1
t (α), with Ft the conditional distribution function of Yt . 1 (.)

is the indicator function that takes the value one when the argument is true and
zero otherwise. If we define It ≡ 1

(
Yt − q̂t < 0

)
, then the condition for conditional

efficiency can be written more succinctly as E
(
α − It |�t−1

) = 0. Testing whether
this holds is a test of correct conditional coverage, because it requires both that
(i) on average over the sample (t = 1, . . . , n) the probability of an exceedence is
not significantly different from α, and (ii) that there is no systematic relation-
ship between these exceedences and any variables in the agent’s information set
at the time the forecast was made. The first requirement is that of correct uncondi-
tional coverage, often termed a test for unbiasedness, as it is based on whether the

sample proportion of exceedences (say, π̂ = n−1∑n
t=1 It ) is significantly different

from the nominal proportion α. The null hypothesis is that E
(
α − It

) = 0 versus
E
(
α − It

) �= 0, and the standard likelihood ratio test is:

LR = −2
[
n0 ln

(
1− α

1− π̂

)
+ n1 ln

α

π̂

]
asy∼ χ

2
1 ,

where n1 = nπ̂ and n0 = n− n1. Tests for correct unconditional coverage, or bias,
can also be found in Granger, White and Kamstra (1989), Baillie and Bollerslev
(1992) and McNees (1995).

The second requirement can be tested by restricting the information set to past
values of It , namely �t−1 =

{
It−1, It−2, . . .

}
. The suggestion of Christoffersen (1998)

is to test whether E
(
α − It |�t−1

) = 0 by testing whether
{
It
}

follows a binary
first-order Markov chain. If the transition probabilities are defined as:

πij = Pr(It = j|It−1 = i),

where i, j = {0, 1}, a lack of a systematic relationship between It and �t−1 (here
�t−1 = It−1) requires that π0j = π1j, j = {0, 1}, which gives rise to a simple
likelihood ratio test. Note that this test does not consider unbiasedness mentioned
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under (i). Granger, White and Kamstra (1989, note c to Table 1, p. 91) suggest using
a contingency table approach to test the conditional aspect, based on whether the
number of occurrences of (say) zeros followed by zeros is consistent with there being
no association between the occurrence of a zero in one period and the occurrence
of a zero in the following period. Clements and Taylor (2003) suggest a regression-
based approach that facilitates the inclusion of variables besides lagged values of{
It
}

in the information set.
The tests of Christoffersen (1998) illustrate the distinction between conditional

and unconditional tests in the context of the evaluation of a single sequence of fore-
casts. From a conceptual point of view, the approach of Giacomini and Komunjer
(2005) can be viewed as replacing the single quantile forecast q̂t by a combination
of two (or more) quantile forecasts, θ

′q̂t , where θ = (
θ1, θ2

)′ and q̂t =
(
q̂1t , q̂2t

)′,
followed by the development of tests of conditional and unconditional forecast
encompassing based on the estimated weights θ̂ . Their treatment follows Giaco-
mini and White (2006) (although complications arise due to the discontinuous
nature of the moment conditions on which the generalized method of moments
(GMM) estimation of θ is based).

The conditional α-quantile of Yt , Qt , is the optimal forecast for a “tick” or “check”
loss function:

Lα

(
et
) = (

α − 1
(
et < 0

))
et ,

where et = yt − q̂t , so that L (.) is used as the basis for assessing whether combi-
nations of forecasts reduce loss. A straightforward application of the definition of
forecast encompassing to quantile forecasts gives the following definition of con-
ditional quantile forecast encompassing based on Giacomini and Komunjer (2005,
Definition 1, p. 418): q̂1t encompasses q̂2t at time t if:

Et−1
[
Lα

(
Yt − q̂1t

)] = Et−1

[
Lα

(
Yt −

(
θ
∗
1t q̂1t + θ

∗
2t q̂2t

))]
,

where Et−1 (.) ≡ E
(
. | Ft−1

)
and where θ

∗ =
(
θ
∗
1, θ∗2

)′
are the optimal weights in

that they minimize tick loss:(
θ
∗
1, θ∗2

)
≡ arg min

(θ1,θ2)∈�
Et−1

[
Lα

(
Yt −

(
θ1t q̂1t + θ2t q̂2t

))]
.

Thus the optimal weights are
(
θ
∗
1, θ∗2

)
= (1, 0), so assigning a zero weight to q̂2t .

Giacomini and Komunjer (2005, Lemma 1, p. 419) show that θ
∗ satisfies the

first-order condition:

Et−1

[
α − 1

(
Yt − θ

∗q̂t < 0
)]
= 0, (4.25)

which is the correct conditional coverage condition of Christoffersen (1998). These
moment conditions are used to estimate the optimal weights by GMM and to

test for forecast encompassing (that q̂1t encompasses q̂2t ):
(
θ
∗
1, θ∗2

)
= (1, 0). The

conditional moment conditions (4.25) are replaced by:

E
[(

α − 1
(
Yt − θ

∗q̂t < 0
))

W∗
t−1

]
= 0,
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where W∗
t is an Ft -measurable function. Wt−1 plays the same role as ht−1 in the

Conditional Forecast Encompassing Test of Giacomini and White (2006) and the
same issues relate to its selection. The sample moment function is given by:

gn (θ) = 1
n

n∑
t=1

[
α − 1

(
yt − θ

′
q̂t < 0

)]
w∗t−1, (4.26)

and the GMM estimator of θ
∗, denoted by θ̂n, is the solution of:

min
(θ1,θ2)∈�

[
gn (θ)

]′ Ŝ−1
n

[
gn (θ)

]
, (4.27)

where:

Ŝn =
1
n

n∑
t=1

[
α − 1

(
yt − θ

′
t q̂t < 0

)]2
w∗t−1w∗′t−1, (4.28)

and θ̂n is obtained by solving (4.27) and (4.28) iteratively, starting with (4.27) and

Ŝn = I. This gives θ̂n

(
Ŝn = I

)
, after which we obtain an updated estimate of Ŝn from

(4.28), etc.
Giacomini and Komunjer (2005, Propositions 1 and 2, p. 420) establish the

consistency and asymptotic normality of θ̂n. Specifically, under some conditions:(
γ
′S−1

γ
)−1/2√

n
(
θ̂n − θ

∗)⇒ N (0, 1) ,

where γ ≡ −E[ft
(
θ
∗′qt

)
W∗

t−1q′t ], S = E[g
(
θ
∗; Yt , W∗

t−1
)
g
(
θ
∗; Yt , W∗

t−1
)′], and ft is

the conditional density of Yt . Given the asymptotic distribution of θ̂n, the CQFE
(Conditional Quantile Forecast Encompassing) test that q̂1t encompasses q̂2t is
given by:

ENCn = n
(
θ̂
′
n − (1, 0)

)
�̂
−1
n

(
θ̂
′
n − (1, 0)

)′
,

where �̂
−1
n is a consistent estimate of � =

(
γ
′S−1

γ
)−1

. Under the null, ENCn ⇒ χ
2
2

as n →∞. The estimate for S is given by (4.28), and that for γ is given by Giacomini
and Komunjer (2005).

4.6 Loss functions and forecast combination

Ever since the early work on forecast combination of Bates and Granger (1969)
and Granger and Ramanathan (1984), combination weights have generally been
chosen to minimize a symmetric, squared-error loss function, and the empir-
ical forecast performance of the combination has typically been assessed by
squared-error loss. This reflects the widespread use of squared-error loss in the
forecast evaluation literature. For example, the “regression method” of Granger
and Ramanathan (1984) estimates by OLS an equation such as:

yt = β1f1t + β2f2t + et ,
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so that the combination weights are selected to minimize
∑

t e2
t , the sum of squares

of the forecast error for the combined forecast. Similarly, the “variance-covariance
approach” of Bates and Granger (1969) selects the weights to minimize the variance
of the forecast error of the combination of forecasts. Nevertheless, a number of
papers have allowed for asymmetric loss, and have considered how the properties
of optimal forecasts change once we dispense with the assumption of symmetric
loss, as well as providing tests of rationality once we allow forecasters to have
asymmetric loss functions.2

A key paper that investigates forecast combination in the context of asymmetric
loss is Elliott and Timmermann (2004). They show that, for general loss func-
tions and forecast error distributions, the optimal combination weights depend on
higher-order moments of the forecast error distribution, such as the skew. How-
ever, under certain restrictions on the form of the forecast error distribution, they
establish an invariance result, whereby the optimal combination weights on the
individual forecasts are identical to the squared-error loss weights for almost all
loss functions and that only the value of the constant term in the combination
will differ. The value of the constant is chosen to generate the optimal amount
of bias in the combination given the degree of asymmetry of the loss function.
Their invariance result holds when the marginal distribution of the forecast errors
depends only on the first two moments of the forecast errors, which holds when the
joint distribution of the actual and forecasts (yt , ft )

′ is elliptically symmetric (which
includes the multivariate normal and t-distributions: see Elliott and Timmermann,
2004, Proposition 2, p. 53).

Suppose:

E

(
yt
ft

)
=
(

μy
μ

)
, C

(
yt
ft

)
=
(

σ
2
y σ

′
21

σ21 �22

)
,

then the forecast combination error is:

et = yt − β0 − β
′ft ,

with moments:
μe = μy − β0 − β

′
μ (4.29)

σ
2
e = σ

2
y + β

′
�22β−2β ′σ21. (4.30)

The decision maker selects
(
β0,β

)
according to:

min
β0,β

∫
L
(
et
)
dF
(
et
)
,

i.e., to minimize E
[
L
(
et
)]

. Under elliptical symmetry we can write E
[
L
(
et
)] =

g
(
μe, σ2

e

)
. From (4.29) and (4.30), only μe depends on β0. Thus the first-order

condition for minimizing E
[
L
(
et
)]

with respect to β0 is:

∂g
(
μe, σ2

e

)
∂β0

=
∂g
(
μe, σ2

e

)
∂μe

∂μe
∂β0

= 0.
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As ∂μe
∂β0

= −1, the optimal value for β0, β
∗
0, solves

∂g
(
μe ,σ2

e

)
∂μe

= 0. β
∗
0 depends on

L (.), and is set to generate the optimal amount of bias (μ∗e ) given the form of L (.).

For squared-error loss, L
(
et
) = e2

t , E
[
L
(
et
)] = μ

2
e + σ

2
e , and

∂g
(
μe ,σ2

e

)
∂β0

= −2μe, so

that the optimal amount of bias is, of course, zero (μ∗e = 0).
Consider the first-order condition with respect to β:

∂g
(
μe, σ2

e

)
∂β

=
∂g
(
μe, σ2

e

)
∂σ2

e

∂σ
2
e

∂β
= 0.

Provided
∂g
(
μe ,σ2

e

)
∂σ2

e
�= 0,

∂g
(
μe ,σ2

e

)
∂β

= 0 implies that ∂σ2
e

∂β
= 0, so from (4.30),

2�22β
∗= 2σ21 and β

∗ = �
−1
22 σ21 irrespective of the form of L (.), matching the

expression for squared-error loss.
As Elliott and Timmermann (2004) remark, if an element of β

∗ is zero under
squared-error loss, then the corresponding forecast will also receive zero weight
under any other loss function, assuming that the stated properties of the fore-
cast error distribution hold. In the general case, it will not be possible to set up a
general forecast encompassing test that does not depend on the form of the loss
function.

4.7 Conclusions

We have discussed the different types of standard linear forecast combination that
are commonly applied in the literature and the related tests of forecast encom-
passing. The tests of forecast encompassing depend upon whether the forecasts
are generated by models with unknown parameters and on whether the underly-
ing aim is to compare the forecasts themselves or the models on which they are
based. There is also an important distinction to be drawn between conditional and
unconditional tests.

More sophisticated forms of combination are reviewed, including nonlinear
forms of combination that might be useful when large numbers of forecasts are
available, and types of combination that might be preferable when the forecasts
are density or probability forecasts. For the most part, forecast accuracy is assessed
by the standard squared-error loss, although under certain conditions on the
data-generating process forecast encompassing is invariant to the form of the loss
function.

Notes

1. For the specification FE(2′) one would use dt = (e1t − ē1)[(e1t − ē1)− (e2t − ē2)], and for
FE(3′), dt = (e1t − ē1)(f2t − f̄2).

2. These include, inter alia, Granger (1969), Zellner (1986), Christoffersen and Diebold
(1997), Clements (1997), Elliott, Komunjer and Timmermann (2005), Patton and
Timmermann (2007) and Clements (2008).
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Abstract
With the growing recognition that point forecasts, the traditional focus, are better seen as the
central points of ranges of uncertainty, in recent years increased emphasis has been given to den-
sity forecasts. This chapter reviews these recent developments, with a focus on the production
and use of density forecasts in macroeconomics. Particular attention is paid to the evaluation and
combination of density forecasts.
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5.1 Introduction

Forecasts of the future values of economic variables are used widely in decision
making. For example, in many countries inflation forecasts are now central to
the setting of monetary policy since monetary policy works with a lag (e.g., see
Svensson, 2005, for a review). But it has become increasingly well understood
that it is not a question of this forecast proving to be “right” and that forecast
proving to be “wrong.” Point forecasts, the traditional focus, are better seen as
the central points of ranges of uncertainty. A forecast of, say, 2% must mean that
people should not be surprised if actual inflation turns out to be a little larger
or smaller than that. Moreover, at a time of heightened economic uncertainty,
they should not be very surprised if it turns out to be much larger or smaller.
Consequently, to provide a complete description of the uncertainty associated with
the point forecast many professional forecasters now publish density forecasts, or
more popularly “fan charts.” A famous example is the Bank of England’s fan chart
(see Britton, Fisher and Whitley, 1998). Importantly, as this chapter reviews, just
as point forecasts are commonly evaluated using the subsequent outturn, so the
reliability of uncertainty forecasts can be evaluated.

More formally, density forecasts of inflation provide an estimate of the prob-
ability distribution of its possible future values. In contrast to interval forecasts,
which give the probability that the outcome will fall within a stated interval, such
as inflation falling within its target range, density forecasts provide a complete
description of the uncertainty associated with a forecast; they can thus be seen to
provide information on all possible intervals.

In conjunction with the increased use of density forecasts by professional fore-
casters and central banks, the academic literature has also devoted increased
emphasis to density forecasting, with the Journal of Forecasting devoting a spe-
cial issue to it in 2000 and the Handbook of Economic Forecasting, published in
2006, containing a chapter surveying methods for predictive density evaluation.
This chapter, with a macroeconomic focus, reviews several aspects of these recent
developments, breaking them down into four areas which, in turn, are considered
in separate sections of the chapter:

1. The importance of density forecasts
2. The production of density forecasts
3. The evaluation of density forecasts
4. The combination of density forecasts.

In so doing we extend the coverage, and update in the light of recent research,
previous surveys and textbooks, including Tay and Wallis (2000), Clements (2005),
Timmermann (2006) and Wallis (2008). The principal extensions in terms of
coverage are the last two sections. In particular we focus on how to choose the
weights when combining density forecasts. Reflecting the infancy of this material,
considerable applied and theoretical work remains to be done to establish a con-
sensus about how best this should be achieved. Nevertheless, this chapter attempts
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to bring together current wisdom and indicates areas where more research would
be welcome. Our discussion also draws out, particularly in section 5.3, which has
much relevance for how forecasting is conducted in practice by professional fore-
casters, the distinction between model-based and subjective density forecasts, and
we also consider their reconciliation. We do not discuss presentation issues, which
we defer to Tay and Wallis (2000) and Wallis (2007).

We confine attention to univariate density forecasts. There is a smaller but grow-
ing literature on multivariate density forecasting, some of it drawing on recent
applications of copula functions in economics (e.g., Patton, 2006), where the cop-
ula characterizes the dependence between the density forecasts. Diebold, Gunther
and Tay (1998) and Diebold, Hahn and Tay (1999) show that the principle behind
the evaluation of univariate density forecasts, discussed in section 5.4 below, gener-
alizes to the multivariate case (see also Clements and Smith, 2000, 2002). Adolfson,
Linde and Villani (2007) use a multivariate scoring rule to compare density forecasts
of the Euro-area from vector autoregressive (VAR) and dynamic stochastic general
equilibrium (DSGE) models. Barrell, Hall and Hurst (2006) and Mitchell (2007a)
consider how bivariate density forecasts for inflation and output growth facilitate
the evaluation of policy rules simultaneously with respect to their performance
against the inflation target and any output growth target that the policy makers
may also have in mind.

5.2 The importance of density forecasts

Periodically, and perhaps especially at times of heightened uncertainty, one hears
the argument that it is time to jettison economic forecasts given their unreliability.
But, as discussed above, in fact we should not be surprised by the unreliability of
point forecasts – indeed, the unreliability of point forecasts is itself a useful indi-
cation of uncertainty. In a loose sense, ignoring for now moments higher than
the second, what is important is the ability of the point forecast, relative to its
variance, to track the outturn. More generally, it is important to provide a quan-
titative indication of the uncertainty associated with a point forecast, along with
the balance of risks (skewness) on the upside and downside and the probability of
extreme events (fat tails or kurtosis). This is achieved by publishing a density fore-
cast. Importantly, the density forecast gives any users of the forecast an indication,
in advance, of the health risks associated with its use.

Although it is a truism to say that density forecasts cannot capture unknowable
uncertainty (Knightian uncertainty) and only capture “risk” (knowable uncer-
tainty), the distinction introduced by Knight (1921), these “risk” assessments can
be evaluated ex post. Indeed, they should be assessed on a regular and ongoing
basis. There is no reason to expect, especially at times of structural change, that the
density forecast correctly captures uncertainty. Forecasters’ statements about the
underlying uncertainty may be, and indeed often are, unreliable. When forecasters
expect them to be unreliable the variance of the conditional variance forecast need
not equal zero. Therefore evaluation tests, reviewed in section 5.4, have been devel-
oped to test, essentially, whether on average over a given sample a forecaster’s
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assessment of “risk” was correct. When it is correct their “risk” forecast might be
said to have captured “true” uncertainty.

These sort of historical evaluations of fan charts, complementing the traditional
and widespread practice of evaluating the trackrecord of point forecasts, are begin-
ning to be carried out routinely by forecasters (for an appraisal of UK inflation
density forecasts by the Bank of England and/or the National Institute of Eco-
nomic and Social Research (NIESR), see Clements, 2004; Wallis, 2004; Mitchell,
2005; Elder et al., 2005). The results provide an indication as to whether, albeit
historically, a series of fan charts was reliable. Just as measures of point forecast
accuracy indicate, to a degree, our confidence in point forecasts, these tests provide
an indication of our confidence in fan charts.

5.2.1 Forecasting under general loss functions

What really matters is how forecasts affect decisions. The “better” forecasts are
those that deliver “better” decisions. On this basis it is argued that the appropriate
way of evaluating forecasts is not to use some arbitrary statistical loss function, but
the appropriate economic loss function (see Granger, 1969; Granger and Pesaran,
2000). Only when the forecast user has a symmetric, quadratic loss function, and
the constraints (if relevant) are linear, is it correct to focus on the point forecast
alone. This is what the textbook’s call “certainty equivalence” (for further discus-
sion and a proof, see Ljungqvist and Sargent, 2000, pp. 57–9). In the more general
case, the degree of uncertainty matters. Publishing a point forecast alone is not
sufficient; users are not indifferent to the degree of uncertainty about the point
forecast.1 They will not then make decisions as if they were certain. Uncertainty is
expected to attenuate their response or reaction to the point forecast (see Brainard,
1967). For more recent discussion in the context of policy makers’ reactions to
real-time output gap estimates, which are known to be unreliable (Orphanides and
van Norden, 2002), although this is not surprising (as discussed above: see also
Mitchell, 2007b), see Swanson (2004).

The importance of publishing density forecasts then follows from the fact that
we tend, in reality, not to know users’ loss functions. Central banks do not quantify,
explicitly at least, their loss functions, but we should not expect these (unknown
to us) functions to be quadratic. For example, we should expect the range of uncer-
tainty to matter to the Federal Reserve since it probably does not care equally about
inflation above and below the zero bound. The central bank has then to be what
Svensson (2001) calls a distribution forecast targeter.

When the forecast user’s loss function is asymmetric, such that positive and
negative forecasting errors have differing costs, the user’s “optimal” forecast need
not equal the conditional mean (e.g., Zellner, 1986; see Pesaran and Weale, 2006,
for a survey). Working out the optimal forecast can be complex, but if it is assumed
that the conditional distribution of yt | �t−h is normal such that yt | �t−h ∼
N(E(yt | �t−h), V(yt | �t−h)) and the loss function is modeled via the Linex loss
function, an analytical solution can be derived. Under these conditions the optimal
or minimum loss point forecast, ŷt |t−h, is no longer equal to the conditional mean
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but equals:

ŷt |t−h = E(yt | �t−h)+
φV(yt | �t−h)

2
, (5.1)

where φ is the asymmetry parameter in the Linex function. It reflects differing costs
to over and under prediction. This means that it can be “rational” for the user to
focus on what are effectively biased point (conditional mean) forecasts.

The trend towards forecasters publishing density forecasts is also explained by the
obvious advantages they bring when communicating with the public and remind-
ing them that the forecasters themselves expect the point forecasts to be “wrong.”
Indeed, interest may lie in the dispersion or tails of the density itself; e.g., infla-
tion targets often focus the attention of monetary authorities to the probability of
future inflation falling within some predefined target range, while users of growth
forecasts may be concerned about the probability of recession. These probability
event forecasts can readily be extracted from the density forecast. In addition,
ranking forecasting models according to their point forecasting performance alone
can be misleading. For example, Clements et al. (2003) find that the failure to
find empirical support out-of-sample for nonlinear business cycle forecasts may be
explained by the traditional focus on point forecasts and their root mean squared
error (RMSE). They argue that nonlinear models may do better at forecasting the
higher moments that are captured by density forecasts.

5.3 The production of density forecasts

In general, forecasts can be produced in a wide variety of ways, ranging from com-
plete model-based approaches to pure judgmental approaches, sometimes referred
to as Delphic forecasts; indeed, almost any combination of model and judgment is
possible. In the conventional point forecasting world, it is probably fair to say that
almost all forecasts which are made by policy or commercial institutes involve
a considerable degree of judgment, although there is, of course, a considerable
academic literature on pure model-based forecasts. When we consider density fore-
casting, a similar range of formal and informal techniques are used, although it is
probably fair to say that, given the greater complexity of a density forecast, there
should be more reliance on formal model-based information.

There is not a widespread, long history of regular published density forecasts in
macroeconomics. One of the longest continuously published series is the Survey
of Professional Forecasters (SPF), which is now conducted by the Federal Reserve
Bank of Philadelphia and was originally started in 1968 by the American Statistical
Association and the National Bureau of Economic Research.

Nevertheless, there is a tradition, which has been maintained to the present day,
of publishing (unbalanced) panel data sets of competing point forecasts. For exam-
ple, in the UK each month since January 1987 Her Majesty’s Treasury (HMT) has
collected together, in its publication Forecasts for the UK Economy: A Comparison
of Independent Forecasts, the point forecasts of (as of December 2007) 43 indepen-
dent City and non-City forecasters. Disagreement among forecasters (as measured
by the variance of competing point forecasts at a given point in time) has then
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been used as a proxy for true uncertainty. As the SPF also offers a direct measure
of uncertainty, since forecasters are asked to report not just their point but den-
sity forecasts, it has provided the opportunity, not possible with the HMT dataset,
to test the reliability of disagreement as a measure of uncertainty (see Zarnowitz
and Lambros, 1987; Bomberger, 1996; Giordani and Söderlind, 2003. Boero, Smith
and Wallis, 2008, introduce a new source of survey data for the UK, the Bank of
England’s Survey of External Forecasters, which also facilitates a comparison of
disagreement and uncertainty).

Macroeconomic forecasters have also studied the density of their forecasts over a
long period, although they have not typically published, on a regular and ongoing
basis, density forecasts as such. The reason for this is, partly, that for a long time it
was felt that density forecasts were too sophisticated for the public to understand
and partly that, as the models being used made the assumption that the param-
eters and the error terms had constant covariance structures, the overall density
function would not vary from one period to another except with respect to its con-
ditional mean. There was therefore relatively little interest in publishing the same
error bands over and over again. However, it is certainly true that modelers and
forecasters in the 1970s and 1980s were calculating the uncertainty surrounding
their forecasts and, occasionally at least, publishing it. For example, the London
Business School, one of the UK’s leading forecasters at the time, began regularly
publishing the average absolute errors for its forecasts in October 1983. Some early
work in this area includes Schink (1971), Bianchi and Calzolari (1980) and Fair
(1980). Fair (1984) surveyed a range of stochastic simulation techniques which
were being used to calculate the density functions for large nonlinear forecasting
models. Hall (1986), and later Blake (1996), reported studies of the density of the
NIESR’s forecasts, again using extensive stochastic simulations.

These later model-based studies contrast strongly with the SPF, which was
purely judgmentally based. This introduces an important theme into this section,
which is the issue of combining judgment with formal model-based analysis.
Another and related theme is the production of density forecasts where the density
itself changes over time. It is only when the whole density changes in a significant
way through time that it is worth going to the lengths of publishing a regular full
density forecast.

5.3.1 Sources of uncertainty

A forecast is usually subject to a range of types of uncertainty, which we can begin
to categorize by considering the following simple decomposition.2 Let Y be the
actual outcome of an event and let Ŷ be the forecast of that event. Then we may
decompose the forecast error into a number of components:

Y − Ŷ = (Y − Y1
)+ (Y1 − Y2

)+ (Y2 − Y3
)+ (Y3 − Y4

)+ (Y4 − Ŷ), (5.2)

where (Y − Y1
) is the contribution to the total error coming from the model’s

error term, (Y1 − Y2
) is the contribution coming from the uncertain parameters,

(Y2−Y3
) is the contribution coming from misspecified functional form, (Y3−Y4

)
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is the contribution coming from incorrect exogenous assumptions, and (Y4− Ŷ) is
the contribution to the complete forecast error coming from the judgment imposed
on the forecast from outside the model. This is a useful way of categorizing the total
error composition; however, numerically the order in which this decomposition
is carried out can affect the numerical evaluation of these components (see Hall
and Henry, 1988). It is also worth noting that the variances which lie behind
these components and which make up the complete density of the forecast may
be either time varying or constant over time, and there will generally be non-zero
covariances between these components.

Part of the usefulness of this decomposition is to emphasize the range of sources
of uncertainty. Virtually no formal model-based analysis can deal with all of these
and so we may justify the use of judgment, which will be discussed below, at least
partly on the grounds of this failure on the part of the formal analysis.

5.3.2 Model-based densities

If we now turn to density forecasts produced by a range of models, a natural starting
place is a conventional VAR, as this may be thought to capture the basic properties
of most standard forecasting models, including large macroeconomic forecasting
models. Indeed, the linearized solution of DSGE models, the workhorse of mod-
ern macroeconomics (see Woodford, 2003) and from which density forecasts may
readily be constructed using simulation methods, can, under certain conditions, be
approximated by a (restricted) finite-order VAR (e.g., see Pesaran and Smith, 2006;
Ravenna, 2007).

Thus, consider a VAR of the form:

Yt = B(L)Yt−1 + εt , (5.3)

(t = 1, . . . , T), where Yt is a vector of N variables, B(L) is a suitably dimensioned
matrix lag polynomial of estimated parameters with fixed covariance matrix and
εt is an N × 1 vector of residuals with constant covariance matrix. Given the con-
stant covariance assumption for both the parameters and residuals, the density
of a forecast of Yt+h (h = 1, . . . , H) will, in general, vary only with the initial
values Yt−1. If the errors in the VAR process are normally distributed then the den-
sity function of the VAR forecast h steps ahead is also normally distributed with
a covariance structure which can be approximated analytically. Lutkepohl (1991,
p. 87) provides an approximate analytical expression for the conditional variance
equal to the approximate mean squared error of the forecast with parameter uncer-
tainty. Allowance can also be made for the uncertain parameters of the VAR or
non-normality by using either Monte Carlo methods or bootstrap techniques (see
Garratt et al., 2006, Ch. 7). For a Bayesian approach, see Zellner (1971, pp. 233–6).
In most practical settings, the value of Yt−1 will not vary sufficiently to produce
large variations in the shape of the density of Yt+h, and so for most practical pur-
poses we can assume that the density is constant across time except for the mean
of the distribution. Hence there is little interest in regularly publishing full details
of the density forecast from this type of model, as the only element of the density
which would change substantially through time is the mean.
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Given this obvious limitation of the standard model, when a researcher is inter-
ested in producing a regular model-based density forecast there is an obvious need
to base it on a model which has a richer structure that allows some interesting
time variation in the shape of the density. The earliest and most obvious model
to be developed which allowed for this possibility is the ARCH process of Engle
(1982), and the associated family of GARCH models which has grown from it. A
basic GARCH(1,1) model has the following general form:

Yt = B(L)Yt−1 + εt (5.4)

εt = ωt ht ; ωt ∼ N(0, 1) (5.5)

h2
t = α0 + α1h2

t−1 + α
2
ε
2
t−1. (5.6)

Given the time variation in the variance of the error term, the complete den-
sity forecast for Yt+h will also exhibit time variation. A wide range of variants
of this basic model have grown up (for an extensive survey, see Bollerslev, Engle
and Nelson, 1994), which allow not only for time variation in the variance but
also for asymmetry and non-normality. The GARCH family of models has had an
enormous impact on econometric modeling and forecasting, especially in the area
of finance, but for the purposes being considered here it does have a number of
limitations. The first and most obvious is that there are practical difficulties in
modeling large systems of equations with GARCH-like structures. While there are
a few extensions of the GARCH approach to systems (e.g., Engle and Kroner, 1995),
these extensions are not very practical for large systems (beyond five or six vari-
ables). The only approaches within the GARCH framework which may be extended
to substantial systems are the Orthogonal GARCH model and the Dynamic Condi-
tional Correlation model of Engle (2002), and even these are not easily applied in
the context of forecasting a large system of equations. The GARCH structure also
imposes a parametric form on the way the density of the forecast variable evolves
which may not always be reasonable.

As a result of these limitations, a number of studies have emerged recently which
bring together two strands of the literature which both allow fairly general time
variation in forecasting models. The first of these strands introduces VAR mod-
els which allow time variation in the coefficients; this literature includes Canova
(1993), Sims (1993), Stock and Watson (1996) and Cogley and Sargent (2001). The
second strand allows for stochastic volatility in the error process of multivariate
systems; this includes work by Harvey, Ruiz and Shephard (1994), Jacquier, Polson
and Rossi (1995), Kim, Shephard and Chib (1998) and Chib, Nardari and Shephard
(2006). Allowing both time variation in the parameters and an error term with
stochastic volatility potentially allows considerable variation in the density fore-
cast. Macroeconomists have found this helpful when seeking to explain the “Great
Moderation,” namely the apparent decline in the volatility of both inflation and
output growth in the US since the mid 1980s (see Blanchard and Simon, 2001;
Stock and Watson, 2002).

A good example of this approach to generating density forecasts from a complex
model is Cogley, Morosov and Sargent (2005), who develop a forecasting Bayesian
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VAR (BVAR) model, which incorporates both drifting coefficients and stochastic
volatility in the errors. Earlier work by Sims and Zha (1998) considered the use of
Bayesian methods to compute fan charts from VAR models. Geweke and White-
man (2006) review Bayesian methods for the construction of density forecasts, or
posterior predictive densities. Adolfson, Linde and Villani (2007), in a forecasting
application to the Euro-area, use Bayesian methods to produce density forecasts
from both DSGE and VAR models.

Cogley, Morosov and Sargent (2005) construct a second-order VAR for RPIX infla-
tion, the output gap and the nominal three-month treasury bill rate, denoted by
the vector Yt :

Yt = X′tθt + εt , (5.7)

where the vector Xt includes lags of Yt and a constant, and εt = R0.5
t ξt is a vector

of measurement innovations, where ξt ∼ N(0, 1) and Rt is a stochastic volatility
matrix, discussed below.

This model differs from a standard VAR in two important ways. The error process
has a stochastic volatility structure, to be described below, and the parameters of
the VAR are time-varying and follow a random walk, which is represented by the
following joint prior:

f (θT , Q) = f (θT | Q)f (Q) = f (Q)

T−1∏
s=0

f (θs+1 | θs, Q), (5.8)

where θ
T = [θ ′1, . . . , θ ′T ]′ represents the history of the drifting parameters,

θ
T+1,T+F = [θ ′T+1, . . . , θ ′T+F ]′ their potential future paths, and:

f (θt+1 | θt , Q) ∼ N(θt , Q). (5.9)

Thus the parameters are effectively random walks without drift and with a constant
covariance structure.

In addition to this, a prior belief is imposed on the VAR that the roots of the lag
polynomial must lie inside the unit circle, to ensure that the VAR is stable. This is
done by creating a reflecting barrier using an indicator function:

I(θT
) =

T∏
s=1

I(θs), (5.10)

where the function I(θs) = 0 when the roots of the VAR are stable and I(θs) = 1
when they are unstable. This reflecting barrier then modifies the random walk prior
so that we then have:

p(θT , Q) ∝ I(θT
)f (θT , Q). (5.11)

Hence the conditional prior is:

p(θT | Q) = I(θT
)f (θT | Q)∫

I(θT )f (θT | Q)dθT
. (5.12)
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Finally the reflecting barrier alters the transition density to give:

p(θt+1 | θt , Q) ∝ I(θt+1)f (θt+1 | θt , Q)

∫
I(θ t+2,T

)f (θ t+2,T | θt+1, Q)dθ t+2,T .

(5.13)

So far this defines a VAR with parameters which follow a random walk with the
additional constraint that the parameters are not allowed to wander into a region
with unstable behavior. In addition to this, Cogley, Morozov and Sargent (2005)
further extend the model to include a drifting conditional variance. Following the
stochastic volatility literature they define:

Rt = B−1HtB
−1′ , (5.14)

where B is lower triangular with unity along the main diagonal and H is assumed
diagonal with univariate stochastic volatilities along the main diagonal which
evolve as:

ln hit = ln hit−1 + σiηit , (5.15)

where the ηit are mutually independent volatility innovations and σi is a free
parameter.

This model then generates a very rich density function as it involves both
changing parameters in the VAR and an error term which follows a time-varying
stochastic distribution. In terms of a pure model-based density forecast, this type of
Bayesian framework is probably as general as is currently possible. Cogley, Morosov
and Sargent (2005) detail how to construct the fan chart by simulating the BVAR

posterior predictive density, p(YT+1,T+F | YT
).

5.3.3 Subjective density forecasts

Most of the density forecasts which are produced regularly by national or interna-
tional institutions are, however, constructed in a much less formal way. The SPF,
mentioned in the introduction to this section, is largely judgmental. Each fore-
caster arrives at his or her own forecast in completely different ways; some may
use models but most certainly do not. The key questions of interest here focus
on each individual’s view of the likely uncertainty surrounding their forecast for
inflation and output growth. These individual forecasts are then presented as a set
of histograms which are then averaged, using equal weights (see section 5.5), to
give a mean density forecast.

The Bank of England began publishing density forecasts at the beginning of 1993.
At the beginning of 1996 the Bank changed its methodology somewhat. Before the
last quarter of 1995 the Bank’s density forecast was implicitly normal. Since the
beginning of 1996 the Bank of England has stated clearly that its density forecasts
are non-normal, following a two-piece normal distribution; i.e., each side of the
mode has a normal shape but they do not have the same standard deviation –
hence each side does not represent half of the distribution. This distribution is
arrived at as the subjective assessment by the Bank’s Monetary Policy Committee
(MPC), based partly on past forecast errors, partly on a range of formal models, and
partly on subjective judgments regarding the asymmetry of risk in the forecast.
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The NIESR began publishing regular density forecasts in 1996, although it had
been publishing a mean absolute error for its forecasts of inflation since the second
quarter of 1992. The NIESR, in contrast to the Bank, imposes a normal distribution
around their point forecast, with the variance determined on the basis of past
forecast errors. The window used to calculate this average error turns out to be
quite important – there is uncertainty about the variance used to quantify the
degree of uncertainty inherent in the fan chart (see Mitchell, 2005). Until 2002 the
NIESR used a sample which started in 1982 to estimate the variance. From 2002
onwards it used a sample which began in 1993. Given the general fall in volatility
of most economic series in the UK, this change brought about a considerable fall
in the estimated size of the variance of its density forecasts, and hence we can see
that the choice of this window can be very important in achieving a good forecast.

Mitchell (2005) has found that a break in the unconditional variance of the
NIESR’s forecast errors around 1993–94 could have been detected via recursive
analysis of these forecast errors towards the end of 1996, rather than in 2002. It is
therefore important to monitor historical forecast errors regularly, using statistical
tests for structural breaks at an unknown point, to help select a period of history
which is informative about the future. Stochastic simulation has been discussed
as an alternative to historical errors for measuring the uncertainty associated with
the forecast. This might be expected to deliver a better measure of uncertainty if a
new policy regime (such as a new target for inflation) is adopted.

All of these forecasts can be viewed as being, basically, subjective in nature as
they are not the direct result of a formal model. Even in this case the techniques
discussed below to evaluate a forecast formally may still be applied, and we argue
that an important stage in constructing even a subjective density forecast is an
evaluation of the track record of those forecasts.

5.3.4 Combining model-based and subjective density forecasts

In the point forecasting area there has long been a common practice of combin-
ing model-based information and subjective judgment. Very few real forecasts are
purely the result of a model and, similarly, most forecasters would use a formal
model in one form or another to structure the forecasting procedure. It would seem
reasonable, therefore, that when we come to consider density forecasts we would
similarly want to consider a formal mixture of model and subjective information.
One approach would be simply to form two quite separate forecasts, one subjective
and one model-based, and to combine them. We discuss density forecast combina-
tions in detail in section 5.5 below, so we will not discuss this possibility here. An
alternative, formal means of combining model-based density forecasts with judg-
ment is to adopt a Bayesian approach, with the non-data information summarized
by the “prior” (see Sims and Zha, 1998). Waggoner and Zha (1999) consider how
to use Bayesian methods to compute density forecasts for conditional forecasts in
VAR models, which allow one to impose conditions on the likely future values of
endogenous variables. Del Negro and Schorfheide (2004) use a DSGE model as a
prior for a VAR and find this improves point forecasting performance as measured
by RMSE. Clark and McCracken (2008) essentially impose a hard informative prior
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on the steady-state of the VAR model by detrending, in particular inflation, prior
to forecasting. Villani (2005) proposes methods to impose an informative prior on
the steady-state, in particular the unconditional means of the model, and hence on
the long-run forecasts. The priors push the long-run forecasts towards the chosen
steady-state, say trend or target inflation.

We will, however, discuss a recently proposed technique which allows a model’s
density forecast to be altered at a second step in the light of subjective or “off-
model” information. This proposal stems from recent work by Robertson, Tallman
and Whiteman (2005), which is based on earlier work by Stutzer (1996) and
Kitamura and Stutzer (1997).

We are interested in a density forecast for an M-dimensional vector of variables Y .
In general, if we are attempting to derive a model-based density forecast based on a
possibly nonlinear model it will not be possible to derive this density analytically.
However, given the long history of stochastic simulation analysis referenced above,
it is usually possible to approximate this density. Thus, assume we have derived
a sample of N draws, denoted {Yi}, (i = 1, . . . , N), and that we also have a set of
weights {πi}, (i = 1, . . . , N). It is then possible to approximate the model’s density
function by simply weighting together a transformation of the sample of draws. If
we have a random sample from the predictive density, the weights are:

πi = 1/N, ∀i. (5.16)

The mean of the density forecast is:

Y =
∑N

i=1
πiYi, (5.17)

and so on for any other moments.
This, therefore, provides a means to approximate the density forecast of the

model. Now assume that, in addition to the model, we have some extra information
which we wish to incorporate into the density forecast. We may think of this as a
set of moment conditions which we wish the final density forecast to obey. In a
very simple example we might wish to locate the mean of a variable at a particular
point or we might wish to impose a certain degree of skewness. Suppose we wished
the mean of the vector of variables to take some particular set of values, g. In
general, of course, this will not coincide with Y as:

∑N

i=1
πiYi �= g. (5.18)

The idea then is to create a new set of weights π
∗
i such that this restriction holds

exactly. Of course, for N sufficiently large, there will generally be an infinite number
of sets of weights which would satisfy this restriction, so the idea is to choose a set of
weights which satisfy the restriction while, at the same time, remaining as close as
possible to the original weights. This, of course, requires a definition of closeness
and Robertson et al. (2005) establish that, under a set of regularity conditions,
the appropriate measure of closeness is the Kullback–Leibler information criterion
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(KLIC), which may be stated as:

K(π
∗ : π) =

∑N

i=1
π
∗
i log

(
π
∗
i

πi

)
. (5.19)

Obviously, if π
∗
i = πi then the KLIC will be zero, so this is in effect measuring

the distance between the two distributions. If πi is uniform then this is sometimes
termed the entropy; if it is non-uniform it is termed the relative entropy.

The idea is simply to choose a set of weights π
∗ which minimize K(π

∗ : π)

subject to the following set of restrictions:

π
∗
i ≥ 0;

∑N

i=1
π
∗
i = 1;

∑N

i=1
π
∗
i g(Yi) = g. (5.20)

Once we have solved for the new weights we may then easily calculate the new
density forecast simply by weighting together all the original draws with the new
weights π

∗.
Robertson, Tallman and Whiteman (2005) illustrate this technique by consid-

ering a small VAR model for the Federal Funds rate, inflation and the output gap
and then imposing a set of prior restrictions on the forecast via a set of moment
conditions. These include the prior view that inflation should be at its target rate
of 2.5% three years in the future, various assumptions regarding the operation of
a Taylor rule, and that the output gap eventually closes. They argue that there is
some evidence that the restricted forecasts are an improvement over the standard
VAR.

Cogley, Morosov and Sargent (2005) combine this technique with their time-
varying parameter BVAR with stochastic volatility, outlined above, to generate
forecasts for UK inflation which they contrast with the Bank of England’s den-
sity forecast. They find that to impose the Bank of England’s density forecast on
the VAR forecasts requires a considerable change to the weighting vector, some-
times referred to as “twisting” the weights. They warn that the relative entropy
(KLIC distance) points to “a severe twisting,” which may be interpreted as saying
that the Bank’s density is a long way from the BVAR model and, on this basis, they
recommend “a careful review of the evidence being used to twist the forecast.”

5.4 The evaluation of density forecasts

In practice, forecasters make successive forecasts of the same event, so-called “fixed-
event” forecasts, as well as series of forecasts of fixed length h, so-called “rolling”
forecasts. There exist well established statistical techniques for the ex post evalu-
ation of both fixed event and rolling point forecasts. For rolling point forecasts
these are often based around the RMSE of the forecast relative to the subsequent
outturn. Indeed, publication of RMSE statistics is itself a welcome indication that
point forecasts are uncertain; in the absence of knowledge of the true loss func-
tion, squared-error loss has become the most commonly used function (see Lee,
2007, for a review of loss functions). The unbiasedness and efficiency of point fore-
casts are also tested using Mincer and Zarnowitz (1969) tests. For fixed-event point

mailto: rights@palgrave.com


212 Recent Developments in Density Forecasting

forecasts, again under quadratic loss (see Clements, 1997, for an extension), the
most common evaluation method (see Nordhaus, 1987) is to test whether revi-
sions to successive point forecasts of the same event are independent. Clements
and Hendry (1998, Ch. 3) provide a textbook discussion of these tests. Patton
and Timmermann (2007) establish tests of point forecast optimality when the loss
function is unknown.

In turn, the ex post evaluation of rolling density forecasts has begun to attract
considerable attention, and there now exist established evaluation methods based
on both the probability integral transforms and the logarithmic score, as we
review below, although there remains some uncertainty about their implemen-
tation in practice and their relative merits (see Gneiting, Balabdaoui and Raftery,
2007).

The genesis of these evaluation tests, as indicated in Diebold et al. (1998), was
the literature on the evaluation of interval forecasts and probability forecasts. Since
these tests can also be applied to density forecasts, as a density forecast can always
be reduced to an interval forecast, they also constitute a means of evaluating
density forecasts. We therefore start our review of extant evaluation methods, in
section 5.4.1, with interval forecasts. Interval evaluation tests also serve as the basis
for tests of probability event forecasts. But since there are an infinity of possible
interval forecasts implied by a given density forecast, rendering it impracticable to
test all but plausible (or at least a finite set of) intervals, we then move our attention
to “whole” density evaluation methods. In the ensuing discussion we distinguish
between distributional (unconditional) and dependence (conditional) aspects of
the evaluation tests (see Giacomini and White, 2004).

In contrast, little attention has been paid, at least explicitly, to the fixed-event
aspect of density forecasts. This is despite the availability of the aforementioned
tests for the efficiency of fixed-event point forecasts – the testable proposition
(for weak efficiency) is that, under quadratic loss, forecast revisions should be
uncorrelated with past forecast revisions.

Extending efficiency tests to the density case, say using the KLIC (discussed
again in more detail below) to measure revisions to successive densities (as in
Lahiri and Liu, 2006), is the subject of ongoing research and, to date, there are
no established tests to review. But it does appear that KLIC revisions to successive
densities do not convey any information on forecast efficiency since conditional
variance forecasts, unlike conditional mean forecasts, are predictable even when
the forecaster is assumed efficient (see Mitchell, 2007c). Consistent with the “fan”
shape of density forecasts published by the Bank of England and others, condi-
tional variance forecasts decline as we get closer to the event of interest. This
“trend” precludes testing the efficiency of density forecasts, as with point fore-
casts, simply by testing the independence of revisions. But Mitchell (2007c) does
note that fixed-event density forecasts can always be evaluated similarly to fixed-
event point forecasts by reducing them to an event forecast. As we briefly explain
in section 5.4.1, fixed-event probability event forecasts can be evaluated just like
fixed-event point forecasts. Variance rationality has been examined by Batchelor
and Zarkesh (2000).
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5.4.1 Interval forecasts

A “good” interval forecast should, at a minimum, have correct coverage ex post ;
i.e., the outturn should fall in the interval the predicted proportion of times: for
example, on 95% of occasions for a 95% confidence interval. But, as argued by
Christoffersen (1998), in a time series context a “good” interval forecast should
not just have correct unconditional coverage, but correct conditional coverage, so
that in volatile periods the interval is wider than in less volatile periods. This
means that occurrences inside the interval should not come in clusters over
time. This is analogous to expecting independence of orders greater than or
equal to h when evaluating a sequence of rolling optimal h-step-ahead point
forecasts or optimal fixed-event point forecasts; e.g., see Clements and Hendry
(1998, pp. 56–62).

More formally, define It as an indicator variable that takes the value 1 if the
outcome falls within the interval forecast at time t , and 0 otherwise. Consider an
interval forecast for coverage probability p, 0 ≤ p ≤ 1. Then Christoffersen (1998)
defines a set of ex ante forecasts as having correct conditional coverage, or as being
“efficient” with respect to the information set (say, �t−1), if E(It | �t−1) = p.
If �t−1 = {It−1, It−2, . . .} then this implies {It } is independent and identically
distributed (i.i.d.) Bernoulli with parameter p.

Christoffersen (1998) then suggests a likelihood ratio (LR) test for correct condi-
tional coverage. When �t−1 = ∅, the empty set, the test reduces to an unconditional
test of the null hypothesis that E(It ) = p. Wallis (2003) describes an asymptotically
equivalent Pearson chi-squared test, with the advantage that, unlike the LR tests,
its exact distribution can be derived. Wallis (2003) also extends the tests to density
forecasts. The extension is based on reducing the density forecast to a k-interval
forecast; Boero, Smith and Wallis (2004) explore, as a function of the size of k,
the properties of the chi-squared test in small to moderate sample sizes typical to
macroeconomics.

Christoffersen (1998) also suggested, and Clements and Taylor (2003) refined,
regression-based tests of interval forecasts. They involve estimating:

It = α + β�t−1 + εt , (5.21)

where the set of interval forecasts are conditionally efficient when α = p and
β = 0, implying that, as before, E(It | �t−1) = p. Similarly to Mincer–
Zarnowitz regressions, these regression-based tests distinguish between conditional
and unconditional objectives. The forecasts have correct unconditional coverage
when α = p, and are conditionally efficient when the forecast “errors” are uncorre-
lated with information available at the time the forecast was made, i.e., α = p and
β = 0.

Equation (5.21) also serves as the basis for tests of probability event forecasts; see
Clements (2004). Consider pt |t−1 to be the probability forecast made one period
ahead of an event (such as a breach of the inflation target, a) happening at time
t ; pt |t−1 = P(yt ≥ a | �t−1). Conditional efficiency, E

[
It | �t−1

] = pt |t−1, then
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implies λ = 1, α = 0 and β = 0 in the following variant of (5.21):

It = λpt |t−1 + α + β�t−1 + εt , (5.22)

where the indicator variable It is redefined with respect to the event forecasts.
It is also worth noting, given our reference above to the evaluation of fixed-event

probability event forecasts, that when probability event forecasts are conditionally
efficient, which they are when the density forecast from which they are extracted
is “correct” (as defined in section 5.4.2.1), we know from the law of iterated
expectations that:

E
{
E(It | �t−h) | �t−h−1

} = E(It | �t−h−1). (5.23)

This implies:

E(pt |t−h − pt |t−h−1 | �t−h−1) = 0, (5.24)

which says that the revision to the probability event forecast is orthogonal to infor-
mation available at (t − h− 1), including lagged revisions to the probability event
forecasts. Thus a testable proposition for (weakly) efficient fixed-event density fore-
casts is that revisions to probability forecasts, extracted from the density forecast,
are independent. When there is a clear objective, such as a central bank keep-
ing inflation at less than 2%, it is obvious what a to consider. However, for the
density forecast to be well calibrated overall, (5.24) needs to hold for all possible
a’s. Since an infinity of event forecasts can be extracted from the density forecast,
in an application evaluating the fixed-event aspect of the SPF density forecasts,
Mitchell (2007c) evaluates both over a large number of arbitrary events and over
events of specific interest, such as inflation falling in its “comfort zone” of 1–2%.

5.4.2 Rolling density forecasts

When evaluating the performance of density forecasts as a “whole,” economists
have tended to rely on using goodness-of-fit tests to establish whether the proba-
bility integral transforms of the forecast density with respect to the realizations of
the variable are uniform or, via a transformation, normal. In contrast, others have
employed scoring rules. Both evaluation criteria have proved popular, since they
avoid having to estimate the true but unknown conditional density f (yt | !t−h)

(where the density of the random variable yt is defined with respect to the total
information set !t−h (where the forecasters’ information set �t−h ⊂ !t−h), and

only require a time series of realizations
{
yt
}T
t=1.3 We review both evaluation

criteria below.
Derivatives of both evaluation criteria have also been developed in the papers

referred to below when interest lies not in the “whole” density but in specific areas,
such as the probability of tail events or economic events of interest, such as a (one
period) recession.
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5.4.2.1 Goodness-of-fit tests: in theory

Diebold, Gunther and Tay (1998) popularized the idea in economics of statisti-
cally evaluating a sample of density forecasts based on the probability integral
transforms (pit’s) of the realization of the variable with respect to the forecast
densities. An alternative approach is based on the integrated squared difference
between the density forecast and a nonparametric estimate of f (yt | !t−h); see Li
and Tkacz (2006). We focus on the former approach since it does not require the
strict stationarity of yt .

Diebold, Gunther and Tay (1998) proved that a sequence of estimated h-step-

ahead density forecasts, {g(yt | �t−h)}Tt=1, for the realizations of the process {yt }Tt=1,

coincides with the (unknown) true densities {f (yt | !t−h)}Tt=1 when the sequence
of pit’s, zt |t−h, are uniform variates, where:4

zt |t−h =
∫ yt

−∞
g(u | �t−h)du = G(yt | �t−h); (t = 1, . . . , T). (5.25)

Since the correct density forecast will be preferred by all users, irrespective of
their loss function, testing the pit’s is attractive as it offers a means of evaluating
forecasts without the need to specify a loss function. This is convenient given
that it is hard to define an appropriate general (economic) loss function, although
it is sometimes possible: Clements (2004) provides an evaluation of the Bank of
England’s fan charts for inflation based on economic as well as statistical loss.

But just as a “good” interval forecast should be correctly calibrated both uncondi-
tionally and conditionally, so should a “good” density forecast. This translates into
the requirement that, when h = 1, zt |t−h is not just uniform but also independently
distributed. In other words, one-step-ahead density forecasts are optimal and cap-
ture all aspects of the distribution of yt only when the zt |t−1 are independently and
uniformly distributed. When h > 1 we should expect serial dependence in zt |t−h
even for correctly specified density forecasts. Again this is analogous to expecting
dependence (an MA(h− 1) process) when evaluating a sequence of optimal rolling
h-step-ahead point forecasts. There is not, however, a one-for-one relationship
between the point forecast errors and zt |t−h.

It is important, as stressed by Mitchell and Wallis (2008), to test density fore-
casts not just unconditionally, via a distributional test, but conditionally via a
test for independence. Otherwise one does find, as in Gneiting, Balabdaoui and
Raftery (2007) and motivating their advocation of scoring rules, that uniformity
of the pit’s is a necessary but not sufficient condition for optimal density forecasts.

5.4.2.2 Goodness-of-fit tests: in practice

Following the lead of Diebold, Gunther and Tay (1998), evaluation tests are com-
monly based on the difference between the empirical distribution of zt |t−h and the
cumulative distribution function of a uniform random variable on [0,1], i.e., the
45◦ line. In many empirical studies, this has simply involved the application of a
Kolmogorov–Smirnov or Anderson–Darling test for uniformity. For one-step-ahead
forecasts this is often supplemented with a separate test for the independence of
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zt |t−h. For empirical examples and references, see Clements and Smith (2000),
Clements (2004) and Hall and Mitchell (2004).

By taking the inverse normal cumulative density function (c.d.f.) transforma-
tion of zt |t−h to give, say, z∗t |t−h, the test for uniformity can be considered to

be equivalent to one for normality of z∗t |t−h; see Berkowitz (2001). For Gaussian

forecast densities with mean given by the point forecast, z∗t |t−h is simply the
standardized forecast error (outturn minus point forecast divided by the stan-
dard error of the Gaussian density forecast). Testing normality is convenient
as normality tests are widely seen to be more powerful than uniformity tests.
However, testing is complicated by the fact that the impact of dependence on
the tests for uniformity/normality is unknown, as is the impact of non-unifor-
mity/non-normality on tests for dependence.

Consequently, various single and joint tests of uniformity/normality and
independence have been employed in empirical studies.5 These include
Kolmogorov–Smirnov, Anderson–Darling and Doornik and Hansen (1994) tests
for uniformity/normality, Ljung–Box tests and Lagrange multiplier (LM) tests for
independence, and Hong (2002), Thompson (2002) and Berkowitz (2001) LR tests
for both uniformity/normality and independence. Using Monte Carlo techniques,
Noceti, Smith and Hodges (2003) found the Anderson–Darling test to have more
power to detect misspecification than the Kolmogorov–Smirnov test (and related
distributional tests). However, they maintained an assumption of a random sample
and did not consider the effect dependence may have on the performance of the
tests. Many of the popular distributional tests, such as the Kolmogorov–Smirnov
and Anderson–Darling tests, are not robust to dependence, their properties having
been developed under independence.

Parameter uncertainty and dependence Testing uniformity is complicated by both
parameter uncertainty and possible dependence in the zt |t−h. For a review and
derivation of out-of-sample versions of the tests we consider below, see Corradi
and Swanson (2006c).

Parameter uncertainty is a concern when the density forecast is model-based and
depends on estimated parameters. This is because when parameters are estimated
the Kolmogorov test is no longer asymptotically distribution free, meaning that
critical values cannot be tabulated as they are dependent on the null hypothesis and
the parameter values. Bai (2003) therefore developed a modified Kolmogorov-type
test, based on a martingale transformation, which is asymptotically distribu-
tion free. While this test has power against violations of uniformity, it does not
necessarily have power against violations of independence in the zt |t−h.

This means that these Kolmogorov tests require the density forecast not just to
capture the distribution of yt correctly but to be correctly specified dynamically.
Following Corradi and Swanson (2006c), let us illustrate what this means via a
simple example. Let the true (conditional) density be f (yt | !t−1) = N(α1yt−1 +
α2yt−2, σ2), but the density forecast, while normal, be misspecified in terms of
its dynamics: g(yt | �t−1) = N(α

∗
1yt−1, σ1), where α

∗
1 �= α1. In this case zt |t−1 is

no longer independent but remains uniform. To test the null hypothesis that the
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density forecasts are optimal with dynamic misspecification under both the null
and alternative hypotheses therefore requires a test for uniformity that is robust to
dependence. Use of the traditional Kolomogorov-type tests, including the Bai test,
will lead to invalid inference as the critical values are invalid.

Accordingly, Hong (2002) and Corradi and Swanson (2005a) have developed
uniformity tests robust to dependence. The Hong test is based on the generalized
cross-spectrum; see also Hong, Li and Zhao (2004). Corradi and Swanson suggest
a Kolmogorov-type test. At the expense of an assumption of strict stationarity
for

{
yt
}

and having to use the block bootstrap, which they prove can be used
to construct valid critical values, the advantage of the Corradi and Swanson test
relative to Hong’s is that it converges at a parametric rather than nonparametric
rate. In addition, it directly accounts for parameter estimation uncertainty; Hong
assumes parameter estimation error vanishes asymptotically.

Multi-step-ahead density forecasts A distinct form of dependence to that caused by
dynamic misspecification can be induced in the pit’s when forecasting more than
one step ahead (h > 1). Even when the density forecasts are correctly conditionally
calibrated we should expect dependence of order (h−1) because consecutive obser-
vations are subject to common shocks. This complicates further the task of evalu-
ating multi-step-ahead (h > 1) density forecasts since one risks confounding good
dependence, explained by h > 1, with bad dependence, due to dynamic misspeci-
fication. Distributional tests applied to the pit’s, which are designed to be robust to
dependence, will ideally distinguish between good and bad dependence. Otherwise,
when h > 1, one risks declaring incorrect density forecasts “correct,” on the basis
that the pit’s are uniform, with the dependence in the pit’s dismissed on the grounds
that it is not a symptom of dynamic misspecification but attributable to h > 1.

Distributional tests designed to accommodate dependence of order (h − 1), i.e.,
good dependence, have been considered. Most simply, as suggested by Diebold,
Gunther and Tay (1998), the pit’s have been partitioned into (h−1) blocks for which
we expect uniformity and independence when the density forecasts are condition-
ally well-calibrated. For further discussion see Clements and Smith (2000). Dowd
(2007) compares, using simulation experiments, alternative methods of dealing
with the dependence and finds that it is best to carry out tests on a bootstrapped
resample of the pit’s designed to be independent. This remains an active area for
research, since applied studies continue to employ different evaluation methods
in similar contexts.

Joint tests Another option to overcome the deleterious effects of dependence is to
consider a joint test for uniformity and independence of zt |t−h (see Hong, 2002).
Berkowitz (2001) also presents a parametric, LR, test for the null of standard normal-
ity against autoregressive alternatives. While obviously not robust under the null
hypothesis to dynamic misspecification, these joint tests do, at least in principle,
have power against violations of both uniformity/normality and independence.

For h = 1 Berkowitz (2001) proposes a three degrees-of-freedom LR test of the
joint null hypothesis of a zero mean, unit variance and independent z∗t |t−1 against
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z∗t |t−1 following an AR(1) process: z∗t |t−1 = μ+ ρz∗t−1|t−2 + εt , where εt ∼ N(0, σ2
).

The test statistic LRB is computed as:

LRB = −2
[
L(0, 1, 0)− L(μ̂, σ̂2, ρ̂)

]
, (5.26)

where L(μ̂, σ̂2, ρ̂) is the value of the exact log-likelihood of a Gaussian AR(1) model

(e.g., see Hamilton, 1994, p. 119). Under the null LRB ∼ χ
2
3 . The test can be

readily generalized to higher-order AR models; squared (and higher power) lagged
values of z∗t |t−1 can also be included in the model in an attempt to pick up non-
linear dependence. The test abstracts from parameter uncertainty, but is expected
to perform well in the small samples typical to macroeconomics; in contrast, the
nonparametric goodness-of-fit tests discussed above rely on larger samples.

When h > 1, recognizing that this LR test is not designed to deal with depen-
dence, Clements (2004) used a two degrees-of-freedom LR test, which drops the
test for autocorrelation, to evaluate the Bank of England’s year-ahead (h = five
quarters) density forecasts. But this test still assumes independence in the con-
struction of the likelihood function; since the likelihood function is misspecified
a robust Wald or LM test might be considered instead (see White, 1982). Alterna-
tively, Dowd (2008) suggests that the dependence be mopped up by first fitting an
ARMA process to z∗t |t−h.

A criticism of these LR tests is the maintained assumption of normality. They only
have power to detect non-normality through the first two moments. Consequently,
some authors, such as Clements and Smith (2000) and Hall and Mitchell (2004),
have supplemented the LR test with a nonparametric normality test, such as the
Doornik–Hansen test. But, as Bao, Lee and Saltoglu (2007) explain, one can still
construct a Berkowitz-type LR test without maintaining the normality assumption.
They let εt follow a more general distribution, specifically a semi-nonparametric
density, which nests normality. Alternatively, Chen and Fan (2004) generalize
Berkowitz (2001) by proposing the use of copula functions to design tests which
have power against a wider range of alternative processes. Berkowitz also proposed
a censored version of the LR test which focuses on the tails of the forecast den-
sity. Diks, Panchenko and van Dijk (2008) show that the censored LR test can be
biased when it is used to compare alternative density forecasts, rather than just
test a given model for goodness-of-fit. Promising new joint tests, using autocon-
tours, have been developed by Gonzalez-Rivera, Senyuz and Yoldas (2007) which
are robust to parameter uncertainty.

The KLIC as the loss function Despite the apparent choice over which distributional
test to apply to the pit’s, which explains the variety used in extant applied work,
these evaluation tests can all be related to the KLIC. In particular, following Bao,
Lee and Saltoglu (2007), we consider how one of the most popular tests, namely
the Berkowitz (2001) LR test, can be directly related to the KLIC. The KLIC can
therefore be interpreted as the loss function for density forecast evaluation (see
Lee, 2007). As argued by Mitchell and Hall (2005), it offers a unifying framework
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for density forecast evaluation, as well as comparison and combination, to which
we turn below.

The KLIC offers a measure of distance, or more accurately “divergence,” between
the “true” but unknown conditional density f (yt | !t−h), defined with respect
to the total information set !t−h, and the ith conditional density forecast g(yt |
�it−h), defined with respect to forecaster i’s information set �it−h:

KLICi
t |t−h = E

[
ln f (yt | !t−h)− ln g(yt | �it−h)

]
=
∫

f (yt | !t−h) ln
{

f (yt | !t−h)

g(yt | �it−h)

}
dyt . (5.27)

KLICi
t |t−h = 0 if and only if g(yt | �it−h) = f (yt | !t−h). But, as explained, since

f (yt | !t−h) is unknown even ex post, typically density forecasts are evaluated by

employing a goodness-of-fit test on the pit’s zit |t−h =
∫ yt

−∞
g(u | �it−h)du. These

amount to a test for whether KLICi
t |t−h = 0.

Estimates of KLICi
t |t−h can be obtained when we follow Bao, Lee and

Saltoglu (2007), invoke Proposition 2 of Berkowitz (2001) and note the following
equivalence:

di
t |t−h = ln f (yt | !t−h)−ln g(yt | �it−h) = ln q(z∗it |t−h)−lnφ(z∗it |t−h) = ln h(zit |t−h),

(5.28)
where z∗it |t−h = #

−1zit |t−h, q(.) is the unknown density of z∗it |t−h, which needs to
be specified, φ(.) is the standard normal density and # is the c.d.f. of the standard
normal. Equation (5.28) offers a direct link between the Berkowitz test and the
KLIC. For the nonparametric uniformity tests we see that, when h(zit |t−h) = 1, as

it does under the null of correct conditional calibration, di
t |t−h = 0.

Under some regularity conditions, E
[
KLICi

t |t−h

]
can be consistently estimated

by sample (t = 1, . . . , T) information:

KLIC
i
t−h =

1
T

∑T

t=1
di

t |t−h, (5.29)

where, following Berkowitz (2001), for h = 1, we could assume:

q(z∗it |t−1) = φ
[(

z∗it |t−1 − μ− ρz∗it−1|t−2

)
/σ
]
/σ . (5.30)

Noting that the LR test as traditionally written equals:

LRi
B = 2

∑T

t=1

[
ln q(z∗it |t−1)− lnφ(z∗it |t−1)

]
, (5.31)

reveals that KLIC
i
t−1 = LRi

B/2T .
More general specifications for q(.), allowing εt to follow a more general

distribution than the Gaussian, could also be specified. When h > 1 we
should expect dependence, due to overlapping observations, and we might then
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consider the two degrees-of-freedom LR test referred to above, where q(z∗it |t−h) =
φ
[(

z∗it |t−h − μ
)
/σ
]
/σ .

5.4.2.3 Scoring rules

In contrast to evaluation based on the pit’s there is a tradition, particularly within
meteorology, of employing scoring rules (see Gneiting and Raftery, 2007, for a
review, and Hall and Mitchell 2007; Amisano and Giacomini, 2007; Adolfson,
Linde and Villani, 2007, for applications in economics). Scoring rules are (specific)
loss functions that assign a numerical score based on the density forecast and the
subsequent realization of the variable. They evaluate relative, but not absolute,
density forecast performance. Gneiting, Balabdaoui and Raftery (2007) provide a
related discussion of the sharpness of density forecasts, which refers to the concen-
tration of the density forecast, and argue that, subject to correct calibration, the
sharper the better.

Following the aforementioned applied papers, we restrict attention to the loga-
rithmic scoring rule: S(g(yt |�it−h), yt ) = ln g(yt |�it−h), where the density forecast
is evaluated at the realisation of the random variable. The logarithmic scoring rule
is intuitively appealing as it gives a high score to a density forecast that provides a
high probability to the value yt that materializes. It also conveniently relates to the
KLIC; see (5.27). When the predictive density g(yt | �it−h) is normal with mean
mit and variance vit (defined below):

S(g(yt | �it−h), yt ) = −0.5 ln 2π − 0.5 ln vit − 0.5
(yt −mit )

2

vit
, (5.32)

indicating that the logarithmic score depends on the conditional forecasts for both
the mean and variance. Competing density forecasts can be ranked according to
the size of S(g(yt | �it−h), yt ), with higher values indicating better performance.

S(g(yt | �it−h), yt ) cannot be used to test the null hypothesis H0: KLIC
i
t−h = 0,

as this can be achieved only if the practitioner specifies f (.), or q(.) or h(.);
see (5.28).

5.4.2.4 Comparing competing density forecasts

The KLIC, and also S(g(yt | �it−h), yt ) given its relationship with the KLIC, can be
used to compare competing density forecasts; Bao, Lee and Saltoglu (2007) devel-
oped a test for equal predictive performance. It formalizes previous attempts that
visually compared alternative density forecasts according to their relative distance
to, say, the uniform distribution; e.g., see Clements and Smith (2000). Bao, Lee and
Saltoglu (2007) test is a direct generalization of tests of equal point forecast accuracy
popularized by Diehold and Mariano (1995) (DM) and extended by West (1996)
and White (2000). These tests assume some, usually a quadratic, loss function.

A test for equal density forecast accuracy of two competing (non-nested) density
forecasts g(yt | �1t−h) and g(yt | �2t−h), both of which may be misspecified, is
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then constructed based on
{
dt |t−h

}T

t=1
, where:

dt |t−h =
[
ln f (yt | !t−h)− ln g(yt | �1t−h)

]
− [ln f (yt | !t−h)− ln g(yt | �2t−h)

]
, (5.33)

= ln g(yt | �2t−h)− ln g(yt | �1t−h), (5.34)

=
[
ln q(z∗1t |t−h)− lnφ(z∗1t |t−h)

]
−
[
ln q(z∗2t |t−h)− lnφ(z∗2t |t−h)

]
. (5.35)

The null hypothesis of equal accuracy is then:

H0 : E(dt |t−h) = 0 ⇒ KLIC
1
t−h − KLIC

2
t−h = 0. (5.36)

The sample mean d is defined as:

d = 1
T

∑T

t=1

[[
ln q(z∗1t |t−h)− lnφ(z∗1t |t−h)

]
−
[
ln q(z∗2t |t−h)− lnφ(z∗2t |t−h)

]]
.

(5.37)

A test can be constructed since we know that d, under appropriate assumptions,
has the limiting distribution:

√
T(d − E(dt |t−h))

d→ N(0, ν̂), (5.38)

where Bao, Lee and Saltoglu (2007), following West (1996), discuss estimators ν̂

for the long-run asymptotic variance of dt |t−h allowing for parameter uncertainty,
e.g., when the forecasts are model-based and the models are estimated using an
expanding, not rolling (fixed length), window (see Giacomini and White, 2006).
In the absence of parameter uncertainty, the test (5.38) reduces to a DM-type test:

d/
√

Sd
T

d→ N(0,1), where Sd = γ0 + 2
∑∞

j=1 γj and γj = E(dt |t−hdt−j|t−j−h). As sug-
gested by White (2000), the test of equal predictive accuracy (5.36) can readily be
extended to multiple (greater than two) models.

To avoid having to postulate an unknown density q(.), it is more convenient to
couch the test in terms of (5.34) rather than (5.35).6 In this case we see clearly that
the test is equivalent to that proposed by Amisano and Giacomini (2007).

Amisano and Giacomini (2007), independently of Bao, Lee and Saltoglu (2007),
proposed tests that can be used to compare the accuracy of density forecasts where
evaluation is based on logarithmic scores, e.g., ln g(yt | �1t−h), rather than the
pit’s. These tests can be superficially related to the traditional Bayesian approach
to comparing models using Bayes factors (e.g., see Koop, 2003). When there are no
parameters to be estimated, the logarithmic Bayes factor is equal to the difference
of the two models’ logarithmic scores seen in (5.34) (see Gneiting and Raftery,
2007).

Related approaches of comparing density forecasts statistically have been pro-
posed by Sarno and Valente (2004) and Corradi and Swanson (2006b). Rather than
using the KLIC measure of “distance,” these rely on the integrated squared differ-
ence between the forecast density and the true density (Sarno and Valente) and
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the mean square error between the c.d.f. of the density forecast and the true c.d.f.,
integrated out over different quantiles of the c.d.f. (Corradi and Swanson). Rather
than relying on the pit’s or the logarithmic score, in both cases they estimate the
true density or c.d.f. empirically. yt is then required to be strictly stationary, an
assumption often not supported for economic time-series.

(5.36) is an unconditional test for equal forecast accuracy (see Giacomini and
White, 2006 (GW)). GW have developed more general conditional tests. These test
which forecast will be more accurate at a future date, rather than, as with the
unconditional tests, testing which forecast was more accurate “on average.” One
could, for example, then recursively select at time t the best forecasting method for
t + 1. Conditional tests can be straightforwardly implemented in our framework.
The null hypothesis of equal conditional forecast accuracy (for one-step-ahead fore-
casts) amounts to testing E(dt |t−1 | h∗t−1) = E(h∗t−1dt |t−1) = 0 (t = 2, 3, . . .), where

h∗t is a vector of “test functions” which we set equal to h∗t−1 = (1, dt−1|t−2)
′. The

GW test statistic GWT can be computed as the Wald statistic:

GWT = T
(

T−1∑T

t=2
h∗t−1dt |t−1

)′
�̂
−1
T

(
T−1∑T

t=2
h∗t−1dt |t−1

)
, (5.39)

where �̂T is a consistent estimator for the asymptotic variance of h∗t−1dt |t−1 and

GWT
d→ χ

2
2 . GW note that a robust HAC estimator for this variance could be

employed, as with DM-type tests, but they also explain that the sample variance is
a consistent estimator when one exploits the fact that the null hypothesis implies{
h∗t−1, dt |t−1

}T

t=2
is a martingale difference sequence. GW argue that this has the

advantage of allowing the data
{
yt
}

to be heterogeneous and characterized by
arbitrary structural breaks at unknown points. Their test is also valid for nested
models.

5.5 The combination of density forecasts

Rather than select a single “best” forecast it can be felicitous to combine competing
forecasts. This follows from appreciation of the fact that, although one model may
be “better” than the others, we may not select it with probability one; we may not
be sure that it is the best forecast. Therefore, if we considered this single forecast
alone, we would be overstating its precision. We may better approximate the truth,
and account for the uncertainty in model selection, by combining forecasts. Fore-
cast combination also provides a means of reconciling subjective and model-based
densities as discussed above (see also Osterholm, 2006).

Indeed, it is well recognized both theoretically and empirically that combining
competing individual point forecasts of the same event can deliver more accu-
rate forecasts, in the sense of a lower RMSE (see Bates and Granger, 1969; Stock
and Watson, 2004; Timmermann, 2006). The success of combination follows from
the fact that individual forecasts may be based on misspecified models, poor esti-
mation or non-stationarities. Moreover, recent work (e.g., Hendry and Clements,
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2004) has begun to explore further why point forecast combination works through
analytical and Monte Carlo investigation. But, given that measures of uncertainty
surrounding a point forecast enhance its usefulness, the natural next step is to con-
sider density forecast combination. While Clements (2006) and Granger, White
and Kamstra (1989) have considered, respectively, the combination of event and
quantile forecasts, that inevitably involve a loss of information compared with
consideration of the “whole” density, the combination of density forecasts has
been relatively neglected. In fact, Clements (2003, p. 2) identified this as “an area
waiting investigation.”

5.5.1 Combination methods

While methods for combining point forecasts are well established and much
exploited, less direct attention has been given in econometrics to the combina-
tion of density forecasts. This is also a concern in practice since many professional
forecasters, particularly central banks, consult more than one forecast. Central
bankers often look at what they call a “suite of models.” These competing fore-
casts are produced using both structural macro (usually large-scale but increasingly
DSGE) models and atheoretical models, as well as variants in-between. In addition,
central bankers routinely add off-model information (“judgment”) to model-based
forecasts to produce predictive densities. The issue then again arises as to how
they should internally reconcile or combine competing density forecasts of the
same event to arrive at a single density which is then used to communicate
policy.

However, the expert combination literature, more commonly seen in manage-
ment science and risk analysis journals, has considered density forecast combina-
tion, although not evaluation as discussed in section 5.4. This literature adopts
a Bayesian approach whereby competing densities are combined by a “decision
maker” who views them as data that are used to update a prior distribution (for
reviews see Genest and Zidek, 1986; Clemen and Winkler, 1999). There is also, as
we discuss in section 5.5.4.1, a related Bayesian literature in econometrics, but only
recently has this turned to the combination and evaluation of combined density
forecasts. Its use for the combination of subjectively-formed density forecasts is
also little discussed.

Within the expert combination literature Clemen and Winkler (1999) distin-
guish behavioral and mathematical approaches to combination. The behavioral
approach seeks to combine experts’ opinions by letting the experts interact in some
manner to reach a collective opinion. This approach is not considered further since
one can imagine many situations in economic forecasting, e.g., when forecasts
are model-based, when it is inappropriate. By contrast, mathematical approaches
combine the information across experts by using some rule or model. Work has
focused on combination rules that satisfy certain properties or axioms. Two com-
mon axiomatic approaches are the “linear opinion pool” (Morris, 1974, 1977;
Winkler, 1981; Lindley, 1983; Genest and McConway, 1990) and the “logarithmic
opinion pool.”
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The “linear opinion pool” takes a weighted linear combination of the forecasters’
probabilities. The combined density is then defined as the finite mixture:

p(yt | �t−h) =
N∑

i=1

wig(yt | �it−h), (5.40)

where g(yt | �it−h) are the h-step-ahead density forecasts of model i (i = 1, . . . , N)
of a random variable yt at time t (t = 1, . . . , T) conditional on the information

set �it−h, and �t−h = ∪N
i=1

{
�it−h

}
. The set of non-negative weights, wi, sum to

unity. The restriction that each weight is positive might be relaxed (for discussion
and references, see Genest and Zidek, 1986). In the finite mixture distribution
the weights, the mixing proportions, are positive by construction (see Everitt and
Hand, 1981). In (5.40) the weights are assumed time-invariant, wit = wi, since
below we consider their estimation using sample averages (t = 1, . . . , T). But in
general, e.g., when computed on an out-of-sample (recursive) basis, they can be
time-varying. (5.40) satisfies certain properties such as the “unanimity” property
(if all forecasters agree on a probability then the combined probability agrees also).
For further discussion, and consideration of other properties, see Genest and Zidek
(1986) and Clemen and Winkler (1999).

The logarithmic opinion pool is defined as:

p(yt | �t−h) = k
N∏

i=1

g(yt | �it−h)
wi , (5.41)

where k is a normalizing constant. When wi = (1/N), p(yt | �t−h) is proportional
to the geometric mean of the experts’ distributions. In (5.41) p(yt | �t−h) is, in fact,
that density forecast “closest,” in a KLIC sense, to each of the N competing density
forecasts (see Heskes, 1998).

5.5.2 The linear opinion pool

We follow Mitchell and Hall (2005), Wallis (2005), Timmermann (2006, p. 177)
and Hall and Mitchell (2007) and focus on density forecast combination via the
linear opinion pool. Indeed, (5.40) offers a well understood and much exploited
means of combining density forecasts. The SPF, previously the ASA-NBER survey,
has essentially used it since 1968 to publish a combined density forecast of infla-
tion, amongst other things, from the individual-level density forecasts which are
supplied to it.

Inspection of (5.40) reveals that taking a weighted linear combination of the fore-
casters’ densities can generate a combined density with characteristics quite distinct
from those of the forecaster, although this will not be the case for the combination
of natural-conjugate densities (Winkler, 1968). For example, if all the forecasters’
densities are normal, but with different means and variances, then the combined
density will be mixture normal. Mixture normal distributions can have heavier
tails than normal distributions, and can therefore potentially accommodate skew-
ness and kurtosis. Combining individual normal density forecasts may mitigate
misspecification of the individual densities. As N → ∞ the mixture distribution
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is essentially nonparametric and can accommodate any possible distribution. For
finite N the mixture distribution still offers a very flexible modeling approach.

Further characteristics of the combined density p(yt | �t−h) can be drawn out by
defining mit and vit as the mean and variance of forecast i’s distribution at time t :

mit =
∞∫
−∞

yt g(yt | �it−h)dyt and vit =
∞∫
−∞

(yt −mit )
2g(yt | �it−h)dyt ; (i = 1, . . . , N).

Then the mean and variance of (5.40) are given by:7

E
[
p(yt | �t−h)

] = N∑
i=1

wimit , (5.42)

Var
[
p(yt | �t−h)

] = N∑
i=1

wivit +
N∑

i=1

wi

{
mit −m∗t

}2
. (5.43)

(5.43) indicates that the variance of the combined distribution equals average
individual uncertainty (“within” model variance) plus disagreement (“between”
model variance).8 This result stands in contrast to that obtained when combining
point forecasts, where combination using “optimal” (variance or RMSE minimiz-
ing) weights means the RMSE of the combined forecast must be equal to or less
than that of the smallest individual forecast (see Bates and Granger, 1969, and, for
related discussion in a regression context, Granger and Ramanathan, 1984). Den-
sity forecast combination will in general increase the combined variance. However,
this increase in uncertainty need not be deleterious; when evaluated the com-
bined density forecast may perform better than the individual density forecasts.
Hall and Mitchell (2004) distinguish between combining competing forecasts of
various moments of the forecast density and directly combining the individual
densities themselves, as with the finite mixture density.

Focusing on the predictive accuracy of the combination, rather than the indi-
vidual components, the key practical issue is to determine wi.

9 We consider two
methods in sections 5.5.3 and 5.5.4.

5.5.3 Equal weights

Most simply, equal weights, wi = 1/N, have been advocated (see Hendry and
Clements, 2004; Smith and Wallis, 2008). Indeed, equal weights are used by the SPF
when publishing their combined density forecasts. Also based on equal weights,
there are derivative combination methods which use some ad hoc rule, such as
trimming or thick-modeling (Granger and Jeon, 2004), to eliminate the k% worst
performing forecasts and then take an equal weighted average of the remaining
forecasts.

As experience of combining point forecasts has taught us, irrespective of its
performance in practice, use of equal weights is only one of many options. For
example, one popular alternative to equal weights in the point forecast literature,
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the so-called regression approach, is to tune the weights to reflect the historical
performance of the competing forecasts (e.g., see Granger and Ramanathan, 1984).
Choosing the weights via OLS estimation of the realizations of the variable on the
competing point forecasts is “optimal,” given quadratic loss; the optimal weighted
combination of the point forecasts is the most “accurate” point forecast, in the
sense of minimum RMSE. In the following section we consider extensions to
density forecasts that, essentially, involve choosing the weights to maximize the
in-sample or out-of-sample (predictive) “fit” of (5.40).

5.5.4 KLIC minimizing weights

How we measure the accuracy of forecasts is central to how we might choose
to combine them. Similar to how RMSE (least squares) has been the historical
basis for much analysis of point forecasts, Mitchell and Hall (2005) and Hall and
Mitchell (2007) suggest that the KLIC can serve as the basis for density forecast
combination, as well as evaluation and combination. The KLIC offers a unifying
framework in which to consider choosing the combination weights.

The KLIC distance between the true density f (yt | !t−h) and the combined density
forecast p(yt | �t−h) (t = 1, . . . , T) is defined as:

KLICt |t−h =
∫

f (yt | !t−h) ln
{

f (yt | !t−h)

p(yt | �t−h)

}
dyt

= E
[
ln f (yt | !t−h)− ln p(yt | �t−h)

]
. (5.44)

The smaller this distance, the closer the density forecast to the true density.
KLICt |t−h = 0 if and only if f (yt | !t−h) = p(yt | �t−h), which is an “average form”
of the rational expectations hypothesis (see Pesaran and Weale, 2006, p. 722).

Given this loss function, Hall and Mitchell (2007) define the “optimal”
combined density forecast as:

p∗(yt | �t−h) =
N∑

i=1

w∗i g(yt | �it−h), (5.45)

where the optimal weight vector w∗= (w∗1, .., w∗N ) minimizes the KLIC distance
between the combined and true density, (5.44). This minimization is achieved as
follows:

w∗ = arg max
w

1
T

∑T

t=1
ln p(yt | �t−h), (5.46)

where 1
T
∑T

t=1 ln p(yt | �t−h) is the average logarithmic score of the combined
density forecast over the sample t = 1, . . . , T ; for related discussion in terms
of quasi-maximum likelihood estimation, see White (1982). For an analytical
discussion of “optimal” pooling using (5.46), see Geweke and Amisano (2008).
Minimizing the KLIC distance by maximizing the logarithmic score is convenient
as it avoids having to postulate and estimate f (yt | !t−h), which is unknown. At
the expense of having to make an assumption about the form of q(.), Hall and
Mitchell (2007) do consider how, for those goodness-of-fit tests directly related to
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the KLIC, such as the Berkowitz (2001) LR test, the KLIC can also be minimized
by searching for those weights that minimize LRB. For other goodness-of-fit tests
the relevant test statistic can again be minimized, but since the direct link with
the KLIC is lost, the weights that deliver this minimum cannot be interpreted as
KLIC minimizing. This is because KLIC minimization using tests based on the pits
is only as good as the underlying goodness-of-fit test.

This methodology for combining density forecasts is designed to try and mimic
the optimal combination of point forecasts. It is motivated by the desire to obtain
the most “accurate” density forecast, in a statistical sense, as measured by the KLIC.

The KLIC minimizing weights, w∗, are the maximum likelihood (ML) esti-
mates of the weights in (5.40). These ML estimates, requiring iteration via the
EM algorithm, are given as (see Hamilton, 1994, p. 688):

w∗i =
1
T

∑T

t=1

g(yt | �it−h)wi
p(yt | �t−h)

, (5.47)

where wi is the probability at the previous iteration that the data are generated
by the ith density. This ML interpretation may be helpful to move from inspec-
tion of combination weights to tests of their statistical significance by accounting
for their uncertainty using the inverse of the Hessian matrix. This might facil-
itate tests for “conditional efficiency” (encompassing) of forecast i relative to its
competitors, tests which have yet to be applied to density forecasts, although a
definition introduced by Clemen, Murphy and Winkler (1995) has been discussed
by Timmermann (2006, p. 176).

5.5.4.1 Bayesian Model Averaging (BMA)

From a Bayesian perspective, the KLIC minimizing weights, (5.46), based on the
logarithmic score, have some superficial similarities with a BMA approach. Geweke
and Amisano (2008) explain the differences. Hoeting et al. (1999), Koop (2003,
Ch. 11) and Geweke and Whiteman (2006) provide recent general discussions of
BMA methods.

BMA offers a conceptually elegant means of dealing with model uncertainty.
BMA is an application of Bayes’ theorem; model uncertainty is incorporated into
the theorem by treating the set of models S as an additional parameter and then
integrating over S, where S ≡ {Si, i = 1, . . . , N} and the models Si are defined as
continuous density functions g(yt | �it−h) for the variable of interest yt . BMA,
especially approximate, methods are also feasible, unlike iterative methods such as
(5.46), even for large N.

Specifically, p(yt | �t−h) can be interpreted as the posterior density of yt given
“data” �t−h and written like (5.40) as:

pBMA
(yt | �t−h) =

N∑
i=1

wi
BMAg(yt | �it−h), (5.48)

where g(yt | �it−h) = Pr(yt | Si,�t−h), and the weights wi
BMA are the model’s

posterior probabilities. As shown by Draper (1995) and Hoeting et al. (1999), these
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weights are given as:

wi
BMA = Pr(Si | �t−h) =

Pr(�t−h | Si)Pr(Si)

N∑
i=1

Pr(�t−h | Si)Pr(Si)

, (5.49)

where all probabilities are implicitly conditional on the set of all models S under
consideration.

The posterior probabilities, wi
BMA, provide a natural means of ranking the N

models, which relates to the discussion above about the comparison of alternative

density forecasts. wi
BMA indicate the probability that model i is the best model in

a KLIC sense (see, e.g., Fernandez-Villaverde and Rubio-Ramirez, 2004).
Equal weights combination (see section 5.5.3) attaches equal (prior) weight to

each model with no updating of the weights based on the “data.”
A relationship between (5.47) and (5.49) is apparent when (i) Pr(Si) = wi, and (ii)

Pr(�t−1 | Si) = g(yt−1 | �it−2), so that in both the “no parameters” and univariate
case the log density of �t−1, conditional on model i, equals the logarithmic score.10

More generally, Pr(�t−1 | Si) is specified only up to unknown parameters (in fore-
casting model i) and the logarithmic integrated likelihood can now be viewed as
the relevant scoring rule. Further, as discussed by Andersson and Karlsson (2007),
when combining forecasts from different multivariate models, in-sample measures
of fit based on the marginal likelihood for the system differ from measures of fore-
casting performance based on the logarithmic score for the variable of interest.

Geweke and Amisano (2008) discuss how the properties of wi
BMA differ from those

of w∗i , considering the case when the “true” model is not in the set of N models

under consideration. Unlike wi
BMA, w∗i do not then necessarily tend to zero or one

asymptotically.
In practice, when the density forecasts are model-based, approximate Bayesian

methods based on information criteria are often used to proxy wi
BMA (see Garratt

et al., 2003; Garratt et al., 2006, Ch. 7; Kapetanios, Labhard and Price, 2008). These
methods measure the fit of the models, corrected in line with their parsimony,
such that:

wi
BMA = exp(�i)∑N

i=1 exp(�i)
(i = 1, . . . , N), (5.50)

where �i = ICi − max(ICj) and ICi =
∑T

t=h+1 ln g(yt | �it−h) − Ki is the infor-

mation criterion for model i, such that
∑T

t=h+1 ln g(yt | �it−h) is the maximized
value of the log-likelihood (or logarithmic score) and Ki is a penalty term for over-
parameterization. Therefore �i = 0 for the best density and is positive for the other
density forecasts; the larger �i the less plausible is density i as the best density.
Popular choices are to set Ki equal to the number of freely estimated parameters in
model i (ki), so that ICi equals the Akaike criterion, or to set Ki = (ki/2) ln(T), so
that ICi equals the Schwarz Bayesian information criterion. The Schwarz weights
are asymptotically optimal when the true model lies in the set of N models under

consideration; otherwise the Akaike weights are likely to perform better. wi
BMA in

(5.50) can be interpreted as the probability that the model is the best approximation
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to the truth given the data (posterior probabilities) when attaching equal (prior)
weight to each model, which a Bayesian would term non-informative priors (see
Burnham and Anderson, 2002). Minimizing the Akaike criterion is approximately
equivalent to minimizing the expected Kullback–Leibler distance between the true
density and the estimated density; again see Burnham and Anderson (2002, Ch. 2,
Ch. 6).

The combined density forecast pBMA
(yt | �t−h) also has established optimality

properties given the set of models under consideration (see Madigan and Raftery,

1994; Raftery and Zheng, 2003). The central estimate from pBMA
(yt | �t−h)

minimizes mean squared error, the prediction intervals are well calibrated and

pBMA
(yt | �t−h) maximizes the logarithmic score given Pr(Si). On this basis the

combined density cannot provide worse forecasts (in-sample, t = 1, . . . , T), as eval-
uated by the average logarithmic score, than the best individual forecast. This
follows from:

KLICit = E
[
ln f (yt | !t−h)− ln g(yt | �it−h)

] ≥ 0 (5.51)

⇒ E(ln pBMA
(yt | �t−h)) ≥ E(ln g(yt | �it−h))⇔ KLICt ≤ KLICi

t |t−h, (5.52)

(i = 1, . . . , N; t = 1, . . . , T). However, BMA implicitly assumes that all the models
under consideration are stable. When they are not, perhaps if there are struc-
tural breaks, and when the set of models under consideration is not exhaustive
(and, therefore, does not include the true model), non-Bayesian weights, like equal
weights or w∗i , might be more appropriate and, e.g., deliver a higher log score
(see Geweke and Amisano, 2008). In the presence of unknown structural breaks,
Pesaran and Timmermann (2007) proved that it can be helpful to average not just
over different models, but over different estimation windows for a given model;
Assenmacher-Wesche and Pesaran (2008) found equal weights performed best (i.e.,
delivered the lowest RMSE) in an application to the Swiss economy.

In contrast to methods designed to combine point forecasts (cf. Bates and

Granger, 1969), the weights w∗i or wi
BMA do not allow explicitly for correlation

between forecasts. One possibility for future research is to consider the use of cop-
ula functions to account for the dependence between the density forecasts (see
Jouini and Clemen, 1996; Mitchell, 2007a).

5.5.4.2 Out-of-sample measures of fit

To protect against in-sample overfitting, predictive, rather than in-sample
(likelihood-based), measures of fit have also been proposed as the basis for forecast
combination (see Eklund and Karlsson, 2007; Kapetanios, Labhard and Price, 2006;
Andersson and Karlsson, 2007), although these papers do not consider forecast
density evaluation. However, in a specific sense, the marginal likelihood can be
interpreted as a measure of out-of-sample predictive performance, as well as a mea-
sure of in-sample fit. This is because the marginal likelihood can be written, as
seen, as the product of one-step-ahead predictive densities; also see Geweke and
Whiteman (2006, pp. 15–17). However, it cannot be decomposed directly into
the product of h-step-ahead density forecasts. Moreover, to interpret the marginal
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likelihood as an out-of-sample measure of fit relies on the prior being informative
(see Eklund and Karlsson, 2007). When an uninformative prior is used, as is com-
mon (see Fernandez, Ley and Steel 2001), the marginal likelihood reduces to an
in-sample measure of fit. The relationship between in-sample (system) fit and the
expected forecasting performance of the variable of interest is also lost in multivari-
ate forecasting models, prompting Andersson and Karlsson (2007) to suggest use of
the predictive likelihood for forecast combination since the univariate predictive
density of interest can be readily simulated.

These out-of-sample measures of fit involve splitting the available sample (t =
1, . . . , T) in two and measuring the fit of the models according to how well recur-
sively computed h-step ahead forecasts perform, according to the marginal likeli-
hood or logarithmic score, over a hold-out (or predictive) period (t = t0, . . . , T).
Importantly, this means the measure of fit varies according to h. Empirically, the
size of the hold-out period also matters. Theoretically, as the size of the hold-out

period increases we should expect the weights wi
BMA based on the predictive like-

lihood to select the correct model consistently (Eklund and Karlsson, 2007). But
there is a trade-off when selecting the size of the hold-out period. A small value
means the weights adapt quickly to change; but a larger value means the weights are
better estimated. Pesaran and Timmermann (2007) have established the optimal
trade-off between bias and forecast error variance in regression models subject to
one or more structural breaks. Similarly when density forecasting, since economic
time-series are known to exhibit structural breaks (Stock and Watson, 1996), unless
the true model is in the set of models under consideration we might expect the
ranking of the N models to vary over time. This might make it advantageous to
consider selecting the size of the hold-out period using the data.

Out-of-sample measures of fit, based on the logarithmic score, can serve as the
basis for density forecast combination whether the forecasts are model-based or
subjectively formed (see Hall and Mitchell, 2007; Jore, Mitchell and Vahey, 2008).
All that is required is the history of the density forecasts. Alternatively, Mitchell
and Hall (2005) advocate density forecast combination using what they call ‘KLIC’
weights, which use the pit’s rather than the logarithmic score, measured over a

hold-out period, to measure fit. This involves using each model’s KLIC
i
t−h value

(see (5.29)) computed recursively over the out-of-sample window, to determine

−�i = KLIC
i
t−h −min(KLIC

i
t−h) in (5.50).

5.5.4.3 Empirical applications combining and evaluating density forecasts

Despite considerable experience combining point forecasts, and an extensive BMA
literature, there has been little applied macroeconomic work devoted explicitly
to density forecast combination and evaluation. For example, in his review of
the available empirical literature on forecast combination, Timmermann (2006)
focuses on point forecasts. Therefore, a consensus about if and when density fore-
cast combination “works” in macroeconomics has yet to emerge. Nevertheless, a
tentative start has been made (see Mitchell and Hall, 2005; Hall and Mitchell, 2007;
Jore, Mitchell and Vahey, 2008). An early suggestion is that there can be substantial
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gains in forecast accuracy when some variant of KLIC minimizing or BMA, rather
than equal, weights are used. This contrasts with the conventional wisdom about
point (conditional mean) forecasts, where equal weights are generally preferred.
However, for other samples and sets of models, Gerard and Nimark (2008) and
Kascha and Ravazzolo (2008) have found that equal weight density combinations
can remain hard to beat.

Hall and Mitchell (2007) combine, based on their out-of-sample fit, the one-
year-ahead density forecasts of UK inflation published in real time by the Bank
of England and the NIESR; they search for the set of weights that maximize the
logarithmic score, cf. (5.46). When this is undertaken over the full sample period
the combined density forecast is found not to beat the best individual density
forecast, the Bank’s forecast. The KLIC minimizing weights are unity on the Bank
and zero on the NIESR, i.e., there is no combination. This is consistent with the
view that combination with an inferior forecast need not help. But, similar to when
variance minimizing weights are used to combine point forecasts, combination
does not make matters worse (as judged by the logarithmic score, and for point
forecasts as judged by the RMSE) when the weights are selected using full-sample
information (i.e., in-sample). But when the weights are chosen recursively (i.e.,
out-of-sample) this need not be the case. Hall and Mitchell (2007) find that an
equal weighted combination produces a less accurate density forecast.

Again combining the Bank’s and the NIESR’s inflation densities, Mitchell and
Hall (2005) consider the merits of an alternative means of deriving the combina-

tion weights. This involves using −�i = KLIC
i
t−h −min(KLIC

i
t−h) in (5.50), with

KLIC
i
t−h estimated from LRi

B with two degrees-of-freedom. Mitchell and Hall (2005)
then find, even in-sample, that the weighted combination performs worse than the

Bank’s density, as measured by both the logarithmic score and the LRi
B test statistic.

This can be attributed to the danger, discussed in Hall and Mitchell (2007), that

the true density for z∗it |t−h, essential to estimation of KLIC
i
t−h, need not be nested

by the chosen specification for q(.). Parameter uncertainties in small samples, due
to the estimation of, in this case, μ and σ , may also be playing a role. Reconciling

and comparing the efficacy of the alternative methods of estimating w∗i and wi
BMA

remains the subject of ongoing research.
The starting point for Jore, Mitchell and Vahey (2008) is the application of Clark

and McCracken (2008) to real-time US data. Clark and McCracken (2008) argue
that combining real-time point forecasts from VAR models of output, prices and
interest rates improves point forecast accuracy in the presence of uncertain model
instabilities. Using the same real-time dataset, Jore, Mitchell and Vahey (2008) gen-
eralize their approach to consider forecast density combinations and evaluations.
Whereas Clark and McCracken (2008) show that the point forecast errors from par-
ticular equal-weight pairwise averages are typically comparable to or better than
benchmark univariate time series models, Jore, Mitchell and Vahey (2008) show
that neither approach produces accurate real-time forecast densities for recent US
data. But substantially improved predictive density accuracy is obtained when the
competing density forecasts are combined on the basis of the fit of the individual
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VAR model forecast densities, as measured by the logarithmic score, over the hold-
out period. This weighted combination gives greater weight to models that allow
for the shifts in volatilities associated with the Great Moderation. This result again
contrasts with that typically found with point forecasts, where equal weighted
averages are hard to beat.

5.6 Conclusion

The past decade has seen a considerable increase in the production and use of
density forecasts in macroeconomics. This reflects both changes in the dynam-
ics of the macroeconomy, with important shifts in both the level and volatility of
many macroeconomic variables making it important to forecast the overall density
function rather than just the conditional mean, and the development of econo-
metric models that allow for time variation in the conditional variance, as well
as the conditional mean. With this increased use of density forecasts, important
new econometric challenges have arisen as macroeconomists seek recourse to a
toolbox comparable to that routinely used both to produce and use point (condi-
tional mean) forecasts. This chapter has reviewed recent additions to this toolbox,
focusing on the practicality rather than rigour of the methods.

This first involved surveying some methods for the production of density fore-
casts. We also considered combining model-based and subjective information, by
twisting the model-based densities to reflect prior (perhaps subjectively formed)
information. We should imagine that the techniques considered could be of par-
ticular use to professional forecasters, like many central banks, who use both
model-based information and judgment when forming their density forecasts. Sec-
ond, we provided a practical discussion of methods for the ex post evaluation of
density forecasts. This involved discussion of both rolling and fixed-event density
forecasts. Numerous tests for both absolute and relative density forecasting per-
formance, using both the probability integral transforms and scoring rules, were
discussed, and their relationship to the Kullback–Leibler information criterion con-
sidered. But we stressed the need for further work to establish a consensus on
the appropriate test(s), especially in the small-samples typical of macroeconomics
and when forecasting more than one step ahead. Finally, again reflecting a com-
mon situation for many macroeconomists who forecast from a suite of models,
we reviewed methods for the combination of density forecasts to overcome the
uncertainty in model selection. Particular focus was given to how to choose the
combination weights. In contrast to the conventional wisdom about point fore-
casts, where equal weights are generally preferred, recent applied work has found
that the predictive accuracy of combined density forecasts improves when a greater
weight is given to models that allow for the shifts in volatility which have been
observed in many economies over the last 20 years.
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Notes

1. However, Granger and Machina (2006) show that, under conditions on the second deriva-
tive of the loss function, there is always some point forecast which leads to the same loss
as if the decision maker had minimized loss given the density forecast.

2. See Clements and Hendry (1998, Ch. 7) for a complete taxonomy of forecast errors. See
also Garratt et al. (2006, Ch. 7).

3. We fail to distinguish between random variables and their realizations to avoid introduc-
ing yet more notation; but the meaning should be clear from the context. When it is not,
we clarify.

4. Diebold, Gunther and Tay (1998) show that the principle generalizes to the case when yt is
multivariate rather than univariate.

5. Alternatively, graphical means of exploratory data analysis are often used to examine the
quality of density forecasts (see Diebold, Gunther and Tay, 1998; Diebold, Tay and Wallis,
1999).

6. This also means we do not have to worry about any additional uncertainty introduced
because estimation of the loss differential series dt |t−h itself requires parameters (e.g., μ,
ρ and σ ) to be estimated.

7. Related expressions decomposing the aggregate density (5.40), based on the “law of con-
ditional variances,” are seen in Giordani and Söderlind (2003). This law states that for the
random variables yt and i : V(yt ) = E[V(yt |i)] +V [E(yt |i)]. For criticism see Wallis (2005).

8. For further discussion of the relationship, if any, between dispersion/disagreement and
individual uncertainty see Bomberger (1996).

9. The individual forecasts of g(yt |�it−h) are treated as given. Alternatively, one might esti-
mate a finite mixture where the moments of the g(·) are estimated simultaneously with
wi; see Raffery et al. (2005) and Geweke and Amisano (2008).

10. The marginal likelihood is the product of the one-step-ahead densities: Pr(�T | Si) =∏T
t=1 g(yt | �it−1).
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6
Investigating Economic Trends
and Cycles
D.S.G. Pollock

Abstract

Methods are described for extracting the trend from an economic data sequence and for isolating
the cycles that surround it. The latter often consist of a business cycle of variable duration and a
perennial seasonal cycle.

There is no evident point in the frequency spectrum where the trend ends and the business
cycle begins. Therefore, unless it can be represented by a simple analytic function, such as an
exponential growth path, there is bound to be a degree of arbitrariness in the definition of the
trend.

The business cycle, however defined, is liable to have an upper limit to its frequency range that
falls short of the Nyquist frequency, which is the maximum observable frequency in sampled data.
This must be taken into account in fitting an ARMA model to the detrended data.

6.1 Introduction 244
6.2 A schematic model of the business cycle 245
6.3 The methods of Fourier analysis 247

6.3.1 Approximations, resampling and Fourier interpolation 250
6.3.2 Complex exponentials 252

6.4 Spectral representations of a stationary process 253
6.4.1 The frequency-domain analysis of filtering 257

6.5 Stochastic accumulation 259
6.5.1 Discrete-time representation of an integrated Wiener process 263

6.6 Decomposition of discrete-time ARIMA processes 266
6.6.1 The Beveridge–Nelson decomposition 268
6.6.2 WK filtering 270
6.6.3 Structural ARIMA models 273
6.6.4 The state-space form of the structural model 275

6.7 Finite-sample signal extraction 277
6.7.1 Polynomial regression and HP filtering 279
6.7.2 Finite-sample WK filters 280
6.7.3 The polynomial component 282

6.8 The Fourier methods of signal extraction 283
6.8.1 Applying the Fourier method to trended data 287

243

mailto: rights@palgrave.com


244 Investigating Economic Trends and Cycles

6.9 Band-limited processes 289
6.9.1 The Shannon–Whittaker sampling theorem 290

6.10 Separating the trend and the cycles 294
6.10.1 Bandpass filters 295
6.10.2 Flexible trends and structural breaks 299
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6.1 Introduction

It has been traditional in economics to decompose time series – more accurately
described as temporal sequences – into a variety of components, some or all of
which may be present in a particular instance. The essential decomposition is a
multiplicative one of the form:

Y(t) = T(t)× C(t)× S(t)× E(t), (6.1)

where:

T(t) is the global trend,

C(t) is a secular cycle, or business cycle,

S(t) is the seasonal variation and

E(t) is an irregular component.

Occasionally, other cycles of relatively long durations are included. Amongst
these are the mysterious Kondratieff cycle, reflecting the ebb and flow of human
fortunes over half a century, the Shumpeterian cycle, reflecting currents and tides
of technological innovation, and the demographic cycle, reflecting the fluctuations
in the procreative urges of human beings.

The factors C(t), S(t) and E(t) in equation (6.1) serve to modulate the trend T(t)
by inducing fluctuations in its trajectory. They take the generic form of X(t) =
1+ ξ(t), where ξ(t) is a process that fluctuates about a mean of zero.

Typically, Y(t) and T(t) are strictly positive and, therefore, the modulating fac-
tors, which are usually deemed to act independently of each other, must also be
bounded away from zero. This condition will be satisfied whenever the generic
factor can be expressed in an exponential form:

X(t) = 1+ ξ(t) = 1+
∞∑

j=1

{x(t)}j
j! = exp{x(t)}. (6.2)

In that case, it is appropriate to take logarithms of the expression (6.1) and to
work with an alternative additive decomposition instead of the multiplicative one.
This is:

y(t) = τ(t)+ c(t)+ s(t)+ ε(t), (6.3)
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where y(t) = ln Y(t), τ(t) = ln T(t), c(t) = ln C(t), s(t) = ln S(t) and ε(t) = ln E(t).
An additional assumption, which might be plausible, is that the components c(t),
s(t), and ε(t) have amplitudes that remain roughly constant over time.

In the absence of extraneous information that correlates them with other vari-
ables, it is impossible to distinguish the components of (6.3) perfectly, one from
another, unless they occupy separate frequency bands. If their bands do overlap,
then any separation of the components will be tentative and doubtful. Thus, a
sequence that is deemed to represent one of the components will comprise, to
some extent, elements that rightfully belong to the other components.

However, as we shall see, the components of an econometric data sequence often
reside within bands of frequencies that are separated by wide dead spaces where
there are no spectral elements of any significance. The possibility of definitely
separating the components is greater than analysts are likely to perceive unless
they work in the frequency domain.

The exception concerns the separation of the business cycle from the trend.
These components are liable to be merged within a single spectral structure, and
there is no uniquely appropriate way of separating them. Their separation depends
upon adopting whatever convention best suits the purposes of the analysis. No
such difficulties will affect the simple schematic model of the business cycle that
we shall consider in the next section.

6.2 A schematic model of the business cycle

In order to extract the modulating components from the data, it is also neces-
sary to remove the trend component from Y(t). To understand what is at issue in
detrending the data, it is helpful to look at a simple schematic model comprising
an exponential growth trajectory T(t) = β exp{rt}, with r > 0, that is modulated
by a exponentiated cosine function C(t) = exp{γ cos(ωt)} to create a model for the
trajectory of aggregate income:

Y(t) = β exp{rt + γ cos(ωt)}. (6.4)

The resulting business cycles, which are depicted in Figure 6.1, have an asymmetric
appearance. Their contractions are of lesser duration than their expansions and
they become shorter as the growth rate r increases.

Eventually, when the rate exceeds a certain value, the periods of contraction will
disappear and, in place of the local minima, there will be only points of inflection.
In fact, the condition for the existence of local minima is that ωγ > r, which is
to say the product of the amplitude of the cycles and their angular velocity must
exceed the growth rate of the trend.

Next, we take logarithms of the data to obtain a model, represented in Figure 6.2,
that has additive trend and cyclical components. This gives:

ln{Y(t)} = y(t) = μ+ rt + γ cos(ωt), (6.5)
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Figure 6.1 The function Y(t) = β exp{rt+γ cos(ωt)} as a model of the business cycle. Observe
that, when r > 0, the duration of an expansion exceeds the duration of a contraction
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Figure 6.2 The function ln{Y(t)} = ln{β} + rt + γ cos(ωt) representing the logarithmic busi-
ness cycle data. The durations of the expansions and the contractions are not affected by
the transformation
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Figure 6.3 The function μ + γ cos(ωt) representing the detrended business cycle. The
durations of the expansions and the contractions are equal

where μ = ln{β}. Since logs effect a monotonic transformation, there is no displace-
ment of the local maxima and minima. However, the amplitude of the fluctuations
around the trend, which has become linear in the logs, is now constant.

The final step is to create a stationary function by eliminating the trend. There
are two equivalent ways of doing this in the context of the schematic model.
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On the one hand, the linear trend ξ(t) = μ + rt can be subtracted from y(t) to
create the pure business cycle γ cos(ωt). Alternatively, the function y(t) can be
differentiated to give dy(t)/dt = r − γω sin(ωt). When the latter is adjusted by
subtracting the growth rate r, by dividing by ω and by displacing its phase by
−π/2 radians – which entails replacing the argument t by t − π/2 – we obtain
the function γ cos(ωt) again. Through the process of detrending, the phases of
expansion and contraction acquire equal durations, and the asymmetry of the
business cycle vanishes, as is shown by Figure 6.3.

There is an enduring division of opinion, in the literature of economics, on
whether we should be looking at the turning points and phase durations of the
original data or at those of the detrended data. The task of finding the turning
points is often a concern of analysts who wish to make international comparisons
of the timing of the business cycle. There is a belief, which bears investigating, that
these cycles are becoming increasingly synchronized amongst member countries
of the European Union.

However, since the business cycle is a low-frequency component of the data, it
is difficult to find the turning points with great accuracy. In fact, the pinnacles
and pits that are declared to be the turning points often seem to be the products
of whatever high-frequency components happen to remain in the data after it has
been subjected to a process of seasonal adjustment.

If the objective is to compare the turning points of the cycles, then the trends
should be eliminated from the data. The countries that are to be compared are
liable to be growing at differing rates. From the trended data, it will appear that
those with higher rates of growth have shorter recessions with delayed onsets, and
this can be misleading.

The various indices of an expanding economy will also grow at diverse rates.
Unless they are reduced to a common basis by eliminating their trends, their fluc-
tuations cannot be compared easily. Amongst such indices will be the percentage
rate of unemployment, which constitutes a trend-stationary sequence. It would
be difficult to collate the turning points in this index with those within a rapidly
growing series of aggregate income, which might not exhibit any absolute reduc-
tions in its level. A trenchant opinion to the contrary, which opposes the practice
of detrending the data for the purposes of describing the business cycle, has been
offered by Harding and Pagan (2002).

6.3 The methods of Fourier analysis

A means of extracting the cyclical components from a data sequence is to regress it
on a set of trigonometrical functions. The relevant procedures have been described
within the context of the statistical analysis of time series by numerous authors,
including Bloomfield (1975), Fuller (1976) and Priestley (1989).

In the Fourier decomposition of a finite sequence {xt ; t = 0, 1, . . . , T − 1}, the T
data points are expressed as a weighted sum of an equal number of trigonometrical
functions of frequencies that are equally spaced in the interval [0,π ].
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We define [T/2] to be the integer part to T/2, which will be n = T/2, if T is even,
or (T − 1)/2, if T is odd. Then:

xt =
[T/2]∑
j=0

{
αj cos(ωjt)+ βj sin(ωjt)

}

=
[T/2]∑
j=0

ρj cos(ωjt − θj).

(6.6)

Here, ρ2
j = α

2
j + β

2
j and θj = tan−1

(βj/αj), whilst αj = ρj cos(θj) and βj = ρj sin(θj).
The equality of (6.6) follows in view of the trigonometrical identity:

cos(A− B) = cos(A) cos(B)+ sin(A) sin(B). (6.7)

The frequency ωj = 2π j/T is a multiple of the fundamental frequency ω1 = 2π/T .
The latter belongs to a sine and a cosine function that complete a single cycle in the
time spanned by the data. The zero frequency ω0 is associated with the constant
function cos(ω0t) = cos(0) = 1, whereas sin(ω0t) = sin(0) = 0.

If T = 2n is an even number, then the highest frequency is ωn = π ; and, within

(6.6), there are cos(ωnt) = cos(π t) = (−1)t and sin(ωnt) = sin(π t) = 0. If T is an
odd number, then the highest frequency is π(T−1)/T , and there is both a sine and
a cosine function at this frequency. Counting the number of non-zero functions
in both cases shows that they are equal in number to the data points. Therefore,
there is a one-to-one correspondence between the data points and the coefficients
of the non-zero functions in the Fourier expression of (6.6).

In equation (6.6), the temporal index t ∈ {0, 1, . . . , T −1} assumes integer values.
However, by allowing t ∈ [0, T) to vary continuously, one can generate a contin-
uous function that interpolates the T data points. This method of generating the
continuous function from sampled values may be described as Fourier interpola-
tion. It is notable that the interpolated function is analytic in the sense that it
possesses derivatives of all orders.

Although the process generating the data may contain components of frequen-
cies higher than the Nyquist frequency, these will not be detected when it is
sampled regularly at unit intervals of time. In fact, the effects on the process of
components of frequencies in excess of the Nyquist value will be confounded with
those of frequencies that fall below it.

To demonstrate this, consider the case where the process contains a component
that is a pure cosine wave of unit amplitude and zero phase and of a frequency ω

that lies in the interval π < ω < 2π . Let ω
∗ = 2π − ω. Then:

cos(ωt) = cos
{
(2π − ω

∗
)t
}

= cos(2π) cos(ω∗t)+ sin(2π) sin(ω
∗t)

= cos(ω∗t),

(6.8)

which indicates that ω and ω
∗ are observationally indistinguishable. Here, ω∗ < π

is described as the alias of ω > π .
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Since the trigonometrical functions are mutually orthogonal, the Fourier co-
efficients can be obtained via a set of T simple inner-product formulae, which are
in the form of ordinary univariate least squares regressions, with the values of the
sine and cosine functions at the points t = 0, 1, . . . , T − 1 as the regressors.

Let cj = [c0,j, . . . , cT−1,j]′ and sj = [s0,j, . . . , sT−1,j]′ represent vectors of T values of

the generic functions cos(ωjt) and sin(ωjt) respectively, and let x = [x0, . . . , xT−1]′
be the vector of the sample data and ι = [1, . . . , 1]′ a vector of units. The “regression”
formulae for the Fourier coefficients are:

α0 = (ι
′
ι)
−1

ι
′x = 1

T

∑
t

xt = x̄, (6.9)

αj = (c′jcj)
−1c′jx =

2
T

∑
t

xt cos(ωjt), (6.10)

βj = (s′jsj)
−1s′jx =

2
T

∑
t

xt sin(ωjt), (6.11)

αn = (c′ncn)
−1c′nx = 1

T

∑
t

(−1)t xt . (6.12)

However, in calculating the coefficients, it is more efficient to use the family of
specialised algorithms known as fast Fourier transforms, which deliver complex-
valued spectral ordinates from which the Fourier coefficients are obtained directly.
(See, for example, Pollock 1999.)

The power of a sequence is the time average of its energy. It is synonymous with
the mean square deviation which, in statistical terms, is its variance. The power

of the sequence xj(t) = ρj cos(ωjt) is ρ
2
j /2. This result can be obtained in view

of the identity cos2
(ωjt) = {1 + cos(2ωjt)}/2, for the average of cos(2ωjt) over an

integral number of cycles is zero. The assemblage of values ρ
2
j /2; j = 1, 2, . . . , [T/2]

constitutes the power spectrum of x(t), which becomes the periodogram when
scaled by a factor T . Their sum equals the variance of the sequence. If T = 2n is
even, then:

1
T

T−1∑
t=0

(xt − x̄)2 = 1
2

n−1∑
j=1

ρ
2
j + α

2
n . (6.13)

Otherwise, if T is odd, then the summation runs up to (T − 1)/2, and the term

α
2
n is missing.
The indefinite sequence x(t) = {xt ; t = 0,±1,±2, . . .}, expressed in the manner of

(6.6), is periodic with a period T equal to the length of the sample. It is described as
the periodic extension of the sample, and it may be obtained be replicating sample
elements over all preceding and succeeding intervals of T points. An alternative
way of forming the periodic sequence is by wrapping the sample around a circle of
circumference T . Then, the periodic sequence is generated by traveling perpetually
around the circle.
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6.3.1 Approximations, resampling and Fourier interpolation

By letting t = 0, . . . , T−1 in equation (6.6), the data sequence {xt ; t = 0, . . . , T−1} is
generated exactly. An approximation to the sequence may be generated by taking
a partial sum comprising the terms of (6.6) that are associated with the Fourier fre-
quencies ω0, . . . ,ωd , where d < [T/2]. It is straightforward to demonstrate that this
is the best approximation, in the least squares sense, amongst all of the so-called
trigonometrical polynomials of degree d that comprise the sinusoidal functions in
question.

The result concerning the best approximation extends to the continuous func-
tions that are derived by allowing t to vary continuously in the interval [0, T).
That is to say, the continuous function derived from the partial Fourier sum com-
prising frequencies no higher than ωd = 2πd/T is the minimum mean square
approximation to the continuous function derived from (6.6) by letting t vary
continuously.

We may exclude the sine function of frequency ωd from the Fourier sum. Then
the continuous approximation is given by:

z(t) =
d∑

j=0

{
αj cos

(
2π jt

T

)}
+

d−1∑
j=1

{
βj sin

(
2π jt

T

)}

=
d∑

j=0

{
αj cos

(
2π jτ

N

)}
+

d−1∑
j=1

{
βj sin

(
2π jτ

N

)}
,

(6.14)

where τ = tN/T with N = 2d, which is the total number of the Fourier coefficients.
Here, τ varies continuously in [0, N), whereas t varies continuously in [0, T). On
the right-hand side, there is a new set of Fourier frequencies {2π j/N; j = 0, 1, . . . , d}.

The N coefficients {α0,α1,β1, . . . ,αd−1,βd−1,αd} bear a one-to-one correspon-
dence with the set of N ordinates {zτ = z(τT/N); τ = 0, . . . , N − 1} sampled at
intervals of π/ωd = T/N from z(t). The consequence is that z(t) is fully represented
by the resampled data zτ ; τ = 0, . . . , N−1, from which it may be derived by Fourier
interpolation.

The result concerning the optimality of the approximation is a weak one; for it
is possible that the preponderance of the variance of the data will be explained by
sinusoids at frequencies that lie outside the range [ω0, . . . ,ωd]. The matter can be
judged with reference to the periodogram of the data sequence, which constitutes
a frequency-specific analysis of variance.

Example Figure 6.4 represents the logarithms of the data on quarterly real
household expenditure in the UK for the period 1956–2005, through which a linear
function had been interpolated so as to pass through the midst of the data points
of the first and the final years.

This interpolation is designed to minimize any disjunction that might other-
wise occur where the ends of the data sequence meet when it is mapped onto the
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Figure 6.4 The quarterly sequence of the logarithms of household expenditure in the UK for
the years 1956–2005, together with an interpolated linear trend
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Figure 6.5 The residual deviations of the logarithmic expenditure data from the linear trend
of Figure 6.4. The interpolated line, which represents the business cycle, has been synthesized
from the Fourier ordinates in the frequency interval [0,π/8]

circumference of a circle. A trend line fitted by ordinary least squares regression
would have a lesser gradient, which would raise the final years above the line. This
would be a reflection of the relative prosperity of the times.

The residual deviations of the expenditure data from the trend line of Figure 6.4
are represented in Figure 6.5, and their periodogram is shown in Figure 6.6. Within
this periodogram, the spectral structure extending from zero frequency up to π/8
belongs to the business cycle. The prominent spikes located at the frequency π/2
and at the limiting Nyquist frequency of π are the property of the seasonal fluc-
tuations. Elsewhere in the periodogram, there are wide dead spaces, which are
punctuated by the spectral traces of minor elements of noise.

The slowly varying continuous function interpolated through the deviations of
Figure 6.5 has been created by combining a set of sine and cosine functions of
increasing frequencies in the manner of (6.14), with the frequencies extending no
further than ωd = π/8, and by letting t vary continuously in the interval [0, T). This
is a representation of the business cycle as it affects household expenditure. Observe
that, since it is analytic, the turning points of this function can be determined via
its first derivative.
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Figure 6.6 The periodogram of the residual sequence of Figure 6.5. A band, with a lower
bound of π/16 radians and an upper bound of π/3 radians, is masking the periodogram

6.3.2 Complex exponentials

In dealing with the mathematics of the Fourier transform, it is common to use com-
plex exponential functions in place of sines and cosines. This makes the expressions
more concise. According to Euler’s equations, these are:

cos(ωjt) =
1
2
(eiωj t + e−iωj t ) and sin(ωjt) =

−i
2

(eiωj t − e−iωj t ), (6.15)

where i = √−1. Therefore, equation (6.6) can be expressed as:

xt = α0 +
[T/2]∑
j=1

αj + iβj

2
e−iωj t +

[T/2]∑
j=1

αj − iβj

2
eiωj t , (6.16)

which can be written concisely as:

xt =
T−1∑
j=0

ξje
iωj t , (6.17)

where:

ξ0 = α0, ξj =
αj − iβj

2
and ξT−j = ξ

∗
j =

αj + iβj

2
. (6.18)

Equation (6.17) may be described as the inverse Fourier transform. The direct
transform is the mapping from the data sequence within the time domain to the
sequence of Fourier ordinates in the frequency domain. The relationship between
the discrete periodic function and its Fourier transform can be summarized by
writing:

xt =
T−1∑
j=0

ξje
iωj t ←→ ξj =

1
T

T−1∑
t=0

xt e
−iωj t dt . (6.19)
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For matrix representations of these transforms, one may define:

U = T−1/2[exp{−i2π tj/T}; t , j = 0, . . . , T − 1],

Ū = T−1/2[exp{i2π tj/T}; t , j = 0, . . . , T − 1],
(6.20)

which are unitary complex matrices such that UŪ = ŪU = IT . Then:

x = T1/2Ūξ ←→ ξ = T−1/2Ux, (6.21)

where x = [x0, x1, . . . xT−1]′ and ξ = [ξ0, ξ1, . . . ξT−1]′ are the vectors of the data
and of their Fourier ordinates respectively.

6.4 Spectral representations of a stationary process

The various equations of the Fourier analysis of a finite data sequence can also be
used to describe the processes that generate the data. Thus, within the equation:

yt =
n∑

j=0

{
αj cos(ωjt)+ βj sin(ωjt)

}

= ζ0 +
n∑

j=1

{
ζje

iωj t + ζ
∗
j e−iωj t

}
,

(6.22)

the quantities αj, βj can be taken to represent independent real-valued random
variables, and the quantities:

ζj =
αj − iβj

2
and ζ

∗
j =

αj + iβj

2
(6.23)

can be regarded as complex-valued random variables.
The autocovariance of the elements yt and ys is given by:

E(ytys) =
n∑

j=0

n∑
k=0

E
[
ζjζkei(ωj t+ωks) + ζjζ

∗
k ei(ωj t−ωks)

+ζ
∗
j ζkei(ωks−ωj t) + ζ

∗
j ζ
∗
k e−i(ωj t+ωks)

]
.

(6.24)

The condition of stationarity requires that the covariance should be a function
only of the temporal separation |t − s| of yt and ys. For this, it is necessary that:

E(ζjζk) = E(ζ∗j ζ
∗
k ) = E(ζ∗j ζk) = E(ζjζ

∗
k ) = 0, (6.25)

whenever j �= k. Also, the conditions:

E(ζ2
j ) = 0 and E(ζ∗2j ) = 0, (6.26)
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must hold for all j. For (6.25) and (6.26) to hold, it is sufficient that:

E(αjβk) = 0 for all j, k, (6.27)

and that:

E(αjαk) = E(βjβk) =
{

0, if j �= k;

σ
2
j , if j = k.

(6.28)

An implication of the equality of the variances of αj and βj is that the phase angle
θj is uniformly distributed in the interval [−π ,π ].

Under these conditions, the autocovariance of the process at lag τ = t − s will be
given by:

γτ =
n∑

j=0

σ
2
j cosωjτ . (6.29)

The variance of the process is just:

γ0 =
n∑

j=0

σ
2
j , (6.30)

which is the sum of the variances of the n individual periodic components. This is
analogous to equation (6.13).

The stochastic model of equation (6.22) may be extended to encompass processes
defined over the entire set of positive and negative integers as well as processes that
are continuous in time. First, we may consider extending the length T of the sample
indefinitely. As T and n increase, the Fourier coefficients become more numerous
and more densely packed in the interval [0,π ]. Also, given that the variance of the
process is bounded, the variance of the individual coefficients must decrease.

To accommodate these changes, we may write αj = dA(ωj) and βj = dB(ωj),
where A(ω), B(ω) are cumulative step functions with discontinuities at the points
{ωj; j = 0, . . . , n}. In the limit, the summation in (6.22) is replaced by an integral,
and the expression becomes:

y(t) =
∫ π

0
{cos(ωt)dA(ω)+ sin(ωt)dB)ω)}

=
∫ π

−π
eiωt dZ(ω),

(6.31)

where:

dZ(ω) = 1
2
{dA(ω)− idB(ω)} and

dZ(−ω) = dZ∗(ω) = 1
2
{dA(ω)+ idB(ω)}.

(6.32)

Also, y(t) = {yt ; t = 0,±1,±2, . . .} stands for a doubly-infinite data sequence.
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The assumptions regarding dA(ω) and dB(ω) are analogous to those regarding the
random variables αj and βj, which are their prototypes. It is assumed that A(ω) and
B(ω) represent a pair of stochastic processes of zero mean, which are indexed on
the continuous parameter ω. Thus:

E
{
dA(ω)

} = E
{
dB(ω)

} = 0. (6.33)

It is also assumed that the two processes are mutually uncorrelated and that non
overlapping increments within each process are uncorrelated. Thus:

E
{
dA(ω)dB(λ)

} = 0 for all ω, λ,

E
{
dA(ω)dA(λ)

} = 0 if ω �= λ,

E
{
dB(ω)dB(λ)

} = 0 if ω �= λ.

(6.34)

The variance of the increments is given by:

V
{
dA(ω)

} = V
{
dB(ω)

} = 2dF(ω). (6.35)

The function F(ω), which is defined provisionally over the interval [0,π ], is
described as the spectral distribution function. The properties of variances imply
that it is a non decreasing function of ω. In the case where the process y(t) is purely
random, F(ω) is a continuous differentiable function. Its derivative f (ω), which is
nonnegative, is described as the spectral density function.

The domain of the functions A(ω), B(ω) may be extended from [0,π ] to [−π ,π ]
by regarding A(ω) as an even function such that A(−ω) = A(ω) and by regarding
B(ω) as an odd function such that B(−ω) = −B(ω). Then, dZ∗(ω) = dZ(−ω), in
accordance with (6.32). From the conditions of (6.34), it follows that:

E
{
dZ(ω)dZ∗(λ)

} = E
{
dZ(ω)dZ(−λ)

} = 0 if ω �= λ,

E
{
dZ(ω)dZ∗(ω)

} = E
{
dZ(ω)dZ(−ω)

} = dF(ω),
(6.36)

where the domain of F(ω) is now the interval [−π ,π ].
The sequence of the autocovariances of the process y(t) may be expressed in terms

of the spectrum of the process. From (6.36), it follows that the autocovariance of
y(t) at lag τ = t − s is given by:

γτ = C(yt , ys) = E
{∫

ω
eiωt dZ(ω)

∫
λ

eiλsdZ(λ)

}
=
∫
ω

∫
λ

eiωt eiλsE
{
dZ(ω)dZ(λ)

}
=
∫
ω

eiωτE
{
dZ(ω)dZ∗(ω)

}
=
∫ π

−π
eiωτdF(ω).

(6.37)
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In the case of a continuous spectral distribution function, we may write dF(ω) =
f (ω)dω in the final expression, where f (ω) is the spectral density function. If f (ω) =
σ

2
/2π , then there is γ0 = σ

2 and γτ = 0 for all τ �= 0, which are the characteristics
of a white-noise process comprising a sequence of independently and identically
distributed random variables. Thus, a white-noise process has a uniform spectral
density function.

The second way of extending the model is to allow the rate of sampling to
increase indefinitely. In the limit, the sampled sequence becomes a continuum.
Equation (6.31) will serve to represent a continuous process on the understanding
that t is now a continuous variable. However, if the discrete-time process has been
subject to aliasing, then the range of the frequency integral will increase as the rate
of sampling increases.

Under any circumstances, it seems reasonable to postulate an upper limit to
the range of the frequencies comprised by a stochastic process. However, within
the conventional theory of continuous stochastic processes, it is common to
consider an unbounded range of frequencies. In that case, we obtain a spectral
representation of a stochastic process of the form:

y(t) =
∫ ∞
−∞

eiωt dZ(ω). (6.38)

This representation is capable, nevertheless, of subsuming a process that is lim-
ited in frequency. If the bandwidth of Z(ω) is indeed unbounded, then (6.38)
becomes the spectral representation of a process comprising a continuous suc-
cession of infinitesimal impacts, which generates a trajectory that is everywhere
continuous but nowhere differentiable.

Example Figure 6.7 shows the spectral density function of an autoregressive mov-
ing average ARMA(2, 2) process y(t), described by the equation α(z)y(z) = μ(z)ε(z),
where α(z) and μ(z) are quadratic polynomials and y(z) and ε(z) are, respectively,
the z-transforms of the data sequence y(t) = {yt ; t = 0,±1,±2, . . .} and of a white-
noise sequence ε(t) = {εt ; t = 0,±1,±2, . . .} of independently and identically
distributed random variables.

0.5

10.0

1.0

1.5

0 π/4 π/2 3π/4 π

Figure 6.7 The periodogram of 256 points of a pseudo-random ARMA(2, 2) process overlaid
by the spectral density function of the process

mailto: rights@palgrave.com


D.S.G. Pollock 257

The ARMA(2, 2) process has been formed by the additive combination of a
second-order autoregressive AR(2) process and an independent white-noise pro-

cess. The autoregressive polynomial is α(z) = 1 + 2ρ cos(θ)z + ρ
2z2, which has

conjugate complex roots of which the polar forms are ρ exp{±iθ}. In the example,
the modulus of the roots is ρ = 0.9 and their argument is θ = π/4 radians.

The spectral density function attains a non-zero minimum at ω = π . However,
it is possible to decompose the ARMA(2, 2) process into an ARMA(2, 1) process
and a white-noise component that has the maximum variance compatible with
such a decomposition. This is a so-called canonical decomposition of the ARMA
process. The moving-average polynomial of the resulting ARMA(2, 1) process is
1 + z, which has a zero at ω = π . By maximizing the variance of the white-noise
component, an ARMA component is derived that is as smooth and as regular as
possible.

Canonical decompositions are entailed in a method for extracting unobserved
components from data sequences described by autoregressive integrated moving
average (ARIMA) models, which will be discussed in section 6.6.3.

Figure 6.7 also shows a periodogram that has been calculated from a sample of
256 points generated by the ARMA(2, 2) process. Its volatility contrasts markedly
with the smoothness of the spectrum. The periodogram has half as many ordi-
nates as the data sequence and it inherits this volatility directly from the data.
A nonparametric estimate of the spectrum may be obtained by smoothing the
ordinates of the periodogram with an appropriately chosen moving average, or
by subjecting the empirical autocovariances to an equivalent weighting operation
before transforming them to the frequency domain.

6.4.1 The frequency-domain analysis of filtering

It is a straightforward matter to derive the spectrum of a process y(t) formed by
mapping the process x(t) through a linear filter. If:

x(t) =
∫
ω

eiωt dZx(ω), (6.39)

then the filtered process is:

y(t) =
∑

j

ψjx(t − j)

=
∑

j

ψj

{∫
ω

eiω(t−j)dZx(ω)

}

=
∫
ω

eiωt
(∑

j

ψje
−iωj

)
dZx(ω).

(6.40)
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On writing
∑

ψje
−iωj = ψ(ω), which is the frequency response function of the

filter, this becomes:

y(t) =
∫
ω

eiωt
ψ(ω)dZx(ω)

=
∫
ω

eiωt dZy(ω).
(6.41)

If the process x(t) has a spectral density function fx(ω), which will allow one to
write dF(ω) = f (ω)dω in equation (6.36), then the spectral density function fy(ω)

of the filtered process y(t) will be given by:

fy(ω)dω = E
{
dZy(ω)dZ∗y (ω)

}
= ψ(ω)ψ

∗
(ω)E

{
dZx(ω)dZ∗x(ω)

}
= |ψ(ω)|2fx(ω)dω.

(6.42)

The complex-valued frequency-response function ψ(ω), which characterizes the
linear filter, can be written in polar form as:

ψ(ω) = |ψ(ω)|e−iθ(ω), (6.43)

The function |ψ(ω)|, which is described as the gain of the filter, indicates the extent
to which the amplitude of the cyclical components of which x(t) is composed are
altered in the process of filtering.

When x(t) = ε(t) is a white-noise sequence of independently and identically

distributed random variables of variance σ
2, equation (6.42) gives rise to the expres-

sion fy(ω) = σ
2|ψ(ω)|2 = σ

2
ψ(ω)ψ

∗
(ω), which is the spectral density function of

y(t). Then, it is helpful to use the notation of the z-transform whereby ψ(ω) is

written as ψ(z) =∑
j ψjz

j; z = e−iω. If we allow z to be an arbitrary complex num-

ber, then we can define the autocovariance generating function γ (z) = ∑
τ γτ zτ

wherein γτ = E(ytyt−τ ). This takes the form of:

γ (z) = σ
2
ψ(z)ψ(z−1

). (6.44)

Example Figure 6.8 depicts the squared gain of the difference operator ∇(z) =
1− z, which is the curve labeled D. The squared gain of ∇(z) is obtained by setting

z = exp{−iω} within |∇(z)|2 = (1− z)(1− z−1
) to give D(ω) = 2− 2 cos(ω), whence

W(ω) = D−1
(ω) can be obtained, which is the squared gain of the summation

operator. The product of D(ω) and W(ω) is the constant function N(ω) = 1, which
also represents the spectral density function or power spectrum of a white-noise

process with a variance of σ2 = 2π . Likewise, W(ω) represents the pseudo-spectrum
of a first-order random walk.

This is not a well-defined spectral density function, since the random walk does
not constitute a stationary process of a sort that can be defined over a doubly-
infinite set of time indices. The unbounded nature of W(ω) as ω→ 0 is testimony
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Figure 6.8 The squared gain of the difference operator, labeled D, and that of the summation
operator, labeled W

to the fact that the variance of the random walk process is proportional to the time
that has elapsed since its start-up. The variance will be unbounded if the start-up
is in the indefinite past.

6.5 Stochastic accumulation

In the schematic model of the economy, we have envisaged business cycle fluc-
tuations that are purely sinusoidal, and we have considered a trend that follows
an exponential growth path. In a realistic depiction of an economy, both of these
functions are liable to be more flexible and more variable through time.

Whereas, in some eras, a linear function, interpolated by least squares regression
through the logarithms of the data, will serve as a benchmark about which to
measure the cyclical economic activities, the latter usually require to be modeled
by a stochastic process. It is arguable that the trend should also be modeled by a
stochastic function.

A further feature of the schematic model, which is at odds with the available
data, is the continuous nature of its functions. Whereas the processes that generate
the data can be thought of as operating in continuous time, the sampled data are
sequences of values that are indexed by dates at equal intervals. These data are liable
to be modeled via discrete-time stochastic processes. Therefore, some attention
needs be paid to the relationship between the discrete data and the underlying
continuous process.

The theory of continuous-time stochastic models has been summarized by
Bergstrom (1984, 1988), who researched the subject over a 40-year period, begin-
ning in the mid 1960s. His posthumous contributions are to be found in Bergstrom
and Nowman (2007), where the contributions of other authors are also referenced.

A linear stochastic process must have a primum mobile or forcing function, which
is liable to be a stationary process. For the usual discrete-time processes, this
is a white-noise sequence of independently and identically distributed random
variables. In the theory of continuous stochastic processes, the forcing function
consists, almost invariably, of the increments of a Wiener process, which is a
process that has an infinite bandwidth in the frequency domain. Already, in
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section 6.3, we have encountered a process with a limited bandwidth. Later, in
section 6.9, we shall consider some further implications of a limited bandwidth.

The Wiener process Z(t) is defined by the following conditions:

(a) Z(0) is finite,
(b) E{Z(t)} = 0, for all t ,
(c) Z(t) is normally distributed,
(d) dZ(s), dZ(t) for all t �= s are independent stationary increments,

(e) V{Z(t + h)− Z(t)} = σ
2h for h > 0.

The increments dZ(s), dZ(t) are impulses that have a uniform power spectrum
distributed over an infinite range of frequencies corresponding to the entire real
line. Sampling Z(t) at regular intervals to form a discrete-time white-noise process
ε(t) = Z(t + 1) − Z(t) entails a process of aliasing, whereby the spectral power of
the cumulated increments gives rise to a uniform spectrum of finite power over the
frequency interval [−π ,π ].

In general:

Z(t) = Z(a)+
∫ t

a
dZ(τ ), (6.45)

where Z(a) is a finite starting value at time a. However, if Z(t) were differentiable,
as some forcing functions may be, then we should have dZ(t) = {dZ(t)/dt}dt .

The simplest of stochastic differential equations is the first-order equation, which
takes the form:

dx(t)
dt

− λx(t) = dZ(t) or (D− λ)x(t) = dZ(t). (6.46)

Multiplying throughout by the factor exp{−λt} gives:

e−λtDx(t)− λe−λt x(t) = D{x(t)e−λt } = e−λt dZ(t), (6.47)

where the first equality follows from the product rule of differentiation. Integ-

rating D{x(t)e−λt } = e−λt dZ(t) gives:

x(t)e−λt =
∫ t

−∞
e−λτdZ(τ ), (6.48)

or:

x(t) = eλt
∫ t

−∞
e−λτdZ(τ ) =

∫ t

−∞
eλ(t−τ)dZ(τ ). (6.49)

If we write x(t) = (D− λ)
−1dZ(t), then we get the result that:

x(t) = 1
D− λ

dZ(t) =
∫ t

−∞
eλ(t−τ)dZ(τ ), (6.50)
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from which it is manifest that the necessary and sufficient condition for stability
is that λ < 0. That is to say, the root of the equation D−λ = 0, which indicates the
rate of decay of the increments, must be less than zero.

The general solution of a differential equation should normally comprise a partic-
ular solution, which represents the effects of the initial conditions. However, given
that their effects decay as time elapses and given that, in this case, the integral has
no lower limit, no account needs to be taken of initial conditions.

When the process is observed at the integer time points {t = 0,±1,±2, . . .}, it is
appropriate to express it as:

x(t) = eλ
∫ t−1

−∞
eλ(t−1−τ)dZ(τ )+

∫ t

t−1
eλ(t−τ)dZ(τ )

= eλx(t − 1)+
∫ t

t−1
eλ(t−τ)dZ(τ ).

(6.51)

This gives rise to a discrete-time equation of the form:

x(t) = φx(t − 1)+ ε(t), or (1− φL)x(t) = ε(t), (6.52)

where:

φ = eλ and ε(t) =
∫ t

t−1
eλ(t−τ)dZ(τ ), (6.53)

and where L is the lag operator, which has the effect that Lx(t) = x(t − 1).
The second-order equation may be expressed as follows:

(D2 + ϕ1D+ ϕ2)x(t) = (D− λ1)(D− λ2)x(t) = dZ(t). (6.54)

Using a partial-fraction expansion, this can be cast in the form of:

x(t) = 1
λ1 − λ2

{
1

D− λ1
− 1

D− λ2

}
dZ(t)

=
∫ t

−∞

{
eλ1(t−τ) − eλ2(t−τ)

λ1 − λ2

}
dZ(τ ).

(6.55)

Here, the final equality depends upon the result under (6.50). If the roots λ1, λ2
have real values, then the condition of stability is that λ1, λ2 < 0. If the roots are
conjugate complex numbers, then the condition for stability is that they must lie
in the left half of the complex plane. In that case, the trajectory of x(t) will have
a damped quasi-sinusoidal motion of a sort that is characteristic of the business
cycle.

Equation (6.55) gives rise to a second-order difference equation. In the manner
that equation (6.50) leads to equation (6.52), we get:

x(t) = 1
λ1 − λ2

{
ε1(t)

1− κ1L
+ ε2(t)

1− κ2L

}
= θ0 + θ1L

1+ φ1L+ φ2L
ε(t).

(6.56)
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Here, (λ1−λ2)(1−κ1L)(1−κ2L) = 1+φ1L+φ2L, and we have defined (θ0+θ1L)ε(t) =
(1 − φ2L)ε1(t) + (1 − φ1L)ε2(t), which is a first-order moving-average process.
Equation (6.56) depicts an ARMA(2, 1) process in discrete time. The correspon-
dence between the second-order differential equation and the ARMA(2, 1) process
has been discussed by Phadke and Wu (1974) and Pandit and Wu (1975).

Autoregressive models of other orders may be derived in the same manner as
the second-order model by putting polynomial functions of D of the appropriate
degrees in place of the quadratic function. The models can also be elaborated by
applying a moving-average operator or weighting function ρ(τ) to the stochastic
forcing function dZ(t). This gives a forcing function in the form of:

η(t) =
∫ q

0
ρ(τ)dZ(t − τ) =

∫ t

t−q
ρ(t − τ)dZ(τ ). (6.57)

The consequence of this elaboration for the corresponding discrete-time ARMA
model is that its moving-average parameters are no longer constrained to be
functions of the autoregressive parameters alone.

In modeling a stochastic trend, it is common to adopt a first- or second-order
process in which the roots are set to zeros. In that case, the stochastic increments
are accumulated without decay. Therefore, it is crucial to specify the initial con-
ditions of the process. We shall denote the process that is the m-fold integral of

the incremental process dZ(t) by Z(m)
(t). Then, Z(1)

(t) can stand for the Wiener
process Z(t), defined previously.

If the process has begun in the indefinite past, then there will be zero probability
that its current value will be found within a finite distance from the origin. There-
fore, we must impose the condition that, at any time that is at a finite distance

both from the origin and from the current time, the process Z(1)
(t) assumes a finite

value. This allows us to write:

Z(1)
(t) = Z(1)

(t − h)+
∫ t

t−h
dZ(1)

(τ ), (6.58)

where h is an arbitrary finite step in time and a = t − h is a fixed point in time.
On this basis, the value of the integrated process at time t is:

Z(2)
(t) = Z(2)

(t − h)+
∫ t

t−h
Z(1)

(τ )dτ

= Z(2)
(t − h)+ Z(1)

(t − h)h+
∫ t

t−h
(t − τ)dZ(1)

(τ ).

(6.59)

By proceeding through successive stages, we find that the mth integral is:

Z(m)
(t) =

m−1∑
k=0

Z(m−k)
(t − h)

hk

k! +
∫ t

t−h

(t − τ)
m−1

(m− 1)! dZ(1)
(τ ). (6.60)

Here, the first term on the right-hand side is a polynomial in h, which is the distance
in time from the fixed point a, whereas the second term is the m-fold integral of
mean-zero stochastic increments, which constitutes a non-stationary process.
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The covariance of the changes Z(j)
(t)−Z(j)

(t − h) and Z(k)
(t)−Z(k)

(t − h) of the
jth and the kth integrated processes derived from Z(t) is given by:

C
{
z(j)(t), z(k)(t)

} = ∫ t

s=t−h

∫ t

r=t−h

(t − r)j−1
(t − s)k−1

j!k! E
{
dZ(r)dZ(s)

}
= σ

2
∫ t

t−h

(t − r)j+k−2

j!k! dr = σ
2 hj+k−1

(j + k − 1)j!k! .
(6.61)

A straightforward elaboration of the model of a stochastic trend arises when it
is assumed that the expected value of the incremental process that is the forcing
function has a non-zero mean. Then, Z(t) is replaced by μdt+dZ(t). This is the case
of stochastic drift. If μ is relatively large, then it will make a significant contribution
to the polynomial component, with the effect that the latter may become the
dominant component.

6.5.1 Discrete-time representation of an integrated Wiener process

To derive the discretely sampled version of the integrated Wiener process, it may
be assumed that values are sampled at regular intervals of h time units. Then, using

the alternative notation of β(t) = Z(1)
(t), equation (6.58) can be written as:

β(t) = β(t − h)+ ε(t), (6.62)

where ε(t) is a white-noise process. With τ(t) = Z(2)
(t), equation (6.59) can be

written as:

τ(t) = τ(t − h)+ hβ(t − h)+ ν(t), (6.63)

where ν(t) is another white-noise process. Together, equations (6.62) and (6.63)
constitute a so-called local linear model in which τ(t) represents the level and β(t)
represents the slope parameter. On taking the step length to be h = 1, the transition
equation for this model is:[

τ(t)

β(t)

]
=
[

1 1

0 1

][
τ(t − 1)

β(t − 1)

]
+
[
ν(t)

ε(t)

]
. (6.64)

Using the difference operator ∇ = 1 − L, the discrete-time processes entailed in
this equation can be written as:

∇τ(t) = τ(t)− τ(t − 1) = β(t − 1)+ ν(t),

∇β(t) = β(t)− β(t − 1) = ε(t).
(6.65)

Applying the difference operator a second time to the first of these and substituting
for ∇β(t) = ε(t) gives:

∇2
τ(t) = ∇β(t − 1)+ ∇ν(t)

= ε(t − 1)+ ν(t)− ν(t − 1).
(6.66)
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On the right-hand side of this equation is a sum of stationary stochastic processes,
which can be expressed as an ordinary first-order moving-average process. Thus:

ε(t − 1)+ ν(t)− ν(t − 1) = η(t)+ θη(t − 1), (6.67)

where η(t) is a white-noise process with V{η(t)} = σ
2
η . Therefore, the sampled

version of the integrated Wiener process is a doubly-integrated IMA(2, 1) moving-
average model.

The essential task is to find the values of the moving-average parameter θ . Thus
is achieved by reference to equation (6.61), which provides the variances and
covariances of the terms on the left-hand side of (6.67), from which the auto-
covariances of the MA process can be found. It can be shown that the variance and
the autocovariance at lag 1 of this composite process are given by:

γ0 =
2σ2

ε

3
= σ

2
η (1+ θ

2
) and γ1 =

σ
2
ε

6
= σ

2
η θ . (6.68)

The equations must be solved for θ and σ
2
η . There are two solutions for θ , and we

should take the one which fulfils the condition of invertibility: θ = 2 − √3. (See
Pollock, 1999.)

When white-noise errors of observation are superimposed upon values sampled
from an integrated Wiener process at regular intervals, the resulting sequence can
be described by a doubly-integrated second-order moving-average process in dis-
crete time, which is an IMA(2, 2) process. Such a model provides the basis for
the cubic smoothing spline of Reinsch (1976), which can be used to extract an
estimate of the trajectory of the underlying integrated Wiener process from the
noisy data. The statistical interpretation of the smoothing spline is due to Wahba
(1978).

The smoothing spline interpolates cubic polynomial segments between nodes
that are derived by smoothing a sequence of sampled data points. The segments are
joined in such a way as to ensure that the second derivative of the spline function is
continuous at the nodes. An account of the algorithm of the smoothing spline and
of its derivation from the statistical model has been provided by Pollock (1999). It
is shown that the means by which the nodes are obtained from the data amount
to a so-called discrete-time Wiener–Kolmogorov (WK) filter.

The Wiener–Kolmogorov principle can also be used to derive the so-called
Hodrick–Prescott (HP) filter, which is widely employed in macroeconomic
analysis – see Hodrick and Prescott (1980, 1997). The filter, which is presented
in section 6.6.2, is derived from the assumption that the process that gener-
ates the trend is a doubly-integrated discrete-time white noise. When white-noise
errors are added to the sampled values of the process, the observations are
once more described by an IMA(2, 2) model, and the nodes that are gener-
ated by the WK trend-extraction filter are analogous to those of the smoothing
spline.

mailto: rights@palgrave.com


D.S.G. Pollock 265

0

5

10

15

20

25

–5

0 50 100 150 200 250

Figure 6.9 The graph of 256 observations on a simulated series generated by a random walk

The trend that is generated by the smoothing spline is an aesthetically pleasing
curve, of which the smoothness belies the disjunct nature of the stochastic forcing
function. That nature is more clearly revealed in the case of a model that postu-
lates a trend that is generated by an ordinary Wiener process, as opposed to an
integrated process. The discrete-time observations, which are affected by white-
noise errors, are modeled by an IMA(1, 1) process, which also corresponds to the
local level model that has been advocated by Harvey (1985, 1989), amongst others.
The function that provides statistical estimates of the trend at the nodes and at the
points between them has jointed linear segments.

It should be recognized that, if the forcing function were assumed to be bounded
in frequency, then the interpolating function would be a smooth one, gen-
erated by a Fourier interpolation, that would have no discontinuities at the
nodes.

In section 6.9, we shall return to the question of how best to specify the
continuous-time forcing function. In the next section, we shall deal exclusively
with discrete-time models, and we shall examine various ways of decomposing
into its component parts a model of an aggregate process that combines the trend
and the cycles.

Example A Wiener process, which is everywhere continuous but nowhere dif-
ferentiable, can be represented graphically only via its sampled ordinates. If the
sampling is sufficiently rapid to give a separation between adjacent points that is
below the limits of visual acuity, then the sampled process, which constitutes a
discrete-time random walk, will give the same visual impression as the underlying
Wiener process. This is the intended effect of Figure 6.9.

Figure 6.10 depicts the trajectory of the IMA(2, 1) process that represents the
sampled version of an integrated Wiener process. This is a much smoother trajec-
tory than that of the random walk. The extra smoothness can be attributed to the
effect of the summation operator, of which the squared gain has been depicted in
Figure 6.8. The operator amplifies the sinusoidal elements in the lower part of the
frequency range and attenuates those in the upper part.
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Figure 6.10 The graph of 256 observations on a simulated series generated by an IMA(2, 1)
process that correspond to the sampled version of an integrated Wiener process

6.6 Decomposition of discrete-time ARIMA processes

An ARMA model can be represented by the equation:

p∑
i=0

φiyt−i =
q∑

i=0

θiεt−i with φ0 = θ0 = 1, (6.69)

where t has whatever range is appropriate to the analysis. To exploit the algebra of
polynomial operators, the equation can be embedded within the system:

φ(z)y(z) = θ(z)ε(z), (6.70)

where ε(z) = zt {εt + εt−1z−1 + · · · } is a z-transform of the infinite white-noise
forcing function or disturbance sequence {εt−i; i = 0, 1, . . .} and where y(z) is the
z-transform of the corresponding data sequence. The embedded equation will be

associated with zt .
The polynomials θ(z) and φ(z) must have all their roots outside the unit circle

to make their inverses, θ
−1

(z) and φ(z)−1, amenable to power series expansions
when |z| ≥ 1. Then, it is possible to represent the system of (6.70) by the equation

y(z) = φ
−1

(z)θ(z)ε(z).
An ARIMA process represents the accumulation of the output of an ARMA pro-

cess. On defining the (backwards) difference operator ∇(z) = 1 − z, the dth-order
model can be represented by:

∇d
(z)α(z)y(z) = θ(z)ε(z). (6.71)

The inverse of the difference operator is the summation operator ∇−1
(z) = {1+z+

z2+· · · }, and this might be used in representing the system of (6.71), alternatively,

by the equation y(z) = ∇−d
(z)α−1

(z)θ(z)ε(z).
The difficulty here is that, if it is formed from an infinite number of inde-

pendently and identically distributed random variables, the disturbance sequence
cannot have a finite sum. For this reason, it appears that the algebra of polynomial
operators cannot be applied to the analysis of non-stationary processes.
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The usual recourse in the face of this problem is scrupulously to avoid the use

of the cumulation operator ∇−1
(z) and to represent the integrated system only in

the form of (6.71). This is not a wholly adequate solution to the problem since, to
exploit the algebra of the operators, it is necessary to define the inverses of all of
the polynomial operators. An alternative solution is to constrain the disturbance
sequence to be absolutely summable, which appears to negate the assumption that
it is generated by a stationary stochastic process.

The proper recourse is to replace the process of indefinite summation by a definite
summation that depends upon supplying the system with initial conditions at
some adjacent points in time. To show what this entails, we may consider the
system of equations that is derived from (6.69) by setting t = 0, 1, . . . , T − 1. The
set of T equations can be arrayed in a matrix format as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 y−1 . . . y−p
y1 y0 . . . y1−p
...

...
. . .

...
yp yp−1 . . . y0
...

...
...

yT−1 yT−2 . . .yT−p−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
1
φ1
...
φp

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0 ε−1 . . . ε−q
ε1 ε0 . . . ε1−q
...

...
. . .

...
εq εq−1 . . . ε0
...

...
...

εT−1 εT−2 . . . εT−q−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
1
θ1
...
θq

⎤⎥⎥⎥⎥⎦ . (6.72)

Apart from the elements y0, y1, . . . , yT−1 and ε0, ε1, . . . , εT−1, which fall within
the indicated period, these equations comprise the values y−p, . . . , y−1 and
ε−q, . . . , ε−1, which are to be found in the top-right corners of the matrices, and
which constitute the initial conditions at the start-up time of t = 0.

Each of the elements within this display can be associated with the power of
z that is indicated by the value of its subscripted index. In that case, the system
can be represented by equation (6.70) with the constituent polynomials defined as
follows:

y(z) = y−pz−p + · · · + y0 + y1z + · · · + yT−1zT−1,

ε(z) = ε−qz−q + · · · + ε0 + ε1z + · · · + εT−1zT−1,

φ(z) = 1+ φ1z + · · · + φpzp and

θ(z) = 1+ θ1z + · · · + θqzq.

(6.73)

This scheme applies regardless of the values of the roots of the polynomial opera-

tors φ(z) and θ(z). Therefore, it can accommodate the case where φ(z) = ∇d
(z)α(z),

which is that of equation (6.71). One of the virtues of this notation is that it is not
burdened by an explicit representation of the initial conditions. At a later stage, in
section 6.7, we shall need to represent the initial conditions explicitly.

A trend has only a tenuous existence within the context of a univariate ARIMA
model of the sort represented by equation (6.71). In such a model, it amounts
to nothing more that the accumulation of the fluctuations that are created by
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applying a filter θ(z)/α(z) to a white-noise sequence ε(t) of independently and
identically distributed random variables.

If the trend and the transitory motions that accompany it are due to the same
motive force, which is the white-noise process, then it is difficult to draw a distinc-
tion between them. However, a distinction can be made by attributing the trend to

the unit roots within ∇d
(z) = (1− z)d and by attributing the transitory motions to

the stable roots of the autoregressive operator α(z). This is what the decomposition
of Beveridge and Nelson (1981) achieves.

Faced with the insistence that the trend and the fluctuations are due to sepa-
rate sources, an obvious recourse is to attribute separate and independent ARIMA
models to each of them. In that case, the aggregate data are also described by
a univariate ARIMA model. Provided that their models have distinct parameters,
WK filters may be used tentatively to extract the independent components from
the data.

The assumption that the components originate from transformations of white-
noise sequences implies that their spectra extend over the entire frequency range
[0,π ]. This means that they are bound to overlap substantially. In practice, the
spectral structures of the components are often confined to frequency bands that
are separated by wide spectral dead spaces. In that case, the separation of one
component from another can be achieved in a more decisive manner than the WK
filters will usually allow.

6.6.1 The Beveridge–Nelson decomposition

The Beveridge–Nelson decomposition relates to an ARIMA model with first-order
integration and with a stochastic drift. This can be represented in z-transform
notation by:

y(z) = μ(z)
∇(z)

+ θ(z)
α(z)∇(z)

ε(z). (6.74)

If the system has a start-up at t = 0, then μ(z), which represents the drift, is
the z-transform of a sequence that is constant over the integers 0, 1, . . . , t and zero-
valued for t < 0. The operator associated with ε(z) has the following partial-fraction
decomposition:

θ(z)
α(z)∇(z)

= ρ(z)
α(z)

+ δ

∇(z)
. (6.75)

Multiplying both sides by ∇(z) = 1 − z and setting z = 1 gives δ = θ(1)/α(1),
where the numerator and the denominator are just the sums of the polyno-
mial coefficients. Substituting the result into equation (6.74) creates an additive
decomposition of the form y(z) = τ(z)+ ζ(z), wherein:

τ(z) = 1
∇(z)

{μ(z)+ δε(z)} , (6.76)

ζ(z) = ρ(z)
α(z)

ε(z), (6.77)
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are respectively the trend component and the transitory component. This is the
so-called Beveridge–Nelson decomposition.

The trend component of the Beveridge–Nelson decomposition is a first-order
random walk with drift, whereas the transitory component is an ARMA process.
The distinguishing feature of the decomposition is that both components have the
same forcing function. It is easy to see that:

τ(z) = θ(1)
α(1)

α(z)
θ(z)

y(z), (6.78)

which is to say that the estimate of the trend is derived by applying an ordinary
linear filter to the data sequence. The effect of the filter is to eliminate the ARMA
factor from the data so as to deliver a pure random walk.

A common objection to the Beveridge–Nelson decomposition is that the result-
ing trend is liable to be too rough. This is a consequence of the fact that a random
walk that is an accumulation of independently and identically distributed random
variables comprises elements at all frequencies up to the limiting Nyquist frequency
of π radians per sample period. Also, the decomposition makes no provision for
the presence of seasonal fluctuations in the data. A more elaborate model can be
proposed with the aim of overcoming these objections.

Consider the multiplicative seasonal ARIMA model of Box and Jenkins (1976),
which can be represented by the equation:

∇d
(z)∇D

s (z)y(z) = μ(z)+ θ(z)�(zs
)

α(z)A(zs)
ε(z). (6.79)

Here, α(z) and θ(z) are the autoregressive and moving-average polynomials that
have appeared in equation (6.74), whereas A(z) and �(z) are seasonal operators.
Whereas ∇(z) continues to represent the ordinary difference operator, there is now
a seasonal difference operator ∇s(z) = 1− zs = (1− z)S(z), which forms the differ-
ences between the data from the same season (or month) of two successive years.
The factors of this operator are the ordinary difference operator and a seasonal

summation operator S(z) = 1 + z + z2 + · · · + zs−1. A decomposition can now be
found of the form y(z) = τ(z)+ σ(z)+ ζ(z), where:

τ(z) = 1

∇d+D
{μ(z)+ α(z)ε(z)}, (6.80)

σ(z) = β(z)

SD(z)
ε(z), (6.81)

ζ(z) = γ (z)
α(z)A(zs)

ε(z), (6.82)

are, respectively, the trend, the seasonal component and the transitory component.
If the degree d + D of the (ordinary) difference operator exceeds unity, then the
trend is liable to be smoother than one generated by a first-order random walk.
Also, the effect of α(z) might be further to attenuate the high-frequency elements
of the forcing function, thereby enhancing the smoothness of the trend.
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To enhance the smoothness of the trend and of the seasonal component yet
further, an irregular component could be incorporated in the decomposition. The
irregular elements could be extracted from the trend and the seasonal compo-
nent and assigned to this additional term, which could be regarded as statistically
independent of the primary forcing function ε(t). However, from this point of
view, it is natural to consider a model in which each of the components is driven
by a statistically independent forcing function. Such a model is the basis of the
Wiener–Kolmogorov methodology for signal extraction.

6.6.2 WK filtering

The modern theory of statistical signal extraction was formulated independently
by Wiener (1941) and Kolmogorov (1941), who arrived at the same results in dif-
ferent ways. Whereas Kolmogorov took a time-domain approach to the problem,
Wiener worked primarily in the frequency domain. However, the unification of the
two approaches was soon achieved, and a modern account of the theory, which
encompasses both, has been provided by Whittle (1983).

The purpose of a WK filter is to extract an estimate of a signal sequence ξ(t) from
an observable data sequence:

y(t) = ξ(t)+ η(t), (6.83)

which is afflicted by the noise η(t). According to the classical assumptions, which
we shall later amend, the signal and the noise are generated by zero-mean sta-
tionary stochastic processes that are mutually independent. Also, the assumption
is made that the data constitute a doubly-infinite sequence. It follows that the
autocovariance generating function of the data is the sum of the autocovariance
generating functions of its two components. Thus:

γ
yy

(z) = γ
ξξ

(z)+ γ
ηη

(z) and γ
ξξ

(z) = γ
yξ

(z). (6.84)

These functions are amenable to the so-called Cramér–Wold factorization, and
they may be written as:

γ
yy

(z) = φ(z−1
)φ(z), γ

ξξ
(z) = θ(z−1

)θ(z), γ
ηη

(z) = θη(z
−1

)θη(z). (6.85)

The estimate xt of the signal element ξt is a linear combination of the elements
of the data sequence:

xt =
∑

j

βjyt−j. (6.86)

The principle of minimum mean square error estimation indicates that the
estimation errors must be statistically uncorrelated with the elements of the
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information set. Thus, the following condition applies for all k:

0 = E
{
yt−k(ξt − xt )

}
= E(yt−kξt )−

∑
j

βjE(yt−kyt−j)

= γ
yξ
k −

∑
j

βjγ
yy
k−j.

(6.87)

The equation may be expressed, in terms of the z-transforms, as:

γ
yξ

(z) = β(z)γ yy
(z). (6.88)

It then follows that:

β(z) = γ
yξ

(z)
γ yy(z)

= γ
ξξ

(z)
γ ξξ (z)+ γ ηη(z)

= θ(z−1
)θ(z)

φ(z−1)φ(z)
.

(6.89)

Now, by setting z = exp{iω}, one can derive the frequency-response function
of the filter that is used in estimating the signal ξ(t). The effect of the filter is to
multiply each of the frequency elements of y(t) by the fraction of its variance that
is attributable to the signal. The same principle applies to the estimation of the
residual component. This is obtained using the complementary filter:

β
c
(z) = 1− β(z) = γ

ηη
(z)

γ ξξ (z)+ γ ηη(z)
. (6.90)

The estimated signal component may be obtained by filtering the data in two passes
according to the following equations:

φ(z)q(z) = θ(z)y(z), φ(z−1
)x(z−1

) = θ(z−1
)q(z−1

). (6.91)

The first equation relates to a process that runs forwards in time to generate the
elements of an intermediate sequence, represented by the coefficients of q(z). The
second equation represents a process that runs backwards to deliver the estimates
of the signal, represented by the coefficients of x(z).

The Wiener–Kolmogorov methodology can be applied to non-stationary data
with minor adaptations. A model of the processes underlying the data can be
adopted that has the form:

∇d
(z)y(z) = ∇d

(z){ξ(z)+ η(z)} = δ(z)+ κ(z)

= (1+ z)nζ(z)+ (1− z)mε(z),
(6.92)

where ζ(z) and ε(z) are the z-transforms of two independent white-noise sequences
ζ(t) and ε(t). The condition m ≥ d is necessary to ensure the stationarity of η(t),
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which is obtained from ε(t) by differencing m − d times. Then, the filter that is
applied to y(t) to estimate ξ(t), which is the d-fold integral of δ(t), takes the form:

β(z) = σ
2
ζ (1+ z−1

)
n
(1+ z)n

σ2
ζ (1+ z−1)n(1+ z)n + σ2

ε (1− z−1)m(1− z)m
, (6.93)

regardless of the degree d of differencing that would be necessary to reduce y(t) to
stationarity.

Two special cases are of interest. By setting d = m = 2 and n = 0 in (6.92),
a model is obtained of a second-order random walk ξ(t) affected by white-noise
errors of observation η(t) = ε(t). The resulting lowpass WK filter, in the form:

β(z) = 1

1+ λ(1− z−1)2(1− z)2
with λ = σ

2
η

σ2
δ

, (6.94)

is the HP filter. The complementary highpass filter, which generates the residue, is:

β
c
(z) = (1− z−1

)
2
(1− z)2

λ−1 + (1− z−1)2(1− z)2
. (6.95)

Here, λ, which is described as the smoothing parameter, is the single adjustable
parameter of the filter.

By setting m = n, a filter for estimating ξ(t) is obtained that takes the form:

β(z) = σ
2
ζ (1+ z−1

)
n
(1+ z)n

σ2
ζ (1+ z−1)n(1+ z)n + σ2

ε (1− z−1)n(1− z)n

= 1

1+ λ

(
i
1− z
1+ z

)2n
with λ = σ

2
ε

σ2
ζ

.
(6.96)

This is the formula for the Butterworth lowpass digital filter. The filter has two
adjustable parameters and, therefore, is a more flexible device than the HP filter.
First, there is the parameter λ. This can be expressed as:

λ = {1/ tan(ωd)}2n, (6.97)

where ωd is the nominal cut-off point of the filter, which is the mid-point in the
transition of the filter’s frequency response from its pass band to its stop band. The
second of the adjustable parameters is n, which denotes the order of the filter. As n
increases, the transition between the pass band and the stop band becomes more
abrupt.

These filters can be applied to the non-stationary data sequence y(t) in the man-
ner indicated by equation (6.91), provided that the appropriate initial conditions
are supplied with which to start the recursions. However, by concentrating on the
estimation of the residual sequence η(t), which corresponds to a stationary process,
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Figure 6.11 The gain of the HP filter H and of the Butterworth filter B with nominal cut-off
points at π/4 radians, together with the gain of an HP filter with a smoothing parameter of
1600

it is possible to avoid the need for non-zero initial conditions. The estimate of η(t)
can then be subtracted from y(t) to obtain the estimate of ξ(t).

The HP filter has many antecedents. Its invention cannot reasonably be
attributed to Hodrick and Prescott (1980, 1997), who cited Whittaker (1923) as
one of their sources. Leser (1961) also provided a complete derivation of the filter
at an earlier date. The Butterworth filter is a commonplace of electrical engineer-
ing. The digital version of the filter has been described in an econometric context
by Pollock (2000) and by Gómez (2001). It has been applied to climatological data
by Harvey and Mills (2003).

Example Figure 6.11 shows the gain functions of the three filters overlaid on the
same diagram. The lowpass HP filter with a smoothing parameter of λ = 1600 is
commonly recommended for estimating the trend in quarterly economic data. The
corresponding gain function is marked in the diagram by the number 1600.

An alternative to specifying the smoothing parameter directly is to specify the
frequency value ωd for which the gain is β(ωd) = 0.5. For the HP filter, the
correspondence between ωd and λ is as follows:

λ = 1

4{1− cos(ωd)}2
and ωd = cos−1

(1− 1
√

4λ). (6.98)

The frequency ωd corresponds to the mid-point in the transition between the
pass band and the stop band of the filter. This might be described as the nominal
cut-off frequency, but, in the case of the HP filter, this is a misnomer, on account of
the very gradual transition of the gain. The Butterworth filter is capable of a much
more rapid transition. The curve labeled B corresponds to the gain of a Butterworth
filter with n = 6 and ωd = π/4.

6.6.3 Structural ARIMA models

The HP filter and the Butterworth filter are appropriate to the task of extracting the
trend or the trend/cycle component from a data sequence without regard to the
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structure of the residual component. More elaborate filters are available that also
take account of a seasonal component.

Consider, therefore, a seasonal ARIMA model of the form:

y(z) = θ(z)
φ(z)

ε(z) = θ(z)
φS(z)φT (z)

ε(z), (6.99)

where φS(z) contains the seasonal autoregressive factors and φT (z) contains the
non-seasonal factors.

The denominator contains both an ordinary differencing operator ∇d
(z) and a

seasonal differencing operator ∇D
s (z) = ∇D

(z)SD
(z). The operator ∇s(z) = 1− zs =

(1−z)S(z) forms the differences between the data from the same season (or month)
of two successive years. Its factors are the ordinary difference operator and a sea-

sonal summation operator S(z) = 1 + z + z2 + · · · + zs−1. The factorization of the
seasonal operator implies that the overall degree of differencing within the ARIMA

model is d +D. The factor ∇d+D
(z) is assigned to φT (z), whereas SD

(z) belongs to
φS(z).

On the assumption that the degree of the moving-average polynomial θ(z) is at
least equal to that of the denominator polynomial φ(z), there is a partial-fraction
decomposition of the autocovariance generating function of the model into three
components, which correspond to the trend effect, the seasonal effect and an
irregular influence. Thus:

θ(z−1
)θ(z)

φS(z−1)φT (z−1)φT (z)φS(z)
= QT (z)

φT (z−1)φT (z)
+ QS(z)

φS(z−1)φS(z)
+ R(z). (6.100)

Here, the first two components on the right-hand side represent proper rational
fractions, whereas the final component is an ordinary polynomial. If the degree
of the moving-average polynomial is less than that of the denominator polyno-
mial, then the irregular component is missing from the decomposition in the first
instance.

To obtain the spectral density function of y(t), we set z = e−iω, where ω ∈ [0,π ].
(This function is more properly described as a pseudo-spectrum in view of the
singularities occasioned by the unit roots in the denominators of the first two
components.) The spectral decomposition corresponding to equation (6.100) can
be written as:

f (ω) = f (ω)T + f (ω)S + f (ω)R, (6.101)

where f (ω) = θ(eiω
)θ(e−iω

)/{φ(eiω
)φ(e−iω

)}.
Let νT = min{f (ω)T } and νS = min{f (ω)S}. These correspond to the elements

of white noise embedded in f (ω)T and f (ω)S. The principle of canonical decom-
position is that the white-noise elements should be reassigned to the residual
component. On defining:

γT (z)γT (z−1
) = QT (z)− νTφT (z)φT (z−1

),

γS(z)γS(z
−1

) = QS(z)− νSφS(z)φS(z
−1

),

and ρ(z)ρ(z−1
) = R(z)+ νT + νS,

(6.102)
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the canonical decomposition of the generating function can be represented by:

θ(z)θ(z−1
)

φ(z)φ(z−1)
= γT (z)γT (z−1

)

φT (z)φT (z−1)
+ γS(z)γS(z

−1
)

φS(z)φS(z−1)
+ ρ(z)ρ(z−1

). (6.103)

There are now two improper rational functions on the right-hand side, which have
equal degrees in their numerators and denominators.

According to Wiener–Kolmogorov theory, the optimal signal-extraction filter for
the trend component is:

βT (z) = γT (z)γT (z−1
)

φT (z)φT z−1)
× φS(z)φT (z)φT (z−1

)φS(z
−1

)

θ(z)θ(z−1)

= γT (z)γT (z−1
)φS(z)φS(z

−1
)

θ(z)θ(z−1)
= CT (z)

θ(z)θ(z−1)
.

(6.104)

This has the form of the ratio of the autocovariance generating function of the trend
component to the autocovariance generating function of the process y(t). This
formulation presupposes a doubly-infinite data sequence, so it must be translated
into a form that can be implemented with finite sequences.

The approach to the estimation of unobserved components that adopts the prin-
ciple of canonical decompositions has been advocated by Hillmer and Tiao (1982)
and Maravall and Pierce (1987). It has been implemented in the TRAMO–SEATS
program of Gómez and Maravall (1996) and Caporello and Maravall (2004), which
builds upon the work of Burman (1980).

6.6.4 The state-space form of the structural model

In the foregoing approach to modeling the components of a structural time series
model, an aggregate univariate process is first estimated and then decomposed
into its components. An alternative approach is to model the individual compo-
nents from the start as separate entities, which are described by independent linear
stochastic models.

Provision can be made for a cyclical component which is distinct from the trend
component, but, if this is omitted, then the disaggregated model commonly takes
the form of y(z) = τ(z)+ σ(z)+ η(z), where:

τ(z) = (1+ αz)

∇2(z)
ζ(z), (6.105)

σ(z) = 1
S(z)

ω(z). (6.106)

τ(t) is the trend, σ(t) is the seasonal component and η(t) is the irregular noise.
Here there are three independent white-noise processes driving the model, which
are ζ(t), ω(t) and η(t). The model has been described by Harvey (1989) as the basic
structural model. A reason for omitting the cyclical or business-cycle component
from this model is the difficulty in separating it from the trend component.
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The trend process is usually depicted as the product of two processes that
constitute the so-called local linear model, which has already been described in
section 6.5.1:

τ(t) = τ(t − 1)+ β(t)+ ν(t), (6.107)

β(t) = β(t − 1)+ ε(t). (6.108)

The first of these describes the level of the trend process and the second describes
its slope.

A more elaborate seasonal model is available that generates more regular cycles.
A moving-average operator M(z) can be included in the numerator of the expres-
sion on the right-hand side of (6.106) to give σ(z) = {M(z)/S(z)}ω(z). The

autoregressive operator may be factorized as S(z) =∏s−1
j=1 (1− e2π j/s

), where s is the
number of observations per annum. The complementary moving-average opera-

tor will have the form of M(z) = ∏s−1
j=1 (1 − ρe2π j/s

), where ρ < 1 is close to unity.
The zeros of the moving-average operator will serve largely to negate the effects of
the poles of the autoregressive operator, except at the seasonal frequencies, where
prominent spectral spikes will be found.

The basic structural model, without the elaboration of a seasonal moving-average
component, can be represented in a state-space form that comprises a transi-
tion equation, which describes a first-order vector autoregressive process, and an
accompanying measurement equation. For notational convenience, let s = 4,
which corresponds to the case of quarterly observations on annual data. Then
the transition equation, which gathers together equations (6.106), (6.107) and
(6.108), is:⎡⎢⎢⎢⎢⎢⎣

τ(t)
β(t)
σ (t)

σ (t − 1)
σ (t − 2)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
τ(t − 1)
β(t − 1)
σ (t − 1)
σ (t − 2)
σ (t − 3)

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣
ν(t)
ε(t)
ω(t)

0
0

⎤⎥⎥⎥⎥⎥⎦ . (6.109)

This incorporates the transition equation of the non-seasonal local linear model
that has been given by (6.64). The observation equation, which combines the
current values of the components, is:

y(t) =
[
1 0 1 0 0

]
⎡⎢⎢⎢⎢⎢⎣

τ(t)
β(t)
σ (t)

σ (t − 1)
σ (t − 2)

⎤⎥⎥⎥⎥⎥⎦+ η(t). (6.110)

The state-space model is amenable to the Kalman filter and the associated smooth-
ing algorithms, which can be used in estimating the parameters of the model and
in extracting estimates of the so-called unobserved components τ(t), σ(t) and ε(t).
These algorithms have been described by Pollock (2003a).
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Figure 6.12 The gain function of the trend-extraction filter obtained from the STAMP
program (solid line) together with that of the canonical trend-extraction filter (broken line)

Disaggregated structural time-series models have been treated at length in Harvey
(1989). The methodology has been implemented in the STAMP program, which is
described by Koopman et al. (2007). A similar approach has been pursued in a pro-
gram within the Captain MATLAB Toolbox, which has been described by Pedregal,
Taylor and Young (2004). A comparative analysis of the STAMP and TRAMO–SEATS
programs has been provided by Pollock (2002b).

Example Figure 6.12 shows the gain of the trend extraction filter that is associated
with a disaggregated structural model that has been applied to the monthly airline
passenger data of Box and Jenkins (1976).

The solid line represents the gain of the ordinary filter and the broken line
represents the gain of the filter that is obtained when the principle of canoni-
cal decomposition is applied to the components of the model. In that case, the
white noise that is contained in the components is removed and reassigned to the
residual component.

The indentations in the gain function at the seasonal frequencies π j/6; j =
1, . . . , 6 are due to the zeros of the filter that are to be found on the circumference of
the unit circle and which are effective in removing the seasonal fluctuations from
the trend.

Disregarding these indentations, the gain of the filters is reduced only gradually
as frequency increases. In particular, the ordinary unadjusted filter is liable to trans-
mit a higher proportion of the high-frequency noise of the data. However, given
that such high-frequency noise is largely absent from the airline passenger data,
it transpires that the effect upon the estimated trend of adopting the principle of
canonical decomposition is a minor one.

6.7 Finite-sample signal extraction

The classical theory of linear filtering relies heavily upon the simplifications that
are afforded by the assumption that the data constitute a doubly infinite sequence.
The assumption is an acceptable one in the case of finite impulse response (FIR)
filters that can be realized via low-order moving-average operators. When such a
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filter has only a short span, it matters little which assumptions are made about the
length of the data sequence. Only at the ends of the data sequence are there liable
to be problems.

The assumption of a double-infinite data sequence also sustains the theory of
time-invariant infinite impulse response (IIR) rational filters, such as the Butter-
worth and HP filters of section 6.6.2, which correspond to moving averages of
infinite order. These are not so easily applied to short sequences. Nevertheless, if
the data sequence is sufficiently lengthy to allow the transient effects of the arbi-
trary start-up values to disappear, then such filters can be implemented successfully
via bidirectional feedback procedures which comprise only a handful of recent data
values. (In effect the start-up values purport to summarize the history of the infinite
data sequence, insofar as it affects the IIR filter.)

In econometric applications, attention is often focused upon the most recent
observations at the upper end of a short data sequence. In such cases, a theory of
filtering is called for that fully recognizes the finite nature of the data sequence.
Also, in cases where the data are trended, it becomes essential to supply appropriate
non-zero initial conditions to the filter, and these should be the products of a
finite-sample theory.

The theory that we shall expound here depends upon replacing the symbol z
within the various polynomial operators by a matrix lag operator. However, it is
immediately apparent that this replacement alone is insufficient for the purpose
of creating adequate finite-sample filters.

To demonstrate the effects of the replacement, let LT = [e1, e2, . . . , eT−1, 0] be
the matrix version of the lag operator, which is formed from the identity matrix
IT = [e0, e1, e2, . . . , eT−1] of order T by deleting the leading column and by append-
ing a column of zeros to the end of the array. Then, the matrix of order T that
corresponds to the pth difference operator ∇p

(z) = (1− z)p is:

∇p
T = (I − LT )

p. (6.111)

We may partition this matrix so that ∇p
T = [Q∗, Q]′, where Q ′∗ has p rows. If y is a

vector of T elements, then:

∇p
T y =

[
Q ′∗
Q ′
]

y =
[

g∗
g

]
, (6.112)

and g∗ is liable to be discarded, whereas g will be regarded as the vector of the pth
differences of the data.

The inverse matrix is partitioned conformably to give ∇−p
T = [S∗, S]. It follows

that:

[
S∗ S

] [Q ′∗
Q ′
]
= S∗Q

′
∗ + SQ ′ = IT , (6.113)
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and that: [
Q ′∗
Q ′
] [

S∗ S
]
=
[

Q ′∗S∗ Q ′∗S
Q ′S∗ Q ′S

]
=
[

Ip 0
0 IT−p

]
. (6.114)

If g∗ is available, then y can be recovered from g via:

y = S∗g∗ + Sg. (6.115)

The lower-triangular Toeplitz matrix ∇−p
T = [S∗, S] is completely characterized by

its leading column. The elements of that column are the ordinates of a polynomial
of degree p − 1, of which the argument is the row index t = 0, 1, . . . , T − 1. More-
over, the leading p columns of the matrix ∇−p

T , which constitute the submatrix S∗,
provide a basis for all polynomials of degree p − 1 that are defined on the integer
points t = 0, 1, . . . , T − 1.

It follows that S∗g∗ = S∗Q
′
∗y contains the ordinates of a polynomial of degree p−1,

which is interpolated through the first p elements of y, indexed by t = 0, 1, . . . , p−1,
and which is extrapolated over the remaining integers t = p, p+ 1, . . . , T − 1.

6.7.1 Polynomial regression and HP filtering

A polynomial that is designed to fit the data should take account of all of the
observations in y. Imagine, therefore, that y = φ+η, where φ contains the ordinates
of a polynomial of degree p − 1 and η is a disturbance term with E(η) = 0 and
D(η) = �. Then, in forming an estimate f = S∗r∗ of φ, we should minimize the

sum of squares η
′
�
−1

η. Since the polynomial is fully determined by the elements
of a starting value vector r∗, this is a matter of minimizing:

(y − φ)
′
�
−1

(y − φ) = (y − S∗r∗)
′
�
−1

(y − S∗r∗), (6.116)

with respect to r∗. The resulting values are:

r∗ = (S′∗�
−1S∗)

−1S′∗�
−1y and φ = S∗(S

′
∗�
−1S∗)

−1S′∗�
−1y. (6.117)

An alternative representation of the estimated polynomial is available, which
avoids the inversion of �. This is provided by the identity:

P∗ = S∗(S
′
∗�
−1S∗)

−1S′∗�
−1

= I −�Q(Q ′�Q)
−1Q ′ = I − PQ ,

(6.118)

which gives two representations of the projection matrix P∗. The equality follows

from the fact that, if Rank[R, S∗] = T and if S′∗�
−1R = 0, then:

S∗(S
′
∗�
−1S∗)

−1S′∗�
−1 = I − R(R′�−1R)

−1R′�−1. (6.119)

Setting R = �Q gives the result. It follows that the ordinates of the polynomial
fitted to the data by generalized least-squares regression can be represented by:

φ = y −�Q(Q ′�Q)
−1Q ′y. (6.120)
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A more general method of curve fitting, which embeds polynomial regression
as a special case, is one that involves the minimization of a combination of two
sums of squares. Let x denote the vector of fitted values, which is a sequence of
the ordinates of points, equally spaced in time, through which a continuous curve
might be interpolated. The criterion for finding the vector is to minimize:

L = (y − x)′�−1
(y − x)+ x′Q�

−1Q ′x. (6.121)

The first term penalizes departures of the resulting curve from the data, whereas
the second term imposes a penalty for a lack of smoothness in the curve.

The second term comprises d = Q ′x, which is the vector of pth-order differences

of x. The matrix �
−1 serves to generalize the overall measure of the curvature of

the function that has the elements of x as its sampled ordinates, and it serves to
regulate the penalty, which may vary over the sample.

Differentiating L with respect to x and setting the result to zero, in accordance
with the first-order conditions for a minimum, gives:

�
−1

(y − x) = Q�
−1Q ′x

= Q�
−1d.

(6.122)

Multiplying the equation by Q ′� gives Q ′(y − x) = Q ′y − d = Q ′�Q�
−1d, whence

�
−1d = (�+Q ′�Q)

−1Q ′y. Putting this into the equation x = y −�Q�
−1d gives:

x = y −�Q(�+Q ′�Q)
−1Q ′y. (6.123)

By setting � = λ
−1I and � = I and letting Q ′ denote the second-order difference

operator, the HP filter is obtained in the form of:

x = y −Q(λ
−1I +Q ′Q)

−1Q ′y. (6.124)

This form is closely related to that of the infinite-sample filter β(z) = 1−β
c
(z) which

invokes equation (6.95). In the finite-sample version of the filter, the submatrix Q ′

of∇2
T = (I−LT )

2 replaces the difference operator (1−z)2, and Q replaces (1−z−1
)
2.

If � = 0 in (6.123), and if Q ′ is the matrix version of the second-difference
operator, then the generalized least squares interpolator of a linear function is
derived, which is subsumed under (6.120).

6.7.2 Finite-sample WK filters

To provide a statistical interpretation of the formula of (6.123), consider a data
sequence y = ξ + η, where ξ = φ + ζ is a trend component, which is the sum
of a vector φ, containing the ordinates of a polynomial of degree p at most, and
of a vector ζ from a stochastic process with p unit roots that is driven by a zero-
mean forcing function. The term η stands for a vector sampled from a mean-zero
stationary stochastic process which is independent of the process driving ξ such
that:

E(η) = 0, D(η) = � and C(η, ξ) = 0. (6.125)
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If Q ′ is the pth difference operator, then Q ′φ = μι, with ι = [1, 1, . . . , 1]′, will
contain a constant sequence of values, which will be zeros if the degree of φ

is less than p. Also, Q ′ζ will be a vector sampled from a mean-zero stationary
process. Therefore, δ = Q ′ξ is from a stationary process with a constant mean. Thus,
there is:

Q ′y = Q ′ξ +Q ′η
= δ + κ = g,

(6.126)

where:

E(δ) = μι, D(δ) = �,

E(κ) = 0, D(κ) = Q ′�Q.
(6.127)

Now consider the conditional expectation of η given g = Q ′y, which is also
its minimum mean square error estimator on the assumption that the various
stochastic processes are normally distributed. This is:

E(η|g) = E(η)+ C(η, g)D−1
(g){g − E(g)}

= �Q(�+Q ′�Q)
−1{Q ′y − μι}.

(6.128)

If the vector E(g) = μι is non-zero it will, nevertheless, be virtually nullified by the

matrix �Q(�+Q ′�Q)
−1, which is a matrix version of a highpass filter. Therefore, it

may be deleted from the expressions of (6.128). Next, since ξ = y− η, the estimate
of the trend is x = E(ξ |g) = y − E(η|g), which is exactly equation (6.123).

The HP filter may be derived by specializing the statistical assumptions of (6.125)
and (6.127). It is assumed that:

D(η) = � = σ
2
η I , D(δ) = � = σ

2
δ I and λ = σ

2
η

σ2
δ

. (6.129)

Putting these details into equation (6.123) gives equation (6.124).
It is straightforward to derive the dispersion matrices that are found within the

formulae for the finite-sample estimators from the corresponding autocovariance

generating functions. Let γ (z) = {γ0 + γ1(z + z−1
) + γ2(z

2 + z−2
) + · · · } denote

the autocovariance generating function of a stationary stochastic process. Then,
the corresponding dispersion matrix for a sample of T consecutive elements drawn
from the process is:

� = γ0IT +
T−1∑
τ=1

γτ (L
τ
T + Fτ

T ), (6.130)

where FT = L′T is in place of z−1. Since LT and FT are nilpotent of degree T , such
that Lq

T , Fq
T = 0 when q ≥ T , the index of summation has an upper limit of T − 1.
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6.7.3 The polynomial component

The formula (6.123) tends to conceal the presence of polynomial components
within the sequences that are generated by filtering the nonstationary data. An
alternative procedure, which we have already adopted in detrending the logarith-
mic consumption data of the UK in the example following (6.14), is to extract
a polynomial trend from the nonstationary data before applying a filter to the
residual sequence, which will have the characteristics of a sequence generated by
a stationary process, provided that the polynomial is of a sufficient degree.

Another procedure that can be followed requires the data to be reduced to sta-
tionarity by a process of differencing, before it is filtered. The filtered output can be
reinflated thereafter to obtain estimates of the components of the non-stationary
process. It transpires that, in the context of WK filtering, such a procedure pro-
duces estimates that are identical to those that are delivered by the finite-sample
filter of (6.123).

To demonstrate this result, we shall assume that, within y = ξ + η, the vector ξ

is generated by a stochastic process with p unit roots driven by a mean-zero white-
noise process. The vector η is assumed to be from a stationary process. Therefore,
the specifications of (6.125) and (6.127) remain, but we may choose to set E(δ) = 0,
if only to confirm that the polynomial component will arise just as surely in the
absence of stochastic drift.

Let the estimates of ξ , η, δ = Q ′ξ and κ = Q ′η be denoted by x, h, d and k
respectively. Then the Wiener–Kolmogorov minimum mean square error estimates
of the differenced components are:

E(δ|g) = d = D(δ){D(δ)+D(κ)}−1g = �(�+Q ′�Q)
−1Q ′y, (6.131)

E(κ|g) = k = D(κ){D(δ)+D(κ)}−1g = Q ′�Q(�+Q ′�Q)
−1Q ′y. (6.132)

The estimates of ξ and η may be obtained by integrating, or re-inflating, the
components of the differenced data to give

x = S∗d∗ + Sd and h = S∗k∗ + Sk, (6.133)

where S∗d∗ and S∗k∗ are vectors of the ordinates of polynomials of degree p. For
this representation, the polynomial parameters, in the form of the starting values
d∗ and h∗, are required.

The initial conditions in d∗ should be chosen so as to ensure that the estimated
trend is aligned as closely as possible with the data. The criterion is:

Minimize (y − S∗d∗ − Sd)′�−1
(y − S∗d∗ − Sd) with respect to d∗. (6.134)

The solution for the starting values is:

d∗ = (S′∗�
−1S∗)

−1S′∗�
−1

(y − Sd). (6.135)

The equivalent starting values of k∗ are obtained by minimizing the (generalized)
sum of squares of the fluctuations:

Minimize (S∗k∗ + Sk)′�−1
(S∗k∗ + Sk) with respect to k∗. (6.136)
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The solution is:

k∗ = −(S′∗�
−1S∗)

−1S′∗�
−1Sk. (6.137)

The starting values k∗ and d∗ can be eliminated from the expressions for x and h
in (6.133), which provide the estimates of the components. Thus, using expression
I − P∗ = PQ from (6.118), we get:

h = Sk + S∗k∗
= (I − P∗)Sk = PQSk.

(6.138)

Then, by using the expression for k from (6.132) together with the identity Q ′S =
IT , we get:

h = �Q(�+Q ′�Q)
−1Q ′y. (6.139)

This agrees with (6.128) in the case where μ = 0. The condition that x + h = y,
which is that the sum of the estimated components equals the data vector, indicates
that:

x = y − h

= y −�Q(�+Q ′�Q)
−1Q ′y,

(6.140)

which is equation (6.123) again.

Observe that the filter matrix Zη = �Q(�+ Q ′�Q)
−1 of (6.140), which delivers

h = Zηg, differs from the matrix Zκ = Q ′Zη of (6.132), which delivers k = Zκg,

only in respect of the matrix difference operator Q ′. The effect of omitting the
operator is to remove the need for reinflating the filtered components and thus
to remove the need for the starting values. These matters have been discussed at
greater length by Pollock (2006).

6.8 The Fourier methods of signal extraction

If the data are generated by a stationary stochastic process, then it may be
reasonable to regard them as the product of a circular process, of which the Fourier
representation is readily available. There are some advantages in exploiting the
Fourier representation by performing the essential filtering operations in the fre-
quency domain – for these are usually aimed at suppressing or attenuating some
of the cyclical elements of the data. It is also straightforward to provide a time-
domain interpretation of the frequency domain operations, and the possibility
exists of performing the equivalent operations in either domain.

The dispersion matrix of a circular stochastic process is obtained from the
autocovariance generating function γ (z) by replacing the argument z by the cir-
culant matrix KT = [e1, . . . , eT−1, e0], which is formed from the identity matrix
IT = [e0, e1, . . . , eT−1] by moving the leading column to the back of the array. In
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this way, the generating function γ (z) gives rise to the matrix:

�
◦ = γ (KT )

= γ0IT +
∞∑

τ=1

γτ (K
τ
T + K−τ

T )

= γ0IT +
T−1∑
τ=1

γ
◦
τ (Kτ

T + K−τ
T ).

(6.141)

It can be seen from this that the circular autocovariances would be obtained by
wrapping the sequence of ordinary autocovariances around a circle of circumfer-
ence T and adding the overlying values. Thus:

γ
◦
τ =

∞∑
j=0

γjT+τ , with τ = 0, . . . , T − 1. (6.142)

Given that lim(τ → ∞)γτ = 0, it follows that γ
◦
τ → γτ as T → ∞, which is to say

that the circular autocovariances converge to the ordinary autocovariances as the
circle expands.

The circulant autocovariance matrix is amenable to a spectral factorization of
the form:

�
◦ = γ (KT ) = Ūγ (D)U , (6.143)

wherein U and Ū are the unitary matrices defined by (6.20) and:

D = diag(exp{i2π j/T}; j = 0, . . . , T − 1), (6.144)

is a diagonal matrix whose elements are the T roots of unity, which are found
on the circumference of the unit circle in the complex plane. Then, γ (D) is the
diagonal matrix formed by replacing the argument z within γ (z) by D.

The jth element of the diagonal matrix γ (D) is:

γ (exp{iωj}) = γ0 + 2
∞∑

τ=1

γτ cos(ωjτ). (6.145)

This represents the cosine Fourier transform of the sequence of the ordinary auto-
covariances; it corresponds to an ordinate (scaled by 2π) sampled at the point
ωj = 2π j/T , which is a Fourier frequency, from the spectral density function of the
linear (that is, non-circular) stationary stochastic process.

The theory of circulant matrices has been described by Gray (2002) and by
Pollock (2002a). Both authors provide abundant additional references.

The method of WK filtering can also be implemented using the circulant
dispersion matrices that are given by:

�
◦
δ = Ūγδ(D)U , �

◦
κ = Ūγκ(D)U and

�
◦ = �

◦
δ +�

◦
κ = Ū{γδ(D)+ γκ(D)}U ,

(6.146)
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wherein the diagonal matrices γδ(D) and γκ(D) contain the ordinates of the
spectral density functions of the component processes. By replacing the disper-
sion matrices of (6.131) and (6.132) by their circulant counterparts, we derive the
following formulae:

d = Ūγδ(D){γδ(D)+ γκ(D)}−1Ug = Pδg, (6.147)

k = Ūγκ(D){γδ(D)+ γκ(D)}−1Ug = Pκg. (6.148)

We may note that Pδ and Pκ are circulant matrices.
The filtering formulae may be implemented in the following way. First, a Fourier

transform is applied to the (differenced) data vector g to give Ug, which resides in
the frequency domain. Then, the elements of the transformed vector are multiplied

by those of the diagonal weighting matrices Jδ = γδ(D){γδ(D)+ γκ(D)}−1 and Jκ =
γκ(D){γδ(D)+γκ(D)}−1. Finally, the products are carried back into the time domain
by the inverse Fourier transform, which is represented by the matrix Ū . (An efficient
implementation of a mixed-radix fast Fourier transform, which is designed to cope
with samples of arbitrary sizes, has been provided by Pollock, 1999. The usual
algorithms demand a sample size of T = 2n.)

An advantage of the Fourier method is that it is possible to effect a total sup-
pression of the elements within the stop band of the desired frequency response.
Also, the transition between the pass band and the stop band can be confined
to the interval between adjacent Fourier frequencies, which means that it can be
perfectly abrupt.

Neither of these features are available to the ordinary finite-sample WK filters.
Nevertheless, it is possible to achieve both of these effects by working in the time
domain. This fact is manifest in the formulae of (6.147) and (6.148) which entail
the equations d = Pδg and k = Pκg respectively.

In effect, a pair of wrapped filters can be applied to the data in the time domain via
processes of circular convolution. If we can imagine the leading rows of the matrices
Pδ and Pκ disposed around a circle of circumference T , then each of the succeeding
rows is derived from its predecessor via an anticlockwise rotation through an angle
of 2π/T radians.

Example It is commonly believed that, in the case of samples of finite length T ,
it is impossible to design a filter that will preserve completely all elements within
a specified range of frequencies and that will remove all elements outside it. A
filter that would achieve such an objective is described as an ideal filter. The ideal
lowpass filter with a cut-off frequency of ωd = 2πd/T has the following frequency
response over the interval [−π ,π ]:

φ(ω) =
⎧⎨⎩1, if ω ∈ [−ωd ,ωd],

0, otherwise.
(6.149)
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Figure 6.13 The central coefficients of the Fourier transform of the frequency response of
an ideal lowpass filter with a cut-off point at ω = π/2. The sequence of coefficients extends
indefinitely in both directions. The coefficients are the sampled ordinates of a sinc function

The coefficients of the filter are given by the discrete-time sinc function, which is
the (inverse) Fourier transform of the periodic frequency response function:

βk =
1

2π

∫ ωd

−ωd

eiωkdω =

⎧⎪⎨⎪⎩
ωd
π

, if k = 0;

sin(kωd)

πk
, if k �= 0.

(6.150)

Such a frequency response presupposes a doubly-infinite data sequence, insofar as it
represents the relative amplification and attenuation of trigonometrical functions
that are defined over the entire real line.

The coefficients of (6.150) form a doubly infinite sequence, of which a central
part is illustrated in Figure 6.13. In order to obtain a practical filter, it seems that
one must truncate the sequence, retaining only a limited number of its central
elements. This truncation gives rise to a filter of which the frequency response has
certain undesirable characteristics. (See Figure 6.19 for an example.)

In particular, there is a ripple effect whereby the gain of the filter fluctuates
within the pass band, where it should be constant with a unit value, and within
the stop band, where it should be zero-valued. Within the stop band, there is a
corresponding problem of leakage whereby the truncated filter transmits elements
that ought to be blocked.

However, it is clear that an ideal filter can be implemented in the frequency
domain by preserving the ordinates of the Fourier transform of the data that are
associated with frequencies less than ωd and by setting all other ordinates to zero.
This is a matter of applying the following set of weights to the Fourier ordinates:

λj =
⎧⎨⎩1, if j ∈ {−d, . . . , d},

0, otherwise.
(6.151)
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Figure 6.14 The frequency response of the 17-point wrapped filter defined over the interval
[−π ,π). The values at the Fourier frequencies are marked by circles

By applying an inverse discrete Fourier transform to these weights, the co-
efficients of a circular filter are obtained, of which the values are given by:

β
◦
(k) =

⎧⎪⎪⎨⎪⎪⎩
2d + 1

T
, if k = 0,

sin([d + 1/2]ω1k)
T sin(ω1k/2)

, for k = 1, … , [T/2],
(6.152)

where ω1 = 2π/T . These coefficients would be obtained by wrapping coefficients
of (6.150) around a circle of circumference T and adding the overlying values:

β
◦
k =

∞∑
j=−∞

βjT+k. (6.153)

Applying the wrapped filter to the finite data sequence via a circular convolution
is equivalent to applying the original filter to an infinite periodic extension of the
data sequence.

The function of (6.152) is just an instance of the Dirichlet kernel – see Pollock
(1999), for example. Figure 6.14 depicts the frequency response for this filter at
the Fourier frequencies, where λj = 0, 1 in the case where ωd = π/2. It also depicts
the continuous frequency response that would be the consequence of applying an
ordinary filter with these coefficients to a doubly-infinite data sequence.

6.8.1 Applying the Fourier method to trended data

In an ideal application of the Fourier method, it should be possible to wrap the
data sequence yt ; t = 0, . . . , T−1 seamlessly around the circle, such that there is no
disjunction at the point where the head of the sequence joins the tail. To achieve
such an effect, it is common to taper the data so as reduce both ends to zero. To
avoid corrupting the sample data, the taper can be applied to some extrapolations
of the ends of the sample. However, a data sequence that follows a linear trend
is not amenable to tapering, since there is liable to be a radical disjunction at the
point where the head joins the tail.
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The periodic extension of the linearly trended sequence, which would be gen-
erated by traveling around the circle indefinitely, has a saw-tooth profile. The
corresponding spectrum or periodogram has a one-over-f profile that descends, as
the frequency increases, in the manner of a rectangular hyperbola, from a high
point that is adjacent to the zero frequency to a low point at the limiting fre-
quency. Unless the data are adequately detrended, such a spectrum will serve to
conceal all but the most prominent of the harmonic characteristics of the data.

There are two simple ways in which the data may be detrended. The first, which
has been described already in section 6.7.3, is to apply the difference operator to the
data as many times as are necessary to reduce them to stationarity. The components
that are extracted by filtering the differenced data can be reinflated, in the manner
indicated by equations (6.133)–(6.137), to obtain the components of the original
data.

We denote the data by y and their differences by g = Q ′y. The filtered sequence
that underlies the trend is denoted by d and the vector of initial conditions by d∗.
Then, if we set � = I , the relevant equations for delivering the estimate x of the
trend component are:

x = S∗d∗ + Sd and d∗ = (S′∗S∗)
−1S′∗(y − Sd). (6.154)

The detrended sequence is h = y − x. Underlying the detrended sequence is the
filtered sequence k = g − d, from which the detrended data component may be
obtained directly via the equations:

h = S∗k∗ + Sk and k∗ = −(S′∗S∗)
−1S′∗Sk. (6.155)

Another way of reversing the effects of a differencing operation that has been
applied to the data to reduce them to stationarity is to re-inflate the Fourier ordi-
nates of the filtered sequence, using values from the frequency response function of
the anti-differencing summation operator. Once the ordinates had been reinflated
within the frequency domain, they can be transformed into the time domain to
produce the filtered sequence.

This method is applicable only to components that are bounded away from
the zero frequency, since the summation operator has infinite gain at zero. (See
Figure 6.8.) However, if one wishes to apply a lowpass filter to the data, then one
has the option of applying the complementary highpass filter and of subtracting
the filtered sequence from the original data to generate the lowpass component.

The second way of detrending the data is to extract a polynomial component
via an ordinary or a generalized least squares regression according to the formula
of (6.120). The formula will allow greater weight to be given to the points at both
ends of the sample, to ensure that the interpolated curve passes through their

midst. This can be achieved by allowing �
−1 to be a diagonal matrix with large

values at the ends. In this way, a disjunction in the wrapped version of the residual
sequence, or in its periodic extension, can be avoided.

Example Figure 6.15 shows the logarithms of the data on aggregate household
expenditure in the UK for the years 1956–2005, through which a smooth trajectory
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Figure 6.15 The logarithms of quarterly household expenditure in the UK, for the years
1956–2005, together with an interpolated trend

has been interpolated. This has been obtained by selecting the Fourier coefficients
of the twice-differenced data that correspond to frequencies in the interval [0,π/8].
This frequency band has been chosen in the light of the periodogram of Figure 6.6,
which shows that it contains an isolated spectral structure.

The sequence that has been synthesized from these coefficients has been
reinflated in the manner indicated by (6.154) to produce the trajectory. The result
of this procedure is a composite of the trend and the business cycle. The same tra-
jectory of aggregate expenditure would have been obtained by adding the business
cycle that is depicted in Figure 6.5 to the linear trend of Figure 6.4.

6.9 Band-limited processes

The majority of the methods that we have described for extracting the components
of an econometric data sequence presuppose that the data can be described by a
univariate ARIMA model. The spectral density function of an ARIMA process is
supported on the entire frequency interval [0,π ], where its ordinates are strictly
positive with the possible exception of a few zero-valued ordinates that constitute
a set of measure zero. Such zero values will be attributable to the presence of unit
roots within the moving-average operator.

It is commonly assumed that the component parts of an aggregate economet-
ric sequence can also be described by ARIMA models. It is on this basis that the
WK filters are derived. However, reference to the periodogram of Figure 6.6 and
to others like it suggests that the components often reside within strictly limited
frequency bands which are separated by dead spaces where the spectral ordinates
are virtually zeros.

In many circumstances, the disparity between the assumptions underlying the
WK filters and the nature of the data to which they are applied has no adverse
effects. A lowpass filter that achieves a gradual transition from a pass band to a stop
band within the region of a spectral dead space will be as effective in extracting a
low-frequency trend component as is a frequency-domain filter that achieves an
abrupt transition between two adjacent Fourier frequencies.

mailto: rights@palgrave.com


290 Investigating Economic Trends and Cycles

The ordinates at times t = 0, . . . , T − 1 of the business cycle that is represented
in Figure 6.5 have been obtained by a Fourier method; but they might have been
obtained by applying the Butterworth filter of order n = 6 and with a nominal
cut-off frequency of ωd = π/4 radians, of which the gain is depicted in Figure 6.11.
The principal advantage of the Fourier method, in this context, lies in the ease with
which a continuous function can be synthesised from the Fourier coefficients.

Difficulties do arise when an attempt is made to estimate the parameters of an
ARMA model from data such as those of Figure 6.5. A natural objective is to attempt
to characterize the business cycle via the parameters of a fitted ARMA model. Such
a model is liable to be applied to a seasonally adjusted version of the data, for which
the periodogram will lack the spectral spike at the seasonal frequency of π/2 and
at the harmonic frequency of π .

An AR(2) model with complex roots is the simplest of the models that might be
appropriate to the purpose. The modulus of its roots should reveal the damping
characteristics of the cycles, and their argument should indicate the angular veloc-
ity or, equivalently, the length, of the cycles. However, such a model will invariably
deliver estimates that imply real-valued roots, which fail adequately to represent
the dynamics of the business cycle. (See Pagan, 1997, for example.)

The problem of estimating the business cycle also affects the model-based
approaches to econometric signal extraction, which depend upon the prior estima-
tion of an aggregate ARIMA model or upon the estimation of ARIMA components.
A business cycle component is usually missing from such models, since the
estimation fails to deliver the appropriate complex roots. However, it is straight-
forward to include a business cycle component with a pre-specified frequency in a
disaggregated structural model. (See Harvey, 1985, for example.)

To obtain parametric estimates of the business cycle, it is necessary to remove
from the data all but the relevant low-frequency components. This is achieved
by selecting the relevant Fourier coefficients from which the business cycle can
be constituted via a Fourier synthesis in the manner of (6.14). Thereafter, it is
necessary to sample the continuous function at a rate that will ensure that the
Nyquist frequency π corresponds to the highest frequency that is present in the
component. A successful ARMA model which represents the complex dynamics of
the business cycle can be estimated from the resampled data sequence.

The Shannon–Whittaker sampling theorem indicates that the resampled data
contains sufficient information to reconstitute the continuous business cycle
function.

6.9.1 The Shannon–Whittaker sampling theorem

Let x(t) be a square integrable continuous signal of which the Fourier transform
ξ(ω) is band limited to the frequency interval [−ωd ,ωd]. Then the signal can be
recovered from its sampled ordinates provided that these are separated by a time
interval of no more than π/ωd , which is to say that the sinusoidal element of the
highest frequency within the signal must take at least two sampling intervals to
complete a cycle.
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To demonstrate this result, we must consider the Fourier representation of a real-
valued square-integrable function x(t) defined over the real line. The following are
the corresponding expressions for the function x(t) and its Fourier transform ξ(ω):

x(t) = 1
2π

∫ ∞
−∞

eiωt
ξ(ω)dω←→ ξ(ω) =

∫ ∞
−∞

e−iωt x(t)dt . (6.156)

By sampling x(t) at intervals of π/ωd , a sequence:

{xτ = x(τ [π/ωd]); τ = 0,±1,±2, . . .},

is generated. The elements of the sequence and their Fourier transform ξs(ω) are
given by:

xτ =
1

2ωd

∫ ωd

−ωd

exp{iωτ [π/ωd]}ξS(ω)dω

←→

ξS(ω) =
∞∑

τ=−∞
xτ exp{−iωτ [π/ωd]}.

(6.157)

Since ξ(ω) = ξS(ω) is a continuous function defined on the interval [−ωd ,ωd],
it may be regarded as a function that is periodic in frequency, with a period of
2ωd . Putting the right-hand side of (6.157) into the left-hand side of (6.156), and
taking the integral over [−ωd ,ωd] in consequence of the band-limited nature of the
function x(t), gives:

x(t) = 1
2π

∫ ωd

−ωd

{ ∞∑
τ=−∞

xτ e−iωτ [π/ωd ]
}

eiωt dω

= 1
2π

∞∑
τ=−∞

xτ

∫ ωd

−ωd

eiω(t−[τπ/ωd ])dω.

(6.158)

The integral on the right-hand side is evaluated as:∫ ωd

−ωd

eiω(t−[τπ/ωd ])dω = 2
sin(tωd − τπ)

t − τ [π/ωd]
. (6.159)

Putting this into the right-hand side of (6.158) gives:

x(t) =
∞∑

τ=−∞
xτ

sin(tωd − τπ)

π(t − τ [π/ωd])
=

∞∑
k=−∞

xτ φd(τ − k), (6.160)

where:

φd(t − τ) = sin(tωd − τπ)

π(t − τ [π/ωd])
. (6.161)
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When τ = 0, this becomes an ordinary sinc function that is a continuous function
of t , and which is the Fourier transform of the following frequency function:

φd(ω) =
⎧⎨⎩1, if |ω| ∈ [0,ωd];

0, otherwise.
(6.162)

When τ �= 0, it represents a sinc function that has been displaced in time by
τ intervals of length π/ωd . The set of such displaced sinc functions constitutes
an orthogonal basis for all continuous functions that are band-limited to the
frequency interval [−ωd ,ωd].

In the case of a stationary stochastic process, the sampled sequence is not square
summable and, therefore, in a strict sense, this proof of the interpolation via the
Nyquist–Shannon theory does not apply. However, the convergence of the inter-
polation formula of (6.160), when x(τ ) = {xτ ; τ = 0,±1,±2, . . .} is a stationary
sequence, can be confirmed by considering a sum with τ ∈ [−N, N] for some finite
integer N. The variance of the sum of discarded terms can be made arbitrarily small
by increasing the value of N.

The reconstruction of a continuous function from its sampled ordinates in the
manner suggested by the sampling theorem is not possible in practice, because
it requires forming a weighted sum of an infinite number of sinc functions, each
of which is supported on the entire real line. Nevertheless, a continuous band-
limited periodic function defined on a finite interval – which corresponds to the
circumference of a circle – can be reconstituted from a finite number of wrapped or
periodic sinc functions, which are Dirichlet kernels by another name. However, the
most practical means of reconstituting the function is by a simple Fourier synthesis
of the sort described by equation (6.14).

Example The analysis of the example following (6.14) suggests that the business
cycle of the detrended logarithmic consumption data fits within the frequency
band [0,π/8]. If this structure can be isolated and thereafter mapped into the fre-
quency interval [0,π ], then it will be capable of being described by an ordinary
linear stochastic model of the ARMA variety. For this purpose, the spectral elements
that fall outside the frequency range of the business cycle must first be removed.
This operation, which constitutes an anti-alias filtering, may be carried out either
in the time domain or in the frequency domain.

Given the availability of the spectral ordinates of the data, it is straightforward to
operate in the frequency domain by setting the rejected ordinates to zeros. Then, a
continuous low-frequency function can be synthesized from the selected ordinates.
An example is provided by the interpolated function in Figure 6.5. The synthesized
function can be resampled at a rate that corresponds to the maximum frequency
within the spectral structure of the business cycle.

There is some advantage in fitting a trend function that is more flexible than the
straight line of Figure 6.5. Therefore, a fourth degree polynomial has been fitted to
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Figure 6.16 The residuals from fitting a polynomial of degree 4 to the logarithmic expendi-
ture data. The interpolated line, which represents the business cycle, has been synthesized
from the Fourier ordinates in the frequency interval [0,π/8]
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Figure 6.17 The periodogram of the data sequence of Figure 6.16

the data by a least squares regression. The effect is to remove some of the power
from the Fourier ordinates adjacent to the zero frequency.

The residual sequence from this polynomial interpolation is show in Figure 6.16,
together with an interpolated function that has been synthesized from the Fourier
ordinates that lie in the interval [0,π/8]. This, function, which purports to repre-
sent the business cycle, is devoid of any seasonal fluctuations. Figure 6.17 displays
the periodogram of the residual sequence.

After the removal of all elements of frequencies in excess of π/8 the data may be
resampled at 1/8th of the original rate of observation. This simple fractional rate
is a convenient one, since it implies taking one in every eight of the anti-aliased
data points. In that case, there is no need to synthesize a continuous function for
the purpose of resampling the data.

The periodogram of the sub-sampled anti-aliased data is show in Figure 6.18
with the parametric spectrum of an estimated AR(3) model superimposed. The
periodogram represents a rescaled version of the part of the periodogram of Figure
6.17 that occupies the frequency range [0,π/8] and it appears to be well represented
by the parametric spectrum.

The continuous band-limited function of Figure 6.16 can be recovered from the
sub-sample by associating to each of its elements an appropriately scaled Dirichlet
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Figure 6.18 The periodogram of the sub-sampled anti-aliased data with the parametric
spectrum of an estimated AR(3) model superimposed

kernel and, thereafter, by adding these kernels. This demonstrates the one-to-one
correspondence that exists between the continuous function and the sub-sampled
sequence. This is precisely the one-to-one correspondence that exists between the
periodic function z(t), synthesized by equation (6.14), and its sampled ordinates
{zτ = z(τT/N); τ = 0, 1, . . . , N − 1}.

The AR(3) model that underlies the spectral density function of Figure 6.18 pro-
vides a statistical description both of the continuous band-limited function of
Figure 6.16 and of the ordinates sampled from it at the rate of one observation
in eight sample periods.

6.10 Separating the trend and the cycles

The remaining issue to be discussed in this chapter is the matter of separating
the trend of an economic data sequence from the cycles that surround it. This
is a difficult problem. The trend and the cycles are combined within the same
spectral structure and there is rarely any indication, within the periodogram, of
where the trend ends and the cycles begin. In the absence of objective criteria
for achieving a separation, the definition of the trend is liable to reflect the pur-
poses of the study as well as the circumstances of the economy over the period in
question.

A simple prescription that was offered by the pioneering econometrician Tint-
ner (1940, 1953) is that the trend should contain no cyclical motions. This can
be interpreted to mean that, if the trend is a differentiable function, then its first
derivative should have no more than one local maximum or one local minimum.
Such a function can be described as a pure trend. A polynomial function of low
degree fitted to the data by least squares regression is liable to fulfill the require-
ment and it can provide an appropriate benchmark for measuring the cyclical
variations.

An example of such a trend is the linear function of Figure 6.5, which has been
applied to logarithmic data. When a quadratic function was fitted to the data
by least squares regression, the result was virtually a straight line. The data are
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from a period that was characterized by uninterrupted economic growth at annual
rates that varied little. Therefore, the method of polynomial detrending works
well.

In other eras, where there have been marked disruptions, the polynomial method
is less appropriate. In order to serve as a benchmark for the ensuing periods of
stability, the trend must be made to absorb the disruptions, which implies that it
must have a segmented structure. In section 6.10.2 we will describe a method for
achieving this.

A prescription that is to be found in the pioneering work of Burns and Mitchell
(1946) is that the business cycle should be defined in terms of a limited band of
frequencies. A modern interpretation of this is that the band should comprise the
sinusoidal elements of the data that have cyclical durations of no more that eight
years and of no less than a year and a half. Such cycles can be extracted from the
data via a bandpass filter, as we will discuss below.

The definition seems arbitrary, but it might be justified by proposing that the
reactions of economic agents to cycles within the frequency band differ from their
reactions to cycles at other frequencies. Thus, it might be argued that their adapta-
tions to cycles of more than eight years’ duration occur mainly at a subconscious
level, whereas cycles of a lesser duration incite conscious reactions.

The growth of an economy may be likened to a process of biological growth,
which is affected by events that occur in the course of its evolution. Therefore,
a stochastic trend based on the accumulation of random increments has been
seen as an appropriate model for an economic trend. This idea has inspired
the Beveridge–Nelson decomposition of an ARIMA process, which depicts the
trend as an accumulation of disturbances that also give rise to accompanying
fluctuations.

In practice, the Beveridge–Nelson decomposition depends upon a linear filter
that is applied to the data sequence like any other filter. However, the filtered
sequence that represents the trend is liable to include a substantial proportion of
the high-frequency elements of the data and for that reason it may be regarded as
unacceptable.

6.10.1 Bandpass filters

In an attempt to separate a business cycle component from the trend, economists
have been resorting increasingly to the use of bandpass filters to implement the
definition of Burns and Mitchell (1946). This appears to be in response to the fact
that the structural time series methods, which use ARIMA models to represent the
unobserved components, fail to isolate the business cycle.

An ideal bandpass filter that transmits all elements within the frequency range
[α,β], and blocks all others, has the following frequency response:

ψ(ω) =
{

1, if |ω| ∈ (α,β);
0, otherwise.

(6.163)
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The coefficients of the corresponding time-domain filter are obtained by applying
an inverse Fourier transform to this response to give:

ψ(k) =
∫ β

α
eikωdω = 1

πk
{sin(βk)− sin(αk)}

= 2
πk

cos{(α + β)k/2} sin{(β − α)k/2}

= 2
πk

cos(γ k) sin(δk).

(6.164)

Here, γ = (α+β)/2 is the centre of the pass band and δ = (β−α)/2 is half its width.
The final equality, which follows from the identity sin(A + B) − sin(A − B) =

2 cos A sin B, suggests two interpretations. On the left-hand side is the difference
between the coefficients of two lowpass filters with cut-off frequencies of β and α

respectively. On the right-hand side is the result of shifting a lowpass filter with a
cut-off frequency of δ so that its center is moved from ω = 0 to ω = γ .

The process of frequency shifting is best understood by taking account of both
positive and negative frequencies when considering the lowpass filter. Then the
pass band covers the interval (−δ, δ). To convert to the bandpass filter, two copies
of the pass band are made that are shifted so that their new centers lie at −γ

and γ . In the limiting case, the copies are shifted to the centers −π and π . There
they coincide, and we have ψ(k) = 2 cos(πk) sin(δk)/πk, which constitutes an ideal
highpass filter. A bandpass filter can also be expressed as the difference of two such
highpass filters.

The coefficients of (6.164) constitute an infinite sequence, which needs to be
truncated to produce a practical filter. Alternatively, a wrapped or circular filter
may be obtained by sampling the frequency response at a set of equally spaced
points in the frequency range [−π ,π), equal in number to the elements of the data
sequence. The wrapped filter is obtained by applying the discrete Fourier transform
to the sampled ordinates and it can be applied to the data sequence by circular
convolution.

The z-transform of a set of filter coefficients that are symmetric about the central

point and that sum to zero incorporates the factor (1− z)(1− z−1
) = −z−1

(1− z)2.
This operator is effective in nullifying a linear trend and in reducing a quadratic
trend to a constant. Therefore, such a filter can be applied by linear convolution to
a trended data sequence in the expectation that it will produce a stationary filtered
sequence.

This is one of the attractions of the truncated bandpass filter that has been pro-
posed to economists by Baxter and King (1999). To ensure that the coefficients
of the truncated filter do sum to zero, the filter can be expressed as the difference
between two truncated versions of the ideal lowpass filter, of which the coefficients
have been scaled so as to sum to unity.

The truncated filter has several disadvantages. In the first place, the truncation
leads to the phenomenon of leakage that has already been described in section 6.8.
This is illustrated by Figure 6.19. Also, a finite-order moving-average filter with
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Figure 6.19 The frequency response of the truncated bandpass filter of 25 coefficients super-
imposed upon the ideal frequency response. The lower cut-off point is at π/15 radians
(11.25◦), corresponding to a period of 6 quarters, and the upper cut-off point is at π/3 radians
(60◦), corresponding to a period of 32 quarters

constant coefficients is incapable of reaching the ends of the sample. This problem
occasions a trade-off between the accuracy of the approximation to the ideal filter,
which increases with the number of coefficients, and the end-of-sample problem,
which is exacerbated by increasing the span of the filter.

There are numerous ways of overcoming the end-of sample problem, including
the obvious recourse of extrapolating the sample by forecasting and backcasting
it with the help of an ARIMA model that purports to describe the data. Another
recourse is to extend the sample by attaching its symmetric reflection to either end.
However, if the data are strongly trended this will tend to increase the values at
the beginning of the sample and to decrease the values at the end, relative to the
values obtained via a linear extrapolation of the sample.

A circular filter should not be applied directly to a trended data sequence. When
such a sequence is wrapped around a circle there is liable to be a radical disjunction
where the beginning and the end of the sample are joined. The effects of this
disjunction are liable to be carried into the filtered sequence in a manner that
does not affect the ordinary linear filter. One way of overcoming this difficulty
is to apply the circular filter to data that have been reduced to stationarity by
differencing. Thereafter, the filtered differenced sequence can be cumulated to
obtain an estimate of the business cycle component.

Example The filter of Baxter and King (1999) is a time-invariant moving average
comprising 2q + 1 of the central coefficients of the ideal infinite-order bandpass
filter, which are symmetrically disposed around the central value. These coefficients
should rescaled so that they sum to zero.

The elements of the filtered sequence are given by:

xt = φqyt−q + φq−1yt−q+1 + · · · + φ1yt−1 + φ0yt

+ φ1yt+1 + · · · + φq−1yt+q−1 + φqyt+q.
(6.165)
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Given a sample y0, y1, . . . , yT−1 of T data points, only T − 2q processed values
xq, xq+1, . . . , xT−q−1 are available, since the filter cannot reach the ends of the
sample, unless some extrapolations are added to it.

To overcome this difficulty, Christiano and Fitzgerald (2003) have used a filter
that comprises selections of the coefficients of the ideal filter which vary as one
moves through the sample. At all times, the central coefficient of the ideal filter
is aligned with the current data value. The remainder of the selection consists of
the coefficients on either side that fall within the data window. Thus, the filtered
values are weighted combinations of all of the sample elements.

In the case of data that might have been generated by a random-walk process,
it is proposed to supplement the weighted sum by two additional terms based on
the first and the final sample elements, which are the appropriate predictors of the
elements of the process that fall outside the data window. In that case, the elements
of the filtered sequence will be given by:

xt = Ay0 + φt y0 + · · · + φ1yt−1 + φ0yt

+ φ1yt+1 + · · · + φT−1−t yT−1 + ByT−1,
(6.166)

where A and B are sums of the coefficients of the ideal filter that lie beyond either
end of the data window. Since the filter coefficients must sum to zero, it follows
that:

A = −
(

1
2
φ0 + φ1 + · · · + φt

)
and B = −

(
1
2
φ0 + φ1 + · · · + φT−t−1

)
. (6.167)

For data that appear to have been generated by a first-order random walk with a
constant drift, it is appropriate to extract a linear trend before filtering the residual
sequence. In fact, this has proved to be the usual practice in most circumstances.

It has been proposed to subtract from the data a linear function f (t) = α + βt
interpolated through the first and the final data points, such that α = y0 and
β = (yT−1 − y0)/T . In that case, there should be A = B = 0. This procedure
is appropriate to seasonally adjusted data. For data that manifest strong seasonal
fluctuations, such as the UK expenditure data, a line can be fitted by least squares
through the data points of the first and the final years. Figure 6.20 shows the effect
of the application of the filter to the UK data adjusted in this manner.

Figure 6.20 can be compared with Figure 6.5 and Figure 6.16, both of which also
purport to show the business cycles that affected the data in question. It is clear that
the bandpass filter fails to transmit the appropriate cyclical fluctuations. An expla-
nation for the failure can be found in Figure 6.6, which shows the periodogram of
the linearly detrended data.

The highlighted band in Figure 6.6 covers the frequency interval [π/16,π/3]
which, according to Baxter and King (1999), is the frequency range that defines
the business cycle. However, this figure indicates that only a small part of the
low-frequency component falls within the interval. Therefore, it appears that the
definition is at fault. In fact, the leakage that is associated with the filter does
allow some of the low-frequency power of the elements that reside in the interval
[0,π/16] to pass into the filtered sequence.
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Figure 6.20 A filtered sequence obtained by applying the bandpass filter of Christiano and
Fitzgerald to the logarithms of UK household expenditure

6.10.2 Flexible trends and structural breaks

Over a period of a century or so, one can expect to see occasional disturbances
that disrupt the steady progress of the economy. To highlight the effects of such
breaks, a firm trend function can be fitted to the data to characterize the progress
of the economy broadly over the entire period. Such a trend will not be deflected
by temporary disruptions, which will be seen in the residual deviations of the data
from the trend.

Alternatively, it may be appropriate to absorb the breaks within the trend func-
tion. In that case, the trend will not be thrown off course for long by a break and,
therefore, it should serve as a benchmark against which to measure cyclical varia-
tions when the economy resumes its normal progress. At best, the residual sequence
will serve to indicate how the economy might have behaved in the absence of the
break.

Numerous devices have been proposed by economists for accommodating struc-
tural breaks, which give rise to segmented trend functions. Mills (2003) has
illustrated the effects of some of them by applying them to a common data
sequence, which is annual UK output from 1855 to 1999. He has also provided
references to an extensive literature in economics concerning structural breaks.

A common theme that unites many of the methods is their use of polynomial
segments to represent the trends within sub-intervals of the data period. There
is a problem of how the transition between two adjacent sub-periods should be
modelled. This issue has been discussed by Granger and Teräsvirta (1993) and by
Teräsvirta (1998). Others have focused on devising tests to determine the points
in time when one statistical regime that describes the data should be replaced by
another. Work in this area has been summarized by Perron (2006).

When a smoothing spline is used to interpolate a continuous segmented polyno-
mial function through the data, the smoothness of the function is maintained by
imposing the condition that, at the points where they join, the adjacent segments
should have equal derivatives, up to some specified order.

The most common smoothing spline is that of Reinsch (1976), which is subject
to the condition that the first and second derivatives of adjacent cubic segments
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should be equal at the joints, which are described as the knots or the nodes. Breaks
can be accommodated within such a spline by placing successive nodes in close
proximity. Considerable effort has been devoted to developing algorithms that will
ensure the optimal placement of the nodes. (See, for example, Luo and Wahba,
1997.)

When the abscissae of the nodes correspond to the sample dates, it is possible to
increase the flexibility of the spline function by allowing local variations to occur
in the smoothing parameter. The same recourse can be used to lend additional
flexibility to the HP filter, which is a device that is appropriate for extracting from
noisy data a trend that is generated by a discrete-time process or by a process limited
in frequency to the Nyquist value.

The finite-sample version of the HP filter is provided by equation (6.124). Its
generalization is provided by:

x = y −Q(%
−1 +Q ′Q)

−1Q ′y, (6.168)

where % = diag{λ0, λ1, . . . , λT−3} is a diagonal matrix of smoothing parameters and
Q ′ is the matrix of the twofold difference operator. In modifying the underlying
statistical model of the HP filter, which is specified by (6.129), it is the variance

σ
2
δ of the process driving the trend that is allowed to vary, whereas the vari-

ance σ
2
η of the process that is responsible for the errors of observation remains

constant.
Setting %

−1 = λ
−1I in (6.168), which gives the smoothing parameter a globally

constant value, produces the HP filter. Setting λt to a high value where the trend
should be stiff and allowing it to take low values where the trend should be flexible
will produce a device that can easily absorb structural breaks.

On the assumption that the underlying trend process is limited in frequency by
the Nyquist value, it is appropriate to use the method of Fourier interpolation to
create a continuous trend based on the elements of the vector x.

Example An example of a function that fails to accommodate structural breaks
is provided by the polynomial of degree 4 that has been interpolated through the
logarithms of 129 annual observations of the real GDP of the UK. This is shown in
Figure 6.21. Figure 6.22 shows the residual sequence. In both figures, three major
events can be recognized. The first is the end of World War I in 1918, which is
followed by a sharp decline in GDP. The second is the recession of 1929 and the
third is the end of World War II, which is also succeeded by a reduction in income.
The recession has less of an impact than one might expect.

Figure 6.23 shows a trend function that has been fitted using a variable smooth-
ing parameter. In this case, only the end-of-war breaks have been accommodated,
leaving the disruptions of the 1929 recession to be expressed in the residual
sequence. The effect has been achieved by attributing a greatly reduced value to
the smoothing parameter in the vicinity of the post-war breaks. In the areas that
are marked by shaded bands, the smoothing parameter has been given a value
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Figure 6.21 The annual series of the logarithms of real GDP in the UK, at constant prices,
for the years 1873–2001. A polynomial of degree 4 has been fitted to the data by least squares
regression
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Figure 6.22 The residual obtained from fitting a polynomial of degree 4 to the logarithmic
GDP data of Figure 6.21
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Figure 6.23 The logarithms of annual UK real GDP from 1873 to 2001 with an interpolated
trend. The trend is estimated via a filter with a variable smoothing parameter
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of 5. Elsewhere, it has been given a high value of 100,000, which results in trend
segments that are virtually linear.

6.11 Summary and conclusions

When confronted by the wide variety of methods that are available for extracting
the components of an econometric data sequence, a practitioner is liable to ask for
a recommendation of the best method. In the case of business cycle analysis, there
can be no unequivocal answer. The choice of an appropriate method will depend
both on the nature of the data and on the purpose of the analysis. It may also
depend on the aesthetic preferences of the analyst.

Nevertheless, the choice of a method ought to be made with a view to its effects
in the frequency domain. Econometricians working with temporal sequences are,
nowadays, paying increasing attention to the frequency aspects of their analyses,
and this is where the major emphasis of the present chapter has been placed.

One of the difficulties in analyzing business cycles is that there is no unequiv-
ocal definition of what constitutes a trend. Often, a clearly defined structure that
combines the trend and the cycles can be discerned within the data. An example
of the successful extraction of a combination of trend and cycles that has been
identified by spectral methods is provided by Figure 6.15. However, there is hardly
ever a case where the data indicates a point within the frequency spectrum of this
structure where the trend ends and the cycles begin.

The only unequivocal definition of the trend that might be offered is that it must
have a monotonic trajectory that is devoid of cycles, which means, in practice, that
it should be modeled by a polynomial of low degree. This was the practice of the
generation of pioneering econometricians to which Tintner belonged.

Latterly, this approach has fallen out of favour amongst econometricians. Now-
adays, they are liable to describe polynomial trends as deterministic trends, which
are contrasted with stochastic trends. The latter are regarded as capable of more
realistic representations of economic behavior. In particular, a stochastic trend
can represent a cumulation of random events that effect the development of an
economy in the course of time, in the way that the circumstances of their early
lives can affect the physical statures of human beings.

Polynomial trends are an essential element within linear models of stochastic
accumulation, whether they be represented in continuous time or in discrete time.
Therefore, although the conceptual distinction may be a clear one, the practical
distinction between a stochastic trend generated by an ARIMA process and a poly-
nomial trend buried in noise is by no means as clear cut as, at first, it might seem
to be.

The distinction becomes even more tenuous in the case of an ARIMA model
that incorporates stochastic drift. Therefore, notwithstanding the recent efforts of
several econometricians, it does not seem to us to be fruitful to employ statistical
tests in an attempt to determine which of these alternative statistical structures
actually underlies the data.
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An opinion to which we adhere in this chapter is that the trend is best regarded as
an analytic device, as opposed to an object that subsists within the data that might
be uncovered by an appropriate technique. If the trend is to be regarded as an
artificial benchmark, then its definition depends largely on what one is intending
to measure.

In some cases, when the economy has had an uninterrupted progress, it is
straightforward to define an appropriate benchmark. A case in point has been the
UK economy over the years 1956–2005, of which the aggregate consumption is
portrayed in Figures 6.4–6.6. For that period, a log-linear trend function provides
a datum about which to measure the cyclical variations in consumption.

In other eras and over longer periods, where there have been substantial disrup-
tions to the progress of the economy, the matter becomes more complicated. To
highlight the major disruptions, it is appropriate to fit a polynomial of a limited
degree over the entire span of the data. An example is provided by Figure 6.21.
There, a fourth-degree polynomial, which adheres quite well to the data in the
main, also reveals the uncommon circumstances in the periods surrounding the
ends of the two world wars.

If the purpose is also to illustrate the normal workings of the economy, then
it may be appropriate to fit similar polynomial trends of low degrees to the
sub-periods that did not experience any disruptions. The overall result will be a
segmented curve; and the issue arises of how to join the segments.

The answer that is favored in this chapter is illustrated in Figure 6.23, which
shows the effect of a filter with a variable smoothing parameter. The resulting
curve comprises segments that are virtually straight lines, interspersed by short
segments with rapidly changing slopes.

The disjunctions that occur within the data sequence as a consequence of disrup-
tions and breaks give rise to spectra that extend over the entire frequency range.
Unless the breaks are absorbed within the trend, the residual sequence will fail to
manifest the band-limited structure that we might expect to see in normal periods.
Therefore, one of the criteria of a successful elimination of a break is the restora-
tion of a band-limited spectral structure to the trend cycle component within the
residual sequence.

The recognition that, at least for limited periods, the trend cycle complex is liable
to be confined to a limited frequency band gives rise to further opportunities, but
it also poses additional problems. The opportunities arise from the possibility of
using a Fourier synthesis to create a continuous analytic function to represent the
business cycle in isolation or the trend and cycle in combination.

In Figure 6.5, the business cycle has been synthesized from a limited number
of the low-frequency Fourier ordinates of the linearly detrended logarithmic data.
The combination of the trend and the cycle can be formed by adding the business
cycle function to the linear trend of Figure 6.4. The result is shown in Figure 6.15.

The analytic nature of these functions means that they are amenable to dif-
ferentiation, and their turning points are identified as the points where the first
derivatives are zero-valued. This method of finding the turning points may be con-
trasted with the very different procedure of Bry and Boschan (1971), which had
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been widely adopted by governmental statistical offices, but which often reaches
doubtful conclusions.

A problem posed by band-limited processes is that they cannot easily be repre-
sented by the ARMA models that are ubiquitous in time series analysis. Such models
are based on the assumption that the spectra of the processes that they represent
are supported on a frequency interval that extends as far as the Nyquist frequency,
which represents the limit of what is observable in sampled data.

It is often supposed that a discrete-time ARMA process is representing an under-
lying continuous-time process that has an unbounded frequency range. If that
were the case, then the spectral density function defined over the Nyquist interval
would be the product of a process of aliasing, whereby the elements of the con-
tinuous process that fall outside the Nyquist interval are attributed to frequencies
that are inside.

In section 6.5, we have described a correspondence that would exist between
processes that are unbounded in frequency and the discrete time models that
would serve to represent them. Nevertheless, we have expressed doubts about the
relevance to business cycle analysis of such unbounded processes.

In section 6.9, we have argued that processes that are limited in frequency to
subintervals of the Nyquist interval, in the way that the business cycle is limited,
can be resampled at a reduced rate so as to map their limited supports onto the
full Nyquist interval. Thereafter, the ordinary methods of ARMA modeling can
be applied to the resampled data. In that case, the Nyquist–Shannon sampling
theorem indicates that there is a one-to-one correspondence between the discretely
sampled process and an equivalent process in continuous time.

By these means one should be able to find an ARMA model that will capture the
dynamics of the business cycle and reveal them in terms of the estimated par-
ameters. In particular, the modulus and the arguments of the roots of the
autoregressive operator should reveal the damping characteristics of the cycles and
their average periods.

A modern interpretation by Baxter and King (1999) of a prescription of Burns
and Mitchell (1946) is that the business cycle should be defined as a band-limited
process containing cyclical elements of durations of no less than one and a half
years and not exceeding eight years. This appears, at first sight, to be an unequivocal
definition. However, there are difficulties in implementing it accurately. Thus, it is
commonly believed that the filter that would be required to realize this definition
must comprise an infinite number of coefficients, which is not practical.

In place of the infinite-order filter, a truncated approximation is commonly
employed that comprises a limited number of the central coefficients. Such a fil-
ter is beset by the phenomenon of leakage, whereby the powerful low-frequency
elements that would be blocked by the ideal filter find their way into the esti-
mated business cycle. (In fact, a superior approximation is available in the form
of a rational filter. See Pollock, 2003b, for example, where a rational function is
employed to create a sharp lowpass filter.)

However, it has been show here that the bandpass definition can be fulfilled by
selecting the appropriate ordinates of the Fourier transform of the detrended data.
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The equivalent filter in the time domain is a wrapped or circular filter. Whereas
such filters avoid the leakage that besets approximate bandpass filters, they deliver
inappropriate estimates of the business cycle when they adhere strictly to the
Baxter–King bandpass definition. Moreover, it seems that any success that the
approximate bandpass filter may have in representing the business cycle must be
due, in some measure, to the leakage.

The conclusion that we have reached ultimately is that, whereas it is some-
times possible to identify a trend-cycle complex within the data, there can be no
definitive definition of what constitutes the trend and what, in consequence, must
constitute the cyclical component. Therefore, it seems that one must be liberal in
allowing any definitions that seem to fulfil their intended purposes. Even when the
purpose is mistaken or unfulfilled, we should not automatically reject the resulting
definition or the estimates to which it gives rise.

A Computer Program

The computer program that has been used in connection with this chapter is
available at the following web address: http://www.le.ac.uk/users/dsgp1/.
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7
Economic Cycles: Asymmetries,
Persistence, and Synchronization
Joe Cardinale and Larry W. Taylor

Abstract
Marking upswings and downswings for a time series {yt } provides insights that are not immediately
obvious, but may be meaningful to academics, policy makers, and the general public. The mean
and standard deviation of durations, as well as the amplitude and steepness of a given phase,
yield fruitful insights about cycle asymmetries and persistence. Expansions and contractions in
one series can then be compared to those in another to determine whether their respective cycles
are synchronized. However, our primary focus here is on classical nonparametric methods for the
analysis of duration, dating back to the seminal work of Burns and Mitchell (1946), Cutler and
Ederer (1958), Bry and Boschan (1971), and Cox (1972). Although our specific application is to
unemployment cycles, the ideas and techniques discussed in this chapter apply to a wide variety
of micro- and macroeconometric studies.
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7.1 Introduction

An event history is a longitudinal record of specified events. Examples at the indi-
vidual level include dates of schooling, marriage, birth of children, job change,
illness, promotion, retirement and migration. Examples at the aggregate level
include dates of militarized disputes, riots, revolution, economic expansions and
contractions, bull and bear markets, and massive layoffs. Regardless of the under-
lying activity, an event consists of a qualitative change that marks a new phase
for either the individual or the collective. Consider that the beginning of a
bull market marks the end of a bear market and that the beginning of a mili-
tarized interstate dispute marks the end of placid relations between states with
diplomatic ties.

A pertinent issue is whether the probability of exiting a phase, or state, depends
on its duration. For instance, is a four-hour riot more likely to end within the next
hour than a one-hour riot? Does the likelihood of changing jobs decrease with the
time invested in the current job? Is a young economic expansion more robust to
failure than an old one? If so, we anticipate the end of an old expansion, but are
surprised by the end of a young one.

The demographer sees each of the above questions answered best by a life
table analysis, the biostatistician by a survival analysis, and the engineer by a
reliability or failure-time analysis. The economist tends to view the individual-
specific questions on job change as somehow different from the aggregate-level
question on business cycles, with the question on riots fitting perhaps some-
where in between. In fact, these questions are generally handled by various
sub-disciplines, as the microeconometrician examines individual employment
while the macroeconometrician examines the overall business cycle. Despite the
initial segregation, however, it is now understood that life table, survival, and reli-
ability analyses are intellectually very similar, and that the analysis of business
cycles can be handled in much the same way as that involving promotion and job
change.1
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7.2 Marking time

One important distinction between microeconometric and macroeconometric
event studies lies in the complexity of marking time. For individual level or micro-
econometric events such as marriage, job change, promotion, birth and death,
it is relatively easy to pinpoint when the qualitative change occurs. In contrast,
for national unemployment, economic expansions and contractions, and bull and
bear markets, the timing of change is less certain. Consider the Business Cycle
Dating Committee of the National Bureau of Economic Research (NBER). The com-
mittee is comprised of experts who mark time – that is, mark the turning points – in
economic activity by consensus. They examine trends in real gross domestic prod-
uct (GDP), real income, employment, industrial production and wholesale–retail
sales, in conjunction with their collective reasoning that an economic contraction,
or recession, must last more than a few months.2

The NBER derives its method from the graphically oriented approach of Burns
and Mitchell (1946), who define the classical cycle. The graphical approach is based
on marking turning points for several specific cycles, then aggregating that infor-
mation to form a reference cycle. In formalizing the graphical approach, however,
Harding and Pagan (2002) observe that Burns and Mitchell would have preferred to
use a single series, namely GDP, had that been available to them. The single series
approach seems especially appropriate for low frequency data.

Harding and Pagan (2002) thus employ a modified version of the Bry and
Boschan (BB) (1971) algorithm to mark turning points for quarterly GDP obser-
vations. Their BBQ algorithm again leads to the so-called classical cycle, though
defined in a more rigorous, non-qualitative manner.3 Harding and Pagan (2006) use
a similar nonparametric approach to codify the methods for deriving the NBER ref-
erence cycle. Regardless of whether single or multiple series are employed to mark
time, Harding and Pagan observe that using algorithms is largely immune from
deleterious compositional effects of dating committees, such as the NBER Dating
Committee. Consider that Artis, Marcellino and Proietti (2004) employ a modified
version of BBQ for use in their study of European business cycles.

Parametric models complement the nonparametric analysis. Pagan (1997) exam-
ines some simple linear statistical models and shows they are capable of replicating
the observed phase durations of classical cycles in Australia, the United Kingdom
and the United States. He demonstrates that realistic linear statistical models of
national output have (i) deterministic trend growth, but of low magnitude, if any;
(ii) near-unit-root behavior in the deterministically detrended data, if not exactly
unit-root behavior; and (iii) innovations of a certain magnitude. Economic models
with final equations for output that match these specifications are observationally
equivalent, and this explains why King and Plosser (1994, p. 436) find it diffi-
cult to distinguish between the Klein–Goldberger model and a neoclassical real
business cycle model. Despite potential identification problems, however, it is
only by melding quantitative analysis with economic theory that one can hope
to distill the relative importance of monetary, real, expectational, and interna-
tional shocks. To do so, Harding and Pagan (2000) emphasize the production of
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statistics that directly address the ability of a model to replicate business cycle
characteristics.

7.2.1 Reasons for marking time

Let yt = log(GDPt ), and consider mapping {yt } to a binary time series, {St }, with
St = 0 for recessions and St = 1 for expansions. Pagan (2004) and Harding and
Pagan (2007) offer the following rationale for the reader’s interest in {St }:

1. St frequently emphasizes features of yt that are not immediately obvious. Observing
the behavior of yt over different phases affords us a better understanding of its
features.

2. St may be more meaningful to decision makers than yt . Reaction to an economic
downturn is often strong among the electorate, and it is of interest to determine
whether the probability of exiting a downturn depends on how long one has
been in it and whether such exit probabilities, or hazards, have changed in
fundamental ways in recent history.

3. St may be the object of interest if questions are asked about the synchronization of
cycles across sectors or countries. If St is derived from many underlying series, it is
often more convenient to compare the representative St values than to compute
a large number of correlations from the underlying series.

4. St is generally more robust than yt to relatively unimportant short-lived shocks. Such
shocks may substantially affect statistics based on GDP growth rates but have
little impact on overall trends. In contrast, St emphasizes the qualitative trend,
up or down.

7.2.2 Techniques for marking time

In short, mapping {yt } to {St } yields fruitful insights about cycle asymmetries, per-
sistence, and synchronization. Some nonparametric rules for marking time are
exceptionally simple. For yearly aggregate data, Neftci (1984) and Cashin and
McDermott (2002) employ the calculus rule, St = 1(�yt > 0). For quarterly
data, one often-used rule in the popular press is the extended Okun rule. The
rule states that, for a recessionary phase, termination is signified by two suc-
cessive quarters of positive growth, (�yt+1 > 0,�yt+2 > 0). Similarly, for an
expansionary phase, termination is signified by two successive quarters of nega-
tive growth, (�yt+1 < 0,�yt+2 < 0). The simplicity of such rules is very attractive,
and any limitations of such rules are quickly revealed by visual inspection of the
observed series. In fact, regardless of the rule employed, the constructed turning
points should visually coincide with those apparent in a plot of the observed time
series, {yt }.

7.2.2.1 BBQ

To locate turning points in the level of GDP, the BBQ algorithm first determines a
potential set of local peaks and troughs. Time t is a local peak if:

(yt − yt−2 > 0, yt − yt−1 > 0, yt − yt+1 > 0, yt − yt+2 > 0),
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with the inequality reversed for troughs. The algorithm ensures that peaks and
troughs alternate, so that an expansion is immediately followed by a contraction,
and vice versa. Finally, the algorithm considers combining phases, or creating new
phases, according to a set of predetermined rules. For instance, a censoring rule for
business cycles is that either a contraction or expansion must last a minimum of
two quarters and complete cycles must last a minimum of five quarters.

BBQ can also mark turning points for other types of series. For example, to
locate a potential peak for the growth cycle in GDP, replace the requirement that
yt − yt−2 > 0 with the requirement that �yt − �yt−2 > 0, and so on. Pagan and
Sossounov (2003) modify BBQ to factor in the magnitude of growth rates in financial
series. Other applications of nonparametric methods to mark the turning points
include Lunde and Timmermann (2004) and Ohn, Taylor and Pagan (2004), who
investigate bull and bear markets; Cashin, McDermott and Scott (2002), who inves-
tigate booms and slumps in commodity markets; Eichengreen, Rose and Wyplosz
(1995), who investigate exchange rate crises; and Ibbotson, Sindelar and Ritter
(1994), who examine hot and cold IPO markets.

7.2.2.2 Markov chain models

Hamilton’s (1989) innovative Markov chain switching-regime model can also be
employed to mark time. For the parametric switching-regime model, a latent ran-
dom variable, s∗t , governs the state or regime with, say, s∗t = 0 indicating low or
negative average growth, and s∗t = 1 indicating high or positive average growth.
Two states, signifying negative and positive average growth rates, are adequate to
mark the turning points since �yt < 0 indicates a downswing and �yt > 0 indicates
an upswing in the level of GDP.

Consider a simple latent-structure model for GDP:

�yt − μs∗t = φ(�yt−1 − μs∗t−1
)+ εt . (7.1)

The mean of the growth-rate process switches between “low” and “high,” with
μ0 < μ1. For each date t in the sample, Hamilton shows how to obtain an estimate
of P(s∗t = 0|FT ), where FT contains the past, or even the complete, sample history
of growth rates, {�yt }t=1,...,T .

Define S∗t = 1[0.5 − P(s∗t = 0|FT )], so that S∗t = 1 during projected high-growth
phases, and S∗t = 0 during low-growth phases. The observed binary series, {S∗t }, can
be used in a survival, or duration, analysis to determine whether the probability
of remaining in a given phase, either contraction or expansion, depends on how
long one has been in it. An important consideration is that Hamilton’s (1989)
model is such that s∗t evolves with the probability of remaining in a given phase
independent of its duration, so that contractions and expansions are assumed to be
duration independent. Of course, this makes {S∗t } less than ideal to represent phases
that may actually be duration dependent.

Although Durland and McCurdy (1994), Filardo (1994), Diebold, Lee and
Weinbach (1994), Macheu and McCurdy (2000) and Jensen and Liu (2006) gener-
alize Hamilton’s assumptions in various directions, no parametric model matches
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the flexibility and transparency of BBQ to mark time. In particular, for the purpose
of solely marking the turning points in an observed series such as GDP, it is unnec-
essary to consider a latent-structure model with or without covariates that helps
predict the turning points. That is, there is no need to proxy {St } with {S∗t } for the
purpose of a duration analysis.

This is not to say, however, that Markov-switching (MS) models describing fluc-
tuations in yt are uninformative. In fact, MS models are alternatives to the linear
models emphasized by Pagan (1997).4 Hamilton (2005) argues that linear models
are incapable of replicating the cyclical pattern in key economic aggregates, and
he devises a simple nonlinear model for unemployment. In particular, linear mod-
els cannot capture the fact that the unemployment rate rises more quickly than it
falls over the business cycle. Although technology, the labor force, and the capital
stock are all key determinants of long-run growth, the forces that contribute to a
business downturn can be quite different, and they typically introduce asymmetric
behavior that necessitates a nonlinear dynamic representation. Harding and Pagan
(2002) also note the deficiency of linear models for replicating the shapes of expan-
sions in the business cycle. The point that is often lost is that a duration analysis
complements the empirical results from either linear or nonlinear models of yt ;
and for the purpose of a duration analysis, it is unnecessary to specify the model
for yt .

7.2.3 Detrending the series

Likewise, there is generally no need to detrend the series to obtain {St }. Cooley
and Prescott (1995) first remove the trend prior to marking the turning points.
The trend is typically thought of as a permanent effect, and the remainder as a
temporary effect. Unfortunately, confusion is likely to ensue when one attempts to
separate permanent from temporary effects, because not all temporary components
measure the same thing.

For example, consider decomposing aggregate output so that yt = Pt + zt , where
yt is the logarithm of GDP, Pt is the permanent effect and zt is the temporary effect.
The permanent effect captures slow-moving low-frequency movements in yt , and
the temporary effect captures the faster-moving high-frequency movements. The
term Pt is typically an integrated or I(1) stochastic series, but it can just as easily be
defined as some type of deterministic trend. The interpretation of zt , either as an
output gap or some function of growth rates, depends on how Pt is defined.

7.2.3.1 Output gaps versus growth rates

Consider first defining the permanent component as the deterministic trend,
Pt = a + bt . The temporary effect is the output gap, zt = yt − a − bt , and the
time trend captures steady increases in capital and labor that feed into the aggre-
gate production function. In other words, the output gap defines the difference
in actual and potential GDP. Marking time by the sign of zt determines phases
of output above or below the trend. On the other hand, if we define the perma-
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nent component as Pt = yt−1, the temporary effect is now the growth rate since
zt = �yt = yt − yt−1. Marking time by examining positive and negative values of
zt defines the classical business cycle.

We make a distinction here between growth cycles and gap or deviation cycles.
For growth cycles, we seek turning points in �yt ; there is no reason to specify a
trend curve. For gap cycles, however, we seek deviations from a specified trend
curve. In contrast, Zarnowitz and Ozyildirim (2006), among others, classify a
gap cycle as a special type of growth cycle. For their gap analysis, Zarnowitz and
Ozyildirim recommend that the trend curve be determined by the classical non-
parametric phase-average-trend (PAT) algorithm of Boschan and Ebanks (1978).
Zarnowitz and Ozyildirim then argue that a gap analysis is more informative than
a direct growth-rate analysis in the study of national output. First, they argue
that growth rates over short time spans are very erratic and must be smoothed
with complex moving averages that potentially distort patterns. Second, they find
that the timing of growth rates is very different from that of the corresponding
level series. Of course, an alternative interpretation of the second finding is that
the growth cycle is providing different information than is the classical business
cycle.

7.2.3.2 Filtering procedures

The specification of any trend curve is somewhat arbitrary. However, Zarnowitz
and Ozyildirim (2006) find that the PAT algorithm produces a nonlinear trend
curve that smoothly transits from higher to lower growth. They also find that
the trend from the PAT algorithm fits as well as a log-linear trend, the stochastic
Beveridge and Nelson (1981) trend, the local linear trend of Harvey (1989), the
Hodrick–Prescott (1997) trend, and Rotemberg’s (1999) heuristic trend.

Intuitively, different types of trends produce different types of temporary compo-
nents. For instance, King and Rebelo (1993) show that the temporary component
from the Hodrick–Prescott (HP) trend is a two-sided weighted average of growth
rates. However, if the data-generating process is the pure random walk, yt =
yt−1 + εt , Harding and Pagan (2005) show that the HP temporary component is
well represented by a weighted average of current and lagged values of the growth
rates with slowly declining weights. In contrast, the Beveridge–Nelson temporary
component for the random walk is degenerate since the permanent component
is yt .

The point is this. It is easy to think that all temporary components are mea-
suring the same thing as long as each is a stationary process; however, this is
not the case. For business cycles, the litmus test appears to be whether the turning
points match well with those of the NBER. Consider that, for quarterly observations
on GDP, Hamilton (1989) compares his estimated latent-structure probabilities
with turning points in aggregate activity. He demonstrates that his estimate of
P(s∗t = 0|FT ) is generally greater than 0.5 during recessions and less than 0.5 dur-
ing expansions. On the other hand, the very flexible BBQ algorithm of Harding
and Pagan (2002) also yields turning points that accord well with those of the
NBER.5
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7.3 The discrete-time hazard function

Duration data for economic cycles are invariably discrete since data are collected
at discrete intervals of time, for example, weekly, monthly, quarterly, or yearly.
Although data for markets such as housing or financial markets are available at
short intervals, the more interesting questions about such cycles are typically best
captured by intervals of at least a month. Consider also that a discrete-time dura-
tion analysis can be viewed as an approximation to a continuous-time analysis,
or vice versa, and general notions about one apply to the other.6 A discrete-time
framework has the advantage of being more natural for the types of data encoun-
tered at the aggregate level; the framework is inherently semiparametric and is easy
to understand and implement. Since formal statistical inference depends on the
framework, it is best to adopt that of discrete-time if data are measured at long
intervals.

Consider a random sub-sample of n observations (T1, T2, . . . , Tn) from a discrete,
cumulative distribution F, such that F(a) = 0 for a < 0.7 The probability-
distribution function, or density function, is f (t) = P(T = t), and the discrete-time
hazard function is:

h(t) = P(T = t |T ≥ t) = f (t)/G(t), (7.2)

where h(t) is the hazard function, and G(t) = P(T ≥ t) is the survival function.
The density function, f (t), gives the probability that a duration will last exactly t
periods, the survival function, G(t), gives the probability that a duration will last
at least t periods, and the hazard function, h(t), gives the conditional probability
that a phase will terminate in period t , given that it has lasted t or more periods.
If rising or falling, the hazard provides useful information about the likelihood of
a change in phase. Using over 100 years of annual data, Mills (2001) finds several
instances of non-constant hazards in the business cycles of 22 countries.

The hazard may also be useful in the assessment of general market conditions.
For instance, Diebold and Rudebusch (1990) and Ohn, Taylor and Pagan (2004)
observe that post-World War II contractions are more prone to revert to expansion
than pre-World War II contractions. One explanation for this finding is that policy
makers are now much better able to manage potential economic crises. A second
explanation is that individuals and firms are better able to smooth shocks due to
innovation and financial deregulation. On the other hand, Watson (1994) finds
that, for most individual sectors of the economy, the average contraction and
expansion durations for the pre-war and post-war periods are similar; and, more
recently, Stock and Watson (2003) suggest that favorable market conditions in
the modern era are more likely due to good luck than to good management or
innovation.8 This is especially true for recent times as there have been relatively
few long-lived supply disruptions since the 1970s.

7.3.1 Hazard plots

It is generally informative to plot the hazard function, with hazard rates easily
computed by the nonparametric life table method of Cutler and Ederer (1958). The
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computer package LIMDEP 7.0 constructs such life tables, with an approximate,
but intuitive, explanation of the procedure as follows:

• Place the contractions in ascending order by length.
• Construct the hazard rate at time “t” as the ratio of the number of contractions

terminating in month “t” over the number of contractions lasting at least “t”
months.

Sample information is thus used to estimate P(T = t)/P(T ≥ t) in a straight-
forward manner. A contraction that terminates is said to exit the sample, while
those contractions lasting at least t months are said to be still at risk. Of course,
the pool of contractions still at risk decreases with t . This implies that the effec-
tive sample size for estimating the hazard rates for relatively long contractions is
less than for short contractions. Formal statistical tests are thus necessary to avoid
spurious conclusions from inspecting the graphs alone.

7.3.2 Benchmark hazards

Nevertheless, graphs convey important information about the general shape of the
hazard function. Hollander and Proschan (1975) and Hollander and Wolfe (1999)
provide some important benchmarks:

1. Constant Failure Rate: CFR
2. Increasing (Decreasing) Failure Rate: IFR, DFR
3. Increasing (Decreasing) Failure Rate on Average: IFRA, DFRA
4. New Better (Worse) than Used: NBU, NWU.

Figure 7.1 depicts hazard functions from CFR, IFR, IFRA, and NBU life
distributions.9 Because there is a one-to-one relationship between the hazard func-
tion and the probability density function, a comparison of hazard rates is a natural
way of analyzing the nature of exit probabilities, more so than a comparison of
density functions. In particular, the CFR hazard is almost always given special
consideration in any duration analysis.

CFR hazards correspond to the geometric density. New economic expansions are
no more or less likely to terminate than mature ones. In contrast, if expansions are
IFR, the hazard, or failure, rate is never decreasing, and our illustrated IFR hazard
implies an ever more likely chance of termination, or mortality.

IFR hazards are not the only ones that have a tendency to rise. Although the
depicted IFRA hazard has periods of decline, IFRA has the same overall upward
trend. For example, militarized interstate disputes initially have a decreasing haz-
ard rate for a short period, but then exhibit increasing hazards over most of the
duration due, perhaps, to a more concentrated effort to either negotiate or impose
settlement.

In contrast to IFRA, the depicted NBU hazard function rises above and then falls
back to the initial value. There is no overall trend in either direction. Because the
hazard function never falls below the initial value, new phases have the greatest
chance of surviving an additional week or month. An NBU hazard may arise due to
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Figure 7.1 Hazard functions for various life distributions

seasonal effects such as holidays or inclement weather, and IFRA hazards are special
cases of NBU hazards. A completely analogous situation holds for DFR, DFRA and
NWU distributions.

The graphical approach of Cutler and Ederer (1958) is nonparametric and avoids
some of the dangers of relying too heavily on parametric methods. For instance, in
the emerging area of forensic economics, Bonanomi, Gaughan and Taylor (1998)
use the flexible nonparametric life table method in the estimation of lost profits
when the plaintiff claims lost customers due to an alleged transgression. How-
ever, in the general economics literature, Sichel (1991) advocates using parametric
methods to increase the power of tests for duration dependence. In the politi-
cal science literature, Bennett (1999) and Zorn (2000) observe that the parametric
Weibull model is the most widely-used form. Bennett also cautions that Cox’s semi-
parametric proportional hazards model does not allow for precision concerning the
hazard function.

Precisely wrong results, however, are hardly helpful. Ohn, Taylor and Pagan
(2004) show that the Weibull model is insufficient to capture the richness of eco-
nomic contractions and expansions, and Taylor (2007) shows that the Weibull
model is highly misleading for militarized interstate disputes. Attempts to apply
more flexible continuous-time methods have met with mixed success. Diebold,
Rudebusch and Sichel (1993), for example, apply their nonlinear exponential
linear model to business cycle data that mostly duplicates the results from the
Weibull model. Zuehlke (2003) applies the nonlinear model of Mudholkar, Sri-
vastava and Kollia (1996) that allows hazards to be monotonically increasing,
monotonically decreasing, U-shaped or inverted U-shaped. However, Ohn, Tay-
lor and Pagan (2004) observe that none of these shapes adequately describes the
hazard functions for pre-World War II constructions and expansions. Even for the
small samples encountered in the business cycle literature, nonparametric analysis
provides valuable insights that parametric analysis fails to uncover.
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7.4 Testing for duration dependence

The direction of duration dependence is easily obtained from a sample of dura-
tions. First, if the mean duration equals the sample standard deviation, there is no
evidence of duration dependence; that is, there is a constant hazard. Second, if the
mean duration is greater than the sample standard deviation, there is evidence of
positive duration dependence, or a generally increasing hazard. Finally, if the mean
duration is less than the sample standard deviation, there is evidence of negative
duration dependence, or a generally decreasing hazard.

7.4.1 The nature of duration independence

Duration independence is considered the neutral case. Long expansions have no
greater chance of ending than short expansions; long bear markets have no greater
chance of ending than short ones; and long housing slumps have no greater chance
of ending than short slumps. The duration of the phase has no predictive power in
determining the end of the phase. Because of neutrality, the constant hazard is the
standard benchmark, and a graph of the hazard function is frequently employed
to see if the hazard function appears roughly constant. If so, there is duration inde-
pendence, and the hazard function does not depend on t . In other words, the null
hypothesis is:

H0 : h(t) = p for some 0 < p < 1 and all t > 0. (7.3)

The density must be geometric for constant hazards, and the above null hypothesis
is equivalent to:

H0 : f (t) = P(T = t) = (1− p)t p for 0 ≤ t ≤ ∞. (7.4)

In other words, testing for duration independence is equivalent to testing whether
the durations follow the geometric density. A direct, or strong-form, test for the
geometric density is the usual chi-square goodness-of-fit test employed by Ohn,
Taylor and Pagan (2004).

Finally, for the geometric density, E(T) = (1−p)/p and V(T) = (1−p)/p2, leading
to a third null hypothesis for duration dependence:

H0 : V(T)− [E(T)]2 − E(T) = 0. (7.5)

7.4.2 Weak-form tests

Pagan (1998) and Mudambi and Taylor (1991, 1995) devise tests for duration
dependence based on the consistency relationship as in (7.5). Such tests are called
weak-form tests and have close links with continuous-time tests for the exponential
density. Although the exponential density is simply the continuous-time equiva-
lent of the discrete-time geometric density, there is one rather important difference
between the two. The consistency relationship for the exponential density is

V(T) − [E(T)]2 = 0 rather than V(T) − [E(T)]2 − E(T) = 0, and thus the choice
between the discrete-time and continuous-time tests is important except when p

is close to either 0 or 1, since then V(T) ≈ [E(T)]2.
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7.4.2.1 The GMD test

Mudambi and Taylor (1995) devise a generalized method of moments (GMM) esti-

mator based on the moment condition, V(T) − [E(T)]2 − E(T) − γ = 0. For the

geometric density, γ = 0, and they determine whether GMD = (1/n)
n
�

i=1
(Ti −T)

2 −
T

2 − T is statistically significant from zero. Once normalized, GMD is asymptoti-
cally N(0, 1), and should be especially sensitive to IFRA and DFRA alternatives since

it is completely analogous to a continuous-time test based on V(T) − [E(T)]2 = 0
that is designed for such alternatives. Because GMD is highly skewed in finite
samples, however, simulations are necessary to obtain finite-sample critical values.

7.4.2.2 The SB test

Closely related to the GMD test is the state-based SB test proposed by Pagan (1998),
which has a number of positive attributes:

1. SB focuses directly on the conditional probabilities.
2. SB involves a regression and so is easy to explain to a nonspecialist.
3. SB can be used to examine prediction issues.
4. SB can be used to study how the exit probabilities have changed over time since

the parameters can be recursively estimated.
5. SB can be easily modified to estimate discrete-time hazard functions, with or

without covariates.

Although SB can be applied to whole cycles, it is best to apply the test to the
separate half cycles, or phases. In other words, one should apply SB first to con-
tractions and then to expansions. In fact, Mudambi and Taylor (1991) show that
it is incompatible for expansions, contractions, and whole cycles all to follow
a constant-hazard geometric distribution. So, if expansions and contractions are
duration independent, it is certain that whole cycles are duration dependent. Like-
wise, if whole cycles are duration independent, there is necessarily some form of
statistical dependence in the half-cycle components.

Consider a small sample of contractions observed at monthly intervals. In the
example below, there are gaps in the time line because most months of expansion
are excluded from the sample. In fact, the only included months of expansion are
those that correspond to a turning point.

Jan Feb Mar Apr ... Sep Oct Nov Dec Jan Feb ... Jun Jul
St 0 0 0 1 ... 0 0 0 0 0 1 ... 0 0

dt−1 0 1 2 3 ... 0 1 2 3 4 5 ... 0 1

St = 0 indicates a month of economic contraction, and St = 1 indicates a month of
economic expansion. For instance, the first complete contraction began in January
and ended in March, with April as the turning point. The string of St values rep-
resents two complete contractions and one incomplete, or censored, contraction.
The durations of the contractions are T1 = 3, T2 = 5, and T3 = 2. Any censored
observations will invariably be at the beginnning and/or end of the string, and
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such incomplete observations are dropped from the sample. For the sub-sample of
expansions, we consider instead 1−St , so that (1−St ) = 1 marks the turning point
of an economic expansion.

An economic expansion or contraction is a phase of the business cycle. Define dt
as the number of months in a given phase. The above table demonstrates values
for lagged dt . Now drop those observations from the sample if dt−1 = 0, and define
m as the number of remaining St values. For our example, m = 8 since we drop two
observations because dt−1 = 0 and we drop the last contraction due to censoring. A
straightforward test for duration dependence in contractions is obtained by testing
the null hypothesis, H0 : β1 = 0, in the simple regression equation:

St = β0 + β1dt−1 + εt , (7.6)

where Et−1(εt ) = 0.
For constant hazards, β1 = 0 and β0 = p01, where p01 = P(St = 1|St−1 = 0).

The term dt−1 captures autonomous changes in the hazard function. The resulting
model can be written as:

St = p01 + vt . (7.7)

Hamilton (1994, p. 684) shows how to write such an equation if one is considering
complete cycles rather than half-cycles. For the purpose of a duration analysis,
however, it is only necessary to consider half-cycles: expansions or contractions,
bull or bear markets, upswings or downswings.

For non-constant hazards, β1 �= 0, and the termination probability depends on
dt−1, the length of time in the specified phase. Ohn, Taylor and Pagan (2004)
show that the SB t-test is appropriate for testing H0 : β1 = 0. We argue here the
same point, but from a different approach. In particular, by the definition of the
binary indicator, St , the duration of an expansion must be at least one month. The
geometric density is thus left-censored at unity. The censored probability function

is P(T = t) = (1−p)t−1p for 1 ≤ t ≤ ∞, with E(T) = 1/p and V(T) = (1−p)/p2. Let n

be the number of turning points. Then T = (1/n)
n
�

i=1
Ti is a consistent estimator for

E(T), σ̃2 = (1/n)
n
�

i=1
(Ti−T)

2 is a consistent estimator for V(T), and S is a consistent

estimator for p.
The least squares estimator of β1 is:10

β̂1 =
1
m

m
�

t=1
(St − S)dt−1

1
m

m
�

t=1
(dt−1 − d)2

, (7.8)

where S = 1
m

m
�

t=1
St = n/m and d = 1

m
m
�

t=1
dt−1.

Our goal is to show that p lim β̂1 = 0 under the null hypothesis that dura-
tions follow the geometric density. To do so, consider the numerator of the least
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squares estimator:

1
m

m
�

t=1
(St − S)dt−1 (7.9)

= 1
m

m
�

t=1
Stdt−1 − S d (7.10)

= n
m

T − (
n
m

)
2 1

n

n
�

i=1

(Ti + 1)Ti
2

(7.11)

= S
1
2
{2T − S[̃σ2 + T

2 + T ]}. (7.12)

Since, for the geometric distribution, p lim T = 1/p and p lim σ̃
2 = (1 − p)/p2,

it follows that:

p lim S
1
2
{2T − S[̃σ2 + T

2 + T ]} = p
1
2

{
2

1
p
− p

[
(1− p)

p2
+ (1/p

)2 + 1
p

]}
= 0. (7.13)

An immediate implication is that p lim β̂1 = 0 for a constant-hazard function. On
the other hand, just as with GMD, the distribution of SB is skewed right in finite
samples, and thus it is necessary to use simulations to obtain finite-sample critical
values.

In spite of their skewed distributions, GMD and SB are asymptotically pivotal;
that is, asymptotically they do not depend on unknown parameters. For asymptot-
ically pivotal statistics, the bootstrapped critical values are generally more accurate
than those based on first-order asymptotic theory. Horowitz (2001) and Davidson
and MacKinnon (2006) explain why it is desirable to use pivotal statistics when
bootstrapping.

7.4.3 Strong-form tests

Diebold and Rudebusch (1991) and Ohn, Taylor and Pagan (2004) employ the chi-
square goodness-of-fit test to determine if durations follow the geometric density.

The test statistic is χ
2 = K

�
j=1
[(Oj − Ej)

2
/Ej], where Oj is the observed frequency in

the jth bin and Ej is the expected frequency in the jth bin. The expected frequency
is derived under the null distribution, in this case the geometric density. A well-
known rule of thumb is that the expected frequency, Ej, should be at least 5 for
all bins (see Hoel, 1954). To be on the safe side, Ohn, Taylor and Pagan (2004)
use 6 instead of 5. If one adheres to this rule-of-thumb, long-term experience sug-

gests that χ2 approximately follows its asymptotic chi-square distribution with K-1
degrees of freedom. Nonetheless, both Diebold and Rudebusch (1991) and Ohn,
Taylor and Pagan (2004) employ simulation to obtain finite-sample critical values.

7.5 Modeling with covariates

Most researchers using aggregate-level data segment the time line to control
for heterogeneity of the exit probabilities. For example, Edwards, Biscarri and
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de Gracia (2003) segment the time line for Latin American and Asian countries
to determine the effect of financial liberalization on stock market cycles. Mod-
els that employ covariates have not been as popular and the studies that do use
them generally assume duration independence. For instance, Estrella and Mishkin
(1998) employ a discrete-time analysis to examine various financial variables as
predictors of US recessions, and Chin, Geweke and Miller (2000) use a similar anal-
ysis to predict turning points in the civilian unemployment rate. Conditional upon
the right-hand-side variables, however, both studies assume the hazard function is
independent of time.11

The strong assumption of duration independence in models with covariates is
defensible in some circumstances. In the political science literature, Bennett (1999,
p. 262) goes so far as to argue that including covariates to effectively eliminate
duration dependence is a laudable goal:

Unless we can anthropomorphize and assume that the phenomenon we are
examining truly has a life of its own, then the pattern or covariation over
time that we observe is somehow, somewhere, driven by a variable or set
of variables that characterizes the world. If the causal factor driving duration
dependence is measured and included in the model as an independent variable,
then unexplained duration dependence . . . may disappear.

Bennett’s view aligns with the concept of probabilistic reduction that Spanos (1995)
traces back to the biometric tradition of Galton and Pearson; see also Spanos (2006)
and Hoover (2006). In the regression framework, probabilistic reduction implies
that a complete theory must induce white-noise disturbances in the model. In
practice, whether covariates can account for the observed duration dependence in
any binary series is surely an empirical question that cannot be assumed away for
the model at hand. Complete theories are ideal but rare.

Another reason that duration dependence is frequently ignored for discrete-time
analysis is that many researchers apparently believe that it is not possible to incor-
porate such dependence. For instance, Bennett (1999, p. 259) argues that the logit
model is insufficient for the analysis of duration data because “it assumes that no
duration dependence exists.” Below we show that a slightly modified logit model
is suitable to capture autonomous changes in the discrete-time hazard as well as
changes due to covariates.

Probit models are alternatives to logit models. There is no need, however, to
adopt any type of latent structure for either probit or logit. In other words, it is
neither necessary nor desirable to insist that there exists some type of latent vari-
able, y∗t , such that St = 1 if y∗t > 0, and St = 0 if y∗t ≤ 0. Although such an
assumption is desirable in the discrete-choice literature, where y∗t is interpreted as
a utility function, it only unnecessarily complicates a duration analysis. In fact,
to mark time for economic cycles, we frequently map an observed series,{ yt }, to
{St }. Thus, the unobservables of true interest in either the logit or probit probabil-
ity models are the estimable parameters controlling the termination probabilities
of {St }.12
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7.5.1 The logit model

Following Allison (1984), let P(t) represent the discrete-time hazard function.
We use P(t) here rather than h(t) because it is more natural to do so for logistic
regression. For the logit hazard model:

log(P(t)/(1− P(t)) = a(t)+ β1x1 + β2x2(t). (7.14)

where a(t) represents a set of dummies, one for each of the observed exit periods,
that account for autonomous changes in the exit probabilities; x1 represents a set
of covariates that do not change over the course of a given contraction; and x2(t)
represents a set of covariates that do change over the course of a given contraction.
In other words, a(t) allows for non-constant hazards, conditional upon the x values.
For constant hazards, one should substitute a single intercept parameter, a, for the
time-varying a(t).

7.5.1.1 The LSB test

Define dt as the number of consecutive months (that is, duration) spent in a con-
traction up and through time t , and consider a very simple model with just one
x(t), namely dt−1, as defined for the SB test:

log(P(t)/(1− P(t)) = β0 + β1dt−1. (7.15)

Drop observations from the sample if dt−1 = 0. A restriction from the assumption
of duration independence is H0 : β1 = 0, with the test statistic computed by the
corresponding asymptotic t-ratio. The constant-hazard test from logit regression,
call it LSB, is obviously closely related to Pagan’s regression-based SB test. The
potential advantages of using SB are that it is very straightforward, the least squares
algorithm is very stable, and many computer packages recursively estimate least
squares (but not logit) coefficients.

Stability is an important consideration for small samples since the number of
observations with St = 1 is usually small for macroeconomic data. Consider, for
example, that there are only about ten post-World War II economic expansions
in the American business cycle. For these expansions, the number of observations
with St = 0 is large because of a low termination probability, hence the proportion
of observations with St = 1 is small. With a very low proportion of observations
with St = 1, small samples can be especially problematic for logistic regression.

For sufficiently large samples, however, the logit model is preferred to the linear
model. For the linear model, the predicted probabilities can lie outside of the unit
interval from 0 to 1, and it is well known that least squares estimators are not effi-
cient if the dependent variable is binary. In contrast, logit probabilities are always
bounded on the unit interval; and since logit estimation is based on maximum
likelihood, the estimators from logit are asymptotically efficient.

7.5.1.2 A comparison with Cox’s model

Thompson (1977) presents another compelling argument in favor of logit estima-
tion. As the discrete-time intervals become smaller and smaller, the logit model
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converges to Cox’s (1972) continuous-time proportional hazards model. Cox’s
model can be written as:

log h(t) = a(t)+ βx, (7.16)

where h(t) is the continuous-time hazard rate, similar to P(t), and x represents a
set of covariates that do not vary over time. Like the discrete-time logit model, a(t)
can be any function of time. The term proportional hazard comes from the fact that,
for any t and any two individuals i and j:

hi(t)/hj(t) = exp(βxi)/ exp(βxj) = exp(β(xi − xj)). (7.17)

This function does not vary with time because the autonomous time-varying term,
a(t), cancels out. Cox’s model, however, is not just limited to proportional hazards,
since the model is no longer proportional if some of the x values vary with time.
Some computer packages allow for time-varying covariates while others do not.
Fortunately, this is not a concern to us since it is always possible to allow for
time-varying covariates in logistic regression.

Cox’s proportional hazards model is semiparametric because the autonomous
time-varying term, a(t), does not have to be specified. Although the estimators of
β are asymptotically unbiased and normally distributed, they are not fully efficient
because the exact functional form of a(t) is not specified. However, Efron (1977)
shows that the loss of efficiency is typically so small that it is not of practical
concern. The importance of Cox’s model for duration analysis is well-summarized
by Allison (1984, p. 35):

It is difficult to exaggerate the impact of Cox’s work on the practical analysis
of event history data. In recent years, his 1972 paper has been cited well over
100 times a year in the world scientific literature. In the judgment of many, it
is unequivocally the best all-around method for estimating regression models
with continuous-time data.

In practice, time is always measured in discrete intervals, although the intervals
may be irregular for individual histories. Consider also that, if two or more individ-
uals experience events at the same time, that is, if we observe a tie, then the model
proposed by Cox (1972) is the logit model. Therefore, although some authors have
argued that continuous-time methods are preferable to discrete-time methods on
theoretical grounds, or have completely ignored discrete-time methods altogether,
the lack of attention to the logit model seems rather unfortunate. The preference
for continuous-time models is largely based on computational grounds, but this is
certainly less of an issue today than it was 25 years ago!

7.5.2 Predetermined variables and unobserved heterogeneity

An important issue is the number and choice of covariates. Consider, for exam-
ple, economic expansions. If the length of the prior expansion and/or contraction
influences the exit probability of the current expansion, then the length of the
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prior expansion and/or contraction should be included in the set of explana-
tory variables. The usual asymptotic t-ratio can then be employed to determine
if such effects are important. Thus, with a set of appropriate explanatory variables,
either predetermined or strictly exogenous, one can account for certain types of
dependence that cannot be handled by simply segmenting the time line.

Unobserved, or neglected, heterogeneity is inherently a problem of omitted vari-
ables. As a practical consideration, however, the sample sizes encountered in the
study of economic cycles are generally too small to consider many explanatory
variables. Explanatory variables are used to control for heterogeneity in the exit
probabilities. Bover, Arellano and Bentolila (2002) develop logistic discrete hazard
models that can accommodate unobserved heterogeneity. In their microecono-
metric study of about 27,000 unemployment spells of Spanish men, they explicitly
control for unemployment benefits, age, education, head of household status, and
dummies for economic sector and year of unemployment. A second model is esti-
mated with time-varying macroeconomic variables, such as the growth rate in GDP
and sectoral unemployment rates, substituting for the sectoral and time dummy
variables. Autonomous shift dummies, a(t), are included in both models to cap-
ture flexible additive duration dependence. A dummy variable is included for each
possible exit time, with time marked at monthly intervals.

Bover, Arellano and Bentolila (2002) treat the length of unemployment benefits
as predetermined, though not strictly exogenous, since knowledge about future
benefits can influence job choice and especially the decision to re-enter the labor
market. The distinction between predetermined and strictly exogenous variables
is fairly unimportant unless there is unobserved heterogeneity. In that case, pre-
determined variables are effectively endogenous, and it is necessary to maximize
the joint mixture likelihood for the unemployment and benefit durations. This is
accomplished, in part, by introducing a discrete unobserved random variable with
finite support. Additional parameters are thus included to model the unobserved
heterogeneity.

In the macroeconometrics literature on business cycles, however, post-war sam-
ple sizes of about ten spells preclude the possibility of estimating models that are
rich in parameters. As a partial solution, segmenting the time line into pre-war
and post-war is sufficient to control for omitted variables that vary across, but not
within, the segments. Since any residual heterogeneity induces negative duration
dependence, expansions and contractions may appear to be self-perpetuating even
if this premise is false. On the other hand, Diebold and Rudebusch (1990) and Ohn,
Taylor and Pagan (2004) find evidence of positive, not negative, duration depen-
dence in the American business cycle. Thus, at least the direction of such duration
dependence cannot be caused by residual, or neglected, heterogeneity.

7.6 The shape of cycles

Duration dependence concerns the shape of the hazard function. If the hazard
function slopes upward, there is positive duration dependence; if downward, there
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is negative duration dependence; if flat, there is no duration dependence. However,
the shape of the hazard function is but one example of the types of shapes associ-
ated with cycles. In particular, Harding and Pagan (2002) and Pagan and Sossounov
(2003) discuss the typical shapes of phases, either contractions or expansions. They
address the following issues:

1. Amplitudes of phases
2. Cumulative movements within phases
3. Asymmetric behavior of phases.

After marking the turning points, the binary series, {St }, is employed along with
the observed underlying series, {yt }, to describe the shape of a phase. For example,
during economic expansions, GDP is observed to rise quickly at first and then
slows its ascent before finally reversing direction, thus marking the beginning of a
contraction.

In Figure 7.2, we present a stylized economic expansion. The y axis represents
log(GDP), or amplitude, and the x axis represents time spent in an expansionary
phase, or duration. On the time axis, time A represents the first turning point,
the trough, and time B the second turning point, the peak. The amplitude of the
expansion is the vertical distance between points A and B, measuring the change in
GDP from trough to peak. In this instance the amplitude is log(GDPB)−log(GDPA).
The hypotenuse of the triangle is a benchmark representing a constant increase
in amplitude, with increases in amplitude proportional to the time spent in the
expansionary phase.

Descriptive measures of interest include the average duration and average ampli-
tude of the expansions in the sample, measures of the variability in durations and
amplitudes, and a measure to show how closely growth in GDP adheres to the
hypotenuse depicted in Figure 7.2. For our sample of n expansions, we observe the
durations {T1, T2, . . . , Tn}, and the amplitudes {A1, A2, . . . , An}.
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Figure 7.2 Stylized expansion phase
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7.6.1 Durations

Assume that durations and amplitudes constitute random samples. If so, the T ′i s
follow identical distributions, Ti � D(μT , σ2

T ), with Ti statistically independent

from Tj for i �= j. Further, T = 1
n

n
�

i=1
Ti is a consistent estimator for μT and T

a� N(μT , σ2
T /n). This assumes, of course, that the time line has been successfully

segmented to ensure that each of the T ′i s follows the same distribution, that is,
with no mixing of distributions.

Small sample inference, however, is particularly problematic for durations. Con-
sider that the T ′i s rarely come from the normal distribution. In fact, for the
discrete case with constant hazards, the T ′i s follow the geometric distribution, Ti

� GEOM(μT ,μ2
T − μT ), with μT = 1/p, where p is the constant hazard. However,

since the geometric distribution is considerably right-skewed, for very small sam-
ples it is generally unwise to construct confidence intervals on μT by employing
the t-distribution, since normality of the durations is one of the assumptions sup-
porting its use. Simulations by Pagan and Sossounov (2003) also suggest that T is
significantly skewed in small samples.

7.6.2 Amplitudes

Amplitudes are less problematic. For the ith expansion, the amplitude is calculated

as Ai = yTi
−y0 =

Ti
�

j=1
�yj, with �y1 = y1−y0, �y2 = y2−y1, and so on. In Figure 7.2,

y0 equals log(GDPA) and yTi
equals log(GDPB). The amplitude of the expansion is

thus the sum of the growth rates from time A to B. Although Harding and Pagan
(2002) convincingly argue that GDP growth rates are not statistically independent,
their sum may be approximately normally distributed by either Gordin’s (1969) or
Hannan’s (1973) Central Limit Theorems (CLT) for stationary ergodic processes;
see also White (1984, Ch. V). Thus, approximate normality for the amplitudes, Ai,
is more plausible than normality for the durations, Ti, provided that expansions
are sufficiently long to allow the CLT to work for each Ai.

7.6.3 Cumulative gain

Another measure of interest is the cumulative gain from trough to peak, that is, the
area under the curve that describes the actual path of GDP. An approximation to
this gain is obtained by adding together the area in rectangles of unit length and
height equal to yj − y0. The approximation, however, is too large since each such
rectangle overstates the actual area by approximately (yj − yj−1)/2. Correcting for
the overstatement, Harding and Pagan (2002) approximate the cumulative gain
for the ith expansion by:

Fi =
Ti∑

j=1

[
(yj − y0)− (yj − yj−1)/2

]
(7.18)

=
⎡⎣ Ti∑

j=1

(yj − y0)

⎤⎦− Ai/2, (7.19)
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where Ai = yTi
−y0. A benchmark for Fi is the cumulative area under the hypotenuse

depicted in Figure 7.2. The area of this right triangle is easily calculated as AREAi =
(Ti · Ai)/2. Taking the difference, Fi −AREAi, and then dividing by the duration of
the ith expansion, one obtains:

Ei = (Fi − AREAi)/Ti. (7.20)

A positive value of Ei indicates that growth rates generally increase at a decreas-
ing rate over the life of the expansion, and a negative value of Ei indicates that
growth rates generally increase at an increasing rate over the life of the expansion.

A positive value for E = 1
n

n
�

i=1
Ei indicates that most of the growth occurs at the

beginning of the typical expansion, and a negative value of E indicates that most
of the growth occurs at the end of the typical expansion. If E = 0, then neither
characterization is accurate; instead, the actual path for y tends to oscillate around
the hypotenuse. E is thus a useful descriptive measure of the average shape, or
curvature, of expansions. A similar interpretation holds for C, the average shape
of contractions. In the literature on business cycles, Sichel (1994) documents the
rapid recovery of an expansion that leads to a positive value for E. In the financial
literature, Edwards, Biscarri and de Gracia (2003) observe that the excess index
(equation 7.20) is particularly useful in characterizing stock market behavior.

7.7 Synchronization of cycles

The cyclic characteristics of a single series, {yt }, are of interest because they yield
insights about the underlying series. Consider also that the cyclic relationship
between two underlying series, {y1t } and {y2t }, is of like interest to both academics
and policy makers. For example, do short periods of financial crisis influence the
business cycle? Are cycles in foreign economies closely tied to the American busi-
ness cycle? Are cycles in national unemployment related to cycles in GDP? Finally,
are cycles in oil prices related to the world economic or political (dis)order? Each of
these questions can be answered, in part, by examining the observed binary time
series, {S1t } and {S2t }, that respectively correspond to {y1t } and {y2t }.13

7.7.1 The coincidence indicator

One way to measure the correspondence between {S1t } and {S2t } is to employ the
coincidence indicator of Harding and Pagan (2002):

Î = 1/T
T∑

t=1

[S1t S2t + (1− S1t )(1− S2t )], (7.21)

where T is the total number of periods in the sample interval, regardless of phase.
Consistent with the notation of Harding and Pagan (2002, 2006), we use T in
this section to denote the sample size rather than duration. It follows that Î is
the fraction of periods that {S1t } and {S2t } are synchronized. Harding and Pagan
(2006) note that there is perfect positive synchronization between {S1t } and {S2t } if
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Î = 1, and there is perfect negative synchronization if Î = 0. Beyond the literature
on national output, Edwards, Biscarri and de Gracia (2003) observe that financial
synchronization, or concordance, among Latin American countries has substantially
increased after financial liberalization.

7.7.2 Correlation analysis

The sample correlation coefficient between S1 and S2, call it rs, conveys similar
information to Î . If rs = 1, there is evidence in favor of the null hypothesis, H0 :
ρs = 1, since S1t = S2t for every paired observation in the sample. Of course, if there
is a single case where S1t �= S2t , there is reason to reject the hypothesis that the
cycles are perfectly positively synchronized. Similar reasoning holds true for perfect
negative synchronization. A formal test of H0 : ρs = 1 is presented by Harding and
Pagan (2006).

As perfect synchronization will be empirically atypical, it is still useful to compute
either or both of the sample correlation coefficient and coincidence indicator to
see how closely two series move in tandem. Graphing the series may also reveal an
obvious translation of {S1t } that will more closely synchronize {S1t } with {S2t }. For
instance, consider {S3t } = {S1,t±l} for some integer l > 0. The concordance between
{S3t } and {S2t }may be considerably higher than the concordance between {S1t } and
{S2t } if lagged effects are important. Alternatively, it may be that changing just a
few turning points could lead to near-perfect concordance between two series. If
so, sensitivity analysis is worthwhile.

7.7.2.1 Tests based on the method of moments

It is important to formally test for no synchronization H0 : ρs = 0, since this
implies that {S1t } and {S2t } are unrelated series with no common cycle. As a case in
point, the business cycles of the United States and the United Kingdom could have
high concordance simply because most of the time these economies are expanding,
not contracting. On the other hand, whether these two economies actually move
together is a different issue. In other words, although {S1t } and {S2t } may be highly
synchronized, this does not by itself imply a common cycle.

Under classical conditions, several tests for H0 : ρs = 0 are equivalent. For
instance, we can employ:

tr = rs

√
T − 2

1− r2
s

a� N(0, 1). (7.22)

Numerically equivalent test statistics are the standard t-ratios for the slope coeffi-
cients in either S1t = α + βS2t + ε1t or S2t = γ + δS1t + ε2t . However, the situation
is complicated by the fact that S1 is serially correlated, as is S2, and thus the inde-
pendence assumption associated with the traditional t-test of zero-correlation is
compromised. Therefore, the statistic used to test H0 : ρs = 0 must be made robust
to serial correlation and heteroskedasticity.14 Harding and Pagan (2006) recom-
mend that the test statistic be constructed via GMM with a robust variance estimate
to account for serial correlation and heteroskedasticity.
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A multivariate version of the GMM test for several S-series is presented by Harding
and Pagan (2006), but with the GMM estimator for the bivariate case based only
on the moment conditions:

E[Sjt ] = μj, j = 1, 2 (7.23)

E

[
(S1t − μ1)(S2t − μ2)√
μ1(1− μ1)μ2(1− μ2)

− ρs

]
= 0. (7.24)

Stack the above three moment conditions into a 3x1 vector, ht (θ , S1t , S2t ), such
that:

ht (θ , S1t , S2t )
′ =

[
S1t − μ1, S2t − μ2,

(S1t − μ1)(S2t − μ2)√
μ1(1− μ1)μ2(1− μ2)

− ρs

]
, (7.25)

with parameter vector θ
′ = [μ1,μ2, ρS], and take the average:

g(θ , {S1t , S2t }Tt=1) =
1
T

T∑
t=1

ht (θ , S1t , S2t ). (7.26)

The covariance matrix of
√

Tg(θ , {S1t , S2t }Tt=1) is consistently estimated by:

V = �0 +
m∑

k=1

[
1− k

m+ 1

]
[�k + �

′
k], (7.27)

where:

�k =
1
T

T∑
t=k+1

ht (θ , S1t , S2t )ht−k(θ , S1t , S2t )
′. (7.28)

Harding and Pagan (2006) recommend the window width, m, to be the integer

part of (T − 1)1/3.
Let θ

′
0 = [μ1,μ2, 0] be the restricted parameter vector for H0 : ρS = 0, with no

common cycle between S1 and S2 under this null hypothesis. The test statistic:

WSNS =
√

Tg
(
θ0, {S1t , S2t }Tt=1

)′
V−1√Tg

(
θ0, {S1t , S2t }Tt=1

)
, (7.29)

follows an asymptotic chi-square distribution with one degree of freedom. Sub-
stituting sample means, μ̂1 and μ̂2, and the sample correlation, rs, for their
population counterparts does not affect the asymptotic distribution of WSNS.
Substituting sample moments for population moments reduces WSNS to:

WSNS = T(rs − 0)̂v−1
(rs − 0), (7.30)

where v̂ is the lower right-hand element of V̂ . An equivalent test statistic is the

asymptotic t-ratio, tSNS = T1/2v̂−1/2rs
a� N(0, 1).

Closely related tests are the market-timing test of Pesaran and Timmermann
(1992) and Pearson’s chi-square test for independence. For instance, Artis,
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Kontolemis and Osborn (1997) and Artis, Krolzig and Toro (2004) use either
Pearson’s test or a transformation of the concordance index to test whether the
series {S1t } and {S2t } are unrelated. However, consider that the method of moments
test essentially examines the moment condition implied by the covariance, that
is, E(S1S2) − E(S1)E(S2) − σs = 0. The null hypothesis is H0 : σs = 0. Observe,
however, that σs = p12 − p1p2, where p12 = P(S1 = 1, S2 = 1), p1 = P(S1 = 1), and
p2 = P(S2 = 1). The method of moments test thus effectively determines whether
S1 and S2 are statistically independent, p12 = p1p2, and this is exactly the goal of
Pearson’s test.

Of course, a critical assumption behind Pearson’s test is that observations in the
sample are statistically independent. This assumption clearly fails in this case since
the state variables, S1 and S2, exhibit strong serial dependence; see, for example,
Kedem (1980). Since the market timing and concordance index tests also assume
that observations are statistically independent, the robust covariance matrix of
Harding and Pagan’s method of moments test offers an improvement since it allows
for serial correlation and heteroskedasticity of unspecified type.

7.7.2.2 Regression-based tests

On the other hand, the problems induced by serial correlation and heteroskedas-
ticity can be significantly lessened by separating contractions from expansions
and by incorporating time dependency into the model. The very nature of dura-
tion dependence will most surely differ across expansions and contractions; even
if both phases exhibit constant hazards, regression disturbances are generally
heteroskedastic if observations on expansions are not separated from those on con-
tractions. So, when testing for synchronization, we should separate expansions
from contractions. Define the dependent binary variable so that S2t = 0 if the
contraction continues and S2t = 1 if the contraction terminates. For expansions,
consider 1− S2t instead of S2t . Our sub-sample thus consists of strings like:

Jan Feb Mar Apr ... Sep Oct Nov Dec Jan Feb ... Jun Jul
S2t 0 0 0 1 ... 0 0 0 0 0 1 ... 0 0
S1t 0 0 1 1 ... 0 1 1 1 0 0 ... 0 0

In this example, for S2 there are two complete contractions of respective length
T1 = 3 and T2 = 5, and one incomplete contraction of length T3 = 2. The number
1 signifies the beginning of a new phase, in this case an expansion. Of course, S1t =
S2t should be the predominant case if there is a high concordance. By considering
the phases separately, we are able to address problems of time dependency and
heterogeneity. The statistical method we propose employs logistic regression and
is similar in spirit to Pagan’s (1998) regression-based test. To test for dependence
between S1 and S2, let S2 be the dependent variable in the logistic regression:

log(P(t)/(1− P(t)) = a(t)+ βS1t . (7.31)

The term a(t) consists of a set of dummy variables, one for each possible exit
period, that controls for autonomous changes in the exit probability, P(t). That
is, a(t) accounts for the duration dependence, or serial correlation, in the series
{S2t }. Having removed the time dependence captured by a(t), the slope coefficient,
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β, captures the statistical dependence between S2 and S1. Our null hypothesis,
H0 : β = 0, corresponds to statistical independence, and thus to H0 : σs = 0. The
form of the above regression is identical for expansions, and completely analogous
regressions can be employed for the alternative dependent variable, S1. Finally, it
is possible to use linear regression rather than logistic regression. For large samples,
however, estimation efficiency is improved by using logistic regression.

7.8 Unemployment cycles

If the most important measure of aggregate economic well-being is output, then
surely the second most important is unemployment. Although unemployment
cycles are interesting to academics, policy makers, and the general public, most of
the attention in the academic literature is on output cycles. Exceptions are Boldin
(1994), Chin, Geweke and Miller (2000), and Hamilton (2005), whose work focuses
on unemployment cycles.

Even though we anticipate high unemployment during GDP contractions and
low unemployment during GDP expansions, the output and unemployment series
offer separate pieces of information about the economy. Even if we use the same
rules to mark turning points for unemployment and output, we do not expect
perfect negative synchronization – that is, necessarily increasing levels of unem-
ployment during periods of decreasing output, and vice versa. It is thus of interest
to determine the degree of synchronization, to compare the shapes of output
and unemployment cycles, and to perform a separate duration analysis for the
unemployment series.

7.8.1 Cycle shapes

Our data are the logarithmic monthly Bureau of Labor Statistics (BLS) seasonally
adjusted civilian unemployment rate series from 1948:1 through 2007:1.15 Figure 7.3
plots the unemployment rate series and for comparison marks the NBER dated
business cycle recessions. Table 7.1 presents the unemployment rate reference dates
determined by the BBQ algorithm. We set the minimum phase to 9 months and
the minimum cycle to 18 months. These censoring rules visually mark the turn-
ing points in unemployment much better than those employed by Harding and
Pagan (2002) to mark the turning points in output – namely, a minimum phase of
6 months and a minimum cycle of 15 months. Our censoring rules also mark the
turning points in unemployment much better than does the Extended Okun Rule
that considers only whether there are two consecutive months opposite the prevail-
ing phase. There are 10 post-war completed spells of contraction, or downswings, in
the unemployment rate, lasting an average of 48 months with a standard deviation
of 30 months. There are 9 post-war completed spells of expansion, or upswings, in
the unemployment rate, lasting an average of 22 months with a standard devia-
tion of 10 months. Similar results are obtained from using quarterly data with a
minimum phase of 3 quarters and a minimum cycle of 6 quarters.

The average amplitudes of upswings and downswings are the same in magnitude.
The average amplitude of downswings is −0.55 with a coefficient of variation of
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Figure 7.3 US civilian unemployment rate
Note: Unemployment data are from the US Bureau of Labor Statistics, and business cycle dates are from
the National Bureau of Economic Research.

Table 7.1 Unemployment rate cycle dates: 1948–2006

Reference dates Duration in months

Peak Trough Contraction Expansion Cycle

Previous Trough from Peak from
Peak to trough to previous previous
trough this peak trough peak

Oct 1949 June 1953 44 − − −
Sep 1954 Mar 1957 30 15 45 59
Jul 1958 Feb 1960 19 16 35 46
May 1961 May 1969 96 15 111 34
Aug 1971 Oct 1973 26 27 53 123
May 1975 May 1979 48 19 67 45
Jul 1980 Jul 1981 12 14 26 62
Dec 1982 Mar 1989 75 17 92 29
Jun 1992 Apr 2000 94 39 133 114
Jun 2003 Jun 2006 36 38 74 132

Summary statistics
No. of phases 10 (9) 9 (10)
Average length 48.0 (59.1) 22.2 (10.4)
Standard deviation 30.3 (38.0) 10.0 (3.3)

Note: NBER business cycle summary statistics are in parentheses. Unemployment contractions are
paired with business cycle expansions, and unemployment expansions are paired with business
cycle contractions.
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−0.55, and the average amplitude of upswings is 0.55 with a coefficient of vari-
ation of 0.33. Since falls in unemployment appear about evenly matched with
rises in unemployment, this lends some credence to the idea of a natural rate.
The overall sample average unemployment rate is about 5.61%, although at times
there were large deviations from the average. For example, in November 1982 the
unemployment rate reached a high of 10.8%.

There are, however, significant differences between upswings and downswings.
For downswings, the average cumulative movement is Fc = −18.43, the average
excess is C = −0.046 and the coefficient of variation in the excess is −1.32. For
upswings, the average cumulative movement is Fe = 6.40, the average excess is
E = 0.009 and the coefficient of variation in the excess is 5.70. The average cumu-
lative movement in downswings is well over twice the magnitude of the cumulative
movement in upswings; this is consistent with the longer average duration of
downswings. From the average excess C, employment tends to fall at a decreas-
ing rate during contractions, or downswings, and from E, employment tends to
rise at a decreasing rate during expansions, or upswings. The steep initial decline
in unemployment during downswings is more prominent than the steep initial
ascent in unemployment during upswings. In fact, from the coefficient of varia-
tion, there is much more relative variability in the excess for upswings than for
downswings. Long durations in downswings, large cumulative movements, and
stable excess across downswings all reflect favorably on current economic policy.

7.8.2 Synchronization with business cycles

From Figure 7.3, cycles in output and unemployment appear highly synchronized.
However, even though there are about as many turning points in the unemploy-
ment cycle as there are in the business cycle (see the summary statistics in Table
7.1), the two binary series representing unemployment and output are not per-
fectly correlated. Let S1t = 1 if output is rising and S2t = 1 if unemployment is
rising; also let S1t = 0 if output is falling and S2t = 0 if unemployment is falling.
The coincidence indicator for the binary series is Î = 0.17 and the correlation
between them is rs = −0.61. In other words, about 83% of the time rising output
is associated with falling unemployment.

We can test the null hypothesis H0 : ρs = 0 by using Harding and Pagan’s (2006)
method of moment test. With a bandwidth of either m = 8 or m = 9 we find
that tSNS is about −5.5, and thus we reject the null hypothesis that unemploy-
ment and output are statistically independent. Regression-based tests yield the
same conclusion. Unemployment and output appear to be statistically dependent.

Separating upswings from downswings in unemployment provides an important
insight. When measured at monthly intervals with our censoring rules, falling
unemployment is coincident with rising output, though rising unemployment
is not necessarily coincident with falling output. In fact, conditional on rising
unemployment, output is falling only about half the time. In other words, unem-
ployment is perfectly synchronized with output when unemployment is falling,
but it is a coin toss when unemployment is rising.
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7.8.3 Duration analysis

If expansions, or upswings, in the unemployment rate exhibit positive duration
dependence, then upswings with longer maturities have a higher chance of ter-
minating than those with shorter maturities. The hazard tends to rise with the
duration of the event, and the average duration is greater than the standard devi-
ation. In the opposite case, called negative duration dependence, the hazard tends
to fall with the duration of the event, and the average duration is less than the
standard deviation. Duration independence is characterized by neither of the above
cases. For instance, the probability that unemployment exits an expansionary state
and enters a contractionary state is constant regardless of how long the upswing
has lasted.

The average duration of 22 months for upswings is more than twice the sample
standard deviation of 10 months; this suggests that rises in unemployment exhibit
positive duration dependence. Likewise, the average duration of 48 months for
downswings is larger than the sample standard deviation of 30 months; this also
suggests positive duration dependence, though such descriptive evidence is not
as strong as it is for upswings. We can formally test for duration dependence by
using the discrete-time SB and GMD tests from Ohn, Taylor and Pagan (2004). We
subtract months from each of the observed durations to be consistent with our
BBQ censoring rules.16

We analyze upswings and downswings separately. Under the null hypothesis
of duration independence, the estimated termination probability for upswings is
0.076, but the estimated termination probability for downswings is only 0.025.
However, neither SB nor GMD indicate duration dependence for either upswings
or downswings. Finite-sample p-values are obtained through a parametric boot-
strap algorithm, with the discrete-time geometric density corresponding to the
null hypothesis of duration independence. Sensitivity analysis is performed by
varying the termination probability to account for sampling variability in esti-
mation. Since our calculated p-values are always considerably greater than 0.10,
we cannot reject the null hypothesis that the probability of exiting a state of
national unemployment is independent of its duration at the 10% significance
level. As a further robustness check, we also employ the asymptotic LSB t-test and
the continuous-time W-test from Shapiro and Wilk (1972). The distribution of W
depends neither on the termination probability nor on the minimum phase, with
finite-sample critical values tabulated by Shapiro and Wilk (1972). Consistent with
SB and GMD, neither LSB nor W reject duration independence for either upswings
or downswings in unemployment.

In comparision, Ohn, Taylor and Pagan (2004) find some evidence that post-war
economic contractions exhibit positive duration dependence, though there is no
such evidence for post-war expansions. However, such lack of evidence is not too
surprising in light of the small number of completed cycles. For instance, post-
war sample sizes are too small to employ the chi-square goodness-of-fit test for
comparison with SB and GMD.
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Figure 7.4 Downswings
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Figure 7.5 Upswings

Figures 7.4 and 7.5 present nonparametric plots of the hazard functions via the
life table method of Cutler and Ederer (1958). The hazard functions for both down-
swings and (especially) upswings can be characterized as NBU, or perhaps even the
more narrow classes, IFRA or IFR. The hazard function for upswings exhibits a
local peak at 15 months, dropping at 16 months, and ascending thereafter. The
rising hazard is consistent with the sharply rising hazard function for economic
contractions observed by Ohn, Taylor and Pagan (2004). The hazard function for
downswings exhibits strong IFR behavior with an upward trend, and this coincides
well with the nonparametric hazard function for economic expansions from Ohn,
Taylor and Pagan. For comparison, we also graph the parametric Weibull hazard
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rates. In each case, the Weibull hazards indicate positive duration dependence.
On the other hand, for upswings the parametric Weibull hazard fails to reflect the
clustering of exits at 15–16 months.

We obtain further insights about the hazard functions through a regression
analysis.17 Our approach is most closely related to Estrella and Mishkin (1998)
and especially that of Chin, Geweke and Miller (2000). For example, as did Chin,
Geweke and Miller, we separate upswings from downswings to obtain separate esti-
mates of the coefficients that control the hazard probabilities. As a point of contrast,
our sample consists of monthly observations on unemployment from January 1948
through January 2007, whereas the sample of Chin, Geweke and Miller consists
of monthly observations on unemployment from October 1949 through February
1998. We employ BBQ rules similar to those used for business cycles, whereas Chin,
Geweke and Miller employ a three-month centered moving average rule subject to
a threshold condition. Using either set of rules, the average upswing lasts roughly
23 months, and the average downswing lasts roughly 50 months; to be exact, for
downswings we found an average of 48 months while Chin, Geweke and Miller
found an average of 51 months.

Chin, Geweke and Miller employ probit estimation, closely related to our logit
estimation. We favor logit estimation, however, since its use follows directly from
the seminal work of Cox (1972). An additional difference is that, as is customary,
we set our binary dependent variable to unity only in the month of a turning point,
whereas they set the binary variable to unity in month t if a turning point occurs in
months t+1, . . . , t+12. Chin, Geweke and Miller construct artificial observations to
control for overfitting of the model at highly leveraged values of the independent
variables, but we employ a sensitivity analysis to determine whether our results are
robust to dropping spells from the sample each in turn. For instance, we consider
estimates from the full set of post-war contractions as well as contractions but for,
say, the fourth one.

Unlike Estrella and Mishkin (1998) and Chin, Geweke and Miller (2000), we
eliminate observations from the beginning of each spell to account for censoring.
That is, we eliminate the first nine observations from each observed spell since the
minimum phase duration allowed for either upswings or downswings is nine. As
per the classical approach, we include dummy variables to allow for autonomous
shifts in the hazard probabilities. In contrast, neither Estrella and Mishkin nor
Chin, Geweke and Miller consider that duration dependence may be autonomous.
That is, they do not allow hazard probabilities to change with the duration of the
spell, independently of any change in time-varying covariates.

Harding and Pagan (2007) show that most binary time series constructed
from the BBQ algorithm using NBER censoring rules are serially correlated with
heteroskedastic disturbances. As is well known, either one of serial correlation
or heteroskedasticity will typically lead to invalid inference. Furthermore, serial
correlation in the binary time series, {St }, typically implies autonomous dura-
tion dependence in the spells of both contractions and expansions. Harding
and Pagan account for autonomous duration dependence by directly modeling
serial dependence in the state variable, St . Observe, however, that modeling the
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serial dependence is infeasible once contractions are separated from expansions
to eliminate heteroskedasticity in the disturbances. Suppose, for example, that St
follows the second-order process:

St = γ1St−1 + γ2St−2 + γ3St−1St−2 + ut . (7.32)

Having conditioned on either contractions or expansions, then St−1 = 0 and
St−2 = 0, and it is thus infeasible to directly estimate equation 7.32. On the other
hand, it is still possible to estimate the autonomous hazard function. Indeed, semi-
parametric estimation of the autonomous hazard function is a very direct approach
that addresses the same goal of accounting for the serially dependent nature of St .
In other words, conditioning the constructed binary series on the states allows for
estimation of the hazard function while eliminating the need to model potential
serial dependence and heteroskedasticity in the state variable, St .

Consider first downswings with binary dependent variable St , such that St = 1
signifies a turning point towards rising unemployment. By considering only down-
swings, we eliminate one type of heteroskedasticity that occurs when upswings
and downswings are considered together; see Hamilton (1989). Define the follow-
ing autonomous-shift dummy variables: D1 = 1 for months 1–20, inclusive, and
D1 = 0 otherwise; D2 = 1 for months 21–30, inclusive, and D2 = 0 otherwise;
and D3 = 1 for periods >30 and D3 = 0 otherwise.18

Our first model is:

log(P(t)/(1− P(t)) = a1D1t + a2 D2t + a3D3t , (7.33)

with estimates of the a′s reported in the second column of Table 7.2. Each of
the coefficients is significant at the 5% level of significance. The hazard, or exit,
probability is given by the formula:

Pi = 1/[1+ exp(−ai)]. (7.34)

The estimated exit probability is about 0.019 in any month in the interval 10–20,
about 0.013 in any month in the interval 21–30, and about 0.031 in any month

Table 7.2 Logit estimation: downswings in unemployment

Variables Equation 1 Equation 2 Equation 3

a(t): Autonomous shift variables
D1t −3.922 (.0000) −3.947 (.0000) −4.769 (.0000)
D2t −4.331 (.0000) −4.362 (.0000) −5.515 (.0000)
D3t −3.434 (.0000) −3.447 (.0000) −5.053 (.0000)

x: Fixed exogenous variables
Lagged upswing – −.00025 (.8104) –

x(t): Changeable exogenous variables
(R− r)t − (R− r)0 – – −0.726(.0181)
CUt − CUt−1 – – −0.628(.1379)

Note: p-values in parentheses.
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Table 7.3 Logit estimation: upswings in unemployment

Variables Equation 1 Equation 2 Equation 3

a(t): Autonomous shift variables
D1t −2.526 (.0000) −1.326 (.0754) −3.677 (.0004)
D2t −3.300 (.0012) −0.872 (.6336) −4.813 (.0011)
D3t −2.140 (.0042) 0.186 (.9101) −3.543 (.0107)

x: Fixed exogenous variables
Lagged downswing − −0.028(.1158) −

x(t): Changeable exogenous variables
(R− r)t − (R− r)0 − − 0.338 (.3659)
CUt − CUt−1 − − 2.170 (.0005)

Note: p-values in parentheses.

greater than 30. These values are very close to those obtained from the linear
probability model – that is, by employing least squares with dependent variable
St and interpreting the a′s from that model as probabilities. The implication is a
U-shaped hazard for unemployment contractions. However, at the 5% significance
level, the asymptotic likelihood ratio test from the logit model does not reject the
null hypothesis of constant-hazard probabilities, H0 : a1 = a2 = a3.

Consider next expansions with binary dependent variable 1 − St , such that 1−
St = 1 signifies a turning point towards falling unemployment. For model (7.33),
the estimates of the a′s are reported in the second column of Table 7.3. Each of the
coefficients is significant at the 5% level. The estimated exit probability is about
0.074 in any month in the interval 10–20, about 0.036 in any month in the interval
21–30, and about 0.105 in any month greater than 30. Again, these values are very
close to those estimated by the linear probability model. Consistent with our life
table analysis, the estimated hazard function rises much more rapidly for upswings
than for downswings in unemployment. However, we again fail to reject the null
hypothesis of constant-hazard probabilities, H0 : a1 = a2 = a3, for upswings in
unemployment.

Other variables may also influence the hazard probabilities. Our second equation
in Table 7.2 augments the dummy variables with the duration of the immediately
preceding (or lagged) upswing, and our second equation in Table 7.3 augments
the dummy variables with the duration of the lagged downswing. Since neither
lagged value is statistically significant, there is insufficient evidence from the logit
model to conclude that the length of the current phase is influenced by the length
of the preceding phase. In contrast, evidence from the linear probability model
does suggest that the lag effect is important for upswings in unemployment. On
average, the longer the preceding downswing, the shorter the current upswing.

Finally, we consider including the time-varying explanators examined by Chin,
Geweke and Miller (2000). Let the symbol 0 signify the date of the last turning
point prior to the date t . Then (URt − UR0), (CUt − CU0), and [(R− r)t − (R− r)0]
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are the respective differences in the values of unemployment (UR), the manufac-
turing capacity utilization rate (CU) and the spread between the monthly average
of Moody’s Aaa corporate bond rate and the monthly average of the 90-day trea-
sury bill rate (R− r). The differences in these variables are measured from the start
of the phase, t0, up to time t . Logit or probit models can be adapted easily to
incorporate such explanators that vary over time, and one purpose for including
them is to account for non-stationarity of the turning points – or, in other words,
duration dependence captured by covariates; see also Pesaran and Potter (1997).
We also include in our regression equations the dummy variables D1, D2 and D3
that account for autonomous shifts in the hazard probabilities, as well as the first
differences in UR, CU , and (R− r) that measure changes from time t − 1 to t .

Of the six time-varying explanators, only two were deemed important in our
logit model: the change in the interest rate spread from time t0 and the change
in capacity utilization from time t − 1: �CUt = CUt − CUt−1. The interest rate
spread typically increases about 2 percentage points over the life of an upswing,
and decreases about 2 percentage points over the life of a downswing. We expect
the hazard probability for downswings to be inversely related to the change in
the spread from time t0, and the hazard probability for upswings to be directly
related to the change in the spread from time t0. Inclusion of the interest rate
spread corrects for drift in the hazard, though not in the same manner as do the
autonomous-shift dummy variables.

From Tables 7.2 and 7.3, the signs on the spread coefficients are consistent with
our prior reasoning. The coefficient on the spread is, however, statistically signifi-
cant only for downswings. Thus, ceteris paribus, a large interest rate spread lowers
the termination probability for a downswing in unemployment (a healthy labor
market) but does not increase the termination probability for an upswing in unem-
ployment. In other words, having controlled for autonomous shifts in the hazards,
the interest rate spread has no discernable effect during unemployment upswings.

The economic interpretation of the change in capacity utilization is straightfor-
ward. An increase in utilization from time t − 1 should increase labor usage at
time t , and a decrease in utilization should decrease labor usage. The signs on the
coefficients in Tables 7.2 and 7.3 are again consistent with our prior reasoning.
However, in this case the coefficient on utilization is statistically significant only
for upswings in unemployment. Therefore, a decrease in capacity utilization has
no discernable effects in good labor markets, but an increase marks a turnaround
in bad labor markets. As a thought experiment, suppose that D1 = 1 but that all
other variables are set to zero in the equation for upswings. The termination prob-
ability for this relatively young upswing is only about 0.025 using the estimated
coefficient for D1 in the fourth column of Table 7.3. Consider increasing capacity
utilization by 1 percentage point, say from 85% to 86%. With this change, the
termination probability increases to about 0.18, a sevenfold increase in the haz-
ard. Thus, as intuitively expected, labor fares substantially better when capital is
reutilized.

At the 5% significance level, the above empirical results on the interest rate
spread and capacity utilization are robust to whether we include either the
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autonomous-shift dummy variables or lagged term. For with a single intercept,
there is a constant hazard unless time-varying covariates actually change in value.
A single-intercept probit model was chosen by Estrella and Mishkin (1998) to fore-
cast turning points in US recessions, and by Chin, Geweke and Miller (2000) to
forecast turning points in US unemployment.

Our empirical results also appear quite robust to dropping each spell, in turn,
from the respective samples of either upswings or downswings. For example, we
estimate the logit model with the full sample of ten downswings, as well as with
the sample of nine downswings that excludes, say, the third spell. At the 5% signif-
icance level, our sensitivity analysis again indicates that the interest rate spread is
statistically significant for downswings and that capacity utilization is statistically
significant for upswings.

7.9 Conclusion

Duration analysis has many uses, both in academe and in industry. Consider that
in a recent issue of Business Week (January 22, 2007) there were two duration appli-
cations in separate fields. Hugh Moore of Guerite Advisors (Business Week, p. 13)
notes that the average amplitude in the fall of housing starts is 51% from peak to
trough, and the average amplitude in the fall of housing expenditures as a per-
centage of GDP is 28% from peak to trough. Housing corrections, or recessions,
last an average of 27 months. In the same issue (Business Week, p. 62), the global
macro-group for Barclays Global Investors (BGI) reports devising a set of signals,
or leading indicators, that predict turning points from recession to expansion in
various countries. Profits are realized by buying stock and shorting bonds before
the recovery is generally recognized. Using leading indicators is similar to using
covariates in a duration analysis.

In this chapter we have emphasized classical, nonparametric methods in the
duration analysis of unemployment cycles. The nonparametric turning point
algorithm from Harding and Pagan (2002), or BBQ, is derived from the classical
graphical approch of Burns and Mitchell (1946). The life table analysis follows
directly from Cutler and Ederer (1958), and the logit model derives from the sem-
inal work of Cox (1972). These classical techniques are just as relevant today as
when first introduced, and have both micro- and macroeconometric applications.

Consider the many economic studies of individual job histories. Adamchik
(1999), for example, uses the nonparametric Kaplan–Meier estimator and the
semiparametric proportional-hazards model in her study of the effect of unemploy-
ment benefits on re-employment in Poland. In a related study, Bover, Arellano and
Bentolila (2002) examine not only unemployment benefits, but also the relation-
ship between the unemployment duration of Spanish men and the business cycle.
In the latter study, they employ a logit model with autonomous shift dummies
that is closely related to Cox’s famous proportional-hazards model. The approach
is very flexible since Cox’s model is no longer proportional when explanators that
vary with time are included in the model. Following the early frontier work of
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Heckman and Singer (1984), Bover, Arellano and Bentolila (2002) then extend
their logit model to account for unobserved heterogeneity.

In more recent macroeconometrics literature, Mudambi and Taylor (1995), Pagan
(1998), and Ohn, Taylor and Pagan (2004) propose discrete-time tests for duration
dependence and use bootstrap methods for finite-sample inference. Harding and
Pagan (2002, 2006) propose new measures and tests for cycle asymmetries and
synchronization. The practical importance of duration analysis for aggregate series
is best illustrated by the March 28, 2007, testimony of Federal Reserve Chairman
Ben Bernanke to the Joint Economic Committee of Congress. In response to his
predecessor Alan Greenspan, who warned that the current expansion could be
fizzling out, Bernanke responded:

I would make a point, I think, which is important, which is there seems to be a
sense that expansions die of old age, that after they reach a certain point, then
they naturally begin to end. I don’t think the evidence really supports that. If we
look historically, we see that the periods of expansions have varied considerably.
Some have been quite long.

Bernanke thus discounts the notion that expansions exhibit positive duration
dependence. This view concurs with that of Ohn, Taylor and Pagan (2004), who
fail to reject the constant-hazard assumption for post-World War II expansions but
who do find statistically significant evidence of positive duration dependence in
pre-World War II expansions. On the other hand, consider that the lack of support
for positive duration dependence in the post-war period may be due to the small
sample size. The mean duration of post-war expansions is about 50 months with a
standard deviation of about 30 months. A mean larger than the standard deviation
suggests positive duration dependence.

Finally, in this chapter we have stressed the advantage of a separate analy-
sis of upswings and downswings in unemployment. Indeed, given a downswing
in unemployment, aggregate output is always rising, but given an upswing in
unemployment, the behavior of output is a coin toss. For a young spell of rising
unemployment, an increase in capacity utilization of 1 percentage point increases
by sevenfold the probability of a turning point from upswing to downswing. In
contrast, for downswings the interest rate spread appears to affect the termination
probability, and capacity utilization does not appear to matter.

7.10 Appendix: LIMDEP 7.0 program for jackknifing duration data

/*LIMDEP 7.0 PROGRAM FOR JACKKNIFING DURATION DATA, June 2007*/

READ ; FILE = LUexp.TXT ; ? DATA IN ASCII FORMAT

NVAR = 6; ? NUMBER OF VARIABLES

NOBS = 129; ? NUMBER OF OBSERVATIONS

NAMES = SB,D1,D2,D3,BUS,PHASE $ ? VARIABLE NAMES

/* ADD “;TEMP = TFILE” FOR LARGE DATA SETS.
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SB: SET SB=0 IF THE EXPANSION CONTINUES, AND SET SB=1 IF THE

EXPANSION TERMINATES. THUS, SB=1 SIGNIFIES THE BEGINNING OF A

CONTRACTION. CENSORING IS OBTAINED BY ELIMINATING SOME OF

THE OBSERVATIONS WITH SB=0. TO IMPOSE A MINIMUM DURATION OF ONE

MONTH, ELIMINATE THE FIRST OBSERVATION OF EACH PHASE. TO IMPOSE

A MINIMUM DURATION OF TWO MONTHS, ELIMINATE THE FIRST TWO

OBSERVATIONS OF EACH PHASE, AND SO ON.

D1,D2,D3: AUTONOMOUS CHANGE DUMMY VARIABLES.

PHASE: SET PHASE=1 FOR THE FIRST EXPANSION, PHASE = 2 FOR THE

SECOND EXPANSION, AND SO ON, UP TO PHASE=L FOR THE LAST

EXPANSION, “L”.*/

LIST; SB,D1,D2,D3 $

NAMELIST; Z = D1,D2,D3 $ NAMES OF RIGHT-HAND-SIDE VARIABLES

REGRESS ; LHS = SB ; RHS = Z ; PDS=5 $ ORDINARY LEAST SQUARES

LOGIT ; LHS = SB; RHS = Z $ LOGISTIC REGRESSION

CALC ; MP = MAX(PHASE) $ CALCULATE THE NUMBER OF PHASES

PROC

SAMPLE; ALL$

REJECT ; PHASE = I $ ELIMINATE THE ITH PHASE.

REGRESS; LHS = SB; RHS = Z ; PDS = 5 $

LOGIT ; LHS = SB; RHS = Z $

ENDPROC

EXECUTE ; I = 1,MP $

STOP
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Notes

1. For the reader interested in a concise discussion focused on measuring business cycles,
see Harding and Pagan (2008).

2. The NBER URL is http://www.nber.org/cycles.html.
3. The Bry–Boschan (BB) program was originally designed for monthly data. James Engel,

Don Harding and Mark Watson have each written or modified GAUSS programs that are
similar to BB. The “Q” in the moniker BBQ stands for “quarterly” intervals even though
BBQ easily accommodates either monthly or quarterly intervals. Our BBQ program is a
derivative of the one written by Don Harding and is available upon request.
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4. Teräsvirta (2006) provides an overview of MS and other types of univariate nonlinear
time series models.

5. Our list of techniques to mark time is not exhaustive. Boldin (1994) reviews five tech-
niques to mark time for business cycles: the NBER business cycle dating committee;
GDP growth rules; the Commerce Department’s Bureau of Economic Analysis (BEA)
indicators; Stock and Watson’s (1989, 1991) indicators; Stock and Watson’s (1989, 1991)
experimental business cycle indices; and a Markov-switching model for unemployment.

6. A nice introduction to continuous-time duration analysis is Greene (2006, pp. 710–12).
Another good overview of duration techniques, discrete or continuous, is the chapter
on transition data in the microeconometrics text by Cameron and Trivedi (2005, pp.
573–608).

7. If the length of an economic contraction is influenced by the length of the preceding
expansion, and vice versa, the assumption of statistical independence is violated. Like-
wise, an economic contraction caused by an especially bad harvest could behave very
differently from a contraction that occurs during the normal operation of modern mar-
ket economies. These problems can be handled when modeling with covariates. Another
way to help ensure homogeneity across spells of expansion and contraction is to seg-
ment the time line into distinct sampling periods with the same underlying probability
distributions; see, for example, Diebold and Rudebusch (1990).

8. Watson’s (1994) pre-war sampling period ranges from roughly 1860 through 1929, and
his post-war sampling period ranges roughly from 1947 through 1990.

9. A realization from a so-called life distribution cannot be negative. The term “life distri-
bution” is coined from the study of mortality, where many of these distributions were
first employed.

10. Our notation for the time indices slightly abuses notation since there are gaps in the
time line for a phase analysis of either contractions or expansions.

11. For instance, Chin, Geweke and Miller (2000) use covariates to capture drift in the hazard
function. However, conditional on the x values, their hazard function is constant since
it does not explicitly depend on the duration of the phase.

12. The transition probability for the latent state variable in the Durland and McCurdy
(1994) Markov-switching model has a logit form. But {St } is not the same as {S∗t }, and
there is no reason to consider the latter for the purpose of a duration analysis.

13. Vahid (2006) surveys both parametric and nonparametric methods of uncovering com-
mon cycles in multiple series. Our focus is on nonparametric methods that employ the
binary variables S1 and S2. In contrast, to investigate synchronization in output across
the G7 countries, Stock and Watson (2003) focus on the correlation between �y1 and
�y2.

14. As shown by Hamilton (1989), a primary reason for the heteroskedasticity is hetero-
geneous transition probabilities across contractions and expansions.

15. The series ID is LNS14000000, and is available from the US Department of Labor, Bureau
of Labor Statistics (http://stats.bls.gov).

16. Ohn, Taylor and Pagan (2004) refer to imposing a minimum phase jointly with the
assumption of duration dependence as the Markov hypothesis. An alternative to subtract-
ing the minimum phase is to incorporate the phase restriction into the econometric
model. For instance, Harding and Pagan (2003) show that for a two-quarter minimum the
base model that includes St−1 is extended by including the variables St−2 and St−1St−2.

17. Our LIMDEP program for the regression analysis is presented in the appendix
(section 7.10).

18. Because of the limited number of post-war expansions in unemployment, it is not possi-
ble to include a dummy variable for each possible exit time. Further, the effective range
for D1 is 10–20 since it is not possible for the spell to terminate in the first nine months
due to censoring.
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8
The Long Swings Puzzle: What the Data
Tell When Allowed to Speak Freely
Katarina Juselius

Abstract

The persistent movements away from long-run benchmark values in real exchange rates that are
often observed in many real exchange rates during periods of currency float have been subject
to much empirical and theoretical research without resolving the underlying puzzle. This chapter
demonstrates how the cointegrated VAR approach of grouping together components of similar
persistence can be used to uncover structures in the data that ultimately may help to explain
theoretically the forces underlying such puzzling movements. The characterization of the data
into components which are empirically I(0), I(1) and I(2) is shown to be a powerful organizing
principle, allowing us to structure the data into long-run, medium-run, and short-run behavior. Its
main advantage is the ability to associate persistent movements away from fundamental bench-
mark values in one variable/relation with similar persistent movements somewhere else in the
economy.
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8.9.3 The estimated driving forces 378
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8.10 Conclusions 380

8.1 Introduction

International macroeconomics is known for a number of empirical puzzles, the
most notable among them being the “PPP (purchasing power parity) puzzle,” which
is closely related to the “long swings puzzle” and the “exchange disconnect puzzle”
(Rogoff, 1996). These puzzles are all related to the pronounced persistence away
from equilibrium states that have been observed in many real exchange rates during
periods of currency float. Among these, the Dmk–$ rate in the post-Bretton Woods
period is one of the more extreme cases.

One important purpose of this chapter is to demonstrate how the cointegrated
vector autoregressive (CVAR) approach (Johansen, 1995; Juselius, 2006) can be used
to uncover structures in the data that ultimately may help to explain theoretically
the forces underlying such persistent movements in the data. The CVAR approach
starts from a general unrestricted VAR model that gives a good characterization of
the raw data. It then tests down until a parsimonious representation of the data
with as much economic content as possible has been achieved. When properly
applied, the CVAR is able to extract valuable information about the dynamics of
the pulling and pushing forces in the data without distorting this information.
This entails the identification of stationary relationships between non-stationary
variables, interpretable as long-run equilibrium states, and the dynamic adjustment
of the system to deviations from these states. It also entails the identification of
the transitory and permanent shocks that have affected the variables and the short-
and long-run impacts of these shocks.

For the results to be reliable, the statistical properties of the model have, however,
to be taken seriously. This implies adequately controlling for reforms, interven-
tions, regime changes, etc., that are often part of the data-generating mechanism.
The reunification of East and West Germany is an example of such an important
event. The approach also entails the untying of any transformation of the vari-
ables, such as the real exchange rate transformation, imposed from the outset on
the data. Such transformations, common in empirical economics, often seriously
distort signals in the data that otherwise might help to uncover precisely those
empirical regularities which give a clue to the underlying reasons for the puzzling
behavior.

The weight of the empirical analysis is on characterizing data within the broad
framework of a theory model. To facilitate the interpretation of the empirical
results, the chapter argues that it is essential first to translate the underlying
assumptions of the theoretical model into hypotheses on the pulling and push-
ing forces of the VAR model (Juselius and Johansen, 2006; Juselius, 2006; Juselius
and Franchi, 2007). A careful formulation of such a scenario is indispensable for
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being able to structure and interpret the empirical results so that empirical regular-
ities either supporting or rejecting the theoretical assumptions become visible. In
particular, the latter are valuable as they should ultimately lead to empirically more
relevant theory models. Thus, to some extent, the CVAR approach switches the role
of theory and statistical analysis in the sense of rejecting the privileging of a priori
economic theory over empirical evidence. In the language of the CVAR approach,
empirical evidence is the pushing force and economic theory is adjusting (Hoover,
Johansen and Juselius, 2008).

The approach will be illustrated with an empirical analysis of the long swings in
real exchange rates based on German and US prices and the Dmk–$ rate over the
period 1975:09–1998:12. Using the above decomposition into pulling and pushing
forces, the empirical analysis identifies a number of “structured” (rather than styl-
ized) facts describing important empirical regularities underlying the long swings
puzzle. These provide clues suggesting where to dig deeper (see Hoover, 2006) to
gain an empirically more relevant understanding of the puzzling behavior in the
goods and foreign exchange markets.

To structure the data as efficiently as possible, this chapter argues that the order
of integration, rather than being regarded as a structural parameter, should be con-
sidered an empirical approximation, measuring the degree of persistent behavior in
a variable or a relation. Organizing the data into directions where they are empir-
ically I(0), I(1) or I(2) is not the same as claiming they are structurally I(0), I(1)
or I(2). In the first case, some implications of the statistical theory of integrated
processes are likely to work very well, such as inference on structures; others are
likely to work less well, such as inference on the long-run values towards which
the process converges when all the errors have been switched off. The focus of this
chapter is on structure rather than long-run values (Johansen, 2005).

The statistical analysis suggested that the two prices (and possibly even the nom-
inal exchange rate) were empirically I(2). Thus another important aim of this
chapter is to discuss the I(2) model, how it relates to the I(1) model, and what
can be gained by interpreting the empirical reality within the rich structure of the
I(2) model. Because the I(2) model is also more complex, the analysis is first done
within the I(1) model, emphasizing those signals in the results suggesting data are
I(2). Though most of the I(1) results can be found in the I(2) model, the chapter
demonstrates that the I(2) results are more precise and that the I(2) structure allows
for a far richer interpretation.

The exposition of the chapter is as follows. Section 8.2 defines the I(1) and I(2)
models as parameter restrictions on the unrestricted VAR. Section 8.3 introduces
the persistent features of the real exchange rate data for the German–US case and
discusses how they can be formulated as the pulling and pushing forces of a CVAR
model. Section 8.4 discusses under which conditions I(2) data can be modeled with
the I(1) model, why it works, and how the interpretation of the results has to be
modified. Section 8.5 presents the empirical I(1) analysis of prices and nominal
exchange rates inclusive of specification testing and estimation of the long-run
structure. Section 8.6 gives a brief account of the I(2) model and discusses at some
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length the specification of the deterministic components. Section 8.7 discusses an
estimation procedure based on maximum likelihood and shows how the I(2) struc-
ture can be linked to the I(1) model. Section 8.8 provides hypothetical scenarios
for the real exchange rate data. Section 8.9 presents the empirical results of the
pulling and pushing forces structured by the I(2) model, summarizes the puzzling
facts detected, and discusses what has been gained by this analysis compared to
the I(1) analysis. Section 8.10 concludes with a discussion of what the data were
able to tell when allowed to speak freely.

8.2 The VAR model

The baseline VAR(2) model in its unrestricted form is given by:

xt = �1xt−1 +�2xt−2 +�Dt + εt , (8.1)

with:

εt ∼ Np(0,�), t = 1, . . . , T ,

where x′t = [x1,t , x2,t , . . . xp,t ] is a vector of p stochastic variables and Dt is a vector
of deterministic variables, such as a constant, trend and various dummy variables.
As the subsequent empirical VAR model has lag two, all results are given for the
VAR(2) model. A generalization to higher lags should be straightforward.

In terms of likelihood, an equivalent formulation of (8.1) is the vector equilib-
rium correction form:

�xt = �1�xt−1 +�xt−1 +�Dt + εt , (8.2)

where �1 = −�2 and � = −(I−�1 −�2).
Alternatively, (8.1) can be formulated in acceleration rates, changes and levels:

�
2xt = ��xt−1 +�xt−1 +�Dt + εt , (8.3)

where � = −(I − �1). As long as all parameters are unrestricted, the VAR model is
no more than a convenient summary of the covariances of the data. As a result,
most VAR models are heavily overparameterized and insignificant parameters need
to be set to zero. The idea of general-to-specific modeling is to reduce the number
of parameters by significance testing, with the final aim of finding a parsimonious
parameterization with interpretable economic contents. Provided that the sim-
plification search is statistically valid, the final restricted model will reflect the full
information of the data. Thus, given the broad framework of a theory model, a cor-
rect CVAR analysis allows the data to speak freely about the underlying mechanisms
that have generated the data.

All three models are equivalent from a likelihood point of view, but (8.1) would
generally be chosen when xt is I(0), (8.2) when xt is I(1), and (8.3) when xt is I(2).
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The hypothesis that xt is I(1) is formulated as a reduced rank restriction on the
matrix �:

� = αβ
′ , where α,β are p× r, (8.4)

and that xt is I(2) as an additional reduced rank restriction on the transformed
matrix �:

α
′
⊥�β⊥ = ξη

′, where ξ , η are (p− r)× s1, (8.5)

where β⊥,α⊥ are the orthogonal complements of β and α. The first reduced rank
condition is formulated on the variables in levels, the second on the variables in
differences. Condition (8.4) tells us that the variables contain stochastic trends
(unit roots) that can be canceled by linear combinations. Condition (8.5) tells us
that the differenced process also contains unit roots when data are I(2). However,
in this case the linear combinations that cancel these roots are more complicated.
Thus, when xt ∼ I(2), and hence �xt ∼ I(1), it is not sufficient to impose the
reduced rank restriction on the matrix � to get rid of all (near) unit roots in the
model. This is because �xt is also a unit root process and lowering the value of r
does not remove the unit roots belonging to� = − (I− �1

)
. Therefore, even though

the rank of � = αβ
′ has been correctly determined, there will remain additional

unit roots in the VAR model when the data are I(2). As will be demonstrated below,
this provides a good diagnostic tool for detecting I(2) problems in the VAR analysis.

Inverting the VAR model gives us the moving average (MA) form. Under the
reduced rank of (8.4) and the full rank of (8.5), the MA form is given by:

xt = C
t∑

i=1

(εi +�Di)+C∗(L)(εt +�Dt )+ A, (8.6)

where C∗(L) is a lag polynomial describing the impulse response functions of the
empirical shocks to the system, A is a function of the initial values x0, x−1, x−2,
and C is of reduced rank p− r:

C = β⊥(α
′
⊥�β⊥)

−1
α
′
⊥ = β̃⊥α

′
⊥, (8.7)

with β̃⊥ = β⊥(α
′
⊥β⊥)

−1.
Inverting the VAR under the reduced rank of both (8.4) and (8.5) will be discussed

in section 8.6.

8.3 The persistent movements in real exchange rate data

Parity conditions are central to international finance and, more specifically, to
many open economy macro-models, such as the Dornbusch (1976) sticky-price
overshooting model with rational expectations (RE). One important implication
of this model and its modifications is that PPP should hold as an equilibrium cointe-
grating relationship (see Frydman et al., 2008, and references therein). The idea here
is to formulate the PPP condition under a currency float into testable hypotheses
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on the pushing and pulling forces of the cointegrated VAR model. Comparing
assumed with actual behavior is then likely to pinpoint the empirical mechanisms
underlying the puzzling behavior. Since the VAR model is just a reformulation of
the covariance information in the data, the end results should be a set of empir-
ical features which a theory model should be able to replicate in order to claim
empirical relevance.

8.3.1 The long swings puzzle

PPP is defined as:

p1 = p2 + s12, (8.8)

where p1 is the log of the domestic price level (here German), p2 is the log of the
foreign price level (here US), and s12 denotes the log of the spot exchange rate
(here Dmk–$). Thus, the departure at time t from (8.8) is given by:

pppt = p1,t − p2,t − s12,t .
1 (8.9)

An ocular inspection gives a first impression of the development over time of
prices and the nominal exchange rate and illustrates what the puzzle is all about.
Figure 8.1 (upper panel) shows that US prices have grown more than German prices,
resulting in a downward sloping stochastic trend in relative prices. According to
purchasing power parity, the nominal exchange rate should reflect this downward
sloping trend. The figure shows that this is also approximately the case over the
very long run. However, what is striking are the long swings around that downward
sloping trend.

How can we use econometrics to learn about the mechanisms underlying these
swings? The subsequent VAR analyis will demonstrate that the joint modeling of
prices and exchange rates allows us to formulate much richer hypotheses about
the empirical mechanisms behind the puzzle.

8.3.2 Pulling and pushing forces in the cointegrated VAR model

To provide the intuition for the VAR approach and to show how the results can be
interpreted in terms of pulling and pushing forces, a hypothetical VAR analysis
of the German–US PPP data will be used as an illustration. For simplicity, the
discussion will be restricted to a bivariate I(1) model for relative prices and the
nominal exchange rate. Because the period of interest defines a currency float, a
prior hypothesis is that the nominal exchange rate has been adjusting and prices
pushing. Provided that the stochastic trend in nominal exchange rates reflects the
stochastic trend in relative prices, it is easy to show that ppp = p1− p2− s12 ∼ I(0).
Thus the stationarity of PPP and its adjustment dynamics can be formulated as a
composite hypothesis: (p1−p2) = pp ∼ I(1), s12 ∼ I(1), ppp ∼ I(0), s12 is adjusting,
and p1, p2 are pushing.
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Figure 8.1 Time graphs of German and US prices (upper panel) and their relative prices and
nominal exchange rate (lower panel)

The pulling forces are described by the vector equilibrium correction model:[
�ppt
�s12,t

]
=
[

α1
α2

]
(ppt−1 − s12,t−1 − β0)+

[
ε1,t
ε2,t

]
,

where (ppt −s12,t −β0) = β
′xt is the cointegration relation with E(pppt ) = β0. Thus

an equilibrium position, defined as ppt − s12,t = β0, can be given an interpretation
as a resting point towards which the process is drawn after it has been pushed
away. In this sense, an equilibrium position exists at all time points, t , contrary to
the long-run value of the process, which is the value of the process in the limit as
t →∞ and all shocks have been switched off.

The pushing forces are described by the corresponding common trends model:[
ppt

s12,t

]
=
[

c
c

]
α
′
⊥

t∑
i=1

εi +C∗(L)
[

ε1,t
ε2,t

]
,

with α
′
⊥ = 1

α1−α2
[−α2,α1] and with α

′
⊥
∑t

i=1 εi describing the common stochas-

tic trend. Assume now that α
′ = [0,α2], i.e., only the nominal exchange rate is

equilibrium correcting when pppt − β0 �= 0. In this case α
′
⊥ = [1, 0] implies that

the common stochastic trend originates from relative price shocks. This would
conform to the theoretical prior for a period of floating exchange rates.

The question is now whether the empirical reality given by the observed variables
in Figure 8.1 (lower panel) can be adequately represented by the above assumed
pulling and pushing forces. Stationarity of pppt should imply that the nominal
exchange rate would follow relative prices one-for-one apart from stationary noise.
Figure 8.2 shows a cross-plot of the ppt and s12,t variables. If the assumption that
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0.6
A cross-plot between relative prices and the nominal exchange rate
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Figure 8.2 A cross-plot of US–German relative prices and the Dmk–$ rate for the period
1975:4–1998:12

pppt ∼ I(0) were correct, then the cross-plots should be randomly scattered around
the 45◦ line defining the equilibrium position ppt = s12,t . Obviously, the cross-plots

measuring the deviation from ppp, i.e., β ′xt = ppt − s12,t − β0, are systematically
scattered either above or below the 45◦ line. Thus the reality behind the observed
real exchange rate looks very different from the assumed stationary PPP illustrating
the puzzle. The non-stationarity of real exchange rates has been demonstrated in a
number of studies (see Froot and Rogoff, 1995, and MacDonald, 1995, for surveys;
Cheung and Lai, 1993; Juselius, 1995; Johansen and Juselius, 1992).

8.3.3 Approximating persistent behavior with I (1) or I (2)

The above ocular analysis showed that the long swings puzzle is essentially a ques-
tion of why nominal exchange rates have so persistently moved away from relative
prices. The previous sub-section suggested that the cointegrated VAR model should
be used to structure such data by the pulling and pushing forces. Section 8.3
defined the I(1) and I(2) models as reduced rank parameter restrictions on the I(0)
model, providing us with an empirically strong procedure for addressing behav-
ioral macroeconomic problems. This is because the reduced rank parameterization
of the CVAR allows us to group together components of similar persistence over
the sample period. The characterization of the data into empirically I(0), I(1) and
I(2) components is a powerful organizing principle, allowing us to structure the
data into long-run, medium-run and short-run behavior. An additional advantage
is that inference is likely to become more robust than otherwise. For example,
treating a near unit root as stationary tends to invalidate certain inferences based
on the χ

2, F and t distributions unless we have a very long sample.2
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This is a fairly pragmatic way of classifying data that allow a variable to be treated
as I(1) in one sample and I(0) or even I(2) in another. The idea is that, in a general
equilibrium world, a persistent departure from a steady-state value of a variable
or a relation should generate a similar persistent movement somewhere else in
the economy. For example, if the Fisher parity holds as a stationary relation (sta-
tionary real interest rates) and we find that inflationary shocks have been very
persistent, then we should expect interest rate shocks to have a similar persistence.
Thus empirical persistence is a powerful property that can be used to investigate
whether our prior hypothesis (the Fisher parity) is empirically relevant, and if not,
which other variables have been co-moving in a similar manner, giving rise to new
hypotheses.

From the outset, many economists would consider the idea that economic vari-
ables are I(2) highly problematic. The argument is often that all inference on
long-run values (the steady-state value a variable converges to when the errors
are switched off) would lead to meaningless results. This is a valid argument pro-
vided one can argue that the order of integration is a structural parameter, which
often seems doubtful. Nonetheless, there are cases when a structural interpretation
is warranted. For example, Frydman et al. (2008) show that speculative behavior
based on IKE is consistent with near I(2) behavior; arbitrage theory suggests that a
nominal market interest rate should be a martingale difference process, i.e., approx-
imately a unit root process. Of course, in such cases a structural unit root should
be invariant to the choice of sample period.

8.4 Modeling I (2) data with the I (1) model: does it work?

It often happens that I(2) data are analyzed as if they were I(1) because the I(2)
possibility was never checked, or one might have realized that the data exhibit
I(2) features but decided to ignore these signals in the data. For this reason, it is
of some interest to ask whether the findings from such I(1) analyses are totally
useless, misleading, or can be trusted to some extent.

Before answering these questions, it is useful to examine the so-called R-model,
in which short-run effects have been concentrated out. We consider first the simple
VAR(2) model:

�xt = �1�xt−1 + αβ
′xt−1 + μ0 + εt

εt ∼ Np(0,�), t = 1, . . . , T , (8.10)

and the corresponding R-model:

R0t = αβ
′R1t + εt , (8.11)

where R0t and R1t are found by concentrating out the lagged short-run effects,
�xt−1:

�xt = B̂1�xt−1 + μ̂0 + R0t , (8.12)

and:
xt−1 = B̂2�xt−1 + μ̂0 + R1t . (8.13)
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When xt ∼ I(2), both �xt and �xt−1 contain a common I(1) trend, which there-
fore cancels in the regression of one on the other, as in (8.12). Thus, R0t ∼ I(0) even
if �xt ∼ I(1). On the other hand, an I(2) trend cannot be cancelled by regressing
on an I(1) trend and regressing xt−1 on �xt−1 as in (8.13) does not cancel the I(2)
trend, so R1t ∼ I(2). Because R0t ∼ I(0) and εt ∼ I(0), equation (8.11) can only
hold if β = 0 or, alternatively, if β ′R1t ∼ I(0). Thus, unless the rank is zero, the
linear combination β

′R1t transforms the process from I(2) to I(0).
The connection between β

′xt−1 and β
′R1t can be seen by inserting (8.13) into

(8.11):

R0t︸︷︷︸
I(0)

= αβ
′
(xt−1︸ ︷︷ ︸

I(2)

− B2�xt−1︸ ︷︷ ︸
I(1)

− μ̂0)+ εt

= α(β
′xt−1︸ ︷︷ ︸
I(1)

− β
′B2�xt−1︸ ︷︷ ︸

I(1)

− β
′
μ̂0)+ εt

= α(β
′xt−1 − ω

′
�xt−1︸ ︷︷ ︸

I(0)

− β
′
μ̂0)+ εt , (8.14)

where ω′ = β
′B2. It is now easy to see that the stationary relations β ′R1t consist

of two components, β ′xt−1 and ω
′
�xt−1. There are two possibilities:

1. β ′ixt−1 ∼ I(0) and ωi = 0, where βi and ωi denote the ith column of β and ω, or
2. β ′ixt−1 ∼ I(1) cointegrates with ω

′
i�xt−1 ∼ I(1) to produce the stationary

relation β
′R1t ∼ I(0).

In the first case, we talk about directly stationary relations; in the second case,
about polynomially cointegrated relations. Here we shall consider β

′xt ∼ I(1)
without distinguishing between the two cases, albeit recognizing that some of the
cointegration relations β ′xt may be stationary by themselves.

We have demonstrated above that R0t ∼ I(0) and β
′R1t ∼ I(0) in (8.11), which

is the model on which all I(1) estimation and test procedures are derived. This
means that the I(1) procedures can be used even though data are I(2), albeit with
the following reservations:

1. the I(1) rank test cannot say anything about the reduced rank of the � matrix,
i.e., about the number of I(2) trends. The determination of the reduced rank of
the � matrix, though asymptotically unbiased, might have poor small sample
properties (Nielsen and Rahbek, 2007)

2. the β coefficients relating I(2) variables are T2 consistent and thus are precisely
estimated. We say that the estimate of β is super-super consistent

3. the tests of hypotheses on β are not tests of cointegration from I(1) to I(0), but
instead from I(2) to I(1), as is evident from (8.14), and a cointegration relation
should in general be considered I(1), albeit noting that a cointegration relation
β
′
ixt can be CI(2,2), i.e., be cointegrating from I(2) to I(0)

4. the MA representation is essentially useless, as the once cumulated residuals can-
not satisfactorily explain variables containing I(2) trends, i.e., twice cumulated
residuals.
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Thus, one can test a number of hypotheses based on the I(1) procedure even if xt
is I(2), but the interpretation of the results has to be modified accordingly.

8.5 An I(1) analysis of prices and exchange rates

8.5.1 Specification

The VAR model is based on the assumption of multivariate normality which, if
correct, implies linearity in parameters as well as constancy of parameters. How-
ever, multivariate normality is seldom satisfied in a first tentatively estimated VAR
model. There are many reasons for this, e.g., omission of relevant variables, inad-
equate measurements, interventions, reforms, etc. All this may have changed
the data-generating mechanisms, thus producing structural breaks or resulting in
extraordinary effects on some of the variables. In the present case, the reunifica-
tion of East and West Germany in 1991:1 was a particularly important institutional
event which is likely to have changed some of the properties of the VAR model.
For example, Figure 8.1 shows that the nominal exchange rate may have experi-
enced a change in its trending behavior at the reunification, as well as a shift in
its level. Therefore, a consequence of merging the less productive East with West
Germany is likely to have been a change in relative productivity, which needs to
be accounted for by a change in the slopes of the linear trends in the VAR model.

Thus, in order to achieve a well-specified VAR model one usually has to control
for major institutional events. Section 8.6.2 will provide a more detailed account of
how to specify deterministic components in the I(2) model. For the specification
of such events in the I(1) model the reader is referred to Juselius (2006, Ch. 6).
Here they will be modeled by a trend with a changing slope at 1991:1 (t91.1) and
various dummy variables, as explained below:

�xt=�1�xt−1+αβ ′xt−1+μ0+μ01Ds,91.1,t +μ1t+μ11t91.1+�pDp,t +εt , (8.15)

where the sample period is 1975:09–1998:12 and x′t = [p1,t , p2,t , s12,t ] with:

p1,t = log of German CPI,3

p2,t = log of US CPI, and
s12,t = log of the nominal Dmk–$ exchange rate.

The linear terms in (8.15) are defined as:

μ0 is a vector of constant terms,
μ01 is a vector measuring a change in the constant term at 1991:1,
μ1 is a vector of linear trend slopes,
μ11 is a vector measuring a change in the trend slope at 1991:1.

The dummy variables are defined as:

Dptax = 1 in 1991:7, 1991:9, and 1993:1, zero otherwise
Ds91.1t is 1 for t ≥ 1991:1, 0 otherwise,
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D′p,t = [Dp80.7, Dp91.1, Dptax, Dp97.7] with
DpXX.yt = 1 in 19XX:y, zero otherwise.

The tax dummy is needed to account for a series of commodity tax increases to
pay for reunification, and the three dummies are needed to account for a big drop
in the US inflation rate in 1980:7, a large change in the nominal exchange rate in
1991:1, and a large change in the Dmk–$ rate in 1997:7.

As discussed in more detail in section 8.6, the two trend components, the con-
stant, and the shift dummy need to be appropriately restricted in the VAR model
to avoid quadratic and cubic trends. The dummy variables have been specified
exclusively to control for the extraordinary shock at the time of the intervention,
but to leave the information of the observation intact through its lagged impact.
Thus the dummies do not remove the outlying observation as is usually the case in
a static regression model. Table 8.1 reports the estimated effects.

Conditional on the dummies, the VAR model becomes reasonably well-specified.

The tests for multivariate residual autocorrelation at one lag, χ
2
(9) = 11.0[0.28],

and two lags, χ2
(9) = 14.2[0.12], were acceptable, as were the tests of multivariate

ARCH of order one, χ
2
(36) = 45.9[0.12], and order two, χ

2
(72) = 87.2[0.11].

However, multivariate normality was rejected based on χ
2
(6) = 27.1[0.00]. To get

some additional information, Table 8.1 reports the univariate Jarque–Bera tests, as
well as skewness (third moment around the mean) and kurtosis (fourth moment
around the mean). It appears that the non-normality problems are mostly due to
excess kurtosis in the US inflation rate. Since the VAR estimates have been shown to
be reasonably robust to moderate deviations from normality due to excess kurtosis
(Gonzalo, 1994), the baseline VAR model is considered to be a reasonably adequate
characterization of the data.

8.5.2 Rank determination and general model properties

The determination of the cointegration rank is a crucial step in the analysis, as it
structures the data into its pulling and pushing components. The so-called trace
test (Johansen, 1996) is a likelihood ratio test for the cointegration rank. However,
the trace test is derived under the null of p − r unit roots, which does not always
correspond to the null of the theory model, as illustrated in section 8.8 (see also

Table 8.1 Estimated outlier effects and misspecification tests

Estimated outlier effects Misspecification tests

Dptax Dp80.7 Ds91.1 Dp97.7 Norm. Skew. Kurt .

�p1,t 0.01
[11.36]

−0.00
[−1.40]

0.00
[1.77]

0.01
[4.15]

7.22[0.03] 0.35 3.62

�p2,t −0.00
[−0.15]

−0.01
[−4.90]

0.00
[0.16]

0.00
[0.37]

15.4[0.00] −0.20 4.20

�s12,t −0.02
[−1.04]

0.01
[0.39]

0.01
[2.57]

0.06
[1.98]

6.31[0.04] 0.10 3.66

Note: t-ratios in [ ].
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Table 8.2 Determination of rank in the I(1) model

r p− r τp−r 4 largest characteristic roots

0 3 80.06
[57.9]

1.0 1.0 1.0 0.75

1 2 32.65
[36.6]

1.0 1.0 0.99 0.53

2 1 6.72
[18.5]

1.0 0.99 0.99 0.52

3 0 0.99 0.99 0.98 0.53
Note: 95% quantiles in [ ].

Tests of pushing and pulling variables
r p1 p2 s12

No levels feedback 1 7.52
[0.01]

16.17
[0.00]

7.58
[0.01]

2 23.83
[0.00]

32.74
[0.00]

8.66
[0.01]

Pure adjustment 1 21.40
[0.00]

11.26
[0.00]

34.27
[0.00]

2 2.74
[0.10]

1.31
[0.25]

18.74
[0.00]

Note: p-values in [ ].

Juselius, 2006, Ch. 8). Therefore, the choice of rank suggested by the trace test
needs to be checked for its consistency with other information in the model, such
as the characteristic roots.

The trace tests reported in Table 8.2 suggest a borderline acceptance of r = 1
cointegration relation, and hence p− r = 2 common stochastic trends or, alterna-
tively, a strong acceptance of r = 2, and hence, p− r = 1 common stochastic trend.
Thus, from a statistical point of view, both choices can be defended. Section 8.8
will argue that r = 2 is the theory consistent choice. To find out which choice
is econometrically preferable, we shall check the consistency of r = 1, 2 with the
characteristic roots in the model and with the mean reversion of the cointegration
relations.

An inspection of the characteristic roots of the model shows that there are three
large roots of magnitude 0.99 in the unrestricted model. These are generally indis-
tinguishable from unit roots, so the model seems to contain three unit roots. The
choice of r = 1 leaves one near unit root and the choice of r = 2 two near unit roots
in the model. Section 8.4 showed that, when one or several large roots remain in
the model for any reasonable choice of r, it is a sign of I(2) behavior in at least one
of the variables.4

To check the consistency of the results with the I(2) model, it is useful to divide
the total number of stochastic trends into I(1) and I(2) trends, i.e., p− r = s1 + s2,
where s1 denotes the number of I(1) trends (unit root processes), and s2 the number
of I(2) trends (double unit root processes). Three (near) unit roots in the model
would be consistent with either

{
r = 0, p− r = 3

}
or
{
r = 1, s1 = 1, s2 = 1

}
, whereas{

r = 2, s1 = 0, s2 = 1
}

corresponds to two unit roots. Since the latter is less than the
three near unit roots in the model, the choice r = 2 would not be consistent with
the empirical information in the data.
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Figure 8.3 The graphs of the first cointegration relation (β ′xt in the upper panel, β ′R1,t in
the lower panel)

Thus, by imposing r = 1, two of the big roots are restricted to unity, but the third
would still be unrestricted in the I(1) model, invalidating some of the interpreta-
tion of the empirical results discussed in section 8.4. The graphs of the first two
cointegration relations, shown in Figures 8.3 and 8.4, illustrate the effect of a near
unit root. Based on the graphs, it is difficult to argue that β ′ixt , i = 1, 2, is mean-
reverting as an equilibrium error should be. However, β ′iR1,t (in the lower panel)
looks much more mean-reverting, at least for r = 1. This, of course, is exactly in
accordance with (8.13). Thus, only

{
r = 1, s1 = 1, s2 = 1

}
seems acceptable based

on the characteristic roots of the model and the graphs of the cointegration
relations.

It is also useful to investigate the general pulling and pushing properties of the
model described by the test of a unit vector in α and a zero row in α (Juselius, 2006,
Ch. 11) and how they would be affected by the choice of rank. In the lower part of
Table 8.2 the tests of “no levels feedback” (a zero row in α) and “pure adjustment”
(a unit vector in α) are reported for r = 1 and r = 2. For r = 1, none of the variables
are found to purely pushing or pulling. For r = 2, there is some evidence that the
two prices are exclusively adjusting (though the hypothesis that they are jointly
adjusting is rejected). Altogether, the empirical evidence suggests that prices are
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Figure 8.4 The graphs of the second cointegration relation (β ′xt in the upper panel, β ′R1,t
in the lower panel)

“more” pulling than pushing, which is an interesting observation as one would
expect the opposite during a currency float.

8.5.3 Estimating the long-run structure

Table 8.3 reports the estimates of α,β,�1 and � for the choice of r = 1. The esti-
mated β relation suggests that p1,t and p2,t are almost homogeneously related.

Testing the hypothesis gives a test statistic χ
2
(1) = 0.56[0.46] and, thus, price

homogeneity of β ′xt seems acceptable5 when allowing for a broken trend. The
presence of a broken linear trend might seem difficult to interpret but is probably a
proxy for omitted variables effects, such as the effect of productivity differentials on
relative prices, the so-called Balassa–Samuelson effect (Balassa, 1964; Samuelson,
1964). The change in the trend slope at reunification supports this interpretation.
What is more surprising, however, is that the sign of the nominal exchange rate is
opposite to the expected one. Based on Figure 8.1, it is easy to see why: over the
sample period, relative prices and nominal exchange rates have frequently moved
in opposite directions for extended periods of time. For this reason, the data do
not support the ppp restrictions (1,−1,−1) on β.
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Table 8.3 The estimated short-run dynamic adjustment structure in
the I(1) model

⎡⎢⎢⎢⎣
�p1t

�p2,t

�s12,t

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

I(1)

=

⎡⎢⎢⎢⎢⎣
0.21
[4.50]

0.12
[2.31]

0.01
[2.06]

0.10
[2.21]

0.52
[10.23]

0.00
[0.38]

0.92
[1.15]

−1.44
[−1.59]

−0.01
[−0.18]

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

�1

⎡⎢⎢⎢⎣
�p1t−1

�p2,t−1

�s12,t−1

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

I(1)

+

⎡⎢⎢⎢⎢⎣
−0.01
[−3.92]
−0.02
[−5.92]
−0.17
[−3.05]

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

α

[
β ′1xt−1

]︸ ︷︷ ︸
I(1)

+

⎡⎢⎢⎢⎣
0.00
[1.77]

0.02
[4.09]

0.00
[0.16]

0.03
[6.21]

0.01
[2.57]

0.22
[2.96]

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

#

[
Ds91.1

μ0

]
+
⎡⎣ ε1,t

ε2,t
ε3,t

⎤⎦
︸ ︷︷ ︸

I(0)

where:

β ′1xt = 1.0p1,t −0.81
[−7.76]

p2,t + 0.18
[4.39]

s12,t −0.0022
[−4.81]

t91.1 + 0.0022
[3.96]

t ,

and:

� =
⎡⎣ 1.00

0.12 1.00
−0.58 −0.07 1.00

⎤⎦

The estimated α coefficients show that German prices and nominal exchange
rates have been equilibrium correcting to the estimated β relation whereas US
prices have been increasing in the equilibrium errors. The overall behavior of
the system is nevertheless stable as the other two variables compensate for the
error-increasing behavior of US prices. The estimated coefficients of �1 show that
lagged inflation rates are quite significant in the price equations, whereas the lagged
depreciation/appreciation rate is only significant in the German price equation. As
already demonstrated in section 8.4, the lagged changes of the I(2) variables in �1
are needed to achieve stationarity of β ′1R1,t .

The estimates of α⊥1, β⊥1 and C in the MA representation of the I(1) model are
almost all insignificant and are not reported here. This is because the stochastic
trends in the I(1) model are measured by the once cumulated residuals, whereas
the data are generated by second-order stochastic trends, measured by the twice
cumulated residuals. Thus, when data are I(2) the MA representation of the I(1)
model is completely uninformative.

Based on the above results, it would be hard to argue that the data are not empir-
ically I(2), and the next step is therefore to address the PPP puzzle in the correct
framework of an I(2) model.
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8.6 Representing the I(2) model

8.6.1 The basic structure

As discussed in section 8.2, formulation (8.3) is convenient when data are I(2):

�
2xt = �xt−1+�xt−1+μ0+μ01Ds,91.1,t +μ1t+μ11t91.1+�pDp,t +εt , (8.16)

where the deterministic components are defined in section 8.5.1. Similar to the
I(1) model, we need to define the concentrated I(2) model:6

R0,t = �R1,t +�R2,t + εt , (8.17)

where R0,t , R1,t , and R2,t are defined by:

�
2x̃t = b̂10 + b̂11t + B̂11Ds,t + B̂12Dp,t + R0,t , (8.18)

�x̃t−1 = b̂20 + b̂21t + B̂21Ds,t + B̂22Dp,t + R1,t , (8.19)

x̃t−1 = b̂30 + b̂31t + B̂31Ds,t + B̂32Dp,t + R2,t , (8.20)

and x̃t indicates that xt has been augmented with some deterministic components
such as trend, constant, and shift dummy variables. The matrices � and � are
subject to the two reduced rank restrictions, � = α

′
β, where α,β are p × r, and

α
′
⊥�β⊥ = ξη

′, where ξ , η are (p−r)×s1. The model in (8.16) contains an unrestricted
constant with a shift, a broken trend and a few impulse dummies that will have to
be adequately restricted to avoid undesirable effects, as discussed in section 8.6.2.

The moving average representation of the I(2) model (Johansen, 1992, 1995,
1997) with unrestricted deterministic components is given by:

xt = C2

t∑
j=1

j∑
i=1

(εi + μ0 + μ1i+ μ01Ds,91.1,i +�pDp,i)

+C1

t∑
j=1

(εj + μ0 + μ1j + μ01Ds,91.1,j +�pDp,j) (8.21)

+C∗(L)(εt + μ0 + μ1t + μ01Ds,91.1,t +�pDp,t )+ A + Bt ,

where A and B are functions of the initial values x0, x−1, x−2, and the coefficient
matrices satisfy:

C2 = β⊥2(α
′
⊥2!β⊥2)

−1
α
′
⊥2,

β
′C1 = −α′�C2, β

′
⊥1C1 = −α′⊥1(I−�C2),

� = �βα
′
� + I− �1 (8.22)

where the notation α = α(α
′
α)
−1 is used throughout the chapter. To facilitate the

interpretation of the I(2) stochastic trends and how they load into the variables, it

is useful to let β̃⊥2 = β⊥2(α
′
⊥2�β⊥2)

−1, so that:

C2 = β̃⊥2α
′
⊥2. (8.23)
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It is now easy to see that the C2 matrix has a similar reduced rank representation
to C1 in the I(1) model, so it is straightforward to interpret α′⊥2

∑ ∑
εi as a measure

of the s2 second-order stochastic trends which load into the variables xt with the
weights β̃⊥2.

From (8.22) we note that the C1 matrix in the I(2) model cannot be given a
simple decomposition as it depends on both the C2 matrix and the other model
parameters in a complex way. Johansen (2008) derives an analytical expression for
C1, essentially showing that:

C1 = ω0α
′ + ω1α

′
⊥1 + ω2α

′
⊥2, (8.24)

where ωi are complicated functions of the parameters of the model (not reproduced
here).

To summarize the basic structures of the I(2) model, Table 8.4 decomposes the
vector xt into the directions of (β,β⊥1,β⊥2) and the directions of (α,α⊥1,α⊥2).
The left-hand side of the table illustrates the β,β⊥ directions, where β ′xt + δ

′
�xt

defines the stationary polynomially cointegrating relation, and β
′
⊥1xt the CI(2, 1)

relation that can only become stationary by differencing. The β,β⊥1 relations
define the two stationary cointegration relations between the differenced vari-
ables, τ ′�xt . Finally, β ′⊥2xt ∼ I(2) is a non-cointegrating relation, which can only
become stationary by differencing twice. The right-hand side of the table illus-
trates the corresponding decomposition into the α,α⊥ directions, where α defines
the dynamic adjustment coefficients to the polynomially cointegrating relation,
whereas α⊥1 and α⊥2 define the first- and second-order stochastic trends as a linear
function of the VAR residuals.

8.6.2 Deterministic components

A correct specification of the deterministic components, such as trends, constant
and dummies, and how they enter the model, is mandatory for the I(2) analysis.
This is because the chosen specification is likely to strongly affect the reliability of
the model estimates and to change the asymptotic distribution of the rank test.
Because the typical smooth behavior of a stochastic I(2) trend sometimes can be
approximated with an I(1) stochastic trend around a broken linear deterministic
trend, one can in some cases avoid the I(2) analysis altogether by allowing for
sufficiently many breaks in the linear trend. Whether one specification is preferable

Table 8.4 Decomposing the data vector using the I(2) model

The β,β⊥ decomposition of xt The α,α⊥ decomposition

r = 1 [β ′1xt︸ ︷︷ ︸
I(1)

+ δ′1�xt︸ ︷︷ ︸
I(1)

] ∼ I(0) α1: short-run adjustment coefficients

s1 = 1 β ′⊥1xt ∼ I(1) α′⊥1
∑t

i=1 εi: I(1) stochastic trend
p− s2 = 2 τ ′�xt = (β,β⊥1)

′�xt ∼ I(0)
s2 = 1 β ′⊥2xt = τ ′⊥xt ∼ I(2) α′⊥2

∑t
s=1

∑s
i=1 εi: I(2) stochastic trend
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to the other is difficult to know, but we need to pay sufficient attention to this
question, as the choice is likely to influence the empirical results significantly.

In the present data, the reunification of Germany is likely to have affected
German prices significantly, but not US prices. The raw data exhibit an extra-

ordinary large shock in �
2p1,t due to the reunification in 1991:1. A big impulse in

�
2p1,t cumulates to a level shift in �p1,t , and double cumulates to a broken linear

trend in p1,t . Thus, accounting for the extraordinary large shock at 1991:1 with a

blip dummy in �
2p1,t , a shift dummy in �p1,t is econometrically consistent with

broken linear trends in prices. Because such a broken linear trend may or may
not cancel in β

′xt , the model should be specified to allow for a (testable) broken
linear trend in β

′xt . Likewise, the level shift may (or may not) cancel in δ
′
�xt or

τ
′
�xt . Thus the model specification should allow for this possibility. Inspecting

the graphs in Figure 8.1 shows an increasing trend in both prices and a downward
sloping trend in relative prices, and the question is whether the latter is canceled
by cointegration with the nominal exchange rate.

Whatever the case, quadratic or cubic trends will be excluded from the outset
and the model specification should account for this.

To understand the role of the deterministic terms in the I(2) model, it is useful
to specify the mean of the stationary parts of (8.16) allowing for the above effects
(so that they can be tested), while at the same time excluding cubic or quadratic
trend effects.

The mean of �
2xt should be allowed to contain the impulse dummies as these

do not double cumulate to quadratic trends, i.e.:

E�2xt = �pDp,t .

The mean of the polynomially cointegrated relations should be allowed to have
a trend and a broken linear trend in β

′xt and a constant and a shift dummy in
δ
′
�xt , i.e.:

E(β ′xt + δ
′
�xt ) = ρ0t + ρ01t91.1 + γ 0 + γ 01Ds91.1t . (8.25)

The mean of the difference stationary relations τ
′
�xt should be allowed to

contain a shift dummy and a constant, i.e.:

E(τ ′�xt ) = ω0 + ω01Ds91.1t .

The question is now how to restrict μ0,μ01,μ1, and μ11 in (8.16)7 to allow for
the deterministic components in the above mean values while suppressing any
quadratic or cubic trend effects in the model. The general idea will only be demon-
strated for the constant term μ0 and the linear term μ1, as the procedure is easily
generalized to the step dummy and the broken trend. A more detailed discussion
is given in Juselius (2006, Ch. 17).

First, the constant term μ0 is decomposed into three components proportional
to α, α⊥1 and α⊥2:

μ0 = αγ 0 + α⊥1γ 1 + α⊥2γ 2. (8.26)
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The shift dummy μ01 is similarly decomposed:

μ01 = αγ 01 + α⊥1γ 11 + α⊥2γ 21.

To investigate the effect of an unrestricted constant on xt , (8.26) is then inserted
in (8.21) using (8.23) and (8.24). The effect of cumulating the constant twice is
given by:

C2

t∑
j=1

j∑
i=1

μ0 =
t∑

j=1

j∑
i=1

β̃⊥2α
′
⊥2(αγ 0 + α⊥1γ 1 + α⊥2γ 2)

= β̃⊥2α
′
⊥2α⊥2γ 2(t(t − 1)/2), (8.27)

as α′⊥2α = 0 and α
′
⊥2α1⊥ = 0. Thus, an unrestricted constant term in the VAR model

will allow for a quadratic trend in xt so we need to restrict the α⊥2 component of
μ0 to avoid this. How to do this will be discussed below.

The effect of cumulating the constant term once is given by:

C1

t∑
j=1

μ0 = (ω0α
′ + ω1α

′
⊥1 + ω2α

′
⊥2)

t∑
j=1

(αγ 0 + α⊥1γ 1 + α⊥2γ 2)

=

⎡⎢⎢⎣(ω0α
′
αγ 0︸ ︷︷ ︸
γ̃ 0

+ ω1α
′
⊥1α⊥1γ 1︸ ︷︷ ︸

γ̃ 1

+ ω2α
′
⊥2α⊥2γ 2︸ ︷︷ ︸

γ̃ 2

)

⎤⎥⎥⎦ t , (8.28)

as α′α⊥1 = 0, α′α⊥2 = 0 and α
′
⊥1α⊥2 = 0. Thus, there are three different linear

trends associated with the C1 components of the constant term.
Most applications of the I(2) model are for nominal variables, implying that

linear trends in the data are a natural starting hypothesis (as average nominal
growth rates are generally non-zero). To achieve similarity in the rank test pro-
cedure (Nielsen and Rahbek, 2000), the model should allow for linear trends in
all directions consistent with the specification of trend-stationarity as a starting
hypothesis in (8.25). This means that μ1t �= 0 and μ11t91.1 �= 0 in (8.16), so the
vectors μ1 and μ11 need to be decomposed similarly to the constant term and the
step dummy:

μ1 = αρ0 + α⊥1ρ1 + α⊥2ρ2,

and:
μ11 = αρ01 + α⊥1ρ11 + α⊥2ρ21.

We now focus on the linear trend term. The effect of cumulating this term twice
is given by:

C2

t∑
j=1

j∑
i=1

μ1i =
t∑

j=1

j∑
i=1

β⊥2α
′
⊥2(αρ0 + α⊥1ρ1 + α⊥2ρ2)i

=
t∑

j=1

j∑
i=1

β⊥2α
′
⊥2α⊥2ρ2︸ ︷︷ ︸

=0

i. (8.29)
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Thus, unless we restrict α⊥2ρ2 = 0 the model will allow for cubic trends in the
data. The I(2) procedure in CATS (Cointegration Analysis of Time Series) in RATS
(Regression Analysis of Time Series) (Dennis, Johansen and Juselius, 2005) imposes
this restriction. The effect of cumulating the linear trend term once is given by:

C1

t∑
j=1

μ1j =
t∑

j=1

(ω0α
′ + ω1α

′
⊥1 + ω2α

′
⊥2)(αρ0 + α⊥1ρ1 + α⊥2ρ2)j

=
t∑

j=1

(ω0α
′
αρ0︸︷︷︸
�=0

+ ω1α
′
⊥1α⊥1ρ1︸ ︷︷ ︸

=0

+ ω2α
′
⊥2α⊥2ρ2︸ ︷︷ ︸

=0

)j. (8.30)

It appears that all three C1 components of the linear trend will generate quadratic
trends in the data. Based on (8.29), we already know that α⊥2ρ2 = 0. Unless we
are willing to accept linear trends in α

′
⊥1�xt ,

8 we should also restrict α⊥1ρ1 = 0.
This leaves us with the α component of C1, which cannot be set to zero, because
αρ0 �= 0 is needed to allow for a linear trend in β

′xt . The problem is that a lin-
ear trend in a polynomially cointegrating relation, unless adequately restricted,
generates a quadratic trend in xt . However, this can be solved by noticing that
α⊥2γ 2 �= 0 in (8.27) also generates a quadratic trend in xt , so that by restricting
ω0α

′
αρ0 = −β⊥2α

′
⊥2α⊥2γ 2, the two trend components cancel and there will be

no quadratic trends in the data. The trend-stationary polynomially cointegrated
relation in Kongsted, Rahbek and Jørgensen (1999) was estimated subject to this
constraint.

To summarize: to avoid quadratic and cubic trends in the I(2) model we need to
impose the following restrictions: ρ1 = ρ2 = 0 and ω0α

′
αρ0 = −β⊥2α

′
⊥2α⊥2γ 2, as

well as ρ11 = ρ21 = 0 and ω0α
′
αρ01 = −β⊥2α

′
⊥2α⊥2γ 21 to avoid broken quadratic

and cubic trends.

8.7 Estimation in the I(2) model

Johansen (1995) provided the solution to the two-step estimator and Johansen
(1997) to the full maximum likelihood (ML) estimator. Even though the two-stage
procedure gives asymptotically efficient ML estimates (Paruolo, 2000), the small
sample properties of the ML estimates are generally superior (Nielsen and Rahbek,
2007), and all subsequent results are based on the ML procedure.

8.7.1 The ML procedure

Section 8.2 showed that there is an important difference between the first- and
second-rank conditions. The former is formulated as a reduced rank condition
directly on �, whereas the latter is on a transformed �. This is the basic reason
why the ML estimation procedure needs a different parameterization than the one
in (8.3).
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The full ML procedure exploits the fact that the I(2) model contains p−s2 cointe-
gration relations, τ ′xt , where τ = (β,β⊥1) define r+s1 = p−s2 directions in which
the process is cointegrated from I(2) to I(1). This means that τ can be determined
by solving just one reduced rank regression, after which the vector xt is decom-
posed into the p − s2 directions τ = (β,β⊥1) in which the process is I(1), and the
s2 directions τ⊥ = β⊥2 in which it is I(2).

Johansen (1997) does not make a distinction between stationary and non-
stationary components in �xt . For example, when xt contains variables which
are I(2), e.g., prices, as well as I(1), e.g., nominal exchange rates, then some of the
differenced variables will be I(0). As the latter do not contain any stochastic I(1)
trends, they are by definition redundant in the polynomially cointegrated rela-
tions. The idea behind the parameterization in Paruolo and Rahbek (1999) was to
express the polynomially cointegrated relations exclusively in terms of the differ-
ences of the I(2) variables. The model given below is based on the Paruolo and
Rahbek parameterization. As discussed in section 8.6, the (broken) trend has been
restricted to be proportional to α, and the constant and the shift dummy to be
proportional to ζ .

�
2xt︸ ︷︷ ︸

I(0)

= α

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
[
β
′, ρ0, ρ01

]⎡⎢⎣ xt−1
t

t91.1

⎤⎥⎦
︸ ︷︷ ︸

I(1)

+
[
δ
′, γ 0, γ 01

]⎡⎢⎣ �xt−1
c

Ds91.1t−1

⎤⎥⎦
︸ ︷︷ ︸

I(1)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
I(0)

+ ζ

⎡⎢⎢⎢⎣ β
′, ρ0, ρ01

β
′
⊥1, γ̃ 0, γ̃ 01︸ ︷︷ ︸

τ

⎤⎥⎥⎥⎦
⎡⎢⎣ �xt−1

c
Ds91.1t−1

⎤⎥⎦
︸ ︷︷ ︸

I(0)

+�pDp,t + εt ,

(8.31)

where εt ∼ Np(0,� ), t = 1, . . . , T , δ′ = ψ
′
τ⊥τ

′
⊥ with ψ

′ = −(α
′
�
−1

α)
−1

α
′
�
−1

�,

ζ
′ = ψ

′
τ− �α⊥(α

′
⊥�α⊥)

−1
(α
′
⊥�β, ξ) and ξ is defined in (8.5).

The relations β
′x̃t + δ̃

′
�x̃t , with β

′ = [β ′, ρ0, ρ01], x̃′t = [x′t , t , t91.1], δ̃′ =[
δ
′, γ 0, γ 01

]
, and �x̃′t = [�x′t , 1, Ds91.1], define r stationary polynomially co-

integrating relations, whereas the relations τ ′�x̃t define p− s2 stationary relations
between the growth rates.

8.7.2 Linking I(1) with I(2)

It is useful to see how the formulation (8.31) relates to the usual VAR formulation
(8.3). Relying on results in Johansen (1997), the levels and difference components
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of the unrestricted VAR model (8.3) can be decomposed as:

��xt−1 +�xt−1 = (�β)β
′
�xt−1︸ ︷︷ ︸
I(0)

+ (αα
′
�β⊥1 + α⊥1)β

′
⊥1�xt−1︸ ︷︷ ︸

I(0)

+ (αα
′
�β⊥2)β

′
⊥2�xt−1︸ ︷︷ ︸

I(1)

+ αβ
′xt−1︸ ︷︷ ︸
I(1)

, (8.32)

where β = β(β
′
β)
−1 and α is similarly defined. The decomposition describes

three types of linear relations between the growth rates, β ′�xt−1,β ′⊥1xt−1 and
β
′
⊥2�xt−1, of which the first two define I(0) relations, and the third an I(1)

relation. The coefficients in soft brackets define the corresponding adjustment
coefficients.

Since β
′
⊥2�xt−1 is I(1), it needs to be combined with another I(1) variable to

become stationary. An obvious candidate for this is β ′xt−1. It is now easy to see
how the parameterization in (8.3) relates to the one in (8.31):

α(β
′xt−1 + (α

′
�β⊥2)β

′
⊥2�xt−1) = α(β

′xt−1 + δ
′
�xt−1). (8.33)

Finally, when r > s2, the long-run matrix � can be expressed as the sum of the two
levels components:

� = α0β
′
0 + α1β

′
1,

where β ′0xt−1 defines r − s2 directly stationary CI(2, 2) relations, whereas β ′1xt−1
defines s2 non-stationary CI(2, 1) cointegrating relations, which needs to be com-
bined with the differenced process to become stationary through polynomial
cointegration.

Thus, the I(2) model can distinguish between the CI(2, 1) relations between lev-
els {β ′xt ,β

′
⊥1xt }, the CI(1, 1) relations between levels and differences {β ′xt−1 +

δ
′
�xt }, and finally the CI(1, 1) relations between differences {τ ′�xt }. As a con-

sequence, when discussing the economic interpretation of these components,
the generic concept of a “long-run” equilibrium relation needs to be modified
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accordingly. Juselius (2006, Ch. 17) proposed the following interpretation:

1. β ′xt + δ
′
�xt as r dynamic long-run equilibrium relations, or alternatively when

r > s2

– β
′
0xt as r − s2 static long-run equilibrium relations, and

– β
′
1xt + δ1�xt as s2 dynamic long-run equilibrium relations,

2. τ ′�xt as medium-run equilibrium relations.

8.8 Two hypothetical scenarios

To be able to structure and interpret the empirical VAR results, it is useful to formu-
late a scenario for what we would expect to find in the VAR model, provided the
reality is in accordance with the assumptions of the theoretical model. For exam-
ple, the first scenario below is specified for the hypothesis: {pppt ∼ I(0), prices are
pushing and the nominal exchange rate is pulling} under the assumption that xt
is empirically I(2).

We shall discuss the following two cases: (1) r = 2, which corresponds to the
theory consistent case, and (2) r = 1, which is what we find in the data. In both
cases it will be assumed that long-run price homogeneity holds, i.e., β ′⊥2 = [c, c, 0].
Case 1 {r = 2, s1 = 0, s2 = 1} is consistent with:⎡⎢⎣ p1,t

p2,t
s12,t

⎤⎥⎦ =
⎡⎢⎣ c

c
0

⎤⎥⎦ t∑
j=1

j∑
i=1

u1,i +
⎡⎢⎣ b1

b2
b3

⎤⎥⎦ j∑
i=1

u1,i +
⎡⎢⎣ ε1,t

ε2,t
ε3,t

⎤⎥⎦ . (8.34)

It is easy to see that (p1,t − p2,t ) ∼ I(1) and (p1,t − p2,t − s12,t ) ∼ I(0) if (b1 −
b2) = b3. When the nominal exchange rate is adjusting (and price shocks are
pushing), one would have it that u1,t = α

′
⊥1εt with α

′
⊥1 = [a1, a2, 0]. This scenario

would imply two cointegrating relations, one of which is directly cointegrating,
because r − s2 = 1, and the other of which is polynomially cointegrating, because
s2 = 1. It is easy to show that the directly cointegrating relation is the ppp relation,
i.e., (p1,t − p2,t − s12,t ) ∼ I(0). The polynomially cointegrated relation is more
difficult to see and it is helpful to examine the system based on the nominal-to-real
transformation (Kongsted, 2005):9⎡⎢⎣ p1,t − p2,t

�p1,t
s12,t

⎤⎥⎦ =
⎡⎢⎣ b1 − b2

c
b3

⎤⎥⎦ j∑
i=1

u1,i +
⎡⎢⎣ ε̃1,t

ε̃2,t
ε3,t

⎤⎥⎦ .

It is now straightforward to show that
{
p1,t − p2,t + ω�p1,t

}
∼ I(0), if c = −(b1 −

b2/ω). Alternatively, if c = −b3/ω, then
{
s12,t + ω�p1,t

}
∼ I(0). In both cases the

polynomially cointegrating relation can be thought of as a dynamic equilibrium
relation describing how the inflation rate adjusts when relative prices have been
pushed apart, i.e., �p1,t = −1/ω (p1,t − p2,t ). It simply states the obvious, that the
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inflation rates have to react in a non-homogeneous manner if relative prices move
persistently apart.

Case 2 {r = 1, s1 = 1, s2 = 1} is consistent with:

⎡⎢⎣ p1,t
p2,t
s12,t

⎤⎥⎦ =
⎡⎢⎣ c

c
0

⎤⎥⎦ t∑
j=1

j∑
i=1

u1,i +
⎡⎢⎣ b11 b12

b21 b22
b31 b32

⎤⎥⎦
⎡⎢⎢⎢⎢⎣

j∑
i=1

u1,i

j∑
i=1

u2,i

⎤⎥⎥⎥⎥⎦+
⎡⎢⎣ ε1,t

ε2,t
ε3,t

⎤⎥⎦ .

In this case one would not expect to find a directly cointegrating relation, as
r − s2 = 0. This result is easily seen from the nominal-to-real transformed system:

⎡⎢⎣ p1,t − p2,t
�p1,t
s12,t

⎤⎥⎦ =
⎡⎢⎣ b11 − b21 b12 − b22

c 0
b31 b32

⎤⎥⎦
⎡⎢⎢⎢⎢⎣

j∑
i=1

u1,i

j∑
i=1

u2,i

⎤⎥⎥⎥⎥⎦+
⎡⎢⎣ ε̃1,t

ε̃2,t
ε3,t

⎤⎥⎦ .

It is now easy to see that stationarity of pppt can only be achieved in the spe-
cial case when b11 − b21 = b31 and b12 − b22 = b32. But in general, empirical
support for pppt can only be achieved by polynomial cointegration, i.e., in the
form of a dynamic long-run adjustment relation. For example, if b12 − b22 = b32

and c = −(b11 − b21 − b31)/ω, then
{
p1,t − p2,t − s12,t + ω�p1,t

}
∼ I(0). The lat-

ter can be interpreted as evidence of the following dynamic adjustment relation:

�p1,t = −1/ω
{
p1,t − p2,t − s12,t

}
. In this case, either inflation rates or the currency

depreciation/appreciation rate have to move in an offsetting direction when ppp
has persistently deviated from its benchmark values.

Thus the outcome of testing rank indices in the I(2) model has strong implica-
tions for whether support for a stationary relation can be found or not.

8.9 An I(2) analysis of prices and exchange rates

8.9.1 Determining the two rank indices

The number of stationary multi-cointegrating relations, r, and the number of I(1)
trends, s1, among the common stochastic trends, p− r, can be determined by the
ML procedure in Nielsen and Rahbek (2007), where the trace test is calculated for
all possible combinations of r and s1 so that the joint hypothesis (r, s1) can be
tested, as explained below.

Table 8.5 reports the ML tests of the joint hypothesis of (r, s1), which corresponds
to the two reduced rank hypotheses in (8.4) and (8.5). The test procedure starts
with the most restricted model (r = 0, s1 = 0, s2 = 3) in the upper left-hand corner,
continues to the end of the first row (r = 0, s1 = 3, s2 = 0), and proceeds similarly
row-wise from left to right until the first acceptance. Based on the tests, the first
acceptance is at (r = 1, s1 = 1, s2 = 1), which was also the preferred choice in
section 8.4. The last column of the table correponds to the I(1) trace test. When
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Table 8.5 Determination of rank indices

r p-r s2 = 3 s2 = 2 s2 = 1 s2 = 0
0 3 527.6

[110.9]
293.9
[89.3]

118.10
[71.9]

80.06
[57.9]

1 2 96.88
[64.4]

32.25
[48.5]

32.65
[36.6]

2 1 8.20
[28.7]

6.72
[18.4]

The 4 largest characteristic roots, r = 2
s1 = 0 s2 = 1 1.0 1.0 0.98 0.53
The 4 largest characteristic roots, r = 1
s1 = 2 s2 = 0 1.0 1.0 0.99 0.53
s1 = 1 s2 = 1 1.0 1.0 1.0 0.53

Note: 95% quantiles in [ ].

the data are I(2), determining the rank r exclusively by this test can often lead to
incorrect results.

Our model has a broken linear trend restricted to the polynomially cointegrated
relation and a shift dummy restricted to the differences. Because of this, the stan-
dard asymptotic trace test distributions (e.g., provided by CATS for RATS) are no
longer correct. The critical values given in brackets below the test values have been
kindly provided by Heino Nielsen using a simulation program described in Nielsen
(2004) (see also Kurita, 2007). The inclusion of a broken linear trend in the co-
integration relations shifts the distributions to the right, implying that the test
will be undersized if one ignores the effect of the broken trend.

Table 8.5 also reports the characteristic roots in the VAR model for r = 1 and 2.
For {r = 2, p− r = 1} there is just one common stochastic trend, which has to be I(2)
if the data are I(2). The choice of {r = 2, s2 = 1} will impose two unit root restric-
tions on the characteristic roots of the model. As already discussed in section 8.5.2
and confirmed in Table 8.5, this leaves one large unrestricted root, 0.98, in the
model. Such a root is not statistically distinguishable from a unit root and would
give problems if left unrestricted in the empirical model. When r = 1, the choice{
r = 1, s1 = 1, s2 = 1

}
accounts for all three near unit roots in the model with 0.53

as the largest unrestricted root, whereas the choice of
{
r = 1, s1 = 0, s2 = 2

}
corre-

sponds to four unit roots in the model and basically forces 0.53 to be a unit root.
Altogether, the results strongly suggest that

{
r = 1, s1 = 1, s2 = 1

}
is the correct

choice.
That r = 1 is an important result, as the two scenarios in section 8.8 showed

that a stationary pppt is inherently associated with one stochastic trend having
generated prices and nominal exchange rates. Thus, the finding of p− r = 2 sug-
gests that there exists another source of permanent shocks that have contributed
to the persistent behavior in the data. A plausible explanation will be given in the
concluding section.

8.9.2 The pulling forces

The scenarios above assume long-run price homogeneity. In section 8.6, this
hypothesis was tested on β

′xt and was accepted with high p-value. However, when
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Table 8.6 The estimated short-run dynamic adjustment structure in the
I(2) model⎡⎢⎢⎢⎢⎣

�2p1t

�2p2,t

�2s12,t

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

I(0)

=

⎡⎢⎢⎢⎢⎣
−0.01
[−4.98]
−0.02
[−8.66]
−0.13
[−3.41]

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

α

[
β ′1xt−1 + δ′1�xt−1

]︸ ︷︷ ︸
I(0)

+

⎡⎢⎢⎢⎢⎣
−0.51

[−11.97]
−0.25

[−11.15]
0.29
[7.25]

−
[−6.51]

0.14

1.19
[1.66]

0.06
[0.15]

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

ζ

[
β ′1�xt−1

β ′⊥1,1�xt−1

]
︸ ︷︷ ︸

I(0)

+
⎡⎣ ε1,t

ε2,t
ε3,t

⎤⎦,

︸ ︷︷ ︸
I(0)

where:

β ′1xt + δ′1�xt = 1.0p1,t −0.85
[−7.68]

p2,t + 0.19
[15.08]

s12,t −0.0025
[−5.99]

t91.1 + 0.0024
[8.34]

t

+2.61 �p1,t + 5.21 �p2,t + 9.31 �s12,t − 0.10 Ds91.1

β ′⊥1�xt−1 = 1.01 �p1,t + 1.0 �p2,t − 0.84 �s12,t + 0.01 �t91.1 − 0.01 �t

Note: t-values in [ ].

xt ∼ I(2), long-run price homogeneity is defined on τ
′xt , where τ

′ = [β,β⊥1].
Hence (see Johansen, 2006b), long-run homogeneity on β is a necessary but not
sufficient condition. When tested, long-run price homogeneity of τ ′xt was strongly

rejected based on χ
2
(2) = 22.95[0.00] and β

′
⊥1xt cannot be considered homo-

geneous in prices. As Table 8.6 demonstrates, the coefficients to prices on β⊥1 are
proportional to (1, 1) rather than (1, −1). This, of course, is just another piece of
evidence associated with the PPP puzzle.

Table 8.6 also reports the estimates of short-run adjustment dynamics towards the
estimated long-run equilibrium relations. The I(2) model is parameterized accord-
ing to (8.31). We note that the I(2) model allows the VAR variables to adjust to
a medium-run equilibrium error, β

′
⊥1x̃t−1, to a change in the long-run “static

equilibrium” error, β ′�x̃t−1, and to the long-run “dynamic equilibrium” error,
β
′x̃t−1 + δx̃t−1. In this sense, the I(2) model offers a much richer dynamic

adjustment structure than the I(1) model.
When discussing the adjustment dynamics with respect to the polynomially

cointegrating relations, it is useful to interpret the adjustment coefficients α and δ

as two levels of equilibrium correction. Consider, for example, the following model
for the variable xi,t :

�
2xi,t = · · ·

r∑
j=1

αij(δ
′
j�xt−1 + β

′
jxt−1)+ · · · (8.35)
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If αijδij < 0 for j = 1, . . . , r, then the acceleration rates, �2xi,t are equilibrium error
correcting to the changes �xi,t , and if δijβij > 0 for i = 1, . . . , p, then the changes
�xi,t are equilibrium error correcting to the levels xi,t . In the interpretation below
we shall pay special attention to whether a variable is equilibrium error correcting
or increasing as defined above, as this is an important feature of the data.

Based on the estimates in Table 8.6, it appears that the acceleration rates of
prices and nominal exchange rates are all equilibrium error correcting to their
respective growth rates. When it comes to the relationship between growth rates
and levels of variables, there is just one polynomial cointegration relation to check
for equilibrium correction, but the check has to be done for all three growth rates.
To make the equilibrium correction property more visible, the relation δ

′
�xt−1 +

β
′xt−1 has been formulated in three alternative but equivalent ways:

�p1,t = −0.38(p1,t −0.85
[−7.68]

p2,t + 0.19
[15.08]

s12,t −0.0025
[−5.99]

t91.1 + 0.0025
[8.34]

t)

− 2.0 �p2,t − 3.5 �s12,t

�p2,t = 0.16(p2,t −1.15
[−7.68]

p1,t − 0.25
[15.08]

s12,t +0.003
[−5.99]

t91.1 − 0.003
[8.34]

t)

− 0.50 �p1,t − 1.8 �s12,t

� s12,t = −0.02(s12,t − 4.5p2,t +5.5
[7.68]

p1,t +0.013
[−5.99]

t91.1 − 0.013
[8.34]

t)

− 0.28 �p1,t − 0.56 �p2,t .

It appears that the polynomially cointegrated relation is consistent with equi-
librium correction behavior in the German inflation rate and the Dmk–$ depre-
ciation/appreciation rate, whereas the US inflation rate is error increasing. The
lack of equilibrium error correction in US prices, already commented on in
section 8.5.3, is an interesting empirical finding that is likely to be related to the PPP
puzzle.

Ideally, one would like to interpret the above relations as dynamic adjustment
of growth rates to a long-run static equilibrium relation, as described in the second
scenario in section 8.8. In the present case, this is not straightforward because the
nominal exchange rate has the wrong sign in β

′xt . Therefore, the latter cannot
be given an approximate interpretation of a long-run ppp relation. Whatever the
case, Figure 8.5 illustrates that the polynomially cointegrated relation is strongly
mean-reverting.

Finally, the estimated adjustment coefficients, ζ = [ζ1, ζ2], to the growth rate
relations, β ′1�xt−1 and β

′
⊥1�xt−1, show that it is primarily the two prices that are

adjusting. Both German and US prices are equilibrium adjusting to the first “growth
rates” relation, β ′1�xt−1 = 1.0�p1t − 0.85�p2t + 0.20�s12,t , but German prices

more quickly so. The second “growth rates” relation, β ′⊥1�xt−1 = 1.01�p1,t +
1.0�p2,t − 0.84�s12,t , is more difficult to interpret. It essentially says that the
change in the Dmk–$ rate has been proportional to the sum of German and US
inflation rates, rather than to the inflation spread. As the coefficients of β⊥1 are the

mailto: rights@palgrave.com


Katarina Juselius 377

1980 1985 1990 1995

–1.00

–0.75

–0.50

–0.25

0.00

0.25

0.50

0.75

1.00
The polynomially cointegrated relation

Figure 8.5 The graph of the polynomially cointegrated relation β ′xt + δ′�xt

opposite of price homogeneity, the results explain why long-run price homogeneity
in τ was so strongly rejected.

That inflation rates are moving in opposite directions is a puzzling and even
implausible result. Therefore, it is useful to check whether this result still holds for
the combined estimates, ζτ ′�xt , calculated below:

�p1,t �p2,t �s12,t

�
2p1t : −0.75 0.18 0.10

�
2p2,t : 0.44 −0.13 0.04

�
2s12,t : 1.25 −1.00 0.17

Fortunately, the combined estimates are more plausible: German, as well as US,
inflation rates are now equilibrium error-correcting to each other. The US inflation
rate is equilibrium error-correcting to German price inflation with the correct sign,
but to the Dmk–$ rate with an “incorrect” sign. However, the coefficient is very
small and may not be significantly different from zero. Finally, the Dmk–$ rate
is not equilibrium error correcting but even error increasing with the US–German
inflation spread. Since the coefficients ζ13 and ζ23 were both insignificant, this is,
however, not necessarily an empirically strong result.

To summarize, the VAR analysis has detected four puzzling results:

1. Nominal exchange rates tend to move in the opposite direction to relative prices
for extended periods of time.

2. The US inflation rate is not equilibrium error correcting to β
′xt .
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3. Changes in the nominal exchange rate either do not seem to have been signif-
icantly responding to movements in relative inflation rates or, if they have, in
an equilibrium increasing manner.

4. The US inflation rate does not seem to have been responding to this “adverse”
behavior of the change in the Dmk–$ rate.

8.9.3 The estimated driving forces

The scenario in section 8.8 can now be directly assessed based on the estimates
of the MA representation in Table 8.7. The results clearly show that the empirical
reality has deviated quite substantially from the assumed theoretical scenario. For
example, the estimated loadings to the I(2) trend, β⊥2, show that the price coeffi-
cients are not even close to being equal, as assumed by the long-run homogeneity
hypothesis. Given the previous rejection of long-run price homogeneity, this result
should, of course, not come as a big surprise. However, what is more surprising is
that the coefficient to the Dmk–$ rate is not even close to zero, suggesting that s12,t
is empirically I(2), rather than I(1) as assumed in the scenario. Another surprising
result is that, given the estimates of β⊥2, the I(2) trend does not seem to cancel
in ppp = p1 − p2 − s12. For this to be the case, the coefficients would need to be
proportional to β

′
⊥2 = [a,−a, 2a].

That the real exchange rate is empirically I(2) would be hard to reconcile with
standard theories. However, the theory of imperfect knowledge economics (Fry-
dman and Goldberg, 2007) does in fact explain such a result. Frydman et al.
(2008) demonstrate that, under highly plausible assumptions on agents’ behav-
ior, speculative transactions in the foreign exchange market are likely to generate
pronounced persistence in nominal exchange rates that would be hard to distin-
guish from a near I(2) process. Johansen et al. (2008) find strong evidence for
this to be the case based on the same US–German (2008) data analyzed here, but
extended with short- and long-term interest rates. They also find that the ppp trans-
formed variable exhibits highly persistent behavior that can be considered either

Table 8.7 The common stochastic trends and their
loadings

⎡⎣ p1t
p2,t
s12,t

⎤⎦ =
⎡⎣ 0.04

0.09
0.16

⎤⎦[α′⊥2,1
∑ ∑

ε̂s
]

+
⎡⎣ c11 c12

c21 c22
c31 c32

⎤⎦[ α′⊥2,1
∑
ε̂i

α′⊥1,1
∑
ε̂i

]
+
⎡⎣ b11 b12

b21 b22
b31 b32

⎤⎦[ t91.1
t

]

where:

α′⊥2,1ε̂t = −0.57
[−4.03]

ε̂p1,t + 1.0ε̂p2,t −0.09
[−2.32]

ε̂s12,t

α′⊥1,1ε̂t = 0.25
[6.79]

ε̂p1,t + 0.14
[2.52]

ε̂p2,t −0.04
[−1.82]

ε̂s12,t
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empirically near I(2) or I(1), depending on whether the emphasis is on size or
power.

The estimated α⊥2 shows that it is shocks to relative prices (but with a larger
weight on US prices) and to nominal exchange rates that seem to have generated
the stochastic I(2) trend. Contrary to the scenario, the coefficient to the nomi-
nal exchange rate is significant and the sign is opposite to the expected one. The
estimated α⊥1, describing the stochastic I(1) trend, shows that a weighted average
of inflationary shocks in Germany and the US have generated the medium-run
movements in prices and exchange rates.

These results seem to strengthen the previous conclusions: standard theories
of price determination in the goods market cannot explain the PPP puzzle. The
overriding impression is that it is the nominal exchange rate that is behaving oddly,
suggesting that the long swings puzzle needs to be solved together with another
international macro-puzzle, the “forward premium puzzle.” This will be discussed
in the concluding section.

8.9.4 What did we gain from the I(2) analysis?

Section 8.5 reported estimates and tests using the I(1) model even though data
were empirically I(2). The question is whether the I(2) analysis has changed some
of the previous conclusions, or provided new insight that could not have been
obtained from the I(1) analysis.

To facilitate a comparison of the I(1) and I(2) models, it is useful first to subtract
�xt−1 from both sides of equation (8.15) estimated in section 8.5. The vector pro-

cess would then be formulated in second differences �
2xt , and �1 would become

� = �1 − I. In terms of likelihood, the two models differ only with respect to �,
which is unrestricted in the I(1) model but subject to one nonlinear parameter
restriction in the I(2) model.

The estimates of the β and α coefficients are very similar in the two models,
but their standard errors are smaller in the I(2) model, resulting in larger t-ratios.
This is because in the I(2) model the super-super consistency of β is adequately
accounted for and because the β relation has been directly estimated as a poly-
nomial cointegration relation. Also, the α coefficients are not just measuring the
adjustment to the levels relation, β ′xt−1, but to the levels and differences relation,
β
′
1xt−1 + δ

′
1�xt−1.

In the I(1) model, the coefficient estimates of �1 are unrestricted, and there is
not the same efficiency gain as in the I(2) model, where the estimates are subject
to the second reduced rank condition. In addition, the parameterization of the
I(1) model does not allow us to distinguish between β and τ = (β,β⊥1), and
therefore not to decompose � = �1 − I as in (8.32). So, even though we may have
realized that the β relation is not mean-reverting by itself, and thus that it has to
be combined with the differenced process δ′�xt , we would not find the estimate
of δ without knowing the estimate of β⊥1. Furthermore, the graphs of β ′1R1,t in

Figure 8.3 and of β ′1xt + δ′1�xt in Figure 8.5 suggest that the latter relation is more
precisely measured in terms of stationarity.
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The hypothesis of long-run price homogeneity was adequately formulated as
a test on τ in the I(2) model (and rejected), whereas in the I(1) model it was
formulated as a necessary but not sufficient test on β (and accepted). Thus, based
on the I(1) model, one might have been tempted to believe that long-run price
homogeneity was acceptable even though it was strongly rejected. The rejection
of homogeneity gave one of the clues as to why there are all these puzzles in
international finance.

Finally, no useful results on the common driving trends could be obtained from
the I(1) model, whereas the MA analysis of the I(2) model provided results on the
I(1) and I(2) stochastic trends which suggested that we need to look closer at the
determination of the nominal exchange rates.

To conclude, even though the I(1) and I(2) models are quite close in terms of
likelihood, the I(2) procedure is likely to insure against possible pitfalls in the statis-
tical analysis when there is a double unit root in the data. Last, but not least, it also
allows for a much richer structure and therefore more interesting interpretations
of the information in the data.

8.10 Conclusions

The CVAR approach adopted in this chapter is based on general-to-specific mod-
eling as a tool to uncover empirical regularities in the economy. Starting from a
general unrestricted model representing the raw data and then testing down seems
to be a useful way of extracting as much information as possible from the data
without distorting them in a prespecified direction. In this vein, it is also impor-
tant from the outset to untie any transformation of the variables, such as the real
exchange rate transformation of prices and nominal exchange rates, assumed to
hold rather than tested in the data. Such transformations, common in empirical
economics, can often seriously distort signals in the data that otherwise might help
to uncover important empirical regularities. This was also the case in this chapter,
where the joint modeling of prices and exchange rates revealed empirical regular-
ities in prices and the nominal exchange rate that were helpful in pinning down
the underlying puzzling behavior in this period.

To effectively pull information from the data, this chapter has argued that the
vector process should be classified into directions of similar persistence, dubbed
empirically I(0), I(1) or I(2). By following this route, one can achieve more pre-
cise inference and improve the interpretability of economic behavior in the short,
medium and long run. However, the main advantage is the ability to associate
persistent movements away from fundamental benchmark values in one vari-
able/relation with similar persistent movements somewhere else in the economy.
In a general equilibrium world, one would expect a persistent imbalance in one
sector to generate a persistent departure in another. Thus, by characterizing the
data according to the empirical order of integration, the CVAR approch offers a
powerful tool with which to investigate the generating mechanisms underlying
such puzzling behavior.

To distinguish between those empirical regularities which can be explained
by the theory model and those which cannot, the chapter has demonstrated
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the importance of first translating the basic assumptions of the theory model
into testable assumptions on the CVAR model. As an illustration, the chapter
showed how to translate the assumption of a stationary PPP and long-run price
homogeneity, together with the assumption that prices are pushing and the
exchange rate is pulling, into testable hypotheses in the CVAR model. This the-
ory consistent scenario showed, among others, that a stationary real exchange
rate is inherently associated with one stochastic trend having generated prices
and nominal exchange rates. The finding of two (rather than one) stochastic
trends was particularly important, as it suggested the existence of an additional
source of permanent shocks that have contributed to the persistent behavior in
the data. This additional shock seemed to be related to speculative behavior in
the market for foreign exchange and pointed to the importance of addressing
the long swings puzzle jointly with another puzzle in international finance, the
“forward premium puzzle.” Similar to the long swings puzzle, the forward pre-
mium puzzle also has to do with persistent movements in the data, now in the
forward premium: (R1,t − R2,t − Et�s12,t+m), where Ri,t is an interest yield of
maturity m.

Thus the two puzzles are connected, in that both stem from the determination
of the nominal exchange rate in the foreign exchange market. Based on a coin-
tegrated VAR analysis of German and US prices, the exchange rate, and interest
rates, Juselius and MacDonald (2007) find that ppp and the real interest rate spread
are cointegrating though individually I(1), or even near I(2). This is strong evi-
dence against the implications of the Dornbusch (1976) sticky-price model with
RE that PPP and real interest parity each should hold as equilibrium cointegrating
relationships. A theoretical justification for this strong feature in the data is, how-
ever, provided by Frydman et al. (2008), who were able to show in a two-country
monetary model with IKE that goods prices and exchange rates adjust to a long-
run equilibrium relation, being a combination of the ppp and the real interest rate
spreads.

Furthermore, Johansen et al. (2008) report results that point to the importance
of inflationary expectations measured by the term spread which was found to be
empirically I(1). The latter finding again points to the importance of allowing for
not just one, but at least two, stochastic trends in the term structure of interest
rates (Giese, 2008), and thus to a reconsideration of the monetary policy interest
rate channel.

This illustrates how the VAR approach can be used constructively. Starting with
the basic information set, carefully structuring the information in the data, and
adding more information if needed, might at an early stage suggest how to modify
either the empirical or the economic model, or both.

The following passage from Hoover (2006) pinpoints the fundamental difference
between an approach based on a priori theory and the general-to-specific approach
to empirical economics:

The Walrasian approach is totalizing. Theory comes first. Empirical reality must
be theoretically articulated before it can be empirically observed. There is a sense
that the Walrasian attitude is that to know anything, one must know everything.
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. . . There is a fundamental problem: How do we come to our a priori knowl-
edge? Most macroeconomists expect empirical evidence to be relevant to our
understanding of the world. But if that evidence only can be viewed through
totalizing a priori theory, then it cannot be used to revise the theory.

. . . The Marshallian approach is archaeological. We have some clues that a sys-
tematic structure lies behind the complexities of economic reality. The problem
is how to lay this structure bare. To dig down to find the foundations, modifying
and adapting our theoretical understanding as new facts accumulate, becoming
ever more confident in our grasp of the super structure, but never quite sure
that we have reached the lowest level of the structure.

For example, the significant finding of two shocks rather than one and the rejec-
tion of long-run price homogeneity are two examples of important information in
the data, signaling the need to dig deeper in order to understand more. By taking
this information in the data seriously instead of just ignoring it, we have been able
to uncover more structure, and thus to improve our understanding, as demon-
strated in Frydman et al. (2008) and Johansen et al. (2008). Needless to say, the
need to dig deeper does not stop here.

Notes

1. Note that the ppp term is also the (logarithm) of the real exchange rate. We prefer to use
the label ppp in this chapter because we are adopting a parity perspective and also because
we do not model the real exchange rate in terms of so-called real fundamentals.

2. Johansen (2006a) demonstrated that valid inference on steady-state values requires more
than 5,000 observations if the model contains a near unit root of 0.998.

3. German CPI has been additively mean corrected for the reunification in 1991:1 prior to
the VAR analysis.

4. Note, however, that this diagnostic check is only reliable in a VAR model with a correct
lag length. A VAR model with too many lags will often generate complex pairs of large
(albeit insignificant) roots in the characteristic polynomial (Nielsen and Nielsen, 2006).

5. When the data are I(2), price homogeneity of β ′xt is a necessary but not sufficient
condition, as will be discussed in section 8.8.

6. When the lag k > 2, there would also be lagged acceleration rates, �2xt−1, to concentrate
out.

7. At this stage, �p will be left unrestricted in the model.
8. A linear trend in α′⊥1�xt would imply that the inflation rate, say, is allowed to grow with

a linear trend, and thus prices with a quadratic trend. It would be hard to argue for such
a specification, except possibly as a local approximation.

9. From a statistical point of view, an equivalent transformation would be achieved by
replacing �p1 with �p2.
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Structural Time Series Models for
Business Cycle Analysis
Tommaso Proietti

Abstract

The chapter deals with parametric models for the measurement of the business cycle in economic
time series. It presents univariate methods based on parametric trend-cycle decompositions and
multivariate models featuring a Phillips-type relationship between the output gap and inflation and
the estimation of the gap using mixed frequency data. We finally address the issue of assessing
the accuracy of the output gap estimates.
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9.7 Appendix C: State-space models and methods 426
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9.7.2 Real-time (updated) estimates 427
9.7.3 Smoothing 428
9.7.4 The simulation smoother 428

9.1 Introduction

The term “structural time series” refers to a class of parametric models that are spec-
ified directly in terms of unobserved components which capture essential features
of the series, such as trends, cycles and seasonality. The approach is suitable for the
analysis of macroeconomic time series, where latent variables, such as trends and
cycles, and more specialized notions, such as the output gap, core inflation and
the natural rate of unemployment, need to be measured.

One of the key issues economists have faced in characterizing the dynamic behav-
ior of macroeconomic variables, such as output, unemployment and inflation, is
separating trends from cycles. The decomposition of economic time series has a
long tradition, dating back to the nineteenth century (see the first chapter of Mills,
2003, for an historical perspective). Along with providing a description of the
salient features of a series, the distinction between what is permanent and what
is transitory in economic dynamics has important implications for monetary and
fiscal policy. The underlying idea is that trends and cycles can be ascribed to differ-
ent economic mechanisms and an understanding of their determinants helps to
define policy targets and instruments.

This chapter focuses on structural time series modeling for business cycle analy-
sis and, in particular, for output gap measurement. The output gap is the deviation
of the economy’s realized output from its potential. Potential output is defined as
the noninflationary level of output, i.e., as the level that can be attained using the
available technology and productive factors at a stable inflation rate. The gap mea-
sures the presence and the extent of real disequilibria and constitutes an indicator
of inflationary pressure in the short run: a positive output gap testifies to excess
demand, while a negative output gap implies excess supply.

The output gap plays a central role in the transmission mechanism of mone-
tary policy, since short-term interest rates influence aggregate demand and the
latter affects inflation via a Phillips curve relationship. The Phillips curve estab-
lishes a trade-off between output and inflation over the short run, and provides the
rationale for using the short run component in output as an indicator of demand-
driven inflationary pressure. For instance, the Taylor rule (Taylor, 1999) explicitly
links the central bank’s policy to the output gap. On the other hand, the growth
rate of potential output is a reference value for broad money growth. Other impor-
tant uses of the output gap are in fiscal analysis, where it is employed to assess the
impact of cyclical factors on budget deficits, and in the adjustment of exchange
rates. The output gap is also related to cyclical unemployment, which is the devi-
ation of unemployment from its trend, known as the non-accelerating inflation
rate of unemployment (NAIRU).
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The signal extraction problems relating to latent variables, such as the output
gap, core inflation and the NAIRU, can be consistently formulated within a model-
based framework and, in particular, within the class of unobserved components
time series models, so matching the fundamental economic relationships with
observable macroeconomic aggregates.

The chapter is divided into three main parts: the first (section 9.2) deals with
univariate methods for cycle measurement. One approach is to formalize a model
of economic fluctuations such that the different components are driven by specific
shocks that are propagated via a dynamic transmission mechanism. We start by
introducing the traditional trend-cycle structural decomposition, discussing the
parametric representation of both components (sections 9.2.1–4) and the correla-
tion between the trend and cycle disturbances (section 9.2.5). Another approach is
to consider the cycle as the bandpass component of output, i.e., as those economic
fluctuations which have a periodicity greater then a year and smaller than, say,
eight years. We review the relationship between popular signal extraction filters,
such as the Hodrick–Prescott and the Baxter and King filters, and the model-based
Wiener–Kolmogorov filter. Particular attention is devoted to the implementation
of bandpass filtering in a model-based framework (section 9.2.6). The advantages
of this strategy are twofold: the components can be computed in real time using
standard principles of optimal signal extraction, so that efficient algorithms, such
as the Kalman filter and smoother, can be applied. Second, the reliability of the
estimated components can be thoroughly assessed.

The second part, starting with section 9.3, deals with multivariate models for the
measurement of the output gap. The above definition of the output gap as an indi-
cator of inflationary pressures suggests that the minimal measurement framework
is of a bivariate model for output and inflation. After reviewing the work done in
this area (section 9.3.1), we illustrate the estimation of a bivariate model for the
US economy, under both the classical and the Bayesian approaches, and incorpo-
rating the feature known as the “Great Moderation” of the volatility of economic
fluctuations (section 9.3.2). In section 9.3.3 we review the multivariate extensions
of the basic bivariate model and we conclude this part with an application which
serves to illustrate the flexibility of the state-space methodology in accommodat-
ing data features such as missing data, nonlinearities and temporal aggregation.
In particular, section 9.3.4 presents the results of fitting a four-variate monthly
time series model for the US economy with mixed frequency data, as gross domes-
tic product (GDP) is available only quarterly, whereas industrial production, the
unemployment rate and inflation are monthly. The model incorporates the tem-
poral aggregation constraints (which are nonlinear since the model is formulated
in terms of the logarithm of the variables) and produces as a byproduct monthly
estimates of GDP, along with their reliability, that are consistent with the quarterly
observed values.

The third part, section 9.4, deals with the reliability of the output gap
estimates. The assessment of the quality of the latter is crucial for the deci-
sion maker. We discuss the various sources of uncertainty (model selection,
parameter estimation, data revision, estimation of unboserved components,
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statistical revision), and discuss ways of dealing with them using the state-space
methodology.

One of the objectives of this chapter is to provide an overview of the main state-
space methods and to illustrate their application and scope. The description of the
algorithms is relegated to an appendix and we refer to Harvey (1989), West and
Harrison (1997), Kitagawa and Gersch (1996), Durbin and Koopman (2001), and
the selection of readings in Harvey and Proietti (2005), for a thorough presentation
of the main ideas and methodological aspects concerning state-space methods and
unobserved components models. For the class of state-space models with Markov-
switching, see Kim and Nelson (1999b), Frühwirth-Schnatter (2006) and Cappé,
Moulines and Ryden (2005). An essential and up-to-date monograph on modeling
trends and cycles in economics is Mills (2003).

9.2 Univariate methods

In univariate analysis, the output gap can be identified as the stationary or tran-
sitory component in a measure of aggregate economic activity, such as GDP.
Estimating the output gap thus amounts to detrending the series and a large lit-
erature has been devoted to this very controversial issue (see, e.g., Canova, 1998;
Mills, 2003).

We shall confine our attention to the additive decomposition (after a logarith-
mic transformation) of real output, yt , into potential output, μt , and the output
gap, ψt : yt = μt +ψt . This basic representation is readily extended to handle a sea-
sonal component and other calendar components such as those associated with
trading days and moving festivals, which for certain output series, e.g., industrial
production, play a relevant role.

In the structural approach a parametric representation for the components is
needed; furthermore, the specification of the model is completed by assumptions
on the covariances among the various components. The first identifying restriction
that will be adopted throughout is that μt is fully responsible for the non-stationary
behavior of the series, whereas ψt is a transitory component.

9.2.1 The random walk plus noise model

The random walk plus noise (RWpN) model provides the most basic trend-cycle
decomposition of output, such that the trend is a random walk process with normal
and independently distributed (NID) increments, and the cycle is a pure white noise
(WN) component. The structural specification is the following:

yt = μt + ψt , t = 1, . . . , n, ψt ∼ NID(0, σ2
ψ),

μt = μt−1 + β + ηt , ηt ∼ NID(0, σ2
η ).

(9.1)

When the drift is absent, i.e., when β = 0, the model is also known as the local
level model (see Harvey, 1989). We assume throughout that E(ηtψt−j) = 0 for all t
and j, so that the two components are orthogonal.

If σ
2
η = 0, μt is a deterministic linear trend. The one-sided Lagrange multiplier

test of the null hypothesis H0 : σ
2
η = 0 against the alternative H1 : σ

2
η > 0, is
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known as a stationarity test and is discussed in Nyblom and Mäkeläinen (1983).
The nonparametric extension to the case when ψt is any indeterministic stationary
process is provided by Kwiatkowski, Phillips, Schmidt and Shin (KPSS) (1992) (see
also Harvey, 2001, for a review and extensions).

The reduced-form representation of (9.1) is an integrated moving average model

of orders (1,1), or IMA(1,1): �yt = β + ξt + θξt−1, ξt ∼ NID(0, σ2
), where �yt =

yt − yt−1. The difference operator can be defined in terms of the lag operator L,

such that Ldyt = yt−d , for an integer d, as � = (1− L).
The moving average (MA) parameter is subject to the restriction −1 ≤ θ ≤ 0.

Equating the autocovariance generating functions of �yt implied by the IMA(1,1)

and by the structural representation (9.1), it is possible to establish that σ
2
η =

(1+ θ)
2
σ

2 and σ
2
ψ = −θσ

2. Hence it is required that θ ≤ 0, so that persistence,

(1+ θ), cannot be greater than unity. The variance ratio λ = σ
2
ψ/σ

2
η depends

uniquely on θ , as λ = −θ/(1+θ)
2. The ratio provides a measure of relative smooth-

ness of the trend: if λ is large, then the trend varies little with respect to the noise
component, and thus it can be regarded as “smooth.”

The RWpN model has a long tradition and a well-established role in the analysis
of economic time series, since it provides the model-based interpretation for the
popular forecasting technique known as exponential smoothing, which is widely used
in applied economic forecasting and fares remarkably well in forecast competitions
(see Muth, 1960, and the comprehensive reviews by Gardner, 1985, 2006).

Assuming a doubly infinite sample, the one-step-ahead predictions, μ̃t+1|t , and
the filtered and smoothed estimates of the trend component, denoted μ̃t |∞, are
given, respectively, by:

μ̃t+1|t = μ̃t |t = (1+ θ)

∞∑
j=0

(−θ)
jyt−j, μ̃t |∞ = 1+ θ

1− θ

∞∑
j=−∞

(−θ)
|j|yt−j.

Here, μ̃t+1|t denotes the expectation of μt+1 based on the information available
at time t , whereas μ̃t |∞ is the expectation based on all of the information in the

doubly infinite data set. The filter w(L) = (1 + θ)(1 + θL)−1 = (1 + θ)
∑∞

j=0(−θ)
jLj

is known as a one-sided exponentially weighted moving average (EWMA). These
expressions follow from applying the Wiener–Kolmogorov prediction and signal
extraction formulae (see Appendix B). In terms of the structural form parameters,

μ̃t |∞ = σ2
η

σ2
η +σ2

ψ |1−L|2 yt , where |1− L|2 = (1− L)(1− L−1
). The filter:

wμ(L) = σ
2
η

σ2
η + σ2

ψ |1− L|2 =
1+ θ

1− θ

∞∑
j=−∞

(−θ)
|j|Lj,

is known as a two-sided EWMA filter. In finite samples, the computations are
performed by the Kalman filter and smoother (see Appendix C).

The parameter θ (or, equivalently, λ) is essential in determining the weights
that are attached to the observations for signal extraction and prediction. When
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θ = 0, yt is a pure random walk, and then the current observation provides the best
estimate of the trend: μ̃t+1|t = μ̃t |t = μ̃t |∞ = yt . When θ = −1, the trend estimate,
which is as smooth as possible, is a straight line passing through the observations.

The RWpN model provides a stripped to the bone separation of the transitory and
permanent dynamics that depends on a single smoothness parameter, which deter-
mines the weights that are assigned to the available observations for forecasting
and trend estimation. Its use as a misspecified model of economic fluctuations for
out-of-sample forecasting, using multi-step (or adaptive) estimation, rather than
maximum likelihood (ML) estimation, has been considered in the seminal paper
by Cox (1961) and by Tiao and Xu (1993). Proietti (2005) discusses multi-step
estimation of the RWpN model for the extraction of trends and cycles.

9.2.2 The local linear model and the Leser–HP filter

In the local linear trend model (LLTM) the trend μt is an integrated random walk:

yt = μt + ψt , ψt ∼ NID(0, σ2
ψ), t = 1, 2, . . . , n,

μt = μt−1 + βt−1 + ηt , ηt ∼ NID(0, σ2
η ),

βt = βt−1 + ζt , ζt ∼ NID(0, σ2
ζ ).

(9.2)

It is assumed that ψt , ηt and ζt are mutually and serially uncorrelated. For σ
2
ζ = 0

the trend reduces to a random walk with constant drift, whereas for σ
2
η = 0 the

trend is an integrated random walk (�2
μt = ζt−1).

The above representation encompasses a deterministic linear trend, arising when

both σ
2
η and σ

2
ζ are zero. Second, it is consistent with the notion that the real time

estimate of the trend is coincident with the value of the eventual forecast function
at the same time (see section 9.2.5 on the Beveridge–Nelson decomposition).

The LLTM is the model for which the Leser filter is optimal (see Leser, 1961). The
latter is derived as the minimizer, with respect to μt , t = 1, . . . , n, of the penalized
least squares (PLS) criterion:

PLS = ∑n
t=1(yt − μt )

2 + λ
∑n

t=3(�
2
μt )

2.

The parameter λ governs the trade-off between fidelity and smoothness and it is
referred to as the smoothness or roughness penalty parameter. The first addend of
PLS measures the goodness-of-fit, whereas the second penalizes the departure from
zero of the variance of the second differences (i.e., a measure of roughness). In
matrix notation, if y = (y1, . . . , yn), μ = (μ1, . . . ,μn), and D = {dij} is the n × n
matrix corresponding to a first difference filter, with dii = 1, di,i−1 = −1 and

zero otherwise, so that Dμ = (μ2 − μ1, . . . ,μn − μn−1)
′, we can write the criterion

function as PLS = (y − μ)
′
(y − μ) + λμ

′D2′D2
μ. Differentiating with respect to

μ, the first-order conditions yield: μ̃ = (In + λD2′D2
)
−1y. The rows of the matrix

(In + λD2′D2
)
−1 contain the filter weights for estimating the trend at a particular

point in time. The solution arising for λ = 1600 is widely known in the analysis
of quarterly macroeconomic time series as the Hodrick–Prescott filter (henceforth,
HP; see Hodrick and Prescott, 1997); the choice of the smoothness parameter for

mailto: rights@palgrave.com


Tommaso Proietti 391

yearly and monthly time series is discussed in Ravn and Uhlig (2002) and Maravall
and del Rio (2007).

We now show that the Leser filter is the optimal signal extraction filter for the

LLTM (9.2) with σ
2
η = 0 and λ = σ

2
ψ/σ

2
ζ . In fact, apart from an additive term

which does not depend on μ, PLS is proportional to ln f (y,μ) = ln f (y|μ)+ ln f (μ),
where f (y,μ), f (y|μ) denote, respectively, the Gaussian joint density of the ran-
dom vectors y and μ, and the conditional density of y given μ, whereas f (μ)

is the joint density of μt , t = 1, . . . , n. Now, ln f (y|μ) depends on μ only via

(1/σ2
ψ)
∑n

t=1(yt − μt )
2, whereas ln f (μ) = ln f (μ3, . . . ,μn|μ1,μ2) + ln f (μ1,μ2).

The first term depends on μt , t > 2, only via (1/σ2
ζ )
∑n

t=3(�
2
μt )

2. The contri-
bution of the initial values vanishes under fixed initial conditions or diffuse initial
conditions.1 In conclusion, μ̃ maximizes, with respect to μ, the joint log-density
ln f (y,μ) and thus the posterior log-density ln f (μ|y) = ln f (y,μ)− ln f (y). A con-
sequence of this result is that the components can be efficiently computed using
the Kalman filter and smoother (see Appendix C). The latter computes the mean
of the conditional distribution μ|y. As this distribution is Gaussian, the posterior
mean is equal to the posterior mode. Hence, the smoother computes the mode of
f (μ|y), which is also the minimizer of the PLS criterion.

The equivalence λ = σ
2
ψ/σ

2
ζ makes clear that the roughness penalty measures

the variability of the cyclical (noise) component relative to that of the trend

disturbance, and regulates the smoothness of the long-term component. As σ
2
ζ

approaches zero, λ tends to infinity, and the limiting representation of the trend
is a straight line. The Leser–HP detrended or cyclical component is the smoothed
estimate of the component ψt in (9.2) and, although the maintained representa-
tion for the deviations from the trend is a WN component, the filter has been one
of the most widely employed tools in macroeconomics to extract a measure of the
business cycle. For the US GDP series (logarithms) this component is plotted in the
top right-hand panel of Figure 9.4 (p. 404).

In terms of the reduced form of model (9.2), the IMA(2,2) model �
2yt = (1 +

θ1L+ θ2L2
)ξt , ξt ∼ NID(0, σ2

), it can be shown that the restriction σ
2
η = 0 implies

[(1 + θ2)θ2]/(1 − θ2)
2 = λ and θ1 = −4θ2/(1 + θ2). Therefore, for λ = 1600, we

have θ1 = −1.778 and θ2 = 0.799, so that θ(1) = 1 + θ1 + θ2 = 0.021 and the MA
polynomial is close to noninvertibility at the zero frequency.

The theoretical properties of the Leser–HP filter are better understood by assum-
ing the availability of a doubly-infinite sample, yt+j, j = −∞, . . . ,∞. In such a
setting, the Wiener–Kolmogorov filter (see Whittle, 1983, and Appendix B) pro-
vides the minimum mean square linear estimator (MMSLE) of the trend, μ̃t |∞ =
wμ(L)yt , where:

wμ(L) = σ
2
ζ

σ2
ζ + |1− L|4σ2

ψ

= 1

1+ λ|1− L|4 . (9.3)

The frequency response function of the trend filter (see Appendix A) is:

wμ(e−ıω
) = 1

1+ 4λ(1− cos ω)2
, ω ∈ [0,π ];
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notice that this is 1 at the zero frequency and decreases monotonically to zero as ω

approaches π . This behavior enforces the interpretation of (9.3) as a lowpass filter,
and the corresponding detrending filter, 1 − wμ(L), is the highpass filter derived
from it. We shall return to this issue in the next section.

9.2.3 Higher-order trends and lowpass filters

A lowpass filter is a filter that passes low-frequency fluctuations and reduces the
amplitude of fluctuations with frequencies higher than a cut-off frequency ωc (see,
e.g., Percival and Walden, 1993). The frequency response function of an ideal
lowpass filter takes the following form: for ω ∈ [0,π ],

wlp(ω) =
{

1 if ω ≤ ωc
0 if ωc < ω ≤ π .

The notion of a highpass filter is complementary, its frequency response function
being whp(ω) = 1−wlp(ω). The coefficients of the ideal lowpass filter are provided
by the inverse Fourier transform of wlp(ω):

wlp(L) =
ωc
π
+
∞∑

j=1

sin(ωcj)
π j

(Lj + L−j
).

A bandpass filter is a filter that passes fluctuations within a certain frequency
range and attenuates those outside that range. Given lower and upper cut-off fre-
quencies, ω1c < ω2c in (0,π), the ideal frequency response function is unity in
the interval [ω1c ,ω2c] and zero outside. The notion of a bandpass filter is relevant
to business cycle measurement: the traditional definition, ascribed to Burns and
Mitchell (1946), considers all the fluctuations with a specified range of period-
icities, namely those ranging from one and a half to eight years. Thus, if s is the
number of observations in a year, fluctuations with periodicity between 1.5s and
8s are included. Baxter and King (1999; henceforth, BK) argue that the ideal fil-
ter for cycle measurement is a bandpass filter. Now, given the two business cycle
frequencies, ωc1 = 2π/(8s) and ωc2 = 2π/(1.5s), the bandpass filter is:

wbp(L) =
ωc2 − ωc1

π
+
∞∑

j=1

sin(ωc2j)− sin(ωc1j)
π j

(Lj + L−j
). (9.4)

Notice that wbp(L) is the contrast between the two lowpass filters with cut-off fre-
quencies ωc2 and ωc1. The frequency response function of the ideal business cycle
bandpass filter for quarterly observations (s = 4), which is equivalent to the gain
function (see Appendix A), is plotted in Figure 9.3 (p. 403).

The ideal bandpass filter exists and is unique, but as it entails an infinite number
of leads and lags, an approximation is required in practical applications. BK show
that the K-terms approximation to the ideal filter (9.4), which is optimal in the
sense of minimizing the integrated mean square approximation error, is obtained
from (9.4) by truncating the lag distribution at a finite integer K. They propose
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using a three-year window, i.e., K = 3s, as a valid rule of thumb for macroeconomic
time series. They also constrain the weights to sum to zero, so that the resulting
approximation is a detrending filter: denoting the truncated filter wbp,K(L) = w0+∑K

1 wj(L
j+L−j

), the weights of the adjusted filter will be wj−wbp,K(1)/(2K+1). The
gain of the resulting filter is displayed in Figure 9.3 (henceforth we shall refer to it
as the BK filter). The ripples result from the truncation of the ideal filter and are
referred to as the Gibbs phenomenon (see Percival and Walden, 1993, p. 177). BK
do not entertain the problem of estimating the cycle at the extremes of the available
sample; as a result the estimates for the first and last three years are unavailable.
Christiano and Fitzgerald (2003) provide the optimal finite-sample approximations
for the bandpass filter, including the real-time filter, using a model-based approach.

Within the class of parametric structural models, an important category of
lowpass filter emerges from the application of Wiener–Kolmogorov optimal signal
extraction theory to the following model:

yt = μt + ψt , t = 1, 2, . . . , n,

�
m
μt = (1+ L)rζt , ζt ∼ NID(0, σ2

ζ ),

ψt ∼ NID(0, λσ2
ζ ), E(ζt ,ψt−j) = 0, ∀j,

(9.5)

where μt is the signal or trend component, and ψt is the noise.
Assuming a doubly-infinite sample, the minimum mean square estimators of the

components (see Appendix B) are, respectively, μ̃t = wμ(L)yt and ψ̃t = yt − μ̃t =
[1−wμ(L)]yt , where:

wμ(L) = |1+ L|2r

|1+ L|2r + λ|1− L|2m
. (9.6)

The expression (9.6) defines a class of filters which depends on the order of integra-
tion of the trend (m, which regulates its flexibility), on the number of unit poles at
the Nyquist frequency r, which ceteris paribus regulates the smoothness of �

m
μt ,

and λ, which measures the relative variance of the noise component.
The Leser–HP filter arises for m = 2, r = 0, λ = 1600 (quarterly data). The

two-sided EWMA filter arises for m = 1, r = 0. The filters arising for m = r are
Butterworth filters of the tangent version (see, e.g., Gómez, 2001). The analytical
expression of the gain is:

wμ(ω) =
{

1+
[

tan(ω/2)
tan(ωc/2)

]2m
}−1

,

and depends solely on m and ωc . As m → ∞ the gain converges to the frequency
response function of the ideal lowpass filter.

The previous discussion enforces the interpretation of the trend filter wμ(L) as
a lowpass filter. Its cut-off frequency depends on the triple (m, r, λ). Frequency
domain arguments can be advocated for designing these parameters so as to select
the fluctuations that lie in a predetermined periodicity range. In particular, let us
consider the Fourier transform of the trend filter (9.6), wμ(ω) = wμ(e−ıω

),ω ∈ [0,π ],
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which also expresses the gain of the filter. The latter is monotonically decreasing
with λ; it takes the value 1 at the zero frequency and, if r > 0, it is zero at the
Nyquist frequency. The trend filter will preserve to a great extent those fluctuations
at frequencies for which the gain is greater than 1/2 and reduce to a given extent
those for which the gain is below 1/2. This simple argument justifies the definition
of a lowpass filter with cut-off frequency ωc if the gain halves at that frequency;
see Gómez (2001, sec. 1). Usually the investigator sets the cut-off frequency to
a particular value, e.g., ωc = 2π/(8s) and chooses the values of m and r (e.g.,
m = 2, r = 0 for the Leser–HP filter). Solving the equation wμ(ωc) = 1/2, the
parameter λ can be obtained in terms of the cut-off frequency and the orders m
and r:

λ = 2r−m
[

(1+ cos ωc)
r

(1− cos ωc)
m

]
. (9.7)

9.2.4 The cyclical component

In the previous section we considered some of the most popular decompositions
of a time series into a trend and pure white noise component. Hence, the pre-
vious models are misspecified. In the analysis of economic time series it is more
interesting to entertain a trend-cycle decomposition such that the trend is due
to the accumulation of supply shocks that are permanent, whereas the cycle is
ascribed to nominal or demand shocks that are propagated by a stable transmission
mechanism. Clark (1987) and Harvey and Jaeger (1993), e.g., replace the irregular
component by a stationary stochastic cycle, which is parameterized as an AR(2)
or an ARMA(2,1) process, such that the roots of the AR polynomial are a pair of
complex conjugates. The model for the cycle is a stationary process capable of
reproducing widely acknowledged stylized facts, such as the presence of strong
autocorrelation, determining the recurrence and alternation of phases, and the
dampening of fluctuations, or zero long-run persistence.

In particular, the model adopted by Clark (1987) is:

ψt = φ1ψt−1 + φ2ψt−2 + κt , κt ∼ NID(0, σ2
κ ),

where κt is independent of the trend disturbances. Harvey (1989) and Harvey and
Jaeger (1993) use a different representation:[

ψt
ψ
∗
t

]
= ρ

[
cos & sin &

− sin & cos &

][
ψt−1
ψ
∗
t−1

]
+
[

κt
κ
∗
t

]
, (9.8)

where κt ∼ NID(0, σ2
κ ) and κ

∗
t ∼ NID(0, σ2

κ ) are mutually independent and indepen-
dent of the trend disturbance, & ∈ [0,π ] is the frequency of the cycle and ρ ∈ [0, 1)
is the damping factor. The reduced form of (9.8) is the ARMA(2,1) process:

(1− 2ρ cos &L+ ρ
2L2

)ψt = (1− ρ cos &L)κt + ρ sin &κ
∗
t−1.

When ρ is strictly less than one the cycle is stationary with E(ψt ) = 0 and σ
2
ψ =

Var(ψt ) = σ
2
κ /(1 − ρ

2
); the autocorrelation at lag j is ρ

j cos & j. For & ∈ (0,π) the
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roots of the AR polynomial are a pair of complex conjugates with modulus ρ
−1

and phase & ; correspondingly, the spectral density displays a peak around & .
Harvey and Trimbur (2003) further extend the model specification by proposing

a general class of model-based filters for extracting trend and cycles in macro-
economic time series, showing that the design of lowpass and bandpass filters
can be considered as a signal extraction problem in an unobserved components
framework. In particular, they consider the decomposition yt = μmt + ψkt + εt ,

where εt ∼ NID(0, σ2
ε ). The trend is specified as an mth-order stochastic trend:

μ1t = μ1,t−1 + ζt
μit = μi,t−1 + μi−1,t , i = 2, . . . , m.

(9.9)

This is the recursive definition of an m− 1-fold integrated random walk, such that
�

m
μmt = ζt . The component ψkt is a kth-order stochastic cycle, defined as:[

ψ1t
ψ
∗
1t

]
= ρ

[
cos & sin &

− sin & cos &

][
ψ1,t−1
ψ
∗
1,t−1

]
+
[

κt
0

]
,

[
ψit
ψ
∗
it

]
= ρ

[
cos & sin &

− sin & cos &

][
ψi,t−1
ψ
∗
i,t−1

]
+
[

ψi−1,t
0

]
. (9.10)

The reduced form representation for the cycle is:

(1− 2ρ cos &L+ ρ
2L2

)
k
ψkt = (1− ρ cos &L)kκt .

Harvey and Trimbur show that, as m and k increase, the optimal estimators of the
trend and the cycle approach the ideal lowpass and bandpass filter, respectively.

9.2.5 Models with correlated components

Morley, Nelson and Zivot (2003; henceforth, MNZ) consider the following
unobserved components model for US quarterly GDP:

yt = μt + ψt t = 1, 2, . . . , n,

μt = μt−1 + β + ηt ,

ψt = φ1ψt−1 + φ2ψt−2 + κt ,(
ηt
κt

)
∼ NID

[(
0
0

)
,

(
σ

2
η σηκ

σηκ σ
2
κ

)]
, σηκ = rσησκ .

(9.11)

It should be noticed that the trend and cycle disturbances are allowed to be contem-
poraneously correlated, with r being the correlation coefficient. The reduced form

of model (9.11) is the ARIMA(2,1,2) model: �yt = β + θ(L)
φ(L) ξt , ξt ∼ NID(0, σ2

),

where θ(L) = 1+θ1L+θ2L2 and φ(L) = 1−φ1L−φ2L2. The structural form is exactly
identified, both it and the reduced form have six parameters. The orthogonal
trend-cycle decomposition considered by Clark (1987) imposes the overidentifying
restriction r = 0.
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We estimate this model for the US GDP series using the sample period 1947:1–
2006:4. For comparison we also fit an unrestricted ARIMA(2,1,2) model and the
restricted version imposing r = 0, which will be referred to henceforth as the Clark
model. Estimation of the unknown parameters is carried out by frequency domain
ML estimation (see Nerlove, Grether and Carvalho, 1995; Harvey, 1989, sec. 4.3,
for the derivation of the likelihood function and a discussion on the nature of the
approximation involved). Given the availability of the differenced observations
�yt , t = 1, 2, . . . , n, and denoting by ωj = 2π j/n, j = 0, 1, . . . , (n − 1), the Fourier
frequencies, the Whittle likelihood is defined as follows:

loglik = −n
2

ln 2π − 1
2

n−1∑
j=0

[
log f (ωj)+

I(ωj)

f (ωj)

]
, (9.12)

where I(ωj) is the sample spectrum:

I(ωj) =
1

2π

⎡⎣c0 + 2
n−1∑
k=1

ck cos(ωjk)

⎤⎦ ,

ck is the sample autocovariance of �yt at lag k, and f (ωj) is the parametric spectrum
of the implied stationary representation of the MNZ model, �yt = β+ηt+�ψt , t =
1, . . . , n, evaluated at the Fourier frequency ωj. In particular:

f (ω) = f�μ(ω)+ f�ψ(ω)+ f�μ,�ψ(ω),

with:

f�μ(ω) = σ
2
η

2π
, f�ψ(ω) = 1

2π
2(1− cos ω)σ

2
κ

φ(e−ıω)φ(eıω)
,

f�μ,�ψ(ω) = (1− e−ıω
)φ(eıω)+ (1− eıω)φ(e−ıω

)

2πφ(e−ıω)φ(eıω)
rσησκ ,

e−ıω = cos ω − ı sin ω, where ı is the imaginary unit, is the complex exponen-

tial, and φ(e−ıω
) = 1 − φ1e−ıω − φ2e−2ıω. The last term is the cross-spectrum of

(�ψt ,�μt ) and, of course, it vanishes if r = 0. For the Clark model the parametric
spectrum is given by the above expression with f�μ,�ψ(ω) = 0, whereas for the

unrestricted ARIMA(2,1,2) it is given by f (ω) = σ
2
θ(e−ıω

)θ(eıω)[φ(e−ıω
)φ(eıω)]−1.

Figure 9.1 displays the quarterly growth rates, �yt , of US GDP in the first panel.
The next panel plots the profile likelihood for the correlation parameter against the
value of r in [−1,1] and shows the presence of two modes, the first around −.9 and
the second around zero. The parameter estimates, along with their estimated stan-
dard errors, and the value of the maximized likelihood, are reported in Table 9.1.2 It
should be noticed that the unrestricted ARIMA(2,1,2) is exactly coincident with the
reduced form of the MNZ model, as the two models yield the same likelihood and
the AR and MA parameters are the mapping of the structural parameters. Second,
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Table 9.1 Frequency domain ML estimation results for
quarterly US real GDP, 1947:1–2006:4

ARIMA MNZ Clark

φ1 1.34 (0.07) 1.34 (0.07) 1.49 (0.05)
φ2 −0.76 (0.16) −0.76 (0.16) −0.56 (0.11)
θ1 −1.08 (0.11)
θ2 0.59 (0.20)
σ2 0.8224 (0.08)
r −0.93 (0.28) 0(r)
σ2
η 1.2626 (0.08) 0.3478 (0.15)

σ2
κ 0.3556 (0.33) 0.4120 (0.16)

loglik −315.76 −315.76 −317.14

the estimated correlation coefficient is high and negative (−0.93) and the likeli-
hood ratio test of the hypothesis r = 0 has a p-value equal to 0.097. MNZ interpret
the negative disturbance correlation as strengthening the case for the importance
of real shocks in the macroeconomy: real shocks tend to shift the long run path of
output, so short-term fluctuations will largely reflect adjustments toward a shifting
trend if real shocks play a dominant role.

The bottom left panel of Figure 9.1 displays the sample spectrum I(ωj) of �yt
along with the estimated parametric spectral densities for the MNZ model (which is,
of course, coincident with that of the ARIMA(2,1,2) model) and the Clark restricted
model (r = 0). For the ARIMA(2,1,2) and the MNZ models the roots of the AR
polynomial are a pair of complex conjugates that imply a spectral peak for �yt
at the frequency 0.68, corresponding to a period of nine quarters. As a matter
of fact, a dominant feature of �yt is the presence of a cyclical component with a
period of roughly two years. On the other hand, the spectral density implied by the
Clark model peaks at the frequency 0.09, corresponding to a period of 68 quarters
(i.e., a medium-run cycle).

A closer inspection of the sample spectrum reveals the presence of two consec-
utive periodogram ordinates, corresponding to a cycle of roughly two years, that
are highly influential on the estimation results (they are circled in Figure 9.1). It
is indeed remarkable that when these are not used in the estimation, the corre-
lation coefficient turns positive (r̂ = 0.35). The last panel of the figure presents
the leave-two-out cross-validation estimates of the correlation coefficient, which
are obtained by maximizing Whittle’s likelihood after deleting two consecutive
periodogram ordinates at the frequencies ωj and ωj+1. This is a special case of
weighted likelihood estimation, where each summand in (9.12) receives a weight
equal to 1 if the frequency ωj is retained and 0 if it is deleted.

The real-time and the smoothed estimates of the cyclical component arising from
the MNZ model, ψ̃t |t = E(ψt |Yt ) and ψ̃t |n = E(ψt |Yn), respectively, are reported in
Figure 9.2, along with the 95% interval estimates; here Yt denotes the information
available up to and including time t . The bottom panels display the weights wψ ,j
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Figure 9.1 Quarterly US real growth, 1947:2–2006:4. Sample spectrum and parametric
spectral fit of trend-cycle model with correlated components

of the signal extraction filters
∑

j wψ ,jL
jyt that yield the cycle estimates in the two

cases.
The real-time estimates support the view that most of the variation in GDP is

permanent, i.e., it should be ascribed to changes in the trend component, whereas
little variance is attributed to the transitory component. In fact, the amplitude of
ψ̃t |t is small and the interval estimates of ψt in real time are never significantly
different from zero. When we analyze the smoothed estimates the picture changes
quite radically: the cycle estimates are much more variable and there is a dramatic
reduction in the estimation error variance, so that the contribution of the transitory
component to the variation in GDP is no longer negligible. The real-time estimates
provide a gross underestimation of the cyclical component and are heavily revised
as the future missing observations become available. As a matter of fact, the final
estimates depend heavily on future observations, as can be seen from the pattern
of the weights in the last panel of Figure 9.2. That this behavior is typical of the
MNZ model when r̂ is high and negative is documented in Proietti (2006a).

The real-time estimates of the trend and cyclical components are coincident
with the Beveridge and Nelson (1981; henceforth, BN) components defined for
the ARIMA(2,1,2) reduced form. The BN decomposition defines the trend com-
ponent at time t as the value of the eventual forecast function at that time, or,
equivalently, the value that the series would take if it were on its long-run path
(see also Brewer, 1979). For an ARIMA(p, 1, q) process, this argument defines the
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Figure 9.2 Trend-cycle decomposition with correlated disturbances. Real-time and smoothed
estimates of the cyclical components

trend as a random walk driven by the innovations ξt = yt − E(yt |Yt−1). Writing
the ARIMA representation for yt as �yt = β +ψ(L)ξt , ψ(L) = θ(L)/φ(L), where φ(L)
is a stationary AR polynomial of order p and θ(L) an invertible MA polynomial of
order q, the BN decomposition can be written as: yt = mt + ct , t = 1, . . . , n, where
mt is the BN trend, and ct is the cyclical component.

The trend is defined as liml→∞[ỹt+l|t − lβ], with ỹt+l|t = E(yt+l|Yt ). Writing
yt+l = yt+l−1 + β + ψ(L)ξt , taking the conditional expectation and rearranging,
it is easily shown to give mt = mt−1 + β + ψ(1)ξt , where ψ(1) = θ(1)/φ(1) is the
persistence parameter, as it measures the fraction of the innovation at time t that
is retained in the trend. In terms of the observations, mt = wm(L)yt , where wm(L)
is the one-sided filter:

wm(L) = ψ(1)
ψ(L)

= θ(1)
φ(1)

φ(L)
θ(L)

.

The sum of the weights is one, i.e., wm(1) = 1.
The transitory component is defined residually as ct = yt − mt = ψ

∗
(L)ξt , where

�ψ
∗
(L) = ψ(L)− ψ(1). Alternative representations in terms of the observations yt

and of the innovations ξt are, respectively:

ct =
φ(1)θ(L)− θ(1)φ(L)

φ(1)θ(L)
yt , ct =

φ(1)θ(L)− θ(1)φ(L)
φ(1)φ(L)�

ξt . (9.13)
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The first expression shows that the weights for the extraction of the cycle sum
to zero. Since φ(1)θ(L) − θ(1)φ(L) must have a unit root, we can write φ(1)θ(L) −
θ(1)φ(L) = �ϑ(L), and substituting this into (9.13), the ARMA representation for

this component can be established as φ(L)ct = ϑ(L)[φ(1)]−1
ξt . As the order of ϑ(L)

is max(p, q) − 1, the cyclical component has a stationary ARMA(p, max(p, q) − 1)
representation. For the ARIMA(2,1,2) model fitted to US GDP, the cycle has the
ARMA(2,1) representation:

φ(L)ct = (1+ ϑL)
[
1− θ(1)

φ(1)

]
ξt , ϑ = −φ2θ(1)+ θ2φ(1)

φ(1)− θ(1)
. (9.14)

It is apparent that the two components are driven by the innovations, ξt ; the
fraction θ(1)/φ(1), known as persistence, is integrated in the trend, and its comple-
ment to 1 drives the cycle. The sign of the correlation between the trend and the
cycle disturbances is provided by the sign of φ(1) − θ(1); when persistence is less
(greater) than one then the trend and cycle disturbances are positively (negatively)
and perfectly correlated.

9.2.6 Model-based bandpass filters

As we said before, macroeconomic time series such as GDP do not usually admit
the decomposition yt = μt + ψt , with ψt being a purely irregular component;
nevertheless, applications of the class of filters (9.6) is widespread, as the popu-
larity of the Hodrick–Prescott filter testifies. However, when the available series
yt cannot be modeled as (9.2), it is not immediately clear how the components
should be defined and how inferences about them should be made. In particular,
the Kalman filter and the associated smoothing algorithms no longer provide the
minimum mean square estimators of the components nor their mean square error.
The discussion of model-based bandpass filtering in a more general setting will be
the theme of this section.

The trend-cycle decompositions dealt with in the two previous sections are mod-
els of economic fluctuations, such that the components are driven by random
disturbances which are propagated according to a transmission mechanism. In
this section we start from a reduced form model (as in the case of the BN decom-
position) and define parametric trend-cycle decompositions that are less loaded
with structural interpretation, since they just represent the lowpass and highpass
components in the series. The aim is to motivate and extend the use of signal
extraction filters of the class (9.6) to a more general and realistic setting than (9.5).
For this approach to the definition of bandpass filters see Gómez (2001) and Kaiser
and Maravall (2005). The following treatment is based on Proietti (2004).

Let yt denote a univariate time series with ARIMA(p, d, q) representation, which
we write as:

φ(L)(�dyt − β) = θ(L)ξt , ξt ∼ NID(0, σ2
),

where β is a constant, φ(L) = 1 − φ1L − · · · − φpLp is the AR polynomial with

stationary roots, and θ(L) = 1+θ1L+· · ·+θqLq is invertible. We are going to exploit
the fundamental idea that we can uniquely decompose the WN disturbance ξt into
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two orthogonal stationary processes as follows:

ξt =
(1+ L)rζt + (1− L)mκt

ϕ(L)
, (9.15)

where ζt and κt are two mutually and serially independent Gaussian disturbances,

ζt ∼ NID(0, σ2
), κt ∼ NID(0, λσ2

), and:

|ϕ(L)|2 = ϕ(L)ϕ(L−1
) = |1+ L|2r + λ|1− L|2m. (9.16)

We assume that λ is known. Equation (9.16) is the spectral factorization of the
lag polynomial on the right-hand side of (9.15); the existence of the polynomial

ϕ(L) = ϕ0 + ϕ1L + · · · + ϕq∗L
q∗ , of degree q∗ = max(m, r), is guaranteed by the

fact that the Fourier transform of the right-hand side is never zero over the entire
frequency range (see Sayed and Kailath, 2001, for details).

According to (9.15), for given values of λ, m and r, the innovation ξt is decom-
posed into two ARMA(2,2) processes, characterized by the same AR polynomial,
but by different MA components. The first component will drive the lowpass com-

ponent of yt and its spectral density is proportional to σ
2wμ(ω), where wμ(ω) is

the gain of the filter (9.6). If r > 0 the MA representation is noninvertible at the π

frequency. Notice that, as m and r increase, the transition from the pass band to
the stop band is sharper.

Substituting (9.15)–(9.16) into the ARIMA representation, the series can be
decomposed into two orthogonal components:

yt = μt + ψt ,

φ(L)ϕ(L)(�d
μt − β) = (1+ L)rθ(L)ζt , ζt ∼ NID(0, σ2

) (9.17)

φ(L)ϕ(L)ψt = �
m−d

θ(L)κt , κt ∼ NID(0, λσ2
).

The trend or lowpass component has the same order of integration as the series
(regardless of m), whereas the cycle or highpass component is stationary provided
that m ≥ d, which will be assumed throughout.

Given the availability of a doubly infinite sample, the Wiener–Kolmogorov esti-
mators of the components are μ̃t = wμ(L)yt and ψ̃t = [1 − wμ(L)]yt , where the
impulse response function of the optimal filters is given by (9.6). Hence, the signal
extraction filter for the central data points will continue to be represented by (9.6),
regardless of the properties of yt , but this is the only feature that is invariant to the
nature of the time series and its ARIMA representation. The mean square error of
the smoothed components, as a matter of fact, depends on the ARIMA model for
yt . In finite samples, the estimators and their mean square errors will be provided
by the Kalman filter and smoother associated with the model (9.17), and thus will
depend on the ARIMA model for yt .

Bandpass filters can also be constructed from the principle of decomposing the
lowpass component in (9.17). Let us consider fixed values of m and r and two cut-off
frequencies, ωc1 and ωc2 > ωc1, with corresponding values of the smoothness
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parameter λ1 and λ2, determined according to (9.7). Obviously λ1 > λ2. The trend-
cycle decomposition corresponding to the triple m, r, λ2 (or, equivalently, m, r,ωc2),
is as in (9.17):

yt = μ2t + εt ,

�
d
μ2t = β + (1+ L)r

ϕ2(L)
θ(L)
φ(L)

ζ2t , ζ2t ∼ NID(0, σ2
) (9.18)

εt =
(1− L)m

ϕ2(L)
θ(L)

�dφ(L)
κ2t , κ2t ∼ NID(0, λ2σ

2
),

with |ϕ2(L)|2 = |1+ L|2r + λ2|1− L|2m.
We can similarly define the trend-cycle decomposition corresponding to the

triple m, r, λ1 (or, equivalently, m, r,ωc1), yt = μ1t + ψt . As λ1 > λ2 this decompo-
sition features a lower cut-off frequency, ωc1, thereby yielding a smoother trend.

The components μ1t and ψt are defined as in (9.18), with ϕ1(L), ζ1t ∼ NID(0, σ2
)

and κ1t ∼ NID(0, λ1σ
2
) replacing, respectively, ϕ2(L), ζ2t and κ2t . The polynomial

ϕ1(L) is such that |ϕ1(L)|2 = |1+ L|2r + λ1|1− L|2m.
The lowpass component, μ2t , can, in turn, be decomposed using the orthogonal

decomposition of the disturbance ζ2t :

ζ2t =
ϕ2(L)
ϕ1(L)

ζ1t +
(1− L)m

ϕ1(L)
κ1t , (9.19)

with:

ζ1t ∼ NID(0, σ2
), κ1t ∼ NID

(
0, (λ1 − λ2)σ

2
)

, E(ζ1jκ1t ) = 0, ∀j, t .

Under this setting, the spectrum of both sides of (9.19) is constant and equal to

σ
2
/2π .
Substituting (9.19) into (9.18), and writing μ2t = μ1t + ψt , enables yt to be

decomposed into three components, representing the lowpass (μ1t ), bandpass (ψt )

and highpass (εt ) components, respectively.

yt = μ1t + ψt + εt ,

�
d
μ1t = c + (1+L)r

ϕ1(L)
θ(L)
φ(L) ζ1t , ζ1t ∼ NID(0, σ2

)

ψt = (1+L)n(1−L)m
ϕ1(L)ϕ2(L)

θ(L)
�dφ(L)

κ1t , κ1t ∼ NID
(
0, (λ1 − λ2)σ

2
)
)

,

(9.20)

and εt , given in (9.18), is the highpass component of the decomposition (9.20).
The model can be cast in state-space form and the Kalman filter and smoother
(see Appendix C) will provide the optimal estimates of the components and their
standard errors.

Figure 9.3 shows the gain of an ideal bandpass filter and the BK filter. The dashed
line is the gain of the model-based bandpass filter which is optimal for ψt in (9.20)
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Figure 9.3 Gain function of the ideal business cycle bandpass filter, the BK filter and two
model-based filters

using m = r = 6 and the two cut-off frequencies ωc1 = 2π/32 (corresponding to
a period of eight years for quarterly data) and ωc2 = 2π/6 (one and a half years);
such large values of the parameters yield a gain which is close to the ideal boxcar
function. The HP bandpass curve is the gain of the Wiener–Kolmogorov filter for
extracting the component ψt in (9.20) with m = 2, r = 0, and ωc1,ωc2 given above.
In this case the leakage is larger but, as shown in Proietti (2004), taking large values
of m and r is detrimental to the reliability of the end of sample estimates.

9.2.7 Applications of model-based filtering: bandpass cycles and the
estimation of recession probabilities

We present two applications of the model-based filtering approach outlined in the
previous section. Our first illustration deals with the estimation and the assessment
of the reliability of the deviation cycle in US GDP. The cycle is defined as the
highpass component extracting the fluctuations in the level of log GDP that have
a periodicity smaller than ten years (40 quarters). To evaluate model uncertainty,
we fit three models to the logarithm of GDP, namely a simple random walk, or

ARIMA(0,1,0) model (σ̂2 = 0.8570), an ARIMA(1,1,0) model (the estimated first-
order autoregressive coefficient is φ̂ = 0.33 and σ̂

2 = 0.8652), and finally, we
consider the ARIMA(2,1,2) model fitted in section 9.2.5, whose parameter estimates
were reported in Table 9.1.

The estimates of the lowpass component corresponding to the three models
obtained by setting m = 2, r = 0 (and thus λ = 1600 and ωc = 0.158279) are
displayed in the top right-hand panel of Figure 9.4, along with the Leser–HP cycle.
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Figure 9.4 Model-based filtering. Estimates of the lowpass component (using the
ARIMA(2,1,2) model) and of the highpass and bandpass components in US GDP, and their
comparison with the Leser–HP and BK cycles

The estimates for the three models are obtained as the conditional mean of ψt
given the observations by applying the Kalman filter and smoother to the rep-
resentation (9.17); the algorithm also provides their estimation error variance. It
must be stressed that the Leser–HP filter is optimal for a restricted IMA(2,2) process
and thus it does not yield the minimum mean square estimator of the cycle, nor
its standard error. In general, also looking at the middle panel, which displays the
estimated cycles for the last 12 years, the model-based estimates are almost indis-
tinguishable, and are quite close to the Leser–HP cycle estimates in the middle
of the sample. Large differences with the latter arise at the beginning, where the
lowpass component had greater amplitude, and at the end of the sample period.

The particular model that is chosen matters little as far as the point estimates of
ψt are concerned. Nevertheless, it is relevant for the assessment of the accuracy of
the estimates, as can be argued from the right middle panel of the figure, which
shows the estimation error variance, Var(ψt |Yn), for the three models of US GDP.
It is also evident that the standard errors obtained for the Leser–HP filter would
underestimate the uncertainty of the estimates.

We conclude this first illustration by estimating the deviation cycle as a
bandpass component, assuming that the true model is the ARIMA(2,1,2) and using
the cut-off frequencies ωc1 = 2π/32, ωc2 = 2π/6, and the values m = 2, r = 0; as
a consequence, the component ψt in (9.20) selects all the fluctuations in a range
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of periodicity that goes from one and a half years (6 quarters) to eight years (32
quarters). The gain of the filter is displayed in Figure 9.3. The estimates of ψt are
compared to the BK cycle in the bottom left panel of Figure 9.4 and to the corre-
sponding highpass estimates (ψt + εt ). With respect to the BK cycle, the estimates
are available also in real time.

The conclusion is that model-based filtering improves the quality of the esti-
mated lowpass component, providing estimates at the boundary of the sample
period that are automatically adapted to the series under investigation, and enables
the investigator to assess the reliability of the estimates (conditional on a particular
reduced form).

The second application deals with assessing the uncertainty in estimating the
business cycle chronology. According to the classical definition, the business cycle
is a recurrent sequence of expansions and contractions in the aggregate level of
economic activity (see Burns and Mitchell, 1946, p. 3). Dating the business cycle
amounts to establishing a set of reference dates that mark the phases or states of
the economy. Usually two phases, recessions and expansions, are considered, that
are delimited by peaks and troughs in economic activity. Dating is carried out by an
algorithm, such as that due to Bry and Boschan (1971), or that proposed by Artis,
Marcellino and Proietti (2004), which aims at estimating the location of turning
points, enforcing the alternation of peaks and troughs and minimum duration ties
for the phases and the full cycle. Downturns and upturns have to be persistent
to qualify as cycle phases; thus, they need to fulfill minimum duration con-
straints, such as at least two quarters for each phase; moreover, to separate it from
seasonality, a complete sequence, recession-expansion or expansion-recession,
i.e., a full cycle, has to last longer than one year. Depth restrictions, motivated
by the fact that only major fluctuations qualify for the phases, should also be
enforced.

An integral part of the dating algorithm is prefiltering, which is necessary in
order to isolate fluctuations in the series with period greater than the minimum
cycle duration. For instance, in the quarterly case we need to abstract from all
the fluctuations with periodicity less than five quarters, i.e., from high-frequency
fluctuations that do not satisfy the minimum cycle duration. In lieu of the ad
hoc and old-fashioned moving averages adopted by Bry and Boschan, one can use
model-based lowpass signal extraction filters.

The advantages are twofold: first, it is possible to select the cut-off frequency
so as to match the minimum cycle duration; e.g., in our case ωc = 2π/5. Sec-
ond, the uncertainty in dating arising from prefiltering can be assessed by Monte
Carlo simulation, by means of an algorithm known as the simulation smoother (see
de Jong and Shephard, 1995; Durbin and Koopman, 2002; and Appendix C, section
9.7.4). This repeatedly draws simulated samples from the posterior distribution of
the lowpass component with a cut-off frequency corresponding to five quarters,
μ̃
(i)
t ∼ μt |Yn, so that by repeating the draws a sufficient number of times we can

get Monte Carlo estimates of different aspects of the marginal and joint distribu-
tion of the lowpass component, intended here as the level of output devoid of all
fluctuations with a periodicity smaller that five quarters.
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Figure 9.5 Relative number of times each quarter is classified as a recessionary period, using
5,000 simulated samples. The shaded areas represent NBER-classified recessions

Figure 9.5 plots the recession frequencies, i.e., the relative number of times each
quarter was classified as a recessionary period. For this purpose 5,000 draws from the
conditional distribution of μ|y were extracted; each quarter was classified as reces-
sion or expansion according to the Artis, Marcellino and Proietti (2004) Markov
chain dating algorithm. There is a close agreement with the NBER chronology,
which is not based on GDP alone, and the last recession, which started in March
2001 and ended in October 2001, was really mild in terms of GDP; in fact, the
recession frequency is only in one quarter greater than 0.5.

9.2.8 Ad hoc filtering and the Slutsky–Yule effect

A filter is ad hoc when it is invariant to the properties of the time series under
investigation. An instance is provided by the Leser–HP filter with a fixed smoothing
parameter, and another example is the BK filter. The potential danger associated
with an ad hoc cycle extraction filter is that the filtered series displays cyclical
features that are absent from the original series. The risk of extracting spurious
cycles is known in the time series literature as the Slutsky–Yule effect.

The distortionary effects of the Leser–HP filter have been discussed by King and
Rebelo (1993), Harvey and Jaeger (1993), and Cogley and Nason (1995). These
authors document that, when the series to which the filter is applied is difference
stationary (e.g., a random walk, or an integrated random walk), the detrended series
can display spurious cyclical behavior. As a matter of fact, the transfer function will
display a distinctive peak at business cycle frequencies, which is only due to the
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leakage from the non-stationary component. Moreover, the filter seriously distorts
the evidence for the comovements among detrended series.

The issue of spuriousness is problematic, at least, if not tautological. The main
difficulty stems from the fact that it ties in with a more fundamental question
concerning what is indeed the cycle in economic time series. If we adhere to the
bandpass paradigm of viewing the cycle as consisting of those fluctuations within
a give range of periodicity, than the case for spuriousness is much less compelling.

Another source of concern among practitioners, especially for the conduct of
monetary policy, relates to the end-of-sample behavior of the Leser–HP filter: the
real-time estimates would be subject to “end-of-sample bias,” since they result from
the application of a one-sided filter and will suffer from both phase shifts and ampli-
tude distortions. One has to separate two issues: as we hinted before, the IMA(2,2),
for which the Leser–HP filter is optimal, is usually misspecified for macroeconomic
time series. As a result, the cycle estimates have no optimality properties. Model-
based bandpass filtering is aimed at overcoming this limitation. Having said that,
it is a fact of life that, for a correctly specified model, the optimal real time signal
extraction filter will be one-sided and thus will produce phase shifts and amplitude
distortions.

9.3 Multivariate models

Information on the output gap is contained in macroeconomic variables other
than aggregate output, either because those variables provide alternative measures
of production, or because they are functionally related to the output gap. In this
section we start from the consideration of a bivariate model that, along with an
output decomposition, includes an inflation equation. We then extend the model
to include other variables, such as the unemployment rate and industrial produc-
tion, and consider the estimation of a monthly model using quarterly observations
on real GDP.

9.3.1 Bivariate models of real output and inflation

Price inflation carries relevant information for the output gap. The definition of
the latter as an indicator of inflationary pressure and, correspondingly, of potential
output as the level of output consistent with stable inflation, makes clear that a rig-
orous measurement can be made within a bivariate model of output and inflation,
embodying a Phillips curve relationship. The Phillips curve establishes a relation
between the nominal price, or wage, inflation rate, �pt , where, e.g., pt is the log-
arithm of the consumer price index (CPI), and an indicator of excess demand,
typically the output gap (ψt ).

A general specification is the following:

δ(L)�pt = c + θψ(L)ψt + γ (L)′xt + ξpt , (9.21)

where c is a constant, xt denotes a set of exogenous supply shocks, such as changes
in energy prices and terms of trade, and ξpt is WN. Often the restriction is imposed
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that the sum of the AR coefficients on lagged inflation is unity, δ(L) = �δ
∗
(L), where

δ
∗
(L) is a stationary AR polynomial; the gap enters the equation with more than one

lag to capture the change in demand, since we can rewrite θψ(L) = θψ(1)+�θ
∗
ψ(L).

This is known as Gordon’s “triangle” model of inflation (see Gordon, 1997), since
it features the three main driving forces: inertia (or inflation persistence, via δ(L)),
endogenous demand shocks (via ψt ), and exogenous supply shocks (via xt ). If δ(L)
has a unit root and θψ(1) �= 0 the output gap has permanent effects on the inflation
rate. If, instead, θψ(1) = 0, then the output gap is neutral in the long run and the
inflation rate shares a common cycle in the levels with output. Harvey, Trimbur and
Van Dijk (2007) consider the Bayesian estimation of a bivariate model of output
and inflation, where the cycle in inflation is driven by the output gap plus an
idiosyncratic cycle.

Kuttner (1994) estimated potential output and the output gap for the US using a
bivariate model of real GDP and CPI inflation. The output equation was specified
as in the Clark (1987) model, i.e., yt = μt + ψt , such that potential output is a
random walk with drift and the output gap is an AR(2) process driven by orthogonal
disturbances. The equation for the inflation rate is a variant of Gordon’s triangle
model:

�pt = c + γ�yt−1 + θψψt−1 + v(L)ξpt ,

according to which the inflation rate is linearly related to the lagged output gap and
to lagged GDP growth; inflation persistence is captured by the MA feature, v(L)ξpt ,
where the disturbance ξpt is allowed to be correlated with the output gap distur-
bance, κt . The inclusion of lagged real growth is not formally justified by Kuttner,
and the correlation between ξpt and κt makes the dynamic relationship between the
output gap and inflation more elaborate than it appears at first sight (e.g., inflation
depends on the contemporaneous value of the gap). Moreover, permanent shocks
are allowed to drive inflation via the term �yt−1 = β+ηt−1+�ψt−1, so that it can-
not be maintained that μt is the noninflationary level of output. Planas, Rossi and
Fiorentini (2007) consider the Bayesian estimation of Kuttner’s bivariate model,
with the only variant being that the MA feature is replaced by an autoregressive
feature: δ(L)�pt = c + γ�yt−1 + θψψt−1 + ξpt .

Gerlach and Smets (1999) again use a bivariate model of output and inflation,
but the output gap generating equation takes the form of an aggregate demand
equation featuring the lagged real interest rate as an explanatory variable. The
inflation equation is specified as in (9.21) with δ(L) = �.

The Gordon triangle model may be interpreted as a reduced form of a structural
model of inflation that embodies expectations; the presence of lagged inflation
in the specification reflects backward looking inflation expectations. In the New
Keynesian approach the Phillips curve is forward-looking, as inflation depends on
expected future inflation. Doménech and Gómez (2006) estimate a multivariate
model of output fluctuations including a forward-looking Phillips curve specified
as follows:

�pt = c + δE(�pt+1|Ft )+ θψ(L)ψt + ξpt ,
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where Ft is the information set at time t . Basistha and Nelson (2007) estimate a
bivariate model of output and inflation where the output equation features the
MNZ decomposition with correlated components, and in the inflation equation,
survey-based expectations replace E(�pt+1|Ft ).

9.3.2 A bivariate quarterly model of output and inflation for the US

This section is devoted to the estimation of a bivariate model for US quarterly real
GDP and the quarterly rate of inflation �pt , where pt is the logarithm of quarterly
CPI for the US, using data from the first quarter of 1950 to the fourth quarter
of 2006. The KPSS test conducted on the inflation series leads to the rejection of
the null of stationarity against a random walk for all values of the lag truncation
parameter up to 5; if a linear trend is considered and stationarity is tested against
a random walk with drift, then the null is also rejected for much higher values of
the lag truncation parameter. In the sequel, inflation will be taken to be integrated
of order one. The model has the following specification:

yt = μt + ψt , t = 1, . . . , n,

μt = μt−1 + βt + ηt , ηt ∼ NID(0, σ2
η )

ψt = φ1ψt−1 + φ2ψt−2 + κt , κt ∼ NID(0, σ2
κ )

�pt = τt + εpt εpt ∼ NID(0, σ2
pε)

τt = τt−1 + θψ(L)ψt + ητ t ητ t ∼ NID(0, σ2
τη),

(9.22)

where ηt , κt , εpt , and ηpt are mutually independent.
The output equation is the usual decomposition into orthogonal components;

the inflation equation is a decomposition into a core component, τt , and a tran-
sitory one. The changes in the core component are driven by the output gap and
by the idiosyncratic disturbances ητ t . The lag polynomial θψ(L) = θψ0 + θψ1L can
be rewritten as θψ(1)− θψ1�, which enables us to isolate the level effect of the gap
from the change effect, which we expect to be positive, that is we expect θψ1 < 0.

If θψ(1) = 0, the inflation equation can be rewritten as �pt = τ
∗
t − θψ1ψt + εt , with

�τ
∗
t = ητ t , so that output and inflation would share a common cycle.
We also extend the specification of model (9.22) to take into account an impor-

tant stylized fact, known as the “Great Moderation” of the business cycle, and
which consists of a substantive reduction in the volatility of GDP growth. This
feature is visible from the plot of �yt in Figure 9.1. The date when the structural
break in volatility occurred is identified as the first quarter of 1984 (see Kim and
Nelson, 1999a; McConnell and Perez Quiros, 2000; Stock and Watson, 2003).

Let St denote an indicator variable which takes the value 1 in the high volatility
state (which we label regime a) and 0 in the low volatility state (regime b). The trend
and cycle disturbance variances are time varying and the model will be specified
as in (9.22) with:

ηt ∼ N
(
0, Stσ

2
ηa + (1− St )σ

2
ηb

)
, κt ∼ N

(
0, Stσ

2
κa + (1− St )σ

2
κb

)
.
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This will be referred to as the GM specification. We shall consider two cases: (i) the
sequence St is deterministic, taking the value 1 before 1984:1, and 0 thereafter; (ii)
St is a random process, which we model as a first-order Markov chain with initial
probability p(S0 = 1) = 1, i.e., we know for certain that the process started in a
high variance state, and transition probabilities P(St = j|St−1 = i) = Tij, i = 0, 1,
with Tij = 1− Tii for j �= i.

9.3.2.1 ML estimation

The bivariate model and its GM extension under assumption (i) were estimated
by ML in the time domain. The likelihood is evaluated by the Kalman filter (see
Appendix C for details). The parameter estimates and the associated standard errors
are reported in Table 9.2. The estimated trend and cycle disturbance variances are
smaller after 1984:1 (regime b), as expected, and the likelihood ratio test of the

homogeneity hypothesis, H0 : σ
2
ηa = σ

2
ηb, σ2

κa = σ
2
κb, clearly leads to a rejection.

The roots of the AR polynomial for the output gap are complex and the loadings
of core inflation on the output gap are significantly different from zero at the 5%
level. The table also reports the Wald test for the null of long-run neutrality of
the output gap, H0 : θψ(1) = 0, which is accepted under both specifications, with
p-values equal to 0.16 and 0.19. The evidence is thus that the output gap has only
transitory effects on the level of inflation.

Figure 9.6 displays the point and 95% interval estimates of the output gap and
the core component of inflation for both specifications. It is interesting that the
explicit consideration of the Great Moderation of volatility makes the estimates of
the output gap after the 1984 break more precise. In interpreting this result, we
must stress that the interval estimates make no allowance for parameter uncertainty
and for the uncertainty in dating the transition from the high volatility state to
the low volatility one.

9.3.2.2 Bayesian estimation

Let us focus on the standard bivariate model (9.22) first and denote by y the stack of
the observations (yt ,�pt ) for t = 1, . . . , n, α = (α

′
0, . . . ,α′n)

′, where the state vector at
time t is αt = (μt ,βt ,ψt ,ψt−1, τt ). Also, let μ, ψ , η, κ denote, respectively, the stack
of potential output, the output gap, the disturbances ηt , and the cycle disturbances,

where, e.g., ψ = (ψ1, . . . ,ψn), and let � = [φ1,φ2, σ2
η , σ2

κ , σ2
pε, σ2

τη, θψ0, θψ1] denote

the vector of hyperparameters.3 Notice that knowledge of α implies knowledge of
both the individual state components and the disturbances. Our main interest lies
in aspects of the posterior marginal densities of the states given the observations,
e.g., f (ψ |y) and f (�|y): e.g., E[h(ψ)] = ∫

h(ψ)f (ψ |y)dψ , for some function h(·) such
as h(ψ) = ψt . The computation of the integral is carried out by stochastic simula-

tion: given a sample ψ
(i)
t , i = 1, . . . , M , drawn from the posterior f (ψ |y), E[h(ψ)] is

approximated by M−1∑
i h
(
ψ

(i)
t

)
. The required sample is obtained by Monte Carlo

Markov chain methods and, in particular, by a Gibbs sampling (GS) scheme that
we now discuss in detail. This scheme produces correlated random draws from the
joint posterior density f (α,�|y), and thus from f (ψ |y), by repeatedly sampling an
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Table 9.2 ML estimation results for bivariate models
of quarterly US log GDP (yt ) and the consumer price
inflation rate (�pt ), 1950:1–2006:4

Bivariate Great Moderation

Parameter Std. error Parameter Std. error

yt equation
σ2
η 0.33 0.14

σ2
ηa 0.58 0.27

σ2
ηb 0.13 0.05

σ2
κ 0.38 0.15

σ2
κa 0.47 0.24

σ2
κb 0.06 0.04

φ1 1.47 0.06 1.55 0.06
φ2 −0.54 0.10 −0.60 0.09

�pt equation
σ2

pε 0.11 0.03 0.12 0.03

σ2
τη 0.05 0.02 0.05 0.02

θψ0 0.12 0.05 0.12 0.06
θψ1 −0.10 0.05 −0.10 0.06

Wald tests of restriction θψ (1) = 0
2.00 1.68

loglik −447.79 −415.53

ergodic Markov chain whose invariant distribution is the target density (see Chib,
2001, and the references therein).

This is achieved by the following iterative scheme. Specify an initial value

α
(1),�(1). For i = 1, 2, . . . , M :

1. Generate α(i) ∼ f (α|�(i−1), y) using the simulation smoother (see Appendix C,
section 9.7.4)

2. Generate �
(i) ∼ f (�(i)|α(i), y). This block is divided into smaller components,

whose full conditional distribution is available for sampling. In particular:

(a) Generate (φ
(i)
1 ,φ(i)

2 )
′ from the full conditional (φ1,φ2)

′|ψ , σ2(i−1)
κ (this distri-

bution is conditionally independent of y, given ψ). Assuming a Gaussian

prior distribution, N(mφ0,�φ0), (φ1,φ2)
′|ψ , σ2(i−1)

κ ∼ N(mφ1,�φ1) where,

denoting χ t−1 = (ψ
(i−1)
t−1 ,ψ(i−1)

t−2 )
′,

�φ1 =
⎛⎝�

−1
φ0 +

1

σ
2(i−1)
κ

∑
t

χ t−1χ
′
t−1

⎞⎠−1

,

mφ1 = �φ1

⎛⎝�
−1
φ0 mφ0 +

1

σ
2(i−1)
κ

∑
t

χ t−1ψt

⎞⎠ .
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Figure 9.6 Estimates of the output gap and core inflation using the ML estimates of the
parameters of the bivariate models of output and inflation under two specifications

The generations are repeated until a draw falls inside the stationarity region.

(b) Generate σ
2(i)
η from the full conditional inverse gamma (IG) distribution:

σ
2
η |η(i−1) ∼ IG

⎛⎝vη + n

2
,
δη +

∑
t η

(i−1)2
t

2

⎞⎠.

This assumes that the prior distribution is σ
2
η ∼ IG(vη/2, δη/2).

(c) Generate σ
2(i)
κ from the full conditional IG distribution:

σ
2
κ |κ(i−1) ∼ IG

⎛⎝vκ + n
2

,
δκ +

∑
t κ

(i−1)2
t

2

⎞⎠ .

This assumes that the prior distribution is σ
2
κ ∼ IG(vκ/2, δk/2).

(d) Generate (θ
(i)
ψ0, θ(i)ψ1)

′. Assuming the Gaussian prior (θψ0, θψ1)
′ ∼

N(mθ0,�θ0), the full posterior is (θψ0, θψ1)
′|τ , σ2(i−1)

τη ∼ N(mθ1,�θ1), where
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τ = (τ1, . . . , τn), and:

�θ1 =
⎛⎝�

−1
θ0 +

1

σ
2(i−1)
τη

∑
t

χ tχ
′
t

⎞⎠−1

,

mφ1 = �φ1

⎛⎝�
−1
θ0 mφ0 +

1

σ
2(i−1)
τη

∑
t

χ t�τt

⎞⎠ .

(e) Generate σ
2(i)
pε from the full conditional IG distribution:

σ
2
pε|ε(i−1)

p ∼ IG

⎛⎝vε + n
2

,
δε +

∑
t (ε

(i−1)
t )

2

2

⎞⎠ .

Here εp is the stack of the inflation equation measurement disturbances, and

we assume the prior σ
2
pε ∼ IG(vε/2, δε/2).

(f) Generate σ
2(i)
τη from the full conditional IG distribution:

σ
2
τη|η(i−1)

τ ∼ IG

⎛⎝vτ + n
2

,
δτ +

∑
t η

(i−1)2
τ t

2

⎞⎠ ,

where ητ is the stack of the inflation equation core level disturbances, and

we assume the prior σ
2
ητ ∼ IG(vτ /2, δτ /2).

The above GS scheme defines a homogeneous Markov chain such that the tran-
sition kernel is formed by the full conditional distributions and the invariant
distribution is the unavailable target density.

The IG prior for the variance parameter is centered around the ML estimate and
is not very informative (vη = vκ = vε = vτ = 4, and n = 426); for the AR param-
eters and the loadings impose a standard normal prior. The number of samples is
M = 2,000 after a burn-in sample of size 1,000. Figure 9.7 displays the posterior
means and the 95% interval estimates of the output gap (first panel), along with

a nonparametric estimate of the posterior density of the variance parameters σ
2
η

and σ
2
κ (top right panel); the modes are not far from the ML estimates. The bottom

left panel shows the M draws (φ
(i)
1 ,φ(i)

2 ) from the posterior of the AR parameter dis-
tribution. The triangle delimits the stationary region of the parameter space; the
posterior means are 1.48 for φ1 and −0.57 for φ2. Finally, the last panel shows the
posterior distribution of the change effect, −θψ1, and the level effect θψ(1). The
95% confidence interval for the latter is (−0.01, 0.05), which confirms that the
output gap has only transitory effects on inflation. The posterior mean of ψt does
not differ from the point estimates arising from the classical analysis. However,
the classical confidence intervals in Figure 9.6 are constructed by replacing � with
the ML estimates and thus do not take into account parameter uncertainty (see
also section 9.4.2). It cannot be maintained that the classical estimates are more
reliable.
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Figure 9.7 Bayesian estimation of the standard bivariate output gap model. Point and 95%
interval estimates of the output gap; posterior densities of variance and loadings parameters;
draws from the posterior of the AR parameters

For the GM model, the parameter set � is such that the trend and cycle distur-

bance variances are replaced by the variances in the two regimes, σ2
ηa, σ2

ηb, σ2
κa, σ2

κb,
and under the Markov switching specification (ii), according to which St is a
first-order Markov chain, includes the transition probabilities T11, T00.

The steps of the GS algorithm need to be amended. An additional step is necessary
to draw a sample from the distribution of S = (S0, . . . , Sn) conditional on α and �.
Notice that this distribution depends on these random vectors only via η, κ , and

the elements of �, σ
2
ηa, σ2

ηb, σ2
κa, σ2

κb, T11, T00. Sampling from the full posterior of
the indicator variable S is achieved by the following algorithm (Carter and Kohn,
1994):

1. Sample S(i)n from the filtered state probability distribution P(Sn|α,�, y) =
P(Sn|η, κ ,�).

2. For t = n− 1, . . . , 1, 0, sample S(i)t from the conditional probability distribution:

P(St |S(i)t+1, η, κ ,�) = P(S(i)t+1|St ,�)P(St |ηt , κ t ,�)∑
St

P(S(i)t+1|St ,�)P(St |ηt , κ t ,�)
,

where ηt = (η0, . . . , ηt ) and κ
t = (κ0, . . . , κt ).
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The filtered probabilities, P(St |ηt , κ t ,�), are obtained by the following discrete
filter:

(i) The filter is started with the initial distribution P(S0 = 1|η0, κ0,�) = 1, P(S0 =
0|η0, κ0,�) = 0: that is, we impose that St started in the high volatility regime.

(ii) For t = 1, 2, . . . , n, compute the one-step-ahead probability distribution

P(St |ηt−1, κ t−1,�) =∑
St−1

P(St |St−1,�)P(St−1|ηt−1, κ t−1,�).
(iii) Compute the filtered probabilities:

P(St |ηt , κ t ,�) = f (ηt , κt |St ,�)P(St |ηt−1, κ t−1,�)∑
St

f (ηt , κt |St ,�)P(St |ηt−1, κ t−1,�)
,

where f (ηt , κt |St ,�) is the product of two independent Gaussian densities with
time-varying scale parameters.

Gerlach, Carter and Kohn (2000) have proposed an alternative sampling scheme
for the indicator variable St which generates samples from P(St |Sj �=t , y,�) without
conditioning on the states or the disturbances. This is more efficient than the above
sampler if St is highly correlated with the states or the disturbances, which is not
the case in our particular application.

Steps 1 and 2 of the GS algorithm are similar but the full posteriors are understood

to be conditional on S(i−1) as well. Furthermore, an additional step, 2(g), is added
for sampling from the full conditionals of the transition probabilities, T11, T22, and
the steps 2(b) and 2(c) are replaced as follows:

(b) Generate σ
2(i)
ηa and σ

2(i)
ηb from:

σ
2
ηa|η(i−1), S(i−1) ∼ IG

⎛⎝vη +
∑

t S(i−1)
t

2
,
δη +

∑
t S(i−1)

t η
(i−1)2
t

2

⎞⎠ ,

σ
2
ηb|η(i−1), S(i−1) ∼ IG

⎛⎝vη +
∑

t (1− S(i−1)
t )

2
,
δη +

∑
t (1− S(i−1)

t )η
(i−1)2
t

2

⎞⎠ .

This assumes that the prior distribution is σ
2
ηa and σ

2
ηb ∼ IG(vη/2, δη/2).

(c) Generate σ
2(i)
κa and σ

2(i)
κb from:

σ
2
κa|κ(i−1), S(i−1) ∼ IG

⎛⎝vκ +
∑

t S(i−1)
t

2
,
δκ +

∑
t S(i−1)

t κ
(i−1)2
t

2

⎞⎠ ,

σ
2
κb|κ(i−1), S(i−1) ∼ IG

⎛⎝vκ +
∑

t (1− S(i−1)
t )

2
,
δκ +

∑
t (1− S(i−1)

t )κ
(i−1)2
t

2

⎞⎠ .

This assumes that the prior distribution is σ
2
κa and σ

2
κb ∼ IG(vκ/2, δκ/2).
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(g) Generate T (i)
11 , T (i)

10 = 1− T (i)
11 and T (i)

00 , T (i)
01 = 1− T (i)

00 from the posterior:

T (i)
11 |S

(i−1) ∼ B
(
a1 +N(i−1)

11 , b1 +N(i−1)
10

)
,

T (i)
00 |S

(i−1) ∼ B
(
a0 +N(i−1)

00 , b0 +N(i−1)
01

)
,

where B(a, b) is the Beta distribution, N(i−1)
ij is the number of transitions from

S(i−1)
t = i to S(i−1)

t+1 = j, and ai, bi, i = 0, 1, are the parameters of the Beta prior
distributions (set equal to a1 = b1 = b0 = 1, a0 = 5). Notice that the transition
probabilities are conditionally independent of α and the other elements of �,
given S.

Figure 9.8 summarizes aspects of the posterior distribution of the cycle, the indi-
cator St , and some important parameters using a sample of M = 2,000 draws from
the GS scheme outlined above with a burn-in of 2,000 iterations. Interestingly, the
output gap interval estimates are more widely dispersed than in the original speci-
fication with no Markov-switching in the disturbance variances. This is so since the
GM specification has a further source of variation and uncertainty, related to the
state of Markov chain St , which in turn drives the changes in the volatility regime.
As a result, the Bayesian interval estimates cannot be compared with the classical
ones reported in the bottom left panel of Figure 9.6, since those were derived under
the assumption that St was deterministic and known, and they make no allowance
for parameter uncertainty. The estimated posterior probabilities of being in a high
volatility regime confirm the general finding that the main stylized fact is a rela-
tively sharp change point taking place in the first quarter of 1984, although there
remains some uncertainty around that date. The nonparametric estimates of the
posterior distribution of the transition probabilities T11 and T00 are displayed in the
last panel of the figure. The posterior distributions of the variance parameters for
the trend and cycle disturbances strongly confirm the Great Moderation hypoth-
esis, and quantify it further, as both the permanent and transitory disturbances
underwent a significant volatility reduction. The posterior means do not differ

from the ML estimates reported in Table 9.2: E(σ2
ηa|y) = 0.60, E(σ2

ηb|y) = 0.14 and

E(σ2
κa|y) = 0.51, E(σ2

κb|y) = 0.09. As far as the inflation equation is concerned, the
overall conclusion is unchanged: the output gap is a significant source of variation
(the value −θψ1 = 0 is estimated to be the 2.6 percentile of the posterior distribu-
tion of −θψ1, which measures the change effect, but it drives inflation only in the
short run, as the null of long-run neutrality is accepted (the 95% credible set for
θψ(1) is the interval (−0.01, 0.05)).

9.3.3 Multivariate extensions

The output gap is related to the deviations of the unemployment rate, ut , from
its “natural rate" or NAIRU via Okun’s law. Okun (1962) defined natural unem-
ployment as that level of unemployment occurring when output is equal to its
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Figure 9.8 Bayesian estimation of the bivariate output gap model with Markov-switching in
the variances of the trend and cycle disturbances (GM specification). Point and 95% interval
estimates of the output gap; posterior probabilities of the high volatility state, P(St = 1|y),
and posterior densities of variance and loadings parameters

potential, and established an empirical law of strict proportionality between cycli-
cal unemployment and the output gap. Hence, Okun’s law is meant to imply that
output and the unemployment rate share a common cycle.

Against this background, Clark (1989) estimated a bivariate model of US real
output and unemployment such that output and unemployment are decomposed
into two unrelated permanent components and the comovements between the
two series result from the presence of a common cycle, represented as an AR(2)
stationary component. Apel and Jansson (1999) obtained estimates of the NAIRU
and potential output for the UK, the US and Canada, based on an unobserved
components model of output, inflation and unemployment rates.

Another important multivariate extension of the basic bivariate model is the pro-
duction function approach (PFA) to the estimation of potential output and the output
gap, according to which potential output is obtained from the trend, or “nonin-
flationary,” levels of its structural determinants, such as productivity and factor
inputs. This approach is currently one of the most popular methods of measuring
potential output among statistical agencies being employed by the OECD (2001),
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the International Monetary Fund (DeMasi, 1997), the Congressional Budget Office
(2001), and the European Commission (see McMorrow and Roeger, 2001).

The PFA assumes that technology can be represented by a Cobb–Douglas produc-
tion function with constant returns to scale on labor, measured by hours worked
or by the number of employed persons, and capital:

yt = ft + αht + (1− α)kt , (9.23)

where ft is the Solow residual, ht is hours worked, kt is the capital stock (all variables
expressed in logarithms), and α is the elasticity of output with respect to labor
(0 < α < 1).

To achieve the decomposition yt = μt+ψt , the variables on the right-hand side of
equation (9.23) are broken down additively into their permanent (denoted by the
superscript P) and transitory (denoted by the superscript T) components, giving:

ft = f (P)

t + f (T)
t , ht = h(P)

t + h(T)
t , kt = k(P)

t . (9.24)

It should be noticed that potential capital is always assumed to be equal to its actual
value; this is so since capacity utilization is absorbed in the cyclical component
of the Solow residual. Only survey-based measures of capacity utilization for the
manufacturing sector are available for the euro-area.

Hence potential output is the value corresponding to the permanent values of
factor inputs and the Solow residual, while the output gap is a linear combination
of the transitory components:

μt = f (P)

t + αh(P)

t + (1− α)kt ,

ψt = f (T)

t + αh(T)

t . (9.25)

Hours worked can be separated into four components that are affected differently
by the business cycle, as can be seen from the identity ht = nt+prt+ert+hlt , where
nt is the logarithm of working-age population (i.e., population of age 15–64), prt is
the logarithm of the labor force participation rate (defined as the ratio of the labor
force to the working-age population), ert is the logarithm of the employment rate
(defined here as the ratio of employment to the labor force), and hlt is the logarithm
of labor intensity (i.e., average hours worked). Each of these determinants is in turn
decomposed into its permanent and transitory component in order to obtain the
decomposition:

h(P)

t = nt + pr(P)

t + er(P)

t + hl(P)

t , h(T)

t = pr(T)

t + er(T)

t + hl(T)

t . (9.26)

The idea is that population dynamics are fully permanent, whereas labor force
participation, employment and average hours are also cyclical. Moreover, since
the employment rate can be restated in terms of the unemployment rate, we can
relate the output gap to cyclical unemployment and potential output to structural
unemployment. As a matter of fact, since the unemployment rate is one minus the
employment rate, ut = log(1− exp(ert )), the variable curt = −ert (the contribution
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of the unemployment rate, using a terminology due to Rünstler, 2002), is the
first-order Taylor approximation to the unemployment rate. Thus, cur(P)

t can be
assimilated to the NAIRU and cur(T)

t to the unemployment gap.
The PFA has the appealing feature that it uses a lot of economic information

on the determinants of potential output; however, apart from the stringent data
requirements (in particular, it requires the capital stock and hours worked), it
requires the decomposition of the series involved into their permanent and tran-
sitory components. Proietti, Musso and Westermann (2007) propose a structural
time series model-based implementation of the PFA approach, and Proietti and
Musso (2007) extend it to carry out a growth accounting analysis for the euro-area.

9.3.4 A multivariate model with mixed frequency data

This section presents the results of fitting a multivariate monthly time series model
for the US economy, using quarterly observations for GDP and monthly observa-
tions for industrial production, ipt , the unemployment rate, ut , and CPI inflation,
�pt . The equation for the logarithm of GDP is the usual decomposition yt = μt+ψt
as in (9.22), with the important difference that the model is now formulated at the
monthly frequency. The CPI equation is also specified as in (9.22).

Industrial production is included since it is an important timely coincident
indicator: the time series model for ipt is the trend-cycle decomposition ipt =
μip,t +θipψt +ψip,t , where μip,t = μip,t−1+βip+ηip,t , and we assume that the trend
disturbance is contemporaneously correlated with the GDP trend disturbance, ηt ,

ηip,t ∼ N(0, σ2
η,ip), E(ηtηip,t ) = σy,ip. The cyclical component is the combination of

a common cycle and the idiosyncratic cycle ψip,t = φip,1ψip,t−1+φip,1ψip,t−2+κip,t .
The unemployment rate, ut , is decomposed into the NAIRU, μu,t , and cyclical

unemployment, which is a distributed lag combination of the output gap plus
an idiosyncratic component, ψut , ut = μu,t + θu0ψt + θu1ψt−1 + ψut , where the
NAIRU is a random walk without drift, μu,t = μu,t−1 + ηu,t , and we assume that

ηu,t ∼ NID(0, σ2
η,u) is independent of any other disturbance in the model, whereas

ψut = φu1ψu,t−1 + φu1ψu,t−2 + κut , with κut ∼ NID(0, σ2
κu), independently of any

other disturbance.
The link between the individual time series equations is provided by the out-

put gap, ψt , which acts as the common cycle driving the short-run fluctuations;
furthermore, the trend disturbances of yt and ipt are correlated. As GDP is quar-
terly, yt is unobserved, whereas the available observations consist of the aggregated
quarterly levels Yτ = exp(y3τ )+ exp(y3τ−1)+ exp(y3τ−2), τ = 1, 2, . . . , [n/3], where
[·] is the integer part of the argument. For the statistical treatment it is useful to con-
vert temporal aggregation into a systematic sampling problem, which is achieved
by constructing a cumulator variable, generated by the following time-varying
recursion (see Harvey, 1989): Yc

t = *tY
c
t−1 + exp(yt ), where *t is the cumulator

coefficient, defined as follows:

*t =
{

0 t = 3(τ − 1)+ 1, τ = 1, . . . , [n/3]
1 otherwise.
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Only a systematic sample of the cumulator variable Yc
τ is available; in particular,

the end of quarter value is observed, for t = 3, 6, 9, . . . , [n/3].
The model is represented in state-space form (see Appendix C) with the cumu-

lator variable included in the state vector in the following way. The transition
equation Yc

t = *tY
c
t−1+ exp(yt ) is nonlinear, but it can be linearized around a trial

estimate ỹ∗t by a first-order Taylor series expansion:

Yc
t = *tY

c
t−1 + exp(ỹ∗t )[1− ỹ∗t ] + exp(ỹ∗t )yt ;

replacing yt = μt + ψt = μt−1 + β + φ1ψt−1 + φ2ψt−2 in the previous expression,
Yc

t can be given a first-order inhomogeneous Markovian representation, and thus
the model can be cast in state-space form, so that conditionally on ỹ∗t the model is
linear and Gaussian.

The fixed interval smoother (see Appendix C, section 9.7.3) can be applied to the
linearized model to yield estimates of the components μt and ψt of the unobserved
monthly GDP (on a logarithmic scale), denoted μ

∗
t and ψ

∗
t . The latter provides a

new y∗t = μ
∗
t + ψ

∗
t value, which is used to build a new linearized Gaussian model,

by a first-order Taylor series expansion of Yc
t around y∗t . Iterating this process until

convergence yields an estimate of the component and of monthly GDP that satisfies
the aggregation constraints (see Proietti, 2006b, for the theory and applications).

The model was estimated by ML using data from January 1950 to December
2006. The estimated parameters for the output gap (standard errors in parentheses)

are φ̂1 = 1.73 (0.021), φ̂2 = −0.744 (0.037), and σ̂
2
κ = 43 × 10−7. For potential

output β̂ = .003, σ̂2
η = 204× 10−7. The specific cycles for ipt and ut are estimated

with zero variance, so that the cyclical components of industrial production and
unemployment are related to the output gap. The estimated loading of ipt on ψt

is θ̂ip = 2.454 (0.186); furthermore, the ip trend disturbances have variance σ̂
2
η,ip =

3.74×10−7, and are positively correlated (with coefficient 0.38) with the GDP trend
disturbances. As far as unemployment is concerned, the estimated loadings on ψt

are θ̂0 = −4.771 (0.204) and θ̂1 = −2.904 (0.267); moreover, σ̂
2
η,u = 9304 × 10−7,

whereas the irregular disturbance variance was set to zero.
For the inflation equation the output gap loadings are estimated as θ̂τ0 = 0.051

(0.012) and θ̂τ1 = −0.048 (0.012); the Wald test for long-run neutrality, H0 : θτ0 +
θτ1 = 0 takes the value 1.401 with a p-value of 0.24, providing again evidence that
the output gap has only transitory effects on inflation. The change effect, −θτ1, is
significant and has the expected sign. Finally, the trend disturbance variance for

inflation was σ̂
2
υ = 2× 10−7.

Figure 9.9 presents the smoothed estimates of potential output, the output gap,
the NAIRU and core inflation. As a by product, our model produces estimates of
monthly GDP that are consistent with the quarterly observed values (the temporal
aggregation constraints are satisfied exactly at convergence) and incorporate the
information from related series.

Comparing the output gap estimates with those arising from the bivariate quar-
terly model, it can be argued that the use of an unemployment series makes a
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Figure 9.9 Monthly multivariate output gap model with temporal aggregation constraints.
Smoothed estimates of monthly GDP, potential output, output gap, NAIRU, cyclical
unemployment and core inflation

significant difference at the end of the sample. Also, enlarging the information set
is beneficial to the reliability of the output gap estimates.

If the model is extended to allow for correlation between the output gap distur-
bance κt and the trend disturbance ηt , as in section 9.2.5, but in a multivariate
set-up, the estimated correlation is r̂ = 0.10 and does not significantly differ from
zero. In fact, the model with correlated disturbances has a likelihood of 7263.51,
whereas the maximized likelihood of the restricted model (r = 0) is 7263.28. Thus,
the LR test of H0 : r = 0 takes the value 0.459, with p-value 0.50.

9.4 The reliability of the output gap measurement

The reliability of the output gap measurement is the subject of rich debate, and also
has strong implications for optimal monetary policy. Orphanides and van Norden
(2002) and Camba-Méndez and Rodriguez-Palenzuela (2003) discuss the differ-
ent sources of uncertainty and their empirical assessment. The former conclude
that the real-time estimates are unreliable. This conclusion echoes that by Staiger,
Stock and Watson (1997) and Laubach (2001) concerning the NAIRU, obtained
from a variety of methods. Somewhat different conclusions are reached by Planas
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and Rossi (2004) and Proietti, Musso and Westermann (2007). The implications
of the uncertainty surrounding the output gap estimates for monetary policy are
considered in Orphanides et al. (2000) and Ehrmann and Smets (2003), among
others.

A full assessment of the output gap reliability is complicated by the very nature
of the measurement which, like the NAIRU, core inflation, and so forth, refers to
a latent variable, for which there is no underlying “true value” to be elicited by
other data collection techniques.

The previous sections have presented different parametric methods that can be
used to measure the underlying signals. Assume that there is a true output gap ψt
and that there is an approximating model, denoted by M, providing a represen-
tation for it. The model specifies how the observations are related to the object of
the measurement. Let us denote by ψt ,M this (parametric) representation. Now, let
ψ̃t ,M denote the estimator of ψt based on model M, i.e., using the representation
ψt ,M. We assume that ψ̃t ,M is the optimal signal extraction method for ψt ,M.
How do we judge the reliability of ψ̃t ,M? Reliability is a statement concerning the
closeness of ψ̃t ,M and ψt . Following Boumans (2007), two key features are accu-
racy and precision, as the discrepancy ψ̃t ,M − ψt can be broken down into two
components: (ψ̃t ,M − ψt ,M) + (ψt ,M − ψt ), which are associated respectively to
the precision of the method, and to the accuracy or validity of the representation
chosen. Given the information set F , precision is measured by (the inverse of)

Var(ψt ,M|F) = E[(ψ̃t ,M − ψ̃t ,M)
2|F ].

9.4.1 Validity

Validity is usually difficult to ascertain, as it is related to the appropriateness of
ψt ,M as a model for the signal ψt . This is a complex assessment, involving many
subjective elements, such as any prior available information and the original moti-
vation for signal extraction. The issue is indissolubly entwined with the nature
of ψt : the previous paragraphs have considered two main perspectives. The first
regards ψt as the component of the series that results from the transmission mech-
anism of demand or nominal shocks. The second view considers ψt as the bandpass
component of output.

Recently, there has been a surge of interest in model uncertainty and in model
averaging. The individual estimates ψ̃t ,Mi

, i = 1, 2, . . . , K, may be combined

linearly, giving ψ̃t =
∑

i ciψ̃t ,Mi
, where the coefficients ci are proportional to the

precision of the methods, or the posterior probability in a Bayesian setting.
It is more viable to assess two other aspects of validity, namely concurrent and

predictive validity. The first is concerned with the contemporaneous relation-
ship between the measure ψ̃t ,M and a related alternative measure of the same
phenomenon. Such measures are rarely available. Although business surveys are
implemented with the objective of collecting informed opinions on latent vari-
ables, such as the state of the business cycle, they can hardly be considered as
providing a measure of the “true” underlying state of the economy.

Predictive validity relates to the ability to forecast future realizations of yt or
related variables; evaluating the mean forecast error yields useful insight on its
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predictive validity, as possible bias would emerge. This criterion is adopted by
a number of authors; e.g., Camba-Mendez and Rodriguez-Palenzuela (2003) and
Proietti, Musso and Westermann (2007) assess the reliability of alternative output
gap estimates through their capability to predict future inflation.

9.4.2 Precision

A measurement method is precise if repeated measurements of the same quantity
are in close agreement. Loosely speaking, precision is inversely related to the uncer-
tainty of an estimate. In the measurement of immaterial constructs the sources of
uncertainty would include: (i) parameter uncertainty, due to the fact that the core
parameters � characterizing model M, such as the variance of the disturbances
driving the components and the impulse response function, are unknown and
have to be estimated; (ii) estimation error, the latent components are estimated
with a positive variance even if a doubly infinite sample on yt is available; (iii)
statistical revision, as new observations become available, the estimate of a signal is
updated so as to incorporate the new information; (iv) data revision.

The first source can be assessed by various methods in the classical approach; it is
automatically incorporated in the interval estimates of the output gap if a Bayesian
approach is adopted, as in section 9.3.2.2. The methods rely on the fundamental
result that, under regularity conditions, the ML estimator of � has the asymptotic
distribution �̃ ∼ N(�, V), where V is the inverse of the information matrix. Hamil-
ton (1986) proposed a Bayesian marginalization approach, which uses �̃ ∼ N(�, V)

as a normal approximation to the posterior distribution of �, given the available
data. Then, a measure of the uncertainty of the smoothed estimates of the output
gap, which embodies parameter uncertainty, is:

V̂ar(ψt |F) = 1
K

K∑
k=1

Var(ψt |F , �̃(k)
)] + 1

K

K∑
k=1

[
E(ψt |F , �̃(k)

)− Ê(ψt |F)
]2

, (9.27)

where Ê(ψt |F) = 1
K
∑K

k=1 E(ψt |F , �̃(k)
), and the �̃

(k)s are independent draws from
the multivariate normal density N(�̃, Ṽ), k = 1, . . . , K, where Ṽ is evaluated at �̃.
According to the delta method proposed by Ansley and Kohn (1986), expressing the
output gap estimates as a linear function of the parameter estimation error �− �̃

gives:

V̂ar(ψt |F) = Var(ψt |F , �̃)+ d(�̃)
′Ṽd(�̃), d(�̃) = ∂

∂�
E(ψt |F , �̃)

∣∣
�=�̃

, (9.28)

where the derivatives in d(�̃) are evaluated numerically using the support of the
Kalman filter and smoother. Similar methods apply for the real-time estimates,
with the ML estimator being based on the information set Ft . Quenneville and
Singh (2000) evaluate and compare the two methods, and propose enhancements
in a Bayesian perspective.

In an unobserved component framework the Kalman filter and smoother provide
all the relevant information for assessing (ii) and (iii). For the latter, we can keep
track of revisions by using a fixed-point smoothing algorithm (see Anderson and
Moore, 1979; de Jong, 1989).
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The sources (ii) and (iii) typically arise because the individual components are
unobserved and are dependent through time. The availability of additional time
series observations helps to improve the estimation of an unobserved component.
Multivariate methods are more reliable as they use repeated measures of the same
underlying latent variable and this increases the precision of the estimates. It is
important to measure the uncertainty that surrounds the real time, or concurrent,
estimates, Var(ψt |Ft , �̃), which are conditional on the information set available to
economic agents and policy makers at the time of making the assessment of the
state of the economy, as opposed to the historical, or final, estimates. Comparing
Var(ψt |Ft , θ̃) with the final estimation error variance, Var(ψt |Fn, �̃), n → ∞, gives
a clue about the magnitude of the revision of the estimates as new observations
become available.

In the absence of structural breaks, statistical revisions are sound and a fact of
life (i.e., a natural consequence of optimal signal extraction). There is, however,
great concern about revisions, especially for policy purposes; Orphanides and van
Norden (2002) propose temporal consistency as a yardstick for assessing the reliabil-
ity of output gap estimates; temporal consistency occurs when real-time (filtered)
estimates do not differ significantly from the final (smoothed) estimates.

Finally, an additional source of uncertainty is data revision, which concerns
yt . Timely economic data are only provisional and are revised subsequently with
the accrual of more complete information. Data revision is particularly relevant
for national accounts aggregates, which require integrating statistical informa-
tion from different sources and balancing it so as to produce internally consistent
estimates.

9.5 Appendix A: Linear filters

A linear filter applied to a univariate series yt is a weighted linear combination of
its consecutive values. A time invariant filter can be represented as:

w(L) =
∑

j

wjL
j, (9.29)

with wj representing the filter weights. The above filter is symmetric if wj = w−j,

in which case we can write w(L) = w0 +
∑

j wj(L
j + L−j

).
Applying w(L) to yt yields w(L)yt and has two consequences: the amplitude of

the original fluctuations will be compressed or enhanced and the displacement
over time of the original fluctuations will be altered. These effects can be fully
understood in the frequency domain by considering the frequency response func-
tion (FRF) associated with the filter, which is defined as the Fourier transform of

(9.29): w(e−ıω
) = ∑

j wje
−ıωj = wR(ω) + ıwI (ω), where wR(ω) = ∑

j wj cos ωj
and wI (ω) = ∑

j wj sin ωj. The last equality stresses that, in general, the FRF is a
complex quantity, with wR(ω) and wI (ω) representing its real and complex part,

respectively. The polar representation of the FRF, w(e−ıω
) = G(ω)e−ıPh(ω), is written

in terms of two crucial quantities, the gain, G(ω) = |w(e−ıω
)| =

√
wR(ω)2 +wI (ω)2,
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and the phase Ph(ω) = arctan(−wI (ω)/wR(ω)). The former measures the amplitude
effect of the filter, so that if at some frequencies the gain is less than one, then those
frequency components will be attenuated in the filtered series; the latter measures
the displacement, or the phase shift, of the signal.

If fy(ω) denotes the spectrum of yt , the spectrum of w(L)yt is equal to

|w(e−iω
)|2fy(ω), and therefore the square of the gain function (also known as the

power transfer function) provides the factor by which the spectrum of the input
series is multiplied to obtain that of the filtered series. In the important special
case when w(L) is symmetric, the phase displacement is zero, and the gain is simply
G(ω) = |w0 + 2

∑m
j=1 wj cos ωj|.

9.6 Appendix B: The Wiener–Kolmogorov filter

The classical Wiener–Kolmogorov prediction theory, which is restricted to station-
ary processes, deals with optimal signal extraction of an unobserved component.
Letting μt denote some stationary signal and yt an indeterministic linear process

with Wold representation yt = v(L)ξt , v(L) = 1 + v1L + v2L2 + · · · ,
∑ |vj| < ∞,

ξt ∼ WN(0, σ2
), the minimum mean square linear estimator of μt+l based on a

semi-infinite sample yt−j, j = 0, 1, . . . ,∞, is:

μ̃t+l|t =
1

σ2v(L)

[
gμy(L)

v(L−1)
L−l

]
+

yt . (9.30)

Here, gμy(L) denotes the cross-covariance generating function of μt and yt , gμy(L) =∑
j γμy,jL

j, where γμy,j is the cross-covariance at lag j, E[(μt − E(μt ))(yt−j − E(yt ))],
and for h(L) =∑∞

j=−∞ hjL
j, [h(L)]+ =

∑∞
j=0 hjL

j, i.e., a polynomial containing only
non-negative powers of L; see Whittle (1983, p. 42). The formula for l ≤ 0 provides
the weights for signal extraction (contemporaneous filtering for l = 0).

If an infinite realization of future yt was also available, the minimum mean
square linear estimator is:

μ̃t |∞ = gμy(L)

gy(L)
yt ,

where gy(L) is the autocovariance generating function of yt , gy(L) = |v(L)|2σ2, and

|v(L)|2 = v(L)v(L−1
). If the series is decomposed into two orthogonal components,

yt = μt + ψt , gμy(L) = gμ(L) (see Whittle, 1983, Ch. 5).
These formulae also hold when yt and μt are non-stationary (see Pierce, 1979).

As an example of their application, the expressions for the final and concurrent

estimators of the trend component for model (9.2), with σ
2
η = 0 and σ

2
ψ/σ

2
ζ = λ

(Leser–HP filter), are:

μ̃t |∞ = 1

1+ λ|1− L|4 yt , μ̃t |t =
θ(1)
θ(L)

yt ,

mailto: rights@palgrave.com


426 Structural Time Series Models

and the corresponding detrending filters are:

ψ̃t |∞ = λ|1− L|4
1+ λ|1− L|4 yt , ψ̃t |t =

θ(L)− θ(1)
θ(L)

yt .

Here, θ(L) = 1+ θ1L+ θ2L2 is the reduced form MA polynomial of the local linear
trend model (9.2). The numerator of the filtered detrended series can be rewritten:
θ(L)− θ(1) = �θ

∗
(1)L+�

2
θ
∗
0, with θ

∗
(L) = θ

∗
0 + θ

∗
1L = −(θ1 + θ2)− θ2L.

The expression for ψ̃t |∞ is sometimes mistakenly taken to imply that the Leser–
HP cycle filter makes stationary series that are integrated up to the fourth order,

due to the presence of |1− L|4 = (1− L)2(1− L−1
)
2 in the numerator of the filter.

It should be recalled that the above formula holds true only for a doubly-infinite

sample, and the real-time filter for extracting ψ̃t |t contains only the factor �
2.

9.7 Appendix C: State-space models and methods

The models considered in this chapter admit the state-space representation:

yt = Ztαt +Gtεt , t = 1, 2, . . . , n,

αt = Ttαt−1 +Htηt , (9.31)

where εt ∼ NID(0, I), ηt ∼ NID(0, I), and E(εtη
′
t ) = 0. The initial conditions are

specified as follows: α0 = α̃
∗
0|0 +W0δ +H0η0, so that α1|δ ∼ N(α̃

∗
1|0 +W1δ, P∗1|0),

where α̃
∗
1|0 = T1α̃

∗
0|0, W1 = T1W0, and P∗1|0 = H1H′1 + T1H0H′0T′1. The random

vector δ captures the initial conditions for non-stationary state components and is

assumed to have a diffuse distribution, δ ∼ N(0,�δ), with �
−1
δ → 0. The matrices

Zt , Gt , Tt , Ht , W0 are deterministically related to a set of hyperparameters, �.
For instance, for the bivariate model of output and inflation considered in

section 9.3.1, yt is a bivariate time series, αt = (μt ,βt ,ψt ,ψt−1, τt )
′, Zt = Z =

(zy , zp)
′, z′y = (1, 0, 1, 0, 0), z′p = (0, 0, 0, 0, 1), εt = εt/σε, Gt = G = (0, σε)

′,
ηt = (ηt/ση, κt/σκ , υt/συ)

′, δ = (μ0,β0, τ0)
′, α̃∗0|0 = 0,

Tt = T =
⎛⎜⎝Tμ 0 0

0 Tψ 0
0′ t′p 1

⎞⎟⎠ , Tμ =
(

1 1
0 1

)
, Tψ =

(
φ1 φ2
1 0

)
, tp =

(
θτ0φ1 + θτ1

θτ0φ2

)
,

Ht = H =

⎛⎜⎜⎜⎜⎜⎝
ση 0 0
0 0 0
0 σκ 0
0 0 0
0 θτ0σκ 0

⎞⎟⎟⎟⎟⎟⎠ , W0 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 0
0 0 0
0 0 1

⎞⎟⎟⎟⎟⎟⎠ , η0 ∼ N(0, I2), H0 =
⎛⎜⎝ 0

Cψ

0

⎞⎟⎠ ,

where Cψ is such that E(ψ0ψ
′
0) = CψC′ψ , ψ0 = (ψ0,ψ−1)

′.
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9.7.1 The augmented Kalman filter

The Kalman filter (KF) is a fundamental algorithm for the statistical treatment of
a state-space model. Under the Gaussian assumption it produces the minimum
mean square estimator of the state vector along with its mean square error matrix,
conditional on past information; this is used to build the one-step-ahead predictor
of yt and its mean square error matrix. Due to the independence of the one-step-
ahead prediction errors, the likelihood can be evaluated via the prediction error
decomposition.

The case when δ is a fixed vector (fixed initial conditions) has been considered
by Rosenberg (1973). He showed that δ can be concentrated out of the likelihood
function and that its generalized least square estimate is obtained from the output
of an augmented KF. The diffuse case has been dealt with by de Jong (1989).

Defining A1|0 = −W1, q0 = 0, s0 = 0, S0 = 0, the augmented KF is given by the
following recursive formulae and definitions for t = 1, . . . , n:

v∗t = yt − Zt α̃
∗
t |t−1, Vt = −ZtAt |t−1,

F∗t = ZtP
∗
t |t−1Z′t +GtG

′
t , Kt = Tt+1P∗t |t−1Z′tF

∗−1
t ,

qt = qt−1 + v∗
′

t F∗−1
t v∗t , st = st−1 +V′tF

∗−1
t v∗t , St = St−1 +V′tF

∗−1
t Vt ,

α̃
∗
t+1|t = Tt+1α̃

∗
t |t−1 + Ktv

∗
t , At+1|t = Tt+1At |t−1 + KtVt

P∗t+1|t = Tt+1P∗t |t−1T′t+1 +Ht+1H′t+1 − KtF
∗
t K′t .

(9.32)
The diffuse likelihood is defined as follows (de Jong, 1991):

�(y1, . . . , yn;�) = −1
2

⎛⎝∑
t

ln |F∗t | + ln |Sn| + qn − s′nS−1
n sn

⎞⎠. (9.33)

Denoting Yt = {y1, y2, . . . , yt }, the innovations, vt = yt − E(yt |Yt−1), the con-
ditional covariance matrix Ft = Var(yt |Yt−1), the one-step-ahead prediction of
the state vector α̃t |t−1 = E(αt |Yt−1), and the corresponding covariance matrices,
Var(αt |Yt−1) = Pt |t−1, are given by:

vt = v∗t −VtS
−1
t−1st−1, Ft = F∗t +VtS

−1
t−1V′t ,

α̃t |t−1 = α̃∗t |t−1 − At |t−1S−1
t−1st−1, Pt |t−1 = P∗t |t−1 + At |t−1S−1

t−1A′t |t−1.

(9.34)

9.7.2 Real-time (updated) estimates

The updated (or real-time, filtered) estimates of the state vector, α̃t |t = E(αt |Yt ), and
the covariance matrix of the real-time estimation error are, respectively:

α̃t |t = α̃
∗
t |t−1 − At |t−1S−1

t st + P∗t |t−1Z′tF
−1
t (v∗t −VtS

−1
t st ),

Pt |t = P∗t |t−1 − P∗t |t−1Z′tF
∗−1
t ZtP

∗
t |t−1 + (At |t−1 + P∗t |t−1Z′tF

∗−1
t Vt )S

−1
t (At |t−1

+ P∗t |t−1Z′tF
∗−1
t Vt )

′.
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9.7.3 Smoothing

Smoothing deals with the estimation of the components and the disturbances
based on the full sample of observations. In the Gaussian case the fixed interval
smoother provides the minimum mean square estimator of αt using Yn, α̃t |n =
E(αt |Yn), along with its covariance matrix Pt |n = E[(αt − α̃t |n)(αt − α̃t |n)

′|Yn]. The
computations can be carried out efficiently using the following backwards recur-
sive formulae, given by Bryson and Ho (1969) and de Jong (1989), starting at t = n,
with initial values rn = 0, Rn = 0 and Nn = 0:

rt−1 = L′t rt + Z′tF
∗−1
t vt , Rt−1 = L

′
tRt + Z′tF

∗−1
t Vt , t = n− 1, . . . , 1.

Nt−1 = L′tNtLt + Z′tF
∗−1
t Zt ,

α̃t |n = α̃
∗
t |t−1 − At |t−1S−1

n sn + P∗t |t−1(rt−1 − Rt−1S−1
n sn),

Pt |n = P∗t |t−1 − P∗t |t−1Nt−1P∗t |t−1 + (At |t−1 + P∗t |t−1Rt−1)S
−1
n (At |t−1 + P∗t |t−1Rt−1)

′,
(9.35)

where Lt = Tt+1 − KtZ
′
t . A preliminary forward KF pass is required to store the

quantities α̃∗t |t−1, At |t−1, P∗t |t−1, v∗t , Vt , F∗t and Kt .
The smoothed estimates of the disturbances are given by Ht η̃t = E(Htηt |Yn) =

HtH
′
t (rt−1 − Rt−1S−1

n sn), and Gt ε̃t = E(Gtεt |Yn) = GtG
′
t

[
F∗−1

t (vt −VtS
−1
n sn)+

K′t (rt − RtS
−1
n sn)

]
.

9.7.4 The simulation smoother

The simulation smoother is an algorithm which draws samples from the condi-
tional distribution of the states and the disturbances given the observations and the
hyperparameters. Carlin, Polson and Stoffer (1992) proposed a single-move state
sampler, by which the states are sampled one at a time. This proves to be ineffi-
cient in the presence of highly autocorrelated state components. Gamerman (1998)
proposed a single move disturbance sampler, which is more efficient since the dis-
turbances driving the components are much less persistent and autocorrelated over
time. Along with reparameterization, an effective strategy is blocking, through the
adoption of a multi-move sampler as in Carter and Kohn (1994) and Früwirth-
Schnatter (1994), who focus on sampling the states. Again, a more efficient
multi-move sampler can be constructed by focusing on the disturbances, rather
than the states. This is the idea underlying the simulation smoother proposed by
de Jong and Shephard (1996).

Let ς t = C[ε′t , η′t ]′ denote a sub-set of the disturbances of the series, with C
being a selection matrix. The structure of the state-space model model is such
that the states are a (possibly singular) linear transformation of the disturbances
and that Gtεt can be recovered from Htηt via the measurement equation, which
implies that the distribution of (ε

′, η′)′|Yn is singular. Hence, to achieve efficiency
and to avoid degeneracies, we need to focus on a suitably selected sub-set of the
disturbances. The simulation smoother hinges on the following factorization of
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the joint posterior density:

f (ς0, . . . , ςn|Yn) = f (ςn|y)

n−1∏
t=0

f (ς t |ς t+1, . . . , ςn; Yn).

Conditional random vectors are generated recursively: in the forward step the
Kalman filter is run and the innovations, their covariance matrix and the Kalman
gain are stored. In the backwards sampling step conditional random vectors are
generated recursively from ς t |ς t+1, . . . , ςn; y; the algorithm keeps track of all the
changes in the mean and the covariance matrix of these conditional densities. The
simulated disturbances are then inserted into the transition equation to obtain a
sample from α|Yn.

A more efficient simulation smoother has been developed by Durbin and
Koopman (2002). The gain in efficiency arises from the fact that only the first
conditional moments of the states or the disturbances need to be evaluated. Let
us redefine ς t = (ε

′
t , η

′
t )
′ and let ς̃ = E(ς |Yn), where ς is the stack of the vec-

tors ς t ; ς̃ is computed by the disturbance smoother (see Koopman, 1993, and
Appendix C, section 9.7.3). We can write ς = ς̃+ς∗, where ς∗ = ς− ς̃ is the distur-
bance smoothing error, with conditional distribution ς

∗|Yn ∼ N(0, V), such that
the covariance matrix V does not depend on the observations, and thus does not
vary across the simulations (the diagonal blocks are computed by the smoothing
algorithm in Appendix C, section 9.7.3). A sample from ς

∗|Yn is constructed as
follows: we first draw the disturbances from their unconditional Gaussian distri-
bution ς

+ ∼ NID(0, I) and construct the pseudo observations y+ recursively from
α
+
t = Ttα

+
t−1 + Htη

+
t , y+t = Ztα

+
t + Gtε

+
t , t = 1, 2, . . . , n, where the initial draw is

α
+
0 ∼ N(0, H0H′0). The Kalman filter and the smoothing algorithm computed on

the simulated observations y+t will produce ς̃
+
t and α̃

+
t , and ς

+
t − ς̃

+
t will be the

desired draw from ς
∗|Yn. Hence, ς̃ + ς

+
t − ς̃

+
t is a sample from ς |Yn ∼ N(ς̃ , V).
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Notes

1. Assuming μ∗ = (μ1,μ2)
′ ∼ N(0,�μ), and that the process μt has started in the indefinite

past, �−1
μ → 0, and thus the quadratic form μ′∗�−1

μ μ∗ converges to zero.
2. All the computations in this chapter have been performed using Ox version 4 (see Doornik,

2006).
3. The slope parameter is included in the state vector; the transition equation is βt = βt−1,

with β0 being a diffuse parameter (see Appendix C, section 9.7).
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Fractional Integration and
Cointegration: An Overview and an
Empirical Application
Luis A. Gil-Alana and Javier Hualde

Abstract

In this chapter we first review the theoretical and empirical work on fractional integration and
cointegration, placing special emphasis on the estimation procedures for fractionally cointegrated
systems. An empirical application is then carried out using some of the more recently developed
techniques in this area. In particular, we investigate the purchasing power parity hypothesis for
four bivariate price series, the US (“domestic”) versus the “foreign” countries Australia, Canada,
Italy and the UK. Fractional cointegration is found in the US–UK relationship.
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10.1 Introduction

One characteristic of many economic and financial time series is its non-stationary
nature. There exists a great variety of models to describe such non-stationarity.
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Until the 1980s a standard approach was to impose a deterministic (linear or
quadratic) function of time, thus assuming that the residuals from the regres-
sion model were stationary. Later on, and especially after the seminal work of
Nelson and Plosser (1982), there was a general agreement that the non-stationary
component of most series was stochastic, and unit roots (or first differences) were
commonly adopted. However, the unit root is merely one particular model to
describe such behavior. In fact, the number of differences required to get to sta-
tionarity may not necessarily be an integer value but any point in the real line.1 In
such a case, the process is said to be fractionally integrated or I(d). The I(d) models
belong to a wider class of processes called long memory, which we can define in
either the time or the frequency domains.

Let us consider a zero mean process {xt , t = 0,±1, . . .} with γu = E(xtxt+u). The
time domain definition of long memory states that:

∞∑
u=−∞

∣∣γu
∣∣ = ∞.

Now, assuming that xt has an absolutely continuous spectral distribution, so that
it has spectral density function:

f (λ) = 1
2π

⎛⎝γ0 + 2
∞∑

u=1

γu cos(λu)

⎞⎠,

the frequency domain definition of long memory states that the spectral density
function is unbounded at some frequency in the interval [0,π). Most of the empir-
ical literature has concentrated on the case where the singularity, or pole, in the
spectrum takes place at the zero frequency. This is the standard case of I(d) models
of the form:

(1− L)dxt = ut , t = 0,±1, . . . , (10.1)

where L is the lag operator (Lxt = xt−1) and ut is I(0). However, fractional inte-
gration may also occur at some other frequencies away from zero, as in the case of
seasonal/cyclical models.

In the multivariate case, the natural extension of fractional integration is the
concept of fractional cointegration. Though the original idea of cointegration, as
espoused by Engle and Granger (1987), allows for fractional orders of integration,
all the empirical work carried out during the 1990s was restricted to the case of
integer degrees of differencing. Only in recent years have fractional values also
been taken into account.

In this chapter we review fractional integration and cointegration, placing special
emphasis on the latter concept, which has recently emerged in the time series lit-
erature. We also present an empirical application using some of the most novel
techniques in this area. The outline of the chapter is as follows. Section 10.2
concentrates on fractional integration and some of its most recent developments.
Section 10.3 deals with fractional cointegration, while section 10.4 is devoted to
an empirical example.
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10.2 Fractional integration

10.2.1 Concept and modelization

The idea of fractional integration was introduced by Granger and Joyeux (1980),
Granger (1980, 1981) and Hosking (1981), though Adenstedt (1974) and Taqqu
(1975) earlier showed an awareness of its representation. Assuming that xt is
given by equation (10.1), the first point we have to deal with is the treatment
of pre-sample observations. In short memory contexts (that is, d = 0), different
initial value conventions lead to parameter estimates which typically share the
same first-order asymptotic properties but have different finite-sample properties.
In empirical work zeros or the sample mean often initiate the series, with early
observations being thrown away. Different conventions have also been followed
in non-stationary series with an autoregressive unit root. In stationary fractional
processes, infinitely many pre-sample values have to be chosen, so the potential
divergence between rival methods and parameter estimates is greater, though first-
order asymptotic properties are again robust. In fractional contexts, two definitions
of fractional integration have been employed. From equation (10.1), for d < 1/2:

xt = �
−dut , t = 0,±1, . . . ,

where � = 1− L. For integer da ≥ 0:

zat = �
−dax#

t , t = 0,±1, . . . ,

is called a Type I (d + da) process, where the # superscript attached to a scalar

or vector sequence has the meaning w#
t = wt1(t > 0), 1(·) being the indicator

function. Similarly:

zbt = �
−da−du#

t , t = 0,±1, . . . ,

is called a Type II (d+ da) process. When d = 0, x#
t = u#

t and hence zat = zbt , so both
definitions are equivalent in non-fractional contexts.2 Note that the polynomial
on the left-hand side of (10.1) can be expanded as:

(1− L)d =
∞∑

j=0

(
d
j

)
(−1) jLj = 1− dL+ d(d − 1)

2
L2 − . . . .

Thus, if d is an integer value, xt will be a function of a finite number of past
observations, while if d is real, xt depends upon values of the time series far in the
past. The higher the value of d, the higher the level of association between the
observations.

There exist several sources that might produce I(d) processes, aggregation being
the usual argument. Robinson (1978) and Granger (1980) showed that fractionally
integrated data could arise as a result of aggregation when: (i) data are aggregated
across heterogeneous autoregressive (AR) processes, and (ii) data involving hetero-
geneous dynamic relationships at the individual level are then aggregated to form
the time series. Cioczek-Georges and Mandelbrot (1995), Taqqu, Willinger and
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Sherman (1997) and Chambers (1998) also use aggregation to motivate long mem-
ory processes, while Parke (1999) uses a closely related discrete time error duration
model. More recently, Diebold and Inoue (2001) proposed another source of long
memory based on regime-switching models.3

Note that ut in (10.1) may also include some type of weak dependence structure:
for example, a stationary and invertible autoregressive moving average (ARMA)
process of the form:

φ(L)ut = θ(L)εt , t = 0,±1, . . . ,

where εt is an independent and identically distributed (i.i.d.) sequence. Thus,
when d < 1/2, xt in (10.1) can be written as:

φ(L)(1− L)dxt = θ(L)εt , t = 0,±1, . . . , (10.2)

which is usually called an autoregressive fractionally integrated moving average
(ARFIMA) process. Sowell (1992a) analyzed the exact maximum likelihood (ML)
estimator of the parameters of the ARFIMA model (10.2) in the time domain, using a
recursive procedure that allows quick evaluation of the likelihood function, which
is given by:

(2π)
−n/2 |�|−1/2 exp

(
−1

2
X′n�

−1Xn

)
,

where Xn = (x1, x2, . . . , xn)
′ and Xn ∼ N(0,�). Other parametric methods of esti-

mating d in the frequency domain were proposed, among others, by Fox and
Taqqu (1986) and Dahlhaus (1989). Small sample properties of these and other
estimators were examined in Smith, Taylor and Yadav (1997) and Hauser (1999).
In the former, several semiparametric procedures were compared with Sowell’s
(1992a) ML estimation method, finding that Sowell’s procedure outperforms the
semiparametric ones in terms of bias and mean square error. Hauser also compares
Sowell’s procedure with others based on the exact and the Whittle likelihood func-
tion in the time and the frequency domain, and shows that Sowell’s procedure
dominates the others in the case of fractionally integrated models. A semipara-
metric frequency domain estimator is the log-periodogram estimator proposed by
Geweke and Porter-Hudak (1983).4 Other parametric and semiparametric methods
have been proposed: see, for example, Robinson (1994a, 1995a, 1995b), Tanaka
(1999), Velasco (1999a, 1999b), and Phillips and Shimotsu (2004, 2005).5

So far we have focused on the case where the singularity occurs at the zero
frequency. Let us consider now the following process:

(1− 2 cos wrL+ L2
)
dxt = ut , t = 0,±1, . . . , (10.3)

where wr is a real value equal to 2πr/n, with r = n/c. In this context, if d > 0, the
process is also fractionally integrated, although the pole (unboundedness) in the
spectrum now occurs at a (cyclical) frequency λ �= 0, and c will be an indicator of
the number of periods per cycle. These processes were introduced by Gray, Yhang
and Woodward (1989, 1994), who showed that the polynomial in (10.3) can be
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expressed in terms of the Gegenbauer polynomial such that, for all d �= 0, and
setting μ = cos wr :

(1− 2μL+ L2
)
−d =

∞∑
j=0

Cj,d(μ)L j,

where:

Cj,d(μ) =
j∑

k=0

(−1)k(d)j−k(2μ)
j−2k

k!(j − 2k)! ; (d)j =
�(d + j)
�(d)

,

and � (x) is the Gamma function. Alternatively, we can use the recursive formula
C0,d(μ) = 1, C1,d(μ) = 2μd, and:

Cj,d(μ) = 2μ
(

d − 1
j

+ 1
)

Cj−1,d(μ)−
(

2
d − 1

j
+ 1

)
Cj−2,d(μ), j = 2, 3, . . . .

(See, for instance, Magnus, Oberhettinger and Soni, 1966, or Rainville, 1960, for
further details on Gegenbauer polynomials.) Gray, Yhang and Woodward (1989)
showed that xt in (10.3) is stationary if d < 0.5 for |μ = cos wr | < 1 and if d < 0.25
for |μ| = 1. Lobato and Robinson (1998) proposed a semiparametric approach for
testing this type of model, and Dalla and Hidalgo (2005) suggested a parametric
test where the unbounded frequency in the spectrum is assumed to be unknown.6

As mentioned above, these processes are characterized by an unbounded spectral
density function at a single frequency. There may be cases, however, where the
spectrum is unbounded at several frequencies simultaneously, the most typical
corresponding to a seasonal process. We can consider a model of the form:

(1− Ls
)
dxt = ut , t = 0,±1, . . . , (10.4)

where s refers to the number of time periods per year (that is, s = 4 with quarterly
data, s = 12 with monthly). Similarly to (10.1), the (seasonal) fractional polynomial
above can be expressed as:

(1− Ls
)
d =

∞∑
j=0

(
d
j

)
(−1)jLjs = 1− dLs + d(d − 1)

2
L2s − . . . ,

for all real d, so that d becomes crucial for describing the degree of seasonal per-
sistence. The notion of fractional Gaussian noise with seasonality was initially
suggested by Abrahams and Dempster (1979) and Jonas (1981), and extended
to a Bayesian framework by Carlin, Dempster and Jonas (1985) and Carlin and

Dempster (1989). Note that if, for example, s = 4, the polynomial (1− L4
) can be

decomposed into (1− L)(1+ L)(1+ L2
), which is thus a case of multiple poles in

the spectrum (at zero, π , and π/2 (3π/2) of a 2π cycle), all of them, according to
(10.4), with the same order of integration d.

10.2.2 Empirical evidence of fractional integration

The empirical literature on fractional integration is large. In the 1960s, Granger
(1966) and Adelman (1965) had pointed out that most aggregate economic time
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series have a typical shape where by the spectral density increases dramatically as
the frequency approaches zero. However, differencing the data frequently leads
to overdifferencing at the zero frequency. Some 15 years later, Robinson (1978)
and Granger (1980) showed that aggregation could be a source of fractional inte-
gration. Since then, fractional processes have been widely employed to describe
the dynamics of many time series. Given the vast amount of empirical work, this
section is divided into various sub-sections according to the different nature of the
series under examination.

10.2.2.1 Applications to macroeconomics

Diebold and Rudebusch (1989) and Sowell (1992b) analyzed US quarterly post-war
real output data and obtained estimates of d below unity. Nevertheless, their results
were in line with Rudebusch’s (1993) and Christiano and Eichembaum’s (1990)
conclusions in the sense that their confidence intervals for d included the unit
root and, in Sowell’s case, also the trend-stationary I(0) representation. Haubrich
and Lo (1991) examined US real output using R/S techniques and found little evi-
dence of long-range dependence in the business cycle. Using Bayesian techniques,
Koop et al. (1997) also examined real US GNP and found some evidence of long
memory, although their results also reflected model uncertainty. Michelacci and
Zaffaroni (2000) showed that GDP per capita in 16 OECD countries exhibited long
memory. Mayoral (2006) also finds evidence of fractional integration in real GNP
and GNP per capita in the US, showing that their results are robust to the presence
of structural breaks in the deterministic components.7

Long memory in inflation rates is another topic that has been widely examined
in the empirical literature. Much of the evidence supports the view that infla-
tion is fractionally integrated with a differencing parameter that is significantly
different from zero or unity. For US monthly data, Backus and Zin (1993) found a
fractional degree of integration. They argue that aggregation across agents with het-
erogeneous beliefs results in long memory in inflation. Hassler (1993) and Delgado
and Robinson (1994) provide strong evidence of long memory in the Swiss and
Spanish inflation rates respectively. Baillie, Chung and Tieslau (1996) examined
monthly post-World War II CPI inflation in ten countries, and found evidence of
long memory with mean-reverting (with smaller memory than one) behavior in all
countries except Japan. Similar evidence was found in Hassler and Wolters (1995)
and Baum, Barkoulas and Caglayan (1999). In the context of structural breaks, Bos,
Franses and Ooms (1999, 2001) examined inflation in the G7 countries, finding
that long memory is quite resistant to level shifts, although, for a few inflation
rates, they found that the evidence for long memory disappeared. Evidence of
long memory behavior in the conditional mean of inflation is found in Baillie,
Chung and Tieslau (1996) and Baillie, Han and Kwon (2002). Other recent papers
relating long memory and structural breaks in inflation rates are Gadea, Sabate and
Serrano (2004), Franses, Hyung and Penn (2006) and Gil-Alana (2008a), and fore-
casting issues are examined in Franses and Ooms (1997) and Barkoulas and Baum
(2006).
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Other variables, such as consumption and income, have been analyzed from
a fractional viewpoint in Diebold and Rudebusch (1991), Haubrich (1993) and
Dolado and Marmol (2004). Finally, Crato and Rothman (1994a) and Gil-Alana
and Robinson (1997) analyzed updated versions of Nelson and Plosser’s (1982)
dataset, which has 14 US macroeconomic series, and found evidence of fractional
integration in practically all series.

10.2.2.2 Applications to exchange rates

The theory of purchasing power parity (PPP) occupies a central place in interna-
tional economics, being a key building block in monetary models of exchange rate
determination. In a flexible-price monetary model, PPP is assumed to hold contin-
uously. In a sticky-price model, PPP does not hold, but is a maintained assumption
for the long run. The question of interest is to determine if deviations from PPP
are transitory or permanent. Applying R/S techniques to daily rates for the British
pound, French franc and Deutsche mark, Booth, Kaen and Koveos (1982) found
positive memory during the flexible exchange rate period (1973–79) but negative
memory (that is, anti-persistence) during the fixed exchange rate period (1965–
71). Later, Cheung (1993) also found evidence of long memory behavior in foreign
exchange markets during the managed floating regime. On the other hand, Baum,
Barkoulas and Caglayan (1999) estimated ARFIMA models for real exchange rates in
the post-Bretton Woods era and found almost no evidence to support long-run PPP.
Additional papers on exchange rate dynamics using fractional integration are Fang,
Lai and Lai (1994), Crato and Ray (2000) and Wang (2004). The volatility dynam-
ics in foreign exchange rates with fractional integration has been examined with
the FIGARCH-model, introduced by Baillie, Bollerslev and Mikkelsen (1996), and
subsequent papers using this approach are Andersen and Bollerslev (1997, 1998),
Tse (1998), Baillie, Cecen and Han (2000), Kihc (2004) and Morana and Beltratti
(2004).

10.2.2.3 Applications to interest rates

Shea (1991) investigated the consequences of long memory in interest rates for
tests of the expectations hypothesis of the term structure. He found that allowing
for the possibility of long memory significantly improves the performance of the
model, even though the expectations hypothesis cannot be fully resurrected. In
related work, Backus and Zin (1993) observed that the volatility of bond yields
does not decline exponentially when the maturity of the bond increases; in fact,
they noticed that the decline was hyperbolic, consistent with the fractionally inte-
grated specification. Lai (1997) and Phillips (1998) provided evidence, based on
semiparametric methods, that ex ante and ex post US real interest rates are fraction-
ally integrated. Tsay (2000) employs an ARFIMA model to provide evidence that
the US real interest rate can be described as an I(d) process. Further evidence can
be found in Barkoulas and Baum (1997), Meade and Maier (2003) and Gil-Alana
(2004a, 2004b). Couchman, Gounder and Su (2006) estimated ARFIMA models for
ex post and ex ante interest rates from 16 countries. Their results suggest that, for
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the majority of countries, the fractional differencing parameter lies between 0 and
1, and it seems to be considerably smaller for ex post real rates than for ex ante rates.

10.2.2.4 Applications to stock markets

Long memory analysis was first conducted in stock return series in Greene and
Fielitz (1977). They report evidence of persistence in daily US stock return series
using R/S methods. However, Aydogan and Booth (1988) concluded that there was
no significant evidence of long memory in common stock returns. Lo (1991) used
the modified R/S method, along with spectral regression methods, and found no
evidence of long memory in stock returns. Many other authors have found little
or no evidence of long memory in stock markets (see, for example, Hiemstra and
Jones, 1997). On the other hand, Crato (1994), Cheung and Lai (1995), Barkoulas
and Baum (1996), Barkoulas, Baum, and Travlos (2000), Sadique and Silvapulle
(2001), Henry (2002), Tolvi (2003) and Gil-Alana (2006) are among those who find
evidence of long memory in monthly, weekly, and daily stock market returns.

Several papers use the Standard & Poor (S&P) 500 index over a long span of daily
observations. Granger and Ding (1995a, 1995b) focus on power transformations
of the absolute value of the returns (which they use as a proxy for volatility). They
estimate a long memory process to study persistence in volatility, and establish
some stylized facts concerning the temporal and distributional properties of abso-
lute returns. However, in a related study, Granger and Ding (1996) find that the
parameters of the long memory model vary considerably from one sub-series to
the next. The issue of fractional integration with structural breaks in stock markets
has been examined in Mikosch and Starica (2000) and Granger and Hyung (2004).
Stochastic volatility models using fractional integration have been implemented
in Crato and de Lima (1994), Bollerslev and Mikkelsen (1996), Ding and Granger
(1996), Breidt, Crato, and de Lima (1997, 1998), Arteche (2004) and Baillie et al.
(2007).

10.2.2.5 Applications to geophysics and other sciences

Fractional integration has also been applied in many other areas. Examples include
meteorology (Haslett and Raftery, 1989; Bloomfield, 1992; Hussain and Elbergali,
1999; Gil-Alana, 2005a, 2008b); etternet (and internet) traffic traces (Abry and
Veitch, 1998; Karagiannis, Molle and Faloutsos, 2004); hydrology (Montanari,
Rosso and Taqqu, 1997, 2000; Rao and Bhattacharya, 1999; Wang et al., 2005;
Wang et al., 2007); and political sciences (Box-Steffensmeier and Smith, 1996, 1998;
Byers, Davidson and Peel, 1997, 2000; Dolado, Gonzalo and Mayoral, 2003).

10.2.2.6 Applications using seasonal and cyclical FI models

This review has so far focused exclusively on models with the pole or singular-
ity in the spectrum occurring at the zero frequency. In this sub-section we briefly
review the empirical literature on seasonal and cyclical fractional models. Start-
ing with the seasonal model in (10.4), Porter-Hudak (1990) applied a seasonally
fractionally integrated model to quarterly US monetary aggregates, concluding
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that a fractional model could be more appropriate than standard ARIMAs. Advan-
tages of seasonally fractionally integrated models for forecasting are illustrated in
Ray (1993) and Sutcliffe (1994), and other empirical applications using quarterly
seasonal models can be found in Gil-Alana and Robinson (2001) and Gil-Alana
(2005b). Monthly data in the context of seasonal fractional integration have been
examined in Gil-Alana (1999) and Ooms and Franses (2001).

Applications using the cyclical model based on the Gegenbauer process described
by equation (10.3) can be found, for example, in Arteche and Robinson (2000),
Bierens (2001) and Gil-Alana (2001), and empirical work based on multiple cyclical
structures (k-factor Gegenbauer processes) can be found in Ferrara and Guegan
(2001), Sadek and Khotanzad (2004) and Gil-Alana (2007).

10.3 Fractional cointegration

The concept of fractional integration leads naturally to an extension of the standard
notion of cointegration (which involves series with integer orders of integration) to
the fractional case, where equilibrium relations among fractional processes could
be captured. In the present section, we introduce this concept, give an overview
of the different estimation methods proposed so far in the literature, and give
evidence of the empirical relevance of this idea.

10.3.1 The concept and modelization of fractional cointegration

Engle and Granger (1987) suggested that, if two processes xt and yt are both I(d),
then it is generally true that, for a certain scalar a �= 0, a linear combination
wt = yt − axt will also be I(d), although it is possible that wt be I(d − b) with
b > 0. This idea characterizes the concept of cointegration, which they adapted
from Granger (1981) and Granger and Weiss (1983). They provided the following
definition for multivariate series. Given two real numbers d, b, the components of
the vector zt are said to be cointegrated of order d, b, denoted zt ∼ CI(d, b), if:

(i) all the components of zt are I(d),
(ii) there exists a vector α �= 0 such that wt = α

′zt ∼ I(d − b), b > 0.

Here, α and wt are called the cointegrating vector and error respectively. Engle
and Granger (1987) offered some intuition behind this crucial concept in modern
time series econometrics, suggesting the existence of forces which tend to keep
series not too far apart. Given a vector of economic variables zt , and a certain
vector α �= 0, economic theory would say that the variables are in equilibrium
if α

′zt = 0. This is a very tight notion of equilibrium, and it is a very narrow
view that this equality could hold for every time period t . Alternatively, we might
think of an equilibrium error as wt = α

′zt , which accommodates deviations from
equilibrium. If, for example, in Engle and Granger’s (1987) definition d = b = 1,
what characterizes cointegration as a “long-run equilibrium” relationship is that a
linear combination of I(1) processes is I(0), so that the series in zt cannot drift too
far apart.
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To be fair, the idea of equilibrium between I(1) processes was hinted at long
before in the statistical literature. In the AR model:

yt = ρyt−1 + εt , t > 0; yt = 0, t ≤ 0,

εt being a sequence of independent normally distributed random variables with
mean 0 and finite variance, Dickey and Fuller (1979) studied the properties of the
regression estimate of ρ, ρ̂, under the assumption that ρ = 1. In fact, this represents
a situation of cointegration between the I(1) processes yt and yt−1, as the linear
combination yt − yt−1 is I(0). This is a particular case of what Park (1992) called
“singular cointegration,” which is characterized by cointegrating errors being linear
combinations of innovations which generate the regressors.

Engle and Granger (1987) introduced another important concept. If the multi-
variate I(d) process zt has p > 2 components, there may be several linearly inde-
pendent cointegrating vectors, representing the case where several equilibrium
relations drive the joint movement of the variables in zt . It is easy to see that the
maximum number of linearly independent cointegrating vectors is r ≤ p − 1, the
value r defining the “cointegrating rank” of zt .

Even considering only integer orders of integration, a more general definition
of cointegration than the one given by Engle and Granger (1987) is possible, one
that allows for a multivariate process with components having different orders
of integration. Denoting d1 and dp to be the largest and smallest of these orders,

respectively, Johansen (1996) proposed that any vector zt such that α
′zt ∼ I(dw),

with dw < d1, is a cointegrating vector. Flôres and Szafarz (1996) narrowed
Johansen’s definition, proposing instead that the vector series is cointegrated if
there is a non-trivial linear combination of its components (with at least a non-zero
scalar multiplying d1) which is integrated of order dw < d1. Alternatively, Robinson
and Marinucci (2003) define zt to be cointegrated if there exists a vector α �= 0 such
that α

′zt ∼ I(dw), with dw < dp, which is a much stronger requirement. Robinson
and Yajima (2002) offered an alternative (although rather more involved) definition
and a comparison of the different definitions that have appeared in the literature.

Once fractional integration is defined, the concept of fractional cointegration
appears as a natural extension of traditional cointegration. In fact, the standard
definition of cointegration by Engle and Granger (1987) does not necessarily refer
to integer orders of integration. In the simple bivariate case, two series yt , xt , shar-
ing the same order of integration, say δ, are cointegrated if there exists a vector
α �= 0 such that α

′zt ∼ I(γ ), with γ < δ, with zt = (yt , xt )
′. This prompts considera-

tion of an extension of Phillips’ (1991a) triangular system, which, for a very simple
bivariate case, is:

yt = νxt + u1t (−γ ), (10.5)

xt = u2t (−δ), (10.6)

for t = 0,±1, . . . , where, for any vector or scalar sequence wt and any c, we intro-

duce the notation wt (c) = �
cw#

t . ut = (u1t , u2t )
′ is a bivariate zero mean covariance

stationary I(0) unobservable process and ν �= 0, γ < δ. The truncation in (10.6)
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ensures that xt has finite variance, and implies that xt = 0, t ≤ 0. This restriction
is unnecessary if γ < 1/2 because, in that case, yt − νxt is covariance stationary
without it and “asymptotically covariance stationary” with it, but it is imposed
for the sake of a uniform treatment, implying that yt = 0, t ≤ 0. Under (10.5)–
(10.6), xt is I(δ), as is yt by construction, while the cointegrating error yt − νxt is
I(γ ). Model (10.5)–(10.6) reduces to the bivariate version of Phillips’ triangular form
when γ = 0 and δ = 1, which is one of the most popular models displaying CI(1, 1)
cointegration considered in both the empirical and theoretical literatures. This
model allows greater flexibility in representing equilibrium relationships between
economic variables than the traditional CI(1, 1) prescription. On the one hand, it
is plausible that there exists long-run co-movements between non-stationary series
which are not precisely I(1). On the other hand, there is usually no a priori rea-
son for restricting analysis to just I(0) cointegrating errors, as the convergence to
equilibrium of any cointegrating relation could be much slower than the adjust-
ment implied by, for example, a finite ARMA cointegrating error. Furthermore,
we could also consider cointegration among (asymptotically) stationary variables,
with some linear combinations producing cointegrating errors characterized by
having weaker memory than that of the observed series. Also, it could be that the
cointegrating error is purely non-stationary but mean-reverting, so that a certain
long-run equilibrium among non-mean-reverting observables holds.8

There are various directions in which model (10.5)–(10.6) has been generalized.
Robinson and Iacone (2005), still within a bivariate framework, allow for deter-
ministic components, extending (10.5)–(10.6) to:

yt = νxt +
p1∑
j=1

μ1jt
φ1j−1/2 + u1t (−γ ), (10.7)

xt =
p2∑
j=1

μ2jt
φ2j−1/2 + u2t (−δ), (10.8)

where δ > max(γ , 0.5), and the φij are real numbers satisfying φ11 > · · · > φ1p1
> 0;

φ21 > · · · > φ2p2
> 0, noting that an intercept appears in (10.7)–(10.8) when

φ1j = φ2j = 1/2, while integer powers are also possible.
Kim and Phillips (2002) proposed a multivariate version of (10.5)–(10.6), employ-

ing the Type I definition of fractionally integrated processes instead, so that:

ỹt = νx̃t + v(γ )

1t , t ≥ 1, (10.9)

x̃t = v(δ)
21 + · · · + v(δ)

2t , t ≥ 1, (10.10)

where v(γ )

1t and v(δ)
2t are jointly stationary Type I fractionally integrated processes

of orders γ and δ − 1, respectively, with |γ | < 0.5, 0.5 < δ < 1.5, ỹt and x̃t are p× 1
and q× 1 vectors, respectively, and ν is a p× q matrix of cointegrating parameters.

Note that, when p = q = 1 and γ = 0, δ = 1,
(
v(γ )

1t , v(δ)
2t

)′ ≡ (
u1t , u2t

)′
implies that(

x̃t , ỹt
)′ = (

xt , yt
)′, but more generally this is not the case. Model (10.9)–(10.10) is
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also a particular case of the fractional setting proposed by Jeganathan (1999, 2001).
This multivariate modelization is a straightforward generalization of the bivariate
setting, given that the time series involved still depend on two integration orders, γ
and δ. A richer structure is proposed by Hualde and Robinson (2006), who consider
the model:

!zt = �
−1

(δ) u#
t , (10.11)

where δ =
(
δ1, . . . , δp

)′
, zt is a p × 1 vector observable process, �(δ) =

diag
(
�

δ1 , . . . ,�δp
)

and ut is a p × 1 zero mean covariance stationary unobserv-

able process. The presence of the various integration orders in δ poses additional
difficulties and, unless δ and ! are restricted, (10.11) does not ensure cointegration
and identification. Hualde and Robinson (2006) impose restrictions (simplifying
matters substantially in an already complicated setting) which ensure identifiabil-

ity and imply that zt is I
(
δp

)
(δp is assumed to be the largest fractional order among

those in δ). The restrictions also imply that there are r cointegrating relations
among the elements of zt , and allow the integration orders of the r cointegrating
errors to vary, unlike in previous models of multivariate fractional cointegration.
In a different setting, Chen and Hurvich (2003a) model a q×1 time series, zt , such
that its (p − 1)th difference (where p is an integer), yt , is a covariance stationary
process with common memory parameter d ∈ (−p+ 0.5, 0.5

)
. They assume that yt

has the common-components representation:

yt = Axt + But , (10.12)

where, for 1 ≤ r ≤ q − 1, A, B are q × (
q − r

)
and q × r unknown deterministic

matrices of ranks q − r and r, respectively, and xt , ut , are
(
q − r

) × 1 and r × 1,
unknown unobserved processes with memories d and du, respectively, where du ∈(−p+ 0.5, 0.5

)
< d. Basically, these conditions imply that yt is cointegrated, with

cointegrating space identified by the null space of A′ (Ker(A′)), noting that, if α ∈
Ker(A′), then α

′yt = α
′But , which has at most memory du. Chen and Hurvich

(2006) further enrich this setting by means of a common components model in
which the components have different memory parameters, while still allowing the
q×1 vector of observed series to have just one common memory parameter. Thus,
using notation similar to Chen and Hurvich (2003a), they set:

yt = A0u(0)
t + A1u(1)

t + · · · + Asu
(s)
t , (10.13)

where, for k = 1, . . . , s, the Ak are q × ak unknown deterministic matrices with

a0 = q − r,
∑s

j=1 aj = r, the u(k)t are ak × 1 unobservable processes with memory
dk, such that −p + 0.5 < ds < · · · < d0 < 0.5, and all rows of A0 are non-zero.
This setting ensures that all the components in yt have common memory d0, the
cointegrating rank is r, such that 1 ≤ r < q, and there are s cointegrating sub-
spaces, with 1 ≤ s ≤ r. In this framework, Chen and Hurvich (2006) define s
different cointegrating sub-spaces Bk, k = 1, . . . , s, with the main characteristic
being that, if β ∈ Bk,β ′Al = 0, l = 0, . . . , k − 1, and β

′Ak �= 0.
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Finally, Johansen (2008) proposes a new vector autoregressive model:

�
dzt = αβ

′
�

d−bLbzt +
k∑

i=1

�i�
dLi

bzt + εt , (10.14)

where Lb = 1−�
b is a particularly useful lag operator with 0 < b ≤ d. Here, if there is

a unit root in an associated characteristic polynomial, (10.14) generates a fractional
process zt of order d, for which the r × 1 vector β

′zt is fractional of order d − b.

10.3.2 Estimation methods for fractional cointegration

Depending on the cointegrating model considered, different estimation techniques
have been proposed. For simplicity, we deal initially with the estimation of ν in
the bivariate system (10.5)–(10.6), although the estimation methods below can be
straightforwardly generalized to cover multivariate situations where the observables
and cointegrating errors still depend on two integration orders, δ and γ , respectively.

The most obvious proposal is to estimate ν in (10.5)–(10.6) by the ordinary least
squares (OLS) estimator:

ν̂OLS =

n∑
t=1

xtyt

n∑
t=1

x2
t

. (10.15)

Here, in the standard cointegrating setting, with γ = 0 and δ = 1, it has been shown
(see, for example, Phillips and Durlauf, 1986) that ν̂OLS is n-consistent with non-
standard asymptotic distribution, in general. In fractional settings, the properties
of OLS could be very different from those in this standard framework. For example,
Robinson (1994b) showed the inconsistency of ν̂OLS when δ < 0.5, which has been
termed stationary cointegration (with special importance in finance, see section
10.3.3).9 When the observables are purely non-stationary (so that δ ≥ 0.5), consis-
tency of ν̂OLS is retained, but its rate of convergence and asymptotic distribution
depends crucially on γ and δ. In particular, Robinson and Marinucci (2001) showed,
for a model slightly more general than (10.5)–(10.6), that if δ ≥ 0.5, γ ≥ 0, the rate

of convergence of OLS is nmin(2δ−1,δ−γ ), except when γ > 0 and γ + δ = 1, where
OLS is nδ−γ

/log n-consistent. In all these cases OLS has non-standard limiting distri-
butions in general. An alternative method of estimating ν was developed from the
following observation. Equation (10.15) is obviously a time-domain representation
of the estimate, but it can easily be shown that:

ν̂OLS =

n−1∑
j=0

Ixy

(
λj

)
n−1∑
j=0

Ix
(
λj

) , (10.16)

where λj = 2π j/n, j = 1, . . . , n, are the Fourier frequencies, and for arbitrary
sequences ξt , ζt , (possibly the same as ξt ), we define the discrete Fourier transform
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and (cross-) periodogram:

wξ (λ) = 1√
2πn

n∑
t=1

ξt e
itλ, Iξζ (λ) = wξ (λ)w′ζ (−λ) , Iξ (λ) = Iξξ (λ) .

Here, the discrete Fourier transform at a given frequency captures the components
of the series related to this particular frequency. Thus, noting that cointegration
is a long-run phenomenon, when estimating ν one could concentrate just on low
frequencies, which are precisely those representing the long-run components of
the series, hence neglecting information from high frequencies, associated with the
short run, which could have a distorting effect on estimation. Robinson (1994b)
proposed the narrow band least squares (NBLS) estimator, which is related to the
band estimator proposed by Hannan (1963), and is given by:

ν̂NBLS =

m∑
j=0

sjRe Ixy

(
λj

)
m∑

j=0
sjIx

(
λj

) , (10.17)

where 1 ≤ m ≤ n/2, sj = 1 for j = 0, n/2, sj = 2 otherwise, and (1/m) + (m/n) →
0 as n → ∞. Robinson (1994b) showed the consistency of this estimator under
stationary cointegration, using the fact that focusing on a degenerating band of
low frequencies reduces the bias due to the contemporaneous correlation between
u1t and u2t , which was precisely the reason why OLS was inconsistent. For the case
δ < 0.5, γ ≥ 0, Robinson and Marinucci (2003) conjectured the rate of convergence
to be (n/m)

δ−γ and, later, in a similar framework, Christensen and Nielsen (2006)
showed that the better rate of convergence m1/2

(n/m)
δ−γ (and, in fact, asymptotic

normality) was achievable if the coherency at frequency zero between u1t and u2t
was zero, a restriction that is not satisfied in general by standard weak dependent
processes (like, for example, ARMA processes).

In the non-stationary setting, Robinson and Marinucci (2001) showed that, if
δ+γ < 1 or δ+γ = 1 with γ > 0, the rates of convergence previously given for OLS

can be improved, being now mδ+γ−1nδ−γ if δ + γ < 1 and nδ−γ
/log m if δ + γ = 1

with γ > 0. As with OLS, NBLS has a non-standard limiting distribution in general.
With the aim of obtaining estimates of ν having improved asymptotic properties

(optimal rate of convergence, median unbiasedness, asymptotic mixed-normality
leading to standard inference procedures), more developed techniques to estimate
ν have been proposed in the fractional setting. These are related to the work
of Johansen (1988, 1991), Phillips and Hansen (1990), Phillips (1991a, 1991b),
Phillips and Loretan (1991), Saikkonen (1991), Park (1992) and Stock and Watson
(1993), who all proposed estimators with optimal asymptotic properties (under
Gaussianity) in the standard cointegrating setting with γ = 0, δ = 1. However,
in all these estimators knowledge of γ , δ, was assumed (usually after pretesting),
and in fractional circumstances this is hard to justify. Dolado and Marmol (1996)
proposed an extension to the fractional setting of the fully modified (FM)-OLS
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estimator of Phillips and Hansen (1990), assuming knowledge of γ and δ. Kim
and Phillips (2002) considered an alternative extension to FM-OLS, and analyzed
its relationship to Gaussian ML estimation in (10.9)–(10.10), assuming parametric

autocorrelation in
(
v(γ )

1t , v(δ)
2t

)′
. Jeganathan (1999, 2001) considered ML estimation

of (10.9)–(10.10) assuming knowledge of the distribution of the innovations and
also of γ and δ, although he did include some discussion of their estimation (as
also did Kim and Phillips, 2002).

In model (10.5)–(10.6), and assuming the bivariate process ut has a parametric
spectral density f (λ) = f (λ; θ), where θ is an unknown vector of short memory
parameters, Robinson and Hualde (2003), based on generalized least squares (GLS)
type corrections, propose time and frequency domain methods to estimate opti-
mally (under Gaussianity) ν when δ − γ > 0.5 (denoted strong cointegration). For
simplicity, we just present the frequency domain approach, which is asymptoti-
cally equivalent (to first-order properties) to that of the time domain, and which
will be applied to empirical data in section 10.4. Denoting:

zt (c, d) = (yt (c), xt (d))
′, ζ = (1, 0)′, p(λ; h) = ζ

′f (λ; h)−1,

a(c, d, h) =
n∑

j=1

p(λj; h)wx(c)(−λj)wz(c,d)(λj), q(λ; h) = ζ
′f (λ; h)−1

ζ ,

b(c, d) =
n∑

j=1

q(λj; h)Ix(c)(λj),

and defining:

ν̂
(
c, d, h

) = a
(
c, d, h

)
b
(
c, h

) ,

they considered five different estimators, given by:

ν̂(γ , δ, θ), ν̂(γ , δ, θ̂ ), ν̂(γ , δ̂, θ̂ ), ν̂(γ̂ , δ, θ̂ ), ν̂(γ̂ , δ̂, θ̂ ), (10.18)

where γ̂ , δ̂, θ̂ are corresponding estimators of the nuisance parameters γ , δ, θ . The
estimators in (10.18) reflect different knowledge about the structure of the model,
the first being in general infeasible, the second assuming just knowledge of the
integration orders (as was done previously in the standard cointegrating literature),
whereas the last estimator represents the most realistic situation. Under regularity
conditions,10 Robinson and Hualde (2003) showed that any of the estimators in
(10.18) is nδ−γ -consistent with identical mixed-Gaussian asymptotic distributions,
leading to Wald tests on the parameter ν:

W(γ , δ, θ), W(γ , δ, θ̂ ), W(γ , δ̂, θ̂ ), W(γ̂ , δ, θ̂ ), W(γ̂ , δ̂, θ̂ ), (10.19)

where W(c, d, h) = b(c, h){ν̂(c, d, h)− 1}2, with a chi-squared limit.
Hualde and Robinson (2007) propose an estimator of ν in (10.5)–(10.6) under

the more adverse situation δ− γ < 0.5 (denoted weak cointegration). Assuming ut
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is generated by a vector autoregressive (VAR) process:

ut =
p∑

j=1

Bjut−j + εt ,

and defining:

Zt
(
c, d

) = (
xt (c) , xt

(
d
)
, w′t−1

(
c, d

)
, . . . , w′t−p

(
c, d

))′
,

where wt
(
c, d

) = (
xt (c) , xt

(
d
)
, yt (c)

)′, they analyzed the behavior of the estima-
tors ν̂(γ , δ), ν̂(γ̂ , δ̂), where γ̂ , δ̂ are corresponding estimators of γ , δ, and ν̂

(
c, d

) =
i′1G

(
c, d

)−1 g
(
c, d

)
. Here, i1 = (1, 0, . . . , 0)′:

G
(
c, d

) = Q
1
n

n∑
t=p+1

Zt
(
c, d

)
Z′t
(
c, d

)
Q ′, g

(
c, d

) = Q
1
n

n∑
t=p+1

Zt
(
c, d

)
yt (c),

where Q caters for the possibility of prior zero restrictions on the Bj’s. As in
Robinson and Hualde (2003), this method is based on a GLS-type of correction.
Hualde and Robinson (2007) showed that both estimators are

√
n-consistent and

asymptotically normal, but with different asymptotic variance, which in the case
of ν̂(γ̂ , δ̂) depends on how γ , δ, are estimated. Here, it is important to note that, in
order to get a

√
n-consistent ν̂(γ̂ , δ̂), it is essential that γ , δ, are

√
n-consistently esti-

mated, and Hualde and Robinson (2007) proposed a feasible method of estimation
for the case where Bj is upper-triangular for all j = 1, . . . , p.

Robinson and Iacone (2005) consider the data-generating process (10.7)–(10.8),
and deal with estimation of ν and of those elements in μ1j, j = 1, . . . , p1, μ2j,
j = 1, . . . , p2, whose associated deterministic trends are not dominated (in the pre-
cise way defined in Robinson and Iacone, 2005) by stochastic components. They
consider three different estimators of the parameters of interest. First, they ana-
lyze the properties of (10.16), concluding that when the deterministic term in
(10.7) dominates the stochastic and deterministic components in xt , ν̂OLS is not
even consistent. Otherwise, consistency is retained, and the authors offer a very
detailed analysis of the different possibilities involved. The second scenario refers
to estimating by OLS ν and μ1 in (10.7), where μ1 collects the μ1j’s associated with
the deterministic terms not dominated by u1t (−γ ) (which are the only ones which
could be consistently estimated). Here, due to the accounting of the deterministic
components, the estimate of ν is always consistent, with asymptotic properties very
dependent on

(
γ , δ,φ2∀

)
, where φ2∀ is the maximum value of those φ2j’s for which

μ2j �= 0. Finally, they also consider GLS estimation, taking into account the deter-
ministic terms in (10.7)–(10.8), thus extending the time and frequency domain
estimators of Robinson and Hualde (2003), also for δ − γ > 0.5. Under identi-
cal regularity conditions, when δ > φ2∀, the estimate of ν has identical asymptotic
properties to that of Robinson and Hualde (2003); when δ = φ2∀, the rate of conver-
gence remains the same, but the limiting distribution changes, whereas if δ < φ2∀,
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a higher rate of convergence is achieved and the limiting distribution is normal,
which is natural given that now the deterministic component in xt is dominant.11

In the multivariate setting (10.11), by considering the spectral density of ut to
be a nonparametric function, Hualde and Robinson (2006) propose an extension
of the estimators of Robinson and Hualde (2003), allowing for the simultaneous
presence of strong and weak cointegrating relations. Because of the generality of the
framework, the representation of the estimators and asymptotic results are rather
involved but, essentially, the same properties as in Robinson and Hualde (2003) are
achieved by the estimators of the cointegrating parameters in strong cointegrating
relations, whereas the estimators of parameters in weak cointegrating relations are
asymptotically normal, but with a slower rate of convergence than the parametric

one (
√

n) given by m1/2
(n/m)

δp−γ , where δp, γ denote the common integration
order of the observables and that of the cointegrating error of the particular weak
cointegrating relation, respectively. This result leads to Wald statistics for testing
linear restrictions among the elements of ! in (10.11) having a standard null chi-
squared limit distribution, irrespective of the type of cointegrating relations present
in the model.

In the different setting of Chen and Hurvich (2003a), whose focus is on estimat-
ing the space of cointegration and not cointegrating regressions, then, on assuming
the cointegrating rank is r, this space is estimated by the eigenvectors correspond-
ing to the r smallest eigenvalues of the averaged tapered periodogram matrix of yt .
The intuition behind this result is the following. Noting (10.12):

m∑
j=1

Re Iy
(
λj

)
= A

m∑
j=1

Re Ix
(
λj

)
A′ + A

m∑
j=1

Re Ixu

(
λj

)
B′ + B

m∑
j=1

Re Iux

(
λj

)
A′

+ B
m∑

j=1

Re Iu
(
λj

)
B′.

Given that d > du, the right-hand side of the above equation is dominated by the
first term, and setting conditions ensuring that

∑m
j=1 ReIx(λj) is positive definite

with probability approaching one (basically meaning that there is no cointegra-
tion among the elements of xt ), then, with probability approaching one, the
cointegrating space (Ker(A′)) is the space of eigenvectors of A

∑m
j=1 ReIx(λj)A

′, with
corresponding eigenvalues equal to zero. Finally, Chen and Hurvich (2006), in
the more general setting (10.13), estimate separately each cointegrating sub-space
using appropriate sets of eigenvectors of an averaged periodogram matrix of tapered
observations.

10.3.3 Evidence of fractional cointegration

Since the early 1990s fractional cointegration has attracted the attention of many
empirical researchers working in different fields. We detail below some of the most
relevant applications.
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10.3.3.1 Applications to exchange rates

The initial applications of the concept of fractional cointegration were devoted to
analyzing PPP. This refers to the tendency for nominal exchange rates and prices
to adjust in such a way that the real exchange rate reverts (perhaps slowly) to its
parity value. Thus the (log) real exchange rate could be viewed as the cointegrat-
ing error in a linear combination of (log) nominal exchange rates and (log) prices
with cointegrating vector (1,−1)′. Here the literature mainly provided evidence of
weak fractional cointegration (δ − γ < 0.5), with (approximately) unit root observ-
ables with non-stationary but mean-reverting cointegrating errors, as presented by
Diebold, Husted and Rush (1991). Although the authors approximated the log of
the real exchange rate in a particular way, and not as the difference of the logs of
the nominal exchange rate and prices, their empirical analysis, taking into account
that the (log) nominal exchange rate is I(1) (see, for example, Baillie and Boller-
slev, 1994a, 1994b), reported some cases where the estimated memory of the real
exchange rates (for example, France–Germany, Germany–UK) were non-stationary
mean-reverting, while for others there was evidence of stationary long memory. In
a similar framework, Cheung and Lai (1993) proposed checking the PPP hypoth-
esis via a regression of a foreign price index, converted to domestic (US) currency
units, on a domestic price index, with the errors of this relation capturing devi-
ations from PPP. While they provided evidence of the unit root character of the
observables, they stated that PPP will be characterized by stationarity, or at least
mean reversion, in the cointegrating error. They estimated the degree of memory
of the cointegrating error for different countries and bandwidths and, in 11 out of
15 cases, these estimates were suggestive of δ − γ < 0.5 instead of δ − γ > 0.5.

In a similar setting to Diebold, Husted and Rush (1991), Crato and Rothman
(1994b) provided estimates of the (log) real bilateral sterling exchange rates for
different countries. Of the nine countries analyzed, for only two of them (Nether-
lands and Italy) was there very clear evidence that δ−γ < 0.5, whereas for another
two (Canada and Sweden) there were conflicting results.

Chou and Shih (1997) investigated long-run PPP in the relationship of four Asian
countries (Hong Kong, Singapore, South Korea and Taiwan) with the US dollar in an
unrestricted trivariate model (involving the logs of the nominal exchange rate and
domestic and foreign price levels), allowing for a linear trend and using quarterly
data from 1965 to 1992. Using the Geweke and Porter-Hudak (1983) (GPH) test
for fractional cointegration (that is, estimating the memory of the cointegrating
error by the GPH estimate applied to the cointegrating regression residuals and
testing whether this memory is significantly smaller than the integration order of
the observables, assumed to be one in this case), they found some evidence of
fractional cointegration, with δ − γ > 0.5 for the South Korea–US relationship.

Choudhry (1999a) investigated PPP between the US and four high-inflation East-
ern European countries (Poland, Romania, Russia and Slovenia), using monthly
data from 1991 to 1997. The author estimated a regression model of the log of the
nominal exchange rate on the log ratio of domestic to foreign prices, the absolute
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version of PPP being characterized by a slope equal to 1, while evidence of frac-
tional cointegration implies a weaker (relative) version of PPP. Using the GPH test,
Choudhry provided evidence of relative PPP for Russia and Slovenia (with unit root
observables and estimates of the integration order of the cointegrating error close
to 0 and 0.5, respectively), but failed to find evidence for absolute PPP.

In a different setting, Baillie and Bollerslev (1994a) argued whether seven spot
exchange rates appear to be tied together in the long run or not, taking into account
that there does not seem to be much discussion in the literature about the unit root
character of these series, which makes much more fragile the idea that they are
cointegrated (see, for example, Sephton and Larsen, 1991; Diebold, Gardeazabal
and Yilmaz, 1994). Baillie and Bollerslev’s (1994a) explanation was that unit root
tests, which serve traditionally to detect the presence of unit roots, have very low
power against fractional alternatives, so that a situation of fractional cointegration
with long memory cointegrating error could be hidden. In fact, their estimate of the
memory of the cointegrating error was 0.89, over five standard errors away from 1,
thus providing evidence of fractional cointegration with δ−γ < 0.5. Similarly, Pan
and Liu (1999), using the same nominal exchange rate data as Baillie and Bollerslev
(1994a), analyzed the presence of cointegration in different sub-samples by means
of the GPH test. Interestingly, they only found evidence of fractional cointegration
(with δ − γ < 0.5) for the 1980–84 sample, whereas standard cointegration was
found for the most recent period 1985–92, supporting the conjecture that the
fractional cointegration feature could vary across different time spans.12

Another important topic in the literature of exchange rates is the analysis of
the forward premium, ft − st , where st and ft are logs of the spot exchange rate
and of the forward rate respectively. Here, noting the “overwhelming” evidence of
unit roots in spot exchange rates, the difference ft − st could be considered as a
cointegrating error with cointegrating vector (1,−1)′. Baillie and Bollerslev (1994b)
claimed that unit root tests generally reject that the forward premium is I(0), which
is paradoxical as, given that the forward premium is associated with risk, it seems
hard to see any theoretical reason for an I(1) risk premium. The purpose of their
paper was to show that the forward premium is indeed mean-reverting, the esti-
mates of the memory of the forward premium for Canada, Germany and UK (with
respect to US) being 0.45, 0.77 and 0.55 respectively, suggesting stronger evidence
in favor of weak cointegration relations.

Choudhry (1999b) analyzed, by means of the GPH test, nine forward premi-
ums (with respect to US), showing evidence of (weak) cointegration for three of
them (Canada, Hong Kong and Italy). He also tested the unbiased forward rate
hypothesis (in short, that the forward exchange rate is an unbiased predictor of
the corresponding future spot rate), which was examined by analyzing the exis-
tence of fractional cointegration in a regression of st+k on ft (although two other
alternative specifications were also considered), and testing for a unit slope, which
ensures that the forward rate is an unbiased predictor of the future spot rate. Evi-
dence of cointegration was found but not of the unbiasedness hypothesis (with the
exception of South Africa).
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Still concerning the forward premium, much effort has also been devoted to
explanations of the so-called “forward premium anomaly.” This refers to surprising
negative estimates from regressions of the change in the log of the spot exchange
rate on the forward premium, where theory predicts a value of 1 for that slope
(see, for example, Bekaert, 1996; Bekaert, Hodrick and Marshall, 1997). Baillie and
Bollerslev (2000) consider this issue to be a statistical problem caused by the dif-
ferent integration orders of the dependent variable and regressor in the equation
mentioned above. They indicate that the spot exchange rate is approximately a unit
root, whereas there seems to be evidence in favor of a mean-reverting (but non-
stationary) forward premium. Under these circumstances, Maynard and Phillips
(2001) showed that the slope coefficient of such a regression (with a short memory
dependent variable and a non-stationary but mean-reverting regressor) converges
in probability to zero, the long left tail of the asymptotic distribution of this estima-
tor giving further support to the puzzling negative values obtained in the literature.
Baillie, Han and Koul (2002) provided further evidence regarding the imbalance
of the forward premium regression equation with high-frequency data, so that
the forward premium anomaly seems to be an intrinsic property of exchange rates,
and they conjectured that the phenomenon is not due to regime shifts or structural
breaks.

Finally, there is a more recent literature trying to explain, by means of fractional
cointegration, the connection between exchange rates and fundamentals. Caporale
and Gil-Alana (2004a) examined the issue of whether real exchange rates were
cointegrated with real interest rates and labor productivity differentials in the DM–
US$, Yen–US$ relations using quarterly data (1975–98). They provided evidence of
unit roots in the observables and also, by estimating parametrically the memory
of the cointegrating error from cointegrating residuals, conjectured the existence
of fractional cointegration, with the estimated integration order of the residuals
fluctuating between 0 and 0.5 in the case of Germany and between 0.1 and 0.6 in
the case of Japan.

Dufrénot et al. (2006) explored the real exchange rate misalignments of five Euro-
pean countries during the period 1979–99. They posited an equilibrium relation
between real exchange rates and macroeconomic fundamentals (terms of trade,
prices, foreign assets, fiscal wedge, interest rate differential), with each variable
representing the value in a particular country related to a weighted average of the
same variable for other countries. They estimated the memory of the cointegrating
residuals by means of the modified R/S statistic of Lo (1991), the GPH estimator
and the exact ML estimator of Sowell (1992a). In view of their results, there seems
to be strong evidence of fractional cointegration for the Netherlands, with mixed
evidence for France and the UK.

10.3.3.2 Applications to financial series

Within this area of research, the main focus has been the study of the volatil-
ity of financial series, providing evidence of long memory covariance stationary
observables with weakly dependent cointegrating errors. The first explicit reference
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to this type of cointegration, denoted stationary cointegration, appears in Robin-
son (1994b). Robinson and Marinucci (2003) investigated further this situation,
indicating that the phenomenon of cointegration between stationary variables
had recently emerged in finance, and emphasizing the difficulty of distinguish-
ing between a unit root process and a stationary long memory process with an
autoregressive part having a root near the unit circle.

Andersen et al. (2001) examined “realized” daily equity return volatilities and
correlations obtained from high-frequency transaction prices on individual stocks
in the Dow Jones Industrial Average. They provided evidence of long memory
for certain time series of logarithmic standard deviations and correlations, and
stressed the evidence of comovements in volatility across assets. Christensen and
Nielsen (2006) make a similar point and argue for the existence of stationary
cointegration between the volatility implied in option prices and the subsequent
realized return volatility of the underlying asset, since, in their view, the observ-
ables (log-volatilities) were integrated of order between 0.35 and 0.40, whereas the
cointegrating error seemed weakly dependent. By using an NBLS estimator, they
obtained a much higher value for the estimate of the slope of their cointegration
relation than that obtained in similar work by Christensen and Prabhala (1998),
who used OLS, which, as shown by Robinson (1994b), is inconsistent in the case
of stationary cointegration.

Brunetti and Gilbert (2000) proposed a bivariate cointegrated fractional volatility
(FIGARCH) model, and applied it to the volatility (measured in terms of squared
and absolute returns) of the New York NYMEX and London IPE crude oil markets.
They concluded that both processes were highly persistent, with a common degree
of fractional integration (around 0.4), and were fractionally cointegrated. Using
similar series, Robinson and Yajima (2002) analyzed stationary cointegration in the
context of testing for cointegration rank, finding support for this type of behavior
in spot closing prices of crude oil.

Beltratti and Morana (2006) also provided evidence of fractional cointegra-
tion in stock market volatility. They analyzed the relationship between S&P 500
returns volatility and that of some macroeconomic variables over 1970–2001 using
monthly data and allowing for both long memory and structural breaks. They
found evidence of long memory and structural change in the volatility, the break
possibly being related to break processes in the volatility of the macroeconomic
factors, and carried out a fractional cointegration analysis on break-free processes.
They found a common memory parameter of 0.25 for the series and concluded in
favor of the existence of three cointegrating relations among the variables using
the cointegrating test of Robinson and Yajima (2002).

Finally, Caporale and Gil-Alana (2004b) tested the present value model by check-
ing for cointegration between stock prices and dividends using annual data for the
period 1871–1995 (updating the series employed by Campbell and Shiller, 1987).
They provided evidence of the unit root nature of these series and, by applying
Robinson’s (1994a) test to OLS residuals, concluded that the series were fraction-
ally cointegrated with long memory cointegrating error and mixed evidence about
the type of cointegrating relation (weak or strong) which characterizes the data.
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10.3.3.3 Applications to interest rates

This has not been a very popular application of fractional cointegration, but we
can mention at least two relevant works. First, Dueker and Startz (1998) proposed
an ARFIMA model and discussed its estimation, the main feature being to provide
joint estimates of the common integration order of the observables and cointegrat-
ing error. They illustrated their method by analyzing the relation between US and
Canadian bond rates (using monthly data for 1987–97). The authors suggested that
it is not desirable to rely on an assumed value for the order of integration of the
observables (usually one), as traditionally was done in previous empirical analyses
related to fractional cointegration. They provided evidence of fractional cointegra-
tion, their estimates of the memory of the observables and the cointegrating error
being 0.674 and 0.200, respectively, which could be evidence in favor of a weak
cointegration relation.

In a different setting, Barkoulas, Baum and Oguz (1996) analyzed cointegration
among long-term interest rates from five countries (the US, Canada, Germany,
the UK and Japan) using monthly data for the period 1967–90. They justified the
unit root condition of the series and examined the possibility of cointegration by
means of the GPH test applied to different sub-systems of observables, concluding
in favor of the existence of strong co-movements between Canadian and US interest
rates.

10.3.3.4 Applications to electricity prices

This is probably the most recent (and one of the most promising) application of
fractional integration and cointegration techniques. Haldrup and Nielsen (2006)
mention the possibility of cointegration in a regime-switching model which allows
for fractional cointegration in each of the regime states. They analyzed hourly
spot electricity prices (January 2000–October 2003) for the Nord Pool area (Mid
Norway, South Norway, West Denmark, East Denmark, Sweden and Finland). Two
different regimes are allowed, congestion (where prices differ across areas) and non-
congestion (where prices are identical for every area). Two main conclusions can
be drawn from their results. First, the memory properties of the individual series
seem to differ substantially across regimes (although, in all cases, series appear
to be stationary). Second, the use of a non-switching model could lead to wrong
conclusions regarding the cointegration of the series (which are analyzed in pairs),
which could be driven by the extreme type of cointegration which characterizes
the data when the series are in a non-congestion state.

10.3.3.5 Applications to political studies

There are different political issues which have been analyzed in recent times by frac-
tional integration and cointegration techniques. As Robinson (1978) and Granger
(1980) demonstrated, fractional integration could originate from aggregation of
data which exhibits heterogeneous dynamic behavior at the individual level. This
has an important appeal for political data, where series are obtained by aggre-
gating the opinions of possibly very heterogeneous individuals. The first topic
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where fractional cointegration has attracted attention is the analysis of the link-
age between political opinions and economic indicators. Box-Steffensmeier and
Tomlinson (2000) analyzed the relation between congressional approval and eco-
nomic expectations in the US, using quarterly data from 1974 to 1993. They
estimated parametrically the integration orders of both series (0.72 and 0.86
respectively), computed by OLS the relationship between them, and estimated
parametrically the memory of the cointegrating error (0.40). They considered their
results to be inconclusive about the existence of cointegration because of large
standard errors.

Similarly, Davidson (2003), using quarterly data from 1955 to 1996, examined
the relation between political opinion (measured as the end-of-quarter difference
between support for the governing party and that for the opposition) and economic
indicators in the UK by means of bootstrap methods. The author provides support
for the non-stationary, but mean-reverting, nature of the political opinion variable,
concluding that there is little or no evidence of linkages between political and
economic cycles.

Another interesting issue is the relationship between governing party and prime
ministerial support. In principle, it seems plausible that both variables are co-
integrated, and different studies have provided support for this conjecture. Clarke
and Lebo (2003), using monthly data from 1979 to 1996, linked governing party
support, prime ministerial approval and four subjective economic evaluations.
Using different methods, the authors concluded that the series are non-stationary
but mean-reverting, suggesting the possibility of cointegration between govern-
ing party support and prime ministerial approval. Additionally, they found that,
whereas personal economic evaluations were influential, national ones are not sig-
nificant. Similarly, Davidson, Peel and Byers (2006) proposed two variants of a
fractionally integrated vector error correction model and applied them to the rela-
tionship between the respective performances of prime minister and government
in the UK. Evidence of cointegration was provided.

Finally, a different issue was addressed by Lebo and Moore (2003), who analyzed
an action–reaction model of foreign policy behavior for different pairs of countries,
including Egypt–Israel and US–Russia. They provided strong evidence that those
foreign policy series are fractionally integrated (mainly stationary and in all cases
mean-reverting), and suggested the possibility of cointegration in the Egypt–Israel
relation during the period 1948–76.

10.4 The empirical investigation: the PPP hypothesis

Numerous empirical studies have cast significant doubt on the PPP hypothesis
with respect to the short run, but have yielded mixed evidence with respect to the
long run (see, for example, Corbae and Ouliaris, 1988; Enders, 1988; Kim, 1990;
Taylor, 1988). As mentioned earlier, Cheung and Lai (1993) proposed a fractional
version of the PPP specification, essentially (10.5)–(10.6) with xt representing the
domestic price index and yt the foreign price index, converted to domestic currency
units. The coefficient ν in (10.5) is unity according to the absolute or homogeneous
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version of PPP, so this is testable by the Wald statistic of (10.19). Using unit root
tests, Cheung and Lai (1993) failed to reject the hypothesis of δ = 1 and then, using
differenced OLS residuals, computed semiparametric log-periodogram estimates of
γ − 1 and tested the non-cointegration null hypothesis of δ − γ = 0 against the
alternative δ − γ > 0, using critical values computed by simulation. They found
evidence of cointegration in a number of bivariate series, but did not test ν = 1.
We employ a step-by-step approach, first testing whether the integration orders, δx
and δy , of xt and yt are the same, then testing for the presence of cointegration,
then testing for δ − γ > 0.5 and, finally, given that all these hurdles have been
crossed, testing ν = 1. In the first three steps we use semiparametric procedures (as
did Cheung and Lai, 1993; Marinucci and Robinson, 2001), while in the final step
we identify parametric models for the autocorrelation in ut and hence compute
estimates of ν and Wald statistics.

The semiparametric estimates of integration orders were all Robinson’s (1995b)
versions of log-periodogram estimates, but without trimming, using first differ-
ences and then adding back 1. We estimated δx and δy separately, and then tested

δx = δy(= δ) by an adaptation of Robinson and Yajima’s (2002) statistic T̂ab to log-

periodogram estimation, with their trimming sequence h(n) chosen as b−1/(5+2i)

for i = 1, . . . , 4, with b the bandwidth used in the estimation. Given δx = δy is not
rejected, we performed the Hausman test for no-cointegration of Marinucci and
Robinson (2001), comparing the estimate δ̃x of δx with the more efficient bivariate
one of Robinson (1995b), which uses the information that δx = δy . Given cointe-
gration is not rejected, the null δ − γ = 0.5 was rejected in favor of δ − γ > 0.5 if
and only if a studentized δ̃x− γ̃ −0.5 was significantly large relative to the standard
normal distribution, where γ̃ is the estimate of γ using OLS residuals.

Using annual data (as is relevant to the long-run version of PPP) of Obstfeld and
Taylor (2002) for the period 1870–1992 (with n = 123), we applied the above
methodology to four bivariate series, the US (“domestic”) versus the “foreign”
countries, Australia, Canada, Italy and the UK. Strong evidence against equality
of integration orders was found in the case of Australia and Italy, and against coin-
tegration in the case of Canada. However, the UK “passed” all three initial tests.
Across the range b = 10, . . . , 29, (δ̃x, δ̃y) varied between the extremes (1.341, 1.095)
and (1.572, 1.376), and across b = 16, . . . , 25 and the four h (n) choices, δx = δy was
rejected in only 9 out of 40 cases, and these were all at the 10% level. For the same
b, no-cointegration was rejected at the 10% level in all cases, at 5% in 4 cases, and
at 1% in 3 cases, while δ − γ = 0.5 was rejected against δ − γ > 0.5 at the 1% level
in all cases.

For the US–UK data, we identified parametric models for f (λ) as follows. We
consider:

ut = A(L)εt , (10.20)

where εt is considered to be an i.i.d. process. Throughout, A(L) in (10.20) was

diagonal, and u1t , u2t treated separately. They were proxied by �
γ̃
(yt − ν̂OLSxt ),

�
δ̃xxt , for each of the extreme γ̃ , δ̃x, namely γ̃ = 0.374, 0.698 and δ̃x = 1.572,
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1.341, and then Box-Jenkins-type procedures identified models within the ARMA
class. This resulted in AR(1) and ARMA(1,1) models for u1t and white noise and
ARMA(1,1) models for u2t , and we fitted all four combinations. We also fitted
bivariate versions of Bloomfield’s (1973) model, where:

A(s) = diag
{

exp
(∑p

j=1
θ1js

j
)

, exp
(∑p

j=1
θ2js

j
)}

,

for p = 1, 2, 3. For each model we applied the univariate Whittle procedure of
Velasco and Robinson (2000), using untapered, differenced data and adding back
1. We summarize the seven models and the resulting (δ̂, γ̂ ) as follows:

Model 1: u1t is AR(1) and u2t is white noise (δ̂, γ̂ ) = (1.612, 0.669)
Model 2: u1t is AR(1) and u2t is ARMA(1,1) (δ̂, γ̂ ) = (1.408, 0.669)
Model 3: u1t is ARMA(1,1) and u2t is white noise (δ̂, γ̂ ) = (1.612, 0.660)
Model 4: u1t is ARMA(1,1) and u2t is ARMA(1,1) (δ̂, γ̂ ) = (1.408, 0.660)
Model 5: ut is bivariate Bloomfield with p = 1 (δ̂, γ̂ ) = (1.214, 0.710)
Model 6: ut is bivariate Bloomfield with p = 2 (δ̂, γ̂ ) = (1.434, 0.701)
Model 7: ut is bivariate Bloomfield with p = 3 (δ̂, γ̂ ) = (1.323, 0.547)

The γ̂ seem very robust to the short memory specification, the δ̂ rather less so.
We also took the opportunity to examine a further question which, in one form
or another, always arises with applications of fractional models, and perhaps most
acutely when non-stationary data are involved. This is the matter of truncation.
When estimated innovations from a stationary fractional model are computed, the
(infinite) AR representation has to be truncated because the data begins at time “1,”
not at time “−∞.” Now, in our model (10.5)–(10.6) for non-stationary data, the
truncation is actually inherent in the model, so strictly speaking there is no “error”
associated with it. However, the model reflects the time when the data begin, and
if we were to drop the first observation, say, and start the model off at the second,
the degree of filtering applied to all subsequent observations would change, and
it is possible that this could have a marked effect, especially with non-stationary
data. Thus, in Table 10.1 we report computations of our estimates ν̂(γ̂ , δ̂, θ̂ ) = ν̄i
and Wald statistics:

b(γ̂ , θ̂ ){ν̂(γ̂ , δ̂, θ̂ )− 1}2 = Wi,

for models i = 1, . . . , 7, based on the last n′ = n− j observations, for j = 0, 1, . . . , 10,
in order to explore sensitivity to starting value. Substantial variation is evident
across the larger n′, with all ν̄i exceeding 1 and the homogeneity hypothesis being
strongly rejected when n′ = 123 across all seven models, but as n′ decreases, things
stabilize. For n′ ≤ 119 some sensitivity to the u2t specification was found, the
white-noise cases (Models 1 and 3) providing estimates of ν less than 0.9, whereas
for the other models they all exceed 0.9, with the largest values for Model 7. For
n′ ≤ 122 the homogeneity hypothesis ν = 1 is never rejected even at the 10% level.

From certain perspectives, practitioners could consider our empirical analysis
simplistic, as we do not take into account possible alternative features of our
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Table 10.1 PPP empirical example estimates of ν and Wald tests of ν = 1 for Models 1–7
computed from the last n′ = 113, . . . , 123 observations of US/UK

n′ 123 122 121 120 119 118 117 116 115 114 113
ν̄1 1.139 1.050 1.014 .952 .889 .875 .871 .867 .864 .875 .875
W1 26.23 .352 .017 .163 .759 .940 .986 1.035 1.082 .903 .890
ν̄2 1.294 .959 1.030 .995 .949 .941 .941 .938 .936 .944 .943
W2 117.3 .231 .078 .002 .159 .208 .206 .226 .243 .181 .182
ν̄3 1.113 1.084 1.017 .955 .889 .871 .866 .863 .859 .871 .868
W3 18.64 1.070 .027 .161 .823 1.079 1.138 1.196 1.251 1.051 1.059
ν̄4 1.290 .966 1.028 .997 .950 .939 .939 .936 .934 .942 .939
W4 122.6 .178 .078 .001 .170 .241 .240 .263 .281 .212 .227
ν̄5 1.274 1.042 1.025 .986 .940 .933 .932 .931 .929 .939 .936
W5 112.2 .225 .055 .014 .230 .283 .283 .296 .306 .223 .239
ν̄6 1.278 .960 1.015 .983 .939 .932 .931 .930 .927 .937 .935
W6 114.9 .211 .019 .020 .241 .292 .292 .306 .325 .246 .255
ν̄7 1.298 .999 1.048 1.024 .975 .961 .962 .956 .956 .963 .958
W7 116.9 .000 .279 .052 .047 .109 .105 .138 .136 .096 .122

data. In particular, we did not check for the possibility of structural breaks or
nonlinearities in our long time series. Admittedly, these are relevant issues, whose
linkages with fractional processes are mainly undiscovered, but which have already
attracted the attention of some researchers. For example, Granger (1999) showed
that structural break processes could produce “long memory” properties of the
data, while he suggested that, among nonlinear time series, there could be other
plausible alternatives to I(d) processes. Undoubtedly, a very rigorous and exhaus-
tive analysis of the PPP hypothesis should contemplate these issues but, at this
stage, our intention was simply to propose a sensible methodology incorporating
the techniques developed in the literature and which, at the same time, motivated
our testing problem appropriately.
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Notes

1. For the purpose of the present work we define an I(0) process as a covariance stationary
process with spectral density function that is positive and bounded at any frequency.
Alternatively, a time domain definition corresponds to a process where the infinite sum
of the autocovariances is finite.

2. The Type I definition of fractional integration has been used by Sowell (1990), Hurvich
and Ray (1995), Chan and Terrin (1995), Jeganathan (1999), Velasco (1999a, 1999b),
Marinucci (2000), Velasco and Robinson (2000) and others, whilst the Type II definition
has been used by Robinson and Marinucci (2001), Kim and Phillips (2002), Robinson
and Hualde (2003) and others.
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3. Excellent surveys can be found in Beran (1994), Baillie (1996), Doukhan, Oppenheim,
and Taqqu (2003) and Robinson (2003).

4. Much earlier, Hurst (1951) proposed the adjusted rescaled range, or R/S statistic. This spe-
cific estimator of d can be found in Mandelbrot and Wallis (1968) and its properties were
analyzed in Mandelbrot and Wallis (1969), Mandelbrot (1972, 1975) and Mandelbrot
and Taqqu (1979): see also Lo (1991) and Giraitis et al. (2003).

5. Multivariate methods of fractional integration (not involving cointegrating relation-
ships) have been examined by Gil-Alana (2003a, 2003b) and Nielsen (2004, 2005).

6. See also Hidalgo and Soulier (2004) and Hidalgo (2005) for recent developments in this
area.

7. The issue of fractional integration in the context of structural breaks has received
increasing attention in recent years. For a review, see Banerjee and Urga (2005).

8. Note that a normalization has been carried out in (10.5), the cointegration vector corre-
sponding to Engle and Granger’s (1987) definition being now (1,−ν)′. As demonstrated
by Phillips and Loretan (1991), (10.5)–(10.6) with γ = 0, δ = 1, represents “a typical
cointegrated system” in structural form. (10.5) could be regarded as a stochastic ver-
sion of the partial equilibrium yt − νxt , with u1t (−γ ) representing deviations from this
equilibrium. (10.6) is a reduced form equation.

9. He did not analyze exactly the model (10.5)–(10.6), but a similar one where yt and xt
were covariance stationary long memory processes.

10. These conditions refer to the smoothness of f and convergence rates of the estimates of
the nuisance parameters.

11. Chen and Hurvich (2003b) also propose estimators of the cointegrating parameter in a
system with deterministic trends, but their framework is much more specific than that
of Robinson and Iacone (2005), and their objective is different, because by means of
tapering and differentiating the data appropriately, they present a tapered NBLS which
is invariant with respect to deterministic polynomial trends in the series.

12. Kim and Phillips (2002) also provided a similar analysis to the one by Baillie and
Bollerslev (1994a), assuming also the memory of certain series of exchange rates to be
one.
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Discrete Choice Modeling
William Greene

Abstract
We detail the basic theory for models of discrete choice. This encompasses methods of estimation
and analysis of models with discrete dependent variables. Entry level theory is presented for the
practitioner. We then describe a few of the recent, frontier developments in theory and practice.
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11.1 Introduction

This chapter will survey models for outcomes that arise through measurement
of discrete consumer choices, such as whether to vote for a particular candidate,
whether to purchase a car, how to get to work, whether to purchase insurance,
where to shop, or whether to rent or buy a home or a car. Traditional economic
theory for consumer choice – focused on utility maximization over bundles of con-
tinuous commodities – is relatively quiet on the subject of discrete choice among a
set of specific alternatives. Econometric theory and applications, in contrast, con-
tain a vast array of analyzes of discrete outcomes; discrete choice modeling has
been one of the most fruitful areas of study in econometrics for several decades.
There is a useful commonality in much of this. One can build an overview of mod-
els for discrete outcomes on a platform of individual maximizing behavior. Given
that the literature is as vast as it is, and we have but a small number of pages within
which to package it, this seems like a useful approach. In what follows, we will sur-
vey some of the techniques used to analyze individual random utility maximizing
behavior.
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We emphasize that we have chosen to focus on models for discrete choice, rather
than models for discrete dependent variables. This provides us with several oppor-
tunities to focus and narrow this review. First, it allows us to limit the scope of
the survey to a reasonably manageable few types of models. As noted, the liter-
ature on this topic is vast. We will use this framework to select a few classes of
models that are used by analysts of individual choice. It also gives us license to
make a few major omissions that might otherwise fall under the umbrella of dis-
crete outcomes. One conspicuous case will be models for counts. Event counts are
obviously discrete – models for them are used to study, e.g., traffic incidents, inci-
dence of disease, health care system utilization, credit and financial markets, and
an array of other settings. Models for counts can occupy an entire library of its own
in this area – two excellent references are Cameron and Trivedi (1998) and Winkel-
mann (2003) – but this area will extend far beyond our reach. On the other hand,
applications in health economics (system utilization) and industrial organization
(patents and innovations) do lead to some settings in which individual or firm
choice produces a count response. We will briefly consider models for counts from
this standpoint. The reader will no doubt note other areas of discrete response anal-
ysis that are certainly important. Space limitations force us to consider a fairly small
number of cases.

This chapter proceeds as follows. Section 11.2 details the estimation and infer-
ence tools used throughout the remainder of the survey, including the basic results
in maximum likelihood estimation. Section 11.3 analyzes in detail the fundamen-
tal pillar of analysis of discrete choice, the model for binary choice – the choice
between two alternatives. Most of the applications that follow are obtained by
extending or building on the basic binary choice model. Thus we examine the
binary choice model in greater detail than the others, as it also provides a con-
venient setting in which to develop the estimation and inferential concepts that
carry over to the other models. Section 11.4 considers the immediate extension of
the binary choice, bivariate and multivariate binary choice models. Section 11.5
returns to the single choice setting and examines ordered choice models. Models
for count data are examined in section 11.6. Finally, section 11.7 turns to an area
of literature in its own right, multinomial choice modeling. As before, but even
more so here, we face the problem of surveying a huge literature in a few pages. We
therefore describe the most fundamental elements of multinomial choice analysis,
and point the reader toward more detailed sources in the literature. Section 11.8
concludes.

11.2 Specification, estimation and inference for
discrete choice models

The classical theory of consumer behavior provides the departure point for eco-
nomic models of discrete individual choice.1 A representative consumer with
preferences represented by a utility function defined over the consumption of a
vector of goods, U

(
d
)
, is assumed to maximize this utility subject to a budget
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constraint, x′d ≤ y, where x is a vector of prices and y is income (or total expen-
diture). Assuming the necessary continuity and curvature conditions, a complete
set of demand equations, d∗ = d

(
x, y

)
results.2 To extend the model of individ-

ual choice to observed market data, the demand system is assumed to hold at the
aggregate level, and random elements (disturbances) are introduced to account for
measurement error or optimization errors.

Since the 1960s, the availability of survey data on individual behavior has
obviated the heroic assumption underlying the aggregate utility function or
the (perhaps slightly less heroic) assumptions underlying the aggregate demand
system. That progression has evolved to the contemporary literature with the
appearance of large, detailed, high quality panel surveys, such as the Ger-
man Socio-Economic Panel Survey (GSOEP) (see Hujer and Schneider, 1989)
that we will use in this study and the British Household Panel Survey (BHPS)
(http://www.iser.essex.ac.uk/ulsc/bhps), to name only two of many. The analysis
of individual data to which the original theory applies has called for (at least) two
more detailed developments of that theory.

First, the classical theory has relatively little to say about the discrete choices that
consumers make. Individual data detail career choices, voting preferences, travel
mode choices, discretized measures of the strength of preferences, and participa-
tion decisions of all sorts, such as labor supply behavior, whether to make a large
purchase, whether to migrate, etc. The classical, calculus based theory of decisions
made at the margins of consumption will comment on, e.g., how large a refriger-
ator a consumer will buy, but not whether they will buy a refrigerator instead of a
car (this year), or what brand of car or refrigerator they will buy.

Second, the introduction of random elements in models of choice behavior as dis-
turbances is much less comfortable at the individual level than in market demands.
Researchers have considered more carefully the appropriate sources and form of
random variation in individual models of discrete choice.

The random utility model of discrete choice provides the most general platform
for the analysis of discrete choice. The extension of the classical theory of util-
ity maximization to the choice among multiple discrete alternatives provides a
straightforward framework for analyzing discrete choice in probabilistic, statistical,
ultimately econometric, terms.

11.2.1 Discrete choice models and discrete dependent variables

Denote by “i” a consumer who is making a choice among a set of Jit choices in
choice situation t . To put this in a context, which will help to secure the notation,
envision a stated choice experiment in which individual i is offered the choice of
several, Ji1, brands of automobiles with differing prices and characteristics and
asked which they most prefer. In a second round of the experiment, the interviewer
changes some of the features of some of the cars, and repeats the question. Denote
by Ait ,1, . . . , Ait ,Jit , Jit ≥ 2, the set of alternatives available to the individual in
choice situation t . It will be convenient to adopt the panel data notation, in which
“t” denotes “time.” The generality of the notation allows the choice set to vary from
one individual to another, and across choice situations for the same individual. In
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most of what follows, we will not need this level of generality, but the models to
be developed will accommodate it.

We will formulate a model that describes the consumer choice in probabilistic
terms. (A bit more of the underlying behavioral theory is presented in section 11.8.)
The “model” will consist of a probability distribution defined over the set of
choices:

Pit ,j = Prob(consumer i makes choice j at time t | choice set), j = 1, . . . , Jit .

The manner in which the probabilities arise is an essential feature of the model. As
noted earlier, choices are dependent on the environment in which they are made,
which we characterize in terms of income, y, and prices, x. Individual heterogene-
ity may be measured by such indicators as family size, gender, location, etc., which
we collect in a set of variables, z, and unmeasured, and therefore random from the
point of view of the analyst, indicators, which we denote as u. Common elements
of the choice mechanism that constitute the interesting quantities that the analyst
seeks to draw statistical inference about will be parameters, β, γ, etc.3 For purposes
of translating the underlying choice process into an estimable econometric model,
we define the choice indicators:

dit ,j = 1 if individual i makes choice j at time t , and 0 otherwise.

With all this in place, our discrete probability distribution will be defined by:

Pit ,j = Prob
(
dit ,j = 1

∣∣Xit , zit , uit , β, γ, . . .
)

, j = 1, . . . , Jit

where Xit is the set of attributes of all Jit choices in the choice set for individual
i at time t . Note that being characteristics of the individual, and not the choices,
zit and uit do not vary across the choices. Whether the preference parameters,
β, γ, . . . , should be allowed to vary (i.e., whether they do vary) across individuals –
i.e., whether the parameters of the utility functions are heterogeneous – is a ques-
tion that we will pursue at several points below. We will assume (not completely
innocently) that in any choice situation, the individual actually makes a choice. It
follows that:

Jit∑
j=1

dit ,j = 1 and
Jit∑

j=1

Pit ,j = 1.

The “model” consists of the interesting or useful features of Pit ,j. The preceding
discussion assumes that, at time t , the consumer makes a single decision. It will be
necessary in section 11.4 to extend the model to cases of two or more decisions.
This is straightforward, but requires a small change in notation and interpretation.
We will defer that extension until we encounter it in the discussion in section 11.4.

We close this section with some definitions of terms that will be used throughout
the text. The individual characteristics, such as gender or education, are denoted zit .
Attributes of the choices, such as prices, are denoted xit ,j. We denote by binomial
or multinomial choice, the single choice made between either two or more than two
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choices. The term binary choice is often used interchangeably with the former. A
bivariate choice or multivariate choice is the set of two or more choices made in a
single choice situation. In one of our applications, an individual chooses not to
visit a physician or to visit at least once; this is a binomial choice. This coupled with
a second decision, whether to visit the hospital, constitutes a bivariate choice. In a
different application, the choice of which of four modes to use for travel constitutes
a multinomial choice.

11.2.2 Estimation and inference

“Estimation” in this setting is less clearly defined than in the familiar linear regres-
sion model. If the model is fully parametric, then the way that the parameters
interact with the variables in the model, and the particular function that applies
to the problem, are all fully specified. The model is then:

Pit ,j = Fit
(
j, Xit , zit , β, γ, uit

)
j = 1, . . . , Ju.

We will consider models that accommodate unobserved individual heterogene-
ity, uit , in sections 11.6 and 11.7. For the present, to avoid an inconvenience in
the formulation, we consider a model involving only the observed data. Various
approaches to estimation of parameters and derivative quantities in this model
have been proposed, but the likelihood based estimator is by far the method of
choice in the received literature. The log-likelihood for the model is:

ln L =
n∑

i=1

Ti∑
t=1

Jit∑
j=1

dit ,j ln Fit (j, Xit ,zit , β, γ), i = 1, . . . , n t = 1, . . . , Ti.

The maximum likelihood estimator is that function of the data that maximizes
lnL.4 (See, e.g., Greene, 2008a, Ch. 14, for discussion of maximum likelihood
estimation.) The Bayesian estimator will be the mean of the posterior density:

p(β, γ|D, X, Z) = L× g(β, γ)∫
β,γ L× g(β, γ)dβdγ

.

where g(β, γ) is the prior density for the model parameters and (D,X,Z) is the full
sample of data on all variables in the model. (General discussions of Bayesian
methods may be found in Koop, 2003; Lancaster, 2004; Geweke, 2005.) Semipara-
metric methods, generally in the index form, but without a specific distributional
assumption, are common in the received literature, particularly in the analysis of
binary choices and panel data. These will be considered briefly in sections 11.3.4
and 11.7.2. Nonparametric analysis of discrete choice data is on the frontier of the
theory, and does not play much of a role in the empirical literature. We will note
this segment of the development briefly in section 11.3.4.

Estimation and inference about model parameters is discussed in the sections to
follow. Though the model is commonly formulated as an “index function” model,
i.e.:

Pit ,j = Fit

(
j, X′itβ, z′itγ

)
j = 1, . . . , Jit ,
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even in this form, it will generally bear little resemblance to the linear regression
model. As in other nonlinear cases, the interpretation of the model coefficients
is ambiguous. Partial effects on the probabilities associated with the choices for
individual i at time t are defined as:

δit (j, X′itβ, z′itγ) = ∂Fit (j, X′itβ, z′itγ)/∂
(

xit ,j
zit

)
= F′it (j, Xitβ, z′itγ)

(
β

γ

)
.

These are likely to be of interest for particular individuals, or averaged across indi-
viduals in the sample. A crucial implication for use of the model is that these
partial effects may be quite different from the coefficients themselves. Since there
is no “regression” model at work, this calls into question the interpretation of the
model and its parts. No generality is possible at this point. We will return to the
issue below.

A related exercise in marginal analysis of the sample and estimated model is to
examine the aggregate outcomes predicted by the model:

n̂t ,j =
n∑

i=1

F̂it (j, Xitβ, z′itγ) =
n∑

i=1

d̂it ,j.

where the “ˆ” indicates the estimate from the model. For example, if xit ,j,k denotes
a policy variable, a price or a tax, say, we might be interested in:

�n̂t ,j =
n∑

i=1

F̂it (j, Xitβ, z′itγ|x1
it ,j,k)−

n∑
i=1

F̂it (j, Xitβ, z′itγ|x0
it ,j,k).

Although the subject of the impact in the partial effect is already scaled – it is
a probability between zero and one – it is still common for researchers to report
elasticities of probabilities rather than partial effects. These are:

ηit ,j(variableit ,j,k) =
F′it (j, Xitβ, z′itγ)
Fit (j, Xitβ, z′itγ)

× variableit ,j,k × coefficientk.

This is prominently the case in the analysis of multinomial choice models, as we
will explore in section 11.7.

Finally, again because the model does not correspond to a regression except
in a very loose sense, the concept of fit measures is also ambiguous. There is no
counterpart to “explained variation” or “total variation” in this class of models, so

the idea behind the coefficient of determination (R2
) in linear regression has no

meaning here. What is required to assess the fit of the model is, first, a specification
of how the model will be used to predict the outcome (choice), then an assessment
of how well the estimated model does in that regard.

11.2.3 Application

It will be helpful in the exposition below to illustrate the computations with a few
concrete examples based on “live” data. We will use two familiar datasets. The RWM
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Health Care data (our appelation) was used in Riphahn, Wambach and Million
(2003) to analyze utilization of the German health care system. The dataset used is
an unbalanced panel of 7,293 individual families observed over seven periods. It is
part of the GSOEP, which can be downloaded from the archive site of the Jour-
nal of Applied Econometrics (http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-
wambach-million/). We will use these to illustrate the single equation and panel
data binary and ordered choice models and models for counts presented in sections
11.3–11.6. The second dataset is also widely used to illustrate multinomial choice
models. These data, from Hensher and Greene (e.g., 2003), are a survey of 210
travelers between Sydney and Melbourne who chose among four modes, air, train,
bus and car. We will use these data to illustrate a few multinomial choice models
in section 11.7.

11.3 Binary choice

The second fundamental building block in the development of discrete choice
models (after the model of random utility) is the basic model for choice between
two alternatives. We would formulate this in a random utility framework with the
utility of two choices:

Ui,1 = x′i,1β+ z′iγ+ εi,1

Ui,2 = x′i,2β+ z′iγ+ εi,2.

For convenience at this point, we assume there is a single choice made, so Ti = 1.
The utility functions are in the index form, with characteristics and attributes and
common (generic) coefficients. The random terms, εi,1 and εi,2, represent unmea-
sured influences on utility. (Looking forward, without these random terms, the
model would imply that with sufficient data (and consistent parameter estimators),
utility could be “observed” exactly, which seems improbable at best.) Consistent
with the earlier description, the analyst observes the choice most preferred by the
individual, that is, the one with the greater utility, say choice 1. Thus, the observed
outcome reveals that:

Ui,1 > Ui,2,

or:
x′i,1β+ z′iγ+ εi,1 > x′i,2β+ z′iγ+ εi,2,

or:

(x′i,1β− x′i,2β)+ (z′iγ− z′iγ) > (εi,2 − εi,1), (11.1)

or:
(xi,1 − xi,2)

′
β > (εi,2 − εi,1).

This exercise reveals several identification problems in the model as stated so far.
First, we have implicitly assumed that, in the event that the two utilities are equal,
the consumer chooses alternative 2. This is a normalization: recall that we assumed
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earlier that the individual makes exactly one choice. Second, it is evident that, in
describing the choice of process in this fashion, it is the relative values of the
attributes of the choices that matter: the difference between xi,1 and xi,2 is the
determinant of the observed outcome, not the specific values of either. Third, note
that the choice of invariant component, zi, has fallen out of the choice process.
The implication is that, unless the characteristics influence the utilities differently,
it is not possible to measure their impact on the choice process. Finally, εi,1 and εi,2
are random variables with so far unspecified means and variances. With respect to
the means, if they are μ1 and μ2, only μ2 − μ1 enters the choice. As such, if the
means were μ1+φ and μ2+φ, the same outcome would be observed. These means
cannot be measured with observed data, so at least one is normalized to zero.
Finally, consider the outcome of scaling both utilities by an arbitrary constant,
σ . The new random components would be σεi,1 = ε

∗
i,1 and σεi,2 = ε

∗
i,2, and β

and γ would be scaled likewise. However, this scaling of the model would have
no impact on the observed outcome in the last line of equation (11.1). The same
choice would be observed whatever positive value σ takes. Thus, there is yet one
more indeterminacy in the model. This can be resolved in several ways. The most
common expedient is to normalize the scaling of the random components to one.

Combining all of these, we obtain a conventional form of the model for the
choice between two alternatives:

�Ui = μ+ (�xi)
′
β+ z′iγ+ εi, E[εi|Xi, zi] = 0, Var[εi|Xi, zi] = 1.

di1 = 1 if �Ui > 0 and di1 = 0 otherwise,

di2 = 1− di1.

In a more familiar arrangement, we would have:

d∗i = x′iβ+ z′iγ+ εi

di = 1 if d∗i > 0, and di = 0 otherwise, (11.2)

where di = 1 indicates that choice 1 is selected and where the correspondence to
the components of the more detailed model is direct.

11.3.1 Regression models

The preceding sections describe an underlying theoretical platform for a binary
choice, based on a model of random utility. In order to translate it into an econo-
metric model, we will add the assumptions behind the stochastic component of
the specification, εi. To this point, the specification is semiparametric. We have
not assumed anything specific about the underlying distribution, only that εi rep-
resents the random (from the point of view of the econometrician) element in the
utility function of individual i. The restrictions imposed (zero mean, unit variance)
are normalizations related to the identification issue and are not intended to be
substantive restrictions on behavior. (Indeed, the unit variance assumption turns
out to be unnecessary for some treatments. We will return to this below.)
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We can approach the specification in equation (11.2) from a different viewpoint.
The random utility approach specifies that d∗i represents the strength of the individ-
ual’s preference for alternative 1 relative to alternative 2. An alternative approach
regards (11.2) as a latent regression model. The dependent variable is assumed to be
unobservable; the observation is a censored variable that measures d∗i relative to
a benchmark, zero. For an example, consider a model of loan default. One would
not typically think of loan default as a utility maximizing choice. On the other
hand, in the context of (11.2), one might think of d∗i as a latent measure of the
financial distress of individual i. If d∗i is high enough, the individual defaults, and
we observe di = 1. By this construction, the appropriate model for di is a censored
regression. Once we endow εi with a proper probability distribution, (11.2) can be
construed as a regression model.

With the assumption of a specific distribution for εi, we obtain a statement of
the choice probabilities:

Prob(di = 1|Xi, zi) = Prob(d∗i > 0|Xi, zi)

= Prob(x′iβ+ z′iγ+ εi > 0).

= Prob[εi > −(x′iβ+ z′iγ)]
= 1− Prob[εi ≤ −(x′iβ+ z′iγ)].

It follows that:

E[di|Xi, zi] = 0× Prob(di = 0|Xi, zi)+ 1× Prob(di = 1|Xi, zi)

= Prob(di = 1|Xi, zi),

so we now have a regression model to manipulate as well. The implied probability
endowed by our assumption of the distribution of εi becomes the regression of di
on Xi and zi. By this construction, one might bypass the random utility apparatus,
and simply embark on modeling:

di = E[di|Xi, zi] + ai

= Prob(di = 1|Xi, zi)+ ai,

where, by construction, ai has zero mean, conditioned on the probability function.
A remaining step is to construct the appropriate conditional mean function. This
specification has suggested in some settings the linear probability model:

di = x′iβ+ z′iγ+ ai.

(See, e.g., Aldrich and Nelson, 1984; Caudill, 1988; Heckman and Snyder, 1997;
Angrist, 2001.) The linear probability model has some significant shortcomings,
the most important of which is that the linear function cannot be constrained to
lie between zero and one, so its interpretation as a probability model is suspect.
With few exceptions, including those noted above, researchers have employed
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proper probability models for the implied regressions. The logit and probit mod-
els described in the next section are the overwhelming choices in the received
literature.

11.3.2 Estimation and inference in parametric binary choice models

A parametric model is completed by specifying a distribution for εi. Many candi-
dates have been proposed, though there is little in the way of observable evidence
that one can use to choose among the candidates.5 For convenience, we will assume
a symmetric distribution, such as the normal or logistic which are used in the
overwhelming majority of studies. For a symmetric distribution:

1− Prob[εi ≤ − (x′iβ+ z′iγ)] = Prob(εi ≤ x′iβ+ z′iγ)

= F(x′iβ+ z′iγ).

Once again relying on the symmetry of the distribution, the probabilities associated
with the two outcomes are:

Prob(di = 1|xi, zi) = F(x′iβ+ z′iγ),

and:

Prob(di = 0|xi, zi) = F[−(x′iβ+ z′iγ)].

For the two outcomes di = j, j = 0, 1, these may be combined in the form suggested
earlier:

F( j, x′iβ+ z′iγ) = F[(2j − 1)( x′iβ+ z′iγ)],

where:

F(t) = %(t) = exp(t)
1+ exp(t)

for the logistic distribution,

and:

F(t) = #(t) =
∫ t

−∞
1√
2π

exp(−1
2

z2
)dz for the normal distribution.

The assumption of the logistic distribution gives rise to the logit model, while the
normal distribution produces the probit model.

11.3.2.1 Parameter estimation

The model is now fully parameterized, so the analysis can proceed based either
on the likelihood function or the posterior density. We consider the maximum
likelihood estimator (MLE) first, and the Bayesian estimator in section 11.3.3.
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The log-likelihood function for the observed data is:

lnL =
∑n

i=1
lnProb(di|xi, zi)

=
∑

di=1
ln Prob(di = 1|xi, zi)+

∑
di=0

ln Prob(di = 0|xi, zi)

=
∑n

i=1
ln F[(2di − 1)(x′iβ+ z′iγ)].

Estimation by maximizing the log-likelihood is straightforward for this model. The
gradient of the log-likelihood is:

∂ ln L

∂

(
β

γ

) =∑n

i=1
(2di − 1)

F′[(2di − 1)(x′iβ+ z′iγ)]
F[(2di − 1)(x′iβ+ z′iγ)]

(
xi
zi

)
=
∑n

i=1
gi = g.

The maximum likelihood estimators of the parameters are found by equating g to
zero, an optimization problem that requires an iterative solution.6 For convenience
in what follows, we will define:

qi = (2di − 1), wi =
(

xi
zi

)
, θ =

(
β

γ

)
, ti = qiw

′
iθ, Fi = F(ti), F′i = dFi/dti = fi.

(Thus, Fi is the cumulative density function (c.d.f.) and fi is the density for the
assumed distribution.) It follows that:

gi = qiF
′
i(ti)wi = qifiwi.

Statistical inference about the parameters is made using one of the three con-
ventional estimators of the asymptotic covariance matrix: the Berndt, Hall, Hall
and Hausman (BHHH) (1974) estimator, based on the outer products of the first
derivatives:

VBHHH =
[∑n

i=1
gig

′
i

]−1
,

the actual Hessian:

VH =
[
−
∑n

i=1

∂
2 ln L
∂θ∂θ′

]−1

=
[
−
∑n

i=1

FiF
′′
i − (F′i)

2

F2
i

, wiw
′
i

]−1

,

or the expected Hessian, which can be shown to equal:

VEH =
[
−
∑n

i=1
Edi

(
∂

2 ln L
∂θ∂θ′

)]−1

=
[
−
∑n

i=1

f (w′iθ)f (−w′iθ)
Fi(1− Fi)

wiw
′
i

]−1

.

It has become common, even de rigueur, to compute a “robust” covariance matrix

for the MLE using VH×V−1
BHHH×VH , under the assumption that the MLE is robust

to failures of the specification of the model. In fact, there is no obvious failure of

mailto: rights@palgrave.com


William Greene 485

the assumptions of the model (distribution, omitted variables, heteroskedasticity,
and correlation across observations) for which the MLE remains consistent, so the
virtue of the “corrected” covariance matrix is questionable (see Freedman, 2006).

For the two distributions considered here, the derivatives are relatively simple.
For the logistic:

F(t) = %(t), f (t) = F′(t) = %(t)[1−%(t)], F′′(t) = F′(t)[1− 2%(t)].

For the normal distribution (probit model), the counterparts are:

F(t) = #(t), f (t) = F′(t) = φ(t), F′′(t) = −tφ(t).

In both cases, f (t) = f (−t) and F(−t) = 1 − F(t). For estimation and inference
purposes, a further convenient result is, for the logistic distribution:

−[F(t)F′′(t)− (F′(t))2]/F(t)2 = %(t)(1−%(t)) > 0 for all t ,

while for the normal distribution:

−[F(t)F′′(t)− (F′(t))2]/F(t)2 = t[φ(t)/#(t)] + [φ(t)/#(t)]2 > 0 for all t .7

The implication is that both the second derivatives matrix and the expected sec-
ond derivatives matrix are negative definite for all values of the parameters and
data. Optimization using Newton’s method or the method of scoring will always
converge to the unique maximum of the log-likelihood function, so long as the
weighting matrix (VBHHH, VH or VEH) is not singular.8

11.3.2.2 Residuals and predictions

Two additional useful results are obtained from the necessary conditions for maxi-
mizing the log-likelihood function. First, the component of the score function that
corresponds to the constant term is:

∑n

i=1
qi

F′(qiw
′
iθ)

F(qiw
′
iθ)

= 0.

The terms in this sum are the generalized residuals of the model. As do the ordinary
residuals in the regression model, the generalized residuals sum to zero at the MLE.
These terms have been used for specification testing in this model (see Chesher
and Irish, 1987). For the logit model, it can be shown that the result above implies
that:

1
n

∑n

i=1
di =

1
n

∑n

i=1
F(w′iθ),

when F is evaluated at the MLEs of the parameters. The implication is that the
average of the predicted probabilities from the logit model will equal the proportion
of the observations that are equal to one. A similar (albeit inexact) outcome will be
seen in empirical results for the probit model. The theoretical result has not been
shown analytically.
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11.3.2.3 Marginal effects

Partial effects in the binary choice model are computed for continuous variables
using the general result:

δi =
∂Prob(di = 1|wi)

∂wi
= f (w′iθ)θ.

For a binary variable, such as gender or degree attained, the counterpart would be:

�i = F(w′iθ+ γk)− F(w′iθ)

where γk is the coefficient on the dummy variable of interest (assumed to be a
characteristic of the individual). These are typically evaluated for the average indi-
vidual in the sample, though current practice somewhat favors the average partial
effect :

δ = 1
n
∑n

i=1
∂Prob(di=1|wi)

∂wi

= 1
n
∑n

i=1 f (w′iθ)θ
=
(

1
n
∑n

i=1 f (w′iθ)
)

θ.

(The two estimators will typically not differ substantively.) Standard errors for par-
tial effects are usually computed using the delta method. Let V denote the estimator
of the asymptotic covariance matrix of the MLE of θ. For a particular vector, wi:

Γi =
∂δi
∂θ′ =

[
f ′(w′iθ)

]
I + [f (w′iθ)]θw′i.

For a binary variable in the model, in addition to (or in) the wi, the corresponding
row of Γi would be:

Γi,k = ∂�i,k/∂(θ
′, γk) = f (w′iθ+ γk)[wi, 1] − f (w′iθ)[wi, 0].

For the particular choice of wi, then, the estimator of the asymptotic covariance
matrix for δi would be �iV�

′
i, computed at the maximum likelihood estimates. It

is common to do this computation at the means of the data, w = 1
n�

n
i=1wi. For the

average partial effect, the computation is complicated a bit because the terms in δ

are correlated – they use the same estimator of the parameters – so the variance of
the mean is not (1/n) times the sum of the variances. It can be shown (see Greene,
2008, Ch. 23) that the appropriate computation reduces to:

Est.Asy.Var[δ] = �V�′, where Γ = 1
n

∑n

i=1
Γi.

An alternative approach to computing standard errors for the marginal effects is
the method of Krinsky and Robb (1986). A set of R random draws is taken from the
estimated (asymptotic) normal population with mean θ̂MLE and variance V and
the empirical mean squared deviation of the estimated partial effects is computed
using the MLE:

Est.Asy.Var[δ] = 1
R

∑R

r=1

(
δr − δ

) (
δr − δ

)′
,

where δr is computed at the random draw and δ is computed at θ̂MLE.
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An empirical conundrum can arise when doing inference about partial effects
rather than coefficients. For any particular variable, wk, the preceding theory does
not guarantee that both the estimated coefficient, θk, and the associated partial
effect, δk, will be “statistically significant,” or statistically insignificant. In the event
of a conflict, one is left with the uncomfortable problem of simultaneously reject-
ing and not rejecting the hypothesis that a variable should appear in the model.
Opinions differ on how to proceed. Arguably, the inference should be about θk,
not δk, since in the latter case, one is testing a hypothesis about a function of all
the coefficients, not just the one of interest.

11.3.2.4 Hypothesis tests

Conventional hypothesis tests about restrictions on the model coefficients, θ, can
be carried out using any of the three familiar procedures. Given the simplicity of
the computations for the MLE, the likelihood ratio test is a natural candidate. The
likelihood ratio statistic is:

λLR = 2[ln L1 − ln L0]
where “1” and “0” indicate the values of the log-likelihood computed at the un-
restricted (alternative) estimator and the restricted (null) estimator, respectively.
A hypothesis that is usually of interest in this setting is the null hypothesis that
all coefficients save for the constant term are equal to zero. In this instance, it is
simple to show that, regardless of the assumed distribution:

ln L0 = n[P1 ln P1 + P0 ln P0],
where P1 is the proportion of observations for which di equals one, which is also
d = 1

n�
n
i=1di, and P0 = 1− P1. Wald statistics use the familiar results, all based on

the unrestricted model. The general procedure assesses departures from the null
hypothesis

H0 : r(θ, c) = 0,

where r(θ, c) is a vector of J functionally independent restrictions on θ and c is a
vector of constants. The typical case is the set of linear restrictions, H0 : rθ− c = 0,
where r is a matrix of constants. The Wald statistic for testing the null hypothesis
is constructed using the delta method to obtain an asymptotic covariance matrix
for r(θ, c). The statistic is:

λWALD = [r(θ, c)]′[R(θ, c)VR(θ, c)′]−1[r(θ, c)],

where R(θ, c) = ∂r(θ, c)/∂θ
′ and all computations are carried out using the unre-

stricted maximum likelihood estimator. The standard “t-test” of the significance of
a coefficient is the most familiar example. The Lagrange multiplier (LM) statistic is:

λLM = g0′V0g0,

where “0” indicates that the computations are done using the restricted estimator
and V is any of the estimators of the asymptotic covariance matrix of the MLE
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mentioned earlier. Using VBHHH produces a particularly convenient computation,
as well as an interesting and surprisingly simple test of the null hypothesis that all
coefficients save the constant are zero. Using VBHHH and expanding the terms, we
have:

λLM =
(∑n

i=1
qiwif

0
i

)′ (∑n

i=1
q2

i (f
0
i )

2wiw
′
i

)−1 (∑n

i=1
qiwif

0
i

)
,

and an immediate simplification occurs because q2
i = 1. The density is computed

at the restricted estimator, however obtained. If the null hypothesis is that all

coefficients are zero save for the constant, then, for the logit model, f 0
i = f 0 =

P1(1−P1). For the probit model, the estimator of the constant term will be #
−1

(P1)

and f 0 = φ[#−1
(P1)]. Taking this constant outside the summation in g leaves

�
n
i=1qiwi = n[P1w1 − P0w0], where w1 is the sample mean of the n1 observations

with di equal to one and w0 is the mean of the n0 remaining observations. Note

that the constant f 0 falls out of the resulting statistic, and we are left with the LM
statistic for testing this null hypothesis:

λLM = n2[P1w1 − P0w0]′
(
W′W

)−1[P1w1 − P0w0],
where W is the data matrix with ith row equal to w′i. As in the case of the likelihood
ratio (LR) statistic, the same computation is used for both the probit and logit
models.

11.3.2.5 Specification tests

Two specification issues are typically addressed in the context of these parametric
models, heteroskedasticity and the distributional assumption. For the former, since
there are no useful “residuals” whose squares will reveal anything about scaling in
the model, general approaches such as the Breusch and Pagan (1979, 1980) LM test
or the White (1980) test are not available. Heteroskedasticity must be built into the
model and tested parametrically. Moreover, there is no robust approach to estima-
tion and inference that will accommodate heteroskedasticity without specifically
making it part of the model. (In linear regression, the ordinary least squares (OLS)
estimator and White’s (1980) heteroskedasticity robust covariance matrix serve that
purpose.) A common approach to modeling heteroskedasticity in parametric binary
choice models is based on Harvey’s (1976) exponential model:

d∗i = x′iβ+ z′iγ+ εi, E[εi|xi, zi, vi] = 0, Var[εi|xi, zi, vi] = [exp(v′iτ )]2

di = 1 if d∗i > 0, and di = 0 otherwise,

where vi is a known set of variables (that does not include a constant term) and τ

is a new parameter vector to be estimated. The adjustment of the log-likelihood is
fairly straightforward; the terms are changed to accommodate

Prob(di = 1|xi, zi, vi) = F[w′iθ/ exp(v′iτ )].
Maximization of the likelihood function with respect to all the parameters is
somewhat more complicated, as the function is no longer globally concave. The
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complication arises in interpretation of the model. The partial effects in this
augmented model are:

δi =
∂Prob(di = 1|wi, vi)

∂

(
wi
vi

) = f

(
w′iθ

exp(v′iτ)

)(
θ

[−(w′iθ)/ exp(v′iτ)]τ

)
.

If wi and vi have variables in common, then the two effects are added. Whether
they do or not, this calls into question the interpretation of the original coefficients
in the model. If wi and vi do share variables, then the partial effect may have sign
and magnitude that both differ from those of the coefficients, θ. At a minimum, as
before, the scales of the partial effects are different from those of the coefficients.

For testing for homoskedasticity, the same three statistics as before are useable.
(This is a parametric restriction on the model; H0 : τ = 0.) The derivatives of the
log-likelihood function are presented in Greene (2008, Ch. 23). As usual, the LM
test is the simplest to carry out. The term necessary to compute the LM statistic
under the null hypothesis is:

gi = qifi

(
wi

(−w′iθ)vi

)
.

A second specification test of interest concerns the distribution. Silva (2001) has
suggested a score (LM) test that is based on adding a constructed variable to the
logit or probit model. An alternative way of testing the two competing models
could be based on Vuong’s (1989) statistic. Vuong’s test is computed using:

λVuong =
√

nm
sm

, where m = 1
n
�

n
i=1[lnLi(probit)− ln Li(logit)],

and sm is the sample standard deviation. Vuong shows that, under certain assump-
tions (likely to be met here for these two models), λVuong has a limiting standard
normal distribution. Large positive values (larger than +1.96) favor the probit
model, while large negative values (less than −1.96) favor the logit model. The
power of these two statistics for this setting remains to be investigated. As with
all specification tests, the power depends crucially on the true but unknown
underlying model, which may be unlike either candidate model.

11.3.2.6 The fit of the model

As noted earlier, in modeling binary (or other discrete) choices, there is no direct

counterpart to the R2 goodness-of-fit statistic. A common computation which,
unfortunately in spite of its name, does not provide such a measure is the likelihood
ratio index, which is also called the

pseudo R2 = 1− lnL/lnL0,

where lnL is the log-likelihood for the estimated model (which must include a
constant term) and lnL0 is the log-likelihood function for a model that only has a
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constant. It is tempting to suggest that this measure measures the “contribution”
of the variables to the fit of the model. It is a statistic that lies between zero and
one, and it does rise unambiguously as variables are added to the model. However,
the “fit” aspect of the statistic is ambiguous, since the likelihood function is not a
fit measure. As a consequence, this measure can be distressingly small in a model
that contains numerous precisely measured (highly significant) coefficients (see
Wooldridge, 2002a, for discussion).

This does leave open the issue of how to assess the fit of the estimated model to
the data. In order to address this question, the analyst must first decide what rule
will be used to predict the observed outcome using the model, then determine how
successful the model (and rule) are. A natural approach, since the model predicts
probabilities of events, is to use the estimated probability, F(w′iθ). The prediction
is based on the rule:

Predict di = 1 if the estimated Prob(di = 1|wi) is greater than P, (11.3)

where P∗ is to be chosen by the analyst. The usual choice of P∗ is 0.5, reasoning
that if the model predicts that the event is more likely to occur than not, we should
predict that it will.9 A summary 2 × 2 table of the number of cases in which the
rule predicts correctly and incorrectly can be used to assess the fit of the model.
Numerous single-valued functions of this tally have been suggested as counterparts
to R2. For example, Cramer (1999) proposed:

λC = (average P̂i|di = 1)− (average P̂i|di = 0).

This measure counts the correct predictions, and adds a penalty for incorrect pre-
dictions. Other modifications and similar alternatives have been suggested by Efron
(1978), Kay and Little (1986), Ben-Akiva and Lerman (1985) and Zavoina and
McKelvey (1975).

11.3.3 A Bayesian estimator

The preceding section has developed the classical MLE for binomial choice models.
A Bayesian estimator for the probit model illustrates an intriguing technique for
censored data models. The model framework is, as before:

d∗i = w′iθ+ εi, εi ∼ N[0, 1] (11.4)

di = 1 if d∗i > 0, otherwise di = 0. (11.5)

The data consist of (d,W) = (di,wi), i = 1, . . . , n. The random variable di has a
Bernoulli distribution with probabilities:

Prob[di = 1|wi] = #(w′iθ)

Prob[di = 0|wi] = 1−#(w′iθ).

The likelihood function for the observed data, d, conditioned on W and θ, is:

L(d|W, θ) =
∏n

i=1
[�(w′iθ)]di [1−�(w′iθ)]1−di .
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To obtain the posterior mean (Bayesian estimator), we assume a non-informative,
flat (improper) prior for θ:

p(θ) ∝ 1.

By Bayes’ theorem, the posterior density would be:

p(θ|d, W) = p(d|W, θ)p(θ)∫
θ p(d|W, θ)p(θ)dθ

=
∏n

i=1[#(w′iθ)]di [1−#(w′iθ)]1−di (1)∫
θ

∏n
i=1[#(w′iθ)]di [1−#(w′iθ)]1−di (1)dθ

,

and the estimator would be the posterior mean:

θ̂BAYESIAN = E[θ|d, W] =
∫
θ θ
∏n

i=1[#(w′iθ)]di [1−#(w′iθ)]1−didθ∫
θ

∏n
i=1[#(w′iθ)]di [1−#(w′iθ)]1−di dθ

.

Evaluation of the integrals in θ̂BAYESIAN is hopelessly complicated, but a solution
using the Gibbs sampler and the technique of data augmentation, pioneered by
Albert and Chib (1993), is surprisingly simple. We begin by treating the unobserved
d∗i s as unknowns to be estimated, along with θ. Thus, the (K+n)×1 parameter vector
is α = (θ, d∗). We now construct a Gibbs sampler. Consider, first, p(θ| d∗,d,W). If
d∗i is known, then di is known. It follows that:

p(θ|d∗, d, W) = p(θ|d∗, W).

This posterior comes from a linear regression model with normally distributed

disturbances and known σ
2 = 1 (see equation (11.4) above). This is the standard

case for Bayesian analysis of the normal linear model with an uninformative prior

for the slopes and known σ
2 (see, e.g., Koop, 2003; Greene, 2008a, sec. 18.3.1),

with the additional simplification that σ
2 = 1. It follows that:

p(θ|d∗, d, W) = N[q∗, (W′W)
−1],

where:

q∗ = (W′W)
−1W′d∗.

For d∗i , ignoring di for the moment, it would follow immediately from
equation (11.4) that:

p(d∗i |θ, W) = N[w′iθ, 1].
However, di is informative about d∗i . If di equals one, we know that d∗i > 0 and, if
di equals zero, then d∗i < 0. The implication is that, conditioned on θ , W, and d, d∗i
has a truncated (above or below zero) normal distribution. The standard notation
for this is:

p(d∗i |θ, di = 1, wi) = N+[w′iθ, 1]
p(d∗i |θ, di = 0, wi) = N−[w′iθ, 1].

These results set up the components for a Gibbs sampler that we can use to estimate
the posterior means E[θ|d,W] and E[d∗|d, W].
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11.3.3.1 Gibbs sampler for the binomial probit model

1. Compute W′W once at the outset and obtain L such that LL′ = (W′W)
−1.

2. Start θ at any value such as 0.
3. Obtain draws Ui,r from the standard uniform distribution. Greene (2008a,

p. 575, result (17–1)) shows how to transform a draw from U [0,1] to a draw
from the truncated normal with underlying mean μ and standard deviation σ .
For this application, μ = w′iθ and σ = 1, so the draws from p(d∗|θ,d,W) are
obtained as:

d∗i,r (r) = w′iθr−1 +Φ
−1

[
1− (1− Ui,r )Φ(w′iθr−1)

]
if di = 1

d∗i,r (r) = w′iθr−1 +Φ
−1

[
Ui,rΦ(−w′iθr−1)

]
if di = 0.

This step is used to draw the n observations on d∗i,r (r).
4. To draw an observation from the multivariate normal population of

p(θ|d∗, d, W], we need to draw from the normal population with mean q∗r−1

and variance (W′W)−1. For this application, we use the results at step 3 to com-

pute q∗ = (W′W)−1W′d∗(r). We obtain a vector, v, of K draws from the N[0,1]
population, and then compute θ(r) = q∗ + Lv.

The iteration cycles between steps 3 and 4. This should be repeated several thou-
sand times, discarding the burn-in draws, and then the estimator of θ is the sample
mean of the retained draws. The posterior variance is computed with the variance
of the retained draws. Posterior estimates of d∗i would typically not be useful.

This application of the Gibbs sampler demonstrates, in an uncomplicated case,
how the algorithm can provide an alternative to actually maximizing the log-
likelihood. The similarity of the method to the EM algorithm (Dempster, Laird
and Rubin, 1977) is not coincidental. Both procedures use an estimate of the
unobserved, censored data, and both estimate θ by using OLS using the predicted
data.

11.3.4 Semiparametric models

The fully parametric probit and logit models remain by far the mainstays of empir-
ical research on binary choice. Fully nonparametric discrete choice models are
fairly exotic and have made only limited inroads in the literature, most of which is
theoretical (e.g., Matzkin, 1993). The middle ground is occupied by a few semipara-
metric models that have been proposed to relax the detailed assumptions of the
probit and logit specifications. The single index model of Klein and Spady (1993)
has been used in several applications, including Gerfin (1996), Horowitz (1993)
and Fernandez and Rodriguez-Poo (1997), and provides the theoretical platform
for a number of extensions.10

The single index formulation departs from a regression formulation:

E[di|wi] = E[di|w′iθ].
Then:

Prob(di = 1|wi) = F(w′iθ|wi) = G(w′iθ),
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where G is an unknown continuous distribution function whose range is [0,1].
The function G is not specified a priori; it is estimated (pointwise) along with the
parameters. (Since G as well as θ is to be estimated, a constant term is not identified;
essentially, G provides the location for the index that would otherwise be pro-
vided by a constant.) The criterion function for estimation, in which n subscripts
denote estimators based on the sample of n observations of their unsubscripted
counterparts, is:

ln Ln =
1
n

n∑
i=1

{di ln Gn(w
′
iθn)+ (1− di) ln[1−Gn(w

′
iθn)]}.

The estimator of the probability function, Gn, is computed at each iteration using
a nonparametric kernel estimator of the density of w′iθn. For the Klein and Spady
estimator, the nonparametric regression estimator is:

Gn(zi) =
dgn(zi|di = 1)

dgn(zi|di = 1)+ (1− d) gn(zi|di = 0)
,

where gn(zi|di) is the kernel estimate of the density of zi = w′iθn. This result is:

gn(zi|di = 1) = 1

ndhn

n∑
j=1

djK

(
zi −w′jθn

hn

)
;

gn(zi|di = 0) is obtained by replacing d with 1− d in the leading scalar and dj with
1−dj in the summation. The scalar hn is the bandwidth. There is no firm theory for
choosing the kernel function or the bandwidth. Both Horowitz and Gerfin used the
standard normal density. Two different methods for choosing the bandwidth are
suggested by them. Klein and Spady provide theoretical background for computing
asymptotic standard errors.

Manski’s (1975, 1985, 1986, 1987) maximum score estimator is even less param-
eterized than Klein and Spady’s model. The estimator is based on the fitting
rule:

Maximize θSNα(θ) =
1
n

n∑
i=1

[qi − (1− 2α)]sign(w′iθ).
11

The parameter α is a preset quantile, and qi = 2di − 1 as before. If α is set to 0.5,
then the maximum score estimator chooses the θ to maximize the number of times
that the prediction has the same sign as z. This result matches our prediction rule
in equation (11.3) with P∗ = 0.5. So for α = 0.5, the maximum score attempts
to maximize the number of correct predictions. Since the sign of w′θ is the same
for all positive multiples of θ, the estimator is computed subject to the constraint
that θ

′
θ = 1. Variants of semiparametric estimators are discussed in Li and Racine

(2007), including a modification by Horowitz (1992) and an estimator suggested
by Lewbel (2000).

The semiparametric estimators of θ are robust to variation in the distribution
of the random elements in the model, and even to heteroskedasticity. Robustness
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is an ambiguous virtue in this context. As we have seen, the raw coefficients are
of questionable value in interpreting the model – in order to translate them into
useful quantities we have computed partial effects and predicted probabilities. But
the semiparametric models specifically program around the assumption of a fixed
distribution and thus sacrifice the ability to compute partial effects or probabili-
ties. What remains is the estimator of θ and, in some cases, a covariance matrix
that can be used to test the significance of coefficients or to test hypotheses about
restrictions on structural coefficients.12 Perhaps for these reasons, applied work in
binary choice remains overwhelmingly dominated by the parametric models.

11.3.5 Endogenous right-hand-side variables

The presence of endogenous right-hand-side variables in a binary choice model
presents familiar problems for estimation. The problem is made worse in nonlinear
models because, even if one has an instrumental variable readily at hand, it may
not be immediately clear what is to be done with it. The instrumental variable
estimator for the linear model is based on moments of the data, the variances and
covariances. In a binary choice setting, we are not using any form of least squares
to estimate the parameters, so the instrumental variable (IV) method would appear
not to apply. Generalized method of moments is a possibility. Consider the model:

d∗i = x′iβ+ γ zi + εi

di = 1(d∗i > 0)

E[εi|zi] = g(zi) �= 0.

Thus zi is endogenous in this model. The MLEs considered earlier will not con-
sistently estimate (β, γ ). (Without an additional specification that allows us to
formalize Prob(di = 1|xi, zi), we cannot state what the MLE will, in fact, esti-
mate.) Suppose that we have a relevant (not “weak”) instrumental variable, wi,
such that:

E[εi|wi, xi] = 0

E[wizi] �= 0.

A natural instrumental variable estimator would be based on the “moment”
condition:

E

[
(d∗i − x′iβ− γ zi)

(
xi
wi

)]
= 0.

However, d∗i is not observed: di is, but the “residual,” di−x′iβ− γ zi, would have no
meaning even if the true parameters were known.13 One approach that was used
in Avery, Hansen and Hotz (1983), Butler and Chatterjee (1997) and Bertschek and
Lechner (1998) is to assume that the instrumental variable is orthogonal to the
residual [di −#( x′iβ+ γ zi)], i.e.:

E

[
[di −#(x′iβ− γ zi)]

(
xi
wi

)]
= 0.
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This form of the moment equation, based on observables, can form the basis of a
straightforward two-step generalized method of moments (GMM) estimator.

The GMM estimator is not less parametric than the full information MLE
described below, because the probit model based on the normal distribution is
still invoked to specify the moment equation.14 Nothing is gained in simplicity or
robustness compared to full information maximum likelihood estimation, which
we now consider. (As Bertschek and Lechner, 1998, argue, however, the gains
might come in terms of practical implementation and computation time. The same
considerations motivated Avery, Hansen and Hotz, 1983.)

The MLE requires a full specification of the model, including the assumption that
underlies the endogeneity of zi. This becomes essentially a simultaneous equations
model. The model equations are:

d∗i = x′iβ + γ zi + εi, di = 1[d∗i > 0],
zi = w′iα + ui,

(εi, ui) ∼ N

[(
0
0

)
,

(
1 ρσu

ρσu σ
2
u

)]
.

(11.6)

(We are assuming that there is a vector of instrumental variables, wi.) Probit esti-
mation based on di and (xi, zi) will not consistently estimate (β,γ ) because of the
correlation between zi and εi induced by the correlation between ui and εi. Several
methods have been proposed for estimation of this model. One possibility is to use
the partial reduced form obtained by inserting the second equation into the first.
This becomes a probit model with probability Prob(di = 1|xi, wi) = #(x′iβ

∗+w′iα
∗
).

This will produce consistent estimates of β
∗ = β/(1 + γ

2
σ

2 + 2γ σρ)
1/2 and

α
∗ = γα/(1+ γ

2
σ

2 + 2γ σρ)
1/2 as the coefficients on xi and wi, respectively. (The

procedure will estimate a mixture of β
∗ and α

∗ for any variable that appears in both

xi and wi.) In addition, linear regression of zi on wi produces estimates of α and σ
2,

but there is no method of moments estimator of ρ or γ produced by this procedure,
so this estimator is incomplete. Newey (1987) suggested a “minimum chi-squared”
estimator that does estimate all parameters. A more direct, and actually simpler,
approach is full information maximum likelihood.

The log-likelihood is built up from the joint density of di and zi, which we write
as the product of the conditional and the marginal densities:

f (di, zi) = f (di|zi)f (zi).

To derive the conditional distribution, we use results for the bivariate normal, and
write:

εi|ui = [(ρσ)/σ
2]ui + vi,

where vi is normally distributed with Var[vi] = (1 − ρ
2
). Inserting this in the first

equation of equation (11.6), we have:

d∗i |zi = x′iβ+ γ zi + (ρ/σ)ui + vi.
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Therefore:

Prob[di = 1|xi, zi] = #

[
x′iβ+ γ zi + (ρ/σ)ui√

1− ρ2

]
.

Inserting the expression for ui = (zi − w′iα), and using the normal density for
the marginal distribution of zi in the second equation of (11.6), we obtain the
log-likelihood function for the sample:

ln L =
∑n

i=1
ln#

[
(2di − 1)

(
x′iβ+ γwi + (ρ/σu)(zi −w′iα)√

1− ρ2

)]
+ ln

[
1
σu

φ

(
zi −w′iα

σu

)]
.

11.3.6 Panel data models

The ongoing development of large, rich panel data sets on individual and fam-
ily market experiences, such as the GSOEP data we are using here, has brought
attention to panel data approaches for discrete choice modeling. The extensions
of familiar fixed and random effects models are not direct and bring statistical
and computational issues that are not present in linear regression modeling. This
section will detail the most widely used techniques. This area of research is one
of the most active theoretical arenas as well. We will only have space to note the
theoretical frontiers briefly in the conclusions.

11.3.6.1 Panel data modeling frameworks

The natural departure point for panel data analysis of binary choice is the extension
of the familiar fixed and random effects linear regression models. Since the models
considered here are nonlinear, however, the convenient least squares and feasible
generalized least squares methods are unavailable. This proves to be more than an
inconvenience in this setting, as it mandates consideration of some specification
issues. We will begin by considering extensions of the fixed and random effects
models, then turn to more general models of individual heterogeneity, the random
parameters and latent class models. The various models described here all carry over
to a range of specifications. However, in the applied literature, the binary choice
model is the leading case.

11.3.6.2 Fixed effects model

The fixed effects model is:

d∗it = αi + x′itβ+ z′iγ+ εit , t = 1, . . . , Ti, i = 1, . . . , n

dit = 1 if d∗it > 0, and dit = 0 otherwise.

We have made the distinction between time varying attributes and characteris-
tics, xit , and time invariant characteristics, zi. The common effects, αi, may be
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correlated with the included variables, xit . Since the model is nonlinear, the least
squares estimator is unuseable. The log-likelihood is:

ln L =
∑n

i=1

∑Ti

t=1
ln F[qit (αi + x′itβ+ z′iγ)].

In principle, direct (brute force) maximization of the function with respect to
(α1, . . . ,αn,β,γ) can be used to obtain estimates of the parameters and of their
asymptotic standard errors. However, several issues arise.

1. The number of individual intercept parameters may be excessive. In our appli-
cation, e.g., there are 7,293 families. Direct maximization of the log-likelihood
function for this many parameters is likely to be difficult. This purely practical
issue does have a straightforward solution and is, in fact, not an obstacle to
estimation (see Greene, 2001, 2008a, Ch. 23).

2. As in the case of the linear model, it is not possible to estimate the parameters
that apply to time invariant variables, zi. In the linear case, the transformation
to group mean deviations turns these variables into columns of zeros. A similar
problem arises in this nonlinear model.

3. Groups of observations in which the outcome variable, dit , is always one or
always zero for t = 1, . . . , Ti must be dropped from the sample.

4. The full MLE for this model is inconsistent, a consequence of the incidental
parameters problem (see Neyman and Scott, 1948; Lancaster, 2000). The problem
arises because the number of αi parameters in the model rises with n. With
small T or Ti this produces a bias in the estimator of β that does not diminish
with increases in n. The best known case, that of the logit model with T =
2, was documented by Andersen (1970), Hsiao (1986) and Abrevaya (1997),
who showed analytically that, with T = 2, the MLE of θ for the binary logit
model in the presence of the fixed effects will converge to 2θ. Results for other
distributions and other values of T have not been obtained analytically, and are
based on Monte Carlo studies. Table 11.1, extracted from Greene (2001, 2004a,
2004b), demonstrates the effect in the probit, logit, and ordered probit model
discussed in section 11.5. (The conditional estimator is discussed below.) The
model contains a continuous variable, xit1, and a dummy variable, xit2. The

Table 11.1 Means of empirical sampling distributions, N = 1,000 individuals based on
200 replications. Table entry is β1,β2.

T = 2 T = 3 T = 5 T = 8 T = 10 T = 20

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

Logit 2.020, 2.027 1.698, 1.668 1.379, 1.323 1.217, 1.156 1.161, 1.135 1.069, 1.062
Logit-Ca 0.994, 1.048 1.003, 0.999 0.996, 1.017 1.005, 0.988 1.002, 0.999 1.000, 1.004
Probit 2.083, 1.938 1.821, 1.777 1.589, 1.407 1.328, 1.243 1.247, 1.169 1.108, 1.068
Ord. probit 2.328, 2.605 1.592, 1.806 1.305, 1.415 1.166, 1.220 1.131, 1.158 1.058, 1.068

a Estimates obtained using the conditional likelihood function – fixed effects not estimated.
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population values of both coefficients are 1.0. The results, which are consistent
with other studies, e.g., Katz (2001), suggest the persistence of the “small T bias”
out to fairly large T .

These problems, particularly the last, have made the full fixed effects approach
unattractive. The specification, however, remains an attractive alternative to the
random effects approach considered next. Two approaches have been taken to
work around the incidental parameters problem in the fixed effects model. A vari-
ety of semiparametric models have been suggested, such as Honore and Kyriazidou
(2000a, 2000b) and Honore (2002).15 In a few cases, including the binomial logit
(but not the probit), it is possible to condition the fixed effects out of the model.
The operation is similar to the group mean deviations transformation in the lin-
ear regression model. For the binary logit model (omitting the time invariant
variables), we have:

Prob(dit = jit |xit ) =
exp[jit (αi + x′itβ)]
1+ exp(αi + x′itβ)

where jit is the observed value.

This is the term that enters the unconditional log-likelihood function. However,

conditioning on �
Ti
t=1jit = Si, we have the joint probability:

Prob(di1 = ji1, di2 = ji2, . . . |xit ,�
Ti
t=1dit = Si) =

exp(�Ti
t=1jitx

′
itβ)∑

�t dit=Si
exp(�Ti

t=1ditx
′
itβ)

.

(See Rasch, 1960; Andersen, 1970; Chamberlain, 1980.) The denominator of
the conditional probability is the summation over the different realizations of
(di1, . . . , di,Ti) that can sum to Si. Note that, in this formulation, if Si = 0 or Ti,
there is only one way for the realizations to sum to Si, and the one term in the
denominator equals the observed result in the numerator. The probability equals
one and, as noted in point 3 above, this group falls out of the estimator. The
conditional log-likelihood is the sum of the logs of the joint probabilities. The
log-likelihood is free of the fixed effects, so the estimator has the usual proper-
ties, including consistency. This estimator was used by Cecchetti (1986) and Willis
(2006) to analyze magazine price changes.

The conditional estimator is consistent, so it bypasses the incidental parameter
problem. However, it does have a major shortcoming. By avoiding the estimation of
the fixed effects, we have precluded computation of the partial effects or estimates
of the probabilities for the outcomes. So, like the robust semiparametric estimators,
this approach limits the analyst to simple inference about β itself. One approach
that might provide some headway out of this constraint is to compute second-step
estimates of αi. Since we have in hand a consistent estimator of β, we treat that as
known, and return to the unconditional log-likelihood function. For individual i,
the contribution to the log-likelihood is:

ln Li =
∑Ti

t=1
ln F[qit (αi + x′itβ)].
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For convenience, denote the “known” x′itβ as bit . The first-order condition for
maximizing lnL with respect to αi, given known β, is:

∂ ln Li/∂bit =
∑Ti

t=1
[dit − F(αi + bit )] = 0.

This is one equation in one unknown that can be solved iteratively to provide an
estimate of αi. The resulting estimator is inconsistent, since Ti is fixed – the resulting
estimates are also likely to be highly variable because of the small sample sizes.
However, the inconsistency results not because it converges to something other
than αi. The estimator is inconsistent because its variance is O(1/Ti). Consequently,
an estimator of the average partial effects:

δ̂ = 1
n

∑n

i=1

∑Ti

t=1
f (α̂i + x′it β̂)β̂,

may yet provide a useful estimate of the partial effects. This estimator remains to
be examined empirically or theoretically.

The fixed effects model has the attractive aspect that it is a robust specifica-
tion. The four shortcomings listed above, especially items 2 and 4, do reduce its
appeal, however. The wisdom behind the linear model does not carry over to binary
choice models because the estimation and inferential problems change substan-
tively in nonlinear settings. The statistical aspects of the random effects model
discussed next are more appealing. However, the model’s assumption of orthog-
onality between the unobserved heterogeneity and the included variables is also
unattractive. The Mundlak (1978) device is an intermediate step between these two
that is sometimes used. This approach relies on a projection of the effects on the
time invariant characteristics and group means of the time variables;

αi = z′iγ+ π0 + x′iπ+ σuui, where E[ui|xi] = 0 and Var[ui|xi] = 1.

(The location parameter π0 accommodates a non-zero mean while the scale
parameter, σu, picks up the variance of the effects, so the assumptions of zero
mean and unit variance for ui are just normalizations.) Inserting this into the fixed
effects model produces a type of random effects model:

d∗it = x′itβ+ z′iγ+ π0 + x′iπ+ σuui + εit , t = 1, . . . , Ti, i = 1, . . . , n

dit = 1 if d∗it > 0, and dit = 0 otherwise.

If the presence of the projection on the group means successfully picks up the corre-
lation between αi and xit , then the parameters (β, γ, π0, π, σu) can be estimated by
maximum likelihood (ML) as a random effects model. The remaining assumptions
(functional form and distribution) are assumed to hold (at least approximately), so
that the random effects treatment is appropriate.

11.3.6.3 Random effects models and estimation

As suggested in the preceding section, the counterpart to a random effects model
for binary choice would be:

d∗it = x′itβ+ z′iγ+ σuui + εit , t = 1, . . . , Ti, i = 1, . . . , n,
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where E[ui|xit ] = 0 and Var[ui|xit ] = 1 and:

dit = 1 if d∗it > 0, and dit = 0 otherwise.

(Since the random effects model can accommodate time invariant characteristics,
we have reintroduced zi into the model.) The random effects model is fitted by ML
assuming normality for εit and ui. (The most common application is the random
effects probit model.)

To begin, suppose the common effect is ignored, and the “pooled” model is
fitted by simple ML, ignoring the presence of the heterogeneity. The (incorrectly)
assumed model is:

Prob(dit = 1|xit ) = F(x′itβ+ z′iγ).

In the presence of ui, the correct model is:

Prob(dit = 1|xit ) = Prob(εit + σuui < x′itβ+ z′iγ)

= Prob

⎛⎜⎝εit + σuui√
1+ σ2

u

<
x′itβ+ z′iγ√

1+ σ2
u

⎞⎟⎠
= Prob

(
vit < x′itβ

u + z′iγ
u
)

, vit ∼ N[0, 1].

Thus the marginal probability that dit equals one obeys the assumptions of the

familiar probit. However, the coefficient vector is not β, but β
u = β/(1 + σ

2
u )

1/2,
and likewise for γ . The upshot is that ignoring the heterogeneity (random effect)
is not so benign here as in the linear regression model. In the regression case,
ignoring a random effect that is uncorrelated with the included variables produces
an inefficient, but consistent, estimator.

In spite of the preceding result, it has become common in the applied literature
to report “robust,” “cluster corrected” asymptotic covariance matrices for pooled
estimators such as the MLE above. The underlying justification is that, while the
MLE may be consistent (though it rarely is, as exemplified above), the asymptotic
covariance matrix should account for the correlation across observations within a
group. The corrected estimator is:

Est.Asy.Var
[
θ̂MLE

]
=
[∑n

i=1

∑Ti

t=1
Hit

]−1 [∑n

i=1

(∑Ti

t=1
git

)(∑Ti

t=1
g′it
)]

×
[∑n

i=1

∑Ti

t=1
Hit

]−1
,

where Hit = ∂
2 ln F(qit (x

′
itβ+ z′iγ))/∂θ∂θ

′ and git = ∂ ln F(qit (x
′
itβ+ z′iγ))/∂θ and all

terms are computed at the pooled MLE. The estimator has a passing resemblance
to the White (1980) covariance estimator for the least squares coefficient estimator.
However, the usefulness of this estimator rests on the assumption that the pooled
estimator is consistent, which will generally not be the case.
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Efficiency is a moot point for this estimator, since the probit MLE estimates β

with a bias toward zero:

plim β̂MLE = β
u

= β/(1+ σ
2
u )

1/2

= β(1− ρ
2
)
1/2,

where ρ
2 = Corr2[εit + ui, εis + ui] for t �= s. Wooldridge (2002a) suggests that this

may not be an issue here, since the real interest is in the partial effects, which are,
for the correct model:

δit = ∂Prob[dit = 1|xit , zi]/∂xit = β
u
φ(x′itβ

u + z′iγ
u
).

These would then be averaged over the individuals in the sample. It follows, then,
that the “pooled” estimator, which ignores the heterogeneity, does not estimate
the structural parameters of the model correctly, but it does produce an appropriate
estimator of the average partial effects.

In the random effects model, the observations are not statistically independent
– because of the common ui, the observations (di1, . . . , di, Ti, ui) constitute a Ti + 1
variate random vector. The contribution of observation i to the log-likelihood is
the joint density:

f (di1, . . . , di,Ti, ui|Xi) = f (di1, . . . , di,Ti|Xi, zi, ui)f (ui).

Conditioned on ui, the Ti random outcomes, di1,. . .,di,Ti, are independent. This
implies that (with the normality assumption now incorporated in the model) the
contribution to the log-likelihood is:

ln Li = ln
{[∏Ti

t=1
#
(
qit (x

′
itβ+ z′iγ+ σuui)

)]
φ(ui)

}
,

where φ(ui) is the standard normal density. This joint density contains the unob-
served ui, which must be integrated out of the function to obtain the appropriate
log-likelihood function in terms of the observed data. Combining all terms, we
have the log-likelihood for the observed sample:

ln L =
∑n

i=1
ln
[∫ ∞
−∞

(∏Ti

t=1
#
(
qit (x

′
itβ+ z′iγ+ σuui)

))
φ(ui)dui

]
. (11.7)

Maximization of the log-likelihood with respect to (β, σu) requires evaluation
of the integrals in equation (11.7). Since these do not exist in closed form,
some method of approximation must be used. The most common approach is
the Hermite quadrature method suggested by Butler and Moffitt (1982). The
approximation is written:∫ ∞

−∞

(∏Ti

t=1
#
(
qit (x

′
itβ+ z′iγ+ σuui)

))
φ(ui)dui ≈

1√
π

∑H

h=1
wh

∏Ti

t=1

#
(
qit (x

′
itβ+ z′iγ+

√
2σuzh)

)
,
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where wh and zh are the weights and nodes of the quadrature (see Abramovitz and
Stegun, 1971) and H is the number of nodes chosen (typically 20, 32 or 64). An
alternative approach to the approximation is suggested by noting that:[∫ ∞

−∞

(∏Ti

t=1
#
(
qit (x

′
itβ+ z′iγ+ σuui)

))
φ(ui)dui

]
= Eui

[∏Ti

t=1
#
(
qit (x

′
itβ+ z′iγ+ σuui)

)]
.

The expected value can be approximated satisfactorily by simulation by using a
sufficiently large sample of random draws from the population of ui:[∫ ∞

−∞

(∏Ti

t=1
#
(
qit (x

′
itβ+ z′iγ+ σuui)

))
φ(ui)dui

]
≈ 1

R

∑R

r=1

∏Ti

t=1
#
(
qit (x

′
itβ+ z′iγ+ σuuir )

)
.

Sampling from the standard normal population is straightforward using modern
software (see Greene, 2008a, Ch. 17). The right-hand side converges to the left-
hand side as R increases (so long as

√
n/R → 0; see Gourieroux and Monfort,

1996).16 The simulated log-likelihood to be maximized is:

ln LS =
∑n

i=1
ln

1
R

∑R

r=1

∏Ti

t=1
#
(
qit (x

′
itβ+ z′iγ+ σuuir )

)
.

Recent research in numerical methods has revealed alternative approaches to
random sampling to speed up the rate of convergence in the integration. Hal-
ton sequences (see Bhat, 1999) are often used to produce approximations which
provide comparable accuracy with far fewer draws than the simulation approach.

11.3.6.4 Dynamic models

An important extension of the panel data treatment in the previous section is the
dynamic model:

d∗it = x′itβ+ z′iγ+ λdi,t−1 + αi + εit

dit = 1 if d∗it > 0 and 0 otherwise. (11.8)

Recent applications include Hyslop’s (1999) analysis of labor force participation,
Wooldridge’s (2005) study of union membership and Contoyannis, Jones and Rice’s
(2004) analysis of self-reported health status in the BHPS.17 In these and other
applications, the central feature is state dependence, or the initial conditions problem:
individuals tend to “stick” with their previous position. Wooldridge (2002b) lays
out conditions under which an appropriate treatment is to model the individual
effect as being determined by the initial value in:

αi = α0 + α1di0 + x′iπ+ σuui, ui ∼ N[0, 1]. (11.9)

This is the Mundlak treatment suggested earlier with the addition of the initial state
in the projection.18 Inserting equation (11.9) in (11.8) produces an augmented
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random effects model that can be estimated, as in the static case, by Hermite
quadrature of maximum simulated likelihood (MSL).

Much of the contemporary literature has focused on methods of avoiding the
strong parametric assumptions of the probit and logit models. Manski (1987) and
Honore and Kyriadizou (2000a) show that Manski’s (1986) maximum score esti-
mator can be applied to the differences of unequal pairs of observations in a
two-period panel with fixed effects. An extension of lagged effects to a paramet-
ric model is Chamberlain (1980), Jones and Landwehr (1988) and Magnac (1997),
who added state dependence to Chamberlain’s fixed effects logit estimator. Unfor-
tunately, once the identification issues are settled, the model is only operational if
there are no other exogenous variables in it, which limits its usefulness for practi-
cal application. Lewbel (2000) has extended his fixed effects estimator to dynamic
models as well. In this framework, the narrow assumptions about the independent
variables once again limit its practical applicability. Honore and Kyriazidou (2000b)
have combined the logic of the conditional logit model and Manski’s maximum
score estimator. They specify:

Prob(di0 = 1|Xi, zi,αi) = F0(Xi, zi,αi), where Xi = (xi1, xi2, . . . , xiT ),

Prob(dit = 1|Xi, zi,αi, di0, di1, . . . , di,t−1)

= F(x′itβ+ z′iγ+ αi + λdi,t−1) t = 1, . . . , T .

The analysis assumes a single regressor and focuses on the case of T = 3. The
resulting estimator resembles Chamberlain’s but relies on observations for which
xit = xi,t−1, which rules out direct time effects as well as, for practical purposes,
any continuous variable. The restriction to a single regressor limits the generality
of the technique as well. The need for observations with equal values of xit is a
considerable restriction, and the authors propose a kernel density estimator for
the difference, xit − xi,t−1, instead, which does relax that restriction a bit. The
end result is an estimator which converges (they conjecture) but to a non-normal

distribution and at a rate slower than n−1/3.
Semiparametric estimators for dynamic models at this point in the development

are still primarily of theoretical interest. Models that extend the parametric for-
mulations to include state dependence have a much longer history, including
Heckman (1978, 1981a, 1981b), Heckman and Macurdy (1981), Jakubson (1988),
Keane (1993) and Beck, Epstein and Jackman (2001), to name just a few.19

11.3.6.5 Parameter heterogeneity: random parameters and latent class models

Among the central features of panel data treatments of individual data is the
opportunity to model individual heterogeneity, both observed and unobserved.
The preceding discussion develops a set of models in which latent heterogeneity is
embodied in the additive effect, αi. We can extend the model to allow heterogeneity
in the other model parameters as well,. The resulting specification is:

d∗it = w′itθi + αi + εi, dit = 1(d∗it > 0). (11.10)
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The specification is completed by the assumptions about the process that generates
the individual specific parameters. Note that, in this formulation, the “effect” αi is
now merely an individual specific constant term. It is thus convenient to absorb it
into the rest of the parameter vector, θi, and assume that wit contains a constant.

A random parameters model (or mixed model or hierarchical model), in which
parameters are continuously distributed across individuals, can be written:

θi = θ0 +zi + �ui,

where ui is a set of uncorrelated random variables with zero means (means are
absorbed in θ0) and unit variances (non-unit variances are contained in the param-
eter matrix �). The random effects model examined earlier emerges if  = 0 and
the only random component in θi is the constant term, in which case � would
have a single nonzero diagonal element equal to σu. For the more general case, we
have a random parameters formulation in which:

E[θi|zi] = θ0 +zi

Var[θi|zi] = ��
′.

A random parameters model of this sort can be estimated by Hermite quadrature
(see Rabe-Hesketh, Skrondal and Pickles, 2005) or by MSL (see Train, 2003; Greene,
2008a, Ch. 17, 23). The simulated log-likelihood function for this model will be:

ln LS =
∑n

i=1
ln

1
R

∑R

r=1

∏Ti

t=1
#
(
qit (w

′
it (θ0 +�zi + �uir ))

)
.

Partial effects in this model can be computed by averaging the partial effects at the
population conditional means of the parameters, E[θi|zi] = θ0 +zi.

11.3.7 Application

Riphahn, Wambach and Million (2003) were interested in counts of physician and
hospital visits. In this application, they were particularly interested in the impact
that the presence of private insurance had on utilization counts, i.e., whether the
data contain evidence of moral hazard. The sample is an unbalanced panel of
7,293 households. The number of households varies over seven periods (1,525;
1,079; 825; 926; 1,051; 1,000; 887) with a total number of 27,326 observations.
The variables in the data file are listed in Table 11.2. (Only a few of these were used
in the applications.)

The model to be examined here (not the specification used in the original
study) is:

Prob(Doctorit = 1|xit ) = F(β1 + β2Ageit + β3Incomeit + β4Kidsit

+ β5Educationit + β6Marriedit ).
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Table 11.2 Variables in German health care data file

Variable
deviation Mean Standard

Year Calendar year of the observation 1987.82 3.17087
Age Age in years 43.5257 11.3302
Female Female = 1; male = 0 .478775 .499558
Married Married = 1; else = 0 .758618 .427929
HhKids Children under age 16 in the household = 1; else = 0 .402730 .490456
HhNInc Household nominal monthly net income in German

marks/10,000
.352084 .176908

Working Employed = 1; else = 0 .677048 .467613
BlueC Blue-collar employee = 1; else = 0 .243761 .429358
WhiteC White-collar employee = 1; else = 0 .299605 .458093
Self Self-employed = 1; else = 0 .0621752 .241478
Beamt Civil servant = 1; else = 0 .0746908 .262897
Educ Years of schooling 11.3206 2.32489
Haupts Highest schooling degree is Hauptschul = 1; else = 0 .624277 .484318
Reals Highest schooling degree is Realschul = 1; else = 0 .196809 .397594
Fachhs Highest schooling degree is Polytechnic = 1; else = 0 .0408402 .197924
Abitur Highest schooling degree is Abitur = 1; else = 0 .117031 .321464
Univ Highest schooling degree is university = 1; else = 0 .0719461 .258403
Hsat Health satisfaction, 0–10 6.78543 2.29372
Newhsata,b Health satisfaction, 0–10 6.78566 2.29373
Handdum Handicapped = 1; else = 0 .214015 .410028
Handper Degree of handicap in pct, 0–100 7.01229 19.2646
DocVis Number of doctor visits in last three months 3.18352 5.68969
Doctorb 1 if Docvis > 0, 0 else .629108 .483052
HospVis Number of hospital visits in last calendar year .138257 .884339
Hospitalb 1 of Hospvis > 0, 0 else .0876455 .282784
Public Insured in public health insurance= 1; else = 0 .885713 .318165
AddOn Insured by add-on insurance = 1; else = 0 .0188099 .135856

Data source: http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/. From Riphahn,
Wambach and Million (2003, pp. 387–405).
a NEWHSAT = HSAT ; 40 observations on HSAT recorded between 6 and 7 were changed to 7.
b Transformed variable not in raw data file.

(In order to examine fixed effects models, we have not used any of the time invari-
ant variables, such as gender.) Table 11.3 lists the maximum likelihood estimates
and estimated asymptotic standard errors for several model specifications. Esti-
mates of the logit model are shown first, followed by the probit estimates. There is
a surprising amount of variation across the estimators. The coefficients are in bold
to facilitate reading the table. The empirical regularity that the MLEs of the co-
efficients in the logit model are typically about 1.6 times their probit counterparts
is strikingly evident in these results (e.g., the ratios are 1.613 and 1.597 for the
coefficients on age and income, respectively). The apparent differences between
the logit and probit results are resolved by a comparison of the partial effects
also shown in Table 11.3. As anticipated, the results are essentially the same for
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the two models. The first two rows of partial effects in Table 11.3 compare the
partial effects computed at the means of the variables, shown in the first row, to
the average partial effects, computed by averaging the individual partial effects,
shown in the second row. As might be expected, the differences between them are
inconsequential.

The log-likelihood for the probit model is slightly larger than for the logit: how-
ever, it is not possible to compare the two on this basis as the models are non-nested.
The Vuong statistic, based on vi = ln Li(logit)− ln Li(probit), equals− 7.44, which
favors the probit model. The aggregated prediction of the pooled logit model is
shown in the following table, using the usual prediction rule, P∗ = 0.5.

Predicted

Actual 0 1

0 378 9,757
1 394 16,797

Thus, we obtain correct prediction of (378 + 16, 797)/27, 326 = 62.9% of the

observations. In spite of this apparently good model performance, the pseudo-R2

is only 1 − (−17673.10)/(−18019.55) = 0.01923. This suggests a disconnection
between these two measures of model performance. As a final check on the model
itself, we tested the null hypothesis that the five coefficients other than the con-
stant term are zero in the probit specification. The likelihood ratio test is based on
the statistic:

λLR = 2[−17670.94− 27326(.37089 ln .37089+ .62911 ln .62911)] = 697.22.

The Wald statistic based on the full model is λWALD = 686.991. The LM statistic is
computed as:

λLM = g′0X(G′0G0)
−1X′g0,

where g0 is the derivative of the log-likelihood when the model contains only a

constant term. This is equal to qitφ(qitβ0)/#(qitβ0), where β0 = #
−1

(.62911) =
.32949. Then the ith row of G is git ,0 times the corresponding row of X. The value
of the LM statistic is 715.97. The 5% critical value from the chi-squared distribution
with 5 degrees of freedom is 11.07 so, in all three cases, the null hypothesis that
the slopes are zero is soundly rejected.

The second set of probit estimates was computed using the Gibbs sampler and a
noninformative prior. We used only 500 replications, and discarded the first 100 for
the burn-in. The similarity to the maximum likelihood estimates is what one would
expect given the large sample size. We note, however, that, notwithstanding the
striking similarity of the Gibbs sampler to the MLE, this is not an efficient method
of estimating the parameters of a probit model. The estimator requires generation
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of thousands of samples of potentially thousands of observations. We used only
500 replications to produce the results in Table 11.3. The computations took about
five minutes. Using Newton’s method to maximize the log-likelihood directly took
less than five seconds. Unless one is wedded to the Bayesian paradigm then, on
strictly practical grounds, the MLE would be the preferred estimator.

Table 11.3 also lists the probit and logit random and fixed effects estimators. The

random effects estimators produce a reasonably large estimate of ρ2, roughly 0.44.
The high correlation across observations does cast some doubt on the validity of
the pooled estimator. The pooled estimator is inconsistent in either the fixed or
random effects cases. The logit results include two fixed effects estimators. The
model marked “U” is the unconditional (inconsistent) estimator. The one marked
“C” is Chamberlain’s consistent estimator. Note that, for all three fixed effects
estimators, it is necessary to drop from the sample any groups that have Doctorit
equal to zero or one for every period. There were 3,046 such groups, which is about
42% of the sample. We also computed the probit random effects model in two ways:
first by using the Butler and Moffitt method, then by using MSL estimation. In this
case, the estimators are very similar, as might be expected. The estimated squared

correlation coefficient is computed as ρ
2 = σ

2
u /(σ

2
ε + σ

2
u ). For the probit model,

σ
2
ε = 1. The MSL estimator computes su = 0.9088376, from which we obtained

ρ
2. The estimated partial effects for the models are also shown in Table 11.3. The

average of the fixed effects constant terms is used to obtain a constant term for the
fixed effects case. Once again there is a considerable amount of variation across the
different estimators. On average, the fixed effects models tend to produce much
larger values than the pooled or random effects models.

Finally, we carried out two tests of the stability of the model. All of the estimators
listed in Table 11.3 derive from a model in which it is assumed that the same
coefficient vector applies in every period. To examine this assumption, we carried
out a homogeneity test of the hypothesis:

H0 : β1 = β2 = . . . = βT ,

for the T = 7 periods in the sample. The likelihood ratio statistic is:

λ = 2
[(

�
T
t=1 ln Lt

)
− ln LPOOLED

]
.

The first part of the statistic is obtained by dividing the sample into the seven years
of data – the number of observations varies (3,874; 3,794; 3,792; 3,661; 4,483;
4,340; 3,377) – and then estimating the model separately for each year. The cal-
culated statistic is 202.97. The 5% critical value from the chi squared distribution
with (T−1)6 = 36 degrees of freedom is 50.998, so the homogeneity assumption is
rejected by the data. As a second test, we separated the sample into men and women
and once again tested for homogeneity. The likelihood ratio test statistic is:

λ = 2[ln LFEMALE + ln LMALE − ln LPOOLED]
= 2[(−7855.219377)+ (−9541.065897)− (−18019.55)]
= 1246.529452.
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The 5% critical value from the chi-squared distribution with 6 degrees of freedom
is 12.592, so this hypothesis is rejected as well.

11.4 Bivariate and multivariate binary choice

The health care data contain two binary variables, DOCTOR and HOSPITAL, which
one would expect to be at least correlated if not jointly determined. The extension
of the binary choice model to more than one choice is relatively uncomplicated,
but does bring new statistical issues as well as new practical complications. We
consider several two equation specifications first, as these are the leading cases,
then consider the extension to an arbitrary number of binary choices.

11.4.1 Bivariate binary choice

A two-equation binary choice model would take the form of a seemingly unrelated
regressions model:

d∗i,1 = w′i,1θ1 + εi,1, di,1 = 1 if d∗i,1 > 0,

d∗i,2 = w′i,2θ2 + εi,2, di,2 = 1 if d∗i,2 > 0,

where “1” and “2” distinguish the equations (and are distinct from the periods in
a panel data case). The bivariate binary choice model arises when the two distur-
bances are correlated. There is no convenient approach for this model based on
the logistic model, so we assume bivariate normality at the outset. The bivariate
probit model has:

F(εi,1, εi,2) = N2[(0, 0), (1, 1), ρ], − 1 < ρ < 1.

The probability associated with the joint event di,1 = di,2 = 1 is then:

Prob(di,1 = 1, di,2 = 1|wi,1, wi,2) = #2

[
w′i,1θ1, w′i,2θ2, ρ

]
,

where #2[t1, t2, ρ] denotes the bivariate normal c.d.f. The log-likelihood function
is the joint density for the observed outcomes. By extending the formulation of
the univariate probit model in the preceding section, we obtain:

ln L =
∑n

i=1
ln#2

[(
qi,1w′i,1θ1

)
,
(
qi,2w′i,2θ2

)
,
(
qi,1qi,2ρ

)]
.

The bivariate normal integral does not exist in closed form, and must be approxi-
mated, typically with Hermite quadrature.

The model is otherwise conventional and the standard conditions for MLEs
are obtained. Interpretation of the model does bring some complications, how-
ever. First, θ1 and θ2 are not the slopes of any recognizable conditional mean
function and neither are the derivatives of the possibly interesting Prob(di,1 =
1, di,2 = 1|wi,1, wi,2). Both of these are complicated functions of all the model
parameters and both data vectors (see Greene, 2008a, sec. 23.8.3; Christofides,
Stengos and Swidinsky, 1997; Christofides, Hardin and Stengos, 2000). Since
this is a two-equation model, it is unclear what quantity should be analyzed
when interpreting the coefficients in relation to partial effects. One possibility
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is the joint probability, Prob(di,1 = 1, di,2 = 1) = #2

[
w′i,1θ1, w′i,2θ2, ρ

]
, that is

analyzed by Christofides, Stengos and Swidinsky (1997). Greene (1996, 2008a)
considers, instead, the conditional mean function E[di,1|di,2 = 1, wi,1, wi,2] =
#2

[
w′i,1θ1, w′i,2θ2, ρ

]
/#[w′i,2θ2]. In either case, the raw coefficients bear little

resemblance to the partial effects.
For hypothesis testing about the coefficients, the standard results for Wald, LM

and LR tests apply. The LM test is likely to be cumbersome because the derivatives
of the log-likelihood function are complicated. The other two are straightforward.
A hypothesis of interest is that the correlation is zero. For testing:

H0 : ρ = 0,

all three likelihood-based procedures are straightforward, as the application below
demonstrates. The LM statistic derived by Kiefer (1982) is:

λLM =

{∑n
i=1

[
qi, 1qi, 2

φ(w′
i,1θ1)φ(w′

i,2θ2)

#(w′
i,1θ1)#(w′

i,2θ2)

]}2

∑n
i=1

⎧⎨⎩
[
φ(w′

i,1θ1)φ(w′
i,2θ2)

]2

#(w′
i,1θ1)#(−w′

i,1θ1)#(w′
i,2θ2)#(−w′

i,2θ2)

⎫⎬⎭
,

where the two coefficient vectors are the MLEs from the univariate probit models
estimated separately.

11.4.2 Recursive simultaneous equations

Section 11.3.5 considered a type of simultaneous equations model in which an
endogenous regressor appears on the right-hand side of a probit model. Two other
simultaneous equations specifications have attracted interest. Amemiya (1985)
demonstrates that a fully simultaneous bivariate probit model,

d∗i,1 = w′i,1θ1 + γ1di,2 + εi,1, di,1 = 1 if d∗i,1 > 0,

d∗i,2 = w′i,2θ2 + γ2di,1 + εi,2, di,2 = 1 if d∗i,2 > 0,

is internally inconsistent and unidentified. However, a recursive model:

d∗i,1 = w′i,1θ1 + εi,1, di,1 = 1 if d∗i,1 > 0,

d∗i,2 = w′i,2θ2 + γ2di,1 + εi,2, di,2 = 1 if d∗i,2 > 0,

(εi,1εi,2) ∼ N2[(0, 0), (1, 1), ρ],

is a straightforward extension of the bivariate model. For estimation of this model,
we have the counterintuitive result that it can be fitted as an ordinary bivariate
probit model with the additional right-hand-side variable in the second equation,
ignoring the simultaneity. The recent literature provides a variety of applications
of this model, including Greene (1998), Fabbri, Monfardini and Radice (2004),
Kassouf and Hoffman (2006), White and Wolaver (2003), Gandelman (2005) and
Greene, Rhine and Toussaint-Comeau (2006).
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Interpretation of the components of this model is particularly complicated.
Typically, interest will center on the second equation. In Greene (1998),
the second equation concerned the presence of a gender economics course
in a college curriculum, while the first equation specified the presence of a
women’s studies program on the campus. In Kassouf and Hoffman (2006), the
authors were interested in the occurrence of work-related injuries while the first
conditioning equation specified the use or non-use of protective equipment.
Fabbri, Monfardini and Radice (2004) analyzed the choice of Cesarean delivery
conditioned on hospital type (public or private). In Greene, Rhine and Toussaint-
Comeau (2003), the main equation concerned use of a check cashing facility while
the conditioning event in the first equation was whether or not the individual
participated in the banking system. In all of these cases, the margin of interest is
the impact of the variables in the model on the probability that di,2 equals one.
Because di,1 appears in the second equation, there is (potentially) a direct effect (in
wi,2) and an indirect effect transmitted to di,2 through the impact of the variable
in question on the probability that di,1 equals one. Details on these computations
appear in Greene (2008a) and Kassouf and Hoffmann (2006).

11.4.3 Sample selection in a bivariate probit model

Another bivariate probit model that is related to the recursive model of the
preceding section is the bivariate probit with sample selection. The structural
equations are

d∗i,1 = w′i,1θ1 + εi,1, di,1 = 1 if d∗i,1 > 0, 0 otherwise,

d∗i,2 = w′i,2θ2 + εi,2, di,2 = 1 if d∗i,2 > 0, 0 otherwise, and if di,1 = 1,

di,2, wi,2 are unobserved when di,1 = 0,

(εi,1εi,2) ∼ N2[(0, 0), (1, 1), ρ].

The first equation is a “selection equation.” Presence in the sample of observa-
tions for the second equation is determined by the first. Like the recursive model,
this framework has been used in a variety of applications. The first was a study
of the choice of deductibles in insurance coverage by Wynand and van Praag
(1981). Boyes, Hoffman and Low (1989) and Greene (1992) studied loan default in
which the application is the selection rule. More recently, McQuestion (2000) has
used the model to analyze health status (selection) and health behavior, and Lee,
Lee and Eastwood (2003) have studied consumer adoption of computer banking
technology.

Estimation of this sample selection model is done by maximum likelihood in
one step.20 The log-likelihood is:

ln L =
∑

di,a=0
ln#(−w′i,1θ1)+

∑n

i=1,di,1=1
ln#2

[
w′i,1θ1, qi,2w′i,2θ2, qi,2ρ

]
.

As before, estimation and inference in this model follows the standard procedures.
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11.4.4 Multivariate binary choice and the panel probit model

In principle, the bivariate probit model can be extended to an arbitrary number of
equations, as:

d∗i,1 = w′i,1θ1 + εi,1, di,1 = 1 if d∗i,1 > 0,

d∗i,2 = w′i,2θ2 + εi,2, di,2 = 1 if d∗i,2 > 0

. . .

d∗i,M = w′i,MθM + εi,M , di,M = 1 if d∗i,M > 0,⎛⎜⎜⎜⎝
εi,1
εi,2
. . .

εi,M

⎞⎟⎟⎟⎠ ∼ N

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

0
0
. . .

0

⎞⎟⎟⎟⎠,

⎛⎜⎜⎜⎝
1 ρ12 . . . ρ1M

ρ12 1 . . . ρ2M
. . . . . . . . . . . .

ρ1M ρ2M . . . 1

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ = N2[0, R].

The obstacle to the use of this model is its computational burden. The log-
likelihood is computed as follows. Let:

Q i = diag(qi,1, qi,2, . . . , qi,M )

bi = (w′i,1θ1, w′i,2θ2, . . . , w′i,MθM )
′

ci = Qibi

Di = Q iRQ i.

Then:

ln L =
∑n

i=1
ln#M [ci, Di].

Evaluation of the M-variate normal c.d.f. cannot be done analytically or with
quadrature. It is done with simulation, typically using the GHK (Geweke, Haji-
vassilou and Keane) simulator.

This form of the model also generalizes the random effects probit model exam-
ined earlier. We can relax the assumption of equal cross-period correlations by
writing:

d∗it = w′itθ+ εit , dit = 1 if d∗it > 0, 0 otherwise,

(εi1, . . . , εiT ) ∼ N[0, R].

This is precisely the model immediately above with the constraint that the coeffi-
cients in the equations are all the same. In this form, it is conventionally labeled
the panel probit model.21 Bertschek and Lechner (1998) devised a GMM estimator
to circumvent the computational burden of this model. Greene (2004a) examined
the same model, and considered alternative computational procedures as well as
some variations of the model specification.
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11.4.5 Application

Riphahn, Wambach and Million (2003) studied the joint determination of two
counts, doctor visits and hospital visits. One would expect these to be highly cor-
related, so a bivariate probit model should apply to DOCTOR = 1 (DocVis > 0) and
HOSPITAL = 1(HospVis > 0). The simple product moment correlation coefficient
is inappropriate for binary variables. The tetrachoric correlation is used instead;
this turns out to be the estimate of ρ in a bivariate probit model in which both
equations contain only a constant term. The first estimated model in Table 11.4
reports a value of 0.311 with a standard error of only 0.0136, so the results are
consistent with the conjecture. The second set of estimates assume ρ = 0; the esti-
mates for the “Doctor” equation are reproduced from Table 11.3. As noted, there is
evidence that ρ is positive. Kiefer’s (1982) LM statistic equals 399.20. The limiting
distribution is chi-squared with one degree of freedom – the 5% critical value is
3.84, so the hypothesis that the outcomes are uncorrelated is rejected. The Wald

and likelihood ratio statistics based on the unrestricted model are 21.4962 = 462.08
and 2[17670.94+8084.465−25534.46] = 441.998, respectively, so the hypothesis
is rejected by all three tests. The third model shown in Table 11.4 is the unre-
stricted bivariate probit model, while the fourth is the recursive bivariate probit
model with DOCTOR added to the right-hand side of the HOSPITAL equation. The
results do not support this specification; the log-likelihood is almost unchanged.
It is noteworthy that in this expanded specification, the estimate of ρ is no longer
significant, as might have been expected.

Table 11.4 Estimated bivariate probit models (standard errors in parentheses)

(1) (2) (3) (4)
Tetrachoric corr. Uncorrelated Bivariate probit Recursive probit

Doctor Hospital Doctor Hospital Doctor Hospital Doctor Hospital

Constant 0.329 –1.355 0.155 –1.246 0.155 –1.249 0.155 –1.256
(.0077) (.0107) (.0565) (.0809) (.0565) (.0773) (.0565) (.481)

Age .000 .000 .0128 .00488 .0128 .00489 .0128 .00486
(.000) (.000) (.0008) (.0011) (.0008) (.0011) (.0008) (.0025)

HhNInc .000 .000 –.116 .0421 –.118 .0492 –.118 .0496
(.000) (.000) (.0463) (.0633) (.0462) (.0595) (.0463) (.0652)

HhKids .000 .000 –.141 –.0147 –.141 –.0129 –.141 –.0125
(.000) (.000) (.0182) (.0256) (.0181) (.0257) (.0181) (.0386)

Educ .000 .000 –.0281 –.026 –.028 –.026 –.028 –.026
(.000) (.000) (.0035) (.0052) (.0035) (.0051) (.0035) (.0066)

Married .000 .000 .0522 –.0547 .0519 –.0546 .0519 –.0548
(.000) (.000) (.0205) (.0279) (.0205) (.0277) (.0205) (.0313)

Doctor .00912
(.663)

ρ .311 (.0136) .000 .303 (.0138) .298 (.366)
LnL –25898.27 –1767.94 –8084.47 –25534.46 –25534.46
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11.5 Ordered choice

In the preceding sections, the consumer is assumed to maximize utility over a pair
of alternatives. Models of ordered choice describe settings in which individuals
reveal the strength of their utility with respect to a single outcome. For example,
in a survey of voter preferences over a single issue (a new public facility or project,
a political candidate, etc.), random utility is, as before:

U∗i = x′iβ+ z′iγ+ εi.

The individual reveals a censored version of U∗i through a discrete response, e.g.,

yi =0 : strongly dislike

1 : mildly dislike

2 : indifferent

3 : mildly prefer

4 : strongly prefer.

The translation between the underlying U∗i and the observed yi produces the
ordered choice model:

yi =0 if U∗i ≤ μ0

1 if μ0 < U∗i ≤ μ1

2 if μ1 < U∗i ≤ μ2

· · ·
J if μJ−1 < U∗i ≤ μJ ,

where μ0, . . . ,μJ are threshold parameters that are to be estimated with the other
model parameters subject to μj > μj−1 for all j. Assuming β contains a constant
term, the distribution is located by the normalization μ0 = 0. At the upper tail,
μJ = +∞. Probabilities for the observed outcomes are derived from the laws of
probability:

Prob(yi = j|xi, zi) = Prob(μj−1 < U∗i ≤ μj), where μ−1 = −∞.

As before, the observed data do not reveal information about the scaling of εi, so
the variance is normalized to one. Two standard cases appear in the literature; if εi
has a normal distribution, then the ordered probit model emerges, while if it has
the standardized logistic distribution, the ordered logit model is produced. (Other
distributions have been suggested as the model is internally consistent with any
continuous distribution over the real line. However, these two overwhelmingly
dominate the received applications.)
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By the laws of probability:

Prob(y i = j|xi,, zi) = Prob(U∗i ≤ μj)− Prob(U∗i ≤ μj−1)

= F(μj − x′iβ− z′iγ)− F(μj−1 − x′iβ− z′iγ),

where F(t) is the assumed c.d.f., either normal or logistic. These are the terms that
enter the log-likelihood for a sample of n observations. The standard conditions for
maximum likelihood estimation apply here. The results in Table 11.1 suggest that
the force of the incidental parameters problem in the fixed effects case is similar to
that for the binomial probit model.

As usual in discrete choice models, partial effects in this model differ substan-
tively from the coefficients. Note, first, that there is no obvious regression at work.
Since yi is merely a labeling with no implicit scale, there is no conditional mean
function to analyze. In order to analyze the impact of changes in a variable, say
income, one can decompose the set of probabilities. For a continuous variable
xi,k, e.g.:

δi,k( j) = ∂Prob(yi = j|xi, zi)/∂xi,k

= −βk[f (μj − x′iβ− z′iγ)− f (μj−1 − x′iβ− z′iγ)], j = 0, . . . , J ,

where f (t) is the density, dF(t)/dt . The sign of the partial effect is ambiguous,
since the difference of the two densities can have either sign. Moreover, since

�
J
j=0Prob(yi = 1|xi, zi) = 1, it follows that �

J
j=1δi,k(j) = 0. Since the c.d.f. is mono-

tonic, there is one sign change in the set of partial effects as the example below
demonstrates. For purposes of using and interpreting the model, it seems that
the coefficients are of relatively little utility – neither the sign nor the magnitude
directly indicates the effect of changes in a variable on the observed outcome.

Terza (1985) and Pudney and Shields (2000) suggested an extension of the
ordered choice model that would accommodate heterogeneity in the threshold
parameters. The extended model is:

Prob( yi = j|xi, zi) = F(μi,j − x′iβ− z′iγ)− F(μi,j−1 − x′iβ− z′iγ),

where:

μi,j = v′iπj, where π0 = 0,

for a set of variables vi. The model as shown has two complications First, it is
straightforward to constrain the fixed threshold parameters to preserve the ordering
needed to ensure that all probabilities are positive.22 When there are variables vi
in the construction, it is no longer possible to produce this result parametrically.
The authors (apparently) did not find it necessary to confront this constraint. A
second feature of the model (which was examined at length by the authors) is the
unidentifiability of elements of πj when vi and (xi, zi) contain the same variables.
This is a result of the linear functional form assumed for μi,j. Greene (2007a) and
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Harris and Zhao (2007) suggested alternative parameterizations that circumvent
these problems – a restricted version:

μi,j = exp(μj + v′iπj),

and a counterpart to Pudney and Shields’ (2000) formulation:

μi,j = exp(v′iπj).
23

11.5.1 Specification analysis

As in the binary choice case, the analysis of micro-level data is likely to encounter
individual heterogeneity, not only in the means of utilities (xi,zi), but also in the
scaling of U∗i , i.e., in the variance of εi. Building heteroskedasticity into the model,
as in the binary choice model shown earlier, is straightforward. If:

E[ε2
i |vi] = [exp(v′iτ )]2,

then the log-likelihood would become:

ln L =
∑j

i=1
ln

[
F

(
μyi−1 − x′iβ− z′iγ

exp(v′iτ)

)
− F

(
μyi

− x′iβ− z′iγ
exp(v′iτ)

)]
.

As before, this complicates (even further) the interpretation of the model compo-
nents and the partial effects.

There is no direct test for the distribution, since the alternatives are not nested.
The Vuong test is a possibility, although the power of this test and its characteristics
remain to be examined both analytically and empirically.

11.5.2 Bivariate ordered probit models

There are several extensions of the ordered probit model that follow the logic of
the bivariate probit model we examined in Section 11.4. A direct analog to the
base case two-equation model was used by Butler, Finegan and Siegfried (1998),
who analyzed the relationship between the level of calculus attained and grades in
intermediate economics courses for a sample of Vanderbilt students. The two-step
estimation approach involved the following strategy. (We are stylizing the precise
formulation a bit in order to compress the description.) Step 1 involved a direct
application of the ordered probit model to the level of calculus achievement, which
is coded 0, 1, . . . , 6:

m∗i = x′iβ+ εi, εi|xi ∼ N[0, 1],
mi = 0 if −∞ < m∗i ≤ 0,

1 if 0 < m∗i ≤ μ1,

. . .

6 if μ5 < m∗i < +∞.
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The authors argued that, although the various calculus courses can be ordered
discretely by the material covered, the differences between the levels cannot be
measured directly. Thus, this is an application of the ordered probit model. The
independent variables in this first-step model included SAT (scholastic aptitude
test) scores, foreign language proficiency, indicators of intended major, and several
other variables related to areas of study.

The second step of the estimator involves regression analysis of the grade in the
intermediate microeconomics or macroeconomics course. Grades in these courses
were translated to a granular continuous scale (A = 4.0, A− = 3.7, etc.). A linear
regression is then specified:

Gradei = z′iδ + ui, where ui|zi ∼ N[0, σ2
u ].

Independent variables in this regression include, among others, (1) dummy vari-
ables for which the outcome in the ordered probit model applies to the student
(with the zero reference case omitted), (2) grade in the last calculus course, (3) sev-
eral other variables related to prior courses, (4) class size, (5) freshman grade point
average, etc. The unobservables in the Grade equation and the math attainment
are clearly correlated, a feature captured by the additional assumption that (εi,

ui|xi,zi) ∼ N2[(0,0),(1,σ2
u ),ρσu]. A non-zero ρ captures this “selection” effect. With

this in place, the dummy variables now become endogenous. The solution is a
“selection” correction where the modified equation becomes:

Gradei|mi = z′iδ + E[ui|mi] + vi

= z′iδ + (ρσu)[λ(x′iβ,μ1, . . . ,μ5)] + vi.

They thus adopt a “control function” approach to accommodate the endogeneity
of the math attainment dummy variables. The term λ(x′iβ,μ1, . . . ,μ5) is a gener-
alized residual that is constructed using the estimates from the first-stage ordered
probit model (a precise statement of the form of this variable is given in Tobias and
Li, 2006). Linear regression of the course grade on zi and this constructed regressor
is computed at the second step. The standard errors at the second step must be
corrected for the use of the estimated regressor using what amounts to a Murphy
and Topel (1985) correction.

Tobias and Li (2006), in a replication of and comment on Butler, Finegan and
Siegfried (1998), after roughly replicating the classical estimation results with a
Bayesian estimator, observe that the Grade equation above could also be treated as
an ordered probit model. The resulting bivariate ordered probit model would be:

m∗i = x′iβ+ εi, and g∗i = z′iδ + ui,
mi = 0 if −∞ < m∗i ≤ 0, gi = 0 if −∞ < g∗i ≤ 0,

1 if 0 < m∗i ≤ μ1, 1 if 0 < g∗i ≤ α1,
. . . . . .

6 if μ5 < m∗i < +∞ 11 if μ9 < g∗i < +∞,

where (εi,ui|xi,zi) ∼ N2[(0,0),(1,σ2
u ),ρσu].
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Tobias and Li extended their analysis to this case simply by “transforming” the
dependent variable in Butler, Finegan and Siegfried’s second equation. Computing
the log-likelihood using sets of bivariate normal probabilities is fairly straightfor-
ward for the bivariate ordered probit model (see Greene, 2007b). However, the
classical study of these data using the bivariate ordered approach remains to be
done, so a side-by-side comparison to Tobias and Li’s Bayesian alternative estimator
is not possible. The endogeneity of the calculus dummy variables remains a feature
of the model, so both the MLE and the Bayesian posterior are less straightforward
than they might appear.

The bivariate ordered probit model has been applied in a number of settings
in the recent empirical literature, including husband and wife’s education levels
(Magee, Burbidge and Robb, 2000), family size (Calhoun, 1991) and many others.
In two early contributions to the field of pet econometrics, Butler and Chatterjee
analyze ownership of cats and dogs (1995) and dogs and televisions (1997).

11.5.3 Panel data applications

11.5.3.1 Fixed effects

D’Addio, Eriksson and Frijters (2003), using methodology developed by Frijters,
Haisken-DeNew and Shields (2004) and Ferrer-i-Carbonel and Frijters (2004), ana-
lyzed survey data on job satisfaction using the Danish component of the European
Community Household Panel. Their estimator for an ordered logit model is built
around the logic of Chamberlain’s estimator for the binary logit model. The
approach is robust to individual specific threshold parameters and allows time
invariant variables, so it differs sharply from the fixed effects models we have
considered thus far, as well as from the ordered probit model.24 Unlike Chamber-
lain’s estimator for the binary logit model, however, their conditional estimator is
not a function of minimal sufficient statistics. As such, the incidental parameters
problem remains an issue.

Das and van Soest (2000) proposed a somewhat simpler approach. (See, as well,
Long’s 1997 discussion of the “parallel regressions assumption,” which employs
this device in a cross-section framework.) Consider the base case ordered logit
model with fixed effects:

y∗it = αi + x′itβ+ εit , εit |Xi ∼ N[0, 1]
yit = j if μj−1 < y∗it < μj, j = 0, 1, . . . , J and μ−1 = −∞,μ0 = 0,μJ = +∞.

The model assumptions imply that:

Prob(yit = j|Xi) = %(μj − αi − x′itβ)−%(μj−1 − αi − x′itβ),

where %(t) is the c.d.f. of the logistic distribution. Now, define a binary variable:

wit ,j = 1 if yit > j, j = 0, . . . , J − 1.

It follows that:

Prob[wit ,j = 1|Xi] = %(αi − μj + x′itβ)

= %(θi + x′itβ).
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The “j” specific constant, which is the same for all individuals, is absorbed in θi.
Thus a fixed effects binary logit model applies to each of the J − 1 binary random
variables, wit ,j. The method in section 11.3 can now be applied to each of the
J −1 random samples. This provides J −1 estimators of the parameter vector β (but
no estimator of the threshold parameters). The authors propose to reconcile these
different estimators by using a minimum distance estimator of the common true
β. The minimum distance estimator at the second step is chosen to minimize:

q =
∑J−1

j=0

∑J−1

m=0

(
β̂j − β

)′ [
V−1

jm

] (
β̂m − β

)
,

where
[
V−1

jm

]
is the j, m block of the inverse of the (J − 1)K × (J − 1)K partitioned

matrix V that contains Asy.Cov
[
β̂j, β̂m

]
. The appropriate form of this matrix for a

set of cross-section estimators is given in Brant (1990). Das and van Soest (2000)
used the counterpart of Chamberlain’s fixed effects estimator, but do not provide
the specifics for computing the off diagonal blocks in V.

The full ordered probit model with fixed effects, including the individual spe-
cific constants, can be estimated by unconditional maximum likelihood using the
results in Greene (2008a, sec. 16.9.6.c). The likelihood function is concave (see
Pratt, 1981), so despite its superficial complexity, the estimation is straightforward.
(In the application below, with over 27,000 observations and 7,293 individual
effects, estimation of the full model required roughly five seconds of computa-
tion.) No theoretical counterpart to the Hsiao (1986, 2003) and Abrevaya (1997)
results on the small T bias (incidental parameters problem) of the MLE in the pres-
ence of fixed effects has been derived for the ordered probit model. The Monte
Carlo results in Table 11.1 suggest that biases comparable to those in the binary
choice models persist in the ordered probit model as well. As in the binary choice
case, the complication of the fixed effects model is the small sample bias, not the
computation. The Das and van Soest (2000) approach finesses this problem, as
their estimator is consistent, but at the cost of losing the information needed to
compute partial effects or predicted probabilities.

11.5.3.2 Random effects

The random effects ordered probit model has been much more widely used than
the fixed effects model. Applications include Groot and van den Brink (2003),
who studied training levels of employees, with firm effects and gains to mar-
riage, Winkelmann (2004), who examined subjective measures of well-being with
individual and family effects, Contoyannis, Jones and Rice (2004), who analyzed
self-reported measures of health status, and numerous others. In the simplest case,
the quadrature method of Butler and Moffitt (1982) can be used.

11.5.4 Application

The GSOEP data that we have used earlier includes a self-reported measure of
health satisfaction, HSAT, that takes values 0, 1, . . . , 10. This is a typical application
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of a scale variable that reflects an underlying continuous variable, “health.” The
frequencies and sample proportions for the reported values are as follows:

NEWHSAT 0 1 2 3 4 5 6 7 8 9 10

Frequency 447 255 642 1173 1390 4233 2530 4231 6172 3061 3192
Proportion 1.6% 0.9% 2.3% 4.2% 5.0% 15.4% 9.2% 15.4% 22.5% 11.2% 11.6%

We have fitted pooled and panel data versions of the ordered probit model to these
data. The model used is:

U∗it = β1 + β2Ageit + β3 Incomeit + β4 Educationit + β5 Marriedit

+ β6 Workingit + εit + ci,

where ci will be the common fixed or random effect. (We are interested in com-
paring the fixed and random effects estimators, so we have not included any time
invariant variables such as gender in the equation.) Table 11.5 lists five estimated
models. (Standard errors for the estimated threshold parameters are omitted.) The
first is the pooled ordered probit model. The second and third are fixed effects. Col-
umn 2 shows the unconditional fixed effects estimates using the results in Greene
(2008). Column 3 shows the Das and van Soest (2000) estimator. For the minimum
distance estimator, we used an inefficient weighting matrix, the block diagonal
matrix in which the jth block is the inverse of the jth asymptotic covariance matrix
for the individual logit estimators. With this weighting matrix, the estimator is:

β̂MDE =
[∑9

j=0
V−1

j

]−1∑9

j=0
V−1

j β̂j,

and the estimator of the asymptotic covariance matrix is approximately equal to the
bracketed inverse matrix. The fourth set of results is the random effects estimator
computed using the MSL method. This model can be estimated using Butler and
Moffitt’s quadrature method: however, we found that, even with a large number of
nodes, the quadrature estimator converged to a point where the log-likelihood was
far lower than the MSL estimator, and at parameter values that were implausibly
different from the other estimates. Using different starting values and different
numbers of quadrature points did not change this outcome. The MSL estimator
for a random constant term is considerably slower, but produces more reasonable
results. The fifth set of results is the Mundlak form of the random effects model,
which includes the group means in the models as controls to accommodate possible
correlation between the latent heterogeneity and the included variables. As noted
earlier, the components of the ordered choice model must be interpreted with some
care. By construction, the partial effects of the variables on the probabilities of the
outcomes must change sign, so the simple coefficients do not show the complete
picture implied by the estimated model. Table 11.6 shows the partial effects for the
pooled model to illustrate the computations.
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Table 11.5 Estimated ordered probit models for health satisfaction

(1)
Pooled

(2)
Fixed
effects
uncon-
ditional

(3)
Fixed
effects
conditional

(4)
Random
effects

(5)
Random effects
Mundlak controls

Variable Variables Means
Constant 2.4739

(0.04669)
3.8577
(0.05072)

3.2603
(0.05323)

Age –0.01913
(0.00064)

–0.07162
(0.002743)

–0.1011
(0.002878)

–0.03319
(0.00065)

–0.06282
(0.00234)

0.03940
(0.002442)

Income 0.1811
(0.03774)

0.2992
(0.07058)

0.4353
(0.07462)

0.09436
(0.03632)

0.2618
(0.06156)

0.1461
(0.07695)

Kids 0.06081
(0.01459)

–0.06385
(0.02837)

–0.1170
(0.03041)

0.01410
(0.01421)

–0.05458
(0.02566)

0.1854
(0.03129)

Education 0.03421
(0.002828)

0.02590
(0.02677)

0.06013
(0.02819)

0.04728
(0.002863)

0.02296
(0.02793)

0.02257
(0.02807)

Married 0.02574
(0.01623)

0.05157
(0.04030)

0.08505
(0.04181)

0.07327
(0.01575)

0.04605
(0.03506)

–0.04829
(0.03963)

Working 0.1292
(0.01403)

–0.02659
(0.02758)

–0.007969
(0.02830)

0.07108
(0.01338)

–0.02383
(0.02311)

0.2702
(0.02856)

μ1 0.1949 0.3249 0.2726 0.2752
μ2 0.5029 0.8449 0.7060 0.7119
μ3 0.8411 1.3940 1.1778 1.1867
μ4 1.111 1.8230 1.5512 1.5623
μ5 1.6700 2.6992 2.3244 2.3379
μ6 1.9350 3.1272 2.6957 2.7097
μ7 2.3468 3.7923 3.2757 3.2911
μ8 3.0023 4.8436 4.1967 4.2168
μ9 3.4615 5.5727 4.8308 4.8569
σu 0.0000 0.0000 1.0078 0.9936
lnL –56813.52 –41875.63 –53215.54 –53070.43

Winkelmann (2004) used the random effects approach to analyze the subjective
well-being (SWB) question (also coded 0 to 10) in the GSOEP dataset. The ordered
probit model in this study is based on the latent regression:

y∗imt = x′imtβ+ εimt + uim + vi.

The independent variables include age, gender, employment status, income, family
size and an indicator for good health. An unusual feature of the model is the
nested random effects, which include a family effect, vi, as well as the individual
family member (i in family m) effect, uim. The MLE approach is unavailable in this
nonlinear setting. Winkelmann instead employed a Hermite quadrature procedure
to maximize the log-likelihood function.

Contoyannis, Jones and Rice (2004) analyzed a self-assessed health scale that
ranged from 1 (very poor) to 5 (excellent) in the BHPS. Their model accommodated
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Table 11.6 Estimated marginal effects: pooled model

HSAT Age Income Kids Education Married Working

0 0.0006 −0.0061 −0.0020 −0.0012 −0.0009 −0.0046
1 0.0003 −0.0031 −0.0010 −0.0006 −0.0004 −0.0023
2 0.0008 −0.0072 −0.0024 −0.0014 −0.0010 −0.0053
3 0.0012 −0.0113 −0.0038 −0.0021 −0.0016 −0.0083
4 0.0012 −0.0111 −0.0037 −0.0021 −0.0016 −0.0080
5 0.0024 −0.0231 −0.0078 −0.0044 −0.0033 −0.0163
6 0.0008 −0.0073 −0.0025 −0.0014 −0.0010 −0.0050
7 0.0003 −0.0024 −0.0009 −0.0005 −0.0003 −0.0012
8 −0.0019 0.0184 0.0061 0.0035 0.0026 0.0136
9 −0.0021 0.0198 0.0066 0.0037 0.0028 0.0141
10 −0.0035 0.0336 0.0114 0.0063 0.0047 0.0233

a variety of complications in survey data. The latent regression underlying their
ordered probit model is:

h∗it = x′itβ+H′i,t−1γ+ αi + εit ,

where xit includes marital status, race, education, household size, age, income,
and the number of children in the household. The lagged value, Hi,t−1, is a set of
binary variables for the observed health status in the previous period. In this case,
the lagged values capture state dependence, as the assumption that the health
outcome is redrawn randomly in each period is inconsistent with evident runs
in the data. The initial formulation of the regression is a fixed effects model. To
control for the possible correlation between the effects, αi, and the regressors, and
the initial conditions problem that helps to explain the state dependence, they use
a hybrid of Mundlak’s (1978) correction and a suggestion by Wooldridge (2002b)
for modeling the initial conditions:

αi = α0 + x′α1 +H′i,1δ + ui,

where ui is exogenous. Inserting the second equation into the first produces a
random effects model that can be fitted using Butler and Moffitt’s (1982) quadrature
method.

11.6 Models for counts

A model that is often used for interarrival times at such facilities as a telephone
switch, an ATM machine, or at the service window of a bank or gasoline station, is
the exponential model:

f (t) = θ exp(−θ t), t ≥ 0, θ > 0,

where the continuous variable, t , is the time between arrivals. The expected inter-
arrival time in this distribution is E[t] = 1/θ . Consider the number of arrivals, y,
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that occur per unit of time. It can be shown that this discrete random variable has
the Poisson probability distribution:

f (y) = exp(−λ)λ
y
/y!, λ = 1/θ > 0, y = 0, 1, . . .

The expected value of this discrete random variable is E[y] = 1/θ . The Poisson
regression model arises from the specification:

E[yi|xi] = λi = exp(x′iβ).

The log-linear form is used to ensure that the mean is positive. Estimation
of the Poisson model by ML is straightforward owing to the simplicity of the
log-likelihood and its derivatives:

ln L =∑n
i=1−λi + yi(x

′
iβ)− ln�(yi + 1)

∂ ln L/∂β =∑n
i=1(yi − λi)xi

∂
2 ln L/∂β∂β

′ =∑n
i=1−λixix

′
i.

Inference about parameters is based on either the actual (and expected) Hessian:

V =
[∑n

i=1
λ̂ixix

′
i

]−1 =
[
X′%̂X

]−1
,

or the BHHH estimator, which is:

VBHHH =
[∑n

i=1
(yi − λ̂i)

2xix
′
i

]−1 =
[∑n

i=1
ε
2
i xix

′
i

]−1 =
[
X′Ê2X

]−1
.

Hypothesis tests about the parameters may be based on the likelihood ratio or Wald
statistics, or the LM statistic, which is particularly convenient here:

λLM =
[∑n

i=1
ε̂
0
i x
]′

VBHHH

[∑n

i=1
ε̂
0
i x
]

,

where the residuals are computed at the restricted estimates. For example, under

the null hypothesis that all coefficients are zero save for the constant term, λ̂0
i = y,

ε̂
0
i = yi − y and:

λLM =
[∑n

i=1
(yi − y)xi

]′ [∑n

i=1
(yi − y)2xix

′
i

]−1 [∑n

i=1
(yi − y)xi

]
.

The Poisson model is one in which the MLE is robust to certain misspecifications
of the model, such as the failure to incorporate latent heterogeneity into the mean
(i.e., one fits the Poisson model when the negative binomial is appropriate.) In this
case, the robust (sandwich) covariance matrix:

Robust Est.Asy.Var
[
β̂
]
=
[
X′�̂X

]−1 [
X′Ê2X

] [
X′�̂X

]−1
,

is appropriate to accommodate this failure of the model. It has become common
to employ this estimator with all specifications, including the negative binomial.
One might question the virtue of this. Since the negative binomial model already
accounts for the latent heterogeneity, it is unclear what additional failure of the
assumptions of the model this estimator would be robust to.
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11.6.1 Heterogeneity and the negative binomial model

The Poisson model is typically only the departure point for the analysis of
count data. The simple model has (at least) two shortcomings that arise from
heterogeneity that is not explicitly incorporated in the model.

One easily remedied minor issue concerns the units of measurement of the data.
In the Poisson model (and negative binomial model below), the parameter λi is
the expected number of events per unit of time. Thus there is a presumption in the
model formulation, e.g., the Poisson, that the same amount of time is observed
for each i. In a spatial context, such as measurements of the incidence of a disease
per group of Ni persons, or the number of bomb craters per square mile in London
in 1940, the assumption would be that the same physical area or the same size
of population applies to each observation. Where this differs by individual, it will
introduce a type of heteroskedasticity in the model. The simple remedy is to modify
the model to account for the exposure, Ti, of the observation as follows:

Prob(yi = j|xi, Ti) =
exp(−Tiφi)(Tiφi)

j

j! , φi = exp(x′iβ), j = 0, 1, . . . .

The original model is returned if we write λi = exp(x′iβ + ln Ti). Thus, when the
exposure differs by observation, the appropriate accommodation is to include the
log of exposure in the regression part of the model with a coefficient of 1.0. (For
less than obvious reasons, the term “offset variable” is commonly associated with
the exposure variable Ti.) Note that if Ti is the same for all i, ln T will simply vanish
into the constant term of the model (assuming one is included in xi).

The less straightforward restriction of the Poisson model is that E[yi|xi] =
Var[yi|xi]. This equidispersion assumption is a major shortcoming. Observed data
rarely, if ever, display this feature. The very large amount of research activity on
functional forms for count models is often focused on testing for equidispersion
and building functional forms that relax this assumption.

The overdispersion found in observed data can be attributed to omitted
heterogeneity in the Poisson model. A more complete regression specification
would be:

E[yi|xi] = λi = hi exp(x′iβi) = exp(x′iβ+ εi),

where the heterogeneity, hi, has mean one and non-zero variance. Two candidates
for the distribution of εi have dominated the literature, the log-normal model
discussed later and the log-gamma model. The most common specification is the
log-gamma model, which derives from the gamma variable:

f [hi] = [θθ /�(θ)] exp(−θhi)h
θ−1
i , hi ≥ 0.25

This gamma distributed random variable has mean 1.0 and variance 1/θ . (A separate
variance parameter is not identified – the scaling in the model is, once again,
absorbed by the coefficient vector.) If we write the Poisson–log-gamma model as:

f (yi|xi, hi) = exp(−hiλi)(hiλi)
yi/�(yi + 1),
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then the unconditional distribution is:

f (yi|xi) =
∫ ∞

0
f (yi, vi|xi)dvi =

∫ ∞
0

f (yi|xi, vi)f (vi)dvi.

The integral can be obtained in closed form; the result is the negative binomial
model:

Prob(Y = yi|xi) =
�(θ + yi)

�(yi + 1)�(θ)
ryi
i (1− ri)

θ ,

λi = exp(x′iβ),
ri = λi/(θ + λi).

The recent literature, mostly associating the result with Cameron and Trivedi
(1986, 1998), defines this form of the negative binomial model as the Negbin 2
(NB2) form of the probability. This is the default form of the model in the received
econometrics packages that provide an estimator for this model. The Negbin 1
(NB1) form of the model results if θ is replaced with θi = θλi. Then, ri reduces to
r = 1/(1+ θ), and the density becomes:

Prob(Y = yi|xi) =
�(θλi + yi)

�(yi + 1)�(θλi)
ryi (1− r)θλi .

This is not a simple reparameterization of the model. The results in the example
below demonstrate that the log-likelihood functions of the two forms are not equal
at the maxima, and their parameters are not simple transformations of each other.
We are not aware of a theory that justifies using one form or the other for the nega-
tive binomial model. Neither is a restricted version of the other, so we cannot carry
out a nested likelihood ratio test. The more general Negbin P (NBP) family (Greene,
2008b) does nest both of them, so this may provide a more general, encompassing
approach to finding the right specification. The NBP model is obtained by replac-

ing θ in the NB2 form with θλ
2−P
i . We have examined the cases of P = 1 and P = 2

above and, for general P:

Prob(Y = yi|xi) =
�(θλ

Q
i + yi)

�(yi + 1)�(θλ
Q
i )

⎛⎝ λ

θλ
Q
i + λi

⎞⎠yi
⎛⎝ θλ

Q
i

θλ
Q
i + λi

⎞⎠θλ
Q
i

, Q = 2− P.

The conditional mean function for the three cases considered is:

E[yi|xi] = exp(x′iβ)× θ
2−P = α

P−2
λi, where α = 1/θ .

The parameter P is picking up the scaling. A general result is that, for all three
variants of the model:

Var[yi|xi] = λi(1+ αλ
P−1
i ).

Thus, the NB2 form has a variance function that is quadratic in the mean, while
the NB1 form’s variance is a simple multiple of the mean. There have been many
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other functional forms proposed for count data models, including the generalized
Poisson, gamma, and Polya–Aeppli forms described in Winkelmann (2003) and
Greene (2007a, Ch. 24).

The heteroskedasticity in the count models is induced by the relationship
between the variance and the mean. The single parameter θ picks up an implicit
overall scaling, so it does not contribute to this aspect of the model. As in the linear
model, microeconomic data are likely to induce heterogeneity in both the mean
and variance of the response variable. A specification that allows independent
variation of both will be of some virtue. The result:

Var[yi|xi] = λi(1+ (1/θ)λP−1
i ),

suggests that a natural platform for separately modeling heteroskedasticity will be
the dispersion parameter, θ , which we now parameterize as:

θi = θ exp(z′iδ).

Operationally, this is a relatively minor extension of the model. But it is likely to
introduce a quite substantial increase in the flexibility of the specification. Indeed,
a heterogeneous NBP model is likely to be sufficiently parameterized to accommo-
date the behavior of most datasets. (Of course, the specialized models discussed
below, e.g., the zero inflation models, may yet be more appropriate for a given
situation.)

11.6.2 Extended models for counts: two-part, zero inflation, sample
selection, bivariate

“Non-Poissonness” arises from a variety of sources in addition to the latent
heterogeneity modeled in the previous section. A variety of two-part models have
been proposed to accommodate elements of the decision process.

11.6.2.1 Hurdle model

The hurdle model (Mullahy, 1986; Gurmu, 1997) consists of a participation
equation and a conditional Poisson or negative binomial model. The structural
equations are:

Prob(yi > 0|zi) = a binary choice mechanism, such as probit or logit
Prob(yi = j|yi > 0, xi) = truncated Poisson or negative binomial.

(See Shaw, 1988.) For a logit participation equation and a Poisson count,
the probabilities for the observed data that enter the log-likelihood function
would be:

Prob(yi = 0|zi) =
1

1+ exp(z′iα)

Prob(yi = j|xi, zi) = Prob(yi > 0|zi)× Prob(yi = j|yi > 0, xi)

= exp(z′iα)
1+ exp(z′iα)

exp(−λi)λ
j
i

j![1− exp(−λi)]
.
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This model might apply for on-site counts of the use of certain facilities such as
recreational sites. The expectation in the hurdle model is easily found using the
rules of probability:

E[yi|xi, zi] = exp(z′iα)
1+exp(z′iα)

E[yi|yi > 0, xi, zi]
= exp(z′iα)

1+exp(z′iα)
λi[1−exp(−λi)] .

As usual, the intricacy of the function mandates some caution in interpreting the
model coefficients. In particular:

δi(xi) = ∂E[yi|xi,zi]
∂xi

=
{

exp(z′iα)
1+exp(z′iα)

λi[1−exp(−λi)]
(
1− λi exp(−λi)[1−exp(−λi)]

)}
β.

The complication of the partial effects is compounded if zi contains any of the
variables that also appear in xi. The other part of the partial effect is:

δi(zi) =
{

exp(z′iα)
[1+ exp(z′iα)]2

λi
[1− exp(−λi)]

}
α.

11.6.2.2 Zero inflation models

A related formulation is the zero inflation model, which is a type of latent class model.
The model accommodates a situation in which the zero outcome can arise in either
of two mechanisms. In one regime, the outcome is always zero; in the other, the
outcome is generated by the Poisson or negative binomial process that might also
produce a zero. The example suggested in Lambert’s (1992) pioneering application
is a manufacturing process that produces a number of defective parts, yi, equal to
zero if the process is under control, or equal to a Poisson outcome if the process is
not under control. The applicable distribution is:

Prob(yi = 0|xi, zi) = Prob(regime 0|zi)+ Prob(regime 1|zi)

Prob(yi = 0|regime1, xi)

= F(ri|zi)+ [1− F(ri|zi)]Prob(yi = 0|xi)

Prob(yi = j|yi > 0, xi, zi) = [1− F(ri|zi)]Prob(yi = j|xi).

The density governing the count process may be the Poisson or negative binomial
model. The regime process is typically specified as a logit model, though the probit
model is often used as well. Finally, two forms are used for the regime model,
the standard probit or logit model with covariate vector, zi, and the zero inflated
poisson, ZIP(τ ) form, which takes the form (for the logit–Poisson model):

Prob(yi = 0|xi) = %(τx′iβ)+ [1−%(τx′iβ)] exp(−λi)

Prob(yi = j|yi > 0, xi) = [1−%(τx′iβ)] exp(λi)λ
j
i/j!,
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where λi = exp(x′iβ) and τ is a single new, free parameter to be estimated.
(Researchers usually find that the τ form of the model is more restrictive than
desired.) The conditional mean function is:

E[yi|xi, zi] = [1− F(ri|zi)]λi.

11.6.2.3 Sample selection

We consider an extension of the classic model of sample selection (Heckman, 1979)
to the models for count outcomes. In the context of the applications considered
here, for example, we might consider a sample based on only those individuals
who have health insurance. The generic model will take the form:

s∗i = z′iα+ ui, ui ∼ N[0, 1],
si = 1(s∗i > 0) (probit selection equation)

λi|εi = exp(β′xi + σεi), εi ∼ N[0, 1] (index function with heterogeneity)26

yi|xi, εi ∼ Poisson(yi|xi, εi) (Poisson model for outcome)
[ui, εi] ∼ N[(0, 1), (1, ρ, 1)]
yi, xi are observed only when si = 1.

The count model is the heterogeneity model suggested earlier with log-normal
rather than log-gamma heterogeneity. The conventional approach of fitting the
probit selection equation, computing an inverse Mills ratio, and adding it as an
extra regressor in the Poisson model, is inappropriate here (see Greene, 1995, 1997,
2006). A formal approach for this model is developed in Terza (1994, 1998) and
Greene (1995, 2006, 2007b). Formal results are collected in Greene (2006). The
generic result for the count model (which can be adapted to the negative binomial
or other models) is:

f (yi, si|xi, zi) =
∫ ∞
−∞
[(1− si)+ sif (yi|xi, εi)]

#

(
(2si − 1)[z′iαi + ρεi]/

√
1− ρ2

)
φ(εi)dεi,

with:

f (yi|xi, εi) =
exp(−λi|xi, εi)(λi|xi, εi)

yi

�(yi + 1)
, λi|xi, εi = exp(β′xi + σεi).

The integral does not exist in closed form, but the model can be fitted by
approximating the integrals with Hermite quadrature:

ln LQ =
∑N

i=1
log

[
1√
π

∑H

h=1
ωh

[
(1− si)+ sif (yi|xi, vh)

]
#
[
(2si − 1)

(
z′iγi + τvh

)]]
,

or simulation, for which the simulated log-likelihood is:

ln LS =
∑N

i=1
log

1
R

∑R

r=1
[(1− si)+ sif (yi|xi, σεir )]#[(2si − 1)

(
z′iγi + τεir

)
],
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where γ = α/(1 − ρ
2
)
1/2 and τ = ρ/(1 − ρ

2
)
1/2. There is a minor extension of

this model that might be interesting for the health care application examined in
this study. The count variables and all the covariates in both equations would be
observed for all observations. Thus, to use the full sample of data, the appropriate
log-likelihood would be:

f (yi, zi|xi, zi) =
∫ ∞
−∞

f (yi|xi, εi)]#
(
(2si − 1)[z′iγi + τεi]

)
φ(εi)dεi.

11.6.2.4 Bivariate Poisson model

The application from which our examples are drawn was a study of the two count
variables, DocVis (visits to the doctor) and HospVis (visits to the hospital). Riphahn,
Wambach and Million (2003) were interested in a bivariate count model for the
two outcomes. One approach to formulating a two-equation Poisson model is to
treat the correlation as arising from the intervention of a latent common Poisson
process. The model is:

y1 = y∗1 + U

y2 = y∗2 + U ,

where y∗1, y∗2 and U are three independent Poisson processes. This model is anal-
ogous to the seemingly unrelated regressions model (see King, 1989). The major
shortcoming of this approach is that it forces the two variables to be positively cor-
related. For the application considered here, it is at least possible that the preventive
motivation for physician visits could result in a negative correlation between physi-
cian and inpatient hospital visits. The approach proposed by Riphahn, Wambach
and A. Million (2003) adapted for a random effects panel data model, is yit ,j ∼
Poisson (λit ,j), where:

λit ,j = exp(x′it ,jβ+ ui,j + εit ,j), j = 1, 2.

and where the unique heterogeneity, (εit ,1, εit ,2), has a bivariate normal distri-
bution with correlation ρ, and the random effects, which are constant through
time, have independent normal distributions. Thus the correlation between the
conditional means is that induced by the two log-normal variables, exp(εit ,1) and
exp(εit ,2). The implied correlation between yit ,1 and yit ,2 was not derived. This
would be weaker than ρ, since both variables have additional variation around the
correlated conditional mean functions.

In order to formulate the log-likelihood function, the random components must
be integrated out. There are no closed forms for the integrals based on the nor-
mal distribution – the problem is similar to that in the sample selection model.
The authors used a quadrature procedure to approximate the integrals. The log-
likelihood could also be maximized by using simulation. Separate models were
fitted to men and women in the sample. The pooling hypothesis was rejected for
all specifications considered.
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11.6.3 Panel data models

Hausman, Hall and Griliches (1984) (HHG) report the following conditional
density for the fixed effects negative binomial (FENB) model:

p
(

yi1, yi2, . . . , yiTi
|
∑Ti

t=1
yit

)
= �(1+�

Ti
t=1yit )�(�

Ti
t=1λit )

�(�
Ti
t=1yit +�

Ti
t=1λit )

Ti∏
t=1

�(yit + λit )

�(1+ yit )�(λit )
,

which is free of the fixed effects. This is the default FENB formulation used in popu-
lar software packages such as SAS, Stata and LIMDEP. Researchers accustomed to the
admonishments that fixed effects models cannot contain overall constants or time
invariant covariates are sometimes surprised to find (perhaps accidentally) that this
fixed effects model allows both. (This issue is explored at length in Allison, 2000;
Allison and Waterman, 2002.) The resolution of this apparent contradiction is that
the HHG FENB model is not obtained by shifting the conditional mean function
by the fixed effect, ln λit = x′itβ+αi, as it is in the Poisson model. Rather, the HHG
model is obtained by building the fixed effect into the model as an individual spe-
cific θi in the NB1 form. In the negative binomial models, the conditional mean
functions are:

NB1 : E[yit |xit ] = θiφit = θi exp(x′itβ) = exp(x′itβ+ ln θi),

NB2 : E[yit |xit ] = exp(αi)φit = λit = exp(x′itβ+ αi),

so, superficially, the formulations do produce the same interpretation. However,
the parameter θi in the NB1 model enters the variance function in a different
manner:

NB1 : Var[yit |xit ] = θiφit [1+ θi],
NB2 : Var[yit |xit ] = λit [1+ θλit ].

The relationship between the mean and the variance is different for the two mod-
els. For estimation purposes, one can explain the apparent contradiction noted
earlier by observing that, in the NB1 formulation, the individual effect is iden-
tified separately from the mean in the skedastic (scaling) function. This is not
true for the FENB2 form. In order to obtain a counterpart to the HHG model, we
would replace θ with θi (and λi with λit ). Greene (2007a) analyzes the more famil-
iar FENB2 form with the same treatment of λit . Estimates for both models appear
below. Comparison of the suggested NB2 model to the HHG model remains for
future investigation.

Once again, theory does not provide a reason to prefer the NB1 formulation over
the more familiar NB2 model. The NB1 form does extend beyond the interpretation
of the fixed effect as carrying only the sum of all the time invariant effects in the
conditional mean function. The appearance of lnθi in the conditional mean is an
artifact of the exponential mean form; θi is a scaling parameter in this model. In
its favor, the HHG model, being conditionally independent of the fixed effects,
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finesses the incidental parameters problem – the estimator of β in this model is
consistent. This is not the case for the FENB2 form, where:

Qi =
θ

θ +�
Ti
t=1λit

.

For estimation purposes, we have a negative binomial distribution for Yi = �t yit
with mean %i = �tλit .

Like the fixed effects model, introducing random effects into the negative bi-
nomial model adds some additional complexity. We do note, since the negative
binomial model derives from the Poisson model by adding latent heterogeneity to
the conditional mean, that adding a random effect to the negative binomial model
might well amount to introducing the heterogeneity a second time. However, one
might prefer to interpret the negative binomial as the density for yit in its own
right, and treat the common effects in the familiar fashion. Hausman, Hall and
Griliches’ (1984) random effects negative binomial model is a hierarchical model
that is constructed as follows. The heterogeneity is assumed to enter λit additively
with a gamma distribution with mean 1, �(θi,θi). Then, θi/(1+θi) is assumed to have
a beta distribution with parameters a and b. The resulting unconditional density
after the heterogeneity is integrated out is:

p(yi1, yi2, . . . , yiTi
) =

�(a+ b)�
(
a+�

Ti
t=1λit

)
�
(
b +�

Ti
t=1yit

)
�(a)�(b)�

(
a+�

Ti
t=1λit + b +�

Ti
t=1yit

) .

As before, the relationship between the heterogeneity and the conditional mean
function is unclear, since the random effect impacts upon the parameter of the
skedastic function. An alternative approach that maintains the essential flavor of
the Poisson model (and other random effects models) is to augment the NB2 form
with the random effect:

Prob(Y = yit |xit , εi) =
�(θ+ yit )

�(yit + 1)�(θ)
ryit
it (1− rit )

θ ,

λit = exp(x′itβ+ εi),

rit = λit/(θ+ λit ).

We then estimate the parameters by forming the conditional (on εi) log-likelihood
and integrating εi out either by quadrature or simulation. The parameters are sim-
pler to interpret by this construction. Estimates of the two forms of the random
effects model are presented below for comparison.

11.6.4 Application

The study by Ripahn, Wambach and Million (2003) that provided the data we
have used in numerous earlier examples analyzed the two count variables DocVis
and HospVis. The authors were interested in the joint determination of these two
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Figure 11.1 Histogram of count variable DocVis

count variables. One of the issues considered in the study was whether the data
contained evidence of moral hazard, that is, whether health care utilization as
measured by these two outcomes was influenced by the subscription to health
insurance. The data contain indicators of two levels of insurance coverage: Public,
which is the main source of insurance, and Addon, which is a secondary optional
insurance. In the sample of 27,326 observations (family/years), 24,203 individuals
held the public insurance. (There is quite a lot of within group variation in this,
as individuals did not routinely obtain the insurance for all periods). Of these
24,203, 23,689 had only public insurance and 514 had both types. (One could not
have only the addon insurance.) To explore the issue, we have analyzed the DocVis
variable with the count data models described above. Figure 11.1 shows a histogram
for this count variable. (There is a very long tail of extreme observations in these
data, extending up to 121. The histogram omits the 91 observations with DocVis
greater than 40. All observations are included in the sample used to estimate the
models.) The exogenous variables in our model are:

xit = (1, Age, Education, Income, Kids, Public).

(Variables are described in Table 11.2. Those listed are a small subset of those used
in the original study, chosen here only for a convenient example.)

Table 11.7 presents the estimates of several count models. In all specifications,
the coefficient on Public is positive, large, and highly statistically significant, which
is consistent with the results in Riphahn, Wambach and Million (2003). The large
spike at zero in the histogram casts some doubt on the Poisson specification. As
a first step in extending the model, we estimated an alternative model that has a
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Table 11.7 Estimated pooled models for DocVis (standard errors in parentheses)

Variable Poisson Geometric NB2 NB2
heterogeneous

NB1 NBP

Constant 0.7162
(0.03287)

0.7579
(0.06314)

0.7628
(0.07247)

0.7928
(0.07459)

0.6848
(0.06807)

0.6517
(0.07759)

Age 0.01844
(0.000332)

0.01809
(0.00669)

0.01803
(0.000792)

0.01704
(0.000815)

0.01585
(0.00070)

0.01907
(0.0008078)

Education –0.03429
(0.00180)

–0.03799
(0.00343)

–0.03839
(0.003965)

–0.03581
(0.004034

–0.02381
(0.00370)

–0.03388
(0.004308)

Income –0.4751
(0.02198)

–0.4278
(0.04137)

–0.4206
(0.04700)

–0.4108
(0.04752)

–0.1892
(0.04452)

–0.3337
(0.05161)

Kids –0.1582
(0.00796)

–0.1520
(0.01561)

–0.1513
(0.01738)

–0.1568
(0.01773)

–0.1342
(0.01647)

–0.1622
(0.01856)

Public 0.2364
(0.0133)

0.2327
(0.02443)

0.2324
(0.02900)

0.2411
(0.03006)

0.1616
(0.02678)

0.2195
(0.03155)

P 0.0000
(0.0000)

0.0000
(0.0000)

2.0000
(0.0000)

2.0000
(0.0000)

1.0000
(0.0000)

1.5473
(0.03444)

θ 0.0000
(0.0000)

0.0000
(0.0000)

1.9242
(0.02008)

2.6060
(0.05954)

6.1865
(0.06861)

3.2470
(0.1346)

δ (Female) 0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

–0.3838
(0.02046)

0.0000
(0.0000)

0.0000
(0.0000)

δ (Married) 0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

–0.1359
(0.02307)

0.0000
(0.0000)

0.0000
(0.0000)

lnL –104440.3 –61873.55 –60265.49 –60121.77 –60260.68 –60197.15

distribution that appears more like that in the figure, a geometric regression model:

Prob(yi = j|xi) = πi(1− πi)
j, πi = 1/(1+ λi), λi = exp(x′iβ), j = 0, 1, . . .

This is the distribution for the number of failures before the first success in inde-
pendent trials with success probability equal to πi. It is suggested here simply as an
alternative functional form for the model. The two models are similarly parameter-
ized. The geometric model also has conditional mean equal to (1−πi)/πi = λi, like
the Poisson. The variance is equal to (1/πi)λi > λi, so the geometric distribution
is overdispersed – it allocates more mass to the zero outcome. Based on the log-
likelihoods, the Poisson model would be overwhelmingly rejected. However, since
the models are not nested, this is not a valid test. Using, instead, the Vuong statis-
tic based on vi = ln Li(geometric) – lnLi(Poisson), we obtain a statistic of +37.89,
which, as expected, strongly rejects the Poisson model.

The various formal test statistics strongly reject the hypothesis of equidispersion.
Cameron and Trivedi’s (1986) semiparametric tests from the Poisson model have

t-statistics of 22.147 for gi = μi and 22.504 for gi = μ
2
i . Both of these are far

larger than the critical value of 1.96. The LM statistic (see Winkelmann, 2003) is
972,714.48, which is also larger than any critical value. On any of these bases,
we would reject the hypothesis of equidispersion. The Wald and likelihood ratio
tests based on the negative binomial models produce the same conclusion. For
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comparing the different negative binomial models, note that NB2 is the worst
of the three by the likelihood function, though NB1 and NB2 are not directly
comparable. On the other hand, in the NBP model, the estimate of P is more
than 10 standard errors from 1 or 2, so both NB1 and NB2 would be rejected in
favor of the unrestricted NBP form of the model. The NBP and the heterogeneous
NB2 model are not nested either, but on comparing the log-likelihoods, it does
appear that the heterogeneous model is substantially superior. We computed the
Vuong statistic based on the individual contributions to the log-likelihoods, with
vi = ln Li(NBP) – lnLi(NB2 – H). The value of the statistic is−3.27. On this basis, we
would reject NBP in favor of NB2–H. Finally, with regard to the original question,
the coefficient on PUBLIC is larger than 10 times its estimated standard error in
every specification. We would conclude that the results are consistent with the
proposition that there is evidence of moral hazard.

Estimates of the two two-part models, zero inflated and hurdle, are presented in
Table 11.8. The regime equation for both is assumed to be a logit binary choice
model with:

zit = (1, Age, Female, Married, Kids, Income, Self-employed).

There is little theoretical basis for choosing between the two models. The inter-
pretation of the data-generating process is quite similar in both cases. Each posits
a regime in which the individual chooses whether or not to “participate” in the

Table 11.8 Two-part models for DocVis

Poisson Poisson/logit zero inflation Poisson/logit hurdle

Variable Count Count Regime Count Regime

Constant 0.7162
(0.03287)

1.3689
(0.01338)

0.4789
(0.0651)

1.4187
(0.0128)

–0.5105
(0.0637)

Age 0.01844
(0.000332)

0.01067
(0.00013)

–0.01984
(0.00133)

0.01059
(0.00012)

0.02068
(0.00131)

Education –0.03429
(0.00180)

–0.02038
(0.00075)

0.0000
(0.0000)

–0.02215
(0.00072)

0.0000
(0.0000)

Income –0.4751
(0.02198)

–0.4131
(0.00869)

0.1663
(0.0758)

–0.4560
(0.00831)

–0.2499
(0.0724)

Kids –0.1582
(0.00796)

–0.08639
(0.00316)

0.2306
(0.0303)

–0.08862
(0.00297)

–0.2378
(0.0297)

Public 0.2364
(0.0133)

0.1573
(0.00604)

0.0000
(0.0000)

0.1547
(0.006037)

0.0000
(0.0000)

Female 0.0000
(0.0000)

0.0000
(0.0000)

–0.58789
(0.0265)

0.0000
(0.0000)

0.5812
(0.0260)

Married 0.0000
(0.0000)

0.0000
(0.0000)

–0.1257
(0.0342)

0.0000
(0.0000)

0.1271
(0.0336)

Self-employed 0.0000
(0.0000)

0.0000
(0.0000)

0.4172
(0.0521)

0.0000
(0.0000)

–0.4137
(0.0513)

log-likelihood –104440.3 –83648.75 –83988.80
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health care system and a process that generates the count when they do. Nonethe-
less, there is little doubt that both are improvements on the Poisson regression.
The average predicted probability of the zero outcome is 0.04826, so the Poisson

model predicts nP̂0 = 1, 319 zero observations. The frequency in the sample is
10,135. The counterparts for the ZIP model are 0.36340 and 9,930. The Poisson
model is not nested in the ZIP model – setting the ZIP coefficients to zero forces
the regime probability to 0.5, not to 1.0. Thus the models cannot be compared
by log-likelihoods. The Vuong statistic strongly supports the zero inflation model,
being +47.05. Similar results are obtained for the hurdle model with the same
specification.

The German health care panel data set contains 7,293 individuals with group
sizes ranging from 1 to 7 and Table 11.9 presents the fixed and random effects
estimates of the equation for DocVis. The pooled estimates are also shown for
comparison. Overall, the panel data treatments bring large changes in the esti-
mates compared to the pooled estimates. There is also a considerable amount of
variation across the specifications. With respect to the parameter of interest, Public,
we find that the size of the coefficient falls substantially with all panel data treat-
ments. Whether using the pooled, fixed or random effects specifications, the test
statistics (Wald, LR) all reject the Poisson model in favor of the negative binomial.
Similarly, either common effects specification is preferred to the pooled estimator.
There is no simple basis for choosing between the fixed and random effects mod-
els, and we have further blurred the distinction by suggesting two formulations for
each of them. We do note that the two random effects estimators are producing
similar results, which one might hope for, but the two fixed effects estimators are
producing very different estimates. The NB1 estimates include two coefficients, on
Income and Education, that are positive, but negative in every other case.

Moreover, the coefficient on Public, which is large and significant throughout
the table, becomes small and less significant with the fixed effects estimators.

11.7 Multinomial unordered choices

We now extend the random utility, discrete choice model of sections 11.2–11.4 to a
setting in which the individual chooses among multiple alternatives (see Hensher,
Rose and Greene, 2005). The random utility model is:

Uit ,j = x′it ,jβ+ z′itγ+ εit ,j, j = 1, . . . , Jit , t = 1, . . . , Ti,

where, as before, we consider individual i in choice situation t , choosing among a
possibly variable number of choices, Jit , and a possibly individual specific number
of choice situations. For the present, for convenience, we assume Ti = 1 – a single-
choice situation. This will be generalized later. The extension to variable choice set
sizes, Jit , turns out to be essentially a minor modification of the mathematics, so it
will also prove convenient to assume Jit is fixed at J . The random utility model is
thus:

Ui,j = x′i,jβ+ z′iγ+ εi,j, j = 1, . . . , J , i = 1, . . . , n.
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The earlier assumptions are extended as well. The axioms of choice will imply
that preferences are transitive, reflexive and complete. Thus, in any choice sit-
uation, the individual will make a choice, and that choice, ji, will be such
that:

Ui,ji > Ui,m for all m = 1, . . . , J and m �= ji.

Reverting back to the optimization problem, utility maximization over continuous
choices subject to a budget constraint produces the complete set of demands, di
(prices, income). Inserting the demands back into the utility function produces the
indirect utility function:

U∗i = Ui[x(prices, income)].
This formulation is convenient for discrete choice modeling, as the data typi-
cally observed on the right-hand sides of the model equations will be income,
prices, other characteristics of the individual such as age and sex, and attributes
of the choices, such as model or type. The random utility model for multinomial
unordered choices is then taken to be defined over the indirect utilities.

11.7.1 Multinomial logit and multinomial probit models

Not all stochastic specifications for εi,j are consistent with utility maximization.
McFadden (1981) showed that the i.i.d. Type 1 extreme value distribution:

F(εi,j) = exp(− exp(−εi,j)), j = 1, . . . , J , i = 1, . . . , n,

produces a probabilistic choice model that is consistent with utility maximization.
The resulting choice probabilities are:

Prob(di,j = 1|Xi, zi) =
exp(x′i,jβ+ z′iγ)

�
J
m=1 exp(x′i,mβ+ z′iγ)

,

di,j = 1 if Ui,ji > Ui,m, , m = 1, . . . , J and m �= j.

This is the multinomial logit model. The components, xi,j, are the attributes of the
choices (prices, features, etc.), while the zi are the characteristics of the individual
(income, age, sex). We noted at the outset of section 11.2 that identification of the
model parameters requires that γ varies across the choices. Thus, the full model is:

Prob(di,j = 1|Xi, zi) =
exp(x′i,jβ+ z′iγj)

�
J
m=1 exp(x′i,mβ+ z′iγm)

, γJ = 0,

di,j = 1 if Ui,ji > Ui,m, , m = 1, . . . , J and m �= j.

The log-likelihood function is:

ln L =
∑n

i=1

∑J

j=1
di,j ln

⎡⎣ exp(x′i,jβ+ z′iγj)

�
J
m=1 exp(x′i,mβ+ z′iγm)

⎤⎦.
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The multinomial logit specification implies the peculiar restriction that

∂ ln Prob(choice = j)
∂xi.m

= [1( j = m)− Prob(choice = m)]β.

Thus the impact of a change in an attribute of a particular choice on the set of choice
probabilities is the same for all (other) choices. For example, in our application,

∂ ln PTRAIN
∂CostAIR

= ∂ ln PBUS
∂CostAIR

= ∂ ln PCAR
∂CostAIR

= (−PAIR)βCost .

This striking result, termed independence from irrelevant alternatives (IIA), follows
from the initial assumptions of independent and identical distributions for εi,j.
This is a major shortcoming of the model, and has motivated much of the research
on specification of discrete choice models. Many model extensions have been pro-
posed, including a heteroskedastic extreme value model (Bhat, 1995), the Dogit
(dodging the logit model, Gaudry and Dagenais, 1979), and a host of others. The
major extensions of the canonical multinomial logit (MNL) model have been the
multinomial probit (MNP) model, the nested logit model and the current frontier,
the mixed logit model. We consider each of these in turn.

11.7.1.1 Multinomial probit model

The MNP model (Daganzo, 1979) replaces the i.i.d. assumptions of the MNL model
with a multivariate normality assumption:

εi ∼ NJ [0,�].

This specification relaxes the independence assumption. In principle, it can also
relax the assumption of identical (marginal) distributions as well. Recall that, since
only the most preferred choice is revealed, information about utilities is obtained
in the form of differences, Ui,j – Ui,m. It follows that identification restrictions are
required, as only some, or certain combinations of, elements of � are estimable.
The simplest approach to securing identification that is used in practice is to impose
that the last row of � be equal to (0, 0, . . . , 1), and one other diagonal element
also equals 1. The remaining elements of � may be unrestricted, subject to the
requirement that the matrix be positive definite. This can be done by a Cholesky
decomposition, � = CC′, where C is a lower triangular matrix.

The MNP model relaxes the IIA assumptions. The shortcoming of the model is its
computational demands. The relevant probabilities that enter the log-likelihood
function and its derivatives must be approximated by simulation. The GHK
simulator (Manski and Lerman, 1977; Geweke, Keane and Runkle, 1994) is com-
monly used. The Gibbs sampler with non-informative priors (Allenby and Rossi,
1999) has also proved useful for estimating the model parameters. Even with the
GHK simulator, however, computation of the probabilities by simulation is time
consuming.
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11.7.2 Nested logit models

The nested logit model allows for the grouping of alternatives into “nests” with
correlation across elements in a group. The natural analogy is to a “tree structure”;
e.g., Figure 11.2 suggests an elaborate, three-level treatment of an eight-alternative-
choice set.

Commute TRUNK

LIMBS

BusCar_Drv Car_Ride Train Ferry RaftPlane Helicopter TWIGS

BRANCHESWaterLandDriveFly

PublicPrivate

Figure 11.2 Nested choice set

The specific choice probabilities are redefined to be the conditional probability
of alternative twig j in branch b, limb l, and trunk r, j|b,l,r, At the next level up
the tree, we define the conditional probability of choosing a particular branch in
limb l, trunk r, b|l,r, the conditional probability of choosing a limb in trunk r, l|r,
and, finally, the probability of choosing a trunk r. By the laws of probability, the
unconditional probability of the observed choices made by an individual is:

P( j, b, l, r) = P( j|b, l, r)× P(b|l, r)× P(l|r)× P(r).

This is the contribution of an individual observation to the likelihood function for
the sample. (Note that in our example, there is only one trunk, so P(r) = 1.)

The two-level nested logit model is the leading case, and occupies most of
the received applications. In this instance, a common specification places the
individual specific characteristics, such as demographic variables, in the branch
probabilities. For this basic model, then:

P(j|b) = exp(x′j|bβ)∑
q|b exp(x′q|bβ)

= exp(x′j|bβ)

exp(Jb)
,

where Jb is the inclusive value for branch b,

Jb = log
∑
q|b

exp(x′q|bβ).

At the next level up the tree, we define the conditional probability of choosing a
particular branch:

P(b) =
exp

[
λb(z

′
iγb + Jb)

]
∑

s exp
[
λs(z

′
iγs + Js)

] = exp
[
λb(z

′
iγb + Jb)

]
exp(I)

,
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where I is the inclusive value for the model:

I = log
∑

s
exp[λs(z

′
iδs + Js)].

The original MNL results if the inclusive parameters, λs, are all equal to one.
Alternative normalizations and aspects of the nested logit model are discussed

in Hensher and Greene (2002) and Hunt (2000). A second form moves the scaling
down to the twig level, rather than at the branch level. Here it is made explicit
that, within a branch, the scaling must be the same for all alternatives, but it can
differ between the branches:

P( j|b) =
exp

[
μb(x

′
j|bβ)

]
∑

q|b exp
[
μb(x

′
q|bβ)

] = exp
[
μb(x

′
j|bβ)

]
exp(Jb)

.

Note that, in the summation in the inclusive value I , the scaling parameter is not
varying with the summation index. It is the same for all twigs in the branch.

At the next level up the tree, we define the conditional probability of choosing
the particular branch:

P(b|l) =
exp

[(
z′iγs + (1/μb)Jb

)]
∑

s exp
[(

z′iγs + (1/μs)Js
)] = exp

[(
z′iγs + (1/μb)Jb

)]
exp(I)

,

where Il is the inclusive value for limb l:

Il = log
∑

s|l exp
[
γl

(
α
′ys|l + (1/μs|l)Js|l

)]
.

In the nested logit model with P(j, b, l, r) = P(j|b, l, r)×P(b|l, r)× P(l|r)× P(r), the
marginal effect of a change in attribute “k” in the utility function for alternative “J”
in branch “B” of limb “L” of trunk “R” on the probability of choice “j” in branch “b”
of limb “l” of trunk “r” is computed using the following result: lower-case letters
indicate the twig, branch, limb and trunk of the outcome upon which the effect is
being exerted. Upper-case letters indicate the twig, branch, limb and trunk which
contain the outcome whose attribute is being changed:

∂ log P(alt = j, limb = l, branch = b, trunk = r)
∂x(k)|alt = J , limb = L, branch = B, trunk = r

= D(k|J , B, L, R) = �(k)× F,

where �(k) = coefficient on x(k) in U (J |B, L, R) and:

F = 1(r = R)× 1(l = L)× 1(b = B)× [1( j = J) P( J |BLR)] (trunk effect),

= 1(r = R)× 1(l = L)× [1(b = B)− P(B|LR)] × P( J |BLR)] × τB|LR (limb effect),

= 1(r = R)× [1(l = L)− P(L|R)] × P(B|LR)× P( J |BLR)× τB|LR × σL|R (branch effect),

= [1(r = R)P(R)] × P(L|R)× P(B|LR)× P( J |BLR)× τB|LR × σL|R × φR (twig effect),
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where τB|LR, σL|R and φR are parameters in the MNL probabilities. The marginal
effect is:

∂P(j, b, l, r)/∂x(k)|J , B, L, R = P(j, b, l, r)�(k)F.

A marginal effect has four components: an effect on the probability of the particular
trunk, one on the probability for the limb, one for the branch, and one for the
probability for the twig. (Note that with one trunk, P(l) = P(1) = 1, and likewise
for limbs and branches.) For continuous variables, such as cost, it is common to
report, instead:

Elasticity = x(k)|J , B, L, R×�(k|J , B, L, R)× F.

The formulation of the nested logit model imposes no restrictions on the inclu-
sive value parameters. However, the assumption of utility maximization and the
stochastic underpinnings of the model do imply certain restrictions. For the former,
in principle, the inclusive value parameters must lie between zero and one. For the
latter, the restrictions are implied by the way the random terms in the utility func-
tions are constructed. In particular, the nesting aspect of the model is obtained by
writing:

εj|b,l,r = uj|b,l,r + vb|l,r .
That is, within a branch, the random terms are viewed as the sum of a unique com-
ponent and a common component. This has certain implications for the structure
of the scale parameters in the model. In particular, it is the source of the oft cited
(and oft violated) constraint that the IV parameters must lie between zero and one.
These are explored in Hunt (2000) and Hensher and Greene (2002).

11.7.3 Mixed logit and error component models

This model is somewhat similar to the random coefficients model for linear regres-
sions (see Bhat, 1996; Jain, Vilcassim and Chintagunta, 1994; Revelt and Train,
1998; Train, 2003; Berry, Levinsohn and Pakes, 1995). The model formulation is a
one-level MNL for individuals i = 1, . . . , n in choice setting t . We begin with the
basic form of the MNL model, with alternative specific constants αji and attributes
xji:

Prob(yit = j|Xit ) =
exp

(
αji +i x′it ,jβi

)
∑Jit

q=1 exp
(
αqi +i x′it ,qβi

) .

The random parameters model emerges as the form of the individual specific
parameter vector, βi, is developed. The most familiar, simplest version of the model
specifies:

βki = βk + σkvki,

αji = αj + σjvji,

where βk is the population mean, vki is the individual specific heterogeneity, with
mean zero and standard deviation one, and σk is the standard deviation of the dis-
tribution of the βkis around βk. The term “mixed logit” is often used in the literature
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(e.g., Revelt and Train, 1998, and, especially, McFadden and Train, 2000) for this
model. The choice-specific constants, αji, and the elements of βi are distributed
randomly across individuals with fixed means. A refinement of the model is to
allow the means of the parameter distributions to be heterogeneous with observed
data zi (which does not include a constant). This would be a set of choice invariant
characteristics that produce individual heterogeneity in the means of the randomly
distributed coefficients so that:

βki = βk + z′iδk + σkvki,

and likewise for the constants. The model is not limited to the normal distribution.
One important variation is the log-normal model,

βki = exp(βk + z′iδk + σkvki).

The vkis are individual and choice specific, unobserved random disturbances – the
source of the heterogeneity. Thus, as stated above, in the population, if the random
terms are normally distributed:

βki ∼ Normal or Lognormal [βk + z′iδk, σ2
k ].

(Other distributions may be specified.) For the full vector of K random coefficients
in the model, we may write the full set of random parameters as:

βi = β+zi + �vi,

where � is a diagonal matrix which contains σk on its diagonal. For convenience at
this point, we will simply gather the parameters or choice specific constants under
the subscript “k.”

Greene and Hensher (2006) have developed a counterpart to the random effects
model that essentially generalizes the mixed logit model to a stochastic form of
the nested logit model. The general notation is fairly cumbersome, but an example
suffices to develop the model structure. Consider a four outcome-choice set: Air,
Train, Bus, Car. The utility functions in an MNL or mixed logit model could be:

Uit ,Air = αAir +x′it ,Airβi +εit ,Air +θ1Ei,Private
Uit ,Train = αTrain +x′it ,Trainβii +εit ,Train +θ2Ei,Public
Uit ,Bus = αBus +x′it ,Busβii +εit ,Bus +θ2Ei,Public
Uit ,Car = x′it ,Carβi +εit ,Car +θ1Ei,Private,

where the components Ei,Private and Ei,Public are independent, normally distributed
random elements of the utility functions. Thus this is a two-level nested logit
model.

The probabilities defined above are conditioned on the random terms, vi, and the
error components, Ei. The unconditional probabilities are obtained by integrating
vik and Eim out of the conditional probabilities: Pj = Ev,E[P( j|vi,Ei)]. This is a
multiple integral which does not exist in closed form. The integral is approximated
by simulation (see Greene and Hensher, 2006, and Greene, 2007a, for discussion).
Parameters are estimated by maximizing the simulated log-likelihood.
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11.7.4 Application

The multinomial choice models are illustrated with a well-known data survey of
commuters between Sydney and Melbourne (see Greene, 2007a, and references
cited). A sample of 210 travelers between Sydney and Melbourne were asked which
of four travel modes they chose air, train, bus or car. The variables used in the
models are:

TTME = Terminal time, in minutes, zero for car,
INVT = In-vehicle time for the journey

GC = generalized cost = in-vehicle cost + a wage times INVT
HINC = household income
PSIZE = traveling party size:

Table 11.10 lists descriptive statistics for the variables in the model. The left-
hand side for each panel lists the means and standard deviations for the variables

Table 11.10 Descriptive statistics for variables

Variable Mean Std. dev. Mean Std. dev.

58 observations
AIR All 210 obs. that chose AIR

TTME 61.010 15.719 46.534 24.389
INVT 133.710 48.521 124.828 50.288
GC 102.648 30.575 113.552 33.198
PSIZE 1.743 1.012 1.569 .819
HINC 34.548 19.711 41.724 19.115

63 observations
TRAIN All 210 obs. that chose TRAIN

TTME 35.690 12.279 28.524 19.354
INVT 608.286 251.797 532.667 249.360
GC 130.200 58.235 106.619 49.601
PSIZE 1.743 1.012 1.667 .898
HINC 34.548 19.711 23.063 17.287

30 observations
BUS All 210 obs. that chose BUS

TTME 41.657 12.077 25.200 14.919
INVT 629.462 235.408 618.833 273.610
GC 115.257 44.934 108.133 43.244
PSIZE 1.743 1.012 1.333 .661
HINC 34.548 19.711 29.700 16.851

59 observations
CAR All 210 obs. that chose CAR

TTME .000 .000 .000 .000
INVT 573.205 274.855 527.373 301.131
GC 95.414 46.827 89.085 49.833
PSIZE 1.743 1.012 2.203 1.270
HINC 34.548 19.711 42.220 17.685
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for all observations, in each of the four choices. The right-hand side reports the
same statistics for the observations that made the particular choices. Thus, for
example, the average terminal time for all 210 observations for the air choice is
61.01 minutes. For the 58 individuals who chose air, the average terminal time for
air is 46.534 minutes. We note before beginning that the sample proportions for
the four travel modes in this sample are 0.27619, 0.30000, 0.14286 and 0.28095,
respectively. Long study of this market revealed that the population values of these
proportions should be closer to 0.14, 0.13, 0.09 and 0.64, respectively. The sample
observations were deliberately drawn so that the car alternative received fewer
observations than random sampling would predict. The sample is choice based. A
general adjustment for that phenomenon is the Manski–Lerman (1977) weighted
endogenous sampling maximum likelihood (WESML) correction, which consists
of two parts. First, we would fit a weighted log-likelihood:

ln L(WESML) =
∑n

i=1

∑J

j=1

πj

pj
dij ln�ij,

where dij = 1 if individual i chooses alternative j and 0 otherwise, πj is the true
population proportion, pj is the sample proportion, and �ij is the probability for
outcome j implied by the model. The second aspect of the correction is to use
a sandwich style corrected estimator for the asymptotic covariance matrix of the
MLE:

V(WESML) = H−1
(G′G)H−1,

where H is the inverse of the (weighted) Hessian and (G′G)−1 would be the
BHHH estimator based on first derivatives. The results to follow do not include
this correction – the results in the example would change slightly if they were
incorporated.

We fit a variety of models. The same utility functions were specified for all:

Ui,AIR = αAIR + βttTTMEi,AIR + βit INVTi,AIR + βgcGCi,AIR + γAHINCi + εi,AIR,

Ui,TRAIN = αTRAIN + βttTTMEi,TRAIN + βit INVTi,TRAIN + βgcGCi,TRAIN + εi,TRAIN,

Ui,BUS = αBUS + βttTTMEi,BUS + βit INVTi,BUS + βgcGCi,BUS + εi,BUS,

Ui,CAR = βttTTMEi,CAR + βit INVTi,CAR + βgcGCi,CAR + εi,CAR.

The estimated parameters for the several specifications are given in Table 11.11.
Model MNL is the base case multinomial logit model. Model MNP is the multi-
nomial probit model. The three nested logit (NL) models are nested logit models
with different tree structures:

NL(1) = Private (air, car), Public (train, bus).
NL(2) = Fly (air), Ground (train, bus, car)
NL(3) = Fly (air), Rail (train), Drive (car), Autobus (bus).

For the third of these, one of the inclusive value parameters, μj, must be constrained
to equal one. Model HEV (heteroskedastic extreme value) is the extreme value
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Table 11.11 Estimated multinomial choice models (standard errors in parentheses)

MNL MNPa NL (1)b NL (2)b NL (3)b HEVc RPLd

αAIR 3.139
(.984)

–2.769
(1.997)

1.110
(.877)

3.261
(.879)

1.825
(.621)

2.405
(2.692)

6.930
(4.053)

αTRAIN 3.558
(.443)

3.137
(1.0599)

1.468
(.452)

3.039
(.601)

2.113
(.493)

6.701
(2.852)

17.994
(4.745)

αBUS 3.134
(.452)

2.581
(.419)

.971
(.475)

2.721
(.604)

1.877
(.746)

6.150
(2.483)

16.556
(4.585)

αCAR .000
(0.000)

.000
(0.000)

.000
(0.000)

.000
(0.000)

.000
(0.000)

.000
(0.000)

.000
(0.000)

Term
time

–.0963
(.0103)

–.0548
(.0227)

–.0655
(.0116)

–.0742
(.00134)

–.0415
(.0148)

–.164
(.0799)

–.385
(.0857)

Inv. time –.00379
(.00118)

–.00447
(.00139)

–.00422
(.000919)

–.0167
(.00142)

–.00767
(.00197)

–.00744
(.00300)

–.0241
(.00589)

Gen. cost –.00139
(.00623)

–.0183
(.00827)

–.000449
(.00467)

.00639
(.00679)

–.00051
(.00340)

–.0299
(.0185)

–.0397
(.0238)

Income .0185
(.0108)

.0702
(.0398)

.0169
(.00691)

.0195
(.00878)

.00868
(.00389)

.0604
(.0456)

.156
(.0715)

Scale (1) 5.073
(2.172)

3.097
(.627)

1.278
(.289)

3.400
(1.238)

.386
(.189)

.261
(.0794)

Scale (2) 1.221
(.911)

1.989
(.423)

.197
(.0679)

1.0839
(.109)

.745
(.376)

.0176
(.00564)

Scale (3) 1.000
(0.000)

1.130
(.144)

.964
(.587)

.0369
(.0350)

Scale (4) 1.000
(0.000)

1.000
(0.000)

1.000
(0.000)

P. size –.208
(.0739)

ρ (air,
train)

.736
(.323)

ρ (air,
bus)

.649
(.475)

ρ

(train,
bus)

.655
(.292)

lnL –193.4981 –191.8264 –178.7135 –166.3662 –190.9303 –186.1741 –168.1089

a Scale parameters are standard deviations.
b Scale parameters are IV parameters.
c Scale parameters are σj .
d Scale parameters are standard deviations of random parameters.

model with the variances allowed to differ across utility functions. In addition, we
introduced heteroskedasticity in the model, so that:

Var[εi,j] = σ
2
j × exp(θ party size).

Finally, the last model, RPL (random parameters logit), is a random parameters
specification in which the parameters on TTME, INVT and GC are allowed to vary
randomly across individuals.
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It is difficult to obtain a precise interpretation of the coefficients in the utility
functions. The elasticities of the probabilities of specific outcomes with respect to
changes in the attributes of those and other outcomes are more informative. We
write these:

δ(m)j,l =
∂ log Pj

∂ log xm,l
,

where m indicates the mth attribute, j is the choice probability affected and l is
the choice utility function in which xm,l changes. These are given in Table 11.12.
(specific forms of these appear in Greene, 2008a; Hensher et al., 2005). The values
given are averaged over the observations. Note that for the MNL form, δ(m)j,l is
the same for all l. This is the force of the IIA assumptions made at the outset. This
is a motivation for the more elaborate functions considered.

Table 11.12 Estimated elasticities with respect to changes in GC

Effect CG changes in choices:
is on
choice of: Air Train Bus Car

MNL –.0994 MNL .0455 MNL .0210 MNL .0346
Air MNP –.5230 MNP .3060 MNP .1179 MNP .1006

NL(2) .595 NL(2) –.0310 NL(2) –.0200 NL(2) –.0430
HEV –.9158 HEV .3771 HEV .2339 HEV .2144
RPL –.4808 RPL .2361 RPL .1440 RPL .0663
MNL .0435 MNL –.1357 MNL .0210 MNL .0346

Train MNP .3889 MNP –3.4650 MNP 1.1148 MNP .9416
NL(2) –.2440 NL(2) –.2160 NL(2) –.127 NL(2) .5420
HEV .3443 HEV –1.7389 HEV .4105 HEV .4621
RPL .3167 RPL –1.4151 RPL .5715 RPL .2360
MNL .0435 MNL .0455 MNL –.1394 MNL .0346

Bus MNP .2859 MNP 2.454 MNP –4.4750 MNP 1.2686
NL(2) –.2440 NL(2) –.2160 NL(2) .6100 NL(2) –.2900
HEV .4744 HEV 1.2723 HEV –3.1008 HEV .8358
RPL .7109 RPL 1.8434 RPL –2.9242 RPL .3246
MNL .0435 MNL .0455 MNL .0210 MNL –.0982

Car MNP .1113 MNP .8592 MNP .5587 MNP –1.4023
NL(2) –.2440 NL(2) .3940 NL(2) –.1270 NL(2) –.2900
HEV .4133 HEV .8108 HEV .6190 HEV –1.7829
RPL .2489 RPL .6300 RPL .2973 RPL –1.0332

11.8 Summary and conclusions

This chapter has outlined the basic modeling frameworks that are used in analyzing
microeconomic data when the response variable corresponds to a discrete choice.
The essential binary choice model is the foundation for a vast array of applications
and theoretical developments. The full set of results for the fully parametric models
based on the normal distribution, as well as many non- and semiparametric models,
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are well established. Ongoing contemporary theoretical research is largely focused
on less parametric approaches and on panel data. The parametric models developed
here still overwhelmingly dominate the received applications.

Notes

1. For a lengthy and detailed development of these ideas, see Daniel McFadden’s Nobel
Prize Lecture (McFadden, 2001).

2. See, as well, Samuelson (1947) and Goldberger (1987).
3. Some formulations of the models, such as models of heteroskedasticity and the random

parameters, will also involve additional parameters. These will be introduced later. They
are omitted at this point to avoid cluttering the notation.

4. The formulation assumes that the Ti choices made by individual i are unconditionally
independent. This assumption may be inappropriate. In one of our applications, the
assumption is testable.

5. See, e.g., the documentation for LIMDEP (Econometric Software, Inc., 2007) or Stata
(Stata, Inc., 2007).

6. We are assuming that the data are “well behaved” so that the conditions underlying the
standard optimality properties of MLEs are met here. The conditions and the properties
are discussed in Greene (2008a). We will take them as given in what follows.

7. The sign of the result for the logistic distribution is obvious. See, e.g., Maddala (1983, p.
366) for a proof of the result for the normal distribution.

8. There are data configurations, in addition to simple multicollinarity, that can produce
singularities. Another possibility is that of a variable in xi or zi that can predict di perfectly
based on a specific cut point in the range of that variable.

9. Recall that the average predicted probability, P̂, equals the average outcome in the binary
choice model, P1. To a fair approximation, the standard deviation of the predicted prob-
abilities will equal [P1(1 − P1)]0.5. If the sample is highly unbalanced, say P1 < 0.05
or P1 > 0.95, then a predicted probability as large as (or as small as) 0.5 may become
unlikely. It is common in unbalanced panels for the simple prediction rule always to
predict the same value.

10. A symposium on the subject is Hardle and Manski (1993).
11. See Manski (1975, 1985, 1986) and Manski and Thompson (1986). For extensions of this

model, see Horowitz (1992), Charlier, Melenberg and van Soest (1995) and Kyriazidou
(1997).

12. Bootstrapping has been used to estimate the asymptotic covariance matrix for the maxi-
mum score estimator. However, Abrevaya and Huang (2005) have recently cast doubt on
the validity of that approach. No other strategy is available for statistical inference in this
model.

13. One would proceed in precisely this fashion if the central specification were a linear
probability model (LPM) to begin with. See, e.g., Eisenberg and Rowe (2006) or Angrist
(2001) for an application and some analysis of this case.

14. This is precisely the platform that underlies the generalized linear models/generalized
estimating equations (GLIM/GEE) treatment of binary choice models in, e.g., the widely
used programs SAS and Stata.

15. Much of the recent research in semiparametric and nonparametric analysis of discrete
choice and limited dependent variable models has focused on how to accommodate
individual heterogeneity in panel data models while avoiding the incidental parameters
problem.

16. The requirement does not state how large R must be, only that it “increase” faster than
n1/2. In practice, analysts typically use several hundred, perhaps up to 1,000, random
draws for their simulations.
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17. See, as well, Hsiao (2003) for a survey of dynamic panel data models and other applica-
tions by van Doorslaer and Nonneman (1987), Wagstaff (1993) and Vella and Verbeek
(1999).

18. This is the formulation used by Contoyannis et al. (2004). Wooldridge (2006) suggested,
instead, that the projection be upon all of the data, (xi1,xi2, . . .). Two major practical
problems with this approach are that, in a model with a large number of regressors,
which is common when using large, elaborate panel data sets, the number of variables
in the resulting model will become excessive. Second, this approach breaks down if the
panel is unbalanced, as it was in the Contoyannis et al. study.

19. Beck et al. (2001) is a bit different from the others mentioned in that, in their study
of “state failure,” they observe a large sample of countries (147) observed over a fairly
large number of years, 40. As such, they are able to formulate their models in such a
way that makes the asymptotics with respect to T appropriate. They can analyze the
data essentially in a time series framework. Sepanski (2000) is another application which
combines state dependence and the random coefficient specification of Akin, Guilkey
and Sickles (1979).

20. Wynand and van Praag (1981) used a two-step procedure similar to Heckman’s (1979)
procedure for the linear model. Applications since then have used the MLE.

21. Since the coefficient vectors are assumed to be the same in every period, it is only nec-
essary to normalize one of the diagonal elements in R to 1.0. See Greene (2004a) for
discussion.

22. For example, the parameters can be written in terms of a set of latent parameters so that
μ1 = τ2

1 , μ2 = τ2
1 + τ2

2 , etc. Typically, the explicit reparameterization is unnecessary.
23. One could argue that this reformulation achieves identification purely “through func-

tional form,” rather than through the theoretical underpinnings of the model. Of course,
this assertion elevates the linear specification to a default position of prominence, which
seems unwarranted. Moreover, arguably the underlying theory (as, in fact, suggested in
passing by Pudney and Shields, 2000) is that there are different effects of the regressors
on the thresholds and on the underlying utility.

24. Cross-section versions of the ordered probit model with individual specific thresholds
appear in Terza (1985), Pudney and Shields (2000) and in Greene (2007a).

25. No theory justifies the choice of the log-gamma density. It is essentially the same as a
conjugate prior in Bayesian analysis, chosen for its mathematical convenience.

26. The use of the linear index form is a convenience. The random component, ε, could enter
the model in some other form, with no change in the general approach.
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Panel Data Methods and Applications
to Health Economics
Andrew M. Jones

Abstract

Much of the empirical analysis done by health economists seeks to estimate the impact of specific
health policies, and the greatest challenge for successful applied work is to find appropriate sources
of variation to identify the treatment effects of interest. Estimation can be prone to selection bias
when the assignment to treatments is associated with the potential outcomes of the treatment.
Overcoming this bias requires variation in the assignment of treatments that is independent of the
outcomes. One source of independent variation comes from randomized controlled experiments.
But, in practice, most economic studies have to draw on non-experimental data. Many studies
seek to use variation across time and events that takes the form of a quasi-experimental design,
or “natural experiment,” that mimics the features of a genuine experiment. This chapter reviews
the data and methods that are used in applied health economics with a particular emphasis on
the use of panel data. The focus is on nonlinear models and methods that can accommodate
unobserved heterogeneity. These include conditional estimators, maximum simulated likelihood,
Bayesian MCMC, finite mixtures and copulas.
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12.1 Introduction

A common thread that runs through this chapter is the “evaluation problem”: is
it possible to identify the impact of policies from empirical data? The focus of the
chapter is on individual-level longitudinal data, so consider an “outcome” yit , for
individual i at time t . The treatment effect of interest is:

TEit = �it = y1
it − y0

it , (12.1)
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where 1 denotes treatment and 0 denotes control.1 The pure treatment effect
cannot be identified because the counterfactual can never be observed: each indi-
vidual is either treated or untreated at a particular point in time so only one of the
potential outcomes can be observed. The outcome that is actually observed can be
written in terms of the potential outcomes:

yit = y0
it + dit (y

1
it − y0

it ), (12.2)

where dit is an indicator of treatment.
One response to the problem of defining a counterfactual is to concentrate on

the average treatment effect (ATE), comparing the average outcomes between the
treated and controls:

ATE = E
(
y1
it − y0

it

)
. (12.3)

When there is heterogeneity in individual responses to the treatment that may
influence the assignment of treatment, for example, when doctors select patients
on the basis of their capacity to benefit, attention is likely to focus on the average
treatment effect on the treated (ATET) rather than the ATE:

ATET = E
(
y1
it − y0

it | dit = 1
)
. (12.4)

This is the average effect of treatment for those individuals who would actually
select into treatment.

Moving towards a regression framework, assume that the observed outcome
under the two treatment regimes is given by the general regression model:

yit = fj(xit , ujit ), j = 0, 1. (12.5)

The vector x includes observable factors that influence the outcome and may influ-
ence the assignment of treatment (reflecting “selection on observables”). The u are
unobservable factors that influence the outcomes and may influence the assign-
ment of treatment (“selection on unobservables”). Formulating the problem in
this way requires the SUTVA (stable unit-treatment value assumption) to hold – an
individual’s potential outcomes and treatments are independent of others in the
population, ruling out spillover and general equilibrium effects. These spillovers
may be important in some health economics applications and the evaluation of
treatment effects would then have to be designed to accommodate them (see
Chandra and Staiger, 2007; Miguel and Kremer, 2004). Using linear functions for
f (.) gives a switching regression model:

yit = x′itβj + ujit , j = 0, 1. (12.6)

A simplification of this model, which assumes a homogeneous treatment effect so
that only the intercept varies with treatment, gives the regression function:

yit = x′itβ + dit δ + uit . (12.7)

In this case ATE = ATET = δ.
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If unobserved factors (u) influence whether an individual is selected into the
treatment group or how they respond to the treatment, this will lead to biased esti-
mates of the treatment effect. A randomized experimental design may achieve
the desired orthogonality of measured covariates (x, d) and unobservables (u).
However, econometric studies typically rely on observational data gathered in a
non-experimental setting. One strategy is to rely on selection on observables: find-
ing a sufficiently rich set of observable characteristics so that unobservables can be
assumed to have no systematic influence on treatments. This approach includes
matching estimators and inverse probability weighted estimators. In contrast, the
selection on unobservables strategy looks for factors that predict treatment, but
have no direct effect on outcomes and which can therefore be used to mimic
random assignment of treatment. This approach includes using within-individual
variation to allow for time invariant individual heterogeneity in panel data mod-
els (fixed effects) as well as conventional instrumental variables (IVs) estimators. It
also includes multiple equation models in which equations for the treatment and
outcome are estimated jointly by full information maximum likelihood (FIML).
“Natural experiments” often lead to the use of difference-in-differences estimators,
which combine selection on observables (by including x in the regression models)
with selection on unobservables (by using differencing to control for time invariant
heterogeneity).

Natural experiments are often also linked to IV estimation, which relies on instru-
ments (z) that predict the assignment of treatment, but do not have a direct effect
on the outcome. When there is heterogeneity in the response to treatment the IV
estimator identifies a local average treatment effect, or LATE (Imbens and Angrist,
1994; McClellan et al., 1994). This is the average treatment effect over the sub-group
of the population that are induced to participate in the treatment by variation in
the instrument. The fact that IV estimates only identify the LATE and that the
results are therefore contingent on the set of instruments explains why different
empirical studies can produce quite different estimates, even though they examine
the same outcomes and treatments. Heterogeneity in treatment effects is likely to
be widespread: for example, Auld (2006a) finds considerable heterogeneity in the
treatment effect of local HIV infection prevalence on risky sexual behavior among
gay men in the San Francisco Men’s Health Study (SFMHS), with HIV prevalence
having less impact among those at high risk.

Recent work by Heckman and Vytlacil has extended the analysis of local treat-
ment effects by specifying a model for the assignment of treatment and using
it to identify those individuals who are indifferent between treatments, given x
and z (see, e.g., Heckman and Vitlacyl, 1999, 2007; see Basu et al., 2007, for
an application to health data). This approach defines the marginal treatment
effect (MTE): the treatment effect among those individuals at the margin. The
MTE provides a building block for the LATE, ATET and ATE. It can be identi-
fied using local instrumental variables (LIVs) methods or by specifying multiple
equation models with a common factor structure (see, e.g., Aakvik et al., 2005; Basu
et al., 2007).
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For example, in Aakvik et al. (2005) the treatment is a Norwegian vocational
rehabilitation (VR) program and the outcome is a binary measure of employment.
Analysis is based on a 10% sample of all those who applied for VR in 1989. To define
the treatment effects of interest, Aakvik et al., specify a discrete choice model with
a common factor structure. There is a switching regression for the binary indicator
of employment under the two treatment regimes:

y1
i = f1(xi, u1i) = 1(x′i β1 ≥ u1i)

y0
i = f0(xi, u0i) = 1(x′i β0 ≥ u0i),

(12.8)

along with a latent variable model for the assignment of treatment:

di = 1
if
d∗i = z′iβd − udi > 0.

(12.9)

The error terms are assumed to have a common factor structure:

udi = − ηi+ εdi
u1i = −α1ηi + ε1i
u0i = −α0ηi + ε0i .

(12.10)

Estimation is by FIML, assuming that the error components are jointly normal.
Given this set-up, the treatment effects of interest can be defined as follows:

MTE(x, u) = E
(
�|x, d∗ = 0

)
= E

(
�|x, ud = z′iβd

)
(12.11)

ATE(x) =
∫

u
MTE(x, u)dF(u) = E (�|x) (12.12)

ATE = E(ATE(x)) =
∫

x
E (�|x) dF(x) (12.13)

ATT(x, u) = E
(
�|x, d = 1

) = E
(
�|x, ud < z′iβd

)
, (12.14)

where F(u) is the distribution of u and F(x) is the distribution of the xs. Aakvik
et al. (2005) do not use the concept of the LATE in their study but, based on the
notation of their model, it could be expressed as:

LATE(x, z, z̃) = E
(
�|x, z′iβd < ud < z̃′iβd

)
, (12.15)

where, for illustration, it is assumed that assignment to treatment is monotonically
related to a single instrument that takes two values z and z̃, where z′iβd < z̃′iβd . The
LATE defines the treatment effect for all those individuals who are induced into
the treatment by the change in the instrument (see, e.g., Basu et al., 2007).

The nonlinear model is identified by functional form, but an exclusion restriction
is also imposed by including an instrument – the degree of rationing of VR places
in the individual’s locality – in z, but not in x. The apparent positive impact of
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the VR program is reversed when selection bias is taken into account and there is
evidence of perverse cream-skimming, with those most likely to benefit being the
least likely to be selected by the program administrators.

A note on the scope of the chapter

This chapter takes the identification of treatment effects as its starting point and
concentrates on microeconometric methods that can be used with longitudinal
and other complex and multilevel datasets. Although the methods described in
the chapter are widely used throughout applied econometrics, the applications
reviewed here all relate to one specific area: health economics. The chapter follows
an earlier review of the literature on “health econometrics” (Jones, 2000) and con-
centrates on studies that have appeared as peer-reviewed publications from 2000
onwards. The emphasis is on applications that use health and health care as out-
comes. Less attention is devoted to the large number of studies of health-related
behaviors, such as diet, smoking, drinking and illicit drugs (see, e.g., Cowell,
2006; Dee et al., 2005; Forster and Jones, 2001; Harris et al., 2006; Terza, 2002;
Van Ours, 2006) and to those that investigate the impact of health, health care
and health insurance on labor market outcomes (see, e.g., Askildsen et al., 2005;
Au et al., 2005; Auld, 2002; Bradley et al., 2005; Contoyannis and Rice, 2001;
Disney et al., 2006; French, 2005; Hogelund and Holm, 2006; Morris, 2006, 2007;
Royalty and Abraham, 2006; Stewart, 2001; Van Ours, 2004) or labor outcomes for
health care professionals (see, e.g., Arulampalam et al., 2004; Frijters et al., 2006;
Holmas, 2002). The scope does not include studies that use econometric tech-
niques in the context of contingent valuation and discrete choice experiments,
where random effects models are often applied (see, e.g., Ryan et al., 2006); multi-
nomial models of the choice of insurance plans or health care providers (see, e.g.,
Deb and Trivedi, 2006; Ho, 2006; Sahn et al., 2003); productivity analysis based
on models of cost and production functions and estimation of stochastic frontier
models (see, e.g., Bradford et al., 2001; Burgess, 2006; Dranove and Lindrooth,
2003; Smith and Street, 2005; Wilson and Carey, 2004); and in the context of cost-
benefit and cost-effectiveness analysis, where econometric methods are starting to
be used alongside methods from biostatistics and epidemiology (see, e.g., Briggs,
2006; Hoch et al., 2002; Willan et al., 2004).

The focus is primarily on studies that use micro-level data derived from longi-
tudinal, multilevel and other complex data structures. Relatively few cross-section
studies are discussed and the chapter does not attempt to review studies that use
aggregate time series or panels and that apply pure time series methods (see, e.g.,
Aakvik and Holmas, 2006; Abadie and Gay, 2006; Chou, 2007; García-Ferrer et al.,
2007; Leigh and Jencks, 2007; Or et al., 2005; Paton, 2002; Ruhm, 2003; Wang and
Rettenmaier, 2007). Analysis of longitudinal data often makes use of the meth-
ods of survival analysis (see, e.g., Arulampalam et al., 2004; Chou, 2002; Disney
et al., 2006; Farsi and Ridder, 2006; Forster and Jones, 2001; Frijters et al., 2006;
Harrison, 2007; Holmas, 2002; Kyle, 2007; Picone et al., 2003a; Stewart, 2001; Van
Ours, 2004, 2006), but these methods are not discussed in detail here.
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The empirical findings of many of the studies are discussed, but no attempt is
made to provide a systematic synthesis of the empirical results. It is notable that
meta-analyses of regression results are beginning to appear in the health economics
literature. For example, Gallet and List (2003) present a meta-analysis of the tobacco
price elasticity and Gemmill et al. (2007) carry out a meta-regression of estimates
of the price elasticity of prescription drugs.

On the whole, the original sources for the econometric methods are not cited.
These are reviewed in Volume 1 of this Handbook (particularly the chapters by
Badi Baltagi, William Greene and Lung-fei Lee) and in other chapters in this second
volume, in particular those by Colin Cameron, William Greene, and David Jacho-
Chávez and Pravin Trivedi.

12.2 Identification strategies: finding relevant variation

The success of applied work depends on finding appropriate sources of variation
to identify the effects of interest. Estimation of treatment effects can be prone to
selection bias, where the assignment to treatments is associated with the poten-
tial outcomes of the treatment. Overcoming this selection bias requires variation
in the assignment of treatments that is independent of the outcomes. One source
of independent variation comes from randomized controlled experiments. While
these are the norm in the evaluation of new clinical therapies, their use for the eval-
uation of social programs remains rare (Gertler, 2004; Kremer, 2003; Miguel and
Kremer, 2004). Most economic studies have to draw on non-experimental, or obser-
vational, data. This section presents a series of case studies from the recent literature
and describes how these have sought out relevant identifying information.

12.2.1 Randomized experiments

The “gold standard” methodology that is used to identify the efficacy and effec-
tiveness of new medical technologies is the randomized clinical trial (RCT). Much
of the work done by health economists to measure the cost-effectiveness of these
technologies draws on data collected within RCTs to perform statistical analyses
(Briggs, 2006) or to calibrate decision analytic models (Claxton et al., 2006). Econo-
metric methods are sometimes used in secondary analysis of such data to model
costs and outcomes as functions of observable covariates (Willan et al., 2004).

Broader randomized social experiments are far less prevalent. One exception,
which has played a highly influential role in the development of health economics
and has driven many of the early developments in the use of econometrics in the
field, is the RAND Health Insurance Experiment (Manning et al., 1987). The RAND
experiment was designed to address the problem of self-selection in the choice
of insurance plans. Participants were randomized between a health maintenance
organization (HMO) and reimbursement plans and across plans with different
levels of co-payments and a plan with deductibles. The RAND study has had a
strong influence, especially in the US. It has focused attention on the use of two-
part or multi-part models to model health care utilization and expenditures and on
the choice of functional form to deal with heavily skewed data and the consequent

mailto: rights@palgrave.com


564 Panel Data Methods

problems of retransformation back to the “natural scale” in the presence of individ-
ual heterogeneity (Manning, 2006). The RAND data is available over the internet
and has been used to test more recent developments of econometric methods
(Bago d’Uva, 2006; Deb and Trivedi, 2002; Gilleskie and Mroz, 2004; Vera-
Hernandez, 2003).

More recently, randomized experiments have begun to play an influential role
in research and policy in developing countries. This is exemplified by the stud-
ies of Gertler (2004) and Miguel and Kremer (2004). The Mexican government’s
PROGRESA program, which was initiated in 1997, has received considerable atten-
tion and has influenced policy throughout Latin America. The program relies on
conditional cash transfers that are designed to influence the use of health and
welfare services for children in poor families. It covers 2.6 million families in
50,000 rural villages. The program focuses on health, hygiene and nutrition. It
links substantial cash transfers, on average amounting to 20–30% of household
income, to the use of prenatal care, well-baby care and immunization, nutri-
tion monitoring and supplementation, preventive check-ups and participation
in educational programs. PROGRESA works by first selecting whole communities
to participate in the scheme and then selecting households within those com-
munities that satisfy the eligibility criteria to receive the benefits of the scheme.
Financial constraints on the implementation of PROGRESA meant that its intro-
duction was phased. To make the implementation equitable, communities were
selected randomly to receive the benefits either immediately or with a delay. The
random phasing provides researchers with an ideal opportunity to use a random-
ized design in the evaluation of the impact of the program. Of the communities
selected for the program, 320 were randomly selected to receive the intervention in
August–September 1998 with the remaining 185 delayed for two years. The com-
munities in the control group were not informed that they would eventually receive
the program, reducing the scope for anticipation of treatment to influence the
outcome.

Gertler (2004) focuses on health outcomes among children. These include self-
reported morbidity, measured by illnesses in the past month, as reported by the
child’s mother, and objective measures including anthropometric measures of
height and stunting and a biomarker for anaemia (haemoglobin levels). The anal-
ysis is restricted to those households, in both the treatment and control groups,
that satisfy the eligibility criteria for PROGRESA. Although the data is random-
ized, multivariate regression models are used to control for observed covariates
and to reduce idiosyncratic variation. Individual and village random effects are
included, the latter to allow for the clustered sampling. The results show signifi-
cant improvements in both self-reported and objective measures of health and the
impact increases with length of exposure to the program. Gertler (2004) is careful to
note that the comparison of treated and controls does not explain the mechanism
behind this effect: for example, it is not possible to say whether an unconditional
transfer would have had the same effect as the conditional one.

In their “worms” paper, Miguel and Kremer (2004) analyze a randomized exper-
iment to evaluate the impact of the Kenyan Primary School Deworming Project
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(PSDP) on hookworm infection rates and on school attendance. The program
included drug therapy and public health education on avoiding hookworm infec-
tion, with the assignment of treatment randomly phased. Randomization was
done at the level of schools rather than individuals: one group of schools received
treatment in 1998 and 1999, another group only in 1999 and a third group only in
2003. Data was collected in 1998 and 1999 so, in the Miguel and Kremer study, the
first group are the treated and the second and third groups make up the controls.
Miguel and Kremer argue that randomization at the levels of schools is crucial in
this context as it avoids biases created by spillover effects of the deworming pro-
gram in reducing infection rates. They argue that an ideal prospective study would
randomize treatments across pupils within schools, across schools within clusters
and across these clusters. This multilevel variation in the assignment of treatments
could then be used to estimate different levels of the treatment effect in the case
where spillovers are important.

12.2.2 Natural experiments

12.2.2.1 Health shocks

Almond (2006) makes inventive use of the 1918 influenza pandemic as a natu-
ral experiment to provide evidence in favour of the “fetal origins hypothesis.”
Cohorts that were in utero during the pandemic, between the fall of 1918 and
January 1919, are shown to have poorer outcomes: lower educational attainment,
more disability, lower income, lower socioeconomic status and higher transfer pay-
ments. The pandemic has the potential to be used as a natural experiment: it was
unanticipated, the period of exposure was short and the impact varied systemat-
ically across states. The study uses discontinuity across birth cohorts to identify
the long-term effects, drawing on data from the 1960, 1970 and 1980 US Census
microdata (which identify quarter of birth). Geographic variation is also exploited,
based on the “laggard” states where the epidemic had less pronounced long-term
effects, although this does reduce the sample size available. This is a paper where
simple graphical analysis tells the main story, although it is backed up by thorough
statistical modeling.

Doyle (2005) makes innovative use of data on severe traffic accidents to measure
variation in unanticipated health shocks and finds that, in the United States, the
uninsured receive 20% less treatment and have a substantially higher mortality
rate. The Crash Outcome Data Evaluation System (CODES) links police accident
reports to hospital discharge data. This study uses data for Wisconsin covering
1992–97, with a sample of 28,236 individuals, 10% of whom were uninsured.
Severe traffic accidents are assumed to be unanticipated at the time that insurance
is taken out and the consequent use of health care is non-discretionary. Descriptive
evidence suggests that the uninsured are riskier drivers and have worse health prob-
lems, creating a problem of selection bias. To deal with selection a control group
is selected from those with medical insurance, but without car insurance. Within-
hospital variation and time effects are controlled for. The robustness of the findings
is checked by using the sub-sample where both insured and uninsured individuals
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are injured in the same crash, allowing for different severities of accident (accident
fixed effects). Also the sample of passengers is used to abstract from differences
in the quality of driving between the treated and control groups. Robustness is
assessed by doing separate analyses by diagnoses and by medical procedures. In the
light of these results, the lower levels of treatment for the uninsured are attributed
to decisions made by providers in response to insurance status rather than dif-
ferences in background characteristics of the patients. Similar issues are faced by
Levitt and Porter (2001), who address the problem of selection bias in the US
Fatality Analysis Reporting System (FARS), which they use for an analysis of the
effectiveness of seat belts and air bags. The problem arises because data is only
included for fatal crashes. The use of safety devices influences the probability of
survival and hence of inclusion in the sample. The identification strategy adopted
to get around this problem is to use a sample based on crashes where someone in
a different car dies. The aim is to make the sample selection independent of the
observation’s own treatment status and outcomes. In doing so they find that seat
belts are more effective and air bags are less effective than previous evidence had
suggested.

12.2.2.2 Economic shocks

Evans and Lien (2005) make use of the 1992 Port Authority Transit (PAT) strike in
Allegheny County, Pennsylvania, as a source of independent variation in access
to prenatal care. Prenatal visits were affected most for black women and city res-
idents (in Pittsburgh) and the results show that, for these groups, missing visits
early in pregnancy had a detrimental effect, but missing those later in the preg-
nancy did not. The main source of information is observational data from the
1990–94 US Natality Detail Files, which contain a census of births in each given
year, taken from birth records. This is augmented by survey data that is used to
assess the impact of the strike on access to prenatal care. A control group of coun-
ties that were not affected by the strike are selected on the basis of regression
analyses. The use of prenatal care by women who were pregnant at the time of
the strike is included in regression equations for birth weight, gestation, mater-
nal weight gain and maternal smoking. Models are estimated by ordinary least
squares (OLS) and two-stage least squares (2SLS), the latter using the strike as an
instrument. These produce similar results, suggesting that selection bias is not a
problem. The clearest effect of prenatal care is on maternal smoking. The robust-
ness of the findings is tested by checking for a general decline in earnings or
employment coincident with the strike and for evidence of increases in abortions or
“unwanted” births.

In Frijters et al. (2005) the reunification of Germany in 1990 provides a natural
experiment to assess the causal effect of income on self-reported health satisfac-
tion. A positive and statistically significant effect is found, but the effect is small.
The increase in incomes for those in East Germany is used as a source of inde-
pendent variation in income that is not contaminated by reverse causality from
health. The suitability of this setting as a natural experiment is justified by the fact
that the changes in income associated with the fall of the Berlin Wall are assumed
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to have been unanticipated, that the income transfers were large in magnitude
(affecting the real value of savings, collectively bargained wages and pay in gen-
eral) and that there was individual variation in the impact, with civil servants
experiencing an immediate effect. This variation is exploited in an econometric
framework that also allows for entry and attrition from the panel dataset and for
inherent individual heterogeneity. The analysis uses longitudinal data from the
German Socio-economic Panel (GSOEP) from 1984 to 2002 for West Germans and
from 1990 to 2002 for East Germans. Data for East Germans is not available prior
to reunification, so separate models are estimated for East and West Germans and
the natural experiment has to be used indirectly.

In 1996 a crisis in the public pension system in Russia meant that 14 million
of the 39 million state pensioners faced substantial arrears in their payments.
Jensen and Richter (2004) exploit this pensions crisis as a natural experiment.
Their findings show a doubling of poverty rates, significant declines in calorie
and protein intake, and reductions in the use of health services and medica-
tions. They also show evidence of attempts to mitigate the loss of pension income
through work, sales of assets, borrowing and private transfers. Data from the Rus-
sian Longitudinal Monitoring Survey (RLMS) for 1995 and 1996 is used to assess
the impact of the crisis. Identification stems from geographic variation in arrears,
which arises because decisions were regionally decentralized across administrative
areas (oblasts) and discretion was exercised within oblasts. The control group is
made up of households who continued to receive their pensions. Estimation uses a
difference-in-differences design, with the policy effect measured by an interaction
between the post-1996 period and whether an individual’s pension was in arrears.
The identification strategy relies on the assignment of arrears not being associated
with outcomes prior to the crisis. The paper attempts to assess the validity of this
assumption and presents evidence of a common trend for treated and controls
prior to the crisis.

In contrast to Jensen and Richter (2004), Duflo (2000) uses a positive economic
shock associated with public pensions as a source of exogenous variation in income
in her study of child health in South Africa. The end of the Apartheid era in the
early 1990s led to large increases in benefits for black Africans within the South
African Old Age Pension System. Duflo’s study uses cross-section data collected
during 1993 and faces a selection problem, as children living in households with
pension recipients are more likely to be disadvantaged and to live in rural areas.
Her identification strategy compares eligible and non-eligible households and those
children exposed to the increased household pension income for all of their lives
or for only a fraction of their lives. Outcomes are measured using height-for-age
z-scores and there is evidence of an effect on child health and nutrition. This effect
is entirely attributable to pensions received by women and the effect is strongest
for girls.

Chay and Greenstone (2003) bring together a comprehensive set of data sources
within a quasi-experimental research design to investigate the impact of atmo-
spheric pollution on infant health in the US. They find significant effects of total
suspended particles (TSPs) on infant mortality, mostly driven by deaths within one
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month of birth. There is heterogeneity in this effect, with the impact on infant
mortality rates being twice as large among blacks. Identification is based on geo-
graphic variation in the impact of the 1981–82 recession on levels of TSP, which
is treated as a source of random variation. County-level data from various sources
are merged for the period 1978–84. First differenced (fixed effects) models and,
unusually, differenced models with fixed effects for the trend (double differencing)
are used. The latter allows for heterogenity in trends. The analysis goes a step fur-
ther by selecting neighboring counties as controls. This uses non-manufacturing
counties that either are or are not neighbors to manufacturing counties to
try and isolate the effects of pollution from the socioeconomic effects of the
recession.

Lindahl (2005) shows how lottery winnings can provide one source of exogenous
variation in income, in an attempt to overcome the selection biases inherent in
disentangling the socioeconomic gradient in health. There is a statistically signifi-
cant effect of income on morbidity and mortality and the magnitude of this effect
is largely unchanged when lottery winnings are used as an instrument, although
the estimates are less precise. This income effect is not apparent for the sub-sample
aged over 60. Data from the Swedish Level of Living Surveys (SLLS) for 1968, 1974
and 1981 are matched with register data on income and deaths up to 1997. Mor-
bidity is measured by combining 48 symptoms into a standardized measure and
mortality is measured as death within five or ten years of the surveys. Lottery win-
nings are treated as a source of exogenous variation in income: assuming that the
variation is independent of health. Models are estimated with lottery winnings
included directly. Then OLS and instrumental variable estimates (using winnings
as the instrument) are compared for the sample of individuals who are identified
as “players.” The magnitudes of the income effects are similar although standard
errors are inflated when IV is used. A similar strategy is adopted by Gardner and
Oswald (2007). They use data on the General Health Questionnaire (GHQ-12) mea-
sure of psychological well-being from the British Household Panel Survey (BHPS)
for 1996–2003 and compare those who received lottery winnings of between £1,000
and £120,000 to two control groups, those with smaller wins and those with no
wins. The study finds a statistically significant effect of 1.4 GHQ-12 points after
two years (compared to the average drop of 5 points associated with widowhood).
An important caveat is the small number of treated cases: there are only 137
observations with large lottery wins.

In Van Den Berg et al. (2006) the state of the economy during infancy is shown
to have long-term consequences for mortality rates in this inventive study of
those born in the nineteenth century in the Netherlands. The analysis finds a
significant effect of the stage of the business cycle (boom or bust) at the time of
birth on individuals’ subsequent age of death. Data from the Historical Sample
of the Netherlands (HSN), drawn from registers of births, marriages and deaths,
covers 14,000 individuals born between 1812 and 1912 with follow-up to 2000.
This data is merged with macroeconomic time series that are used to identify the
phases of the business cycle. Macroeconomic conditions early in life are used as
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an instrument for socioeconomic conditions in infancy in order to avoid the prob-
lems of unobservable heterogeneity bias that plague cross-section comparisons.
The impact of early life conditions is analyzed nonparametrically, comparing those
born in booms and recessions, and through duration analysis of the individual
mortality data.

12.2.2.3 Educational reforms

Lleras-Muney (2005) shows how historical changes in the US educational system
can be used as a natural experiment, based on a discontinuity design, to identify
the effect of education on adult health. The estimated effect is larger than previous
studies have suggested, with the magnitude of the instrumental variables estimate
of the local average treatment effect three times larger than the OLS estimate. The
natural experiment is based on changes across states in compulsory schooling and
child labor laws between 1915 and 1939. Identification stems from variation over
states and across time in the age at which children had to enter school, the age
at which they could leave school and get a work permit, and whether those with
work permits had to continue in school part time. Estimation uses a regression
discontinuity design, which attributes any jumps associated with school leaving
age to the policy effect. This is applied using a linear probability specification for
deaths as a function of years of schooling. Synthetic cohorts are constructed from
successive US Censuses (1960, 1970 and 1980) to select those who were aged 14
between 1915 and 1939 and to follow-up subsequent mortality rates. These are
synthetic in the sense that they do not follow the same individuals and are based
on gender, birth cohort and state of birth.

Educational reforms are also used as a natural experiment in Arendt (2005). In
this case the analysis focuses on Denmark and reforms in 1958 that removed for-
mal tests before middle school, and 1975, that increased the compulsory minimum
school leaving age. Data are taken from the Danish National Work Environment
Cohort Study (WECS), with two waves in 1990 and 1995, and covers workers
aged 18–59 in 1990. The impact of years of schooling on outcomes later in life
is estimated using two-stage conditional maximum likelihood (2SCML) estimates,
allowing for a random individual effect, for self-reported health. Models are also
estimated for body mass index and for an indicator of never having smoked. The
latter is included for comparison as, for most people, it is determined while they
are still in education. The impact of education on health is amplified when instru-
ments are used, but, at the same time, the standard errors are inflated so that
exogeneity is not rejected. However, tests suggest that there may be a problem of
weak instruments, as the reforms have low explanatory power in the reduced form
equations.

12.2.2.4 Health policies and reforms

Bleakley (2007) is a good example of combining a natural experiment with a
long-term follow-up to explore the economic consequences of a public health
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intervention aimed at children. A program aimed at the eradication of hookworm is
shown to lead to a long-term gain in the income of beneficiaries. Areas with greater
scope for benefiting, due to higher levels of hookworm infection, show greater
contemporaneous increases in school enrollment and attendance and in literacy
among children. The natural experiment is the Rockefeller Sanitary Commission’s
(RSC’s) funding of treatment and education programs to eradicate hookworm in
the Southern US, which took place around 1910–15. This policy intervention
was implemented over a well-defined and relatively short period. Geographic
differences in infection rates prior to the intervention can be used to formulate
and identify a treatment/control design, estimated using difference-in-differences.
Data on long-term consequences for the cohorts exposed to the eradication pro-
gram are obtained from the US Census available through the Integrated Public Use
Micro Sample (IPUMS).

In 1966 the Ceauşescu regime in Romania banned abortion and family plan-
ning. Birth rates doubled the following year. In Pop-Eleches (2006) this provides
an interesting contrast to studies that have examined moves in the opposite direc-
tion in the United States. The raw data show an improvement in educational
attainment and labor market outcomes associated with the ban, but these results
are reversed by allowing for compositional changes in the type of families hav-
ing children. The findings are explained by the fact that affluent urban women
were more likely to have abortions and use contraception before the ban. Data
are drawn from a 15% sample of the 1992 Romanian census and focus on chil-
dren born between January and October 1967. There is a spike in births between
July and October due to the ban, but all of these children entered school in
the same year and experienced the same overcrowding effect. Although it is not
labeled as such, the paper uses a discontinuity design estimating a simple dif-
ference equation that includes a dummy variable for the period after the policy.
Additional covariates are included, but there is no control group and identification
relies on any sudden changes in outcomes for those born just before or just after
the ban.

Lakdawalla et al. (2006) present a careful application of the method of instrumen-
tal variables, based on state-level variation in Medicaid eligibility in the US, which
shows that an unintended consequence of highly active antiretroviral therapy
(HAART) is to increase risky sexual behavior among patients who are HIV+. Sim-
ple correlations show lower sexual activity among those who are HIV+, but this is
because of the debilitating effects of the disease and does not show the causal effect
of treatment. Panel data on HIV+ patients in care are taken from the HIV Costs and
Sevices Utilization Study (HCSUS) for the period 1996–98. The outcome of inter-
est is the number of sex partners of the previous six months and the treatment
is HAART, which is inferred from records of medications. Simple, unconditional
estimates do not show a difference in sexual activity. But when treatment is instru-
mented by variation in the eligibility rules for Medicaid across states a positive
effect emerges. The validity of these instruments is checked by examining the
reduced form association between Medicaid eligibility and sexual activity prior to
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the introduction of HAART in 1996. There is no association pre-1996, but there is
post-1996.

12.2.3 Natural controls

12.2.3.1 Families

Auld and Sidhu (2005) present evidence that around a quarter of the association
between schooling and health is attributable to variation in cognitive ability and
that the causal effect of schooling on health is concentrated among those with
low levels of education. Estimates that allow for both schooling and health to
be influenced by a common “third factor” diminish the effect of schooling on
health except for those individuals with no greater than high school education.
The models are estimated using the 1979 and 2000 US National Longitudinal Sur-
vey of Youth (NLSY). The validity of the estimated causal effects relies on the
use of parental education as a source of independent variation, using variation
in the individual’s own education that is associated with their parents’ educational
achievements.

Siblings who are brought up together share common background characteris-
tics which may be unobserved and also influence the treatments and outcomes
of interest to researchers. Using within-sibling variation can control for these fac-
tors. Holmlund (2005) shows how variation within biological sisters can be used to
assess the long-term consequences of teenage pregnancy for educational outcomes.
The siblings approach and standard cross-section methods produce similar results
providing heterogeneity within the family is controlled for. The potential for selec-
tion bias is that teenage mothers may have family backgrounds that would lead
to poorer outcomes irrespective of an early pregnancy. Variation within biologi-
cal sisters can be used to control for these “family effects.” However, within-sibling
variation will not deal with heterogeneity within the family and the study controls
for observable pre-motherhood school performance, measured by the grade point
average (GPA) from primary school, to try and control for this. Data are taken from
a 20% sample of each cohort born in Sweden between 1974 and 1977, with the
population register used to identify siblings.

Sibling fixed effects play a role in Currie and Stabile’s (2006) study of the impact
of Attention Deficit Hyperactivity Disorder (ADHD) on educational outcomes.
Within-sibling variation is used to control for omitted variables at the level of
the family. Data from the Canadian National Longitudinal Survey of Children and
Youth (NLSCY) and the US NLSY are used. ADHD symptoms are based on parental
reports and are recorded in 1994 in the Canadian data and between 1990 and
1994 in the US data. Educational outcomes include the repetition of grades, enroll-
ment in special education, reading and math tests and delinquency. These are
measured in 1998 for Canada and 1998–2000 for the US. The study finds large
effects, relative to chronic physical conditions, and for low levels of ADHD symp-
toms in cases that would not usually receive treatment. The results for Canada and
the US are similar to each other.
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12.2.3.2 Twin studies

Within-sibling variation can control for common factors relating to family back-
ground, upbringing and environment. But siblings are born at different times
and they have different genes. Twin studies take the notion of natural controls
a step further by removing the genetic variation (at least for monozygotic twins).
In the context of research on birth outcomes, using twins means that the sib-
lings share the same pregnancy and are born at the same time. This controls for
unobservable characteristics of their mother and her behavior and environment
during the pregnancy. Almond et al. (2005) show that using variation in birth
weight between twins leads to lower estimates of the impact of low birth weight
(LBW), defined as less than 2,500 g, on short-run outcomes than is typically found
in cross-section studies. They find heterogeneity in the effects of LBW, suggest-
ing a highly nonlinear relationship. Two identification strategies are adopted. The
first exploits variation “within mothers” by comparing outcomes for heavier and
lighter infants for all twins born in the US between 1983 and 2000. Using this
within-variation should control for all observed and unobserved characteristics of
the mother. The second exploits variation “between mothers” in a complemen-
tary analysis of maternal smoking and singleton births. The strategy here is to
attribute the whole effect of smoking to LBW and compare it with the twins esti-
mates. Data are drawn from two sources: linked birth and infant deaths data from
the US National Center for Health Statistics (NCHS), covering the population of
US twins, and data from hospital discharge abstracts from the Healthcare Cost and
Utilization Project (HCUP) state inpatient database. There are some caveats to bear
in mind with this study. Some useful descriptive analysis presented in the paper
highlights the inherent differences between twins and singletons (the latter are
more healthy). This raises questions about external validity of analysis based on
samples of twins rather than the general population. The study only uses short-run
outcomes and may miss long-term consequences (see the studies by Behrman and
Rosenzweig, 2004, and Black et al., 2007, below). For fraternal twins, genetic dif-
ferences may mean that changes in birth weight may be associated with changes
in unobservables (there is evidence of a negative correlation of birth weight with
congenital defects) and the fixed effects approach may overestimate the impact of
birth weight. Also the data do not distinguish between monozygotic (identical)
and dizygotic (fraternal) twins.

In Behrman and Rosenzweig (2004), variation between monozygotic twins pro-
vides a way of identifying the impact of birth weight on long-term outcomes,
such as measures of adult health, anthropometric measures and adult school-
ing and earnings. Increased birth weight, as measured on the birth certificate,
increases schooling among adults and this effect is underestimated by 50% when
cross-section variation is used to identify the effect. Data were collected through a
survey mailed to monozygotic twins on the Minnesota Twins Registry, the largest
birth certificate based registry in the US. The identification strategy assumes that
difference in birth weight reflects random differences in nutrition in the womb
that are uncorrelated with individual endowments and therefore avoids selection
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bias. The estimates allow for heterogeneous treatment effects and show an impact
on labor market outcomes for low birth weight, but not for high. The implica-
tions of the US results for worldwide health inequalities are explored at the end of
the paper.

Black et al. (2007) use Norwegian registry data and, like Behrman and Rosenzweig
(2004), they use twins to investigate the impact of low birth weight on long-term
socioeconomic outcomes rather than just short-run outcomes. Within-twins fixed
effects estimates are shown to be significant and similar to standard least squares
estimates for long-run outcomes, such as height, IQ , earnings and education, while
the estimates for short-run outcomes are smaller for the twins data, as suggested
by Almond et al. (2005). The analysis is made possible by the richness of the data,
which use personal identifiers to link all Norwegian births between 1967 and 1997,
as recorded in the birth registry, with other registry data for those aged 16–74
in the period 1986–2002. The register data is augmented with military records
and a survey of twins that identifies zygocity. Within-twin variation is used to
capture unobservable socioeconomic and genetic factors that may confound the
causal effect of birth weight. This means that identification stems from differences
in nutrition in utero (resulting from different placentas for fraternal twins and
different positioning on the placenta for monozygotic). Birth order is included as a
control. The robustness of the findings is assessed by separate analyses for mothers
who have more than one singleton birth, allowing for mother fixed effects rather
than pregnancy fixed effects. To assess the role of zygocity the sample is restricted to
same-sex twins. The sub-sample where there is survey data on zygocity is also used.
The findings are robust, but reveal interesting evidence that those who participate
in twins studies are a self-selected sample. Also it should be borne in mind that
selection into the sample of registry data for long-run outcomes may be affected
by infant mortality. Finally, there are substantial differences between twins and
singletons in terms of factors, such as gestation and the age of their mothers, and
twins usually appear in the lower part of the distribution of birth weights.

12.2.3.3 Communities

Many studies use variation within groups, communities or geographic areas to
control for unobservable factors that are common to all those within the commu-
nity or locality. For example, Wagstaff (2007) controls for village effects in a study
of the impact of health shocks, such as the death of a working-age member of
the household, on incomes of urban and rural households in Vietnam based on
the Vietnam Living Standards Survey (VLSS). Arcidiacono and Nicholson (2005)
find that adding fixed effects for individual medical schools eliminates the posi-
tive peer effects that appear to exist when selection bias is not taken into account.
The inclusion of school effects means that the impact of peer effects on a student’s
achievements and on their choice of specialty are identified by variations over time
within schools in the ability and preferences of students. The aim is to separate cor-
related effects from exogenous peer effects. The study relies on data for graduates
from US Medical Schools over a relatively short period, 1996–98, so identification
may be limited by a lack of variation over time. Currie and Neidell (2005) use
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variation within Californian zip code areas to identify the impact of air pollution
on infant mortality. They find a statistically significant effect even at low levels
of air pollution. The impact of this effect is quantified: it is estimated that reduc-
tion in pollution in California over the 1990s saved around 1,000 infant lives. The
study takes data from the California birth cohort files and matches it to EPA data
on air quality - specifically measures of carbon monoxide, ozone and particulate
matter (PM10) – and information on weather patterns from the National Climatic
Data Center. A linear model is used to approximate the discrete hazard function
for infant deaths and month, year and zip code fixed effects are included in the
model, this relies on variation within cells of observations defined by month, year
and locality. The study complements the natural experiment presented by Chay
and Greenstone (2003) that is described above.

12.2.4 Anti-tests

One way to assess the robustness of an identification strategy is to find an anti-
test (or placebo test). Anti-tests provide counter-evidence by applying a model
or identification strategy in a context where no effect should be detected. If an
apparent “effect” is found then the validity of the identification strategy must be
called into question.

For many years the standard empirical strategy to test for the phenomenon of
supplier-induced demand (SID) in medical care has been to include a measure of the
supply of doctors – usually the physician density, measuring the number of doctors
in a locality per head of population – in empirical models of health care utilization
or expenditure. This strategy is plagued by omitted variable bias and identification
problems. To assess the robustness of the approach, Dranove and Wehner (1994)
apply the physician density strategy using the obstetrician/population ratio and the
volume of births as the measure of utilization. The physician density test shows
evidence that the number of births (and hence pregnancies) is “supplier induced”:
casting obvious doubt on the reliability of the approach. However, failure of the
methodology does not imply rejection of SID. For example, Gruber and Owings
(1996) find evidence of increased C-section rates in response to a fall in fertility in
the US between 1970 and 1982: a shift by obstetricians to more lucrative procedures
in response to economic pressures.

In their “addiction to milk” paper, Auld and Grootendorst (2004) use non-
addictive substances, such as milk, eggs and oranges, to construct an anti-test and
demonstrate that evidence for the rational addiction hypothesis based on aggre-
gate data may be spurious. Numerous studies have applied the canonical rational
addiction equation of Becker et al. (1994) to substances such as alcohol, cigarettes
and cocaine, and claim to have found support for rational addiction; but Auld and
Grootendorst (2004) show that these findings are mimicked when the model is
applied to Canadian aggregate data for non-addictive substances. Monte Carlo sim-
ulations show that spurious evidence is likely when the time series data exhibit high
serial correlation, when prices are poor instruments, when overidentified instru-
mental variable estimators are used, or when theoretical restrictions are imposed
by fixing the implied discount rate in the model.
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The idea of an anti-test may provide a useful strategy as part of a robust-
ness/sensitivity analysis. A good example of this is Galiani et al.’s (2005) evaluation
of the impact of the privatization of local water services on child mortality in
Argentina. They adopt two strategies for assessing the reliability of their difference-
in-differences approach that can both be interpreted as anti- or placebo tests. The
first, which is a good practice to adopt in any difference-in-differences analysis,
is to estimate a placebo regression: the model of interest is estimated using only
data from the pre-treatment period, but including an indicator of those cases that
will go on to be treated. If this indicator of hypothetical treatment is significant
it is a sign that the treated and controls are not comparable and that the “parallel
trends” assumption required for difference-in-differences analysis is not valid. The
second strategy adopted by Galiani et al. (2005) is that, as well as measuring deaths
from infectious and parasitic diseases, they include measures of deaths from causes
unrelated to water quality. The fact that they detect a reduction for the former but
not for the latter creates confidence in their difference-in-differences identification
strategy.

12.3 Data and measurement issues

12.3.1 Administrative data or sample surveys

Much of the applied work done by health economists uses social surveys. These
are often designed to provide representative random samples of the underlying
population. Most often the sampling follows a multi-stage design with clustered
and/or stratified sampling (see, e.g., Jones et al., 2007b). Data may be collected
by face-to-face interviews or postal, telephone or web-based questionnaires, and
in health surveys this is often supplemented by clinical tests and measurements.
Many surveys are one-off cross-sections, but increasingly researchers have turned
to longitudinal, or panel, surveys which give repeated observations on the units of
interest, whether they be individuals, households or organizations. Sample surveys
are the mainstay of microeconometric research and some of the more popular
datasets are summarized in Table 12.1.

In health economics, administrative datasets often prove more useful and reliable
than social surveys. Administrative datasets include sources, such as tax records,
reimbursement and claims databases, and population registers of births, deaths,
cancer cases, HIV/AIDS cases, unemployment, etc. (see, e.g., Aakvik et al., 2003;
Aakvik et al., 2005; Atella et al., 2006; Black et al., 2007; Chalkley and Tilley, 2006;
Dano, 2005; Dranove et al., 2003; Dusheiko et al., 2004, 2006, 2007; Farsi and
Ridder, 2006; Gravelle et al., 2003; Ho, 2002; Lee and Jones, 2004, 2006; Marini
et al., 2008; Martin et al., 2007; Propper et al., 2002, 2004, 2005; Rice et al., 2000;
Seshamani and Gray, 2004). These datasets are collected primarily for administra-
tive purposes and are made available to researchers for secondary analysis. Some
countries allow comprehensive linkage of different sources of administrative data
based on personal identification numbers (see, e.g., Black et al., 2007). Adminis-
trative datasets are typically large, often with millions rather than thousands of
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Table 12.1 Key datasets cited in the review

Acronym Full title, origin Format Homepage

AddHealth National Longitudinal
Study of Adolescent
Health, US

Panel survey http://www.cpc.unc.edu/
projects/addhealth/

AHEAD Assets and Health
Dynamics Among the
Oldest-Old, US

Panel survey http://hrsonline.isr.umich.edu/

BHPS British Household Panel
Survey, UK

Panel survey http://www.data-archive. ac.uk/

BRFSS Behavioral Risk Factor
Surveillance System, US

Telephone
survey

http://www.cdc.gov/brfss/

CHNS China Health and
Nutrition Surveys

Panel survey http://www.cpc.unc.edu/
projects/china

ECHP European Community
Household Panel, EC-15

Panel survey http://forum.europa.eu.int/
Public/irc/dsis/echpanel/
home

ELSA English Longitudinal
Survey of Ageing

Panel survey http://www.ifs.org.uk/elsa/

GSCF Gansu Survey of Children
and Families, China

Longitudinal
multilevel
survey

http://china.pop.upenn.edu/
Gansu/intro.htm

GSOEP German Socioeconomic
Panel

Panel survey http://www.diw.de/english/sop/

HALS Health and Lifestyle
Survey, GB

Panel survey http://www.data-archive.ac.uk/

HCSUS HIV Cost and Services
Utilization Study, US

Panel survey http://www.rand.org/health/
projects/hcsus/

HCUP Healthcare Cost and
Utilization Project, US

Administrative http://www.hcup-
us.ahrq.gov/overview.jsp

HES Hospital Episode Statistics,
England and Wales

Administrative http://www.dh.gov.uk/en/
Publicationsandstatistics/
Statistics/HospitalEpisode
Statistics/index.htm

HRS Health and Retirement
Survey, US

Panel survey http://hrsonline.isr.umich.edu/

HSE Health Survey for England,
Welsh Health Survey,
Scottish Health Survey

Repeated
cross-
sections

http://www.data-archive.ac.uk/

HSN Historical Sample of the
Netherlands

Longitudinal
sample from
census and
registers

http://www.iisg.nl/∼hsn/

LASA Longitudinal Aging Study
Amsterdam

Panel survey http://www.lasa-vu.nl

LSMS Living Standards
Measurement Study,
World Bank

Repeated
cross-
sections

http://www.worldbank.org/html/
prdph/lsms/lsmshome.html

Continued
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Table 12.1 Continued

Acronym Full title, origin Format Homepage

MTR Minnesota Twin
Registry, US

Longitudinal
Register

http://www.psych.umn.edu/
psylabs/mtfs/default.htm

NDF Natality Detail Files, US Census of
births

http://www.cdc.gov/nchs/
products/elec_prods/
subject/natality.htm

MEPS National Medical
Expenditure Panel
Survey, US

Panel Survey http://www.ahrq.gov/data/
mepsweb.htm

NCDS National Child
Development Survey, UK

Cohort study http://www.data-archive.ac.uk/

NHANES National Health and
Nutrition Examination
Surveys, US

Repeated
cross-
sections

http://www.cdc.gov/
nchs/nhanes.htm

NLSCY National Longitudinal
Survey of Children and
Youth, Canada

Panel survey http://www.statcan.ca/

NLSY National Longitudinal
Survey of Youth, US

Panel survey http://www.bls.gov/nls/

NLTCS National Long Term Care
Survey, US

Panel survey http://www.nltcs.aas.
duke.edu/index.htm

NPHS National Population
Health Survey, Canada

Panel survey http://www.statcan.ca/english/
survey/household/
health/health.htm

PSBH Panel Study of Belgian
Households

Panel survey http://www.psbh.be/

PSID Panel Study of Income
Dynamics, US

Panel Survey http://psidonline.isr.umich.edu/

RAND HIE RAND Health Insurance
Experiment, US

Panel,
randomized
experiment

http://www.icpsr.umich.edu/
ICPSR/access/index.html

RLMS Russian Longitudinal
Monitoring Study

Panel survey http://www.cpc.unc.edu/rlms/

SHARE Survey of Health, Ageing
and Retirement in Europe

Panel Survey http://www.share-project.org/

SLID Survey of Labour and
Income Dynamics,
Canada

Panel survey http://www.statcan.ca/

US Census United States census Population
census

http://www.census.gov/

WHS World Health Survey,
World Health
Organization

Repeated
cross-
sections

http://www.who.int/healthinfo/
survey/en/index.html

Continued

mailto: rights@palgrave.com


578 Panel Data Methods

observations, and are comprehensive, often providing observations on a complete
population rather than a random sample. They tend to be less prone to unit and
item non-response than survey data and may give better coverage of hard-to-reach
groups of the population and the socially disadvantaged. Also they tend to be less
affected by reporting bias, but are still vulnerable to data input and coding errors.
Given their primary purpose, administrative datasets are not designed by and for
researchers. This means they may not contain all of the variables that are of interest
to researchers, such as socioeconomic characteristics, and many different sources
may have to be combined to produce a usable dataset. In some cases, sources of
administrative data may be combined and made available with researchers in mind.
For example, the Oxford Record Linkage Study (ORLS), used by Seshamani and Gray
(2004), is a longitudinal dataset that links statistical abstracts for hospital inpatient
and day cases to birth and death certificates for people living in the Oxford region
of England. It provides 10 million records for over 5 million people between 1963
and 1999.

Dusheiko et al.’s (2004) study of the impact of practice budgets for GPs on hospi-
tal waiting times in the English National Health Service (NHS) provides an example
of the complex and painstaking process that is often required to link administra-
tive data. Information on waiting times was obtained from the Hospital Episode
Statistics (HES) for 1997/98 to 2000/01. HES is an annual database of hospital
inpatient activity, including day cases, with more than 10 million records per
year. Dusheiko et al. extracted information on the waiting times for over 5 mil-
lion finished consultant episodes and linked average waiting times to GP practices.
Information on practice populations was obtained from the Primary Care Trust
(PCT) database at the National Primary Care Research and Development Cen-
tre (NPCRDC: http://www.primary-care-db.org.uk). Practice characteristics, such
as the GP’s age and sex, qualifications, size of practice, etc., were obtained from the
Prescription Pricing Authority, the Department of Health’s Organisational Codes
Service and their General Medical Statistics, along with the NPCRDC database.
Patient characteristics for each practice were obtained from the 1991 Census and
components of the Index of Multiple Deprivation, with these small area data
mapped to GP practices. Finally, supply side factors, such as distances to hospi-
tals, were obtained from the Department of Health’s Allocation of Resources to
English Areas (AREA) project.

Some of the key administrative datasets that have been used in health
economics are summarized in Table 12.1.

12.3.1.1 Non-response and attrition

Non-response and attrition are a common feature of longitudinal survey data.
Nicoletti and Peracchi (2005) list possible reasons for non-response: these include
demographic events, such as death; movement out of the scope of the survey,
such as institutionalization or emigration; refusal to respond at subsequent waves;
absence of the person at the address, along with other types of non-contact. Jones
et al. (2006) investigate health-related non-response in the first 11 waves of the
BHPS and the full eight waves of the European Community Household Panel
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(ECHP). They explore its consequences for dynamic models of the association
between socioeconomic status and self-assessed health (SAH). Descriptive evidence
shows that there is health-related non-response in the data, with those in very poor
initial health more likely to drop out, and variable addition tests provide evidence
of non-response bias in the panel data models of SAH. Nevertheless a comparison
of estimates – based on the balanced sample, the unbalanced sample and corrected
for non-response using inverse probability weights – shows that, on the whole,
there are not substantive differences in the average partial effects of the variables
of interest.

Inverse probablity weights are used to attempt to control for attrition: this works
by estimating separate probit equations for whether an individual responds or does
not respond at each of the waves of the panel. Then the inverse of the predicted
probabilities of response from these models are used to weight the contributions to
the log likelihood function in the pooled probit models for SAH. The rationale for
this approach is that a type of individual who has a low probability of responding
represents more individuals in the underlying population and therefore should be
given a higher weight. The appropriateness of this approach relies on the assump-
tion that non-response is ignorable conditional on the variables that are included
in the models for non-response (“selection on observables”). If this assumption
holds then inverse probability estimates give consistent estimates. The findings in
Jones et al. (2006) and the earlier work by Contoyannis et al. (2004b) suggest that,
while health-related non-response clearly exists, on the whole it does not appear
to distort the magnitudes of the estimated dynamics of SAH and the relationship
between socioeconomic status and SAH. Similar findings have been reported con-
cerning the limited influence of non-response bias in models of income dynamics
and various labor market outcomes and on measures of social exclusion, such as
poverty rates and income inequality indices.

12.3.2 Health outcomes

12.3.2.1 Self-reported data

Self-assessed health is often included in general social surveys. For example, in
the BHPS, SAH is an ordered categorical variable based on the question: “Please
think back over the last 12 months about how your health has been. Compared
to people of your own age, would you say that your health has on the whole
been excellent/good/fair/poor/very poor?” The validity of self-reported measures
of health has caused considerable debate. As a self-reported subjective measure of
health, SAH may be prone to measurement error. General evidence of non-random
measurement error in self-reported health is reviewed in Currie and Madrian (1999)
and Lindeboom (2006).

Self-assessed health is not the only source of concern with self-reported data.
Baker et al. (2004) use careful record linkage to check for flaws in self-reported data
on specific chronic conditions. Survey data from the Canadian National Popula-
tion Health Survey for 1996–97 are linked to ICD-9 (International Classification of
Diseases – ninth revision) codes for Ontario residents from administrative data on
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utilization of services for the Ontario Health Insurance Plan (OHIP) for the survey
year and the five previous years. Linear probability models are used to analyze the
probabilities of false negatives and false positives in the self-reported data. This
shows that reporting errors are associated with individual characteristics. The data
reveal a large number of false negatives, although the probability declines for those
with more recorded medical treatments, suggesting that this reflects undiagnosed
conditions and lack of information among respondents. The number of false posi-
tives is much smaller, but there is some evidence of “justification bias”: those not in
work are more likely to report false positives for conditions, such as hypertension,
ulcers and bronchitis.

A more favorable view of self-reported measures emerges in the work of Benitez-
Silva et al. (2004). They take the relatively small sub-sample of respondents to the
first three waves of the US Health and Retirement Survey (HRS) who had applied for
disability benefit from the Social Security Administration (SSA) and compare their
self-reported disability to the outcome of the SSA decision. In this case the SSA
decision to award benefits is used as an objective indicator to assess the reliability
of the self-reported data on limitations that prevent work. Conditional moment
tests for whether self-reported disability is an unbiased indicator of the SSA decision
suggest that a large fraction of this population report their health accurately. Unlike
Baker et al. (2004), this study relies on information collected within the HRS rather
than matching the survey data with administrative records. McGarry (2004) adopts
another strategy to get around the problem of “justification bias.” Rather than using
data on actual retirement, she uses information from the HRS on the subjective
expected probability of retirement by age 62, which is collected while people are
still in work. Using this measure she finds strong effects of health on expected
retirement age.

It is sometimes argued that the mapping of health into SAH categories may vary
with respondent characteristics. This source of measurement error has been termed
“state-dependent reporting bias” (Kerkhofs and Lindeboom, 1995), “scale of ref-
erence bias” (Groot, 2000) and “response category cut-point shift” (Murray et al.
2001; Sadana et al. 2000). Regression analysis of SAH is often done by specify-
ing an ordered probability model, such as the ordered probit or logit. Then the
symptoms of measurement error can be captured by making the cut-points depen-
dent on some or all of the exogenous variables used in the model and estimating
a generalized ordered model. This requires strong a priori restrictions on which
variables affect health and which affect reporting in order to separately identify
the influence of variables on latent health and on measurement error. Attempts to
surmount this fundamental identification problem include modeling the reporting
bias based on more “objective” indicators of true health (Kerkhofs and Lindeboom,
1995; Lindeboom and Van Doorslaer, 2004) and the use of “vignettes” to fix the
scale (Das and Hammer, 2005; Murray et al., 2001). Lindeboom and Van Doorslaer
(2004) analyze SAH in the Canadian National Population Health Survey and use
the McMaster Health Utility Index (HUI-3) as their objective measure of health.
They find evidence of reporting bias with respect to age and gender, but not for
income, education or linguistic group.
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A similar identification strategy to Lindeboom and Van Doorslaer (2004), that
relies on objective measures capturing all of the genuine variation in health, is
adopted by Etilé and Milcent (2006), who estimate generalized ordered probit
models with a four-category measure of SAH. They construct synthetic measures of
objective health from a latent class analysis of a set of self-reported indicators, such
as activities of daily living (ADLs) and body mass index (BMI). The latent class anal-
ysis is used to condense the sample into six classes and indicators for these classes
are included in the ordered probit model. This works by constructing classes such
that the underlying health indicators are independent of each other, conditional
on class membership. Latent class models are presented as an alternative to the
grade of membership approach that has been used in some earlier work (see, e.g.,
Lindeboom et al., 2002). Estimates on a sample of 2,956 individuals aged under
65 from the French Enquête Permanente sur les Conditions de Vie des Menages
(EPCV) survey show evidence of reporting bias and, unlike Lindeboom and Van
Doorslaer (2004), there is evidence that this is related to income. Etilé and Milcent’s
(2006) findings suggest a concave relationship between health and income in terms
of health production and convexity with respect to reporting, with overoptimism
among the rich and overpessimism among the poor. They conclude that the prob-
lems of reporting bias can be minimized by collapsing the four-point scale into a
binary measure of poor health.

Jurges (2007) focuses on cross-country differences in reporting of SAH as mea-
sured for those aged over 50 in the ten countries covered by the first wave of
the Survey of Health, Ageing and Retirement in Europe (SHARE). Generalized
ordered probit models are used to regress SAH on a set of objective measures,
such as grip strength, walking speed and BMI, to get a set of disability weights.
The average thresholds across the SHARE countries are then used to reclassify the
reported data, assuming that the disability weights are constant across countries.
The variation in SAH is decomposed into the component that is explained by the
objective measures and the component attributed to reporting bias. The findings
suggest that those in the Danish and Swedish samples overrate their health, while
those in Germany underrate their health. For Austria and Greece there is little
bias.

12.3.2.2 Anthropometric measures

Anthropometric measures have long played a role in studies of developing coun-
tries, especially those focused on child health issues. With the growing problem
of adult and childhood obesity in more affluent nations, they are increasingly
being used in that context as well. Typical anthropometric measures are height
and weight, which may be self-reported or measured by a professional; infant
length for children aged under two; demi-span, which is based on the length of an
outstretched arm and is used among older populations who may have difficulties
standing straight; the waist-to-hip ratio; and BMI, which is the most commonly
used indicator of obesity. BMI is calculated as weight in kilograms divided by height
in meters squared, with a BMI of 30 or greater indicating obesity and 25–30 indi-
cating overweight. The confounding effect of levels of muscle development means
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that measures of body fat are sometimes used instead of BMI. The height-for-age
z-score standardizes a child’s measured height using the median (or mean) and
standard deviation for children of the same age and sex from a reference popu-
lation, such as the US National Center for Health Statistics reference population
of well-nourished American children (e.g., Duflo, 2000). Height is also compared
to a standard distribution to construct measures of stunting (e.g., Gertler, 2004).
For example, Chen and Zhou (2007) use height to measure the long-term health
consequences of childhood exposure to the 1959–61 famine in China, which is
estimated to have caused 15–30 million excess deaths. They adopt a difference-
in-differences approach that exploits regional differences in exposure to the
famine.

Anthropometric measures may also play a role as biomarkers (discussed in more
detail below). For example, height and weight can be used as predictors of mortal-
ity, stroke and cardiovascular disease and the waist-to-hip ratio is a predictor for
hypertension, late-onset diabetes, cardiovascular disease, stroke and some forms
of cancer.

12.3.2.3 Biomarkers

Biological markers, or biomarkers, are likely to play an increasing role in future
research in health economics as they become incorporated into an increasing range
of datasets, including longitudinal datasets, such as the US Health and Retirement
Survey (HRS), the English Longitudinal Survey of Ageing (ELSA) and the planned
UK Longitudinal Household Study. This trend is likely to be enhanced by the avail-
ability of DNA information and genetic screening, which provide greater potential
to control for individual heterogeneity. Biomarkers are biological or physiological
measures that indicate the presence of a disease or the propensity to develop a dis-
ease. They can be used to identify risk factors and as objective measures of health
that avoid contamination by reporting bias (see, e.g., Adda and Cornaglia, 2006;
Banks et al., 2006; Currie et al., 2007).

Biomarkers for cardiovascular disease include elevated blood pressure and vari-
ability in the heart rate. Metabolic biomarkers include serum HDL (high-density
lipoprotein) and total cholesterol and triglycerides, which are predictors of heart
disease; fibrinogen, which is linked to blood clotting and the risk of heart disease;
and glycated haemoglobin, which is a proxy indicator for diabetes. Biomarkers
linked to the immune system include interleukin-6 (IL-6), which is a predic-
tor of Alzheimer’s disease, arthritis, diabetes and osteoporosis; C-reactive protein
(CRP), which indicates lupus, pneumonia, rheumatoid arthritis, rheumatic fever
and tuberculosis; ferritin and hemoglobin, which indicate iron deficiency; serum
retinol, which indicates vitamin A deficiency. Biomarkers linked to hormonal indi-
cators of stress (HPA axis) include cortisol, adrenocorticotropic hormone (ACTH)
and dehydroepiandrosterone-sulphate (DHEA-S). Biomarkers linked to the sympa-
thetic nervous system include norepiphrenine, which is associated with longevity,
and epiphrenine (adrenaline), which is linked to cognitive decline and longevity.
Biomarkers may also be used as objective indicators of physical functioning and
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health limitations; these include lung function tests, such as forced expiratory vol-
ume (FEV) and forced vital capacity (FVC), as measured by a spirometer, and grip
strength, measured by a gripometer.

Datasets which contain biomarkers and that have been used in economic
research include ELSA, the UK Health and Lifestyle Survey (HALS), the US Health
and Retirement Survey (HRS), the Health Survey of England (HSE), the UK National
Child Development Study (NCDS) and the more recent cohort studies, the US
National Health and Nutrition Examination Surveys (NHANES), SHARE, and the
Whitehall Study of English civil servants. To take ELSA as an example: participants
in the study are visited by a registered nurse who takes measurements of blood
pressure; lung function; height, weight and the waist-to-hip ratio; grip strength,
as a measure of upper body strength; a measure of lower body strength, based on
standing up from a chair without using the arms; a saliva sample, that is used
to measure cortisol, which is a marker for stress; and a blood sample, which is
used to test total cholesterol, HDL cholesterol, fibrinogen, CRP, ferritin, glycated
haemoglobin and haemoglobin. The blood samples from ELSA and from wave 7 of
the NCDS will allow DNA to be extracted. DNA can also be collected using mouth
or cheek swabs (as in the US AddHealth Survey).

Banks et al. (2006) study the socioeconomic gradient in health in the UK
and the US and they compare both self-reported outcomes and objective out-
comes based on biomarkers. To do this they use the ELSA data for the UK and
the HRS and NHANES data for the US. The self-reported measures include the
general question on SAH as well as self-reported indicators of chronic condi-
tions, such as diabetes, hypertension and cancer. The biomarkers are glycosated
hemoglobin levels above 6.5%, as a marker for diabetes; systolic blood pressure
over 140 mm Hg, and diastolic blood pressure over 90 mm Hg, as a measure of
hypertension; CRP greater than 3 mg/L, as a marker of high risk of arteriosclero-
sis; fibrinogen over 400 mg/dl, as a marker for cardiovascular disease, and HDL
cholesterol over 40 mg/dl, as an indicator of reduced risk of coronary heart dis-
ease. Banks et al. (2006) find that, on average, respondents in the US reported
better SAH, but the opposite holds true for the biomarkers. Their results show a
strong socioeconomic gradient in self-assessed health, self-reported diseases and
in the biomarkers. The gradient appears strongest for the biomarkers. Comparing
the self-reported data with the biomarkers allows a measure of the socioeconomic
gradient in undiagnosed cases. A gradient is apparent for diabetes, but not for
hypertension.

A novel feature of Adda and Cornaglia (2006) is the use of biomarkers, in this
case cotinine, within an economic study of smoking. Cotinine is a metabolite
of nicotine and can be used as a biomarker for levels of tobacco consumption
that is not contaminated by problems of measurement error, such as recall bias
and deliberate deception, that may affect self-reported consumption. The study
shows that smokers engage in compensatory behavior, increasing their intensity
of smoking and offsetting the impact of tobacco tax increases. Data on cotinine
is collected from saliva samples as part of the repeated cross-section data in the
NHANES for 1999–2000. Evidence based on the biomarker is contrasted with
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self-reported consumption. Cotinine has another advantage in studies of smoking
and health as it provides a way of measuring passive smoking, especially among
children.

12.3.3 Modeling costs and expenditure

Individual-level data on medical expenditures and costs of treatment is typically
distinguished by a spike at zero, if there are non-users in the data, and a strongly
skewed distribution with heavy tails. This kind of data is most often used in two
areas of application: risk adjustment and cost-effectiveness analysis. In risk adjust-
ment the emphasis is on predicting the treatment costs for particular types of
patient, often with very large datasets. Cost-effectiveness analyses tend to work
with smaller datasets and the scope for parametric modeling may be more limited
(Briggs et al., 2005). In the context of clinical trials, attention has focused on meth-
ods to deal with censoring of cost data due to limited follow-up (e.g., Baser et al.,
2006; Raikou and McGuire, 2004, 2006).

The presence of a substantial proportion of zeros in the data has typically been
handled by using a two-part model, which distinguishes between a binary indi-
cator, used to model the probability of any costs, and a conditional regression
model for the positive costs. OLS applied to the level of costs (y) can perform
poorly, due to the high degree of skewness and excess kurtosis, and the positive
observations are often transformed prior to estimation. The most common trans-
formation is the logarithm of y, although the square root is sometimes used as
well. As the policy interest typically focuses on modeling costs on the original
scale, the regression results have to be retransformed back to that scale. This weak-
ens the case for working with transformed data and, in particular, problems arise
with the retransformation if there is heteroskedasticity in the data on the trans-
formed scale (Manning, 1998; Manning and Mullahy, 2001; Mullahy, 1998). Ai and
Norton (2000) provide standard errors for the retransformed estimates when there
is heteroskedasicity.

More recently, attention has shifted to other estimators. Basu et al. (2004) com-
pare log-transformed models to the Cox proportional hazard model. Gilleskie and
Mroz (2004) propose a flexible approach that divides the data into discrete intervals
then applies discrete hazard models, implemented as sequential logits. Conway and
Deb (2005) use a finite mixture model. Cooper et al. (2007) use hierarchical regres-
sions implemented using Bayesian Markov chain Monte Carlo (MCMC) estimation.
But the dominant approach in the recent literature has been the use of generalized
linear models (GLMs) (e.g., Buntin and Zaslavsky, 2004; Manning, 2006; Manning
et al., 2005; Manning and Mullahy, 2001). The GLM specifies a link function for
the relationship between the conditional mean, μ = E(y|x), and a linear function
of the covariates and specifies the form of the conditional variance, V(y|x), usually
assuming that it can be specified as a simple function of the mean. The models
are estimated using a quasi-likelihood approach derived from the quasi-score or
“estimating equations.” The most popular specification of the GLM for costs has
been the log-link with a gamma error (Blough et al. 1999; Manning et al., 2005;
Manning and Mullahy, 2001, 2005). Cantoni and Ronchetti (2006) propose a
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robust variant of GLM that is less sensitive to outliers. In response to the prob-
lem of selecting the appropriate link and variance functions, Basu and Rathouz
(2005) suggest a flexible semiparametric extension of the GLM model. Their model
incorporates a Box–Cox transformation into the link function which includes the
log-link as a special case along with other power functions of y. The model, which
is labeled the extended estimating equations (EEE) approach, also allows for flexi-
ble specifications of the variance using the power variance and quadratic variance
families to nest common distributions, such as the Poisson, gamma, inverse Gaus-
sian and negative binomial. Basu et al. (2006) apply the EEE method to claims data
on the incremental costs associated with heart failure.

12.4 Methods for dealing with unobserved heterogeneity
and dependence

12.4.1 Deviations and conditional estimates

Consider a linear panel data regression model with repeated measurements (t =
1, . . . , Ti) for a sample of n individuals (i = 1, . . . , n):

yit = x′it β + ui+ εit . (12.16)

Correlation between the unobservable individual effects (u) and the regressors (x)
will lead to an omitted variable bias and inconsistent estimates of the βs. The
individual effects can be swept from the equation by transforming variables into
deviations from their within-group means, or by using orthogonal deviations,
based on the mean of the future values of the variables. Applying least squares
to the mean deviations gives the covariance or within-groups estimator of β. Sim-
ilarly, the model could be estimated in first differences to eliminate the individual
effects. Identification of β rests on there being sufficient variation over time so the
estimators may perform poorly when there is insufficient variation.

Many of the outcomes used in health economics are binary or ordered cate-
gorical measures, such as SAH. Fixed effects panel data methods, that allow for
a correlation between the individual effect and the regressors of the model, are
not, however, readily available for categorical data due to the incidental parameter
problem, which means that the individual effect cannot in general be swept out of
the model by taking deviations. For binary data the problem can be surmounted by
using the conditional fixed effects logit, which uses a sufficient statistic to eliminate
the individual effect from the log-likelihood function (Chamberlain, 1980). In the
case of the logistic regression, the within-individual sum of yit is a sufficient statis-
tic and conditional maximum likelihood (ML) estimates are consistent. Although
the conditional logit provides consistent parameter estimates, the approach has
practical drawbacks for the researcher. First, by only using observations that have
within-individual variation in the outcome and in the regressors, the method often
leads to a substantial reduction in sample size. Second, it is hard to calculate par-
tial effects of a variable of interest due to the inherent lack of information on
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the distribution of the individual heterogeneity, which is conditioned out of the
model.

The conditional logit can be applied to ordered data by choosing a particular
threshold value and collapsing the data into a binary measure. A recent extension
of Chamberlain’s model, the conditional ordered fixed effects logit, proposed by
Ferrer-i-Carbonel and Frijters (2004), and applied to data on SAH by Frijters et al.
(2005), suggests a method to reduce the drastic loss in the number of observations
by identifying individual-specific threshold values to collapse the ordered depen-
dent variable into a binary format. Das and van Soest (1999) combine adjacent
categories so that the dependent variable is summarized as a binary variable, and
then use conditional logits. They repeat this for all the possible combinations of
adjacent categories to get a set of estimates of the parameters of interest. They
then define a linear combination of these estimates, with the optimal weighting
matrix used to compute the final estimate obtained from a minimum distance
approach. Ferrer-i-Carbonel and Frijters (2004) also propose an estimator that
collapses the ordered variable into a binary format, but they use an individual
specific threshold value. To find this individual threshold, the authors maximize
a weighted sum of log-likelihood functions, similar to Das and van Soest (1999),
subject to the constraint that the sum of squared weights across all possible thresh-
old values across all individuals must be equal to the number of individuals in
the sample. The threshold is selected for which the analytical expected Hessian
is minimized. However, this formulation of the estimator is highly computation
intensive, a fact which makes its wider application less attractive. In a simplifica-
tion of this estimator, one can simply use the within-individual means as a cut-off
criterion.

12.4.1.1 Dynamic models

Even for linear models the within-groups estimator breaks down in dynamic
models, such as:

yit = αyit−1+ ui+ εit . (12.17)

This is because the group mean is a function of εitand εit−1. An alternative is to
use the differenced equation:

�yit = α�yit−1+�εit , (12.18)

in which case both yit−2 and �yit−2 are valid instruments for �yit−1 as long as
the error term (εit ) does not exhibit autocorrelation. Arellano and Bond (1991)
proposed generalized method of moments (GMM) estimators for dynamic panel
data models: linear models that can include leads and lags of the dependent variable
as well as a fixed effect. Instruments are created within the model by first taking
differences of the equation to sweep out the individual effect and then using lagged
levels or differences of the regressors as instruments.

Bover and Arellano (1997) extend the use of GMM to dynamic specifications for
categorical and limited dependent variable models, where it is not possible to take
first differences or orthogonal deviations as the latent variable y∗ is unobserved.
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One of the advantages of using panel data is the possibility of accounting for the
correlation amongst the effects and the explanatory variables. To allow for this
correlation, Chamberlain (1984) suggested using a random effects approach and
specifying a distribution for the individual effects conditional on the values of the
explanatory variables at each wave of the panel. This specification may contain
polynomial terms and interactions in the xs as well. Combining this with assump-
tions about the conditional expectation of the initial and final values of the latent
variable allows the dynamic model to be solved out to give linear reduced forms
for the latent variables at each wave of the panel. Estimates of the reduced forms
will be sensitive to assumptions about the distribution of the error terms, the lin-
earity of the expected value, and the conditional mean independence assumption.
However, these hypotheses can be checked by specification tests at the level of
the reduced form, which is easier to do than testing the dynamic specification.
At the second stage, on the basis of the reduced form coefficients, the parameters
of the underlying dynamic structural model can be derived using various estima-
tors. The simplest is to apply the within-groups transformation to the dynamic
model after replacing the latent variables by their predicted counterparts (Bover
and Arellano, 1997). This two-step within-groups procedure is simple to apply, but
provides inefficient parameter estimates. Chamberlain (1984) proposed a fully effi-
cient minimum distance (MD) estimator. Instead of using Chamberlain’s approach,
Bover and Arellano (1997) propose a three-step within-groups GMM, which also
facilitates tests of the over identifying restrictions.

12.4.2 Numerical integration and classical simulation-based inference

In panel data specifications, unobserved heterogeneity is often modeled as a ran-
dom effect and “integrated out” of the log-likelihood function. Monte Carlo
simulation techniques can be used to deal with the computational intractabil-
ity of nonlinear models, such as panel and multinomial probit models. Popular
methods of simulation-based inference include classical maximum simulated like-
lihood (MSL) estimation, and Bayesian MCMC estimation. This section introduces
the classical approach (for a review of the methods and applications to health
economics, see Contoyannis et al., 2004a).

Numerical integration by quadrature works well with low dimensions, but
computational problems arise with higher dimensions. Instead, Monte Carlo sim-
ulation can be used to approximate integrals that are numerically intractable.
This includes numerous models derived from the multivariate normal distribu-
tion. Simulation approaches use pseudo-random draws of the evaluation points
and computational cost rises less rapidly than with quadrature.

The principle behind simulation-based estimation is to replace a population
value by a sample analogue. This means that laws of large numbers and central
limit theorems can be used to derive the statistical properties of the estimators.
The basic problem is to evaluate an integral of the form:∫

u
[h(u)]dF(u) = Eu [h(u)] , (12.19)
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where h(u) is a nonlinear function of the random vector u, which has a multivariate
density f (u)and distribution function F(u). This kind of expression arises in panel
data models with random effects specifications and with autocorrelated errors and
in multiple equation models with correlated unobservables. The integral can be
approximated using draws from f (u), ur , r = 1, . . . , R, such that:

∫
[h(u)]dF(u) ≈ 1

R

R∑
r=1

[
h(ur )

]
. (12.20)

MSL is a simple extension of classical ML estimation and is useful in many cases
where the log-likelihood function involves high dimensional integrals. The idea is
to replace individual contributions to the sample likelihood function (Li) with an
average over R random draws:

li =
1
R

R∑
r=1

[
l(uir )

]
, (12.21)

where l(uir ) is an unbiased simulator of Li.The MSL estimates are the parameter
values that maximize:

Lnl=
n∑

i=1

[
Lnli

]
. (12.22)

For likelihoods derived from the multivariate normal the Geweke–Hajivassilou–
Keane (GHK) simulator is often used. In practice, Halton sequences or antithetics
can be used to reduce the variance of the simulator (see Contoyannis et al., 2004a,
for details).

12.4.3 Bayesian MCMC

In Bayesian analysis a prior density of the parameters of interest, say π(θ), is updated
using information from sample data. Given a specified sample likelihood for the
observed data, l(y|θ), the posterior density of θ is given by Bayes’ theorem:

π(θ |y) = π(θ)l(y|θ)
π(y)

, (12.23)

where:

π(y) =
∫

π(θ)l(y|θ)dθ . (12.24)

The scaling factor π (y) is known as the predictive likelihood and is used to com-
pare models. It determines the probability that the specified model is correct. The
posterior density π(θ |y) reflects updated beliefs about the parameters. Given the
posterior distribution, a 95% credible interval can be constructed that contains the
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true parameter with probability equal to 95%. Point estimates for the parameters
can be computed using the posterior mean:

E(θ |y) =
∫

θπ(θ |y)dθ . (12.25)

Bayesian estimates can be difficult to compute directly. For instance, the poste-
rior mean is an integral with dimension equal to the number of parameters in the
model. In order to overcome the difficulties in obtaining the characteristics of the
posterior density, MCMC simulation methods are often used. The methods pro-
vide a sample from the posterior distribution and posterior moments and credible
intervals are obtained from this sample (see Contoyannis et al., 2004a, for details).

Bayesian MCMC simulation is built on the Gibbs sampling algorithm. To imple-
ment Gibbs sampling the vector of parameters is sub-divided into groups. For
example, with two groups let θ = (θ1, θ2). Then, a draw from the joint distribution
π (θ1, θ2) can be obtained in two steps: first, draw θ1 from the marginal distribution
π (θ1); then draw θ2 from the conditional distribution π (θ2|θ1). However, in many
situations it is possible to sample from the conditional distribution, but it is not
obvious how to sample from the marginal. The Gibbs sampling algorithm solves
this problem by sampling iteratively from the full set of conditional distributions.
Even though the Gibbs sampling algorithm never actually draws from the marginal,
after a sufficiently large number of iterations the draws can be regarded as a sample
from the joint distribution. There are situations in which it is not possible to sample
from a conditional density, and hence Gibbs sampling cannot be applied directly.
In these situations, Gibbs sampling can be combined with a so-called Metropolis
step as part of a Metropolis–Hastings algorithm. In the Metropolis step, values for
the parameters are drawn from an arbitrary density, and accepted or rejected with
some probability. An attraction of MCMC is that latent or missing data can be
treated as parameters to be estimated. Although this data augmentation method
introduces many more parameters into the model, the conditional densities often
belong to well-known families and there are simple methods to sample from them.
This makes the use of MCMC especially convenient in nonlinear models, where
the latent variables (y∗) can be treated as parameters to be estimated. Once the y∗s
have been simulated, the estimation step involves the estimation of normal-linear
models for y∗.

12.4.4 Finite mixture models

12.4.4.1 Latent class models

Recently the latent class framework has been used in models for health care uti-
lization with individual data. Deb and Trivedi (2002) note that this framework
“provides a natural representation of the individuals in a finite number of latent
classes, that can be regarded as types or groups.”2 The segmentation can rep-
resent individual unobserved characteristics, such as unmeasured health status.
The latent class (or finite mixture) framework offers a representation of hetero-
geneity, where individuals are drawn from a finite number of latent classes. For
example, Conway and Deb (2005) show that allowing for heterogeneity between
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“normal” and “complicated” pregnancies leads to evidence that early prenatal care
is effective: on average, bringing the onset of prenatal care forward by one week
increases birth weights by 30–60 g in normal pregnancies. Using a finite mixture
model to capture the bimodality of the distribution of birth weights counteracts
evidence from the standard 2SLS approach that the effects of prenatal care are
weak or nonexistent. Estimates of the mixture model use observational data from
the 1988 US National Maternal and Infant Health Survey, and the empirical find-
ings are augmented by simulation results that show that the conventional findings
could be attributable to the existence of a relatively small proportion (10–15%) of
“complicated” pregnancies in the population.

To specify a finite mixture model, consider a vector of outcomes yi that are
observed for individual i: these may be repeated observations in a panel data model
or related outcomes in a multiple equation model and they are linked by common
unobservable heterogeneity. Then assume that each individual belongs to one of
a set of latent classes j = 1, . . . , C, and that individuals are heterogeneous across
classes. Conditional on the observed covariates, there is homogeneity within a
given class j. Given the class that individual i belongs to, the outcomes have a
joint density fj(yi|xi; θj) where the θj are vectors of parameters that are specific to
each class. The probability of belonging to class j is π ij, where 0 < π ij < 1 and∑C

j=1 πij = 1. Unconditionally on the latent class the individual belongs to, the
joint density of yi is given by:

f
(
yi|xi;πi1, . . . ,πiC; θ1, . . . , θC

) = C∑
j=1

πij fj
(
yi|xi; θj

)
. (12.26)

The discrete distribution of the heterogeneity has C mass points and the πs need
to be estimated along with the θ js.

In many empirical applications of finite mixture models the class membership
probabilities are treated as fixed parameters πij = πj, j = 1, . . . , C, (e.g., Atella et al.,
2004; Bago d’Uva, 2006; Deb, 2001; Deb and Holmes, 2000; Deb and Trivedi, 1997,
2002; Jiménez-Martin et al., 2002). A more general approach is to parameterize
the heterogeneity as a function of individual characteristics. To implement this
approach in the case of the latent class model, class membership can be modeled
as a multinomial logit (as in, e.g., Clark et al., 2005; Etilé, 2006):

πij =
exp

(
z′iγj

)
C∑

k=1
exp

(
z′iγk

) , j = 1, . . . , C, (12.27)

with the normalization γC = 0. This approach specifies the determinants of class
membership. In a panel data context, this parameterization provides a way to
account for the possibility that the observed regressors may be correlated with
the individual heterogeneity. Letting zi = x̄i be the average over the observed
panel of the observations on the covariates is in line with what has been done in
recent studies to allow for the correlation between covariates and random effects,
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following the suggestion of Mundlak (1978) and Chamberlain (1984). The vectors
of parameters θ1, …, θC, γ1, …, γC−1 are estimated jointly by ML.

After estimating the model, it is possible to calculate the posterior probability that
each individual belongs to a given class. The posterior probability of membership
of class j depends on the relative contribution of that class to the individual’s
likelihood function. This is given by:

P [i ∈ j] =
πijfj

(
yi|xi; θj

)
C∑

k=1
πikfk

(
yi|xi; θk

) . (12.28)

Each individual can then be assigned to the class that has the highest posterior
probability for them.

12.4.4.2 Finite density estimators and discrete factor models

In LCMs class membership has a discrete distribution with a fixed number of
mass points. The models are very flexible in that all of the parameters can be
allowed to vary across classes. A special case of this general model assumes that
the slope coefficients are fixed across classes and that only the intercepts vary. This
case is widely used to model unobserved heterogeneity, without imposing para-
metric assumptions on the distribution of the heterogeneity. The specification has
a dual interpretation: the population may truly fall into a discrete set of classes or
types or, alternatively, the mass points can be viewed as an approximation of some
underlying continuous distribution – the finite density estimator. The finite density
estimator was introduced into the econometrics literature by Heckman and Singer
(1984) in the context of hazard models (see, e.g., Van Ours, 2004, 2006). More
recently, the finite density estimator has been widely used in multiple equation
models where a common factor structure is assumed, as in equation (12.9) above.
This is often called the discrete factor model (DFM).

Since the DFM includes an intercept for each equation, the location of the dis-
tribution of the common factor η is arbitrary; also the scale of η is arbitrary and
undetermined (Mroz, 1999). Therefore, identification of the DFM requires some
normalizations. The existing literature on the DFM offers a range of equivalent
strategies to identify the additional parameters of the discrete distribution by fix-
ing the scale and the location of the distribution. If both are fixed, one of the
factor loadings is set to 1 and either one of the ηj is set to 0 (see Mroz, 1999) or
the mean of the discrete distribution is restricted to be 0, so that one of the ηj
can be expressed as a function of the others (Kan et al., 2003). If only the location
is fixed, the first and last mass points are set to 0 and 1 (this strategy is used by
Mroz, 1999, when C > 2). Other applications also impose that the remaining mass
points follow a logistic distribution such that ηk∈ (0,1) (see Mello et al., 2002, Picone
et al., 2003b). The πk can be parameterized using various distributions, such as the
logistic, normal or the sine function, such that each πk is between 0 and 1 and
they sum to 1.
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12.4.5 Copulas

The presence of common unobservables leads to multiple equation models and
the need to specify multivariate distributions. But the menu of parametric forms
available for bivariate and, more generally, multivariate distributions is limited. In
many applications multivariate normality may be unappealing: for example, with
heavily skewed and long-tailed data on costs of care or on quality adjusted life-
years (QALYs) (Quinn, 2005) or for rare events. Copulas provide an alternative and
are a method of constructing multivariate distributions from univariate marginal
distributions (see Trivedi and Zimmer, 2005). A copula is a function that can be
interpreted as a joint probability whose arguments are the univariate cumulative
distribution functions (CDFs) of the marginal distributions. The fact that the CDF
is used means that the marginal distributions are fixed and invariant to transforma-
tions of the random variable. The functional form selected for the copula uniquely
determines the form of the dependence, independently of the functional forms of
the marginal distributions. The attractions of copulas are that they are flexible –
they can mix together marginal distributions of different types, whether they be
continuous, integer valued counts or categorical; they allow for richer concepts of
dependence than the standard linear measure, including measures of tail depen-
dence; and they are computationally tractable and avoid the need for numerical
integration or simulation.

A key result in the theory of copulas is Sklar’s theorem, which shows that all
multivariate distributions can be represented by a copula. So in the bivariate case,
if two random variables have a joint distribution F(x1, x2) and marginal distribu-
tions F1(x1) and F2(x2) then Sklar’s theorem establishes that there exists a copula
function C(·) such that:

F(x1, x2) = C(F1 (x1), F2 (x2)). (12.29)

In practice the unique copula that characterizes the true joint distribution is
unknown. So particular functional forms have to be selected and compared in
terms of their goodness of fit. There is a long list of copulas to choose from. Com-
mon choices include the Frank copula and the Farlie–Gumbel–Morgenstern (FGM)
copula, which is a first-order approximation of the Frank copula and is tractable to
use in applied work (Prieger, 2002; Smith, 2003; Zimmer and Trivedi, 2006). The
bivariate form of the Frank copula is:

Cθ (u, v) = − θ
−1 log

(
1+ (e−θu−1)(e−θv −1)

e−θ −1

)
, (12.30)

where the parameter θ captures dependence. The bivariate form of the FGM copula
is:

Cθ (u, v) = uv(1+ θ(1− u)(1− v)). (12.31)

Other common choices include elliptical copulas, such as the Gaussian and Stu-
dent’s t, and the Clayton copulas. The Gaussian copula is an example of a copula
derived by the method of inversion and takes the form:

Cθ (u, v) = #2(#
−1
1 (u),#

−1
1 (v)), (12.32)
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where #2 and #1 denote bivariate and univariate standard normal distribution
functions.

12.5 Models for longitudinal data

12.5.1 Applications of linear models

12.5.1.1 Models for longitudinal and spatial panels

In Lindeboom et al. (2002) models for cognitive status and emotional well-being
are estimated using linear fixed effects specifications, estimated in first differences.
The data are taken from three waves of the Dutch Longitudinal Ageing Study
Amsterdam (LASA) and exhibit considerable attrition. Lindeboom et al. note that
the fixed effects specification is robust to selection associated with time invariant
unobservables, but they also include indicators of patterns of response in their
model. They find a large impact of life events, such as bereavement, on mental
health among the elderly. Carey (2000) estimates the impact of length of stay (LOS)
on total hospital costs using a panel of 2,792 US hospitals for the period 1987–92.
The individual effect in these models captures factors, such as the quality of care
provided in each hospital, which is likely to be correlated with both costs and LOS.
To allow for these correlated effects, she uses the Chamberlain minimum distance
estimator and finds that the elasticity of total costs with respect to LOS is low.

The rapid growth in dental care expenditure in Taiwan, after the inauguration
of national health insurance (NHI) in 1995, led the government to reform the
payment system and introduce global budgeting for outpatient dental care in July
1998. In response to the introduction of global budgets, dentists might alter their
supply behavior, changing the number of visits, the amount of expenditure, and
the type of services provided. Lee and Jones (2004) develop two-way fixed effects
models to estimate these effects using panel data constructed from outpatient den-
tal care expenditures claims from the Taiwanese National Health Insurance system.
The availability of a long panel, with up to 48 monthly observations, allows them
to estimate a policy effect for each dentist in the panel, using within-dentist varia-
tion and effectively treating each dentist as their own control group. The individual
effects are an important component in the panel data model to investigate den-
tists’ responses to the introduction of global budgeting. The magnitude of the
dentist effects measures individual heterogeneity in activities that could not be
captured by observable factors in the regression. This allows them to estimate
individual-specific responses to the payment reform as well as calculating the aver-
age policy effect. They model the individual response to the policy changes by
estimating the differences of individual fixed effects between two separate models:
pre- and post-global budget. This policy effect can be interpreted as, holding other
observable variables constant, the extent to which each individual dentist’s activity
changed after the introduction of global budgeting. They use OLS to analyze the
factors influencing variation in the policy effects across different dentists. These
factors include information on the dentist’s demographic characteristics, such as
age and gender; the type and ownership of affiliated medical institutions (public or
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private and hospital or clinic); environmental characteristics, such as the dentist-
population ratio and annual household income; and whether the dentist practices
in a deprived area. The overall effect of global budgets is to constrain costs, but
there is evidence of a change in the mix of services. Male and younger dentists have
higher policy effects than female and older dentists. Global budgets favor dentists
in deprived areas and there is some evidence of increases in the expenditure per
visit and the volume of composite resin fillings.

Applications of linear models are not confined to longitudinal datasets. Moscone
et al. (2007) take a spatial panel approach to data on mental health expenditure
by local authorities in England. They compare specifications that allow for a spa-
tial autoregressive process in the error term; a random effects model with spatially
lagged dependent variables; and a random effects model with spatial autocorrela-
tion. The random effects model with lagged dependent variables proves to be the
preferred specification.

12.5.1.2 Dynamic panel data models: GMM estimators

Brown et al. (2005) apply dynamic panel data models to assess the impact of HMOs
on the supply of doctors at the local level. They construct a panel of Californian
counties for the years 1988–98 using data from the American Medical Association
and specify reduced-form models for the supply of doctors per 100,000 inhabitants
for both specialists and primary care. First differencing is used to deal with omit-
ted variables and dynamics are included to allow for inertia in supply responses.
The models are estimated by the systems version of the Arellano–Bond estimator
(Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell and Bond, 1998),
with both one-step and two-step estimates of the standard errors. The internal
instruments, drawn from lagged variables, are augmented by some external instru-
ments. The tests for autocorrelation are consistent with the assumptions of the
Arellano–Bond model: there is evidence of first order autocorrelation in the resid-
uals, but not of higher order autocorrelation. The results show that the supply of
specialists is responsive to changes in the relative market penetration of HMOs,
but the supply of primary care doctors is not.

The Arellano–Bond approach is also adopted by Tamm et al. (2007) to estimate
price effects on insurers’ market shares. They use an unbalanced panel of insurers,
who were active in the German social health insurance system between January
2001 and April 2004. This issue is important as price sensitivity among consumers is
a precursor for the success of reforms based on the notion of managed competition.
They adopt a dynamic panel data model for the logarithm of each insurer’s mar-
ket share. This aggregate model is motivated by an individual-level multinomial
logit model for the choice of insurer and dynamics are introduced to capture the
fact that only a fraction of consumers will switch companies during a given year.
The model is estimated using the Arellano–Bond estimator and the systems-GMM
estimator. The standard Arellano–Bond GMM estimator, which relies on lagged
levels to instrument lagged differences, may perform poorly. This suggests using
the systems approach, but this approach requires stronger restrictions on the ini-
tial conditions: the first-period error term and the first differences of the regressors
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have to be uncorrelated with the individual effect. In this case the orthogonality
conditions for the systems approach are rejected. The hypothesis of a unit root is
not rejected and models are also estimated for differences in log-market share as
a function of levels of the regressors. The estimated short-run price elasticities are
small but, due to the dynamics, the long-run impact of prices is substantial.

Other applications of the GMM and systems-GMM approaches include Baltagi
et al. (2005), who estimate dynamic equations for the log of hours worked by
Norwegian doctors, using panel data from the personnel register of the Norwegian
Association of Local and Regional Authorities. Clark and Etilé (2002) use seven
waves of BHPS to estimate dynamic models for cigarette consumption. This creates
some problems when the data are first differenced as there is considerable heaping
of the self-reported data around focal values, such as 20 cigarettes per day. Health
shocks are shown to influence levels of smoking. Hauck and Rice (2004) use 11
waves of the BHPS to estimate models for mental health, measured by the GHQ-
12 score. They compare static variance components models and dynamic GMM
estimators and find greater persistence of mental health problems among those
with lower socioeconomic status. Windmeijer et al. (2005) use the systems-GMM
estimator in panel data models of the demand for outpatient visits by GP practices
in England.

12.5.2 Applications with categorical outcomes

12.5.2.1 Pooled and random effects specifications

Contoyannis et al. (2003) consider the determinants of a binary indicator for func-
tional limitations using seven waves (1991–97) of the BHPS. Their models allow for
persistence in the observed outcomes due to state dependence (a direct effect of pre-
vious health status), unobservable individual effects (heterogeneity which is due to
unobserved factors that are fixed over time) and persistence in the transitory error
component. Allowing for persistence is important: a comparison of the observed
outcomes with those predicted by a simple binomial model shows that persistence
is substantial in the data. They estimate models for the repeatedly observed binary
health indicator, with and without state dependence, using panel probit models.
These are estimated by MSL using the GHK simulator with antithetic acceleration.
They also implement a test for the existence of asymptotic bias due to simulation
which is used to select the number of replications required for use in MSL.

In related work Contoyannis et al. (2004b) explore the dynamics of SAH in the
BHPS. The variable of interest is an ordered measure and the BHPS reveals evidence
of considerable persistence in individual’s health status. As SAH is measured at
each wave of the panel there are repeated measurements for a sample of individu-
als. SAH is modeled using a latent variable specification, which is estimated using
pooled ordered probits (with robust inference) and random effects ordered probit
models. The presence of lagged health is designed to capture state dependence, the
influence of previous health history on current health. The error term is split into
two components; the first captures time invariant individual heterogeneity; the
second is a time varying idiosyncratic component.
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In this kind of application it is quite likely that the unobserved individual effect
will be correlated with the observed regressors, such as household income. To
allow for this possibility Contoyannis et al. (2004b) parameterize the individual
effect (Chamberlain, 1984; Mundlak, 1978; Wooldridge, 2005). This allows for
correlation between the individual effects and the means of the regressors. In addi-
tion, because they are estimating dynamic models, they need to take account
of the problem of initial conditions. It is well known that in dynamic specifica-
tions the individual effect will be correlated with the lagged dependent variable,
which gives rise to what is known as the initial conditions problem, that an individ-
ual’s health at the start of the panel is not randomly distributed and will reflect
the individual’s previous experience and be influenced by the unobservable indi-
vidual heterogeneity. To deal with the initial conditions an attractively simple
approach suggested by Wooldridge (2005) is used. This involves parameterizing
the distribution of the individual effects as a linear function of initial health at the
first wave of the panel and of the within-individual means of the regressors, and
assuming that it has a conditional normal distribution. As long as the correlation
between the individual effect and initial health and the regressors is captured by
this equation it will control for the problem of correlated effects. Its ease of imple-
mentation stems from the fact that the equation for ui can be substituted back
into the main equation and the model can then be estimated as a pooled ordered
probit or a random effects ordered probit using standard software to retrieve the
parameters of interest. Contoyannis et al. (2004b) find that SAH is characterized
by substantial positive state dependence and unobserved permanent heterogene-
ity. Including state dependence dramatically reduces the impact of individual
heterogeneity. Conditioning on the initial period health outcomes and within-
individual averages of the exogenous variables reduces the impact of heterogeneity
and state dependence. Unobservable heterogeneity accounts for around 30% of the
unexplained variation in health.

Similar dynamic panel probit models are used by Gannon (2005). In her case
the outcome of interest is a binary measure of labor force participation, which is
assumed to be a function of past labor force participation and health limitations.
This gives dynamic panel probit models that are estimated in pooled and random
effects versions using the Wooldridge (2005) approach to deal with the initial con-
ditions problem. The models are estimated with the Living in Ireland Survey (LIS),
which is the Irish component of the ECHP. Nolan (2007) also uses the LIS, but uses
a dynamic random effects Poisson specification to model GP visits. She adopts the
Wooldridge approach to model the initial conditions. In contrast, Arulampalam
and Bhalotra (2006) use Heckman’s approach to specify the initial conditions in a
Markov model of infant deaths among Indian families.

12.5.2.2 GMM estimators

In Jones and Labeaga (2003) a panel of Spanish households is used to test the empir-
ical formulation of the rational addiction model (Becker et al., 1994). This dataset
raises problems of measurement errors, censoring, and unobservable heterogeneity.
Jones and Labeaga (2003) use sample separation information to exclude those
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households who never purchase tobacco. To deal with the remaining zeros, they
compare specifications based on infrequency of purchase and on censoring. GMM
and systems-GMM are used to deal with errors-in-variables and unobservable
heterogeneity (Arellano and Bond, 1991; Bover and Arellano, 1997). Within-groups
two-step, within-groups three-step GMM and MD methods are used to allow for
censoring. To reduce the influence of distributional assumptions they adopt a
semiparametric approach to estimate each of the T cross-section equations using
Powell (1986) symmetrically censored least squares (SCLS). There is evidence that
the rational addiction specification is sensitive to unobservable heterogeneity and
censoring and the results suggest that failure to account for heterogeneity may lead
to overestimates of the impact of addiction. The panel data estimators imply that
behavior is more forward-looking than suggested by the results that fail to correct
for heterogeneity.

12.5.2.3 Finite mixture models

Deb (2001) applies a random effects probit model in which the distribution of the
individual effect is approximated by a discrete density. This is an example of a
finite mixture model and it relaxes the normality assumption for the distribution
of the random effects. Deb uses Monte Carlo experiments to assess the small sample
properties of the estimator. These show that only 3–4 points of support are required
for the discrete density to mimic normal and chi-square densities and to provide
approximately unbiased estimates of the structural parameters and the variance
of the individual effects. Deb applies the model to a cross-section of individuals
clustered in families, where the random effect represents unobserved family effects.
It is assumed therefore that all individuals in each family belong to the same latent
class. This approach aims to approximate the distribution of the random (family)
intercepts, whereas the responses to the explanatory variables are not allowed to
vary across latent classes. Clark et al. (2005) develop a latent class ordered probit
model for reported well-being, in which individual time invariant heterogeneity is
allowed both in the intercept and in the income effect.

12.5.3 Applications with count data

12.5.3.1 Poisson/log-normal mixtures

Winkelmann (2004a) proposes an alternative two-part, or hurdle, model based on a
Poisson/log-normal mixture rather than the usual negative binomial (Negbin) vari-
ants. Hurdle, or two-part, models make a distinction between the decision to seek
care, modeled as a binary choice, and the conditional number of visits, modeled
as a truncated count data regression. They are the most widely used specification
in the recent applied literature (see, e.g., Alvarez and Delgado, 2002; Chang and
Trivedi, 2003; Sarma and Simpson, 2006; Yen et al., 2001), although Santos Silva
and Windmeijer (2001) have pointed out that they may be problematic in appli-
cations where it cannot be assumed that there is a single spell of illness for each
period of observation in the data. Winkelmann’s (2004a) model leads to a probit
equation for the first hurdle and a truncated Poisson/log-normal model for the
second. Unlike the Negbin model, the latter does not have a closed form and is
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estimated using Gauss–Hermite quadrature. An application to the 1997 reform of
co-payments for prescription drugs in Germany uses data on quarterly doctor vis-
its in the GSOEP. This confirms Deb and Trivedi’s (2002) result that finite mixture
models outperform Negbin hurdle models, but the results show that the normal
hurdle model fits better than both of these specifications.

The innovation in Van Ourti (2004) is to include a Gaussian random effect in
the two-part model. The time invariant individual effect appears as a common
factor in both parts of the model, with the factor loading in the first equation
normalized to one for identification. The individual effect is then integrated out
with the resulting integral evaluated by Gauss–Hermite quadrature. In an empirical
application to GP and specialist visits and to nights in hospital in the Panel Study
of Belgian Households (PSBH), the panel version of the two-part model (2PM-PA)
is compared to a one part-model with a Gaussian individual effect (1PM-PA) and to
pooled versions of the one-part and two-part models (1PM-PO, 2PM-PO). On the
basis of the log-likehoods and the Akaike information criterion (AIC) and Bayesian
information criterion (BIC), the 2PM-PA specification is preferred to the simpler
specifications.

While Van Ourti (2004) extends the Gaussian random effects model to the two-
part specification for count data, Munkin and Trivedi (1999) and Riphahn et al.
(2003) do the same for a bivariate count data model, dealing with the case where
there are two dependent variables both measured as integer counts. Munkin and
Trivedi (1999) propose a model that is designed for cross-section data and that is
applied to the number of emergency room visits and of hospitalizations in data
from the US National Medical Expenditure Survey, 1987–88 (as used by Deb and
Trivedi, 1997). They construct the bivariate model by specifying the marginal dis-
tributions of the counts and then adding a correlated heterogeneity term to give a
Poisson-log-normal mixture. This has conditional mean functions:

λi1 = exp(x′i1 β1+ εi1)

λi2 = exp(x′i2 β2+ εi2)

(εi1, εi2) ∼ N[(0, 0), (σ2
1 , ρ σ1 σ2, σ2

2 )].
(12.33)

The log-likelihood function for the model involves a two-dimensional integral and
is estimated by MSL with antithetics and a correction for first order simulation bias.
Using a bivariate model does not lead to substantial changes in the estimated effects
of the regressors, but the overall fit of the model does improve.

The model proposed by Riphahn et al. (2003) is designed for panel data and they
apply it to separate measures of doctor visits and hospital inpatient visits from 12
waves of the GSOEP for 1984–95, focusing on West Germans aged between 25 and
65. Their specification extends the single equation model of Geil et al. (1997) by
adding two Gaussian error components to each equation; one, a time invariant
individual effect (uij); the other, a time-varying idiosyncratic error term (εitj):

λit1 = exp(x′it1 β1 + ui1+ εit1)

λit2 = exp(x′it2 β2 + ui2+ εit2).
(12.34)
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Correlation between the two equations is introduced by assuming that the error
terms are drawn from a bivariate normal distribution. Although it is not clear from
the paper, it appears that the individual effects (uij) are assumed to be independent
of each other, which seems rather restrictive. Computation is based on a combina-
tion of Gauss–Hermite quadrature, to integrate over the time invariant individual
effect, and Gauss–Legendre quadrature, to integrate over the bivariate distribution
within each period.

12.5.3.2 Finite mixtures

Deb and Trivedi (1997, 2002), Deb and Holmes (2000), Jiménez–Martin et al. (2002)
and Sarma and Simpson (2006) estimate finite mixture models for count measures
of health care use, in which a Negbin distribution is assumed within each latent
class. Lourenço and Ferreira (2005) extend the application of the Negbin finite mix-
ture model to a truncated sample from the 2003–04 Europep survey for Portugal,
where data are only collected for those who visit health centers. This means that
the data are drawn from an endogenous sampling scheme and are truncated at zero,
and raises the question of whether the distribution of unobserved heterogeneity
should be defined over the whole population or only the truncated sample.

Jochmann and Leon-Gonzalez (2004) propose a specification that uses a semi-
parametric Bayesian approach, which can be seen as an extension of Deb and
Trivedi (1997). They start with a parametric “random coefficients” specification
of the Poisson model as a benchmark. In this model the random slopes (bi) are
assumed to be drawn from a multivariate normal distribution, so the conditional
mean function takes the form:

λit = exp(x′it β +w′it bi + εit ). (12.35)

The semiparametric element of the model is introduced by using a Dirichlet
process mixture for the prior on the random effects. This gives a mixture model with
a random number of components and extends the usual treatment of LCMs that
fix the number of components. The Dirichlet process specifies a base distribution,
in this case assumed to be normal, and a fixed number of mass points, in this case
set equal to 10. Then, new draws of the random effects are a mixture of draws from
the base distribution and draws from existing clusters of values. The end product is
a discrete distribution where the number of mass points is random. Estimation of
the model is done by MCMC, based on Gibbs sampling, with data augmentation
(the random effects and latent variables are treated as parameters to be estimated)
and incorporating a Metropolis–Hastings step where the Gibbs sampling cannot be
used. The MCMC algorithm was run for 30,000 iterations, discarding the first 5,000
for the burn-in period. The application uses data on the number of visits to the
doctor in the previous quarter from the 1997–2001 waves of the GSOEP. The aim
is to test for horizontal equity in the delivery of care by seeing whether non-need
factors play a significant role in explaining variation in utilization. This is tested
using Bayes factors and horizontal equity is not rejected with these data.

The two dominant strands in the recent literature, hurdle models and finite
mixture models, are brought together in the latent class hurdle model developed
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by Bago d’Uva (2006). Her model uses a panel of individuals across time: individuals
i are observed Ti times. Let yit represent the number of doctor visits in year t . The

joint density of yi =
(
yi1, . . . , yiTi

)
is given by:

g
(
yi|xi;πi1, . . . ,πiC; θ1, . . . , θC

) = C∑
j=1

πij

Ti∏
t=1

fj
(
yit |xit ; θj

)
, (12.36)

where xi is a vector of covariates, including a constant, the θ j are vectors of parame-

ters, and 0 < πij < 1 and
∑C

j=1 πij = 1. Conditional on the class that the individual
belongs to, the number of visits in period t , yit , is assumed to be determined by a
hurdle model. The underlying distribution for the two stages of the hurdle model
is the Negbin. Formally, for each component j = 1, . . .C, it is assumed that the
probability of zero visits and the probability of observing yit visits, given that yit is
positive, are given by the following expressions:

fj
(
0|xit ;βj1

)
= P

[
yit = 0|xit ,βj1

]
=
(
λ

1−k
j1,it + 1

)−λk
j1,it

fj
(
yit |yit > 0, xit ;βj2

)
=

�

(
yit+

λk
j2,it
αj

)(
αjλ

1−k
j2,it+1

)− λk
j2,it
αj

(
1+

λ
k−1
j2,it
αj

)−yit

�

(
λk
j2,it
αj

)
�(yit+1)

⎡⎢⎢⎣1−
(
αjλ

1−k
j2,it+1

)− λk
j2,it
αj

⎤⎥⎥⎦
, (12.37)

where λj1,it = exp
(
x′itβj1

)
, λj2,it = exp

(
x′itβj2

)
, αj are overdispersion parameters

and k is an arbitrary constant.
As in the standard hurdle model, βj1 can be different from βj2, reflecting the fact

that the determinants of care are allowed to have different effects on the probability
of seeking care and on the conditional number of visits. On the other hand, having[
βj1,βj2

]
�= [

βl1,βl2
]

for j �= l reflects the differences between the latent classes.

Various special cases are nested within the general model. It can be assumed that
all the slopes are the same, varying only the constant terms, βj1,0 and βj2,0, and
the overdispersion parameters αj. This represents a case where there is unobserved
individual heterogeneity, but not in the responses to the covariates. The most
flexible version allows αj and all elements of βj1 and βj2 to vary across classes. The
finite mixture hurdle model also accommodates a mixture of sub-populations for
which health care use is determined by a Negbin model (the two decision processes
are indistinguishable) and sub-populations for which utilization is determined by
a hurdle model. This is obtained by setting βj1 = βj2 for some classes. Setting them
equal for all of the classes gives a panel data version of Deb and Trivedi’s (1997)
latent class Negbin model. Bago d’Uva (2006) applies the latent class hurdle model
to panel data from the RAND Health Insurance Experiment and finds a higher price
effect on health care utilization for the latent class of “low users.” This is mostly
attributable to the impact of price on the probability of seeing a doctor rather than
the conditional number of visits.
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12.5.4 Applications of quantile regression and other
semiparametric methods

Quantile regression is of particular value when there is interest in the full condi-
tional distribution of an outcome rather than just the conditional expectation of
the variable. The method provides one way to allow for heterogeneity in treat-
ment effects over the range of the conditional distribution. It is a semiparametric
approach that avoids distributional assumptions about the error term. It also
has the attractive property of invariance to monotone transformations of y and
therefore avoids the retransformation problem.

Kan and Tsai (2004) apply quantile regression to the conditional distribution of
BMI using data from the Cardiovascular Disease Risk Factors Two-Township Study
(CVDFACTS) for Taiwan. Quantile regression is well suited to an analysis of obesity
as interest focuses on the upper tail of the distribution of BMI rather than the area
around the mean. Other studies have tended to create an indicator variable for
obesity using the published clinical thresholds, but the quantile approach makes
better use of the available variation in BMI in the upper tail of the distribution.

Lee and Jones (2006) use the same dataset for Taiwan dentistry as Lee and
Jones (2004) to provide evidence on heterogeneity in dentists’ activity. The hetero-
geneity is of particular importance because dentists’ responses are likely to differ
widely from high- to low-activity dentists. Quantile regressions provide a useful
method to investigate the differential responses of dentists to various observable
variables. It is shown that time trends for dentists at higher quantiles have greater
fluctuations than those at lower quantiles. The clinic–hospital gap in activity at
higher quantiles is greater than at low quantiles. Clinic dentists at higher quantiles
have much higher numbers of visits and numbers of treatments than those at lower
quantiles, but they provide less intensity of care. Dentists in deprived areas have
higher activity than those in non-deprived areas, but only when they are located
at higher quantiles.

Winkelmann (2006) applies quantile regression to count data on doctor visits
in the GSOEP. This allows an evaluation of the impact of the 1997 reform of co-
payments for medicines on the full conditional distribution and not just the mean.
The quantiles of a count are integer valued and cannot be represented by a continu-
ous function of the covariates, such as exp(x′β), so Winkelmann (2006) adopts the
method proposed by Machado and Santos Silva (2005). This transforms the data
by “jittering”: adding a uniform random variable to the counts and then applying
quantile regression to the resulting continuous variable. The results show a greater
impact of the reform on the lower quantiles, which is consistent with the earlier
evidence from a hurdle model in Winkelmann (2004) that showed a larger effect
in the first part of the model.

Applications of other semiparametric regression methods are relatively sparse
in the health economics literature. Askildsen et al. (2003) use Kyriazidou’s (1997)
semiparametric estimator for a panel data sample selection model in order to esti-
mate nurses’ labor supply in Norway. This allows for individual effects in the
selection equation and the hours equation that may be correlated with each other

mailto: rights@palgrave.com


602 Panel Data Methods

and with the observed covariates. A conditional logit is used to estimate the selec-
tion equation. Then the hours equation is estimated in first differences by weighted
least squares, with kernel weights applied to the difference in the linear index from
the selection equation between different periods. The aim is to difference observa-
tions across periods for which the probability of selection is (approximately) the
same. Rettenmaier and Wang (2006) use a semiparametric estimator for the Tobit
model to model persistence in Medicare reimbursements. The model allows for
fixed effects and a lagged dependent variable, but assumes that initial conditions
are fixed.

It is widely believed that income has a direct effect on health, but it is often argued
that indirect income effects due to relative deprivation may be equally important.
Wildman and Jones (2007) investigate these relationships using parametric and
semiparametric panel data models. By allowing for a flexible functional form for
income, they seek to ensure that coefficients on relative deprivation variables are
not an artifact of a highly non-linear relationship between health and income.
Parametric estimation may lead to biased coefficients if the parameterization of
the explanatory variables is incorrect. Semiparametric partially linear estimation
overcomes this problem by allowing an unspecified relationship between health
and income (Robinson, 1998). The results provide strong evidence for the impact
of income on self-reported measures of health for men and women. These results
are robust across a range of techniques and are resilient to the inclusion of measures
of relative deprivation. The parametric results for relative deprivation largely reject
its influence on health, although there is some evidence of an effect in the
semiparametric models.

12.6 Multiple equation models

12.6.1 Applications using MSL

Balia and Jones (2008) use the first wave of the British HALS from 1984 to 1985
along with the longitudinal follow-up from May 2003 to model the determinants
of premature mortality and to assess the relative contribution of lifestyle factors
to the gradient in mortality in Britain. A behavioral model, that relates mor-
tality to observable and unobservable factors, is used to motivate the empirical
specification. Death, SAH and a range of health-related behaviors are measured
as binary outcomes and, to capture the effect of lifestyles on mortality and mor-
bidity in the presence of common unobservable factors, the model is estimated
as a recursive multivariate probit. The full system is estimated by MSL and health
inequality is explored using a decomposition analysis of the Gini coefficient. The
results contradict the view that lifestyles only play a minor part in health
inequalities.

Deb and Trivedi (2006) and Deb et al. (2006a) use a latent factor specification
to model selection into treatment in nonlinear models and adopt a MSL estima-
tor. The aim is to estimate causal effects using a structural model, motivated by
a selection on unobservables approach, in which the parametric distribution of
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the unobservables is specified and the full model is estimated by ML. In this case
the outcomes of interest are binary and count measures of health care utilization.
The treatment variables reflect the individual’s choice of insurance plan, which is
modeled using a random utility framework. The options are categorized as HMOs,
other-managed care and non-managed care plans, with the choice of options
specified using a multinomial logit specification. In Deb and Trivedi (2006) the
data are taken from the 1996 US Medical Expenditure Panel Survey (MEPS), while in
Deb et al. (2006a) the MEPS data are augmented by the 1996 Community Tracking
Survey (CTS) as a test for the external validity of the findings. Utilization and insur-
ance plan are modeled simultaneously to take account of the possibility of selection
by patients, insurers and providers. Identification of the latent factor model rests on
the assumption that each of the multinomial choices depends on a unique latent
factor, based on independent and identically distributed (i.i.d.) normal draws, and
these are allowed to be freely correlated with the error in the outcome equation. The
parametric specification is identified by functional form, but exclusion restrictions
are also imposed, using employment status and occupational sector as predictors
of insurance plans, while excluding them from the outcome equations. Simple
linear models are used to provide informal checks for the validity of these instru-
ments. Estimation uses MSL, accelerated by using quasi-random draws from Halton
sequences. The results do not show evidence of favorable selection into HMO plans,
but the average treatment effects on the use of care are much larger when selection
is taken into account and there is considerable heterogeneity in the effects. Monte
Carlo simulation is also used to compute the standard errors of these treatment
effects.

Other applications of MSL include Lindeboom et al. (2002), who use the LASA
panel to estimate a five-equation model for the use of long-term care services
among elderly residents of Amsterdam. They take draws from a multivariate nor-
mal distribution and use antithetics to accelerate the estimation. The results show
strong effects of health status, sex, socioeconomic status and prices on the use of
institutional care. Two papers by Pudney and Shields (2000a, 2000b) use MSL to
estimate a system of equations comprised of a generalized ordered probit model
for British nurses’ pay grades along with auxiliary equations for training, career
breaks, work outside the NHS, and part-time work. A common factor structure
leads to a log-likelihood based on the multivariate normal and hence the need
for simulation estimation. The MSL estimation only uses 50 replications, without
acceleration, which is relatively few for this kind of application. Pudney and Shields
(2000b) make a case for identification based on functional form rather than exclu-
sion restrictions. Vera-Hernandez (2003) makes use of MSL to estimate a structural
model of insurance coverage and health care use applied to data from the RAND
Health Insurance Experiment.

12.6.2 Applications using Bayesian MCMC

Patient selection makes it hard to identify the impact of the size and characteris-
tics of hospitals on the quality of their outcomes. The problem arises when there is
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selective admission that is influenced by unobservables, such as unmeasured sever-
ity, that are also associated with the quality of outcomes. Geweke et al. (2003) find
evidence of patient selection among 78,848 Medicare patients treated in 114 hos-
pitals in Los Angeles county between 1989 and 1992. They focus on patients aged
over 65 with a diagnosis of pneumonia taken from administrative data on hospital
discharges collected by the State of California Office of Statewide Health Planning
and Development. The quality of the clinical outcomes is measured by deaths
in hospital within ten days of admission. A structural probit model for deaths is
coupled with a reduced form multinomial probit model for the patient’s choice of
hospital, allowing correlation in the error terms to capture patient selection. The
system of equations is estimated by a Bayesian approach using the MCMC simu-
lator of the posterior distribution. Gibbs sampling with data augmentation breaks
the estimation into steps, first simulating the latent dependent variables and then
estimating the linear simultaneous equations system. The model is identified by
using distances from the patients’ homes to the hospitals as an instrument. The
raw data and simple probits do not show a relationship between hospital size and
mortality rates, but the MCMC results reveal a U-shaped relationship, with better
quality in the smallest and largest hospitals.

Deb et al. (2006b) start with a conventional two-part model for medical expendi-
ture. This is applied to data on ambulatory care, which has 17% zero observations,
and hospital care, which has 94% zero observations and which exhibits positive
skewness and excess kurtosis. The data are drawn from the US MEPS for 1996–
2001, giving six repeated cross-sections and 20,460 observations. The standard
two-part set-up is used with a binary choice equation and a conditional regression
for the logarithm of expenditure. However, this is augmented by a multinomial
probit model to allow for the endogenous selection of insurance plans, which fall
into three categories: HMO, PPO (preferred provider organization) and FFS (fee-
for-service). To capture the possibility of selection bias the error terms from the
insurance equations (u) are assumed to be linearly associated with the error terms
in the two parts of the model for expenditure:

ε1 = u′δ + υ

ε2 = u′π + τ .
(12.38)

This assumes that the εs are only conditionally independent given u and relaxes the
usual assumption that the two parts of the model are independent. Like Geweke
et al. (2003), the full system of equations is estimated by Bayesian MCMC and
Bayes factors are used to construct a test for the exogeneity of the choice of insur-
ance plan. This test shows evidence of substantial selection bias. Having estimated
the model, the authors show how to define and compute estimated treatment
effects for the impact of insurance plan on expenditure, using data augmentation
to impute the latent variables. It should be noted that the approach used to com-
pute the treatment effects involves a standard retransformation for log-scale data
and therefore relies on a strong assumption about the absence of heteroskedasticity
in the expenditure data (Manning and Mullahy, 2001).
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12.6.3 Applications using finite mixtures

The common factor model was introduced earlier in this chapter in the context
of Aakvik et al.’s (2005) evaluation of a Norwegian VR program (see equations
(12.8)–(12.10) above). Aakvik et al.’s application takes a parametric approach and
assumes that the common factor is normally distributed. An alternative, semipara-
metric approach is to use a finite density and estimate a DFM. The DFM has two
main advantages over MSL. First, it is semiparametric and therefore more robust
than the parametric approach, which relies on strong distributional assumptions.
Also, in general, it is easier to compute, involving standard numerical methods for
maximum likelihood estimation or the use of the expectation maximization (EM)
algorithm, rather than computationally intensive Monte Carlo simulation (see,
e.g., Arcidiancono et al., 2007). However, in practice there can be problems with
identification, manifested in failure of convergence and problems with multiple
optima.

Like Aakvik et al. (2005), Aakvik et al. (2003) use a latent variable framework to
specify the impact of multidisciplinary treatment for back pain on the probability
of leaving sickness benefits. Using a structural model, based on latent variables,
allows them to define the ATE, the ATET and to allow for heterogeneous MTEs.
In this application the unobservables are modeled using a discrete factor structure
with distance to the nearest hospital used to identify the model. The estimates
show a positive effect of around 6 percentage points on the probability of leaving
sickness benefits.

Rous and Hotchkiss (2003) use data from 254 Texas counties on all reported births
in 1993 to explore the impact of prenatal care on birth weight. They estimate a
discrete factor model with three equations: a logit model for whether the pregnancy
is carried to full-term and linear regressions for a measure of prenatal care visits
and for birth weight. Travel distance to the nearest provider of abortions is used to
identify the first equation, the availability of obstetricians is used for the second and
the gender of the child for the third. The factor model shows evidence of adverse
selection effects. Picone et al. (2003b) merge panel data from the US National
Long-Term Care Survey (NLTCS) for 1984–95 with the National Death Index to
investigate the impact of treatment intensity on survival rates and other health
outcomes. Their model involves a system of three equations for treatment intensity,
length of stay and health outcomes. These are assumed to have a common factor
structure which is estimated using a one-factor model. The selection of models
is based on the likelihood ratio (LR) statistic (Mroz, 1999) and 1,000 bootstrap
replications are used to avoid the problem of local optima. The model is identified
by excluding area data on the cost of capital, the Herfindahl index for hospital
concentration and a wage index from the mortality equation. The results suggest
that treatment intensity has a beneficial effect. Hamilton et al. (2000) compare
US and Canadian data to see whether waiting time for surgery for hip fractures
influences the outcomes of the treatment, measured by length of stay and inpatient
mortality. They use discharge data for 20,995 patients admitted to acute hospitals
in Quebec and Massachusetts between 1990 and 1992 and estimate a competing
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risks model for delay before surgery and post-surgery length of stay. They use the
Heckman–Singer specification for the common heterogeneity with two mass points
(Heckman and Singer, 1984). Day of week of admission is used as an instrument for
delay until surgery. The raw data show a strong relationship between delays and
outcomes, but this disappears once unobserved frailty is taken into account. The
higher observed inpatient mortality in Quebec is attributed to the longer length of
stay rather than poorer outcomes: the longer the patients remain in hospital, the
more likely they are to die there rather than at home.

Other applications of the discrete factor model include Bhattacharya et al. (2003),
who model the impact of public and private insurance on HIV-related mortality.
Mello et al. (2002) use a discrete factor specification for a two-equation model
of health plan choice, whether to join a Medicare HMO, and various measures
of subsequent health care utilization applied to data from the Medicare Current
Beneficiary Survey for 1993–96. A similar model of HMO enrollment and subse-
quent hospital use by Kan et al. (2003) finds evidence of strong selection effects
when a discrete factor specification is used to deal with unobservables. Rous and
Hotchkiss (2003) use the Nepal Living Standards Survey for 1996 in a model of
choice of health care provider, levels of expenditure and health outcomes with a
two-factor specification to allow for community and household effects. Holmes
(2005) combines a multinomial logit model with a discrete factor specification to
evaluate the US National Health Service Corps (NHSC) program that was designed
to encourage doctors to locate in underserviced areas.

The discrete factor model allows for a common factor in the intercept of each
equation. In contrast, the LCM allows all of the parameters to vary across the
latent classes. Clark and Etilé (2006) use the latent class framework to approximate
the continuous distribution of the individual effects in a dynamic random effects
bivariate probit model. They apply the model to data on smoking among couples in
the BHPS and use the simulated annealing version of the EM algorithm to estimate
the model. Atella et al. (2004) develop a latent class model for the joint decisions of
consulting three types of physician. The authors assume that, within a latent class,
each decision can be modeled by an independent probit, so the joint distribution
of the three binary outcomes is a product of probits.

12.6.4 Applications using copulas

The copula approach leads to closed forms and avoids the need for numerical
integration. It also circumvents the problem of the limited menu of parametric
specifications of multivariate distributions that are available, especially when nor-
mality is an unsuitable assumption, for example, when dealing with highly skewed
data.

Although copulas are not mentioned explicitly, Prieger (2002) proposes an exten-
sion of the sample selection model that is built around the FGM copula. This
is applied to data from the 1996 wave of the MEPS. The outcome equation is a
duration model for hospital length of stay and the selection equation measures
whether the individual had an inpatient stay or not during the survey period.
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Prieger’s approach builds on Lee’s (1983) selection model that uses a bivariate nor-
mal copula. In both cases the use of copulas to model the joint distribution allows
for the marginal distributions to be non-normal. As the outcome is a measure of
duration, exponential, gamma, log-logistic, log-normal and Weibull specifications
are considered and the gamma is selected as the preferred model. This reflects an
attractive feature of the copula approach, that model selection can focus on find-
ing an acceptable specification of the marginal distributions before turning to the
joint distribution. The specifications of the full selection model are compared using
the AIC, BIC, and the consistent Akaike information criterion (CAIC) as well as the
Voung test for non-nested models. These tests favor the FGM over the bivariate nor-
mal copula in terms of goodness-of-fit. Smith (2003) uses the same data as Prieger
(2002), but a different copula, the Frank copula from the Archimedean class, that
improves the fit of the model and changes the estimates of average length of stay.

Copulas are used by Zimmer and Trivedi (2006) to model dependence in a system
of nonlinear reduced form equations. Their application focuses on couples’ deci-
sions about insurance coverage and health care use and consists of three equations:
one for the husband’s utilization, one for the wife’s and one for whether or not the
couple take out separate health insurance policies. The marginal distributions for
utilization are assumed to be Negbin (NB2) and a probit is used for the insurance
equation. The equations are assumed to be linked by common unobservable fac-
tors and the joint distribution is modeled using a trivariate Frank copula, which
is derived using the mixture-of-powers approach. The use of copulas avoids hav-
ing to select a parametric specification for the unobservable heterogeneity and is
computationally tractable. To emphasize these points, Zimmer and Trivedi com-
pare their results to those derived from an MSL approach, based on multivariate
normality. The model is applied to data from four waves of the US MEPS. An
apparent limitation of the copula approach is that it works by specifying marginal
distributions and then modeling dependence, so that the emphasis is on a sys-
tem of reduced form equations rather than on conditional distributions. However,
Zimmer and Trivedi show how the estimates can be used to derive the condi-
tional distribution and hence compute the ATE of insurance coverage on health
care use.

12.7 Evaluation of treatment effects

12.7.1 Matching

Matching provides a general approach to deal with selection on observables. It
addresses the problem that, in the observed data, confounding factors may be
non-randomly distributed over the treated and controls. Rosenbaum and Rubin
(1983) showed that, rather than matching on an entire set of observable charac-
teristics (x), the dimensions of the problem can be reduced by matching on the
basis of their probability of receiving treatment, P

(
d = 1|x), known as the propen-

sity score. In practice, propensity score matching (PSM) estimators do not rely on
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exact matching and instead weight observations by their proximity, in terms of
the propensity score.

An important requirement is that the model for treatment, used to construct
the propensity score, should only include variables that are unaffected by par-
ticipation in the treatment, or the anticipation of participation. The matching
variables should be either time invariant characteristics or variables that are mea-
sured before participation in the treatment and that are not affected by anticipation
of participation. The crucial condition for identification of treatment effects using
the matching approach is that the selection into treatment should be ignorable,
conditional on the observed covariates.3

Jones et al. (2007a) use the ECHP to estimate the impact of private health insur-
ance coverage on the use of specialist visits in four European countries that allow
supplementary coverage. The results show that the probability of having private
insurance increases with income and with better reported health. Private insurance
has a positive effect on the probability of specialist visits in all countries, although
the magnitude is sensitive to the choice of estimator. They match treated indi-
viduals with non-treated individuals inversely weighted for the distance in terms
of estimated propensity scores, with weights constructed using kernel smoothed
distance weighting. They ensure that all cases are supported by controls. The qual-
ity of the matching can be assessed by computing the reduction of the pseudo R2

of the insurance regression before and after matching. To evaluate the extent to
which matching on propensity scores balances the distribution of the xs between
the insured and the uninsured group, they compute the bias reduction due to
matching for each of the xs.

Dano (2005) uses a 10% sample of the Danish population, drawn from register
data, to give a panel for 1981–2000. She estimates the impact of injuries sustained
in road traffic accidents on economic outcomes. Although these accidents are un-
anticipated health shocks, their incidence varies with observable and unobservable
characteristics that can be associated with the outcomes and the estimates of the
treatment effect need to be adjusted for this. Due to the large sample size, one-to-
one matching without replacement is used, with matching on the linear index from
the propensity score. The matching is combined with a difference-in-differences
approach to control for time invariant unobservables. The study finds an impact
of injuries on earned income for older and low-income individuals, but also shows
the compensating effects of public transfers in the Danish system.

García-Gómez and López-Nicolás (2006) adopt a matched panel data difference-
in-differences estimator. They use panel data from the Spanish component of the
ECHP to explore the impact of health shocks on employment and of employment
shocks on health. Their strategy is to match exactly on pre-treatment outcomes,
in order to control for time invariant observables. This means that controls are
restricted to those individuals who were identical to the treated in terms of their
pre-treatment outcomes. In order to define the treated and the controls, a three-
year window is adopted. In the case of health shocks, the treated are those who are
in good health in the first year and then move to bad health in the next two years,
and who are in employment for the first two years. The controls remain in good
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health throughout the period and are also in employment in the first two years.
The outcome is employment status in the third year. In addition to matching on
pre-treatment outcomes, PSM is used to make the treated and controls comparable
in terms of their observed characteristics. Four methods of matching are com-
pared: nearest neighbor matching on the propensity score; kernel matching on
the propensity score; matching of the four nearest neighbors on a set of explana-
tory variables; and simple matching on the four nearest neighbors according to the
propensity score.

Other studies that use matching are summarized in Table 12.2.

12.7.2 Regression discontinuity

The regression discontinuity (RD) design exploits situations where the assignment
to treatment changes discontinuously with respect to a threshold value of one or
more exogenous variables. The contrast between individuals on either side of the
discontinuity is used to identify the treatment effect. In a sharp regression dis-
continuity design, passing the threshold completely determines the allocation of
treatment. In a fuzzy design, which is more likely in practice, the allocation of
treatment is stochastic and the threshold creates a discontinuity in the probabil-
ity of treatment. The discontinuity design relies on a comparison of observations
“before and after” the threshold and does not have a separate control group. For
this reason, applications typically use a narrowly defined neighborhood around
the discontinuity to try and ensure that the treated and untreated observations are
comparable in other respects. Studies that use a discontinuity design were described
in section 12.2 above (Almond, 2006; Lleras-Muney, 2005; Pop-Eleches, 2006).

12.7.3 Difference-in-differences

The difference-in-differences, or diff-in-diff (DD) approach to evaluation with non-
experimental data has been applied extensively in the health economics literature.
The method is based on a before and after (pre–post) design with a control group.
It can be used with both panel data and repeated cross-sections and requires
treatment and control groups to be specified.

The basic form of the DD estimator of the average treatment effect compares
mean outcomes for the treated (1) and controls (0) before (B) and after (A) the
treatment:

ATEDD = (ȳ1
A− ȳ1

B)− (ȳ0
A− ȳ0

B). (12.39)

With individual panel data, the DD estimator can be computed using a two-way
fixed effects specification:

yit = γ (TiPt )+ x′itβ + νt + ui + εit . (12.40)

The treatment effect is identified by the parameter (γ ) on the interaction term
between the indicator for whether the individual is in the treated group (T) and
the indicator for the post-treatment period (P).4 The observed regressors (x) control
for any observable differences between the treated and controls and the individual
effects (u) control for any time invariant unobservable differences that may be
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correlated with the outcome and with the allocation of treatment. In this sense, the
DD estimator combines selection on unobservables with selection on observables,
so long as the unobservables are time invariant. The time effects (ν) take account
of any time trend in the data that is common to both the treatment and control
groups. This implies a “parallel trend” assumption. When the DD estimator is
applied to repeated cross-section data a further assumption is required: that the
composition of the treatment and control groups remains stable over time.

The DD estimator in equation (12.40) is defined above by using the interaction
between the post-treatment period (P) and belonging to the treatment group (T).
In some applications exposure to treatment may be defined by the interaction
between more than two factors. For example, in Schmidt’s (2007) evaluation of
the impact of infertility insurance mandates on birth rates in the US, an indicator
of whether states have mandates is interacted with whether or not women are
over 35, as those over 35 are most likely to suffer infertility. Multiple interactions
can be used to define exactly who is exposed to treatment and also to allow for
heterogeneity in the size of the treatment effect. This approach is often labeled
difference-in-difference-in-differences (DDD).

Chalkley and Tilley (2006) show how economic incentives can influence dental
practice. This study exploits the comparison between self-employed and salaried
dentists working for the NHS in Scotland to show that the financial incentives of
FFS increase the intensity of treatment by around 21%. Using a DD approach, the
paper finds that self-employed dentists treat exempt patients, who are assumed
to be more likely to be influenced by supplier inducement, more intensively than
non-exempt patients, relative to salaried dentists who do not face the financial
incentive of FFS. These findings are based on an administrative database, the Man-
agement Information and Dental Accounting System (MIDAS), that records claims
for self-employed and salaried dentists. The database provides a panel of dentists
and patients and can be used to control for the practice style of individual dentists
as well as measures of patient need.

In January 1994 the health authorities in Belgium increased co-payment rates
for home and office visits to GPs and for visits to specialists. The increases were
substantial: 35% for GP home visits, 45% for GP office visits and 60% for specialist
visits. Cockx and Brasseur (2003) use this change in prices as a natural experiment.
To create a control group they use those who were exempt from charges due to
low income among widows, orphans, the disabled and retired. This means that
identification relies on the treatment and control groups being comparable and
the authors note that identification can only be achieved for low-income groups. A
DD estimator is applied to the logarithm of utilization and the model is extended
to a Rotterdam demand system to accommodate substitution effects induced by
the change in relative prices. Interaction terms are used to allow for heterogeneity
in the treatment effects. A similar set of reforms in Germany is used as a natural
experiment by Winkelmann (2004b). In this case co-payments for prescription
drugs increased by 6 DM on July 1, 1997, leading to relative price increases of up
to 200% depending on the pack size. The policy is evaluated using data from the
GSOEP for the years around the reform, 1995–96 and 1998–99. The control group
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here is those exempt from these charges, made up of those with private insurance,
co-insured children and low-income households. A DD strategy is adopted, with
the effect of the co-payments on doctor visits identified by the interaction between
the timing of the reform and exemption from charges. Winkelmann argues that the
assumption of a common trend, which is essential for identification, is plausible
in this context.

The use of a control group in DD methods help avoids the spurious inferences
that can arise in a simple before and after comparison. For example, in Wagstaff
and Yu’s (2007) evaluation of the impact of the World Bank’s Health VIII project
in Gansu province in China they find only a small reduction in out-of-pocket
spending on health care in counties exposed to the program. A before-and-after
comparison would suggest that there was no significant improvement in this
outcome. However, the trend in the control group of counties shows a rise in
out-of-pocket payments, so the DD estimate reveals better outcomes among the
treated relative to the controls. An important caveat is that the validity of the
DD estimates relies on the comparability of the treated and controls in terms of
the underlying trend in the outcomes. The comparability of treatment and control
groups can be enhanced by combining the DD approach with matching estimators
(as in Dawson et al., 2007; Galiani et al., 2005; Wagstaff and Yu, 2007). In Wagstaff
and Yu (2007), the unmatched DD estimate for the impact of Health VIII on the
availability of medical equipment in township health centers does not show a sig-
nificant effect, but when the controls are matched with treated counties an effect
is revealed. This is because the counties selected for the project tended to be poorer
than the average among the controls so that, on average, the funds available to
invest in equipment in the control counties lead to higher rates of increase. Match-
ing with control counties that face the same sort of financial constraints allows a
reliable comparison to be made.

The careful use of matching estimators, which should include tests of whether
the treated cases and selected controls are balanced in terms of their observed
characteristics, provides a link to strategies for testing the robustness of the iden-
tification assumptions that are built into the DD approach. The comparability of
the treatment and control groups can be assessed by comparing their observed
characteristics prior to treatment and, in particular, by testing the parallel trend
assumption prior to treatment. A good example of this is Galiani et al. (2005). They
use a DD strategy applied to panel data on municipalities in Argentina. The treat-
ment of interest is the privatization of local water services that took place in the
1990s and the outcomes are measures of general and cause-specific child mortal-
ity. There is sufficient data for the pre-treatment period to do graphical analysis of
the trends in the treatment and control groups. More importantly, it is possible to
estimate the two-way fixed effects specification for mortality rates only using the
data from the pre-treatment period, but including an indicator of which munici-
palities would go on to be treated. Evidence that this indicator is significant would
undermine the parallel trends assumption and mean that areas that privatized their
water supply were systematically different in terms of (trends in) mortality. In fact,
Galiani et al. find that the common trend assumption is not rejected. Their DD
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estimators are refined using a PSM approach. The results show a significant reduc-
tion in deaths from infectious and parasitic diseases and suggest that privatization
helped to reduce health inequalities. Other studies that combine DD with match-
ing are Dano (2005), García-Gómez and López-Nicolás (2006), Girma and Paton
(2006) and Marini et al. (2008).

Numerous studies in health economics use the DD strategy. Some of these are
summarized in Table 12.3.

12.7.4 Instrumental variables

The DD design is often applied in the context of natural experiments. Natural
experiments and natural controls also form the basis for the IV approach, which
is intended to capture “selection on unobservables” (see, e.g., Auld, 2006b). This
approach relies on the variation in treatment that can be attributed to variation
in an exogenous variable, or instrument; assigning individuals to treatments on
the basis that the instrument mimics the random assignment of an experimental
design. This approach is often hard to apply in practice as instruments should be
both powerful predictors of treatment and have no direct effect on outcomes. The
search for convincing instruments is therefore fraught with difficulty.

There are two broad estimation strategies. The FIML approach specifies a com-
plete system of equations for the outcomes and treatments and estimates them
jointly, allowing for common unobservable factors and identifying the model
through exclusion restrictions. Estimation can be by MLE, MSL, MCMC, DFM or
copulas, as described in section 12.6 above. The more commonly used approach is
the limited-information or single equation approach, using IV estimators, such
as 2SLS, GMM and 2SCML. Some studies that use instrumental variables were
described in section 12.2 above (Arendt, 2005; Auld and Sidhu, 2005; Evans and
Lien, 2005; Gardner and Oswald, 2007; Lakdawalla et al., 2006; Lindahl, 2005).
Other applications are too numerous to describe in detail here (some examples are
Cawley et al. 2006; Contoyannis et al., 2005; Dubay et al., 2001; Dusheiko et al.,
2004, 2007; Elliott et al., 2007; Guaraglia and Rossi 2004; Hadley et al., 2003; Jewell
and Triunfo, 2006; Kessler and McClellan, 2002; Lindrooth and Weisbrod, 2007;
Meer et al., 2003; Sasso and Buchmueller, 2004; Schellhorn, 2001; Sloan et al.,
2001; Van Houtven and Norton, 2004; Yelowitz, 2000).

In section 12.1 it was emphasized that, when treatment effects are heteroge-
neous, the IV estimator identifies a local average treatment effect (LATE) and that
this estimate is conditional on the set of instruments that are used. In a recent
paper, Basu et al. (2007) apply Heckman and Vitlacyl’s (1999) LIV estimator which
identifies MTEs over the support of the propensity score p(d = 1|x, z). Computation
of the LIV estimator involves regressing the outcome y on the observed regressors
xand on a flexible function of the propensity score, which is estimated using x and
the instruments z. The model could be estimated semiparametrically, for example,
by using a partially linear model, or, as in Basu et al., by adding polynomial and
interaction terms between x and p(d = 1|x, z). The LIV estimator of the MTE(x,ud)
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is then:

LIV=
[
∂E(y|x, p(x, z))

∂p(x, z)

]
1−p(x,z)=ud

. (12.41)

This can be used to test for heterogeneity in the treatment effect and to construct
estimates of the other treatment effects of interest, such as the ATE and ATET.

12.8 Future prospects

Like other areas that are rooted in applied microeconomics, such as develop-
ment, environmental and labor economics, modern empirical analysis in health
economics is dominated by the tools of microeconometrics and the use of
individual-level data drawn from social surveys and administrative sources. The
trend is towards complex longitudinal and multilevel data structures, with increas-
ing reliance on linkage of a variety of sources. Health economists have exploited the
full range of microeconometric techniques, and applications to health data have
driven methodological innovations in the context of variables with skewed and
heavy-tailed distributions, multinomial choices, count data and mixture models.

Much of the empirical analysis done by health economists seeks to estimate
causal effects and fits within the treatment–outcomes framework. A challenge for
successful applied work is to find appropriate sources of variation to identify the
treatment effects of interest. Estimation of causal effects can be prone to selec-
tion bias, when the assignment to treatments is associated with the potential
outcomes of the treatment. Overcoming this selection bias requires variation in
the assignment of treatments that is independent of the outcomes. One source of
independent variation comes from randomized controlled experiments. These are
the norm in the evaluation of new clinical therapies, but their use for the evaluation
of broader health and social programs remains relatively rare.

Applied researchers in health economics face a twin challenge. The first is to make
the best possible use of the available non-experimental data by combining robust
econometric methods, such as those presented in this chapter, with imaginative
and convincing sources of identification. The second is to seek opportunities to
encourage the agencies responsible for designing and funding health and social
programs to collect new and comprehensive longitudinal datasets, to facilitate the
linkage of different datasets and to make greater use of randomized designs in the
evaluation of new initiatives.
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Notes

1. This chapter uses the “treatment-outcome” terminology that is commonplace in the eval-
uation literature. In practice many treatments are broad policy reforms associated with the
financing and delivery of health care rather than specific clinical interventions. Treatment
effects are defined here in terms of a binary treatment with just two regimes – the treated
and the controls. In practice there may be multiple treatments and varying intensities of
treatment.

2. In health economics, latent class models (LCMs) have typically been applied in the con-
text of nonlinear regression models, to allow for the role of unobserved heterogeneity in
the relationship between an observed outcome and a set of regressors. In the statistics
literature, LCMs are more commonly applied in the context of latent structural variables
and a set of observed indicators, such that the indicators are orthogonal conditional on
class membership.

3. Comparisons of treatment effects estimated using randomized experiments with those
estimated by matching methods in the labor economics literature cast considerable doubt
on the validity of such ignorability conditions and hence on the matching approach (e.g.,
Agodini and Dynarski, 2004; LaLonde, 1986; Smith and Todd, 2001).

4. Bertrand et al. (2004) highlight the risk of making misleading inferences using the standard
DD estimator if there is serial correlation in the outcomes and the standard errors are not
adjusted to take account of it.
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13
Panel Methods to Test for Unit Roots
and Cointegration
Anindya Banerjee and Martin Wagner

Abstract
We provide an up-to-date analytical survey of methods which have been developed to deal with
estimation and inference in non-stationary panels. The chapter provides information not only on
the tools but also interprets the literature and highlights the important challenges that remain. We
discuss the difficulties involved in formulating hypotheses within a panel framework with unit roots
and cointegration. These issues include incorporating cross-sectional dependence and structural
breaks in the data. Both these features are widely prevalent in the panels and lead to complications
in estimation and inference. For example, factor models are a widely used class of methods used
to deal with dependence but constitute only one of several ways of formulating the problems
involved. We argue that the links between cointegration and factor models in panels need to be
considered adequately and the asymptotic theory put on a firmer footing in many respects. The
study of cross-sectional dependence, breaks, and multiple cointegrating vectors, all of which are
in their relative infancy, mark the way for productive research in the years ahead.
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13.1 Introduction

Taking a look at the web page of the Groningen Growth Development Centre
(http://www.ggdc.net) is a salutary experience. The Centre is devoted to the “com-
parative analysis of levels of economic performance and differences in growth rates
in the world,” both in the short and long durée, and the data resources it brings to
this analysis are formidable.

Here in its pages are data for population, employment, annual working hours,
gross domestic product (GDP) per capita, GDP per person engaged, and GDP per
hour, for nearly 125 countries from 1950 onwards. Many of these series utilize
the Maddison (2007) historical series, which can also be used to go back to the
nineteenth century and in some cases even further into the past.

The 60-Industry Database provides an equally comprehensive dataset on indus-
trial performance. The coverage is at a detailed industry level for Organization for
Economic Cooperation and Development (OECD) countries and Taiwan, and the
variables studied include: value added in current and constant prices, value added
deflators, persons engaged, hours worked and labor productivity. The data cover
industries for the period 1979–2003.
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Finally, the Industry Growth Accounting Database provides information on labor
skills in three categories and on investment and capital services (three information
and communications technologies (ICT) asset categories and three non-ICT cate-
gories). The countries covered are Australia, Canada, the United States and four
European countries (France, Germany, the Netherlands and the United Kingdom).
The information is provided in order to allow for a decomposition of output growth
into the contributions of labor and capital and total factor productivity using the
growth-accounting methodology.

This chapter deals with particular aspects of the study of such large economic
datasets, with a view to using this data to analyze economic hypotheses of interest.

13.1.1 An example: economic convergence in the sense of
Evans and Karras (1996)

The available large datasets, containing income and other macroeconomic vari-
ables, lead us to choose economic convergence as a motivating example. This
allows us to discuss some of the possibilities that macro-panel data offer and some
issues that arise.1

There is an abundance of definitions of convergence in the literature. Given that
we consider panel data, we focus on those put forward in Evans and Karras (1996)
(abbreviated henceforth as EK). These essentially coincide with the definitions of
Bernard and Durlauf (1995, 1996), formulated within a time series context.2 Three
features of EK are of interest to us, within the context of this chapter. First, that the
paper studied convergence within the framework of a dataset in which the cross-
section dimension N and time series dimension T were both used (in contrast
to using only the T dimension and investigating the hypothesis on a country-
by-country basis or only along the cross-sectional dimension). Second, the data
could be taken to be integrated of order one (or, loosely speaking, needing first-
differencing for stationarity). And third, and most importantly, the hypothesis of
interest could be formulated in terms of testing for a unit root, in this case at least, in
an autoregressive model. This threefold combination of a so-called macro-panel of
data (involving gathering together time series information on a variable or a set of
variables with the cross-sectional or cross-country information on these variables)
with the problem of testing for a non-stationary root, where the hypothesis is
formulated as such, gives our chapter its name and decides its focus.

Thus, denote log per capita GDP by yi,t , referred to for simplicity as income, in
country i in year t , considered to be valued at constant and common international
prices. This variable is observed for a collection of i = 1, . . ., N countries over the
years t = 1, . . ., T . Several underlying theoretical formulations of growth models
lead to balanced growth paths for each of the economies to which each of the
economies converges in the long run. Under some additional assumptions the
balanced growth paths of the economies are parallel to each other. Such a set-up
is the starting point of EK’s statistical definition of economic convergence, which
we give below:

Definition (general): Denote by yi,t+j income in country i at time t + j and assume
that there exists a process at and finite parameters μ1, . . . ,μN for which it holds
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that lim
j→∞

E
(
yi,t+j − at

)
= μi for all i = 1, . . ., N. Then the economies are said to

converge. Convergence is called conditional if not all μ1, . . . ,μN are equal to 0 and
is called absolute if all μ1, . . . ,μN are equal to 0.

This definition of convergence potentially leads to several interesting implications
for non-stationary panel analysis since it presumes the existence of one joint trend
process at (which is typically unobservable and is related to technology), such
that the limits of the expected values of the deviations from this trend exist and
are constant. Given that income is often found to be a unit root non-stationary
process, this allows us to reduce or specialize the general formulation given in the
definition above to an I(1) context.

Thus, we consider henceforth the income series in the N countries to be jointly
described by a vector I(1) process.3 In this case the EK definition of convergence
implies that the deviations from the trend process at are asymptotically station-
ary. It implies furthermore that the cross-section members will not be independent
of each other, given their relation to the single common trend at . Clearly, if we
assume that the income series are I(1), but the deviations from at are stationary,
this implies that at is also an I(1) process. Thus the panel exhibits within this
framework cross-sectional dependence via the stochastic component of the com-
mon trend at . Cross-sectional dependence is discussed in detail in Appendix B.
We can already foresee, given that we formulate the discussion here within an I(1)
modeling framework, that the specific formulation of the convergence definition
of EK has strong cointegration implications which we detail next.

If we keep, for the moment, the cross-sectional dimension as fixed, the joint vec-

tor process yt =
(
y1,t , . . . , yN,t

)′
is – under appropriate assumptions – also jointly an

I(1) vector process and thus has a Granger-type representation, where for simplicity
we abstract from detailing the initial values and their effects, given by:⎡⎢⎢⎣

y1,t
...

yN,t

⎤⎥⎥⎦ =
⎡⎢⎢⎣

C1
...

CN

⎤⎥⎥⎦ ηt +

⎡⎢⎢⎣
D1
...

DN

⎤⎥⎥⎦Tt + c∗(L)εt , (13.1)

with ηt ∈ Rr the r ≥ 1 linearly independent common stochastic trends, Tt ∈ Rs the
deterministic components of the data-generation process (DGP) and c∗(L)εt the
stationary part, with L denoting the backward shift operator, that is, L

(
xt
)
t∈Z =(

xt−1
)
t∈Z and c∗(L) =∑∞

j=0 c∗j L j such that c∗(L)εt is a stationary process.
In particular, in an I(1) setting, the EK definition implies that the cointegrating

space for the N-dimensional vector of income series is of dimension N − 1. This
follows immediately from the fact that any pair-wise difference of income between
countries in which the unit root process at is annihilated is stationary. Note here
that this already implies that all non-constant deterministic components are also
annihilated by taking pair-wise differences. Consequently, the definition not only
specifies the dimension of the cointegrating space but also fully determines the
space itself (that is, a basis of the cointegrating space). Note, furthermore, that
by the same argument it is also true that the deviations of any individual income
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series from the cross-sectional average are stationary, that is, any of the N series

yi,t − yt with yt = 1
N
∑N

i=1 yi,t is also stationary, with mean 0 in the case of abso-
lute convergence. Thus, the definition of convergence in the I(1) context of EK is
given by:

Definition (I(1) framework): If each income series yi,t is described by an I(1) process,
but all series yi,t − yt are stationary, the set of N economies is said to converge.
Convergence is said to be absolute if the means of all the series yi,t − yt are equal
to 0 and relative otherwise. The economies are said to diverge if all series yi,t − yt
are non-stationary.4

Given our Granger representation in (13.1) above, we may ask about the restrictions
imposed by this representation, that is, under what conditions are all series yi,t −yt
stationary? Computing the cross-sectional average, we obtain:

yt =
1
N

N∑
i=1

ci,1η1,t+ · · ·+
1
N

N∑
i=1

ci,rηr,t+
1
N

N∑
i=1

di,1T1,t + · · ·+
1
N

N∑
i=1

di,sTs,t + c∗(L)εt ,

(13.2)
where we use the notation Ci =

[
ci,1, . . . , ci,r

]
and Di =

[
di,1, . . . , di,s

]
, and c∗(L)εt =

1
N
∑N

i=1 c∗i (L)εi,t is stationary.
Now, in order to have convergence in the EK sense, each of the deviations of the

income series from the cross-sectional average has to be stationary. This necessi-
tates that all stochastic trends have to be annihilated – as well as all non-constant
deterministic components. Consequently, for all i = 1, . . . , N, it has to hold that:

ci,k −
1
N

N∑
i=1

ci,k = 0, (13.3)

which implies that ci,k = ck for all i = 1, . . ., N and for all k = 1, . . ., r. This in turn

implies that only one common stochastic I(1) trend, given by ηt =
∑r

k=1 ckηk,t ,
is present and identifiable in the data.5 This is, of course, not a surprise given
that the EK definition implies the presence of N − 1 cointegrating relationships
(hence of only one stochastic trend), which is furthermore loaded with the same
weight into each series. Similar arguments apply to all non-constant elements in
the deterministic component: the coefficient to each non-constant deterministic
variable has to be equal for each series; thus, for example, if present in the data,
all linear trend slopes need to be identical for relative convergence to prevail. For
absolute convergence to hold, in addition, all intercepts need to coincide.

Thus, we see that the EK definition of convergence imposes a lot of structure and
hence testable restrictions on the panel of time series. Furthermore, as mentioned
previously, it also implies that there is long-run cross-sectional dependence in the
panel as defined in Appendix B.

It is worth observing at this stage that if one had enough observations to perform
a multivariate time series analysis, in relation to the considerations above, one
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would not need to resort to panel techniques. However, this is typically not the
case and we therefore turn more specifically to the panel (unit root) implications of
the convergence definition. In the case of convergence, each of the series yi,t − yt
is stationary and divergence has been defined by EK as (unit root) non-stationarity
of all the N series yi,t − yt . Thus, the null hypothesis of convergence can be tested
by a panel stationarity test, as presented, for example, in section 13.2.1.4. More
often, however, the null hypothesis of divergence is tested against the alternative of
convergence by using panel unit root tests that are specified against the alternative
that all series are stationary. Under appropriate assumptions on the DGP, this can
be done within panel Dickey–Fuller-type regressions of the form (with individual-
specific autoregressive orders pi):

�
(
yi,t − yt

)
= δi + ρi

(
yi,t−1 − yt−1

)
+

pi∑
k=1

ϕi,k�
(
yi,t−k − yt−k

)
+ ui,t , (13.4)

with ui,t denoting here the residual process of the autoregression. When the cross-
sectionally demeaned data are described by an autoregression of the corresponding
order, the processes ui,t are white-noise processes. Note here that EK, despite
testing the null hypothesis of divergence, proposed such testing in a Dickey–Fuller-
type regression including only intercepts and no other deterministic components,
which are in fact not restricted under the divergence hypothesis by EK. Thus,
in effect, what EK proposed was to test the null hypothesis of divergence with
respect to the stochastic trend whilst allowing only for individual specific inter-
cepts and linear trends. This restriction of the deterministic components needs
to be investigated statistically, not least to prevent misspecification of the panel
Dickey–Fuller-type regression above.

With the specified restriction, the null hypothesis of divergence is given by
H0 : ρi = 0 for all i = 1, . . ., N against the alternative hypothesis HA : ρi < 0
for all i = 1, . . ., N, where, as is usual in unit root testing, we really consider only
stationary alternatives, which imposes restrictions on ρi under the alternative that
depend upon the unknown coefficients ϕi,k in case the data are really described
by an autoregression and ui,t is white noise. In general there are no simple links
between the innovations εt from the Granger representation above and the univari-
ate regression errors ui,t , with the latter being a function of the former. Generally,
unless very strong restrictions are imposed, the errors ui,t will be cross-sectionally
dependent. Issues are, however, even more problematic when testing the null
hypothesis of divergence. Under divergence, when there are no restrictions on
the stochastic trends present in the panel, the deviations from the cross-sectional
averages will also in general be linked by stochastic trends, and these deviations can
thus be cross-unit cointegrated.6 Thus, the discussion here highlights strongly that
in general we will need to consider panel unit root (and to a certain extent panel
stationarity) tests that allow for cross-sectional dependencies, where in particular
cross-sectional dependencies may enter via the errors or may arise via common
factors. This is a theme to which we shall return in detail during the course of our
chapter.
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Clearly, if the panel is characterized by several independent stochastic trends,
simple cross-sectional demeaning will not be able to remove all these non-
stationary components. Allowing for such a situation – bearing in mind that a full
systems analysis will typically not be feasible due to data limitations – is one of the
major motivations for considering so-called factor models in the non-stationary
panel literature. Factor models, by assuming that the data are generated by the
sum of two components, common factors and idiosyncratic components, allow for
modeling by putting restrictions on the spectrum of the jointly stationary process
�yt .

7

To explain further, let us consider the simplest case in relation to our conver-
gence discussion. Ignoring deterministic components for simplicity, assume that
each income series can be written as yi,t = at+νi,t , where the processes at and νi,t are
all independent, and both components are either stationary or I(1) processes. Due
to the assumption that at and νi,t are independent, all series yi,t are also either sta-
tionary or integrated. The deviations from the cross-sectional averages are given by

ν̃i,t = νi,t − 1
N
∑N

j=1 νj,t =
(
1− 1

N

)
νi,t − 1

N
∑N

j=1,j �=i νj,t . Now, in the case of conver-

gence, the second term in this equation converges to 0 (under appropriate technical
conditions); whereas in the case of divergence, the second term does not converge
to 0. This shows that even if we start with cross-sectionally independent processes
νi,t , the processes ṽi,t describing the deviations from the cross-sectional averages
are asymptotically independent as N → ∞ only when convergence prevails, but
need not be even asymptotically independent in the case of divergence.

The above example shows that, in general, if one is confronted with unob-
served factors, cross-sectional averaging will not necessarily lead to asymptotically
cross-sectionally independent series by studying the deviations from the cross-
sectional averages. In our example above, due to the unobserved factor at being
loaded in all series with the same weight, considering the deviations from the
cross-sectional averages in fact allows elimination of this common factor. How-
ever, dependencies are introduced via the series ν̃i,t that persist when the series
are integrated. These remarks all hold similarly in cases where more than one
common factor is considered or the factors do not enter all series with the same
weights.

Therefore, when focusing only on the set of joint I(1) processes that can be
characterized by factor models, the need for appropriate estimation and inference
techniques arises. Such techniques should deliver, again formulated for the con-
vergence example considered here, the following: first, they need to construct
consistent estimates of the common factor at as well as tests for stationarity (respec-
tively unit root) behavior of this series. Second, the procedures need to establish
panel unit root tests for the de-factored series, yi,t − ât , where the circumflex
indicates that only estimates of the unobservable factor are available. With these
tools, convergence in the sense of EK can be tested by establishing first that at is an
integrated process, and all series ν̃i,t are stationary. Essentially these tools, allowing
for multiple factors and heterogeneous loadings, have been developed by Bai and
Ng (2004).
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Note, furthermore, that for many empirical applications it may be necessary to
also allow for structural change, which is most often modeled in the determin-
istic component of the processes. In this chapter we put particular emphasis on
structural change and present some evidence that allowing for structural change
may alter conclusions drastically. This fact is to a certain extent well-established in
the time series unit root literature, starting with Perron (1989), but has found less
attention in the non-stationary panel literature.

In section 13.2 we start with a general formulation of testing for a unit root
in a panel data setting. This is first specialized to the case of panels with cross-
sectionally independent members, but is then extended to a discussion of a more
general framework, considering both cross-sectional dependence and structural
change. Several sub-sections discuss the results of simulation and empirical studies
to evaluate the properties of the tests devised for unit roots. As mentioned above,
we illustrate the methods by an empirical study of purchasing power parity and
the environmental Kuznets curve. Section 13.3 offers an analogous discussion of
testing and estimation for cointegration, and as an additional empirical study, con-
tains an analysis of exchange rate pass-through in the euro-area. In this application
issues such as structural stability of the import pass-through equations (in the face
of policy changes in the euro-area) are studied with reference to the core problem
of testing for cointegration. Section 13.4 concludes.

Three appendices follow the main text. In Appendix A we collect some details on
the datasets employed in this chapter; Appendix B contains a brief discussion on
cross-sectional dependence; and Appendix C mentions a few aspects with respect
to limit theory in non-stationary panels.

It is helpful, perhaps, before starting on the main account, to discuss here briefly
how our study differs from some of the excellent studies which are already avail-
able; see, for example, Breitung and Pesaran (2008) or the special issue of the
Journal of Applied Econometrics (2007) devoted to the topic of heterogeneity and
cross-sectional dependence in panel data models, or more particularly the chapter
by Choi (2006b) in the first volume of this handbook. Some of the material which
appears in those sources finds some repetition here, since many of the themes
which we deal with cannot be presented without context or introduction. Never-
theless, we believe our chapter contributes to the literature in three distinct and
important ways. First, it presents a unified and general formulation of testing for
unit roots and cointegration in panel data. Second, in doing so, almost uniquely
this chapter pays considerable attention to the role of structural change in panel
unit root and cointegration analysis. Structural change has been found to be a sub-
stantial issue in the time series context and continues to be so in the panel setting.
Finally, by presenting a range of evidence on the performance of the methods,
based on both simulation and empirical evidence using a variety of data sources,
this chapter attempts to demonstrate unit root and cointegration analysis in panels
in action. The material collected in Appendices B and C will also be of some interest
by adding to the discussion both on modeling and accounting for dependence and
on some key concepts of limit theory for integrated panels.
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13.2 Unit root analysis in non-stationary panels

In order to highlight the potential advantages that panel data offer, some appropri-
ate assumptions have to be made. Without any restrictions non-stationary panel
data, or, to be more precise, integrated panel data, can be written as:

yi,t = Di,t + ui,t ,

where Di,t denotes the deterministic part of the process generating the data, ui,t
is the stochastic part, i = 1, . . ., N is the cross-sectional index and t = 1, . . ., T is
the time index. Now, without any restrictions on the joint stochastic behavior of
the ui,t series, no gains from pooling the data (that is, the cross-sectional and time
series information), for example by constructing a test statistic, can be expected.
Essentially, for the approach to be valuable, parsimonious representations of the
joint DGP of the processes ui,t are required. The most parsimonious is given by
assuming that the stochastic components ui,t are cross-sectionally independent,
which is – especially for macroeconometric questions – too strong an assumption.
Thus, in order to allow for cross-sectional dependence in a parsimonious way,
so-called (approximate) factor models have gained popularity. These model the
individual series ui,t as the sum of two components, namely some common factors

Ft and an idiosyncratic component ei,t , thus arriving at ui,t = π
′
i Ft + ei,t with πi

denoting the so-called factor loadings. In this set-up the panel unit root testing
problem can formulated for the following data-generating process:8

yi,t = Di,t + π
′
i Ft + ei,t (13.5)

(1− L)Ft = C(L)ηt (13.6)

(1− ϕiL)ei,t = Hi(L)εi,t , (13.7)

observed for t = 1, 2, . . . , T , i = 1, 2, . . . , N, with C(L) = ∑∞
j=0 CjL

j and Hi(L) =∑∞
j=0 Hi,jL

j. In the general case, Ft is an r×1 vector of “common factors,” generated
by some multivariate white noise process ηt , which accounts for the dependence
that exists across the units of the panel. The unit-specific idiosyncratic terms ei,t
are sometimes considered to be cross-sectionally independent, under the assump-
tion that all cross-sectional dependencies are captured by the common factors. In
case the idiosyncratic components are not assumed to be cross-sectionally indepen-
dent, the above model is known as an approximate factor model. For the statistical
analysis of the model as outlined above, appropriate assumptions have to be made
both for identification as well as to establish the asymptotic behavior of estimators
and test statistics. We discuss one set of possible assumptions when describing the
method of Bai and Ng (2004) in section 13.2.2.2.

The properties of the functions C(L) and Hi(L) (see the detailed assumptions
in section 13.2.2.2) determine the time series properties of the F and e series. For
example, if C(1) = 0, Ft will be I(0). If, on the other hand, C(1) is of full rank, Ft is an
I(1) process composed of r linearly independent stochastic trends. For intermediate
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ranks of C(1) the process Ft is a cointegrated I(1) process with the corresponding
number of cointegrating relationships and common trends.

One of the key issues to consider is that both the common part of the processes
(modeled via the factors) and the idiosyncratic parts are allowed to be integrated
or stationary. This implies that determining the time series properties of the yi,t
series requires not only consistent estimation but also inference on the properties
of the constituent parts. We may, for example, think of these processes as being
integrated “unconditionally” if either the factors or the idiosyncratic parts (or both)
are integrated of order one, while conditional on taking account of the factors (that
is, the dependence across the units of the panel), the yi,t − π̂

′
i F̂t series may be tested

for integration or stationarity. The circumflexes above the factor loadings and the
factors indicate that, for testing, estimates of these unobserved quantities have to
be obtained. Note also that when we talk about stationarity of series, we consider
stationarity of the stochastic part of the series, whilst also allowing for the presence
of deterministic components Di,t .

In general, cross-sectional dependence can arise through the unit-specific
idiosyncratic terms as well as through the common factors. Both of these chan-
nels in general may lead to cointegration between the cross-section members. To
make the discussion more precise, we define the concepts of short- and long-
run cross-sectional dependence, as well as of cross-unit cointegration, in detail
in Appendix B. There we also discuss in some detail the cointegration implications
of the (approximate) factor model. For example, the papers of Banerjee, Mar-
cellino and Osbat (2004, 2005) have highlighted that failing to account properly for
cross-unit cointegration may severely distort panel cointegration testing. Further
simulation evidence in this respect is contained in Wagner and Hlouskova (2007).

Formulating the discussion in terms of (13.5)–(13.7) above allows us to high-
light specific important aspects of the theory of testing for unit roots in panels,
summarized as follows.

Deterministics and breaks
For example, a typical formulation of the deterministic part of the process in unit
root and cointegration analysis is to consider:

Di,t = μi + δit , i = 1, 2, . . . , N, (13.8)

where the i index denotes unit specificity of the deterministic components. This
formulation allows for deterministic unit specific intercepts and trend growth rates,
but a generalization allows for breaks in intercept and trend. For example, allowing
for up to li breaks in the intercept and mi breaks in trend in unit i gives:

Di,t = μi + δit +
li∑

j=1

θi,jDUi,j,t +
mi∑

k=1

γi,kDT∗i,k,t , i = 1, 2, . . . , N, (13.9)

where the dummy variables are defined as DUi,j,t = 1 for t > Ti
a,j and 0 elsewhere,

and DT∗
i,k,t

= (t − Ti
b,k) for t > Ti

b,k and 0 elsewhere. In other words, Ti
a,j and Ti

b,k
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denote the date of the jth break in the intercept and the kth break in the trend slope
for the ith unit. As in the empirical example in section 13.3.1.5, the specification
can be simplified by setting li = mi = 1 ∀ i = 1, 2, . . . , N, but the theory is available
for the general case (see, for example, Bai and Carrion-i-Silvestre, 2007).

Cross-sectional dependence
The matrix Ft collects the common effects that are present across the cross-section
dimension. The non-stationarity (or integration) of Ft will mean that all the units
in the panel have common non-stationary (or integrated) components entering
into each individual unit yi,t with loadings of magnitude πi. Within the context of
the Evans and Karras (1996) example, the πi’s are all equal to one, and the single
common factor is concentrated out of the problem by cross-sectional demeaning

– that is, by constructing the variable yi,t − 1
N
∑N

i=1 yi,t , so that the focus then
lies on testing the null hypothesis of a unit root in the regression model given by
(13.4) above. As mentioned above, however, the simple cross-sectional averaging
in general introduces correlations in the error terms describing the deviations from
the cross-sectional averages.

As alluded to already in the convergence example, the presence of one or more
common stochastic factors with heterogeneous loadings necessitates new testing
and estimation strategies. One of these approaches, which is given in the work
of Bai and Ng (2004) and Pesaran (2006), considers a general alternative to fac-
tor extraction by allowing cross-sectional averages (as N → ∞) to approximate
the effects of the unobserved or latent common factors. In this way, the need to
estimate the factors and their loadings is avoided. The Pesaran approach, in the
context of testing for unit roots, is discussed in section 13.2.2.3.

A further very interesting approach has been introduced in Pesaran, Schuerman
and Weiner (2004) and Garratt et al. (2006) who introduce the concept of global
vector autoregressions (GVARs), which consists of specifying VAR models for each
cross-sectional member of the panel, including specifically constructed averages of
the other cross-section members’ variables as exogenous variables. This approach,
feasible whenever the data permit VAR modeling for each cross-section member,
is a parsimonious way of combining the information of all cross-section members.
The construction of the weighted cross-sectional averages of the other countries’
variables is a key issue in this modeling approach. One example considered by
the authors is to use trade shares as weights. Obtaining further understanding of
appropriate weighting schemes, which in general will depend upon the applica-
tion considered, as well as the performance of these methods, is an important task.
Under certain assumptions the joint system can be solved for based on the individ-
ual specific VAR models with exogenous variables. Given that a recent book-length
discussion of this approach by Garratt et al. (2006) is available, we abstain from
including this approach here.

Cross-sectional dependence can also emerge through correlations among the ei,t
via the εi,t variables across the units i, as in models of spatial correlation considered
in a paper by Baltagi, Bresson and Pirotte (2007) or in purchasing power parity
examples such as O’Connell (1998) discussed below. Note that we discuss in detail
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in Appendix B the implications of correlation in the variables ei,t , which also can
lead to long-run cross-sectional dependencies.

In the simplest case of models (13.5)–(13.7), we could think of switching off
cross-sectional dependence by setting πi = 0 for all the units, specifying that the
εi,t are independent over i, and allowing specifications for the deterministic process
to be given by (13.8) (that is, without breaks).9 When ϕi = 1, and hence ρi = 0,
the series yi,t contains a unit root.

13.2.1 Tests without cross-sectional dependence or structural breaks

Several tests, depending on the specification of the null and alternative hypotheses,
have been developed to test for unit roots in panels.

13.2.1.1 Levin, Lin and Chu (2002)

As discussed in the many excellent descriptions in the literature (see, for example,
Hlouskova and Wagner, 2006), the test is based on running augmented Dickey–
Fuller regressions:

�yi,t = μi + δit + ρiyi,t−1 +
pi∑

k=1

ϕi,k�yi,t−k + νi,t , i = 1, 2, . . . , N; t = pi + 2, . . . , T .

(13.10)
Here we denote by νi,t the error process corresponding to the autoregressive speci-
fication to which the ADF set-up corresponds. Only if the data are really generated
by autoregressions of orders pi+1 will the νi,t be white-noise processes. In practice
this implies that lag length selection will be an issue (see below). Three sub-cases
concerning the specification of the deterministic component are considered by
Levin, Lin and Chu (2002) (henceforth referred to as LLC):

1. no deterministic terms;
2. intercept only;
3. intercept and linear trend.

We index the specification of these three deterministic components with m =
1, 2, 3. The null hypothesis of the LLC test is H0 : ρi = 0 ∀i = 1, 2, . . . , N against the
homogeneous alternative hypothesis HA : ρi = ρ < 0 ∀i = 1, 2, . . . , N.10 This formu-
lation of the null and alternative hypotheses allows for the construction of pooled
tests (once appropriate corrections are made for the cross-sectional heterogeneity
arising from other features of the DGP). Pooling may be made in both the within
and between dimensions and gives rise to the tests (LLC and IPS, respectively)
described below.

As mentioned above, selection of the lag length in (13.10) is an issue. In case the
data are not described by finite-order autoregressive processes, the lag lengths have
to increase as a function of the T -dimension of the panel (as was first studied by
Said and Dickey, 1984, in the time series context) and LLC propose specifically that
pi(T) grows at rate Tκ , 0 < κ < 0.25. Careful lag length selection is necessary to
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ensure consistency of estimation by choosing the lag lengths in order to eliminate
serial correlation in the error terms; that is, to have, at least asymptotically, white-
noise processes νi,t . In practice this typically means that information criteria are
used to choose the lag lengths to ensure that the estimated residuals ν̂i,t show no
evidence of serial correlation.11

In order to construct the LLC test, for chosen lag lengths pi, two auxiliary
regressions are initially estimated – the first consists of regressing �yi,t on its lags
�yi,t−k, k = 1, 2, . . . , pi, and the deterministic terms; denote the residuals from this
regression by ẽi,t . The second consists of regressing yi,t−1 on the same set of regres-

sors, to yield residuals denoted by f̃i,t−1. Finally, ẽi,t is regressed on f̃i,t−1 and the
regression standard error from this equation, denoted σ̂ν,i, is used to construct the

standardized residuals êi,t = ẽi,t/σ̂v,i and f̂i,t−1 = f̃i,t−1/σ̂v,i. This standardization is
needed to remove the effects of cross-sectional heterogeneity of the processes vi,t
in (13.10) on the limiting distributions.

The next step is to estimate the long-run variance of �yi,t . Recall that under the
null hypothesis,

�yi,t = μi + δit +
pi∑

k=1

ϕi,k�yi,t−k + νi,t , i = 1, 2, . . . , N; t = pi + 2, . . . , T ,

so that a direct estimate of the long-run variance of �yi,t is given by:

σ̂
2
v,i(1−

pi∑
k=1

ϕ̂
2
i,k)

−2.

In practice the following estimate is preferred in order to improve the size and
the power of the test in finite samples. Denoting by ûi,t = �yi,t − δ̂midmt , where
dmt denotes the specification of the deterministic terms, the long-run variance

is estimated by σ̂
2
LR = T−1∑T

t=1 û2
i,t + 2

T
∑L

j=1 w(j, L)
∑T

t=j+1 ûi,t ûi,t−j, with the
lag truncation parameter chosen by criteria given in Andrews (1991) or Newey
and West (1994). The weights w(j, L) are, in most applications, given by w(j, L) =
1− j

L+1 , referred to as the Bartlett kernel. For future reference, define ŝ2
i = σ̂

2
LR/σ̂

2
v,i

and ŜN,T = N−1∑N
i=1 ŝi.

The essential component of the LLC test statistic (under all three deterministic
specifications) is given by:

ρ̂ =
∑N

i=1
∑T

t=pi+2 êi,t f̂i,t−1∑N
i=1

∑T
t=pi+2 f̂ 2

i,t−1

,

computed from the pooled regression of êi,t on f̂i,t−1. The t-form of this statistic,
to test the null hypothesis H0 : ρ = 0, is given by standardizing ρ̂ by the standard
deviation of ρ̂, denoted STD(ρ̂), from the pooled regression.

For the case with no deterministic terms, tρ=0 ⇒ N(0, 1) as T → ∞ followed
by N → σ .12 However, when either a constant or trend (or both) is present in the
model, the t-statistic diverges (due to the presence of the so-called Nickell bias; see
Nickell, 1978) to minus infinity (even under the null) and consequently needs to
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be re-centered and re-normalized for convergence to a well-behaved distribution.
Therefore,

tρ∗ =
tρ −NT̃ŜN,T STD(ρ̂)μmT

σmT
⇒ N(0, 1).

Here T̃ denotes the effective average sample size, to take into account individual
specific numbers of lagged terms across the individual units, while μmT and σmT
denote the mean and variance corrections for the three different specifications of
the deterministic terms. The latter are tabulated by LLC for various dimensions of
N and T .

These are interesting results, deriving from the application of sequential (with
first T → ∞ followed by N → ∞) central limit theorems, applicable under the
assumption of independent cross-sectional units whenever the individual building
blocks, which are identically distributed once T has passed to infinity, have finite
second moments. As we show below, violations of this assumption can lead to
severe difficulties, which may be soluble for a number of cases using a range of
additional techniques.

Various modifications of the LLC procedure have been proposed, inter alia, by
Harris and Tzavalis (1999), who derive asymptotic results for fixed T , allowing only
the N dimension to tend to infinity, with closed form expressions for the correction
factors for serially uncorrelated errors. As for LLC above, appropriately scaled and
re-centered t-statistics tend to N(0,1) densities as N tends to infinity, leading to tests
which have better properties when the T dimension is relatively small and little or
no serial correlation is permitted in the νi,t processes. Breitung (2000) develops, by
means of appropriate variable transformations, a modified LLC test which, while
coinciding with the LLC test when no deterministic terms are present, does not
require bias correction factors for the cases where a constant or trend is present.

Several features of the testing framework above lend themselves to exten-
sions and we shall try to deal with each of these in turn in the sections which
follow:

1. relaxing homogeneity;
2. relaxing cross-sectional independence;
3. relaxing structural stability of the deterministic component.

13.2.1.2 Relaxing homogeneity – Im, Pesaran and Shin (2003)

Im, Pesaran and Shin (2003) (henceforth IPS), propose a class of group-mean panel
unit root tests to allow for a heterogeneous alternative specified as:

H1
A : ρi < 0 for i = 1, 2, . . . , N1 and ρi = 0 for

i = N1 + 1, . . . , N, where lim
N→∞

N1
N
= k > 0.

IPS present two tests for the case of serially uncorrelated and correlated errors, and
for specifications of the deterministic terms allowing for a constant and a constant
and linear trend. The two tests are (i) a t-test based on ADF regressions, denoted
IPSt , and (ii) a Lagrange multiplier test, denoted IPSLM . We concentrate here on (i),
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where individual specific serial correlation structures are allowed in (13.10), with
the assumption that the yi,t follow AR(pi + 1) processes.

We start by establishing some notation, assuming for simplicity that all required
lagged observations are available. From (13.10), let:

ϕ̃i = (ϕi,1, . . . ,ϕi,pi
)
′

yi,−1 = (yi,0, yi,1, . . . , yi,T−1)
′

�yi,−s = (�yi,1−s,�yi,2−s, . . . ,�yi,T−s)
′, s = 0, 1, . . . , pi

�yi = �yi,−0

d2T = (1, 1, . . . , 1)′

tVEC = (1, 2, . . . , T)
′

d3T = (d′2T , t ′VEC)

Qi,m = (dmT ,�yi,−1, . . . ,�yi,−pi
), m = 2, 3

MQi,m
= IT −Qi,m(Q ′i,mQi,m)

−1Q ′i,m, m = 2, 3

Xi,m = (yi,−1, Qi,m), m = 2, 3

MXi,m = IT −Xi,m(X′i,mXi,m)
−1X′i,m, m = 2, 3.

Then:

tiT ,m(pi, ϕ̃i) =
√

T − pi −m(y′i,−1MQi,m�yi)

(y′i,−1MQi,myi,−1)
1/2(�y′iMXi,m�yi)

1/2
, m = 2, 3.

As before, m = 2 refers to the specification with a constant but without a linear
trend, while m = 3 includes both a constant and a linear trend.

IPSt is based on the cross-sectional average of the corrected t-statistics, that is,

IPSt ,m =

√
N{tm − 1

N

N∑
i=1

E(tiT ,m(pi, 0)|ρi = 0)}
√

1
N

N∑
i=1

var(tiT ,m(pi, 0)|ρi = 0)}
⇒ N(0, 1), m = 2, 3,

where:

tm =
1
N

N∑
i=1

tiT ,m(pi, ϕ̃i),

and E(tiT ,m(pi, 0)|ρi = 0) and var(tiT ,m(pi, 0)|ρi = 0) are the mean and variance
of the Dickey–Fuller statistic respectively for finite T and depend on the nuisance
parameters ϕ̃i. As T → ∞, this dependence disappears and E(tiT ,m(pi, 0)|ρi = 0)
and var(tiT ,m(pi, 0)|ρi = 0) converge to the mean and variance of the Dickey–Fuller
density corresponding to the model estimated (with intercept or with intercept
and linear trend).

IPS tabulate these so-called correction terms for a set of values for T and pi = p
for both specifications of the deterministic terms. Use of these correction terms (for
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non-asymptotic values of T) is therefore restricted to balanced panels and equal lag
lengths in all units of the panel. For large values of T , the use of simulated critical
values (specific to the nuisance parameters) can be avoided and the asymptotic
critical values can be used instead.

Similar principles apply to the use of the IPSLM test under the additional
restriction that lim N/T = c > 0, as first T and then N →∞.

13.2.1.3 Fisher tests – Maddala and Wu (1999) and Choi (2001)

Continuing to focus on cross-sectional independence, Maddala and Wu (1999) and
Choi (2001) developed tests based on combining p-values, an idea due to Fisher
(1932). Fisher started his considerations by observing that the p-values of a con-
tinuous test statistic are uniformly distributed over the unit interval. Combining
this with the fact that minus two times the log of a uniform distribution over the

unit interval is distributed as a χ
2
(2) random variable, panel unit root tests can easily

be constructed for cross-sectionally independent panels. If the N units are indepen-

dent, the sum of the p-values, −2
∑N

i=1 log pi ∼ χ
2
(2N), under the null hypothesis of

a unit root in each unit of the panel. As long as p-values are computable for a test
for a unit root on the individual units, either asymptotic, or via means of simula-
tions or response surfaces (see, for example, MacKinnon, 1994, and MacKinnon,
Haug and Michaelis, 1995, for augmented Dickey–Fuller tests), the Fisher test can
be used to test for unit roots in panels. The key assumption remains that of cross-
sectional independence, although its relaxation is possible in some cases (to allow
for certain special forms of short-run dependence as described in section 13.2.2.1)
by means of bootstrap techniques.

13.2.1.4 Tests with stationarity as the null hypothesis

Tests have also been developed which take as the null that of (heterogeneous)
stationary roots against the alternative of a unit root in all cross-section members.
Among this class of tests are those due to Hadri (2000) and Hadri and Larsson
(2005), which apply the idea developed in Kwiatkowski et al. (1992) to the panel
framework.

Looking at the specification where a linear trend is present under the null hypoth-
esis, the LM-tests are based on looking at the partial sums of the residuals of the
regressions (estimated for each unit):

yi,t = μi + γit + ui,t , (13.11)

where, under the null hypothesis, and only for the sake of illustration, ui,t may be
taken to be a serially uncorrelated stationary process.

Denoting by ûi,t the estimated residuals in (13.11), and their partial sums by

Si,t =
∑t

j=1 ûi,j, the Hadri statistic, denoted by HLM , is given by:

HLM = 1

NT2

N∑
i=1

T∑
t=1

S2
i,t

σ̂2
u,i

,
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where:

σ̂
2
u,i =

1
T

T∑
t=1

û2
i,t

.

Under the null, using sequential convergence (that is, as before, T →∞ followed
by N →∞), the re-centered and re-scaled Hadri statistic is given by:

ZLM =
√

N(HLM − ξ)

ζ
⇒ N(0, 1).

The correction terms depend on the specification of the deterministic process and
are given by Hadri (2000). The extension to the case of serially correlated (but
stationary under the null) errors is easily dealt with by using an estimator of the
long-run variance of ui,t .

Hadri and Larsson (2005) allow for fixed T by deriving the finite sample mean

and variance of κi,T = 1
T2

∑T
t=1

S2
i,t

σ̂2
u,i

, so that, by a simple application of central limit

theory, it follows that:

HT =
1√
N

N∑
i=1

(
κi,T − Eκi,T

var(κi,T )

)
⇒ N(0, 1) as N →∞.

As before, the correction terms depend on the specification of the deterministic
component and are given by Hadri and Larsson (2005). Note also that the closed
form expressions for the correction factors derived in Hadri and Larsson are only
correct for the case of serially uncorrelated errors, which limits the usefulness of
the test to some extent.

13.2.1.5 A summary of simulation evidence (Hlouskova and Wagner, 2006)

We describe briefly here the results of a large-scale simulation study undertaken by
Hlouskova and Wagner (2006) on many of the tests described above. For further
details, we refer the reader to their paper, which provides a meticulous account
of the behavior of the tests for unit roots in panels that are cross-sectionally inde-
pendent as a function of numerous features of the DGP and estimation methods,
including the dimensions of T and N, lag selection algorithms in the augmentation
of the Dickey–Fuller tests, the presence of moving average terms in the error pro-
cesses, and certain forms of cross-sectional correlation, given by either constant
correlation or geometrically declining correlations by assuming the correlation
matrix to be of Toeplitz form.

Hlouskova and Wagner conclude that the best performance in terms of power,
where the evidence is based on simulations, for the case where the model has
an intercept, is displayed by the LLC test or its modification proposed by Bre-
itung (2000). For short panels, the Harris and Tzavalis (1999) modification of
LLC offers some gains in panels where the errors are not serially correlated or the
amount of serial correlation is small. They also observe that, when T is small
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relative to N, the size and power properties of panel tests are affected adversely.
The presence of moving average terms distorts the size of tests especially as the
moving average coefficient θ in the process νi,t = εi,t + θεi,t−1 tends to −1. This
is a feature of tests for unit roots that is also evident in the time series case (see
Molinas, 1986, or Schwert, 1989). Appropriate selection of the lag length in the
ADF regressions is an issue here, since one way to account for the moving aver-
age dynamics is by sufficiently expanding the order of the autoregressions. As
noted in a previous section, the impact of lag length selection, by various crite-
ria such as AIC or BIC, is found to be ambiguous – beneficial in some cases and
harmful in others. Evidence overall tends to suggest that, for θ close to zero,
smaller lag lengths than those selected by the BIC tend to lead to better per-
formance of the unit root tests, while the converse is true for values of θ close
to −1.

13.2.2 Allowing for cross-sectional dependence

An important assumption underlying the so-called first-generation tests for unit
roots in panel data, discussed in the previous section, is that of cross-sectional
independence of the units of the panel. It is important, therefore, to assess the con-
sequences of making this assumption when applying these techniques to datasets
where it is not sustainable. As in our discussion of EK, in our view this appears to
be relevant for many of the datasets for which one would have occasion to use unit
root or cointegration tests in panels.

The motivation for the research presented next is to begin by analyzing, within
the framework of some simulation studies, the consequences of departures from
cross-sectional independence for the size and power properties of the first genera-
tion of commonly-used tests for unit roots in panels, and then to consider in detail
the second generation of unit root tests that have emerged to allow for dependence.
It is possible to generalize this framework to allow for structural breaks and we shall
return to this issue in a later section.

Some particular examples of cross-sectional dependence are presented here,
which we classify as short-run and long-run dependence according to the discus-
sion and definition given in Appendix B. We distinguish between these two forms
of dependence according to whether cross-unit cointegrating relationships, also
defined in Appendix B, are present in the panel or not. While there are many
ways of formulating dependence in panels, what is needed is the development
of a general framework to incorporate the different possibilities and analyze their
consequences. Appendix B contains a few simple observations.

13.2.2.1 Exemplifying the effects of cross-sectional dependence (O’Connell, 1998)

The study of O’Connell (1998) is a powerful demonstration of the oversizing of
the LLC tests in the presence of short-run dependence. His simulation results have
since been replicated and generalized, for example, by Hlouskova and Wagner
(2006) and Baltagi, Bresson and Pirotte (2007). In the latter paper, cross-sectional
dependence is derived from so-called spatial correlations. Describing some of this
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research is the main motivation for this section, with a view to describing some of
the general principles involved.

Our discussion is in several parts. We start by discussing O’Connell’s contribution
to the debate on testing for purchasing power parity in panels. By setting out the
data-generation processes in some detail, we describe how O’Connell introduces
short-run dependence into the panel. Second, we present some of O’Connell’s
results to describe the size distortions arising from this dependence. We discuss
some solutions proposed to deal with that dependence. Based on this discussion, we
then proceed in the following sub-sections to a discussion of the second generation
of unit root tests aimed at modeling cross-sectional dependence, focusing on the
work of Bai and Ng (2004) and other authors who have made use of factor models.

Consider, for illustration, the DGP given by:

�yi,t = εi,t , i = 1, 2, . . . , N; t = 2, 3, . . . , T ,

where, for the purposes of the illustration, we may take εi,t ∼ i.i.d. N(0, 1) without
much loss of generality and where we also abstract from deterministic components.
yi,t is therefore a simple random walk process. The model to be estimated is given
by a simplified version of equation (13.10):

�yi,t = μi + ρiyi,t−1 + εi,t , i = 1, 2, . . . , N; t = 2, 3, . . . , T .

The model is used to test:

H0 : μi = ρi = 0,

against the alternative:

HA : μi �= 0; ρi < 0,

although the results described below (taken from O’Connell, 1998) are based on
looking only at the t-statistic for the estimate of the autoregressive parameter. It
should be noted that, as usual within the LLC framework, ρi is restricted to be
the same across all N units under both the null and alternative hypotheses. The
testing framework can be augmented by polynomials of time, in particular by a
linear trend t .

Now, under the normality and independent and identically distributed (i.i.d.)
assumptions, cross-sectional dependence between the series is fully characterized

by the dynamic covariance structure of the joint process εt =
(
ε1,t , . . . , εN,t

)′
. To

make the discussion as simple as possible, consider a situation, like O’Connell
(1998) does implicitly, where the joint random vector is also normally distributed
and where the only correlations occur contemporaneously, in which case the
dependence structure is fully characterized by � = E(εtε

′
t ). The joint vector of

all disturbances ε = (
ε1, . . . , εT

)′ has its block-diagonal covariance, in our set-up
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equal to the correlation, matrix given by:

� =

⎛⎜⎜⎜⎜⎜⎝
� 0 . . . 0

0 �
. . .

...
...

. . .
. . . 0

0 . . . 0 �

⎞⎟⎟⎟⎟⎟⎠ .

In order to analyze the effect of cross-sectional dependence, O’Connell (1998) stud-
ied the effects of relaxing the assumption of diagonality of the matrix � on the
performance of the LLC tests, using the original LLC correction factors and critical
values derived under the assumption of cross-sectional independence. In particu-
lar, O’Connell considers the following simple shape of the correlation matrix, also
used by Hlouskova and Wagner (2006) as one of their designs which they label, for
obvious reasons, constant correlation:

� =

⎛⎜⎜⎜⎜⎜⎝
1 ω . . . ω

ω 1
. . .

...
...

. . .
. . . ω

ω . . . ω 1

⎞⎟⎟⎟⎟⎟⎠ .

This formulation imples that the “distance” between the cross-sectional distur-
bances is not considered relevant economically. Various justifications for such a
covariance structure can be offered from examples dealing with spatial structures
or for purchasing power parity based applications.13 However, here it serves only
for the purposes of illustration within the context of a Monte Carlo study. The
simple O’Connell design also ensures that there is no long-run dependence for
−1 < ω < 1.

The simulations were conducted with the following choices of sample sizes and
parameters in the DGP:14

N ∈ {10, 50, 90}
T ∈ {20, 60, 100}
ω ∈ {0, 0.3, 0.5, 0.7, 0.9},

with the disturbances distributed as described above. It is worth pointing out that
the {N, T} combinations considered do have relevance for assessing the results of
the simulations, since a number of the asymptotic results on the properties of unit
root tests in panels impose joint conditions on N and T tending to infinity in order
to prove the theorems. This is also a crucial issue that arises later when discussing
factor estimation.

For given values of N, T and ω, the t-statistic ρ̂/
+
σ ρ̂ (denoted tOLS) was computed

and compared (for each of the 5,000 replications/panels) with critical values (at
1%, 5% and 10%) tabulated by LLC, designed for the case without correlation,
that is, for ω = 0.
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The results, as reported in O’Connell (1998, p. 6, Table 1) for non-zero values of
ω, were quite dramatic. He showed that, for example for T= 20, N= 10 and ω = 0.3,
the true size of the test at 5% (respectively 10%) nominal size, if LLC critical values
are used, was 9% (respectively 15%). These distortions increased as ω increased –
for example, when ω = 0.9, for the same configuration of T and N, the rejections
of the true null hypothesis at 5% (respectively 10%) increased to 37% (respectively
43%). The size distortions were not affected significantly by increasing T for fixed
N. Thus the configurations T = 60, N = 10, ω = 0.3 and T = 100, N = 10,
ω = 0.3 give rejections of 9% (respectively 15%) at 5% (respectively 10%) nominal
size, which are unchanged from their T = 20 values. The distortions, however, do
increase with N for fixed T and ω. For T = 20, N = 50, ω = 0.3, the rejection at 5%
(respectively 10%) increases to 21% (respectively 28%) and to 31% (respectively
37%) when N is raised to 90, and these numbers are even higher when ω is also
increased.

Adjusting the critical values to control for the size of the test leads to a severe
reduction in power. For example, the power of the t-test to reject H0 : ρi = 0
against the alternative H0 : ρi = −0.04 (reported in O’Connell, 1998, p. 6), where
this non-zero value of ρi gives a half-life of deviation from purchasing power parity
of between four and five years and is coherent with empirical estimates, is 8% when
T = 20, N = 10, 14% when T =20, N= 50, and 13% when T = 20, N = 90. ω here is
0.3 and the confidence level of the tests is 5%. For T = 60 and N = 50, power drops
from 92% (when ω = 0) to 30% (when ω = 0.5) and to 9% (when ω = 0.9). Thus the
necessity to counteract distortions neutralizes any beneficial effects of increasing
N, the longitudinal dimension of the panel, and the loss of power involved – as
a result of the necessary adjustment – is clearly a serious one. Indeed, the trade-
off between the N and T dimensions, which is evident from both the asymptotic
theory and the empirical implementation, is a topic which is relatively ill-studied
in the literature.

In order to account for the non-zero off-diagonal terms in �, O’Connell proposed
the following generalized least squares (GLS) estimator:

ρ̂GLS =
tr(X′�Y�

−1
)

tr(X′X�−1)
,

where �Y is a T × N matrix of the first-differenced ys and X is a matrix of lagged
ys. When ω = 0, we recover the usual ordinary least squares (OLS) estimator. Thus:

�YT×N =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�y1,1 �y2,1 . . .. �yN,1
�y1,2 �y2,2 . . . �yN,2

. . . . . .

. . . . . .

. . . . .
�y1,T �y2,T . �yN,T

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Computation of the feasible GLS estimator, denoted by ρ̂FGLS, requires a consis-
tent estimator of �. Allowing only for contemporaneous correlation, a consistent
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estimator of � is given by the (estimated) covariance matrix of the first differences
of the vector yt , that is,

�̂ = T−1
T∑

t=1

�yt�y′t

�yt = (�y1t ,�y2,t , . . . ,�yN,t )
′

and, therefore,

ρ̂FGLS =
tr(X′�Y�̂

−1
)

tr(X′X�̂−1)
.

Clearly, with this estimator not all correlations between the cross-section members
need to be identical, as assumed by O’Connell to illustrate the issues in the sim-
ulation part of his paper. The results reported in O’Connell (1998, p. 12, Table 3)
are encouraging because the rejection frequencies under both the null hypothesis
(size) and the alternative hypothesis (power) are now invariant to the value of ω

in the DGP, and depend on T and N alone. Provided T is much larger than N,
the power of the FGLS test comes close to the OLS panel unit root test when the
disturbances are independently and identically distributed. Efficiency losses ensue
as N comes closer and closer to T , which Hlouskova and Wagner (2006) refer to as
size divergence when N is “too large” compared to T .

The discussion above serves to introduce and illustrate some of the main issues
involved, but is nevertheless too specialized, applying as it does to only one highly
restrictive specification of cross-sectional dependence. More general methods for
dealing with short-run cross-sectional dependence will be discussed below (includ-
ing dealing with nonparametric methods for estimating the variance covariance
matrix of the disturbances when there is dependence across the units).

13.2.2.2 Cross-sectional dependence via approximate factor models – Bai
and Ng (2004)

An important class of tests developed to allow for long-run cross-sectional depen-
dence is due to Bai and Ng (2004). Returning to the formulation given by
(13.5)–(13.7), the basic idea is to think of the series comprising the panel as consist-
ing of the sum of a set of deterministic terms, common factors and idiosyncratic
components. The detailed assumptions made by Bai and Ng are given by:

(i) For non-random πi, ||πi|| ≤ A; for random πi,

E||πi||4 ≤ A, 1
N
∑N

i=1 πiπ
′
i →��, an r × r positive definite matrix, where→ denotes

convergence in probability.

(ii) ηt ∼ i.i.d.(0,�η), E||ηt ||4 ≤ A, var(�Ft ) =
∑∞

j=0 Cj�ηC′j > 0,
∑∞

j=0 j||Cj|| < A,
C(1) has rank r1, 0 ≤ r1 ≤ r.
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(iii) For each i,

εi,t ∼ i.i.d.(0, σ2
εi
), E|εi,t |8 ≤ A,

∞∑
j=0

j||Hi,j|| < A, ω2
i = Hi(1)

2
σ

2
εi

> 0;

εi,t are independent over i.15

(iv) The errors εj,t , ηs, and the loadings πi form three mutually independent groups
for all (j, t , s, i). 16

(v) E||F0|| ≤ A, and for all i =1,2,…,N, E|ei,0| ≤ A.

In the assumptions A is taken to be a positive number not depending on either T

or N. The notation ||B|| = trace(B′B)
1/2.

Both the factors and the idiosyncratic components can be integrated or station-
ary, so that short- and long-run dependence can be modeled both via the common
factors and also the idiosyncratic components. However, in our discussion we
assume that in (13.7) the idiosyncratic terms are taken to be independent across i,
which is slightly stronger than the assumptions necessary for applicability of the
Bai and Ng (2004) methods.

The heart of the unit root analysis consists of making the decomposition
(between common factors and idiosyncratic terms) and then testing each of these
components for a unit root. Thus, returning to the set-up described by (13.5), let:

yi,t = μi + π
′
i Ft + ei,t ,

where Ft is an r × 1 vector of “common factors.” The model can be rewritten in
first differences:

�yi,t = π
′
i ft + zi,t , i = 1, 2, . . . , N; t = 2, 3, . . . , T ,

where:
ft = �Ft , t = 2, 3, . . . , T

zi,t = �ei,t , i = 1, 2, . . . , N; t = 2, 3, . . . , T .

Next, define:
Y = (y1, y2, . . . , yN ),

as the T ×N matrix of all observations, where:

yi = (yi,1, yi,2, . . . , yi,T )
′,

and:
ỹ = �Y = (�y1, . . . ,�yN ),

is the corresponding (T−1)×N matrix of first differences. The principal component
estimator f̂ of f = (f2, f3, . . . , fT )

′ is
√

T − 1 times the r eigenvectors corresponding
to the r largest eigenvalues of the (T − 1) × (T − 1) matrix ỹỹ′ and the estimated
factor loading matrix given by π̂ = (π̂1, . . . , π̂N )

′ is obtained from the relationship
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π̂ = ỹ′ f̂ /(T − 1) under the normalization f̂ ′ f̂ /(T − 1) = Ir , where Ir is the r × r
identity matrix.

The estimated factors can now be recovered by summation:

F̂t =
t∑

s=2

�f̂s, t = 2, . . . , T .

If r= 1, this single factor can be tested for a unit root using an augmented Dickey–
Fuller test with an intercept.

If (13.5) contains a linear trend in addition to an intercept, the method of prin-
cipal components is applied to the demeaned and differenced data and the ADF test
for the factor contains an intercept and a trend. The critical values for both these
sets of tests are as provided by Dickey and Fuller (1979).

When the number of common factors r is greater than 1, Bai and Ng (2004)
also develop tests for the number of linearly independent I(1) common trends
(equivalently the cointegrating rank) contained in the common factors. After an
appropriate basis change the number of stationary factors is given by r0, and there
are r1 linearly independent integrated factors or common trends, such that, as
always in the I(1) framework, r0 + r1 = r.

The two test statistics (MQc(m) and MQf (m)) follow, up to a transformation to
ensure real valued test statistics, Stock and Watson (1988). The test statistics for test-
ing the null hypothesis of m common trends in the common factors are computed
recursively with the first test statistic based on r = m common factors. The statistic
MQc(m) is based on estimating a VAR(1) process for Ŷt , where Ŷt = β̂ORTH F̃t , and
where, in the first step, F̃t is the m-dimensional vector of factors computed from
the demeaned, respectively demeaned and detrended observations, while β̂ORTH is
the matrix of m eigenvectors associated with the m eigenvalues of the matrix given

by 1
T2

∑T
t=2 F̃t F̃

′
t . The statistic MQf (m) is constructed similarly, except that a pth

order VAR is fitted first to get ŷt = �̂(L)Ŷt and the test is based on the filtered ŷt
series.

The testing procedure consists of constructing a sequence of these MQ statis-
tics, starting with testing the null hypothesis m = r (that is, r stochastic trends)
against the alternative hypothesis m = r − 1, and testing down until the first non-
rejection of the null hypothesis occurs; for example, in the second step, the test
statistic is based on only r−1 eigenvectors β̂ORTH corresponding to the r −1 largest
eigenvalues (for a detailed description see Bai and Ng, 2004, pp. 1133–4).

Two versions of these statistics are considered by the authors to allow for demean-
ing and/or detrending of the observations, depending upon the model considered.
Critical values are provided by them for up to six stochastic trends.

Similarly, the estimated idiosyncratic components can also be tested for unit

roots. These are obtained from êi,t =
∑t

s=2 �ẑi,s, i = 1, 2, . . . , N; t = 2, . . . , T , with

�ẑi,s = �ŷi,s − π̂
′
i f̂s. The additional complication here is that the estimates that

are available are not, in general, cross-sectionally independent in finite samples
due to their dependence upon the estimated factors and loadings. We believe that
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this issue, which complicates the use of first-generation panel unit root tests on
estimated de-factored data, is not considered carefully enough in the literature.

Bai and Ng derive the asymptotic behavior of tests paralleling those of Choi
(2001) and Maddala and Wu (1999), henceforth referred to as BNN and BNχ2 , under
the assumption of cross-sectional independence of the idiosyncratic components.

The Choi (2001)-type test is constructed as follows. Denote the p-value associated
with the ADF test on the residual series from the ith unit, êi,t , i = 1, 2, . . . , N, by
pê(i). Then the following result:

BNN =
−2

N∑
i=1

log pê(i)− 2N

√
4N

⇒ N(0, 1),

can be established by careful analysis, paralleling the type of panel unit root test
proposed by Choi (2001) for cross-sectionally independent panels. The test statistic

BNχ2 is, of course, given by −2
∑N

i=1 log pê(i) ∼ χ
2
(2N).

Note that simple sequential limit theory with first T →∞ followed by N →∞,
as used in the panel unit root tests for cross-sectionally independent data, does
not apply here. This stems from the fact that consistent estimation of factors and
loadings is based on joint limit theory with minimum rate restrictions for both
dimensions of the panel, which implies that the observed êi,t are, in general, not
cross-sectionally independent for finite samples even under the assumption that
the ei,t are independent. The panel unit root test result is established both when the
factors are computed after differencing (intercept only case) and after differencing
and demeaning (intercept and trend), and requires that the idiosyncratic terms be
independent across i. It should be noted, however, that the main results of the
Bai and Ng (2004) paper (consistent estimation of the factors and loadings and
testing for common trends in the common factors) allow for weak cross-sectional
correlation of the idiosyncratic errors.

Two general observations should be made of the Bai and Ng method. First, it
is sufficient that at least one integrated factor be present for all the yi,t series to
have unit roots, if this factor is loaded into all series. Bai and Ng (2004) call this
integration or non-stationarity due to “a pervasive source.” The integration prop-
erties of the idiosyncratic components, however, feed, under the assumption of
their cross-sectional independence, uniquely into each series. That is, if all com-
mon factors are stationary the series yi,t has a unit root if and only if ei,t has a unit
root. This is referred to as a “series specific source” and may be thought to be a
measure of the existence or otherwise of a unit root in a given unit of a panel once
account has been taken of all the common trends driving the data (and describing
the dependence). The judgment on which is the more important source depends
upon the phenomenon being studied – that is, whether each series has its “own
root” or whether it comes from the same factor(s).

Second, the importance of the Bai and Ng (2004) analysis is in showing that, by
applying the method of principal components to first-differenced data, it is possible
to obtain consistent estimators of the factors and the idiosyncratic terms regardless
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of the dynamic properties of these series (under the assumptions posited above).
That is, the tests for the number of common stochastic trends do not depend on
whether the idiosyncratic components are stationary, while the tests for whether
the errors are stationary do not depend on the presence or absence of common
stochastic trends.

To be set off against these advantages are the restrictions (for example, the restric-
tions with respect to cointegration discussed Appendix B) implied by modeling
dependence via common factors – and whether alternative approaches such as
GVAR models should be considered. In addition the finite sample properties of
factor-based methods, which have not always been shown to be encouraging, need
to be considered in more detail.

13.2.2.3 Specializations of the Bai and Ng (2004) framework

Three specializations of the Bai and Ng procedure may be considered briefly, since
they serve to illustrate some principles for dealing with cross-sectional dependence,
which have been explored in more general contexts (see, for example, Pesaran,
2006).

Pesaran (2007)
The first specialization, due to Pesaran (2007), allows for the dependence among
the cross-sectional units of the panel to derive only from one stationary common
factor in the disturbances of each unit, with this common factor entering into the
units with heterogeneous loadings.

His DGP takes the following form:

yi,t = (1− ϕi)μi + ϕiyi,t−1 + ui,t

ui,t = πift + εi,t

i = 1, 2, . . . , N; t = 1, 2, . . . , T .

The following assumptions are put in place:

(i) The idiosyncratic errors εi,t are independently distributed across both i and t ,

have mean zero, variance σ
2
i and finite fourth-order moment.

(ii) The common factor ft is serially uncorrelated with mean zero, constant

variance σ
2
f and finite fourth-order moment.

(iii) εi,t , ft and πi are mutually independent groups.

The assumption of serially uncorrelated error ui,t can be relaxed (see Pesaran, 2006,
for details).

The null and alternative hypotheses are as for the IPS test (remember that
ρi = ϕi − 1). Under the null hypothesis (ϕi = 1, ρi = 0) there is no trend in
the data. With this rather restrictive specification, Pesaran proposes the use of a
cross-sectionally augmented version of the IPSt test described above. The procedure
consists of including cross-sectional averages of the level and of lagged differences
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in the IPS-type regressions, where the former are taken to act as a proxy for the
single common factor for N sufficiently large. Lags of the cross-sectional averages
may be utilized if necessary to take account of serial correlation in the ui,t process.

Thus, using (for the case without linear trend),

�yi,t = μi + ρiyi,t−1 + ciyt + di�yt +
pi∑

k=1

ϕik�yi,t−k

+ νi,t , i = 1, 2, . . . , N; t = pi + 2, . . . , T , (13.12)

where the cross-sectional average of the yi,t terms is:

yt =
1
N

∑N

i=1
yi,t , and

�yt =
1
N

∑N

i=1
�yi,t ,

the CIPSt test is given by:

CIPSt =
1
N

N∑
i=1

CADFi,

with CADFi denoting the Dickey–Fuller t-statistic for testing H0 : ρi = 0 ∀ i in
(13.12). This test harks back both to the idea of using group mean tests to allow for
heterogeneity of the autoregressive root under the alternative hypothesis and of
using cross-sectional averaging to allow for cross-sectional dependence across the
units. The latter may not be effective, depending on the nature of the dependence
being modeled.

Pesaran (2007) investigates the asymptotic null distribution of the individual
CADFi statistics as well as of the associated CIPSt test statistic. The former allows
for the construction of p-values for the individual (that is, unit by unit) CADFi
test statistics so that tests in the spirit of Maddala and Wu (1999) or Choi (2001)
can be constructed. The asymptotic distributions are derived both for sequential
asymptotics as well as joint asymptotics (N and T tending to infinity such that
N/T → k, where k is a fixed finite non-zero positive constant). Pesaran shows
that the CADFi statistics do not depend on the factor loadings but are asymptot-
ically correlated through their dependence on the common factor. This has the
consequence that standard central limit theorems cannot be used to derive the
asymptotic distribution of either CIPSt or of the pooled p-value tests. A truncated
CIPSt test statistic, denoted CIPS∗t , is also proposed with better properties. Critical
values for both CIPSt and CIPS∗t are presented for the three main specifications of
the deterministic components, and not just for the specification outlined here for
illustration.

Moon and Perron (2004)
A second specialization, somewhat less restrictive than Pesaran, is due to Moon
and Perron (2004), who consider a DGP of the following form (which may also be
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rewritten in the form given by (13.5)–(13.7) above):

yit = μi + y0
i,t

y0
i,t = ϕiy

0
i,t−1 + ui,t

ui,t = π
′
i ft + ei,t

i = 1, 2, . . . , N; t = 1, 2, . . . , T .

Note that ft is an r-dimensional vector of common factors, taken here to be
stationary, see assumptions (ii) and (v) below, where r may be taken to be known.17

Key assumptions within this framework include the following:

(i) ei,t =
∑∞

j=0 di,jεi,t−j, where εi,t are i.i.d. (0,1) across i and over t , have finite

eighth moment, infi
∑∞

j=0 di,j > 0 and dj = supi |di,j|,
∑∞

j=0 jmdj < M for some
m > 1;

(ii) ft =
∑∞

j=0 cjηt−j, where cj are r×r matrices of real numbers and the r×1 vectors

ηt = (η1,t , . . . , ηj,t , . . . , ηr,t )
′ are i.i.d. (0, Ir ), so that ηj,t is i.i.d across j and over

t . It is also assumed that
∑∞

j=0 jm||cj|| < M , for some m > 1;
(iii) εi,t and ηi,s are independent;

(iv) as N →∞, 1
N
∑N

i=1 πiπ
′
i →�� > 0;

(v) as T →∞, 1
T
∑N

i=1 ft f
′
t →�f > 0.

The unit root in the yi,t process comes solely from ϕi being equal to one. This is
a key restriction from the overall Bai and Ng (2004) framework (which allows for
integrated factors and integrated idiosyncratic components).

Following from above, the unit root null hypothesis of H0 : ϕi = 1 ∀i is therefore
tested against the heterogeneous alternative of HA : ϕi < 1 for some of the units, as
long as the number of these units remains a positive fraction of the total number
of units as N →∞. The vector πi determines the loadings of the factors into the ith
unit and, if r = 1, the system simplifies to the DGP considered by Pesaran (2007).18

The procedure consists of first computing the pooled OLS estimator ϕ̂Pooled (of ϕ),
given by setting ϕi = ϕ ∀i and calculating the residuals from the pooled regression
as ûi,t = yi,t − ϕ̂Pooledyi,t−1. Extracting the factors from the ûi,t series is the second
step.

Next, we establish some notation:

%̂ = (π̂1, π̂2, . . . , π̂N )
′, where π̂i, i = 1, 2, . . . , N, are the estimated factor loadings

Q̂
%̂
= IN − %̂(%̂

′
%̂)
−1

%̂
′

yi,−1 = (yi,0, yi,1, . . . , yi,T−1)
′

yi = (yi,1, . . . , yi,T )
′

Y = (y1, y2, . . . , yN )

mailto: rights@palgrave.com


660 Panel Methods to Test for Unit Roots and Cointegration

Y−1 = (y1,−1, y2,−1, . . . , yN,−1)

ûi = (ûi,1, . . . , ûi,T )
′

û = (û1, û2, . . . , ûN )

ê = ûQ̂
%̂

ω
2
e,i =

⎛⎝ ∞∑
j=0

di,j

⎞⎠2

λe,i =
∞∑

l=1

∞∑
j=0

di,jdi,j+l

ω
2
e =

1
N

N∑
i=1

ω
2
e,i

φ
4
e =

1
N

N∑
i=1

ω
4
e,i

λ
N
e =

1
N

N∑
i=1

λe,i.

Consistent estimators of ω
2
e , φ

4
e and λ

N
e are provided by constructing kernel esti-

mators based on sample covariances provided by 1
T
∑

t êi,t êi,t+j, where êi,t is the

(i, t)th element of ê defined above and 1 ≤ t , t + j ≤ T . These are denoted by ω̂
2
e ,

φ̂
4
e and λ̂

N
e , respectively.

Two test statistics, denoted MPa and MPb, follow, defined as:

MPa =
√

NT(ϕ
∗
Pooled − 1)√
2φ̂4

e
ω̂4

e

MPb =
√

NT(ϕ
∗
Pooled − 1)

φ̂2
e

√
1

NT2
tr(Y−1Q̂

%̂
Y ′−1)ω̂e,

where ϕ
∗
Pooled =

tr(Y−1Q̂
%̂

Y ′)−NT λ̂
N
e

tr(Y−1Q̂
%̂

Y ′−1)
.

Under the null hypothesis H0 : ϕi = 1 ∀i, Moon and Perron (2004) show that:

MPa, MPb ⇒ N(0, 1), as N, T →∞ with N/T → 0.19

No inference concerning the unit root behavior is conducted on the estimated
factors, since these are taken to be stationary a priori. However, under the null
hypothesis it is the accumulated factors that enter the data y.
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Choi (2006a)
The final specialization discussed here, due to Choi (2006a), is based on a two-way
error component model. Consider the model given by:

yi,t = β0 + xi,t
xi,t = μi + λt + ui,t

ui,t =
pi∑

j=1
αijui,t−j + εi,t .

The μi, λt and εi,t processes (which are uncorrelated with each other) are assumed
to have the following structures:

E(μi) = 0 ∀i, E(μ2
i
) = σ

2
μ <∞ ∀i, E(μiμj) = 0 ∀i �= j

E(λt ) = 0 ∀t , E(λtλs) = σλ(|t − s|) <∞
εi,t ∼ i.i.d. (0, σ2

ε ), εi,t is independent of εj,s ∀i �= j, s �= t .

The test therefore consists of purging the xi,t process of its “common” time effects,
given by λt , its individual specific effects, given by μi, and testing for a unit root
in ûi,t . The null and alternative hypotheses have the form:

H0 :
pi∑

j=1

αij = 1 ∀i; HA :
pi∑

j=1

αij < 1 for 0 < N1 < N units.

As earlier, the fraction of the units with no unit roots is required to fulfill the
following property under the alternative:

lim
N→∞

N1
N
= k > 0.

Consider testing the demeaned and detrended residuals ûi,t , for each unit i, using
ADF tests (and critical values) and suppose the corresponding p-value of the test
for each unit is given by pi.

Choi (2006a) proposes the use of three different group mean tests based on the
Fisher principle (generalizing his earlier work on Fisher tests for cross-sectionally
independent panels):

CP = − 1√
N

N∑
i=1

(log(pi)+ 1)

CZ = 1√
N

N∑
i=1

(#
−1

(pi))

CL∗ = 1√
π2 N

3

log
(

pi
1−pi

)
.

Here # denotes the distribution function of the standard normal distribution.
Under the null, all three statistics tend to N(0, 1), T , N → ∞. Under the alter-
native, CZ →∞while the remaining two statistics, CP , CZ →−∞, T , N →∞. This
framework can, of course, be generalized to incorporate a trend in the model.
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13.2.2.4 Nonlinear instrumental variables unit root test – Chang (2002)

Chang (2002) allows for cross-sectional dependence through correlation in the
noise processes. Thus, the starting point is correlation between the series ui,t in
yi,t = ρiyi,t−1 + ui,t , abstaining here from deterministic components for sim-
plicity. Chang assumes that all ui,t series are stationary autoregressive processes
of some orders pi generated by some innovations εi,t . In particular, Chang (2002,

Assumption 2.2, p. 264) assumes that εt =
(
ε1,t , . . . , εN,t

)′
is an i.i.d. sequence

with (non-diagonal) positive definite covariance matrix, which precludes cross-unit
cointegration. The unit root test itself is based on instrumental variable estimation
with the instrument given by integrable functions of the lagged levels of yi,t . The
test statistic, labeled NL, for the null hypothesis H0 : ρi = 1 for i = 1, . . ., N against
the heterogeneous alternative, is given by an appropriately weighted sum of the
individual t-statistics. Chang (2002, p. 277) proposes the following instrument
generating function F(yi,t−1) = yi,t−1e−ci|yi,t−1|, where ci is related to the sample
standard error of �yi,t . Im and Pesaran (2003) show that the asymptotic behavior

established in Chang (2002) holds only when N ln T/
√

T → 0, which suggests that
N has to be quite small compared to T in practice.

13.2.2.5 Summary of section 13.2.2

We have described above a broad class of methods developed to deal with cross-
sectional dependence. These are largely dependent on using factor models of
varying degrees of generality to model dependence across the units. It is thus of
interest to investigate the size and power of these methods within the context of
a simulation study, and to apply these methods to real-world datasets (although
a direct comparison of the results cannot be made since the tests operate under
different assumptions).

Some general principles can be identified. First, cross-sectional dependence is
mainly modeled by resorting to factor models, which allows us to model both
short- and long-run dependence, albeit with some restrictions. Second, for cer-
tain special configurations – as, for example, the one considered by O’Connell
(1998) – short-run correlation can be relatively easily accounted for in simple
testing approaches by resorting to some corrections; for example, feasible GLS.
Third, under appropriate assumptions, many of the test statistics are, under the
null hypothesis, asymptotically standard normally distributed (after appropriate
centering and re-scaling). This is most easily established for cross-sectionally inde-
pendent panels and sequential limits with T → ∞ followed by N → ∞, but can
also be established (under appropriate assumptions) in panels with cross-sectional
dependencies.

We turn next to the most general formulation (13.5)–(13.7), which allows not
only for cross-sectional dependence but also for the presence of structural breaks in
the deterministic components of the series comprising the panel. These structural
breaks are typically assumed to take the form of changes in the intercept or linear
trend of the process (in a given unit or a set of units) at a potentially unknown
date in-sample. As in time series unit root problems, inference about unit roots in
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integrated panels needs to take account of shifts in the deterministic parts of the
processes, since breaks in series may lead (as in Perron, 1989) to spurious findings
of a unit root. The analysis can, in principle, also be extended to allow for breaks
in the factors or in the loading coefficients on the factors, but this takes us beyond
the scope of the current discussion.

13.2.3 Relaxing structural stability – Bai and Carrion-i-Silvestre
(2007)

The restrictions underlying (13.5)–(13.7) above, with specification of the breaks
given in (13.9), are relatively mild. This model formulation allows for a very
general specification of the testing framework, which allows not only for cross-
sectional dependence via common factors but also for structural instability. As
in the assumptions underlying the Bai and Ng model (given in section 13.2.2.2)
the factor loadings need to be identifiable; there are conditions on the short- and
long-run variance of �Ft and the εi,t processes are assumed to be weakly serially
correlated but cross-sectionally independent (as given by the set of conditions (iii)
for εi,t in section 13.2.2.2).20 Under certain assumptions, the machinery of feasible
GLS-type corrections could be employed for cases where the errors are thought to
be correlated in the short-run, but within the broader problem we wish to address
in this section, this issue remains a somewhat mild technicality. Finally, some
restrictions on the initial conditions are also needed.

The key part of the testing strategy of Bai and Carrion-i-Silvestre (2007) is
based on constructing so-called modified Sargan–Bhargava statistics (henceforth
MSB), due to Sargan and Bhargava (1983) and Stock (1999). The unit-specific MSB
statistics are based on computing:

MSBi =
T−2 T∑

t=1
ê2

i,t

ω̂2
i

, (13.13)

where the denominator is a measure of the long-run variance of ei.t .
The most important aspect of the analysis is therefore to extract consistent esti-

mates of ei,t (denoted êi,t ) in the presence of common factors and structural breaks,
and to test these series for the presence of unit roots. In addition to the different
specifications for the breaks which may be considered (to allow for breaks only
in the intercept or also to allow for changes in the trend slope), a further crucial
distinction among the methods is to deal with the cases where the break date(s)
are known versus cases where they need to be estimated consistently (for example,
by means of the algorithms considered in Bai and Perron, 1998).21 We touch upon
all these issues in turn.

Under the assumption of cross-sectional independence of the idiosyncratic com-
ponents, the final form of the test statistic proposed by Bai and Carrion-i-Silvestre
takes the form of pooling the individual MSBi statistics, using correction terms
for the mean and variance so that the limiting distribution is standard normal.
An alternative strategy involves pooling p-values in the spirit of Maddala and Wu
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(1999). For pooling to lead to tests with power requires all the idiosyncratic pro-
cesses to be integrated under the null hypothesis, while under the alternative a
strictly positive fraction of these processes is stationary even as N →∞.

13.2.3.1 Break dates known

Two models are considered, given by the specification of the deterministic
processes.

Model 1: Di,t = μi +
li∑

j=1

θi,jDUi,j,t , i = 1, 2, . . . , N.

Model 2: Di,t = μi + δit +
li∑

j=1

θi,jDUi,j,t +
mi∑

k=1

γi,kDT∗i,k,t , i = 1, 2, . . . , N.

Thus in Model 1 only the intercept of the process is broken, with the ith unit being
characterized by li breaks at fractions (of the time-span of the sample) given by
Ti

a,j
T = γi,j, which are fractions that remain constant as T → ∞. In Model 2, by

contrast, both the intercept and trend are broken (the latter at fractions given by
Ti

b,k
T = λi,k, k = 1, 2, . . . , mi). The break dates can be positioned heterogeneously

across i, the breaks can be of different magnitudes, each unit may have different
numbers of breaks, and the breaks in the intercept can be located at different time
periods from the breaks in trend.

To presage the results somewhat, it is simple to note that in Model 1, since the
factors are extracted from a model for the differenced observations, the breaks in
intercept reduce to impulse dummies which do not, in fact, have any impact on
the asymptotic distribution of the MSB statistics. Thus whether or not the breaks
are known or unknown does not make any difference, as long as these breaks are
restricted to the intercept. By contrast, for Model 2, where the breaks in trend
reduce upon differencing to changes in the intercept of the differenced process,
the statistics do depend upon the nuisance parameters λi,k and critical values need
to be computed to take this into account. In addition, if the break dates are not
known a priori, consistent estimates of the break fractions are needed.

Analysis of Model 1
Differencing Model 1 yields:

�yi,t = π
′
i�Ft +�e∗

i,t
, (13.14)

where:

�e∗
i,t
= �ei,t +

li∑
j=1

θi,jD(Ti
a,j)t ,

and D(Ti
a,j)t are the impulse dummies with D(Ti

a,j)t = 1 if t = Ti
a,j + 1 and 0

elsewhere.
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As in section 13.2.2.2, let:

�yi = (�yi,2, . . . ,�yi,T )
′

�e∗
i
= (�e∗i,2, . . . ,�e∗i,T )

′

�F = (�F2, . . . ,�FT )
′

((T − 1)× r matrix of differenced factors

for all the units)

πi = (πi,1, . . . ,πi,r )
′

(r × 1 vector of loadings of factors for ith unit).

Then we may write the model (in vector notation) as:

ỹi = f πi + zi,

where ỹi = �yi, f = �F and zi = �e∗
i
.

The estimated factors f̂ and their loadings π̂i are calculated as in section 13.2.2.2,
and:

ẑi = ỹi − f̂ π̂i; and, finally, êi,t =
t∑

s=2

ẑi,s.

Since the MSB statistic is not affected by the impulse dummies, and hence by the
break fractions γi, Bai and Carrion-i-Silvestre prove that under the null hypothesis

of a unit root and the assumption that
Ti

a,j
T = γi remain constant as T →∞:

MSB(i)⇒
∫ 1

0
W2

i
(r)dr,

where Wi(r) is a standard Brownian motion independent across i.
The pooled statistic has the form:

Z = √N
MSB− 0.5

1
/√

3
,

and has a limiting normal distribution, as N →∞ , where MSB = 1
N
∑N

i=1 MSBi.
The mean and variance correction terms are those appropriate for the individual

MSB(i) statistics.
A pooled Fisher-type test can also be constructed. Denoting by pi the p-value of

the MSB(i) test for the ith unit, then:

BCχ2 = −2
N∑

i=1

log pi ∼ χ
2
2N .

This is a result applicable to cases where the cross-section dimension N is finite.
When N is large, we may also use the asymptotic approximation to the chi-squared
statistic proposed by Choi (2001), that is,

BCN =
−2

N∑
i=1

log pi − 2N

√
4N

⇒ N(0, 1).
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These results apply even when the break dates are unknown.22

Analysis of Model 2
Here things are slightly more complicated, since differencing the processes does
not eliminate the dependence of the relevant test statistics on the break fractions.
For Model 2 we have, upon differencing:

�yi,t = �F′tπi + δi +
mi∑

k=1

γi,kDUi,k,t+�e∗
i,t

, (13.15)

where DUi,k,t = 1 when T > Ti
b,k and zero elsewhere are the step dummies which

arise from differencing the trend breaks.
To follow Bai and Carrion-i-Silvestre’s notation, let:

di = (δi, γi,1, . . . , γi,mi
)
′

ai,t = (1, Di,1,t , . . . , Di,mi,t )
′

ai = (ai,2, . . . , ai,T )
′.

Then the first-differenced model can be rewritten (using the notation established
previously) as:

ỹi = f πi + aidi + zi.

Since the break dates are assumed known the matrix ai is completely specified.
Conditional on δi being known, the variable wi = ỹi − aidi has a “complete” fac-
tor structure, in the sense of assumption (i), which follows (13.5)–(13.7) above. f
and � can therefore be estimated based on w = (w1, w2, . . . , wN ). If, on the other
hand, f πi is known, regressing ỹi− f πi on ai leads to consistent estimates of di. Bai
and Carrion-i-Silvestre therefore propose (conditional upon the break dates being
known) an iterative procedure for estimating the model as follows:

Step 1: Estimate di by least squares – that is, d̃i = (a′iai)
−1a′iỹi – ignoring the pres-

ence of the factors, which are assumed to have zero mean and will thus be
included in the regression errors.

Step 2: Given d̃i, construct the series w̃i = ỹi − aid̃i and estimate the factors and
factor loadings to give f̃ π̃i.

Step 3: Regress w̃i on ai to obtain updated estimates of di and iterate until
convergence.

Step 4: Denoting the final estimates by f̂ , π̂ and d̂i, compute ẑi = ỹi − f̂ π̂i − âid̂i

and cumulate to obtain êi,t =
∑t

s=2 ẑi,s. Compute the MSB statistic for each
unit.

Then, as T →∞,

MSB(i, λi)⇒
mi+1∑
k=1

(λi,k − λi,k−1)
2
∫ 1

0
V2

i,k(b)db,
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where:

λi,k =
Ti

b,k

T
, k = 1, . . . , mi+1, which are fractions that remain constant as T →∞

λi = (λi,0, .λi,k, . . . , λi,mi+1)
′, with λi,0 = 0, λi.mi+1 = 1, i = 1, 2, . . . , N,

and:
Vb

i,k = Wi,k(b)− bWi,k(1),

are Brownian bridges independent across i and k.
Note the dependence of the statistics on the break fractions. Thus, denoting

λ = (λ1, . . . , λN )
′, we have:

Z = √N
MSB− ξ

ζ
⇒ N(0, 1)

MSB = 1
N

N∑
i=1

MSB(i, λi)

ξi =
1
6

mi+1∑
k=1

(λi,k − λi,k−1)
2

ζ
2
i =

1
45

mi+1∑
k=1

(λi,k − λi,k−1)
4

ξ = 1
N

N∑
i=1

ξi

ζ
2 = 1

N

N∑
i=1

ζ
2
i .

The Fisher or p-value versions of these tests à la Choi (2006a), referred to as BCN ,
and à la Maddala and Wu (1999), referred to as BCχ2 , can similarly be constructed,
as long as the break fractions are known. This is because the p-values for the
individual tests will depend on the break fractions in the presence of breaks in
trend.

13.2.3.2 Break dates unknown

The results and methods discussed above go through as before for Model 2 (note
that for Model 1 knowledge of the break fractions is not a relevant consideration)
provided consistent estimates of the break fractions can be obtained. From (13.15),
defining the composite error ni,t = �F′tπi + �e∗

i,t
, and assuming without loss of

generality that �F has zero mean, we can write the model as:

�yi,t = δi +
mi∑

k=1

γi,kDUi,k,t+ni,t .
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Then (13.15) can be thought of as a model with intercept breaks, where the num-
ber and timing of the breaks can be calculated (unit by unit) using the Bai–Perron
dynamic programming algorithm. Thus, due to the fast convergence of the esti-
mated break points to their “true” values, the ai matrix can be assumed to be
known upon substituting ai by âi. Asymptotically, given consistency, the theoret-
ical results are unaffected by replacing the true break dates with their estimated
values. The accuracy of the estimation of the break dates and its impact on the
properties of the testing for unit roots using the MSB statistic may well be a prag-
matic issue in cases where T is relatively small. This can again be addressed within
the framework of simulation studies, an example of which is contained in Bai and
Carrion-i-Silvestre’s paper but for which further work is clearly justifiable.

13.2.4 Two empirical examples

In this section, we illustrate the arguments and tests developed above by means
of two examples, analyzing in particular the effect of incorporating cross-sectional
dependence (via factors) and structural breaks into the testing procedures. The two
examples are based on Wagner (2008a) and Wagner (2008b) respectively.

13.2.4.1 Purchasing power parity

The empirical analysis of (weak) purchasing power parity (PPP), in an I(1) model-
ing framework, typically formulated as stationarity of the real exchange rate (RER),
is a prime application of both time series and panel unit root (respectively co-
integration) testing. We have already referred to the influential paper by O’Connell
(1998) when discussing the consequences of overlooking the impact of cross-
sectional dependence.

In logarithms, the RER for country i is given by:

qi,t = ei,t + pi,t − p∗t , (13.16)

where qi,t is the RER, ei,t is the nominal exchange rate, pi,t is the price level in

country i and p∗t is the price level of the base country (all in logarithms). In our
application below the base country is the United States, the nominal exchange
rates are thus vis-à-vis the US dollar (per unit of local currency) and the prices are
given by the consumer price indices, which implies that, like almost all of the
literature, we do not study real exchange rates but real exchange rate indices.

Early panel studies of PPP, including Coakley and Fuertes (1997), Frankel and
Rose (1996), Lothian (1997) and Wu (1996), have used first-generation panel unit
root tests to test stationarity (respectively unit root behavior) of RER panels. Panel
methods have been used to overcome the deficiencies of time series unit root
tests, as highlighted in the PPP context by Engel (2000) and as discussed in the
introductory sections to this chapter.

Such studies have often “found support for PPP,” that is, rejections of the unit
root null hypothesis, although it is presumably well understood that rejection of
the null hypothesis (that is, a unit root in RER) is not acceptance of the alternative.
Much more seriously, the use of first-generation tests designed for cross-sectionally
independent panels appears to be troublesome in the PPP context.
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Looking at (13.16), it becomes clear that there are several potential sources of
cross-sectional dependence in RER panels. First, all nominal exchange rates are
coupled to each other by no arbitrage restrictions which appear to hold quite well
in liquid foreign exchange markets. Given that nominal exchange rates, if not fixed
to the base country currency, typically fluctuate more than prices, this dependence
will not be wiped out by price level movements across countries. Second, all RERs
contain the same (non-stationary) base country price index p∗t . Since the goods
contained in the consumer baskets generally differ across countries, it is realistic
to assume that the permanent components in (ei,t + pi,t ) and p∗t do not exactly
coincide. If they do not perfectly coincide, then in general the qi,t series contain a

common permanent component related to p∗t . Third, the no arbitrage (in the goods
markets) arguments underlying the law of one price and PPP rely upon economic
interaction of one form or the other. The world economy becomes ever more inte-
grated and thus shocks can also be expected to be transmitted more strongly across
countries. The type of short-run dependence considered by O’Connell (1998) and
discussed above may not be sufficient since, as we have just argued, RER panels
may be prone to the presence of common non-stationary components.

Lyhagen (2000) studies a special case of this situation with one common stochas-
tic trend and shows that several first-generation tests, including those of Levin, Lin
and Chu (2002) and Im, Pesaran and Shin (2003), are severely affected in this case.
In particular, Lyhagen shows that, in the presence of one common stochastic trend,
the size of the tests tends to one with increasing cross-sectional dimension.

To assess the impact of cross-sectional dependence when testing for PPP, Wagner
(2008a) applies a battery of first- and second-generation panel unit root tests to
four monthly RER panels. The sample periods, as well as the cross-section and
time dimensions of the panels, are contained in Table 13.1. Details are given in
Appendix A.

The euro-area dataset (the data are taken from the IMF IFS, OECD MEI and ECB
databases) consists of 11 of the 12 countries that were starting members of the euro-
area in January 1999, with Ireland missing due to constraints on data availability.
The Central and Eastern European countries (CEEC) dataset consists of 11 transition

Table 13.1 Time periods and panel
dimensions of the four monthly datasets
considered

Start End T N

Euro-area 1980/1 1998/12 228 11
CEEC 1993/1 2004/6 138 11
Industrial 1980/1 1998/12 228 29
Worldwide 1981/1 2004/4 280 57

Note: The number of observations over time is
denoted by T while N denotes the cross-sectional
dimension.
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Table 13.2 Results of first-generation panel unit root and
stationarity tests

LLC Breitung IPSt MW Hadri

Euro-area −1.31 −1.37 −1.34 24.65 12.79
CEEC –8.87 −0.58 –4.17 98.69 14.52
Industrial −1.04 –2.49 –1.73 66.10 22.68
Worldwide –9.64 6.48 –2.60 207.30 51.70

Notes: Bold entries indicate rejection of the unit root null hypothesis
at the 5% critical level and italic entries indicate rejection at the 10%
level.
LLC: Levin, Lin and Chu test in section 13.2.1.1.
Breitung: Breitung modification of LLC test in section 13.2.1.1.
IPSt : t-test proposed by Im, Pesaran and Shin in section 13.2.1.2.
MW: Maddala and Wu’s p-value test in section 13.2.1.3.
Hadri: Test with stationarity as null in section 13.2.1.4.

economies with the sample ranging from January 1993 to June 2004. The start
date is chosen to exclude the high inflation period of the early 1990s. Two other
datasets containing a larger number of countries are also considered. One of these
is an industrial countries dataset consisting of 29 countries, including the countries
of the euro-area dataset, for which the sample period coincides with the sample
period for the euro-area. The other, labeled Worldwide, contains 57 non-euro-area
countries for which monthly data are available back to January 1981.

The detailed discussion in Wagner (2008a) shows clearly that all four panel
datasets exhibit cross-sectional dependence, investigated by computing the long-

run covariance matrix of �qt =
[
�q1,t , . . . ,�qN,t

]′
(respectively sub-vectors

thereof), by inspecting the cross-correlation functions and by cointegration anal-
ysis. In particular there appears to be evidence for the presence of common
non-stationary components, in line with the discussion above.

The results obtained when applying a battery of first-generation panel unit root
tests are reported in Table 13.2.

Depending upon the panel considered, two or three of the four reported panel
unit root tests lead to a rejection of the unit root null hypothesis. For the euro-
area dataset the three rejections only occur at the 10% level. The quite substantial
number of rejections, and hence the strong evidence “in favor” of PPP, is a typical
finding in this literature and is in line with the results discussed in Lyhagen (2000).

When the null is taken to be stationarity of the qi,t series, however, the reported
results for the Hadri test show rejections of the null hypothesis of stationarity for
all the panels. This is consistent with the evidence concerning non-stationarity in
the RER panels, as documented in detail in Wagner (2008a), and runs counter to
the evidence from the unit root tests. However, as illustrated by Hlouskova and
Wagner (2006), the poor performance of the Hadri test, with rejections occurring
far too often whenever the data exhibit sizeable serial correlation, severely limits
the usefulness of this test, even if the panels were cross-sectionally independent.
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Table 13.3 Results of Bai and Ng (2004) analysis

Factors BNN BN
χ2 MQc(m) MQf (m)

Euro-area 6 0.17 23.14 6 6
CEEC 5 1.24 30.25 5 5
Industrial 4 1.93 78.76 4 4
Worldwide 4 0.25 117.78 3 3

Notes: Bold entries indicate rejection of the unit root null hypoth-
esis at the 5% critical level; BNN and BN

χ2 denote the Bai and

Ng tests on the estimated idiosyncratic components described in
section 13.2.2.2; and MQc(m) and MQf (m) are the Bai and Ng tests
for common trends in section 13.2.2.2.

Further evidence concerning the cross-sectional dependence structure in the RER
panels is collected by applying the Bai and Ng (2004) methodology for computing
common factors and the results are reported in Table 13.3. The second column
contains the estimated number of common factors chosen according to the infor-
mation criterion BIC3 of Bai and Ng (2002), while the third and fourth columns
provide the results of tests on the idiosyncratic components based on using the
pooled inverted normal test and the Maddala and Wu test respectively. The fifth
and sixth columns give the number of common trends amongst the common
factors according to the two different tests described previously.

These results reflect a well-known weakness of the information criteria to deter-
mine the number of common factors (see the second column), which tend to favor
large numbers of estimated common factors (given that the upper bound for the
number of common factors is six). For the euro-area six factors are selected, five
factors are selected for the CEEC panel and four for the other two datasets. Onatski
(2006) reports simulations showing that correlation between the idiosyncratic com-
ponents of the individual units (for which evidence is presented in Wagner, 2008a,
for the RER panels at hand) leads to overestimation of the number of common
factors when using the information criteria of Bai and Ng (2002). Thus, the results
concerning the number of common factors should be interpreted with caution,
given that the cross-sectional dimensions are rather small in the panels.

The second striking feature is that the number of common trends is selected to
be equal to the number of common factors, with the exception of the worldwide
dataset where the number of common trends in the common factors is selected to
be three (that is, a lot of evidence for unit roots in the common factors). Simulations
performed by the authors indicate a tendency of the tests to lead to too large a
number of common trends unless, for example, the time series dimension T is
very large. Hence, the results concerning the number of common trends also have
to be interpreted with some caution.

The Bai and Ng (2004) panel unit root tests are designed for cross-sectionally inde-
pendent data. In order to verify whether the de-factored data are cross-sectionally
independent, one can again look at the cross-correlation functions or the long-run
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covariance matrices of the first differences of the estimated idiosyncratic compo-
nents. Doing so (for details, see again Wagner, 2008a) indicates that even the
de-factored data do not appear to be uncorrelated. In this respect, note that the cor-
relation structure between the estimated idiosyncratic components depends upon
the number of factors chosen, which is intuitively clear because extracting too
many factors may actually induce cross-sectional dependence. Having this poten-
tial caveat in mind, for the idiosyncratic components the unit root hypothesis
is only rejected for the industrial country dataset. Thus, from the perspective of
the Bai and Ng (2004) approach, there is little support for stationarity in the RER
panels.

When the computations are performed with only one common factor as an
additional robustness check, the unit root null hypothesis is not rejected for this
common factor for the euro-area, CEEC and industrial countries datasets but is
rejected for the common factor in the worldwide dataset. With one common factor,
the panel unit root tests on the idiosyncratic components lead to no rejection of
the unit root null hypothesis.

The second-generation test results in Table 13.4 show that, much like for the
first-generation tests and for the more restrictive second-generation tests, the unit
root null hypothesis is by and large rejected for our datasets, with the exception of
the Chang (2002) test.

It is important to remember that these tests are designed for more restricted
DGPs than the Bai and Ng (2004) framework allows for. The Pesaran (2007) and
Choi (2006a) tests allow for only one common stationary serially uncorrelated
factor, with identical loadings for the latter test. The Moon and Perron (2004)
approach restricts the factors to be stationary under the alternative. Thus for all
these approaches key assumptions necessary for the panel unit root tests are most
likely violated, which is consistent with the rejections of the null hypothesis (com-
pare also Breitung and Das, 2008, and Gengenbach, Palm and Urbain, 2006).
Finally, it is unclear what drives the non-rejections of the unit root null hypoth-
esis obtained by applying the Chang (2002) test, since this is designed for panels

Table 13.4 Results of other second-generation panel unit root tests

MPa MPb CIPS Cp CZ CL∗ NL

Euro-area –9.67 –4.88 −1.96 5.08 –4.56 –4.43 1.52
CEEC –12.44 –7.86 –2.91 7.34 –4.57 –5.31 1.95
Industrial –15.81 –6.62 −1.85 9.87 –8.01 –8.04 1.50
Worldwide –20.77 –9.37 –2.43 18.05 –12.27 –13.67 −0.05

Notes: The abbreviations are as in the discussion of the tests in section 13.2.2. Bold
entries indicate rejection of the unit root null hypothesis at the 5% critical level.
MPa and MPb: Moon and Perron tests in section 13.2.2.3.
CIPS: Pesaran test with cross-sectional demeaning in section 13.2.2.3.
Cp, CZ and CL∗: Choi tests in section 13.2.2.3.
NL: Chang test in section 13.2.2.4.
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Table 13.5 Results of the tests of Bai and Carrion-i-Silvestre
(2007) for unit roots in non-stationary panels with common
factors and structural breaks

Euro-area CEEC Industrial Worldwide

Z and p-value tests
Z 6.36 −1.61 2.36 −1.55
BCN −2.33 1.44 −0.24 −0.04
BCχ2 6.54 31.57 55.46 113.37

Simplified Z and p-value tests
Z 17.51 3.03 15.96 0.51
BCN −2.61 0.49 −1.08 0.05
BCχ2 4.69 25.25 46.40 114.81

Number of breaks 9 5 11 8

Notes: The number of factors is chosen according to the information cri-
terion BIC3. The test results reported allow for at most one break in both
the intercept and linear trend, except for the euro-area dataset where up
to two breaks are allowed for. The critical value (at the 5% nominal level)
is given by –1.645 for the Z test, by 1.645 for the BCN test and by 32.92
(N=11), 76.78 (N=29) and 139.92 (N=57) for the BC

χ2 test. Number

of breaks indicates the number of countries in which breaks have been
detected. The tests are as described in section 13.2.3.

without non-stationary common components. All in all, the findings show that a
careful modeling of cross-sectional dependence that leads to an appropriate choice
of panel unit root test is of key importance.

Let us finally turn to the issue of structural change, neglected up to now. Table
13.5 contains the results obtained when applying the Bai and Carrion-i-Silvestre
(2007) tests. Bai and Carrion-i-Silvestre also propose simplified approximate tests
whose limiting distributions are independent of the break fractions. The results
obtained with these tests are also included in Table 13.5.

The major observation that emerges is that the unit root null hypothesis is
not rejected for any of the datasets by any of the tests. Thus, even when allow-
ing for structural breaks and common factors, no evidence for stationarity of the
RER panels emerges. In particular, contrasting the findings obtained by allowing
for multiple factors (and breaks), with no evidence for stationarity of the RER,
with the findings obtained with first-generation tests or more restrictive second-
generation tests, where seemingly more evidence for PPP prevails, indicates that
the resurrection of PPP due to the usage of panel methods may not yet have been
accomplished.

13.2.4.2 The environmental Kuznets curve

The empirical example, based on Wagner (2008b), considered in this sub-section
is based partly upon using the Groningen dataset mentioned in the introduction.
Since the seminal work of Grossman and Krueger (1995) many econometric stud-
ies of the relationship between measures of economic development (typically per
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capita GDP) and pollution (often proxied by emissions) have been conducted.
Most of the papers focus on a specific conjecture, the so-called environmental
Kuznets curve (EKC) hypothesis, which postulates an inverted U-shaped relation-
ship between the level of economic development and pollution. This hypothesis
therefore states that pollution first rises with increasing income up to a certain
point to then fall for income increasing further. The term EKC refers by analogy
to the inverted U-shaped relationship between the level of economic development
and the degree of income inequality, postulated by Kuznets (1955) in his 1954
presidential address to the American Economic Association.

The theoretical underpinnings for EKCs are discussed, for example, in Andreoni
and Levinson (2001), Brock and Taylor (2004, 2005), Jones and Manuelli (2001)
and Stokey (1998). Brock and Taylor (2005) identify three different mechanisms
that link economic activity with pollution (respectively emissions). These are the
scale, composition and technique effects. For unchanging composition of out-
put and unchanging technology, emissions rise alongside the scale of economic
activity. For given scale and technique, emissions can rise or fall when the compo-
sition of output changes towards a more or less emissions-intensive composition.
Finally, emissions (per unit of output, that is, emissions intensity), can decrease
with improvements in technology, that is, via improved abatement technology.
Depending upon the relative magnitudes of these three effects, a monotonic, a U-
shaped, or an inverted U-shaped relation (among the different patterns possible)
between per capita GDP and per capita emissions may emerge.

Disentangling the relative importance of the three effects requires detailed struc-
tural modeling. The empirical EKC literature is typically less ambitious and focuses
on reduced form modeling to address the issue of whether the three distinct
mechanisms are jointly sufficiently strong to allow for an inverted U-shaped
relationship.

The basic parametric panel formulation of a homogeneous EKC is given by:

ei,t = αi + γit + β1yi,t + β2y2
i,t + ui,t , (13.17)

where ei,t here denotes the logarithm of per capita emissions, yi,t the logarithm of
per capita GDP, ui,t denotes the stochastic error term, i = 1, . . . , N is the country
index and t = 1, . . . , T is the time index as before. The formulation also includes
country specific fixed effects and country specific linear trends, to allow for income
independent level and slope effects that could inter alia reflect country specific
preferences with respect to emissions.

An EKC, that is, an inverted U-shaped relationship, occurs if β1 > 0 and β2 < 0, in
which case the turning point with respect to income (in the homogeneous formu-
lation identical across countries) is given by yTP = exp

(−β1/2β2
)
. The primary task

in an empirical EKC analysis is to estimate the relationship (13.17) by appropriate
methods and to test the relevant hypothesis concerning the coefficients.

As discussed in the introduction and also in the convergence example at the
beginning of this chapter, yi,t is often considered to be a unit root process. Often,
due to the relatively short time series available for many countries, for both per
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capita GDP and emissions, the use of a panel perspective may appear fruitful to
enhance the performance of unit root and cointegration tests. In any empirical
analysis of an EKC like (13.17), using panel unit root and cointegration techniques,
all the complications discussed above, such as cross-sectional dependence or struc-
tural changes in the deterministic component, may arise and have consequently
to be addressed. We turn to each of these problems below. Furthermore, the homo-
geneity restriction (that is, β1i = β1 and β2i = β2 for i = 1, . . . , N) needs to be
investigated, which we address in a later section in this chapter (having discussed
testing for cointegration and estimation of cointegrating vectors).

There is one additional problem that arises in an equation like (13.17): log per
capita GDP and its square are both present. However, at most one of the two
processes can be a unit root process, with the other process necessarily being a
nonlinear transformation thereof. We return to this issue and its implications later
when considering estimation of (13.17).

In our empirical application we consider sulphur dioxide (SO2) emissions using
a balanced panel of 97 countries over the period 1950–2000 (described in detail in
a table in Appendix A).

Let us start the discussion of the empirical results by looking at the results
obtained with the Bai and Ng (2004) methodology, summarized in Table 13.6.
For SO2 two common factors are found and for GDP one common factor is found.
Depending upon the test chosen, MQc(m) or MQf (m), one or both common factors
in SO2 are non-stationary and the ADF test on the single common factor in GDP
also does not lead to a rejection of the unit root null hypothesis. The GDP common
factor reflects the evolution of average worldwide GDP and also tracks the observed
slowdown of the mid 1970s quite well. The SO2 common factors are less clearly
interpretable and are, furthermore, not cointegrated with the GDP common factor.
This implies that there is some long-run disconnect between per capita GDP and
per capita SO2 emissions.

The idiosyncratic components for GDP (as tested by BNN and BNχ2 ) appear to be
stationary, since the unit root null hypothesis is rejected by both tests. This implies
that the deviations of the individual countries’ GDP from the common global factor
are stationary and that none of the countries’ GDP deviates permanently from the
single global stochastic trend.

For SO2 emissions the null hypothesis of a unit root in the idiosyncratic com-
ponents is not rejected. This is consistent with large inter-country systemic and
technological differences in industry and energy production as well as differences
in environmental legislation.

The other, more restrictive, second-generation panel unit root tests, collected in
Table 13.7, provide very mixed results. The most relevant results from this table are
the Moon and Perron (2004) results, since the other results collected in this table
are for tests designed for panels without long-run cross-sectional dependencies.

In the specification with only fixed effects included, the unit root null hypoth-
esis is rejected for the idiosyncratic component for both GDP and SO2 emissions,
whereas it is not rejected when both fixed effects and linear trends are included.

mailto: rights@palgrave.com


676 Panel Methods to Test for Unit Roots and Cointegration

Table 13.6 Results of Bai and Ng (2004) analysis

Factors BNN BN
χ2 MQc(m) MQf (m) CFADF

SO2 2 −0.70 180.22 1 2 –
GDP 1 2.89 250.96 – – −2.30

Notes: Bold entries indicate rejection of the unit root null hypothesis at
the 5% critical level.
CFADF : ADF test on single common factor as in section 13.2.2.2.
Also see notes to Table 13.3.

Table 13.7 Results of second-generation tests

MPa MPb CIPS Cp CZ CL∗ NL

Fixed effects
SO2 –14.70 –7.56 –1.78 9.45 –5.83 –6.22 4.05
GDP –17.72 –9.05 –1.64 1.75 –0.56 –0.79 8.29

Fixed effects and linear trends
SO2 –0.81 –0.49 –2.44 1.81 3.89 4.91 6.69
GDP 1.38 1.41 –2.46 –3.01 6.30 7.26 5.82

Notes: Bold entries indicate rejection of the unit root null hypothesis at
the 5% critical level. Also see notes to Table 13.4.

The other tests are included to show again that by a strategic choice of panel unit
root test any desired conclusion can be supported.

Neglected up to now and potentially important for the case of emissions series is
the issue of structural change (for example, due to technological or legal changes).
In this respect the short time dimension of the panels represents a major limitation,
since the panel unit root tests that allow for structural change in the determinis-
tic component, as described in section 13.2.3, require, when the break dates are
assumed to be unknown, the individual specific estimation of these break dates.
Nevertheless, applying the Bai and Carrion-i-Silvestre (2007) tests, see Table 13.8,
provides evidence for structural change in about a third to a half of the countries
included in the panel. All the unit root test results lead to non-rejection of the unit
root null hypothesis even when allowing for structural breaks. The results in the
table refer to the case with at most one structural break per unit, since even when
allowing for more structural breaks only one break is detected.23

This example is continued in section 13.3.5 where, in particular, the estimation
of (13.17) is discussed.

13.2.5 Some concluding remarks

We have continued to bring together the key strands of the testing strategies within
the panel integration framework. Important considerations have included:
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Table 13.8 Results of the tests of Bai and Carrion-i-
Silvestre (2007) for unit roots in non-stationary panels
with common factors and structural breaks

GDP SO2

Z and p-value tests
Z −1.38 5.59
BCN 0.51 −1.01
BCχ2 210.14 174.02

Simplified Z and p-value tests
Z 0.63 9.10
BCN −1.12 −2.10
BCχ2 177.70 152.61
Number of breaks 44 39

Notes: The number of factors is chosen according to the informa-
tion criterion BIC3. The test results reported allow for at most one
break in both the intercept and linear trend. The critical value
(at the 5% nominal level) is given by –1.645 for the Z test, by
1.645 for the BCN test and by 227.50 for the BCχ2 test. Number
of breaks indicates the number of countries in which a break has
been detected. Also see notes to Table 13.5.

(a) Homogeneity or heterogeneity of the roots under the null and alternative
hypotheses.

(b) Deciding upon testing strategy – pooled (LLC) versus group mean methods
(IPS), for example, governed largely by the form of the alternative hypothesis
adopted.

(c) The need to allow for dependence; based upon the definition presented in
Appendix B, we distinguish short-run and long-run dependence, with the latter
being related to cross-unit cointegrating relationships and, hence, in a sense
made precise in Appendix B, the prevalence of joint common trends across
cross-section members. Up to now the most popular model to allow for cross-
sectional dependencies is the approximate factor model of Bai and Ng (2004),
whose cross-unit cointegration implications are also discussed in Appendix B.
For very special cases, short-run cross-sectional dependence can be handled by
resorting to relatively simple corrections such as the feasible GLS procedure of
O’Connell (1998), which, however, can only be used if the time dimension of
the panel exceeds the cross-section dimension.

(d) The construction of the statistics themselves, involving mean and variance
corrections to center and standardize the densities of the statistics derived from
the individual units.

(e) The startling features of Gaussianity in the limit for many of these statistics,
based on constructing statistics that are a weighted aggregate of the individual
unit-by-unit statistics. If these units are taken to be independent, under appro-
priate assumptions (that, for example, ensure the existence of the required

mailto: rights@palgrave.com


678 Panel Methods to Test for Unit Roots and Cointegration

moments) relatively simple sequential central limit theory provides the asymp-
totic normality of these densities. As soon as the assumption of cross-sectional
dependence is lifted, however, issues become much more intricate, as out-
lined in the highly stylized discussion in Appendix C. Note that cross-sectional
dependence of the data often requires the use of joint limit theory, as, for exam-
ple, in the work of Bai and Ng (2004). More generally, the joint limit theory
applied in factor models, where consistent estimation of the factors requires
the cross-sectional dimension to tend to infinity, has implications for all unit
root and cointegration test procedures that use de-factored observations. This
is an issue that we believe deserves more attention in the literature.

(f) The simple ways in which factor structures are utilized and the intuitive manner
in which the tests are constructed.

(g) The natural ways in which structural breaks are incorporated.

All of these features are important to the development and use of this methodology,
and further work, theoretical, simulation-based and empirical, to investigate the
efficacy of the various testing strategies proposed is still largely necessary.

Many of (a)–(g) carry over when it is not a unit root hypothesis that we are
interested in testing, but a hypothesis of cointegration among variables of interest,
and it is to a consideration of these methods to which we now turn. We could
think, for example, of PPP, where we might be interested in seeing co-movement
between foreign and domestic prices expressed in the same currency; or exchange
rate pass-through, where one could look at how changes in exchange rates are
transmitted to the price of imported goods; or the Feldstein–Horioka puzzle where
the apparent co-movement of savings and investments (which runs contrary to
commonly held beliefs on the consequences of quasi-perfect capital markets); or,
of course, the growth literature and issues of convergence discussed earlier.

13.3 Cointegration analysis in non-stationary panels

The majority of cointegration analysis in multivariate time series panels is con-
ducted within the single equation set-up, in which the m-dimensional time series

Yi,t are separated into Yi,t =
[
yi,t , x′i,t

]′
, where subsequently yi,t is the dependent

variable and xi,t are the regressors. This approach is subject to the same limita-
tions as Engle and Granger (1987) single-equation cointegration analysis in the
time series case. The most important restriction is that the analysis is limited to
situations in which there is either no cointegration in Yi,t (under the null hypoth-
esis of the “no cointegration” tests) or only one cointegrating relationship (under
the alternative of the “no cointegration tests”).24 This assumption is in general,
with xi,t a multivariate vector of regressor variables, not easily sustainable, except
perhaps in special cases. Clearly, methods that allow for higher-dimensional cointe-
grating spaces are therefore also relevant in the panel cointegration context. Such
methods have until now been based on panel extensions of VAR cointegration
analysis and are discussed in section 13.3.2.
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Single-equation methods, however, offer some advantages, since they allow us to
consider – paralleling much of the developments in panel unit root analysis – both
cross-sectional dependence via factor models and structural changes in the deter-
ministic components. None of these two aspects has yet been studied in system
methods for panel cointegration analysis.

This section starts with a general formulation of the single equation panel coin-
tegration set-up and then continues with discussing tests for cointegration that
abstract from cross-sectional dependence and structural change. Structural change
is considered next in tests for cointegration, following which allowing for cross-
sectional dependence is also added to the testing structure. In section 13.3.1.6 we
discuss single equation estimators of the cointegrating vector, for the situation
without cross-sectional dependence or structural change. Section 13.3.2 then dis-
cusses testing for cointegration as well as estimation of the cointegrating spaces in
panel VAR models, under the assumptions of cross-sectional independence and no
structural change. Empirical examples are again used throughout to illustrate the
techniques.

13.3.1 Single equation analysis of cointegration

Paralleling the set-up of the DGP for studying the unit-root problem given by
(13.5)–(13.7) above, we may consider describing the general set-up of testing for
cointegration in panels:

yi,t = Di,t + x′i,tβi,t + ui,t (13.18)

ui,t = π
′
i Ft + ei,t (13.19)

(1− L)Ft = C(L)ηt (13.20)(
1− ϕiL

)
ei,t = Hi(L)εi,t (13.21)

(1− L)xi,t = νi,t , (13.22)

where the major difference to the set-up considered in (13.5)–(13.7) is the presence
of additional regressors xi,t in (13.22) that are potentially related to the dependent
variable yi,t via a cointegrating relationship. Note that in general one can consider,
as in (13.18), the cointegrating relationship to be both individual specific and time
varying.

It is important to note that cointegration in the usual sense occurs if the error
process ui,t in (13.18) is stationary. However, this is not the only possible form
of relationship in which one could be interested. One could, for example, also
consider cointegration after taking out the common factors,25 and this is the addi-
tional aspect that the cross-sectional dimension and the modeling of cross-sectional
dependence brings into play.

Short-run dependence across the units may, under appropriate circumstances
and assumptions, be dealt with as before by considering the variance–covariance
structure of the error processes.
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As in the unit root discussion, before dealing with the general problem, let us
consider a set of simplifications that help to illustrate many of the issues involved.
Suppose we start, as in section 13.2, by switching off the factor dependence struc-
ture and assuming that both the deterministic processes and the cointegrating
vector are unbroken. Then a very simple version of the system reduces to:

yi,t = Di,t ,m + x′i,tβi + ui,t , m = 1, 2, 3 (13.18′)

(1− L)xi,t = νi,t , (13.22′)

where the index m again describes the usual specifications of the deterministic
component. Di,t ,m can either be empty (that is, contain no deterministic terms),
m = 1, or have a constant, m = 2, or a constant and a linear trend, m = 3.

Let us further assume that the vectors xi,t , and therefore βi and νi,t , are l-
dimensional and that, if yi,t and xi,t are cointegrated, the unique cointegrating

vector is given by (1,−β
′
i)
′. Assume further that, when cointegration prevails, the

processes ei,t = (ui,t , ν
′
i,t )
′ are cross-sectionally independent stationary autoregres-

sive moving average (ARMA) processes. The ARMA assumption is stronger than
we need but serves well for the purposes of illustration. In particular we are able
to appeal, under this ARMA assumption, to the existence of a finite long-run
covariance matrix for ei,t , given by:

�i =
[

ω
2
u,i �uν,i

�
′
uν,i �ν,i

]
.

�ν,i is taken to be of full rank, which excludes cointegration amongst the variables
xi,t . We also need to define the conditional long-run variance as:

ω
2
u.ν,i = ω

2
u,i −�uν,i�

−1
ν,i �

′
uν,i,

and the matrix:

%i =
∞∑

j=0

E(ei,t e
′
i,t−j),

partitioned conformably with �i. Finally, let us take βi = β ∀i if cointegration
exists. This is an assumption that can be generalized easily, as discussed by Pedroni
(2004).

If there is no cointegration, equation (13.18′) is a spurious relationship with yi,t
being an I(1) process not cointegrated with xi,t . In this case we can assume, analo-

gously to the ARMA assumption above, that �yi,t = usp
i,t and that esp

i,t =
(
usp

i,t , v′i,t
)′

are cross-sectionally independent stationary ARMA processes with full rank long-
run covariance matrices. Of course, this includes the case of independence of yi,t
and xi,t . The superscript “sp” here is chosen to indicate the spurious regression
nature of the relationship in the case of no cointegration.
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13.3.1.1 Testing for the null hypothesis of no cointegration – Pedroni (1999, 2004)

Write:

�ui,t = ρiui,t−1 + υi,t , (13.23)

where υi,t is a stationary ARMA process for all the units. As in the tests for unit
roots, two combinations of the null and alternative hypotheses may be considered
– the first applying to pooled tests, the second to group mean tests. Under the
former, the null hypothesis is given by H0 : ρi = 0 ∀ i = 1, 2, . . . , N against the
homogeneous alternative hypothesis HA : ρi = ρ < 0 ∀ i = 1, 2, . . . , N, where we
again restrict attention to stationarity under the alternative. The group mean tests

are based on H1
A : ρi < 0 for i = 1, 2, . . . , N1 and ρi = 0 for i = N1 + 1, . . . , N, where

limN→∞ N1
N = k > 0. The analogy with the unit-root testing framework is obvious

and many of the same estimation and testing principles apply. If ui,t were known
the procedures would be exactly the same – in practice, since we must estimate
ui,t , the analogy is not exact and the tests must be based on estimating equations

of the form (13.18′) instead.
Let us denote by ûi,t the regression residuals from (13.18′) estimated by OLS. Two

adjustments to the OLS coefficient are needed, first to account for the endogeneity
of the regressors and second to account for the ARMA structure in υi,t .

The first adjustment requires an estimate of ω
2
u.ν,i, denoted ω̂

2
u.ν,i. This may be

done by first estimating the OLS regression of �yi,t on the deterministic compo-
nents and �xi,t , extracting the residuals υ̂i,t and fitting an ARMA or AR model to
this derived process (and computing its long-run variance.) Alternatively, a non-
parametric estimator of the form prescribed by Newey and West (1987) may also
be used.

The correction for serial correlation can also be dealt with either parametrically,
by means of ADF regressions on the residuals ûi,t , or nonparametrically from the
nonaugmented regressions given by (13.23), with ûi,t replacing ui,t .

In order to compute the nonparametric correction for serial correlation, denote

the estimated variance of the residuals in (13.23) by σ̂
2
υ,i and the correspond-

ing long-run variances by ω̂
2
υ,i. The serial correlation correction factors are ψi =

1
2

(
ω̂

2
υ,i − σ̂

2
υ,i

)
and let ω̂

2
N,T = 1

N
∑N

i=1
ω̂2
υ,i

ω̂2
u.ν,i

. The following test statistics for “no

cointegration” can now be defined, laid out in four different categories. Each of the
statistics requires re-scaling and centering in order for the asymptotic distributions
to hold.

(i) Pooled tests (nonparametric corrections)

variance ratio: N1/2

⎛⎝N−1
N∑

i=1

ω̂
−2
u.ν,i

⎛⎝T−2
T∑

t=2

û2
i,t−1

⎞⎠⎞⎠−1
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pooled ρ-test : N1/2
N−1 N∑

i=1
ω̂
−2
u.ν,i

(
T−1 T∑

t=2
ûi,t−1�ûi,t − ψi

)

N−1
N∑

i=1
ω̂−2

u.ν,i

(
T−2

T∑
t=2

û2
i,t−1

)

pooled t-test : N1/2
N−1 N∑

i=1
ω̂
−2
u.ν,i

(
T−1 T∑

t=2
ûi,t−1�ûi,t − ψi

)

ω̂N,T

(
N−1

N∑
i=1

ω̂−2
u.ν,i

(
T−2

T∑
t=2

û2
i,t−1

))1/2
.

(ii) Pooled tests (parametric corrections)
In order to compute the parametrically corrected versions of the t-test, a similar
device to that discussed previously in the construction of the LLC test is used.
Two auxiliary regressions are estimated:

�ûi,t =
Ki∑

k=1

γ1,ik�ûi,t−k + ζ1,i,t

ûi,t−1 =
Ki∑

k=1

γ2,ik�ûi,t−k + ζ2,i,t ,

where the lag-length selection (of Ki) may be undertaken using automatic
selection criteria such as AIC. Next, ζ̂1,i,t is regressed on ζ̂2,i,t :

ζ̂1,i,t = ρi ζ̂2,i,t + θi,t ,

and σ̂
2
NT = 1

NT
∑N

i=1
∑T

t=Ki+2 θ̂
2
i,t is computed. The variance of the estimated

residuals θ̂i,t , denoted σ̂
2
θi

, needed for the computation of the group mean tests
is also computed. The parametrically corrected pooled t-test is then:

pooled t-test – parametrically corrected:

N1/2
N−1 N∑

i=1
ω̂
−2
u.ν,i

(
T−1 T∑

t=Ki+2
ζ̂1,i,t ζ̂2,i,t

)

σ̂N,T

(
N−1

N∑
i=1

ω̂−2
u.ν,i

(
T−2

T∑
t=Ki+2

ζ̂2
2,i,t

))1/2
.

The group mean tests are defined as follows:
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(iii) Group mean tests (nonparametric corrections)

group mean ρ-test : N−1/2
N∑

i=1

(
T−1 T∑

t=2
ûi,t−1�ûi,t − ψi

)
(

T−2
T∑

t=2
û2

i,t−1

)

group mean t-test : N−1/2
N∑

i=1

(
T−1 T∑

t=2
ûi,t−1�ûi,t − ψi

)

ω̂υ,i

(
T−2

T∑
t=2

û2
i,t−1

)1/2

(iv) Group mean tests (parametric corrections)

group mean t-test – parametrically corrected: N−1/2
N∑

i=1

(
T−1 T∑

t=Ki+2
ζ̂1,i,t ζ̂2,i,t

)

σ̂θ ,i

(
T−2

T∑
t=Ki+2

ζ̂2
2,i,t

)1/2
.

The mean and variance correction terms (for large N and T) for each of these seven
tests depend upon the deterministic specification considered, as well as upon the
dimension of the xi,t vector. Once recentered and scaled by the appropriate mean
and variance corrections, the standardized statistics tend in the limit to the N(0, 1)
density (under sequential convergence, T →∞, N →∞). Hlouskova and Wagner
(2008) contains a large set of finite sample and asymptotic correction factors for
up to 12 regressors.

13.3.1.2 Some general remarks

It is worth re-emphasizing that the testing principles derived earlier for unit root
tests in panels carry over in direct ways to the testing for cointegration, with the
obvious (but by no means trivial) embellishments of endogeneity correction, and
the need for methods that estimate the cointegrating vector efficiently and consis-
tently when required. A class of tests due to Kao (1999) is constructed under the
same general framework as described above for the Pedroni tests, while Wester-
lund (2005) develops two simple nonparametric tests, one against a homogeneous
alternative whilst the other is a group mean test against a heterogeneous stationary
alternative.

Wagner and Hlouskova (2007), in a companion study to Hlouskova and Wagner
(2006), report the results of an extensive simulation exercise, one part of which
is devoted to looking at the behavior of the Pedroni and Westerlund tests. The
study explores the size and power properties of the tests under the baseline case
where cross-sectional independence is imposed in the DGP, but also reports results
when cross-sectional independence is violated both via a correlation structure, as
described in section 13.2.2.1 (or a slight modification, where the correlation matrix
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has geometrically declining weights – that is, the (i, j)th element of the matrix � is

given by ω
|i−j|

) and where there is also cross-unit cointegration.
They report that, among the seven Pedroni single-equation tests for the null

hypothesis of no cointegration, the two parametric tests (based on estimating ADF
regressions) are the ones that have the best size properties. The remaining five
are severely undersized and also have low power, especially for small values of T .
The authors conjecture that this may be due to the use of asymptotic correction
terms (used to standardize the test statistics) when finite sample correction terms
or bootstrapped values may be more beneficial.

However, the conservative properties of the parametric tests also imply that these
are the ones least affected by the presence of short-run cross-sectional correlation or
cross-unit cointegration of the form considered by Wagner and Hlouskova (2007).
Systems tests for cointegration, discussed in section 13.3.2, are in fact outperformed
by Pedroni-type tests (although the latter are not applicable in the presence of
multiple cointegrating vectors). There is a tendency to overestimate the rank of
the cointegrating space (that is, the number of cointegrating vectors), and size and
power distortions occur not only when T is relatively small but also when the N-
dimension is large (because of the difficulty with dealing with high-dimensional
systems alluded to earlier.) The use of finite sample corrections or bootstrapped
values is found to be efficacious here, as also reported in earlier work by Banerjee,
Marcellino and Osbat (2004).

Banerjee and Carrion-i-Silvestre (2007) consider extensions of the Pedroni tests to
allow for structural breaks, discussed in the following sub-section, and for structural
breaks and cross-sectional dependence, discussed in section 13.3.1.4 thereafter.
Structural breaks are allowed to occur in both the deterministic components and
the cointegrating vector.

13.3.1.3 Allowing for structural breaks in the Pedroni tests

As mentioned, the considered structural changes may take the form of breaks in
the deterministic processes and/or in the slopes of the cointegrating coefficients β.
In the next sub-section, we also allow for cross-sectional dependence via a factor
structure.

In this sub-section, we focus on the consequences of relaxing the assumption
that the deterministic processes are not broken. Referring back to (13.18), under
the null hypothesis yi,t and xi,t are not cointegrated, that is, ui,t is an I(1) process.
Under the alternative hypothesis, ui,t is stationary but either the deterministic
terms or the cointegrating vectors are time-variant (defined more precisely below),
so that, while cointegration exists under the alternative, it does so in the presence
of instabilities.

That such a situation is not of pure academic interest becomes evident both
from considering the simulation results in Banerjee and Carrion-i-Silvestre (2007),
and from the empirical example presented below, where the presence of structural
breaks is crucial for establishing the presence of cointegration. The presence of
structural breaks severely undermines the size and power properties of the tests for
cointegration, especially when the break occurs in the deterministic trend of the
processes.
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We focus here on the parametric version of the pooled t-test corrected paramet-
rically (given the good properties of this test identified by Wagner and Hlouskova,
2007), but the theoretical and simulation analysis can be repeated for any of the
tests developed by Pedroni discussed above or in the related literature.

Let us begin, as in the previous section, with the following flexible representation
of the model:

yi,t = Di,t + x′i,tβi,t + ui,t (13.18′′)

(1− L)xi,t = νi,t , (13.22′′)

where the further generalization at this stage is to allow for the Di,t and βi,t terms
to be broken, although for the moment the factor structure remains switched off.
For simplicity, the restriction (in relation to the Bai and Carrion-i-Silvestre, 2007,
paper) imposed here is that there is only one break allowed for, and that the breaks
in intercept and/or trend and/or cointegrating coefficients (under the alternative)
all occur at the same, possibly unknown, time period. It is important to note,
however, that the timing of these breaks is allowed to vary across the units. These
breaks are specified in six ways, constituting six different sub-models nested within
(13.18′′).

Start with the general functional form for the deterministic term Di,t :

Di,t = μi + δit + θiDUi,t + γiDT∗i,t ,
where:

DUi,t = 0 ∀t ≤ Tb,i

= 1 ∀t > Tb,i,

and:

DT∗i,t = 0 ∀t ≤ Tb,i

= (t − Tb,i) ∀t > Tb,i.

Note that Tb,i denotes the time of the break for the ith unit and λi = Tb,i
T , which

is the fraction of the sample at which the break occurs in the ith unit, remains
constant as T → ∞ and belongs to a closed sub-set of (0,1). The time-varying
cointegrating vector is specified as a function of time so that:

βi,t = βi + bi ·DUi,t ,

where DUi,t is as defined above.
With the allowed breaks, at least six different model specifications may be con-

sidered and we list these below. The list is not exhaustive, but probably includes
the most relevant specifications, especially for the empirical applications that we
would have in mind.

Model 1: Constant term with a change in intercept but stable cointegrating vector:

yi,t = μi + θiDUi,t + x′i,tβi + ui,t . (13.24)
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Model 2: Time trend with a change in intercept but stable cointegrating vector:

yi,t = μi + δit + θiDUi,t + x′i,tβi + ui,t . (13.25)

Model 3: Time trend with change in both intercept and trend but stable cointegrat-
ing vector:

yi,t = μi + δit + θiDUi,t + γiDT∗i,t + x′i,tβi + ui,t . (13.26)

Model 4: Constant term with change in both intercept and changing cointegrating
vector:

yi,t = μi + δit + θiDUi,t + x′i,tβi,t + ui,t . (13.27)

Model 5: Time trend with change in intercept and changing cointegrating vector
(the slope of the trend does not change):

yi,t = μi + δit + θiDUi,t + x′i,tβi + ui,t . (13.28)

Model 6: The intercept, the trend slope and the cointegrating vector all change:

yi,t = μi + δit + θiDUi,t + γiDT∗i,t + x′i,tβi,t + ui,t . (13.29)

Under any of these specifications, Banerjee and Carrion-i-Silvestre (2007) propose
methods for testing the null hypothesis of no cointegration against the alternative
hypothesis of cointegration, with corresponding breaks.

The Banerjee and Carrion-i-Silvestre (2007) proposal is conceptually extremely
simple. The analysis may be specialized to the case where the λi (break fractions)
are assumed to be known but, since this is perhaps not a likely scenario, we present
the more general analysis where the break dates are assumed to be unknown. The
tests for cointegration in panels with structural breaks are based on time series
cointegration tests developed by Gregory and Hansen (1996) and the panel cointe-
gration tests of Pedroni (1999, 2004) discussed above. Testing entails several steps.
First, one of the models (depending upon the precise empirical motivation) given
in (13.24)–(13.29) above is estimated by OLS for each unit i of the panel. Since this
requires us to specify the break fraction λi, and we assume here that that break
dates are unknown, the models must be estimated for each unit for every possible
choice of break fraction within a bounded interval, taken here to be the interval
%=[0.15, 0.85]. This gives rise to a set of ADF regressions, derived from the
particular choice of λi.

Next, for a given choice of λi, and for a particular choice of model, residuals
ûi,t (λi) are extracted for each unit i. These residuals are then used to estimate the
augmented Dickey–Fuller-type regression given by:

�ûi,t (λi) = ρiûi,t−1(λi)+
k∑

j=1

φi,j�ûi,t−j(λi)+ εi,t .

Since under the null hypothesis ρi = 0 ∀ i, the next step is to compute tρi=0(λi) for
each of these ADF regressions and to take as the estimate of the break-point/fraction
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for the ith unit the fraction which minimizes the sequence of the individual
t-statistics. That is, for unit i,

T̂b,i = arg min
λi∈[0.15,0.85]

tρ̂i
(λi).

The limiting distribution of infλi∈[0.15,0.85] tρ̂i
(λi) is shown by Gregory and Hansen

(1996) not to depend on the break fraction parameters and it is for this reason that
the minimization is undertaken over the sequence of break fractions in unit i. The
procedure is repeated for all units i, leading to a sequence of “estimated” break
fractions for the N units, denoted in vector notation as λ̂ = (λ̂1, λ̂2, . . . , λ̂N )

′.
Finally, the pooled test (in the spirit of Pedroni, 1999, 2004), which allows for

breaks under the alternative hypothesis, is given by:

N−1/2Zt̂N,T
(λ̂) = N−1/2∑N

i=1
tρ̂i

(λ̂i).

The asymptotic distribution of N−1/2Zt̂N,T
(λ̂) is given by the theorem below. It

is important to note that in this framework (apart from the restriction to cross-
sectional independence, which is lifted in the following sub-section) a high degree
of heterogeneity is allowed across the units, since the cointegrating vector, the
short-run dynamics and the break date are all allowed to differ among units. In
the spirit of much of this literature, and in particular of Pedroni (1999, 2004),
the panel test statistics are shown to converge to standard normal distributions
once they have been properly standardized. The correction terms, of course, differ
from those tabulated by Pedroni (2004) since the models are considerably more
complicated due to the presence of breaks at unknown points of time across the
units, but the principles involved remain the same. The following result may now
be shown:

Theorem (Banerjee and Carrion-i-Silvestre, 2007, Theorem 1): Let � and ! denote the
mean and variance for the vector Brownian motion functional:

ϒ
′ =

(
inf
λi∈%

∫ 1

0
Q(λi, s)dQi(λi, s)

[∫ 1

0
Q(λi, s)2ds

]−1

, inf
λi∈%

∫ 1

0
Q(λi, s)dQi(λi, s)×

[∫ 1

0
Q(λi, s)2ds · (1+ ρ(λi)

′D(λi)ρ(λi))

]−1/2 )
.

Q(λi, s) and ρ(λi) are functions of vector Brownian motions and the deterministic compo-
nents and D(λi) depends on the model chosen (see Gregory and Hansen, 1996, for details).
Then, as T →∞, N →∞ in sequence, under the null hypothesis of no cointegration the

asymptotic distribution of the statistic Zt̂N,T
(λ̂) is given by N−1/2Zt̂N,T

(λ̂) − �2
√

N ⇒
N(0,!2).

Several remarks are appropriate in connection with this theorem. First, we may
derive similar theorems for the remaining statistics proposed by Pedroni (1999,
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2004) and would reach very similar characterizations of the limiting densities (with
different correction terms in each case).

Second, the asymptotic moments of the form �2 and !2 can be approximated
by Monte Carlo simulation for all the different models (for all the different tests.)
Banerjee and Carrion-i-Silvestre compute these moments for up to seven stochastic
regressors and T = 1, 000.

Third, since the large sample correction terms (or moments) may perform poorly
in finite samples, the moments of the test statistics for different values of T , specifi-
cally T = {30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 400, 500} are calculated.
To generalize the applicability of these techniques yet further, some response sur-
faces are also computed to approximate the critical values for different values
of T .

13.3.1.4 Allowing for cross-sectional dependence

In some sense it is worth thinking of (13.18)–(13.22) above as the most general
formulation (within the framework adopted by this chapter) of the elements nec-
essary for testing unit roots and cointegration in a panel, and we propose this
structure as one that encompasses almost all of the issues involved. There are diffi-
culties which are not addressed in sufficient detail, for example to do with multiple
cointegrating vectors, but in terms of the three key elements of (i) testing for unit
roots or cointegration, (ii) cross-sectional dependence, and (iii) instability in the
deterministic or stochastic processes, (13.18)–(13.22) offers all the generality that
is needed.

One can regard the problem as a series of switches which, when on, introduce
the technology relevant to the investigator. For example, the switch from a co-
integration to a unit root framework is more or less immediate by abstracting from
the xi,t vector, formally setting its dimension equal to zero. The switch for structural
breaks in the process is given by the vectors (or scalars in the case of a single
break of parameters) (θ

′
i , γ

′
i , b′i)

′, which if set to zero (together or in part) removes
structural instability from the relevant parts of the process.26 Finally, the πi vectors
multiplying the common factors Ft introduce cross-sectional dependence. Cross-
sectional dependence can also be introduced via correlation in the idiosyncratic
components.

This sub-section deals with testing for cointegration when all the remaining
switches (governing dependence and breaks) are, in principle, also on. Thus, in
addition to structural breaks, we reintroduce cross-sectional dependence through
the factors. We still work within the frameworks of Models 1–6 above, but with the
additional element of cross-sectional dependence.

The assumptions governing the ui,t processes in (13.18′) and (13.22′) are as given
in section 13.2.2.2 (as they apply to (13.5)–(13.7)). The factor structure (that is,
equation (13.19)) is now switched on. An important restriction (applying also
to the simpler Pedroni tests described in section 13.3.1.2) should be considered
explicitly concerning the relationship between the ei,t process in (13.19) and νi,t

in (13.22′′).27 If E(ei,t |νi,t ) = 0, the regressors are said to be (strictly) exogenous and
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the limiting distributions of the statistics do not depend on the stochastic regres-
sors as given in Theorem 2 of Banerjee and Carrion-i-Silvestre (2007). However, if,
for example, E(ei,t |νi,t ) = �x′i,tAi(L)+ ξi,t , with Ai(L) being a vector of lag and lead
polynomials and ξi,t ∼ i.i.d. (0,�ξ ), the regressors are no longer strictly exogenous
and modifications must be introduced to account for the endogenous regressors.
The two theorems given below are for the case of exogenous regressors but a simple
modification of the testing procedure is suggested to allow for endogeneity.

Consider the case where the break dates are known, so that for the deterministic
components only the corresponding parameters need to be estimated.

Compute the first difference of (13.18) to give:

�yi,t = �Di,t +�x′i,tδi,t +�F′tπi +�ei,t .

Note that, depending on the specification of the deterministic breaks, the differ-
enced deterministic component �Di,t is a mixture of step functions (in the case of
a break in trend) and impulse dummies (when there is a break in intercept).

�yi = (�yi,2, . . . ,�yi,T )
′

�e
i
= (�ei,2, . . . ,�ei,T )

′

�F = (�F2, . . . ,�FT )
′
((T − 1)× r) matrix of differenced factors for all the units)

πi = (πi,1, . . . ,πi,r )
′
(r × 1 vector of loadings of factors for ith unit)

�xi = (�xi,2, . . . ,�xi,T )
′.

Defining the projection matrix Mi = (IT−1 − �xD
i (�xD

i
′
�xD

i )
−1

�xD
i
′
), with

�xD
i,t = (1,�Di,t ,�x′i,t )

′ and �xD
i = (�xD

i,2, . . . �xD
i,T )

′, we have:

Mi�yi = Mi�Fπ i +Mi�ei
= f π i + zi,

where f = Mi�F and zi = Mi�ei. The projection matrix Mi is sensitive to the speci-
fication of the deterministic terms, as indicated by the index D in the definition of
this matrix; yet Mi�F cannot be sensitive to i if the common factor representation
is to be valid. This is a restriction of the framework used to model dependence, and
can be satisfied in two different ways – (a) either the deterministic components
do not matter, as in the case where differencing leads to impulse dummies, or (b)
where the timing of the breaks in the deterministic terms is the same across the
units. This is relevant in the case of trend breaks, where differencing leads to shifts
in intercept which are relevant for the derivation of the asymptotic distributions
of the statistics, that is, for Models 3 and 6.

Pre-multiplication by this projection matrix serves to isolate the factor compo-
nents, so that we can now proceed to extract the factors. The estimated factors,
denoted f̃ = (f̃2, . . . , f̃T ) are given by

√
T − 1 times the r eigenvectors correspond-

ing to the r largest eigenvalues of the matrix y∗y∗′, where y∗ = (y∗1, . . . , y∗N )
′ and
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y∗i = Mi�yi. Normalizing, f̃ ′ f̃
T−1 = I , we have the estimate of the loading matrix:

�̃ = (π̃1, . . . , π̃N )
′ = y∗′ f̃

T − 1
,

and:
z̃i,t = y∗i,t − f̃ ′t π̃i.

Finally:

ẽi,t =
t∑

s=2

z̃i,s,

which can now be tested for a unit root, via ADF regressions. This is, in effect, the
test for the null of no cointegration, once the common factor structure and the
structurally unstable deterministic processes have been accounted for.

Thus, for each unit i, we estimate the regressions:

�ẽm
i,t
(λi) = αi,0ẽm

i,t−1
(λi)+

k∑
j=1

αi,j�ẽm
i,t−j

(λi)+ εi,t , m = c, τ , γ ,

and test the null hypothesis H0 : αi,0 = 0 either unit by unit or by constructing a
pooled panel test similar in spirit to LLC.

Three sub-cases, m = c, τ , γ , are considered by Banerjee and Carrion-i-Silvestre
(2007), which index the t-tests tm

αi,0
(λi). m = c denotes models which do not include

a time trend and the structural change affects either the intercept and/or the coin-
tegrating vector, m = τ stands for models with a trend where, as before, the break
affects the intercept and/or the cointegrating vector, and m = γ stands for models
where a change in trend is allowed.

The dependence on the break dates (which had been suppressed earlier) is made
clear here. No added estimations are needed at this stage because the breaks are
assumed known. In the more general case, however, the tests will have to be based
on estimates of the break dates for each of these units, as discussed for the general-
ization of the Pedroni tests above, but with the further complication of accounting
for cross-sectional dependence. For the models considered, the following result has
been derived.

Theorem (Banerjee and Carrion-i-Silvestre, 2007, Theorem 2): Under the null hypothesis
that ρi = ϕi − 1 = 0:

(a) tc
αi,0

(λi)⇒
1
2 (Wi(1)2−1)(∫ 1
0 Wi(s)2ds

)1/2

(b) tταi,0
(λi)⇒ −1

2

(∫ 1
0 Vi(s)

2ds
)−1/2

where Vi(s) = Wi(s)− sWi(1)

(c) tγαi,0
(λi)⇒ −1

2

(
λ

2 ∫ 1
0 Vi(b1)

2db1 +
(
1− λ

2
)) ∫ 1

0 Vi(b2)
2db2

where Vi(bj) = Wi(bj) − bjWi(1), j = 1, 2 are two independent detrended
Brownian motion processes.
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Moreover, if we assume for the moment that there is only one factor, then the
estimated factor F̃t can also be tested for a unit root using an ADF regression of the
form:

�F̃m
t (λi) = δ0F̃m

t−1(λi)+
k∑

j=1

δj�F̃m
t−j(λi)+ ut .

Then, for cases where there is no break in trend:

(d) tδ0
⇒

∫ 1
0 Wd(s)dWd(s)(∫ 1
0 Wd(s)2ds

)1/2

where Wd
(s) denotes a detrended Brownian motion. However, allowing for a

change in trend leads to dependence on the break fraction, such that:

(e) tδ0
(λ)⇒

∫ 1
0 Wd(s,λ)dWd(s,λ)(∫ 1

0 Wd(s,λ)2ds
)1/2 .

It is key to note the following features of the results:

(i) The densities derived above show no dependence on the stochastic regressors
(that is, the xi,t processes). This follows from assuming orthogonality of the
stochastic regressors to the factors and exogeneity with respect to the idiosyn-
cratic errors. It may be shown that this implies that the above results also hold
in cases where breaks in the cointegrating vector occur.

(ii) The limiting distributions, as long as a change in trend is not involved, do not
depend on the break dates. This implies that, in principle, multiple changes
in constants and slopes of the cointegrating vectors are allowed to occur.
Heterogeneous break dates are allowed, and the issue of break dates being
known or unknown is no longer relevant.

(iii) The situation changes substantially when a break in trend is allowed. The break
fraction is important and thus must be estimated if not known. Moreover,
recalling the discussion above, for the factor structure to be preserved, we need
the breaks to occur at the same time across the units, so that the projection
matrix M is not indexed by i. Thus trend breaks, if they occur, must have the
same λ in all the units

(iv) Finally, for the case of several common factors, that is, r > 1, variations of the
MQ tests proposed by Bai and Ng (2004) can be used and are subject to the
same remarks as above. Models that do not allow for changes in trend show no
dependence either on the stochastic regressors or, more importantly, on the
timing of the breaks. Models that allow for a change in trend lead to statistics
that depend upon the common break date.

The pooled test statistics are given by:

N−1/2Zc
tNT

, N−1/2Zτ
tNT

and N−1/2Zγ

tNT
,
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where:

Zm
tNT

=
N∑

i=1
tm
αi,0

; m = c, τ

Zγ

tNT
(λ) =

N∑
i=1

tγαi,0
(λ),

and, as T →∞, N →∞ in sequence,

N−1/2Zm
tNT

−√N�
m
2 ⇒ N(0,!m

2
), m = c, τ

N−1/2Zγ

tNT
(λ)−√N�

m
2 (λ)⇒ N

(
0,!m

2
(λ)
)
.

The moments for the pooled tests when m = c, τ are the same as those derived by
Bai and Ng (2004), while for m = γ , the moments (which depend on the break
fractions) are presented by Banerjee and Carrion-i-Silvestre (2007).

The analysis described above generalizes both the results of Bai and Carrion-
i-Silvestre (2007) and Bai and Ng (2004) and also of Pedroni (1999, 2004). We
have proposed here an encompassing framework that allows investigators to study
dependence and breaks within the context of testing for cointegration and unit
roots in macro-panels.

Two further extensions may be considered to allow exogenous regressors and for
unknown break dates. The former is relatively straightforward and uses dynamic
OLS (D-OLS) regressions to extract the residuals to be tested for integration. The
methods are as rehearsed in section 13.3.2, albeit for the case of systems estimators
without breaks, but no conceptual novelties are involved. It is shown by Banerjee
and Carrion-i-Silvestre (2007) that using D-OLS leads to the asymptotic distribu-
tions being the same as those given above, even in the presence of endogeneity of
regressors.

The case of unknown break dates is somewhat more complicated but relies on
consistent estimation of the break fractions, so that wherever knowledge of the
break date is necessary (as in the case where there are changes in trend) the true
break date can be replaced by a consistent estimate. Since the estimation algorithms
must allow for the breaks to occur at every point in time (within the closed interval),
the densities depend on computing the infimum of the standardized t-statistics
and are therefore non-standard. The critical values for this case are also given by
Banerjee and Carrion-i-Silvestre (2007).

13.3.1.5 Empirical illustration with exchange rate pass-through in the euro-area

This sub-section is based on material from Banerjee and Carrion-i-Silvestre (2007)
and de Bandt, Banerjee and Kozluk (2008) and provides an illustration of single-
equation panel cointegration techniques when both cross-sectional dependence
and structural breaks are allowed to be present.

Prominent in the exchange rate pass-through literature are the papers by Campa
and González-Minguez (2006) (henceforth CM), Campa, Goldberg and González-
Minguez (2005) (henceforth CGM), and Frankel, Parsley and Wei (2005), inter alia,
who have investigated the issue of exchange rate pass-through (ERPT) of foreign to
domestic prices – that is, how changes in prices of imported goods are transmitted
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to the domestic market in the face of exchange rate fluctuations (say, relative to
the dollar if foreign prices are denominated in dollars) and pricing strategies of
the exporters in the foreign countries. Studies of ERPT have been conducted both
for the United States and for countries of the euro-area to study the importance of
institutional arrangements (such as the inauguration of the euro-area) in generating
responses to exchange rate institutions and changes.

An important feature missing from the discussion is a connection between the
theoretical arguments surrounding the key determinants of pass-through, and the
inappropriate techniques used to estimate equations measuring import or export
exchange rate pass-through. For example, while almost all the theories contain a
long-run or steady-state relationship in the levels of a measure of import unit values
(in domestic currency), the exchange rate (relating the domestic to the numeraire
currency) and a measure of foreign prices (unit values in the numeraire currency,
typically US dollars), this long-run relationship is routinely disregarded in most of
the empirical implementations.

Since there is substantial consensus in the literature that the time series being
studied are integrated variables, one way of defining the long run is in the sense of
Engle and Granger (1987) (henceforth EG), where it is given by the cointegrating
relationship. A reason often given for ignoring this long-run relationship, and
substituting it by an ad hoc measure, is a failure to find evidence for cointegration
in the data. We argue that a more satisfactory approach is to look for the long-
run relationship using more appropriate and powerful methods, such as those
which allow for changes in the long-run or use more powerful panel data methods.
In doing so, it is also important to allow for breaks in the long-run theoretical
relationship so as to take due account of potential changes in pass-through rates
in response to changes in financial regimes, such as the introduction of the euro
in January 1999.

Exchange rate pass-through into import prices

By definition, import prices for any country i and type of good j, MPi,j
t , are a

transformation of the export prices of a country’s trading partners, XPi,j
t , using the

bilateral exchange rate ERt (say with respect to the dollar, if prices are denominated
in dollars). Thus dropping superscripts i, j for clarity:

MPt = ERt ×XPt .

In logarithms (depicted in lower case):

mpt = ert + xpt .

If the export price consists of the exporters marginal cost and a mark-up:

XPt = FMCt × FMKUPt ,

we have, in logarithms, by substituting for xpt :

mpt = ert + fmct + fmkupt .
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The industrial organization literature offers explanations for why the effect of the
change in ert on mpt may differ from one (with typically less than full pass-through,
where the latter is defined as pass-through equal to one), using determinants of
the mark-up such as competitive conditions among exporters in the destination
markets. Mark-up responsiveness depends on the market share of domestic pro-
ducers relative to foreign producers, the form of competition that takes place in
the market for the industry, and the extent of price discrimination. Other factors
affecting pass-through are the currency denomination of exports and the structure
and importance of intermediate goods markets.

For example, the empirical set-up of CGM is based on assuming unity translation
of exchange rate movements. If pass-through is complete (for example, in the case
of producer currency pricing), and the mark-ups of producers do not fluctuate in
response to fluctuations of the exchange rates, this leads to a pure currency trans-
lation. At the other extreme, the exporter can decide not to vary the prices in the
destination country currency (local currency pricing) and absorb the fluctuations
within the mark-up. Thus, mark-ups in an industry are assumed to consist of a
component specific to the type of good, independent of the exchange rate, and a
reaction to exchange rate movements:

fmkupt = a+#ert .

It is also important to consider effects working through the marginal cost. These are
a function of demand conditions in the importing country, denoted yt ; marginal
costs of production in the exporting country (labor wages in domestic currency),
denoted fwt ; and commodity prices denominated in foreign currency, fcpt :

fmct = coyt + c1fwt + c2ert + c3fcpt .

We therefore have:

mpt = a+ (1+#+ c2)ert + c0yt + c1fwt + c3fcpt + εt

where the coefficient b ≡ (1+#+ c2) on the exchange rate ert is the pass-through
elasticity and εt is a stochastic error term. In the CGM “integrated world market”
specification, c0yt + c1fwt + c3fcpt is independent of the exchange rate. It is called
the opportunity cost of allocating those same goods to other customers and is
reflected in the world price of the product fpt in the world currency (here taken to
be the US dollar). Thus the final pass-through equation can be rewritten as follows:

mpt = a+ bert + cfpt + εt ,

which gives the long-run relation between the import price, exchange rate and a
measure of foreign price.

Testing for ERPT
Both economic theory and relevant tests lead us to think of each of the series
(import price, exchange rate and world price) as being characterized by a unit root.
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However, despite the underlying levels equation described as the pass-through
equation above, CM are not able to reject the null hypothesis of the non-existence
of a cointegrating relationship among the three series. This implies that no evi-
dence can be found in favor of an Engle–Granger long-run relationship among the
three series, and thus of an estimate of ERPT in this sense. Hence, they proceed
by estimating the long-run equation above in first differences (with some dynamic
augmentation):

�mpt = a+
4∑

k=0

bk�ert−k+
4∑

k=0

ck�fpt−k + εt ,

for industrial sector i in country j, where superscripts have been omitted for clar-
ity. Since CM do not find evidence of a long-run relationship in the EG sense,
they propose their own working definition of the long run. They define the co-

efficient bk and the sum of coefficients
∑4

k=0 bk as the short-run and long-run
ERPT respectively.

An alternative route, based on retaining use of the original EG formulation
whilst not losing power to look at the long run, is to use the panel cointegration
technology developed in this chapter, where for each (i, j) pair there are roughly
110–20 observations. Given that we have ten countries and nine industrial sectors,
a panel-based test could use up to approximately 9× 10× 110 observations).

The number of observations in the panel is dependent on our need to use a
balanced panel. In order to obtain the longest time dimension (that is, from 1995),
three countries, Austria, Finland and Portugal, need to be deleted from the whole
sample since we do not have observations before 1996 for these countries. In order
to maximize the cross-section dimension, however, so that no country is dropped,
our sample needs to start in 1996:1 and end in 2004:12. The estimation results
reported below are for this choice of the sample since fewer observations are lost
under this configuration and, by allowing for heterogeneity, we should in principle
obtain a far clearer idea of the common trends underlying the series and hence of
the long run. In the spirit of the discussion above, any such estimation procedure
in panels would of course need to allow for structural change. We look at these
issues in turn after a brief consideration of the data.

Data
An unbalanced sample of 1995–2005 from Eurostat is available. The construction
of the variables follows CM, and is described in Appendix A. The indicator we
use for import prices, the index of import unit values (IUV), has a series of caveats
associated with their use but we are constrained in our investigations by the quality
of the publicly available data.

It is also important to support our claim that there are a number of reasons why
we expect there may be a change in the long-run ERPT within our sample. First,
on January 1, 1999, 11 European countries fixed their exchange rates by adopting
the euro. Greece failed to fulfill the Maastricht Treaty criteria, and therefore joined
two years later, effective January 1, 2001. This constituted a change in monetary
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policy, especially for countries that previously had less credible policy regimes.
Especially in countries with previously rather less successful monetary policy, the
perceived stabilization of monetary policy may well have induced the producers
to change their pricing strategies and would thus be expected to have an influence
on the long-run ERPT. Moreover, the adoption of a common currency has changed
competitive conditions by increasing the share of goods denominated in the (new)
domestic currency. Finally, virtually all the currencies were depreciating against the
US dollar in the period 1995–2000, and especially since 1996. Thereafter, following
a short period of a stable euro–dollar exchange rate, the euro started appreciating
till the end of our sample. This asymmetry of exchange rate developments may
have different implications for ERPT.

Panel cointegration tests
There would essentially be three ways of proceeding in order to construct pan-
els from the datasets – (1) creating country panels of industry cross-sections, (2)
industry panels with country cross-sections, and (3) a pooled panel in which every
country and industry combination constitutes a separate unit. In search of the
existence of a cointegrating relationship in the series we try to maximize the dimen-
sions of our panel, and thus will focus on (3). Results for (1) and (2) are available
from us upon request.

In Table 13.9 we present the results of the modified Pedroni tests due to Banerjee
and Carrion-i-Silvestre (2007), allowing for structural breaks (as described in section
13.3.1.3) and allowing for both structural change and cross-sectional dependence
(as described in section 13.3.1.4). As noted earlier, results are presented for the
longest available panel which includes all countries. Throughout the analysis it
is assumed that in each cross-section member at most one break occurs, with,
depending upon the model, this break occurring at the same time in all breaking
components (intercept, trend, cointegrating vector).

The panel headed “Cross-sectionally independent” reports the results from the
modified Pedroni (pooled panel t-) tests on the idiosyncratic components under
the assumption that these are cross-sectionally independent. The results for all
six model specifications concerning the deterministic components as outlined in
section 13.3.1.3 – for all of which heterogeneous break dates are permitted – are
reported in this panel.

The panel headed “Cross-sectionally dependent” provides the results for the tests
of Banerjee and Carrion-i-Silvestre (2007), where cross-sectional dependence is also
allowed. The test results are again reported for the idiosyncratic components and
we display the results for both cross-sectionally homogeneous and heterogeneous
break dates. For Models 3 and 6, we are restricted to imposing a cross-sectionally
homogeneous (but unknown) break point. The remaining models allow for both
heterogeneous and homogeneous breaks. The maximum number of factors allowed
is six, the column labeled r̂ provides estimates of the number of common factors,
and under the heading r̂1 the number of integrated common trends detected from
the MQ statistic is also reported. The break dates detected by the cross-sectionally
dependent test, when homogeneous breaks are imposed, are also given.
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Table 13.9 Banerjee and Carrion-i-Silvestre (2007) cointegration test results

Model Cross-sectionally
independent

Panel test
t-ratio

Cross-sectionally dependent

Homogeneous break dates Heterogeneous break dates

Idiosyn. Break date r̂ r̂1 Idiosyn. r̂ r̂1

1 −22.596 −5.009 1999.02 6 1 −2.744 6 2
2 −26.500 −6.409 2002.11 6 1 −2.933 6 1
3 −25.018 −5.816 2002.03 6 1
4 −22.523 −5.201 2000.03 6 1 −3.060 6 3
5 −24.677 −6.189 2002.08 6 1 −2.239 6 2
6 −23.498 −6.353 2002.10 6 1

It is clear that in each case the tests overwhelmingly reject the null hypothesis of
no cointegration. The reported breaks all occur in the neighborhood of the intro-
duction of the euro in 1999 or the beginning of its strong appreciation in 2002. A
refinement of our tests to allow for multiple breaks would perhaps allow us to detect
both these “regime” changes, although it may be argued that the time dimension
of the panel will not permit such detailed discrimination. Finally, if one were to
think of Model 4 as the most plausible choice, there is very clear evidence, under
every configuration, for a long-run relationship with a structural break in 2000.

There are a number of further issues that may be considered, including the
magnitude of the pass-through coefficient and its change in response to the new
monetary arrangements (or exchange rate movements). On the whole, allowing
for a structural break in the relationship, we find that ERPT generally increases in
the vicinity of the introduction of the euro. This may be the effect of stabilization
in the monetary regime, leading to less noisy exchange rate behavior. Thus actual
changes in the exchange rate may be perceived as more permanent and based on
macro-fundamentals and exporters may therefore be more willing to pass these
on to prices. An alternative explanation relates to the effect of the appreciation of
the euro. In a world with a depreciating euro, exporters to the euro-area would be
expected to hold back from passing through exchange rate changes to the price
(since this would lead to their becoming more uncompetitive relative to the local
producers in the euro-area). An appreciating currency means, however, that dollar
prices become cheaper in the intra-euro market, leading producers to shift away
from local currency pricing. Passing through more of their dollar price, to maintain
their revenue in dollars, would still not erode their ability to keep an edge on the
market and compete with local products. This asymmetrical response to currency
appreciation versus its depreciation could explain the higher pass-through follow-
ing the likely changes in regime identified above. All these results are tabulated in
great detail in de Bandt, Banerjee and Kozluk (2008) and are also available from us
on request.

Having studied testing for cointegration in some detail, we move next to a con-
sideration of methods of estimating cointegrating vectors, both in single equations
and in systems.
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13.3.1.6 Single equation estimation of the cointegrating vector

In this sub-section we consider estimation of the cointegrating vector β for data
given by (13.18′) and (13.22′), that is, when abstracting from the presence of cross-
sectional dependence via factors and without structural breaks in the deterministic
component. This is a topic of further research, as is the study of systems estimators
of cointegrating vectors in a similar set-up (see section 13.3.2).

Note that in this case (that is, without cross-sectional dependence or breaks)
we have already imposed the assumption that the cointegrating vectors are cross-
sectionally identical, that is, βi = β for all i = 1, . . . , N. This restriction appears
reasonable (although it may be generalized) since in order to gain by resorting to
panel methods some of the coefficients should be considered identical for all cross-
section members. Given that cointegration is the prime focus, it appears natural to
assume identical cointegrating relationships and to allow for heterogeneity in the
other characteristics of the DGP.

It has to be noted, however, that, as distinct from the pure time series case, the
pooled OLS estimator of β in (13.18′) also converges to a well-defined limit when
the cointegrating vectors are not cross-sectionally identical and, more interestingly,
converges to a well-defined limit even in the spurious regression case. This limit is
given by the so called average long-run regression coefficient (for a detailed discussion
and the precise assumptions, see Theorems 4 and 5 of Phillips and Moon, 1999). As
in the time series case, the limiting distribution of the OLS estimator depends upon
so called second-order bias terms, which necessitates the use of modified estima-
tion methods to result in mean zero mixed normal limiting distributions, which are
required, for example, to perform valid inference. The literature has, similar to the
time series case, proposed two modifications of the OLS estimator to take account
of second-order bias. These are given by fully modified OLS (FM-OLS) estimation,
as proposed by Phillips and Hansen (1990), and D-OLS estimation, introduced in
Saikkonen (1991) (to which we have already referred in section 13.3.1.4). Further-
more, similar to the cointegration tests, estimation can be performed in a pooled
or group mean fashion.

For simplicity, we focus in the description of the estimation procedures on the
case m = 2, that is, the case including only fixed effects and note that the other
two cases for m – no deterministic components or both fixed effects and individual
specific linear trends – can be handled analogously. If m = 1 the original observa-
tions are used as inputs in the procedure and if m = 3 the variables are individually

demeaned and detrended first. Let ȳi = 1
N
∑T

t=1 yi,t , x̄i = 1
N
∑T

t=1 xi,t and denote
the cross-sectionally demeaned variables by ỹi,t = yi,t − ȳi and x̃i,t = xi,t − x̄i.

28

Fully Modified OLS

Estimation of the cointegrating vector in the panel context by using FM-OLS esti-
mation is discussed in Phillips and Moon (1999), Kao and Chiang (2000) and
Pedroni (2000). In a first step obtain estimators �̂uv,i, �̂v,i and %̂v,i from the

residuals (ûi,t , v′i,t )
′. The residuals can be obtained by either individual specific

OLS estimation or by using the least squares dummy variable (LSDV) estimator
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in (13.18′), which puts the homogeneity restriction on the cointegrating rela-
tionship in place. Next, defining the endogeneity corrected variable ỹ+i,t = ỹi,t −
�̂uv,i�̂

−1
v,i �x̃i,t leads to the following pooled FM-OLS estimator:

β̂FM =
⎛⎝ N∑

i=1

T∑
t=1

x̃i,t x̃
′
i,t

⎞⎠−1⎛⎝ N∑
i=1

T∑
t=1

(
x̃i,t ỹ

+
i,t −

(
%̂
+
uv,i

)′)⎞⎠ ,

where %
+
uv,i = %̂uv,i − �̂uv,i�̂

−1
v,i %̂v,i. Phillips and Moon (1999) use in their for-

mulation of the FM-OLS estimator averaged correction factors, for example, �̂v =
1
N
∑N

i=1 �̂v,i and similarly for the other required matrices. The limiting distribution
of the FM-OLS estimator (see, for example, Theorem 9 of Phillips and Moon, 1999)
is given by:

N1/2T
(
β̂FM − β

)
⇒ N

(
0, 6ω2

u.v�
−1
v

)
,

with ω
2
u.v = lim

N→∞
1
N
∑N

i=1 ω
2
u.v,i and �v = lim

N→∞
1
N
∑N

i=1 �v,i, with these limits (in

most papers implicitly) assumed to exist.29 For the case m = 0 (without determin-
istic components), the multiplicative factor 6 in the variance term of the limiting
distribution has to be replaced by 2. Also note that the limiting covariance matrix
is composed of cross-sectional averages.

Standard, up to the factor 2 or 6 depending upon the deterministic specifica-
tion considered, normally distributed pooled FM-OLS estimators are also easily
constructed. These are popular due to their implementation in freely available
software. Define the following:

ỹ0
i,t = ω̂

−1
u.v,iỹ

+
i,t −

[(
ω̂
−1
u.v,iIdim(x) − �̂

−1/2
v,i

)
x̃i,t

]′
β̂

x̃0
i,t = �̂

−1/2
v,i x̃i,t

%̂
0
uv,i = ω̂

−1
u.v,i%̂

+
uv,i�̂

−1/2
v,i ,

where Idim(x) denotes the identity matrix with dimensional equal to the number
of regressors xi,t . and β̂ denotes the LSDV estimator. Then, the normalized FM-OLS
estimator is given by:

β̂
0
FM =

⎛⎝ N∑
i=1

T∑
t=1

x̃0
i,t x̃

0′
i,t

⎞⎠−1⎛⎝ N∑
i=1

T∑
t=1

(
x̃0

i,t ỹ
0
i,t −

(
%̂

0
uv,i

)′)⎞⎠ ,

for which it holds that N1/2T
(
β̂

0
FM − β

)
⇒ N

(
0, 6Idim(x)

)
, where again the factor

6 has to be replaced by the factor 2 in the case of no deterministic components.
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Furthermore, group mean FM-OLS estimation is considered in Pedroni (2000),
with the estimator in its un-normalized form simply being given by the cross-
sectional average of the individual FM-OLS estimators:

β̂
G
FM = 1

N

N∑
i=1

⎛⎜⎝
⎛⎝ T∑

t=1

x̃i,t x̃′i,t

⎞⎠−1⎛⎝ T∑
t=1

x̃i,t ỹi,t −
(
%̂
+
uv,i

)′⎞⎠
⎞⎟⎠.

Dynamic OLS

We now turn to dynamic OLS estimation of the cointegrating relationship as dis-
cussed in Kao and Chiang (2000) and Mark and Sul (2003). The idea of D-OLS
estimation is to correct for the correlation between vi,t and ui,t (see equations

(13.18′)–(13.22′)) by including leads and lags of �xi,t as additional regressors in
the cointegrating regression. As in the time series case (in general), the number of
leads and lags has to be increased with the (time dimension of the) sample size at a
suitable rate to induce the noise process in the lead and lag augmented regression
and vi,t to be uncorrelated asymptotically. Thus, considering again the case m = 2,
let the augmented cointegrating regression be given by:

ỹi,t = x̃
′
i,tβ +

pi∑
j=−pi

�x̃
′
i,t−jγi,j + u∗it

= x̃
′
i,tβ + Z̃

′
i,tγi + u∗it ,

where the last equation defines Z̃i,t and γi. The pooled D-OLS estimator for

β is then obtained from OLS estimation of the above equations. Let Q̃i,t =[
x̃
′
i,t , 0

′
, . . . , 0

′
, Z̃

′
i,t , 0

′
, . . . , 0

′] ∈ R
2 dim(x)

(
1+∑N

i=1 pi

)
, where the variables Z̃i,t are at

the ith position in the second block of the regressors. Using this notation we arrive
at: ⎡⎢⎢⎢⎢⎣

β̂D
γ̂1
...

γ̂N

⎤⎥⎥⎥⎥⎦ =
⎛⎝ N∑

i=1

T∑
t=1

Q̃i,t Q̃
′
i,t

⎞⎠−1⎛⎝ N∑
i=1

T∑
t=1

Q̃i,t ỹi,t

⎞⎠ .

Mark and Sul (2003) obtain the asymptotic distribution of β̂D, which has a sand-

wich type limit covariance matrix. Denote this as V = lim
N→∞

1
N
∑N

i=1 ω
2
u.v,i�v,i

(again assumed to exist), then it holds that:

N1/2T
(
β̂D − β

)
⇒ N

(
0, 6�−1

v V̄�
−1
v

)
.

Kao and Chiang (2000) discuss a normalized version of the D-OLS estimator that

corresponds to β̂
0
FM . This estimator, β̂0

D say, is obtained when, in the above discus-

sion of the D-OLS estimator, ỹi,t and x̃i,t are replaced by ỹ0
i,t and x̃0

i,t . These changes
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lead to an estimator with a limiting covariance matrix proportional to the identity
matrix.

Pedroni (2001) considers a group mean D-OLS estimator. Denote R̃i,t =
[
x̃
′
i,t , Z̃

′
i,t

]′
and estimate, for each i = 1, . . ., N,

[
β̂D,i
γ̂i

]
=
⎛⎝ N∑

i=1

T∑
t=1

R̃i,t R̃
′
i,t

⎞⎠−1⎛⎝ N∑
i=1

T∑
t=1

R̃i,t ỹi,t

⎞⎠.

Then the group mean D-OLS estimator is given by β̂
G
D = 1

N
∑N

i=1 β̂D,i. The group
mean D-OLS estimator can also be computed in a normalized fashion.

13.3.2 Testing for cointegration and estimation of the cointegrating
vectors in systems

The analysis of multiple cointegrating vectors in panels is still very limited. The
analysis is plagued by problems of arriving at a proper, yet statistically tractable,
formulation of multiple cointegration (since one needs not only to consider the
cointegration possibilities within the units of a panel, but also to identify those
that link across the units of the panel). Estimation and inference are thus hampered
by theoretical difficulties, as well as dimensionality issues, even when the panel
dimensions are large.

Breitung (2005), Groen and Kleibergen (2003) and Larsson, Lyhagen and Löth-
gren (2001) have attempted analysis of this framework under restrictive assump-
tions such as a homogeneous cointegrating space (for the units of the panel) and,
more unrealistically, cross-sectional independence of the units of the panel. Some
of these methods are described in detail below.

If cross-unit cointegration is allowed then, as shown by Banerjee, Marcellino
and Osbat (2004), tests for cointegration in panels (in the presence of multiple co-
integrating vectors) suffer from size distortions and loss of power. Inference on the
full cointegration structure in such situations remains an extremely difficult exer-
cise and much further work is needed to understand the theoretical properties of
feasible estimators and their performance in finite and large samples. For a detailed
simulation study of some of the issues involved, see Wagner and Hlouskova (2007).

The established system methods are panel extensions of vector autoregressive
(VAR) cointegration analysis (see Johansen, 1995). Compared to the single-
equation methods several differences are worth mentioning. First, the systems
approach allows us to test for and model multiple cointegrating relationships.
Second, the cointegrated VAR approach allows for the incorporation of a richer
specification concerning (restricted) deterministic components which are consid-
ered relevant in the applied cointegration literature. Third, specifying a parametric
model incorporates the modeling of the short-run dynamics of the data, which are
treated as nuisance parameters in the single-equation methods.

Given that the system methods are based on VAR estimates, substantial biases
arise with short time series. Thus, for practical applications the time series dimen-
sion has to be sufficiently large, which is also required since the specification of a
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dynamic model necessitates the estimation of a substantial number of parameters.
Clearly, it has to be mentioned that accurate estimation of the long-run variances
for the nonparametric methods requires sufficiently long time series.

Open issues are allowing for a factor structure in the error processes of the
VAR models to allow for cross-sectional dependencies, and considering structural
change in the deterministic components.

Without imposing any cross-sectional homogeneity assumption, the cross-
sectionally independent panel VAR DGP considered is given in error correction
form by:

�Yi,t = C1i + C2it + αiβ
′
iYi,t−1 +

pi∑
j=1

�ij�Yi,t−j +wi,t , (13.30)

with Yi,t = (yi,t , xi,t )
′ ∈ Rm, m = l + 1, C1i, C2i ∈ Rm,αi,βi ∈ Rm×ki with full rank

ki,�ij ∈ Rm×m and wit are cross-sectionally independent m-dimensional white-
noise processes with covariance matrices �i > 0.30 To ensure that all the processes
described by (13.30) are (up to the deterministic components) I(1) processes, the

matrices α
′
i⊥�iβi⊥ have to be invertible, where αi⊥ ∈ Rm×(m−ki),βi⊥ ∈ Rm×(m−ki)

are full rank matrices such that α
′
i⊥αi = 0,β

′
i⊥βi = 0 and �i = Im −

∑pi−1
j=i �ij. One

possible choice is given by αi⊥ = Im−αi(α
′
iαi)

−1
α
′
i and similarly for βi. Under these

assumptions the column space of the matrix βi is the ki-dimensional cointegrating
space of unit i.

In the VAR cointegration literature the following five specifications of the deter-
ministic components are usually discussed. Case 1 is without any deterministic
components. In case 2 restricted intercepts of the form C1i = αiτi are con-
tained in the cointegrating space whereas in case 3 unrestricted intercepts C1i that
induce linear time trends in Yi,t are included. In case 4 unrestricted intercepts and
restricted trend coefficients C2i = αiκi are included, which allows for linear trends
in both the data and the cointegrating relationships. Finally, in case 5 unrestricted
intercepts and trend coefficients are included, which leads to quadratic determin-
istic trends in Yi,t . For a detailed discussion of these specifications concerning the
deterministic variables see Johansen (1995, sec. 5.7). This monograph also includes
a very detailed discussion of the statistical analysis, that is, parameter estimation
via reduced rank regression, testing for the cointegrating rank as well as hypothesis
testing. Therefore we do not include a description of this widely-used method here.

In the following two sub-sections we discuss two approaches, due to Larsson,
Lyhagen and Löthgren (2001) and Breitung (2005), to test for cointegration in panel
VAR models. In common with the single-equation approaches described above,
both these methods put at least the restriction of a cross-sectionally homogeneous
cointegrating space, that is, βi = β, in place. Again the argument in favor of such a
restriction is that in order to apply panel methods fruitfully, some of the coefficients
have to be considered cross-sectionally identical. Since in cointegration analysis the
main focus is on the cointegrating relationships, it is natural to assume identical co-
integrating spaces and allow for individual specific short-run dynamics. This is
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very similar to the analysis relating to single-equation estimators. In panel VAR co-
integration analysis, however, the testing for cointegration and the estimation
steps are much more intertwined than in the single-equation tests discussed above,
for most of which the null hypothesis is that of no cointegration. The two tests to
be discussed differ in this respect, since the test of Larsson, Lyhagen and Löthgren
(2001) does not impose cross-sectional homogeneity in the construction of the test
statistic (but needs this assumption for the derivation of the asymptotic distribution
of the test statistic) whereas the test of Breitung (2005) incorporates this restriction.

13.3.3 Larsson, Lyhagen and Löthgren (2001)

Larsson, Lyhagen and Löthgren (2001) (henceforth LLL) consider testing for co-

integration in the above framework under the assumption that �i = αiβ
′
i = αβ

′ = �

for all i = 1, . . . , N. For some further technical assumptions we refer the reader to
their paper. Note here that their test is based simply on the cross-sectional aver-
age of the Johansen (1995) trace statistic, where the cross-sectional homogeneity
assumption just mentioned is not put in place anywhere in the construction of
their test. However, the asymptotic distribution (under the null hypothesis) of
their test statistic is established only under this assumption (see Assumption 3 and
Theorem 1 of LLL). The null hypothesis of their test is H0 : rk(�) = k and the test
is consistent against the alternative hypothesis H1 : rk(�i) > k for a non-vanishing
fraction of the cross-section members.

The construction of the test statistic is similar to that of IPS and it is given
by a suitably centered and scaled cross-sectional average of the individual trace
statistics. Thus, denote by LRs

i (k, m) the trace statistic for the null hypothesis of a
k-dimensional cointegrating space for cross-section unit i, where the superscript
s = 1, . . . , 5 indicates the specification of the deterministic components. Further,

denote by μ
s
LR(k, m) and σ

2,s
LR (k, m) the expected value and variance of LRs

i (k, m). In
this respect LLL is a most notable but unfortunately underrated exception in the
panel unit root and cointegration literature, insofar as the authors derive, admit-
tedly only for the model without deterministic components and with normally
distributed innovations, the existence of the necessary moments as well as uniform
integrability and Lindeberg-type conditions. These are needed to derive formally
the asymptotic normality of the test statistic.31 Using a sequential limit with first
T →∞ followed by N →∞, it holds that:

LLLs
(k, m) = N−1/2

N∑
i=1

LRs
i (k, m)− μ

s
LR(k, m)

(σ
2,s
LR (k, m))1/2

⇒ N(0, 1). (13.31)

Finite-sample correction factors for the LLL test statistic are given in Hlouskova
and Wagner (2008) for all five mentioned specifications of the deterministic com-
ponents, where we note again that the theoretical result is only derived for the case
without deterministic components and with normally distributed innovations.

LLL do not explicitly consider estimation of the cointegrating space. Given that
their test is based on the assumption of a cross-sectionally identical cointegrating
space, one possibility to obtain an estimate of the cointegrating space is given by the
cross-sectional average of identically normalized individual specific cointegrating
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spaces, for example, normalized as β̂i =
[
Ik, β̂

′
i,2

]′
, which are in any case computed

in the derivation of the test statistic.

13.3.4 Breitung (2005)

Breitung (2005) proposes a two-step estimation and test procedure that extends the
Ahn and Reinsel (1990) and Engle and Yoo (1991) approach from the time series
to the panel case.

Breitung considers the homogeneous cointegration case where, however, only
the cointegrating spaces are assumed to be identical for all cross-section members.
In the first step of his procedure the parameters are estimated individual specifically
(applying the method outlined in Johansen, 1995). This includes the first-step
estimates of βi. In the second step the common cointegrating space β is estimated
in a pooled fashion.

For simplicity we describe the method here for the VAR(1) model excluding any
deterministic component. In the general case lagged differences as well as poten-
tially restricted deterministic components are treated in the usual way by being
concentrated out at the beginning of the procedure. Thus, consider the following:

�Yi,t = αiβ
′
Yi,t−1 +wi,t . (13.32)

Next, define Ti =
(
α
′
i�
−1
i αi

)−1
α
′
i�
−1
i and pre-multiply (13.32) with this quantity

to obtain: (
α
′
i�
−1
i αi

)−1
α
′
i�
−1
i �Yi,t =β

′
Yi,t−1 +

(
α
′
i�
−1
i αi

)−1
α
′
i�
−1
i wi,t

Ti�Yi,t =β
′
Yi,t−1 + Tiwi,t

�Y+i,t =β
′
Yi,t−1 +w+i,t , (13.33)

where the last equation defines the variables with superscript +. Note also that

E[w+i,t (w+i,t )
′ ] =

(
α
′
i�
−1
i αi

)−1
. Next use the normalization β =

[
Ik,β

′
2

]′
and partition

Yit =
[
(Y1

i,t )
′, (Y2

i,t )
′]′with Y1

i,t ∈ Rkand Y2
i,t ∈ Rm−k. Using this notation the above

equation (13.33) can be rewritten as:

�Y+i,t − Y1
i,t−1 = β

′
2Y2

i,t−1 +w+i,t . (13.34)

Breitung suggests estimating (13.34) by pooled OLS using the estimates T̂i =(
α̂
′
i�̂
−1
i α̂i

)−1
α̂
′
i�̂
−1
i based on the individual specific Johansen estimates. Note that,

given that the covariance structure of the errors in (13.34) is known and an esti-
mate is readily available, pooled feasible GLS estimation of (13.34) can also be
performed.

Breitung’s estimation procedure stops here. However, an iterative estimator based
on the above procedure is easily conceived. With the estimated β̂2, all individual-
specific parameters in (13.32) can be re-estimated. Since we have chosen the VAR(1)
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set-up without deterministic components for illustration, these parameters are con-
tained in the matrices αi and �i. Based on the new estimates of αi and �i, equation
(13.34) can be re-estimated. This can be repeated until convergence, according to
some numerical criterion, occurs.

Such an iterative procedure corresponds by and large to the iterative estima-
tor proposed in Larsson and Lyhagen (1999), with the only difference being that

Larsson and Lyhagen propose using β̂2 = 1
N
∑N

i=1 β̂i,2 as the initial estimator.

β̂i,2 denotes as before the (not-normalized coordinates of the) individual specific
Johansen (1995) estimates. Let us note as a side remark that the set-up of Larsson
and Lyhagen (1999) is more general, since these authors consider, in the VAR(1)
case without deterministic components, the specification:⎡⎢⎢⎣

�Y1,t
...

�YN,t

⎤⎥⎥⎦ =
⎡⎢⎢⎣

α11 · · · α1N
...

. . .
...

αN1 · · · αNN

⎤⎥⎥⎦
⎡⎢⎢⎣

β
′

. . .

β
′

⎤⎥⎥⎦
⎡⎢⎢⎣

Y1,t−1
...

YN,t−1

⎤⎥⎥⎦+
⎡⎢⎢⎣

w1,t
...

wN.t

⎤⎥⎥⎦ ,

with a full covariance matrix of the stacked noise process and all necessary assump-
tions such that the joint process is an I(1) process. Thus, Larsson and Lyhagen
(1999) consider a VAR model for the stacked vector of variables, where only the
cointegrating space is restricted to be cross-sectionally identical and where no cross-
unit cointegration occurs (meaning, in the notation of Appendix B, that the B
matrix that collects all cointegrating relationships is block-diagonal).

It is not clear whether such an almost unrestricted VAR model for the stacked
process should really be interpreted as a panel model or as a time series model for
a high-dimensional process with some cross-equation restrictions. Pragmatically,
the loose parameterization implies that the time dimension of the panel has to be
very large compared to the cross-sectional dimension. Similar comments apply to
the work of Groen and Kleibergen (2003), who also consider a very general (panel)
VAR model and consequently present simulation evidence for a bivariate example
for N = 1, 3 and 5 and T = 1,000.

Breitung (2005) shows that his two-step estimator, β̃2 say, is asymptotically
normally distributed in the sequential limit with first T →∞ followed by N →∞:

N1/2Tvec(β̃2 − β2)⇒ N(0,�−1
2 ⊗�α),

where ⊗ denotes the Kronecker product,

�2= lim
N→∞ lim

T→∞E[ 1

NT2

N∑
i=1

T∑
t=1

Y2
i,t−1(Y

2
i,t−1)

′ ]

and �α = lim
N→∞

1
N
∑N

i=1

(
α
′
i�
−1
i αi

)−1
, with these limits, in case of �2 non-singular,

implicitly assumed to exist by Breitung (2005).
Let us now turn to the test for cointegration that Breitung considers, which is

based on Saikkonen (1999). The main difference to the test of LLL discussed above is
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that Breitung incorporates the homogeneity restriction on the cointegrating spaces
in the construction of the test statistics. We continue the discussion for the VAR(1)

model without deterministic components. Denote with γi ∈ Rm×(m−k) full column
rank matrices and consider:

�Yi,t = αiβ
′
Yi,t−1 + γiβ

′
⊥Yi,t−1 +wi,t . (13.35)

Under the null hypothesis of a k-dimensional cointegrating space it holds that
γi = 0 for i = 1, . . ., N and, under the alternative of an m-dimensional cointegrating

space, γi is unrestricted to allow for �i = αiβ
′ +γiβ

′
⊥ of full rank. For test consistency

the alternative has to comprise a non-vanishing fraction of cross-section members.

Pre-multiply (13.35) with α
′
i,⊥ to obtain:

α
′
i,⊥�Yi,t = α

′
i,⊥γiβ

′
⊥Yi,t−1 + α

′
i,⊥wi,t

α
′
i,⊥�Yi,t = φi(β

′
⊥Yi,t−1)+ w̃i,t , (13.36)

where the last equation defines the coefficient matrices and variables. Replacing

α
′
i,⊥ and β⊥ by estimates allows us to estimate equations (13.36) separately for

each cross-section unit by OLS and to construct test statistics for the hypothesis
H0 : φi = 0, i = 1, . . . , N.

Any of the classical testing principles, that is, the likelihood ratio, Wald or
Lagrange multiplier principle, can be used. Breitung discusses the Lagrange multi-
plier test statistic, which has the advantage that it only requires estimation under

the null hypothesis. Denoting by f̂i,t = α̂
′
i,⊥�Yi,t and with ĝi,t = β̂

′
⊥Yi,t , the

Lagrange multiplier test statistic for unit i is given by:

LMi(k, m) = Ttr

⎡⎢⎣ T∑
t=2

f̂i,t ĝ
′
i,t−1

⎛⎝ T∑
t=2

ĝi,t−1ĝ
′
i,t−1

⎞⎠−1 T∑
t=2

ĝi,t−1 f̂
′
i,t

⎛⎝ T∑
t=2

f̂i,t f̂
′
i,t

⎞⎠−1
⎤⎥⎦,

which is sequentially computed for the different values of k = 0, . . . , m.
The panel test statistic is then, as usual, given by the corresponding centered and

scaled cross-sectional average, where we now use again the superscript s to indicate
the dependence upon deterministic components. Under the null hypothesis we
hence arrive at:

Bs
(k, m) = N−1/2

N∑
i=1

LMs
i (k, m)− μ

s
LM (k, m)

(σ
2,s
LM (k, m))1/2

⇒ N(0, 1). (13.37)

The correction factors μ
s
LM (k, m) and σ

2,s
LM (k, m) coincide exactly with those of LLL

above. The method also shares with LLL the limitations concerning the availability
of proper asymptotic theory. Clearly, instead of basing the panel tests upon the
trace statistic, the max statistic of Johansen (1995) could be used as the underlying
time series test statistic in both the LLL and Breitung tests.
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The final substantive section of our chapter is to apply some of the estimation
methods described in this section to the EKC analysis, building on our findings in
section 13.2.4.2.

13.3.5 The environmental Kuznets curve analysis continued

As indicated above, estimation of an equation of the form (13.17) using usual
cointegration methods is troublesome given the presence of nonlinear transforma-
tions of integrated regressors (GDP and its square). Regressions involving nonlinear
transformations of integrated regressors behave differently from the regressors usu-
ally considered and have been studied for the time series case in Chang, Park
and Phillips (2001) and Park and Phillips (1999, 2001). Hong and Wagner (2008a)
develop an FM-OLS estimator for nonlinear cointegrating relationships including
integer powers of integrated regressors as well as specification and cointegration
tests for this set-up. Hong and Wagner (2008b) derive first results for a simple panel
setting by considering a seemingly unrelated nonlinear cointegrating regressions
framework.

Ignoring the problems caused by nonlinear transformations, cross-sectional
dependencies and structural change, and applying the seven tests of Pedroni
(1999, 2004) leads to seemingly overwhelming support for cointegration (with
the detailed results available upon request). Again these findings are in line with
the Lyhagen result that in the presence of common non-stationary components
the unit root null hypothesis is over-rejected, which leads to seemingly strong
support for cointegration. Note that these findings are obtained both when using
the quadratic formulation (13.17) as well as the specification when only GDP is
included in the regression, with the latter specification being subject only to the
cross-sectional dependence and structural change problems.

Given the seemingly “strong evidence for cointegration,” the final step in panel
cointegration analysis is the estimation of relationship (13.17). In Table 13.10 we
present the results for sulphur dioxide emissions when applying the fully modified
OLS estimator discussed in detail in Phillips and Moon (1999), the dynamic OLS
estimator of Mark and Sul (2003) and the two-step estimator of Breitung (2005).
With the exception of the D-OLS estimator, seemingly strong evidence for the
prevalence of an EKC for sulphur dioxide appears, even with plausible turning
points with respect to income. Especially when applying fully modified estima-
tion the turning points are well within the sample. However, these findings should
be treated with some caution, given that the properties of the estimation meth-
ods in the presence of cross-sectional dependence and, in particular, of nonlinear
transformations of integrated regressors are far from fully worked out.

The finding of stationary de-factored GDP allows us to use standard econometric
methods to estimate equation (13.17) with de-factored observations. Table 13.11
shows the results from a variety of specifications, for example, one-way and
two-way fixed effects estimation and equations including the extracted factors
as additional regressors. For none of these specifications is there evidence for
an inverted U-shaped relationship, since the coefficients to income and squared
income are significantly positive.
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Table 13.10 Panel cointegration estimation results for SO2

FM-OLS D-OLS Two-step

Fixed effects

ln yit 5.26 1.35 4.80
(35.65) (6.93) (13.34)

(ln yit )
2 –0.26 −0.01 −0.22

(-28.22) (−0.60) (−10.18)
TP (in $) 24,720 − 54,671

Fixed effects and linear trends

ln yit 4.82 −12.63 4.12
(34.45) (-68.80) (11.74)

(ln yit )
2 −0.23 0.86 -0.18

(−26.35) (16.12) (−8.34)
TP (in $) 35,534 − 93,381

Notes: Estimation results obtained with the panel cointegration estima-
tion methods described in sections 13.3.1–4. The upper panel contains
the results with only fixed effects included in the regression and the
lower panel reports the results with both fixed effects and linear trends
included. Bold indicates significance of the estimated coefficients at the
5% level and the numbers in brackets are the t-values. TP denotes the
implied turning point.

Table 13.11 Estimation results with de-factored observations

DF-1 DF-2

One-way Two-way Incl. Ft One-way Two-way Incl. Ft

ln yit 0.86 0.79 0.78 0.92 0.66 0.69
(14.75) (13.90) (13.47) (14.86) (10.80) (11.30)

(ln yit )
2 0.48 0.44 0.38 0.55 0.10 0.22

(12.24) (11.30) (9.60) (6.34) (1.09) (2.52)

Notes: One-way refers to equations including fixed individual effects, Two-way refers
to equations including fixed individual and time effects and Incl. Ft refers to equations
including fixed individual effects and the estimated common factors of both SO2 emis-
sions and GDP. DF-1 indicates that the common factors are obtained from the model
without linear trends and DF-2 indicates that the common factors are obtained from
the model with linear trends. Bold indicates significance of the estimated coefficients
at the 5% level and the numbers in brackets are the t-values.

The estimation results just mentioned are robust in a number of ways. First, they
are qualitatively unchanged if the de-factorization method allows for structural
breaks, as found when using the Bai and Carrion-i-Silvestre (2007) methodology.
The results are also robust to using smaller sets of countries or shorter time periods
to rule out the potential structural changes. Also, when allowing for parameter
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heterogeneity across countries, only very limited evidence for an EKC arises, with
the main observation being that for several countries very implausible parameter
estimates occur.

The scarcity of evidence for an EKC for sulphur dioxide in the panel at hand is in
line with the observation that the common factors driving GDP and SO2 appear not
to be cointegrated. This long-run disconnect between these two variables poten-
tially shows the limitation of reduced form EKC modeling and it may be necessary
to resort to more structural modeling approaches to shed further light on the EKC
hypothesis, from either a time series or a panel perspective.

13.4 Conclusions

We have sought in this chapter to provide an up-to-date analysis of the methods
involved for estimation and inference in non-stationary panels. Our overriding
objective has been not only to provide information on the tools but also to interpret
the literature and to highlight the considerable challenges that remain. Starting
with the motivating example and concluding with the appendices, this chapter has
sought to emphasize the difficulties involved in formulating hypotheses within a
panel framework, estimating them and conducting inference coherently.

Features of the data that the methods need to incorporate include (in addition to
non-stationarity) cross-sectional dependence and structural instability. For exam-
ple, we have argued that assuming cross-sectional independence of the units leads
to relatively simple sequential central limit theory that provides the asymptotic
normality of many of the test statistics. As soon as this assumption is relaxed,
matters become much more complicated and in ways which are still not fully
understood in the literature.

Modeling dependence via factors is a popular device but is only one of the
many ways of formulating the problem. Account must be taken of short-run versus
long-run dependence, which must be dealt with appropriately. The link between
cointegration and factor models in panels needs to be adequately explored (see
Appendix B).

More generally, the asymptotic theory must be put on a surer footing to deal
not only with many of the joint limiting arguments that arise in the consideration
of any form of dependence in the panel but also to deal with cases where there is
potential structural instability in the data. In this chapter we have demonstrated
some preliminary (and fairly crude) ways of modeling structural instability but a
closer look is clearly warranted. The extension of systems methods to panels – to
allow for multiple cointegrating vectors – in the possible presence of cross-sectional
dependence and structural breaks is an important task but one of considerable
complexity. Dealing with these problems should constitute fruitful areas of research
in the years ahead.

13.5 Appendix A: Datasets employed

Data for exchange rate pass-through example

Sources: Eurostat, COMEXT.
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Table A.13.1 Country lists for the four monthly RER panels

Euro-area (1980/1–1998/12)

Austria France Italy Portugal
Belgium Germany Luxembourg Spain
Finland Greece Netherlands

CEEC (1993/1–2004/6)
Albania Estonia Lithuania Slovak Republic
Bulgaria Hungary Poland Slovenia
Czech Rep. Latvia Romania

Industrial (1980/1–1998/12)
Argentina Germany Malaysia South Africa
Austria Greece Mexico Spain
Belgium Indonesia Netherlands Sweden
Brazil Italy Norway Switzerland
Canada Japan Philippines Thailand
Denmark Korea Portugal Turkey
Finland Luxembourg Singapore United Kingdom
France

Worldwide (1981/1–1998/12)
Algeria Dominican Republic Kenya Samoa
Argentina Ecuador Korea Saudi Arabia
Bahamas Egypt Madagascar Senegal
Bolivia El Salvador Malaysia Seychelles
Botswana Fiji Malta Singapore
Brazil Ghana Mauritius South Africa
Burkina Faso Guatemala Mexico Swaziland
Burundi Haiti Morocco Sweden
Canada Honduras Niger Switzerland
Chile Hong Kong Norway Thailand
Colombia India Pakistan Turkey
Costa Rica Indonesia Paraguay United Kingdom
Cote d’Ivoire Israel Peru Uruguay
Cyprus Japan Philippines Venezuela
Denmark

Note: Italic entries indicate rejection of the unit root null hypothesis at the 10% level and bold
entries indicate rejection at the 5% level when applying the ADF test to the time series individually.
Source: IMF IFS, OECD MEI and ECB.

Import prices – monthly indexes of import unit values (calculated based on local
currency) for imports originating outside the euro-area.

Foreign prices – monthly indexes of import unit values (calculated based on
US dollars) from imports originating outside the euro-area into the euro-
zone.

Exchange rates – index of monthly average exchange rate of local currency against
the US dollar.
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Table A.13.2 List of countries for EKC computations for SO2

Afghanistan Equatorial Guinea Libya South Korea
Albania Finland Madagascar Spain
Argentina France Mauritius Sri Lanka
Australia Germany Mexico Sudan
Austria Ghana Mongolia Swaziland
Bahrain Greece Morocco Sweden
Belgium Guatemala Mozambique Switzerland
Bolivia Guinea Bissau Nepal Syria
Brazil Haiti Netherlands Taiwan
Bulgaria Honduras New Zealand Thailand
Burma Hong Kong Nicaragua Togo
Canada Hungary Nigeria Trinidad Tobago
Cape Verde India North Korea Tunisia
Chile Indonesia Norway Turkey
China Iraq Panama Uganda
Colombia Iran Paraguay United Kingdom
Costa Rica Ireland Peru Uruguay
CSSR Israel Philippines USA
Cuba Italy Poland USSR
Denmark Jamaica Portugal Venezuela
Djibouti Japan Qatar Yugoslavia
Dominican Republic Jordan Reunion Zaire
Ecuador Kenya Romania
Egypt Lebanon Sierra Leone
El Salvador Liberia South Africa

Notes: The data for CSSR, USSR and Yugoslavia are constructed by taking the values for all the countries
that previously constituted these countries before the separations in the early 1990s. The GDP series
are taken from the Groningen Growth and Development Center dataset already mentioned in the
introduction, and the SO2 emissions series are from Stern (2006).

All variables are used in logarithms in the econometric analysis

SITC code – Industry
0 – Food and live animals chiefly for food
1 – Beverages and tobacco
2 – Crude materials, inedible, except fuels
3 – Mineral fuels, lubricants and related materials
4 – Animal and vegetable oils, fats and waxes
5 – Chemicals and related products
6 – Manufactured goods classified chiefly by materials
7 – Machines, transport equipment
8 – Manufactured goods

CM dataset 1989–2001 – series for 1989:1–2001:3 for Belgium + Luxembourg,
France, Germany, Greece, Ireland, Italy, Netherlands, Portugal and Spain.
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Series for 1996:1–2001:3 for Austria and Finland.

Our “new” dataset 1995–2005 – 1995:1–2005:3 for ten out of eleven countries of the
CM dataset (Belgium + Luxembourg excluded, Austria and Finland start 1996:1,
Portugal and Austria stop 2004:12)

Full panel – reduced version of 1995–2005 dataset : trimmed in order to obtain a
balanced panel. Covers 1996:1–2004:12 for all ten countries.

13.6 Appendix B: Cross-sectional dependence

Allowing for cross-sectional dependence complicates matters substantially com-
pared to the case of cross-sectionally independent panels. In the early literature on
non-stationary panels, cross-sectional dependence had been modeled by allow-
ing for common fixed (respectively random) effects. It was, however, quickly
realized that in a non-stationary time series panel context the modeling of cross-
sectional dependence needed to allow for richer types of dependencies that allow
us, in particular, to model both transitory (short-run) and permanent (long-run)
cross-sectional dynamic dependencies.

During the course of the chapter, in modeling cross-sectional dependence,
we have typically followed the route prescribed by Bai and Ng (2004), inter
alia, in using approximate factor models. Dependence can also be introduced,
as in Banerjee et al. (2004), by considering cointegrating relationships across
the variables in the cross-sectional units. In this brief appendix, we attempt
to provide an exploration of these issues, including a discussion of the restric-
tions on the cointegrating space (of the full panel) implied by factor models
and of the links between these alternative formulations of cross-sectional depen-
dence.

In order to clarify the concepts, consider the case of a panel of univariate time
series, neglecting for simplicity deterministic components, and denote the stacked
joint vector (for given N) as yt = (y1,t , . . . , yN,t )

′.
The first assumption that is usually, unfortunately typically only implicitly, made

is that the joint vector process is a vector I(1) process, or, in the case of all series
being stationary, a multivariate stationary process. Clearly, this is an assumption
that has to be put in place over and above the assumption that all the individual
series are I(1) or stationary. This stems from the fact that stacking stationary pro-
cesses does not in general lead to a jointly stationary vector process. Stationarity
of the stacked process occurs if and only if all the processes are stationary correlated,
that is, if all cross-correlation functions between the individual processes are sta-
tionary. For cross-sectionally independent processes this latter condition is fulfilled
by construction. Since stacked stationary processes are not necessarily stationary
it is clear also that stacked I(1) processes are not necessarily I(1) processes.

Given that we consider panels of non-stationary time series, dependence con-
cepts well-established in the time series literature are also of prime importance
in this context. In particular we will distinguish between short-run and long-run
dependence. To be precise, in these definitions we will focus on the dependence
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structure of the second moments, that is, the covariance, respectively correla-
tion, structure. Obviously, this focus stems from the fact that when using the I(1)
framework we are dealing with cumulated weakly stationary processes which are
characterized by their second moment structure. Focusing on the second moment
structure is enough for studying the structure of dependencies although, in general,
it will not be enough for the statistical analysis, since, for example, the cross-
section members might be uncorrelated but not independent. However, for our
discussion here we use dependence synonymously with correlation.

Considering the non-stationary panel (for any given cross-sectional dimension
N) as a high-dimensional time series, we will first define cross-unit cointegration
(following Wagner and Hlouskova, 2007), which will then be used to define short-
run and long-run dependence.

Let us start our discussion with panels of univariate time series, noting here that
the concept of cross-unit cointegration becomes more interesting for panels of
multivariate time series. Take without loss of generality in the panel of time series
the first N1 series to be (jointly) stationary and the remaining N − N1 series to be
I(1). With the first N1 series stationary, a set of trivial cointegrating relationships
emerges for yt , with a basis given by [IN1

, 0]′. Cross-unit cointegration is present
if, over and above these, cointegrating relationships that are not contained in the
above trivial cointegrating space are present.

This concept can be formalized by denoting as B (a basis of) the cointegrating
space of the vector yt . Then, we define the cross-unit cointegrating space as the pro-
jection of B on the orthogonal-complement of the trivial cointegrating space (that

is, [IN1
, 0]′,) given by BCU =

[
0 0
0 IN−N1

]
B, which in our currently simple frame-

work of panels of univariate series amounts to nothing but the cointegrating space
of the N −N1 integrated series contained in the panel, assumed to be ordered last
in the discussion. The dimension of this space is called the cross-unit cointegrating
rank.

Let us now turn to panels of multivariate time series and consider a panel com-
prised of Nm-dimensional vectors of time series that are assumed to be jointly I(1),

respectively stationary, that is, Yt = (Y
′
1,t , . . . , Y

′
N,t )

′ ∈ RNm.32 Next denote with

βi ∈ Rm×ki the ki-dimensional cointegrating space of Yi,t . As before we denote the

cointegrating space of the stacked process as B ∈ R
Nm×∑

i
ki

. We stack the individual
specific cointegrating spaces in:

-β =

⎡⎢⎢⎢⎢⎢⎣
β1 0 · · · 0

0 β2
. . .

...
...

. . .
. . . 0

0 · · · 0 βN

⎤⎥⎥⎥⎥⎥⎦ ∈ R
Nm×∑

i
ki

.

By definition it holds that sp {B} ⊇ sp {-β}. The cross-unit cointegrating space is
defined as the projection of B on the orthogonal-complement of -β, that is, it is
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given by:

BCU = (INm − -β(-β
′ -β)−1 -β

′
)B. (B.1)

The dimension of the space (spanned by) BCU is defined as the cross-unit cointe-
grating rank. The definition merely formalizes the notion that, considering here

the simplest example, cointegrating relationships of the form [β ′1,β
′
2, 0, . . . , 0]′ that

involve variables from different cross-sections but lead to a stationary transformed

process β
′
1Y1,t + β

′
2Y2,t merely via combining already stationary processes from

different cross-section units (in the example β
′
1Y1,t and β

′
2Y2,t ) should not be con-

sidered as genuine cross-unit cointegrating relationships. The above definition of

the space BCU as the projection of B on the ortho-complement of -β delivers all
cointegrating relationships that are not given by linear combinations of individ-

ual specific cointegrating relationships, that is, B = BCU ⊕ -β, with ⊕ denoting the
direct sum. We say that the panel exhibits long-run cross-sectional dependence if
the cross-unit cointegrating rank is larger than 0. In case the cross-sectional units
are correlated, but there is no cross-unit cointegration, we speak of (pure) short-run
cross-sectional dependence.

Note for completeness that the previous sentence implies that panels comprised
of independent random walks are short-run dependent – since independent ran-
dom walks are asymptotically correlated, this is the famous spurious correlation
(for example, Phillips, 1986). Therefore, if one were to be keen on excluding spu-
rious asymptotic correlations, the above definition of short-run dependence can
simply be reformulated and stated in terms of cross-sectional correlation once all
variables have been transformed to stationarity, that is, by first-order differenc-
ing all integrated variables in the panel. In other words, the definition might be
based on the innovations of the individual series to avoid the necessity to explicitly
discuss spurious correlations.

Given that we consider processes that have a representation as a solution to
autonomous stochastic difference equations, both forms of dependence, short-run
and long-run, originate in the dependence structure of the error processes driving
the individual series in the respective difference equations. Consider, for example,
the DGP considered for testing for cointegration by single equation methods in
(13.18)–(13.22), abstracting here from deterministic components. In this system
the stochastic behavior is governed by the three random processes ηt , εi,t and vi,t .
The raison d’être of the common factors is to induce cross-sectional dependencies
via the common factors, but short- and long-run dependence can also arise via the
other two components as soon as the assumption that they are cross-sectionally
independent is relaxed. To illustrate the issue consider (13.21), that is, (1−ϕiL)ei,t =
Hi(L)εi,t , with the εi,t being white-noise processes. Noting that the fact that the
εi,t are individually white-noise processes does not imply that the stacked vector

εt =
(
ε1,t , . . . , εN,t

)′
is a vector white-noise process, it becomes immediately clear
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that even via εi,t both short- and long-run dependence can be introduced into the

panel. The same applies for the vector ut =
(
u1,t , . . . , uN,t

)′
.

In a way, short-run dependence can, in several respects be potentially less prob-
lematic than long-run dependence. If we think of, for example, unit root testing,
then short-run cross-sectional correlation will lead to distorted inference, of which
account can be taken. Compare the discussion of O’Connell (1998) or the set-up of
Chang (2002). Long-run dependence typically is found to have more detrimental
effects, see Lyhagen (2000), that cannot be remedied easily, for example, by simple
feasible GLS-type corrections.

There is one further issue with respect to long-run dependence or cross-unit coin-
tegration. Our discussion up to here has been for the case of fixed cross-sectional
dimension. In general, the dimension of the cross-unit cointegrating space is
itself dependent upon N since, due to the inclusion of additional panel mem-
bers, additional cross-unit cointegrating relationships may emerge. Consequently,
a thorough analysis of cross-unit dependence and its effects needs to consider the
dependence behavior when N → ∞. Part of the literature takes short-cuts in this
respect; for example, Evans and Karras (1996) and Lyhagen (2000) consider a panel
set-up with exactly one common trend and with all pair-wise differences of the
series being stationary for all values of N. In this way they avoid a proper con-
sideration of the dependence of the cointegration structure on the cross-sectional
dimension.

Considering all series together as a high-, or in the limit infinitely-, dimensional
time series is useful for understanding the algebraic structure of cointegration,
cross-unit cointegration and short-run cross-sectional dependence. However, from
a panel modeling perspective, restrictions on the joint DGP have to be put in place
in order to materialize gains from pooling in one way or another.

Looking at factor models, consider the joint process ut =
(
u1,t , . . . , uN,t

)′
, where

for simplicity we ignore deterministic components:

ut = �
′Ft + et ,

with � =
[
π
′
1, . . . ,π

′
N

]′ ∈ Rr×N , the r common factors Ft ∈ Rr , and the idiosyncratic

components et =
(
e1,t , . . . , eN,t

)′
.

Since we focus here on the cointegration implications of the factor model, we
assume for simplicity that the factor loadings matrix � is non-stochastic and that
the idiosyncratic components are cross-sectionally independent. As noted pre-
viously, the fact that Bai and Ng (2004) also allow the factor loadings � to be
stochastic is mainly a mathematical achievement but does not really change any of
the properties of the time series panel since all observations are generated from one
single realization of the factor loadings. Bai and Ng (2004) allow for a certain form
of correlation between the components of et (described in section 13.2.2.2) which
is why they dub their model an approximate factor model. The corresponding
assumption (see Bai and Ng, 2004, p. 1130, Assumption C) is, however, of mainly
a technical character and simply allows for bounded correlation between the
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innovation sequences. Under some further simplifying assumptions, the long-run
covariance matrix of �ut , ��say, is given by:

�� = �
′
��F�+ diag

(
ω�i

)
,

with ��F ∈ Rr×r denoting the long-run covariance matrix of the first difference of
the factors and diag(ω�i) collecting the long-run variances of �eit for i = 1, . . ., N.
As is well known, cointegration prevails when the long-run covariance matrix has
reduced rank. Starting with the idiosyncratic components, we know that the long-
run variance of �ei,t is equal to 0 when ei,t is itself already stationary. The first part
of ��has at most rank r. A cointegrating relationship has to be contained in the
left kernel of both terms above. These observations allow us to immediately study
the cointegration properties of ut .

Assume, without loss of generality, that the first 0 ≤ r1 ≤ r factors are integrated
but not cointegrated and the remaining ones are stationary. Also assume that the
units are ordered in such a way that the first 0 ≤ N1 ≤ N coordinates of et are sta-
tionary and the remaining ones integrated. With this set-up, cointegration prevails
if, in β

′ut , the first r1 factors and the lower N − N1 coordinates of et are annihi-

lated. Partition the factors as Ft =
[
(F1

t )
′, (F2

t )
′]′, with F1

t ∈ Rr1 , F2
t ∈ Rr−r1 and

� =
[
�
′
1,�

′
2

]′
accordingly. Then the cointegrating space is given by the intersec-

tion of the orthogonal-complement of �
′
1 and

[
IN1

, 0
′
(N−N1)×N1

]′
to wipe out the

two non-stationary contributions to the vector ut . Without further assumptions
on the various spaces the cointegrating rank cannot be determined.

Note in addition that the identification of the factors for N →∞ rests upon the

assumption that lim
N→∞

1
N
∑N

i=1 πiπ
′
i = �� > 0, which does not, determine the ranks

of the loading matrices for finite cross-sectional dimension and hence does not,
in particular, determine the number of linearly independent integrated common
factors for finite N.

However, some simple observations can be made. First, cointegration can only
occur if some of the idiosyncratic components are stationary, since it can only
occur between series with stationary idiosyncratic components.

Second, if all common factors are stationary, the dimension of the cross-unit
cointegrating space is zero.

Third, to allow for a bit more detailed analysis of the cointegrating space assume
now that, for the given cross-sectional dimension N, it holds that rk

(
�1

) = r1. We
already know from the first observation that we only need to consider the first N1

series
(
u1,t , . . . , uN1,t

)′
corresponding to the stationary idiosyncratic components

to analyze cointegration. Amongst these series the cointegrating space is given by
the left kernel of: ⎡⎢⎢⎢⎣

(
π

1
1

)′
...(

π
1
N1

)′
⎤⎥⎥⎥⎦ ∈ RN1×r1 . (B.2)
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The assumption of full rank of �1 does not imply that the above sub-matrix com-
posed of the first N1 columns of �1 also has rank equal to r1. Clearly, it necessarily
has rank smaller than r1 if N1 < r1, but can also have reduced rank otherwise. A
reduced rank, s1 say, of the matrix in (B.2) implies that only this smaller number s1
of common trends is distinguishable within the first N1 coordinates of ut . The co-

integrating space is given by the orthogonal-complement in RN1of the space
spanned by the matrix (B.2), which is of dimension N1–s1 in our discussion. The
cross-unit cointegrating space can be determined as in the definition above, again
by projecting on the orthogonal-complement of the stacked individual specific
cointegrating spaces (-β in the notation introduced above). In our univariate con-
text individual specific cointegration means that a series ui,t , for some i = 1, . . ., N1,

is stationary, which happens when the corresponding λ
1
i = 0. In this case the

corresponding entry in -β is set equal to 1. Note that, due to possible rank reduc-

tion in (B.2), for this to happen it is not necessary for the condition π
1
i = 0 to

hold, although it is of course sufficient. The above analysis also applies when all
idiosyncratic components are stationary, in which case N1 = N.

Altogether the discussion highlights the price that has to be paid, in terms of
very restricted structures of the cointegrating spaces, when reducing model com-
plexity (to be precise the modeling of cross-sectional dependence) by resorting to
(approximate) factor models.

Clearly, the limitations discussed above are also present when using factor mod-
els in a multivariate panel context, either by using factor DGPs as error processes
in single equation cointegration analysis (as in section 13.3.1.4) or when con-
sidering systems inference procedures with a factor structure in the stochastic
component.

13.7 Appendix C: Limiting concepts for integrated panels

One major difference to classical microeconometric panels is that for time series
panel applications the assumption of cross-sectional independence is often unten-
able. For many applications from the realms of international macroeconomics or
finance, dependence of the variables across countries appears to be the norm rather
than the exception.

The first generation of the literature, by which we label all methods (that is, tests
and estimation procedures) that are based on the assumption of cross-sectional
independence, has made this strong assumption of cross-sectional independence
not because of its empirical validity but because of methodological simplicity.
The assumption of cross-sectional independence facilitates many parts of the
theoretical analysis considerably.

To illustrate the relative simplicity that the cross-sectional independence assump-
tion – in conjunction with sequential limit theory where N → ∞ after T → ∞ –
consider the following simple example. Assume that for each cross-section member
the data are generated according to �yit = ρiyit−1 + εit , that is, by an autoregres-
sion of order 1 without any deterministic components and with εit a white-noise
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process with variance σ
2
i . The OLS estimates and corresponding t-statistics of ρi are

given by:

ρ̂i =
∑

yit−1�yit∑
y2
it−1

(C.1)

tρi
=

∑
yit−1�yit

σ̂i

(∑
y2
it−1

)1/2
, (C.2)

with σ̂
2
i = 1

T
∑(

�yit − ρ̂iyit−1
)2. Under the null hypothesis that ρi = 0, it holds

under rather general assumptions on εit for T →∞ that:

T ρ̂i →
∫

W(r)dW(r)∫
W2(r)dr

(C.3)

tρi
→

∫
W(r)dW(r)(∫
W2(r)dr

)1/2
. (C.4)

For example, Nabeya (1999) shows the existence of moments up to order six for the
above two limiting quantities (C.3) and (C.4) under the assumption that the inno-
vation εit is an i.i.d. sequence. Denote the expected value, respectively the variance,

of the limit in (C.4) by μtρ and σ
2
tρ

. Now, if we assume that the individual series are

cross-sectionally independent and that it holds for all cross-section members that
ρi = 0, then it immediately follows for N →∞ after T →∞ that:

t̄ρ =
1
N

N∑
i=1

tρi
− μtρ
σtρ

⇒ N(0, 1).

This result also holds true in the sequential limit if one allows for heterogeneity in
the individual series, for example, by allowing for different autoregressive orders
and performing corresponding ADF regressions since, as is well known, the same
time series limit (C.4) prevails also in this case.

If one wants to consider a joint limit where N and T tend to infinity together,
matters become more complicated even if we stick to the assumption of cross-
sectional independence. Two properties need to be established to allow for the
applicability of joint central limit theorems, which we illustrate again for the t-
test. First, the existence of the necessary moments of the finite T quantities (C.2)
has to be established. Such results have been derived only under relatively strong
assumptions, mainly relying upon normality of the innovations εit and often only
for simple DGPs (see, for example, Evans and Savin, 1981, or Larsson 1997). In this
respect it is also important to note that the finite sample distributions of, for exam-
ple, the t-values depend, in the case of higher-order autoregressive processes, upon
all autoregressive coefficients, since the dependence upon these nuisance parame-
ters vanishes only in the limit for T → ∞. This dependence upon characteristics
of the DGPs of the cross-section members is often the reason for joint limits being
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only established with certain rate restrictions, for example, of the form
√

N
T → 0

or N
T → 0. Phillips and Moon (1999) contains an insightful discussion in this

respect.
To return to our example, as long as T is finite, the individual specific t-statistics

will in general not be identically distributed. One way of overcoming this problem
is to assume cross-sectionally identically distributed series yi,t , which is, however,
far too strong an assumption to be of any practical relevance. Therefore, since
identical distributions for finite T samples are usually out of the question, other
conditions that allow the use of joint central limit theorems for independent but
not identically distributed random variables have to be established. A prime can-
didate in this respect is to establish a Lindeberg-type condition, or some special
cases formulated in terms of uniform integrability conditions, in the joint limit.
On a detailed discussion and an example of this approach see Phillips and Moon
(1999).

The major problem for the panel unit root and cointegration literature is to
establish the required conditions for finite values of T , which are partly not even
derived for the time series limits of the building blocks of the panel statistics. One
underrated but good exception in this respect is the work of Larsson, Lyhagen and
Löthgren (2001), discussed in section 13.3.2.1, who work out the proofs in detail
for a panel version of the Johansen (1995) trace test for VAR models without deter-
ministic components and with normally distributed errors. However, substantial
parts of the current literature need theoretical strengthening. It is clearly a major
task for the literature to work out the correctness of necessary intermediate results
for the numerous test statistics and estimators. Until this task has been accom-
plished, the panel unit root and cointegration literature urgently needs to make
further significant progress in terms of establishing mathematical rigor.

Clearly, relaxing the assumption of cross-sectional independence complicates
matters even further, since now limit theory for dependent doubly indexed random
sequences has to be invoked to establish results. It is clear that without modeling
the extent and form of cross-sectional dependence carefully it will not, in general,
be possible to establish any well-defined limiting behavior. Up to now no general
modeling strategies for cross-sectionally dependent unit root non-stationary panels
have been devised and only certain special modeling approaches are in use to date.
Two approaches appear to be prominent. One is actually to treat the N dimension
as finite and fixed, which means that essentially high-dimensional time series prob-
lems are considered (see, for example, Pedroni et al., 2008). The other approach is
given by modeling cross-sectional dependence by resorting to factor models, as we
have discussed in the main body of the chapter.

Note as a final remark that the usage of panel techniques with both the time
series and the cross-sectional dimension tending to infinity allows us to solve some
problems that cannot be addressed in a pure time series setting. These include, for
example, the consistent estimation of the non-centrality parameter in a local-to-
unity framework or of distant initial conditions (see Moon and Phillips, 2000).
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Notes

1. Later in our chapter we illustrate the methods described by some other examples. These
include the frequently studied topic of purchasing power parity, but we also look at less
common examples such as the analysis of environmental Kuznets curves and exchange
rate pass-through. Further applications for which non-stationary panel methods have
been used include business-cycle synchronization, house price convergence, regional
migration and household income dynamics.

2. The discussion in this subsection draws on Wagner (2008c) who considers the precise
econometric implications of several economic convergence definitions.

3. Throughout our chapter, when referring to I(1) processes we refer to processes whose
stochastic component is integrated of order 1 and allow also for deterministic compo-
nents.

4. Clearly, this definition leaves lots of possibilities, for example, multiple convergence
clubs, entirely unexplored. See Wagner (2008c) for a discussion of these issues.

5. Remember that in the Granger representation r indicates the number of linearly indepen-
dent common stochastic trends, which in our case is 1 in the case of convergence. Clearly,
algebraically this single stochastic trend can be split into r components in infinitely many
ways, that is, the constituent parts are not identified. An alternative way of formulating
the same thing is to simply remember the fact that for I(1) processes the sum of the dimen-
sion of the cointegrating space and the number of common trends equals the dimension
of the process.

6. The discussion in EK at pp. 254–5 shows that the authors focus in their considerations on
potential correlation in the processes ui,t but ignore the potential of both the presence
of deterministic components as well as stochastic trends in the panel of series yi,t − yt .
The authors make the assumption that as the cross-sectional dimension tends to infinity
the series ui,t become uncorrelated. This assumption, coupled with assuming that the
Dickey–Fuller regression also describes the DGP, with the series ui,t being indeed white-
noise processes, then implies that there is no cointegration between the series yi,t − yt
under the null hypothesis of divergence.

7. See Appendix B for further details.
8. This formulation is similar to Bai and Carrion-i-Silvestre (2007), see also Bai and Ng

(2004).
9. Breaks may of course coexist with cross-sectional independence. We merely look here at

the simplest cases first – that is, without dependence and without breaks – and introduce
some of the complications in later sub-sections.

10. For both the unit root and cointegration tests consistency of the tests is established for the
case that the process is stationary under the alternative. This implies restrictions on the
coefficients ϕik and ρi to ensure I(1) behavior under the null hypothesis and stationarity
under the alternative, which is the common framework in unit root and cointegration
analysis.
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11. The efficacy of information criteria such as AIC and BIC in dealing with serial correlation
is an issue of some debate. Simulation evidence suggests that, due to the choice of very
low lag lengths, especially with BIC, serial correlation remains.

12. Phillips and Moon (1999) contains an excellent discussion concerning sequential (that is,
first T to infinity followed by N to infinity) versus joint (that is, T and N tend to infinity
simultaneously, potentially with some restrictions on the divergence rates), as well as
the relationships between the different asymptotic concepts. Appendix C of our chapter
discusses some of these issues.

13. Hlouskova and Wagner (2006) discuss the consequences of assuming, instead of constant
covariance, a Toeplitz structure for the covariance matrix which corresponds to a geomet-
rically declining correlation with distance. This same idea is pursued in more detail in
Baltagi, Bresson and Pirotte (2007). For simplicity, since it serves to make the substantive
point, in our illustration this geometrical decline is absent.

14. Hlouskova and Wagner (2006) present a larger experimental design and also consider
more tests.

15. This is a simplifying assumption adopted here, and is stronger than is needed for the Bai
and Ng (2004) results to hold. Bai and Ng allow for weak cross-correlation in the errors,
“weak in the sense that the column sum of the error covariance matrix remains bounded”
(Bai and Ng, 2004, p. 1131). This leads to what is termed an approximate factor model.

16. Considering the factor loadings to be stochastic appears to be more of mathematical
rather than practical value, given that for each loading it is only one realization that
generates the data.

17. If the number of factors r is unknown, it must be estimated consistently using, for exam-
ple, the Bai and Ng information criteria. The factors themselves are estimated via principal
components, as described above in the discussion of the Bai and Ng (2004) method.

18. The model discussed here does not allow for a linear trend. Section 3 of Moon and Perron
(2007) extends the analysis to allow for linear trends.

19. Moon and Perron (2004) derive results for the distribution of the estimator under local-
to-unity alternatives for the root. They also need a further restriction on the rate of
convergence of N and T to infinity in order to obtain consistent estimates ω̂2

e ,φ̂4
e and λ̂N

e .
Assumption 10 (p. 91) of their paper gives this as a = lim inf(N,T→∞) log T/ log N > 1.
The parameter a is related to the speed of N/T tending to zero.

20. As noted in note 15, cross-sectional independence of the ei,t processes, via the cross-
sectional independence of the εi,t processes, is not needed for estimation and inference
concerning the factors. We assume it here (and earlier) for simplicity – since this allows
for the construction of pooled panel tests for the idiosyncratic terms.

21. The problem is formulated in terms of obtaining consistent estimates of the break fractions
(as discussed below.) This allows the derivations to deal with T →∞ in order to provide
large-sample results. If instead the break date were fixed, the problem would become
degenerate in cases where T was large.

22. The Bai and Carrion-i-Silvestre result presented above, as well as those discussed below,
rely upon limiting arguments not fully discussed either by these authors or in the seminal
Bai and Ng (2004) paper. A major problem is posed by the fact that, for finite N, the de-
factored observations and, consequently, the test statistics based upon these, are not
cross-sectionally independent, since only the product of the estimated loadings and the
estimated factors are subtracted. Cross-sectional independence requires both N and T to
go to infinity to have consistent factors (and loadings). Therefore, one cannot simply
appeal to sequential limit theory to derive the asymptotic distribution for MSB(i) above
by letting T tend to infinity first (to derive the p-values) and then derive the asymptotic
distribution of BCN by letting N “tend to infinity again.” A similar issue arises with the
derivation of the Z statistic above. In fact, similar problems plague all of the rapidly
growing panel unit root literature based on de-factored observations that fails to take
into account that joint limit theory for (in finite samples) cross-sectionally dependent
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quantities has to be employed. Such limit theory is, to the best of the authors’ knowledge,
very sparse at best.

23. For completeness we have also performed the computations including only those coun-
tries where no structural breaks are detected or with a shorter panel that excludes the
structural breaks. The latter experiment, however, suffers from the poor performance of
panel unit root and cointegration tests for short panels, compare again Hlouskova and
Wagner (2006) and Wagner and Hlouskova (2007). The potentially poor performance
notwithstanding, the additionally obtained results, available upon request, are highly
similar in terms of findings and conclusions to the results for the full country set and full
period panel discussed in the chapter.

24. As in testing for unit roots in panels, the role of the null and alternative hypotheses can
be reversed in the construction of the tests – that is, the null hypothesis can be taken
to be that a cointegration vector exists while the alternative hypothesis is that of no
cointegration. The limitations nevertheless remain.

25. The analogous discussion with respect to unit roots is contained in section 13.2.2.2.
26. There are other ways in which one can think of introducing instability, in particular

through instability in the factors themselves or in the factor loadings πi. We choose not
to address this issue here, since the general problem is already over-detailed.

27. ηt in (13.20) may be taken to be independent of νi,t .
28. Remember that in sections 13.2.2.2 and 13.2.3.1 we used the notation ỹi,t to denote first

differences whereas we use this notation here to denote the deviations from the cross-
sectional averages. Some overlap in notation appears to be unavoidable but we hope that
this does not lead to any confusion.

29. Note that Phillips and Moon (1999) is the only paper that formulates explicitly stochas-
tic assumptions on the underlying DGP that ensure the existence of the required
cross-sectional limits by introducing so-called stochastic linear processes, in which the
coefficients describing the DGP are cross-sectionally independent random variables with
certain properties. This implies that one can, under appropriate assumptions, determine
the required limits by laws of large numbers. Clearly the case of deterministic coefficients
with corresponding assumptions is nested in this framework.

30. Again some overlap in notation occurs since the index m has been used before to indi-
cate the three main specifications of the deterministic components in unit root and
single equation and cointegrating testing whereas here and in Appendix B it denotes
the dimension of the multivariate time series in the panel data.

31. The authors consider also a specific joint limit where the rate condition N1/2

T → 0 is
put in place. For this specific joint limit, a Lindeberg-type condition is required since
the cross-section specific building blocks of the panel test statistic are not i.i.d. for finite
values of T , whereas once T has passed to infinity, the time series building blocks of the
test statistics are identically distributed in the cross-section dimension.

32. Note that the restriction to the same dimension m for each panel member is not required
for the discussion of the cointegration properties.
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Microeconometrics: Current Methods
and Some Recent Developments
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Abstract

This chapter surveys microeconometrics methods with the emphasis being on recent develop-
ments in these methods. The survey presumes the basic theory for the standard estimation methods
(LS, ML and IV). Estimation methods surveyed include GMM, empirical likelihood, simulation-
based estimation, Bayesian methods, quantile regression and semiparametric estimation. Inference
methods include robust inference and bootstrap methods. The chapter addresses the recent lit-
erature on estimation of marginal effects that can be given a causative interpretation, notably
treatment effects. The common data complications of nonrandom sampling, missing data and
mismeasured data are also discussed.
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14.1 Introduction

Applied microeconometrics primarily applies regression methods to cross-
section and longitudinal economics-related data. Most often the goal is to obtain
estimates of one or more marginal effects. A stereotypical example is estimation
of the effect on earnings of a one-year increase in education. A simple approach is
ordinary least squares (OLS) estimation of a linear cross-section regression of log-
earnings on years of schooling and other control variables. Potential complications
include nonlinearity (with implications for estimation and statistical inference);
endogeneity of the regressor schooling (that is chosen by the individual); unob-
served individual heterogeneity (the marginal effect even after controlling for
regressors may differ across individuals); and missing or mismeasured data.

In this chapter I survey various methods to deal with these complications. Some
of these methods have already become well established and command little current
theoretical research. Other methods, especially those that are currently active areas
of research, may or may not ultimately become part of the toolkit. An impetus
for many of these methods is increased computing power and data availability,
discussed in the next chapter in this volume, by Jacho-Chávez and Trivedi.

The survey presumes the basic theory for least squares (LS), maximum likelihood
(ML) and instrumental variables (IV) estimation of nonlinear cross-section mod-
els and linear panel data models, methods well established by the late 1970s.
Section 14.2 presents a summary of identification that includes more recent
semiparametric identification and partial identification. Section 14.3 presents esti-
mation methods that enable the use of richer models, notably generalized methods
of moments (GMM), empirical likelihood, simulation-based methods (classical and
Bayesian), quantile regression, and semiparametric estimation. Even when more
basic LS, ML and IV estimators are used, there have been considerable develop-
ments in statistical inference, most notably the use of robust standard errors and
bootstrap methods. These are presented in section 14.4. Section 14.5 presents a
wide range of methods that have been developed to obtain marginal effects that
can be given a causative interpretation, even when observational data are used. A
fundamental change in thinking is the use of the potential outcomes framework
and quasi-experimental approaches to tease out causation. Section 14.6 discusses
methods to control for unobserved heterogeneity. Section 14.7 presents adjust-
ments to standard methods that incorporate the practical data complications of
survey sampling schemes, missing data, and measurement error.

The following notation is used. The typical observation is the ith, with scalar
dependent variable yi, k× 1 regressor vector xi, and, where relevant, m× 1 instru-
ment vector zi. Unless otherwise noted independence over i is assumed. At times
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it is convenient to denote the ith observation by wi = (yi, xi) or wi = (yi, xi, zi).
The parameter vector in general is a q×1 vector θ . In some cases this is specialized
to a k× 1 parameter vector β. Combining all N observations, y is the N × 1 vector
of dependent variables, and X is the N × K regressor matrix. The linear regression
model is written as yi = x′iβ + ui or y = Xβ + u.

The reader should be aware that this is a methods survey, rather than a litera-
ture survey. It is not possible to cite more than a few relevant references for each
topic, leading to omission of the important contributions of many authors. More
complete references are given in the relevant texts by T. Amemiya (1985), Greene
(2003, first edition 1990), Davidson and MacKinnon (1993), Wooldridge (2008,
first edition 2002) and Cameron and Trivedi (2005), and in the lectures by Imbens
and Wooldridge (2007). The most recent references given in this chapter should
provide a useful start to the current literature.

14.2 Identification

Most applied econometrics studies use methods and models for which identifica-
tion is not an issue, with a notable exception being the need to have sufficient
instruments in linear regression with endogenous regressors. Identification does
come to the forefront when more complex models are estimated, or when models
are incompletely parameterized.

14.2.1 Point identification

Introductory treatments of econometrics focus on specifying a parametric model
for the conditional distribution f (y|x, θ), or for the conditional mean, E[y|x] =
g(x,β). Given a specification of f (·) or g(·) and a sampling process, such as ran-
dom sampling or an exogenous stratified sampling that provides no additional
complication, the emphasis is on estimation of the parameters θ or β, and on statis-
tical inference based on these parameter estimates. Identification, meaning unique
determination of θ or β, is discussed briefly in the context of rank conditions to
ensure identification in linear simultaneous equations models.

For nonlinear parametric models, identification can be more challenging. A stan-
dard result is that in, for example, Newey and McFadden (1994, p. 2134), who state
that “the identification condition for consistency of an extremum estimator is that
the limit of the objective function has a unique maximum at the truth.”

For semiparametric modeling, the identification question is whether a model,
or key features of that model, can be estimated assuming an infinitely large sam-
ple is available and given the relevant sampling scheme. Only after identification
is secured can one move on to estimation and inference given a finite sample. An
example is a censored regression model, with observed data yi = y∗i if y∗i = x′iβ+ui ≥
0 and yi = 0 otherwise. The goal is to (uniquely) identify β given assumptions on
the distribution of ui that fall short of complete parameterization of the distribu-
tion of ui (such as assuming normality). In general there is no unified theory and
identification conditions vary with the model being considered and the sampling
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process. Also, not all parameters may be identified. For example, regression co-
efficients may be identified only up to scale or an intercept may not be identified
while slope parameters are; Pagan and Ullah (1999) provide many examples.

A nonparametric nonlinear simultaneous equations model is r(yi, xi) = ui,
where y and u are G × 1 vectors and x is K × 1. The model is nonparametric
identified if it is possible to recover the unknown function r(·) and the distribution
of u from the joint distribution of (y, x). Matzkin (2008) provides identification
conditions when u is independent of x.

14.2.2 Partial identification

Manski (1995, 2008) and related papers emphasize partial identification or set
identification that merely provides bounds, rather than stronger point identifica-
tion or complete identification. Partial identification can be possible under weaker
assumptions about the data-generating process (DGP) than those needed for point
identification.

For example, suppose data on y are missing for 20% of the sample, potentially due
to self-selection. Then, without any further assumptions, the median is necessarily
bounded by the 0.375 and 0.625 quantiles of the nonmissing data. For example,
with 80 observed values of y suppose that the 20 missing values are all less than
the smallest observed value. Then the median of all 100 observations is the 30th
or 31st of the 80 observed values, or the 30/80 = 0.375 quantile. Bounding E[y],
rather than the median, is more challenging as it requires additional assumptions
on the minimum and maximum value of the mean for the missing data. Quali-
tatively similar results exist if a fraction of the data are mismeasured rather than
missing. In practice the bounds obtained can be wide, but additional information
or assumptions can tighten bounds considerably.

Manski and Pepper (2000) provide an upper bound for returns to schooling, con-
trolling for schooling level being endogenously chosen. Haile and Tamer (2003)
provide bounds on the quantiles of the distribution of bidders’ valuations using
auction outcomes. Blundell et al. (2007) provide bounds on the interquartile
range of wages, controlling for changing composition of the employed and unem-
ployed. Statistical inference, using a framework of estimation based on moment
inequalities, is presented in Chernozhukov, Hong and Tamer (2007).

Finally, it should be noted that while much of the literature focuses on identi-
fication of parameters, this may not be necessary. In particular, many studies in
microeconometrics seek to calculate the marginal effect on the conditional mean

of, say, the jth regressor, ∂E[y|x]/∂xj

∣∣∣
x=x∗

, and this can be achieved by nonparamet-

ric or semiparametric regression. Even where a model for E[y|x] is posited, complete
identification of E[y|x] may not be necessary. For example, consider a linear panel
fixed effects model where E[yit |xit ] = x′itβ and xit includes a time-invariant vari-
able, the kth say, with xik = xk. Then even if xk is unobserved, fixed effects
estimation provides consistent estimates of the components of β corresponding
to time-varying regressors, and hence the marginal effect.
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14.3 Estimation

Most applied microeconometric studies include estimation of parametric models
or the conditional mean, E

[
yi|xi

]
, or the conditional density f (yi|xi). The specific

models used vary with the type of outcome y that is being modeled. The com-
monly used estimation methods are ML and quasi-ML (where appropriate) for fully
parameterized models, and LS and IV for linear conditional mean models.

In the simplest case y is continuous on (−∞,∞) and the linear model E
[
yi|xi

] =
x′iβ is used. But often the outcome is restricted in some way, leading to various non-
linear models. In the most extreme case y can take only one of two values, such
as whether or not employed. Then the distribution is necessarily a Bernoulli (the
binomial with one trial) and different models for the probability parameter corre-
spond to logit and probit models. When there are only a few possible categorical
outcomes a wide range of multinomial models exist, including multinomial and
ordered logit and probit. For count outcome y that takes only non-negative integer
values, such as number of doctor visits, the standard parametric models are Poisson
and negative binomial with E

[
yi|xi

] = exp(x′iβ). For duration outcome y, such as
length of employment spell, the standard parametric models are exponential and
Weibull.

Econometrics packages for cross-section data provide estimators for these
models, as well as for the standard corrections for the common complications
of truncation and censoring. We do not detail these models and their standard
estimators, though the appropriate statistical inference is detailed in section 14.4.

This section instead reviews more advanced estimation methods that permit esti-
mation of more flexible parametric models, when models are fully parameterized,
as well as methods that permit estimation when models are not fully parameter-
ized. The most important of these methods is GMM, which provides a very general
framework for estimation of nonlinear models that nests OLS, IV and ML esti-
mation. Empirical likelihood is an adaptation of GMM that has different finite
sample properties. Simulation methods permit classical and Bayesian methods to
be applied to a much wider range of parametric models. Quantile regression and
semiparametric methods place less structure on the data generating process.

Among these methods only GMM, quantile regression and nonparametric regres-
sion (with single regressor) appear in one or more standard econometrics software
packages, so the methods are currently not as widely used as they might be.

14.3.1 Generalized method of moments

The starting point for GMM is the moment condition:

E[h(wi, θ)] = 0, (14.1)

where h(·) is an r × 1 vector.
The analogy principle, emphasized by Manski (1988) who attributes it to

Goldberger, proposes estimation using the sample analog of the population con-
dition (14.1). In the just-identified case this leads to a method of moments

(MM) estimator θ̂MM that solves N−1∑h(wi, θ) = 0. A simple example is that

mailto: rights@palgrave.com


734 Microeconometrics: Methods and Developments

E[yi−μ] = 0 leads to the estimator μ̂ = ȳ. OLS, ML and just-identified IV estimators
can be interpreted as examples of MM estimators.

In the overidentified case in which the dimension r of hi is greater than q, there
are more moment conditions than parameters. Hansen (1982) proposed the GMM
estimator θ̂GMM that minimizes the quadratic form:

Q(θ) =
[

1
N

∑
i
h(wi, θ)

]′
WN

[
1
N

∑
i
h(wi, θ)

]
, (14.2)

where WN is an r × r symmetric full rank weighting matrix that is usually data-
dependent. The resulting estimator sets a q× r linear combination of 1

N
∑

i h(wi, θ)
equal to 0. Under appropriate assumptions, including that (14.1) holds at θ =
θ0, θ̂GMM is asymptotically normally distributed with mean θ0 and estimated
asymptotic variance matrix of “sandwich form”:

V̂[̂θGMM] =
1
N

(
Ĝ′WNĜ

)−1
Ĝ′WN ŜWNĜ

(
Ĝ′WNĜ

)−1
, (14.3)

where Ĝ = N−1∑
i ∂hi/∂θ

′∣∣∣
θ̂

and Ŝ is a consistent estimate of S0 =
plim 1

N
∑

i
∑

j h(wi, θ0)h(wj, θ0)
′. Given independence over i, Ŝ simplifies to Ŝ =

1
N
∑

i h(wi, θ̂)h(wi, θ̂)
′, while for clustered observations adaptations similar to those

given in section 14.4.1 are used.
A leading overidentified example is IV estimation. The condition that instru-

ments zi are uncorrelated with the error term ui = yi − x′iβ in a linear regression
model implies that E[zi(yi−x′iβ)] = 0. In the just-identified case the MM estimator
solves

∑
i zi(yi −x′iβ) = 0, which yields the IV estimator. In the overidentified case

the GMM estimator minimizes
[∑

i zi(yi − x′iβ)
]′

WN

[∑
i zi(yi − x′iβ)

]
= 0. The

two-stage least squares (2SLS) estimator is the special case WN =
[
N−1∑

i ziz
′
i

]−1
.

Estimators for dynamic panel data models, such as that of Arellano and Bond
(1991), are also overidentified GMM estimators that are in common use.

The GMM estimator reduces to the MM estimator, regardless of the choice of
WN , for just-identified models. For overidentified models the most efficient GMM
estimator based on the moment conditions (14.1), called the optimum GMM

(OGMM) or two-step GMM estimator θ̂OGMM, sets WN = Ŝ−1, where Ŝ is a consis-
tent estimate of S0. Given independence over i, Ŝ = 1

N
∑

i h(wi, θ̃)h(wi, θ̃)
′, where

θ̃ is a first-step GMM estimator based on an initial choice of WN . Then the OGMM
estimator has estimated asymptotic variance

V̂[̂θOGMM] = N−1
(Ĝ′̂S−1Ĝ)

−1.

Chamberlain (1987) showed that the OGMM estimator is the fully efficient esti-
mator based on condition (14.1). In practice, however, it is found that the optimal
GMM estimator suffers from small sample bias (see Altonji and Segal, 1996), and
other simpler choices of WN may be better. This has spawned an active litera-
ture, including Windmeijer (2005) and the empirical likelihood methods given in
section 14.3.2.
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There are several attractions to GMM. First, it provides a unifying framework to
estimation as it nests many estimation procedures, including LS, with h(wi, θ) =
yi−x′iβ, and ML, with h(wi, θ)=∂ ln f (yi|xi, θ)/∂θ , as special cases. Second, it provi-
des a natural extension of instrumental variables methods in overidentified models
from linear to nonlinear models, and can be viewed as a generalization of non-
linear 2SLS. Third, it views estimation as a sample analog to population moment
conditions, the analogy principle emphasized by Manski (1988). Fourth, taking
this view leads naturally to conditional moment tests (see section 14.4.2) that lead
to model moment specification tests based on model moment conditions that are
not exploited in estimation. Finally, it is relatively simple computationally as stan-
dard iterative methods such as Newton–Raphson can be employed, though not all
econometric packages provide a general GMM command for nonlinear models.

A method closely related to GMM, though one less used, is minimum distance
estimation. Suppose that the relationship between q structural parameters and r >

q reduced form parameters is that π = g(θ). Given a consistent estimate π̂ of
the reduced form parameters, an obvious estimator is θ̂ such that π̂ = g(̂θ). But
this is infeasible since q < r. Instead, the minimum distance (MD) estimator θ̂MD
minimizes, with respect to θ , the objective function:

Q N (θ) = (π̂ − g(θ))′WN (π̂ − g(θ)), (14.4)

where WN is an r× r weighting matrix. The optimal MD estimator uses the weight-

ing matrix WN = V̂[π̂ ]−1 in (14.4). This estimator is used mainly in panel data
analysis (see Chamberlain, 1982, 1984), especially in estimation of covariance
structures (see Abowd and Card, 1987).

The statistics literature rarely uses the GMM framework. This may be because
GMM is particularly useful for overidentified models, notably IV with surplus
instruments, that are much more often used in econometrics. Instead, for non-
linear models the statistics literature emphasizes the more restrictive generalized
linear models and generalized estimating equations frameworks (see McCullagh
and Nelder, 1983).

14.3.2 Empirical likelihood

Empirical likelihood is based on the same moment conditions as GMM, but is
a different estimation method with better second-order asymptotic properties.
Empirical likelihood may be a better estimator in settings where optimum GMM
is known to perform poorly in finite samples, but it is not widely used, in part due
to computational difficulty.

Let πi = f (yi|xi) denote the probability that the ith observation on y takes the
realized value yi. The empirical likelihood (EL) approach, introduced by Owen
(1988), maximizes the empirical log-likelihood function:

QN (π1, . . . ,πN ) = N−1
N∑

i=1

lnπi, (14.5)

subject to any model constraints.
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With no model the only constraint is that probabilities sum to one. This leads
to maximum EL estimates π̂i = 1/N, so the estimated density function f̂ (y|x)

has mass 1/N at each of the realized values yi, i = 1, . . . , N, and the resulting
distribution function estimate is just the usual empirical distribution function.

With a model introduced, attention focuses on the estimates for parameters of
that model. In the simplest case of estimation of a common population mean μ,
the maximum EL estimate can be shown to be the sample mean. A more general
example is to specify a model that imposes r moment conditions:

E[h(wi, θ)] = 0, (14.6)

the same condition as in (14.1) for MM or GMM estimation. The EL approach

maximizes the empirical likelihood function N−1∑
i lnπi subject to the constraint∑

i πi = 1, since probabilities sum to one, and the additional sample constraint
based on the population moment condition (14.6) that:

N∑
i=1

πih(wi, θ) = 0. (14.7)

Thus maximize with respect to π = [π1 . . . πN ]′, η, λ and θ the Lagrangian:

LEL(π , η,λ, θ) = 1
N

N∑
i=1

lnπi − η

⎛⎝ N∑
i=1

πi − 1

⎞⎠− λ
′ N∑
i=1

πih(wi, θ), (14.8)

where the Lagrangian multipliers are a scalar η and an r × 1 column vector λ.
This maximization is not straightforward. First concentrate out the N parameters

π1, . . . ,πN . Differentiating L(π , η,λ, θ) with respect to πi yields 1/(Nπi)−η−λ′hi =
0. Then find η = 1 by multiplying by πi and summing over i and using

∑
i πihi = 0.

It follows that the Lagrangian multipliers λ solve πi(θ ,λ) = 1/[N(1 + λ
′h(wi, θ))].

The problem is now reduced to a maximization problem with respect to (r + q) vari-
ables λ and θ , the Lagrangian multipliers associated with the r moment conditions
(14.7) and the q parameters θ . Solution at this stage requires numerical methods,
even for just-identified models with r = q. After some algebra, the log-likelihood
function evaluated at θ is:

LEL(θ) = −N−1
N∑

i=1

ln[N(1+ λ(θ)
′h(wi, θ))]. (14.9)

The maximum empirical likelihood (MEL) estimator θ̂MEL maximizes this function
with respect to θ .

Qin and Lawless (1994) show that the MEL estimator has the same limit distri-
bution as the optimal GMM estimator. In finite samples, however, θ̂MEL differs
from θ̂GMM. Furthermore, inference can be based on sample estimates Ĝ =∑

i π̂i∂hi/∂θ
′∣∣∣̂
θ

and Ŝ = ∑
i π̂ihi (̂θ)hi (̂θ)

′ that weight by the estimated probabili-

ties π̂i rather than the proportions 1/N. Newey and Smith (2004) show that MEL
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has better second-order asymptotic properties than GMM, and it appears that using
the weights π̂i in forming Ĝ and Ŝ leads to improved finite sample performance.

Generalized empirical likelihood estimators (GEL) use objective functions other

than N−1∑
i lnπi. Exponential tilting uses N−1∑

i πi lnπi, and the continuous
updating GMM estimator of Hansen, Heaton and Yaron (1996) is shown by Newey
and Smith (2004) to fall in the class of GEL estimators.

Computational methods for these estimators are presented in Mittelhammer,
Judge and Schoenberg (2005), and in the surveys of empirical likelihood by Imbens
(2002) and Kitamura (2006). The continuous updating GMM estimator has the
attraction of not requiring estimation of Lagrange multipliers, but it does not
always converge. More generally, the MEL and GEL estimators have an objective
function that is less well-behaved than the quadratic form for regular GMM.

14.3.3 Simulation-based ML and MM estimation

Simulation-based estimation methods enable ML estimation in cases where the
conditional density of y given x includes an integral for which a closed-form
solution does not exist, so that conventional ML is not possible. The inte-
gral is approximated by Monte Carlo integration, making many draws from an
appropriate distribution.

Specifically, let the conditional density of y given regressors x and parameters
θ = [θ ′1 θ

′
2]′ be an integral:

f (y|x, θ) =
∫

f (y|x, u, θ1)g(u|θ2)du, (14.10)

where f (y|x, u, θ1), which depends in part on unobservables u, is of closed form,
but there is no closed form for the desired density f (y|x, θ).

A leading example is unobserved heterogeneity. Then θ1 denotes parameters
of intrinsic interest, u denotes unobserved heterogeneity that may depend on
unknown parameters θ2, and the integral will not have a closed-form solution
except in some special cases. A second example is the multinomial probit model.
Then θ1 denotes regression parameters, u denotes an error term in a latent
model that may have unknown error variances and covariances θ2, and, given
m alternatives, the probability that a specific alternative is chosen is given by an
(m− 1)-dimensional integral that has no closed form solution.

If the integral is of low dimension, then numerical integration by Gaussian
quadrature may provide a reasonable approximation to f (y|x, θ). But these meth-
ods can work poorly in the higher dimensions often encountered in practice. For
example, for multinomial probit Gaussian quadrature is felt to work poorly if there
are more than four alternatives.

Instead, the maximum simulated likelihood (MSL) method makes many draws
of the unobservables u from density g(u|θ2). The MSL estimator maximizes the
simulated log-likelihood function:

L̂N (θ) =
N∑

i=1

ln f̂ (yi|xi, u(S)
i , θ), (14.11)
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where f̂ (·) is the Monte Carlo estimate or simulator:

f̂ (yi|xi, u(S)
i , θ) = 1

S

S∑
s=1

f̃ (yi|xi, us
i , θ), (14.12)

where u(S)
i = (u1

i , . . . , uS
i ) denotes S draws with marginal density g(ui|θ2), and f̃ (·)

is a subsimulator such as f (y|x, us, θ1). Many possible simulators may be used – the

essential requirement is that f̂i
p→ fi as S →∞. The MSL estimator is consistent and

asymptotically equivalent to the ML estimator, provided that S →∞, in addition
to the usual assumption that N → ∞, with

√
N/S → ∞ so that S grows at a rate

slower than N.
The MSL estimator opens up the possibility of using a much wider range of para-

metric models, such as richer models for unobserved heterogeneity that may be
more robust to model misspecification. At the same time the method can be com-
putationally demanding. An early application of MSL was by Lerman and Manski
(1981) for the multinomial probit model. Then I × N × S draws of us

i are made if
analytical derivatives are used, where I is the number of iterations, and even more
draws are needed if numerical derivatives are used. A currently popular application
is to the random parameters logit or mixed logit model.

For models with unobserved heterogeneity, an alternative is to treat heterogene-
ity as being discretely distributed. Such finite mixture or latent class models are
especially popular in the duration and count (number of health services) literatures
(see Meyer, 1990; Deb and Trivedi, 2002). These models do not require simulation
methods, and can be more easily estimated using quasi-Newton methods or the
expectation maximization algorithm. Often a heterogeneity distribution with just
two or three points of support is sufficient.

The MSL can be extended to MM and GMM estimation. In that case, theory leads
to a moment condition E[m(yi|xi, θ)] = 0, where m(·) is a scalar for simplicity, but
there is no closed form expression for m(y, x, θ). Instead m(y, x, θ) is an integral:

m(yi|xi, θ) =
∫

h(yi|xi, ui, θ1)g(ui|θ2)dui, (14.13)

for some functions h(·) and g(·), where m(·) has no closed form. Let m̂i =
m̂(yi|xi, u(S)

i , θ) be a simulator for m(yi, xi, θ). Then the method of simulated
moments (MSM) estimator uses m̂i in place of mi in GMM estimation. A key result,
due to McFadden (1989) and Pakes and Pollard (1989), is that the MSM estimator
is consistent for θ as N → ∞ even if S is very small, provided that an unbiased
simulator is used, meaning E[m̂i] = mi. Furthermore, small S may lead to little
loss of precision. In the special case that m̂(·) is the frequency simulator, the MSM
estimator has variance (1+ (1/S)) times that of the MM estimator.

There are several subtleties in the use of MSL and related estimators. Book refer-
ences are Gouriéroux and Monfort (1996), who also discuss indirect inference, and
Train (2003), who focuses on applications to multinomial choice. First, because
the simulated likelihood is usually maximized by iterative gradient methods, the
simulator f̂i should be differentiable (or smooth) in θ . For example, for limited
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dependent variables models with normal errors the Geweke–Hajivassiliou–Keane
(GHK) simulator is often used. Second, to enable convergence and avoid “chatter”

the same underlying random numbers used to obtain uS
i should be used at each iter-

ation. Third, the draws from g(ui|θ2) need not be independent. For example, better
approximations for given S may be obtained by using dependent quasi-random
numbers, such as Halton sequences, rather than independent pseudo-random
numbers, and by the use of antithetic sampling. Fourth, it may be difficult to

make draws from uS
i using standard methods such as inverse transformation and

accept–reject methods. Newer Markov chain Monte Carlo methods, widely used
in Bayesian analysis, may be then used.

14.3.4 Simulation-based Bayesian analysis

Bayesian analysis can serve two purposes. First, it can provide a quite different
method of inference as it views parameters as random variables, with the goal being
to combine the prior distribution on parameters and the sample distribution of the
data to recover the posterior distribution of these parameters. By contrast, classical
frequentist inference views parameters as taking fixed values that are unknown,
with data used to make inference on those unknown values. Second, if priors are
chosen to be sufficiently uninformative so that they have little effect on the pos-
terior distribution, then it is possible to directly use the posterior distribution of
parameters to perform classical frequentist inference.

Econometric applications most often use Bayesian methods for the second pur-
pose. Recent advances in computational methods, outlined below, can make
Bayesian methods especially useful in analytically intractable models with many
parameters that may be very difficult to estimate using conventional ML or even
simulated ML methods. Even so, Bayesian methods are used sparingly in econo-
metrics when compared to the statistics literature. One reason is a hesitation to
use fully parametric methods, though Bayesian methods do allow quite flexible
parametric models to be specified.

Let L
(
y|X, θ

) = f (y|X, θ) denote the sample joint density or likelihood, and π(θ)

denote the prior distribution. Then by Bayes’ rule the posterior density for θ is:

p(θ |y, X) = L(y|X, θ)π(θ)

f (y|X)
, (14.14)

where f (y|X) = ∫
R(θ) L(y|X, θ)π(θ)dθ and R (θ) denotes the support of π(θ). Because

the denominator f (y|X) is free of θ , it is standard simply to write:

p(θ |y) ∝ L(y|θ)π(θ), (14.15)

where the regressors X are suppressed for notational simplicity. The posterior
density is proportional to the product of the likelihood and prior.

The heart of Bayesian analysis is the posterior p(θ |y). In the simplest cases a
closed form expression for this exists. For example, if y is normal with mean Xβ
and known variance and the prior for β is the normal with specified mean and
variance, then the posterior is normal.
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But for most models, especially standard nonlinear regression models, the
posterior is unknown. One approach is to then obtain key moments, such as the
posterior mean E[θ ] = ∫

θp(θ |y)dθ , using Monte Carlo integration methods that do
not require draws from p(θ |y). In particular, importance sampling methods can be
used (see Kloek and van Dijk, 1978; Geweke, 1989).

The more modern approach is instead to obtain many draws, say θ̂1, . . . , θ̂ S , from

p(θ |y). The posterior mean can then be estimated by S−1∑S
s=1 θ̂

s. Furthermore,
the distribution of any quantity of interest, such as the distribution of marginal
effects in a nonlinear model, can be similarly computed given these draws from
the posterior.

The key ingredient is the recent development of methods to obtain draws of θ
from the posterior p(θ |y) even when p(θ |y) is unknown (see Gelfland and Smith,
1990). The starting point is the Gibbs sampler. Let θ = [θ ′1 θ

′
2]′ and suppose that it

is possible to draw from the conditional posteriors p(θ1|θ2, y) and p(θ2|θ1, y), even
though it is not possible to draw from p(θ |y). The Gibbs sampler obtains draws
from p(θ |y) by making alternating draws from each conditional distribution. Thus,

given an initial value θ
(0)
2 , obtain θ

(1)
1 by drawing from p(θ1|θ (0)2 , y), then θ

(1)
2 by

drawing from p(θ2|θ (1)1 , y), then θ
(2)
1 by drawing from p(θ1|θ (1)2 , y), and so on. When

repeated many times it can be shown that this process ultimately leads to draws
of θ from p(θ |y), even though in general p(θ |y) �= p(θ1|θ2, y) × p(θ2|θ1, y). The
sampler is an example of a Markov chain Monte Carlo (MCMC) method. The term
“Markov chain” is used because the procedure sets up a Markov chain for θ whose
stationary distribution can be shown to be the desired posterior p(θ |y). The method
extends immediately to more partitions for θ . For example, if θ = [θ ′1 θ

′
2 θ

′
3]′ then

draws need to be made from p(θ1|θ2, θ3, y), and p(θ2|θ1, θ3, y) and p(θ3|θ1, θ2, y).
In many applications some of the conditional posteriors are unknown, in which

case MCMC methods other than the Gibbs sampler need to be used. A standard
method is the Metropolis–Hastings (MH) algorithm, which uses a trial or jump-
ing distribution. The Gibbs sampler can be shown to be an example of an MH
algorithm, one with relatively fast convergence.

The MCMC methods in principle permit Bayesian analysis to be applied to a
very wide range of models. In practice, there is an art to ensuring that the chain
converges in a reasonable amount of computational time. The first B draws of θ are
discarded, where B is chosen to be large enough that the Markov chain has con-
verged. The remaining S draws of θ are then used. Various diagnostic methods exist
to indicate convergence, although these do not guarantee convergence. MCMC
methods yield correlated draws from p(θ |y), rather than independent draws, but
this correlation only effects the precision of posterior analysis and often the corre-
lation is low. Many Bayesian models include both components with closed form
solutions for the posterior and components that require the use of MCMC meth-
ods – the Gibbs sampler, if possible, and, failing that, the MH algorithm with
hopefully a good choice of jumping distribution.

Bayesian methods are particularly attractive in models entailing latent variables,
such as tobit models (see Chib, 1992, 2001), and multinomial probit models
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(see McCulloch, Polson and Rossi, 2000). The data augmentation method then
generates draws of unobserved values of the latent variables that can then be
treated as observed values, greatly simplifying analysis. A recent application is
that by Geweke, Gowrisankaran and Town (2003), who model mortality at 114
Los Angeles County hospitals allowing for the complication that better hospitals
may attract more difficult cases, with difficulty depending in part on unobserv-
ables correlated with hospital mortality rates. Recent econometrics books are Koop
(2003), Lancaster (2004), and Koop, Poirier and Tobias (2007).

14.3.5 Quantile regression

Quantiles, such as deciles and quartiles, are often used to summarize the distribu-
tion of variables such as income, earnings and wealth. Quantile regression is an
extension to the regression case where, for example, interest may lie in the different
response of earnings to education at different points of the conditional earnings
distribution.

A leading example is the least absolute deviations (LAD) estimator that minimizes

the sum of absolute residuals
∑N

i=1 |yi−x′iβ|. This is a generalization of the median
in the independent and identically distributed (i.i.d.) case, since with x′iβ = β the
resulting estimate of β is the sample median.

More generally, conditional quantiles other than the median may be estimated.
The qth quantile regression estimator β̂q minimizes over βq:

Q N (βq) =
N∑

i:yi≥x′iβ
q|yi − x′iβq| +

N∑
i:yi<x′iβ

(1− q)|yi − x′iβq|,

where the subscript q in βq is needed as different choices of q estimate different
values of β. The special case q = 0.5 is the LAD estimator. The objective func-
tion is not differentiable, so linear programming methods are used rather than
more familiar gradient methods. These enable relatively fast computation of β̂q.
The quantile regression estimator is consistent and asymptotically normal. Esti-
mation of the analytical asymptotic variance of β̂q requires estimation of fuq

(0|x),

the conditional density of the error term uq = y − x′βq evaluated at uq = 0. An

easier method is to instead obtain bootstrap standard errors for β̂q using a paired
bootstrap.

Quantile regression was proposed by Koenker and Bassett (1978). Powell (1984,
1986) adapted the method to permit consistent estimation in censored linear
regression models. With censoring the conditional median can be recovered with-
out the strong distributional assumptions, such as normality, needed to recover the
conditional mean. Buchinsky (1994) provided a much-cited application that doc-
umented recent US changes in the quantiles of the conditional wage distribution.
Such analysis is now easily implemented as Stata includes a quantile regression
command. Koenker and Hallock (2001) provide an early summary of applications.

Existing results specify all quantile regression functions to be linear. Angrist,
Chernozhukov and Ferandez-Val (2006) provide interpretation of the quantile
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regression if instead the unknown true quantile function is nonlinear, and provide
the asymptotic distribution in that case. The situation is analogous to that for OLS
and ML under model misspecification.

Quantile regression has recently become a very active area of research with exten-
sions including instrumental variables estimation (see Chernozhukov and Hansen,
2005), and a richer range of models for censored data (see Honore and Hu, 2004).
Koenker (2005) provides many results on quantile regression.

14.3.6 Nonparametric and semiparametric methods

Consider the regression model:

E[yi|xi] = m(xi), (14.16)

where the function m(x) is unspecified. Nonparametric regression provides a con-
sistent estimate of m(x). At the specific point x = x0, m(x0) can be estimated by
taking a local weighted average of yi over those observations with xi in a neigh-
borhood of x0. There are many variations on this approach, including kernel
regression, nearest neighbors regression, local linear, local polynomial, Lowess,
smoothing spline and series estimators. Less than N observations are effectively

used at any point x0, because a local average is taken, so m̂(x0)
p→ m(x0) at a rate

less than the usual N−1/2, although asymptotic normality still holds.
Fully nonparametric regression works best in practice when there is just a single

regressor. Even then, empirical results vary greatly with the choice of bandwidth
or window width that defines the size of the neighborhood. “Plug-in” estimates of
the bandwidth that work well for density estimation often work poorly for regres-
sion. The standard method is to use leave-one-out cross-validation to select the
bandwidth, but this method is by no means perfect.

There is no theoretical obstacle to using nonparametric regression when there are
many regressors. But in practice nonparametric methods usually work poorly with
more than very few regressors, due to a curse of dimensionality that arises because
the local averages will be made over fewer observations. For example, if averaging

is over 10 bins with one regressor then averaging may need to be over 102 = 100
bins when there are two regressors. More formally, the optimal convergence rate

using mean squared error as a criterion is N−2/(dim[x]+4), so the convergence rate
decreases as dim[x] increases. This problem is less severe when some regressors
take only a few values, such as binary indicator variables. Racine and Li (2004)
present results for kernel regression when some regressors are discrete and some
are continuous.

The microeconometrics literature focuses on semiparametric methods that over-
come the curse of dimensionality by partially parameterizing a model, so that there
is a mix of parametric and nonparametric components. A very early example is the
maximum score estimator for the binary choice model of Manski (1975).

Theoretically, a first step is to determine whether parameters are identified given
only partial specification of the model. Ideally

√
N-consistent and asymptotically

normal estimates of the parameters can be obtained. Furthermore, it is preferred
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that they be fully efficient in that they attain semiparametric efficiency bounds (see
Chamberlain, 1987; Newey, 1990; Severini and Tripathi, 2001) that are extensions
of Cramer–Rao lower bounds or the Gauss–Markov theorem to semiparametric
models.

There are many semiparametric models, and for each model there can be several
different ways to obtain estimators. Partial linear and single index models are two
leading examples that are also the building blocks for more general models.

The partial linear model specifies the conditional mean to be the usual linear
regression function plus an unspecified nonlinear component, so:

E[yi|xi, zi] = x′iβ + λ(zi), (14.17)

where the scalar function λ(·) is unspecified. An example is the estimation of a
demand function for electricity, where z reflects time of day or weather indicators
such as temperature. A second example is a sample selection model where λ(z) is
the expected value of a model error, conditional on the sample selection rule. In
applications interest may lie in β, λ(z) or both. Various estimators for the partial
linear model have been proposed. The differencing method proposed by Robinson
(1988) estimates β by OLS regression of (yi − m̂yi) on (xi − m̂xi), where m̂yi and
m̂xi are predictions from nonparametric regression of, respectively, y and x on z.
Robinson used kernel estimates that may need to be oversmoothed. Other methods
that additionally estimate λ(z), at least for scalar z, include a generalization of the
cubic smoothing spline estimator and using a series approximation for λ(z).

The single index model specifies the conditional mean to be an unknown scalar
function of a linear combination of the regressors, with:

E[yi|xi] = g(x′iβ), (14.18)

where the scalar function g(·) is unspecified and the parameters β are then only
identified up to location and scale. An example is a binary choice model with Pr[y =
1|x] = g(x′β) where g(·) is unknown. The single index formulation is attractive as
the marginal effect of a change in the jth regressor is g ′(x′iβ)βj, so that the ratio of
parameter estimates equals the ratio of marginal effects. Estimators for the single
index model include an average derivative estimator, a density weighted average
derivative estimator (see Powell, Stock and Stoker, 1989), and semiparametric least
squares.

Microeconometricians have focused on semiparametric estimation for limited
dependent variable models – binary choice with an unspecified function for the
probabilities, censored regression and sample selection. Nonparametric and semi-
parametric methods are also used in the treatment effects literature detailed in
section 14.5.1. The literature is vast. References include the applied study by Belle-
mare, Melenberg and van Soest (2002), and books by Pagan and Ullah (1999) and
Li and Racine (2007). The latter book is accompanied by many routines in R for
nonparametric and semiparametric regression.
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14.4 Statistical inference

There have been considerable advances in statistical inference methods, even for
the standard LS, IV and ML estimators (MLEs).

The most notable change is the use of robust statistical inference, notably robust
standard error computation, that relies on distributional assumptions that are as
weak as possible. Various model specification tests have been developed, such as
the Hausman test and White’s information matrix test. The bootstrap provides an
alternative way to perform statistical inference that can be simpler than conven-
tional asymptotic methods. Furthermore, the bootstrap can produce more accurate
asymptotic approximations for test statistics that lead to tests with actual size close
to nominal size in small samples.

14.4.1 Robust inference for Wald tests

Analysis begins with the cross-section case of independent observations, before
moving to clustered observations, which includes short panels.

Consider an m-estimator θ̂ that maximizes with respect to θ the objective func-

tion QN (θ) = N−1∑
i q(yi, xi, θ). For ML estimation q(·) is the log-density, and for

least squares estimation q (·) is minus the squared error (or a rescaling of this). The
m-estimator solves the first-order conditions:

N−1∑
i
h(wi, θ) = 0, (14.19)

where h(wi, θ) = ∂q(yi, xi, θ)/∂θ . Under suitable assumptions, notably that E[h(wi,
θ)] = 0 in the population, it can be shown that θ̂ is

√
N−consistent, with limit

distribution:
√

N (̂θ − θ0)
d→ N [0, A−1

0 B0A′−1
0 ], (14.20)

where A0 = plim N−1∑
i ∂h(wi, θ)/∂θ

′∣∣∣
θ0

and B0 = plim N−1∑
i h(wi, θ0)h(wi, θ0)

′,
and θ0 is the value of θ in the DGP.

Inference is based on θ̂ being asymptotically normally distributed with mean θ0
and estimated asymptotic variance matrix of sandwich form:

V̂[̂θ ] = N−1Â−1B̂Â′−1, (14.21)

where Â and B̂ are consistent estimates of A0 and B0. The Wald test statistic for
H0 : θj = r is then W = (θ̂j − r)/sj, where sj is the jth diagonal entry of V̂[̂θ ], and

W
a∼ N [0, 1] under H0. The more general hypothesis H0 : c(θ) = 0 is tested using

W = c(̂θ)′(R̂V̂[̂θ ]R̂′)−1c(̂θ), where R̂ = ∂c(θ)/∂θ ′
∣∣∣̂
θ

and W
a∼ χ

2
(rank[R]) under H0.

There are several possible ways to form Â and B̂, depending in part on the
strength of the distributional assumptions made. Robust variance estimates are
those that rely on minimal distributional assumptions, provided N →∞.
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Given data independent over i, the robust variance matrix estimate uses:

Â = N−1∑
i

∂h(wi, θ)
∂θ ′

∣∣∣∣̂
θ

,

B̂ = N−1∑
i
h(wi, θ̂)h(wi, θ̂)

′. (14.22)

The resulting standard errors are called robust standard errors. In some cases the
Hessian Â in (14.22) may be replaced by the expected Hessian, and B̂ may use a

degrees-of-freedom correction such as (N − q)−1 rather than N−1.
A leading example is the heteroskedastic-consistent estimate of the variance-

covariance matrix of the OLS estimator. Then qi(β) = −1
2 (yi − x′iβ)

2, where the

multiple 1
2 is added for convenience, so that hi(β) = ∂qi/∂β = (yi − x′iβ)xi, and

∂hi(β)/∂β
′ = −xix

′
i. It follows that:

V̂[β̂OLS] =
[∑

i
xix

′
i

]−1 [∑
i
û2

i xix
′
i

] [∑
i
xix

′
i

]−1
, (14.23)

where ûi = (yi − x′iβ̂).
For ML estimation use of (14.22) relaxes the traditional information matrix equal-

ity assumption that A0 = −B0, which gives the simplification A−1
0 B0A−1

0 = −A−1
0 .

Failure of the information matrix equality generally implies inconsistency of the
MLE. Then θ0 needs to be reinterpreted as a “pseudo-true value,” which is the value
of θ that maximizes the probability limit of 1/N times the log-likelihood function.
However, the MLE does retain consistency in many standard models with specified
density in the linear exponential family, notably linear, Poisson, logit and probit,
provided the conditional mean function is correctly specified. Robust standard
errors are then especially applicable.

For independent errors the key early reference is White (1980), who proposed
the special case (14.23). Robust standard errors have been applied to many esti-
mators, including instrumental variables and generalized method of moments (see
(14.3)). T. Amemiya (1985) and Newey and McFadden (1994) provide quite general
treatments of inference and estimation (see also White, 1984).

The estimates in (14.22) can be extended to clustered data. In that case obser-
vations are grouped into clusters, with correlation permitted within a cluster but
independence assumed across clusters. An example is panel data where the cluster
unit is the individual: observations for a given individual over time are corre-
lated, but observations across individuals are independent. Let c = 1, . . . , C denote
clusters and let j = 1, . . . , Nc denote the Nc observations in cluster c. Then the
cluster-robust variance matrix estimate is (14.21), where Â is again given in (14.22)
but now:

B̂ = N−1∑C

c=1

∑Nc

j=1

∑Nc

k=1
h(wjc , θ̂)h(wkc , θ̂)′. (14.24)

This estimator, proposed by Liang and Zeger (1986), permits both error
heteroskedasticity and quite flexible error correlation within cluster. It has largely
supplanted the use of a more restrictive random effects or error components model,
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although it does require C → ∞. It is essential to control for clustering, as failure
to do so can lead to greatly under estimated standard errors (see Moulton, 1990).
With few clusters the asymptotic normal distribution can perform poorly. Small
sample corrections include using the TC−1 distribution, using a cluster bootstrap
with asymptotic refinement (Cameron, Gelbach and Miller, 2008), and using an
alternative estimator that, under some assumptions, is exactly TC−2 distributed
as Nc → ∞ (Donald and Lang, 2007). Wooldridge (2003) provides a survey that
is updated and newer results given in Wooldridge (2006). Cameron, Gelbach and
Miller (2006) propose an extension of (14.24) to multi-way clustering.

Cluster-robust variance matrix estimators have also been proposed for models
where hi(θ) is spatially correlated. Driscoll and Kraay (1998) do so for panel data
where the time dimension is large. Conley (1999) presents a quite general estimator.

Models for clustered or spatial data may allow the conditional mean to be
affected, in addition to conditional correlations, and then standard estimators
become inconsistent. For clustered data one can use a model with cluster-specific
fixed effects, analogous to fixed effects for panel data. For spatial data recent
references include Anselin (2001) and Lee (2004).

The theory for robust inference is well-established and, in the independent
observations case at least, is well incorporated into microeconometrics practice.
In particular, for LS problems it is standard to estimate by OLS and then use robust
standard errors, even though there may be efficiency loss compared to doing feasi-
ble generalized least squares (GLS). Note, however, that one can still employ feasible
GLS but then compute robust standard errors that guard against misspecification
of the model for the error variance matrix.

14.4.2 Hypothesis tests

For hypotheses on parameters of the form:

H0 : c(θ) = 0

Ha : c(θ) �= 0,

the classical tests in the likelihood framework are the Wald, Lagrange multiplier
(LM), and likelihood ratio tests. For a correctly specified likelihood function these
tests are first-order asymptotically equivalent under the null hypothesis and under
local alternatives, so choice between them is one of convenience.

More recent work has focused on generalization to the non-likelihood frame-
work, and on finite-sample properties of the tests.

The Wald test has become the most popular of these three tests, as it general-
izes easily to non-likelihood models and is most easily robustified as detailed in
section 14.4.1. But it does have the limitation of lack of invariance to parameteri-
zation. For example, a test of H0 : θ1/θ2 = 1 will lead in finite samples to a Wald
test statistic that differs from that for the equivalent hypothesis H0 : θ1 − θ2 = 0.
A bootstrap with asymptotic refinement (see section 14.4.4), should reduce this
invariance.

The LM or score test is less commonly used, in part because it is usually imple-
mented by a convenient auxiliary regression that has poor finite sample properties.
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Specifically, Monte Carlo studies find considerable over-rejection due to the finite
sample test size being considerably larger than the asymptotic size. A bootstrap
with asymptotic refinement, however, can correct this problem. The LM test can
be extended to non-likelihood settings, and can be robustified.

The likelihood ratio test generally does not extend to non-likelihood settings,
though it does for optimal GMM estimation. Newey and West (1987) generalize
the three classical tests from the likelihood framework to the GMM framework.

14.4.3 Model specification tests

Various model specification tests have been developed that do not rely on
hypothesis tests of the form c(θ) = 0.

The Hausman (1978) test contrasts two estimators that may be the same under
a null hypothesis and differ under an alternative hypothesis. For example, one
can compare OLS to the 2SLS estimator and conclude that there is endogeneity
if the two estimators differ. Denote the two estimators by θ̂ and θ̃ , and test H0 :
plim(̂θ − θ̃) = 0 using the statistic:

H = (̂θ − θ̃)
′
(V̂[̂θ − θ̃ ])−1 [̂θ − θ̃ ],

which is chi-squared distributed under H0. Implementation requires estimating the
variance matrix of the difference in the estimators. The original approach was to
assume that one estimator, say θ̂ , is efficient under the null, in which case V[̂θ−θ̃ ] =
V[̃θ ]− V[̂θ ]. This is the standard method used today, even though it is generally
incorrect since, from section 14.4.1, most applied studies use heteroskedastic-
robust or cluster-robust standard errors that presume the estimator is, in fact,
inefficient. One should instead use alternative methods to estimate V[̂θ − θ̃ ], such
as the bootstrap.

Moment tests are tests of whether or not a population moment condition is
supported by the data. Specifically, they test:

H0 : E[m(wi, θ)] = 0

Ha : E[m(wi, θ)] �= 0.

An obvious test is based on whether the corresponding sample moment m̂ =
N−1∑

i m(wi, θ̂) is close to zero. The test statistic is:

M = m̂′
(V̂[m̂])−1m̂,

where M is chi-squared distributed under H0 and the challenge is to estimate V̂[m̂].
One leading example is an overidentifying restrictions (OIR) test. Then GMM

estimation based on E[m(wi, θ)] = 0 cannot exactly impose m̂ = 0 if the model
is overidentified. If GMM with an optimal weighting matrix is used then Hansen
(1982) showed that M is chi-squared distributed under H0 with degrees of freedom
equal to the number of overidentifying restrictions.

A second class of examples are conditional moment tests, where some model
restrictions are used in estimation while other restrictions, not imposed in
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estimation, are used for specification testing. For example, in linear regres-
sion of y on x1, the hypothesis that x2 can be excluded as a regressor implies
E[(y − x′1β1)|x2] = 0. This can be specified as a test of H0 : E[(y − x′1β1)x2] = 0.
Here it can be difficult to obtain V̂[m̂], though auxiliary regressions are available
to compute an asymptotically equivalent version of M in the special case that θ̂
is the MLE. Examples of conditional moment tests, proposed by Newey (1985)
and Tauchen (1985), include the information matrix test of White (1982) and
chi-squared goodness-of-fit tests.

The Hausman test and OIR tests are routinely used in GMM applications. Con-
ditional moment tests are less commonly used, even though they are easy to
implement in likelihood settings, where they would seem especially useful due
to concerns of reliance on distributional assumptions. One reason is that the con-
venient auxiliary regressions used to compute them can have poor finite-sample
size properties, but this can be rectified by a bootstrap with asymptotic refine-
ment (see, for example, Horowitz, 1994). A second reason is the more practical
one that, especially with large samples, any model is quite likely to be rejected at
conventional 5% significance levels.

For model selection when models are nested the standard hypothesis testing
methods can be used. For model selection with non-nested models there is an
extensive literature that is not addressed here. A recent survey is provided by
Pesaran and Weeks (2001).

14.4.4 Bootstrap

Inference in microeconometrics is based on asymptotic results that provide only
an approximation given typical sample sizes. The bootstrap, introduced by Efron
(1979), provides an alternative approximation by Monte Carlo simulation.

The motivation of the bootstrap is to view the data in hand, or the fitted DGP, as
the population. Then draw B resamples from this population, and for each resample
compute a relevant statistic. The empirical distribution of the resulting B statistics
is used to approximate the distribution of the original statistic.

The most common use of the bootstrap is as a way to calculate standard
errors. The data w1, . . . , wN are assumed to be i.i.d. The bootstrap standard error
procedure is:

1. Do the following B times:

• Draw a bootstrap resample w∗1, . . . , w∗N by sampling with replacement from
the original data (called a paired bootstrap).

• Obtain estimate θ̂
∗ of θ , where for simplicity θ is scalar.

2. Use the B estimates θ̂
∗
1, . . . , θ̂∗B to approximate the distribution of θ̂ . In particular,

the bootstrap estimate of the standard error of θ̂ is:

sθ̂ ,Boot =
√

1
B− 1

∑B

b=1
(θ̂∗b − θ̂

∗
)2, (14.25)

where θ̂
∗ = B−1∑B

b=1 θ̂
∗
b . This is simply the standard deviation of θ̂

∗
1, . . . , θ̂∗B.
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This method is convenient whenever standard errors are difficult to obtain
by conventional methods. Leading examples are (i) two-step estimators when
estimation at the first step complicates inference at the second step; (ii) Haus-
man tests that require computation of the variance of the difference between
two estimators when neither estimator is efficient under the null hypothesis; and
(iii) estimation with clustered errors when a package does not compute cluster-
robust standard errors (in this case a cluster bootstrap that resamples over clusters
is used). Given bootstrap standard errors, a standard Wald test of H0 : θ = θ0 uses
t = (θ̂ − θ0)/sθ̂ ,Boot and asymptotic normal critical values.

The preceding bootstrap is theoretically no better than usual first-order asymp-
totic theory. The attraction is the practical one of convenience.

Some bootstraps, however, provide a better asymptotic approximation, called an
asymptotic refinement. The econometrics literature focuses on asymptotic refine-
ment for test statistics. Consider a test of H0 : θ = θ0 with nominal significance
level or nominal size α. An asymptotic approximation yields an actual rejection

rate or true size α + O(N−j
), where O(N−j

) means is of order N−j and j > 0, with
often j = 1/2 or j = 1. Then the true size goes to α as N →∞. Larger j is preferred,
however, as then convergence to α is faster. A method with asymptotic refinement
(or higher-order asymptotics) is one that yields j larger than that obtained using
conventional asymptotics. The hope is that such asymptotic refinement will lead
to tests with true size closer to α for moderate sample sizes, though this is not
guaranteed. Asymptotic refinement may be possible if the bootstrap is applied to
an asymptotically pivotal statistic, meaning one with asymptotic distribution that
does not depend on unknown parameters.

The bootstrap standard error procedure does not lead to asymptotic refinement
for the Wald test. Nor does the percentile method which rejects H0 : θ = θ0 if
θ0 falls outside the lower α/2 and upper α/2 quantiles of the bootstrap estimates
θ̂
∗
1, . . . , θ̂∗B. The problem is that θ̂ is bootstrapped and θ̂ is not asymptotically pivotal,

since even under H0 its asymptotic normal distribution depends on an unknown
parameter (the variance).

Instead, the Wald statistic itself should be bootstrapped, as t = (θ̂ − θ0)/sθ̂ is
asymptotically pivotal, since it is asymptotically N [0, 1] under H0, an asymp-
totic distribution with no unknown parameters. The bootstrap-t or percentile-t
procedure for a two-sided test of H0 : θ = θ0 at level α is:

1. Do the following B times:

• Draw a bootstrap resample w∗1, . . . , w∗N by sampling with replacement from
the original data (called a paired bootstrap).

• Obtain an estimate θ̂
∗, standard error sθ̂∗ and t-statistic t∗ = (θ̂

∗ − θ̂ )/sθ̂∗ .

2. Use the B statistics t∗1, . . . , t∗B to approximate the distribution of t = (θ̂−θ0)/sθ̂ . For
an equal-tailed (or nonsymmetric) test reject H0 if the original sample t-statistic
falls outside the lower α/2 and upper α/2 quantiles of the bootstrap estimates
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t∗1, . . . , t∗B. For a symmetric test reject H0 if the original sample t-statistic falls
outside the α quantile of |t∗1 |, . . . , |t∗B|.

Note that t∗ in step 1 is centered on θ̂ as the bootstrap views the original sample,
with θ = θ̂ , as the DGP. For equal-tailed two-sided tests (or for one-sided tests)

this procedure leads to asymptotic refinement with true size α + O(N−1
), rather

than α + O(N−0.5
), using bootstrap standard errors (or standard errors obtained

using equation (14.21)). For a two-sided symmetrical test (or a chi-squared test)

the corresponding rates are instead, respectively, α +O(N−1.5
) and α +O(N−1

).
There are as many ways to bootstrap as there are different ways to obtain

resamples, and there are many ways to use these resamples.
The resampling method used above is called a paired bootstrap, as often wi =

(yi, xi) and here both yi and xi are being resampled. By contrast, a residual boot-
strap, for a model with additive error, holds xi fixed and resamples over residuals
û1, . . . , ûN to yield resampled values w∗i = (y∗i , xi), where y∗i = x′iβ̂ + û∗i . A para-
metric bootstrap uses distributional knowledge, such as a specified distribution for
yi|xi, to resample yi given xi. For clustered data any resampling is over clusters.
For hypothesis tests it is best, if possible, to impose H0 in drawing the bootstrap
sample. More bootstrap replications are needed when the goal of the bootstrap is
asymptotic refinement for a test statistic.

Much development of the bootstrap has been done in the statistics literature. The
econometrics literature is surveyed in Horowitz (2001), and MacKinnon (2002) pro-
vides much useful practical advice. Econometric studies have focused on bootstraps
for estimation methods used mainly by econometricians. For overidentified GMM
models one should recenter so that the population moment condition is imposed
in the sample; see Hall and Horowitz (1996).

The bootstrap needs to be used with caution, as standard bootstraps can provide
inconsistent standard error estimates for nonsmooth estimators and for less than√

N-consistent estimators. This has led to a currently active literature. Abrevaya
and Huang (2005) consider the maximum score estimator, Abadie and Imbens
(2008) consider matching treatment effects estimators, and Moreira, Porter and
Suarez (2004) consider IV with weak instruments. Sub-sampling, due to Politis and
Romano (1994), works in a wider range of settings than the bootstrap.

In applied microeconometrics the main use of the bootstrap is to obtain standard
errors. Bootstraps with asymptotic refinement are rarely done, as sample sizes are
felt to be fairly large. But a bootstrap with asymptotic refinement can correct for
many well-documented problems associated with standard tests, including the lack
of invariance to parameterization for the Wald test and the poor finite-sample
performance of auxiliary regressions used in computing LM tests and conditional
moment tests.

14.5 Causation

The preceding sections presented estimation and inference methods for quite gen-
eral regression models. Econometrics is distinguished by a desire to go beyond
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correlative data summary to obtaining estimates of a causative effect, meaning mea-
sures of how an outcome changes in response to exogenous changes in a regressor.
The current microeconometrics toolkit contains many methods to do so.

The “treatment effects” or “natural experiment” approach seeks to measure cau-
sation by extending randomized experiment methods to observational data. This
major innovation in microeconometrics research uses a potential outcomes nota-
tion that differs from the simultaneous equations framework developed at the
Cowles Commission. Developments have also been made in other more traditional
methods to tease out causation, notably instrumental variables estimation, use of
panel data, and estimation of structural models.

14.5.1 Treatment effects

The treatment effects literature focuses on the simplest case of estimating the causal
effect of a binary regressor. A stereotypical example is to consider the impact on
earnings of participation in a training program. The terminology of a medical trial is
used. Enrollment in a training program is viewed as treatment, having no training
is viewed as control, and the objective is to estimate the causative effect of the
treatment on the outcome variable, earnings.

The ideal way to calculate this effect is to observe earnings for a person with
the training, observe earnings for the same person without training, and subtract.
But this is impossible. Instead the outcome is observed in only one state, while
the other state is a hypothetical unobserved value, called a potential outcome or
counterfactual.

The randomized experiment approach solves the inability to observe the counter-
factual by comparing average outcomes, rather than individual outcomes, for two
groups that are randomly assigned to either treatment or control. This approach
is used at times in the social sciences, in social experiments. But most economics
studies must instead rely on observational data.

The treatment effects literature seeks to extend the experimental approach to
nonrandomized settings. Again averages across groups are compared, but now
individuals select their treatment. Different assumptions about the nature of the
self-selection of treatment and data availability lead to different methods to com-
pute average effects of treatment. A key consideration is whether or not it is
reasonable to assume that self-selection can be controlled for using observed vari-
ables, or whether self-selection additionally depends on unobservables. The latter
case requires much stronger assumptions to make progress.

The following framework is used. The binary treatment variable d takes value 1
if treatment is assigned and value 0 if untreated (a control). The observed outcome
of interest y is a continuous variable that then takes values:

yi =
{

y1i if treated (di = 1)
y0i if control (di = 0).

(14.26)

The individual treatment effect is defined to be:

αi = (y1i − y0i). (14.27)
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Note that (14.26) and (14.27) imply:

yi = diy1i + (1− di)y0i = y0i + αidi. (14.28)

Since only one of y1i and y0i are observed, αi is not observable. Instead, the goal
is to estimate population averages of αi, notably the average treatment effect (ATE):

αATE = E[αi], (14.29)

and the average treatment effect on the treated (ATET):

αATET = E[αi|di = 1]. (14.30)

These are conceptually quite different quantities. ATET gives the average gain in
earnings for a person who actually receives training. ATE gives the earnings gain
averaged across those who did and those who did not receive the training.

The evaluation problem can be illustrated by decomposing ATET into two
terms as:

αATET = {E[y1i|di = 1] − E[y0i|di = 0]} − {E[y0i|di = 1] − E[y0i|di = 0]}. (14.31)

A naive estimate of αATET uses just the first term. But this ignores the second term,
a selection term that arises if the treated and untreated are different in that, on
average, they would have different untreated outcome. Methods differ according
to whether this selection term can be solely controlled for by regressors, or whether
it additionally depends on unobservables.

Given regressors x, similar average effects can be defined, now varying with
regressors. The ATE is:

αATE(x) = E[αi|Xi = x]. (14.32)

and the ATET is:
αATET(x) = E[αi|Xi = x, di = 1]. (14.33)

Treatment effects are called heterogeneous if these quantities vary with the eval-
uation point x, and are called homogeneous if αATE(x) = αATET(x) = α. In
practice, researchers usually report estimates of the population measures αATE =
E[αATE(x)] and αATET = E[αATET(x)] that average across individuals with differ-
ent characteristics. For example, individual-level estimates of α̂ATE(xi) lead to

α̂ATE = N−1∑N
i=1 α̂ATE(xi).

A critical simplifying assumption, discussed further below, is that selection is on
observables only. Assuming conditional independence, outcomes are independent
of treatment after conditioning on regressors, so that:

f (yji|xi, di = 1) = f (yji|xi, di = 0) = f (yji|xi), j = 0, 1. (14.34)

This assumption of exogenous selection of treatment (given x) is often written as
y0i, y1i ⊥ di|xi and has several other names, including unconfoundedness and
ignorability. For some purposes it can be weakened to apply to only y0i or to
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apply only to conditional means (and not the entire distribution). The assumption
implies that:

αATET(x) = E[y1i|Xi = x, di = 1] − E[y0i|Xi = x, di = 0], (14.35)

where the second-term conditions on di = 0, rather than di = 1 as in the original
definition (14.33).

The matching approach for estimating treatment effects is based on (14.35) and
compares sample averages of y1 and y0 for individuals with the same level of x.
This permits treatment effects to be heterogeneous and provides nonparametric
estimates of their average. In practice, however, such estimates become noisy or
impossible as x will take many values if it is continuous or high dimensional. One
can instead use nonparametric methods, such as kernel weighting, that permit use
of individuals with similar but not exactly the same level of x. But more common is
to match on the probability of treatment conditional on x, known as the propensity
score:

p(xi) = Pr[di = 1|xi], (14.36)

since Rosenbaum and Rubin (1983) showed that the conditional independence
assumption carries over to conditioning on the propensity score (that is, y0i, y1i ⊥
di | p(xi)). For example, nearest-neighbor propensity score matching uses:

α̂ATET = N−1
1

∑
i:di=1

(y1i − y0j),

where N1 =
∑N

i=1 di and y0j is the outcome for the nearest neighbor, the untreated
observation with propensity score closest to that for y1i. Other propensity score
matching methods included kernel and stratification methods that average over
several outcomes with similar propensity score. By estimating the propensity score
using a flexible model, such as a semiparametric binary model or a logit model with
interactions, it is more likely that observables only may determine selection. The
propensity scores must have suitable common support over treatment and controls
in order for matching to be feasible. For ATET it must be that p(xi) < 1, that is, for
any value of the regressors it is possible to not receive treatment, while for ATE the
requirement is that 0 < p(xi) < 1. Note that if treatment effects are heterogeneous
and matching is valid, the estimates obtained are very problem specific and not
necessarily generalizable to other settings.

An alternative method is to specify and estimate a more restrictive regression
model for the outcome. An obvious model is:

yi = αdi + x′iβ + ui, (14.37)

which imposes the constraint that the treatment effect α is homogeneous. OLS esti-
mation of (14.37) yields a consistent estimate of the treatment effect α, assuming
conditional independence and that (14.37) is correctly specified. This is called the
control function approach, as the regressors x here include regressors that control
for selection into treatment (that is, explain d) as well as regressors that directly
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explain y in the absence of treatment. This more parametric method has the advan-
tage over matching of not requiring common support for the propensity score and
permitting extrapolation beyond just the sample at hand.

The preceding methods rely on the untestable assumption of conditional inde-
pendence, and presume that the dataset is rich with many control variables, since
observables alone are assumed sufficient to control for treatment selection. Should
these conditions fail, which will be the case in many potential applications, the
previous methods are invalid. For example, the OLS estimator in the simple homo-
geneous effects model (14.37) is inconsistent if the treatment indicator variable
is correlated with the error term even after conditioning on regressors x. It is
then necessary to allow for treatment to additionally depend on unobservable
individual heterogeneity, with different methods used to control or eliminate the
unobservables.

Panel data fixed effects estimators, possible if data are available for more than
one period, control for unobserved heterogeneity by assuming that only the time-
invariant component is correlated with treatment. A panel data version of the
homogeneous effects model (14.37) is:

yit = αdit + x′itβ + φi + δt + εit , (14.38)

where here xit does not include a constant and the intercept has both an individual-
specific component φi and a time-specific component δt . Assume that treatment
dit is correlated with the unobservable φi, so OLS is inconsistent, but is uncorre-
lated with uit . Then α can be consistently estimated by OLS estimation of the first
differences model:

�yit = α�dit +�δt +�x′itβ +�εit , (14.39)

or by estimation of a mean differences model (the fixed effects estimator), since φi
has been eliminated. This standard method presumes panel data are available and
is restricted to homogeneous treatment effects.

The related differences-in-differences method is applicable to repeated cross-
sections, as well as panel data. For simplicity, suppose there are just two periods,
say t = a (after) and t = b (before), and that all individuals are untreated in the
first period and some are treated in the second period. Let ȳjt denote the average
outcome for treatment group j = 0, 1 in period t = a, b. The outcome changes
over time by (ȳ1a − ȳ1b) in the treated group and by (ȳ0a − ȳ0b) in the untreated
group. The differences in these differences provides an estimate of ATET, called the
differences-in-differences estimator. This estimator is the OLS estimator of α in the
model:

yit = γ + αdi + βet + uit , t = a, b,

where di is a binary treatment indicator and et is a binary time period indicator.
Consistency of this estimator requires strong assumptions regarding the role of
unobservables. In terms of (14.38) it is assumed that treatment selection does not
depend on εit and that, while it may depend on φi, on average plim(φ̄ja − φ̄jb) =
0. The method can be extended to estimate heterogeneous effects αATET(x) by
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grouping on x and then calculating within each group the four relevant averages
of y.

Sample selection models explicitly specify a distribution for the unobservables.
These introduce a latent variable to explain treatment choice, where the latent
variable includes an unobserved component (or error) that is correlated with the
error in the outcome equation. A linear model that permits heterogeneous effects
and selection on unobservables is:

y1i = x′iβ1 + u1i

y0i = x′iβ0 + u0i

d∗i = z′iγ + vi, (14.40)

where di = 1 if the latent variable d∗i > 0, and di = 0 otherwise. A homogeneous
effects version restricts y1i = y0i aside from a difference of α in the intercept. Under

the assumption that (u0i, u1i, vi) are joint normal (with σ
2
v = 1), some algebra

yields:

E[y1i|x,d∗ > 0] = x′iβ1 + σ1vλ(z
′
iγ ),

E[y0i|x,d∗ ≤ 0] = x′iβ0 − σ0vλ(−z′iγ ), (14.41)

where λ(z′γ ) = φ(z′γ )/#(z′γ ) is an inverse Mills ratio term, with φ() and #() denot-
ing the standard normal density and distribution functions, and σjv = Cov[uji, vi].
From (14.41) consistent estimates of β1 and σ1v can be obtained by OLS estima-
tion for the treated sample of y1 on x and λ(z′γ̂ ), where γ̂ is obtained by probit
regression of d on z. Similarly, OLS regression for the untreated sample of y0 on x
and −λ(−z′γ̂ ) gives consistent estimates of β0 and σ0v . These estimates can then
be used to estimate:

αATET(x, z) = x′i(β1 − β0)+ (σ0v − σ1v)λ(z
′
iγ ).

The fundamental weakness of this sample selection approach is its reliance on
distributional assumptions. These assumptions can be modified and relaxed, but
even then the assumptions are still felt to be too strong.

Yet another method for control for selection on unobservables is instrumental
variables estimation. Returning to the homogeneous effects model (14.37), the
problem is that the regressor d is correlated with the error u. Assuming there is an
instrument z that does not belong in the model, so E[u|x, z] = 0, but is correlated
with the treatment indicator d, the treatment effect α can be consistently estimated
by IV regression of y on x and d with instruments x and z.

A related method is the local average treatment effect (LATE) estimator. Begin
with the homogeneous effects model with dependence on x dropped for simplicity,
so that:

yi = β + αdi + ui. (14.42)

Assume there is an instrument z with E[u|z] = 0 and define p(z) = Pr[d = 1|Z = z] =
E[d|Z = z]. Then:

E[y|z] = β + αp(z).
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Evaluating at two points z and z′ and subtracting yields the LATE:

αLATE(z) =
E[y|z] − E[y|z′]

p(z)− p(z′) . (14.43)

This can be estimated by comparing averages of the outcome y and treatment indi-
cator d at two different values of the instrument z. If z is binary then this estimate
is the same as the IV estimate. The estimate can be extended to heterogeneous
effects, provided p(z) is monotonic in z. Then it differs from IV and will vary with
the points of evaluation z and z′. A more general treatment effect is the marginal
treatment effect (MTE):

αMTE(x, z) = ∂E[y|x, Z]
∂Pr[d = 1|x, Z]

∣∣∣∣
Z=z

,

which gives the mean treatment effect for those at the margin of choosing treat-
ment. ATE, ATET and LATE can be shown to be different weighted averages of
MTE.

A final method is regression discontinuity (RD) design. Suppose treatment occurs
when a variable s crosses a threshold s̄, so that d = 1(s > s̄), and the outcome y also
depends on s. For example, a government program to improve school outcomes
may be applied to schools in low-income areas. A method is developed to calculate
a score, and schools with a score below a certain threshold receive the government
program while those with a higher score do not. A complication is that school
outcome will directly depend on this score. The obvious approach is to compare y
for those with s just less than s̄ to those with s just greater than s̄, but this will use
only a small fraction of the data. Instead use α̂ from the least squares regression:

yi = β + αdi + γh(si)+ ui, (14.44)

where h(·) is a flexible function that is specified (for example, polynomial) or is esti-
mated by nonparametric methods. Given the discrete nature of the discontinuity
at s̄ it is clear that the method can also be used when effects are heterogeneous and
will estimate ATE = E[αi|si] under mild additional assumptions. Another extension
is to fuzzy designs where the threshold s̄ is not sharp, as some individuals with
s < s̄ are treated and some with s > s̄ are untreated. Intuitively, if a fraction f
of the population in the immediate vicinity of s̄ switch from untreated to treated
then ATE is estimated by f times the estimated OLS coefficient of d in (14.44). This
adaptation is qualitatively similar to that for LATE in (14.43).

The literature on treatment effects is vast. Econometricians have contributed to
the literature on all the preceding methods, and the sample selection, IV and LATE
methods originated in econometrics. Early econometrics papers, that generally did
not explicitly use the current treatment effects framework, include Ashenfelter
(1978), Heckman (1978, 1979), Heckman and Robb (1985), Lalonde (1986) and
Björklund and Moffitt (1982). Heckman, Ichimura and Todd (1997) and Dehejia
and Wahba (1999) emphasize matching methods. Abadie and Imbens (2006) pro-
vide results for inference. Bertrand, Duflo and Mullainathan (2004) demonstrate
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that when difference-in-difference methods are used with panel data it is critical
that one uses cluster-robust standard errors that cluster on the treatment unit, often
the state, as the treatment regressor is highly correlated over time. Hausman and
Kuersteiner (2008) consider more efficient GLS estimation in this setting. Imbens
and Angrist (1994) introduce LATE and Björklund and Moffitt (1982) and Heck-
man and Vytlacil (2005) introduce MTE. Hahn, Todd and Van der Klaauw (2001)
provide theory for RD methods; Ludwig and Miller (2007) provide a detailed appli-
cation, and Imbens and Lemieux (2008) provide a survey. More recent research
provides distribution theory when a nonparametric component is used and seeks
to extend methods to nonlinear models (for example, Athey and Imbens, 2006),
and to multiple treatments. Brief surveys include Smith (2000), Blundell and Dias
(2002) and Angrist (2008), while lengthier surveys include Heckman, Lalonde and
Smith (1999) and Angrist and Krueger (1999). The forthcoming book by Angrist
and Pischke (2009) focuses on treatment effects methods.

14.5.2 Instrumental variables methods

Consider the linear model:
yi = x′iβ + ui, (14.45)

where Cor[xi, ui] �= 0 so that OLS is inconsistent. Assume there exists an instrument
zi such that Cor[zi, ui] = 0. The IV estimator for a just-identified model, considered
for simplicity, is:

β̂IV = (Z′X)
−1Z′y. (14.46)

If Cor[zi, ui] = 0 then β̂IV is asymptotically normal with mean β and:

V[β̂IV] = (Z′X)
−1Z′�Z(X′Z)

−1, (14.47)

where � = E[uu′|Z]. This estimator is easily extended to overidentified models, and
to nonlinear models as a special case of GMM.

The applied literature has included many creative examples of instrument use.
For example, in earnings–schooling regression a proposed instrument for schooling
is distance to college, as this may be related to college attendance but may not
directly effect earnings. Another possible instrument is birth month, which may
be related to years of schooling as it determines age of school entry and hence years
of schooling before a person reaches the minimum school leaving age.

This interest in the use of IV methods has been somewhat diminished by recog-
nition of the problems that arise when instruments are weakly correlated with the
regressor(s) being instrumented.

A weak instrument is one for which Cor[zi, xi] is small. More precisely, sup-
pose there is one endogenous regressor and several exogenous regressors. Then the
instrument for the endogenous regressor is weak if the correlation between the
endogenous regressor and the instrument is low after partialing out the effect of
the other exogenous regressors. Then it is well known that β̂IV will be imprecisely
estimated. Two other complications can arise.

First, suppose that Cor[zi, ui] is close to zero rather than exactly zero. Then not
only is the IV estimator inconsistent, but it can be more inconsistent than the

mailto: rights@palgrave.com


758 Microeconometrics: Methods and Developments

OLS estimator. For example, in the simple case of a scalar regressor x and scalar
instrument z, suppose the correlation between x and z is 0.1. Then IV becomes
more inconsistent than OLS if the correlation between z and u exceeds a mere 0.1
times the correlation between x and u. This result, emphasized by Bound, Jaeger and
Baker (1995), has led to increased scrutiny of assumptions regarding the validity
of an instrument in any particular application.

Second, even if Cor[zi, ui] equals zero, regular asymptotic theory performs poorly
in finite samples if the instrument is weak. Theoreticians established key results
early. Applied researchers to subsequently highlight the problem were Nelson and
Startz (1990) and Bound, Jaeger and Baker (1995). Staiger and Stock (1997) provided
influential theory.

Third, regular asymptotic theory performs poorly in finite samples when there
are many instruments, so that the model is greatly overidentified. This situation
can arise for estimators based on conditioning on a large information set, in panel
settings where regressors from other periods are valid instruments in the current
period, or if an underlying instrument is interacted with exogenous regressors to
generate many instruments.

There is a large theoretical literature on inference with weak instruments, includ-
ing new estimators and new testing procedures (see Andrews, Moreira and Stock,
2007). Andrews and Stock (2007) provide a recent survey, and Flores-Luganes
(2007) compares many of the different methods by Monte Carlo simulation and
use of actual data.

14.5.3 Panel data

Panel data are repeated observations on the same cross-section units, typically
individuals or firms, for several time periods. The cross-section units are usually
assumed to be independent, though this assumption may be less appropriate if the
cross-section units are states or countries.

An obvious advantage of panel data is that they permit increased precision in
estimation, due to an increased number of observations. It is important, however,
that one control for likely correlation of observations over time for a given cross-
section unit. The usual method is to use cluster-robust standard errors described in
section 14.4.1.

The microeconometrics literature has focused on a second advantage of panel
data, that it provides a way to identify causation even if there is selection on
unobservables, provided the unobservables are time invariant.

The fixed effects linear panel model specifies:

yit = x′itβ + αi + εit , i = 1, . . . , N, t = 1, . . . , T , (14.48)

where αi and εit are unobserved. It is assumed that the idiosyncratic error εit is
uncorrelated with xit , but the individual-specific error αi is potentially correlated
with xit . Note that, while αi is called a “fixed effect” in the literature, this term is
misleading as it is being treated as random. Microeconometricians focus on short
panels, with N → ∞ but T permitted to be small (for a static linear model it is
sufficient that T ≥ 2).
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To relate this to the treatment effects literature, xit may include a binary treat-
ment dit that is correlated with the error term αi+ εit (selection on unobservables),
but only with the component αi of the error term that is time invariant. For exam-
ple, an individual may self-select into a training program due to unobserved high
ability, but this high ability is assumed to be time invariant.

Pooled OLS regression of yit on xit will lead to inconsistent estimation of β, due
to correlation of regressors with the error. The random effects estimator of β, the
feasible GLS estimator of (14.48) under the assumption that both αi and εit are
i.i.d., is also inconsistent if, in fact, αi is correlated with xit . For this reason many
microeconometric studies shy away from random effects models that are widely
used in other fields.

Estimation of transformed models that eliminate αi can lead to consistent esti-
mation. The fixed-effects or within estimator is obtained by OLS estimation of the
within-model:

(yit − ȳi) = (xit − x̄i)
′
β + (uit − ūi). (14.49)

A standard procedure is to use cluster-robust standard errors from this regression,
assuming T is small and N → ∞. Hansen (2007a) presents asymptotic theory
that additionally allows T →∞ and Hansen (2007b) considers more efficient GLS
estimation. The first differences estimator is obtained by OLS estimation of the first
differences model:

�yit = �x′itβ +�uit . (14.50)

Note that in both cases only the coefficients of time-varying regressors can be
identified.

Extension to nonlinear models is possible only for some specific models, as there
is an incidental parameters problem. The asymptotics rely on N → ∞, so the
number of parameters (k regression coefficients plus N fixed effects αi) is going
to infinity with the sample size. Some models permit transformations that elimi-
nate αi, while others do not. For nonlinear models with additive error the within
and first differences transformations can again be used. For binary outcomes fixed
effects estimation is possible for the logit model (see Chamberlain, 1980), but not
the probit model. For count data, Hausman, Hall and Griliches (1984) presented
fixed effects estimation for the Poisson model and a particular parameterization of
the negative binomial model. The Poisson fixed effects estimator does not require
that the data be Poisson distributed, as it is consistent provided the conditional
mean is correctly specified. An active area of research is developing methods for
general nonlinear fixed effects panel models that, while inconsistent due to the
incidental parameters problem, are less inconsistent than existing methods (see,
for example, Arellano and Hahn, 2007).

Panel data also provide the opportunity to model individual-level dynamic
behavior, since the individual is observed at more than one point in time. A simple
dynamic linear fixed effects model includes a lagged dependent variable, so that:

yit = ρyi,t−1 + x′itβ + αi + εit , i = 1, . . . , N, t = 1, . . . , T . (14.51)
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An important result is that the fixed effects and first differences estimators of this
model are inconsistent. Instrumental variables estimation of the first differences
estimator is possible, using yi,t−2 as an instrument for (yi,t − yi,t−1). Holtz-Eakin,
Newey and Rosen (1988) and Arellano and Bond (1991) proposed using addi-
tional lags as instruments and estimating by GMM using an unbalanced set of
instruments.

For nonlinear dynamic models fixed effects estimation is possible for the logit
model (see Chamberlain, 1985; Honore and Kyriazidou, 2000), for the Poisson
model (see Blundell, Griffiths and Windmeijer, 2002), and for some duration
models (see Chamberlain, 1985; Van den Berg, 2001).

14.5.4 Structural models

The classic linear simultaneous equations model (SEM) has deliberately not been
discussed in this section on causation, as the SEM is rarely used in microecono-
metric studies. Many causal studies are interested in the marginal effect of a single
regressor on a single dependent variable. In that case 2SLS regression of the single
equation of interest is simply instrumental variables estimation, already discussed,
which itself has deficiencies, leading to increased use of the other methods given
in this section. Finally, the linear SEM does not extend readily to nonlinear mod-
els and, in cases where it does, such as simultaneous equation tobit models, the
distributional assumptions are very strong.

Another type of structural modeling is microeconometric models based on eco-
nomic models of utility or profit maximization. Early references include Heckman
(1974), MaCurdy (1981) and Dubin and McFadden (1984). The more recent labor
literature most commonly uses structural economic models to explain employment
dynamics (see, for example, Keane and Wolpin, 1997). Structural modeling is more
often used in industrial organization (Reiss and Wolak, 2007, provide a survey).

14.6 Heterogeneity

A loose definition of heterogeneity is that data differs across observations. In a
regression context this heterogeneity may be due to regressors (observables) or due
to unobservables.

To begin with, consider heterogeneity due directly to observed regressors. For
the linear regression model yi = x′iβ + ui with E[ui|xi] = 0, E[yi|xi] = x′iβ so
that heterogeneity induces heterogeneity in the conditional means, though not in
the marginal effects ∂E[yi|xi]/∂xi = β. Nonlinearity in the conditional mean, e.g.
E[yi|xi] = exp(x′iβ), will induce marginal effects that differ across individuals. Even
simple parametric nonlinear models such as probit and tobit have this feature. The
standard method is to present a single summary statistic. Often the marginal effect
is evaluated at x = x̄, but for most purposes a better single measure is the sample
average of the individual marginal effects. Single index models, that is, E[yi|xi] =
g(x′iβ), have the advantage that the ratio of marginal effects for two different regres-
sors equals the ratio of the corresponding parameters, and does not depend on the
regressor values. Thus if one coefficient is twice another then the corresponding
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marginal effect is twice as large. Quite flexible modeling of heterogeneity in E[yi|xi]
and the associated marginal effects is possible using nonparametric regression of
y on x. This yields very noisy estimates for high dimension x, leading to the use
instead of semiparametric methods such as those given in section 14.3.6.

More challenging is controlling for unobserved heterogeneity that is due to fac-
tors other than the regressors. Different individuals then have different responses
even if the individuals have the same value of x. Failure to control for this unob-
served heterogeneity can lead to inconsistent parameter estimates and associated
marginal effects. A simple example is omitted variables bias in the linear regres-
sion model, where the omitted variables form part of the unobserved heterogeneity.
The source of the unobserved heterogeneity can also matter. In particular, in struc-
tural models of economic behavior a distinction is made as to whether or not the
unobserved (to the econometrician) heterogeneity is known to the decision maker.

Meaningful discussion of unobserved heterogeneity requires the statement of
an underlying structural relationship to be estimated in the presence of unob-
served heterogeneity. Wooldridge (2005, 2008) provides a fairly general framework.
Suppose that interest lies in a conditional mean m(x, u) = E[y|x, u], or more
formally:

m(x, u) = E[Y |X = x, U = u],
where u is unobserved and for simplicity is a scalar. Ideally m(x, u) would be esti-
mated but, instead, analysis is restricted to what Blundell and Powell (2004) call
the average structural function (ASF):

m(x) = EU [m(x, U)],
which integrates out the unobserved heterogeneity. Often, interest lies in how ASF
changes as the jth regressor, say, changes. This is the average partial effect (APE):

∂m(x)

∂xj
= EU

[
∂m(x, U)

∂xj

]
.

Unobserved heterogeneity poses a problem because the ASF m(x) in general differs
from the conditional mean E[y|x] = EU |x[m(x, U)], and hence APE differs from
∂E[y|x]/∂xj, but it is only E[y|x] that is identified from the observed data.

The simplest assumption, and one commonly made, is that u is independent
of x, as then E[y|x] = m(x). In a model with additive heterogeneity, analysis is
particularly straightforward. If m(x, u) = g(x,β) + u then E[y|x] = g(x,β) given u
independent of x with mean zero. Analysis is more complicated if unobserved het-
erogeneity enters in a nonlinear manner. For example, if m(x, u) = g(x′β + u) then
E[y|x] = Eu[g(x′β + u)] will typically require specification of the distribution of u
and integration over this. In some cases analytical expressions can be obtained. In
other cases numerical methods are used. If u is low dimensional (in many appli-
cations it is a scalar) then Gaussian quadrature methods work well. Otherwise the
simulation methods given in sections 14.3.3 and 14.3.4 can be used. Examples
include negative binomial models for counts obtained by a Poisson–gamma mix-
ture, Weibull–gamma mixtures for durations, random utility models for binary and
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multinomial data (where u is now a vector) and normal mixtures for linear and
nonlinear panel data. While often the unobserved heterogeneity is interpreted as a
random intercept, this can be generalized to random slopes (a random coefficients
model). An alternative is finite mixtures models, used particularly in duration and
count data analysis.

Panel data offer the opportunity to permit u to be dependent on x. In that case
uit is decomposed into a time-varying component that is independent of xit and a
time-invariant component that may be correlated with xit . Fixed effects estimators
for these models have been discussed in section 14.5.3. It is important to note that
in nonlinear models these methods identify β but not ASF, so that the APEs are
only estimated up to scale.

Panel data also offer the possibility of distinguishing between persistence in
behavior over time due to unobserved heterogeneity and persistence in behav-
ior over time due to true state dependence. For example, rather than the static
linear model yit = x′itβ + ui + εit , where correlation of ui with xit causes prob-
lems, a more appropriate model may be a dynamic model yit = ρyi,t−1+x′itβ+ εit ,
where there is now no complication of unobserved heterogeneity. These models
have quite different structural interpretations with quite different policy conse-
quences. For example, high persistence of unemployment given regressors may be
due to stigma attached to being unemployed (state dependence) or may be due to
unobserved low ability (unobserved heterogeneity).

The treatment effects literature allows for unobserved heterogeneity. By assum-
ing that selection is on observables it is possible to estimate ATET(x), which is the
APE for the treatment variable.

Wooldridge (2005, 2008) proposes the use of proxy variables to identify the ASF
and APE. For simplicity, consider the linear model y = x′β + u. If E[u|x] = 0, then
m(x) = E[y|x] = x′β so unobserved heterogeneity causes no problem. Now consider
an omitted variables situation where u = z′γ + ε with E[ε|x] = 0 but E[z|x] �= 0.
The ASF is m(x) = x′β+ E[z]′γ , whereas the conditional mean E[y|x] = β+ E[z|x]′γ .
These terms differ unless E[z|x] = E[z], the case where the unobserved heterogeneity
is independent of x. A weaker assumption than independence is to assume that
there is a proxy variable w for z with the properties that (i) x and z are independent
conditional on w so E[z|x, w] = E[z|x], and (ii) E[y|x, w, z, ε] = E[y|x, w, ε], so that
z is redundant in the original model. Then E[y|x, w] = x′β+ E[z|w]′γ , which can
be identified by regression of y on x and z. Taking the expected value with respect
to w then gives the desired ASF. Wooldridge (2005) generalizes this approach to
nonlinear models and argues that, even though failure to control for unobserved
heterogeneity may lead to inconsistent parameter estimates, it is still possible in
some cases to consistently estimate the ASF and APE.

There is also a growing literature on heterogeneity in nonparametric models: see,
for example, Matzkin (2008). A simple approach is to start with the conditional
cumulative distribution function (c.d.f.) F(y|x), which can be nonparametrically
estimated. Define u = F(y|x), then u is uniformly distributed on (0, 1) and hence

uncorrelated with x. Inverting yields y = F−1
(u|x) = G(x, u). This provides a

decomposition into observables x and unobservables u that is independent of x,
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a separable model. But this is not a structural model in the sense of the ASF given
earlier.

Controlling for unobserved heterogeneity is an active area in microecono-
metrics, as much of the variation in the outcome is due to unobserved factors
since, typically, R2

< 0.5. It is particularly important when there is sample selec-
tion or self-selection. For example, in OLS regression we essentially require only
that E[u|x] = 0, whereas if the sample is truncated or censored, much stronger
assumptions on u are needed even if semiparametric methods are used. Heckman
(2000, 2005) and related papers explicitly consider heterogeneity and structural
estimation (see also Blundell and Powell, 2004; Wooldridge, 2005).

14.7 Data issues

Microeconometric data are often survey data that come from sampling schemes
more complicated than simple random sampling, and key variables can be mis-
measured or even missing due to nonresponse. These issues are generally ignored
in applied work. Ignoring the sampling scheme is reasonable in the many cases
where the sampling scheme or nonresponse mechanism leads to a sample that is
nonrepresentative only of the regressors, while maintaining representativeness of
the dependent variable conditional on regressors. It is also reasonable to ignore
measurement error if it is classical measurement error in the dependent variable
in a linear model. In other cases standard estimators are often inconsistent and
alternative estimators are needed.

14.7.1 Sampling schemes

Survey data often use stratified and clustered sampling to lower interview costs and
to provide more precise estimates for population sub-groups, such as regions with
relatively few people, than would otherwise be the case. The extensive sample
survey literature, initially focused on estimation of population means but then
extended to the regression case, has generally been ignored by the econometrics
literature.

The first issue raised by survey sampling schemes is that the sample is no longer
representative of the population. For inference on a single variable it is necessary
to adjust for this. For example, average earnings in a nonrepresentative sample
will be an inconsistent estimate of population mean earnings. For regression anal-
ysis, adjustment is necessary if the sample is nonrepresentative for the dependent
variable after conditioning on regressors (endogenous stratification), but may not
be necessary if the sample is nonrepresentative only for the regressors (exogenous
stratification).

For endogenous stratification, where stratification is on the dependent vari-
able in a regression, standard estimation methods lead to inconsistent parameter
estimates.

Consider stratification in a likelihood framework. Let the conditional distribu-
tion of y given x be denoted f (y|x, θ). Usually the joint density of y and x is
g(y, x|θ) = f (y|x, θ) × g(x), where the parameters in g(x) are suppressed. Under
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exogenous sampling g(x) does not involve θ , so that inference on θ can be based
on the conditional log-likelihood based only on f (y|x, θ).

Under endogenous stratification, however, it can be shown that g(y, x|θ) takes a
more complicated form, and ML estimation needs to be based on the joint log-
likelihood based on g(y, x|θ). Standard estimators that instead continue to use
f (y|x, θ) are inconsistent. Examples include truncated regression (for example,
hours of work are modeled and only workers are surveyed), choice-based sampling
(for example, commute mode choice is modeled and bus-riders are deliberately
oversampled as there are relatively few bus-riders), on site sampling and case-
control studies. Much of the econometrics literature has focused on choice-based
sampling in discrete choice models, with estimation by weighted MLE (see Manski
and Lerman, 1977), or more efficient GMM methods, (see Imbens, 1992). A more
general presentation for endogenous stratification is given by Imbens and Lan-
caster (1996). Wooldridge (2001) considers inverse-probability weighted estimators
for m-estimators.

Stratified surveys usually provide sample weights that can be used to obtain
population representative statistics. Under exogenous stratification, these sample
weights need not be used in the typical situation where correct specification of a
regression model is assumed. For example, assume that the regression function is
linear in x, so that y = x′β+u, E[u|x] = 0 and E[y|x] = x′β. Then OLS is consistent
even if the regressors x are not representative of the population in x. The reason
for using these weights in estimation is if we wish to relax the assumption that
E[y|x] = x′β, due to nonlinearity or because β varies across strata. Then weighted
OLS should be used as it provides an estimate of the so-called census coefficient β∗
that has probability limit equal to the regression coefficient that would be obtained
by regression of y on x using the entire population (see DuMouchel and Duncan,
1983). For example, a weighted OLS regression of earnings on years of schooling
provides a consistent estimate of the population marginal effect on earnings of
one more year of schooling, without assuming that the model is linear. Note that
even if unweighted estimation is appropriate, weights may still be used in making
predictions from the model. For example, if E[y|x] is nonlinear in x then marginal
effects vary with evaluation point x, so that weights should be used to compute an
estimate of the population marginal effect.

A big reason for stratification is to improve efficiency of estimates of the pop-
ulation mean of a single variable, such as earnings or unemployment, when the
mean of that variable differs across strata. This efficiency gain can carry over to
regression, and some regression packages include commands to do so. These are
widely used in biostatistics but not in econometrics, in part because the efficiency
gains are felt to be small and in part because not all datasets provide the necessary
information on the strata. Bhattacharya (2005) presents results for m-estimation
and a good discussion of the issues.

In addition to stratification, survey methods often induce dependence for
sub-groups of observations. For example, several households on the same block
may be interviewed. Then data in that sub-group are likely to be positively cor-
related and, even after controlling for regressors, model errors are likely to be
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positively correlated. The standard procedure in econometrics is to use estima-
tors that ignore the clustering and base inference on cluster-robust standard errors,
presented in section 14.4.1. More efficient estimation is possible using feasible GLS
estimators that model the error correlation. In particular, hierarchical linear models
or multilevel models are often used in other social science disciplines but are sel-
dom used in econometrics. If clustering is felt to induce correlation of errors with
regressors, then cluster-specific fixed effects, analogous to an individual-specific
fixed effect in a panel data model, may also be used.

14.7.2 Missing data

The starting point for analysis of missing data is the terminology and assumptions
made about the nature of the process leading to missing data on wi, say, due to
Rubin (1976). These have many similarities with the potential outcomes model,
where the unknown counterfactual can also be viewed as a missing data problem.
If the probability of wi being missing depends on neither its own value or on other
data in the data set then wi is missing completely at random (MCAR), and missing
data on wi causes no problems aside from efficiency loss. If the probability of wi
being missing depends on other data in the data set, but not its own value, then wi
is missing at random (MAR), and missing data may lead to estimator inconsistency.
If wi is MAR, then it is possible to adjust for missingness if the missing data mech-
anism is ignorable, meaning that the parameters of the missing data mechanism
are unrelated to the parameters that we estimate, similar to weak exogeneity.

Simple corrections for missing data include dropping an observation if any vari-
able is missing (listwise deletion or case deletion) and simple imputation methods
such as using the sample average or predictions from a fitted regression model.
These corrections are valid if data are MCAR or the missing data are regressors only
that are MAR with probability that is independent of the dependent variable.

The modern approach is to use multiple imputation methods that regard miss-
ing data as random variables and replaces with draws from an assumed underlying
distribution. Let W = (Wobs, Wmiss) denote the data partitioned into observed
and missing observations, and suppose W has density f (W|θ). The multiple
imputation method imputes Wmiss under the assumption of MAR with ignorable
missingness. There are several ways to make imputations. A preferred, though
computationally expensive, method is to use data augmentation and MCMC meth-

ods. Given an sth round estimate of θ (r), we impute W(r+1)
miss by making a draw

from f (Wmiss|Wobs, θ
(r)

). Then a new estimate θ (r+1) is obtained by drawing from

f (θ |Wobs, W(r+1)
miss ). The chain is continued to convergence, giving an imputed value

for Wmiss. Suppose we obtain imputed value W(I)
miss and then obtain the MLE based

on f (Wobs, W(I)
miss|θ). This will overstate estimator precision as it fails to account for

the uncertainty created by imputation of W(I)
miss. Multiple imputation overcomes

this by obtaining m different imputed values for Wmiss and hence m estimates θ̂ r ,
r = 1, . . . , m, with associated variance matrices V̂r = V̂[̂θ r ]. For further details see
Little and Rubin (1987), Rubin (1987) and Schafer (1997).
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Microeconometrics applications rarely use multiple imputation methods, in part
due to concern that missingness may be for nonignorable reasons, such as endoge-
nous stratification discussed in section 14.7.1. Wooldridge (2007) considers use of
inverse-probability weighting estimators when data are missing and provides a link
with the framework of Rubin (1976).

14.7.3 Measurement error

Standard results for measurement error consider the linear regression model with
classical measurement error in regressors. OLS coefficients are then inconsistent
and understate the magnitude of the true coefficient. More recent work has con-
sidered nonlinear regression models and, in some cases, nonclassical measurement
error.

Suppose y = βx∗ + u, with error u uncorrelated with x∗, but we observe x
rather than x∗ and regress y on x. Then, from Angrist and Krueger (1999), the

OLS estimator β̂ = [∑i x2
i ]−1 ∑

i xiyi = [∑i x2
i ]−1 ∑

i xi(βx∗i + ui) is in general
inconsistent as:

plimβ̂ = [V[x]]−1Cov[x, x∗]β = λβ, (14.52)

where λ =Cov[x, x∗]/V[x] is the reliability ratio of x as a measure of x∗, and we have

assumed that plimN−1∑
i xiui = 0. This assumption that x is uncorrelated with u

requires the additional assumption that u is uncorrelated with the measurement
error v = x − x∗, in addition to the usual assumption that the model error u is
uncorrelated with x∗.

The size of the inconsistency depends on the size of the reliability ratio, which
has been measured in various survey validation studies. Angrist and Kruger (1999,
p. 1346) present a summary table with reliability ratios for log annual earnings,
annual hours and years of schooling ranging from 0.71 to 0.94. Bound, Brown and
Mathiowetz (2001, pp. 3749–830) summarize many validation studies for labor-
related data that also indicate that measurement error is large enough to lead to
appreciable bias in OLS coefficients.

Result (14.52) makes few assumptions beyond independence of measurement
error and model error. Textbook treatments of measurement error emphasize the
classical measurement error model, a more restrictive model that assumes:

y = βx∗ + u, u ∼ iid
[
0, σ2

u

]

x = x∗ + v, v ∼ iid
[
0, σ2

v

]
and x∗ ∼ iid

[
0, σ2

x∗
]
. (14.53)

Then plimβ̂ = λβ, where λ = σ
2
x∗/(σ

2
x∗ + σ

2
v ) = 1/(1 + s) and where s = σ

2
v /σ

2
x∗

is the noise-to-signal ratio. Since s ≥ 0, β̂ is downward biased asymptotically
towards zero, a bias called attenuation bias. The attenuation bias is reduced
if additional (correctly measured) regressors are included, and is increased if
panel data are used with estimation by differencing methods such as the within-
estimator.
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There are several ways to secure identification of β. These include instrumental
variables methods (assuming availability of an instrument z that is correlated with
x∗ but not with the model error u), use of replicated data or validation sample
data to estimate key sample cross-moments, and use of additional distributional
assumptions, such as symmetry of the error. Bounds on β can also be obtained
using reverse regression. Wansbeek and Meijer (2000) review many identification
methods. Few studies correct for measurement error, however, in part due to lack
of necessary data or reluctance to make strong assumptions about the nature of the
measurement error.

The preceding methods do not generalize easily and in a systematic way to
nonlinear models. Carroll, Ruppert and Stefanski (1995) summarize the statis-
tics literature and Hausman (2001) considers the econometrics literature. For
measurement error in regressors in nonlinear regression with additive error, an
early reference is Y. Amemiya (1985) and a more recent reference is Schennach
(2004). For nonlinear models with nonadditive errors, such as discrete outcome
and count models, measurement error in the dependent variable can also cause
problems. For example, Hausman, Abrevaya and Scott-Morton (1998) consider
mismeasurement in the dependent variable in binary outcome models, taking a
parametric approach with strong assumptions.

The classical measurement error model maintains that the measurement error
is i.i.d. Some work relaxes this. An early example is that, for a binary regressor,
the measurement error is necessarily correlated with the true value, since the only
way to mismeasure a value of 0 is as a 1, and vice versa. Mahajan (2006) gives a
quite general treatment for binary regressors. Kim and Solon (2005) consider stan-
dard linear panel estimators when measurement error in a regressor is negatively
correlated with the true value.

14.8 Conclusion

Microeconometricians are very ambitious in their desire to obtain marginal effects
that can be given a causative interpretation, permit individual heterogeneity
and are obtained under minimal assumptions. The associated statistical inference
should also rely on minimal assumptions. This has led to a literature and toolkit
that is quite advanced for an area of applied statistics.

This survey has of necessity been selective. The methods used in labor economics
and public economics have been emphasized. General approaches have been pre-
sented, with specialization usually to the linear model. For econometrics methods
for specific types of data – binary, multinomial, durations and counts – good start-
ing points are the specialized monographs by, respectively, Maddala (1983), Train
(2003), Lancaster (1990), and Cameron and Trivedi (1998), as well as the more gen-
eral texts cited in the introduction and Cameron and Trivedi (2008). The chapters
by Greene and Jones in this volume are also highly relevant.
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15
Computational Considerations in
Empirical Microeconometrics:
Selected Examples
David T. Jacho-Chávez and Pravin K. Trivedi

Abstract

The substance and style of modern microeconometrics is shaped by its role in analyses of pub-
lic policy issues. Computational considerations have proved to be an important influence on the
methodology and scope of empirical analyses that address these issues. To be convincing to a wide
readership the empirical analyses need to be based on representative data and flexible modeling
approaches. In this chapter we illustrate, through a variety of empirical examples, how modelers
handle the complexities that arise from the richness of survey data and the heterogeneity in behav-
ior of market participants. After introductory sections on data and programming languages, the
remainder of the chapter covers many leading computationally intensive econometric techniques.
These are illustrated by means of specific numerical examples. An algorithmic format is used to
describe the computational features.
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15.1 Introduction

Since the 1980s there has been a huge growth in the availability of both census
and survey data, in part due to the expansion of electronic recording and col-
lection of data. As data, computational power, and modeling opportunities have
grown, so have the variety and complexity of the modeling objectives of empir-
ical researchers. These developments have created modeling opportunities and
challenges that were largely absent when only aggregated market-level data were
available.

Explosive growth in the volume and types of data has also given rise to numerous
methodological issues. Certain features of micro-data are also ultimately respon-
sible for added computational complexity. Sample survey data, the raw material
of microeconometrics, are often subject to problems of sample selection, mea-
surement errors, incomplete and/or missing data, all of which generate additional
uncertainty about the econometric specifications used by empirical researchers and
impede the empirical generalizations from sample to population. One response to
these issues is that empirical researchers often explore several modeling strategies,
leading to additional computational complexity.

Model specification, estimation, testing, and then revision are essential com-
ponents of a modeling cycle. Whether econometric models are intended to be
exploratory and descriptive, or whether they aim to quantify structural relation-
ships, computation is central to every step in the modeling cycle. Important
features of modern applied econometrics include the following:

• Disaggregation. Microeconometrics is about regression-based modeling of eco-
nomic relationships using data at the levels of individuals, households, and
firms. The low level of aggregation in the data has immediate implications for
the functional forms used to model the relationships of interest. Disaggregation
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brings out heterogeneity of individuals, firms, and organizations. Modeling such
heterogeneity is often essential for making valid inferences. While aggregation
usually reduces noise and leads to smoothing, disaggregation leads to loss of
continuity and smoothness, and increases the range of variation in the data. For
example, household average weekly consumption of (say) meat is likely to vary
smoothly, while that of an individual household in a given week may frequently
be zero, and may also switch to positive values from time to time. As Pudney
(1989) has pointed out, micro-data exhibit “holes, kinks and corners.” Dis-
creteness and nonlinearity of response are intrinsic to microeconometrics, and
they contribute to an increase in computational complexity relative to linear
models.

• Model complexity. Empirical microeconometrics is closely tied to issues of
public policy. Attempts to strengthen the policy relevance of models typically
increase the complexity of the models. For example, one may be interested not
only in the average impact of a policy change, but also in its distribution. The
greater the heterogeneity in response, the greater the relevance of the latter. One
feature of such complexity is that potentially models have high dimension. A
multiple equation nonlinear regression model with scores of variables is not at
all unusual.

• Restrictions. Strong functional form and distributional restrictions are not
favored. Instead, non- and semiparametric models, or flexible parametric
models, are preferred.

• Robustness. Models whose conclusions are not very sensitive to model-
ing assumptions are preferred. Robustness comparisons between competing
specifications are an important part of the modeling cycle.

• Testing and evaluation. Model testing and evaluation, generally requiring
additional computational effort, are integral parts of the search for robust
specifications.

• Asymptotic approximations. Traditionally, inference about economic rela-
tions relied heavily on large sample approximations, but with additional compu-
tational effort it is often possible to improve the quality of such approximations.
Increasingly, applied econometricians engage in such improvements.

• Computing advances. Breathtaking advances in the speed and scope of
computing encourage applied econometricians to experiment with computa-
tionally more ambitious projects. Avoiding a technique purely because it is
computationally challenging is no longer regarded as a serious argument.

In this chapter we selectively and illustratively survey how computational advances
have influenced, and in turn are influenced by, the style and direction of modern
applied microeconometrics. Although it is fascinating to do so, we do not system-
atically take a historical perspective on econometric computation. The interested
reader is directed to Berndt (1991, pp. 1–10) and the articles by Renfro (2004b) and
Slater (2004). To limit the potentially vast scope of this article, we restrict the cover-
age to a few selected topics whose discussion is illustrated with specific data-based
examples. We do not cover the important developments in Bayesian computation
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(see, e.g., Chib, 2004; Geweke, 2005). The preliminary issues are tackled in sections
15.2 and 15.3. Section 15.4 discusses the advantages of flexible functional forms
generated using non- and semiparametric methods. Section 15.5 illustrates some
of the ways in which heterogeneous responses are modeled and how resampling
methods are used in the related econometric inference. Section 15.6 illustrates
the use of simulation assisted estimation in handling endogenous regressors in a
simultaneous nonlinear model of choice and outcomes. Section 15.7 concludes.

15.2 Preliminary

A computer has become the standard tool of the trade for most applied econometri-
cians. It is unimaginable how today’s empirical analyses and advances could have
been performed without one. However, a byproduct of this matrimony between
computing and applied econometrics is today’s necessity that empirical researchers
should know and understand many definitions and specialized computer science
jargon. In this section, we provide a quick introduction to essential concepts, ter-
minology and practical considerations that most researchers come into contact
with while working with a computer.

15.2.1 Programming languages

A computer programming language can be thought of as a set of characters,
along with rules to combine them into words and symbols, that can be used to
express detailed instructions to a computer. Most programming languages used by
economists are high-level languages, in the sense that they are not generally specific
to a computer central processing unit (CPU), but instead they are portable across
different computer hardware. These high-level languages can generally be divided
into compiled languages and interpreted languages.

Compiled programming languages require a computer program, called compiler,
to translate human-readable text instructions, called source code, into a low-level
language such as assembly language or machine language. Most third-generation
programming languages (3GL), such as C, C++ and Fortran, are compiled languages.
Computer programs written in these languages need to be compiled first, and then
executed.

Interpreted programming languages are implemented by a computer pro-
gram called interpreter. The interpreter executes instructions written in these
languages. Popular object-oriented fourth-generation programming languages (4GL),
such as GAUSSTM (Aptech Systems, Inc., Black Diamond, Washington), MATLAB®

(The MathWorksTM, Natick, Massachusetts), R (R Development Core Team,
Vienna, Austria), and Stata® (StataCorp LP, College Station, Texas) are interpreted
languages.

The interested reader is recommended to consult articles by Nerlove (2004) and
Renfro (2004a) for a comprehensive list and history of programming languages
used in econometrics up to 2004.
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15.2.1.1 Characteristics

Researchers are often faced with the dilemma of what programming language to
use. Although the final decision is mostly a matter of taste and time constraints,
the following should serve as guidelines:

• Portability. Source code written in 4GLs requires a local installation of the
relevant compiler for their implementation. Since these languages are often
proprietary, this could make sharing and replicability inconvenient.1 On the
other hand, after compilation, 3GL’s executable files do not require any kind of
formal installation onto a computer’s permanent storage device to be executed
and can be sent to others by e-mail, enabling it to be used on multiple computers.

• Complexity. Compiled programming languages are general purpose languages.
They often only include primitive mathematical functions and, with the excep-
tion of Fortran, they solely provide uniform pseudo-random number generators.
On the other hand, interpreted languages are conceived with a specific pur-
pose in mind. They admit a richer set of data types than integer and double
precision numbers. Multidimensional arrays are also native objects in some of
these languages. Standard econometrics and mathematical techniques are sel-
dom implemented in compiled languages, but they are plentiful in interpreted
languages.

• Expandability. Both 3GL and 4GL can readily be expanded by the inclusion
of libraries and packages. Libraries are collections of special purpose algorithms.
Examples include the IMSL libraries of Visual Numerics Inc. for C and Fortran,
and NAG Fortran Library subroutines of the Numerical Analysis Group. Packages
are collections of programs linked together. Examples include packages in R, and
modules in Stata.

• Efficiency. A main disadvantage of interpreted languages is that applications
run slower than if they had been compiled, especially iterative algorithms that
require loops iterated many times, e.g., bootstrapping and cross-validation. This
is because the interpreter must analyze each statement in the source code each
time it is executed, and then perform the desired action, whereas the compiled
code simply performs the action. Furthermore, 3GL such as C and Fortran per-
mit better control of dynamic memory allocation that can potentially speed up
many implementations.2

However, it is no longer the case that researchers must choose between 3GL and
4GL when facing a programming task. Modern computing environments allow the
inclusion of C or Fortran subroutines, via foreign language interface, into 4GL such as
GAUSS, MATLAB, R, Stata and vice versa, as well as the possibility of parallelization.

15.2.2 Foreign language interface

Parts or chunks of source code written in an interpreted language can be rewrit-
ten in C or Fortran, and then compiled into a library (dynamic link library in MS
Windows®, or share object in *NIX3 platforms). This compiled library can then be
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dynamically loaded by the original program to speed up overall execution. Further-
more, since some interpreted languages are written in C, it is not surprising that
native C code can make use of libraries in local installations of these interpreted
languages’ compilers.4

15.2.3 Parallelization

Standard 4GL performs serial computations, i.e., instructions are executed one
after another on a single computer having a single CPU. However, the advent of
clusters,5 workstations and single computers with multiple processors have made
parallel computing a tangible possibility to most economists. Parallel computing is
the simultaneous use of more than one CPU to execute a program or solve a compu-
tational problem. The problem is broken into parts that can be solved concurrently.
Each part is further broken down to a series of instructions that are executed simul-
taneously on different CPUs. This is achieved by using a language-independent
communications protocol known as Message Passing Interface (MPI).

Parallel computing means that computations that would otherwise take hours
or days could be performed in minutes or hours. Computational algorithms that
allow parallelization commonly involve iterative loops that can be performed inde-
pendently of each other. Examples include most resampling methods, such as
the bootstrap, or set search algorithms often used in cross-validation methods
in non/semiparametric techniques (see section 15.4.1.1 for an illustration). Creel
(2005) discusses many other econometric examples that allow for parallel compu-
tation, such as Monte Carlo simulation, maximum likelihood (ML) and generalized
method of moments (GMM) estimation.

Most 4GL used in econometrics either allow the parallelization of procedures
or make full use of multiprocessor computers. Examples include MatlabMPI in
MATLAB, Rmpi, and Snow in R for the former, and Stata/MP® for the latter.

15.3 Computing and modeling

There are many ways in which more memory and computing power can potentially
improve the quality of empirical analysis in microeconometrics.

The first context is that of the storage and manipulation of large complex
datasets, and in providing numerical, graphical and visual displays of data in ways
that provide valuable insights into the pattern and structure within such datasets.

The second context is that of solving (especially) high-dimensional optimization
problems that arise in model estimation. Estimation of many standard microe-
conometric models involves solution of nonlinear equations by iterative methods,
which are generically referred to as optimizers. Efficient optimizers that can handle
high-dimensional problems are essential in microeconometric modeling.

Increasingly, computer-intensive methods such as Monte Carlo simulators are
an important tool for studying the finite sample properties of estimators and tests.
Simulation is also an essential component in estimating model parameters, as in the
case of simulation-assisted optimization and Markov chain Monte Carlo (MCMC)
methods used in Bayesian modeling.
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Fourth, computer-intensive resampling methods, such as the bootstrap and jack-
knife, are increasingly used as substitutes for analytically complex computations
such as sample estimates of asymptotic variances.

Finally, cross-validation is another computer-intensive tool that is useful not
only for parameter tuning (as illustrated in section 15.4) but also for model
evaluation and comparison.

In the remainder of this section we define and outline each type of application.

15.3.1 Data summary and visualization

A starting point of almost any empirical microeconometric application involves
providing data summaries. The most common manifestation of this takes the form
of a table of sample moments, such as means, variances, skewness and kurtosis.
However, visual data summaries, such as histograms and kernel (marginal) density
plots, are often a more efficient way of providing information (see, e.g., Huynh
and Jacho-Chávez, 2007). The kernel density estimator is a generalization of the
histogram estimate using kernel weights, k(·), that integrate to 1. These weights
depend on a smoothing parameter, h, called the bandwidth, and 2h is the window
width (see section 15.4.1 for definitions and examples). Given k(·) and h the esti-
mator is easy to implement, and if the estimator is evaluated at r distinct values,
then computation of the kernel estimator requires at most nr operations when
the kernel has unbounded support. However, as is evident even in the most ele-
mentary computation of a histogram, constructing such visual displays involves
the choice of bin size, and the results may be sensitive to the choice of h. This
motivates the search for another estimator that treats h like an unknown param-
eter, i.e., cross-validation. Such a method is inherently more computer-intensive,
as will be shown in section 15.4. An extension of this concept, also considered in
the next section, is the estimator of the conditional probability density function,
which also involves considerations similar to those in the estimation of marginal
densities.

15.3.2 Numerical optimization

Microeconometrics frequently employs an estimator θ̂ that maximizes a stochas-
tic objective function Qn(θ), where usually θ̂ solves the first-order conditions
∂Qn(θ)/∂θ = 0; n being the sample size. The objective function may be a likelihood
for parametric models, a weighted sum of squares function for semiparametric
models, or a linear function subject to inequality restrictions when the objective
function has an L1 (e.g., least absolute deviations) rather than an L2 (e.g., sum
of squared residuals) norm. For many nonlinear models there is no closed-form
solution of the first-order conditions, only a nonlinear system of equations in
the unknown θ . Estimation algorithms use iterative methods to solve the first-
order conditions. Iterative methods involve an updating rule for obtaining a new
estimate, θ̂s+1, given a current estimate θ̂s. Historically, iterative procedures consti-
tuted a computational challenge, but now they are standard. When the objective
function is in the L2 norm, gradient methods are most common. Non-gradient
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methods are used in the L1 norm case, quantile regression (QR) being a leading
example.

Gradient methods use an iterative updating rule:

θ̂s+1 = θ̂s + Asgs, s = 1, . . . , S, (15.1)

where As = A(̂θs) is a q×q matrix, and gs = ∂Qn(θ)/∂θ
∣∣̂
θ s

is the q×1 gradient vector

evaluated at θ̂s. The iterative process continues until it converges. Convergence is
usually defined in terms of an arbitrarily small value of either |Qn(̂θs+1) − Qn(̂θs)|
or |̂θs+1− θ̂s|. Gradient methods differ by their choice of matrix As, as summarized
in Table 15.1. Some methods, most notably Newton–Raphson and the method
of scoring, use second derivatives of the objective function, whereas others, most
notably BHHH (Berndt–Hall–Hall–Hausman), is based on the gradient function
only. The derivatives may be computed using either the analytical expressions,
which are then programmed in the algorithm, or numerical derivatives, which is
often a default option. The numerical derivatives are computed using:

�Qn(̂θs)

�θj
= Qn(̂θs + τej) − Qn(̂θs − τej)

2τ
, j = 1, . . . , q, (15.2)

Table 15.1 Some standard gradient-based iteration methods

A(̂θs) Reference

− ∂2Qn(θ)

∂θ∂θ$

∣∣∣∣∣̂
θs

Newton–Raphson

− E

[
∂2Qn(θ)

∂θ∂θ$

]∣∣∣∣∣̂
θs

Method of scoring

− ∑n
i=1

∂qi(θ)

∂θ

∂qi(θ)

∂θ$
∣∣∣∣̂
θs

Berndt–Hall–Hall–Hausman (BHHH)

Iq Steepest descent

As = As−1 +
δs−1δ

$
s−1

δ$s−1γs−1
+ As−1γ

$
s−1γs−1As−1

γ$s−1As−1γs−1
, where Davidon–Fletcher–Powell (DFP)

δs−1 = As−1gs−1; γs−1 = gs − gs−1

As = As−1 +
δs−1δ

$
s−1

δ$s−1γs−1
+ As−1γ

$
s−1γs−1As−1

γ$s−1As−1γs−1
Boyden–Fletcher–Goldfarb–Shannon
(BFGS)

−(γ$s−1As−1γs−1)ηs−1η
$
s−1, where

ηs−1 = (δs−1/δ
$
s−1γs−1)− (As−1γs−1/γ

$
s−1As−1γs−1)
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where τ is small and ej = [0, . . . , 0, 1, 0, . . . , 0]$ is a K-vector with unity in the
jth row and zeros elsewhere. In theory, τ should be chosen such that ∂Qn(θ)/∂θj
= limτ→0 �Qn(θ)/�θj. Although, in principle, analytical derivatives are preferred,
numerical approximations produce virtually identical results in many regular cases.

Whether the application of a gradient based optimizer turns out to be com-
putationally demanding depends upon many factors, including the following:
(i) dimension of θ ; (ii) whether the objective function is well approximated by
a quadratic expansion in the neighborhood of the optimum; (iii) whether θ is
robustly identified in the sample; and (iv) whether the iterative algorithm starts
sufficiently close to the optimum. Conversely, convergence can be slow when the
dimension of θ is high, some components of θ are weakly identified in the data,
and/or the objective function admits multiple maxima or a flat region around the
maximum, and the starting values for the update equation are poor. If an objective
function is difficult to maximize, e.g., due to multiple local optima, non-gradient
methods may be used, such as simulated annealing and genetic algorithms. A lead-
ing example is kernel-based cross-validation (see, e.g., algorithms 15.4.1.1.1 and
15.4.1.2.1 below), where Powell’s direction set search algorithm is also a viable
alternative (see Press et al., 1992, section 10.5, pp. 412–20).

Another example of a case where a gradient-based method is inappropriate is the
least absolute deviation (LAD) regression or the quantile regression. In the case of

LAD regression, the objective function Qn(θ) = n−1∑
i |yi−x$i β| has no derivative.

In the case of quantile regression, the objective function is minimized over βq; i.e.:

Qn(βq) =
n∑

i: yi≥x$i β

q|yi − x$i βq| +
n∑

i: yi<x$i β

(1− q)|yi − x$i βq| (15.3)

=
∑

ρq(uq), (15.4)

where 0 < q < 1, ρq(λ) = (q− I(q < 0))λ denotes the check function, I(·) represents
the indicator function that equals 1 if its argument is true and 0 otherwise, and
the notation βq emphasizes that, for different choices of q, different values of β are
obtained.

The estimator defined by the minimand minβq
Qn(βq) is an M-estimator and, as

such, its asymptotic properties are well established (see Amemiya, 1985). The opti-
mization problem has an interpretation in the GMM framework as well as in a linear
programming (LP) framework (see Buchinsky, 1995). To see the LP representation,
the QR is written thus:

yi = x$i βq + uiq

= x$i (β
[1]
q − β

[2]
q )+ (ε

[1]
iq − ε

[2]
iq ),

where β
[1]
q,j ≥ 0, β

[2]
q,j ≥ 0, j = 1, . . . , K, and ε

[1]
iq ≥ 0, ε

[2]
iq ≥ 0, i = 1, . . . , n. The

optimization problem can be expressed as that of minimizing a linear objective
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function subject to linear equality constraints:

min
c$z

c$z, subject to Az = y, z ≥ 0,

where A = [X,−X, In,−In], y = [y1, . . . , yn]$, z = [β[1]q ,β[2]q , ε[1]q , ε[2]q ]$, c$ =
[0$, 0$, qι$, (1 − q)ι$], X = [x1, . . . , xn]$, 0 is a vector of zeros, ι is a vector of
1s, and In is the identity matrix of order n.

The classic method for solving the linear program is the simplex method, which
is guaranteed to yield a solution in a finite number of simplex iterations. When n is
of the order of several thousands, an efficient computational algorithm is essential.
A number of alternative algorithms have been proposed, including a computation-
ally efficient one due to Barrodale and Roberts (1973), thus making QR a suitable
method for practical application in large samples. Point estimation is actually a
lesser computational challenge than the calculation of variances. Bootstrap meth-
ods for variance estimation, often used in preference to analytical expressions,
contribute to computational intensity; an example is given in section 15.2.

15.3.3 Simulation-assisted estimation

The role of simulation in theoretical econometrics is well established (see Doornik,
2006). Its use in empirical microeconometrics is more recent but growing rapidly
(see McFadden and Ruud, 1994; Gouriéroux and Monfort, 1996). First, MCMC
methodology, which is simulation-based, is now standard in modern Bayesian
estimation. Second, estimation of several leading microeconometric models, e.g.,
the multinomial probit (MNP), involve calculation of probability integrals that can
be efficiently estimated using simulation methods. Third, empirical microecono-
metric models often include a latent variable to capture the effects of unobserved
heterogeneity (UH). These too lead naturally to simulation-based estimation. We
consider two leading applications of simulation-based estimation.

15.3.3.1 MNP example

Consider the MNP model with m choices and with the utility of the jth choice
given by:

Uj = Vj + εj, j = 1, 2, . . . , m, (15.5)

where the errors ε = [ε1, . . . , εm]$ are joint normally distributed, ε ∼ N [0,�].
Usually the linear specifications Vj = x$j β or Vj = x$βj are used. This is an additive
random utility model. The covariance matrix � is subject to normalization and
identification restrictions because Uj is latent. The standard practice is to choose
U1 as the benchmark alternative and place one restriction on �.

In estimating the model by ML, a problem is that there is no closed form
expression for the choice probabilities. For an m-choice MNP model the choice
probabilities are (m− 1)-fold integrals, e.g.:

p1 = Pr[y = 1] =
∫ −Ṽm1

−∞
. . . .

∫ −Ṽ21

−∞
f (̃ε21, . . . ε̃m1)d ε̃21 . . . d ε̃m1,
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where the ∼ denotes normalization relative to the first alternative. When m > 3,
this integral is difficult to evaluate numerically. An alternative is to use simulation
methods. One well-known simulator is the GHK simulator due to Geweke (1992),
Hajivassiliou, McFadden and Ruud (1994) and Keane (1994) (see Train, 2003,
for details). In this context the maximum simulated likelihood (MSL) estimator
maximizes:

L̂n(β,�) =
n∑

i=1

m∑
j=1

yij ln p̂ij,

where the p̂ij are obtained using the GHK or other simulator. For consistent esti-
mation we require that the number of draws in the simulator S → ∞ as well as
n →∞. Because the method is computationally burdensome, a great deal of work
has been done on improving the simulator and on developing other models that
are good substitute specifications but are easier to estimate (e.g., McFadden and
Train, 2000).

15.3.3.2 Heterogeneity example

Suppose the conditional density h(yi|xi, θ , ui) for an observation involves a contin-
uous separable UH term ui, assumed to be independent of xi, with density g(ui).
Then the marginal density is defined by the integral:

f (yi|xi, θ) =
∫

h(yi|xi, θ , ui)g(ui)dui, (15.6)

which needs to be estimated numerically if there is no closed form solution.
An unbiased and consistent estimator f̂i of fi is the direct Monte Carlo simulator:

f̂ (yi|xi, uiS, θ) =1
S

S∑
s=1

h(yi|xi, θ , us
i ), (15.7)

which averages h(yi|xi, θ , us
i ) over the S draws, where us

i , s = 1, . . . , S, are inde-
pendent draws from g(ui). Estimators superior to this direct estimator are also
available.

The MSL estimator θ̂MSL maximizes:

L̂n (θ) =
n∑

i=1

ln f̂ (yi|xi, θ , uiS). (15.8)

If f̂ (·) is differentiable in θ then θ̂MSL can be computed using the standard gradient
methods mentioned above. This MSL estimator is asymptotically equivalent to the
ML estimator if S, n →∞ and

√
n/S → 0, and has a limit normal distribution.

The MSL method is one of the simplest simulation-based estimators. Just as the
MSL method parallels ML estimation, the method of simulated moments (MSM)
parallels the method of moments. For space reasons we do not elaborate on the
distinctions between these methods.

A direct application of the MSL method sometimes leads to very slow conver-
gence of the simulated likelihood function. Simulation-acceleration techniques are
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available. An example is the method that uses quasi-random draws based on Halton
sequences described in Bhat (2001) and Train (2003).6 Halton sequences have two
desirable properties vis-á-vis the standard pseudo-random draws. First, they are
designed to give more even coverage over the domain of the mixing distribution.
Second, the simulated probabilities are negatively correlated over observations.
This negative correlation reduces the variance in the simulated likelihood func-
tion. Under suitable regularity conditions (see Bhat, 2001), the integration error

using pseudo-random sequences is in the order of n−1 as compared to pseudo-

random sequences where the convergence rate is n−1/2. An example of an MSL
estimator using Halton quasi-random draws is given in section 15.6.

15.3.4 Resampling methods

Empirical microeconometrics depends heavily on asymptotic theory to justify
point and interval estimation procedures because exact results are generally not
available. Sometimes an investigator may be interested in some function of esti-
mates and data for which even the asymptotic result may not be available. In some
cases only an approximation to the asymptotic approximation may be available.
The availability of an asymptotic approximation is no guarantee that it provides
a good approximation to the sampling distribution of an estimator. Motivated by
these difficulties, econometricians increasingly use computer-intensive resampling
methods to obtain estimates of the moments of the asymptotic distribution. The
bootstrap and jackknife are two leading examples, but only the first is sketched
here.

There exists a wide range of bootstrap methods (see, e.g., Davidson and
MacKinnon, 2006). The simplest bootstrap methods can support statistical infer-
ence when conventional methods, such as variance estimation, are difficult to
implement, either because a formula is not available or because it is computation-
ally intractable. Another, more complicated, bootstrap attempts to provide asymp-
totic refinements that can lead to an improvement over the asymptotic results.
Applied researchers are most often interested in the first, simpler, application of
the bootstrap.

The basic idea behind the bootstrap is to approximate the distribution of a
statistic by a simulation in which one samples from the empirical or the fitted
distribution of the data. That is, one uses a given sample repeatedly to derive the
sampling properties of statistics of interest. Bootstrap methods rely on asymptotic
theory for their validity.

Consider, in the context of the regression of yi|xi, i = 1, . . . , n, the problem of
inference on a parameter θ , θ = φ(β), where φ(β) is a continuous function of the
regression parameters β. The bootstrap algorithm for the variance of θ is explained
in algorithm 15.3.4.0.1.

A computationally simpler alternative to the bootstrap variance is an estimate
obtained by the so-called delta method, based on a first-order Taylor approximation
of φ(β). In some applications this method can yield very poor results, whereas the
bootstrap may be more robust.
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Algorithm 15.3.4.0.1 Bootstrap variance estimation – implementation

1. Given data (yi, xi), i = 1, . . . , n, draw (with replacement) a bootstrap sample of
size n, denoted (y∗1, x∗1), . . . , (y

∗
n, x∗n).

2. Calculate the estimate θ̂∗ of θ .
3. Repeat steps 1–2 B independent times, where B is a large number, obtaining B

bootstrap replications of the statistic of interest, such as θ̂∗1, . . . , θ̂∗B.
4. Use these B bootstrap replications to obtain the bootstrap variance VB(̂θ) =

B−1∑
(̂θ
∗
j − θ̂

∗
)
2, where θ̂

∗ = B−1∑
θ̂
∗
j . (It is assumed that the asymptotic

variance of θ̂ exists.)

In implementing a bootstrap, details generally vary with the specific application.
For example, bootstrap samples may be drawn differently, the value of B may vary,
and the target statistic of interest may or may not involve asymptotic refinement.

Section 15.5.1 provides an example that compares standard errors of quantile
regression parameters obtained using an analytical formula with those from a
bootstrap.

15.3.5 Structural models based on dynamic programming

Dynamic programming (DP) models represent a relatively new strand in structural
microeconometric models. The special appeal of the approach comes from the
potential of this class of models to address issues relating to new policies or old
policies in a new environment. Further, the models are dynamic in the sense that
they can incorporate expectational factors and intertemporal dependence between
decisions. From a computational viewpoint these models are an order of magnitude
more complex than most other methods. What follows is merely a bare-bones
sketch of the approach.

The DP approach is rooted in detailed structural specifications derived from
strong theoretical specifications and contrasts sharply with the looser “atheo-
retical” models. The distinctive characteristics of this approach include: a close
integration with underlying theory; an assumption of rational optimizing agents;
extensive use of assumptions and restrictions necessary to support the close
integration of the empirical model with the underlying theory; a high level of
parameterization of the model; concentration on causal parameters that play a
key role in policy simulation and evaluation; and an approach to the estimation
of model parameters that is substantially different from the standard approaches
used in estimating moment condition models.

There are many studies that follow the dynamic programming approach. Rep-
resentative examples are Rust (1987); Hotz and Miller (1993); Keane and Wolpin
(1994). Some key features of DP models can be studied using a model due to Rust
and Phelan (1997), which provides an empirical analysis of how the incentives
and constraints of the US social security and Medicare insurance system affects the
labor supply of older workers.
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The main components of the DP model are as follows. State variables are denoted
by st , control variables by dt . β is the intertemporal discount factor. In implementa-
tion all continuous state variables are discretized – a step which greatly expands the
dimension of the problem. Hence all continuous choices become discrete choices,
dt is a discrete choice sequence, and the choice set is finite. There is a single period
utility function ut (st , dt , θu) and pt (st+1|st , dt , θp,α) denotes the probability den-
sity of transitions from st to st+1. The optimal decision sequence is denoted by

δ = (δ0, . . . , δT )
$, where dt = δt (st ), and is the optimal solution that maximizes the

expected discounted utility:

Vt (s) = max
δ

Eδ{
∑T

j=tβ
j−t uj(sj, dj, θu)|st = s}. (15.9)

Estimation of the model typically uses the likelihood function:

L(θ) = L(β, θu, θp)

=∏n
i=1

∏T
t=1Pt (d

i
t |xi

t , θu)pt (x
i
t |xi

t−1, di
t−1, θp), (15.10)

where θ = (θ
$
u , θ$p )

$, and assumptions are invoked to separate the parameters
in the transition probability pt (st+1|st , dt , θp,α) from those in the utility function
ut (st , dt , θu).

DP models are typically high dimensional. To handle the dimensionality issue a
popular estimation strategy has two steps: (1) estimate θp using a first-stage partial
likelihood function involving only products of the pt terms; (2) estimate θp by
solving the DP problem numerically, using a nested fixed point (NFXP) algorithm,
applied to the partial likelihood function consisting of only products of pt ; (see,
e.g., Rust, 1986, 1987, 1994, 1997). Given the enormous computational burden of
a high-dimensional dynamic discrete choice model, a great deal of recent research
seeks ways of making it more manageable; e.g., Aguirregabiria and Mira (2002)
provide survey methods which avoid repeated full solution of the structural model
in estimation, and the application of simulation and approximation methods (see,
e.g., Aguirregabiria and Mira, 2007).

15.4 Non/semiparametric methods

In many situations of interest in economics, we are interested in identifying and
estimating particular aspects of the joint distribution of a random vector [y, x$]
based on a sample {yi, x$i }, i = 1, . . . , n, where y ∈ R and x is a mixture of contin-

uous variables, xc = [x1, . . . , xq1 ] ∈ R
q1 , and discrete, xd =

[
xq1+1, . . . , xq

]$ ∈ Sd ,

where Sd is the support of xd , and q2 = q − q1. For example, our aim could be to
analyze the relationship between y and x encapsulated in the conditional mean
function E[y|x] = m (x), the conditional density function f

(
y|x), or on a finite-

dimensional vector of parameters β ∈ R
q, leaving other aspects of the distribution

unspecified. The available methods, such as kernels, rely on averaging observations
which are closer to those we want to make inference about. A weighting function,
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called a kernel, provides the necessary weights, and a smoothing parameter, known
as the bandwidth, defines how close observations are to each other. A very compre-
hensive introduction to such methods can be found in Pagan and Ullah (1999), Li
and Racine (2007), Yatchew (2003) and Racine and Ullah (2006). Kernel methods
are by nature computationally intensive. The number of operations necessary for
their application grows exponentially with the number of data points and variables
used. In this section we illustrate with real data the computational issues aris-
ing from the implementation of kernel smoothing in applied non/semiparametric
analysis of cross section information. Unless otherwise stated, all calculations were
performed using the np and gam libraries of Hayfield and Racine (2007) and Hastie
(2006) respectively, written in R version 2.4.1 or above. We use a Pentium IV (HT)
processor, running at 3.20 GHz.

15.4.1 Nonparametric estimation

For two particular points, xi = [xc
i , xd

i ] and xj = [xc
j , xd

j ], let us define the functions:

K(xc
i , xc

j ; h) =
q1∏

l=1

1
hl

k

⎛⎝xl
i − xl

j

hl

⎞⎠ , (15.11)

L(xd
i , xd

j ; λ) =
q2∏

l=1

l(xl
i, xl

j ; λl), (15.12)

where i indexes the “estimation data” and j the “evaluation data,” which are
typically the same. The kernel function k (·) for continuous variables satisfies∫

k (u) du = 1 and some other regularity conditions depending on its order, p,

and h = [h1, . . . , hq1
]$ is a vector of smoothing parameters satisfying hs → 0 as

n →∞ for s = 1, . . . , q1. Similarly, the kernel function l (·) for discrete variables lies

between 0 and 1, and λ =
[
λ1, . . . , λq2

]$
is a vector of smoothing parameters such

that λs ∈ [0, 1], and λs → 0 as n →∞ for s = 1, . . . , q2 (see, e.g., Li and Racine, 2003).
Functions (15.11) and (15.12) are the building blocks of kernel smoothing.

For example, the Nadaraya–Watson estimator of m (·) evaluated at xj is m̂(xj) =∑n
i=1,i �=j yiK(xc

i , xc
j ; h)L(xd

i , xd
j ; λ)/

∑n
i=1,i �=j K(xc

i , xc
j ; h)× L(xd

i , xd
j ; λ).

15.4.1.1 Example: kernel density estimation

The marginal density function of x can be estimated at evaluation point xi as:

f̂ (xj) = (n− 1)−1
n∑

i=1

K(xc
i , xc

j ; h)× L(xd
i , xd

j ; λ). (15.13)

We are interested in estimating the density of the average annual earnings in 1988
(measured in 1982 US dollars) of a random sample from two age groups: 19–26
(1,109 observations) and 30–32 (1,479 observations). This sample is a sub-set of a
larger dataset considered in Mills and Zandvakili (1997). In this case, q1 = 1 and
q2 = 0, and algorithm 15.4.1.1.1 illustrates the necessary steps.
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Algorithm 15.4.1.1.1 Conditional density estimation – implementation

1. Select function k (·) in (15.11), and choose the smoothing parameter h by cross-
validation maximum likelihood, i.e., select h to minimize:

L[h] =
∑n

i=1 log f̂−i(x
c
i ),

where f̂−i (·) equals (15.13) after replacing
∑n

i=1 by
∑n

i=1; i �=j.

2. Using h, found in the previous step, calculate f̂ (xc
i ) in (15.13) for each i =

1, . . . , n.
3. Plot (if feasible) or present summary statistics.

Parallelization
Since the above algorithm relies on local averaging, the computational order

of step 2 is O
(
n2q

)
. Data-driven methods, such as bandwidth selection by

cross-validation, performed in step 1, add an additional order of computational
magnitude. The burden increases as the amount of available data rises. These
numerical demands can potentially overwhelm the computational resources of
modern day desktop workstations. For these reasons, although approximations
are available (see, e.g., Silverman, 1982; Scott and Sheather, 1985) parallelization,
as discussed in section 15.2.3, is an attractive alternative (see, e.g., Racine, 2002).

We proceed to implement algorithm 15.4.1.1.1 for each dataset using a high-
performance computer cluster. Each implementation uses 10 multiple starts to
numerically minimize L[h] in step 1, and 1,000 bootstrap replications of step 2 to
calculate a 95% confidence interval. The first experiment uses a single node with its
2×2.0 GHz quad-core Intel Xeon 5335 processor, i.e., two processors, and takes 27
minutes and 19 seconds of CPU time. The second experiment uses eight nodes with
two of the above processors each, i.e., 16 processors in total, and takes 2 minutes
and 52 seconds for completion. Computational time is reduced roughly 10 times by
parallelization.7 Both experiments provide the exact same result, i.e., Figure 15.1.

Both distributions are left-skewed, but earnings of young individuals show a
larger right tail. Unlike their older counterparts, the distribution of average annual
earnings for 19–26-year-old individuals seems to be a mixture of at least three
heterogeneous groups.

15.4.1.2 Example: conditional density estimation

To illustrate the computational intensity of fully nonparametric methods, we con-
sider the estimation of the conditional probability density function (p.d.f.) of

vector xc given another vector xd , i.e.:

f̂ (xc
i |xd

i ) ≡ f̂ (xc
i , xd

i )/̂p(xd
i ), (15.14)

=
∑n

j=1 K(xc
i , xc

j ; h)L(xd
i , xd

j ; λ)∑n
j=1 L(xd

i , xd
j ; λ)

.
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Figure 15.1 Marginal probability density functions

Algorithm 15.4.1.2.1 implements the necessary steps.

Algorithm 15.4.1.2.1 Conditional density estimation – implementation

1. Select functions k (·) and l (·) in (15.11) and (15.12), and vectors of smooth-
ing parameters h and λ by cross-validation maximum likelihood, i.e., select
[h1, . . . , hq1

, λ1, . . . , λq2
] to minimize:

L[h,λ] =
∑n

j=1 log f̂−i(x
c
i |xd

i ),

where f̂−i (·) equals (15.14) after replacing
∑n

j=1 by
∑n

j=1; j �=i.

2. Using h and λ found in the previous step, calculate f̂ (xc
i |xd

i ) in (15.14) for each
i = 1, . . . , n.

3. Plot (if feasible) or present summary statistics.

Using 453 observations of individual transportation mode choices in Croissant
(2006) (dataset Mode), we estimate the conditional joint density of preferred trans-

portation mode’s cost, x1, and time, x2, given observed choices: car (xd = 1),

carpool (xd = 2), bus (xd = 3), and rail (xd = 4). The results are shown in
Figure 15.2. The estimated joint p.d.f.s are multi-modal. This might indicate that
other characteristics besides cost influence transportation mode choices.
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Figure 15.2 Multivariate conditional p.d.f.

15.4.1.3 Example: additive models

Kernels, as well as many other nonparametric methods, do not perform well when q
is large. The sparseness of data in this setting inflates the variance of the estimates,
and the numerical accuracy of estimates rapidly decreases with the number of
regressors. This problem is sometimes referred to as the “curse of dimensionality.”
Computationally, the curse of dimensionality means that for kernel methods, as q
becomes large relative to a fixed sample size n, division by 0 becomes more frequent
in the calculation of m̂ (x).

To overcome these difficulties, Stone (1985) proposed additive models, i.e.:

m (x) = m1

(
xc

1

)
+ · · · +mq1

(
xc

q1

)
,

where the xc
l s are all univariate continuous variables, and the ml (·) are unknown

functions for l = 1, . . . , q1. A benefit of an additive model is that estimates
of the individual terms explain how the dependent variable changes with the
corresponding independent variables. Suppose q1 = 4, then the following
identities:

E[y −m2(x
c
2)−m3(x

c
3)−m4(x

c
4)|xc

1] = m1(x
c
1),

E[y −m1(x
c
1)−m3(x

c
3)−m4(x

c
4)|xc

2] = m2(x
c
2),

mailto: rights@palgrave.com


David T. Jacho-Chávez and Pravin K. Trivedi 793

E[y −m1(x
c
1)−m2(x

c
2)−m4(x

c
4)|xc

3] = m3(x
c
3), and

E[y −m1(x
c
1)−m2(x

c
2)−m3(x

c
3)|xc

4] = m4(x
c
4),

imply the backfitting algorithm 15.4.1.3.1.

Algorithm 15.4.1.3.1 Standard backfitting algorithm – implementation

1. Select initial estimates m̂[0]1 (xc
1), . . . , m̂[0]4 (xc

4), say m̂[0]l

(
xc

l

)
= 0 for all l = 1, . . . , 4.

2. For step s = 1, 2, . . ., obtain:

m[s]1 (xc
1) = Ê[yi − m̂[s−1]

2 (xc
2)− m̂[s−1]

3 (xc
3)− m̂[s−1]

4 (xc
4)|xc

1;i = xc
1],

... = ...

m[s]4 (xc
4) = Ê[yi − m̂[s−1]

1 (xc
1)− m̂[s−1]

2 (xc
2)− m̂[s−1]

3 (xc
3)|xc

4;i = xc
4],

where, for a random variable ai, Ê[ai|xc
l;i = xc

l ] is the univariate kernel estimator

of E[ai|xc
l;i = xc

l ] using bandwidth hl.
3. Continue iterations in step 2. until a pre-specified convergence criterion is

reached.

Suppose it takes d iterations for the above algorithm to converge, then the rate

of convergence of
∑4

l=1 m̂[d]l

(
xc

l

)
is the same as if the regression model were a

function of a single continuous variable instead.
We use a cross-section of 872 observations from Switzerland (see Gerfin, 1996)

in order to illustrate the methodology. Whether or not a woman participates in
the labor market, E[y = 1|x] ≡ Pr [x], is modeled as:

log
{

Pr [x]
1− Pr [x]

}
=

4∑
l=1

ml
(
xl
)
,

where x1 is the log of non-labor income (LNNLINC), x2 is age in years divided by
10 (AGE), x3 is the number of years of formal education (EDUC), and x4 is the
number of children (NC). Figure 15.3 illustrates the results. Each panel shows the
regressors’ individual effects on their entire observed support. Both LNNLINC and
AGE certainly have quadratic effects, while the estimated effects of EDUC and NC
might suffer from boundary effects.

Marginal integration is an alternative to backfitting (see, e.g., Linton and Nielsen,
1995; Linton and Härdle, 1996).

15.4.2 Semiparametric estimation

Another way to alleviate the curse of dimensionality is to finitely parameterize
certain aspects of the joint distribution of y and x, e.g., its mean, while allowing
others to remain unknown, e.g., the conditional variance var(y|x). The object of
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Figure 15.3 Generalized additive model: labor force participation

interest then becomes a finite dimensional parameter, whose estimator is numer-
ically calculated in multiple stages with fully nonparametric calculations in the
first stages. This is known as semiparametric estimation, and its use is becoming
increasingly popular with the advent of faster and cheaper computing. Although
we only discuss a few of these estimators, a more complete exposition can be found
in, e.g., Horowitz (1998), Pagan and Ullah (1999), and Li and Racine (2007).

15.4.2.1 Example: efficient estimation with heteroskedasticity of unknown form

The heteroskedastic linear model specifies E[y|x] = x$β and var(y|x) = σ
2
(x),

where the variance function σ
2
(·) is left unspecified. Robinson (1987) proposed

a semiparametric feasible generalized least squares (GLS) estimator β̂ that requires

the nonparametric estimation of σ
2
i ≡ σ

2 (xi
)

in:

β̂ = (
∑n

i=1xix
$
i σ̂

−2
i )

−1
(
∑n

i=1xiyiσ̂
−2
i ), (15.15)

by k-nearest neighbor methods. In particular, let Rxs
≡ Rn(xs) denote the Euclidean

distance between xs and its ks-th nearest neighbor among xs;i, for i = 1, . . . , n and
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s = 1, . . . , q1, then:

σ̂
2
i =

∑n
j=1û2

j K(xc
i , xc

j ; Rxc )L(xd
i , xd

j ; λ)∑n
j=1K(xc

i , xc
j ; Rxc )L(xd

i , xd
j ; λ)

, (15.16)

where û2
j is the residual from first-stage ordinary least squares (OLS) regression of

yi on xi. Robinson (1987) showed that (15.15) is adaptive when k1 = · · · = kq1
,

k (u) = (1/2)× I (|u| ≤ 1), and (xd
i , xd

j ) is empty in (15.11), (15.12), and (15.16). Its
asymptotic variance can be estimated as:

̂asy. var(β̂) = (
∑n

i=1xix
$
i σ̂

−2
i )

−1. (15.17)

For illustration we will fit a linear hedonic pricing model of house attributes using
data collected by Ho (1995) of 92 detached homes in the Ottawa area that were sold
in 1987. The data file contains continuous variables such as sale price (SALEPRIX),
average neighborhood income (AVGINC), distance to highway (DISTHWY), lot size
(LOTAREA), square footage of usable space (USESPACE), location coordinate in the
south (SOUTH), and west (WEST). It also contains discrete variables such as indi-
cators for the presence of fire place (FIREPLAC), garage (GARAGE), luxurious bath
(LUXBATH), and the number of bedrooms (NRBED). Using SALEPRIX as y and the
remaining variables as regressors x, algorithm 15.4.2.1.1 provides implementation
details.

Algorithm 15.4.2.1.1 Semiparametric feasible GLS – implementation

1. Regress y on x by simple OLS and save the fitted squared residuals, {̂u2
i }ni=1.

2. Select functions k (·) and l (·) in (15.11) and (15.12), and choose vectors of
smoothing parameters k and λ by leave-one-out cross-validation, i.e., select
[h1, . . . , hq1

, λ1, . . . , λq2
] to minimize:

CV[k,λ] =
∑n

i=1

[̂
u2

i − σ̂
2
−i

]2
,

where σ̂
2
−i equals (15.16) after replacing

∑n
j=1 by

∑n
j=1; j �=i.

3. Using k and λ found in the previous step, calculate σ̂
2
i in (15.16) for each i =

1, . . . , n.
4. Calculate (15.15) and (15.17).

The results are presented in Table 15.2. The first column shows the results
from running simple OLS with corrected standard errors. The second column
presents results using algorithm 15.4.2.1.1. Although there is not much differ-
ence between parameter point estimates, the estimated standard errors have been
reduced dramatically.
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Table 15.2 Hedonic prices of housing attributes: estimated models

(1) OLS (2) Semip. FGLS (3) Partially linear

Robust Efficient Robust
Coef. std. error Coef. std. error Coef. std. error

Intercept 73.978 18.367 77.821 5.821 – –
FIREPLAC 11.795 5.916 9.634 1.759 9.548 3.792
GARAGE 11.838 4.439 10.870 1.821 3.826 3.849
LUXBATH 60.736 10.351 58.821 4.205 44.329 10.820
AVGINC 0.477 0.199 0.502 0.059 −0.414 1.037
DISTHWY −15.277 5.596 −12.954 1.479 -23.079 32.358
LOTAREA 3.243 1.937 2.542 0.625 3.978 1.928
NRBED 6.586 4.484 4.276 1.439 1.668 3.222
USESPACE 21.128 12.070 27.125 4.043 17.767 7.059
WEST 3.206 1.884 2.931 0.702 – –
SOUTH −7.527 1.782 −7.254 0.527 – –

s 21.95 1.006 14.603
Adjusted R2 0.569 0.947 0.847
Comp. time 0.64 seconds 196.62 seconds 127.17 seconds

Notes: s represents the squared root of the estimated variance of the regression. FGLS = feasible
generalized least squares.

15.4.2.2 Example: partially linear model

The partially linear model specifies E[y|z, x] = z$β + g (x), where g (x) is left
unspecified, and z = [z1, . . . , zp] ∈ R

p. In particular, assuming that, for u =
y − z$β − g (x), E[u|z, x] = 0, and var(u|z, x) = σ

2
(z, x), and after observing that

E[y|x] = E[z|x]$β + g (x), Robinson (1988) proposed an estimator β̂ that requires
the nonparametric estimation of E[yi|xi], and E[zi|xi], i = 1, . . . , n, in:

β̂ = (
∑n

i=1(zi − Ê[zi|xi])(zi − Ê[zi|xi])$)
−1

(
∑n

i=1(zi − Ê[zi|xi])(yi − Ê[yi|xi])),
(15.18)

by the Nadaraya–Watson estimator, i.e., for vectors of smoothing parameters h
and λ:

Ê[yi|xi] =
∑n

j=1 yiK(xc
i , xc

j ; h)L(xd
i , xd

j ; λ)∑n
j=1 L(xd

i , xd
j ; λ)

, (15.19)

Ê[zl;i|xi] =
∑n

j=1 zl;iK(xc
i , xc

j ; h)L(xd
i , xd

j ; λ)∑n
j=1 L(xd

i , xd
j ; λ)

, for l = 1, . . . , p. (15.20)

Its asymptotic variance can be estimated consistently by:

̂asy. var(β̂) = n−1
#̂
−1

�̂#̂
−1, (15.21)
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where #̂ = n−1∑n
i=1(zi − Ê[zi|xi])(zi − Ê[zi|xi])$, and �̂ = n−1∑n

i=1û2
i (zi −

Ê[zi|xi])(zi − Ê[zi|xi])$, with ûi = yi − z$i β̂ − ĝ
(
xi
)
, and:

ĝ
(
xi
) = ∑n

j=1(yi − z$i β̂)K(xc
i , xc

j ; h)L(xd
i , xd

j ; λ)∑n
j=1 L(xd

i , xd
j ; λ)

. (15.22)

Algorithm 15.4.2.2.1 makes precise the necessary steps for the above calculations.

Algorithm 15.4.2.2.1 Partially linear model – implementation

1. For each l = 1, . . . , p, select functions k (·) and l (·) in (15.11) and (15.12),
and choose vectors of smoothing parameters h and λ by leave-one-out cross-
validation, i.e., select [h1, . . . , hq1

, λ1, . . . , λq2
] to minimize:

CV[h,λ] =
∑n

i=1

[
yi − Ê−i[yi|xi]

]2
CV[h,λ] =

∑n
i=1

[
zl;i − Ê−i[zl;i|xi]

]2
,

where Ê−i equals (15.19) and (15.20) after replacing
∑n

j=1 by
∑n

j=1; j �=i.
2. Using the bandwidths found in the previous step, calculate (15.19) and (15.20)

for each data point i = 1, . . . , n.
3. Calculate (15.18) and (15.21).
4. Select functions k (·) and l (·) in (15.11) and (15.12), and choose vectors of

smoothing parameters h and λ by leave-one-out cross-validation, i.e., select
[h1, . . . , hq1

, λ1, . . . , λq2
] to minimize:

CV[h,λ] =
∑n

i=1

[
yi − z$i β̂ − Ê−i[yi − z$i β̂|xi]

]2
,

where Ê−i equals (15.19) after replacing yi by yi − z$i β̂ and
∑n

j=1 by
∑n

j=1; j �=i.
5. Calculate (15.22) using the bandwidths found in the previous step for each

i = 1, . . . , n.

Since house location (WEST and SOUTH) has no natural parametric effect in
housing prices, we proceed to include a two-dimensional nonparametric effect,
g (·), in the hedonic pricing model of housing attributes in section 15.4.2.2. The
results are presented in column 3 of Table 15.2.

15.4.2.3 Example: binary choice model

The binary choice model specifies the following relationship:

y = I(x$β + u > 0), (15.23)

where I is the indicator function, and u represents unobserved characteristics with
continuous symmetric distribution F (·) which is assumed independent of x. It then
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follows that:

Pr[y = 1|x] = E[y|x] = F(x$β), (15.24)

where x$β is known as a single index. In parametric probit and logit models, the
unknown parameter β in (15.23) is obtained by numerically maximizing the log-
likelihood function:∑n

i=1{yi log[F(x$i β)] +
(
1− yi

)
log[1− F(x$i β)]}, (15.25)

where F (·) is assumed to be a normal or logistic distribution function respectively.
Column 1 in Table 15.3 shows results from fitting a probit model to female labor
participation decisions in Portugal, using 2,339 observations taken from Martins
(2001). The regressors include variables such as the number of children younger
than 18 living in the family (CHILD), the number of children younger than three
years of age (YCHILD), the number of years of formal schooling (EDU), the log
of the husband’s monthly wages (LNHW), women’s age divided by 10 and 100
respectively (AGE and AGE2). The model does not include a constant and the
coefficient multiplying AGE has been normalized to be equal to one for comparison
purposes.

Notice that all regressors, except the number of years of formal schooling, have
a negative effect on the probability that a woman works for wages.

If F (·) is unknown, then F(x$β) is observationally equivalent to F
(
x$β − a

)
,

and F̃
(
x$(β/c)

)
, with F (u) = F (u+ a) and F̃ (u) = F (c · u) respectively ∀a, c ∈ R.

Under these circumstances, restrictions are needed to identify the unknown vector
of parameters β. For example, the so called location-scale normalization sets any
intercept in x$β equal to 0, and the coefficient of a continuous regressor (say the
first regressor x1) equal to 1.

Let us define x̃c = [xc
2, . . . , xc

q1
], x̃ = [̃xc , xd], x = [x1, x̃], β̃ = [β2, . . . ,βq1

,

βq1+1, . . . ,βq2
]$, and β ≡ (1, β̃$). Semiparametric methods have been shown to

Table 15.3 Female labor participation: estimated models

(1) Probit (2) Klein–Spady (1993) (3) Ichimura (1993)

Coef. Std. error Coef. Std. error Coef. Std. error

CHILD −0.079 0.071 −0.012 0.029 −0.145 0.123
YCHILD −0.129 0.026 −0.083 0.012 −0.096 0.076
EDU 0.144 0.009 0.076 0.003 0.134 0.013
LNHW −0.181 0.009 −0.043 0.004 −0.138 0.017
AGE2 −0.148 0.004 −0.145 0.002 −0.158 0.014
AGE 1 – 1 – 1 –

Part. prob. 1408.00 1400.11 1399.17
Comp. time 0.421 seconds 491.072 seconds 2462.740 seconds

Note: Part. prob. = participation probability.
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identify and consistently estimate β̃ when F (·) is only known to be a non-constant

smooth function on the support of x$β; and varying the values of xd does not
divide the support of x$β into disjoint subsets (see Horowitz, 1998).

Note that, for given β, a consistent nonparametric estimator of (15.24) is:

F̂(x$i β) =
∑n

j=1 yik((x
$
i β − x$j β)/h)∑n

j=1 k((x$i β − x$j β)/h)
. (15.26)

Klein and Spady’s estimator
Klein and Spady (1993) proposed estimating β by maximizing (15.25) after replac-
ing F(x$i β) by F̂−i(x

$
i β), where F̂−i(x

$
i β) is like F̂(x$i β) but with

∑n
j=1 replaced

by
∑n

j=1; j �=i in (15.26). Computationally, the maximization must be performed
numerically by solving the first order conditions of the problem. Under regularity
conditions, Klein and Spady showed that the resulting estimator β̂ has an asymp-
totic normal distribution. Furthermore, they showed that the asymptotic variance
of their estimator attains the semiparametric efficiency bound, and that it can be
consistently estimated by:

̂asy. var(β̂) = (
∑n

i=1x̃ix̃
$
i [̂F(1)

−i (x
$
i β̂)]2/[̂F−i(x

$
i β̂)(1− F̂−i(x

$
i β̂))])−1, (15.27)

where F̂(1)
−i (·) is the first derivative of F̂−i (·). Algorithm 15.4.2.3.1 describes the

necessary steps.

Algorithm 15.4.2.3.1 Klein and Spady (1993) – implementation

1. Select function k (·) in (15.26), and numerically find jointly the bandwidth h
and vector of coefficients β that minimizes the leave-one-out estimated log-
likelihood: ∑n

i=1{yi log[̂F−i(x
$
i β)] +

(
1− yi

)
log[1− F̂−i(x

$
i β)]},

where F̂−i (·) equals (15.26) after replacing
∑n

j=1 by
∑n

j=1; j �=i.
2. Using the bandwidth and vector of coefficients found in the previous step,

calculate F̂(1)
−i (·) and F̂−i (·) at each data point i = 1, . . . , n.

3. Calculate (15.27).

Column 2 in Table 15.3 shows results from applying the above methodology to
the modeling of female labor force participation decisions. Although signs coin-
cide with those of the fully parametric model (column 1), their magnitudes and
standard errors are remarkably different. Martins (2001) pointed out that this
considerable efficiency gain may occur because the semiparametric model is suf-
ficiently perturbed from the usual probit specification for women with low index
values.
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Ichimura’s estimator
The semiparametric least squares (SLS) estimator of Ichimura (1993) numerically

minimizes: ∑n
i=1[yi − F̂−i(x

$
i β)]2, (15.28)

with respect to β, where, as before, F̂−i (·) is the kernel estimator for the
unknown link function F (·). The resulting estimator, β̂, is asymptotically normally
distributed, and its asymptotic variance can be consistently estimated by:

̂asy. var(β̂) = n−1
�̂
−1

�̂�̂
−1, (15.29)

where:

�̂ = n−1∑n
i=1x̃ix̃

$
i [̂F(1)

−i (x
$
i β̂)]2, and (15.30)

�̂ = n−1∑n
i=1x̃ix̃

$
i [̂F(1)

−i (x
$
i β̂)]2[yi − F̂−i(x

$
i β)]2. (15.31)

Column 3 in Table 15.3 presents the results of applying algorithm 15.4.2.3.2 to our
example.

Algorithm 15.4.2.3.2 Ichimura (1993) – implementation

1. Select function k (·) in (15.26), and numerically find jointly the bandwidth h
and vector of coefficients β that minimizes the semiparametric least squares
objective function (15.28).

2. Using the bandwidth and vector of coefficients found in the previous step,

calculate F̂(1)
−i (·) and F̂−i (·) at each data point i = 1, . . . , n.

3. Calculate (15.29), (15.30) and (15.31).

The results differ mainly in the magnitude of the effects of each regressor as
well as in their precision. Both semiparametric estimators provide estimates of the
participation probabilities (Part. prob.) closer to the actual 1,400 women in the
sample that are observed to work for wages. The parametric probit specification
overestimates this quantity.

It should be emphasized that, unlike Klein and Spady’s estimator, Ichimura’s is
applicable to a wider range of problems where the response yi is not only binary,
but takes on different discrete or continuous values.

15.4.2.4 Further considerations

The numerical stability of likelihood cross-validated bandwidths in step 1 in
algorithms 15.4.1.1.1 and 15.4.1.2.1 might be affected by outliers. However,
the suggested likelihood cross-validated method may work well for thin-tailed
distributions.

In the semiparametric models discussed above, the first-order asymptotic dis-
tribution of the normalized and centered estimators does not depend on the
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smoothing parameter(s). Therefore, at least asymptotically, any sequence of
smoothing parameters is going to give a consistent estimator as long as it satis-
fies certain conditions. However, this observation does not necessarily imply that
such an estimator is going to be optimal in the mean squared error (MSE) sense
(see, e.g., Linton, 1995; Härdle, Hall and Ichimura, 1993).

Finally, the asymptotic theory for the above estimators requires trimming those
observations arbitrarily close to the boundary of their observed supports. We did
not address this in the above discussion, partly because of the lack of guidance on
how to select trimming parameters with fixed sample sizes, and partly because no
trimming amounts to assuming that the actual support of the variables involved
is larger than that observed in the data.

15.5 Modeling heterogeneity

In the introductory section we noted that heterogeneity is a pervasive feature in
microeconometrics. The most tractable way of handling observed heterogeneity
is to control for it by including sociodemographic variables such as family com-
position, age, gender, location, etc. The potential of this approach is limited by
the scope of the available data. There still remains variation that is induced by
unobserved factors, referred to in econometrics as unobserved heterogeneity.

Neglecting individual-level unobserved heterogeneity can have potentially seri-
ous consequences, analogous to those of omitted regressors. Even when hetero-
geneity is explicitly accommodated, the precise manner and assumptions under
which it enters the model can have important consequences. Hence, not surpris-
ingly, every proposed econometric specification is routinely scrutinized for the
manner in which it accommodates heterogeneous behavior.

Not only are models with heterogeneity more flexible, and hence generally fit the
data better, but they also lead to relaxation of strong constraints. For example, the
multinomial logit (MNL) discrete choice model is subject to the strong restriction
of independence of irrelevant alternatives (IIA), whereas the random parameter
version of the MNL does not have the IIA restriction.

There are a number of distinctive ways of allowing for unobserved heterogeneity.

1. Treat heterogeneity either as an additive or a multiplicative random effect
(uncorrelated with included regressors) or as a fixed effect (potentially corre-
lated with included regressors). Within the class of random effects models,
heterogeneity distributions may be treated as continuous or discrete. Exam-
ples include a random intercept in linear regression and linear panel models,
fixed effects in linear and nonlinear panels, and multiplicative heterogeneity in
models of counts and durations.

2. Allow both intercept and slope parameters to vary randomly and parametrically.
Examples include random parameter discrete choice and outcome models and
finite mixture models.

3. Model heterogeneity explicitly in terms of both observed and unobserved
variables using mixed models, hierarchical models and/or models of clustering.
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Which approach one takes to modeling heterogeneity and how it is combined
with other assumptions, e.g., functional forms, has important consequences for
computation. One researcher may impose strong functional forms but achieve
modeling flexibility by allowing for behavior heterogeneity. Another may make
very flexible functional form assumptions but not allow explicitly for unobserved
heterogeneity. Currently both strategies coexist in the literature.

We now consider computational aspects of the different modeling strategies.

1. Under the fixed effects specification, the most popular approach is to treat het-
erogeneity in the nuisance parameter framework and eliminate it by a suitable
transformation such as: within transformation; first-difference transformation;
differences-in-differences transformation. In some parametric models with fixed
effects, the nuisance parameters can be eliminated by applying the conditional
likelihood approach that replaces the fixed effect by a sufficient statistic, but
such a statistic is not always available.

2. Dummy variables can be introduced to capture individual-specific heterogene-
ity. This approach is familiar in linear panel models, but due to the incidental
parameter problem, this formulation may not lead to consistent estimates. In
panel models with a large cross-section dimension (n), the estimation dimen-
sion also increases and in nonlinear models this may lead to computational
challenges, though there are examples where ingenious algorithms can address
the issues (e.g., Greene, 2004a, 2004b).

3. In random effects models the standard and time-honored approach involves
integrating out the distribution of unobserved heterogeneity, as was discussed
in section 15.3.3. Such integration is often implemented numerically, leading to
nontrivial computational challenges, especially if parameter dimension is large.
Random parameter multinomial logit and multinomial probit models are two
outstanding examples of this approach (see Train, 2003).

All the foregoing discussion has been carried out by reference to individual level
heterogeneity. Heterogeneity may also exist at the level of groups, which leads
to issues of clustering and interdependence that create additional computational
challenges. A group can be a geographical, social, ethnic, or merely a sampling
unit that exhibits some form of interdependent behavior induced by common
environment or culture. Group membership may be modeled as an observable or a
latent variable, analogous to fixed and random effects formulations in panel data.

In the remainder of this section we illustrate, using two data-based examples,
how modeling heterogeneity can be computationally demanding but empirically
informative.

15.5.1 Example: quantile regression

Whereas the standard linear regression is a useful tool for summarizing the average
relationship between the outcome variable of interest and a set of regressors, i.e.,
the conditional mean function, E[y|x], QR can provide a more complete picture
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of the relationship between outcome y and regressors x at different points in the
distribution of y.

As stated in section 15.3.2, the objective function for QR is in the L1-norm.
Unlike the squared error loss function of the OLS framework, in the case of QR the
loss is expressed through an asymmetric absolute loss function. The special case of
median (LAD) regression corresponds to q = 0.5.

QRs have a certain robustness property and they also permit more informative
modeling of the data. Specifically, the median regression is more robust to outliers
compared with the mean regression. QR facilitates a richer interpretation of the
data because it permits the study of the impact of regressors on both the location
and scale parameters of the model, while avoiding parametric assumptions about
data.

Other attractive properties of QR are as follows: (i) it is consistent under weaker
stochastic assumptions than least squares estimation; (ii) it is based on weaker dis-
tributional assumptions; (iii) it has an equivariance to monotone transformations
property, which implies that it does not run into the retransformation problem.
The quantiles of a transformed variable y, denoted h(y), where h is a monotonic
function, equal the transforms of the quantiles of y : Qh(y)(τ ) = h(Qy(τ )). Hence, if
the quantile model is expressed in terms of h(y), e.g., ln(y), then one can use the
inverse transformation to translate the results back to y. This is not possible for the

least squares estimator, i.e., if E[h(y)] = x$β, then E[y|x] �= h−1
(x$β).

Impediments to the use of QR are twofold. First, there are computational hur-
dles. Because the objective function is not differentiable, the gradient optimization
methods mentioned in section 15.3 cannot be used and, instead, linear program-
ming methods are applied. There is no closed-form solution for β̂q and hence

the asymptotic distribution of β̂q cannot be obtained using standard methods. An

analytical expression for the asymptotic variance of β̂q comes from the result that:

√
n(β̂q − βq)

d→ N
[
0,q(1− q)A−1BA−1

]
, (15.32)

where n−1∑n
i=1 xix

$
i

p→ A, n−1∑n
i=1 fuq

(ξ
(
q
) |xi)xix

$
i

p→ B,
p→ represents conver-

gence in probability, and fuq
(ξ
(
q
) |x) is the conditional density of the error term

uq = y − x$βq evaluated at ξ
(
q
)
, i.e., the q-quantile of uq. Estimation of the vari-

ance of β̂q is complicated by the need to estimate fuq
(ξ
(
q
) |x). It is easier to obtain

standard errors for β̂q using the computationally more intensive bootstrap method,
as is done in the example that follows.

Buchinsky (1995) evaluated a number of variance estimators for the QR in a
Monte Carlo setting and recommended the use of a “design matrix” (or paired)
bootstrap estimator. Application of the bootstrap variance is shown in algorithm
15.5.1.0.1.

Computational advances have made the application of QR more accessible to
users and many popular packages include it. As an illustration we report a regression
analysis of total medical expenditure (TOTEXP) by the Medicare elderly. The data
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Algorithm 15.5.1.0.1 QR–bootstrap standard errors

1. Draw (yb
i , x$b

i ), b = 1, . . . , B, i = 1, . . . , n, a (paired) bootstrap sample drawn

from the empirical distribution of (yi, x$i ).

2. Estimate the conditional quantile function x$b
i β̂

b
q, where β̂

b
q is the bootstrap

estimate of βq.

3. The bootstrap estimate of the variance, var(β̂q), is given by:

v̂ar[β̂q] =
n
B

∑
(β̂

b
q − β

b
q)(β̂

b
q − β

b
q)
$,

where β
b
q = B−1∑

β̂
b
q.

are derived from the Medical Expenditure Panel Survey, and consists of 2,873 obser-
vations. The dependent variable is log(TOTEXP), so that zero values are omitted.
The explanatory variables are supplementary private insurance (SUPPINS), which
is a dummy variable, the number of chronic conditions (TOTCHR) as a measure
of health status, and two demographic variables (AGE, FEMALE), and log(income)
(LINC).

The numerical results are displayed in Table 15.4, which reports the OLS results
with Eicker–White heteroskedasticity robust standard errors, and QR estimates for
three values of q, 0.25, 0.50, 0.75. The OLS results in column 1 can be compared
with the median regression results in column 3; the two should not be too dif-
ferent if the conditional distribution of the dependent variable is symmetric. The
standard errors were computed using a paired bootstrap with 499 bootstrap repli-
cations. Because of the relatively small number of regressors in the model, this
computation is manageable even on a desktop PC. Figure 15.4 displays the graphs
of the quantile regression coefficients at different values of q. Such a visual repre-
sentation is potentially very informative as it reveals the heterogeneity in response
to variables at different quantiles of expenditure. For example, the impact of SUP-
PINS at q = 0.25 is nearly three times as large as at q = 0.75. The graphs also include
the constant least squares coefficient as a benchmark.

Table 15.4 OLS and bootstrapped quantile regressions

(1) OLS (2) QR: q = 0.25 (3) QR: q = 0.50 (4) QR: q = 0.75

Coef. Std. error Coef. Std. error Coef. Std. error Coef. Std. error

SUPPINS 0.224 0.0484 0.336 0.0631 0.246 0.0550 0.118 0.0658
AGE 0.0150 0.00364 0.0190 0.00481 0.0178 0.00420 0.0212 0.00500
FEMALE −0.0512 0.0469 0.0252 0.0565 −0.0493 0.0507 −0.145 0.0548
TOTCHR 0.445 0.0176 0.461 0.0239 0.391 0.0195 0.371 0.0208
LINC 0.0593 0.0275 0.0774 0.0304 0.0716 0.0329 0.0566 0.0391
Intercept 5.876 0.298 4.609 0.408 5.726 0.347 6.445 0.415

mailto: rights@palgrave.com


David T. Jacho-Chávez and Pravin K. Trivedi 805
2.

00
4.

00
6.

00
8.

00
10

.0
0

12
.0

0

In
te

rc
ep

t

0 .2 .4 .6 .8 1

Quantile

–0
.2

0
0.

00
0.

20
0.

40
0.

60

=
1 

if 
ha

s 
su

pp
le

m
en

ta
ry

 p
riv

at
e 

in
su

ra
nc

e

0 .2 .4 .6 .8 1

Quantile

–0
.0

2
0.

00
0.

02
0.

04

A
ge

0 .2 .4 .6 .8 1

Quantile

–0
.4

0
–0

.2
0

0.
00

0.
20

0.
40

=
1 

 if
 fe

m
al

e

0 .2 .4 .6 .8 1

Quantile

0.
30

0.
40

0.
50

0.
60

0.
70

T
ot

al
 n

um
be

r 
of

 c
hr

on
ic

 p
ro

bl
em

s

0 .2 .4 .6 .8 1

Quantile

–0
.2

0
–0

.1
0

0.
00

0.
10

0.
20

0.
30

lo
g(

in
co

m
e)

0 .2 .4 .6 .8 1

Quantile

Figure 15.4 Coefficients of regressors at various quantiles

15.5.2 Example: finite mixture model

Fully parametric models are popular in microeconometrics even though a para-
metric distributional assumption is an important simplification. There are many
ways of replacing or relaxing this assumption, which may lead to additional com-
putation. Replacing the assumption of a given parametric distribution by the
assumption that the data distribution is a discrete mixture, also called a finite mix-
ture (FM), of two or more distributions, not necessarily from the same family, can
provide additional flexibility (Frühwirth-Schnatter, 2006). The FM representation
is an intuitively attractive representation of heterogeneity in terms of a number of
latent classes, each of which may be regarded as a “type” or a “group.” It has found
numerous applications in health and labor economics and in models of discrete
choice. The FM model is related to latent class analysis (Aitken and Rubin, 1985;
McLachlan and Peel, 2000).

In an FM model a random variable is a draw from an additive mixture of C distinct
populations in proportions π1, . . . ,πC, where

∑C
j=1 πj = 1, πj � 0 (j = 1, . . . , C),

denoted as:

f (yi|�) =
C−1∑
j=1

πjfj(yi|θ j)+ πCfC(yi|θC), (15.33)
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where each term in the sum on the right-hand side is the product of the mixing
probability πj and the component (sub-population) density fj(yi|θ j). Sometimes
such models are referred to as models of permanent unobserved heterogeneity. In
general the πj are unknown and hence need to be estimated along with all the

other parameters, denoted �. Also πC = (1−∑C−1
j=1 πj). For identifiability the (label

switching) restriction π1 ≥ π2 ≥ · · · ≥ πC is imposed; this can always be satisfied
by rearrangement, post-estimation. Therefore, it plays no role in estimation. The
parameter πj may be further parameterized in terms of observed covariates using,
e.g., the logit function.

For given C, maximum likelihood is a natural estimator for the FM model (see
McLachlan and Peel, 2000, Ch. 2). Lindsay (1983) showed that finding the MLE
involved a standard convex maximization problem in which a concave func-
tion is maximized over a convex set. An implication that follows is that if the
likelihood is bounded, there exists a distribution, in the class of discrete dis-
tribution functions G with n or fewer points of support, that maximizes the
likelihood.

There are two commonly used computational approaches – direct gradient-based
optimization based on the roots of the likelihood equations, or the expectation
maximization (EM) algorithm described below (see McLachlan and Peel, 2000).
If the likelihood is bounded, then under correct specification of the model it
has a global maximum. But it may be difficult to locate the global maximum
if the component distributions are not well separated, or the convergence may
be sensitive to the starting values. One way to guard against such a possibil-
ity is to check for robustness of convergence from different starting values. In
some cases, such as the mixture of normals, the likelihood is unbounded and
no global maximizer exists, so convergence will be to a local maximum. In prac-
tice, especially when the sample is small, the presence of local maxima cannot be
ruled out.

In practice C is unknown. For a given sample size n, the standard way of selecting
C is to treat this as a model selection problem and to use information criteria such
as Akaike information criterion (AIC) or Bayesian information criterion (BIC) (see
Deb and Trivedi, 2002, for a detailed application).

15.5.2.1 EM algorithm for model estimation

If C is given, the problem is to maximize the log-likelihood L(π ,�|C, y). Let
di = (di1, . . . , diC)

$ define an indicator (dummy) variable such that dij = 1,∑
j dij = 1, indicating that yi was drawn from the jth (latent) group or class for

i = 1, . . . , n. That is, each observation may be regarded as a draw from one of the
C latent classes or “types,” each with its own distribution. The FM model speci-

fies that (yi|di, θ ,π) are independently distributed with densities
∏C

j=1 f (yi|θ j)
dij ,

and (dij| θ ,π) are independent and identically distributed (i.i.d.) with multi-

nomial distribution
∏C

j=1 π
dij
j , 0 < πj < 1,

∑C
j=1 πj = 1. Hence the likelihood
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function is:

L(θ ,π |y) =
n∏

i=1

C∑
j=1

π
dij
j [fj(y; θ j)]dij , 0 < πj < 1,

C∑
j=1

πj = 1. (15.34)

If πj, j = 1, . . . , C, is given, the posterior probability that observation yi belongs

to the population j, j = 1, 2, . . . , C, is denoted zij, and E
[
zij

]
= πj.

Estimation is implemented using the EM algorithm explained below. This may
be slow to converge, especially if the starting values are not good. Gradient-based
methods, such as Newton–Raphson or BFGS, are also used (see Böhning, 1995).
The application reported below uses Newton–Raphson with gradients estimated
using analytical formulae.

The EM algorithm is structured as in algorithm 15.5.2.1.1.

Algorithm 15.5.2.1.1 EM – implementation

1. Given an initial estimate [π (0),θ (0)], the likelihood function (15.34) may be
maximized using the EM algorithm in which the variable dij is replaced by its

expected value, E
[
dij

]
= ẑij, yielding the expected log-likelihood:

E[L(�|y,π)] =
n∑

i=1

C∑
j=1

ẑij

[
ln fj(yi; θ j)+ lnπj

]
. (15.35)

2. The M-step of the EM algorithm maximizes (15.35) by solving the first-order
conditions:

π̂j − n−1
n∑

i=1

ẑij = 0, j = 1, . . . , C

n∑
i=1

C∑
j=1

ẑij
∂ ln fj(yi; θ j)

∂θj
= 0.

3. Evaluate the marginal posterior probability zij|π̂j, θ̂j, j = 1, . . . , C,

zij ≡ Pr[yi ∈ population j] = πjfj(yi|xi, θ j)∑C
j=1 πjfj(yi|xi, θ j)

.

The E-step of the EM procedure obtains new values of E[dij] using E
[
zij

]
= πj.

4. Repeat steps 1–3 until |L(�̂(k + 1)) − L(�̂(k))| < tol, where tol denotes the
selected tolerance level.

For estimating var(�̂), one can use either the observed information matrix or
the robust Eicker–White sandwich formula. Though asymptotically valid given
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regularity conditions, in practice such an application is subject to qualifications,
especially in small samples or if the model is overfitted, so that one or more mixture
components are small. This increases the appeal of variance calculation using the
bootstrap (see McLachlan and Peel, 2000, Ch. 2.16).

15.5.2.2 FM of count models

Finite mixtures can be applied to continuous, discrete, or censored data (see
McLachlan and Peel, 2000). Although the methods have not yet become common
in widely used econometrics software, there are many examples in the literature.
In the remainder of this section, we illustrate the potential richness of this model-
ing approach using an application to a count data regression (see Deb and Trivedi,
1997, 2002).

The dataset consists of 3,064 observations, where the dependent variable is
number of doctor visits (DOCVIS). The predictors are age (AGE), squared age
(AGE2), years of education (EDUC), a dichotomous indicator of activity limita-
tion (ACTLIM), total number of chronic conditions (TOTCHR), and a dichotomous
indicator of private health insurance status (PRIVATE). Table 15.5 shows results
obtained using standard gradient methods of maximizing the likelihood. Poisson
regression results appear in the first column. Typically this model gives a poor fit
to the data because it imposes the assumption of equidispersion (E[y|x] =var(y|x)),

Table 15.5 Poisson NB2 mixture models for DOCVIS

(1) POISSON (2) POISSON (FM2) (3) NB2 (FM2)

Coef. Std. error Coef. Std. error Coef. Std. error

Component 1
AGE 0.299 0.0662 0.352 0.0953 0.446 0.162
AGE2 −0.198 0.0441 −0.232 0.0638 −0.290 0.107
EDUC 0.0288 0.00539 0.0299 0.00712 0.0417 0.0119
ACTLIM 0.160 0.0414 0.0701 0.0582 −0.0554 0.147
TOTCHR 0.259 0.0130 0.338 0.0174 0.527 0.0693
PRIVATE 0.154 0.0374 0.225 0.0582 0.400 0.114
Intercept −10.34 2.474 −13.18 3.537 −17.59 6.141

Component 2
AGE 0.219 0.107 0.272 0.0878
AGE2 −0.145 0.0720 −0.181 0.0586
EDUC 0.0204 0.00747 0.0228 0.00707)
ACTLIM 0.137 0.0592 0.201 0.0500
TOTCHR 0.203 0.0249 0.197 0.0278
PRIVATE 0.139 0.0610 0.108 0.0454
Intercept −6.337 3.961 −8.799 3.290

π1 0.878 0.0860 0.405 0.099
lnα1 −1.186 0.307
lnα2 −0.828 0.0811
log-like −12148 −9311 −8711

mailto: rights@palgrave.com


David T. Jacho-Chávez and Pravin K. Trivedi 809

which is usually inconsistent with the data. The negative binomial regression is
often the next step because it can accommodate overdispersion in the data. As a
common and plausible explanation of overdispersion comes from the presence of
heterogeneity in the data, another approach to the problem is to allow for the pos-
sibility that a better specification is a two-component Poisson mixture, with each
component corresponding to one type of individual. The results for this specifica-
tion are presented in the next two columns. A further generalization is to allow
for the possibility that the distribution is a two-component mixture of negative
binomial (NB2) distributions with a quadratic variance function. The advantage
here is that the NB2 specification allows for within-group heterogeneity as well.
Thus each component represents the behavior of one group of individuals, but
also allows for within-group heterogeneity.

Because the three models are nested, the log-likelihoods are comparable and
the likelihood ratio can be used to test the restrictive models against the general
2-component mixture of NB2 distributions. Clearly, the FM2 specification of the
NB2 distribution is the best-fitting model. The two components correspond to low
users (around 40.5% of the population) and high users (around 59.5% of the pop-
ulation) of doctor visits. Evaluating the conditional means of distributions at the
sample average of the predictors, the average is 3.92 for the first group and 8.62
for the second group. The groups also differ in their sensitivity to variations in
the predictors. Of course, we have deliberately used a very simple specification
so the exact numbers are only illustrative. The important point is that, although
the mixture models are harder to estimate, especially when the number of com-
ponents is increased, they are much more informative about the heterogeneity in
the population.

15.6 Simulation-based maximum likelihood

In this section we consider an application of the MSL estimator to a nonlinear
model with discrete outcomes and endogenous dummy regressors. There are two
well-established approaches, limited information and full information, for han-
dling endogeneity in linear models. Implementation of full information methods,
based on the joint distribution of all endogenous variables, is often harder to imple-
ment because closed-form expressions for the joint distribution are rarely available.
Thus there is strong motivation for limited-information methods based on instru-
mental variables, such as the GMM and two-stage sequential estimation. These
have been extended to nonlinear models in a number of special cases, sometimes
on an ad hoc computationally feasible basis, though not always with supporting
formal justification. However, the consistency property of the two-step estimator
may depend on particular assumptions about the structure of dependence. For
example, in discrete outcome models sequential two-step estimation, based on the
replacement of an endogenous variable by a fitted value, yields a consistent esti-
mator only if the causal structure is recursive (Blundell and Powell, 2004; Chesher,
2005).
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We consider computational issues of full information estimation in a model
where the outcome of interest is a non-negative count which depends on a set of
variables that includes dummy variables generated by a multinomial choice model
(see Deb and Trivedi, 2006a, 2006b). The following section formally describes the
nature of dependence.

15.6.1 Model specification

Consider a selectivity model in which individual i chooses a treatment from a
set of three or more choices. This implies a multinomial choice model with a
benchmark choice. E[V∗ij] denotes the indirect utility of selecting the jth treatment,
j = 0, 1, 2, . . . , J , and:

E[V∗ij] = z$i αj + δjlij + ηij, (15.36)

where zi denotes exogenous covariates, with associated parameters αj, and ηij are

i.i.d. error terms. In addition, E[V∗ij] includes a latent factor lij which incorporates
unobserved characteristics common to individual i’s treatment choice and out-
come. The lij are assumed to be independent of ηij. Without loss of generality, let

j = 0 denote the control group and E[V∗i0] = 0.
Let dj be binary (dummy) variables representing the observed treatment choice

and di = (di1, di2, . . . , diJ )
$. In addition, let li = (li1, li2, . . . , liJ )

$. Then the
probability of treatment can be represented as:

Pr(di|zi, li) = g(z$i α1 + δ1li1, z$i α2 + δ2li2, . . . , z$i αJ + δJ liJ ), (15.37)

where g is an appropriate multinomial probability distribution. Specifically, we
specify a mixed multinomial logit structure (MMNL) defined as:

Pr(di|zi, li) =
exp(z$i αj + δjlij)

1+∑J
k=1 exp(z$i αk + δklik)

. (15.38)

For the count variable the expected outcome equation is:

E(yi|di, xi, li) = x$i β +
∑J

j=1
γjdij +

∑J

j=1
λjlij, (15.39)

where xi is a set of exogenous covariates with associated parameter vector β and the
γj denote the treatment effects relative to the control. E(yi|di, xi, li) also depends on
latent factors lij, i.e., the outcome is affected by unobserved characteristics that also
affect selection into treatment. When λj, the factor loading parameter, is positive
(negative), treatment and outcome are positively (negatively) correlated through
unobserved characteristics, i.e., there is positive (negative) selection, with γ and λ

the associated parameter vectors respectively.
Assume that f is the negative binomial-2 density:

f (yi|di, xi, li) =
�(yi + ψ)

�(ψ)�(yi + 1)

(
ψ

μi + ψ

)ψ ( μi
μi + ψ

)yi
, (15.40)
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where μi = E(yi| di, xi, li) = exp(x$i β + d$i γ + l$i λ) and ψ ≡ 1/α (α > 0) is the
overdispersion parameter.

As in the standard MNL model, the parameters in the MMNL are only identi-
fied up to a scale. Therefore, a normalization for the scale of the latent factors is
required. We assume δj = 1 for each j, without loss of generality. Although the
model is identified when zi = xi, for robust identification it would be preferable
to include some variables in zi that are not included xi, i.e., identification via
exclusion restrictions is the preferred approach.

15.6.2 Estimation algorithm

The joint distribution of treatment and outcome variables, conditional on the
common latent factors, can be written as the product of the marginal density of
treatment and the conditional density:

Pr(yi, di|xi, zi, li) = f (yi|di, xi, li)× Pr(di|zi, li)

= f (x$i β + d$i γ + l$i λ)
×g(z$i α1 + δ1li1, . . . , z$i αJ + δJ liJ ).

(15.41)

The problem in estimation arises because the lij are unknown. Assume that the
lij are i.i.d. draws from a standard normal distribution so their joint distribution h
can be integrated out of the joint density, i.e.:

Pr(yi, di|xi, zi) = ∫ [
f (x$i β + d$i γ + l$i λ)

×g(z$i α1 + δ1li1, . . . , z$i αJ + δJ liJ )
]

h(li)dli.
(15.42)

The main computational problem, given suitable specifications for f, g and hj, is
that the integral (15.42) does not have, in general, a closed-form solution. As was
explained in section 15.3.3, this difficulty can be tackled using simulation-based
estimation (Gouriéroux and Monfort, 1996). Note that:

Pr(yi, di|xi, zi) = E
[
f (x$i β + d$i γ + l$i λ)

×g(z$i α1 + δ1li1, . . . , z$i αJ + δJ liJ )
]

≈ 1
S

S∑
s=1

[
f (x$i β + d$i γ + l̃$isλ) ,

×g(z$i α1 + δ1 l̃i1s, . . . , z$i αJ + δJ l̃iJs)
]

,

(15.43)

where l̃is is the sth draw (from a total of S draws) of a pseudo-random number from
the density h. The simulated log-likelihood function for the data is given by:

ln l(yi, di|xi, zi) ≈
N∑

i=1
ln

(
1
S

S∑
s=1

[
f (x$i β + d$i γ + l̃$isλ)l̃is ,

×g(z$i α1 + δ1 l̃i1s, . . . , z$i αJ + δJ l̃iJs)
])

.

(15.44)

Provided that S is sufficiently large, maximization of the simulated log-likelihood is
equivalent to maximizing the log-likelihood. The covariance of the MSL estimates
may be obtained using the robust Eicker–White formula.
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Table 15.6 Endogenous NB, MSL with S = 50 or 100

(1) S = 50 (2) S = 100

Coef. Std. error Coef. Std. error

HMO
AGE 0.173 0.018 0.172 0.0184
FIRMSIZE 0.0224 0.00120 0.0224 0.00121
Intercept −1.449 0.0735 −1.446 0.0737

OMC
AGE 0.229 0.0301 0.231 0.0301
FIRMSIZE 0.0190 0.00194 0.0190 0.00193
Intercept −3.505 0.125 −3.514 0.125

DOCVIS
HMO 1.161 0.0573 1.080 0.254
OMC 0.511 0.173 0.850 0.424
AGE 0.225 0.0125 0.224 0.0123
Intercept −0.519 0.0760 −0.529 0.103

LNALPHA
Intercept 0.197 0.0625 0.163 0.0716
λHMO

−0.976 0.0498 −0.866 0.306
λOMC

−0.107 0.180 −0.473 0.474
log-like −41725 −41722
Comp. time 932.11 seconds 1165.27 seconds

15.6.3 Example: MSL estimation

To illustrate the method, we use pooled data from the Medical Expenditure
Panel Surveys 1996–2003. The sample consists of 13,469 observations on persons
between the ages of 19 and 64. The outcome variable is the number of doctor
visits in a year (DOCVIS) and the multinomial treatment variable describes the
type of health insurance plan (INSTYPE) and takes three values: (i) fee-for-service
(FFS)–the control; (ii) health maintenance organizations (HMO); (iii) other man-
aged care organizations (OMC). Exogenous covariates are AGE and FIRMSIZE; the
latter serves as an exclusion restriction, i.e., as an instrument. The specification is
deliberately (over)simplified by excluding many variables that would appear both
in the choice and outcome models. Our objective is to demonstrate the feasibility
of computation. MSL estimates, obtained using Halton sequences with S = 50 and
100, are given in Table 15.6.

The results show that even for such a simplified example the computational
time is nontrivial. The sample size in this example is fairly large, which is expected
to improve the precision of the estimation. Although the log-likelihood values are
similar for S = 50 and S = 100, we see some differences in the coefficient estimates.
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Train (2003, Ch. 9) gives examples in which 100 Halton draws have efficiency that
exceeds that of 1,000 random draws. However, even S = 100 may not be high
enough. The penalty for setting S too low is potential bias of the estimator, but
having to determine the appropriate value of S by trial and error is a disadvan-
tage. One expects longer computational time when additional regressors appear
in the model, as would be the case with a more realistic model that adds further
sociodemographic and health status factors. In this example, one factor-loading
coefficient is estimated to be significantly different from zero, which confirms that
endogeneity of the HMO variable is an empirically important consideration.

15.7 Concluding remarks

In applied microeconometrics computational matters have always featured promi-
nently, and computational convenience has often been a criterion for choosing
a methodology. Historically, advances in the quality and scope of research have
moved in tandem with computational advances. During the 1960s and 1970s,
the computational treatment of sample selection, discrete choice, nonlinearities,
and limited dependent variable models remained central to the research agenda
in microeconometrics. For example, in his 1976 survey paper on quantal choice
analysis, McFadden mentioned computation of the multinomial probit model as
an important unsolved problem, and remarked that “It would be particularly use-
ful to achieve a computational breakthrough on the multinomial normal model.”
This remained an important research topic for close to two decades. Although
such topics have not disappeared altogether, their importance is now smaller. Tak-
ing advantage of raw computing power, simulation-based estimation and inference
methods based on resampling have emerged as feasible and practical approaches to
many computational problems. Although this chapter did not survey the Bayesian
approaches, the advances in this area have also been revolutionary; indeed, there
are numerous cases in which the Bayesian MCMC computational approaches have
proved more attractive than their frequentist counterparts. However, a major per-
sistent computational challenge remains. It arises from the goal of constructing
empirical models that can address important and detailed issues of public pol-
icy without resorting to excessive use of parametric restrictions. Such models are
inherently structural, dynamic and high dimensional, and they often attempt to
accommodate the heterogeneity in tastes, constraints and objectives of decision
makers. These models face both the conceptual problems of identification and
computational problems of implementation. It seems safe to predict that such
challenges will remain with us for the foreseeable future.

Notes

1. Notable exceptions are source codes written in GAUSS, MATLAB and S-PLUS� that can be
often interpreted by OxGAUSS, Octave and R respectively. The latter are non-proprietary
languages.
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2. A direct application of this capability is in storing a sparse matrix (a matrix populated
primarily with zeros). By only storing the non-zero entries as opposed to storing all entries,
it can yield huge savings in memory that can potentially speed up running time.

3. *NIX is often used to describe UNIX and other UNIX-like platforms, i.e., UNIX, BSD, and
GNU/Linux distributions.

4. For example, if a local installation of R exists, then a C program has access to all R’s pseudo-
random number generators via the inclusion of #include<R.h> at the beginning of the
C pseudo-code.

5. A cluster is a group of servers and other resources that act like a single system.
6. An implementation in Stata is described in Drukker and Gates (2006).
7. We would like to thank Jeffrey S. Racine for providing us with the necessary software to

run these experiments at Indiana University’s High Performance Clusters.
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The Econometrics of Monetary Policy:
An Overview
Carlo A. Favero

Abstract
This chapter concentrates on the econometrics of monetary policy. We describe the evolution
of models estimated to evaluate the macroeconomic impact of monetary policy. We argue that
the main challenge for the econometrics of monetary policy is in combining theoretical models
and information from the data to construct empirical models. The failure of the large econo-
metric models at the beginning of the 1970s might be explained by their incapability of taking
proper account of both these aspects. The critiques by Lucas and Sims have generated an alter-
native approach which, at least initially, has been almost entirely dominated by theory. The LSE
approach has instead concentrated on the properties of the statistical models and on the best way
of incorporating information from the data into the empirical models, paying little attention to
the economic foundation of the adopted specification. The realization that the solution of a DSGE
model can be approximated by a restricted VAR, which is also a statistical model, has generated
a potential link between the two approaches. The open question is which type of VARs are most
appropriate for the econometric analysis of monetary policy.

16.1 The econometrics of monetary policy: what have we learnt? 821
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16.6.1 DSGE-VAR analysis: an assessment 841
16.7 What’s next? 843
16.8 Appendix: The Sims (2000) representation of a small macroeconomic model 844

16.1 The econometrics of monetary policy: what have we learnt?

Econometric evaluation of monetary policy started with large simultaneous
equation models, in the tradition of the Cowles Commission. This first generation
of models was largely driven by the IS/LM framework, in which the supply side was
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left virtually unmodeled and relative price movements were not considered (see
Fukac and Pagan, 2006). Large-scale models were obtained by specifying equations
that described the determinants of variables in the national accounting identity
for gross domestic product (GDP), for example, investment and consumption. This
approach was aimed at the quantitative evaluation of the effects of modification in
the variables controlled by the monetary policy maker (the instruments of mone-
tary policy) on the macroeconomic variables which represent the final goals of the
policy maker. The analysis was performed in three stages: specification and identifica-
tion of the theoretical model, estimation of the relevant parameters and assessment
of the dynamic properties of the model, with particular emphasis on the long-run
properties, and simulation of the effects of monetary policies.

The crucial feature of the identification-specification stage was that the speci-
fied empirical model was usually loosely related to theoretical models and that
identification was achieved by imposing numerous a priori restrictions attribut-
ing exogeneity status to a number of variables. As a consequence, identification
was usually achieved within Cowles Commission models with a large number of
overidentifying restrictions.

Interestingly, traditional modeling was aware of the presence of some misspecifi-
cation in the estimated equations. This resulted in a departure from the conditions
which warrant that ordinary least squares (OLS) estimators are best linear unbiased
estimators (BLUE). The solution proposed was not re-specification but, instead, a
modification of the estimation techniques. This is well reflected in the structure
of the traditional textbooks (see, for example, Goldberger, 1991, where the OLS
estimator is introduced first and then different estimators are considered as solu-
tions to different pathologies in the model residuals). Pathologies are identified as
departures from the assumptions which guarantee that OLS estimators are BLUE.

Stagflation condemned the first-generation models in the late 1970s, as they “did
not represent the data, . . . did not represent the theory . . . [and] were ineffective for
practical purposes of forecasting and policy evaluation” (Pesaran and Smith, 1995).
Different explanations of the failure of these models were proposed. We classify
them into diagnoses related to the solution of the structural identification problem
and diagnoses related to the (lack of a) solution of the statistical identification
problem.

The distinction between structural and statistical identification has been intro-
duced by Spanos (1990). Structural models can be viewed statistically as a reparam-
eterization, possibly (in the case of overidentified models) with restrictions, of the
reduced form. Structural identification refers to the uniqueness of the structural
parameters, as defined by the reparameterization and restriction mapping from
the statistical parameters in the reduced form, while statistical identification refers
to the choice of a well-defined statistical model as the reduced form.

The Lucas (1976) and Sims (1980) critiques are the diagnoses related to the solu-
tion of the identification problem. Lucas questions the superexogeneity status
of the policy variables. and criticizes the identification scheme proposed by the
Cowles Commission by pointing out that these models do not take expectations
into account explicitly. Therefore, the identified parameters within the Cowles
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Commission approach are a mixture of “deep parameters,” describing preference
and technology in the economy, and expectational parameters which, by their
nature, are not stable across different policy regimes. The main consequence of such
instability is that traditional structural macro-models are useless for the purpose of
policy simulation.

Sims reinforced Lucas’ point by labeling the Cowles Commission restrictions
as “incredible”; in fact, no variable can be deemed as exogenous in a world
of forward-looking agents whose behavior depends on the solution of an inter-
temporal optimization model. Optimality of monetary policy requires its endo-
geneity. Note also that, by invalidly imposing exogeneity of monetary policy,
the model might induce a spuriously significant effectiveness of policy in the
determination of macroeconomic variables. Endogeneity of policy does generate
correlations between macroeconomic and policy variables, which, by invalidly
assuming policy as exogenous, can be interpreted as a causal relation running from
policy to the macroeconomic variables.

The diagnosis related to the specification of the statistical model explains the
ineffectiveness of the Cowles Commission models for the practical purposes of fore-
casting and policy as being due to their incapability of representing the data. The
root of the failure of the traditional approach lies in the inadequate attention paid
to the statistical model implicit in the estimated structure. The diagnosis related to
the specification of the statistical model gave rise to the LSE approach to macro-
econometric modeling1 and to the “structural cointegrating VAR” approach. The
LSE approach has greatly emphasized the importance of a correct dynamic specifi-
cation of the reduced form model and has placed very little emphasis on the explicit
modeling of the economy based on intertemporal optimization. Recently the link
between theory and dynamic specification has been re-established by a research
approach based on the belief that economic theory is most informative about
the long-run relationships between the relevant variables, proposed by Hashem
Pesaran and a number of co-authors (see, for example, Pesaran and Shin, 2002;
Garratt et al., 2006) in the so-called “structural cointegrating VAR approach.” This
approach is based on testing theory-based overidentifying restrictions on the long-
run relations to provide a statistically coherent framework for the analysis of the
short run.

The Lucas and Sims critiques have instead generated a totally new approach
to econometric policy evaluation. These great critiques made clear that questions
like “How should a central bank respond to shocks in macroeconomic variables?”
are to be answered within the framework of quantitative monetary general equi-
librium models of the business cycle. So the answer should rely on a theoretical
model rather than on an empirical ad hoc macroeconometric model. Initially, this
approach led to the construction of real business cycle (RBC) models where mon-
etary policy played no role in explaining macroeconomic fluctuations. Moreover,
these models depended on a limited numbers of structural parameters that were not
estimated but calibrated. This period has been labeled by John Taylor (2005) as the
“dark age” of the econometrics of monetary policy. This “dark age” came to an end
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as a consequence of developments in macroeconomic theory and empirical mod-
eling. On the theory side, the realization of the importance of price stickiness and
of slow adjustment to the forward-looking rational expectations equilibria led to
the “renaissance” of the role of monetary policy in understanding macroeconomic
fluctuations. At the same time a new role was attributed to empirical analysis of
providing evidence on the stylized facts to include in the theoretical model adopted
for policy analysis and deciding between competing general equilibrium monetary
models. This new role emerged with the realization that the solution of a dynamic
stochastic general equilibrium (DSGE) model can be well approximated by a vec-
tor autoregressive (VAR) model, and VARs have become the natural tool for model
evaluation.

The use of VARs led to the establishment of a number of facts and features to be
included in models for monetary policy evaluation, well described by Christiano,
Eichenbaum and Evans (2005) and Sims (2007).

1. Since VAR models are not estimated to yield advice on the best policy but rather
to provide empirical evidence on the response of macroeconomic variables to
policy impulses in order to discriminate between alternative theoretical models
of the economy, it then becomes crucial to identify policy actions using restric-
tions independent from the theoretical models of the transmission mechanism
under empirical investigation, taking into account the potential endogeneity of
policy instruments.

2. Most of the monetary actions are systematic responses to the state of the econ-
omy, so there is very little in the way of random fluctuations in policy to produce
business cycles.

3. Money supply is close to a random walk and monetary aggregate shocks do
not look like monetary policy shocks in their effect. The foundation of the way
people think about monetary policy is based on interest rate adjustments.

The main results of the VAR-based evaluation model is that, in order to match
fluctuations in the data, any model must feature some attrition that causes tem-
porary but rather persistent deviations from the long-run equilibrium defined by
a frictionless neoclassical economy.

Adding frictions implies increasing the number of parameters, especially along
the dimension of parameters little related to theory. As a consequence, calibration
became impractical for attributing numerical values to the DSGE parameters and
estimation came back into fashion. However, estimating DSGE models by clas-
sical maximum likelihood methods proved to be very hard, as the convergence
of the estimates to values that ensure a unique stable solution turned out to be
practically impossible to achieve when implementing unconstrained maximum
likelihood estimation. Note that three types of solution are possible for a DSGE
model, depending on its parameterization: no stable rational expectations solu-
tion exists, the stable solution is unique (determinacy), or there are multiple stable
solutions (indeterminacy). Determinacy is a prerequisite in order to use a model to
simulate the effects of economic policy.2
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The practical impossibility of applying the classical maximum likelihood prin-
ciple to estimate DSGE models paved the way for Bayesian methods. These methods
have been used both for parameter estimation (see, for example, Smets and
Wouters, 2003) and model evaluation (Del Negro and Schorfheide, 2004). As clearly
pointed out by Sims (2007), this practice leads to a new interaction between theory
and empirical analysis where the theoretical DSGE model should not be considered
as a model for the data but as a generator of a prior distribution for the empirical
model.

16.2 The econometrics of monetary policy in large
econometric models

Consider a model designed to evaluate the effect of monetary policy. A first-
generation structural model can be represented as follows:

A

(
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Mt

)
= C1(L)

(
Yt−1
Mt−1
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+ B

(
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t
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, (16.1)
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)
∼ (0, I).

The vector of n variables of interest is partitioned into two sub-sets: Y, which
represents the vector of macroeconomic variables of interest, and M, the vector of
monetary policy variables determined by the interaction between the policy maker
and the economy.

The probabilistic structure for the variables of interest is determined by the
implied reduced form. This statistical model has the following representation:(
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)
,
∑)

.

This system specifies the statistical distribution for the vector of variables of inter-
est conditional upon the information set available at time t − 1.3 In relating the
structure of interest to the statistical model a crucial identification problem has to
be solved, since there is more than one structure of economic interest which can
give rise to the same statistical model for our vector of variables.
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Any given structure (16.1) will give rise to the observed reduced form (16.2) when
the following restrictions are satisfied:

A−1C1(L) = D1(L), A

(
uY

t

uM
t

)
= B

(
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t

ν
M
t

)
.

There exists a whole class of structures which produce the same statistical model
(16.2) under the same class of restrictions:
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)
, (16.3)

where F is an admissible matrix, that is, it is conformable by product with A, C1(L),
and B, and FA, FC1(L), FB feature the same restrictions as A, C1(L), B.

The identification problem is solved in the Cowles Commission approach by
imposing restrictions on the A, C1(L) and B matrices so that the only admissible
F matrix is the identity matrix. This is typically achieved by attributing an exo-
geneity status to the policy variables. Engle, Hendry and Richard (1983) illustrate
that estimation requires weak exogeneity (A and B lower triangular), forecasting
requires strong exogeneity (A, C1(L) and B lower triangular), while policy simu-
lation requires superexogeneity, that is, strong exogeneity plus invariance of the
parameters of interest to changes in the distribution of the policy variables.

Having identified the model and estimated the parameters of interest, the effect
of monetary policy can be simulated. For given values of the parameters and the
exogenous variables, values for the endogenous variables are recovered by finding
the dynamic solution of the model.

Dynamic simulation is used to evaluate the effect of different policies, defined
by specifying different patterns for the exogenous variables. Policy evaluation is
implemented by examining how the predicted values of the endogenous variables
change after some exogenous variables are modified. This implies simulating the
model twice. First, a baseline, control, simulation is run. Such simulations can be
run within the sample, in which case observed data are available for the exogenous
variables, or outside the available sample, and values are assigned to the exogenous
variables. The results of the baseline simulations are then compared with those
obtained from an alternative, disturbed, simulation, based on the modification of
the relevant exogenous variables. Policy evaluation was usually based on dynamic
multipliers, which show the effect over time of the modification in the exogenous
variables.

The construction of diagnostics for model evaluation is related to the solution
of the identification problem. In fact, in the (very common) case of overidentified
models, a test of the validity of the overidentifying restrictions can be constructed
by comparing the restricted reduced form implied by the structural model with
the reduced form implied by the just-identified model in which each endogenous
variable depends on all exogenous variables with unrestricted coefficients. The
statistics are derived in Anderson and Rubin (1949) and Basmann (1960). The logic
of the test attributes a central role to the structural model. The statistical model of
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reference for the evaluation of the structural model is derived from the structural
model itself.

16.3 The different diagnoses of the failure of large
econometric models

The monetary policies based on first generation models failed to prevent stagflation
in the late 1970s. There are different explanations of this failure, which focused
either on structural identification or on statistical identification.

16.3.1 Diagnoses related to structural identification

Lucas (1976) questions the superexogeneity status of the policy variables. He attacks
the identification scheme proposed by the Cowles Commission by pointing out
that these models do not take expectations explicitly into account and, therefore,
the identified parameters within the Cowles Commission approach are a mixture
of “deep parameters,” describing preferences and technology in the economy, and
expectational parameters which, by their nature, are not stable across different
policy regimes. The main consequence of such instability is that traditional struc-
tural macro-models are useless for the purpose of policy simulation. To illustrate
the point, assume the following data-generating process (DGP), in which expected
monetary policy matters for the determination of macroeconomic variables in the
economy:(
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A Cowles Commission model is estimated without explicitly including expecta-
tions and it will have the following specification:(
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Under the assumed DGP the restrictions a12 = γ c22 and d01 = γ c02 apply and
simulation of alternative policy regimes, that is, alternative values of c02 and c22,
cannot be implemented by keeping the estimated parameters constant.

Sims (1980) reinforced the Lucas critique by emphasizing a point originally
made by Liu (1960), labeling the traditional restrictions as “incredible.” In fact,
no variable can be deemed exogenous in a world of forward-looking agents whose
behaviour depends on the solution of an intertemporal optimization model. Opti-
mality of policy cannot be consistent with the restrictions that A, C1(L), and B
are lower triangular. Note also that, by invalidly imposing such restrictions, the
model might induce a spurious statistical effectiveness of policy in the determina-
tion of macroeconomic variables. Endogeneity of policy does generate correlations
between macroeconomic and policy variables, which, by invalidly assuming policy
as exogenous, can be wrongly interpreted as a causal relation running from policy
to the macroeconomic variables.
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16.3.2 Diagnoses related to statistical identification

The diagnosis related to the specification of the statistical model explains the in-
effectiveness of the first-generation models for the practical purposes of forecasting
and policy as due to their incapability of representing the data. The root of the fail-
ure of the traditional approach lies in the lack of attention paid to the statistical
model implicit in the estimated structure. Any identified structure is bound to fail if
the implied reduced form, that is, the statistical model, is not an accurate descrip-
tion of the data. The accuracy of the description of the data is to be measured
by evaluating the properties of the residuals of the statistical model: “congruent”
models should feature residuals that are normally distributed, free of autocorre-
lation and homoskedastic. Spanos (1990) considers the case of a simple demand
and supply model to show how the reduced form is ignored in the traditional
approach. The example is based on the market for commercial loans discussed
in Maddala (1988). Most of the widely used estimators allow the derivation of
numerical values for the structural parameters without even seeing the statistical
models represented by the reduced form. Following this tradition, the estimated
(by two-stage least squares (2SLS)) structural model is a static model that relates
the demand for loans to the average prime rate, to the Aaa corporate bond rate
and to the industrial production index, while the supply of loans depends on the
average prime rate, the three-month bill rate and total bank deposits. The quan-
tity of commercial loans and the average prime rate are considered as endogenous
while all other variables are taken as, at least, weakly exogenous variables and
no equation for them is explicitly estimated. Given that there are two omitted
instruments in each equation, one overidentifying restriction is imposed in both
the demand and supply equations. The validity of the restrictions is tested via
the Anderson–Rubin (1949) tests, and leads to the rejection of the restrictions at
the 5% level in both equations, although in the second equation the restrictions
cannot be rejected at the 1% level. Estimation of the statistical model, that is,
the reduced form implied by the adopted identifying restrictions, yields a model
for which the underlying statistical assumptions of linearity, homoskedasticity,
absence of autocorrelation and normality of residuals are all strongly rejected.
On the basis of this evidence the adopted statistical model is not considered as
appropriate. An alternative model is then considered which allows for a richer
dynamic structure (two lags) in the reduced form. Such dynamic specification
is shown to provide a much better statistical model for the data than the static
reduced from. Of course, the adopted structural model implies many more overi-
dentifying restrictions than the initial one. When tested, the validity of these
restrictions is overwhelmingly rejected for both the demand and supply equations.
This evidence leads Spanos to conclude that statistical identification should be
distinguished from structural identification. Statistical identification refers to the
choice of a well-defined statistical model, structural identification refers to the
uniqueness of the structural parameters as defined by the reparameterization and
restriction mapping from the statistical parameters. Lucas and Sims concentrate
on model failure related to structural identification problems, but models can fail
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independently from structural identification problems as a consequence of lack of
statistical identification.

16.4 Model specification and model diagnostics when statistical
identification matters

The diagnosis related to the specification of the statistical model gave rise to the
LSE approach to macroeconometric modeling and to the “structural cointegrating
VAR” approach.

There are several possible causes for the inadequacy of the statistical models
implicit in structural econometric models: omission of relevant variables, or of the
relevant dynamics for the included variables, or invalid assumptions of exogene-
ity. The LSE solution to the specification problem is the theory of reduction. Any
econometric model is interpreted as a simplified representation of the unobservable
DGP. For the representation to be valid or “congruent,” to use Hendry’s own ter-
minology, the information lost in reducing the DGP to its adopted representation,
given by the reduced form, must be irrelevant to the problem at hand. Adequacy of
the statistical model is evaluated by analyzing the reduced form, that is, by check-
ing statistical identification. Therefore, the prominence of the structural model,
with respect to the reduced form representation, is reversed. The LSE approach
starts its specification and identification procedure with a general dynamic reduced
form model. The congruency of such a model cannot be directly assessed against
the true DGP, which is unobservable. However, model evaluation is made possi-
ble by applying the general principle that congruent models should feature truly
random residuals; hence, any departure of the vector of residuals from a random
normal multivariate distribution should signal a misspecification. Stationarity of
the statistical model is a crucial feature when the model has to be simulated. Non-
stationarity in macroeconomic time series is treated in the LSE methodology by
reparameterizing the reduced form VAR as a cointegrated VAR. This is achieved
by imposing rank reduction restrictions on the matrix determining the long-run
equilibria of the system and by solving the identification problem of cointegrat-
ing vectors (see Johansen, 1995). Once the baseline model has been validated, the
reduction process begins by simplifying the dynamics and reducing the dimen-
sionality of the model by omitting the equations for those variables for which the
null hypothesis of exogeneity is not rejected. Different tests are proposed for the
different concepts of exogeneity by Engle, Hendry and Richard (1983) and even the
validity of the Lucas critique becomes a testable concept (Engle and Hendry, 1993;
Hendry, 1988). The product of the process of reduction is a statistical model for the
data, possibly discriminating between short-run dynamics and long-run equilib-
ria. Only after this validation procedure can the structural model be identified and
estimated. A just-identified specification does not require any further testing, as
its implicit reduced form does not impose any further restrictions on the baseline
statistical model. The validity of the overidentified specification is, instead, tested
by evaluating the restrictions implicitly imposed on the general reduced form. The
most popular applications of the general-to-specific specification strategy are in the
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area of money demand (Baba, Hendry and Starr, 1992) and aggregate consumption
expenditure (see, for example, Hendry, Muellbauer and Murphy, 1990). As is well
discussed in Fukac and Pagan (2006), the LSE approach was influential in the devel-
opment of a second generation of large equation models, such as the Canadian
model RDX2 (Helliwell et al. 1991) and the MPS model at the Fed (Gramlich, 2004),
which, apart from introducing much stronger supply-side features with respect to
traditional IS/LM models, paid considerable attention to dynamic specification and
to the implementation of error correction models. In this type of specification the
static solution represented a target to which the decision variable adjusted.

In practice, the LSE approach has almost exclusively concentrated on the
statistical diagnosis of the failure of large structural models and has brought more
attention to the dynamic specification and the long-run properties of models built
in the Cowles Commission tradition and used by policy makers. It has paid much
less attention to the possibility of specifying a forward-looking microeconomi-
cally founded model consistent with the theory-based diagnosis for the failure of
traditional Cowles Commission models (an interesting example of this approach
can be found in Juselius and Johansen, 1999). In a recent paper, Juselius and
Franchi (2007) propose formulating all the basic assumptions underlying a the-
oretical model as a set of hypotheses on the long-run structure of a cointegrated
VAR. They also argue in favor of using an identified cointegrated VAR as a way
of structuring the data that offers a number a “sophisticated” stylized facts to be
matched by empirically relevant theoretical models.

The idea of constructing empirical models based on the belief that economic the-
ory is most informative about the long-run relationships between the relevant vari-
ables has been further developed by Hashem Pesaran and a number of co-authors
(see, for example, Pesaran and Shin, 2002; Garratt et al., 2006) in the so-called
“structural cointegrating VAR approach.” This approach is based on testing theory
based overidentifying restrictions on the long-run relations to provide a statistically
coherent framework for the analysis of the short-run. In practice, the implemen-
tation is based on a log-linear VARX model, where the baseline VAR model is
augmented with weakly exogenous variables, such as oil prices or country specific
foreign variables. Theory-based cointegrating relationships are tested and, when-
ever not rejected, imposed on the specification. No restrictions are imposed on the
short-run dynamics of the model except for the, inevitable, choice of lag length for
the VARX. Models are then used to evaluate the effect of policies via generalized
impulse response functions (see Pesaran and Shin, 1998) and for forecasting.

16.5 Model specification and model diagnostics when structural
identification matters

The great critiques made clear that questions like “How should a central bank
respond to shocks in macroeconomic variables?” are to be answered within the
framework of a quantitative monetary general equilibrium model of the business
cycle, a DSGE model. The general linear (or linearized around equilibrium) DSGE
model takes the following form (see Sims, 2002):
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�0Zt = �1Zt−1 + C +!εt +�ηt , (16.6)

where C is a vector of constants, εt is an exogenously evolving random disturbance,
and ηt is a vector of expectations errors,

(
Et
(
ηt+1

) = 0
)
, not given exogenously

but to be treated as part of the model solution. The forcing processes here are the
elements of the vector εt , which contains processes like total factor productivity
or policy variables that are not determined by an optimization process. Policy
variables set by optimization, typically included in Zt , are naturally endogenous
as optimal policy requires some response to current and expected developments
of the economy.4 Expectations at time t for some of the variables of the system
at time t + 1 are also included in the vector Zt whenever the model is forward-
looking. Models like (16.6) can be solved using standard numerical techniques
(see, for example, Sims, 2002), and the solution can be expressed as:

Zt = A0 + A1Zt−1 + Rεt ,

where the matrices A0, A1,and R contain convolutions of the underlying structural
model parameters. Note that the solution is naturally represented as a VAR. In
fact, it is a VAR potentially with stochastic singularity, as the dimension of the
vector of shocks is typically smaller than that of the vector of variables included
in the VAR. However, this problem is promptly solved by adding the appropriate
number of measurement errors.5 Canonical RBC models (see, for example, Kydland
and Prescott, 1982; King, Plosser and Rebelo, 1988) contain a limited number
of parameters, and within this class of models the role of estimation was clearly
de-emphasized and parameters have often been calibrated rather than estimated.

Calibration is extensively described in Cooley (1997). The aim of calibration is
not to provide a congruent representation of the data, but simply to find values
for the structural parameters of the model that are jointly compatible with the
theory and the data in particular well-specified dimensions. The main difference
between calibration and standard econometrics lies in the bidirectional relation-
ship between theory and measurement that characterizes the former (see Favero,
2001). Cooley (1995, p. 60) states very clearly that in the calibration approach,
data and measurement are concepts determined by the features of the theory. The
empirics of calibration proceeds in several stages.

First, a preliminary, non-theoretical inspection of the data identifies some gen-
eral stylized facts that any economic model should internalize. The theoretical
framework at hand, then, integrated by these observed stylized facts, generates the
parametric class of models to be evaluated. Once a particular model has been devel-
oped, it precisely defines the quantities of interest to be measured, and suggests
how available measurements have to be reorganized if they are inconsistent with
the theory.

Then, measurements are used to give empirical content to the theory, and in par-
ticular to provide empirically based values for the unknown parameters. They are
chosen, according to Cooley (1997, p. 58), by specifying first some features of the
data for the model to reproduce6 and then by finding some one-to-one relationship
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between these features and the deep parameters of the model. Finally, this relation-
ship is inverted to determine the parameter values that make the model match the
observed features.

From this point of view, calibration can be interpreted as a method of moments
estimation procedure that focuses on a limited parameter sub-set, setting only the
discrepancy between some simulated and observed moments to zero. Christiano
and Eichenbaum (1992) generalize this idea and propose a variant of Hansen’s
(1982) generalized method of moments (GMM) procedure to estimate and assess
stochastic general equilibrium models using specific moments of the actual data.
These procedures are formal developments of the basic methodological approach,
and share with standard calibration the focus on a limited set of previously selected
moments, while standard econometric methods use, in principle, the whole avail-
able information set, weighting different moments exclusively according to how
much information on them is contained in the actual data, as, for example, in
maximum likelihood methods.

Generally, not all parameters can be calibrated, simply because there are more
unknown parameters than invertible relationships. A sub-set of them has to be left
to more standard econometric techniques.

Once a parameterization is available, the model is simulated and different kinds
of numerical exercises are performed. At this stage model evaluation can also be
implemented. Model evaluation was initially conducted by assessing the ability
of the model to reproduce some particular features (of course, ones that are dif-
ferent from those used to calibrate it) of the data. The metric chosen to compare
the observed properties and the simulated ones is a critical issue. In the traditional
calibration procedure, an informal, “aesthetic” metric is used, based on the com-
parison between simulated and observed moments of the relevant variables (see,
for example, Kydland and Prescott, 1996, p. 75). Moreover, as DSGE models are
usually solved by linearizing them around equilibrium, raw data cannot be used
to generate the set of statistics relevant for model evaluation. Raw data contain
trends, so they are usually detrended using filtering techniques before using them
to generate the relevant statistics.7

Model evaluation in DSGE models became much more sophisticated when the
practice started to exploit the fact that a solved DSGE model is a VAR.

If we repartition the vector of variables included in the VAR into macroeconomic
and policy variables [YtMt ], the solved DSGE model could be represented as a
structural VAR (SVAR):

A

(
Yt
Mt

)
= C(L)

(
Yt−1
Mt−1

)
+ B

(
ν

Y
t

ν
M
t

)
. (16.7)

Within this framework a new role for empirical analysis emerges: to provide evi-
dence on the stylized facts to include in the theoretical model adopted for policy
analysis and to decide between competing DSGE models. The operationalization
of this research program in the analysis of monetary policy is very well described

mailto: rights@palgrave.com


Carlo Favero 833

in a paper by Christiano, Eichenbaum and Evans (1998). There are three relevant
steps:

1. monetary policy shocks are identified in actual economies, that is, in a VAR
without theoretical restrictions;

2. the response of relevant economic variables to monetary shocks is then
described;

3. finally, the same experiment is performed in the model economies to compare
actual and model-based responses as an evaluation tool and a selection criterion
for theoretical models.

The identification of the shocks of interest is the first and most relevant step
in VAR-based model evaluation. VAR modeling recognizes that identification and
estimation of structural parameters is impossible without explicitly modeling
expectations. Therefore, a structure like (16.7) can only be used to run special
experiments that do not involve simulating different scenarios for the parame-
ters of interest. A natural way to achieve these results is to experiment with the

shocks νM
t . Facts are then provided by looking at impulse response analysis, vari-

ance decompositions and historical decompositions. Impulse response analysis
describes the effect over time of a policy shock on the variables of interest, variance
decomposition illustrates how much of the variance of the forecasting errors for
macroeconomic variables at different horizons can be attributed to policy shocks,
and historical decomposition allows the researcher to evaluate the effect of zeroing
policy shocks on the variables of interest. All these experiments are run by keeping
estimated parameters unaltered. Importantly, running these experiments is easier if
shocks to the different variables included in the VAR are orthogonal to each other,
otherwise it would not be possible to simulate a policy shock by maintaining all
the other shocks at zero. As a consequence, VAR models need a structure because
orthogonal shocks are normally not a feature of the statistical model. This fact
generates an identification problem. In the reduced form we have:(

Yt
Mt

)
= A−1C(L)

(
Yt−1
Mt−1

)
+
(

uY
t

uM
t

)
,

where u denotes the VAR residual vector, normally and independently distributed
with full variance-covariance matrix �. The relation between the residuals in u and
the structural disturbances in ν is therefore:

A

(
uY

t

uM
t

)
= B

(
ν

Y
t

ν
M
t

)
. (16.8)

Undoing the partitioning, we have:

ut = A−1Bυt ,
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from which we can derive the relation between the variance-covariance matrices
of ut (observed) and νt (unobserved) as follows:

E
(
utu

′
t

)
= A−1BE

(
υtυ

′
t

)
B′A−1.

Substituting population moments with sample moments we have:∑̂
= Â−1B̂IB̂′Â−1, (16.9)

∑̂
contains n(n + 1)/2 different elements, so this is the maximum number of

identifiable parameters in matrices A and B. Therefore, a necessary condition for
identification is that the maximum number of parameters contained in the two
matrices equals n(n + 1)/2, and such a condition makes the number of equations
equal to the number of unknowns in system (16.9). As usual, for such a condition
also to be sufficient for identification, no equation in (16.9) should be a linear
combination of the other equations in the system (see Amisano and Giannini,
1996; Hamilton, 1994). As for traditional models, we have the three possible cases
of underidentification, just-identification and overidentification. The validity of

overidentifying restrictions can be tested via a statistic distributed as a χ
2 with

the number of degrees of freedom equal to the number of overidentifying restric-
tions. Once identification has been achieved, the estimation problem is solved by
applying generalized method of moments estimation.

Since VAR models are used to discriminate between alternative theoretical models
of the economy, it then becomes crucial to identify policy actions using restrictions
independent from the theoretical models of the transmission mechanism under
empirical investigation, taking into account the potential endogeneity of policy
instruments. Restrictions based on the theoretical predictions of models are clearly
inappropriate, and so are the Cowles Commission type of restrictions, as they do
not acknowledge the endogeneity of systematic policy. The recent literature on
the monetary transmission mechanism (see Bernanke and Mihov, 1998; Chris-
tiano, Eichenbaum and Evans, 1996a; Leeper, Sims and Zha, 1996) offers good
examples on how these kind of restrictions can be derived. VARs of the monetary
transmission mechanism are specified on six variables, with the vector of macroe-
conomic non-policy variables including GDP, the consumer price index (P) and
the commodity price level (Pcm), while the vector of policy variables includes the
federal funds rate (FF), the quantity of total bank reserves (TR) and the amount of
non-borrowed reserves (NBR). Given the estimation of the reduced form VAR for
the six macro and monetary variables, a structural model is identified by: (i) assum-
ing orthogonality of the structural disturbances; (ii) requiring that macroeconomic
variables do not simultaneously react to monetary variables, while simultaneous
feedback in the other direction is allowed, and (iii) imposing restrictions on the
monetary block of the model reflecting the operational procedures implemented
by the monetary policy maker. All identifying restrictions satisfy the criterion of
independence from specific theoretical models. In fact, within the class of models
estimated on monthly data, restrictions (ii) are consistent with a wide spectrum
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of alternative theoretical structures and imply a minimal assumption on the lag
of the impact of monetary policy actions on macroeconomic variables, whereas
restrictions (iii) are based on institutional analysis. Restrictions (ii) are made oper-
ational by setting to zero an appropriate block of elements of the A matrix. Note
that restrictions on the contemporaneous feedbacks among variables is not the
only way of imposing restrictions consistent with a wide spectrum of theoretical
models. In fact, such an aim could be achieved by imposing restrictions on the
long run effects of shocks (for example, there is a clear consensus among macroe-
conomists that demand shocks have zero effect on output in the long run) or on
the shape of some impulse response functions. These types of restrictions are easily
imposed on the SVAR (see, for example, Blanchard and Quah, 1989; Uhlig, 1999),
although one must always be aware of the effect of imposing invalid restrictions
on parameter estimates (Faust and Leeper, 1997). Finally, note that partial iden-
tification can easily be implemented in a VAR model. If the relevant dimension
for model comparison is the response of the economy to monetary policy shocks,
then there is no need to identify the non-monetary structural shocks in the model.

16.5.1 VAR-based model evaluation: an assessment

VAR-based model evaluation can be assessed by first discussing the results achieved
and their impact on model building, and then offering some considerations on the
specification of the VAR and on the evaluation of the statistical model adopted.

The main results of the VAR-based evaluation model is that, in order to match
fluctuations in the data, any model must feature some attrition that causes tem-
porary but rather persistent deviations from the long-run equilibrium defined by a
frictionless neoclassical economy. In a series of recent papers, Christiano, Eichen-
baum and Evans (1996a, 1996b) apply the VAR approach to derive “stylized facts”
on the effect of a contractionary policy shock, and conclude that plausible models
of the monetary transmission mechanism should be consistent at least with the
following evidence on price, output and interest rates: (i) the aggregate price level
initially responds very little; (ii) interest rates initially rise, and (iii) aggregate output
initially falls, with a j-shaped response and a zero long-run effect of the monetary
impulse. Such evidence leads to the dismissal of traditional RBC models, which are
not compatible with the liquidity effect of monetary policy on interest rates, and
of the Lucas (1972) model of money, in which the effect of monetary policy on
output depends on price misperceptions. The evidence seems to be more in line
with alternative interpretations of the monetary transmission mechanism based
on sticky price models (Goodfriend and King, 1997), limited participation models
(Christiano and Eichenbaum, 1992) or models with indeterminacy–sunspot equi-
libria (Farmer, 1997). When models are extended to analyze the components of
output, more frictions need to be added to explain the dynamics of consumption
and investment: typically, some habit persistence is needed to explain fluctuations
in consumption and some adjustment costs are needed to match the dynamics of
investment and the stock of capital in the data.

Specification of the VAR and its statistical adequacy is an issue that has not
received much explicit attention in the literature. It seems that the choice of the
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variables included in the VAR is driven by the theoretical model. This is natural: if
the theoretical model is a restricted VAR, the natural benchmark is the same VAR
without restrictions. But what about potential misspecification of the statistical
model?

Statistical analysis of the unrestricted VAR is rather rare, although some implicit
consideration has clearly been devoted to this issue. Think, for example, of the
“liquidity puzzle” and the “price puzzle” for models of the monetary transmission
mechanism.

VAR models of the monetary transmission mechanism were initially estimated
on a rather limited set of variables, that is, prices, money and output, and identified
by imposing a diagonal form on the matrix B and a lower triangular form on the
matrix A, with money coming last in the ordering of the variables included in the
VAR (Choleski identification). The typical impulse responses obtained within this
type of model show that prices slowly react to monetary policy, output responds in
the short run, in the long run (from two years after the shock onwards) prices start
adjusting and the significant effect on output vanishes. There is no strong evidence
for the endogeneity of money. Macroeconomic variables play a very limited role
in explaining the variance of the forecasting error of money, while money instead
plays an important role in explaining fluctuations of both the macroeconomic
variables.

Sims (1980) extended the VAR to include the interest rate on federal funds,
ordered just before money as a penultimate variable in the Choleski identifica-
tion. The idea was to assess the robustness of the above results after identifying
the part of money which is endogenous to the interest rate. Impulse response
functions and forecast error variance decomposition (FEVD) raise a number of
issues.

1. Though little of the variation in money is predictable from past output and
prices, a considerable amount becomes predictable when past short-term
interest rates are included in the information set.

2. It is difficult to interpret the behavior of money as driven by money supply
shocks. The response to money innovations gives rise to the “liquidity puzzle”:
the interest rate initially declines very slightly in response to a money shock
and then starts increasing afterwards.

3. There are also difficulties with interpreting shocks to interest rates as monetary
policy shocks. The response of prices to an innovation in interest rates gives
rise to the “price puzzle”: prices increase significantly after an interest rate hike.
An accepted interpretation of the liquidity puzzle relies on the argument that
the money stock is dominated by demand rather than supply shocks. More-
over, the interpretation of money as demand shocks driven is consistent with
the impulse response of money to interest rates. Note also that, even if the
money stock were to be dominated by supply shocks, it would reflect both the
behavior of central banks and the banking system. For both these reasons the
broad monetary aggregate has been substituted by narrower aggregates, bank
reserves, on which it is easier to identify shocks mainly driven by the behavior
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of the monetary policy maker. The “price puzzle” has been attributed to the mis-
specification of the four-variables VAR used by Sims. Suppose that there exists a
leading indicator for inflation to which the Fed reacts. If such a leading indicator
is omitted from the VAR, then we have an omitted variable positively correlated
with inflation and interest rates. Such omission makes the VAR misspecified and
explains the positive relation between prices and interest rates observed in the
impulse response functions. It has been observed (see Christiano, Eichenbaum
and Evans, 1996b; Sims and Zha, 1996) that the inclusion of a Commodity Price
Index in the VAR solves the “price puzzle.”

As a result of these developments, a consensus was reached on the specification
of the VAR to provide facts on the monetary transmission mechanism (MTM) as a
model including prices, output, a commodity price index, the policy rate and the
narrow money indicators necessary to model the market for bank reserves.

Note that the final specification is very different from the initial one and the
modifications in the specification are driven by a number of puzzles found in the
impulse responses of discarded VARs. One can, of course, interpret these puzzles as
signals of misspecification of the VAR, but it is not clear that puzzles are the best
way to diagnose misspecification of the statistical model. Think, for example, of
the recent practice of identifying shocks by imposing constraints on the shape of
the impulse response functions. It might well be regarded as reasonable to assume
that a monetary policy restriction has a non-positive effect on inflation. Obviously,
if VARs of the MTM would have always been identified by imposing this restriction,
then the price puzzle would never have been observed and one is left to wonder
if the consensus specification of the VAR to analyze the MTM would have evolved
differently from what it did.

Another issue of crucial importance is structural stability of the parameters esti-
mated in the VAR. If the VAR is a reduced form of a forward-looking model it is
of crucial importance to estimate its parameters on a single regime. Although this
issue has been explicitly recognized in some papers, (for example, Bernanke and
Mihov, 1998), the consensus VAR is normally estimated on a sample including dif-
ferent monetary regimes. The main justification for this practice is that monetary
policy shocks are robust to the different identifications generated by the different
monetary policy regimes. Some authors have been left skeptical by such robustness
and some criticisms have been made of VAR-based monetary policy shocks. Rude-
busch (1998) argues that VAR-based monetary shocks do not make sense as they
are very weakly correlated with monetary policy shocks directly derived from asset
prices (the Federal Fund future). The mainstream reaction to this criticism is that,
even if the two types of shocks are very weakly correlated, the impulses responses
of macroeconomic variables to VAR based and financial market-based monetary
policy shocks are not significantly different from each other. Rudebusch’s criti-
cism has shared the same fate as other criticisms of the VAR approach. Lippi and
Reichlin (1993) pointed out that a crucial assumption in structural VAR model-
ing is that structural shocks are linear combinations of the residuals in reduced
form VAR models, so that modern macroeconomic models which are linearized
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into dynamic systems tend to include noninvertible moving average components
and structural shocks are therefore not identifiable. In fact, the linearized modern
macroeconomic models of the monetary transmission mechanism deliver short
VARs. In such models structural shocks are combinations of the residuals in the
reduced form VARs (the Wold innovations) and the Lippi–Reichlin critique does
not seem to be applicable (for a further discussion of this point see Amisano and
Giannini, 1996).

To sum up, although the original idea of the Cowles Commission to use the
implied unrestricted reduced form as a benchmark to evaluate the structural model
is clearly reflected in the VAR-based evaluation of DSGE models, the potential
importance of the formal evaluation of the adequacy of the statistical model
adopted has certainly not received the same attention. However, in the practice
of VAR specification some attention to the issue of potential misspecification has
clearly been paid, although such attention has been more related to the economic
interpretation of results than to the implementation of formal statistical criteria
for model evaluation.

16.6 From VAR-based model evaluation to Bayesian analysis of
DSGE models

VAR-based evaluation of early DSGE models made clear that a large number of
nominal and real frictions should be added to the traditional new-classical RBC
models to replicate relevant features in observed data (see, for example, Christiano,
Eichenbaum and Evans, 2005). Adding frictions implies increasing the number of
parameters, especially along the dimension of parameters little related to theory.
As a consequence, calibration became impractical for attributing numerical values
to the DSGE parameters and estimation came back into fashion. However, esti-
mating DSGE models by classical maximum likelihood methods proved to be very
hard, as the convergence of the estimates to values that ensure a unique stable
solution turned out to be practically impossible to achieve when implementing
unconstrained maximum likelihood estimation. A paper by Ireland (2004) was
an exception and obtained convergence of numerical estimates of parameters of
a DSGE model to values that allow economic policy simulation. In fact, the Ire-
land method consists of penalizing the likelihood function along some dimension
so that the range of variation of many parameters is limited (for an interesting
discussion of the estimation implemented in Ireland, see Johansen, 2004).

In practice, one can think of Ireland’s method as a naive Bayesian one in which
some form of (very tight) prior is imposed on (at least a sub-set of) the parame-
ters. A natural development of Ireland’s proposal was to extend the naive Bayesian
framework to a proper Bayesian framework. This is what happened as soon as the
use of MCMC methods to derive the relevant posterior distribution of param-
eters became widespread (see An and Schorfeide, 2006; Del Negro et al., 2006;
Ruge-Murcia, 2003, for surveys and applications).

Once adopted, the Bayesian framework naturally offered some new possibili-
ties of integrating theoretical and empirical models. Originally this interaction
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was proposed as a set of modern model evaluation tools. These were gener-
ated by pairing the tradition of model evaluation in the Bayesian approach to
macroeconometrics with the VAR nature of a solved DSGE model.

The Bayesian approach made its way into applied macroeconometrics to solve
the problem of the lack of parsimony of VARs. In practice, data availability from a
single regime poses a binding constraint on the number of variables and the num-
ber of lags that can be included in a VAR without overfitting the data. A solution to
the problem of over-parameterization is to constrain the parameters by shrinking
them toward some specific point in the parameter space. The Minnesota prior, pro-
posed by Doan, Litterman and Sims (1984), uses the Bayesian approach to shrink
the estimates toward the univariate random walk representation for all variables
included in the VAR. Within this framework, Bayesian methods are used to save
degrees of freedom on the basis of the well established statistical evidence that
no-change forecasts are known to be very hard to beat for many macroeconomic
variables. DeJong, Ingram and Whiteman (1996, 2000) and Ingram and Whiteman
(1994) proposed evaluating RBC models by comparing the forecasting performance
of a Bayesian VAR estimated via the Minnesota prior with that of a VAR in which
the atheoretical prior information in the Minnesota prior was supplanted by the
information in an RBC model.

In a series of papers, Del Negro and Schorfeide (2004, 2006) and Del Negro et al.
(2006) use this approach to develop a model evaluation method that tilts coefficient
estimates of an unrestricted VAR toward the restriction implied by a DSGE model.
The weight placed on the DSGE model is controlled by a hyperparameter called
λ. This parameter takes values ranging from 0 (no-weight on the DSGE model) to
∞ (no weight on the unrestricted VAR). Therefore, the posterior distribution of λ

provides an overall assessment of the validity of the DSGE model restrictions. To see
how the approach is implemented, consider that the solved DSGE model generates
a restricted moving average (MA) representation for the vector of n variables of

interest, Zt =
(
Yt Mt

)
, that can be approximated by a VAR of order p:

Zt = �
∗
0 (θ)+�

∗
1 (θ)Zt−1 + ...+�

∗
p (θ)Zt−p + u∗t
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0,�∗u (θ)

)
Z′t = X′t�
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,

where all coefficients are convolutions of the structural parameters in the model
included in the vector θ . The chosen benchmark to evaluate this model is the
unrestricted VAR derived from the solved DSGE model:

Z′t = X′t�+ u′t ,

� =
[
�0,�1, ...,�p

]
,
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where:

� = �
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u .

The DSGE restrictions are imposed on the VAR by defining:
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where ED
θ defines the expectation with respect to the distribution generated by the

DSGE model. Such a distribution needs to be well defined. We then have:

�
∗
(θ) = �XX (θ)

−1
�XZ (θ).

Beliefs about the DSGE model parameters θ and model misspecification matrices
�

� and �
�
u are summarized in prior distributions, that, as shown in Del Negro

et al. (2006), can be transformed into priors for the VAR parameters � and �u. In
particular we have:
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where the parameter λ controls the degree of model misspecification with respect
to the VAR: for small values of λ the discrepancy between the VAR and the DSGE-
VAR is large and a sizeable distance is generated between unrestricted VAR and
DSGE estimators, large values of λ correspond to small model misspecification
and, for λ = ∞, beliefs about DSGE misspecification degenerate to a point mass
at zero. Bayesian estimation could be interpreted as estimation based on a sample
in which data are augmented by a hypothetical sample in which observations are
generated by the DSGE model; within this framework λ determines the length of
the hypothetical sample.

Given the prior distribution, posteriors are derived by Bayes’ theorem:
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which shows that the smaller λ, the closer the estimates are to the OLS estimates of
an unrestricted VAR, the higher λ the closer the estimates are to the values implied
by the DSGE model parameters θ .

In practice, a grid search is conducted on a range of values for λ to choose that
value which maximizes the marginal data density. The typical result obtained when
using DSGE-VECM(λ) to evaluate models with frictions is that “the degree of mis-
specification in large-scale DSGE models is no longer so large as to prevent their
use in day-to-day policy analysis, yet is not small enough that it can be ignored.”

16.6.1 DSGE-VAR analysis: an assessment

If we consider the DSGE-VAR approach to be a model evaluation tool, we observe
that it takes the Lucas and Sims critique very seriously but it ignores the issue of
specification of the statistical model. The VAR used as a benchmark is the solved
DSGE model that is generalized only by relaxing restrictions on parameters. The
validity of the statistical model underlying the empirical specification is never ques-
tioned. Although the models are different, the evaluation strategy in the DSGE-VAR
approach is very similar to the approach of evaluating models by testing over-
identifying restrictions without assessing the statistical model, as implemented in
Cowles Commission models. In fact, the DSGE-VAR approach is looser than that of
the Cowles Commission approach as model-based restrictions are not imposed and
tested but a different question is asked: restrictions are made fuzzy by imposing a
distribution on them. Within this approach the relevant question becomes “What
is the amount of uncertainty that we have to add to model based restrictions in
order to make them compatible not with the data but with a model-derived unre-
stricted VAR representation of the data?” The natural question here is “How well
does this procedure do in rejecting false models?” Spanos (1990) has clearly shown
that modification of the structure of the statistical model could lead to dramatic
changes in the outcome of tests for overidentifying restrictions. Why is this worry
so strongly de-emphasized in the DSGE-VAR literature?

What are the potential sources of model-derived VAR misspecification? An obvi-
ous candidate are all those variables that are related to the misspecification of the
theoretical model, but there are also all those variables that are not theory-related
but are important for modeling the actual behavior of policy makers. Think, for
example, of the commodity price index and the modeling of the behavior of the
monetary policy authority. We have discussed in the previous section how the
inclusion of this variable in a VAR to identify monetary policy shocks has been
deemed important to model correctly the information set of the monetary pol-
icy maker when forecasting inflation and then to fix the “price puzzle.” DSGE
models do not typically include the commodity price index in their specification,
and, as a consequence, the VAR derived by relaxing the theoretical restrictions in
a DSGE model is misspecified. Thus the evaluation of the effects of conducting
model misspecification with a “wrong” benchmark is a practically relevant one.

As a matter of fact, DSGE models tend to produce a high number of very persistent
shocks (see Smets and Wouters, 2003), and this would have certainly been taken as
a signal of model misspecification by an LSE-type methodology. Still, the models
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do not do too badly when judged by the metric of the λ test. It would be important
to have some evaluation of phenomena like this.

Another dimension potentially relevant for evaluating the statistical model
underlying the VAR-DSGE is the structural stability of the VAR parameters. If the
DSGE restrictions are valid, then parameters in the VAR are convolutions of struc-
tural parameters that, by their nature, should be constant over time. It is well
known that tests for structural stability have problems of power, especially in
the presence of multiple breaks at unknown dates. Detecting structural breaks in
parameters of interest becomes even harder when structural innovations in the
DSGE are allowed to have volatilities that vary over time. Justiniano and Primiceri
(2005) have extended the Bayesian framework to develop an algorithm for inferring
DSGE model parameters and time-varying volatilities of structural shocks. Allow-
ing for time-varying volatilities makes the DSGE model consistent with structural
breaks while keeping the deep parameters constant. However, it is hard to distin-
guish empirically the case for genuine stochastic volatility against a situation in
which allowing for stochastic volatility in the estimation picks up parameter insta-
bility in a VAR model with constant volatility of structural shocks (see Benati and
Surico, 2007).

There are alternatives to the use of a VAR as a benchmark. The limited infor-
mation problem of VARs could be solved by combining traditional VAR analysis
with recent developments in factor analysis for large data sets and using a factor-
augmented VAR (FAVAR) as the relevant statistical model to conduct model
evaluation. A recent strand of the econometric literature (Stock and Watson, 2002;
Forni and Reichlin, 1996, 1998; Forni et al., 2000) has shown that very large
macroeconomic datasets can be properly modeled using dynamic factor models,
where the factors can be considered to be an exhaustive summary of the infor-
mation in the data. This approach has been successfully employed to forecast
macroeconomic time series and, in particular, inflation. As a natural extension
of the forecasting literature, Bernanke and Boivin (2003), and Bernanke, Boivin
and Eliasz (2005) proposed exploiting these factors in the estimation of VARs. A
FAVAR benchmark for the evaluation of a DSGE model will take the following
specification: (

Zt
Ft

)
=
[
�11(L) �12(L)
�21(L) �22(L)

](
Zt−1
Ft−1

)
+
(

uZ
t

uF
t

)
,

where Zt are the variables included in the DSGE model and Ft is a small vector
of unobserved factors extracted from a large dataset of macroeconomic time series
that capture additional economic information relevant to model the dynamics
of Zt . The system reduces to the standard VAR used to evaluate DSGE models if
�12(L) = 0. Therefore, within this context, the relevant λ test would add to the
usual DSGE model-related restrictions on �11(L) the restrictions �12(L) = 0.

Consolo, Favero and Paccagnini (2007) apply this idea to find that FAVAR mod-
els dominate VAR specifications generated by adopting unrestricted versions of the
solution of DSGE models. Such dominance is clearly established by analysis of

mailto: rights@palgrave.com


Carlo Favero 843

residuals and evaluation of forecasting performance. However, when the Bayesian
approach is applied to the DSGE-FAVAR instead of the DSGE-VAR, some support for
the DSGE model is still found in the data (the optimal λ in the DSGE-FAVAR is dif-
ferent from zero). Moreover, the optimal combination of the DSGE model and the
statistical model based on a larger information set (the FAVAR) delivers a forecast-
ing model (the DSGE-FAVAR) that dominates all alternatives. This evidence leads
to a new interaction between theory and empirical analysis, where the theoretical
DSGE model should not be considered as a model for the data but as a generator of
prior distributions for the empirical model. The use of the FAVAR as an empirical
model allows including in the analysis the information that is not considered in
the theoretical model.

Besides this application there has been no work using FAVAR to evaluate DSGE.
Interestingly, what has instead happened is that FAVAR has been interpreted as the
reduced form of a DSGE model. This result has been achieved by removing the
assumption that economic variables included in a DSGE are properly measured by
a single indicator: variables in the theoretical model are considered as unobserv-
able and the information in the factors is used to map them (Boivin and Giannoni,
2006). This approach makes a FAVAR the reduced form of a DSGE model, although
the restrictions implied by the DSGE model on a general FAVAR are very difficult
to trace and model evaluation becomes even more difficult to implement. In fact,
a very tightly parameterized theory model can have a very highly parameterized
reduced form if one is prepared to accept that the relevant theoretical concepts in
the model are combinations of many macroeconomic and financial variables. Iden-
tification of the relevant structural parameters, which is already very hard in DSGE
model with observed variables (see Canova and Sala, 2005), becomes even harder.
Natural advantages of this approach are increased efficiency in the estimation of
the model and improved forecasting performance. However, model evaluation
becomes almost impossible to pursue and a theoretical model can only by rejected
by another theoretical model, while the implied statistical model is made so gen-
eral that it becomes very hard to use theory as a generator of prior distributions
and it becomes impossible to use the evidence from the data to reject theory.

16.7 What’s next?

The main challenge for the econometrics of monetary policy is in combining of
theoretical models and information from the data to construct empirical models.
The failure of the large econometric models at the beginning of the 1970s might be
explained by their incapability of taking proper account of both these aspects. The
great critiques by Lucas and Sims have generated an alternative approach which,
at least initially, has been almost entirely dominated by theory. The LSE approach
has instead concentrated on the properties of the statistical models and on the best
way of incorporating information from the data into the empirical models, pay-
ing little attention to the economic foundation of the adopted specification. The
realization that the solution of a DSGE model can be approximated by a restricted
VAR, which is also a statistical model, has generated a potential link between the
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two approaches. The open question is which type of VARs are most appropriate for
the econometric analysis of monetary policy.

At the moment there are a number of alternative answers to this question. A first
approach looks at theoretical DSGE models as the natural way to generate prior
distributions for the empirical model, which should be an (optimal) combination
of a tightly parameterized theoretical model and of a more general empirical model.
This approach requires the application of Bayesian methods. A second approach
looks at theory as informative only for the long-run relations between economic
variables, so theory should be used to specify a cointegrated VAR in which the
short-run dynamics are determined by the data but the long-run properties of the
model depend on testable (and tested) theoretical assumptions. Importantly, both
these answers recognize the importance of both the theoretical and the statistical
model, although the relative weights can be very different. Within this framework,
modeling nonlinearity and structural breaks could be an important development.

The econometrics of monetary policy is now based on models that incorporate
a large number of nominal and real frictions added to the traditional neoclassical
RBC models to replicate relevant features in observed data. These models typically
incorporate the labour market, consumers and producers behavior and monetary
and fiscal policies, so the next step is probably more accurate and explicit modeling
of the interaction between financial markets and product markets.

16.8 Appendix: The Sims (2002) representation of a small
macroeconomic model

Consider a small New Keynesian DSGE model of the economy which features a
representative household optimizing over consumption, real money holdings and
leisure, a continuum of monopolistically competitive firms with price adjustment
costs and a monetary policy authority which sets the interest rate. The model is
driven by three exogenous processes which determine government spending, gt ,
the stationary component of technology, zt , and the policy shock, εR,t . A full
description of the model can be found in Woodford (2003). For the purpose at
hand we focus on its log-linear representation, which takes each variable as devia-
tions from its trend. The model has a deterministic steady state with respect to the
detrended variables: the common component is generated by a stochastic trend
in the exogenous process for technology. The specification follows Del Negro and
Schorfheide (2004)(DS) and reads:

x̃t = Et x̃t+1 −
1
τ
(R̃t − Et π̃t+1)+ (1− ρG)g̃t + ρz

1
τ

z̃t (16.10)

π̃t = βEt π̃t+1 + κ
(
x̃t − g̃t

)
(16.11)

R̃t = ρRR̃t−1 + (1− ρR)(ψ1π̃t + ψ2x̃t )+ εR,t (16.12)

g̃t = ρg g̃t−1 + εg,t (16.13)

z̃t = ρzz̃t−1 + εz,t , (16.14)
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where x̃t is the output gap, π̃t is the inflation rate, R̃t is the short-term interest rate
and g̃t and z̃t are two stationary AR(1) processes for government and technology,
respectively.

The first equation is an intertemporal Euler equation obtained from the house-
hold’s optimal choice of consumption and bond holdings. There is no investment
in the model and so output is proportional to consumption up to an exogenous
process that describes fiscal policy. The net effects of these exogenous shifts on
the Euler equation are captured in the process g̃t . The parameter 0 < β < 1 is the
household’s discount factor and τ > 0 is the inverse of the elasticity of intertem-
poral substitution. The second equation is the forward-looking Phillips curve,
which describes the dynamics of inflation and where κ determines the degree of
the short-run trade-off between output and inflation. The third equation is the
monetary policy reaction function. The central bank follows a nominal interest
rate rule by adjusting its instrument to deviations of inflation and output from
their respective target levels. The shock εR,t can be interpreted as an unanticipated
deviation from the policy rule or as policy implementation error. Fiscal policy
is simply described by an autoregressive process. The set of structural shocks is

thus εt =
(
εR,t , εg,t , εz,t

)′
, which collects technology, government and monetary

shocks.
To cast the model in the form of:

�0
∼
Zt = �1

∼
Zt−1 + C +!εt +�ηt , (16.15)

specify the relevant matrices as follows:

∼
Zt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃t
π̃t
R̃t
R̃∗t
g̃t
z̃t

Et x̃t+1
Et π̃t+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
εt =

⎡⎢⎢⎣
ε

R
t

ε
G
t

ε
Z
t

⎤⎥⎥⎦ ηt =
[

η
x
t = xt − Et−1(xt )

η
π
t = πt − Et−1(πt )

]

�0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
τ 0 −(1− ρg ) −ρz

τ −1 −1
τ

−κ 1 0 0 κ 0 0 −β

0 0 1 −(1− ρR) 0 0 0 0
−ψ2 −ψ1 0 1 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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�1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 ρR 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 ρG 0 0 0
0 0 0 0 0 ρZ 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

! =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

As a solution to (16.15), we obtain the following policy function:

Z̃t = T (θ) Z̃t−1 + R (θ) εt . (16.16)

To provide the mapping between the observable data and those computed as devi-
ations from the steady-state of the model, we set the following measurement
equations, as in DS:

� ln xt = ln γ +�x̃t + z̃t (16.17)

� ln Pt = lnπ
∗ + π̃t (16.18)

ln Rt = 4[(ln R∗ + lnπ
∗
)+ R̃t ], (16.19)

which can also be cast into matrices as:

Yt = %0 (θ)+%1 (θ) Z̃t + vt , (16.20)

where Yt =
(
� ln xt ,� ln Pt , ln Rt

)′, vt = 0 and %0 and %1 are defined accord-
ingly. For completeness, we write the matrices T , R, %0 and %1 as a function of
the structural parameters in the model, θ = (

ln γ , lnπ
∗, ln r∗, κ, τ ,ψ1,ψ2, ρR, ρg ,

ρZ , σR, σg , σZ
)′: such a formulation derives from the rational expectations solution.

The evolution of the variables of interest, Yt , is therefore determined by (16.15)
and (16.20), which impose a set of restrictions across the parameters of the MA
representation. Finally, the MA representation is approximated by a finite-order
VAR representation.

Notes

1. The LSE approach was initiated by Denis Sargan but owes its diffusion to a number of
Sargan’s students and is extremely well described in the book by David Hendry (1995).
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2. Importantly, the analysis of determinacy of the equilibria led to the discovery that a
central bank can need fiscal backing; in fact, there is a class of equilibria for the economy
that are invisible if one focuses entirely on money demand. These are equilibria in which
the monetary authority is completely passive: it picks a nominal interest rate and agrees
to accommodate any amount of debt issue by monetizing it. In conventional models
this leads to an indeterminate price level, but in a model in which the fiscal authority is
committed to a fixed level of primary surpluses there is a unique price level. So inflation
cannot be controlled by only controlling the stock of money (see Leeper, 1991; Sims,
2007).

3. The statistical model is a VAR. When variables included in the VAR are non-stationary,
the model can be reparameterized as a vector error correction model (VECM). In this case,
after the solution of the identification problems of cointegrating vectors, the information
set available at t − 1 contains n lagged endogenous variables and r cointegrating vectors.

4. See the appendix for an example of this representation applied to a simple macroeconomic
model.

5. Expressing the solution of a DSGE as a VAR might also involve solving some noninvertibil-
ity problems of the matrix governing the simultaneous relation among variables originally
considered in the theoretical model. This problem is carefully discussed by Fabio Canova
in Chapter 2 of this volume.

6. Importantly, these features ought to be different from those under examination.
7. Some abuses of this practice are present in the literature; the most common one is to

compare the properties of filtered raw data with those of filtered model-generated data.
Filtering model-generated data is clearly hard to justify given that model-generated data
are stationary by their nature.
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17
Macroeconometric Modeling for Policy
Gunnar Bårdsen and Ragnar Nymoen

Abstract

The first part of this chapter sets out a coherent approach to dynamic macroeconometric model-
building; the second part demonstrates the approach through building and evaluating a small
econometric model; the final part demonstrates various usages of the model for policy.
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17.4.3 Aspects of optimal policy: the impact of model specification on optimal
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“I think it should be generally agreed that a model that does not generate
many properties of actual data cannot be claimed to have any ‘policy
implications’ ...” (Clive W.J. Granger (1992, p. 4))

17.1 Introduction

Depending upon its properties, a macroeconometric model can highlight vari-
ous aspects of economic policy: communication of policy actions, structuring
of economic debate, policy simulations, testing of competing theories, forecast-
ing, stress testing, etc. From an academic perspective, the desired properties of
a model are also legion, but the end result will depend upon the preferences
for coherence along dimensions such as: theory foundations (microfounda-
tions/aggregation/general/partial), econometric methods (Bayesian/frequentist),
and model properties (size/robustness/nonlinearities/transparency/dynamics).

Satisfying the different needs and desires of policy making could therefore entail a
collection of models. Such a model collection could include more or less calibrated
theory models, structural and Bayesian vector autoregressions (VARs), simultane-
ous equation models (SEMs), and dynamic stochastic general equilibrium (DSGE)
models (see Pagan, 2003, for an overview). A choice of model(s) for the event at
hand could then be made on the basis of strengths and weaknesses of the various
candidates. The inherent weaknesses of the main candidates are well known. If one
were to follow Ambrose Bierce, and write a “Devil’s Dictionary” of macroecono-
metrics, some of the entries could read: Structural VARs: how to estimate models
inefficiently; SEMs: estimates of something; Bayesian estimation: see calibration;
DSGEs: sophisticated naivety. Therefore, a choice of model(s) for the event at hand
should be made on the basis of strengths and weaknesses of the various model
classes.

The profession’s collective understanding of the causes and possible remedies
of model limitations, both in forecasting and in policy analysis, has improved
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markedly over the last decades. The Lucas (1976) critique and the Clements and
Hendry (1999) analysis of the sources of forecast failures with macroeconometric
models are milestones in that process. Interestingly, the methodological ramifica-
tions of those two critiques are different: the Lucas critique has led to the current
dominance of representative agent-based macroeconomic models. Hendry (2001a),
on the other hand, concludes that macroeconometric systems of equations, despite
their vulnerability to regime shifts, but because of their potential adaptability to
breaks, remain the best long-run hope for progress in macroeconomic forecasting.
Since monetary policy can be a function of the forecasts, as with inflation forecast
targeting (cf. Svensson, 1997), the choice of forecasting model(s) is important.

The class of macroeconometric models we present in this chapter requires coher-
ent use of economic theory, data, and mathematical and statistical techniques.
This approach, of course, has a long history in econometrics, going back to Tinber-
gen’s first macroeconometric models, and has enjoyed renewed interest in the last
decades. Recent advances in econometrics and in computing mean that we now
have much better tools than, say, 20 years ago for developing and maintaining
macroeconometric models in this tradition (see Garratt et al., 2006, for one recent
approach).

Regardless of underlying theory, a common aim of macroeconometric model-
building is identification of invariant relationships, if they exist at all (see
Haavelmo, 1944, Ch. II). A well-specified macroeconometric model is a good
starting point for such a quest, since it provides an ideal test-bed for further over-
identifying restrictions of microeconomic behavior. Such a strategy is, in particular,
relevant to the challenges from behavioral economics, with implications for time
inconsistency (hyperbolic discounting), changing expectations (learning), asset
bubbles (herd behavior), etc.

Macroeconomic models of the representative agent, intertemporal optimizing,
type are said to have structural interpretations, with “deep structural parameters”
that are immune to the Lucas critique. However, when the model’s purpose is to
describe observed macroeconomic behavior, its structural properties are concep-
tually different. Heuristically, we take a model to have structural properties if it
is invariant and interpretable (see Hendry, 1995b). Structural properties are nev-
ertheless relative to the history, nature and significance of regime shifts. There is
always the possibility that the next shocks to the system may incur real damage
to a model with hitherto high structural content. The approach implies that a
model’s structural properties must be evaluated along several dimensions, and the
following seem particularly relevant:

1. theoretical interpretation
2. ability to explain the data
3. ability to explain earlier findings, i.e., encompass the properties of existing

models
4. robustness to new evidence in the form of updated/extended data series and

new economic analysis suggesting, e.g., new explanatory variables.
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Economic analysis (1) is an indispensable guidance in the formulation of econo-
metric models. Clear interpretation also helps communication of ideas and results
among researchers, in addition to structuring debate. However, since economic
theories are necessarily simplifying abstractions, translations of theoretical to
econometric models must lead to problems such as biased coefficient estimates,
wrong signs of coefficients, and/or residual properties that hamper valid inference.
The main distinction seems to be between seeing theory as representing the correct
specification (leaving parameter estimation to the econometrician) and viewing
theory as a guideline in the specification of a model which also accommodates insti-
tutional features, attempts to accommodate heterogeneity among agents, addresses
the temporal aspects for the dataset, etc. (see Granger, 1999).

Arguments against “largely empirical models” include sample dependency, lack
of invariance, unnecessary complexity (in order to fit the data) and chance findings
of “significant” variables. Yet the ability to characterize the data (2) remains an
essential quality of useful econometric models and, given the absence of theoretical
truisms, the implications of economic theory have to be confronted with the data
in a systematic way.

We use cointegration methods on linearized and discretized dynamic systems
to estimate theory-interpretable and identified steady-state relationships, imposed
in the form of equilibrium correction models. We also make use of an automated
model selection approach to sift out the best theory-interpretable and identified
dynamic specifications. Hoover and Perez (1999), Hendry and Krolzig (1999) and
Doornik (2008) have shown that automated model selection methods have a good
chance of finding a close approximation to the data-generating process (DGP), and
that the danger of overfitting is, in fact, (surprisingly) low. Conversely, acting as
if the specification is given by theory alone, with only coefficient estimates left
to “fill in,” is bound to result in the econometric problems noted above, and to a
lower degree of relevance of the model for the economy it claims to represent.

In order to develop a scientific basis for policy modeling in macroeconometrics,
a new model’s capability of encompassing earlier findings should be regarded as
an important aspect of structure (3). There are many reasons for the coexistence
of contested models for the same phenomena, some of which may be viewed as
inherent (limited number of data observations, measurement problems, contro-
versy about operational definitions, new theories). Nevertheless, the continued
use of corroborative evaluation (i.e., only addressing goodness-of-fit or predicting
the stylized fact correctly) may inadvertently hinder the accumulation of evidence.
One suspects that there would be huge gains from a breakthrough in new standards
of methodology and practice for the profession.

Ideally, empirical modeling is a cumulative process whereby models continu-
ously become overtaken by new and more useful ones. By “useful,” we mean
models that are relatively invariant to changes elsewhere in the economy, i.e., they
contain autonomous parameters (see Haavelmo, 1944; Johansen, 1977; Aldrich,
1989; Hendry, 1995b). Models with a high degree of autonomy represent struc-
tural properties: they remain invariant to changes in economic policies and other
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shocks to the economic system, as implied by (4) above.1 However, structure is
partial in two respects. First, autonomy is a relative concept, since an econometric
model cannot be invariant to every imaginable shock. Second, all parameters of an
econometric model are unlikely to be equally invariant, and only the parameters
with the highest degree of autonomy represent structure. Since elements of struc-
ture typically will be grafted into equations that also contain parameters with a
lower degree of autonomy, forecast breakdown may frequently be caused by shifts
in these non-structural parameters.2

A strategy for model evaluation that puts emphasis on forecast behavior, without
a careful evaluation of the causes of forecast failure ex post, runs a risk of discarding
models that actually contain important elements of structure. Hence, e.g., Doornik
and Hendry (1997) and Clements and Hendry (1999, Ch. 3) show that the main
source of forecast failure is location shifts (shifts in means of levels, changes, etc.),
and not shifts in such coefficients that are of primary concern in policy analysis, i.e.,
the derivative coefficients of behavioral equations. Therefore, a rough spell in terms
of forecasting performance does not, by itself, disqualify the model’s relevance for
policy analysis. If the cause of the forecast failure is location shifts, they can be
attenuated ex post by intercept correction or additional differencing “within” the
model (Hendry, 2004). With these add-ons, and once the break period is in the
information set, the model forecast will adapt to the new regime and improve
again. Failure to adapt to the new regime may then be a sign of a deeper source
of forecast failure, in the form of non-constant derivative coefficients, which also
undermines the models relevance for policy analysis.3 In general, without adap-
tive measures, models with high structural content will lose regularly to simple
forecasting rules (see, e.g., Clements and Hendry, 1999; Eitrheim, Husebø and
Nymoen, 1999). Hence different models may be optimal for forecasting and for
policy analysis, which fits well with the often heard recommendations of a suite
of monetary policy models.

Structural breaks are always a main concern in econometric modeling but, like
any hypothesis or theory, the only way to judge the significance of a hypothesized
break is by confrontation with the evidence in the data. Moreover, given that an
encompassing approach is followed, a forecast failure is not only destructive but
represents potential for improvement, if successful respecification follows in its
wake (cf. Eitrheim, Jansen and Nymoen, 2002). In the same vein, one important
intellectual rationale for DSGE models is the Lucas critique. If the Lucas critique
holds, any “reduced-form” equation in a model is liable to be unstable over the
historical sample, due to regime shifts and policy changes that have taken place
in the economy. Hence, according to the Lucas critique, parameter instability may
be endemic in any model that fails to obey the rational expectations hypothesis
(REH), with the possible consequence that without integration of the REH, the
model is unsuited for policy analysis. However, as stated by Ericsson and Irons
(1995), the Lucas critique is only a possibility theorem, not a truism, and the
implications of the Lucas critique can be tested (see also, e.g., Hendry, 1988; Engle
and Hendry, 1993; Ericsson and Hendry, 1999). In Bårdsen, Jansen and Nymoen
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(2003) we have shown, by extensive testing of a previous version of our model,
that the Lucas critique has little force for our system of equations. This finding is
consistent with the international evidence presented in Ericsson and Irons (1995)
and Stanley (2000). On the basis of these results, our model is more consistent with
agents adopting robust forecasting rules, in line with the analysis and suggestions of
Hendry and Mizon (2000). In that case the Lucas critique does not apply, although
the degree of autonomy remains an issue that needs to be evaluated as fully as
possible, given the information available to us.

This chapter documents the approach we use to dynamic macroeconometric
model-building and policy analysis. To make the analysis applied, the approach
is illustrated through a model of the Norwegian economy. Our approach is, of
course, applicable to other economies, but we know more about market character-
istics, policy changes and institutional development in Norway than in any other
country or economic area. And since such factual knowledge is an indispensable
and complementary aid to formal econometrics in the building of an empirical
model, we prefer to work with the economy we have most knowledge about.

The rest of the chapter consists of three main sections. Section 17.2 sets out a
coherent approach to dynamic macroeconometric model building; section 17.3
demonstrates the approach through building and evaluating a small econometric
model; section 17.4 demonstrates various tools for policy analysis using the model.
Section 17.2 involves three steps in going from general to specific. The first step is
theoretical and establishes a framework for linearizing and discretizing an approx-
imation to a general theory model with constant steady-state values. The second
step is to estimate, and solve, the steady-state model in the form of overidentifying
cointegrating relationships and common trends. The third step is to identify and
estimate the dynamic structure of the model.

Section 17.3 illustrates the approach set out in section 17.2 by the construction
and evaluation of a small open-economy model.

Section 17.4 demonstrates five tools for policy using the model: tractability, sim-
ulations of policy responses, optimal policy considerations, theory evaluation, and
forecasting. The first use is illustrated by introducing a method to construct stylized
versions of complex models. The second use is illustrated by evaluating responses
to monetary policy shocks. The third use shows how important model specification
is for the derivation of optimal monetary policy. The fourth use is illustrated by
testing the New Keynesian Phillips curve. The final use evaluates possible sources
affecting forecast performance.

17.2 A modeling framework

As the values of all major economic variables are announced regularly, it is easy to
believe that a local approximation to a DGP can exist. It is an interesting philo-
sophical question whether the true generating mechanism can (ever) be completely
described, but the usefulness of the concept does not hinge on the answer to that
question. The main point is that once the real economic world, in its enormous,
ever-changing complexity, is accepted as a premise for macroeconomic modeling,
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it follows that the main problems of macroeconometrics are model specification
and model evaluation, rather than finding the best estimator under the assumption
that the model is identical to the DGP.

The local DGP is changing with the evolution of the real world economy–through
technical progress, changing patterns of family composition and behavior, and
political reform. Sometimes society evolves gradually and econometric models are
then usually able to adapt to the underlying real-life changes, i.e., without any
noticeable loss in “usefulness.” Often, however, society evolves so quickly that
estimated economic relationships break down and cease to be of any aid in under-
standing the current macroeconomy and in forecasting its development even over
the first couple of years. In this case we speak of a changing local approximation in
the form of a regime shift in the generating process, and a structural break in the
econometric model. Since the complexity of the true macroeconomic mechanism,
and the regime shifts also contained in the mechanism, lead us to conclude that
any model will at best be a local approximation to the DGP, judging the quality of,
and choosing between, the approximations becomes central.

In the rest of this section we present our approach to finding a local approxima-
tion useful for policy.4

17.2.1 Linearization

Consider a very simple example of an economic model in the form of the
differential equation:

dy
dt
= f (y, x), x = x(t), (17.1)

in which a constant input x = x̄ induces y(t) to approach asymptotically a con-
stant state ȳ as t → ∞. Clearly x̄ and ȳ satisfy f (ȳ, x̄) = 0. For example, standard
DSGE models usually take this form, with the models having deterministic steady-
state values. The usual procedure then is to expand the differential (or difference)
equation about this steady-state solution (see, e.g., Campbell, 1994; Uhlig, 1999).
Employing this procedure yields:

f (y, x) = f (ȳ, x̄)+ ∂f (ȳ, x̄)
∂y

(y − ȳ)+ ∂f (ȳ, x̄)
∂x

(x− x̄)+ R, (17.2)

where:

R = 1
2!

(
∂

2f (ξ , η)

∂x2
(x− x̄)2 + 2

∂
2f (ξ , η)
∂x∂y

(x− x̄)(y − ȳ)+ ∂
2f (ξ , η)

∂y2
(y − ȳ)2

)
,

and (ξ , η) is a point such that ξ lies between y and ȳ while η lies between x and x̄.
Since ȳ and x̄ are the steady-state values for y and x respectively, then the expression
for f (y, x) takes the simplified form:

f (y, x) = a (y − ȳ)+ δ (x− x̄)+ R, (17.3)

where a = ∂f (ȳ, x̄)/∂y and δ = ∂f (ȳ, x̄)/∂x are constants.
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If f is a linear function of y and x then R = 0 and so:

f (x, y) = a
(

y − ȳ + δ

a
(x− x̄)

)
= a (y − bx− c), (17.4)

in which b = −δ/a and c = ȳ + (δ/a)x̄.

17.2.2 Discretization

For a macroeconometric model, a discrete representation is usually practical, and it
can be worked out as follows. Let t1, t2, · · · , tk, · · · be a sequence of times spaced
h apart and let y1, y2, · · · , yk, · · · be the values of a continuous real variable y(t)
at these times. The backward-difference operator % is defined by the rule:

%yk = yk − yk−1, k ≥ 1. (17.5)

By observing that yk = (1 − %)
0 yk and yk−1 = (1 − %)

1 yk, the value of y at the
intermediate point t = tk − sh (0 < s < 1) may be estimated by the interpolation
formula:

y(tk − sh) = yk−s = (1−%)
s yk, s ∈ [0, 1]. (17.6)

When s is not an integer, (1−%)
s should be interpreted as the power series in the

backward-difference operator obtained from the binomial expansion of (1 − x)s.
This is an infinite series of differences. Specifically:

(1−%)
s = 1− s%− s(1− s)

2! %2 − s(1− s)(2− s)
3! %3 − · · ·. (17.7)

With this preliminary background, the differential equation:

dy
dt
= f (y, x), x = x(t), (17.8)

may be integrated over the time interval [tk, tk+1] to obtain:

y(tk+1)− y(tk) = %yk+1 =
∫ tk+1

tk
f (y(t), x(t)) dt , (17.9)

in which the integral on the right-hand side of this equation is to be estimated by
using the backward-difference interpolation formula given in equation (17.7). The
substitution t = tk + sh is now used to change the variable of this integral from
t ∈ [tk, tk+1] to s ∈ [0, 1]. The details of this change of variable are:

∫ tk+1

tk
f (y(t), x(t)) dt =

∫ 1

0
f (y(tk + sh), x(tk + sh)) (h ds) = h

∫ 1

0
fk+s ds,
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where fk+s = f (y(tk+sh), x(tk+sh)). The value of this latter integral is now computed
using the interpolation formula based on (17.7). Thus:∫ 1

0
fk+s ds =

∫ 1

0
(1−%)

−s fk ds

=
∫ 1

0

(
fk + s%fk +

s(1+ s)
2! %2fk +

s(1+ s)(2+ s)
3! %3fk + · · ·

)
ds

= fk +
1
2
%fk +

5
12
%2fk +

3
8
%3fk + · · · .

The final form for the backward-difference approximation to the solution of this
differential equation is therefore

%yk+1 = hfk +
h
2
%fk +

5h
12
%2fk +

3h
8
%3fk + · · · . (17.10)

17.2.3 Equilibrium correction representations and cointegration

The discretization scheme (17.10) applied to the linearized model (17.3), with k =
t − 1 and h = 1, gives the equilibrium correction model, EqCM, representation

%yt = a (y − bx− c)t−1 + Rt−1 +
1
2

a(%yt−1 − b%xt−1)+
1
2
%Rt−1

+ 5
12

a(%2yt−1 − b%2xt−1)+
5

12
%2Rt−1 + · · · .

At this point two comments are in place. The first is that an econometric specifi-
cation will mean a truncation of the polynomial both in terms of powers and lags.
Diagnostic testing is therefore imperative to ensure a valid local approximation,
and indeed to test that the statistical model is valid (see Hendry, 1995a, p. 15.1;
Spanos, 2008). The second is that the framework allows for flexibility regarding
the form of the steady state. The standard approach in DSGE modeling has been
to filter the data, typically using the so-called Hodrick–Prescott filter, to remove
trends, hopefully achieving stationary series with constant means, and then work
with the filtered series. Another approach, popular at present, is to impose the
theoretical balanced growth path of the model on the data, expressing all series
in terms of growth corrected values. However, an alternative approach is to esti-
mate the balanced growth paths in terms of finding the number of common trends
and identifying and estimating cointegrating relationships. The present approach
allows for all of these interpretations.

To illustrate the approach in terms of cointegration, consider real wages to be
influenced by productivity, as in many theories.5 Assume that the logs of the real
wage rwt and productivity zt are each integrated of order one, but found to be
cointegrated, so:

rwt ∼ I (1) , �rwt ∼ I (0) (17.11)

zt ∼ I (1) , �zt ∼ I (0) (17.12)

(rw− βz)t ∼ I (0) . (17.13)
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Letting yt ≡ (rw− βz)t and xt ≡ �zt then gives:

�rwt = −ac+a(rw−βz)t−1+
a
2
% (rw− βz)t−1+β�zt −ab%zt−1−

ab
2

�
2zt−1+· · ·.

17.2.4 System representations

The approach easily generalizes to a system representation. For ease of exposition,
we illustrate the two-dimensional case for which y1 → ȳ1 and y2 → ȳ2 as t →∞.
Expanding with respect to y1 and y2 about their steady-state values yields:

⎡⎢⎣ f1
(
y1, y2

)
f2
(
y1, y2

)
⎤⎥⎦ =

⎡⎢⎣ f1
(
ȳ1, ȳ2

)
f2
(
ȳ1, ȳ2

)
⎤⎥⎦+

⎡⎢⎢⎣
∂f1(ȳ1, ȳ2)

∂y1

∂f1(ȳ1, ȳ2)

∂y2
∂f2(ȳ1, ȳ2)

∂y1

∂f2(ȳ1, ȳ2)

∂y2

⎤⎥⎥⎦
⎡⎢⎣ y1 − ȳ1

y2 − ȳ2

⎤⎥⎦+
⎡⎢⎣ R1

R2

⎤⎥⎦ ,

where [R1, R2]′ denotes the vector:

1
2!

⎡⎢⎢⎢⎢⎣
∂

2f1(ζ , η)

∂y2
1

(
y1 − ȳ1

)2 + 2
∂

2f1(ζ , η)
∂y1∂y2

(
y1 − ȳ1

) (
y2 − ȳ2

)+ ∂
2f1 (ζ , η)

∂y2
2

(
y2 − ȳ2

)2
∂

2f2 (ζ , η)

∂y2
1

(
y1 − ȳ1

)2 + 2
∂

2f2 (ζ , η)
∂y1∂y2

(
y1 − ȳ1

) (
y2 − ȳ2

)+ ∂
2f2 (ζ , η)

∂y2
2

(
y2 − ȳ2

)2
⎤⎥⎥⎥⎥⎦ ,

so that: ⎡⎢⎣ ∂y1
∂t
∂y2
∂t

⎤⎥⎦ =
⎡⎢⎣ α11 α12

α21 α22

⎤⎥⎦
⎡⎢⎣ y1 − ȳ1

y2 − ȳ2

⎤⎥⎦+
⎡⎢⎣ R1

R2

⎤⎥⎦ .

The backward-difference approximation to the solution of the system of differential
equations gives the system in EqCM form (see Bårdsen, Hurn and Lindsay, 2004,
for details), namely:

[
%y1
%y2

]
t

=
[
−α11c1
−α22c2

]
+
[

α11 0
0 α22

][
y1 − δ1y2
y2 − δ2y1

]
t−1

+
⎡⎢⎣ R1

R2

⎤⎥⎦
t−1

+ 1
2

[
α11 α12
α21 α22

][
�y1
�y2

]
t−1

+
⎡⎢⎣ �R1

�R2

⎤⎥⎦
t−1

+ 5
12

[
α11 α12
α21 α22

] [
�

2y1

�
2y2

]
t−1

+

⎡⎢⎢⎣
�

2R1

�
2R2

⎤⎥⎥⎦
t−1

+ 3
8

[
α11 α12
α21 α22

][
�

3y1

�
3y2

]
t−1

+

⎡⎢⎢⎣
�

3R1

�
3R2

⎤⎥⎥⎦
t−1

+ · · · ,
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with:

c1 =
(
ȳ1 + δ1ȳ2

)
, δ1 =

α12
α11

c2 =
(
ȳ2 + δ2ȳ1

)
, δ2 =

α21
α22

.

As before, the variables y1 and y2 can be considered as stationary functions of
non-stationary components – cointegration is imposed upon the system. Consider
the previous example, assuming linearity so Ri = 0, and ignoring higher-order
dynamics for ease of exposition:[

%y1
%y2

]
t

=
[
−α11c1
−α22c2

]
+
[

α11 0
0 α22

][
y1 − δ1y2
y2 − δ2y1

]
t−1[

%(rw− βz)

�
2z

]
t

=
[
−α11c1
−α22c2

]
+
[

α11 0
0 α22

][
(rw− βz)− δ1�z
�z − δ2(rw− βz)

]
t−1

,

or multiplied out:

%rwt = −α11c1 + α11(rw− βz)t−1 + β�zt − α12�zt−1

�zt = −α22

(
ȳ2 +

α21
α22

ȳ1

)
+ (α22 − 1

)
�zt−1 − α21(rw− βz)t−1.

If α21 = 0 and
∣∣α22 − 1

∣∣ < 1 the system simplifies to the familiar exposition of a
bivariate cointegrated system with z being weakly exogenous for β:

%rwt = −α11c1 + α11(rw− βz)t−1 + β�zt − α12�zt−1

�zt = −α22 z̄ + (α22 − 1
)
�zt−1,

where the common trend is a productivity trend.

17.2.5 From a discretized and linearized cointegrated VAR representation to
a dynamic SEM in three steps

We will keep this section brief, as comprehensive treatments can be found in many
places – e.g., Hendry (1995a), Johansen (1995, 2006), Juselius (2007), Garratt et al.
(2006), and Lütkepohl (2006) – and only make some comments on issues in each
step in the modelling process we believe merit further attention.

17.2.5.1 First step: the statistical system

Our starting point for identifying and building a macroeconometric model is to
find a linearized and discretized approximation as a data-coherent statistical system
representation in the form of a cointegrated VAR:

�yt = c+�yt−1 +
k∑

i=1

�t−i�yt−i + ut , (17.14)
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with independent Gaussian errors ut , as a basis for valid statistical inference about
economic theoretical hypotheses.

The purpose of the statistical model (17.14) is to provide the framework for
hypothesis testing, the inferential aspect of macroeconometric modeling. However,
it cannot be postulated directly, since the cointegrated VAR itself rests on assump-
tions. Hence, validation of the statistical model is an essential step: is a model
which is linear in the parameters flexible enough to describe the fluctuations of
the data? What about the assumed constancy of parameters, does it hold over the
sample that we have at hand? The assumption of Gaussian distributed error terms
also needs validation, since that assumption underlies the use of (17.14) for statis-
tical inference. The main intellectual rationale for the model validation aspect of
macroeconometrics is exactly that the assumptions of the statistical model requires
separate attention (Johansen, 2006; Spanos, 2006). In practice, one important step
in model validation is to make the hypothesized statistical model subject to a bat-
tery of misspecification tests using the ordinary least squares (OLS) residuals ût as
data.6

As pointed out by Garratt et al. (2006), the representation (17.14) does not pre-
clude forward-looking behavior in the underlying model, as rational expectations
models have backward-looking solutions. The coefficients of the solution will be
defined in specific ways though, and this entails restrictions on the VAR which
can be utilized for testing rational expectations (see Johansen and Swensen, 1999,
2004).

Even with a model which, for many practical purposes, is small scale, it is usually
too big to be formulated in “one go” within a cointegrated VAR framework. Hence,
model (17.14) is not interpretable as a rather high-dimensional VAR, with the
(incredible) long lags which would be needed to capture the complicated dynamic
interlinkages of a real economy. Instead, as explained in Bårdsen et al. (2003), our
operational procedure is to partition the (big) simultaneous distribution function
of markets and variables (prices, wages, output, interest rates, the exchange rate,
foreign prices, and unemployment, etc.) into a (much smaller) simultaneous model
of wage- and price-setting – the labor market – and several sub-models of the rest
of the macro-economy. The econometric rationale for specification and estimation
of single equations, or of markets, subject to exogeneity conditions, before joining
them up in a complete model, is discussed in Bårdsen, Jansen and Nymoen (2003)
and also in Bårdsen et al. (2005, Ch. 2).

17.2.5.2 Second step: the overidentified steady state

The second step of the model-building exercise will then be to identify the steady
state, by testing and imposing overidentifying restrictions on the cointegration
space:

�yt = c+ αβ
′
yt−1 +

k∑
i=1

�t−i�yt−i + ut ,

thereby identifying both the exogenous common trends, or permanent shocks,
and the steady state of the model.
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Even though there now exists a literature on identification of cointegration
vectors, it is worthwhile to reiterate that identification of cointegrating vectors
cannot be databased. Identifying restrictions have to be imposed a priori. It is there-
fore of crucial importance to have a specification of the economic model and its
derived steady-state before estimation. Otherwise we will not know what model
and hypotheses we are testing and, in particular, we could not be certain that it
was identifiable from the available dataset.

17.2.5.3 Third step: the dynamic SEM

The final step is to identify the dynamic structure:

A0�yt = A0c+ A0αβ
′
yt−1 +

k∑
i=1

A0�t−i�yt−i + A0ut ,

by testing and imposing overidentifying restrictions on the dynamic part –
including the forward-looking part – of the statistical system.

The estimated parameters and, therefore, the interpretation of the model dynam-
ics are dependent upon the dating of the steady-state solution. However, the steady-
state multipliers are not. The economic interpretations of the derived paths of
adjustment are not invariant to the identification of the dynamic part of the model,
whereas the steady-state parts of the model are (see Bårdsen and Fisher, 1993, 1999).

17.2.6 Example: the supply side of a medium-term macroeconomic model

One main focus of an empirical macro-model is always going to be the supply
side. We end the section on methodology by giving an extended example of the
theoretical and econometric specification of a labor market model that we later
include in a macro-model, intended for medium-term analysis and forecasting.
The first step is the specification of the relevant economic theory to test. We next
develop the theoretical relationships into hypotheses about cointegration that can
be tested in a statistical model and identified as steady-state relationships, Steps
1 and 2 above. We also go through Step 3 in detail. Throughout the rest of the
chapter we let lower-case letters denote natural logarithms of the corresponding
upper-case variable names, so xt ≡ ln

(
Xt
)
.

17.2.6.1 Economic theory

A main advance in the modeling of labor markets rests on the perception that firms
and their workers are engaged in a partly cooperative and partly conflicting sharing
of the rents generated by the operation of the firm. In line with this assumption,
nominal wages are modeled in a game theoretic framework which fits the compar-
atively high level of centralization and coordination in Norwegian wage-setting
(see, e.g., Nymoen and Rødseth, 2003; Barkbu, Nymoen and Røed, 2003, for a
discussion of the degree of coordination).

The modeling of nominal wage-setting in a game theoretic framework is a theo-
retical advance with several implications. Linked with an assumption of monopo-
listically competitive firms, it represents an incomplete competition model of the
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supply side, which we refer to as ICM in the following (see Bårdsen et al., 2005,
Chs. 5 and 6). In applications, the gap between the formal relationships of the
theory and the empirical relationships that may be present in the data must be
closed. The modeling assumption about I(1)-ness introduced above is an impor-
tant part of the bridge between theory and data. This is because I(1)-ness allows
us to interpret the theoretical wage and price equations as hypothesized cointe-
gration relationships. From that premise, a dynamic model of the supply side in
equilibrium-correction form follows logically.

There is a number of specialized models of “non-competitive” wage-setting. Our
aim here is to represent the common features of these approaches by extending
the model in Nymoen and Rødseth (2003) with monopolistic competition among
firms.

We start with the assumption of a large number of firms, each facing downward-
sloping demand functions. The firms are price-setters and equate marginal revenue
to marginal costs. With labor being the only variable factor of production (and
constant returns to scale), we have the price-setting relationship:

Qi =
ElQY

ElQY − 1
Wi(1+ T1i)

Zi
,

where Zi = Yi/Ni is average labor productivity, Yi is output and Ni is labor input. Wi
is the wage rate in the firm, and T1i is a payroll tax rate. ElQY > 1 denotes the abso-
lute value of the elasticity of demand facing each firm i with respect to the firm’s
own price. In general, ElQY is a function of relative prices, which provides a ratio-
nale for the inclusion of, e.g., the real exchange rate in aggregate price equations.
However, it is a common simplification to assume that the elasticity is indepen-
dent of other firms prices and is identical for all firms. With constant returns
technology, aggregation is no problem, but for simplicity we assume that average
labor productivity is the same for all firms and that the aggregate price equation is
given by:

Q = ElQY

ElQY − 1
W(1+ T1)

Z
. (17.15)

The expression for real profits (�) is therefore

� = Y − W(1+ T1)
Q

N =
(

1− W(1+ T1)
Q

1
Z

)
Y .

We assume that the wage W is set in accordance with the principle of maximizing
the Nash product:

(V − V0)
�
�

1−�, (17.16)

where V denotes union utility and V0 denotes the fallback utility or reference
utility. The corresponding break-point utility for the firms has already been set to
zero in (17.16), but for unions the utility during a conflict (e.g., strike or work-to-
rule) is non-zero because of compensation from strike funds. Finally, � represents
the relative bargaining power of unions.
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Union utility depends on the consumer real wage of an unemployed worker
and the aggregate rate of unemployment, thus V

(W
P , U , Aν

)
where P denotes the

consumer price index.7 The partial derivative with respect to wages is positive,
and negative with respect to unemployment (V ′W > 0 and V ′U ≤ 0). Aν represents
other factors in union preferences. The fallback or reference utility of the union
depends on the overall real wage level and the rate of unemployment, hence V0 =
V0
(W̄

P , U
)

where W̄ is the average level of nominal wages, which is one of the
factors determining the size of strike funds. If the aggregate rate of unemployment
is high, strike funds may run low, in which case the partial derivative of V0 with
respect to U is negative (V ′0U < 0). However, there are other factors working in
the other direction, for example that the probability of entering a labor market
program, which gives laid-off workers higher utility than open unemployment, is
positively related to U .

With these specifications of utility and break-points, the Nash product, denoted
N , can be written as:

N =
{

V
(

W
P

, U , Aν

)
− V0

(
W̄
P

, U

)}� {(
1− W(1+ T1)

Q
1
Z

)
Y
}1−�

,

or:

N =
{

V

(
RW

Pq(1+ T1)
, U , Aν

)
− V0

(
W̄
P

, U

)}� {(
1− RW

1
Z

)
Y
}1−�

,

where RW = W(1+T1)/Q is the producer real wage, and Pq(1+T1) = P(1+T1)/Q
is the wedge between the consumer and producer real wage.

Note also that, unlike many expositions of the so-called “bargaining approach”
to wage modeling (e.g., Layard, Nickell and Jackman, 1991, Ch. 7), there is no
aggregate labor demand function – employment as a function of the real wage –
subsumed in the Nash product. In this we follow Hahn and Solow (1997, Ch.
5.3), who point out that bargaining is usually over the nominal wage and not over
employment.

The first-order condition for a maximum is given by NRW = 0, or:

�
V ′W

(
RW

Pq(1+T1) , U , Aν

)
V
(

RW
Pq(1+T1) , U , Aν

)
− V0

(
W̄
P , U

) = (1−�)

1
Z(

1− RW 1
Z

) . (17.17)

In a symmetric equilibrium, W = W̄ , leading to RW
Pq(1+T1) = W̄

P in equation (17.17).

The aggregate bargained real wage RWb is defined implicitly as:

RWb = F(Pq(1+ T1), Z, �, U), (17.18)

or, using the definition:

RWb ≡ Wb
(1+ T1)/Q,
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we obtain the solution for the bargained nominal wage:

Wb = Q
(1+ T1)

F(Pq(1+ T1), Z, �, U). (17.19)

Letting lower-case letters denote logs of variables, a log-linearization of (17.19)
gives:

wb = mw + qt +
(
1− δ12

) (
p− q

)+ δ13z − δ15u− δ16T1. (17.20)

0 ≤ δ12 ≤ 1, 0 < δ13 ≤ 1, δ15 ≥ 0, 0 ≤ δ16 ≤ 1.

The elasticity of the wedge variable (p − q) is (1 − δ12) in (17.20). In econometric
models of wage-setting in manufacturing, the hypothesis of δ12 = 1 is typically not
rejected, meaning that the wedge variable drops out and the bargained nominal
wage is linked one-to-one with the producer price q (see, e.g., Nymoen and Rød-
seth, 2003). However, at the aggregate level, a positive coefficient of the wedge is
typically reported. This may be due to measurement problems: since gross domestic
product (GDP) is an income variable, the price deflator q is not a good index of “pro-
ducer prices.” That said, the estimated importance of the wedge may also reflect
that the economy-wide average wage is influenced by the service sector, where
wage claims are linked to cost of living considerations, implying that (1 − δ12) is
different from zero.

Irrespective of the split between q and p, productivity z is found to be a main
determinant of the secular growth in wages in bargaining-based systems, so we
expect the elasticity δ13 to be close to one. The impact of the rate of unemployment
on the bargained wage is given by the elasticity−δ15 ≤ 0. Blanchflower and Oswald
(1994) provide evidence for the existence of the empirical law that the value of
−δ15 is 0.1, which is the slope coefficient of their wage curve. Other authors instead
emphasize that the slope of the wage-curve is likely to depend on the level of
aggregation and on institutional factors. For example, one influential view holds
that economies with a high level of coordination and centralization are expected to
be characterized by a higher responsiveness to unemployment (a higher−δ15) than
uncoordinated systems that give little incentive to solidarity in wage-bargaining
(Layard, Nickell and Jackman, 2005, Ch. 8). Finally, from the definition of the
wedge, one could set δ16 = δ12, but we keep δ16 as a separate coefficient to allow
for separate effects of the payroll tax on wages.

Equation (17.20) is a general proposition about the bargaining outcome and its
determinants, and can serve as a starting point for describing wage formation in any
sector or level of aggregation of the economy. In the following we regard equation
(17.20) as a model of the average wage in the total economy and, as explained
above, we therefore expect

(
1− δ12

)
> 0, meaning that there is a wedge effect in

the long-run wage equation.
Equation (17.15) already represents a price-setting rule based upon so-called

normal cost pricing. Upon linearization we have:

qf = mq + (w+ T1− z) , (17.21)
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where we use qf as a reminder that this is a theoretical equation for firms’ price-
setting.

17.2.6.2 Cointegration and long-run identification

At this point we show how the two theoretical relationships (17.20) and (17.21) can
be transformed into hypothesized relationships between observable time series. As
explained in section 17.2.3, our maintained modeling assumption is that the real
wage and productivity are I(1) series. The rate of unemployment is assumed to be
I(0), possibly after removal of deterministic shifts in the mean.

Using subscript t to indicate period t variables, equation (17.20) defines wb
t as an

I(1) variable. Next define:

ecmb
t = rwt − rwb

t ≡ wt −wb
t .

Under the null hypothesis that the theory is correct, the “bargained wage” wb
t co-

integrates with the actual wage, hence ecmb
t ∼ I (0), which is a testable hypothesis.

We can write the long-run wage equation following from bargaining theory as:

wt = mw + qt +
(
1− δ12

) (
pt − qt

)+ δ13zt − δ15ut − δ16T1t + ecmb
t . (17.22)

With reference to equation (17.21), a similar argument applies to price-setting. The
“firm-side” real wage can be defined as:

rwf
t ≡ wt + T1t − qf

t = −mq + zt ,

and the difference between the actual real wage and the real wage implied by
price-setting becomes:

ecmf
t = rwt − rwf

t = wt + T1t − qt − {−mq + zt }.
Hence, the implied long-run price-setting equation becomes:

qt = mq +
(
wt + T1t − zt

)− ecmf
t , (17.23)

where ecmf
t ∼ I (0) for the equation to be consistent with the modeling

assumptions.
The two cointegrating relationships (17.22) and (17.23) are not identified in gen-

eral, but in several cases of relevance, identification is unproblematic (see Bårdsen
et al., 2005, p. 81). Here we consider a case which is relevant for an aggregate model
of the supply side in an open economy. Equations (17.22) and (17.23) can then be
combined with a definition of the consumer price index pt ,

pt = (1− ζ ) qt + ζpit + ηT3t , 0 < ζ < 1, 0 < η ≤ 1, (17.24)

where the import price index pit naturally enters. The parameter ζ reflects the
openness of the economy.8 Also, the size of the parameter η will depend on how
much of the retail price basket is covered by the indirect tax-rate index T3t . By
substitution of (17.24) in (17.22), and of (17.23) in (17.24), the system can be
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specified in terms of wt and pt :

wt = mw +
{

1+ ζ
δ12

(1− ζ )

}
pt (17.25)

− δ12ζ

(1− ζ )
pit −

δ12η

(1− ζ )
T3t + δ13zt − δ15ut − δ16T1t + ecmb

t

pt = (1− ζ )mq + (1− ζ )
{
wt + T1t − zt

}+ ζpit + ηT3t − (1− ζ )ecmf
t . (17.26)

By simply viewing (17.25) and (17.26) as a pair of simultaneous equations, it is clear
that the system is unidentified in general. However, for the purpose of modeling the
aggregate economy, we choose the consumer price index pt as the representative
domestic price index by setting δ12 = 0. In this case, (17.26) is unaltered, while the
wage equation becomes:

wt = mw + pt + δ13zt − δ15ut − δ16T1t + ecmb
t . (17.27)

The long-run price equation (17.26) and the long-run wage equation (17.27) are
identified by the order condition.

17.2.6.3 VAR and identified equilibrium correction system

The third stage in the operationalization is the equilibrium-correction system,
where we follow Bårdsen and Fisher (1999). In brief, we allow wage growth
�wt to interact with current and past price inflation, changes in unemployment,
changes in tax rates, and previous deviations from the desired wage level consistent
with (17.27):

�wt − α12,0�qt = c1 + α11 (L)�wt + α12 (L)�qt + β12 (L)�zt

− β14 (L)�ut − β15 (L)�T1t (17.28)

− γ11ecmb
t−r + β18 (L)�pt + ε1t ,

where � is the difference operator, and the α1j (L) and β1j (L) are polynomials in
the lag operator L:

α1j(L) = α1j,1L+ · · · + α1j,(r−1)L
r−1, j = 1, 2,

β1j (L) = β1j,0 + β1j,1L+ · · · + β1j,(r−1)L
r−1, j = 2, 4, 5, 6.

The β-polynomials are defined so that they can contain contemporaneous effects.
The order r of the lag polynomials may, of course, vary between variables and is
to be determined empirically. This specification is a generalization of the typical
European wage curve, where the American version is derived by setting γ11 = 0
(see Blanchard and Katz, 1999).

Any increase in output above the optimal trend exerts a (lagged) positive pressure
on prices, measured by the output gapt , as in Phillips curve inflation models (see
Clarida, Gali and Gertler, 1999). In addition, product price inflation interacts with
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wage growth and productivity gains and with changes in the payroll tax rate, as
well as with corrections from an earlier period’s deviation from the equilibrium
price (as a consequence of, e.g., information lags; see Andersen, 1994, Ch. 6.3):

�qt − α21,0�wt = c2 + α22 (L)�qt + α21 (L)�wt + β21 (L) gapt

− β22 (L)�zt + β25 (L)�T1t − γ22ecmf
t−r + ε2t , (17.29)

where:

α2j(L) = α2j,1L+ · · · + α2j,(r−1)L
r−1, j = 1, 2,

β2j (L) = β2j,0 + β2j,1L · · · + β2j,(r−1)L
r−1, j = 1, 2, 5.

Solving equation (17.24) for �qt (i.e., the equation is differenced first), and then
substituting out in equations (17.28) and (17.29), the theoretical model condenses
to a wage–price model suitable for estimation and similar to the early equilibrium-
correction formulation of Sargan (1980):[

1 −a12,0
−a21,0 1

][
�w
�p

]
t

=
[

α11(L) −a12(L)
−a21 (L) α22(L)

][
�w
�p

]
t

+
⎡⎣ 0 β12 (L) −ζ

α12 (L)
1− ζ

−β14 (L) −β15 (L) −η
α12 (L)
1− ζ

b21 (L) −b22 (L) ζα22(L) 0 b25 (L) ηα22(L)

⎤⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

gap
�z
�pi
�u
�T1
�T3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
t

−
[

γ11 0
0 γ22

]
(17.30)

×
[

1 − (1+ ζd12
) −δ13 ζd12 δ15 δ16 ηd12

− (1− ζ ) 1 (1− ζ ) −ζ 0 − (1− ζ ) −η

]

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
p
z
pi
u
T1
T3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
t−r

+
[

e1
e2

]
t

,

where we have omitted the intercepts to save space, and have substituted the
equilibrium-correction terms using (17.25) and (17.26) above. The mapping from
the theoretical parameters in (17.28) and (17.29) to the coefficients of the model
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(17.30) is given by:

a12,0 =
α12,0

1− ζ
+ β18,0,

a21,0 = (1− ζ ) α21,0,

a12 (L) = α12 (L)
1− ζ

+ β18(L),

a21 (L) = (1− ζ ) α21 (L) , (17.31)

b2j (L) = (1− ζ ) β2j (L) , j = 1, 2, 5,

d12 =
δ12

1− ζ
,

e1 = ε1,

e2 = (1− ζ ) ε2.

The model (17.30) contains the different channels and sources of inflation dis-
cussed so far: imported inflation �pit , and several relevant domestic variables – the
output gap, and changes in the rate of unemployment, in productivity, and in tax
rates. Finally, the model includes deviations from the two cointegration equations
associated with wage-bargaining and price-setting, which have equilibrium-
correction coefficients γ11 and γ22 respectively. Consistency with assumed cointe-
gration implies that the joint hypothesis of γ11 = γ22 = 0 can be rejected.

17.2.6.4 Economic interpretation of the steady state

The dynamic model in (17.30) can be rewritten in terms of real wages
(
w− p

)
t

and real exchange rates
(
pi− p

)
t . Using a specification with first-order dynam-

ics, Bårdsen et al. (2005, Ch. 6) discuss several different aspects of this model.
Most importantly, the dynamic system is asymptotically stable under quite gen-
eral assumptions about the parameters, including, e.g., dynamic homogeneity in
the two equilibrium-correction equations. The steady state is conditional on any
given rate of unemployment, which amounts to saying that our core supply-side
model does not tie down an equilibrium rate of unemployment. Instead, there is a
stalemate in the dynamic “tug-of-war” between workers and firms that occurs for,
in principle, any given rate of unemployment (see Kolsrud and Nymoen, 1998;
Bårdsen and Nymoen, 2003, for proofs). Since there are no new unit roots implied
by the generalized dynamics in equation (17.30) above, asymptotic stability holds
also for this, extended, version of the model. We therefore have the following
important results: the dynamics of the supply side are asymptotically stable in the
usual sense that, if all stochastic shocks are switched off, then

(
pit − qt

)→ rexss(t),
and (wt + T1t − qt ) = wqss(t), where rexss(t) and wqss(t) represent deterministic
steady-state growth paths of the real exchange rate and the producer real wage.

Generally, the steady-state growth paths depend on the steady-state growth rate
of import prices, and of the mean of the logarithm of the rate of unemployment,
denoted uss, and the expected growth path of productivity z(t). However, under the
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condition that δ13 = 1, homogeneity of degree one with respect to productivity,
which we have seen is implied theoretically by assuming bargaining power on
the part of unions, z(t) has a zero coefficient in the expression for rexss, which
therefore is constant in the steady state. Moreover, assuming δ13 = 1, the implied
steady-state wage share, wqss(t) − z(t) = wsss, which is also a constant in steady
state.

With δ13 = 1, the implied steady-state inflation rate therefore follows immedi-
ately: since �(pit −qt ) = 0 in steady state, and �pt = (1− ζ )�qt + ζ�pit , domestic
inflation is equal to the constant steady-state rate of imported inflation:

�pt = �pit = π . (17.32)

The above argument implicitly assumes an exogenous and, for simplicity, constant,
nominal exchange rate. For the case of an endogenous nominal exchange rate, as
with a floating exchange rate regime, it might be noted that, since:

pit = vt + p∗t ,

where vt is the nominal exchange rate and the index of import prices in foreign
currency is denoted p∗t , the stability of inflation requires stability of �vt . This con-
dition can only be verified by the use of a more complete model representation of
the economy, which is what we do when we consider the steady state of a com-
plete econometric model in section 17.3.2 below. However, to anticipate events
slightly, the complete model that we document below meets the requirement in

the sense that �
2vt → 0 in the long run. But our results also indicate that π in

(17.32) is affected by the rate of change in the nominal exchange rate, which might
be non-zero in an asymptotically stable steady state.

The supply-side determined steady state has a wider relevance as well. For exam-
ple, what does the model say about the dictum that the existence of a steady-state
inflation rate requires that the rate of unemployment follows the law of the natu-
ral rate or non-accelerating inflation rate of unemployment (NAIRU)? The version
of this natural rate/NAIRU view of the supply side that fits most easily into our
framework is the one succinctly expressed by Layard, Nickell and Jackman (1994,
p. 18; emphasis added): “Only if the real wage (W/P) desired by wage-setters is the
same as that desired by price setters will inflation be stable. And, the variable that
brings about this consistency is the level of unemployment.” Translated to our concep-

tual framework, this view corresponds to setting ecmb
t = ecmf

t = 0 in (17.22) and
(17.23), with δ13 = 1, and solving for the rate of unemployment that reconciles
the two desired wage shares, call it uw:9

uw = mw +mq

−δ15
+ 1− δ12

−δ15
(p− q)+ 1− δ16

−δ15
T1,

which can be expressed in terms of the real exchange rate (p− pi), and the two tax
rates as:

uw = −(mw +mq)

δ15
+ 1− δ12

δ15(1− ζ )
ζ(p− pi)+ 1− δ12

δ15(1− ζ )
ηT3+ 1− δ16

−δ15
T1. (17.33)
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This is one equation in two endogenous variables, uw and the wedge (p− pi), so it
appears that there is a continuum of uw values depending on the size of the wedge,
in particular of the value of the real exchange rate. It is, however, customary to
assume that the equilibrium value of the wedge is determined by the requirement
that the current account is in balance in the long run. Having thus pinned down
the long-run wedge as a constant equilibrium real exchange rate (p− pi), it follows
that NAIRU uw is determined by (17.33). If the effect of the wedge on wage claims
is not really a long-run phenomenon, then δ12 = 1 and uw is uniquely determined
from (17.33), and there is no need for the extra condition about balanced trade in
the long run (see Layard, Nickell and Jackman, 2005, p. 33).

Compare this to the asymptotically stable equilibrium consisting of ut =
uss,�pt = π and wt + T1− qt − zt = wsss. Clearly, inflation is stable, even though
uss is determined “from the outside” and is not determined by the wage- and price-
setting equations of the model. Hence the (emphasized) second sentence in the
above quotation has been disproved: it is not necessary that uss corresponds to the
NAIRU uw in equation (17.33) for inflation to be stable with a well-defined value
in steady state.

Figure 17.1 illustrates the different equilibria. Wage-setting and price-setting
curves correspond to (deterministic versions) of equations (17.22) and (17.23). The
NAIRU uw is given by the intersection of the curves, but the steady-state rate of
unemployment uss may be lower than uw, the case shown in the graph, or higher.
The figure further indicates (by a •) that the steady-state wage share will reside at
a point on the line segment A–B: heuristically, this is a point where price-setters

Wage share

Price-setting

A

B

uss uuw

Wage-setting

Figure 17.1 Real wage and unemployment determination, NAIRU and the steady-state rate
of unemployment uss
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are trying to attain a lower real wage by nominal price increases, at the same time
as the wage bargain is delivering nominal wage increases that push the real wage
upwards.

Bårdsen et al. (2005, Ch. 6) show which restrictions on the parameters of the sys-
tem (17.30) are necessary for ut → uss = uw to be an implication, so that the NAIRU
corresponds to the stable steady state. In brief, the model must be restricted in such
a way that the nominal wage- and price-setting adjustment equations become two
conflicting dynamic equations for the real wage. Because of the openness of the
economy, this is not achieved by imposing dynamic homogeneity. What is required
is to purge the model (17.30) of all nominal rigidity, which seems to be unrealistic
on the basis of both macro- and micro-evidence.

We have seen that the Layard–Nickell version of the NAIRU concept corresponds
to a set of restrictions on the dynamic model of wage- and price-setting. The same is
true for the natural rate of unemployment associated with a vertical Phillips curve,
which still represents the baseline model for the analyses of monetary policy. This is
most easily seen by considering a version of (17.28) with first-order dynamics and
where we simplify the equation by setting the short-run effects of productivity,
unemployment and taxes equal to zero (β12 = β14 = β15 = 0). With first-order
dynamics we have:

�wt − α12,0�qt = c1 − γ11ecmb
t−1 + β18�pt + ε1t ,

and using (17.22) we can then write the wage equation as:

�wt = kw + α12,0�qt + β18�pt − μwut−1 (17.34)

− γ11(wt−1 − qt−1)+ γ11(1− δ12)(pt−1 − qt−1)+ γ11δ16T1t−1 + ε1t ,

where kw = c1+γ11mw, and the parameter μw is defined in accordance with Kolsrud
and Nymoen (1998) as:

μw = γ11δ13 when γ11 > 0 or μw = ϕ when γ11 = 0. (17.35)

The notation in (17.35) may seem cumbersome at first sight, but it is required to
secure internal consistency: note that if the nominal wage rate is adjusting towards
the long-run wage curve, γ11 > 0, the only logical value of ϕ in (17.35) is zero, since
ut−1 is already contained in the equation, with coefficient γ11δ15. Conversely, if
γ11 = 0 so the model of collective wage-bargaining fails, it is nevertheless possible
that there is a wage Phillips curve relationship consistent with the assumed I(0)-
ness of the rate of unemployment, hence μw = ϕ ≥ 0 in this case.

Subject to the restriction γ11 = 0, and assuming an asymptotically stable steady-

state inflation rate π , (17.34) can be solved for the Phillips curve NAIRU uphil:

uphil = kw
ϕ
+ (α12,0 + β18 − 1)

ϕ
π ,
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which becomes a natural rate of unemployment, independent of inflation subject
to dynamic homogeneity α12,0 + β18 = 1.

However, the claim that uphil
t represents an asymptotically stable solution must

be stated with some care. As shown in, e.g., Bårdsen and Nymoen (2003), γ11 = 0 is
a necessary but not a sufficient condition. The sufficient conditions include γ22 = 0
in addition to γ11 = 0 and, instead of equilibrium correction in wages and prices,
dynamic stability requires equilibrium correction in the unemployment equation
or in a functionally equivalent part of the model.

The result that the steady-state level of unemployment is generally undeter-
mined by the wage–price sub-model is a strong case for building larger systems
of equations, even if the main objective is to model inflation. Conversely, in
general, no inconsistencies or issues about overdetermination arise from enlarg-
ing the wage/price-setting equations with a separate equation for the rate of
unemployment, where demand-side variables may enter.

Looking ahead, in section 17.4.3 we show how the specification of the sup-
ply side, either as a Phillips curve model (PCM) or as an incomplete competition
model (ICM) given by equations (17.28) and (17.29) above, gains economic sig-
nificance though the implications of the chosen specification for optimal interest
rate-setting.

17.2.6.5 Implementation in the Norwegian aggregate model

We have implemented the above model of the supply side in our quarterly model
of the Norwegian economy, called the Norwegian aggregate model (NAM).10

The estimated versions of (17.30) are given in section 17.3.1, equations (17.38)
and (17.39). The equilibrium correction terms are defined consistently with the
two long-run equations (17.25) and (17.26). For example, δ12 = 0, ζ = 0.7,
δ15 = 0.1 and δ16 = 1 are taken as known parameters from the cointegration
analysis documented in Bårdsen et al. (2005, Ch. 9.2). With this parameteriza-
tion, the estimated equilibrium correction coefficients γ̂11 and γ̂22 are jointly and
individually significant (the t-values are 8.6 and 3.8).

The estimated short-run dynamics can also be interpreted in the light of the
theoretical model (17.30). For example, the estimated wage equation (17.39) shows
that â12(1) = 1, saying that dynamic homogeneity with respect to consumer price
is a valid restriction on wage dynamics in the wage equation. Identification of
the short-run wage price model is in terms of zero-restrictions on the GDP growth
variable in the �wt equation, and on the change in the rate of unemployment in
the �pt equation. There are overidentifying restrictions as well though.

17.3 Building a model for monetary policy analysis

Monetary policy now plays a dominant role in stabilization policy in general and
in managing inflation in particular. As economists have recognized for a long
time, inflation is a many-faceted phenomenon. In particular, in open economies,
a proper understanding of the inflation mechanism requires the construction of a
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model that separates the internal dynamics of the domestic wage price spiral from
the factors that impinge upon it from outside. The complexity of the real-world
inflation process also means that models which only include one or two dimen-
sions typically fail to characterize the data. Our starting point is therefore that, at
a minimum, foreign and domestic aspects of inflation have to be modeled jointly,
and that the inflationary impetus from the labor market, the battle of markups
between unions and monopolistic firms, needs to be represented in the model.

The last section ended with an example of the econometric specification of a
model of wage- and price-setting that defines an integral part of the NAM model.
Earlier versions of this model have been used to analyze the issues raised by the
introduction of model-based monetary policy in Norway (see Bårdsen, Jansen and
Nymoen, 2002, 2003; Bårdsen et al., 2005). NAM is in use for forecasting as part of
the Normetrics forecasting system.11 A designated version is operational for stress
testing by the financial stability division at the central bank of Norway.

17.3.1 The model and its transmission mechanisms

In the regime with inflation targeting, the policy instrument in the model is the
money market interest rate, symbolized by R in Figure 17.2 (and throughout this
chapter), with the estimated reaction function reported in equation (17.46).12

The qualitative transmission mechanisms of the model, from the perspective of
monetary policy analysis, are shown in Figure 17.2. The corresponding quantita-
tive approximate transmission mechanisms are easily worked out with the stylized

Exchange rate
v

Import price
pi

Policy rate
R

Wages (w)
and

prices (p)

Labor market Reaction functionDemand channelExchange rate
channel

Productivity
z

Unemployment
u

GDP
y

Credit
(l –p)

Loan and
bond rate
RL and RB

Figure 17.2 The transmission mechanisms in the model in Table 17.1
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Table 17.1 The econometric model NAM

The exchange rate

�vt = − 0.042
(0.012)

{(
v + p∗ − p

)− 0.12
[
(R− π)− (R∗ − π∗

)]− μv
}
t−1

− 0.0361
(0.00693)

ITt ×�(R− R∗)t − 0.036
(0.015)

�2pot−1 (17.36)

OLS, T = 1994 (2)− 2007 (2) = 56, σ̂ = 1.6%
FAR(1−4)(4, 44) = 1.60[0.19] FARCH(1−4) (4, 40) = 0.99 [0.42]
χ2

normality(2) = 0.07[0.97] Fx(6, 41) = 0.59[0.80],

where πt ≡ 100�4Pt
Pt−4

and π∗t ≡ 100
�4P∗t
P∗t−4

.

Import prices

�pit = − 0.431
(0.0806)

[(
pi − v − pi∗

)− 0.55
(
p− v − p∗

)− μpi

]
t−1

+ 0.429
(0.0718)

�vt + 1.07
(0.211)

�pi∗t (17.37)

OLS, T = 1990 (1)− 2007 (1) = 69, σ̂ = 1.1%
FAR(1−4)(4, 59) = 1.78[0.15] FARCH(1−4) (4, 55) = 0.99 [0.42]
χ2

Normality(2) = 0.81[0.67] FHet (9, 53) = 1.15[0.34].

Prices, wages and productivity

�pt = − 0.052
(0.006)

[
pt−3 − 0.7 (w− z)t−1 − 0.3pit−1 − μp

]− 0.06
(0.025)

�zt

+ 0.29
(0.049)

�pt−2 + 0.024
(0.011)

�pit + 0.059
(0.0038)

�pet + 0.042
(0.014)

�yt−1 (17.38)

�wt = − 0.065
(0.019)

[(
wt−1 − pt−2 − zt−1

)+ 0.1ut−4 − μw
]+ 0.56

(0.071)
�pt

+ 0.43�pt−1 − 0.039
(0.0053)

(
�2ut−1 +�ut−3

)
+ 0.73

(0.023)
�T1t (17.39)

�zt = − 0.64
(0.062)

[
zt−3 − 0.47

(
w− p

)
t−1 − 0.0029Trendt − 0.03ut−2 − μz

]
+ 0.24

(0.05)
�
(
w− p

)
t − 0.83

(0.036)
�2zt−1 (17.40)

FIML, T = 1979 (3)− 2007 (1) = 111, σ̂P = 0.3%, σ̂W = 0.6%,
σ̂Z = 1.2% Fvec,AR(1−5)(45, 250) = 1.07[0.36]
Fvec,Het (354, 224) = 1.11[0.20] χ2

vec,Normality(6) = 7.02[0.32].
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Table 17.1 (continued)

The rate of unemployment

�ut = − 0.078
(0.019)

{
ut−1 − 7.69�

(
w− p

)
t−2 − 0.05 [(RL − π)− 100�4y]t−2 − μu

}
+ 0.44

(0.071)
�ut−1 + 0.49

(0.059)
�ut−4 − 0.27

(0.074)
�ut−5 (17.41)

OLS, T = 1981 (1)− 2007 (2) = 106, σ̂ = 5.0%
FAR(1−5)(5, 92) = 1.04[0.25] FARCH(1−4) (4, 89) = 0.48 [0.75]
χ2

Normality(2) = 0.50[0.78] FHet (13, 83) = 1.44[0.16].

Interest rates

�RL,t = − 0.33
(0.024)

(
RL − 0.41RB − 0.76R− μRL

)
t−1

+ 0.58
(0.023)

�Rt (17.42)

�RB,t = − 0.17
(0.061)

(
RB − 0.43R− 0.57R∗B − μRB

)
t−1

+ 0.43
(0.039)

�Rt

+ 0.97
(0.067)

�R∗B,t (17.43)

FIML, T = 1993 (2)− 2006 (4) = 55, σ̂RL = 0.10, σ̂RB = 0.19
Fvec,AR(1−4)(16, 84) = 0.53[0.92] Fvec,Het (54, 90) = 1.30[0.13]
χ2

vec,Normality(4) = 4.61[0.33].

GDP output

�yt = − 0.21
(0.041)

[
yt−2 − 0.9gt−1 − 0.16

(
v + p∗ − p

)
t−1 + 0.06 (RL − π)t−1 − μy

]
− 0.74

(0.091)
�yt−1 + 0.42

(0.058)
�gt + 0.67

(0.11)
�
(
l − p

)
t−1 (17.44)

OLS, T = 1986 (2)− 2007 (1) = 104, σ̂ = 1.4%
FAR(1−5)(5, 72) = 2.08[0.07] FARCH(1−4) (4, 69) = 0.30 [0.87]
χ2

Normality(2) = 1.85[0.68] FHet (11, 65) = 1.21[0.30].

Credit

�
(
l − p

)
t = − 0.094

(0.022)

[(
l − p

)
t−3 − 2.65yt−4 + 0.04(RL, − iB)t−4 − μl−p

]
+ 0.15

(0.043)
�2yt−2 + 0.24

(0.087)
�2 (w− p

)
t (17.45)

OLS, T = 2000 (1)− 2007 (2) = 30, σ̂ = 0.7%
FAR(1−3)(3, 23) = 0.98[0.42] FARCH(1−3) (3, 20) = 0.32 [0.81]
χ2

Normality(2) = 4.73[0.09] FHet (6, 19) = 0.25[0.95].
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Table 17.1 (continued)

Money market interest rate

�Rt = − 0.27
(0.047)

[
Rt−1 − 5.6− 1.2

(
πCt − π̄C

)− (Ut−2 − Ū
)− 0.86

(
R∗t−2 − R̄∗

)]

+ 0.51
(0.088)

�2R∗t − 0.051
(0.013)

�2

(
V × P∗

P

)
t

(17.46)

OLS, T = 1999 (3)− 2007 (2) = 32, σ̂ = 0.19
FAR(1−3)(3, 22) = 1.62[0.21] FARCH(1−3) (3, 19) = 0.60 [0.62]
χ2

Normality(2) = 0.82[0.67] FHet (12, 12) = 0.59[0.81],

where πCt ≡ 100
�4PC,t
PC,t−4

; π̄U = 2.5 (the inflation target); Ū = 3.4 (average unemployment

rate); R̄∗ = 3.5 (average foreign short-run interest rate).

Note: Standard errors are reported in parentheses below the coefficients. See the appendix to this
chapter for information about the statistics reported below each equation.

model version in section 17.4.1. That simplified quantitative transmission mech-
anism is derived from the dynamic econometric model reported in Table 17.1.
We report the estimated macroeconometric relationships in equilibrium-correction
form, with cointegration coefficients imposed as known. The identities that com-
plete the NAM model are not reported. To save space, seasonals and other dummies
are also omitted from the equations in the table. The definitions of the variables
in the equations are given in the appendix to this chapter.

Consider, for example, the analysis conducted in section 17.4.2.1 of an increase
in the interest rate R. The immediate and direct effect is an appreciation of the
krone, measured as an increase in the exchange rate v, defined as krone per unit
foreign exchange. The multiplier is approximated in (17.60) as �vt

�Rt
≈ −0.04, while

the complete equation is reported in (17.36).13

The decrease in v will affect domestic prices and wage-setting through decreased
import prices pi, as reported in equations (17.37)–(17.39), which gives correspond-

ing approximate partial multipliers as �pit
�vt

≈ 0.9 and �pt
�pit

≈ 0.03 from (17.61)

and (17.62). Hence, at least for a period of time after the interest rate increase, the
exchange rate channel will provide inflation dampening following an increase in the
interest rate.

The exchange rate channel also affects wages and prices indirectly, through GDP
y and unemployment u, reported in equations (17.44) and (17.41), respectively. The
mechanisms are as follows. Due to nominal rigidity, the real exchange rate appre-
ciates together with the nominal rate, causing decreased competitiveness, lower
output, and higher unemployment. Together with the interaction with productiv-
ity z in equation (17.40), this constitutes the labor market channel. For example,
the approximate partial real-wage response from a shock to unemployment is
�(w−p)t

�ut
≈ −0.04 from (17.63).
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The interest rate effects on the real economy are first channeled through financial
markets, where an increase in the money market rate leads to adjustment of the
banks’ interest rate RL, and bond yield RB (see (17.42)–(17.43)). A rise in RL affects
GDP through an increased real interest rate. This is the demand channel found in
mainstream monetary policy models (see e.g., Ball, 1999). In the model, there is
also a second, credit channel, whereby interest rates affect output: when interest
rates are raised, the amount of available real credit is reduced, as documented in
(17.45), which has a negative effect on output. The average partial multiplier is

�yt
�(l−p)t

≈ 0.4, using (17.68).

The transmission mechanism pictured in Figure 17.2 shows that the model con-
tains both positive and negative feedback effects from wage and price adjustments,
to GDP and unemployment. Higher inflation means that the real interest rate con-
tinues to fall in the first periods after the initial cut in the nominal rate (positive
feedback). On the other hand, and again due to the raised rate of inflation, the real
exchange rate will start to stabilize (negative feedback).

In the figure, the focus is on the transmission mechanisms, which may give
the impression that the development of wages and prices is mainly “determined
by” monetary policy. This is not the case since, e.g., the important trend com-
ponent in wages is related to productivity growth through wage-bargaining – (see
(17.38)–(17.40)). Having analyzed the transmission mechanism of the model, we
now turn to the steady-state properties, pinned down by the overidentified coin-
tegrated steady-state relationships of the model, which are discussed in the next
section.

17.3.2 Steady state

Equations (17.47)–(17.56) represent the model’s implied long-run relationships.
Cointegrated combinations of non-stationary variables are on the left-hand sides
of the equations, while stationary variables are evaluated at their mean values on
the right. (

v + p∗ − p
)

t
= −0.12

[
(R− π)−

(
R∗ − π

∗)]+ μv (17.47)(
pi− v − pi∗

)
t
− 0.55

(
p− v − p∗

)
t
= μpi (17.48)

pt − 0.7(w− z)t − (1− 0.7) pit = μp (17.49)(
w− p− z

)
t = 0.1u+ μw (17.50)

zt − 0.47
(
w− p

)
t − 0.0029Trendt = 0.03u+ μz (17.51)

0 = u− 7.7�
(
w− p

)− 4.5
[
0.01 (RL− π)−�4y

]− μu (17.52)

0 = RL− 0.41RB− 0.76R− μRL (17.53)

0 = RB− 0.43R− 0.57RB∗ − μRB (17.54)

yt − 0.9gt − 0.16(v + p∗ − p)t = −0.06 (RL− π)+ μy (17.55)(
l − p

)
t − 2.65yt + 0.04(RL− RB)t = μl−p. (17.56)
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Equation (17.47) represents the equilibrium in the market for foreign exchange in
a floating exchange rate regime. The central bank’s foreign currency reserves are
exogenous in the floating exchange rate regime that we are modeling, and therefore
are not specified in (17.47). The nominal exchange rate v equilibrates the market
in each time period, specifically in the hypothetical steady state represented in
(17.47). The relationship follows from the definition of the risk premium, rp:

rpt = Rt − R∗t − (ve
t+1 − vt ),

where (ve
t+1−vt ) denotes expected depreciation. In real terms, using the definition

rex = v + p∗ − p, the relationship can be written as:(
ve
t+1 + p∗et+1 − pe

t+1

)
−
(
vt + p∗t − pt

)
=
[
Rt −

(
pe

t+1 − pt

)]
−
[
R∗t −

(
p∗et+1 − p∗t

)]
− rpt

�rexe
t =

(
Rt − π

e
t+1

)
−
(
R∗t − π

∗e
t+1

)
− rpt .

If expected depreciation of the real exchange rate is assumed to react to deviations
from the equilibrium real exchange rate rex,

�rexe
t = α

(
rext − rex

)
,

the solution for the realized real exchange rate becomes:

rext =
1
α

[(
Rt − π

e
t+1

)
−
(
R∗t − π

∗e
t+1

)]
+ rex− 1

α
rpt .

Finally, replacing expected with realized inflation and assuming a constant risk
premium, the steady-state real exchange rate relationship becomes:

rex = −.12
[
(R− π)−

(
R∗ − π

∗)]+ μv ,

The sign of α shows whether expectations are regressive (α < 0) or extrapolative
(α > 0), so in our case, since real interest rates are in percentage points, α is given
as:

1
α
= −.12× 100,

implying that expected depreciation is regressive with approximately 8% adjust-
ment per period:

�rexe
t = −0.083

(
rext − rex

)
.

The long-run pass-through from the exchange rate and foreign prices onto import
prices in domestic currency pi is represented by equation (17.48). It is a homo-
geneous function of v and foreign producer prices pi∗, but the import price also
increases if the real exchange rate (in terms of consumer prices) appreciates. This is
due to pricing-to-markets in import price-setting. Equation (17.48) is written in a
way that shows the long-run relationship between the two operational definitions
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of the real exchange rate. Hence, a 1% real appreciation in terms of consumer prices
is associated with only a 0.55% appreciation in terms of import prices.

The equations for wage formation and domestic price-setting, in steady-state
form, are given by (17.49)–(17.50) and have already been discussed in section
17.2.6. Equation (17.51) models output per hour of labor input, or productivity z.
Productivity is positively influenced by both the real wage

(
w− p

)
and the unem-

ployment rate u – corresponding to efficiency wage models – as well as neutral
technological progress approximated by a linear trend.

The steady-state rate of unemployment in equation (17.52) is seen to depend on
the growth of real wages (which is contant in the steady state), and the difference
between the real interest rate and the real GDP growth rate (see also Hendry, 2001b),
which can potentially change, and will then induce a change in the long-run mean
of the rate of unemployment.

Equations (17.53)–(17.56) represent the steady-state relationships for the market
interest rates for loans RL and bonds RB, (17.53) and (17.54), followed by the
equations for GDP (17.55) and domestic credit (17.56). Government expenditure is
seen to be important in the GDP equation, but aggegate demand is also influenced
by the market for foreign exchange through the real exchange rate (v + p∗ − p)
(dubbed rex above) and the domestic real interest rate. According to equations
(17.55) and (17.56), secular growth in domestic real credit is conditioned by the
growth of the real economy, not the other way around, but an exogenous drop in
credit supply (i.e., reduced μl−p) will harm GDP growth in the short run.

From the set of long-run relationships, it is straightforward to derive the steady
state of the model. Differentiation of (17.47) gives inflation as:

�p = �p∗ +�v, (17.57)

and steady-state wage growth is then:

�w = �p∗ +�z +�v, (17.58)

while import inflation follows from the price equation (17.49) and becomes:

�pi = �p∗ +�v. (17.59)

Note that these relationships represent the same qualitative conclusion that we
obtained from analysis of the theoretical supply-side model; compare equation
(17.32), e.g., which is therefore seen to generalize to the full set of economic steady
state relationships.

In light of the above, it also becomes clear that the economic long-run rela-
tionship (17.48) represents no separate restriction on the long-run relationship
between growth rates, as it is a relationship between the marginal means of the
two real exchange rates. The rest of the model can be solved for the steady-state
rate of productivity, and for the steady-state unemployment level using (17.58),
(17.51) and (17.52). Finally, the GDP growth rate and rate of growth in credit then
follow from (17.47) and (17.56).
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The above steady-state properties are derived for an exogenous policy interest rate
R. The nature of the solution is not changed if we instead specify either an estimated
interest rate reaction function on the basis of the data, or a response function
based on theories of optimal policy rules. But the behavior of the dynamics will be
affected, and the policy analysis and the level of predicted long-run inflation will
depend on how the interest rate is modeled.

We agree with Hendry and Mizon (2000) that there are reasons for being prag-
matic about how the policy instrument is “treated” in a macroeconometric model.
For some purposes it is relevant to treat the instrument as exogenous, like in the
analysis of the steady state (this sub-section) and its stability (next sub-section).
That analysis will answer whether there is a fundamental tendency of dynamic
instability in the model that instrument use will have to counteract in order to
avoid the economy taking an unstable course or, conversely, whether there is suffi-
cient stability represented by the modeled relationships. In that case the challenges
to instrument setting are more linked to timing and to meeting a specific inflation
target than to “securing” overall nominal or real dynamic stability.

In the following sections we will use both the open and closed versions of the
NAM model with respect to the policy instrument. In the next section, and the first
section on policy use (section 17.4.2.1), we will use the open model with exogenous
Rt . Later (e.g., when evaluating tracking performance in section 17.4.2.2), we will
use a version with an econometrically modeled interest rate reaction function,
which is documented in Table 17.1. In section 17.4.3, to discuss optimal policy we
will use a version with a theoretically derived interest rate response function.

17.3.3 Stability of the steady state

In an important paper, Frisch (1936) anticipated the day when it would become
common among economists to define (and measure) “normal” or natural values of
economic variables by the values of the variables in a stationary state. The steady-
state defined by the long-run model above corresponds to such natural values of
the model’s endogenous variables. But it is impractical to derive all the “natural
values” using algebra, even in such a simple system as ours. Moreover, the question
about the stability of the steady state, e.g., whether the steady state is globally
asymptotically stable – or perhaps stability is only a saddle-path property – can
only be addressed by numerical simulation of the dynamic system of equations.

We therefore follow Frisch’s suggestion and simulate the dynamic NAM model.
Figure 17.3 shows the “natural values” for inflation (�pt above), the rate of unem-
ployment, wage inflation, GDP growth, growth in import prices and the rate of
currency depreciation. The first solution period is 2007(4) and the last solution
period is 2035(4). The simulation period is chosen to be so long because we want to
get a clear impression about whether these variables approach constant (“natural”)
values or not, and whether the effect of initial conditions die out, as they should
if the solution is globally asymptotically stable. The simulation is stochastic. The
solid lines represent the mean of the 1,000 replications, and the 95% prediction
intervals represented by the distance between the two dashed lines accommodate
only residual uncertainty, not coefficient uncertainty.
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Figure 17.3 Stochastic dynamic simulation of NAM for the period 2007(4)–2035(4)
The money market interest rate is kept constant at the 2007(3) level for the length of the simulation period.
The distance between the dotted lines indicates 95% prediction intervals.

In order to match the theoretical steady state above as closely as possible, the
solution in Figure 17.3 is based on a constant domestic money market interest rate
(Rt = R2007(3)). The exogenous I(1) variables have also been given constant growth
rates for the length of the simulation period, e.g., foreign inflation is fixed at 2%.
The impression is clearly that NAM has an asymptotically stable steady state, even
under the assumption of a constant interest rate (the money market is in equilib-
rium by an endogenous money supply in the counterfactual “regime” defined by
the constancy of the interest rate). The annual rate of inflation is seen to stabilize at
a level just above 2.5%, and the natural rate of unemployment (in the Frisch sense)
appears to be 3%. Clearly, in this scenario an inflation rate of 2.5% is attainable
with very moderate instrument use. The seasonality of unemployment, modeled
by dummies, is clearly visible and represents no problem in terms of stability.

17.4 Macroeconometric models as tools for policy analysis

In this last section we discuss several aspects of model usage that are of relevance
for policy analysis. We begin with a practical problem, namely that congruent
modeling, or a high degree of “data coherence” to cite the influential Pagan (2003)
report on monetary policy modeling, gives rise to dynamic specifications that are
too complicated to be of any help when the task is to explain the basic policy
channels and lags between instruments and target. Nevertheless, section 17.4.1
shows that the need for simplicity in communication is not an argument for com-
promising empirical validity at the modeling stage, since it is always possible and
convenient to work from the empirically valid and complicated model to a sim-
ple and stylized model that contains the essential dynamics of the full model. In
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the other sub-sections, we use dynamic simulation, the main tool of model usage,
to elucidate the strength of the policy instrument, to check that the model solu-
tion generates the properties of the actual data, and whether simulation over a
long forecast horizon gives the steady state we expect from the theoretical analysis
above. We also discuss optimal policy response, forecast properties, and strategies
to reduce the damage that structural breaks have on forecasts from equilibrium
correction models. Finally in this section, we raise the more fundamental ques-
tion of testing non-nested hypotheses about the supply-side of the economy; our
example will be the New Keynesian Phillips curve against the model of wage and
price adjustment that has been presented above.

17.4.1 Tractability: stylized representations

There is a marked difference between the intricate and complex dynamics often
found in empirical models – at least if they model the data – and the very simplified
dynamics typically found in theoretical models. The purpose of this section is to
enhance the understanding of the properties of a model through the use of stylized
representations. A dynamic model, e.g.:

�yt = 2− 0.4�yt−1 − 0.6�yt−2

+ 0.2�xt − 0.5�xt−1 + 3�xt−2 − 1�xt−3 − 0.5
(
yt−3 − 4xt−4

)+ vt ,

can be approximated by a stylized model with simplified dynamics, in this example:

�yt = 1+ 0.85�xt − 0.25
(
y − 4x

)
t−1.

This is achieved by using the mean of the dynamics of the variables.14

In the same way as above, we let lower cases of the variables denote natural

logarithms, so �zt ≈
Zt−Zt−1

Zt−1
= gzt

. If we assume that, on average, the growth
rates are constant – the variables could be “random walks with drift” – the expected
values of the growth rates are constants:

E�yt = gy∀t
E�xt = gx∀t .

If the variables also are cointegrated, the expectation of the linear combination in
the equilibrium correction term is also constant, so:

E
(
yt−3 − 4xt−4

) = E
(
yt−1 − 4xt−1

) = μ∀t .
Under these assumptions, the mean dynamics of the model becomes:

E�yt = 2− 0.4E�yt−1 − 0.6E�yt−2

+ 0.2E�xt − 0.5E�xt−1 + 3E�xt−2 − 1E�xt−3

− 0.5E
(
yt−3 − 4xt−4

)+ Evt

gy (1+ 0.4+ 0.6) = 2+ (0.2− 0.5+ 3− 1) gx − 0.5μ
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gy =
2
2
+ 1.7

2
gx −

0.5
2

μ

gy = 1+ 0.85gx − 0.25μ.

We can therefore write the mean-approximated, or stylized, dynamic model as:

�yt = 1+ 0.85�xt − 0.25
(
y − 4x

)
t−1.

To illustrate, the dynamic behavior of the model and its mean approximation
are shown in Figure 17.4. The upper panel shows the dynamic, or period, responses
in yt to a unit change in xt−i. The lower panel shows the cumulative, or interim,
response. The graphs illustrate how the cyclical behavior – due to complex roots –
is averaged out in the stylized representation.

3

Dynamic multipliers

Cumulative (interim) multipliers

Full model Simplifed model

2

1

0

–1

4

0 5 10 15 20

3

2

1

0

0 5 10 15 20

Full model Simplifed model

Figure 17.4 The dynamic responses of the example model and its mean approximation

Note that all that is done is to exploit so-called growth coefficients (see Patterson
and Ryding, 1984; Patterson, 1987). The steady-state growth:

gy = 4gx
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implies the steady-state mean μ:

(4− 0.85) gx = 1− 0.25μ

μ = 4− 12.6gx,

so the steady-state relationship between the variables is:

yt =
(
4− 12.6gx

)+ 4xt ,

which will hold both for the complete as well as the stylized dynamic representa-
tion of the model.

Using this approach, the full econometric model reported in section 17.3.1 can
be given the following stylized representation:

�vt = −0.04�(R− R∗)t − 0.04
{ (

v + p∗ − p
)
− 0.12

×
[
(R− π)−

(
R∗ − π

∗)] }
t−1

(17.60)

�
(
pi− pi∗ − v

)
t
= −0.1�vt − 0.43

[(
pi− pi∗ − v

)
− 0.55

(
p− p∗ − v

)]
t−1

(17.61)

�pt = −0.09�zt + 0.03�pit + 0.08�pet + 0.06�yt

− 0.07 [p− 0.7(w− z)− 0.3pi]t−1 (17.62)

�
(
w− p

)
t = −0.04�ut + 0.73�T1t − 0.07

[(
w− p− z

)+ 0.1u
]
t−1 (17.63)

�zt = 0.09�
(
w− p

)
t

−0.24
[
z − 0.47

(
w− p

)− 0.003Trend − 0.03u
]
t−1 (17.64)

�ut = −0.23
{
u− 7.65�

(
w− p

)− 4.46
[
0.01

(
RL − π

)− 4�y
]}

t−1
(17.65)

�RL,t = 0.58�Rt −0.33
(
RL − 0.41RB − 0.76R

)
t−1 (17.66)

�
(
RB − R∗B

)
t
= 0.43�Rt −0.17

(
RB − 0.43R− 0.57R∗B

)
t−1

(17.67)

�yt = 0.16�gt +0.38�
(
l − p

)
t

−0.12
[
y − 0.9gt−1 − 0.16(v + p∗ − p)+ 0.06

(
RL − π

)]
t−1
(17.68)

�
(
l − p

)
t = 0.3�yt −0.09

[(
l − p

)− 2.65y + 0.04(RL, − RB)
]
t−1

, (17.69)

where the constants are omitted for ease of exposition. This representation repro-
duces the same steady state as the full model, but with stylized dynamics. The
averaged transmission mechanisms can be traced through the interrelationships of
the mean dynamic effects of shocks to the model – in contrast to the steady-state
effects described above (see the discussion in section 17.3.1 for an example).
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Figure 17.5 Dynamic multipliers from a permanent increase in the money market interest
rate of 100 basis points, 2007(1)–2012(4)
The multipliers are shown as deviations from the baseline simulation in Figure 17.3. The distance between
the two dotted lines represents the 95% confidence intervals.

17.4.2 Shock analysis: dynamic simulations

It seems obvious that a model for policy analysis should be empirically adequate
to a high degree, and that care must be taken not to compromise this property for
other desirable properties. However, in the same way as stability and invariance,
“data fit” is a relative concept. Models that are outperformed in terms of fit might
still be useful for policy analyses because they are highly relevant for the purpose,
as noted by, e.g., Pesaran and Smith (1985). This sub-section will discuss relative
model adequacy – also compared to optimal monetary policy.

17.4.2.1 How strong is the policy instrument?

As a background to policy analysis it is important to obtain a quantitative view
of the transmission mechanisms, specifically to see whether the policy instrument
has a sizeable effect on the variables that are subject to central bank targeting (in
formal or more informal ways). The open version of the model, with exogenous
interest rate (Rt ), is then relevant, since among the parameters of the model are
the dynamic multipliers of the endogenous variables with respect to the policy
instrument.

Since the main channel of interest rate transmission is through the exchange rate,
output and the level of unemployment, the interest rate is actually quite effective
in counteracting demand shocks. However, shocks on the supply side, e.g., in
wage-setting (such as permanently increased wage claims), or in foreign inflation,
can be more difficult to curb by anything but huge increases in the interest rate.
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Hence, stabilization of inflation after a supply shock may represent a formidable
challenge to monetary policy.

The recent monetary history of Norway has demonstrated the relevance of this
analysis: since mid 2003, core inflation rate has been consistently below the target
of 2.5%, for long periods less than 1%, despite determined interest rate cuts in
2003, and no interest rate increases before July 2005, and then only gradually and
in small steps.

The interest rate multiplier on inflation is shown in panel (a) of Figure 17.5. Panel
(f) shows that the effect first goes through the exchange rate channel: the impact
multiplier is a 3% appreciation, and in steady state there is an appreciation of
1.2%, thus illustrating equation (17.57). Panel (e) shows that import price growth is
affected in the same way as the exchange rate (see equation (17.59)), but the impact
effect is smaller. Panels (b), (c) and (d) show the labor market and demand channels.
Wage growth is reduced, as predicted by (17.58), leaving real wage growth unaf-
fected in steady state, as this is determined by productivity growth. Unemployment
increases, since real interest rates increase, while negative GDP growth follows from
increasing real interest rates and appreciation of the real exchange rate.

17.4.2.2 Fitting the facts

In this section we document how well the econometric model NAM explains the
evolution of important endogenous variables over the 17-quarter period 2003(3)–
2007(3).

The solutions are conditional upon the actual values of the non-modeled
variables.15 Experience has shown that particularly important explanatory vari-
ables are foreign interest rates (R∗ and R∗B) and consumer (p∗) and producer prices
(pi∗). Domestic government expenditure (g) and electricity prices (pe) are also very
important for the overall fit of the model. Finally, the oil price (in $US) is a highly
relevant explanatory variable, mainly through the market for foreign exchange.

The interest rate has been the instrument of monetary policy during the solu-
tion period. We therefore use the (more) closed version of the model, where the
domestic money market interest rate is estimated as a function of the core inflation
gap and the unemployment rate gap in equation (17.46).

Figure 17.6 shows that NAM generates the features of the macroeconomic devel-
opment. Inflation in panel (a), the rate of unemployment in panel (b), GDP
growth in panel (d), and the money market interest rate in panel (g) are very
well explained by the model solutions. The graph of actual and simulated nominal
currency depreciation in panel (i) shows that movements in the exchange rate are
also well explained, brought about by the interest rate differential and equilibrium
correction with respect to the real exchange rate – which is shown in panel (f).

17.4.2.3 Shock analysis with dynamic multipliers

Next, we investigate how the economy, according to the model, is likely to respond
to shocks. We use the same model version as in section 17.4.2.2. Amongst the many
shocks of interest to a small open economy, we here consider a negative foreign
price shock. The deflationary 5% shock occurs in 2007(1), and Figure 17.7, panels
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Figure 17.6 Dynamic simulation of NAM 2003(1)–2007(1)
Actual values are indicated by solid lines, and model solution by dashed lines. The distance between the
two dotted lines represents 95% prediction intervals. The units on all the vertical axes are percentage
points, and time is along the horizontal axes.

(a)–(f), reports the dynamic multipliers for inflation, wage increases, the rate of
unemployment, GDP growth, the increases in the import price index, and the rate
of currency depreciation. Since all variables in the graph are measured in percentage
points, the multipliers shown are absolute deviations from the baseline. In the same
way as in Figure 17.5, parameter uncertainties are indicated by the dotted lines,
representing 95% confidence intervals.

Since it is a temporary shock to foreign inflation, there is no reason to expect a
permanently lower rate of domestic inflation. Panels (a) and (c) of Figure 17.7 con-
firm that presumption, but also show that the initial multipliers of price and wage
inflation are negative and significant. Part of the adjustment to a lower nominal
path of the economy involves a higher unemployment rate and lower GDP growth
(cf. panels (b) and (d)), which are explained by the initial appreciation of the real
exchange rate. The nominal depreciation in panel (f), due to a lower domestic inter-
est rate (not shown), is not enough to offset the loss of competitiveness, initiated
by the deflationary price shock.

The nominal rigidities in the model, which transform the nominal shock into
a change in the real exchange rate, are an important property in explaining the
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Figure 17.7 Dynamic multipliers from a permanent reduction in exogenous (foreign) prices
by 5%, 2007(1)–2012(4)
The distance between the two dotted lines represent the 95% confidence intervals. The units on the vertical
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multipliers. The rigidities are not due to “incredibly long” adjustment lags in price-
and wage-setting: domestic inflation is seen to return to its baseline path after two
and a half years. Instead, there is a second wave of effects due to the interaction
between product and labor markets. Hence the experiment demonstrates rather
well the important theoretical point made in section 17.2.6.4, namely that the
steady-state inflation rate does not imply a unique equilibrium rate of unemploy-
ment, since the rate of inflation reaches its steady state long before the multipliers
of the rate of unemployment have died out.

17.4.3 Aspects of optimal policy: the impact of model specification on
optimal monetary policy

As noted above, the version of NAM with an econometrically modeled interest
rate makes no claims of representing optimal interest rate-setting under inflation
targeting or optimal policy response to a shock. Instead, the multipliers of the
last paragraph should be interpreted as counterfactuals: they show the response
that would occur if the interest rate reacted as if it followed the econometrically
estimated interest rate equation.

However, in a recent paper, Akram and Nymoen (2008) show how optimal mone-
tary policy can be implemented in NAM, and how the predicted economic outcome
depends on the specification of the supply side of the model. For that purpose, they
replace the econometrically modeled interest rate equation with a theoretically
derived interest rate rule due to Akram (2007):

Rt+m = R0 + (1− *H )
βε

(1− φ)
εt + *H (Rt+m−1 − R0), m = 0, 1, 2, . . . , H . (17.70)
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This rule defines an interest rate path corresponding to a specific policy horizon H .
The response coefficient βε,H ≡ (1−*H )

βε

(1−φ)
determines by how much the interest

rate must deviate initially from the neutral rate R0 to counteract the inflationary
effects of a shock εt . A high value of the smoothing parameter *H can be asso-
ciated with a strategy of gradualism in interest rate-setting. Thus two preference
parameters βε,H and *H depend on the policy horizon, H . The last parameter in
the theoretical interest rate equation is φ, which represents the (objective) degree
of persistence in the inflation shock.

In addition to the preferences about policy horizon and gradualism captured
by (17.70), the optimal interest rate response is influenced by the user’s choice
of macroeconomic model. Akram and Nymoen (2008) focus on the labor market
channel, since this part of the transmission mechanism has been the focus of
most model controversy. In one model version, used to derive optimal policy, the
incumbent model of the supply side, with equilibrium correction in both wage-
and price-setting, is used. As explained in section 17.2.6, this model is called the
incomplete model of wage- and price-setting and is referred to as ICM in Figure
17.8. The two other versions are the model with wage and price Phillips curves,
PCM in the figure, and a version with a vertical Phillips curve, PCMr in the figure.
As noted in section 17.2.6.4, among these three specifications, it is the PCMr that
represents the consensus view in modern monetary economics.

Akram and Nymoen show that econometric encompassing tests favor the ICM
model of the supply side, but also that the PCM and the PCMr appear to be well
specified on their own terms, e.g., the residual properties of the two Phillips curve
models do not signal any problems. Hence there is a question about whether the
outcome of the encompassing test has any practical (or “economic”) significance,
or whether this test of model adequacy has only an academic interest. The analysis
suggests that the econometric test result contains valuable information.

Consider, e.g., Figure 17.8, which presents the economic performance of (opti-
mal and sub-optimal) policies employed in response to the supply shock. The left
column of the figure shows that there is a trade-off between price and output sta-
bilization for different ranges of policy horizons. Specifically, in the case of ICM
and PCM there is a trade-off in the range of 0–8 quarters. Policy horizons that are
longer than 8 quarters appear inefficient as both price and output stabilization can
be improved by shortening the policy horizon. The opposite is the case for PCMr. In
this case, the trade-off curve is associated with policy horizons that are longer than
6 quarters, while policy horizons shorter than 6 seem inefficient. In the right-hand
column of the figure, it transpires that the three models recommend substantially
different policy horizons. Even though the efficiency frontiers for ICM and PCM
are defined by almost the same policy horizon, the optimal horizon is 3 quarters
conditional on ICM, but 6 quarters in the case of PCM. In the case of PCMr the
policy horizon is 11 quarters.

Based on the above and several other simulation experiments, Akram and
Nymoen (2008) find that econometric differences bear heavily on (model-based)
policy recommendations and are thus not merely of academic interest. Their anal-
ysis quite strongly suggests that differences in model specifications and even in
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Figure 17.8 Economic performance and optimal policy suggested by three specifications of
the supply side in the face of a supply shock
Left column: trade-offs between standard deviations of inflation gap, σinf , and output gap, σgap (horizontal
axis) associated with different (policy) horizon-specific rules in response to the demand shock. The trade-
offs are plotted for rules associated with policy horizons (H) in the range of 0–12 quarters. The trade-offs
associated with different horizons follow each other, where the one for H = 0 is indicated. Right column:
values of the relative loss function, denoted �L (in %), at the different policy horizons (horizontal axis)
(Akram and Nymoen, 2008).

parameter values across models can lead to widely different policy implications.
Interestingly, it appears that imposing a set of parameter restrictions may have
stronger influence on policy implications than choosing a different functional form
of the model. Monetary policy based on a model that turns out to be an invalid
characterization of the economy and its transmission mechanism may lead to sub-
stantial losses in terms of economic performance, even when policy is guided by
gradualism, e.g., in the form of a long policy horizon.

17.4.4 Theory evaluation: the New Keynesian Phillips curve

Macroeconomics is an evolving science. New hypotheses and theories are put for-
ward, sometimes with far-reaching consequences, for policy, teaching and, of
course, also for model-building. A macroeconomic model project that lasts for
some time is therefore bound to face the need to adapt to new theoretical develop-
ments. However, new ideas in macroeconomics are usually partial, and can claim
superiority with respect to existing ones only by replacing old ceteris paribus clauses
by new ones. In a macroeconometric modeling context it therefore makes sense
to test the new theories before they are implemented. If the model is in opera-
tional use, say for policy recommendations, this step may be as much of a virtue
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as a necessity, since unverified changes in policy response and forecasting may
critically damage beliefs in the relevance of model analysis.

In this section we discuss some approaches to how the model of the supply side
presented in section 17.2.6 can be tested against a new and important development
represented by the New Keynesian Phillips curve.

As shown by Bårdsen et al. (2005, Chs. 4–6), three important and much used
models of inflation and unemployment are consistent with the view that wages
and prices are equilibrium correcting I(1) variables, while the rate of unemploy-
ment is I(0). They are the incomplete competition model in equilibrium correction
form, the standard open economy wage Phillips curve, and the wage Phillips curve
with homogeneity restrictions; in other words, ICM, PCM and PCMr of section
17.4.3. Qua equilibrium correction models, these theories can readily be identified
as special cases of a VAR.

Cointegration is thus a common feature of the three models. They can be identi-
fied by their different theories about the main adjustment mechanisms at work. In
the case of the ICM, wages equilibrium correct with respect to deviations from the
wage level predicted by the theoretical bargaining model. In the case of the PCM,
by definition, wages do not equilibrium correct with respect to lagged wages, so
in this model equilibrium correction has to be indirect and via the reaction of the
rate of unemployment (see Bårdsen and Nymoen, 2008). In section 17.4.3 these
properties were shown to be relevant for the assessment of different supply-side
models for policy analysis.

We will show below that the same insight also applies to the New Keynesian
Phillips curve, meaning that its equilibrium correction implications can be tested
against the ICM or (any version) of the conventional Phillips curves. However, we
first give a brief summary of the current empirical status of the New Keynesian
Phillips curve.

17.4.4.1 The New Keynesian Phillips curve

The New Keynesian Phillips curve, hereafter NKPC, has become regarded by many
as the new standard model of the supply side in the macro-models used for mone-
tary policy analysis. This position is due to its theoretical underpinnings, laid out
in Clarida, Gali and Gertler (1999), and to the supportive empirical results in the
studies of Gali and Gertler (1999) (henceforth GG) on US data, and Gali, Gertler
and López-Salido (henceforth GGL) (2001) on euro-area data.

The hybrid NKPC is given as:

πt = af

≥0
Et [πt+1] + ab

≥0
πt−1 + b≥0

st , (17.71)

where πt is the rate of inflation, Et
[
πt+1

]
is expected inflation one period ahead

and st is a time series of firms’ real marginal costs. The “pure” NKPC is (17.71) with

ab = 0, and represents the case where all firms (that are aggregated over) form ratio-
nal expectations. Both the pure and hybrid forms are usually presented as “exact,”
i.e., without an error term. When Et [πt+1] is replaced by πt+1 for estimation, a
moving average error term is implied. This has motivated “robust” estimation with,
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e.g., pre-whitening switched on in generalized method of moments (GMM), and
leading papers downplay the relevance of congruency for the evaluation of the
NKPC.

After assessing some of the critiques that have been directed towards the NKPC,
Gali, Gertler and López-Salido (2005) assert that the NKPC, in particular the domi-
nance of forward-looking behavior, is robust to the choice of estimation procedure
and to possible specification bias. They conclude that the following three results
are proven characteristics of NKPC for all datasets:

1. The two null hypotheses af = 0 and ab = 0 are rejected both individually and
jointly.

2. The coefficient on expected inflation exceeds the coefficient on lagged inflation

substantially. The hypothesis of af + ab = 1 is typically not rejected at conven-
tional levels of significance, although the estimated sum is usually a little less
than one numerically.

3. When real marginal costs are proxied by the log of the wage share, the coeffi-
cient b is positive and significantly different from zero at conventional levels of
significance.

As mentioned, critics of the NKPC have challenged the robustness of all three, but
with different emphases and from different perspectives. The inference procedures
and estimation techniques used by GG and GGL (2001) have been criticized by
Rudd and Whelan (2005, 2007) and others, but GGL (2005) show that their initial
Results 1 and 2 remain robust to these objections.

When it comes to Result 3, GGL (2005) overlook that several researchers have
been unable to confirm their view that the wage share is a robust explanatory
variable in the NKPC. Bårdsen, Jansen and Nymoen (2004) showed that the sig-
nificance of the wage share in the GGL (2001) model is fragile, as it depends on
the exact implementation of the GMM estimation method used, thus refuting that
Result 3 is a robust feature of NKPC estimated on euro-area data.

Fanelli (2008), using a vector autoregressive regression model on the euro-area
dataset, finds that the NKPC is a poor explanatory model. On US data, Mavroeidis
(2006) has shown that real marginal costs appears to be an irrelevant determinant
of inflation, confirming the view in Fuhrer (2006) about the difficulty of obtaining
a sizeable coefficient on the forcing variable in the US NKPC. Already the studies
cited represent evidence that refutes the claim that Result 3 is robust. Instead it is
to be expected that, depending on the operational definition of real marginal costs,
the estimation method and the sample, the numerical and statistical significance
of b will vary across different studies.

Of course, Result 3 is just as important as Results 1 and 2 for the status of the
NKPC as an adequate model, so if that part of the model is non-structural, it might
be that that Results 1 and 2 have another explanation than the intended, which is
that there is a good match between the NKPC and the true inflation process. Bård-
sen, Jansen and Nymoen (2004) (euro-area) and Bjørnstad and Nymoen (2008)
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(OECD panel data) demonstrated that the significance of af can be explained by a
linear combination of better forcing variables which reside among the overiden-
tifying instruments. Their presence is revealed by the significance of the Sargan
(1964) specification test. Importantly, the re-specified models in the two studies
lend themselves directly to interpretation either as conventional Phillips curves, or
as an equilibrium-correction price equation consistent with the theory of monop-
olistic competition in the product market and a certain element of coordination in
wage-bargaining (see Sargan, 1980; Nymoen, 1991; Bårdsen et al., 2005, Chs. 4–6).
Hence, the NKPC fails to parsimoniously encompass these models.

17.4.4.2 The equilibrium correction implications of the NKPC

The original NKPC makes no reference to open economy issues. Batini, Jackson
and Nickell (2005) have shown that the main theoretical content of the NKPC

generalizes, but that consistent estimation of the parameters af , ab and b requires
that the model is augmented by variables which explain inflation in the open
economy case. Hence, the open economy NKPC is:

�pt = af

≥0
�pe

t+1 + ab

≥0
�pt−1 + b≥0

st + c xt , (17.72)

where xt , in most cases a vector, contains the open-economy variables, and c
denotes the corresponding coefficient vector. The change in the real import price,
�(pit −pt ) in our notation, is the single most important open economy augmenta-
tion of the NKPC. The results in Batini, Jackson and Nickell are, broadly speaking,
in line with GG’s and GGL’s Results 1–3 above, but, as noted, those properties
are not robust when tested against the existing UK model in Bårdsen, Fisher and
Nymoen (1998).

We follow GG and measure st by the log of the labor share:

st = ulct − qt , (17.73)

where ulc denotes unit labor costs (in logs) and q is the log of the price level on
domestic goods and services, compare section 17.2.6. Next, define the aggregate
price level as:

pt = ζqt + (1− ζ ) pit , (17.74)

with (1− ζ ) as the import share. If we solve for qt , insert in (17.73) and rewrite, we
obtain the following equation for the wage share:

st = −
1
γ

[
pt−1 − γ ulct−1 − (1− γ ) pit−1

]+�ulct −
1
γ
�pt +

1− γ

γ
�pit . (17.75)

We can then rewrite the open economy NKPC as:

�pt =
af(

1+ b
γ

)�pe
t+1 +

ab(
1+ b

γ

)�pt−1 −
b(

γ + b
) [pt−1 − γ ulct−1 − (1− γ ) pit−1

]
+ γ b(

γ + b
)�ulct +

b (1− γ )(
γ + b

) �pit +
γ c(

γ + b
) xt ,
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or:

�pt = α
f
�pe

t+1 + α
b
�pt−1 + β(ulct−1 − pt−1)− β (1− γ ) (ulct−1 − pit−1) (17.76)

+ βγ �ulct + β (1− γ )�pit + ψxt ,

where we have defined α
f , αb, β and ψ as new coefficients for simplification.

Equation (17.76) brings out that the NKPC implies an equilibrium-correction
price equation which is very similar to the “incumbent” model in NAM (cf.
equation (17.30) in section 17.2.6). However, there are two notable differences.
First and foremost, the forward-looking term �pe

t+1 with an expected high coeffi-

cient α
f . The incumbent model implicitly restricts this coefficient to zero. Second,

in the NKPC, there are parameter restrictions on the coefficients of the follow-
ing variables: �ulct , �pit ,

(
ulct−1 − pt−1

)
and

(
ulct−1 − pit−1

)
; in fact, they are

functions of the underlying parameters β and γ .
It follows that, for the purpose of testing the NKPC, we can start with an

equilibrium correction model with a lead in the inflation term:

�pt = α
f
�pe

t+1 + α
b
�pt−1 + β1(ulct−1 − pt−1)+ β2(ulct−1 − pit−1) (17.77)

+ β3�ulct + β4�pit + ψxt ,

and test the following hypotheses: Ha
0 : αf = 0, Hb

0 : β3 = β1+β2 and Hc
0: β4 = −β2.

Rejection of Ha
0 together with non-rejection of Hb

0 and Hc
0 constitute evidence that

support the NKPC, while non-rejection of Ha
0 is telling evidence against the NKPC.

As noted above, NKPC models are usually specified with the rate of change in the
real import price as one of the elements in xt . Equation (17.77) is consistent with

that interpretation, the only caveat applies to β4 and Hb
0 , since β4 = −β2 no longer

follows logically from the NKPC. This is because β4 is a composite parameter also
when the NKPC is the valid model.

17.4.4.3 Testing the equilibrium-correction implications of the NKPC

Consider the hybrid NKPC of the form (17.72) where we allow for two lags of
inflation as well as three deterministic seasonals. This is because NAM makes use
of seasonally unadjusted quarterly data. The wage share variable st is treated as
an endogenous variable, but we also include electricity prices (�pet ) and import
prices (�pit ) in the xt vector of exogenous variables. As already noted, inflation is
measured by the consumer price index. Instrumental variable (IV) estimation gives:

�pt = 0.3659
(0.107)

�pt+1 + 0.04122
(0.0228)

st + 0.08759
(0.0772)

�pt−1

+ 0.2676
(0.0653)

�pt−2 + 0.06385
(0.00597)

�pet + 0.04024
(0.0169)

�pit

+constant and seasonals
IV, T = 111 (1979(3) - 2007(1))

χ
2
S (9) = 11.664[0.2329].

(17.78)

The results shows a significant coefficient on the forward term of the same mag-
nitude as the sum of the coefficients on the two lagged inflation rates. The wage
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share st has the correct positive sign and is significant at the 10% level. By and
large, these results are in line with the typical NKPC Results 1–3 discussed above.

The instruments include ulct−1 − pt−1 and ulct−1 − pit−1, as explained above,
together with lags of productivity growth, lagged electricity price growth, the same
wage dummy as in NAM and lagged unemployment. The Sargan (1964) test of

instrument validity (χ
2
S (n)) is insignificant. However, residual misspecification tests

reveal that (17.78) is not a congruent model, since there is substantial heteroskedas-
ticity, autocorrelation and non-normality. In order to obtain a more congruent
NKPC model we may use the dummy saturation technique in Autometrics (see
Doornik, 2008).

�pt = 0.622
(0.102)

�pt+1 + 0.02509
(0.013)

st + 0.2614
(0.0533)

�pt−2

+ 0.0549
(0.00675)

�pet + constant and 11 dummies

IV, T = 111 (1979(3) - 2007(1))

χ
2
s (15) = 19.442[0.1944].

(17.79)

The 11 dummies include both seasonals and break dummies, showing that the
NKPC equation is not a completely time-invariant structural model. However,
abstracting from that problem, equation (17.79) is seen to adhere even closer to
the stylized facts of the NKPC than equation (17.78).

As explained above, we want to test the hypothesis that (17.79) encompasses the
price equation of the incumbent model. To do that, we first include ulct−1 − pt−1
and ulct−1 − pit−1 as explanatory variables to obtain an empirical version of the
embedding equation (17.77) above. We then do a general-to-specific search by
means of Autometrics in PcGive. The preferred model is reported as equation
(17.80):

�pt = 0.003849
(0.069)

�pt+1 + 0.08832
(0.0259)

�ulct + 0.1515
(0.0577)

�pt−2

+ 0.09883
(0.0143)

(ulct−1 − pt−1)− 0.01943
(0.00478)

(ulct−1 − pit−1)+ 0.05164
(0.00518)

�pet

+ constant and 4 dummies

IV, T = 111 (1979(3) – 2007(1))

χ
2
S (16) = 25.434[0.0625]. (17.80)

It is seen that the estimated forward coefficient α̂
f is practically zero in (17.80)

compared to 0.62 in the NKPC in (17.79). Hence Hc
0 : α

f = 0 cannot be rejected
statistically at any meaningful level of significance.

17.4.5 Forecasting for monetary policy

A hallmark of modern and flexible inflation targeting is that the operational tar-
get variable is the forecasted rate of inflation (see Svensson, 1997). One argument
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for this choice of target is to be ahead of events, rather than to react after actual
inflation has deviated from target. In this way one may hope to achieve the target
by a minimum of cost to the real economy in terms of, e.g., unwanted output fluc-
tuations or large fluctuations in the exchange rate. However, any inflation forecast
is uncertain and might induce the wrong use of policy. Hence, a broad set of issues
related to inflation forecasting is of interest for those concerned with the operation
and assessment of monetary policy.

A favorable starting point for inflation targeting is when it can be asserted that the
central bank’s forecasting model is a good approximation to the inflation process in
the economy. In this case, forecast uncertainty can be represented by conventional
forecast confidence intervals, or by the fan charts used by today’s best practice infla-
tion targeters.16 The point of the probabilistic forecasts is to convey to the public
that the forecasted inflation numbers will only coincide with the actual future rate
of inflation on average, and that neighbouring inflation rates are almost as prob-
able. By the same token, conditional on the forecasting model’s representation of
uncertainty, still other inflation rates are seen to be wholly improbable realizations
of the future.

However, the idea about model correctness and stationarity of macroeconomic
processes is challenged by the high incidence of failures in economic forecasting
(see, e.g., Hendry, 2001a). A characteristic of a forecast failure is that forecast errors
turn out to be larger, and more systematic, than what is allowed if the model is
correct in the first place. In other words, realizations which the forecasts depict as
highly unlikely (e.g., outside the confidence interval computed from the uncertain-
ties due to parameter estimation and lack of fit) have a tendency to materialize too
frequently. Hence, as a description of real-life forecasting situations, an assump-
tion about model correctness is untenable and represents a fragile foundation for
forecast-based interest rate-setting (see Bårdsen et al., 2003).

17.4.5.1 Assumptions about the forecasting situation

In modern monetary policy the forecasted rate of inflation is the intermediate
target. It is then of interest to clarify as closely as possible what are the realistic
properties of the forecast. Anticipated forecast properties are closely linked to the
assumptions we make about the forecasting situation. A useful classification (see
Clements and Hendry, 1999, Ch. 1) is:

A The forecasting model coincides with the true inflation process except for
stochastic error terms. The parameters of the model are known constants over
the forecasting period.

B As in A, but the parameters have to be estimated.
C As in B, but we cannot expect the parameters to remain constant over the

forecasting period – structural changes are likely to occur.
D We do not know how well the forecasting model corresponds to the inflation

mechanism in the forecast period.

A is an idealized description of the assumptions of macroeconomic forecasting.
There is still the incumbency of inherent uncertainty represented by the stochastic
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disturbances – even under A. Situation B represents the situation theoretical expo-
sitions of inflation targeting conjure up (see Svensson, 1999). The properties of
situation A will still hold – even though the inherent uncertainty will increase. If
B represents the premise for actual inflation targeting, there would be no forecast
failures, defined as a significant deterioration of forecast performance relative to in-
sample behavior (see, e.g., Hendry, 2006). The within-sample fit of section 17.4.2.2
corresponds to situation B, subject to the assumption that NAM is a congruent
model of the aggregate Norwegian economy.

The limited relevance of situation B for inflation targeting becomes clear once
we recognize that, in practice, we do not know what kind of shocks will hit the
economy during the forecast period. We generally refer to such changes as regime
shifts, and their underlying causes include changes in technology and political deci-
sions and, more generally, “the complexity and instability of human behaviour”
(Elster, 2007, p. 467). A forecast failure effectively invalidates any claim about a
“correct” forecasting mechanism. Upon finding a forecast failure, the issue is there-
fore whether the misspecification was detectable or not at the time of preparing
the forecast. It is quite possible that a model which has been thoroughly tested for
misspecification within-sample nevertheless forecasts badly, which may occur in
situation C.

As discussed by Clements and Hendry (1999), a dominant source of forecast fail-
ure is regime shifts in the forecast period, i.e., after the preparation of the forecasts.
Since there is no way of anticipating them, it is unavoidable that after-forecast
breaks damage forecasts from time to time. For example, when assessing infla-
tion targeting over a period of years, we anticipate that the forecasters have done
markedly worse than they expected at the time of preparing their forecasts, simply
because there is no way of anticipating structural breaks before they occur. The task
is then to be able to detect the nature of the regime shift as quickly as possible, in
order to avoid repeated unnecessary forecast failure.

However, experience tells us that forecast failures are sometimes due to shocks
and parameter changes that have taken place prior to the preparation of the fore-
cast, but which have remained undetected by the forecasters. Failing to detect a
before-forecast structural break might be due to the low power of statistical tests
of parameter instability. However, the power is actually quite high for the kind
of breaks that are most damaging to model forecasts (see Hendry, 2000). There
are also practical circumstances that complicate and delay the detection of regime
shifts. For example, there is usually uncertainty about the quality of the provi-
sional data for the period that initialize the forecasts, making it difficult to assess
the significance of a structural change or shock.

Hence both after- and before-forecast structural breaks are realistic aspects of
real-life forecasting situations that deserve the attention of inflation targeters. In
particular, one should seek forecasting models and tools which help cultivate an
adaptive forecasting process. The literature on forecasting and model evaluation
provide several guidelines (see, e.g., Hendry, 2001a; Granger, 1999).

Situation D brings us to the realistic situation, namely one of uncertainty and dis-
cord regarding what kind of model approximates reality; in other words, the issues
of model specification and model evaluation. In section 17.4.3 we saw that in policy
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analysis there is a clear gain from using the congruent model, and avoiding basing
policy recommendations on a misspecified model of the supply side. In forecast-
ing, the link between model misspecification and forecast failure is not always as
straightforward as one would first believe. The complicating factor is again non-
stationarity, regime shifts and structural change. For example, a time series model
formulated in terms of the change in the rate of inflation adapts quickly to changes
in equilibria – a location shift – and is therefore robust to before-forecast structural
breaks of this type, even though it is clearly a misspecified model of the DGP
over the historical data period (see Clements and Hendry, 1999, Ch. 5). There-
fore a double-differenced device (DDD) can deliver near-unbiased forecasts when
a location shift has occurred prior to the preparation of the forecast. Conversely, a
forecasting model of the equilibrium correction type is less adaptable. Indeed, fol-
lowing an equilibrium shift, EqCM forecasts tend to move in the opposite direction
to the data, thereby causing forecast failure (cf. Hendry, 2006). Eitrheim, Husebø
and Nymoen (1999) have shown that this new theory of forecasting has practical
relevance for understanding the properties of forecasts from a medium-sized fore-
casting model of the Norwegian economy, in particular the more adaptive nature
of DDD to several historical examples of structural breaks.

The new theory of forecasting that we build on does not deliver carte blanche
for using non-congruent models for prediction, though. DDD and near-equivalent
forecasting devices are robust for one particular reason: they do not equilib-
rium correct, and are therefore insulated from changes in the parameters that are
most pernicious for forecasting. Replacing a congruent and adequate EqCM with
another, less adequate, EqCM model for forecasting is not a good idea. The non-
congruent EqCM is also subject to forecast failure on its own premises and, without
location shifts, it will forecast worse than the congruent EqCM. In this respect there
is a cost to compromising model adequacy also in forecasting. In terms of the con-
testing supply-side models of section 17.4.3, this is illustrated by Bårdsen, Jansen
and Nymoen (2002), who show that, although the PCM is robust to some of the
location shifts that can damage forecasting from the ICM, the cost of high forecast
variance and bias due to misspecified equilibrium correction dominates.

17.4.5.2 Real-time forecast performance

As mentioned above, NAM is part of the Normetrics system of models which was
initiated in 2005. Model-based forecasts for the Norwegian economy are produced
in January, March, June and September each year and published on the web. So
far, these model-based forecasts have performed relatively well compared to com-
peting forecasts. As an example, Figure 17.9 shows forecasts for core inflation
in 2006. Because of inflation targeting, this variable is among the most thor-
oughly analyzed variables by professional forecasters both in the private and public
sectors.

Figure 17.9 shows Norges Bank’s projections together with the average of other
professional Norwegian forecasters. The third line in the graph shows the sequence
of forecasts from the two Normetrics forecasting models, automatized inflation
forecasts (AIF) and NAM.17 The figure shows that Normetrics forecasts were never
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Figure 17.9 Forecasts for annual core inflation in 2006, published at different times. Percent.
Monthly figures, January 2005 to December 2006
Source: Norges Bank, Monetary Policy Report January 2007, and http://folk.uio.no/rnymoen/Normetrics.

any worse than the average forecasts, and most vintages of Normetrics forecasts
are considerably better. All Normetrics forecasts produced in 2005 also improve on
Norges Bank’s forecasts (June 2005 is the exception). In the period November 2005
to February 2006 the gap between Normetrics and Norges Bank actually widens – as
Norges Bank’s forecasts were adjusted upward, away from what eventually became
the actual inflation rate of 0.8%. However, the forecast in Monetary Policy Report
February 2006 is accurate, while the Normetrics forecast stays at 1% until September
2006.

Since equilibrium-correction is ubiquitous in macroeconometric models, one
can safely assume that some of the “other forecasts” are based on EqCMs. Specifi-
cally, Norges Bank’s forecast are based on the rational expectations solution of an
equilibrium-correction model with leads in variables. Hence, all forecasts in Figure
17.9 may have been damaged by any location shifts that took place in 2006 – they
were after-forecast structural breaks. In particular, the forecast that was published
(early) in 2005 had a large exposure to forecast failure. For the same reason, the
forecast errors are reduced as more “2006 information” is conditioned upon. In that
perspective we can interpret the figure as evidence that the Normetrics forecasts
are more adaptive than the other equilibrium-correction forecasting mechanisms
covered by the graph.

The accuracy of the model-based forecasts in Figure 17.9 are less impressive when
compared to forecasts from a simple DDD, though. For example, at the start of 2005
a forecast based on the double difference of the log of the CPI-AET (consumer price
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index adjusted for electricity and taxes) index would predict a 2006 inflation rate
of 0.3%, which is a more accurate forecast than any of the econometric or profes-
sional forecasts that were produced in 2005. The DDD forecast is not improved on
by Normetrics before January 2006, nor by Norges Bank before the Monetary Policy
Report January 2006 (from March). However, by this time the DDD forecast could
also be have been updated, most simply by replacing 0.3% by the actual rate of
inflation in 2005, which was 1.0%. This forecast is practically identical to Normet-
rics forecasts from before September 2006, and it is not beaten by Norges Bank’s
forecast before the Monetary Policy Report February 2006.

2006 is not the only year for which the Normetrics forecasts compete well with
the central bank’s forecasts for the monetary policy target variable. Juel, Molnar and
Røed (2008) note that, for a relatively long period of time, the automated forecasts
from an empirically validated inflation model, AIF above, have been better than
Norges Bank’s forecasts. Figure 17.10 illustrates the point.

The figure can be used to assess the ex ante forecasts based on forecast errors for
the period 2004(2)–2007(3). The forecasted variable is the annual rate of CPI-AET
inflation. The graphs in the upper panel in the figure show the MFEs. A negative
MFE means that the inflation forecasts are on average higher than the actual infla-
tion rates in the period. The biases of the econometric model (AIF) forecasts are
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Figure 17.10 Forecasts from an empirically validated inflation model compared to inflation
report forecasts
First panel: mean forecast errors (MFEs) for core inflation (annual rate of change in CPI-AET). Inflation
report forecasts and AIF forecasts. Second panel: mean squared forecast errors (MSFEs).
Source: Inflation Report/Monetary Policy Report February 2004 to February 2007 and AIFs published at
http://folk.uio.no/rnymoen/forecast_ air_index.html.

mailto: rights@palgrave.com


Gunnar Bårdsen and Ragnar Nymoen 903

small for forecast horizons 1, 2, 3 and 4: the MFEs are less than 0.25 percentage
points. Norges Bank’s inflation forecasts from the Inflation Report/Monetary Policy
Reports are more biased than AIF for horizons 2–8 quarters ahead. The biases of AIF
become markedly bigger for forecasts of length 7–10 quarters, and are not much
different from the bias of forecasts produced by Norges Bank. The second panel of
the figure shows the MSFEs, to which large forecast errors contribute more than
small errors. This measure gives more or less the same picture at the MFEs.

17.4.5.3 Ex post forecast evaluation and robustification

The discussion of Figure 17.9 illustrated the general point that, although EqCMs
forecast well when a process is difference-stationary, they are non-robust if there
are non-stationarities due to location shifts in the forecast period. In this particular
case, the mean of the rate of inflation seems to have changed, in 2004 or earlier,
and the DDD is a more adaptable forecasting mechanism than the EqCMs in the
case of the before-forecast structural break. The main benefit of DDDs for model-
based forecasting, where one wants to retain the causal information of the model,
is that DDDs can help the forecaster to robustify the EqCM forecasts, by intercept
corrections. The cost associated with DDDs is, of course, that the forecasts are
more “noisy” than EqCM forecasts, hence the forecast-error variances associated
with robust forecasts can become large, such as when the first difference of an
autoregressive process doubles the one-step forecast variance. In a model with one
or two endogenous variables this cost may not be much of an issue, but in a multi-
equation forecasting setting there may be a problem of extracting “signal from
noise” in practice. In the rest of this section we illustrate these issues by considering
system forecasts.

Figure 17.11 shows dynamic NAM forecasts for the period 2003(1)–2007(3).18

The sample period for the estimation ends in 2002(4). Unlike the inflation fore-
casts in Figure 17.9 which are real-time ex ante forecasts, we now consider ex post
forecasts, which are conditioned by the true values of the non-modeled variables.
Hence the forecasts are not influenced by location shifts in the non-modeled vari-
ables (foreign CPI inflation, e.g.), but they are subject to location shifts that are
due to changes in the means of the estimated cointegration relationships, or the
autonomous growth rates (captured by intercepts after subtraction of equilibrium
correction means).

Figure 17.11 serves as the reference case for discussion of the degree of adapta-
tion of NAM forecasts, and for the properties of more robust forecasting devices
that we investigate for comparison. There are no less than five possible instances
of location shifts in the forecast of these nine variables. First, there is sys-
tematic overprediction of the rate of inflation (we use CPI inflation here) over
the length of the forecast horizon. In the light of the 70% prediction interval,
inflation overprediction is significant (forecast failure) in 2003. Second, unem-
ployment is overpredicted and GDP growth in underpredicted for the three
quarters of 2007. Third, the short-term interest rate is significantly overpredicted in
2003(2)–2004(4). Fourth, real credit growth is underpredicted (significantly) from
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Figure 17.11 Dynamic NAM forecasts 2003(1)–2007(3), with end-of-sample for estimation
of parameters in 2002(4)
Actual values are shown by solid lines, and forecasts by dashed lines. The distance between the two dotted
lines represents 70% prediction intervals.

2005(3). Finally, the real exchange rate is systematically overpredicted from 2004(4)
and onwards – the real appreciation of the Norwegian krone is not captured by the
forecasts.

In the following we show how well the NAM forecasts adapt to these location
shifts when we condition on 2004(4) and then 2006(4). In each dynamic forecast
the coefficient estimate is updated. Figure 17.12 shows that the 2005(1)–2007(3)
forecasts for inflation and, in particular, for the interest rate and the real exchange
rate, have improved relative to Figure 17.11. For the other variables there is little
change and, if anything, the forecast failures for the rate of unemployment and for
GDP growth stand out more clearly than before (also showing that there is a knock-
on effect of the high employment forecast on wage inflation). The explanation may
be that NAM is unable to adapt, or that the location shifts of the variables are of
the after-forecast type.
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Figure 17.12 Dynamic NAM forecasts 2005(1)–2007(3), with end-of-sample for estimation
of parameters in 2004(4)
Actual values are shown by solid lines, and forecasts by dashed lines. The distance between the two dotted
lines represents 70% prediction intervals.

Figure 17.13 focuses on the last three “problem variables” in terms of forecast fail-
ure. The rate of unemployment is now much better forecasted in 2007(1)–2007(3),
which is a sign of adaptation to a location shift which is of the before-forecast
category, where 2006(4) is in the information set. For GDP and real credit growth
the forecast failures persist. In the present version of NAM, the high growth rates
of 2007 can, in part, be explained by the effects of very high oil prices on demand.
In fact, that modeling device was used in Figure 17.6, showing the goodness-of-fit,
but clearly would not be known or of any help to a forecaster preparing a forecast
for 2007 late in 2006.

As mentioned above, using differencing (DDD) to forecast provides a more robust
forecast when non-stationarities are due to location-shifts. As discussed by Hendry
(2006), a differenced version of the EqCM may be interpreted as an augmented
DDD forecasting rule. We therefore consider forecasts from the differenced NAM
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Figure 17.13 Dynamic NAM forecasts 2007(1)–2007(4), with end-of-sample for estimation
of parameters in 2006(4)
Actual values are shown by solid lines, and forecasts by dashed lines. The distance between the two dotted
lines represents 70% prediction intervals.

model, and refer to these as dEqCM forecasts. In the differenced forecasting sys-
tems, some of the causal information embedded in NAM is retained. The dEqCM
has no constants either in the form of means of cointegration relationships or in
the form of separate intercept terms (see Hendry, 2006). Hence forecasts from the
dEqCM do not equilibrium-correct, thereby reducing the risks attached to EqCM
forecasts.

Figure 17.14 shows the dEqCM forecast for the 2003(1)–2007(3) period. Com-
parison with the NAM forecasts in Figure 17.11 shows that the increase in forecast
variance is not a small cost in this case – note the difference in scaling as well. The
absolute forecast errors appear to be much worse than the NAM forecast errors as
well. For example, unemployment is predicted by the dEqCM to increase over the
forecast horizon, and credit growth is underpredicted for the length of the horizon.

Figure 17.15 shows the dEqCM forecasts when we condition on information
including 2004(4). Compared to the NAM forecasts that condition on the same
information (see Figure 17.12) there is little to be gained in these forecasts. We
note that the dEqCM interest rate forecast has adapted, but the same happened
with the NAM forecasts. The dEqCM forecasts are still uninformative about the
behavior of unemployment and credit growth over the 2006(1)–2007(3) period.

Figure 17.16 indicates that for the three quarters of 2007, the dEqCM forecast for
the rate of unemployment is better than the (already quite good) NAM forecasts.
However, for GDP growth and credit growth, the dEqCM still does not adjust
to the location shift. These results suggest that, in practice, a more discretionary
approach may be called for. For example, instead of taking away all the equilibrium
correction by differencing, one may concentrate on the sub-set of equations which
have failed because of location shifts in recent forecasting rounds, since that will
also induce lack of adaptation in the overall forecasting picture. To illustrate the
possible benefit from such an approach, Figure 17.17 shows the 2007 forecasts for a
dEqCM, where only the equilibrium variables of the aggregate demand and credit
equations have been “differenced away.” To avoid confusion with the dEqCM used
above we refer to this forecasting model as partial dEqCM. Figure 17.17 shows the
one-step forecast, since any difference in adaptability is then easier to see.
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Figure 17.14 Dynamic dEqCM forecasts 2003(1)–2007(3), with end-of-sample for estimation
of parameters in 2002(4)
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Panels (a) and (b) show the NAM forecasts. The forecasts for 2007(1) are the same
as in Figure 17.16 for these two variables, but 2007(2) and 2007(3) are different since
the NAM forecasts are now conditional on first- and second-quarter information
for exogenous and predetermined variables (the coefficients are not updated). The
lack of adaptation to the location shifts of the growth rate of the actual series is
apparent. Panels (c) and (d) show the corresponding partial dEqCM forecasts. For
GDP growth there is less underprediction already in 2007(1), and in 2007(2) the
forecast has adapted. Panel (c) shows a marked improvement in adaptation also in
the credit growth rate, although not before the second quarter of 2007(2).

17.5 Conclusion

This chapter has presented a case for continuing to use macroeconometric models
for policy analysis, including such analyses that rely on instrument use to attain a
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Figure 17.15 Dynamic dEqCM forecasts 2005(1)–2007(3), with end-of-sample for estimation
of parameters in 2004(4)
Actual values are shown by solid lines, and forecasts by dashed lines. The distance between the two dotted
lines represents 70% prediction intervals

certain forecast for a target variable like inflation. Paradoxically, perhaps, the main
line of argument starts from the recognition that accurate forecasting is a near
impossibility in macroeconomics because of the inherent non-stationarity of the
economic time series included in the model. Non-stationarity takes different forms,
with different implications for macroeconometric modeling and forecasting, and
we have distinguished between unit roots and non-stationarity due to structural
breaks. We have demonstrated that macroeconometric models can be developed
theoretically and empirically in a way that is consistent with a unit root assump-
tion. At the modeling and estimation stage, non-stationarity due to unit roots can
in principle be handled by cointegration methods and, given that approach, unit
roots are unlikely to be a source of forecast failures. On the contrary, a correct unit
root assumption can help in concentrating on predictable functions of variables,
like growth rates and linear combinations of target variables.
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Non-stationarity due to structural breaks in functional relationships of the
economy seem to represent the real challenge to macroeconometric modeling.
Structural breaks in the forecast period are particularly harmful since they are
untraceable and will make the model forecasts go toward pre-break steady-state
relationships. When the sample period is extended, structural breaks represent
valuable sample information that provide power to tests of economic hypotheses,
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and from that perspective structural breaks are seen to be not entirely negative,
since there can be progress in macroeconometric modeling through forecast failure.

It follows from our approach that we agree with those who conclude that guid-
ance from economic theory is important in the forecasting process (cf. Elliott
and Timmermann, 2008). But theory and modern econometrics do not provide
immunity from new structural breaks. Nevertheless, the case for macroeconomet-
ric system of equations models may, to a large extent, depend on their ability to
forecast relatively well compared to competing forecasting methods. Making mod-
els sufficiently adaptive to a structural break, once the evidence is there that it has
occurred, is a necessary step in that project.

It is possible to look to other forecasting disciplines for inspiration. Meteorol-
ogists developed their forecasting theory, models and routines between the two
world wars. Those forecasts were based on a deterministic model of the dynamics of
the atmosphere. Then, in the mid 1960s, the understanding of the dynamics were
completely altered with the development and acceptance of chaos theory, with the
logical consequence that accurate weather forecasting is impossible. Thirty years
after the arrival of the meteorologists’ “impossibility theory” for forecasting, the
weather forecasts are undeniably more accurate than ever. Hence, the weather is
predictable even ten days ahead, despite the chaos represented by the underlying
forecasting models. It is perhaps unlikely that we will witness something similar in
economics, but there are nevertheless parallels. Meteorologists have precise theory
and almost continuous updating of initial conditions. Policy-oriented modeling
may have to live with idealized or partial theories, and with variables that are mea-
sured at relatively long time intervals, and which are influenced by measurement
errors. Yet, as a discipline we have developed methods and strategies that are quite
good at making the most of “small data amounts.” Hence, while meteorologists
can rely on the theoretically specified model of weather dynamics, the interaction
between economic theory, econometric theory, good model selection procedures,
and diagnostic testing have together greatly improved our capability of modeling
the macroeconomy, thus providing models that can aid policy decisions.

Appendix: Data definitions and equation statistics

Variables

The model employs seasonally unadjusted data. Unless another source is given, all
data are taken from FPAS, the database of Norges Bank.

The model is developed and estimated with Oxmetrics 5 (http://www.oxmetrics.net)
and then re-estimated and simulated with Eviews 6 (http://www.eviews.com).

V Trade-weighted nominal value of the krone based on import shares of trading
countries.

G Government sector consumption expenditure, fixed 1991 prices. Millions (Mill):
Norwegian krone (NOK).

L Nominal credit volume. Mill. NOK.
R Money market interest rate (three month euro–krone interest rate).
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R∗ ECU interest rate. For the period 1967(1)–1986(3): effective interest rate on
foreign bonds, NOK basket weighted. For the period 1986(4)–1996(4): ECU
weighted effective rate on foreign bonds.

RL Average interest rate on bank loans.
RB Yield on six year government bond, quarterly average.
R∗B Yield on long-term foreign bonds. NOK basket weighted.
P Consumer price index (CPI).

PC “Core” CPI.
P∗ Consumer prices abroad in foreign currency.
PE CPI, electricity, fuel and lubricants.
PO $US oil price, per barrel Brent–Blend.
PI Price deflator of total imports.
P∗I Producer price index, trading partners.
Y Total value added at market prices in the mainland economy (defined as total

economy minus North Sea oil and gas production and international shipping).
Fixed base year (1991) prices. Mill. NOK.

Z Mainland economy value added per man hour at factor costs.
T1 Payroll tax rate, mainland economy.
U Registered rate of unemployment.

W Nominal hourly wage costs in the mainland economy. NOK.

In addition, there is a step dummy, accounting for the introduction of inflation
targeting:

IT = 0 until 2001(1), 1 from 2001(2).

Notation for estimation and misspecification tests

In Table 17.1, the estimation method, which is either OLS or full information max-
imum likelihood (FIML), is indicated in the first line below each equation, along
with the sample size (number of quarterly observations), which is denoted by T ,
and the residual standard error (σ̂ ). For equations estimated with OLS, statistics
for residual autocorrelation and ARCH are reported in the second line below the
equation. As indicated by the notation, these two statistics are F-distributed under
their respective null hypotheses. For example, FAR(1−4)(4, 44) in the exchange rate
equation denotes the F-distributed test statistics with 4 and 44 degrees of freedom
for the null hypothesis of no autocorrelation against the alternative of fourth-
order autocorrelation. In the third line below the estimated OLS equations, we
report the chi-square-distributed test of residual normality, and the F-distributed
test of heteroscedasticity due to squares of the regressors. For the equations esti-
mated with FIML, systems versions of the misspecification tests are reported and
are indicated by the extra subscript vec, as Fvec,AR(1−4). The numbers in brack-
ets are p-values for the respective null hypotheses. These, as well as the other
standard diagnostics tests, are explained in Doornik and Hendry (2007a) (single-
equation diagnostics), and Doornik and Hendry (2007b) (system and simultaneous
equations diagnostics).
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Notes

1. See, e.g., Hendry (1995a, Ch. 2.3 and 15.3) for a concise definition of structure as the
invariant set of attributes of the economic mechanism.

2. This line of thought may lead to the following practical argument against large-scale
empirical models: since modeling resources are limited, and some sectors and activities
are more difficult to model than others, certain euations of any given model are bound
to have less structural content than others, i.e., the model as a whole is no better than
its weakest (least structural) equation.

3. See Nymoen (2005) for an analysis of a recent failure in inflation forecasting.
4. Sub-sections 17.2.1–4 draw on Bårdsen, Hurn and Lindsay (2004).
5. Presently, we let the unemployment rate be constant and disregard it for simplicity. We

return to the role of the rate of unemployment in section 17.2.6.
6. The distinction between the inferential and model validation facets of modeling is due

to Spanos (2008), who conclusively dispels the charge that misspecification testing rep-
resents an illegitimate “reuse” of the data already used to estimate the parameters of the
statistical model; see also Hendry (1995b, pp. 313–14).

7. It might be noted that the income tax rate T2 is omitted from the analysis. This sim-
plification is in accordance with previous studies of aggregate wage formation (see, e.g.,
Nymoen, 1990, and Nymoen and Rødseth, 2003, where no convincing evidence of
important effects from the average income tax rate T2 on wage growth could be found).

8. Note that, due to the log-form, ζ = is/(1 − is), where is is the import share in private
consumption.

9. Strictly, we take the expectation through in both equations.
10. NAM is a model project which extends from the early econometric assessment of wage

and price inflation in Nymoen (1991), further developed in Bårdsen, Fisher and Nymoen
(1998), Bårdsen and Fisher (1999), and the monetary transmission model of Bårdsen and
Klovland (2000). Earlier versions of the model are documented in Bårdsen and Nymoen
(2001), Bårdsen, Jansen and Nymoen (2003) and Bårdsen et al. (2005).

NAM is used for both research purposes and teaching. The macroeconomic data is
from the model databases of Statistics Norway (KVARTS model) and Norges Bank (FPAS
database). Specific versions of the model are currently operative for (a) econometric
forecasts of the Norwegian macroeconomy (NAM-EF) and (b) model-based analysis of
financial stability in Norway (NAM-FS).

11. See http://folk.uio.no/rnymoen/normetrics_index.html.
12. In practice, the policy instrument is the sight deposit rate set by the central bank, but

since the sight deposit rate represents (banks’) marginal funding cost, changes in the
sight rate are transmitted to the money market rate immediately.

13. The size of the depreciation will depend upon the risk premium, and whether expecta-
tions counteract or strengthen the initial effect of the interest rate cut, etc. (cf. section
17.3.3).

14. Although the derivations are presented for a single equation with exogenous regressors,
for ease of exposition, the techniques are, of course, the same for systems.

15. A full listing of variables is given in the appendix to this chapter.
16. See, e.g., Ericsson (2001) for an accessible discussion of forecast uncertainty, and its

presentation in published forecasts.
17. Automatized econometric inflation forecasts have been published twice a year, starting

in July 2004. The forecasts are automatized, with a minimum of intervention after the
econometric specification of the forecasting mechanism is completed.
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18. In this section, we use the model version used for the October 2007 NAM forecasts: see
http://folk.uio.no/rnymoen/namforecast_okt07.pdf.
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Abstract

Recent applied macroeconomic research has been concerned with the effects of both labor mar-
ket reforms and the delegation of monetary policy to an inflation-averse central bank as ways of
improving inflation and unemployment outcomes. The experiences of the UK following the intro-
duction of changes to the labor market in the 1980s and of inflation targeting and instrument
independence for the Bank of England in the 1990s, have often been held up as illustrations of
the beneficial effects of regime changes of this sort. Others have contradicted these views, includ-
ing those who have drawn attention to the weakness in the empirical evidence favoring effects
from labor market reforms, and others who argue that a combination of beneficial international
events and monetary policy mistakes have played an important part in the UK’s recent economic
improvement.

We review the case for regime change from either of these sources, labor market and monetary,
in an application to the UK using a model that integrates both. The results indicate two things: the
importance of allowing for the openness of the UK economy in “behavioral” econometric models
of the natural rate, and the importance of allowing for policy “mistakes.” Based on our analysis, we
conclude that recent changes in UK monetary policy or labor market institutions seem unlikely to
have made an important contribution to the improvements in UK economic performance. Effects
originating overseas appear to play an important role in unemployment changes in the UK. Policy
mistakes have had important effects on inflation over the last two decades, and a proper allowance
for these is needed before any firm judgments of the benefits of the delegation of monetary policy
can be reached.
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18.1 Introduction: inflation and unemployment in the UK

Inflation in the UK over the last 25 years has varied substantially (Figure 18.1). It
had a period of seriously high inflation for a decade starting from the early 1970s,
with two distinct episodes each coinciding with a huge increase in oil prices.1

Although this phase was brought under control towards the end of the 1980s,
there followed a second – smaller – surge from then until the early 1990s. Although
this second phase was less serious than each of the two peaks of the first, it was
nevertheless important enough for the UK to join the Exchange Rate Mechanism
(ERM) in an effort to control it.

From the date of its departure from the ERM, inflation, growth and unemploy-
ment have been unusually good by UK standards although, as Figure 18.2 shows,

0

5

10

15

20

25

30

19
71

Q
1

19
72

Q
4

19
74

Q
3

19
76

Q
2

19
78

Q
1

19
79

Q
4

19
81

Q
3

19
83

Q
2

19
85

Q
1

19
86

Q
4

19
88

Q
3

19
90

Q
2

19
92

Q
1

19
93

Q
4

19
95

Q
3

19
97

Q
2

19
99

Q
1

20
00

Q
4

20
02

Q
3

20
04

Q
2

20
06

Q
1

P
er

ce
nt

 p
er

 a
nn

um
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it was not until 1997 that unemployment fell to the level it reached before the UK
joined the ERM.

Starting in 1992, monetary policy has been based on inflation targeting and,
from 1997, the Bank of England (BoE) was delegated to set interest rates in pursuit
of a preset inflation target (see BoE, 2007, for details). These changes have been
heralded as decisive in achieving simultaneously low inflation and unemployment
over the last 15 years, both in official circles (Balls and O’ Donnell, 2002; BoE, 2007)
and elsewhere (Cechetti, 2000). But, in a large US literature focused on testing for
structural change in monetary policy, other explanations of improved inflation and
growth performance have been suggested. Thus the importance of “good luck” –
unusually benevolent world economic developments – has been cited, and yet
other US research has emphasized policy mistakes, mainly due to uncertainties
about the rate of productive potential and the natural rate (references to these and
other parts of the US literature are given in section 18.2). Neither of these issues
has received much attention in the UK, where there has been an even longer-
standing debate on the possibility that there has been a decline in the UK non-
accelerating inflation rate of unemployment (NAIRU) due to labor market reforms
in the 1980s. These reforms were largely industrial relations changes to closed-
shop arrangements and to procedures for settling industrial disputes, for example,
but also included changes to the availability and duration of income out of work.
Added to this set of possible alternatives another, which has recently surfaced in
the UK, attributes an important and continuing effect on inflation and growth to
the UK’s membership of the ERM in 1989–92 (see Budd, 2004).

This chapter is directed at assessing some of these alternative explanations for the
changes in inflation and unemployment in the UK since the early 1980s. It proceeds
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by bringing together what have hitherto been treated as two distinct – and largely
separate – possibilities for regime change: that the 1980s labor market reforms had
significant effects on unemployment, and the possibility that important effects
on inflation and unemployment followed from switching to inflation targeting
and central bank independence. The first of these two possible sources of regime
change refers to a large “shocks versus institutions” literature (see Blanchard and
Wolfers, 2000, amongst others). The other relies on the pioneering research by
Sargent (1999) which derives optimal monetary policy in a natural rate model
where expectations are formed by recursive learning. As with other research on the
policy model, section 18.5 considers to what extent a model of optimal monetary
policy with learning conforms to the broad features of UK inflation since 1980. To
do this, however, it amends the policy model in the light of econometric results on
the determinants of long-run unemployment from section 18.4. These econometric
results conclude that the evidence does not support the “wage push” interpretation
of changes in long-run unemployment. Instead, it is shown that extensions to the
unemployment model that give a major role to international factors, such as real oil
prices and measures of international competitiveness, are needed for the model to
capture the broad movements in UK unemployment. Once this extension is made
to the policy model, it is found that optimal inflation solutions from it conform
to the broad pattern of changes to inflation observed over the last 25 years or so
without appealing to any regime change. As is evident in this account, the break-
point for possible labor market regime changes is the early 1980s and monetary
policy regime change is taken to be from the end of 1992 since, as is evident
from references listed later, these are the alleged break-points in most of the labor
market and monetary policy debates in the UK. Hence, we do not attempt any sort
of estimation and inference about likely break-dates, which is an important, but
separate, topic to what is presented here.2

18.2 A selection of background literature

18.2.1 A baseline New Keynesian policy model

It is helpful, pedagogically, to relate the principal papers referred to later to a “base-
line” New Keynesian policy model (NKPM), since they can often be viewed either
as a form of complete NKPM or as single equations from it, such as the aggregate
supply (AS) or the policy rule for interest rates (the “Taylor rule”). The aggregate
demand (AD) equation has received less attention in the literature, and that is the
line adopted here.3 The example below is the closed-economy model found in
Henry and Pagan (2004). This baseline NKPM is given by equations (18.1)–(18.3),
and microfoundations of these equations are discussed in, inter alia, Svensson
(2000).

πt = αππt−1 + (1− απ )π
e
t+1 + αy(yt−1 − y∗t−1)] + ξt (18.1)

yt = βyye
t+1 − σ(rt − π

e
t+1)+ vt (18.2)

rt = r̄t + β(π
e
t+1 − π

∗
)+ γ (yt − y∗t ). (18.3)
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Equation (18.1) is the AS (or Phillips curve) equation, where πt is domestic inflation
and (yt − y∗t ) is the output gap. As written, this is in the so-called “hybrid” form
for the New Keynesian Phillips curve (NKPC), which depends on both lagged and
future expected inflation rates. Equation (18.2) is the AD equation dependent on
expected output and the real interest rate. The last equation (equation (18.3)) is
a simple form of policy rule for interest rates, r, which is shown as depending
on deviations of expected inflation from target and the output gap.4 A significant
difference in practice is how this equation is treated. First, it may be explicitly
derived by optimising a dynamic objective function depending on government
macroconomic objectives (inflation and output deviations from their equilibrium
levels) subject to the constraints given by the model above, as in Ball (1997) and
as in the models in sections 18.3 and 18.5 later, for example. But, most often the
policy rule is taken as simply a reasonable description of the authority’s behavior
and is estimated; however, substantial problems can arise when it is estimated, and
some of it is discussed next in a short review of US literature.

18.2.2 Evidence for and against monetary regime change in the US

Under the heading of the “Great Moderation,” considerable effort has been directed
at finding possible explanations of the marked reduction in the volatility of infla-
tion and output in the US (BoE, 2007, draws attention to similar developments in
the UK). It is probably fair to say that the results of this have been inconclusive,
with some papers finding evidence for regime change in monetary policy whilst
others have reported equally strong findings against. In part, this reflects different
modeling approaches, as we illustrate immediately below.

There are now many examples of single equation estimates of both NKPCs and
interest rate policy rules, both of which are directed at detecting changes in the
effectiveness of monetary policy. They mainly assume that expectations are formed
rationally. In the research on the NKPC, a major interest has been whether the
degree to which the equation is forward-looking has increased, but this issue is
largely unresolved. Thus, for example, using marginal costs rather than output
gaps as the driving variable in the equation, Rudd and Whelan (2005) argue for
the unimportance of forward-looking terms. In turn, Gali, Gertler and Lopez-Salido
(2005) rebut this by observing that Rudd and Whelan use incorrect weights in form-
ing the required forward-looking terms. Turning to the estimated policy reaction
function (that is, the estimated version of (18.3) above), this has typically been of
the form:

rt = (1− ρ)α + (1− ρ)βπt+n + (1− ρ)γ xt + ρrt−1 + εt . (18.4)

In this equation α = r̄ − βπ
∗, where r̄ is the long-run equilibrium nominal interest

rate, π
∗ the target inflation rate and β is the weight on inflation deviations from

target in the authority’s objective function. The variable xt is defined as yt−y∗, and
in (18.4) allowance is made for interest rate smoothing with a weight ρ. Henry and
Pagan (2004) draw attention to a problem of the interpretation of such equations
when they are used to infer what central banks’ behavior has been. An example of
such an interpretation is found in Clarida, Gali and Gertler (2000). Drawing such
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inferences from equations like (18.4) is possible only if future expected inflation
and output gaps were actually exogenous, which they are not. Complete system
adjustments are needed to judge what the interest rate response to changes in either
of the right-hand-side variables would be. This interpretative issue is addressed by
Dennis (2004), who argues that judgments on the relative weights attached to
inflation versus output stabilization require that central bank preferences be esti-
mated, and this requires that all the parameters in the system be estimated.5 A
further econometric issue in these single-equation studies (both the NKPC and the
estimated Taylor rules) is the problem of weak instruments. Often, large numbers
of instrumental variables are used, and the risk is that the equations may be “over-
fitted,” with predicted values being very close to actual values, with results that are
close to ordinary least squares (OLS), as noted by Henry and Pagan (2004).

Moving to complete model estimates, there have been many studies using vector
autoregressive models (VARs) and structural vector auto regressive models (SVARs)
to evaluate the relative statistical contribution that changes in exogenous shocks
versus changes in model structures play in accounting for the changes in output
and inflation dynamics. Representative examples used here are Stock and Watson
(2002) (henceforth SW) and Boivan and Giannoni (2003) (henceforth BG). SW
provide decomposition results for the observed changes in inflation and output
volatility in the US, using estimated reduced form VARs of structural models akin
to (18.1)–(18.3) above,6

X̃t = #(L)X̃t−1 + ut , (18.5)

where X̃t is a four variable vector of gross domestic product (GDP) growth, inflation,
the Federal Funds rate and the growth in commodity prices.7 This latter equation
is appended as an ad hoc equation, so the set of variables in (18.5), X̃t , differs from
those in the baseline NKPM (18.1)–(18.3) above. SW’s VAR estimates are fourth-
order VARs for two sub-samples of the period 1960–2001, pre- and post-1984Q1,
and the empirical results are noteworthy in that they show that it was changes in
the covariance matrix of the unforecastable components of the VARs that account
for almost all of the changes in the observed volatility of output. BG also report
unrestricted VAR estimates over two sub-samples divided at the end of the 1970s.
Broadly speaking, their findings are in line with the results of SW in that BG’s
unrestricted VAR results show that, if anything, monetary policy effects appear
weaker in the second sample.

However, comparative results from the SVARs reported by SW and BG give dif-
ferent conclusions as to the effectiveness of monetary policy over time in the US,
although each use a related, but different, version of the NKPM to identify their
structural VAR. Thus SW use a priori values of the slope of the AD curve, the slope
of the AS curve and the weight on forward-looking inflation in the AS curve. When
estimated over the two periods, their structurally identified decomposition of out-
put variability implies that most of the reduction in the second period is accounted
for by changes in the variability of shocks, not changes in monetary policy coeffi-
cients. Although the paper by BG also takes a model based on the closed-economy
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version of the NKPM augmented by an ad hoc equation for commodity price infla-
tion, their structural model is different. In their “stylized structural model” they use
a variant of a dynamic AD function composed of all interest sensitive spending, so
amalgamating consumption (the dynamics of which depend on habit persistence)
with investment (with dynamics dependent on adjustment costs). Their main find-
ing is that over the later sub-period monetary policy appears more stabilizing, a
finding at variance with those reported by SW.

In sum, the evidence from the results of this short, but fairly representative, sum-
mary of single-equation and small-complete models of the NKPM sort shows there
are findings supporting monetary regime effects in the US, but equally there are
findings which reach the opposite conclusion. In spite of this somewhat inconclu-
sive state of play, we take the view that much of the research reviewed here points
to the importance of more emphasis on econometric testing. SVAR studies, in par-
ticular, have reached diametrically opposite conclusions, in part because different
theoretical identifying restrictions are employed by different authors. More, rather
than less, empirical testing is one possible way out of this impasse. Also, a lesson
from the single-equation research is the probable gains of a more complete treat-
ment of the system as represented by (18.1)–(18.3) above, since there are evident
shortcomings in testing for regime change effects with single equations only.

18.2.3 The importance of uncertainty

Much of the research described so far, particularly that in section 18.2.2, has used
the rational expectations hypothesis. But there is a burgeoning literature, which
again is largely found in applications to the US, which emphasizes uncertainty
about the effects of regime change, transmission mechanisms and shocks hitting
the economy.

Among the alternative approaches under this heading, the first is the argument,
primarily associated with Sargent (1999), emphasizing changes in governments’
beliefs as central to inflation and unemployment behavior. In this approach, as
in the rest of the literature reviewed here, information is assumed to be symmet-
ric between private and public sectors, with neither side having an informational
advantage.8 In the Sargent model, the crucial assumption is that the authorities
learn about the “true” economy over time. (This model is discussed more fully
in section 18.3.) An emphasis on more general forms of uncertainty is found in
the important work by Orphanides and associates on the effects of uncertain nat-
ural rates of unemployment, as in Orphanides (2001, 2002) and Orphanides and
Williams (2006). A related development has considered the effects of uncertain
rates of technical progress, including work on the effects of technology shocks
on monetary policy performance, an example of which is given in Gali, Lopez-
Salido and Valles (2003). Much of this line of analysis comes broadly under the
“policy mistakes” heading. Lastly, there is the “bad luck” view, which figured in
the previous section, and which argues that it was the volatility of exogenous,
non-policy, shocks that were primarily responsible for the high volatility of infla-
tion and growth in the 1970s and subsequent falls in these exogenous shocks that
were responsible for the improved US performance in later decades. The paper by
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Stock and Watson (2002), reviewed above, is an example of this, though it is also
emphasized by Sims and Zha (2006), among others.

18.2.4 The effects of openness

It is also the case that the openness of the economy has become a major pre-
occupation in macroeconomics in general, and this is reflected in recent research
on the NKPM, where there has been very considerable debate about the effects
of changes in the nominal exchange rate and their “pass-through” into domestic
inflation, and this debate continues. At one end of the spectrum comes the so-
called “isomorphism” described by Clarida, Gali and Gertler (2001), where closed-
and open-economy versions of the “canonical” model with complete pass-through
are isomorphic, in the sense that the properties of the model and of its implied
monetary policy rules are the same in each version. In recent contributions this
characterization is rejected and incomplete pass-through is adopted (examples are
Monacelli, 2003, and Engel, 1999, among others). Micro-explanations have been
advanced for this incomplete pass-through, such as pricing to market (PTM) or
the importance of non-traded goods in consumption, as have macro-explanations
such as slow adjustment of prices at the consumer or importer level (see Devereux
and Yetman, 2002, and, for UK applications, Balakrishnan and Lopez-Salido, 2002;
Kara and Nelson, 2003; Herzberg, Kapetanios and Price, 2003; Batini, Jackson and
Nickell, 2005). Unsurprisingly, allowing for non-unitary pass-through fundamen-
tally alters the analysis of monetary policy in an open economy as compared with
the closed economy.

In concluding this section, we note the input that this short review provides
for the applications reported later in the chapter. Following the account of open-
economy issues, an extension of the NKPM to the open economy case is called for;
thus section 18.4 calls on the recent empirical research on international determi-
nants of UK price margins contained in some of the work noted immediately above.
Section 18.4 also builds on some of the contributions emphasizing model uncer-
tainty, especially those of Sargent (1999) and Orphanides and Williams (2006),
when analyzing the effects of monetary policy. The application to the UK reported
in section 18.5 uses a model of the aggregate-supply equation that is econometric,
following the comments made at the end of section 18.2.2. But, before moving to
the application of model uncertainty to the UK case, the next section outlines the
basic Beliefs model which underpins it.

18.3 Beliefs and monetary policy

18.3.1 Motivation

A brief outline of Sargent’s (1999) model is that it is the Kydland and Prescott
(1977) model coupled with the assumption of learning by the authorities, with
the results being directed at accounting for variations in US inflation and unem-
ployment. The fundamental assumption is that the authorities have a misspecified
model of the Phillips curve, but update the parameters of this in the light of pre-
diction errors. The remarkable finding in Sargent, and confirmed in other studies,
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is that, even where the Phillips curve is taken to be static, the model’s dynamics
due to learning reveal a tendency for the economy to settle in a high-inflation
equilibrium regime from which it occasionally “escapes” to occupy a low-inflation
one. These “escapes,” in turn, depend on an unusual sequence of shocks which
move the economy from a sub-optimal high inflation but time-consistent (Nash)
strategy, based on the misspecified view of the Phillips curve, to the neighborhood
of the low-inflation optimal time-inconsistent strategy based on the “true” Phillips
curve. Further analysis identifying the shocks which lead to “escapes” is found in
Cho, Williams and Sargent (2002), and other applications from this by now large
literature include Tetlow and von zur Muehlen (2001), Sargent, Williams and Zha
(2004), McGough (2006) and Ellison and Yates (2007).

18.3.2 A basic learning model of monetary policy

The example of the learning model of monetary policy given below is a closed
economy one. Open-economy issues are developed in section 18.4 and are used
in the extension to the model in section 18.5. From here on, the approach will be
referred to as the “Beliefs” model. The methodology of the Beliefs model is broadly
in line with calibration exercises, which posit an AS equation and an assumed
government objective function defined over unemployment and inflation, which
is then optimized using the systematic part of inflation as the control variable.9

It is thus a numerical optimal control exercise, the added complication being that
the authorities are assumed to have a misspecified Phillips curve, but update their
estimate of this according to a recursive updating procedure.

Sargent (1999) and Cho, Williams and Sargent (2002) describe a number of dif-
ferent dynamic versions of their Beliefs model, but it is the one which assumes a
static Phillips Curve that will be used to motivate what follows.10 The basic build-
ing block is a government characterized as setting monetary policy dependent
upon (their) approximating (that is, misspecified) model of the economy, which is
a non-expectational Phillips curve. The true data-generating mechanism, in con-
trast, is taken to be a vertical expectational Phillips curve in which the natural rate
is assumed to be given.11 The actual or “true” model of the economy used is:

ut = u∗ − θ(πt − π̂t )+ υ1t (18.6)

πt = π̂t + υ2t . (18.7)

Equation (18.6) is a natural rate Phillips curve (with u∗ being the natural rate),
and equation (18.7) shows that actual inflation is then a systematic part (π̂t ) set
by government, together with a random term υ2t .

12 To obtain the policy rule for
π̂t , the model assumes that the authorities have a perceived (misspecified) Phillips
curve of the simple linear form:

up
t = γ0t + γ1tπt + εt , (18.8)

where up
t is perceived unemployment, and it depends on time-varying parameters.
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The government’s optimal rule for setting the systematic part of inflation is then
derived by solving the following control problem:

MinE
∞∑

t=0

δ
t
(u2

t + π
2
t ), (18.9)

where δ
t is the discount rate, using π̂t as the control variable, subject to the author-

ity’s misspecified view of the Phillips curve, equation (18.8) above, and equation
(18.7). Assuming that, in each period, the government believes its current estimate
of the Phillips curve is correct, the optimization problem is also a static one, with
the time-varying control rule:

π̂t = [−γ1t/(1+ γ
2
1t )]γ0t . (18.10)

In the cited applications it is assumed that these parameters are updated sequen-
tially using recursive least-squares with constant gain. As noted above, the
optimization proceeds by assuming that, in each period. the government treats
that period’s uncertain parameters as if they were true and optimizes subject to
that assumption. Tetlow and von zur Muehlen (2001) review this point and find
that the properties of the Beliefs model are robust to wider classes of uncertainty.

Unlike the AS equation (18.1) in the “baseline” NKPM above, this one uses a
static Phillips curve, both for the “actual” (18.6) and the “perceived” equation
(18.8) where, in each, unemployment is the dependent variable and the “actual”
Phillips curve is built on the assumption of a fixed natural rate, from which only
inflation surprises produce temporary deviations. Dynamics enter through the dis-
tinction between these two Phillips curves, coupled with the crucial assumption
of “learning” about the parameters of the perceived Phillips curve using recursive
estimation.13 In this example, these are defined by the equations

γt+1 = γt + gP−1
t Xt (ut − γ0t − γ1tπt ) (18.11)

Pt+1 = Pt + g(XtX
′
t − Pt ), (18.12)

where γt is the column vector (γ0t , γ1t )
′, Xt the vector (1,πt )

′ and g = 1−ϑ , where
ϑ measures the rate at which past information is discounted. Pt is the 2×2 precision
matrix.

An important property of the model is that it depicts the government as pes-
simistic about the unemployment level needed to reduce inflation, but optimistic
about the effect of higher inflation in reducing unemployment; they tend, there-
fore, to continue to pursue a high inflation policy, which is the basis of the
self-confirming equilibrium (SCE) property of the model.14 However, solutions
of the model show that, even when the government is making this assumption,
the time path of inflation can undergo abrupt changes, suddenly dropping from
high rates to sustained low rates of inflation. Crucially, in this model this happens
only because there is a special sequence of shocks which shifts the economy from
the SCE of the Nash solution. These dynamics are a highly original way to use this
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model, with its underlying assumption of a fixed natural rate and a static Phillips
curve to account for the onset of periods of low inflation, and are defined as the
most likely path that (government) beliefs will take if they deviate from their mean
dynamics in a significant way.15

Two recent extensions to Sargent’s model are related to the application reported
later in section 18.5. Each alters what is taken to be the “true” Phillips curve used
above by including further exogenous variables in it. In the first, Ellison and Yates
(2007) extend the model to allow for an additional shock which, however, the
government is assumed to perceive correctly. The second, by McGough (2006), is
closer to the general procedure we follow. He extends the model of the natural rate
to allow an effect from real oil prices (OIL), so that equation (18.6) is modified as:

ut = u∗ − θ(πt − π̂t )+ ψOILt + v1t . (18.13)

In this model, the government’s approximating model does not have the “true”
parameter on this OIL variable and so is:

up
t = γ0t + γ1tπt + ϕt OILt + ψt . (18.14)

Hence, the assumption is that the government believes that real oil prices may
affect the level of unemployment but is unsure of the size of this effect. A related
model to this is described and applied to the UK in section 18.5.

18.4 Long-run unemployment: evidence from wage and price
equations

In section 18.5, the baseline Beliefs model set out in section 18.3 is extended by
embedding in it a long-run unemployment equation estimated, using cointegra-
tion, on UK quarterly data. This will be our version of “actual” unemployment
(equation (18.6) above) and, like that, uses an aggregate supply equation with
unemployment as the dependent variable.16

Cointegration analysis is needed to estimate this unemployment equation since
the data involved are non-stationary. Ignoring non-stationarities in the variables,
and the possibility that cointegrating vectors may exist between them, leads to mis-
specification, even where the model is estimated in levels, as the cross-equation
restrictions due to cointegration will be ignored. It follows that the policy infer-
ences in our later applications are, to this extent, empirically based. In the rest
of this section, we will refer only to the long-run results for the unemployment
equation, in keeping with the static form of the AS equation of the Beliefs model.

18.4.1 Behavioral models of the labor market

The intention of the rest of the chapter is to integrate tests of the beliefs model, to be
given in section 18.5, with the very active program of research by labor economists
that uses “behavioral” models of the labor market. The term “behavioral” is used
in the sense that the underlying models are derived from flow or stock models of
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the labor market, in contrast with more statistical (or time series) models of unem-
ployment, such as Ball and Mankiw (2002) for example. Using such behavioral
models, when estimated as reduced-form unemployment equations, many labor
economists have concluded that labor supply factors play a crucial role in deter-
mining long-term unemployment. For a recent affirmation, see Layard, Nickell and
Jackman (2005) and the review of this book by Blanchard (2007). But the empirical
claims that effects of labor supply-side or wage-pressure variables, such as unioniza-
tion, income out of work and the rigor with which rules on this are applied, have
been so important is challenged by other economists.17 Among others, these critics
include Madsen (1998), Oswald (1997), Henry and Nixon (2000) and Blanchflower
(2007). Empirical reasons for not accepting the claims of the supply-side propo-
nents are discussed in section 18.4.2. The alternative model suggested there is
that, based on econometric evidence, the labor supply variables that have charac-
terized much of UK research do not satisfactorily account for the large changes in
unemployment since the early 1970s, so the alternative emphasizes other possible
determinants of unemployment, based on effects from the external economy.

To make the present study comparable with existing research, the model of
wage and price determination used here starts from the model described in Layard,
Nickell and Jackman (2005) and Nickell (1998), the basic equations of which are a
price equation based on markup pricing and a wage equation derived from union–
firm bargaining, which are solved to give an unemployment equation.18 Thus the
price and wage equations (ignoring time subscripts) are:

p−w = zp − β2(p− pe
) (18.15)

w = γ2pe + (1− γ2)p− γ1u− γ11�u+ zw, (18.16)

where pe is expected prices. Solving (18.15) and (18.16) for u, ignoring the price
surprise terms, gives a lagged equation in unemployment and the exogenous wage
and price variables (zp, zw), that is,

u = γ11
γ1

�u−1 +
zp + zw

γ1
. (18.17)

This shows that in the long run (where unemployment is not changing, so �u =
0), unemployment depends on zw and zp, the “push” or driving variables in the
underlying wage and price equations respectively. Details on the components of
each of these “push” variables are discussed next.

From this point on, the approach is to review the empirical role of each of a
large set of wage and price “push” variables, taking those used in recent research
on both the wage and the price equation as the starting point. Recent examples of
wage “push” variables (where each is an element in the zw term in (18.17) above)
have included the terms of trade (TT), a measure of skill shortage (Skill), the tax
and price wedge (T), the replacement ratio (RR), a measure of union power (UP), an
index of industrial turbulence (IT), and the real interest rate (r) (see, for example,
Nickell, 1998, for models of the UK). From the pricing side, recent open-economy
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models of UK price formation have included secular trends in the price markup,
real import prices and relative competitors prices (the world price of domestic GDP
relative to home prices) as determinants of domestic prices (Herzberg, Kapetanios
and Price, 2003). Also an empirical (ad hoc) effect has been found for real oil prices
(Batini, Jackson and Nickell, 2005).19

18.4.2 An empirical assessment of the wage and price push variables

Empirical results using sets of the dozen or so contending variables in long-run
unemployment equations are reviewed in the rest of this section. In all cases the
data are for the UK, and are defined in a short appendix to this chapter. The section
starts with a summary of earlier findings by Henry and Nixon (2000) and Henry and
Kirby (2007), which both found that the case for using the wage “push” variables
listed in the previous section was rejectable in terms of standard statistical criteria.
These findings are summarized next and, since this is in the nature of a critique
of previous research, uses a sample of quarterly data from 1964Q4 to 1992Q4,
which is the sample period used by Nickell (1998), one of the leading proponents
of the wage-pressure approach. Following that, the case for using “push” variables
from the pricing side is summarized and this uses a sample of quarterly data from
1980Q1 to 2005Q1, as this is the period over which a monetary policy regime
change is alleged to have happened, and is the period the application in section
18.5 is concerned with.20

The argument of the remainder of this section is that, via a process of testing for
parameter stability and weak exogeneity, and using the concept of a minimal set of
cointegrating variables, it is possible to arrive at a parsimonious model of long-run
unemployment.

18.4.2.1 The wage push variables

Much existing empirical research on long-run unemployment in the UK has
emphasized wage “push” variables (zw in (18.17)) only, in effect treating the driv-
ing variables in the price equation as zero. This set of wage “push” variables has
used up to seven separate regressors from the wage “push” side to try to account
for changes in long-run unemployment. Others have argued that smaller sets of
regressors perform better on the grounds of parameter stability of the resulting
equation over different sub-samples and the (related) requirement that the regres-
sors in such equations be weakly exogenous. Henry and Nixon (2000), for example,
make a case for including only real oil prices, the terms of trade and real interest
rates in the long-run unemployment equation.

More recently, Henry and Kirby (2007) reconsider the empirical results for the
unemployment equation based on such a large set of regressors according to how
the equation is estimated. The equation in question is as follows:

lnu = β1TT + β2Skill + β3T + β4RR+ β5UP + β6IT + β7r. (18.18)

Two estimation methods have been used to test the wage “push” thesis: long-run
equations that are solutions of autoregressive distributed lag (ARDL) equations,
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as in Nickell and Bell (1995) and Nickell (1998); and estimates of a cointegrating
equation using Johansen’s maximum likelihood (ML) method, as in Nickell and
Bell (1995). Henry and Kirby argue that neither satisfactorily explains long-run
trends in unemployment in the UK as its proponents claim. Reasons for this are
summarised below. First, however, ARDL estimates of the long-run equation are
shown in Table 18.1.21 For this test, the full sample period is 1964Q4 to 1992Q4 as
in Nickell (1998). The variables are described in the appendix to this chapter: full
definitions are found in Nickell and Bell (1995) and Henry and Kirby (2007).

Table 18.1 ARDL estimates of long-run unemployment
equations

Const. IT RR∗ TT Skill UP T r

1964Q4–1992Q4
−35.5 0.11 0.049 9.99 0.09 1.90 0.035 0.021
∗∗ (0.6) (1.4) (2.2) (3.0) (2.0) (2.7) (2.1)

1964Q4–1992Q4
−45.5 0.17 2.19 11.2 0.06 1.9 0.039 0.01
(4.0) (1.2) (1.5) (2.89) (2.1) (1.82) (2.7) (1.5)

1964Q4–1989Q4
−71.9 0.34 2.5 6.9 0.05 −0.6 0.067 0.01
(4.5) (2.4) (1.87) (1.6) (2.2) (0.5) (3.55) (1.2)

1964Q4–1984Q4
−65.1 0.14 0.4 −13.1 0.08 2.0 0.069 0.02
(5.6) (1.6) (0.4) (1.8) (2.6) (2.2) (4.5) (2.6)

Notes: Each uses a maximum lag of 4 on each variable. t-statistics
are in (.).
∗Nickell and Bell (1995) report estimates of the parameter for this
variable of 8.95 and 4.88 for the ARDL and Johansen estimates
respectively and appear to use the log of the replacement ratio.
The estimate above from Nickell (1998) is apparently its level. We
use the former throughout.
∗∗No t-statistic is given in the original.

The first equation is taken from Nickell (1998). It is clear that the remaining
estimates reveal substantial variation in the estimated parameters and, in crucial
cases, a complete turnaround in the significance of the estimates. This feature of
parameter instability confirms what a number of critics have pointed out, namely
that such wage-pressure variables are unlikely to account for long-run movements
in unemployment since they were no worse in the mid 1980s than in the 1960s,
yet unemployment still rose.

On a more methodological note, the use of ARDL to estimate long-run equations
is not generally acceptable as it requires that the right-hand-side variables do not
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themselves cointegrate, though tests in this case show they clearly do (see Henry,
Kirby and Riley 2007, for further details). The right-hand-side variables should be
weakly exogenous too, which, as discussed later, they are not. However, the prob-
lems with the model are not simply due to ARDL estimation, and the difficulty of
treating the equation (18.18) as a long-run unemployment equation is not resolved
by using an alternative such as the Johansen ML method to estimate a single co-
integrating vector, normalized on unemployment, which is then treated as “the”
unemployment relationship as in Nickell and Bell (1995). We review problems with
the use of Johansen estimation with this dataset next. The purpose of this is not
estimation, but to describe what would be required to estimate (18.18) so that it
had a behavioral interpretation. This review, incidentally, provides on explanation
for the parameter instability noted in Table 18.1.

As the data are mainly non-stationary (see below), the dynamic model under-
lying equation (18.18) can be written as a vector error correction model (VECM),
with eight equations, one for each of the variables in (18.18), as illustrated next:

�zt =
p−1∑
j=1

�j�zt−j + γα
′zt−1 + εt . (18.19)

Here z is a column vector of n variables, n being the eight variables (including the
unemployment rate) from equation (18.18). The �j (j = 1, . . . , (p − 1)) are a set of
(8×8) matrices of parameters on the dynamic terms of the model, where the preset
lag-length of the model is p. Attention is focused on the long-run part of the VECM,
where γ and α

′ are the loading weights and cointegrating vectors respectively, and
γ is nxr to reflect the reduced rank of the system, where it is implicitly assumed that
there are r < n cointegrating vectors in the model, and εt is a vector of white-noise
error terms, with εt ∼ N(0,�).

Tests of orders of integration of the eight variables reported Table 18.2 reveal
that one, IT, is I(0) while the others are I(1). In this set it appears there could be
up to three cointegrating vectors. Tests for r ≤ 3 give 32.8 (34.4) for the Johansen
eigenvalue test (λ) but 75.2 (75.9) for the Johansen trace test (95% significance levels
in brackets).22 Tests of weak causality show that only the terms of trade (TT) and
the tax wedge (T) are weakly exogenous (Table 18.3). In the light of these first-stage
results on orders of integration and exogeneity tests, the implied model appears to
be a five-equation conditional model plus a two-equation marginal model for TT
and T , that is,

�yt =
p−1∑
j=1

�1j�zt−j + γα
′zt−1 + ηt (18.20)

�xt =
p−1∑
j=1

�2j�zt−j + υt (18.21)

where yt and xt are (5 × 1) and (2 × 1) column vectors of I(1) endogenous (lnu,
Skill, RR, UP and R) and I(1) weakly exogenous variables (TT and T), respectively.
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Table 18.2 Tests of orders of integration,
sample 1964Q4–1992Q4

Variable DF ADF(4) DF ADF(4)

ln u −0.7 −1.3 −5.4 −4.0
IT −3.0 −3.4 −8.7 −6.1
T −2.3 −2.3 −13.5 −4.2
TT −1.0 −0.3 −13.8 −4.9
Skill −1.5 −3.3 −4.8 −5.7
RR −0.2 −2.0 −3.3 −2.7
UP −1.3 −1.5 −4.0 −3.6
r −2.1 −2.4 −3.3 −2.7

Notes: The first two columns are for levels, the
second two for first differences (ADF followed by
ADF(4) in each case). 95% critical value is 2.9.

Table 18.3 Tests for weak
exogeneity, sample
1964Q4–1992Q4

Variable Wald statistic

ln u 21.9
IT –
T 2.9
TT 6.4
Skills 22.2
RR 19.7
UP 17.1
r 22.4

Note: The relevant test statistic
with three cointegrating vec-
tors is χ2(3) with 95% critical
value of 7.8.

The stationary variable IT is assumed to enter in the �zt−1 vector in a level form.23

�1j are (5× 8) and �2j are (2× 8) matrices of parameters on the dynamic terms of
all the variables.

To just identify the cointegrating vectors in the model, r2 restrictions need to
be accepted, with each of the r cointegrating equations having exactly r restric-
tions successfully applied, as demonstrated in Pesaran and Shin (2002).24 Further,
Wickens and Motto (2001) show that when the cointegrating vector α

′ in (18.20) is
exactly identified, additional overidentication lies in successfully applying restric-
tions on the loading matrix γ .25 By applying these procedures, it could, in
principle, be possible to derive an equation like (18.18) from the conditional model
(18.20), if all the required restrictions on the long-run vectors and the loading
matrix needed to get from (18.20) to a single equation of the form of (18.18) were
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successfully upheld. Then, estimates of the structural disturbances for the model
for which the VECM (18.19) is the reduced form could be obtained, as shown by
Wickens and Motto (2001). That is, the responses of unemployment to structural

shocks, that is, et , defined as B−1
εt , where B is the matrix of contemporaneous

coefficients in the structural model underlying (18.19), could be estimated.26 In
the light of the earlier results on weak exogeneity, such overidentifying restrictions
on the loading matrix, in particular, are unlikely to hold.

Hence the status of single-equation estimates of (18.18), such as those given
in Nickell (1998), for example, and repeated as the first equation in Table 18.1
above, is then unclear. It is hard to treat it simply as “the” long-run unemployment
equation as claimed. Rather, it appears to be part of a fuller dynamic system which
involves equations which could be interpreted as determining the real interest rate,
movements in skill shortages and the union–non-union wage markup, amongst
other things.

The purpose of this last exercise is not to suggest estimation of the full system
underlying (18.19) as the way ahead to resolve this issue. Instead, it highlights the
dangers of using large sets of potentially I(1), and possibly jointly endogenous,
variables if the intention is to estimate a single equation for long-run unemploy-
ment. Thus, one important conclusion from this exercise is to emphasize the
importance of the approach by Davidson (1998) of determining an irreducible co-
integrating (IC) equation. He recommends minimal cointegrating sets of variables
as contenders for structural (that is, behavioral) long-run relations.

In what follows, a simpler alternative is proposed which places emphasis on
external factors in accounting for the changes in unemployment over the last 25
years.

18.4.2.2 The price push variables

The long-run, or equilibrium, pricing equation which underlies most recent studies
on the NKPC is:

Pt = μtMCt , (18.22)

where:
MCt = (1/α)(WtNt/Yt ).

In this equation MCt is nominal marginal cost, Wt is wages, Nt is employment
and Yt is real output. Assuming a Cobb–Douglas (CD) technology and a constant
elasticity demand function, real marginal cost is (in logs):

mct − pt = − lnα + sLt , (18.23)

where sLt is the labor share. An extension is where technology is not restricted to
be CD, and it may be shown that real marginal cost is then affected by the real price
of imports (RPM) (see Bentolila and Saint-Paul, 1999). In turn, a long-run “equi-
librium” price can de defined as P∗t , where P∗t = μ

∗
t MCt and MC is nominal (not

real) marginal cost, and this equilibrium markup is likely to be time-varying (see
Batini, Jackson and Nickell, 2005). Potential determinants of this varying markup
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are measures of international price competition (COM) and the real price of imports
(RPM) (see Balakrishnan and Lopez-Salido, 2002; Herzberg, Kapetanios and Price,
2003; Batini, Jackson and Nickell, 2005, amongst others). Other, more ad hoc addi-
tions which have figured in the empirical literature are also included, such as the
real oil price (OIL) (see Batini, Jackson and Nickell, 2005; Stock and Watson, 2002;
Henry and Nixon, 2000; Boivin and Giannini, 2003). The real exchange rate (RXR)
has also been used in the wage equation on the grounds of capturing real wage resis-
tance effects (Nickell, 1988), as well as being a way of extending the standard model
to allow for internal and external balance (see Layard, Nickell and Jackman, 2005).

Equating the real wage and markup again leads to a long-run unemployment
equation, this time of the form:

ut = β1 + β2COMt + β3RPMt + β4z̃wt + β5RXRt + β6OILt , (18.24)

where z̃wt is now taken to be the price and tax wedge variable (T).27

18.4.2.3 Cointegration results for unemployment

The strategy adopted here is to take the set of possible determinants of unemploy-
ment from equation (18.24) and derive a parsimonious version of the long-run
unemployment equation using cointegration methods.28 From earlier findings it
appears that there is only one variable (T) which survives as a potential determi-
nant of long-run unemployment from the wage setting side and, in the light of
this, the rest of this section considers the empirical case for the use of variables
from the price-setting side reviewed above.

The complete set of variables used initially is given in (18.24). In this set there
is probably one cointegrating vector. Tests for r ≤ 1 give 47.4 (40.53) for the
Johansen eigenvalue test (λ) and 120.1 (102.6) for the Johansen trace test (95%
significance levels in brackets). The tests reject the hypothesis that r ≤ 2 with
λ = 26.3 (34.4) and Trace = 72.7 (76.0). Even so, it remains likely that sub-sets
of these six variables also cointegrate, and we build on this idea in following the
approach suggested in Davidson (1998) of selecting minimal sets of non-stationary
variables as contenders for the long-run equation. This explores the results of drop-
ping each variable (except unemployment) from the cointegrating vector, and the
results can be summarized as follows. It is found that a minimal set comprising
the two variables COM and OIL, together with unemployment, form a cointegrat-
ing vector (for r ≤ 1; λ = 40.3 (22.0) and Trace = 51.4 (34.9)). Other contending
sub-sets of the six either do not cointegrate or have inappropriate signs and other
theoretical shortcomings (further details are given in Henry, Kirby and Riley, 2007).

The minimal cointegrating set selected is then:

ut = 0.76+ 0.85 OILt + 10.7 COMt . (18.25)

(Tests for orders of integration of these variables are given in Table 18.4.) Although
this is simple by design, this long-run relation enters significantly in the error
correction model for changes in unemployment based on the just-identified VECM,
with a negative loading factor of 0.53 and a t-statistic of 4.6. Tests also show that all
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Table 18.4 Tests of orders of integration,
sample 1980Q1–2005Q4

Variable DF ADF DF ADF

u −0.24 −2.1 −2.6 −3.2
OIL −2.2 −2.14 −8.8 −6.2
COM −1.7 −2.0 −7.8 −4.1
RPM −0.27 −0.62 −7.4 −4.7

Notes: See Table 18.2.

Table 18.5 Tests for weak
exogeneity, sample
1980Q1–2005Q4

Variable Wald statistic

u 10.9
OIL 0.5
COM 3.2

Note: The relevant test statistic
with one cointegrating vector is
χ2(1) with a 95% critical value
of 3.8.

variables except unemployment are weakly exogenous as required (see Table 18.5).
It is this empirical model of long-run unemployment that is used in the application
of the Beliefs model in the next section.

18.5 Applying the Beliefs model to the UK

This section brings together the positive policy model emphasizing the role of
beliefs set out in section 18.3 and the econometric analysis of the UK natural rate
from section 18.4. It outlines optimal control solutions from the Beliefs model
when the crucial equation for long-run unemployment in the Beliefs model of
section 18.3 (equation (18.6)) is replaced with the cointegrating equation (equation
(18.25)) derived in the previous section. This econometric equation has impor-
tant “exogenous” determinants of the natural rate which arguably account for its
longer-term variation. In common with other examples of the Beliefs model, it
takes a static model of the supply side, and dynamic implications are then due
to the assumptions made about the authorities’ uncertainty and their processes of
learning. This change to the determination of long-run unemployment is profound
in its effect on the dynamic properties of the model, which are described later.
Uncertainties about the variation in the natural rate, due to changes in the external
economy, are advanced as a principal explanation for changes in UK inflation
since 1980.
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18.5.1 The model

The econometric model of long-run unemployment (equation (18.25)) is taken to
represent the “actual” model of the economy but, when solving the model, this is
amended to conform more closely to equations used so far in this literature. Thus,
the “actual” equation is as shown next:

ut = u∗∗ − θ(πt − π̂t )+ d1W1t + d2W2t + ν1t , (18.26)

where W1 = OIL and W2 = COM , and the variable u∗∗ is the long-run level of
unemployment that obtains in the absence of effects from the external econ-
omy and inflation surprises. The cointegrating equation derived in section 18.4
(equation (18.25)) is thus taken to be (18.26) when inflation surprises are zero.29

Inflation surprises are introduced when solving the model below, where the param-
eter θ in (18.26) is then set at unity, as is standard in the Beliefs literature.
Continuing with the rest of the model, actual inflation is again:

πt = π̂t + υ2t , (18.27)

which gives actual inflation as the systematic part of inflation, π̂t , set by the author-
ities by optimizing (18.9) subject to their “approximating” unemployment model
of the economy (18.28):

up
t = γ0t + γ1tπt + δ1tW1t + δ2tW2t + ηt . (18.28)

As is evident, it is assumed in the “approximating” model that the authorities
know that unemployment is affected by a set of exogenous variables but have a
misspecified form of their effect. As written, (18.28) assumes – as in the Sargent
model – that the authorities also have a mistaken belief in an exploitable trade-off
between inflation and unemployment. As is clear, the time-varying parameters of
(18.28) are (γ0t , γ1t , δ1t , δ2t ), which are again assumed to be updated using standard
constant-gain recursive least squares formulae,

ξt+1 = ξt + gP−1
t Xt (ut − γ0t − γ1tπt − δ1W1t − δ2W2t ) (18.29)

= ξt + gP−1
t Xt (u

∗∗ − θ(πt − π̂t )+ v1t − γ0t − γ1tπt

+ (d1 − δ1)W1t + (d2 − δ2)W2t ) (18.30)

Pt+1 = Pt + g(XtX
′
t − Pt ), (18.31)

where ξt = (γ0t , γ1t , δ1t , δ2t )
′, Xt= (1,πt , W1t , W2t ), and Pt is now (4× 4).

With this set-up, the solution giving the authorities’ optimal setting of the
control variable πt is:

π̂t = −
γ1t

1+ γ 2
1t

(γ0t + δ1tW1t + δ2tW2t ). (18.32)

In the remainder of this section, optimal control solutions of the model given by
equations (18.9) and (18.26)–(18.32) are described, and possible interpretations of
these are advanced as we proceed.

mailto: rights@palgrave.com


S.G.B. Henry 937

18.5.2 Some model implications

18.5.2.1 Model solutions

Sargent’s (1999) model is recursive and is solved given initial values of the natural
rate (u∗) (assumed constant), the government’s discount rate, the parameter on
inflation surprises in the actual Phillips curve (θ) and the variances of the two error
processes in the model. These parameters are assigned the values 5% for the natural
rate, 0.98 for the discount rate, −1 for θ and the variances of the errors are each
taken to be 0.3. The dynamic solutions are calculated over 400 and 1,000 periods,
and it is in the latter that the escapes are a prominent feature (see, for example,
ibid., Ch. 8, p. 108).

The exercise we report next differs from Sargent’s in important ways. It takes
the model described in section 18.5.1 and, given the focus on the period since
1980, is solved over 100 quarters using actual data for the two exogenous vari-
ables in the unemployment equation starting from 1980Q1.30 In these solutions,
initial values for the parameters of the “perceived” Phillips curve, equation
(18.28), γ0t , γ1t , δ1t and δ2t , are required and are set at −0.6, −0.9, 2.0 and 10.0,
respectively.31 In each solution, the discount rate is set at unity, θ is minus unity
and the gain parameter in the updating equations is fixed at 0.0275 to ensure
comparability across the solutions. Stochastic solutions are generated by additive
drawings from standard normal distributions.32

18.5.2.2 Inflation with a time-varying natural rate

The present exercise is a Beliefs model, but one in which mistakes by the
authorities about the evolution of the natural rate as well as a belief in an
inflation–unemployment trade-off each can account for inflation dynamics.33

In Figure 18.3 the authorities are depicted as remaining uncertain about the
effects of external shocks on the natural rate and this, together with their mistaken
view about the existence of a trade-off, gives the initial higher rates of inflation.
The interactions of their revisions to all the parameters of the perceived Phillips
curve are then fairly complex, as we describe below. The effects of these are that
they adopt a looser monetary policy to start with in order to reduce unemployment
more than is actually required. Subsequently, the parameter estimates are updated
and the effects of these changes are that monetary policy is tightened, so bringing
down inflation over the first four to five years before it rises modestly and then
falls again.

The falls in inflation can be traced to the evolution of the governments’ estimates
of the parameters on all the variables in the authorities’ unemployment equation.
As in the other examples of the Beliefs literature cited so far, the authorities’ misper-
ception about inflation “surprises” also matter. But, as shown in Figures 18.4(a)–(e),
among the parameters in the authorities’ misperceived Phillips curve, δ1t and δ2t ,
each fall, γ0t increases and γ1t falls in absolute value (though it remains negative).
These revisions largely account for the changes in inflation shown in Figure 18.3,
and they appear to show that the authorities do not learn the full extent of the
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Figure 18.3 The first solution for inflation

dependence on unemployment of external shocks, but instead assume that the
unemployment effect on inflation is increasing.

Inflation surprises, as shown in Figure 18.4(e), do not play a part in bringing
about the reduction in inflation shown in Figure 18.3, in contrast to the “escapes”
model of Sargent (1999), where unusual realizations of the noise processes are the
sole explanation for switches between high and low inflation.

In keeping with properties of the Beliefs model, the present one also shows that
the authorities’ misspecified Phillips curve does not converge on the “true” Phillips
curve, and the authorities’ estimates of the parameters on the exogenous determi-
nants of unemployment do not converge to their values in the “true” Phillips
curve (as estimated separately). This finding is in line with Sargent’s depiction of
the solution being an SCE.

The next exercise considers what happens to inflation when the authorities are
not aware of the effects of the exogenous variables at all, and the parameters on
these (δ = (δ1, δ2)) are set at zero and not updated. The resulting inflation dynamics
are shown in Figure 18.5, which shows a significant increase in inflation. The
interpretation of this solution advanced here is that it represents the effects of an
optimistic view that the natural rate does not worsen in the face of adverse external
shocks. Monetary policy is then set as if these adverse shocks had not happened.
Below we argue that a parallel case to this is where the authorities believe that the
trend rate of productivity growth in the economy has risen when in fact it has not,
and this parallel motivates the comments on the economic events at the end of
the 1980s made in the following section.

As in the previous case, there are substantial changes in the (γ0, γ1) parameters
in the authorities’ Phillips curve (see Figures 18.6(a) and (b)). This time, however,
the authorities’ beliefs about the sacrifice ratio (governed by their estimate of γ1),
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Figure 18.4 (a) δ1t , (b) δ2t , (c) γ0t , (d) γ1t , (e) Inflation surprises (ν2t )

fluctuate around a fairly constant level, before changing sharply after about 75
quarters; these beliefs becoming more optimistic about the inflation consequences
of reduced unemployment.

18.5.2.3 Relating the results to the UK since 1980

In keeping with this branch of the Beliefs literature, the main features of the
dynamic solutions for inflation just given are related to events in the UK economy
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since the 1980s. Thus, starting at the beginning of the 1980s, UK output, unem-
ployment and inflation were dramatically worsened by the 1979 oil price shock,
but the effects of this were compounded by a significant switch in the 1980 bud-
get to lower direct tax rates, aiming to offset this with increases in excise tax,
petroleum revenue tax and increases in value added tax (VAT). The policy philos-
ophy for control of inflation at this time was governed by the MTFS which was,
in turn, predicated on targets for a wide monetary aggregate (£M3) and the (mis-
taken) belief in a predicable relation between changes in the monetary aggregate
and inflation. The interpretation of these events offered here is that, because of
its adherence to the MTFS, particularly its assumption that the natural rate was
a given, the government expected the effect of the external shock to oil prices
on unemployment to be smaller and shorter-lived than it was. In the event, it
was not until 1986 that unemployment began to fall significantly. Inflation fell
more quickly, and by 1983 was down to about 4%. The numerical solution of the
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model shown in Figure 18.3 is broadly consistent with the events of the first half
of the 1980s, and suggests that this can be seen as a high inflation outturn due to
the authorities’ mistaken belief about the natural rate, but revisions to the other
parameters in the authorities Phillips curve lead to tighter monetary policy and
inflation then falls to a relatively low rate after about three to four years.34

However, inflation rose markedly again at the end of the 1980s decade. The
argument advanced here is that this further bout of higher inflation was due to
yet another mistake by the authorities, this time about the probable trend rate of
growth of productive potential in the economy. This mistaken assumption was in
keeping with their view that a lower natural rate was to be expected following the
“supply side” changes introduced by the government in the first part of the 1980s.
The assessment of the evidence summarized in section 18.4 is that these alleged
effects from the supply side did not happen. But official estimates of whole econ-
omy output per head show that in the period 1985–88 this was estimated to be at a
rate of 3.25%, up from the 2% rate of growth for the period 1979–87 (FSBR, 1988,
p. 30).35 Due to this mistaken belief in a faster non-inflationary rate of growth,
the Treasury appears to have significantly underpredicted inflation in 1989–90.
Barrell, Khoman and Kirby (2007) report that the (retail price index) inflation fore-
casts made by the Treasury for 1988, 1989 and 1990 were, respectively, 4.5 (6.5),
5.5 (7.6) and 7.25 (10) (inflation outturns in brackets), each of which is evidence of
a consistent and marked optimism about inflation. In later FSBR reports, in the face
of a slowdown in the rate of output per head, the Treasury placed less emphasis on
this trend improvement view. In other words, its belief in an improved productiv-
ity performance appears to have been short-lived. We argued above that this case
is similar in its effects to the case shown in Figure 18.5, where the authorities are
not aware that adverse external shocks on the economy have increased the natu-
ral rate and, as result of this mistake, inflation increases. The belief that potential
growth is higher than it actually is would have a similar effect. But it is important to
note that the solution shown in Figure 18.5 allows for permanent ignorance of the
authorities about the effects of external shocks and inflation shoots up as a result.
In reality this is too extreme. Thus, to relate this to the parallel case of a mistaken
belief in an underlying productivity improvement in the late 1980s in the UK, it
needs to be recognized that this belief soon evaporated. Even so, this temporary
belief would have produced a spurt in inflation in line with what happened.36

18.6 Conclusions and proposals for future work

Evidently, both the empirical and the more theoretical material described in this
chapter are limited. Thus, although we have sought to extend the policy model
to allow for external (international) effects, in practice these are restricted to hav-
ing effects only on the evolution of the natural rate. More direct transmissions of
international changes in real commodity prices or international structural changes
(“globalization”) onto UK import price or consumer price inflation, for example,
have been ignored and extensions to include some of these developments is an
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urgent priority. The quantitative effects of future real oil price increases is another
crucial area, with many arguing that future effects will not have the severe conse-
quences that the previous oil price increases had on the international economy.37

In equal measure, the theoretical model used here is clearly a limited one, and
extensions to it, both to enlarge the model of the economy (including further
extensions to open economy effects as just noted) and to give a more realistic
rendering of monetary policy, are urgently needed. Important as these are, in our
judgment, the outstanding item on the agenda is to extend the Phillips curve model
used in the Beliefs literature, and in our examples above, to include nominal inertia
in the inflation process.

With these important caveats in mind, there are nevertheless some impor-
tant implications of monetary policy relevance which flow from what has been
done here. The theme of the chapter is the central importance of uncertainty in
determining the outcomes of monetary policy. The main uncertainty we have con-
centrated on is uncertainty in the model of the supply side the authorities use
in forming their judgments about the appropriate settings for policy. Where it
departs from the Sargent approach, which pioneered this research, is most obvi-
ous in its treatment of the evolution of the natural rate, where we have sought to
combine his insights into the importance of the authorities’ “learning” with the
ongoing controversy in the UK about the determinants of the long-run movement
in unemployment. On this latter point, our emphasis is on exogenous (and largely
international) determinants of unemployment, against the prevailing model which
places heavy emphasis on domestic labor supply-side factors such as income out
of work and union strength. The argument in favor of our alternative is largely
evidence-based; the standard model appears to fail conventional statistical tests,
mainly because its putative determinants of unemployment would be consistent
with little or no change in unemployment in the 1980s as compared with the 1960s
when, in fact, actual unemployment rose substantially over this period.

Embedding this empirical model of long-run unemployment in a version of
the Sargent model of monetary policy with learning, we suggest, illuminates the
sequence of changes in inflation over the last 25 years, a part of which can be
accounted for by the evolution of the natural rate, on the one hand, and “misper-
ceptions” of it by the authorities, on the other. It portrays the decline in inflation by
the mid 1980s as being a slow recovery from the oil price-induced inflation peak of
1979–80, as the authorities believed the natural rate was not significantly worsened
by the shock. Inflation then fell back to reach quite low rates towards the end of
the 1980s, so the next interpretive problem is to account for the rise in inflation at
the end of the 1980s and early 1990s. In our account, this is portrayed as a further
“policy mistake,” as the so-called “Lawson boom” of the late 1980s was predicated
on a perceived, but mistaken, increase in the economy’s productivity trend.38 We
show that such a misperception of a decrease in the natural rate can indeed lead
to hikes in the inflation rate. In this light, the subsequent UK membership of the
ERM can be seen as an attempt at reducing inflation by importing credibility.39

Broadly speaking, this interpretation agrees in some measure with the conclusion
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reached by Budd (2004) that ERM membership contributed in an important way
to the UK’s inflation and unemployment record post-membership. According to
the analysis here, the major movements in unemployment and inflation in the
UK, heralded by some as due to the regime of inflation targeting and central bank
independence, can, at best, be only part of the story. The analysis given earlier
suggests that a mixture of external shocks and a slow process of recognition of
the effects of these by the authorities may also have played an important part in
the evolution of UK inflation. Occasionally, too, the economy is diverted by policy
mistakes, such as our interpretation of the effects of the “Lawson boom” illustrates,
and this conclusion concurs with much of the explanation of US behavior given
by Orphanides (2001, 2002) and Primiceri (2005).

18.7 Appendix: Data – definitions and sources

Sample 1964Q4–1992Q4

TT. This is a terms of trade variable defined as s ln(Pm/P∗), where s is the import
share in GDP, Pm is the import price index for the UK, and P∗ is the unit value
index of manufacturing exports in sterling.

UP. The log of the union/non-union markup, where the markup is a derived series
as estimated in Layard, Metcalf and Nickell (1978).

RR. The replacement ratio (percentage) using a weighted average of different
family types.

T . This is the tax wedge defined as the sum of the employment tax on firms, the
aggregate direct tax rate and an aggregate indirect tax rate.

Skill. This variable is a measure of skill shortages faced by employers, derived from
the Confederation of British Industry Industrial Trends Survey. It is the ratio
of responses to the questions (i) limits on output due to skill labor shortage,
(ii) limits on output due to other labor shortage.

IT. Industrial turbulence, defined as the absolute change in the proportion of
employees in production industries as a proportion of total employees in
employment.

r. The real interest rate, defined as the Treasury bill rate minus the rate of
inflation in the GDP deflator.

lnu. Log of unemployment in the UK, males and females.

For sources of all the variables, see Nickell (1998).

Sample 1980Q1–2005Q4

Unemployment (u). ILO definition.
Real oil price (OIL). Brent spot price less the GDP deflator.
Real international prices (COM). Effective export prices for the G7 less GDP
deflator.
Real import prices (RPM). Implicit price deflator for total imports less the GDP
deflator.
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Real exchange rate (RXR). Effective nominal rates, using the 2000 patterns of
trade matrix, deflated by the consumer expenditure deflator.

Source: National Institute database.
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Notes

1. The inflationary increases of 1979–80 were also exacerbated by the switch from direct to
indirect tax in the Budget. Further detail are given in section 18.5.2.4.

2. A recent clear review of this methodology is found in Perron (2006).
3. But see Kara and Nelson (2003) for an example.
4. In what follows, expectations are taken to be conditional on information available at

period t .
5. Surico (2006) echoes this view when estimating the NKPC which, he argues, needs to

allow for the interest rate reaction function actually in force at the time.
6. This uses the same notation as SW (2002) and follows their convention of ignoring

the intercepts in the equations for notational convenience, though these are used in
estimation.

7. The standard interpretation is that forward-looking expected variables enter in their
lagged representation.

8. The so-called “timing protocol” is largely standard though, whereby the government
first sets the systematic part of inflation and then the public form their expectation for
inflation.

9. Perhaps the most sophisticated example of this class of studies is that of Svensson (2000).
10. This is largely standard in the cited examples. The present version draws on the Tetlow

and von zur Muehlen (2001) account.
11. Note that throughout this chapter, the terms “natural rate” and “NAIRU” are used inter-

changeably. The switch from one to the other, though possibly confusing to the reader,
is made to accord with what is used in the original papers.

12. This version of the AS equation, with unemployment as the dependent variable, is stan-
dard in the Beliefs literature. We will refer to it throughout the rest of the chapter as the
Phillips curve, hopefully without risk of ambiguity.

13. There are some differences in the precise methods used in the literature. Primiceri (2005),
for example, uses Kalman filtering.

14. See Ellison and Yates (2007) for the links between the model’s mean dynamics, their
stability conditions and the SCE.

15. To establish them a further optimal control problem is used where mean dynamics are
perturbed and a weighting function is used that measures the likelihood of the shocks
needed to perturb beliefs. For details of this, see Cho, Williams and Sargent (2002).

16. Section 18.5 discusses how the “inflation surprise” term is included in the model.
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17. Note that we use the term “supply side” in a narrow sense to refer to the view that the
labor market indices noted in the text have the predominant effect on the unemploy-
ment trend. This is an influential group in the UK. Elsewhere, economists such as Phelps,
who emphasize the supply side, embrace a wider interpretation of supply side effects.
See Fitoussi et al. (2000).

18. The use of a reduced-form unemployment equation is, in part, a reaction to the well
known argument that the standard model of the labor market, such as that found in
Layard et al. (1991), has a wage equation which is not identified. See Manning (1993)
for a clear account of this. Hall and Henry (2006) argue that with non-stationary data
this lack of identification is generally not found.

19. This accords with the inclusion of commodity prices in the SVARs estimated in Stock
and Watson (2002) and Boivin and Giannoni (2003).

20. Results for longer samples are reported in Henry, Kirby and Riley (2007).
21. All equations in this sub-section use lnu as the dependent variable. For arguments

favoring this, see Nickell and Bell (1995).
22. All tests of cointegrating rank in this chapter use asymptotic tests. For small sample

corrections to these tests, see Johansen (2002).
23. See Wickens and Motto (2001) for a discussion of the treatment of I(0) variables in the

VECM.
24. These can be nonlinear restrictions.
25. This account ignores the possibility of using restrictions on the short-run dynamics, as

our interest is in the long-run model only.
26. The structural model referred to here has unemployment and the remaining seven vari-

ables noted in the text as its contemporaneous variables, and not wages and prices. See
note 18 for further comment on this point.

27. Full data definitions are given in the appendix to this chapter.
28. Parsimony is based on the concept of a minimal cointegrating vector introduced by

Davidson (1998).
29. This treatment follows from the interpretation of equation (18.25) as a long-run

unemployment equation.
30. We have also conducted long solutions of the same order as other studies, and these show

the same sort of repeated escapes as reported by Sargent (1999) and McGough (2006),
for example.

31. Al-Eyd et al. (2007) review some issues of the robustness of the findings with respect to
these settings.

32. For v2t the variance is scaled by the estimated variance of the acceleration in inflation
over the period.

33. Arguably, UK governments at this time did not subscribe to the view that there was a
trade-off. The adoption of a Medium Term Financial Strategy (MTFS) by the government
in 1979 included a central assumption of a vertical Phillips curve. In spite of this, the
model uses the assumption that government believes in a trade-off since, in practice, the
government may have continued to act as if there was a trade-off in using the threat of
higher unemployment consequences if “excessive” pay demands were accepted.

34. In this account, we are deliberately ignoring other transmission effects of oil price
changes on inflation. This is in line with our treatment of these real shocks as impinging
on unemployment only. But the partial nature of the account provided should be borne
in mind throughout what follows.

35. The 3.25% for this period was partly a forecast.
36. A related issue is the effects of technology shocks on the performance of monetary policy.

Recent US research has been directed at this issue too (see, for example, Gali, Lopez-Salido
and Valles, 2003).

37. For an alternative view, however, see Nordhaus (2007).
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38. It also involved great uncertainty about the measurement of the growth rates of the three
measures of GDP at the time, though this plays no part in the analysis we give.

39. The argument at the time was that membership could reduce inflation at reduced unem-
ployment cost due to the credibility gains inherent in “tying one’s hands” – essentially
the benefits of importing anti-inflation credibility from a then low inflation central bank
(the Bundesbank). As unemployment rose to over 10% by 1992 and only reached its pre-
entry rate by 1997, it is not clear that, in practice, these benefits actually accrued to the
UK.
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Estimation of Continuous-Time
Stochastic Volatility Models
George Dotsis, Raphael N. Markellos and Terence C. Mills

Abstract

This chapter reviews some of the key issues involved in estimating continuous-time stochastic
volatility models. Such models have become popular recently because they provide a rich variety
of alternative specifications which often lead to closed or semi-closed solutions in a variety of
asset-pricing applications. An empirical comparison of various stochastic volatility models is also
undertaken, along with a discussion of some directions for future research.
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19.1 Introduction

It is now widely accepted that volatility in financial markets evolves stochasti-
cally over time.1 The stochastic behavior of volatility has important implications
for asset allocation, the pricing and hedging of derivative securities, prudent risk
management and the behavior of financial assets in general. There are two cen-
tral facets to the modeling of time-varying volatility. The first is the estimation
of the model’s parameters, the second is the filtration of latent volatility given
these parameter estimates. The filtration of volatility is particularly important for
applications such as option pricing, value-at-risk and portfolio allocation, all of
which require volatility estimates. One popular approach that tackles both of
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these facets is based on the ARCH/GARCH model introduced by Engle (1982) and
Bollerslev (1986).2 In this approach latent volatility is modeled as a deterministic
function of past data available to the econometrician. The significant advantage
of the GARCH approach is that empirical estimation can be implemented easily
using quasi-maximum likelihood (QML) techniques.

A second class of time-varying volatility models are those termed “stochastic
volatility”: these are usually specified in continuous time and allow for a separate
error process to drive the dynamics of volatility. Continuous-time stochastic volatil-
ity models have become fashionable over recent years as they allow a rich variety
of alternative specifications. Moreover, stochastic volatility models offer closed
or semi-closed solutions in many important asset-pricing applications. Unfortu-
nately, the estimation of stochastic volatility models with discretely sampled data
is particularly difficult because the likelihood function is not usually available in a
tractable form. This intractability has fueled a significant research effort by finan-
cial econometricians. Continuous-time stochastic volatility models originate from
the mathematical finance and option-pricing literature.3 As one of the fathers of
continuous-time finance, the late Fisher Black, remarked: “suppose we use the stan-
dard deviation of possible future returns on a stock as a measure of its volatility. Is it
reasonable to take that volatility as constant over time? I think not” (Black, 1976).

The “official” year of birth of continuous-time stochastic volatility models may
be taken to be 1987 as, in that year, Hull and White (1987), Johnson and Shanno
(1987), Scott (1987) and Wiggins (1987) all developed option-pricing models with
stochastic volatility. These models extended those of Black and Scholes (1973) and
Merton (1973) by allowing volatility to follow a separate diffusion process. Scott
(1987) and Wiggins (1987) are early attempts in estimating the parameters of the
model using a method of moments approach. In this chapter we provide a selective
review of some of the other popular methods that have been proposed over the
years for estimating continuous-time stochastic volatility models.4

The need to estimate stochastic or time-varying volatility stemmed from the
desire to explain and reproduce some of the stylized facts that have been observed
in financial data:

• Fat tails. Since the early studies of Fama (1963, 1965) and Mandelbrot (1963), it
has been well documented that asset returns are leptokurtic and violate the
assumption of normality. Continuous-time models such as Merton’s (1976)
jump diffusion can generate non-normality and fat tails.

• Volatility clustering. In most financial markets we can observe episodes of high
volatility interspersed by episodes of low volatility, so that large returns tend
to be followed by large returns and small returns tend to be followed by small
returns, irrespective of sign. In fact, one of the reasons for the huge success of
GARCH modeling is that it provides a direct link between time-varying volatil-
ity, conditional heteroskedasticity and unconditional leptokurtosis. The implied
clustering effect is depicted in Figure 19.1, which shows the daily returns of the
Standard and Poor (S&P) 500 over the period 1990–2007.
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Figure 19.1 Logarithmic returns of the S&P500 over the period January 2, 1990, to December
31, 2007

• Leverage effect. Stock returns are negatively correlated with volatility, a phe-
nomenon which Black (1976) coined the “leverage effect.” When the stock
price of a firm declines the leverage of the firm increases and hence the firm’s
price becomes more risky and volatile. Modified GARCH processes, such as the
threshold-GARCH (TGARCH) model of Glosten, Jagannathan and Runkle (1993)
and the exponential-GARCH (EGARCH) model of Nelson (1991), are designed to
capture this leverage effect. However, many studies have shown that the asym-
metric relationship between asset returns and volatility cannot be explained
solely by leverage (for example, see Black, 1976; Christie, 1982; Schwert,
1989).

• Information arrivals. Information arrival is non-uniform through time. Clark
(1973) linked asset returns to the arrival of information and was one of the
first examples of stochastic volatility. The intuition here is that, when infor-
mation arrival is non-uniform, randomness in business activity can generate
randomness in volatility. Easley and O’Hara (1992) developed a market-
microstructure model with time deformation that provided, amongst other
things, a direct link between market volatility, trading volume and quote
arrivals. In continuous-time finance there is a large literature that allows ran-
domness in business time by using time-changed Lévy processes, which can
generate stochastic volatility, fat tails and leverage effects (for example, Carr
and Wu, 2004).

• Volatility dynamics. Stochastic volatility is usually assumed to follow a mean
reverting process. Mean reversion in volatility is consistent with the cluster-
ing phenomenon and is also consistent with the economic interpretation of
volatility as a measure of risk. It implies that volatility oscillates around a long
run mean according to the speed with which it reverts to this mean level. The
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mean reversion parameter has been found to alter dramatically at different data
frequencies, suggesting that volatility may be driven by multiple factors (for
example, Chacko and Viceira, 2003). Other studies (such as Bakshi, Ju and
Ou-Yang, 2006) suggest that volatility displays nonlinear mean reversion with
reversals at both high and low levels of the volatility spectrum. Empirical evi-
dence shows that volatility displays so-called level effects (for example, Jones,
2003) whereby periods of high volatility usually coincide with periods of volatile
volatility. Finally, recent studies suggest that volatility and asset returns display
correlated jumps during times of market stress (for example, Eraker, Johannes
and Polson, 2003).

• Smiles, skews and implied volatility. It has long been documented that the Black–
Scholes (1973) model is not consistent with observed option prices. Given a
set of option prices, one can invert the Black–Scholes formula and backout
the implied volatility that sets the observed price equal to the Black–Scholes
price. If the Black–Scholes model was correct, then, as a function of strike prices,
implied volatility would be a flat line. However, it is well known that implied
volatility displays a U-shaped pattern (the implied volatility “smile”) in foreign
exchange derivatives markets and a downward sloping curve (the implied
volatility “skew”) in index option markets (see Bates, 1996a). Continuous-time
stochastic volatility models have been proposed as an alternative to Black–
Scholes in order to explain the empirical patterns of implied volatility curves
and smiles. Figure 19.2 depicts the evolution of daily S&P500 prices and the
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Figure 19.2 S&P500 prices (solid line) and VXO values (dotted line) over the time period
January 2, 1990, to December 31, 2007
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implied volatility VXO over the period 1990–2007.5 The relationship appears to
be negative, especially during times of market stress. Derivatives markets facil-
itate empirical estimation by providing an alternative source for backing-out
latent volatility (for example, Pan, 2002; Aït-Sahalia and Kimmel, 2006).

The rest of the chapter is structured as follows. In section 19.2 we discuss the
properties of some popular stochastic volatility models. Section 19.3 is devoted to
the econometric methods used for drawing inferences in stochastic volatility mod-
els. First, we review estimation methods when volatility is treated as unobserved,
such as efficient method of moments (EMM), Markov chain Monte Carlo (MCMC),
and methods based on the empirical characteristic function (ECF). Subsequently,
we discuss methods that incorporate information from the derivatives markets into
the estimation procedure. Lastly, we review some recent methods that allow infer-
ences to be made in stochastic volatility models using high frequency data. In
section 19.4 we conduct an empirical comparison of various stochastic volatility
models. Section 19.5 concludes and provides directions for future research.

19.2 Volatility specifications

We assume that the logarithms of an asset, yt = ln(St ), and its latent volatility,
Vt , evolve over time according to the following general jump diffusion stochastic
volatility model:

dyt =
(
μ− 1

2
Vt

)
dt +√VtdWS

t + yS
t dNS

t

dVt = a(Vt , t)dt + σ(Vt , t)dWV
t + yV

t dNV
t . (19.1)

Here, WS
t and WV

t are standard correlated Brownian motions. NS
t and NV

t are Pois-
son processes uncorrelated with these Brownian motions, with constant intensities

λy and λv , and yS
t and yV

t are the jump sizes of the asset return and volatility, respec-

tively. When NS
t = NV

t , jumps in asset returns and volatility occur simultaneously,

and when NS
t �= NV

t , the jump times are independent. The terms a(·) and σ(·) are
the drift and diffusion functions of the volatility process, respectively. The parame-
ter vector of (19.1) is denoted as �. For simplicity, we assume that the mean return
of the asset, μ, is constant, although some models allow the conditional mean
return to be a linear function of volatility, as in Merton (1980). In the late 1980s,
stochastic volatility models were developed by assuming that the processes driving
volatility and asset prices had continuous paths, that is, they followed diffusion
processes. By the late 1990s, new types of stochastic volatility models had been
introduced which were based on jump diffusion processes for the underlying asset
price and, more recently, there have appeared stochastic volatility models that are
founded on “double jump” processes, where both the underlying asset price and
volatility follow jump-diffusion processes. In the following sub-sections we discuss
various specifications of the a(·) and σ(·) terms that are nested within the general
specification (19.1).6
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19.2.1 Affine diffusions

The must popular stochastic volatility (SV) models are the so-called affine mod-
els. Broadly speaking, affine models are characterized by linearity of the drift and
variance functions in (19.1) and provide computational tractability that leads to
closed or semi-closed solutions in a variety of applications (see Duffie, Pan and
Singleton, 2000). We examine the following affine specifications of the general

stochastic volatility model in (19.1) when NS
t = NV

t = 0.

SV1 dVt = k(θ − Vt )dt + σdWV
t

SV2 dVt = k(θ − Vt )dt + σ
√

VtdWV
t .

In the SV1 model, also called the Ornstein–Uhlenbeck process, volatility follows
a Gaussian mean-reverting process. The parameter k captures the speed of mean
reversion, θ is the long-run mean of volatility and σ is the volatility of volatility.
SV1 was first used by Vasicek (1977) for term structure modeling and has also
been used for option pricing by Hull and White (1987), Scott (1987), Stein and
Stein (1991), and Brenner, Ou and Zhang (2006), among others. This is the only
stochastic volatility model for which the distribution of asset returns in (19.1) can
be derived in closed form (see Stein and Stein, 1991). The conditional mean and
variance of the SV1 model at time t for a time period T > t is given by:

Et
(
VT

) = θ + (Vt − θ
)

e−k(T−t) (19.2)

Vart
(
VT

) = σ
2

2k

(
1− e−2k(T−t)

)
. (19.3)

Unfortunately, the SV1 model is not fully consistent with the empirical proper-
ties of volatility. In particular, SV1 implies that volatility can take negative values
and that it is homoskedastic, which is evident from the fact that the conditional
variance of the process does not depend on the level of volatility. Hence SV1 is
not able to capture the positivity of volatility or the level effect. Consequently,
despite the analytical tractability offered by this specification, it is no longer in
common use.

SV2 was popularized after Heston (1993) and has been extensively used in a
variety of applications. It was proposed as an alternative to SV1 that constrained
volatility from taking negative values (see, for example, Bates, 1996b, 2000). Under
this volatility parameterization the distribution of stock prices in (19.1) is not
known in closed form but can be derived from the characteristic function (we
discuss this methodology in section 19.3). The conditional mean and variance of
the SV2 model are:

Et
(
VT

) = θ + (Vt − θ
)

e−k(T−t) (19.4)

Vart
(
VT

) = Vt

(
σ

2

k

)(
e−k(T−t) − e−2k(T−t)

)
+
(
σ

2

k

)(
1− e−k(T−t)

)2
. (19.5)
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The conditional means of the two models are identical but, from (19.5), it can be
seen that the conditional variance of SV2 depends on the level of volatility, thus
making the process heteroskedastic.

19.2.2 Affine jump diffusions

Another popular class comprises the affine jump diffusion models, which incorpo-
rate a jump component in asset returns and/or volatility. Here we examine the case
where jump times in asset returns and volatility occur simultaneously and jump
sizes are correlated.

SV3 dV = k
(
θ − Vt

)
dt + σdWV

t + yV
t dNV

t .

In SV3, NS
t = NV

t , the volatility jump size is drawn from an exponential distri-

bution, f (yV
) = ηe−ηyV

1{y≥0}, and the returns jump size follows the conditional

distribution yS|yV : N(μS + ρyV , σ2
S ). The SV3 model has been used, for example,

by Duffie, Pan and Singleton (2000), Eraker, Johannes and Polson (2003), Eraker
(2004) and Broadie, Chernov and Johannes (2007). It allows for a rapidly moving
and persistent factor to drive asset returns during times of market stress. Under
this volatility parameterization the distribution of stock prices in (19.1) can again
be derived from the characteristic function. The conditional mean and variance of
SV3 are:

Et
(
Vt
) = Vte

−k(T−t) + θ
(
1− e−k(T−t)

)
+ λv

kη

(
1− e−k(T−t)

)
(19.6)

Vart
(
VT

) = Vt

(
σ

2

k

)(
e−k(T−t) − e−2k(T−t)

)
+
(
σ

2
θ

2k

)(
1− e−k(T−t)

)2

+ λvσ
2

2k2

(
1− e−kτ

)2 1
η
+ λv

k

(
1− e−2kτ

) 1

η2
. (19.7)

19.2.3 Non-affine diffusions

Non-affine models are not particularly popular in the option pricing literature as
they do not provide closed form formulae for option pricing. Neither the distri-
bution nor the characteristic function of (19.1) can be obtained in closed form.
However, these specifications have been widely used for econometric estimation
purposes. Here we assume again that the dynamics in (19.1) do not incorporate a
jump component.

SV4 dVt = k
(
θ − Vt

)
dt + σVγ

t dWV
t

SV5
d
(
lnVt

) = k
(
θ − (lnVt

))
dt + σdWV

t

dVt = kVt

(
θ + σ

2

2k
− ln Vt

)
dt + σVtdWV

t .
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SV4 is also called the constant elasticity of variance process and has been used,
for example, by Jones (2003) and Aït-Sahalia and Kimmel (2007). The functional
form of the diffusion component implies that the model can easily accommodate
the level effect. The conditional mean of SV4 generalizes those of SV1 and SV2,
which are obtained by setting γ to zero and 0.5, respectively. However, the con-
ditional variance does not have an analytical form and can only be derived using
approximations.

SV5 is by far the most popular specification of discrete-time stochastic volatil-
ity models as it produces Gaussian log-volatilities (for example, Jacquier, Polson
and Rossi, 1994; Kim, Shephard and Chib, 1998). In continuous-time settings, it
has been used by Wiggins (1987) for the pricing of equity options, by Melino and
Turnbull (1990) for the pricing of currency options, and by Detemple and Osakwe
(2000) and Psychoyios, Dotsis and Markellos (2007) for the valuation of volatility
options. Andersen, Benzoni and Lund (2002) and Chernov et al. (2003) estimated
the model empirically. From the volatility levels process we can deduce, first, that
the model accounts for the level effect of volatility and, second, that mean rever-
sion depends on the level of Vt , that is, the larger Vt , the larger the mean reversion
of the process. The first two conditional central moments are given by:

Et
(
Vt
) = Vexp(−k(T−t))

t exp

((
1− e−λt

)
μ+ σ

2

4λ

(
1− e−2λt

))
(19.8)

Vart
(
Vt
) = V2 exp(−k(T−t))

t exp

(
2
(
1− e−k(T−t)

)
θ + σ

2

2k

(
1− e−k(T−t)

))

×
(

exp

(
σ

2

2k

(
1− e−2k(T−t)

))
− 1

)
. (19.9)

19.3 Inference in stochastic volatility models

Although stochastic volatility models are built in continuous time, empirical data
are only observed at discrete time intervals. Inference in stochastic volatility models
is a difficult task because the likelihood function is typically not available in a
tractable form. The Gaussian QML approach of Harvey, Ruiz and Shephard (1994)
is appealing because of its simplicity, but many studies have shown that the method
fails because volatility models are highly non-Gaussian.

Suppose that y = {
y1, . . . , yT

}
is a discrete time series of observed data, yt =

log(St ) − log(St−1), t = 1, . . . , T , and V = {
V1, . . . , VT

}
is the vector of latent

stochastic volatility. We assume that y is stationary and that xt = (yt , Vt ) forms a
Markov system. The system xt can be treated as either fully or partially observed. If
the former, latent volatility may be extracted from the derivatives markets, whereas,
under the latter, volatility is treated as a latent variable that has to be integrated
out of the likelihood function.
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When xt is fully observed the likelihood function for estimating the parameters
is given by:

p (x; θ) = p
(
x1; θ

) T−1∏
t=1

p
(
xt+1|xt ;�

)
, (19.10)

where p (x;�) is the joint density function and p
(
x1;�

)
is the unconditional den-

sity. In many applications (for example, Aït-Sahalia and Kimmel, 2007) the density
of the initial observation is omitted since, asymptotically, it does not affect the
efficiency of the parameter estimates. Under this approach the difficulty lies in
the fact that the conditional densities, p

(
xt+1|xt ;�

)
, of most stochastic volatility

models cannot be derived in closed form. In principle, the transitional densities
can be obtained numerically by solving the corresponding Fokker–Planck equation
(for example, Lo, 1988). The conditional densities can also be obtained by Fourier
inversion of the conditional characteristic function if the model belongs to the
affine class or by other approximating methods.

When volatility is not directly observed it has to be integrated out of the like-
lihood function. In this case, the corresponding marginal likelihood function is
given by:

p(y; θ) =
∫

RT
p(y, V ;�)dV =

∫
RT

p(y|V ;�)p(V ;�)dV . (19.11)

The dimension of the integral depends on the sample size, so that direct evaluation
of the likelihood function is difficult. Moreover, when latent volatility is integrated
out, the asset price alone is non-Markov due to the presence of correlation and the
conditional density of the next period’s return depends on the entire set of pre-
vious observations, Yt−1 =

{
yt−1, . . . , y1

}
. The likelihood can be approximated by

simulation methods such as MCMC or estimation can be implemented by avoiding
the likelihood altogether and resorting to methods of moments estimation such as
EMM or generalized method of moments (GMM).

In the next sections we discuss estimation methods when volatility is treated as
unobserved and we then extend the analysis to the case where volatility is extracted
from option prices.

19.3.1 Simulation-based inference

19.3.1.1 Efficient method of moments

The EMM, developed by Bansal et al. (1993, 1995) and Gallant and Tauchen (1996),
is an extension of the simulated method of moments (SMM) of Duffie and Singleton
(1993). EMM avoids direct computation of the likelihood function and resorts to
efficient estimation via GMM and a cautious selection of the moment conditions.
The parameter estimates are minimum chi-squared estimators and the optimized
chi-squared criterion can be used to evaluate the statistical fitting of the various
stochastic volatility models. Hence a significant advantage of the EMM procedure
is that it allows empirical comparison between non-nested specifications, such as,
for example, SV2 and SV5. However, EMM is computationally demanding and,
as with all GMM procedures, it depends on the optimal choice of moment condi-
tions. Estimation of stochastic volatility models with EMM has been undertaken by
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Gallant, Hsieh and Tauchen (1997), Andersen and Lund (1997), Andersen, Benzoni
and Lund (2002), Chernov and Ghysels (2000) and Chernov et al. (2003), while
Andersen, Chung and Sørensen (1999) explore the efficiency of EMM estimators
in a Monte Carlo study.

The starting point of the EMM procedure is to approximate the conditional den-
sity of the data as closely as possible with a discrete-time auxiliary model. This
auxiliary model is not related to any particular stochastic-volatility model, its
purpose being to capture the probabilistic structure of the data and to provide
the moment conditions that must be satisfied by a postulated stochastic-volatility
model, which in EMM applications is called the structural model. The auxiliary
model usually involves an ARMA-GARCH specification and a semi-nonparametric
density based on Hermite polynomials.

Suppose that the conditional density of the auxiliary model is fK(yt |Yt−1;.a),
where α is the parameter vector of the auxiliary model. The parameters can be
estimated by QML as follows:

ã = arg max
1
n

n∑
t=0

log
[
fK(yt |Yt−1;a

]
. (19.12)

The ML estimates ã ensure that the quasi-score function satisfies the first-order
conditions:

1
T

n∑
t=0

∂

∂a
ln fK

(
yt |Yt−1; ã

) = 0. (19.13)

In the second stage, EMM uses the expectation of the score functions of the auxil-
iary model as the moment conditions that deliver the estimates � of the structural
model. The expectation is taken under the probability measure, P

(
Yt ;�

)
, of the

structural model:

m
(
θ , ã

) = EP
[
∂ ln fK(Yt ; ã)

∂a

]
=
∫

∂ ln fK(Yt ; ã)
∂a

dP(Yt ;�). (19.14)

Given a set of parameters �, the expectation is calculated numerically, using a long
simulated series, ŷN (θ), from the structural model, as:7

m̃
(
θ , ã

) = 1
N

N∑
t=1

∂ ln fK(ŷt (θ)|Ŷt−1(θ); ã)
∂a

, (19.15)

and, as N → ∞, m̃
(
θ , ã

) → m
(
θ , ã

)
. The EMM estimator is then obtained by

minimizing the quadratic function:

�̂ = arg min
�

mN (�, ã)′WT mN (�, ã), (19.16)

where the weighting matrix WT is a consistent estimate of the inverse asymptotic
covariance matrix of the auxiliary score function. Gallant and Tauchen (1996) show
how to derive the weighting matrix and prove that the parameter estimates of the
structural model are asymptotically normally distributed. Latent volatility can be
filtered out using the reprojection method of Gallant and Tauchen (1998).
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19.3.1.2 Markov chain Monte Carlo

The Bayesian Markov chain Monte Carlo method was initially applied by Jacquier,
Polson and Rossi (1994) for the estimation of discrete-time stochastic volatility
models. However, the method has also become very popular in the estimation of
continuous-time models. Johannes and Polson (2006) provide an excellent survey
of MCMC applications in a variety of continuous-time asset-pricing models. In the
context of stochastic volatility, MCMC has been applied by, for example, Jones
(2003), Eraker, Johannes and Polson (2003) and Eraker (2004).

The output of the Bayesian MCMC is the posterior density, p(V , θ |y), of the
parameters and latent variables conditional on the data. The method quantifies
parameter uncertainty and model risk, filters out latent volatility, jump times and
jump sizes, and avoids optimization routines. However, under the MCMC it is
difficult to make comparisons across non-nested models such as SV2 and SV5.

Under the Bayesian approach the posterior density p(V , θ |y) is proportional to:

p(y|V ,�)p(V |�)p(�), (19.17)

where p(y|V ,�) is the full likelihood, p(V |�) is the density of the latent variable,
and p(�) is the prior density of the parameters. Sampling from the posterior density
is difficult because of the latent variable and, especially, because of the high dimen-
sion of the density. The MCMC method samples from the posterior by forming a
Markov chain over � and V that converges in distribution to p(V , θ |y). In practice,
the posterior is further decomposed into the two conditional densities, p(V |y,�)

and p(�|y, V) (see Johannes and Polson, 2006). The two most popular MCMC
algorithms for sampling from the two conditionals are the Gibbs sampler and
Metropolis–Hastings. If the conditionals can be sampled directly then the MCMC
is performed with the Gibbs sampler; otherwise Metropolis–Hastings is applied.

19.3.2 Characteristic function methods

In stochastic volatility models the conditional density is rarely available in closed
form. However, for models that belong to the affine class it is feasible to derive the
conditional characteristic function. The advantage of the characteristic function
methodology is that usually it does not require discretization of the continuous-
time process. The characteristic function is a powerful tool that encodes the same
information as the conditional density. Though the characteristic function solves
the same Kolmogorov forward and backward equations as does the conditional
density, the boundary condition for the characteristic function is smoother and
this allows the derivation of the characteristic function in a tractable form.8

The joint characteristic function conditional on current stock price and volatility
is defined as:

φ
(
iω1, iω2, yt , Vt , τ ; θ

) = E
[
eiω1yt+τ+iω2Vt+τ |xt

]
. (19.18)

To keep notation simple, we concentrate on specification (19.1) without jumps. The
characteristic function of the process must satisfy the following partial differential
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equation (PDE):

1
2

Vt
∂

2
φ

∂y2
t

+ρ
√

V2σ(Vt ; θ)
∂

2
φ

∂yt∂Vt
+ 1

2
σ(Vt ; θ)

2 ∂
2
φ

∂V2
t

+(μ− 1
2

Vt )
∂φ

∂yt
+a(Vt ; θ)

∂φ

∂yt
− ∂φ

∂τ
,

(19.19)

subject to the boundary condition φ
(
iω1, iω2, yt , Vt , 0, θ

) = eiω1yT+iω2VT .
When the stochastic volatility model belongs to the affine class, the solution

of the joint conditional characteristic function has a simple exponential form,
given by:

φ
(
iω1, iω2, yt , Vt , τ ; θ

) = eiω1yt+A(iω1,iω2,τ ;θ)Vt+B(iω1,iω2,τ ;θ). (19.20)

The coefficients A(iω1, iω2, τ ; θ) and B(iω1, iω2, τ ; θ) can be derived by solving
complex valued Ricatti equations. Duffie, Pan and Singleton (2000) show ana-
lytically how to derive the characteristic function for general affine diffusion-jump
diffusion stochastic volatility models. Knowledge of the characteristic function
also allows the derivation of non-central moments and cross-moments of affine
continuous-time stochastic models via simple differentiations.

If volatility is treated as observed then, in principle, the transition density can
be derived by Fourier inversion as:

p(yt+τ , Vt+τ |yt , Vt ) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

φ
(
iω1, iω2, yt , Vt , τ ; θ

)
× e−iω1yt+τ−iω2Vt+τ dω1dω2. (19.21)

Estimation with the characteristic function has been applied in latent stochas-
tic volatility models by Singleton (2001), Jiang and Knight (2002), Chacko and
Viceira (2003) and Bates (2006). Chacko and Viceira (2003) derive from (19.20)
the conditional characteristic function of the asset, φ

(
iω1, 0, yt , Vt , τ ; θ

)
, and then

integrate out the latent volatility to obtain, in closed-form solution, the character-
istic function conditional only on the current asset price, φ

(
iω1, 0, yt , τ ; θ

)
. They

then estimate various stochastic volatility models using Hansen’s (1982) method
of moments. However, the estimates are not fully efficient because the only con-
dition is on the current stock price and, as mentioned previously, when volatility
is integrated out the stock price on its own is no longer Markov. Jiang and Knight
(2002) use iterated expectations and derive the joint unconditional characteristic
function up to t − L observations,

φ
(
iω1, iω2, . . . iωL, yt , 0.τ , θ

) = E
[
eiω1yt−1,iω2yt−2,...iωLyT−L

]
.

In practice, the joint unconditional characteristic function is derived for a relatively
small L. Jiang and Knight (2002) estimate a stochastic volatility model using GMM
with non-central and cross-moments. Singleton (2001) and Bates (2006) achieve
full efficiency by conditioning on the full history of returns. Singleton proposes a
method that combines the simulated method of moments of Duffie and Singleton
(1993) with the characteristic function technology. Bates (2006) develops a direct
filtration-based maximum likelihood methodology using characteristic functions
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and estimates various diffusion/jump diffusion stochastic volatility models. His
method does not require any simulations and, in contrast to previous approaches,
also allows the filtration of latent volatility.

19.3.3 Derivatives markets

The development of derivatives markets provides an alternative source for filtering
latent volatility and estimating the parameters �. Some studies use only infor-
mation from the derivatives markets, whereas others use both option prices and
historical returns.

For affine diffusion/jump diffusion stochastic volatility models, European option
prices can be obtained in closed form, up to numerical integration, using the char-
acteristic function methodology. For example, the price of a European call option
that depends on the parameter vector � is given by:

C(·;�∗) = SP1 −Xe−rt P2. (19.22)

Here, P1 and P2 are cumulative probability functions that can be calculated by
Fourier inversion of the characteristic function (see Duffie et al., 2000) and �

∗ is
the set of risk neutral parameters. For a non-affine process, option prices can be
calculated either by Monte Carlo simulation (for example, Christoffersen, Jacobs
and Mimouni, 2006) or by solving the associated PDE. Many studies (for example,
Bakshi, Cao and Chen, 1997; Broadie et al., 2007) calibrate option pricing models
with stochastic volatility to observed options prices via least squares:

SSE(t) = min
θ

N∑
i=1

(
Oi − Ôi(�

∗
)
)2

, (19.23)

where N is the number of options at date t , Oi is the observed option price with
strike price K, and Ôi(�) is the model’s implied price given the parameters �

∗. Here
we should note that the set of parameters �

∗ is not the same as the set obtained
from historical returns because option prices are calculated under the risk-neutral
probability measure. Hence, option prices contain volatility and jump risk premia
that are incorporated into certain parameters. For example, under the assumption
that the volatility risk premium is linear in volatility (Heston, 1993), the parameters
of the SV2 model from calibration would be k∗ = k+λ and θ

∗ = kθ/(k+λ), where λ

is the market price of volatility risk. Calibration of the stochastic volatility model to
option prices alone does not allow the identification of the risk premium parameter.
Another drawback of this approach is that the model has to be recalibrated every
day, which will usually produce different parameter estimates.

Another strand of the literature uses options prices and historical returns simul-
taneously. The advantage of this approach is that the time series Vt can be taken
from option prices and it is also feasible to identify risk premia. This approach also
imposes consistency between option prices and the time series properties of the
underlying returns (see Bates, 1996a). Some well known studies that use option
prices and historical returns are Chernov and Ghysels (2000), who use EMM, Pan
(2002), using a GMM procedure, and Eraker (2004), employing MCMC. In a recent
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breakthrough paper, Aït-Sahalia (2008) derives transition density approximations
for multivariate diffusions. In Aït-Sahalia and Kimmel (2007) this method is applied
for maximum likelihood estimation of a variety of stochastic volatility models,
both affine and non-affine. Aït-Sahalia and Kimmel (2007) provide approxima-
tions for the joint density of asset returns and a vector of option prices or the joint
density of asset prices and an implied volatility index, which is used as a proxy for
latent volatility.

19.3.4 Integrated volatility

Recent advances in high frequency financial econometrics offer alternative meth-
ods for making inferences about latent stochastic volatility dynamics. Results from
the theory of quadratic variation (e.g., Andersen et al., 2001; Barndorff-Nielsen and
Shephard, 2002) show that, when the sampling frequency becomes high, realized
integrated volatility converges to the unobserved true integrated volatility. Figure
19.3 shows the evolution of the daily integrated volatility for the S&P500 over the
period 1993 to 2004.9 Integrated volatility over a period [t, T ] is computed from
summing high frequency log returns and is given by:

lim
N→∞

2N∑
i=1

(
yt+ i

2n (T−t) − yt+ i−1
2N (T−t)

)2
a.s.→ IVt ,T =

1
T − t

∫ T

t
Vsds. (19.24)

Expression (19.24) contains rich information with respect to the stochastic process
followed by the unobserved latent volatility. However, the expression is valid only
under the assumption that the sample paths of the asset are continuous. In the
presence of jumps in asset returns, integrated volatility also includes a jump com-
ponent (see Barndorff-Nielsen and Shephard, 2006). For affine models, it is feasible

2,50E-03
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1,50E-03

1,00E-03

5,00E-04

0,00E+00
05/01/93 05/01/95 05/01/97 05/01/99 05/01/01 05/01/03

Figure 19.3 Daily integrated volatilities of the S&P500 over the period January 5, 1993, to
December 31, 2004
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to derive the conditional moments of integrated volatility. For example, the first

moment has the general form Et

(
IVt ,T

)
= a(τ ,�)Vt +b(τ ,�). Bollerslev and Zhou

(2002) derive the first two conditional moments of integrated volatility and apply a
GMM procedure. In order to identify the correlation they also derive in closed form

the cross-moment, Et

(
yT IVt ,T

)
. Barndorff-Nielsen and Shephard (2002) develop

a QML procedure based on the time series of realized volatility. Chourdakis and
Dotsis (2008) estimate non-affine specifications using maximum likelihood and a
Markov chain approximation procedure.

19.4 Empirical comparison of volatility processes

In this section we provide an empirical comparison of the models described in
section 19.2. A comparison of the econometric methods outlined is section 19.3
is beyond the scope of this chapter. Instead, we estimate the volatility processes
autonomously using an implied volatility index.10 This facilitates estimation but
does not allow us to make inferences on the joint dynamics of asset returns and
volatility. For reasons explained in Jones (2003) and Bakshi, Ju and Ou-Yang (2006),
we consider as a proxy for volatility the implied volatility index VXO. Hence, we

set Vt ≡ VXO2
t over the period 1990–2007, a total of 4,535 daily observations.

The parameters of the various processes are estimated by maximum likelihood,
which requires the conditional density function f [V(t + τ)|V(t),�] (τ > 0) of the
process Vt , where τ denotes the sampling frequency of observations (daily in our

application). For a sample {Vt }Tt=1, the log-likelihood function that is maximized
is given by:

& = max
�

T−τ∑
t=1

log
(
f
(
Vt+τ

) ∣∣∣Vt ,�
)

. (19.25)

The standard errors of the estimates are retrieved from the inverse Hessian, eval-
uated at the estimates. For SV1, SV2 and SV5 the conditional density is known in
closed form (see Dotsis, Psychoyios and Skiadopoulos, 2007; Psychoyios, Dotsis
and Markellos, 2007). However, for SV3 and SV4, the transition density does not
have a closed-form solution. The density of SV4 is obtained by the approximation
method of Aït-Sahalia (1999, 2002). The transition density of the SV3 model is
obtained by Fourier inversion of the characteristic function (see Singleton, 2001;
Dotsis, Psychoyios and Skiadopoulos, 2007). The Fourier inversion of the character-
istic function provides the required conditional density function f [V(t+τ)|V(t)] as:

f [Vt+τ |Vt ,�] =
1
π

∫ ∞
0

Re[e−isVt+τ φ
(
iω, Vt , τ ;�

)]dω. (19.26)

Table 19.1 shows the ML estimates for VXO. For each of the processes, the estimated
parameters (annualized), the t-statistics (within parentheses), the AIC (Akaike
information criterion) and BIC (Bayesian information criterion), and the maxi-
mized log-likelihood values (LL) are reported. Likelihood ratio tests were also used
to compare nested models: as these supported the ranking obtained from AIC, BIC
and LL, they are not reported.
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Table 19.1 The parameter estimates (annualized) and the t-
statistics (reported in parentheses) are based on maximizing the
log-likelihood (LL). The data cover the period January 2, 1990, to
December 31, 2007, a total of 4,535 observations.

Parameter SV1 SV2 SV3 SV4 SV5

k
6.780 5.809 7.999 0.759 3.810
(7.71) (7.09) (11.13) (5.49) (5.80)

θ
0.044 0.044 0.022 0.105 −3.368

(19.96) (11.52) (24.05) (−29.85) (−27.78)

σ
0.123 0.447 0.359 3.29 1.96

(93.71) (93.88) (51.34) (22.21) (94.46)

γ – – –
1.157

–(7.89)

λ – –
31.498

– –(9.14)

1/η – –
0.017

– –(4.56)

LL 15,459 17,457 17,694 18,446 18,390
AIC −30,911 −34,908 −35,379 −36,884 −36,773
BIC −30,892 −34,889 −35,347 −36,850 −36,754

All parameters are significant at the 1% level. According to all model selection
criteria, the best fit is provided by SV4, followed by, in order, SV5, SV3, SV2 and
SV1. Consistent with previous results in the literature, the Gaussian SV1 model
provides a very poor approximation to the data. The square root specification of
SV2 improves the fit substantially and the addition of a jump component improves
performance further. In the SV3 model, the mean reversion parameter increases so
as to pull back the process to its long run mean after a jump event. However, the
increase in the speed of mean reversion shows that jumps do not have a persis-
tent effect on volatility. All the statistical criteria suggest that SV5 outperforms the
square root specifications. As also reported in Psychoyios, Dotsis and Markellos
(2007), this result should not come as a surprise, since SV5 is capable of generat-
ing a large increase in volatility at high levels, followed by rapid mean reversion.
The best model overall is the constant elasticity of variance specification SV4. The
estimate of the exponent in the diffusion, γ̂ = 1.16, suggests that, as volatility
increases, its own volatility increases at an even faster rate (see also Jones, 2003).
The model also appears capable of capturing strong heteroskedasticity in volatility
changes. The empirical results thus point to the conclusion that, at least under this
simplified set up, non-affine specifications outperform affine processes.

19.5 Conclusions

The list of methods that we have discussed in this chapter is by no means com-
plete. For example, we have omitted econometric approaches such as the SMM of
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Duffie and Singleton (1993), the simulated maximum likelihood (SML) of Santa-
Clara (1995) and Pedersen (1995a), the range-based QML estimation technique
of Alizadeh, Brandt and Diebold (2002) and the Markov chain approximation of
Chourdakis (2002).

We believe there are two avenues for future research. First, more work needs to
be done on the comparison of non-affine and affine volatility models. Two ques-
tions (at least) suggest themselves – does analytical tractability come at the cost of
empirical misspecification?, and what is the impact of non-affine specifications on
derivatives valuation? Second, despite this plethora of statistical stochastic volatil-
ity models there is still a lack of understanding about the economic underpinnings
of volatility. Carr and Wu (2008) show that the market price of volatility risk is large
and negative, and Bollerslev and Zhou (2007) find that the volatility risk premium
forecasts future excess returns. However, there is still no solid explanation of the
economic sources of volatility risk premia and there is also a lack of understand-
ing of the behavior of the pricing kernel as a function of both market returns and
return volatilities.

Notes

1. There is a wide variety of interpretations of the term “volatility” within the financial and
econometrics literature: for example, variance, (annualized) standard deviation, (total)
risk, uncertainty, and so on. In the context of continuous-time models and throughout
this chapter, the term is used to describe the latent instantaneous variance.

2. Baillie (2006), for example, provides a recent survey of ARCH/GARCH modeling.
3. See Sundaresan (2000) for a comprehensive review of the development and application

of continuous-time methods in finance and Aït-Sahalia (2007) for a survey of estima-
tion methods in continuous-time models. Merton (1990) is the benchmark book in
continuous-time finance.

4. Ghysels, Harvey and Renault (1996) provide an extensive review of stochastic volatility
models, but they are mainly concerned with models defined in discrete time.

5. VXO is the implied volatility of a synthetic at-the-money option on the S&P500 equity
index with a constant time to maturity of 30 calendar days to expiry. In 2003, the Chicago
Board Options Exchange (CBOE) introduced a new implied volatility index, coined the
VIX. This is calculated in a model-free manner as a weighted sum of out-of-money option
prices across all available strikes on the S&P500 index. Carr and Wu (2006) show that
the VIX represents the conditional risk-neutral expectation of the return volatility under
general market settings. In 2005 CBOE introduced futures on VIX and, in 2006, European
calls/puts written on forward VIX.

6. Psychoyios, Skiadopoulos and Alexakis (2003) provide a comprehensive review of
alternative volatility processes.

7. See Andersen, Benzoni and Lund (2002) for discussion on the simulation of diffu-
sion/jump stochastic volatility models.

8. The characteristic function methodology has also been used for parameter estimation
in discrete time independent and identically distributed (i.i.d) and autoregressive mov-
ing average (ARMA) processes by Feuerverger and McDunnough (1981a, 1981b) and
Feuerverger (1990).

9. The realized volatilities are based on intraday transactions on the S&P500 index. This
dataset has been used by Huang, Liu and Yu (2007) and is available from Professor
Yu’s web page (http://www.mysmu.edu/faculty/yujun/research.html). The construction
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of realized volatility takes into account market microstructure noise using a technique
proposed by Zhang, Mykland and Aït-Sahalia (2005).

10. At-the-money implied volatility is sometimes used as a proxy for instantaneous volatility.
However, the two are only identical when volatility is uncorrelated with the asset price,
the market price of volatility risk is zero, and the time to maturity of the option is short.
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Testing the Martingale Hypothesis
J. Carlos Escanciano and Ignacio N. Lobato

Abstract

This chapter examines testing the Martingale difference hypothesis (MDH) and related statistical
inference issues. The earlier literature on testing the MDH was based on linear measures of depen-
dence, such as sample autocorrelations; for example, the classic Box–Pierce portmanteau test and
the variance ratio test. In order to account for the existing nonlinearity in economic and financial
data, two directions have been entertained. First, to modify these classical approaches by taking
into account possible nonlinear dependence. Second, to use more sophisticated statistical tools
such as those based on empirical process theory or the use of generalized spectral analysis. This
chapter discusses these developments and applies them to exchange rate data.

20.1 Introduction 972
20.2 Preliminaries 973
20.3 Tests based on linear measures of dependence 975

20.3.1 Tests based on a finite-dimensional conditioning set 977
20.3.2 Tests based on an infinite-dimensional conditioning set 980

20.4 Tests based on nonlinear measures of dependence 984
20.4.1 Tests based on a finite-dimensional conditioning set 985
20.4.2 Tests based on an infinite-dimensional information set 988

20.5 Related hypotheses 996
20.6 Conclusions 997

20.1 Introduction

Martingale testing has received enormous attention in econometrics. One of the
main reasons is the efficient market hypothesis and the many ideas related to
it. In addition, many economic theories examining dynamic contexts in which
expectations are assumed to be rational lead to dependence restrictions of this kind
in the underlying economic variables (see, e.g., Hall, 1978; Fama, 1991; LeRoy,
1989; Lo, 1997; Cochrane, 2005). These theories have prompted a great deal of
research in macro- and financial economics which has stimulated a huge interest in
developing suitable econometric techniques. This econometric research has grown
around the theme of the lack of predictability of macro- or financial series, but this
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topic has flourished in different branches, emphasized different methodological
aspects, and appeared under different subject names.

When looking at asset prices, the idea of lack of predictability has been com-
monly referred to as the random walk hypothesis. Unfortunately, the term
“random walk” has been used in different contexts to mean different statistical
objects. For instance, in Campbell, Lo and MacKinlay’s (1997) textbook, they dis-
tinguish three types of random walks according to the dependence structure of the
increment series. Random walk 1 corresponds to independent increments, ran-
dom walk 2 to mean-independent increments, and random walk 3 to uncorrelated
increments. Of these three notions, the two most relevant to financial economet-
rics are the second and the third. The notion of random walk 1 is clearly rejected
in financial data for many reasons, the most important being volatility: the lack
of constancy of the variance of current asset returns conditional on lagged asset
returns. Within this terminology, this chapter will focus basically on the idea of
random walk 2, but we will also discuss some aspects associated with random walk
3. A martingale would correspond to random walk 2, and it plainly means that
the best forecast of tomorrow’s asset price is today’s. The asset returns, which are
unpredictable, are then said to form a martingale difference sequence. Since asset
prices are not stationary, from a technical point of view it is simpler to handle asset
returns, and instead of testing that prices follow a martingale, it is more common
to test that returns follow a martingale difference sequence.

Given the huge literature that has developed, it is unavoidable that the present
chapter reflects the authors’ personal interests. It is important at the outset to
stress what this chapter does not cover. We do not consider unit root tests, which
is a topic covered in many references (see, e.g., Laudrup and Jansson, 2006). We
do not address technical analysis, which assumes predictability and focuses on the
best ways of constructing a variety of charts to forecast a series. We do not consider
out-of-sample prediction tests because they assume particular models under the
alternative (see Inoue and Kilian, 2004; Clark and West, 2006). We do not examine
chaos tests, which are motivated by deterministic nonlinear models (see references
in Barnett and Serletis, 2000; Chan and Tong, 2002). What we address is called
conditional mean independence testing in the statistical literature.

The outline of the chapter is as follows. Section 20.2 contains the preliminary
definitions and an overview of the data that we will employ to illustrate the dif-
ferent techniques. Section 20.3 studies martingale difference tests based on linear
measures of dependence both in the time and frequency domains. Section 20.4
is devoted to tests based on nonlinear measures of dependence. Section 20.5 dis-
cusses briefly some hypotheses related to the martingale difference hypothesis and
Section 20.6 concludes.

20.2 Preliminaries

The martingale difference hypothesis (MDH) plays a central role in economic mod-
els where expectations are assumed to be rational. The underlying statistical object
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of interest is the concept of a martingale or, alternatively, the concept of a martin-
gale difference sequence (m.d.s.). Mathematically speaking, we say that Xt forms
a martingale, with respect to its natural filtration, when E

[
Xt | Xt−1, Xt−2, . . .

] =
Xt−1 almost surely (a.s.). As stated in the introduction, from a technical point of
view, it is simpler to work with the first differences, Yt = Xt − Xt−1, and we say
that Yt follows an mds when E

[
Yt | Yt−1, Yt−2, . . .

] = 0 a.s. More generally, we
state that the MDH holds when, for a real-valued stationary time series {Yt }∞t=−∞,
the following conditional moment restriction holds a.s.:

E
[
Yt | Yt−1, Yt−2, . . .

] = μ, μ ∈ R. (20.1)

The MDH slightly generalizes the notion of m.d.s. by allowing the unconditional
mean of Yt to be non-zero and unknown. The MDH states that the best predictor,
in the sense of least mean square error, of the future values of a time series, given
the past and current information set, is just the unconditional expectation. The
MDH is called conditional mean independence in the statistical literature, and it
implies that past and current information are of no use for forecasting future values
of an m.d.s. In section 20.5 we discuss extensions of this basic version of the MDH.

As noted in the introduction, there is a vast empirical and theoretical literature
on the MDH. In order to systematize part of this literature, we start by introducing
the following definitions. Let It = {Yt , Yt−1, . . .} be the information set at time t
and let Ft be the σ -field generated by It . The following equivalence is then funda-
mental because it formalizes the characteristic property of an m.d.s.: Yt is linearly
unpredictable given any linear or nonlinear transformation of the past, w(It−1),
i.e.,

E[Yt | It−1] = μ a.s., μ ∈ R ⇐⇒ E[(Yt − μ)w(It−1)] = 0, (20.2)

for any Ft−1-measurable weighting function w(·) (such that the moment exists).
Equation (20.2) is fundamental to understanding the motivation and main fea-
tures behind many tests of the MDH. There are two challenging features present
in the definition of an m.d.s.: first, the information set at time t , It , will typi-
cally include the infinite past of the series; second, the number of functions w(·) is
also infinite. We will classify the extant theoretical literature on testing the MDH
according to what types of functions w(·) are employed. Section 20.3 analyzes the
case where linear w(·) are employed, that is, the use of tests based on linear mea-
sures of dependence. Section 20.4 analyzes the case where an infinite number of
nonlinear ẃs are employed, that is, the use of tests based on nonlinear measures
of dependence. In both sections, we divide the extensive literature according to
whether the tests account for a finite number of lags or not, that is, whether they
assume that w(It−1) = w(Yt−1, ...., Yt−P) for some P ≥ 1 or not.

We shall illustrate some of the available methods for testing the MDH by applying
them to exchange rate returns. The martingale properties of exchange rate returns
have been studied previously by many authors, leading to mixed conclusions. For
instance, Bekaert and Hodrick (1992), Escanciano and Velasco (2006a, 2006b), Fong
and Ouliaris (1995), Hong and Lee (2003), Kuan and Lee (2004), LeBaron (1999),
Levich and Thomas (1993), Liu and He (1991), McCurdy and Morgan (1988) and
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Sweeney (1986) all find evidence against the MDH for nominal or real exchange
rates at different frequencies, whereas Diebold and Nason (1990), Fong, Koh and
Ouliaris (1997), Hsieh (1988, 1989, 1993), McCurdy and Morgan (1987) and Meese
and Rogoff (1983a, 1983b) find little evidence against the MDH. Here we consider
data that consists of four daily and weekly exchange rate returns against the US
dollar: the euro (Euro), the Canadian dollar (Can), the pound sterling (Pound) and
the Japanese yen (Yen). The daily data is taken from January 1, 2004, to August
17, 2007, with a total of 908 observations. For the weekly data, we consider the
returns on Wednesdays from January 14, 2000, to August 17, 2007, with a total
of 382 observations. The daily noon buying rates in New York City certified by
the Federal Reserve Bank of New York for customs and cable transfers purposes
are obtained from http://www.federalreserve.gov/Releases/h10/hist. In Figures 20.1
and 20.2 we have plotted the evolution of these four daily and weekly exchange
rates, respectively, and, similar to previous analyzes, the two main features of these
plots are their unpredictability and their volatility. Table 20.1 provides summary
statistics for the most relevant aspects of the marginal distribution of the data.
Similar to most financial series, the main feature from Table 20.1 is kurtosis that,
in line with previous studies, is larger for daily than for weekly data. Note that
skewness is moderate and slightly negative for daily data. As has been observed
repeatedly before, the marginal distribution of weekly data is closer to the normal
distribution than that of daily data.

20.3 Tests based on linear measures of dependence

Recall the m.d.s. definition in equation (20.2) that should hold for any function
w(·). The simplest approach is to consider linear functions, such as w(It−1) = Yt−j,
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Figure 20.1 Daily returns of the euro, Canadian dollar (Can), pound sterling (Pound) and
the Japanese yen (Yen) against the US dollar
Data from January 4, 2004, to August 17, 2007.
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Figure 20.2 Weekly returns of the euro, Canadian dollar (Can), the pound sterling (Pound)
and the Japanese yen (Yen) against the US dollar
Data from January 14, 2000, to August 17, 2007.

Table 20.1 Summary statistics of exchange rates returns

Daily Weekly

Euro Pound Can Yen Euro Pound Can Yen

n 908 908 908 908 382 382 382 382
Mean 0.0076 0.0113 −0.0213 0.0068 0.0738 0.0552 −0.0832 0.0352
Median 0.0000 0.0221 −0.0080 0.0279 0.0781 0.0763 −0.0864 0.0141
SD 0.5423 0.5332 0.5036 0.5670 1.3539 1.1407 0.9410 1.2525
Skewness −0.1263 −0.0976 −0.0196 −0.3763 0.0540 0.0545 0.0846 −0.2945
Kurtosis 3.7602 3.4927 3.1345 5.0746 3.0555 2.9649 2.8875 3.0895
Maximum 1.9358 2.0930 1.5129 2.4519 4.4680 3.4830 2.8128 3.1835
Minimum −2.0355 −2.1707 −1.7491 −2.7859 −3.1636 −3.2307 −2.7067 −4.3058

for some j ≥ 1. Hence, a necessary (but not sufficient, in general) condition for the
the MDH to hold is that the time series is uncorrelated, i.e.,

γj = Cov(Yt , Yt−j) = E[(Yt − μ)Yt−j] = 0 for all j ≥ 1, (20.3)

where γj denotes the autocovariance of order j. In principle, one should test that
all autocovariances or autocorrelations are zero. However, the most employed tests
just consider that a finite number of autocorrelations are zero. As commented in
the introduction, we will address these two cases separately.

Notice that the early literature, which includes some distinguished references
such as Yule (1926), Bartlett (1955), Grenander and Rosenblatt (1957) or Durbin
and Watson (1950), essentially assumed Gaussianity and, hence, identified three
concepts: lack of serial correlation, m.d.s., and independence. In the time series
literature the term “white noise” is commonly used to denote an uncorrelated
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series that can present some form of dependence. Obviously, a white-noise series
is neither necessarily independent nor m.d.s., since dependence can be reflected
in other aspects of the joint distribution such as higher-order moments. The dis-
tinction between these three concepts has been stressed recently in econometrics.
In fact, during the last few years a variety of models designed to reflect nonlin-
ear dependence have been studied in the econometrics literature. For instance, in
empirical finance, ARCH and bilinear models have been widely studied (see Bera
and Higgins, 1993, 1997, and Weiss, 1986, for a comparison). These models are
suitable for reflecting the nonlinear dependence structure found in many financial
series.

Tests for white noise have been proposed both in the time domain and in the
frequency domain. The time domain has mainly, but not exclusively, focused on
a finite number of lags, while the frequency domain has been more suitable for
addressing the infinite-dimensional case.

20.3.1 Tests based on a finite-dimensional conditioning set

In the time domain the most popular test (apart from the Durbin–Watson, which
is designed to test for lack of first-order serial correlation using regression residuals)
has been the Box–Pierce (Box and Pierce, 1970) portmanteau Qp test. The Qp test is
designed for testing that the first p autocorrelations of a series (possibly residuals)
are zero. The number p can be considered to be fixed or to grow with the sample
size n. In this section we will assume that p is fixed.

Suppose that we observe raw data {Yt }nt=1. Then γj can be consistently estimated
by the sample autocovariance:

γ̂j = (n− j)−1
n∑

t=1+j

(Yt − Y)(Yt−j − Y),

where Y is the sample mean, and we also introduce ρ̂j = γ̂j/γ̂0 to denote the
jth-order autocorrelation. The Qp statistic is just:

Qp = n
p∑

j=1

ρ̂
2
j ,

but it is commonly implemented via the Ljung and Box (1978) modification:

LBp = n(n+ 2)
p∑

j=1

(n− j)−1
ρ̂

2
j .

Note that Qp (or LBp) only takes into account the linear dependence up to the lag p.
When p is considered fixed, the Qp test statistic applied to independent data follows

a χ
2
p asymptotic null distribution, since the asymptotic covariance matrix of the

first p autocorrelations of an independent series is the identity matrix. Hence, it is

useful to write Qp =
(√

nρ̂
)′ I−1 (√nρ̂

)
, where ρ̂ = (ρ̂1, ..., ρ̂p)

′.
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Note, however, that when the series present some kind of nonlinear dependence,
such as conditional heteroskedasticity, this asymptotic null covariance matrix is no
longer the identity. In fact, denoting ρ = (ρ1, ..., ρp)

′, for a general time series the
asymptotic distribution of

√
n(ρ̂ − ρ) is N(0, T), where the p × p matrix T has as

(i, j)th element (see, e.g., Romano and Thombs, 1996),

γ
−2
0 (cij − ρic0j − ρjc0i + ρiρjc00),

where, for i, j = 0, 1, ..., p,

cij =
∞∑

d=−∞

{
E
[
(Yt − μ)(Yt−i − μ)(Yt+d − μ)(Yt+d−j − μ)

]

− E
[
(Yt − μ)(Yt−i − μ)

]
E
[
(Yt+d − μ)(Yt+d−j − μ)

] }
.

Under alternative assumptions the matrix T can be simplified and this will lead
to several modified versions of the Box–Pierce statistic. When this matrix is still
diagonal, as happens under m.d.s. and additional moment restrictions, which, for
instance, are satisfied by Gaussian GARCH models and many stochastic volatil-
ity models, the natural approach is to robustify the Qp by standardizing it by a
consistent estimate of its asymptotic variance, i.e.,

Q∗p = n
p∑

j=1

ρ̂
2
j

τj
,

where:

τj =
1

γ̂ 2
0

n∑
t=1+j

(Yt − Y)
2
(Yt−j − Y)

2.

We have followed Lobato, Nankervis and Savin’s (2001) notation and denoted the
robustified Qp by Q∗p . This statistic has appeared in different versions (see, e.g.,
Diebold, 1986; Lo and MacKinlay, 1989; Robinson, 1991; Cumby and Huizinga,
1992; Bollerslev and Wooldridge, 1992; Bera and Higgins, 1993). The Q∗p statistic
(or its Ljung–Box analog) should be routinely computed for financial data instead
of the standard Qp (or the LBp). However, this is not typically the case (see Lobato,
Nankervis and Savin, 2001, for details).

For the general case, the asymptotic covariance matrix of the first p autocorre-
lations is not a diagonal matrix. Hence, for this general case both the Qp and the

Q∗p tests are invalid. However, under m.d.s. the matrix T can be greatly simplified

so that its ij-th element takes the form E[(Yt − μ)
2
(Yt−i − μ)(Yt−j − μ)], which

can easily be estimated using its sample analog. This is the approach followed by
Guo and Phillips (2001). For the general case, which includes m.d.s. and non-
m.d.s. processes, the asymptotic covariance matrix of the first p autocorrelations is
a complicated non-diagonal matrix. Hence, for this general case, the literature has
proposed the following two modifications of the Qp test. The first is to modify the

mailto: rights@palgrave.com


J. Carlos Escanciano and Ignacio N. Lobato 979

Qp statistic by introducing a consistent estimator of the asymptotic null covariance

matrix of the sample autocorrelations, T̂ , so that the modified Qp statistic retains

the χ
2
p asymptotic null distribution. Lobato, Nankervis and Savin (2002) define this

statistic as Q̃p =
(√

nρ̂
)′ T̂−1 (√nρ̂

)
. The main drawback of this approach is that,

in order to construct T̂ , a bandwidth parameter has to be introduced (see ibid.,
for details). This approach works for general dependence structures that allow for
the asymptotic covariance matrix of the first p autocorrelations to take any form.
The second modification has been studied by Horowitz et al. (2006), who employ
a bootstrap procedure to estimate consistently the asymptotic null distribution of
the Qp test for the general case. They compare two bootstrap approaches, a sin-
gle and a double blocks-of-blocks bootstrap, and their final recommendation is
to employ a double blocks-of-blocks bootstrap after prewhitening the time series.
This solution presents a similar problem, though, namely that the researcher has
to choose arbitrarily a block length number. The previous papers considered raw
data, but Francq, Roy and Zakoïan (2005) have addressed the use of the Qp statistic
with residuals. They propose to estimate the asymptotic null distribution of the
Qp test statistic for the general weak dependent case. However, their approach still
requires the selection of p, and of several additional arbitrary numbers necessary
to estimate consistently the needed asymptotic critical values.

These references represent an effort to address the problem of testing for
m.d.s. using standard linear measures (autocorrelations) but allowing for nonlin-
ear dependence. Lobato (2001) represents an alternative approach with a similar
spirit. The target is to avoid the problem of introducing a user-chosen number and
the idea is to construct an asymptotically distribution free statistic. Although this
approach delivers tests that handle nonlinear dependence and control properly the
Type I error in finite samples, its main theoretical drawback is its inefficiency in
terms of local power.

A related statistic, which has been commonly employed in the empirical finance
literature (see Cochrane, 1988; Lo and MacKinlay, 1989), is the variance ratio,
which takes the form:

VRp = 1+ 2
p−1∑
j=1

(1− j
p
)ρ̂j.

Under independence,
√

np(VRp − 1) is asymptotically distributed as N(0, 2(p− 1)).
Although this test can also be robustified and can be powerful on some occasions,
it presents the serious theoretical limitation of being inconsistent. For instance,
González and Lobato (2003) considered a moving average of order 2 (MA(2)) pro-
cess yt = et − 0.4597et−1 + 0.10124et−2. For this process VR3 = 0, in spite of the
first two autocorrelations being non-zero. The problem with variance ratio statistics
resides in the possible existence of compensations between autocorrelations with
different signs, and this may affect power severely. Related to variance ratio (VR)
tests, Nankervis and Savin (2007) have proposed a robustified version of Andrews
and Ploberger’s (1996) test that appears to have very good finite sample power with
common empirical finance models. In related work, Delgado and Velasco (2007)
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have recently considered a large class of directional tests based on linear combina-
tions of autocorrelations. Their tests are shown to be optimal in certain known local
alternative directions and are asymptotically equivalent to Lagrange multiplier
tests. Finally, we mention Kuan and Lee (2004), who propose a correlation-based
test for the MDH that, instead of using lagged values of Yt as the function w(·),
employs some other arbitrary w(·). This test shares with all the tests analyzed in
this section the problem of inconsistency, derived from not using a whole family
of functions w(·).

20.3.2 Tests based on an infinite-dimensional conditioning set

The approach presented in the previous sub-section lays naturally in the time
domain since a finite number of autocorrelations are tested. However, when the
infinite past is considered, the natural framework for performing inference is the
frequency domain. The advantage of the frequency domain is the existence of one
object, namely the spectral density, that contains the information contained in all
the autocovariances. Hence, in the frequency domain, the role previously taken by
autocorrelations is now carried by the spectral density function. Define the spectral
density f (λ) implicitly by:

γk =
∫
�

f (λ) exp(ikλ)dλ k = 0, 1, 2, . . . ,

where � = [−π ,π ]. Define also the periodogram as I(λ) = |w(λ)|2, where w(λ) =
n−1/2∑n

t=1 xt exp(itλ). Although the periodogram is an inconsistent estimator of
the spectral density, it can be employed as a building block to construct a consistent
estimator. The integral of the spectral density is called the spectral distribution,
which, under the MDH, is linear in λ.

For this infinite lag case, the MDH implies as the null hypothesis of interest that
γk = 0 for all k �= 0, and equivalently, in terms of the spectral density, the null
hypothesis states that f (λ) = γ0/2π for all λ ∈ �.

The advantage of the frequency domain is that the problem of selecting p,
which was present in the previous sub-section, does not appear because the null
hypothesis is stated in terms of all autocorrelations, as summarized by the spectral
density or distribution. The classical approach in the frequency domain involves
the standardized cumulative periodogram, i.e.,

Zn(λ) =
√

T

⎛⎝∑[λT/π ]
j=1 I(λj)∑T

j=1 I(λj)
− λ

π

⎞⎠,

where λj = 2π j/n, j = 1, 2, ..., n/2, are called the Fourier frequencies. Based on
Zn(λ), the two classical test statistics are the Kolmogorov–Smirnov:

max
j=1,...,T

∣∣∣Zn(λj)
∣∣∣ ,

and the Cramér–von Mises:
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1
T

T∑
j=1,

Zn(λj)
2.

These test statistics have been commonly employed (see Bartlett, 1955; Grenan-
der and Rosenblatt, 1957) because, when the series yt is not only white noise but
also independent (or m.d.s. with additional moment restrictions), it can be shown
that the process Zn(λ) converges weakly in D[0,π ] (the space of cadlag functions
in D[0,π ]) to the Brownian bridge process (see Dahlhaus, 1985). Hence, asymp-
totic critical values are readily available for the independent case. In fact, Durlauf
(1991) has shown that the independence assumption can be relaxed to conditional
homoskedastic m.d.s. For the m.d.s. case with conditional heteroskedasticity (and
some moment conditions), Deo (2000) slightly modified this statistic so that the
standardized cumulative periodogram retained its convergence to the Brownian
bridge. Deo’s test can be interpreted as a continuous version of the robustified Box–
Pierce statistic, Q∗p . Notice that, in Deo’s set-up, there is no need to introduce any
user-chosen number since, under the stated assumptions (see condition A in ibid.,
p. 293), the autocorrelations are asymptotically independent. As Deo comments,
his assumption (vii) is mainly responsible for the diagonality of the asymptotic null
covariance matrix of the sample autocorrelations. However, for many common
models, such as GARCH models with asymmetric innovations, EGARCH models
and bilinear models, Deo’s condition (vii) does not hold and the autocorrelations
are not asymptotically independent under the null hypothesis. Hence, for the
general case, Deo’s test is not asymptotically valid. Deo’s Cramér–von Mises test
statistic can also be written in the time domain as:

DEOn :=
n−1

n
∑

j=1

ρ̂
2
j

τj

(
1
jπ

)2
.

More general weighting schemes for the sample autocovariances ρ̂j than the ones
considered here are possible. Under the null hypothesis of m.d.s. and some
additional assumptions (see Deo, 2000),

DEOn
d−→

1∫
0

B2
(t)dt as n −→∞,

where B(t) is the standard Brownian bridge on [0,1]. The 10%, 5% and 1% asymp-
totic critical values can be obtained from Shorack and Wellner (1986, p. 147) and
are 0.347, 0.461 and 0.743, respectively. For extensions of this basic approach see
also Paparoditis (2000) and Delgado, Hidalgo and Velasco (2005), among others.

Under general weak dependent assumptions (see Dahlhaus, 1985), the asymp-
totic null distribution of the process Zn(λ) is no longer the Brownian bridge but, in
fact, converges weakly in D[0,π ] to a zero mean Gaussian process with covariance
given by:

mailto: rights@palgrave.com


982 Testing the Martingale Hypothesis

πG(π)

F(π)2

{
G(λ ∧ μ)

G(π)
+ F(λ)F(μ)

F(π)2
− F(λ)G(μ)

F(π)G(π)
− F(μ)G(λ)

F(π)G(π)

+F4(λ,μ)

G(π)
+ F4(π ,π)

G(π)

F(λ)F(μ)

F(π)2
− F4(μ,π)

G(π)

F(λ)
F(π)

− F4(λ,π)

G(π)

F(μ)

F(π)

}
,

where F(λ) denotes the spectral distribution function, F(λ) = ∫ λ
0 f (ω)dω, G(λ) =∫ λ

0 f (ω)
2dω, and F4(λ,μ) = ∫ λ

0
∫ μ

0 f4(ω,−ω,−θ)dωdθ , where f4(λ), with λ ∈ �
q−1,

denotes the fourth-order cumulant spectral density (see expression (2.6.2) in
Brillinger, 1981, p. 25). The important message from the previous complicated
covariance is that the asymptotic null distribution depends on the nature of the
data generating process of yt . Therefore, no asymptotic critical values are available.
Chen and Romano (1999, p. 628) propose estimating the asymptotic distribution
by means of either the block bootstrap or the sub-sampling technique. Unfortu-
nately, these bootstrap procedures require the selection of some arbitrary number
and, in a general framework, no theory is available about their optimal selection.
Alternative bootstrap procedures which do not require the selection of a user-
chosen number, such as resampling the periodogram as in Franke and Hardle (1992)
or Dahlhaus and Janas (1996), will not estimate consistently the asymptotic null
distribution because of the fourth-order cumulant terms.

Lobato and Velasco (2004) considered the statistic:

Mn =
T−1∑T

j=1 I(λj)
2(

T−1∑T
j=1 I(λj)

)2
− 1,

under general weak dependence conditions. This statistic was previously consid-
ered by Milhøj (1981), who employed Mn as a general goodness-of-fit statistic
for time series. Milhøj informally justified the use of this statistic for testing the
adequacy of linear time series models but, since he identified white noise with inde-
pendent and identically distributed (i.i.d.) (see ibid., p. 177), his analysis does not
automatically apply in general contexts. Beran (1992) and Deo and Chen (2000)
have also employed the Mn statistic as a goodness-of-fit test for Gaussian processes.
Statistical inference is especially simple with Mn, since its asymptotic null distri-
bution is normal even after parametric estimation. We note that the continuous
version of Mn can be expressed in the time domain as a statistic proportional to∑n−1

j=0 ρ̂
2
j , which shows the difficulty of deriving the asymptotic properties in the

time domain since the ρ̂j may not be asymptotically independent.
In the time domain, Hong (1996) has considered p as growing with n and, hence,

has been able to derive a consistent test in the time domain for the case of regression
residuals. In this framework p can be interpreted as a bandwidth number that needs
to grow with n, so his test can handle the fact that the null hypothesis implies
an infinite number of autocovariances. Hong (1996) restricted attention to the
independent case while Hong and Lee (2003) have extended Hong’s procedure to
allow for conditional heteroskedasticity. However, notice that their framework still
restricts the sample autocorrelations to be asymptotically independent.
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An alternative solution recently explored by Escanciano and Lobato (2007) con-
sists of modifying the Box–Pierce statistic using an adaptive Neyman test that takes
the form:

AQn = Q ∗̃p ,

where:
p̃ = min{m : 1 ≤ m ≤ pn; Lm ≥ Lh, h = 1, 2, . . . , pn}, (20.4)

and where:
Lp = Q∗p − π(p, n, q).

pn is an upper bound that grows slowly to infinity with n, and:

π(p, n, q) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
p log n, if max1≤j≤pn

∣∣∣∣∣∣ ρ̂
2
j

τj

∣∣∣∣∣∣ ≤ √q log n

2p, if max1≤j≤pn

∣∣∣∣∣∣ ρ̂
2
j

τj

∣∣∣∣∣∣ > √
q log n,

where q is some fixed positive number. We denote this automatic portmanteau test
AQn. Our choice of q is 2.4 and is motivated by an extensive simulation study in
Inglot and Ledwina (2006) and from simulations in Escanciano and Lobato (2007).
Small values of q result in the use of Akaike’s criterion, while large q′s lead to choos-
ing Schwarz’s criterion. Moderate values, such as 2.4, provide a “switching effect”
which combines the advantages of the two selection rules: when the alternative is
of high frequency (that is, when the only significant autocorrelations are at large
lags j), Akaike is used whereas, if the alternative is of low-frequency (i.e., if the first
autocorrelations are different from zero), Schwarz is chosen. The adaptive test is
an improvement with respect to the traditional Box–Pierce and Hong approaches
because the AQn test is more powerful and less sensitive to the selection of the
bandwidth number pn than these approaches and, more importantly, it avoids the
estimation of the complicated variance-covariance matrix T since its asymptotic

distribution is χ
2
1 for general m.d.s. processes.

Summarizing, testing the MDH using linear measures of dependence presents
two challenging features. The first aspect is that the null hypothesis implies that
an infinite number of autocorrelations are zero. This feature has been addressed
successfully in the frequency domain under severe restrictions on the dependence
structure of the process. The second feature is that the null hypothesis allows the
time series to present some form of dependence beyond the second moments.
This dependence entails that the asymptotic null covariance matrix of the sample

autocorrelations is not diagonal, so that it has n2 non-zero terms (contrary to
Durlauf, 1991, and Deo, 2000, who consider a diagonal matrix, which has only n
non-zero elements). This aspect has been handled by introducing some arbitrary
user-chosen numbers whose selection complicates statistical inference.

However, all these tests are suitable for testing for lack of serial correlation but
not necessarily for the MDH and, in fact, they are not consistent against non-
martingale difference sequences with zero autocorrelations. This happens when
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Table 20.2 Linear predictability of exchange rates returns

Daily Weekly

Euro Pound Can Yen Euro Pound Can Yen

ρ̂1 −0.047 0.001 −0.016 −0.020 0.018 0.046 −0.023 0.054
ρ̂2 0.003 0.007 −0.028 −0.015 −0.002 −0.008 0.031 −0.024
ρ̂3 −0.046 −0.055 −0.001 −0.016 0.049 −0.031 0.011 0.010
ρ̂4 −0.002 0.028 −0.060 0.013 0.024 −0.043 0.015 −0.041
ρ̂5 −0.002 0.003 −0.063 0.039 0.036 −0.024 0.052 −0.095
LB∗5 4.071 3.586 8.045 2.452 1.795 2.191 1.781 4.900
LB∗15 15.516 13.256 15.181 6.670 9.139 7.451 10.266 18.861
LB∗25 28.552 26.568 19.756 13.155 18.746 32.584 21.786 24.519
LB∗50 61.922 64.803∗∗ 49.887 37.428 42.559 59.107 41.140 58.756
DEOn 0.253 0.055 0.095 0.063 0.043 0.114 0.050 0.167
AQn 1.889 0.021 0.253 0.380 0.151 0.827 0.208 1.105

Note: ∗ and ∗∗ indicate significantly different from zero at the 5% and 10% level, respectively.

only nonlinear dependence is present, as is commonly the case with financial
data, e.g., exchange rates dynamics. These tests are inconsistent because they only
employ information contained in the second moments of the process.

To circumvent this problem we could take into account higher-order moments,
as in Hinich and Patterson (1992). They proposed using the bispectrum, i.e., the
Fourier transform of the third-order cumulants of the process, but again, this test is
not consistent against non-martingale difference sequences with zero third-order
cumulants.

In Table 20.2 we report the robust (to conditional heteroskedasticity) version of
the first five autocorrelations, the Ljung and Box (1978) test, which is a corrected
Q∗p statistic, which we call LB∗p, Deo’s (2000) modification of Durlauf’s test statistic,
and the Escanciano and Lobato (2007) test based on AQn, to check whether or not
our exchange rates changes are uncorrelated. (For further evidence of linear inde-
pendence, see Figures 20.3–20.10 in section 20.4.2.) Table 20.2 is in agreement with
previous findings that have shown that exchange rates have no linear dependence
(see, e.g., Table 2 in Hsieh, 1989; Bera and Higgins, 1997; Hong and Lee, 2003, and
references therein):

20.4 Tests based on nonlinear measures of dependence

Arguably, testing for the MDH is a challenging problem since, in order to verify it,
we must check that a very large class of transformations of the past does not help to
predict the current value of the series (see (20.2)). An important step, through the
development of consistent tests, was made when econometricians realized that it is
not necessary to take a very large class of functions in (20.2), but just a convenient
parametric class of functions, satisfying certain properties. Domínguez and Lobato
(2003) called this methodology the global approach and Escanciano (2007a) called
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it the integrated approach. Most of this section will be devoted to a careful study
of this approach.

Note, however, that there exists an alternative methodology that is based on
the direct estimation of the conditional expectation E[Yt |Ỹt ,P], where Ỹt ,P =
(Yt−1, ...., Yt−P)

′ for some finite P. This approach can be called the smoothing
approach (since smoothing numbers are required for this non-parametric estima-
tion) or a local approach (see Domínguez and Lobato, 2003). Tests within the local
approach have been proposed by Wooldridge (1992), Yatchew (1992), Horowitz
and Härdle (1994), Zheng (1996), Fan and Huang (2001), Horowitz and Spokoiny
(2001) and Guerre and Lavergne (2005), to mention just a few (see Hart, 1997, for
a comprehensive review of the local approach when P = 1). Among these tests
based on local methods, the test recently proposed by Guay and Guerre (2006)
seems to be especially convenient for testing the MDH for two reasons. First, it
has been justified for time series under conditional heteroskedasticity of unknown
form. Second, it is an adaptive data-driven test. Their test combines a chi-square
statistic, based on nonparametric Fourier series estimators for E[Yt | Ỹt ,P], coupled
with a data-driven choice for the number of components in the estimator. To con-
struct their test a nonparametric estimator of the unknown conditional variance is
needed. Notice that a relevant practical problem of the local approach arises when
P is large or even moderate. The problem is motivated by the sparseness of the
data in high-dimensional spaces, which leads most test statistics to suffer consid-
erable bias, even for large sample sizes. In the next sub-section, we will consider
an approach that helps to alleviate this problem.

This section focuses on integrated tests. We divide the extensive literature within
this integrated approach according to whether the tests consider functions of a
finite number of lags or not, i.e., whether w(It−1) = w(Ỹt ,P) for some P ≥ 1 or
not. We stress at the outset that the main advantage of the tests considered in
this section is that they are consistent for testing the MDH (at least when the
information set has a finite number of variables), contrary to the tests considered in
section 20.3. The main disadvantage is that their asymptotic null distributions are,
in general, not standard, which means that no critical values are readily available.
In this situation, the typical solution is to employ the bootstrap to estimate these
distributions.

20.4.1 Tests based on a finite-dimensional conditioning set

The problem of testing over all possible weighting functions can be reduced to
testing the orthogonality condition over a parametric family of functions (see, e.g.,
Stinchcombe and White, 1998). Although the parametric class still has to include
an infinite number of elements, the complexity of the class to be considered is
substantially simplified and makes it possible to test for the MDH.

The methods that we review in this sub-section use w(It−1) = w0(Ỹt ,P , x) in (20.2),

where, as stated above, Ỹt ,P = (Yt−1, ...., Yt−P)
′ and w0 is a known function indexed

by a parameter x. That is, these methods check for any form of predictability from
the lagged P values of the series. The test statistics are based on a “distance” of the
sample analogue of E[(Yt − μ)w0(Ỹt ,P , x)] from zero.
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The exponential function w0(Ỹt ,P , x) = exp(ix′Ỹt ,P), x ∈ R, was first considered
in Bierens (1982, 1984, 1990) (see also Bierens and Ploberger, 1997). One version
of the Cramér–von Mises (CvM) test of Bierens (1984) leads to the test statistic:

CvMn,exp,P = n−1
σ̂
−2

n∑
t=1

n∑
s=1

(Yt − Y)(Ys − Y) exp
(
−1

2

∣∣∣Ỹt ,P − Ỹs,P

∣∣∣2),

where:

σ̂
2 = 1

n

n∑
t=1

(Yt − Y)
2.

Indicator functions w0(Ỹt ,P , x) = 1(Ỹt ,P ≤ x), x ∈ R, were used in Stute (1997)
and Koul and Stute (1999) for model checks of regressions and autoregressions,
respectively, and in Domínguez and Lobato (2003) for the MDH problem.

Domínguez and Lobato (2003), extending to the multivariate case the results
of Koul and Stute (1999), considered the CvM and Kolmogorov–Smirnov (KS)
statistics, respectively:

CvMn,P : = 1

σ̂2n2

n∑
j=1

⎡⎣ n∑
t=1

(Yt − Y)1(Ỹt ,P ≤ Ỹj,P)

⎤⎦2

,

KSn,P : = max
1≤i≤n

∣∣∣∣∣∣ 1
σ̂
√

n

n∑
t=1

(Yt − Y)1(Ỹt ,P ≤ Ỹi,P)

∣∣∣∣∣∣.
As mentioned above, an important problem of the local approach (also shared by

other methods) arises in the case where P is large or even moderate. The sparseness
of the data in high-dimensional spaces implies severe biases to most test statistics.
This is an important practical limitation for most tests considered in the literature
because these biases still persist in fairly large samples. Motivated by this problem,
Escanciano (2007a) proposed the use of w0(Ỹt ,P , x) = 1(β ′Ỹt ,P ≤ u), where x =
(β, u) ∈ S

d × R, with S
d = {β ∈ R

d : |β| = 1}, and defined CvM tests based on
this choice. We denote by PCVMn,P the resulting CvM test in Escanciano. Also
recently, Lavergne and Patilea (2007) proposed a dimension-reduction bootstrap
consistent test for regression models based on nonparametric kernel estimators of
one-dimensional projections. Their proposal falls in the category of local-based
methods, though.

As mentioned earlier, the asymptotic null distribution of integrated tests based
on w0(Ỹt ,P , x) depends on the data-generating process in a complicated way. There-
fore, critical values for the test statistics cannot be tabulated for general cases. One
possibility, only explored in the literature for the case P = 1 by Koul and Stute
(1999), consists of applying the so-called Khmaladze’s transformation (Khmaladze,
1981) to get asymptotically distribution free tests. Extensions to P > 1 are not avail-
able yet. Alternatively, we can approximate the asymptotic null distributions by
bootstrap methods. The most relevant bootstrap procedure for testing the MDH has
been the wild bootstrap introduced in Wu (1986) and Liu (1988). For example, this
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Table 20.3 Testing the MDH of exchange rates returns
Empirical P-values

Daily Weekly

Euro Pound Can Yen Euro Pound Can Yen

CvMn,exp,1 0.028 0.322 0.744 0.842 0.453 0.086 0.876 0.488
CvMn,exp,3 0.164 0.320 0.898 0.666 0.743 0.250 0.076 0.258
CvMn,1 0.020 0.354 0.628 0.822 0.610 0.146 0.863 0.388
CvMn,3 0.192 0.424 0.798 0.588 0.916 0.893 0.720 0.500
KSn,1 0.016 0.220 0.502 0.740 0.726 0.176 0.836 0.542
KSn,3 0.036 0.280 0.734 0.526 0.986 0.810 0.224 0.654
PCVMn,1 0.020 0.354 0.626 0.822 0.610 0.146 0.863 0.388
PCVMn,3 0.248 0.438 0.790 0.664 0.746 0.443 0.566 0.414

approach has been employed in Domínguez and Lobato (2003) and Escanciano and
Velasco (2006a, 2006b) to approximate the asymptotic distribution of integrated
MDH tests. The asymptotic distribution is approximated by replacing (Yt −Y) with
(Yt − Y)(Vt − V), where {Vt }nt=1 is a sequence of independent random variables
(RVs) with zero mean, unit variance, bounded support and also independent of the
sequence {Yt }nt=1. Here, V is the sample mean of {Vt }nt=1. The bootstrap samples
are obtained by resampling from the distribution of Vt . A popular choice for {Vt }
is a sequence of i.i.d. Bernoulli variates with P(Vt = 0.5(1−√5)) = (1+√5)/2

√
5,

and P(Vt = 0.5(1+√5)) = 1− (1+√5)/2
√

5.
We have applied several tests within the integrated methodology to our exchange

rate data. In Table 20.3 we report the wild bootstrap empirical values. In our appli-
cation we have considered the values P = 1 and P = 3 for the number of lags
used in CvMn,exp,P , CvMn,P , KSn,P and PCVMn,P . Our results favor the MDH for all
exchange rates at both frequencies, weekly and daily, with the exception of the
daily euro for P = 1. Surprisingly enough, we obtain contradictory results for this
exchange rate when P = 3. These contradictory results have been previously doc-
umented in, e.g., Escanciano and Velasco (2006a), and they may be due to a lack
of power of the tests for the P = 3 case.

Although the consideration of an omnibus test, like those discussed in this
section, is naturally the first idea when there is no a priori information about
directions in the alternative hypothesis, it is worth noting that omnibus tests
present an important limitation: despite their capability to detect deviations from
the null in any direction, it is well-known that they only have reasonable nontrivial
local power against very few orthogonal directions (see Janssen, 2000, and Escan-
ciano, 2008, for theoretical explanations and bounds for the number of orthogonal
directions).

A possible solution for overcoming the “lack” of power of omnibus tests is
provided by the so-called Neyman smooth tests. They were first proposed by Ney-
man (1937) in the context of goodness-of-fit of distributions and, since then,
there has been a plethora of research documenting their theoretical and empirical
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Table 20.4 Testing the MDH of exchange rates returns
Bootstrap P-values. Data-driven tests

Daily Weekly

Euro Pound Can Yen Euro Pound Can Yen

Tn,̃p 0.049 0.847 0.514 0.876 0.622 0.133 0.747 0.299

properties. In the context of MDH testing, a recent data-driven smooth test has
been proposed by Escanciano and Mayoral (2007). Their test is based on the prin-
cipal components of the marked empirical processes resulting from the choice
w0(Ỹt ,1, x) = 1(Yt−1 ≤ x) with x ∈ R. This test is an extension to nonlinear depen-
dence of order one, i.e., for P = 1, of the test based on AQn. As shown by these
authors, this test possesses excellent local power properties and compares favorably
to omnibus tests and other competing tests. The test statistic is:

Tn,̃p =
p̃∑

j=1̂

ε
2
j,n, (20.5)

with p̃ as in (20.4), but with Tn,p, defined by (20.5), replacing Q∗p there, and where
ε̂j,n are the sample principal components of a certain CvM test (the reader is referred
to Escanciano and Mayoral, 2007, for details). The asymptotic null distribution of

Tn,̃p is a χ
2
1 .

We have applied the adaptive data-driven test based on Tn,̃p to our exchange rate
data. The results are reported in Table 20.4 and support our previous conclusions.
Only the MDH for the daily euro exchange rate is rejected at 1% with Tn,̃p.

20.4.2 Tests based on an infinite-dimensional information set

The aforementioned statistics test the MDH by conditioning on a finite-
dimensional information set and, therefore, may miss some dependence structure
in the conditional mean at omitted lags. In principle, maximum power could
be achieved by using the correct lag-order P of the alternative. However, prior
information on the conditional mean structure is usually not available.

There have been some proposals considering infinite-dimensional information
sets. First, de Jong (1996) generalized Bierens’ test to time series, and although his
test had the appealing property of considering an increasing number of lags as the
sample size increases, it required numerical integration with dimension equal to
the sample size, which makes this test unfeasible in applications where the sample
size is usually large, e.g., financial applications. Second, Domínguez and Lobato
(2003) suggest constructing a test statistic as a weighted average of all the test
statistics established for a fixed number of lags. However, Domínguez and Lobato
did not analyze the test any further, nor the selection of the measure to weight the
different statistics.
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Figure 20.3 IPRF for the daily euro
Top graph is the heteroskedasticity robust autocorrelation plot. Bottom graph is the IPRF plot.

Using a different methodology based on the generalized spectral density
approach of Hong (1999), Hong and Lee (2003) proposed an MDH bootstrap test
(see also Hong and Lee, 2005). Tests based on the generalized spectral density
involve three choices: a kernel, a bandwidth parameter, and an integrating mea-
sure; and, in general, statistical inferences are sensitive to these choices. This fact
motivated Escanciano and Velasco (2006a, 2006b) to propose testing the MDH by
means of a generalized spectral distribution function.

The generalized spectral approach is based on the fact that the MDH implies that:

H0 : γj,w(x) = 0 ∀j ≥ 1, for all x, (20.6)

where γj,w(x) = E[(Yt − μ)w0(Yt−j, x)] and where w0(Yt−j, x) is any of the para-
metric functions of the previous section. The generalized spectral approach of
Hong is based on the choice w0(Yt−j, x) = exp(ixYt−j). Escanciano and Velasco
(2006a) considered the latter choice, while Escanciano and Velasco (2006b) used
w0(Yt−j, x) = 1(Yt−j ≤ x), and called the measure γj,ind(x) = E[(Yt − μ)1(Yt−j ≤ x)]
the integrated pairwise autoregression function (IPAF). The name follows from the
fact that:

γj,ind(x) = E[(Yt − μ)1(Yt−j ≤ x)] =
x∫
−∞

E[Y − μ | Yt−j = z]F(dz),
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Figure 20.4 IPRF for the daily pound
Top graph is the heteroskedasticity robust autocorrelation plot. Bottom graph is the IPRF plot.
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Figure 20.5 IPRF for the daily Can
Top graph is the heteroskedasticity robust autocorrelation plot. Bottom graph is the IPRF plot.
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Figure 20.6 IPRF for the daily yen
Top graph is the heteroskedasticity robust autocorrelation plot. Bottom graph is the IPRF plot.

where F is the cumulative distribution function (c.d.f.) of Yt . The measure γj,w(x)
can be viewed as a generalization of the usual autocovariance to measure the con-
ditional mean dependence in a nonlinear time series framework. It can easily be
estimated from a sample. For example, the IPAF can be estimated by:

γ̂j,ind(x) =
1

n− j

n∑
t=1+j

(Yt − Y)1(Yt−j ≤ x). (20.7)

Moreover, as proposed by Escanciano and Velasco (2006b), nonlinear correlo-
grams can be used to formally assess the nonlinear dependence structure in the
conditional mean of the series. These authors define the KS test statistic as:

KS(j) := sup
x∈[−∞,∞]d

∣∣∣∣(n− j)
1
2 γ̂j,ind(x)

∣∣∣∣ = max
1+j≤t≤n

∣∣∣∣(n− j)
1
2 γ̂j,ind(Yt−j)

∣∣∣∣.
The asymptotic quantiles of KS(j) under the MDH can be approximated via a wild
bootstrap approach. With these bootstrap critical values we can calculate uniform
confidence bands for γ̂j(x) and the significance of γj(x) can be tested. The plot
of a standardization of KS(j) against the lag parameter j ≥ 1 can be viewed as a
generalization of the usual autocovariance plot in linear dependence to nonlinear
conditional mean dependence. Escanciano and Velasco (2006b) call this plot the
integrated pairwise regression function (IPRF) plot.
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Figure 20.7 IPRF for the weekly euro
Top graph is the heteroskedasticity robust autocorrelation plot. Bottom graph is the IPRF plot.

In Figures 20.3–20.10 we plot the IPRF for our exchange rate returns. The com-
mon feature of these graphs is the lack of dependence in the exchange rates, both
linear and nonlinear. Only a few isolated statistics seem to be significant, but the
evidence is very weak. It seems that the IPRF supports the MDH for these datasets.

We now describe a generalized spectral approach to enable us to consider simulta-
neously all the nonlinear measures of dependence {γj,w(·)}. Define γ−j,w(·) = γj,w(·)
for j ≥ 1, and consider the Fourier transform of the functions γj,w(x),

fw(& , x) = 1
2π

∞∑
j=−∞

γj,w(x)e−ij& ∀& ∈ [−π ,π ]. (20.8)

Note that fw(& , x) is able to capture pairwise non-martingale difference alter-
natives with zero autocorrelations. Under the MDH, the condition f0,w(& , x) =
(2π)

−1
γ0(x) holds, i.e., the generalized spectral density fw(& , x) is flat in & . Hong

(1999) proposed the estimators:

f̂w(& , x) = 1
2π

n−1∑
j=−n+1

(
1−

∣∣j∣∣
n

) 1
2

k
(

j
p

)
γ̂j,exp(x)e

−ij& ,
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Figure 20.8 IPRF for the weekly pound
Top graph is the heteroskedasticity robust autocorrelation plot. Bottom graph is the IPRF plot.

and:

f̂0,w(& , x) = 1
2π

γ̂0,w(x),

to test the MDH, where k(·) is a symmetric kernel and p a bandwidth parameter. He
considered a standardization of an L2-distance using a weighting function W(·):

L2
2,n(p) =

π

2

∫
R

π∫
−π

n
∣∣∣̂fw(& , x)− f̂0,w(& , x)

∣∣∣2 W(dx)d& (20.9)

=
n−1∑
j=1

(n− j)k2
(

j
p

)∫
R

∣∣∣γ̂j,w(x)
∣∣∣2 W(dx).

Under the null of MDH and some additional assumptions, Hong and Lee (2005)

showed that a convenient standardization of L2
2,n(p) converges to a standard nor-

mal random variable. The centering and scaling factors in this standardization
depend on the higher dependence structure of the series.

Alternatively, the generalized spectral distribution function is:

Hw(λ, x) = 2

λπ∫
0

fw(& , x)d& λ ∈ [0, 1],
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Figure 20.9 IPRF for the weekly Can
Top graph is the heteroskedasticity robust autocorrelation plot. Bottom graph is the IPRF plot.

which, after some algebra, boils down to:

Hw(λ, x) = γ0,w(x)λ+ 2
∞∑

j=1

γj,w(x)
sin jπλ

jπ
. (20.10)

Tests can be based on the sample analogue of (20.10), i.e.:

Ĥw(λ, x) = γ̂0,w(x)λ+ 2
n−1∑
j=1

(1− j
n
)

1
2 γ̂j,w(x)

sin jπλ

jπ
,

where (1 − j
n )

1
2 is a finite sample correction factor. The effect of this correction

factor is to put less weight on very large lags, for which we have less sample infor-
mation. Note that under the MDH, Hw(λ, x) = γ0(x)λ, so that tests for MDH can be
constructed based on the discrepancy between Ĥw(λ, x) and Ĥ0,w(λ, x) := γ̂0(x)λ.
That is, we can consider the process:

Sn,w(λ, x) =
(n

2

) 1
2 {Ĥw(λ, x)− Ĥ0,w(λ, x)} =

n−1∑
j=1

(n− j)
1
2 γ̂j,w(x)

√
2 sin jπλ

jπ
, (20.11)

to test for the MDH.
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Figure 20.10 IPRF for the weekly yen
Top graph is the heteroskedasticity robust autocorrelation plot. Bottom graph is the IPRF plot.

In order to evaluate the distance of Sn(λ, x) from zero, a norm has to be chosen.
One norm considered in practice is the Cramér–von Mises norm:

D2
n,w =

∫
R

1∫
0

∣∣∣Sn,w(λ, x)
∣∣∣2 W(dx)dλ =

n−1∑
j=1

(n− j)
1

(jπ)2

∫
R

∣∣∣γ̂j,w(x)
∣∣∣2 W(dx), (20.12)

where W(·) is a weighting function satisfying some mild conditions. D2
n,w has the

attractive convenience of being free of choosing any smoothing parameter or ker-
nel, and it has been documented to deliver tests with good power properties (cf.
Escanciano and Velasco, 2006a, 2006b).

Among the members of this class of test statistics, the most common choices are:

D2
n,exp = σ̂

−2
n−1∑
j=1

(n−j)
1

(jπ)2

n∑
t=j+1

n∑
s=j+1

(Yt−Yn−j)(Ys−Yn−j) exp(−0.5(Yt−j−Ys−j)
2
),

and:

D2
n,ind = σ̂

−2
n−1∑
j=1

(n− j)

n(jπ)2

n∑
t=1

γ̂
2
j,ind(Xt ),
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Table 20.5 Testing the MDH of exchange rates returns
Bootstrap P-values. Generalized spectral tests

Daily Weekly

Euro Pound Can Yen Euro Pound Can Yen

D2
n,exp 0.023 0.450 0.680 0.913 0.670 0.123 0.360 0.586

D2
n,ind 0.016 0.343 0.640 0.923 0.800 0.253 0.526 0.524

where γ̂j,ind is given in (20.7). The test statistic D2
n,exp is based on w0(Yt−j, x) =

exp(ixYt−j) and the standard normal c.d.f. as the weighting function W(·), where-

as D2
n,ind is based on w0(Yt−j, x) = 1(Yt−j ≤ x) and the empirical c.d.f. as the

function W .
We have applied these two generalized spectral distribution based tests to our

exchange rate data. The results are reported in Table 20.5 and support our previous
conclusions. Only the MDH for the daily euro exchange rate is rejected.

20.5 Related hypotheses

In this chapter we have considered testing the MDH which, in statistical terms,
just implies that the mean of an economic time series is independent of its past.
The procedures studied in this chapter can be straightforwardly applied to testing
the following generalization of the MDH:

H0 : E[Yt | Xt−1,Xt−2,...] = μ, μ ∈ R,

where Yt is a measurable real-valued transformation of Xt and μ = E[Yt ]. This null
hypothesis, which is referred to as the generalized MDH, contains many interesting
testing problems as special cases. For instance, when Yt is a power transformation
of Xt , this null hypothesis implies constancy of conditional moments. The leading

case in financial applications is where Yt = X2
t , because when Xt follows an m.d.s.,

this null hypothesis means that there is no volatility in the series Xt , i.e., Xt is con-

ditionally homoskedastic. The cases Yt = X3
t or Yt = X4

t would, respectively, test
for no dynamic structure in the third moment (conditionally constant skewness)
and fourth moment (conditionally constant kurtosis) (see, e.g., Bollerslev, 1987;
Engle and González-Rivera, 1991). Another relevant case is when Yt = 1(Xt > c),

c ∈ R
d . In this case, the null hypothesis represents no directional predictability

(see, e.g., Linton and Whang, 2007). Another situation of interest occurs when the
null hypothesis is the equality of the regression curves of two random variables,
X1t and X2t , say; in this case, Yt = X1t − X2t , μ = 0 (see Ferreira and Stute, 2004,
for a recent reference).

Note also that most of the procedures considered in this chapter are also appli-
cable for testing the null hypothesis that a general dynamic nonlinear model is
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correctly specified. In this situation, the null hypothesis of interest establishes
that:

∃θ0 : E[ψ(Yt , Xt , θ0) | Xt ] = 0,

where ψ is a given function, Yt is a vector of endogenous variables and Xt is a vector
of exogenous variables. Test statistics can be constructed along the lines described
in this chapter. The main theoretical challenge in this framework is the way of
handling the estimation of the parameters. There are basically three alternative
approaches. First, to estimate the asymptotic null distribution of the relevant test
statistic by estimating its spectral decomposition (e.g., Horowitz, 2006; Carrasco,
Florens and Renault, 2007). Second, to use the bootstrap to estimate this distri-
bution (see Wu, 1986; Stute, González-Manteiga and Presedo-Quindmil, 1998).
Third, to transform the test statistic via martingalization to yield an asymptotically
distribution-free test statistic.

Finally, in this chapter we have considered testing for m.d.s. instead of testing
for a martingale. Recall that Xt is a martingale, with respect to its natural filtra-
tion, when E

[
Xt | Xt−1, Xt−2, . . .

] = Xt−1 a.s. Testing for a martingale presents the
additional challenge of handling non-stationary variables. Park and Whang (2005)
considered testing that a first-order Markovian process follows a martingale by test-
ing that the first difference of the process, conditionally on the last value, has zero
mean, i.e.,

E(Xt −Xt−1 | Xt−1) = 0 a.s. (20.13)

Hence they allow for a singular non-stationary conditioning variable. This restric-
tive Markovian framework has the advantage of leading to test statistics which are
asymptotically distribution free and, hence, they do not need to transform their
statistics or to use bootstrap procedures to obtain critical values. Similarly, note that
many of the procedures described in section 20.4 also lead to asymptotically dis-
tribution free tests in this restrictive framework. As shown in Escanciano (2007b),
the extension to the multivariate conditioning case in (20.13) leads to non-pivotal
tests and some resampling procedure is necessary.

20.6 Conclusions

This chapter has presented a general panoramic of the literature of testing for the
MDH. This research started at the beginning of the last century by developing
tests for serial correlation and experienced renewed interest recently because of
the nonlinear dependence present in economic and, especially, financial series.
The initial statistical tools were based on linear dependence measures such as auto-
correlations or the spectral density function. These tools were initially motivated
by the observation that economic time series follow normal distributions. Since the
last 25 years has stressed the non-normal behavior of financial series, the statistics
and econometrics literature has followed two alternative approaches. The first’s
target was to robustify the well-established linear measures to allow for non-linear
dependence. This approach has the advantage of simplicity, since it leads typically
to standard asymptotic null distributions. However, its main limitation is that it
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cannot detect nonlinear dependence. The second approach considered nonlinear
measures of dependence. Its advantage is that it is more powerful, its disadvan-
tage is that asymptotic null distributions are non-standard. Nowadays, this feature
is hardly a drawback because the increasing availability of computing resources
has allowed the implementation of bootstrap procedures, which can estimate the
asymptotic null distributions with relative ease.

The definition of a martingale involves the information set of the agent that
typically contains the infinite past of the economic series. This feature implies
that, in practice, it is practically impossible to construct a test which, although it
may be consistent theoretically, has power for any possible violation of the null
hypothesis. The pairwise approach, which admittedly does not deliver consistent
tests, nevertheless leads to tests with reasonable power for common alternatives.
Another sensible possibility for reducing this dimensionality problem is to consider
alternatives of a single-index structure, i.e., where the conditioning set is given by a
univariate, possibly unknown, projection of the infinite-dimensional information
set. More research is clearly needed in this direction.

In this chapter we have illustrated the different methodologies with exchange
rate data that typically satisfy the MDH, as we have seen. Stock market data are
not such a clear-cut case. Rejecting the MDH leads to the challenge of selecting
a proper model. In this respect, data-driven adaptive tests are informative, since
they provide an alternative model in the case of rejection. Notably, the principal
component analysis provided in Escanciano and Mayoral (2007) represents a clear,
theoretically well-motivated approach that, coupled with an effective choice for
the number of components, can help in this selection process.
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Autoregressive Conditional Duration
Models1

Ruey S. Tsay

Abstract

This chapter studies the autoregressive conditional duration model. It discusses properties and
statistical inference of the model. It also considers some extensions to handle nonlinear durations
and interventions. For applications, we apply the model to daily range of the log price of Apple
stock and find that adopting the decimal system for the US stock price on January 29, 2001,
significantly reduces price volatility.
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21.1 Introduction

The autoregressive conditional duration (ACD) model was proposed by Engle and
Russell (1998) to model irregularly spaced financial transaction data. It has attracted
much interest among researchers and practitioners ever since, and has found many
applications outside of modeling transaction data. Duration is commonly defined
as the time interval between consecutive events, e.g., the time interval between
two transactions of a stock on the New York Stock Exchange or the difference
between arrival times of two customers at a service station. The duration between
two consecutive transactions in finance is important, for it may signal the arrival
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of new information concerning the underlying asset. A cluster of short durations
corresponds to active trading and, hence, an indication of the existence of new
information.

Since duration is necessarily non-negative, the ACD model has also been used
to model time series that consist of positive observations. An example is the daily
range of the log price of an asset. The range of an asset price during a trading
day can be used to measure its price volatility (e.g., Parkinson, 1980). Therefore,
studying range can serve as an alternative approach to volatility modeling. Chou
(2005) considers a conditional autoregressive range (CARR) model and shows that
his CARR model can improve volatility forecasts for the weekly log returns of the
Standard & Poor 500 index over some commonly used volatility models. The CARR
model is essentially an ACD model.

In this chapter, we shall introduce the ACD model, discuss its properties, and
address issues of statistical inference concerning the model. We then demonstrate
its applications via some real examples. We also consider some extensions of the
model, including nonlinear duration models and intervention analysis. Using the
daily range of the log price of Apple stock, our ACD application shows that adopting
the decimal system for US stock prices on January 29, 2001, significantly reduces
the volatility of the stock price.

21.2 Duration models

Duration models in finance are concerned with time intervals between trades. For a
given asset, longer durations indicate lack of trading activities, which in turn signify
a period of no new information. On the other hand, arrival of new information
often results in heavy trading and, hence, leads to shorter durations. The dynamic
behavior of durations thus contains useful information about market activities.
Furthermore, since financial markets typically take a period of time to uncover the
effect of new information, active trading is likely to persist for a period of time,
resulting in clusters of short durations. Consequently, durations might exhibit
characteristics similar to those of asset volatility. Considerations like this lead to
the development of duration models. Indeed, to model the durations of intraday
trading, Engle and Russell (1998) use an idea similar to that of the generalized
autoregressive conditional heteroskedastic (GARCH) models to propose an ACD
model and show that the model can successfully describe the evolution of time
durations for (heavily traded) stocks. Since intraday transactions of a stock often
exhibit certain diurnal patterns, adjusted time durations are used in ACD modeling.
We shall discuss methods for adjusting the diurnal pattern later. Here we focus on
introducing the ACD model.

Let ti be the time, measured with respect to some origin, of the ith event of
interest with t0 being the starting time. The ith duration is defined as:

xi = ti − ti−1, i = 1, 2, . . . .

For simplicity, we ignore, at least for now, the case of zero durations so that xi > 0
for all i. The ACD model postulates that xi follows the model:
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xi = ψiεi, (21.1)

where {εi} is a sequence of independent and identically distributed (i.i.d.) random
variables with E(εi) = 1 and positive support, and ψi satisfies:

ψi = α0 +
p∑

j=1

αjxi−j +
q∑

v=1

βvψi−v , (21.2)

where p and q are non-negative integers and αj and βv are constant coefficients.
Since xi is positive, it is common to assume that α0 > 0, αj ≥ 0 and βv ≥ 0 for
j ∈ {1, . . . , p} and v ∈ {1, . . . , q}. Furthermore, the zeros of the polynomial α(L) =
1 −∑g

j=1(αj + βj)L
j are outside the unit circle, where L denotes the lag operator,

g = max{p, q}, and αj = 0 for j > p and βj = 0 for j > q.
Let Fh be the σ -field generated by {εh, εh−1, . . .}. It is easy to see that E(xi|Fi−1) =

ψiE(εi|Fi−1) = ψi. Thus, ψi is the conditional expected duration of the next trans-
action given Fi−1. Since εi has a positive support, it may assume the standard
exponential distribution. This results in an exponential ACD model. For ease of
reference, we shall refer to the model in equations (21.1)–(21.2) as an EACD(p, q)
model when εi follows the standard exponential distribution.

21.2.1 Properties of the EACD model

We start with the simple EACD(1,1) model:

xi = ψiεi, ψi = α0 + α1xi−1 + β1ψi−1. (21.3)

Taking the expectation of the model, we obtain:

E(xi) = E(ψiεi) = E[ψiE(εi|Fi−1)] = E(ψi),

E(ψi) = α0 + α1E(xi−1)+ β1E(ψi−1).

Under the weak stationarity assumption, E(xi) = E(xi−1), so that:

μx ≡ E(xi) = E(ψi) =
α0

1− α1 − β1
.

Consequently, 0 ≤ α1 + β1 < 1 for a weakly stationary process {xi}. Next, making

use of the fact that E(εi) = 1 and E(ε2
i ) = 2, we have E(x2

i ) = 2E(ψ2
i ). Again, under

weak stationarity:

E(ψ2
i ) = μ

2
x [1− (α1 + β1)

2]
1− 2α2

1 − β2
1 − 2α1β1

, (21.4)

Var(xi) = μ
2
x(1− β

2
1 − 2α1β1)

1− 2α2
1 − β2

1 − 2α1β1
. (21.5)

From these results, for the EACD(1,1) model to have a finite variance, we need
1 > 2α2

1 + β
2
1 + 2α1β1. Similar results can be obtained for the general EACD(p, q)

model, but the algebra involved becomes tedious.
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Forecasts from an EACD model can be obtained using a procedure similar to that
of a GARCH model, which in turn is similar to that of a stationary autoregressive
moving average (ARMA) model. Again, consider the simple EACD(1,1) model and
suppose that the forecast origin is i = h. For a one-step-ahead forecast, the model
states that xh+1 = ψh+1εh+1 with ψh+1 = α0 + α1xh + β1ψh. Let xh(1) be the
one-step-ahead forecast of xh+1 at the origin h. Then:

xh(1) = E(xh+1|Fh) = E(ψh+1εh+1) = ψh+1,

which is known at the origin i = h. The associated forecast error is eh(1) = xh+1 −
xh(1) = ψh+1(εh+1−1). The conditional variance of the forecast error is then ψ

2
h+1.

For multi-step-ahead forecasts, we use xh+j = ψh+jεh+j so that, for j = 2,

ψh+2 = α0 + α1xh+1 + β1ψh+1

= α0 + (α1 + β1)ψh+1 + α1ψh+1(εh+1 − 1).

Consequently, the two-step-ahead forecast is:

xh(2) = E(ψh+2εh+2) = α0 + (α1 + β1)ψh+1 = α0 + (α1 + β1)xh(1),

and the associated forecast error is:

eh(2) = α0(εh+2 − 1)+ α1ψh+1(εh+2εh+1 − 1)+ β1ψh+1(εh+2 − 1).

In general, we have:

xh(m) = α0 + (α1 + β1)xh(m− 1), m > 1.

This is exactly the recursive forecasting formula of an ARMA(1,1) model with
autoregressive (AR) polynomial 1 − (α1 + β1)L. By repeated substitutions, we can
rewrite the forecasting formula as:

xh(m) = α0[1− (α1 + β1)
m−1]

1− α1 − β1
+ (α1 + β1)

m−1xh(1).

Since α1 + β1 < 1, we have:

xh(m)→ α0
1− α1 − β1

, as m →∞,

which says that, as expected, the long-term forecasts of a stationary series converge
to its unconditional mean as the forecast horizon increases.

Let ηj = xj − ψj. It is easy to show that E(ηj) = 0 and E(ηjηt ) = 0 for t �= j. The
variables {ηj}, however, are not identically distributed. Using ψj = xj − ηj, we can
rewrite the EACD(p, q) model in equation (21.2) as:

xi = α0 +
g∑

j=1

(αj + βj)xi−j + ηi −
q∑

j=1

βjηi−j,
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where g = max{p, q} and it is understood that αj = 0 for j > p and βj = 0 for j > q.

This is in the form of an ARMA(g, q) model with AR polynomial 1−∑g
j=1(αj+βj)L

j.

Consequently, some properties of EACD models can be inferred from those of
ARMA models.

21.2.2 Estimation of EACD models

Suppose that {x1, . . . , xn} represents a realization of an EACD(p, q) model. The
parameter θ = (α0,α1, . . . ,αp,β1, . . . ,βq)

′ can be estimated by the conditional like-
lihood method. Again, let g = max{p, q}. The likelihood function of the data
is:

f (xn|θ) = f (xg |θ)×
n∏

i=g+1

f (xi|xi−1, θ),

where xj = (x1, . . . , xj)
′. Since the joint distribution of xg is complicated and

its influence on the overall likelihood function is diminishing as n increases,
we adopt the conditional likelihood method by ignoring f (xg |θ). This results in

using the conditional likelihood estimates. Since f (xi|Fi−1, θ) = 1
ψi

exp(−xi/ψi),
the conditional log-likelihood function of the data then becomes:

�(θ |xn) = −
n∑

i=to+1

[
ln(ψi)+

xi
ψi

]
. (21.6)

The usual asymptotics of maximum likelihood estimates apply when the process
{xi} is weakly stationary.

21.2.3 Additional ACD models

The EACD model has several nice features. For instance, it is simple in theory and in
ease of estimation. But the model also encounters some weaknesses. For example,
the use of the exponential distribution implies that the model has a constant hazard
function. In the statistical literature, the hazard function (or intensity function) of
a random variable X is defined by:

h(x) = f (x)
S(x)

,

where f (x) and S(x) are the probability density function and the survival function
of X, respectively. The survival function of X is given by:

S(x) = P(X > x) = 1− P(X ≤ x) = 1−CDF(x), x > 0,

which gives the probability that a subject, which follows the distribution of X,
survives at the time x. Under the EACD model, the distribution of the innovations
is standard exponential so that the hazard function of εi is 1. As mentioned before,
transaction duration in finance is inversely related to trading intensity, which in
turn depends on the arrival of new information, making it hard to justify that the
hazard function of duration is constant over time.
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To overcome this weakness, alternative innovational distributions have been
proposed in the literature. Engle and Russell (1998) entertain the Weibull distri-
bution for εi and Zhang, Russell and Tsay (2001) consider the generalized Gamma
distribution. The probability density function of a standardized Weibull random
variable X is:

f (x|α) =
{

α
[
�
(
1+ 1

α

)]α
xα−1 exp

{
−
[
�
(
1+ 1

α

)
y
]α}

, if x ≥ 0,

0 otherwise,
(21.7)

where the α is referred to as the shape parameter and �(.) is the usual Gamma
function. The mean and variance of X are E(X) = 1 and Var(X) = �(1+2/α)/[�(1+
1/α)]2 − 1. The hazard function of X is:

h(x|α) = α

[
�

(
1+ 1

α

)]α
xα−1.

Consequently, if α > 1, the hazard function is a monotonously increasing func-
tion of x. If 0 < α < 1, then the hazard function is a monotonously decreasing
function of x.

The probability density function of a generalized Gamma random variable X
with E(X) = 1 is:

f (x|α, κ) =

⎧⎪⎨⎪⎩
αxκα−1

λκα�(κ)
exp

[
− ( x

λ

)α] , if x > 0,

0 otherwise,
(21.8)

where λ = �(κ)/�(κ+1/α) with α > 0 and κ > 0. Both α and κ are shape parameters
so that the hazard function of X becomes more flexible than that of a Weibull
distribution.

If εi of a duration model follows the standardized Weibull distribution with prob-
ability density function f (x|α) in equation (21.7), the conditional density function
of xi given Fi−1 is:

f (x,α) = α

[
�

(
1+ 1

α

)]α xα−1
i
ψα

i
exp

⎧⎪⎨⎪⎩−
⎡⎣�

(
1+ 1

α

)
xi

ψi

⎤⎦α
⎫⎪⎬⎪⎭, (21.9)

which can be used to obtain the conditional log-likelihood function of the data
for estimation.

If εi of a duration model follows the generalized Gamma distribution with E(εi) =
1 in equation (21.8), the conditional density function of xi given Fi−1 is:

f (xi|α, κ) = αxκα−1
i

(ψiλ)
κα�(κ)

exp
[
−
(

xi
ψiλ

)α]
, (21.10)

where, again, λ = �(κ)/�(κ + 1/α). This density function can be used to perform
conditional maximum likelihood estimation of the model.

In what follows, we refer to the duration model in equations (21.1)–(21.2) as
the WACD(p, q) or GACD(p, q) model if the innovation εi follows the standardized
Weibull or generalized Gamma distribution, respectively.
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21.2.4 Quasi-maximum likelihood estimates

In real applications, the true distribution function of the innovation εi of a duration
model is unknown. One may, for simplicity, employ the conditional likelihood
function of an EACD model in equation (21.6) to perform parameter estimation.
The resulting estimates are called the quasi-maximum likelihood estimates (QMLE).
Engle and Russell (1998) show that, under some regularity conditions, QMLE of a
duration model are consistent and asymptotically normal. They are, however, not
efficient when the innovations are not exponentially distributed.

21.2.5 Model checking

Let ψ̂i be the fitted value of the conditional expected duration of an ACD model.
We define ε̂i = xi/ψ̂i as the standardized innovation or standardized residual of the
model. If the fitted ACD model is adequate, then {ε̂i} should behave as an i.i.d.
sequence of random variables with the assumed distribution. We can use this stan-
dardized residual series to perform model checking. In particular, if the fitted model

is adequate, both series {ε̂i} and {ε̂2
i } should have no serial correlations. The Ljung–

Box statistics can be used to check the serial correlations of these two series. Large
values of the Ljung–Box statistics indicate model inadequacy.

In addition, the quantile-to-quantile (QQ) plot of the standardized residuals
against the assumed distribution of the innovations can be used to check the valid-
ity of the distributional assumption. For instance, under the WACD models, ε̂i
should be close to the standardized Weibull distribution with shape parameter α̂.
A deviation from the straight line of the QQ-plot suggests that the distributional
assumption needs further improvement.

21.3 Some simple examples

In this section, we demonstrate the application of ACD models by considering two
real examples.

Example 1 Consider the adjusted transaction durations of IBM stock from
November 1 to November 7, 1990. The original durations are time intervals
between two consecutive trades measured in seconds. Overnight intervals and zero
durations were ignored. The adjustment is made to take care of the diurnal pat-
tern of daily trading activities. The series consists of 3,534 observations and was
used in Example 5.4 of Tsay (2005). Figure 21.1(a) shows the adjusted durations
and Figure 21.2(a) gives the sample autocorrelation functions of the data. The auto-
correlations are not large in magnitude, but they clearly indicate serial dependence
in the data.

For illustration, we entertain EACD(1,1), WACD(1,1) and GACD(1,1) models for
the IBM transaction durations. The estimated parameters of the three models are
given in Table 21.1. The estimates of the ACD equation are rather stable for all three
models, consistent with the theory that the estimates based on the exponential like-
lihood function are QMLE. Figure 21.1(b) shows the standardized innovations and
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Figure 21.1 Time plots of the IBM transaction durations from November 1 to November 7,
1990: (a) adjusted durations; (b) standardized innovations of a WACD(1,1) model

Figure 21.2(b) gives the sample autocorrelation function (ACF) of the standardized
innovations for the fitted WACD(1,1) model. The innovations appear to be random
and their ACFs fail to indicate any serial dependence. Indeed, the Ljung–Box statis-
tics for the standardized innovations and the squared innovations are insignificant,
so that the fitted models are adequate for describing the dynamic dependence of
the adjusted durations.

Figure 21.3 shows the QQ-plot of the standardized residuals versus a Weibull
distribution with shape parameter 0.88 and scale parameter 1. The quantiles of the
Weibull distribution are generated using a random sample of 30,000 observations.
A straight line is imposed on the plot to aid interpretation. From the plot, except
for a few large residuals, the assumption of a Weibull distribution seems reasonable.
In this particular example, the GACD(1,1) model also fits the data well. We chose
the WACD(1,1) model for its simplicity.

Finally, for the WACD(1,1) model, the estimated shape parameter α is less than
1, indicating that the hazard function of the adjusted durations is monotonously
decreasing. This seems reasonable for the adjusted durations of the heavily traded
IBM stock.

Example 2 In this example, we apply the ACD model to stock volatility modeling.
Consider the daily range of the log price of Apple stock from January 4, 1999, to

mailto: rights@palgrave.com


1012 Autoregressive Conditional Duration Models

Lag

A
C

F

0 5 10 15 20 25 30–0
.1

0
0.

0
0.

10
0.

20
(a) Adjusted durations of IBM stock

Lag

A
C

F

0 5 10 15 20 25 30–0
.1

0
0.

0
0.

10
0.

20

(b) Normalized innovations: WACD(1,1) model

Figure 21.2 The sample autocorrelation function of IBM transaction durations from Novem-
ber 1 to November 7, 1990: (a) ACF of the adjusted durations; (b) ACF of the standardized
residual series of a WACD(1,1) model

Table 21.1 Estimation results of EACD(1,1), WACD(1,1) and GACD(1,1)
models for the IBM transaction durations of Example 1

Model Parameters Checking

α0 α1 β1 α κ Q(10) Q∗(10)

EACD 0.129 0.056 0.905 4.55 5.48
(0.037) (0.009) (0.018) (0.92) (0.86)

WACD 0.125 0.056 0.906 0.880 3.85 5.51
(0.040) (0.010) (0.019) (0.012) (0.92) (0.85)

GACD 0.111 0.056 0.912 0.407 4.016 4.62 5.53
(0.040) (0.010) (0.019) (0.040) (0.730) (0.92) (0.85)

Notes: The adjusted durations are from November 1 to November 7, 1990, with
3,534 observations. The standard errors of the estimates are in parentheses. The
p-values of the Ljung–Box statistics are also in parentheses with Q(10) and Q∗(10)
for standardized residual series and its squared process, respectively.

mailto: rights@palgrave.com


Ruey S. Tsay 1013

0 2 4 6 8 10 12

0
2

4
6

8
10

12
14

Standardized residuals

W
ei

bu
ll

Figure 21.3 QQ-plot of the standardized residuals of the WACD(1,1) model versus a Weibull
distribution
The Weibull quantiles are generated from a random sample of 30,000 observations using the shape
parameter 0.88 and scale parameter 1.0.

November 20, 2007. The data are obtained from Yahoo Finance and consist of 2,235
observations. The range has been used in the literature as a robust alternative to
volatility modeling (see Chou, 2005, and the references therein). Apple stock had
two-for-one splits on June 21, 2000, and February 28, 2005, both during the sample
period, but for simplicity we make no adjustments for the splits. Also, stock prices
in the US markets switched from the tick size 1/16 of a dollar to the decimal system
on January 29, 2001. Such a change affected the daily range of stock prices. We
shall return to this point later. The sample mean, standard deviation, minimum
and maximum of the range of log prices are 0.0407, 0.0218, 0.0068 and 0.1468,
respectively. The sample skewness and excess kurtosis are 1.3 and 2.13, respectively.
Figure 21.4(a) shows the time plot of the range series. The volatility seems to be
increasing from 2000 to 2001, then deceasing to a stable level after 2002. It seems
to increase somewhat at the end of the series. Figure 21.5(a) shows the sample ACF
of the daily range series. The sample ACFs are highly significant and decay slowly.

Again, we fit the EACD(1,1), WACD(1,1), and GACD(1,1) models to the daily
range series. The estimation results, along with the Ljung–Box statistics for the
standardized residual series and its squared process, are given in Table 21.2.
Again, the parameter estimates for the duration equation are stable for all three
models, except for the constant term of the EACD model, which appears to be
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Figure 21.4 Time plots of the daily range of log price of Apple stock from January 4, 1999,
to November 20, 2007: (a) observed daily range; (b) standardized residuals of a GACD(1,1)
model

statistically insignificant at the usual 5% level. Indeed, in this particular instance,
the EACD(1,1) model fares slightly worse than the other two ACD models. Between
the WACD(1,1) and GACD(1,1) models, we slightly prefer the GACD(1,1) model,
because it fits the data better and is more flexible. Figure 21.6 shows the QQ-
plots of the standardized residuals versus the assumed innovation distribution for
the GACD(1,1) and WACD(1,1). The plots indicate that further improvement in
the distributional assumption is needed for the daily range, but they support the
preference of the GACD(1,1) model.

Figure 21.5(b) shows the sample ACFs of the standardized residuals of the fitted
GACD(1,1) model. From the plot, the standardized residuals do not have signifi-
cant serial correlations, even though the lag-1 sample ACF is slightly above its two
standard-error limit. We shall return to this point later when we introduce non-
linear ACD models. Figure 21.4(b) shows the time plot of the standardized residuals
of the GACD(1,1) model. The residuals do not show any pattern of model inade-
quacy. The mean, standard deviation, minimum and maximum of the standardized
residuals are 0.203, 4.497, 0.999, and 0.436, respectively.

It is interesting to see that the estimates of the shape parameter α are greater than
1 for both WACD(1,1) and GACD(1,1) models, indicating that the hazard function
of the daily range is monotonously increasing. This is consistent with the idea
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Figure 21.5 The sample autocorrelation function of the daily range of log price of Apple
stock from January 4, 1999 to November 20, 2007: (a) ACF of daily range; (b) ACF of the
standardized residual series of a GACD(1,1) model

of volatility clustering, for a large volatility tends to be followed by another large
volatility. This phenomenon is different from that of the transaction durations in
Example 1 for which α̂ is less than 1.

21.4 The diurnal pattern

In this section, we discuss a simple method to adjust the diurnal pattern of
intradaily trading activities. Figure 21.7(a) shows the trade durations of General
Motors (GM) stock from December 1 to December 5, 2003. Again, for simplicity,
zero durations are ignored. Figure 21.7(b) shows the time intervals from the market
opening (9.30 a.m. Eastern time) to the transaction time. The four vertical drops
of the intervals signify the five trading days. From parts (a) and (b) of the figure,
the diurnal pattern of trading activities is clearly seen. Specifically, except for a
few outliers, the trade durations exhibit a cap-shape pattern within a trading day,
namely the durations are in general shorter at the beginning and closing of the
market, and longer around the middle of a trading day. One must consider such a
diurnal pattern in modeling the transaction durations.
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Table 21.2 Estimation results of EACD(1,1), WACD(1,1) and GACD(1,1)
models for the daily range of log price of Apple stock from January 4, 1999,
to November 20, 2007

Model Parameters Checking
α0 α1 β1 α κ Q(10) Q∗(10)

EACD 0.0007 0.133 0.849 16.65 12.12
(0.0005) (0.036) (0.044) (0.082) (0.277)

WACD 0.0013 0.131 0.835 2.377 13.66 9.74
(0.0003) (0.015) (0.021) (0.031) (0.189) (0.464)

GACD 0.0010 0.133 0.843 1.622 2.104 14.62 11.21
(0.0002) (0.015) (0.019) (0.029) (0.040) (0.147) (0.341)

Notes: The sample size is 2,235. The standard errors of the estimates are in parentheses.
The p-values of the Ljung–Box statistics are also in parentheses with Q(10) and Q∗(10)
for standardized residual series and its squared process, respectively.
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Figure 21.6 QQ-plots for the standardized residuals of ACD models for the daily range of log
price of Apple stock from January 4, 1999, to November 20, 2007: (a) GACD(1,1) model; (b)
WACD(1,1) model
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Figure 21.7 Time plots of durations for the General Motors stock from December 1 to Decem-
ber 5, 2003: (a) observed trade durations (positive only); (b) transaction times measured in
seconds from midnight; (c) adjusted trade durations

There are many ways to remove the diurnal pattern of transaction durations.
Engle and Russell (1998) and Zhang, Russell and Tsay (2001) use some simple expo-
nential functions of time, and Tsay (2005) constructs some deterministic functions
of time of the day to adjust the diurnal pattern. Let f (ti) be the mean value of the
diurnal pattern at time ti, measured from midnight. Then, define:

xi =
zi

f (ti)
, (21.11)

to be the adjusted duration, where zi is the observed duration between the ith and
(i− 1)th transactions. We construct f (ti) using two simple time functions. Define:

O(ti) =
{

ti − 34200 if ti < 43200
0 otherwise,

C(ti) =
{

57600− ti if ti ≥ 43200
0 otherwise,

(21.12)
where ti is the time of the ith transaction measured in seconds from midnight
and 34200, 43200, and 57600 denote, respectively, the market opening, noon,
and market closing times measured in seconds. Figures 21.8(b) and (c) show the
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Figure 21.8 Time plots of durations for the G.M. stock from December 1 to December 5,
2003; (a) observed trade durations (positive only); (b) and (c) the time function O(ti) and
time function C(ti) of equation (21.12)

time plots of O(ti) and C(ti) of the GM stock transactions. Figure 21.8(a) shows the
observed trade durations as in Figure 21.7(a). From the plots, the use of O(ti) and
C(ti) is justified.

Consider the multiple linear regression:

ln(zi) = β0 + β1o(ti)+ β2c(ti)+ ei, (21.13)

where o(ti) = O(ti)/10000 and c(ti) = C(ti)/10000. Let β̂i be the ordinary least
squares estimates of the above linear regression. The residual is then given by:

êi = ln(zi)− β̂0 − β̂1o(ti)− β̂2c(ti).

The adjusted durations then become:

x̂i = exp(êi). (21.14)

For the GM stock transactions, the estimates of the βi are 1.015(0.012), 0.133(0.028)
and 0.313(0.016), respectively, where the numbers in parentheses denote standard
errors. All estimates are statistically significant at the usual 1% level. Note that
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the residuals of the regression in equation (21.13) are serially correlated. Thus,
the standard errors shown above underestimate the true ones. A more appropriate
estimation method of the standard errors is to apply the Newey and West (1987)
correction. The adjusted standard errors are 0.018, 0.044 and 0.027, respectively.
These standard errors are larger, but all estimates remain statistically significant at
the 1% level.

Figure 21.7(c) shows the time plot of the adjusted durations for the GM stock.
Compared with part (a), the diurnal pattern of the trade durations is largely
removed.

21.5 Nonlinear duration models

The linear duration models discussed in the previous sections are parsimonious in
their parameterization and useful in many situations. However, in financial appli-
cations, the sample size can be large and the linearity assumption of the model
might become an issue. Indeed, our limited experience indicates that some non-
linear characteristics are often observed in transaction durations and daily ranges
of log stock prices. For instance, Zhang, Russell and Tsay (2001) showed that simple
threshold autoregressive duration models can improve the analysis of stock transac-
tion durations. In this section, we consider some simple nonlinear duration models
and demonstrate that they can improve upon the linear ACD models.

21.5.1 The threshold autoregressive duration model

A simple nonlinear duration model is the threshold autoregressive conditional
duration (TACD) model. The nonlinear threshold autoregressive (TAR) model was
proposed in the time series literature by Tong (1978) and has been widely used ever
since (see, e.g., Tong, 1990; Tsay, 1989). A simple two-regime TACD(2;p, q) model
for xi can be written as:

xi =
{

ψiε1i if xt−d ≤ r,
ψiε2i if xt−d > r,

(21.15)

where d is a positive integer, xt−d is the threshold variable, r is a threshold, and:

ψi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
α10 +

p∑
v=1

α1vxi−v +
q∑

v=1

β1vψi−v if xt−d ≤ r,

α20 +
p∑

v=1

α2vxi−v +
q∑

v=1

β2vψi−v if xt−d > r,

where αj0 > 0 and αjv and βjv satisfy the conditions of the ACD model stated in
equation (21.2) for j = 1 and 2. Here j denotes the regime. The innovations {ε1i}
and {ε2i} are two independent i.i.d. sequences. They can follow the standard expo-
nential, standardized Weibull, or standardized generalized Gamma distribution as
before. For simplicity, we shall refer to the resulting models as the TEACD, TWACD,
and TGACD model, respectively. The TACD model is a piecewise linear model in
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the space of xi−d , and it is nonlinear when some of the parameters in the two
regimes are different. The model can be extended to have more than two regimes.
In what follows, we assume p = q = 1 in our discussion, because ACD(1,1) models
fare well in many applications.

The TACD model appears to be simple, and it is indeed easy to use. However,
its theoretical properties are very involved. For instance, the stationarity condition
stated in equation (21.15) is only sufficient. The necessary condition of stationarity
would depend on d and the parameters and deserves further investigation.

A key step in specifying a TACD model for a given time series is the identification
of the threshold variable and the threshold, i.e., specifying d and r. The choice of
d is relatively simple because d ∈ {1, . . . , d0} for some positive integer d0. For stock
transaction durations, d = 1 is a reasonable choice as trading activities tend to be
highly serially correlated. For the threshold r, a simple approach is to use empirical
quantiles. Let x<q> be the qth quantile of the observed durations {xi|i = 1, . . . , n}.
We assume that r ∈ {x<q>|q = 60, 65, 70, . . . , 95}. For each candidate x<q>, estimate
the TACD(2;1,1) model:

ψi =
{

α10 + α11xi−1 + β11ψi−1 if xt−1 ≤ x<q>,
α20 + α21xi−1 + β21ψi−1 otherwise,

and evaluate the log-likelihood function of the model at the maximum likelihood
estimates. Denote the resulting log-likelihood value by �(x<q>). The threshold is
then selected by:

r̂ = x<qo>
such that �(x<qo>

) = max
q
{�(x<q>)|q = 60, 65, 70, . . . , 95}.

21.5.2 Example

In this sub-section, we revisit the series of daily ranges of the log price of Apple
stock from January 4, 1999, to November 20, 2007. The standardized innovations
of the GACD(1,1) model of section 21.3 have a marginally significant lag-1 auto-
correlation. This serial correlation also occurs for the EACD(1,1) and WACD(1,1)
models. Here we employ a two-regime threshold WACD(1,1) model to improve
the fit. Preliminary analysis of the TWACD models indicates that the major differ-
ence in the parameter estimates between the two regimes is the shape parameter of
the Weibull distribution. Thus, we focus on a TWACD(2;1,1) model with different
shape parameters for the two regimes.

Table 21.3 gives the maximized log-likelihood function of a TWACD(2;1,1) model
for d = 1 and r ∈ {x<q>|q = 60, 65, . . . , 95}. From the table, the threshold 0.04753
is selected, which is the 70th percentile of the data. The fitted model is:

xi = ψiεi, ψi = 0.0013+ 0.1539xi−1 + 0.8131ψi−1,

where the standard errors of the coefficients are 0.0003, 0.0164 and 0.0215,
respectively, and εi follows the standardized Weibull distribution as:

εi ∼
{

W(2.2756) if xi−1 ≤ 0.04753,
W(2.7119) otherwise,

mailto: rights@palgrave.com


Ruey S. Tsay 1021

Table 21.3 Selection of the threshold of a TWACD(2;1,1) model for the daily
range of the log price of Apple stock from January 4, 1999, to November 20,
2007

Quantile 60 65 70 75 80 85 90 95

r × 100 4.03 4.37 4.75 5.15 5.58 6.16 7.07 8.47

�(r)× 103 6.073 6.076 6.079 6.076 6.078 6.074 6.072 6.066

Note: The threshold variable is xi−1.

where the standard errors of the two shape parameters are 0.0394 and 0.0717,
respectively.

Figure 21.9(a) shows the time plot of the conditional expected duration for the
fitted TWACD(2;1,1) model, i.e., ψ̂i, whereas Figure 21.9(b) gives the residual ACFs
for the fitted model. All residual ACFs are within the two-standard-error limits.
Indeed, we have Q(1) = 4.01(0.05), Q(10) = 9.84(0.45) for the standardized residuals
and Q∗(1) = 0.83(0.36) and Q∗(10) = 9.35(0.50) for the squared series of the
standardized residuals, where the number in parentheses denotes p-value. Note that
the threshold variable xi−1 is also selected based on the value of the log-likelihood
function. For instance, the log-likelihood function of the TWACD(2;1,1) model

assumes the value 6.069×103 and 6.070× 103, respectively, for d = 2 and 3 when
the threshold is 0.04753. These values are lower than that when d = 1.

21.6 The use of explanatory variables

High-frequency financial data are often influenced by external events, e.g., an
increase or drop in interest rates by the US Federal Open Market Committee or a
jump in the oil price. Applications of ACD models in finance are often faced with
the problem of outside interventions. To handle the effects of external events,
the intervention analysis of Box and Tiao (1975) can be used. In this section, we
consider intervention analysis in ACD modeling. We use the daily range series of
Apple stock as an example. Here the intervention is the change in tick size of the
US stock markets.

On January 29, 2001, all stock prices on the US markets switched to the decimal
system. Before the switch, tick sizes of US stocks went through several transitions,
from 1/8 to 1/16 to 1/32 of a dollar. The observed daily range is certainly affected
by the tick size.

Let to be the time of intervention. For Apple stock, to = 522, which corresponds
to January 26, 2001, the last trading day before the change in tick size. Since
more observations in the sample are after the intervention, we define the indicator
variable:

I(to)i =
{

1 if i ≤ to,
0 otherwise,
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Figure 21.9 Model fitting for the daily range of the log price of Apple stock from Jan-
uary 4, 1999, to November 20, 2007: (a) the conditional expected durations of the fitted
TWACD(2;1,1) model; (b) the sample ACF of the standardized residuals

to signify the absence of intervention. Since a larger tick size tends to increase the
observed daily price range, it is reasonable to assume that the conditional expected
range would be higher before the intervention. A simple intervention model for
the daily range of Apple stock is then given by:

xi = ψi

{
ε1i if xi−1 ≤ 0.04753,
ε2i otherwise,

where ψi follows the model:

ψi = α0 + γ I(to)i + α1xi−1 + β1ψi−1, (21.16)

where γ denotes the decrease in expected duration due to the decimalization
of stock prices. In other words, the expected durations before and after the
intervention are:

α0 + γ

1− α1 − β1
and

α0
1− α1 − β1

,

respectively. We expect γ > 0.
The fitted duration equation for the intervention model is:

ψi = 0.0021+ 0.0011I(522)
i + 0.1595xi−1 + 0.7828ψi−1,
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Figure 21.10 Model fitting for the daily range of the log price of Apple stock from Jan-
uary 4, 1999, to November 20, 2007: (a) the conditional expected durations of the
fitted TWACD(2;1,1) model with intervention; (b) the sample ACF of the corresponding
standardized residuals

where the standard errors of the estimates are 0.0004, 0.0003, 0.0177, and 0.0264,
respectively. The estimate γ̂ is significant at the 1% level. For the innovations,
we have:

εi ∼
{

W(2.2835) if xi−1 ≤ 0.04753,
W(2.7322) otherwise.

The standard errors of the two estimates of the shape parameter are 0.0413 and
0.0780, respectively. Figure 21.10(a) shows the expected durations of the interven-
tion model and Figure 21.10(b) shows the ACF of the standardized residuals. All
residual ACFs are within the two standard error limits. Indeed, for the standardized
residuals, we have Q(1) = 2.37(0.12) and Q(10) = 6.24(0.79). For the squared series
of the standardized residuals, we have Q∗(1) = 0.34(0.56) and Q∗(10) = 6.79(0.75).
As expected, γ̂ > 0 so that the decimalization indeed reduces the expected value of
the daily range. This simple analysis shows that, as expected, adopting the decimal
system reduces the volatility of Apple stock.

Note that a general intervention model that allows for changes in the dynamic
dependence of the expected duration can be used, even though our analysis only
allows for a change in the expected duration. Of course, more flexible models are
harder to estimate and understand.

mailto: rights@palgrave.com


1024 Autoregressive Conditional Duration Models

21.7 Conclusion

In this chapter, we introduced the autoregressive conditional duration models and
discussed their properties and statistical inference. Among many applications, we
used the model to study the daily volatility of stock prices and found that, for
Apple stock, adopting the decimal system on January 29, 2001, indeed significantly
reduces the price volatility.

Note

1. The estimation of all ACD models in this chapter is carried out by the FMINCON function
in Matlab.
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Abstract

We provide a selective overview of the econometric methods employed in modeling some of
the key relationships which determine the behavior of exchange rates and the efficacy of models
employed to forecast them.
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22.1 Introduction

The purpose of this chapter is to provide a selective overview of the econometric
methods employed in the modeling of exchange rates. Given space constraints, we
can only give very brief outlines of the underlying economic theory, which is well
covered in, e.g., Taylor (1995), Obstfeld and Rogoff (1996), and Sarno and Taylor
(2002).

Whilst always an important focus of applied work, econometric developments,
in conjunction with new high-quality datasets and the move to generalized floating
exchange rates in 1973, have generated a vast number of empirical papers in the
last couple of decades. Perhaps the major change in emphasis over this period has
been the application of nonlinear rather than linear methods. These nonlinear
models are based on theoretical models that embody factors such as transactions
costs, limits to arbitrage and heterogeneity of expectations of market participants
(see, e.g., Dumas, 1992; De Grauwe et al., 1993; Shleifer and Vishny, 1997).

An essential building block of many macroeconomic models is that purchasing
power parity (PPP) holds in the long run. PPP states that the nominal exchange
rate between two currencies should be equal to the ratio of aggregate price levels
between the two countries, so that a unit of currency of one country will have the
same purchasing power in a foreign country. The first empirical studies employing
unit root tests in the late 1980s were consistent in their failure to reject the unit
root hypothesis for major real exchange rates (e.g., Taylor, 1988; Mark, 1990). Sub-
sequent research employing longer time series datasets or panel methods suggested
that the early non-rejections of the unit root hypothesis was due to low power of
the corresponding test (Lothian and Taylor, 1996). However, the implied speeds of
adjustment of the real exchange rate in these studies was implausibly slow, typically
with half-life in the range of three to five years. Rogoff (1996, p. 647) summarized
this position as follows, “How can one reconcile the enormous short-term volatil-
ity of real exchange rates with the extremely slow rate at which shocks appear to
damp out?”

Perhaps the most important explanation of the Rogoff puzzle is that real
exchange rates can be described by a nonlinear data-generating process (DGP)
that exhibits a region of unit root or near unit root behavior near the equilib-
rium real exchange rate. Nonlinear models that capture this type of behavior are
the threshold autoregressive model of Tong (1983), and the exponential smooth
transition autoregressive model of Ozaki (1978). Econometric testing requires
appropriate tests for nonlinearity, where the null can be a stationary linear pro-
cess or a non-stationary linear process. In addition, the error process can exhibit
heteroskedasticity due to changes in regime (e.g., fixed to floating, or different
monetary regimes), as well as time-varying volatility. Consequently, the tests have
to allow for this feature and critical values have been obtained by either Monte
Carlo or bootstrap methods. Because many other empirical tests of aspects of
exchange rate behavior employ these tests, we initially consider the econometric
tests of PPP in section 22.2.
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Average daily global turnover in foreign exchange market transactions was esti-
mated at around $2.7 trillion in 2006. In an efficient speculative market, prices
should fully reflect publicly available information so that it should not be possi-
ble for a trader to earn systematic abnormal returns. However, empirical estimates
show that the spot exchange rate next period moves on average in the opposite
direction to that currently predicted by the forward premium, the so-called forward
bias puzzle. In section 22.3.1 we consider econometric tests of the covered interest
parity condition and, in section 22.3.2, the uncovered interest parity condition
and the various explanations of the forward bias puzzle.

If expectations are forward looking then the exchange rate regime in place, as
well as the anticipation of the implementation of future exchange rate regimes, will
impact on the behavior of the exchange rate. An important example of such policy
arrangements are “target zones.” Within this framework the authorities intervene
to attempt to keep the exchange rate within a band. The recent experience of
European currencies between 1979 and 1998 under the European Monetary System
(EMS) is one such example.1 In section 22.4 we consider some of the econometric
testing of target zone models.

As with other asset markets, researchers have examined whether exchange rates
exhibit rational speculative bubbles.2 In section 22.5 we briefly discuss some of the
more recent developments in the area.

Section 22.6 covers the issue of exchange rate forecasting. In a seminal paper,
Meese and Rogoff (1983a) compared the out-of-sample forecasts produced by vari-
ous exchange rate models with forecasts produced by a random walk (RW) model.
On the basis of the root mean square criterion, they concluded that none of the
various asset-market exchange rate models they considered outperformed a simple
RW. Since then a plethora of papers have been published on this issue. We give an
overview of developments. Finally, section 22.7 provides a brief conclusion of the
major issues to emerge in this chapter.

22.2 Real exchange rates

The PPP hypothesis states that domestic prices in two countries should be the same
when converted to a common currency. Let us define the log real exchange rate as
yt = st − pt + p∗t , where st is the logarithm of the spot exchange rate (the domestic
price of foreign currency), pt is the logarithm of the domestic price level and p∗t
the logarithm of the foreign price level.

Initial empirical studies of PPP consisted of fitting a univariate autoregressive
model for the real exchange rate, yt =

∑p
i=1 βiyt−i+εt . In the 1980s many empirical

studies were unable to reject the unit root null hypothesis for yt using standard
unit root tests such as the augmented Dickey–Fuller (ADF) and Phillips–Perron
(PP) (Taylor, 1988; Mark, 1990). In the light of these results, the first econometric
issue addressed in the literature was the power of the ADF and PP tests in a linear
framework. Lothian and Taylor (1996) undertook the following simulation. They
generate a stationary AR(1) process calibrated with empirical estimates on data for
100 years of the dollar–pound real exchange rate as yt = 0.87yt−1 + εt .

3
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The power of both ADF and PP tests was around 45% for a sample size of 100. Caner
and Kilian (2001) did a similar experiment but with the null of stationarity. They
employ the Kwiatkowski et al. (1992) (KPSS) and Leybourne and McCabe (1994)
tests. They found that, if real exchange rates were a linear autoregressive process

with half-life of about three to five years (β = 0.5(1/60) = 0.9885 for monthly data,

and β = 0.5(1/20) = 0.9659 for quarterly), they would reject the null of stationarity
with about 60% probability for quarterly data and 40% for monthly data. Together,
these results pointed out a serious problem with unit root and stationarity tests due
to their lack of power and size, respectively.4

A number of authors have employed a multivariate cointegration methodology
to test for a long-run relationship between exchange rates and foreign and domestic
price levels in the recent floating exchange rate period (MacDonald, 1993; Baum
et al., 2001). The cointegrating relationship is usually specified as:

st = α + β1p∗t + β2pt + ut . (22.1)

The standard empirical findings employing these methods are that cointegration
cannot be rejected but the assumption of proportionality and symmetry between
the nominal exchange rate and domestic and foreign prices (β1 = −β2 = 1) is not
supported by the data.5

Theoretical analysis of purchasing power parity deviations demonstrate how
transactions costs or the sunk costs of international arbitrage induce nonlinear but
mean reverting adjustment of the real exchange rate (see, e.g., Dumas, 1992; Sercu
et al., 1995; O’Connell and Wei, 1997). Whilst globally mean reverting, these non-
linear processes have the property of exhibiting near unit root behavior for small
deviations from PPP, since small deviations are left uncorrected if they are not large
enough to cover transactions costs or the sunk costs of international arbitrage. The
nonlinearity postulated can be captured by a set of parametric nonlinear auto-
regressive models. We can classify this set of nonlinear models according to the
way the real exchange rate switches between regimes: first, with smooth transition
models; second, with threshold autoregressive models.

22.2.1 Smooth transition (STR) models

Consider the following STR model:

yt = β
′̃yt + φ

′̃ytF(zt−d ; γ , c)+ ut , (22.2)

where ỹt = (1, yt−1, . . . , yt−p, wt−1, . . . , wt−q), with wt a vector of exogenous vari-

ables, and ut is a white-noise sequence with mean zero and variance σ
2
u . If

ỹt = (1, yt−1, . . . , yt−p), the model is called a smooth transition autoregressive
(STAR). We will concentrate on this case hereafter as results can easily be gener-
alized to the STR. The variable zt−d is the transition variable, the one that drives
the dependent variable to move between regimes. We will consider the case that
zt−d = yt−d . The STAR model can then be written as:

yt = β0 +
p∑

j=1
βjyt−j +

(
φ0 +

q∑
j=1

φjyt−j

)
F(yt−d ; γ , c)+ ut . (22.3)
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The variable yt−d (though in general it could be a vector) is assumed to be stationary
and ergodic and, for d ∈ 1, 2, . . . , dmax with d the delay parameter, must satisfy
1 ≤ d ≤ r for r = max(p, q). We will only consider the case p = q. We are interested
in the special case of a unit root in the linear polynomial,

∑p
j=1 βj = 1. The function

F(·) is at least fourth-order, continuously differentiable with respect to γ . There are
two common forms of the STAR model. The one we will discuss here in detail is
the exponential STAR (ESTAR) model of Granger and Teräsvirta (1993), in which
transitions between a continuum of regimes are assumed to occur smoothly.6 The
transition function F(·) of the ESTAR model is:

F(yt−d ; γ , c) = [1− exp(−γ (yt−d − c)2)]. (22.4)

This transition function is symmetric around (yt−d − c) and admits the limits:

F (·; γ ) → 1 as
∣∣yt−d − c

∣∣→+∞,

F (·; γ ) → 0 as
∣∣yt−d − c

∣∣→ 0.

Parameter γ can be seen as the transition speed of the function F(·) towards 1 (or
0) as the deviation grows larger (smaller). The variable yt moves between an AR

of the form yt = β0 + φ0 +
∑p

j=1(βj + φj)yt−j + ut when F(·) is 1 and a unit root,

yt = β0+
∑p

j=1 βjyt−j+ut , when the variable is in “equilibrium,” F(·) = 0. If φj = −βj
∀j, the variable yt would be an AR process that moves between a white noise and
a unit root depending on the size of the deviation,

∣∣yt−d − c
∣∣.7 Unlike in a linear

model, the speed of adjustment of these nonlinear models will depend on the size
of the deviation from PPP. They can exhibit strong persistence and near unit root
behavior.8 Recent empirical work (e.g., Michael et al., 1997; Taylor et al., 2001;
Paya et al., 2003; Paya and Peel, 2006a) has employed monthly real exchange rates
for the interwar and post-war float as well as a two-century span of annual rates
and showed that the ESTAR model provides a parsimonious fit to the data.

22.2.1.1 Linearity testing against STR

When testing for the existence of the nonlinear part of (22.2) an identification
problem arises. The null hypothesis of linearity corresponds to H0 : φ′ = 0. Under
H0, the parameters γ and c could take any value as they are not identified under
the null. Alternatively, if the null hypothesis was H0 : γ = 0, then parameters
φ and c would not be identified under the null. In these cases it would not be
possible to differentiate between a linear or nonlinear process (see Davies, 1977).9

This problem is solved by taking a Taylor series approximation of F(·) with respect
to γ evaluated at γ = 0. This method was introduced by Luukkonen et al. (1988)
and adopted by Teräsvirta (1994). A third-order Taylor expansion of the logistic
function would yield:

yt = β
′̃yt +

1
4
γφ
′̃yt (yt−d − c)+ 1

48
γ

3
φ
′̃yt (yt−d − c)3. (22.5)

In the case of the exponential function a first-order Taylor approximation yields:

yt = β
′̃yt + γφ

′̃yt (yt−d − c)2. (22.6)
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A researcher might not know which STAR model the data follows and a sensible
first step would be to have a general linearity test that will include both alternative
models. Teräsvirta (1994) proposes a modeling cycle consisting of the following
stages:

1. Specification of a linear model.
2. Testing for linearity, HL,0 : γ = 0. Combining (22.5) and (22.6) and recombining

in terms of identified parameters, the regression equation becomes:

yt = β
′
1ỹt + β

′
2ȳt yt−d + β

′
3ȳt y

2
t−d + β

′
4ȳt y

3
t−d + ut , (22.7)

where ȳt = (yt−1, . . . , yt−p). The linearity test has null hypothesis HL,0 : β
′
2 =

β
′
3 = β

′
4 = 0 and the original hypothesis can be tested by applying the Lagrange

multiplier (LM) principle. The appropriate transition variable lag in the STR
model can be determined without specifying the form of the transition function.
We can compute the F-statistic for HL,0 for various values of d (and different zt
variables) and select the one for which the p-value of the test is smallest.

3. Selecting the transition function. The choice between ESTAR and LSTAR models
can be based on the following sequence of null hypotheses:

H03 : β4 = 0,

H02 : β3 = 0 | β4 = 0,

H01 : β2 = 0 | β3 = β4 = 0.

If the p-value for the F-test of H02 is smaller than that for H01 and H03 then we
select the ESTAR family, otherwise we choose the LSTAR family.

While Teräsvirta (1994) uses a third-order Taylor expansion of the logistic func-
tion and a first-order expansion for the exponential function, Escribano and Jordä
(1999) (EJ) augment the regression equation with a second order expansion of the
exponential function:10

yt = β
′
1ỹt + β

′
2ȳt yt−d + β

′
3ȳt y

2
t−d + β

′
4ȳt y

3
t−d + β

′
5ȳt y

4
t−d + vt . (22.8)

EJ claim that this procedure improves the power of both the linearity test and the

selection procedure test. The null hypothesis of linearity corresponds to H0 : β
′
2 =

β
′
3 = β

′
4 = β

′
5 = 0. Under this null the LM test is asymptotically χ

2. The selection
procedure between ESTAR and LSTAR is as follows:

1. Test the null H0 : β
′
3 = β

′
5 = 0 with an F-test (FE).

2. Test the null H0 : β
′
2 = β

′
4 = 0 with an F-test (FL).

3. If the p-value of FE is lower than FL then select an ESTAR. Choose an LSTAR
otherwise.

If the errors display heteroskedasticity, Granger and Teräsvirta (1993) suggest
ways of making the testing procedure more robust.11 However, Lundbergh and
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Teräsvirta (1998) conclude that conditional heteroskedasticity may result in severe
size distortions and that the robust version of Granger and Teräsvirta (1993) appears
to have very low power.12 Pavlidis et al. (2007) investigate the performance of
possible alternatives to improve the properties (size and power) of linearity LM
tests using heteroskedasticity consistent covariance matrix estimators (HCCME)
and the wild bootstrap.13 They show that in the case of the LM linearity tests,
the fixed-design wild bootstrap appears to improve tests both in terms of size and
size-adjusted power.

However, besides the functional form of the real exchange rate, a major con-
cern in the PPP literature is that real exchange rates follow a RW. Kapetanios et
al. (2003a) (KSS) develop a test with a linear unit root null against the alterna-
tive of a stationary ESTAR. Their test is also based on a Taylor approximation of
the nonlinear autoregressive model. For simplicity, assuming p = 1, d = 1, β1 = 1,
φ1 = −β1, c = 0, then (22.3) becomes:

yt = yt−1 +
[
1− exp

(
−γ y2

t−1

)]
(−yt−1)+ ut . (22.9)

Using the first-order Taylor expansion (22.6) in this particular case:

yt = yt−1 − δ(yt−1)(yt−1)
2 ⇒ �yt = δy3

t−1 + ut . (22.10)

Under the null hypothesis of linearity, H0 : γ = 0, �yt = ut . KSS also consider the
more general case where model (22.9) includes deterministic components. To ease
notation, let y∗t = yt − ĉ′xt where xt = (1, t), and ĉ′ denotes least squares estimates.
Then we can rewrite equation (22.10) as:

�y∗t =
p∑

j=1
aj�y∗t−j + δy∗3t−1 + ut , (22.11)

where lags of the dependent variable address the issue of possible error autocorre-
lation. Testing for δ = 0 against δ < 0 corresponds to testing the null hypothesis.
The t-statistic for the null of a linear unit root is given by:

tNL(ĉ
′
) = δ̂

s.e(δ̂)
, (22.12)

where s.e(δ̂) denotes the standard error of δ̂. The asymptotic distribution of (22.12)
is not standard but converges weakly to a complicated functional of Brownian
motions.14 Asymptotic critical values for the tNL(ĉ

′
) statistics have been tabulated

via stochastic simulation. KSS use quarterly data for bilateral real exchange rates
for 11 OECD countries against the dollar covering the period 1957–98. While the
ADF test was unable to reject the null of a unit root in any of the rates, the KSS test
rejected the null in favor of an ESTAR in six cases, thus giving support to PPP.15

The linearity tests reviewed so far test the null of linear stationarity or a linear
unit root process against a globally stationary nonlinear process in levels. Harvey
and Leybourne (2007) (HL) develop a testing procedure for the null of linearity
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against nonlinearity. Rejection of the null is therefore indicative of nonlinearity
and not that the DGP follows a different linear process.

The HL test consists of two steps. First is the test of linearity. Second, the order of
integration of the linear or nonlinear process is determined. Consider the linearity
test (22.7) described above for the case of the null of linear I(0). In the case of
an I(1) variable, the Taylor expansion would become (considering the transition
variable is yt−1):

�yt = ϕ0�yt−1 + ϕ1(�yt−1)
2 + ϕ1(�yt−1)

3 + εt .

In order to combine both possibilities, I(0) and I(1), HL propose the following
regression model:

yt = α0 + α1yt−1 + α2y2
t−1 + α3y3

t−1 + α4�yt−1 + α5(�yt−1)
2+

α6(�yt−1)
3 + εt . (22.13)

The null hypothesis of linearity would be H0L : α2 = α3 = α5 = α6 = 0. The alter-
native hypothesis (nonlinearity) would be that at least one of those αs is different
from zero. This test is carried out using the Wald statistic:

WT =
RSS1 − RSS0

RSS0/T
,

where the restricted residual sum of squares (RSS1) comes from an ordinary least
squares (OLS) regression of yt on a constant, yt−1, and �yt−1. As HL point out,
the distribution of WT under the null differs depending on whether the process
followed by yt is I(0) or I(1). In order to make the limiting distribution of WT homo-
geneous under the null they multiply it with a correction that is the exponential
of a weighted inverse of the absolute value of the ADF statistic:16

W∗
T = exp

(
−b

∣∣DFT
∣∣−1

)
WT , (22.14)

where an expression for the value of b is provided such that, for a given significance

level, the critical value of W∗
T coincides with that from a χ

2
(4). They also prove

that, under H1, W∗
T is consistent at the rate Op(T).

The second step is to test whether the series is an I(0) or an I(1) process. HL use
the Harris et al. (2003) statistic to distinguish between I(0) or I(1) processes regard-
less of whether nonlinearity is present or not. HL apply their testing methodology
to the monthly real exchange rates of 15 European countries against the dollar and
find evidence of PPP (linear I(0) or nonlinear I(0)) in only two of them, Finland and
the Netherlands. Notwithstanding, from a theoretical point of view, evidence that
the real exchange rate follows a nonlinear I(1) process would not be considered
evidence in support of PPP.

22.2.1.2 Nonlinear STR estimation

Once the functional form of the real exchange rate has been determined using
linearity testing, the next step is to review the nonlinear estimation procedure.17
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The unrestricted ESTAR model considered here has the following form:

y∗t =
p∑

j=1
ϕjy

∗
t−j +

(
p∑

j=1
ϕ
∗
j y∗t−j

)[
1− exp

(
−γ

(
y∗t−d

)2
)]
+ ut , (22.15)

where y∗t denotes de-meaned, detrended or in-deviation data.18 In the estimation
of the nonlinear model, γ is estimated by scaling it by the variance of the transition
variable. This scaling is suggested for two reasons. One is to avoid problems in the
convergence of the algorithm. Second, it makes it easier to compare speeds of
adjustment across different studies (see Teräsvirta, 1994).19

Since the t-ratio of the estimated coefficient γ in (22.15) does not provide a
valid significance test in the usual way, its critical values must be obtained by
simulation.20 The estimation technique can be nonlinear least squares (NLS) or
maximum likelihood. Under the assumption that ut is normally distributed, NLS is
equivalent to maximum likelihood, otherwise, NLS estimates can be interpreted as
quasi-maximum likelihood estimates. Wooldridge (1994) and Pötscher and Prucha
(1997) discuss regularity conditions that allow consistent and asymptotically
normal estimators.

The adequacy of the estimated STR model can be evaluated employing the LM-
type diagnostic tests for the hypothesis of no error autocorrelation, (the customary
portmanteau test has an unknown asymptotic null distribution), nonlinearity and
parameter constancy of Eitrheim and Teräsvirta (1996). The last two tests address
important issues of misspecification due to neglected nonlinearity and possible
parameter instability.

The nonlinear models reported in empirical work have been estimated on data
sampled at different levels of aggregation, namely monthly, quarterly and annual
(see, e.g., Michael et al., 1997; Taylor et al., 2001; Taylor and Kilian, 2003; Paya
et al., 2003).21 As noted by Taylor (2001), if the true DGP is nonlinear, the tempo-
rally aggregated data could exhibit misleading properties regarding the adjustment
speeds if a linear model is estimated. Paya and Peel (2006c) complement this work
by examining the effects of different levels of temporal aggregation of an ESTAR
DGP on aggregate estimates of ESTAR models.22 They show that ESTAR type non-
linearities are usually preserved under the temporal aggregation schemes examined.
However, the dynamic structure of the best fitting models changes and tends to
take the form researchers have found to fit well on actual data of the same fre-
quency. Furthermore, comparison of the measured speed of response to shocks
with models estimated on the temporally aggregated data and the true DGP shows
that the measured speed of adjustment declines the more aggregated the data.

22.2.1.3 Time-varying equilibrium real exchange rate

A variety of theoretical models, such as those of Balassa (1964), Samuelson (1964),
Lucas (1982), and Backus and Smith (1993), imply a non-constant equilibrium in
the real exchange rate and estimates, including proxies for the equilibrium determi-
nants, appear significant (see, e.g., Lothian and Taylor, 2000; Hegwood and Papell,
2002). Paya and Peel (2004, 2006a), employing various proxies, show the estimated
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speeds of mean-reversion to be much faster than when it is assumed constant, with
the half-life of shocks to the real exchange rate being less than two years.

However, Paya and Peel (2006a) also highlight the possibility of spurious rela-
tionships in nonlinear models if standard critical values are considered as valid
when a persistent variable or vector of variables (xt ) are included as proxies for the
equilibrium level of the real exchange rate in the ESTAR model:

yt = α + δxt + exp
(
−γ (yt−1 − α − δxt−1)

2
) p∑

i=1

βi(yt−i − α − δxt−i)+ ut . (22.16)

The bootstrap methodology is used to provide a better finite sample approxima-
tion to the distribution of a particular estimator in cases where classical asymptotic
theory might not yield a reliable guide.23 If the true DGP admits heteroskedastic-
ity of unknown form, it cannot be replicated in the bootstrap DGP. The bootstrap
method called the wild bootstrap solves this problem by using the following
procedure (see, e.g., Wu, 1986; Mammen, 1993; Davidson and Flachaire, 2001).24

The null hypothesis is that the coefficients (δ) on the proxy variables for the

equilibrium real exchange rate are zero. Accordingly, an “artificial”series for yt (̂yb
t )

is simulated using previously estimated coefficients of the ESTAR model (22.16)
and setting the coefficients of the equilibrium determinants (δ) equal to zero:

ŷb
i = α̂ + exp

(
−γ̂ (yt−1 − α̂)

2
) p∑

i=1

β̂i(yt−i − α̂)+ ub
i , (22.17)

where the i = 1, . . . , B are replications. The residuals ub
i are obtained from boot-

strapping the estimated residuals (̂ut ) obtained from the ESTAR model (22.16)
which includes the equilibrium determinants.25 In other words, every replication
employs the actual residuals from regression (22.16) and creates a new series of

residuals (ub
i ) based on ût as follows:

ub
i = ûtεi,

where εi is drawn from the following two-point distribution:

εi =

⎧⎪⎨⎪⎩−(
√

5− 1)/2 with probability p = (1+√5)

2
√

5
,

(
√

5+ 1)/2 with probability (1− p).

The εi are mutually independent drawings from a distribution independent of the

original data. The distribution has the properties that E(εi) = 0, E(ε2
i ) = 1, and

E(ε3
i ) = 1.26 A consequence of these properties is that any heteroskedasticity in

the estimated residuals (̂ut ) is preserved in the newly created residuals, ub
i .27

This procedure provides an empirical distribution for δ̂ and their associated stan-
dard errors. The idea in using B replications is to determine the appropriate t-values
and F-statistic so we do not reject the null of δ̂ = 0. These critical values can then
be used to determine whether the estimates of δ̂ reject the null or not. Paya and
Peel (2006a) find that the hypothesis that the real dollar–sterling rate follows an
ESTAR process with time-varying equilibrium proxied by productivity differentials
and/or wealth cannot be rejected at the usual significance level.28
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22.2.2 Threshold autoregressive (TAR) models

If the transition between regimes is assumed abrupt rather than smooth the dynam-
ics of PPP adjustment can be captured by the TAR model of Tong (1983). Empirical
studies that use TAR models for deviations from PPP include Obstfeld and Taylor
(1997) and Sarno et al. (2004a). One of the advantages of this methodology is the
direct estimation of the transaction cost band or threshold band. For illustrative
purposes we start by describing the estimation of a simple symmetric thresh-
old TAR model of order one employed in some of the empirical work previously
mentioned:29

yt =
{

a0 + a1yt−1 + ut if zt−d ≤ c,

b0 + b1yt−1 + ut if zt−d > c,
(22.18)

where zt−d is the transition variable, in our case zt−d = yt−d .30 The integer d is
called the delay lag and is typically unknown, so it must be estimated. As we will
shortly explain, the least squares principle allows d to be estimated along with the
other parameters. Parameter c is the “threshold” that distinguishes two regimes:
(i) transition variable zt−d is below c (lower regime); (ii) transition variable zt−d

is above c (upper regime). Then, parameter vectors α = (a0, a1)
′

and b = (b0, b1)
′

determine the response of the real exchange rate to changes in its last period’s
value.

If the threshold value, c, was known, then to test for threshold behavior all one
needs is to test the hypothesis H0 : α = b. Unfortunately, the threshold value is
typically unknown and, under the null hypothesis, parameter c is not identified.
The second difficult statistical issue associated with TAR models is the sampling dis-
tribution of the threshold estimate. Hansen (1997) provides a bootstrap procedure
to test H0, develops an approximation to the sampling distribution of the thresh-
old estimator free of nuisance parameters, and also develops a statistical technique
that allows confidence interval construction for c.31 In particular, we can write the
TAR model (22.18) compactly as:

yt = xt (c)
′
θ + ut , (22.19)

where xt (c) = (x
′
t1{zt−d ≤ c}, x

′
t1{zt−d > c})′ with xt = (1, yt−1)

′
, 1{·} the indicator

function and θ = (α
′
, b

′
)
′
. For a given value of c the least squares (LS) estimate

of θ is:

θ̂ (c) =
(∑

xt (c)xt (c)
′)−1 (∑

xt (c)yt
)
,

with LS residuals û(c)t and LS residual variance σ
2
T (c) = (1/T)

T∑
t=1

û2
(c)t . Then the

LS estimate of c is the value:

ĉ = arg min
c∈C

σ
2
T (c), (22.20)

where C is an interval (usually trimmed) that covers the sample range of the tran-
sition variable. Problem (22.20) can be solved by a direct search over C. The LS
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estimate of θ is then θ̂ = θ̂ (ĉ). Furthermore, the LS principle allows the estimation
of the, typically, unknown value d by extending problem (22.20) to a search across
the discrete space [1, d̄].

The hypothesis H0 : α = b is tested as follows. Let {et }Tt=1 be an i.i.d. sequence

of N(0, 1) draws. Regress et on xt to obtain the residual variance σ̂
2
T and on

xt (c) to obtain σ̂
2
T (c) and compute F(c) = T(σ̂

2
T − σ̂

2
T (c))/σ̂2

T (c). Then compute
F = supc∈C F(c). Repeat the procedure n times and the asymptotic p-value of the test
is given by the percentage of samples for which F exceeds the observed FT . Hansen
(1997) also provides critical values and a method to construct asymptotically valid
confidence intervals.32

In the last decade the basic TAR model has been extended. New unit root tests
against these TAR models have been used as tests for PPP. We detail below some
of those tests that include TAR models but differ according to the nature of the
transition variable (in levels or in differences), the symmetry or asymmetry of the
bands, the autoregressive process within each region (unit root, stationary AR),
and the number of regimes.

22.2.2.1 Unit root test versus TAR

Enders and Granger (1998) (EG) modify the Dickey–Fuller (DF) critical values of
the F-statistic in order to have the right size to test the unit root null against TAR,
or momentum-TAR (M-TAR) models. In particular, they consider the F-statistic of
the null unit root hypothesis (H0 : ρ1 = ρ2 = 0) in the following TAR model:

�yt =
{
ρ1yt−1 + ut if yt−1 ≤ 0,

ρ2yt−1 + ut if yt−1 > 0,
(22.21)

and also for the M-TAR model:

�yt =
{
ρ1yt−1 + ut if �yt−1 ≤ 0,

ρ2yt−1 + ut if �yt−1 > 0.
(22.22)

EG show that the power of their test improves relative to the standard ADF as the
asymmetric adjustment becomes more pronounced.33

An alternative threshold unit root test is developed by Basci and Caner (2005)
(BC). They consider the following M-TAR model:

�yt =
{
θ
′
1xt−1 + et if

∣∣yt−1 − yt−m−1
∣∣ < λ,

θ
′
2xt−1 + et if

∣∣yt−1 − yt−m−1
∣∣ ≥ λ,

(22.23)

where xt−1 = (yt−1, 1,�yt−1, ....,�yt−k) for t = 1, 2, ..., T . et is an i.i.d. error term,
m represents the delay parameter and 1 ≤ m ≤ k. It is possible to rewrite the model
above as follows:

�yt = θ
′
1xt−11{|yt−1−yt−m−1|<λ} + θ

′
2xt−11{|yt−1−yt−m−1|≥λ} + et . (22.24)
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The expression above is estimated using OLS for each λ ∈ % and the OLS estimate34

of σ
2 is then σ̂

2
(λ) = T−1∑T

t=1 êt (λ)
2. The estimated threshold parameter λ is the

one that minimizes the error variance: λ̂ = arg minλ∈% σ̂
2
(λ). Testing linearity

reduces to H0 : θ1 = θ2. BC propose the following test:

sup
λ∈%

WT (λ) = sup
λ∈%

T

(
σ̂

2
0

σ̂2 (̂λ)
− 1

)
, (22.25)

where σ̂
2
0 is the residual variance from simple OLS estimation of the null linear

model. Following Caner and Hansen (2001), BC resort to a bootstrap approxi-
mation of the distribution of WT to obtain p-values. They tested the nonlinear
behavior of 14 OECD real exchange rates and found that 11 of them display a unit
root inside the band and mean reversion outside the band.35

This section has examined recent developments in linearity testing and the
autoregressive modeling of real exchange rates. The overall conclusion is that non-
linear models provide considerably greater support for the PPP hypothesis and that
the PPP puzzle is largely resolved by them.

22.3 International parity conditions

22.3.1 Covered interest parity (CIP)

In the absence of frictions such as transactions costs or limits to arbitrage
funds, riskless arbitrage should ensure that the covered interest differential on
assets of identical characteristics should be equal to zero. Employing the usual
approximations, we have that:

it − i∗t = ft − st , (22.27)

where it , i∗t are the interest rates on the domestic and foreign assets concerned, ft is
the logarithm of the forward exchange rate (the rate at which the future exchange
of currencies is agreed at time t) of the same term to maturity as the assets, and st
is the spot exchange rate (domestic price of foreign currency).

Whether CIP holds is of interest for at least three reasons. First, absence of CIP,
given its riskless nature in principle, would ceteris paribus imply that the efficient
markets assumption approach to modeling exchange rates (or asset prices in gen-
eral) had very serious limitations. Second, CIP forms a basis with uncovered interest
arbitrage (see below) to determining the properties of the forward rate as a predictor
of future movements in the spot rate. Uncovered interest arbitrage could hardly be
expected to hold in the absence of CIP. Finally, it is assumed in numerous models
that covered and uncovered parity hold. Many empirical tests of the covered inter-
est rate condition have been undertaken.36 Taylor (1987, 1989), unlike in most
previous studies, employs high frequency contemporaneously sampled data for
spot and forward dollar–sterling and dollar–Mark exchange rates and correspond-
ing euro-deposit interest rates for a number of maturities and makes allowance for
bid-ask spreads and brokerage costs in his calculations for the 1980s and selected
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post-war periods. His evidence suggests that there are few profitable violations of
CIP, even during periods of market uncertainty and turbulence, which contrasts
with the results in earlier studies, thus illustrating the crucial role that appropriately
sampled data can play.

A second method for testing CIP widely used in the early literature is to employ
regression analysis and test whether α = 0 and β = 1 in the regression:

ft − st = α + β(it − i∗t )+ ut . (22.28)

If CIP holds, on average we should obtain estimates of α and β differing insignifi-
cantly from zero and one, respectively. However, as noted by Taylor (1987), α̂ = 0
and β̂ = 1 is a necessary but not a sufficient condition for CIP to hold. These
restrictions could be met but the error term might be of such magnitude as to
permit substantial arbitrage possibilities.

A more recent approach to modeling deviations from CIP is to employ univari-
ate threshold models (see Balke and Wohar, 1998; Peel and Taylor, 2002).37 The
rationale of the univariate threshold model is, of course, to capture the transac-
tions band that arbitrageurs face in reality. This method of analysis was explained
in section 22.2. A complementary method is to model the dynamics of adjustment
of each component of CIP by the threshold error correction model set out by Balke
and Fomby (1997).

Peel and Taylor (2002) applied this model, as well as the univariate threshold
model, to weekly data in the interwar period 1922–25. We outline their method
for estimating the threshold error correction model. If we define the vector Xt =
(it , i∗t , ft−st )

′, the deviation from CIP, δt , may be viewed as an error correction term
relating the three elements of Xt , since δt = ft − st − (it − i∗t ). A simple first-order
threshold vector error correction model (TVECM) may be written as:

�Xt =

⎧⎪⎪⎨⎪⎪⎩
Et if

∣∣δt−1
∣∣ < κ,

θ + �δt−1 + Et if δt−1 ≥ κ,

−θ + �δt−1 + Et if δt−1 ≤ −κ,

(22.29)

where Et is a (3× 1) disturbance vector, and � and θ are (3× 1) parameter vectors.
Within the band, the error correction term has no effect on any of the variables
and there is no tendency to adjust toward CIP. However, once outside the band,
we expect at least one of the elements in � to be non-zero. In that case, one or
more of ft − st , it , and i∗t adjust toward CIP so that δt also adjusts. The statistical
significance and relative size of the estimated elements of �, the error correction
parameters, should give an indication of the relative speeds of adjustment of the
components of CIP to large deviations from CIP.

If we define the indicator variables 1(|δt−1| < κ), 1(δt−1 ≥ κ) and 1(δt−1 ≤ −κ),
each of which takes the value unity when the inequality indicated in parentheses
is satisfied, and zero otherwise, the TVECM may be written as a set of dummy
variable regressions:

�Xt = 1(δt−1 ≥ κ)θ − 1(δt−1 ≤ −κ)θ + [1− 1(|δt−1| < κ]�δt−1 + Et . (22.30)
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Estimation may be carried out by nonlinear least squares through a grid search
over κ. However, given the need to form an overall objective function from three
sets of residuals, it is easier in the multivariate case to employ maximum like-
lihood estimation. The concentrated log-likelihood function for this system, for
known κ, is:

L(θ ,�,�, κ) = −T
2

(
3
{
1+ ln(2π)

}+ ln
∣∣�̂∣∣) , (22.31)

where �̂ = (1/T)�
T EtE

′
t is the maximum likelihood estimator of the covariance

matrix (see Davidson and MacKinnon, 1993, p. 316). This is maximized through
a grid search over κ with (22.30) estimated using a full information maximum
likelihood (FIML) estimator at each point in the grid. If L̂(h) is the maximized log-
likelihood conditional on a bandwidth parameter h, the resulting estimator of κ

may be expressed as:

κ̂ = arg max
h∈H

L̂(h),

where H = [0,max
∣∣δt
∣∣] is the range of the grid search. Hypotheses concerning the

parameters can then be tested using an LR statistic defined as λ
′ = 2(̂L− L̃), where

L̂ denotes the value of the maximized log-likelihood and L̃ denotes the maximized
log-likelihood with the relevant restrictions imposed. Empirical marginal signifi-
cance levels for this statistic can be calculated using methods set out in Hansen
(1997) and explained in section 22.2.2. The results reported by Peel and Taylor
were consistent with the conjectures of Keynes (1923) and Einzig (1937). Arbitrage
only occurred when significant deviations from CIP occurred and the adjustment
back to the implied arbitrage bounds was fairly persistent due to the microstruc-
ture faced by arbitragers. Estimation of these threshold (or ESTAR) error correction
mechanisms would be of interest in other areas such as PPP.

In the absence of a new study employing high-quality data of the type employed
by Taylor in the 1980s, it would appear reasonable to assume that restrictions on
arbitrage funds and the ability to make near riskless trades instantaneously implies
that CIP holds within a very small transactions band.

However, before we discuss the uncovered condition there is one feature of the
nonlinear work applied to CIP that needs comment and has applicability to non-
linear models more generally. Whilst the nonlinear assumption is well motivated,
the economic arguments of arbitrage apply to a particular data frequency. For
instance, currently we might expect deviations from the arbitrage bound to occur
near instantaneously. In the 1920s the appropriate period might have been hours,
(possibly days or a week). Unfortunately, if the data frequency available is not
that of the DGP then the estimates of a nonlinear model may generate misleading
results as to the period of dynamic adjustment or the impact of shocks, as discussed
in the context of PPP above. Paya and Peel (2007b) show that systematic sampling
from the true DGP, where they employ every kth observation from the true DGP,
can lead to seriously biased estimates of speeds of adjustment. Estimation of non-
linear models on data sampled at a different frequency to the economic decision
would appear to be a serious problem in the evaluation of nonlinear models.38
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22.3.2 Uncovered interest parity (UIP)

In the absence of frictions an agent should be indifferent between holding domestic
or foreign assets of identical type. The return from the foreign asset over a given
holding period is its return plus or minus the return from exchange rate changes
over the holding period. The latter component is risky so that risk averse agents
will require a risk premium. Employing interest rates as the asset’s return, the UIP
condition is given by:

it − i∗t = Et st+n − st + rpt , (22.32)

where Et st+n is the expectation at time t of the exchange rate in n periods time,
the time to maturity of the interest rates, conditional on all information available
at time t . The uncovered parity condition in conjunction with the covered parity
condition imply that:

ft = Et st+n + rpt , (22.33)

and assuming rational expectations we obtain:

st+n = ft − rpt + εt+n, (22.34)

where εt+n is the rational expectations forecast error, which can follow up to an
n − 1 order moving average error process (see Hansen and Hodrick, 1980). Early
tests of the properties of the forward rate were based on testing the hypothesis that
β = 1 in the following OLS regression:

st+n = α + βft + ut . (22.35)

The estimates of β were typically close to unity. However, the early research, nat-
urally, was unaware that if st and ft are integrated variables, so that (22.35) is a
cointegration regression, the t-ratio is not asymptotically standard normal.

A number of different estimation techniques have been employed to estimate
(22.35) which remedy this deficiency. For example, Hai et al. (1997) estimate
α and β with the dynamic OLS (DOLS) and dynamic generalized least squares
(DGLS) cointegration vector estimators of Stock and Watson (1993). Moore and
Copeland (1995) employ the fully modified maximum likelihood procedure
(FM-OLS) of Phillips and Hansen (1990), which treats equation errors in a gen-
eral semi-parametric way to estimate α and β. Phillips et al. (1996), building
on Phillips (1995), estimate the coefficients employing the fully modified least
absolute deviations (FM-LAD) estimator.39

A comparison by Phillips of the FM-LAD estimates of α and β with those obtained
from FM-OLS and OLS on interwar data suggests it can make a major difference to
the magnitude and significance of the estimated coefficients. The properties of the
FM-LAD estimator appear to us to make it a prime candidate for use in many areas
of finance, e.g., the relationship between asset prices and fundamentals and tests
of bubbles (see section 22.5). It appears to us a neglected contribution.

Overall, the estimates of β do not appear to differ significantly from unity.40

The estimates of α do appear to differ from zero but this, of course, could be the
influence of a stationary, non-zero mean risk-premium. However, an estimate of
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β that does not differ significantly from unity does not imply that markets are
efficient or expectations are formed rationally. It is also consistent with a variety
of non-rational expectations processes.

Orthogonality tests are a standard method for testing the rationality of expecta-
tions. Consider the following specifications:

st+n − st = λ+ θ(ft − st )+ vt+n, (22.36)

st+n − ft = λ+ (θ − 1)(ft − st )+ vt+n, (22.37)

where vt+n is the error term. Given rational expectations and risk-neutrality,
(22.34) implies that λ = 0 and θ = 1 and the error term exhibits up to an n−1 order
moving average error. In fact, a vast amount of empirical work has reported esti-
mates of θ that are not only significantly different from unity but also significantly
negative (see, e.g., Fama, 1984; Hodrick, 1987; Backus et al., 1993). The negative
value of θ implies that the more the foreign currency is at a premium in the for-
ward market, the less the home currency is predicted to depreciate. In that case
the spot exchange rate next period moves, on average, in the opposite direction
to that currently predicted by the forward premium. This implication has become
the forward bias puzzle in the literature. Of course, one explanation could be the
absence of rational or informed expectations and numerous evidence on the prop-
erties of survey evidence on expectation formation support this view (Frankel and
Froot, 1987). However, the systematic nature of the pattern in empirical estimates
of θ over both the interwar and post-war period rather suggests a priori that expec-
tation formation cannot play a major role in the explanation even if one attaches
reasonable weight to the quality of survey data.

Numerous reasons have been set out to explain the puzzle and we now con-
sider some of these. Fama (1984) considers the implications of a time-varying
risk-premium for estimates of (22.36) and (22.37). Assuming rational expectations,
we have as a property that:

st+n − st = Est+n − st + εt+n. (22.38)

Also, from rearrangement of (22.33):

ft − st = Et st+n − st + rpt , (22.39)

and from (22.34):

st+n − ft = −rpt + εt+n. (22.40)

Now the OLS estimate of θ in (22.36) must satisfy asymptotically:

plim(θ̂) = θ = Cov(Est+n − st + εt+n, Et st+n − st + rpt )

Var(ft − st )

= Var(Et st+n − st )+ Cov(rpt , Est+n − st )

Var(ft − st )
; (22.41)
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also, from (22.37):

plim(θ̂ − 1) = θ − 1 = Cov(−rpt + εt+n, Et st+n − st + rpt )

Var(ft − st )

= −Var(rpt )− Cov(rpt , Est+n − st )

Var(ft − st )
. (22.42)

We note from (22.41) that a negative estimate of θ implies that Cov(rpt , Est+n−st ) <

0. This is the important point made by Fama (1984), that negativity of estimates
of θ require a negative covariation between the risk premium and the expected
rate of depreciation. In addition, this covariation has greater absolute magnitude
than Var(Et st+n − st ). From (22.42), a negative estimated coefficient implies that
Var(rpt ) has greater absolute magnitude than Cov(rpt , Est+n − st ).

A time-varying risk premium is well motivated. For example, in a consumption
capital asset pricing model (CAPM) framework, assuming logarithmic utility and
that all variables are jointly lognormally distributed, we can derive that:

ft − Et st+1 = 0.5Vart (st+1/st )− covt ([st+1/st ].pt+1/pt )

− δcovt ([st+1/st ]. log(ct+1/ct )), (22.43)

where δ is the coefficient of relative risk-aversion.41 In general, optimizing models
built on microtheoretic underpinnings will imply that the risk-premium depends
on the variance of the exchange rate. As with other asset prices, there is consider-
able evidence of time-varying volatility in spot exchange rates at high frequencies.
Various authors have employed extensions of the work of Engle (1982) and esti-
mated multivariate GARCH models and included the own conditional variance
in the mean equation (see, e.g., Baillie and Bollerslev, 1990; Bekaert and Hodrick,
1993). For instance, the basic idea (without the multivariate generalization) is to
estimate:

st+1 − st = α0 + α1(ft − st )+ α2ht+1 + εt+1, (22.44)

ht+1 = δ0 + δ1ht + δ2ε
2
t + δ3

∣∣ft − st
∣∣ , (22.45)

where variables are defined as above and ht is the conditional variance of the error
term. The absolute difference

∣∣ft − st
∣∣ is included in the variance equation based

on empirical observation by Hodrick (1989).
GARCH effects disappear with aggregation (Drost and Nijman, 1993) and so are

not usually statistically significant in low-frequency data such as monthly or quar-
terly. Also consumption and price data are not available at weekly or daily levels.
Consequently, some of the terms in the risk-premium have to be assumed constant
in empirical work. Nevertheless, it would appear that a time-varying risk-premium
does not rationalize the forward premium anomaly.42 However, it is interesting
in this context to note the results reported by Flood and Rose (1996). They found
that estimates of θ were positive in credible periods in the EMS target zone when
risk-premia might, a priori, be expected to be smaller in magnitude.43
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Another important possibility is inference problems arising from the differ-
ent statistical properties of changes in the the spot rate and forward premium.
Baillie and Bollerslev (2000) consider a sample of monthly observations on the
DM/$ spot and one-month forward rates from January 1974 to December 1991,
realizing a total of 215 observations. They report that the monthly sample standard
deviation of percentage changes in the spot rate is 2.75 and the correspond-
ing figure for the monthly forward premium as 0.217. These figures are typical.
Changes in the spot rate usually exhibit a standard deviation at least 100 times
bigger than the forward premium. In addition, the forward premia are generally
very persistent whilst changes in the spot rate are not. In fact, Baillie and Boller-
slev (1994), Byers and Peel (1996), and Maynard and Phillips (2001) have argued
that the temporal dependencies in the forward premium can be parsimoniously
described by a fractionally integrated, or I(d), process.

Mathematically, the autoregressive fractional integrated moving average
(ARFIMA) model for a time series process yt can be written as:

φ(L)(1− L)d(yt − μ) = θ(L)εt , (22.46)

where φ(z) = 0 and θ(z) = 0 have all roots lying in the unit circle and {εt } is a

martingale difference sequence. The differencing operator, (1 − L)d , is defined as
follows:

(1− L)d =
∞∑
j=o

�(j − d)Lj

�(−d)�(j + 1)
,

where � is the gamma or generalized factorial function. A fractionally integrated
process is one that exhibits long memory, with persistent local trends, but which
nonetheless eventually “reverts to the mean.” The degree of persistence is measured
by the real-valued parameter d, lying on the unit interval.44 Smallwood (2005) has
an interesting discussion of the properties of the various estimators of the fractional
parameter d in the context of PPP. One important property of fractional processes
is the self-similarity property. This implies that the estimate of d should remain
invariant over different temporal aggregates of the process. Ohanissian et al. (2007)
have developed a statistical test based on this property. Their simulations show
that the test has good size and power properties against some alternatives such
as Markov-switching. The potential use of this test in exchange rate econometrics
seems great. We also consider that the power of this test against alternatives such
as ESTAR would be of interest.

From a purely statistical perspective the different properties of changes in the
spot rate and the forward premium suggest that the orders of integration of the
dependent and explanatory variables are not the same. One method of dealing
with the long-memory characteristics of the forward premium, as suggested by
Baillie and Bollerslev, is to regress the spot return on the fractionally differenced
forward premium (see Maynard and Phillips, 2001; Abadir and Talmain, 2006):

st+1 − st = λ+ θ(1− L)d(ft − st )+ εt+1. (22.47)
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Such a regression appears to imply rejection of efficiency. Granger and Joyeux
(1980) illustrate how long memory can arise via aggregation. Alternatively, Granger
and Hyung (2004) and Diebold and Inoue (2001) show that structural breaks or
regime switching can generate spurious long-memory behavior in an observed time
series. Granger and Teräsvirta (1999) provide an abstract example of a nonlinear
model that can generate data with the misleading linear property of long memory.
They suggest that other nonlinear models with this property are worth searching
for. Byers and Peel (2003) show that data generated from an ESTAR can exhibit the
long-memory property whether in raw or temporally aggregated form. That this
might be the case was an early conjecture of Acosta and Granger (1995). In this
respect, recent applied work which has tried to explain the anomaly by nonlinear-
ities induced by transactions costs and other frictions seems promising (see, e.g.,
Coakley and Fuertes, 2001; Leon et al., 2003; Sarno et al., 2006).45

We know from analysis of the empirical work on PPP discussed in section 22.2
that fractional processes can appear to parsimoniously explain PPP deviations but
are not as theoretically well motivated as the nonlinear models that also appear to
parsimoniously explain the data. Leon et al. (2003) and Sarno et al. (2006) provide a
nice rationale for nonlinearity based on arguments by Lyons (2001) as to the limits
to speculation (see Shleifer and Vishny, 1997). The idea is that financial institutions
will only engage in uncovered arbitrage – a currency trading strategy – if the strategy
yields a Sharpe ratio at least equal to an alternative investment strategy, such as
a buy-and-hold equity strategy. The Sharpe ratio is defined as (E[R(s)] − R(f ))/σs,
where E[R(s)] is the expected return on the strategy, R(f ) is the risk-free interest
rate, and σs is the standard deviation of the returns to the strategy. In the foreign
exchange market the excess return equals E[R(s)] − R(f ) = E[st+1 − st − (ft − st )]
and the denominator is determined by the exchange rate variances. In the case
of multiple-exchange rate strategies, the covariances among the exchange rates
considered in the currency strategy would also be included in the denominator.

The Sharpe ratio can be interpreted as the expected excess return from specu-
lation per unit of risk. Sarno et al. (2006) point out that the Sharpe ratio for a
buy-and-hold equity strategy has averaged about 0.4 on an annual basis for the US
over the last 50 years or so. Only when θ departs from unity does the numerator of
the Sharpe ratio becomes positive. In fact, perhaps surprisingly, only when θ ≤ −1
or θ ≥ 3 is the Sharpe ratio for currency strategies about the same magnitude as
the average from a buy-and-hold equity strategy, i.e., 0.4 (see Lyons, 2001, p.210).
Consequently, there is a band of inaction such that, if −1 < θ < 3, financial insti-
tutions would have no incentive to take up a currency strategy. Deviations from
uncovered interest parity are too small to attract speculative funds so that the spot
exchange rate and forward exchange rate need not move together.

As with PPP, these types of considerations suggest either a threshold or an ESTAR
type of adjustment mechanism. The latter is justifiable by an appeal to heteroge-
neous agents, who face different levels of position limits and the like. Consider the
following ESTAR adjustment mechanism estimated by Sarno et al. (2006):46
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st+1 − st = λ1 + θ1(ft − st )+ [λ2 + θ2(ft − st )]
×!

(
st − ft−1; γ

)+ εt+1, (22.48)

where !
(
st − ft−1; γ

) = 1− exp
(
−γ (st − ft−1)

2
)
. Equivalently:

st+1 − ft = λ1 + (θ1 − 1)(ft − st )+ [λ2 + θ2(ft − st )]!
(
(st − ft−1); γ

)+ εt+1. (22.49)

When st − ft−1 is small we obtain from (22.48):

st+1 − st = λ1 + θ1(ft − st ), (22.50)

and when st − ft−1 is large:

st+1 − st = λ1 + λ2 + (θ1 + θ2)(ft − st ). (22.51)

Sarno et al. (2006) report that the restriction θ1 + θ2 = 1 cannot be rejected for
the currencies they examine and also that θ1 < 0. Simulated data from this model
generate negative estimates of θ in the standard regressions (22.36) and (22.37). In
fact, if the constraint that θ1 + θ2 = 1 is imposed, the model collapses to the form
employing expected excess returns as:

st+1 − ft = −θ2(ft − st ) exp
(
−γ

[
Et (st+1 − ft )

]2)+ εt+1, (22.52)

when λ1 + λ2 = 0, where Et (st+1 − ft ) is the expected excess return formed on
information available in period t . In this form the model allows expectations to be
formed rationally, as in the arbitrage consistent STAR (ARBSTAR) model proposed
by Peel and Venetis (2005), which remedies some economic difficulties when TAR,
ESTAR, or LSTAR models are employed to model arbitrage.47

The estimates of Sarno et al. (2006)48 suggest that the relationship between the
excess return and the forward premium is nonlinear. However, it is not clear that
the efficiency proposition is tested, or indeed that there is a well defined null, except
under the assumption of risk neutrality. Time-varying risk premia will imply the
lack of a unit relationship in the outer regimes. It would be of interest to estimate
the Sarno et al. (2006) model when risk premia are a priori small – e.g., in credible
periods in the Exchange Rate Mechanism (ERM), as in the analysis of Flood and
Rose (1996) mentioned above.

An extension of the nonlinear STAR model has recently been employed to model
forward premia and PPP deviations (see Smallwood, 2005; Baillie and Kapetanios,
2005, 2006).49 The idea is that the fractional difference of a series is an ESTAR or
LSTAR model, and the model is called FI-STAR. In particular, the FI-STAR model for
a time series yt is defined as:

(1− L)dyt =
⎛⎝α1,0 +

p∑
j=1

α1,j(1− L)dyt−j

⎞⎠
+
⎛⎝α2,0 +

p∑
j=1

α2,j(1− L)dyt−j

⎞⎠G(yt−k; γ , c)+ εt , (22.53)
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where G(·) is the transition function of an LSTAR or ESTAR model and k is the delay
parameter. Under the null hypothesis, γ = 0, the time series process is distributed
as a long-memory ARFIMA(p,d,0). We outline Smallwood’s test for joint fractional
and ESTAR nonlinearity, which seems more appropriate in the context of exchange
rate econometrics where issues of transactions bands and limits to arbitrage suggest
ESTAR (or threshold) as the parametric form of nonlinearity.50 The Smallwood test
procedure is similar to that outlined in section 22.2.1 and consists of a first-order
Taylor series expansion of model (22.53):

(1− L)dyt =
⎛⎝α1,0 +

p∑
j=1

α1,j(1− L)dyt−j

⎞⎠+
⎛⎝ p∑

j=1

α2,j(1− L)dyt−jyt−k

⎞⎠
+
⎛⎝ p∑

j=1

α3,j(1− L)dyt−jy
2
t−k

⎞⎠+ et . (22.54)

Assuming the error term is Gaussian, the null hypothesis of a linear fractional
process is given by H0 : α2,j = α3,j = 0, j = 1, . . . , p. Smallwood illustrates that
the existence of the fractional differencing parameter complicates the construc-

tion of the LM-type test statistic based on (22.54). However, he shows that a χ
2

and F version can be calculated as follows. One first estimates an ARFIMA(p,d,0)
model and obtains the estimate of d (̂d), and the set of residuals ε̂t . The sum
of squared errors, denoted SSRR, is then constructed from the residuals ε̂t . Sec-

ond, a regression of ε̂t is run on
∑t−1

j=1 ε̂t−j/j, 1, (1 − L)̂dyt−1, . . . , (1 − L)̂dyt−p,

(1− L)̂dyt−1yt−k, . . . , (1− L)̂dyt−pyt−k, and (1− L)̂dyt−1y2
t−k, . . . , (1− L)̂dyt−py2

t−k.
The unrestricted sum of squared residuals, SSRUR, is formed from this regression.

The χ
2 version of the LM test statistic is calculated as LMχ2 = T(SSRR−SSRUR)/SSRR,

and is distributed as a χ
2
(2p). The F version of the LM test statistic is calculated as

LMF =
[
(SSRR − SSRUR)(2p)−1

] [
SSRUR(T − 3p− 1)−1

]−1
, and is distributed as an

F(2p, T − 3p− 1).
In practice, of course, the long-memory parameter is generally unknown. Differ-

ent methods have been employed to obtain a consistent estimate in the first step
of the test. Smallwood prefers the estimator of Beran (1995) based on the condi-
tional likelihood function of the time series process. Baillie and Kapetanios (2006)
employ the local Whittle semiparametric estimator.51 We would also suggest that
the test of Ohanissian et al. (2007) mentioned above would be worth exploring in
this context. Its size properties given data generated from a FI-STAR model would be
of interest and, similarly, its power properties for data generated from an ESTAR.52

22.4 Target zone models

There have been a large number of papers that have examined the behavior of
exchange rates in target zones. The basic theory is due to Flood and Garber (1983),
with the particular application to target zones by Krugman (1991). The model of
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Krugman, cast in continuous time, is based on the log-linear monetary model with
instantaneous purchasing power parity so that the reduced form for the logarithm
of the exchange rate s(t) is given by:

s(t) = f (t)+ α
E[ds(t)]

dt
, (22.56)

where f (t) is the logarithm of the fundamental and α represents the interest rate
semi-elasticity of money demand. The fundamental is assumed equal to:

f (t) = m(t)+ v(t), (22.57)

where m(t) represents the policy instrument and v(t), which is assumed to fol-
low a Brownian motion without drift, contains all the other determinants of the
exchange rate which impact through the term f (t). Krugman assumes a credible

target zone exists so that sl ≤ s ≤ su, where sl and su are the lower and upper
bounds respectively. The authorities are assumed to intervene by movements in m

when the exchange rate reaches either boundary value sl or su. The formal solution
of the model given by Krugman (1991) or Taylor (1995) has the form:

s(t) = m(t)+ v(t)+ A [exp (θ(m+ v))− exp (−θ(m+ v))], (22.58)

where θ =
√

2/(ασ2). A is uniquely determined by the “smooth-pasting” condi-
tions (see, e.g., Taylor, 1995). The formal solution to the basic (symmetric) target
zone model is an S-shaped function. The S shape illustrates the “honeymoon
effect” and the “smooth-pasting conditions.” If s is close to su then the probability
that the exchange rate will fall is higher than that it will rise as the authorities
intervene to stop the exchange rate breaching the upper band. Consequently,
the exchange rate will be lower than if the exchange rate was freely floating.
Similar considerations apply near the lower bound. This behavior implies that
variation in the exchange rate will be smaller, for any variation in the fundamen-
tal, than under a freely floating regime. This is called the “honeymoon effect.” The
so-called “smooth-pasting” conditions ensure the absence of riskless speculative
gains.

There have been numerous empirical tests of the target zone model with various
refinements to the basic model.53 We will consider the models of Iannizzotto and
Taylor (1999), Taylor and Iannizzotto (2001) and Lundbergh and Teräsvirta (2006),
which are empirical tests assuming that the zone is credible. Suitable data points
are therefore chosen by them for the analysis given this assumption.

22.4.1 Method of simulated moments (MSM)

Iannizzotto and Taylor (1999) and Taylor and Iannizzotto (2001) employ the MSM.
This method is based on work by Lee and Ingram (1991) and Duffie and Singleton
(1993). The essential idea is to simulate data from the chosen target zone model for
a range of parameter values and compare the statistical moments of the simulated
data with the statistical moments of the real data. A loss function which penalizes
the deviation between the actual and simulated moments is minimized over the
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various parameter values. The simulated moments estimator is found by minimiz-
ing the following loss function given weak regularity conditions and a symmetric
weighting matrix Wz:

L = {Hz(k)−HN [y(β)]}
′
Wz{Hz(k)−HN [y(β)]}, (22.59)

where Hz(k) = (1/Z)
∑Z

z=1 h(kz), Hn[y(β)] = (1/N)
∑N

j=1 h[yj(β)] are the sample
moments of, respectively, the observed data for Z observations (kz, z = 1, 2, . . . , Z);
and the simulated data for N observations of the Krugman model conditional
on a vector of parameters β, (yj(β), j = 1, 2, . . . , N). Taylor and Iannizzotto note
that Hansen (1982) shows that:

W∗
z =

(
1+ 1

n

)−1
�
−1,

is an optimal choice for the weighting matrix in that it yields the smallest asymp-
totic covariance matrix for the estimator. � = ∑∞

i=−∞ Rx(i), where Rx(i) is the ith
autocovariance matrix of the population moments of the observed process, and
n = N/Z is the ratio of the length of the simulated series to the length of the
observed series. Given W∗

z , the MSM estimator converges in distribution to the
normal:

√
Z(β̂zN − β0)

D→ N

⎛⎝0,

[
B
′ (

1+ 1
n

)−1
�
−1B

]−1
⎞⎠ as Z, N →∞,

where B ≡ E[∂h(yj(β))/∂β]. The moment restrictions are tested by Taylor and
Iannizzotto by exploiting a result of Hansen (1982) that the minimized value

of the loss function converges asymptotically to a χ
2 distribution given the null

hypothesis of no errors in specification:

Z{Hz(k)−HN [y(β̂zN )]}′W∗
z {Hz(k)−HN [y(β̂zN )]} D→ χ

2
(& − k),

where & is the number of moment conditions and k the number of parameters
being estimated. Taylor and Iannizzotto’s papers improve on previous literature in
a number of respects. First, they employ daily data, making appropriate allowance
for holidays and weekends, so that the frequency is more consistent with the under-
lying theoretical model. Second, they use data only from periods when the target
zone was a priori credible – again trying to map the data to the underlying theo-
retical assumptions of the model. They report statistically significant parameters
of plausible magnitudes and the inability to reject the model using specification
tests. However, the degree of nonlinearity implied by their parameter estimates is
very small, so that the estimated honeymoon effect is small. Another interesting
finding, though perhaps not too surprising given their results on the magnitude of
the honeymoon effect, is that standard unit root tests have low power against data
generated from a credible target zone. They found, in fact, that the chances of non-
rejection of the unit root hypothesis may exceed 90% even when the exchange rate
conforms to a fully credible Krugman target zone.54
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22.4.2 Smooth transition autoregressive target zone

Lundbergh and Teräsvirta (2006) propose a flexible parametric target zone model
that nests the model of Krugman but also allows estimation of an implicit tar-
get zone if it exists. A feature of their model is that it allows joint modeling
of both the conditional mean and the conditional variance. Their model builds
on an earlier contribution of Bekaert and Gray (1998). They call their model the
Smooth Transition Autoregressive Target Zone (STARTZ) model. The STARTZ model
is a parameterization of the first and second moments of st , the deviation of the
exchange rate from the central parity. The STARTZ model is given by the following
equation:

st = λt + εt , (22.60)

with εt =
√

ztht , where {zt } ∼ i.i.d.(0, 1) and ht is the conditional variance of εt .
The conditional mean λt is defined by:

λt = ϕ
′xt + (μsl − ϕ

′xt )G
l
(st−1; γa, θa,μsl

)+ (μsu − ϕ
′xt )G

u
(st−1; γa, θa,μsu

),

where xt = (1, st−1 ,…, st−n)
′ and ϕ = (ϕ0,ϕ1,..., ϕn)

′ is the corresponding parameter

vector. The two transition functions Gl and Gu have the form:

Gl
(st−1; γ , θ , c) = [

1+ exp
(−γ (c − st−1)

)]−θ , γ > 0, θ > 0,

Gu
(st−1; γ , θ , c) = [

1+ exp
(−γ (st−1 − c)

)]−θ , γ > 0, θ > 0,

where st−1 is the transition variable, and γ , c and θ are the slope, location and
asymmetry parameters, respectively. The lower and upper bounds of the zone are

defined by sl and su, so that c = μsl and c = μsu are location parameters.55

The target zone literature implies that the conditional variance of the exchange
rate must be very small near the edges of credible, implicit or explicit, bands.
Lundbergh and Teräsvirta (2006) parameterize this feature by assuming that the
conditional variance has a parametric specification similar to the conditional mean
and given by:

ht = η
′wt + (δ − η

′wt )G
l
(st−1; γb, θb,μsl

)+ (δ − η
′wt )G

u
(st−1; γb, θb,μsu

),

where η = (α0,α1, . . . ,αq,β1, . . . ,βp)
′, wt = (1, ε2

t−1, . . . , ε2
t−q, ht−1, . . . , ht−p)

′. It is
assumed that δ > 0 which, together with the restrictions α0 > 0,αi ≥ 0, i = 1, . . . , q,
βj ≥ 0, j = 1, . . . , p, is sufficient to ensure the conditional variance is positive.
Because εt = st − λt , such that ϕ is assumed not to depend on η, the conditional
variance is a nonlinear function of the elements of wt .

56

Lundbergh and Teräsvirta obtain their parameter estimates by maximizing the
log-likelihood under the assumption that {zt } is a sequence of independent stan-
dard normal errors. Under this assumption the (quasi) log-likelihood function
equals:

lt = const − 0.5 ln ht − 0.5
ε

2
t

ht
.
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They set out a battery of diagnostic tests for the model, some of which we discussed
in section 22.2. The empirical results reported from employing daily data for the
Swedish and Norwegian krone suggest the STARTZ model provides a parsimonious
representation of the behavior of the Swedish krone between 1985 and 1991, and
for the Norwegian krone between 1989 and 1990. The estimates accord with the
theoretical models. We suggest that it would be useful to apply the STARTZ model to
the daily datasets examined by Taylor and Iannizzotto. It would also be interesting
to find out the properties of standard unit root or fractional tests from a simulated
STARTZ model, where one expects that such tests will exhibit low power.

22.5 Speculative bubbles

22.5.1 Theory

Consider the discrete time stochastic differential equation that occurs in asset
market exchange rate models (see Engel and West, 2005):

st = (1− b)a′1xt + ba′2xt + bEt st+1, b ∈ (0, 1). (22.61)

The above equation states that the exchange rate depends upon the current level
of economic fundamentals xt plus the discounted expected spot rate next period,
where b is the discount factor. In the absence of rational bubbles, the forward
solution to the above equation is:

st = (1− b)Et

⎛⎝ ∞∑
j=0

bja1xt+j

⎞⎠+ bEt

⎛⎝ ∞∑
j=0

bja2xt+j

⎞⎠. (22.62)

The logarithm of the exchange rate can be written as the discounted sum of current
and expected future fundamentals, such as interest rates, prices, money supplies
and income. This is a general form of several exchange rate determination models
based on macroeconomic fundamentals that can provide several insights concern-
ing the empirical findings of studies on exchange rate forecasting discussed in
section 22.6. By assuming Cagan-style money demand functions for the home and
foreign countries with common parameters, we obtain:

st = mt −m∗t + yt − γ (wt −w∗t )+ λ(it − i∗t ), (22.63)

where mt is the log of the money supply, wt is the log of real income, it is the
short-term interest rate, γ and λ denote the income elasticity and interest rate
semi-elasticity of money demand, and yt is the real exchange rate. An asterisk
denotes foreign quantities. The deviations from UIP, rpt = it − i∗t − Et

(
�st+1

)
, can

be thought of as unobserved fundamentals. Substituting into (22.63) yields:

st = mt −m∗t + yt − γ (wt −w∗t )+ λrpt + λEt
(
�st+1

)
. (22.64)
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By iterating forward we obtain:

st =
1

1+ λ
Et

⎛⎝ ∞∑
j=0

(
λ

1+ λ

)j
(mt+j −m∗t+j + yt+j − γ (wt+j −w∗t+j))

⎞⎠
+ λ

1+ λ
Et

⎛⎝ ∞∑
j=0

(
λ

1+ λ

)j
rpt+j

⎞⎠. (22.65)

In this case, b = λ/(1 + λ) and a′2xt = rpt . If we assume, further, that PPP and UIP
hold, then the exchange rate model simplifies to:

st =
1

1+ λ
Et

⎛⎝ ∞∑
j=0

(
λ

1+ λ

)j
ft+j

⎞⎠, (22.66)

where ft = a′1xt =
(
mt −m∗t

)
−
(
wt −w∗t

)
.57 However, it is well known that the

above equation is a single solution from a potentially infinite set. Letting sf ,t denote
the fundamental solution, the rational expectations solutions to (22.64) are given
by:

st = sf ,t + Bt , (22.67)

where:

EtBt+1 =
(1+ b)

b
Bt . (22.68)

The term Bt is the speculative bubble, which has to follow the form given by
(22.68).58 We can also write the solution for the bubble as (Salge, 1997):

Bt =
Mt
λt

. (22.69)

From (22.69) and (22.68):

EtBt+1 =
EtMt+1

λt+1
= 1

λ

Mt
λt

, (22.70)

so that:
EtMt+1 = Mt , (22.71)

implying that Mt is a martingale process. A more general form of a stochastic
martingale process is given by:

Mt = ρtMt−1 + ut , (22.72)

where Etρt+1 = 1, Et−jut = 0, j = 1, . . . , n, EtρtMt = 0, and EtutMt = 0. In
general, a bubble can depend on its lagged values, called a Markovian bubble, on an
extraneous process “M,” which follows a martingale process, or on fundamentals,
called an intrinsic bubble (Froot and Obstfeld, 1991).59

Bubbles, if they exist, can of course pop and a variety of forms of rational bubbles
that exhibit this property and are consistent with (22.68) have been proposed (see,
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e.g., Blanchard and Watson, 1982; Evans, 1991). The bubble proposed by Evans
takes the form:

Bt+1 =
⎧⎨⎩λ
−1Btεt+1 if Bt ≤ k,[
δ + π

−1
λ
−1

φt+1
(
Bt − λδ

)]
εt+1 if Bt > k,

(22.73)

where Etεt+1 = 1, and φt+1 takes the value one or zero with probabilities π or 1−π .
Taking expectations of the second equation in (22.73) we have that:

EtBt+1 = π
[
δ + π

−1
λ
−11

(
Bt − λδ

)]+ (1− π) δ = Bt
λ

. (22.74)

In this case, when the Evans Markovian bubble exceeds the value of k then it grows
at a faster rate till it pops to a value of δ. In expectation the bubble is explosive,
which implies that st in (22.67) is explosive regardless of the integration properties
of the fundamental. There appears to be no reason why an intrinsic bubble that
pops could also not be specified – though as yet no research has investigated such
bubbles.

22.5.2 Testing and evidence

Though the majority of applications are based on stock price data, Evans (1986)
and Meese (1986) are two applications to exchange rates.60 The empirical tests to
date on exchange rates are inconclusive as to the existence of bubbles. However, in
an important new development in testing for bubbles, Phillips et al. (2006) set out
a unit root testing procedure that has good power characteristics in finite samples
and enables dating the origination and the collapse of bubbles.61 Their study is
based on the presumption that bubbles can be identified by way of manifestation
of explosive characteristics in the data. This can be achieved by estimating the
regression equation:

st = μ+ φst−1 +
J∑

j=1

ξj�st−j + εs,t , εs,t ∼ NID(0, σ2
s ), (22.75)

and testing the null hypothesis of a unit root, H0 : φ = 1 against the alternative H1 :
φ > 1. Phillips et al. (2006) propose two tests, a right-side ADF test and a sup test,
based on the recursive estimation of (22.75). Recursive estimation is implemented
by fitting (22.75) for a fraction of the sample, say r0, and sequentially increasing this
fraction by including successive observations. Under the null the corresponding
test statistics, denoted by ADFr and supr∈[r0,1] ADFr , are:

ADFr ⇒

∫ r

0
WdW∫ r

0
W2

, (22.76)

mailto: rights@palgrave.com


Efthymios G. Pavlidis, Ivan Paya and David A. Peel 1053

sup
r∈[r0,1]

ADFr ⇒ sup
r∈[r0,1]

∫ r

0
WdW∫ r

0
W2

, (22.77)

where W denotes Brownian motion and r ∈ [r0, 1]. If the null hypothesis is rejected
then confidence intervals for the parameter φ can be constructed on the basis of
the work of Phillips and Magdalinos (2007) regarding the asymptotic distribution
theory for mildly explosive processes.

Application of these methods to exchange rates and their fundamental deter-
minants as well as forward premia would seem to be of interest. It might also be
interesting to examine the power of their tests against certain nonlinear processes,
given that the forward premium should embody any rational bubble and that it
has been modeled by such processes as discussed in section 22.3.

Another important property of Markovian bubbles was proved initially by Lux
and Sornette (2002). The standard empirical finding is that the distribution of asset
returns belongs to the class of so-called fat-tailed distributions with hyperbolic
decline of probability mass in the tails. They derived the implications of rational
bubbles of the Blanchard–Watson type for the unconditional distribution of prices,
price changes and returns. They proved that the Blanchard–Watson (1982) bubble
exhibited a tail index of less than unity (see, e.g., Koedijk et al., 1990; Loretan
and Phillips, 1994; Huisman et al., 2001; Wagner and Marsh, 2005).62 Yoon (2005)
proved the same result for the Evans (1991) bubble and this property was transferred
to asset returns. In fact, the empirical results for exchange rates typically gener-
ate tail estimates of around 2–6, suggesting the absence of bubbles. However, the
results of Phillips et al. (2006) are relevant here. For instance, the standard ADF test
suggested the absence of bubbles when applied to the full sample of Nasdaq price
data that they considered – February 1973 to June 2005. However, their new test
procedure detects the presence of a bubble in June 1995 continuing until July 2001.

This suggests that one could, in principle, employ the Phillips procedure to indi-
cate the potential presence of bubbles and use the indicated bubble samples to
obtain tail estimates. It would also seem of interest to examine the properties of
the cointegrating residuals using the Phillips et al. (2006) tests as well as their tail
properties, perhaps estimating the cointegrating vector by the Phillips et al. (1996)
FM-LAD estimator, the properties of which seem ideal in this context.

22.6 Exchange rates, economic fundamentals and forecasting

In their landmark paper, Meese and Rogoff (1983a) employed rolling regressions in
order to generate forecasts for the level of the spot rate based on a comprehensive
range of exchange rate determination models: the flexible-price monetary model
(Frenkel–Bilson), the sticky-price monetary model (Dornbusch–Frankel), and the
sticky-price asset model (Hooper–Morton). At the time there was widespread opti-
mism about the potential of monetary models to explain the fluctuations of floating
exchange rates.
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A general “prediction” equation that nests all models under examination is:

st+k = a0,k + a1,k(mt −m∗t )+ a2,k(wt −w∗t )+ a3,k(it − i∗t )

+ a4,k(π
e
t − π

e∗
t )+ a5,ktbt + a6,ktb∗t + ut , (22.78)

where st+k denotes the log exchange rate (domestic price of foreign currency), mt
is the log of the money supply, wt is the log of real income, it is the short-term
interest rate, πe

t denotes expected inflation, tbt is the cumulated trade balance, ut is
a possibly serially correlated error term, and the aks are parameters corresponding
to the kth forecast horizon, with k = 1, 3, 6, 12 months. An asterisk denotes foreign
quantities. Meese and Rogoff (1983a) estimated the above regression by OLS, as
well as GLS and instrumental variables (IVs) (Fair, 1970) so as to deal with the
presence of serial correlation in the residuals and simultaneous equation bias due
to the endogeneity of the variables. Surprisingly, on the basis of root mean squared
error (RMSE), none of these models outperformed the naive RW model for horizons
up to a year, even though realized values of the forcing variables were used.

The poor forecasting performance of the considered models can be attributed
to a number of factors. First, the fact that the variables are highly persistent
may lead to biased estimates of the coefficients (Rossi, 2005). If the error term
is non-stationary (i.e., the exchange rate is not cointegrated with fundamentals),
the coefficients will be inconsistent and forecasting will be meaningless. Second,
equation dynamics (MacDonald and Taylor, 1994) are omitted from the regres-
sion equation and the case of a nonlinear DGP is not considered (see Taylor and
Peel, 2000; Meese and Rose, 1990). Further, parameter instability may character-
ize empirical exchange rate models (Wolff, 1987; Rossi, 2006) and simultaneous
equation bias may not have been properly accounted for. As far as the latter expla-
nation is concerned, Meese and Rogoff (1983b) impose coefficient restrictions based
on the theoretical and empirical literature on money demand and the rate at which
shocks to the real exchange rate appear to damp out. This enables the examination
of longer forecasting periods. Their findings indicate that, for horizons greater than
a year, there are cases where the RMSE of the RW is larger than that of structural
models, suggesting the presence of simultaneous equation bias and that the per-
formance of structural models may improve at longer horizons (Meese and Rogoff,
1983b; Rogoff, 1999). These findings support the estimation of long-horizon regres-
sions and the application of advanced inference procedures (see, e.g., Mark, 1995;
Chinn and Meese, 1995).

22.6.1 Long-horizon regressions

Consider the monetary model (22.66) and let the fundamental term, ft , follow a
driftless RW. Then equation (22.66) reduces to st = ft . The relationship between the
exchange rate and the monetary fundamentals motivates Mark (1995) to examine
whether current deviations of the exchange rate from its fundamental value, zt ≡
ft−st , contain predictive power for future movements in the exchange rate, as well
as the horizon at which the predictive power of the deviations becomes apparent.
Obviously, this contrasts with the view that exchange rates are best characterized
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by a no-change model:

st+k − st = εt+k, k = 1, 4, 8, 12, 16 quarters, (22.79)

and motivates the use of long-horizon regressions:

st+k − st = ak + βkzt + εt+k, k = 1, 4, 8, 12, 16 quarters. (22.80)

The exchange rate is expected to rise (fall) when it is below (above) its fundamental
value. Thus the slope coefficient βk should be positive and statistically significant.
Formally, the null hypothesis to be tested is H0 : βk = 0 against the alterna-
tive H1 : βk > 0, or the joint hypothesis H0 : βk = 0 ∀k versus H1 : βk > 0 for some k.
The evaluation of the out-of-sample performance of the model involves generating
recursive or rolling forecasts based on equations (22.66) and (22.79) and estimat-
ing a forecast evaluation statistic such as Theil’s U -statistic, or the DM-statistic of
Diebold and Mariano (1995).

In evaluating the statistical significance of the results Mark confronted a number
of econometric problems. First, a highly persistent explanatory variable implies
biased OLS estimates of the slope coefficients in finite samples (see Neely and
Sarno, 2002, and the references therein). Second, the fact that the k-period change
in st is used as the regressand induces serial correlation in the disturbances of
order (k − 1), for k > 1. In order to correct for serial correlation Mark used the
Newey–West covariance matrix estimator based on either a fixed truncation lag of
20 or a truncation lag specified by Andrews’ (1991) procedure. Finally, although
the DM-statistic follows the standard normal distribution for non-nested models,
long-horizon regressions nest the RW model and, therefore, the distribution of
the DM-statistic is not known in general (McCracken, 1999). To this end, Mark
proposed a bootstrap procedure:

1. Estimate the following vector autoregression (VAR), where the null of no
predictability has been imposed:

�st = a0 + us,t , (22.81)

zt = μ+
p∑

j=1

bjzt−j + uz,t . (22.82)

2. Use the estimates of the fitted model and draw from the bivariate normal dis-
tribution with mean 0 and covariance matrix equal to the covariance matrix
of the estimated residuals, in order to recursively generate pseudo observations
for �st and �zt . Alternatively, if the error term is not normal, resample from
the observed residuals.

3. In turn, estimate the long-horizon regression so as to obtain the slope coefficient,

the t-statistics and R2 for the simulated series and generate forecasts based on
the monetary and the driftless RW model and compute Theil’s U -statistic and
the DM-statistic.

mailto: rights@palgrave.com


1056 The Econometrics of Exchange Rates

4. Repeat steps 2 and 3 2,000 times so as to obtain bootstrap distributions and the
corresponding p-values.

Mark (1995) examines quarterly US dollar exchange rates for the Canadian dollar,
Deutsche Mark, Japanese yen and the Swiss franc and the corresponding funda-
mentals from 1973:2 to 1991:4. The last 40 quarters are used for the out-of-sample
forecasting exercise. His findings indicate that the hypothesis of no in-sample
predictability, H0 : βk = 0 ∀k, can be rejected at the 5% significance level for

Switzerland and Germany. The slope coefficients, the R2s and the test statistics
tend to increase with the forecast horizon for all countries. Furthermore, in sev-
eral cases the monetary model forecasts are superior to the RW model, especially
for long horizons. Mark (1995) concludes that, given the small size of the dataset,
these results support the view that exchange rates are predictable.

22.6.1.1 Turning on the microscope

A number of subsequent studies questioned the validity of Mark’s methodology and
the resultant conclusions (see Neely and Sarno, 2002). An important assumption in
Mark’s study was that the process of the deviations of the exchange rate from its fun-
damental value is stationary. By the Granger representation theorem the exchange
rate and the fundamentals must posses a vector error correction model (VECM)
representation with cointegrating vector (1,−1). The VECM model is expressed:

�st = μs + λszt−1 +
p−1∑
i=1

φ
s
i �st−i +

p−1∑
i=1

ψ
s
i �ft−i + us,t , (22.83)

�ft = μf + λf zt−1 +
p−1∑
i=1

φ
f
i �st−i +

p−1∑
i=1

ψ
f
i �ft−i + uf ,t , (22.84)

where λs and λf determine the speed of adjustment, μs and μf are intercepts, φi
and ψi are parameters, and the disturbance terms us,t and uf ,t are i.i.d. Station-
arity requires one of the speed of adjustment terms to be different from zero
and λf − λs < 0.

Berkowitz and Giorgianni (2001) use the VECM representation and derive
the following expression for the slope coefficient in the long-horizon regression
(22.80):

βk = β1
1− θ

k

1− θ
, (22.85)

where θ = 1+λf −λs < 0 and β1 = λs. The above equation provides several insights
concerning long-horizon regressions under the assumption of a linear DGP. The
rejection of the null hypothesis that the slope coefficients in the long-horizon
regressions are zero implies that the exchange rate is weakly exogenous. In this
case, although the fundamentals do not contain predictive power, the existence of
a long-run relationship between fundamentals and the exchange rate is not ruled
out. It follows that, in the context of a linear model, the fundamentals cannot
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contain predictive power at long horizons without the presence of short-run pre-
dictability, given that β1 = 0 implies βk = 0 ∀k. Thus, either Mark’s results are
spurious, or the DGP is misspecified.63

Spurious inference may arise due to the fact that Mark’s procedure is based on
the assumption that the deviation process is stationary. Conditioning on cointe-
gration when cointegration fails may result in false inferences. The LS estimates
of the long-horizon regression will be inconsistent without having any economic
interpretation and conventional statistical tests will not be valid, especially for
long-horizons (see Berben and van Dijk, 1998). Let st follow an RW: it follows that,
for large k, the dependent variable st+k − st will also approximate an RW. Given
that zt ∼ I(1), the long-horizon regression involves regressing an I(1) variable on
another I(1) variable. This gives rise to a near-spurious regression problem (Granger
and Newbold, 1974).64 To this end, Berkowitz and Giorgianni (2001) apply the
Horvath–Watson test (Horvath and Watson, 1995) without being able to reject
the null of no cointegration for all countries except Switzerland. It is noted, how-
ever, that if the deviation process is, in fact, nonlinear then linear cointegration
techniques may suffer from low power (Paya and Peel, 2007a).

Kilian (1999) emphasizes that the stability of the bootstrap DGP is not ensured in
the procedure proposed by Mark. To this end, he suggests feasible generalized least
squares (FGLS) estimation subject to a stability constraint. Furthermore, he notes
that Mark’s approach is inconsistent and may result in spurious inference due to
the fact that a drift is included in the bootstrap exchange rate series but forecasts
are based on the no-change model. Thus, the superior forecast performance of the
long-horizon regression may be due to either the contribution of the fundamentals
or just the inclusion of the drift term. The VECM bootstrap proposed consists of
the following steps:

1. Define the VECM model as the DGP:

�st = μs + λszt−1 +
p−1∑
i=1

φ
s
i �st−i +

p−1∑
i=1

ψ
s
i �ft−i + us,t ,

�ft = μf + λf zt−1 +
p−1∑
i=1

φ
f
i �st−i +

p−1∑
i=1

ψ
f
i �ft−i + uf ,t .

2. Impose the null that all the coefficients in the first equation except for the
intercept are zero and specify the lag order by using an information criterion
such as the AIC. Estimate the model by FGLS subject to the stability constraint.

3. Use the coefficient estimates and draw with replacement from the observed
recentered residuals to recursively generate pseudo-observations for �st and �ft .

4. Estimate the long-horizon regressions for the pseudo-series and construct the
test statistics under examination.

5. Repeat steps 3 and 4 2,000 times so as to obtain bootstrap distributions of the
test statistics and the corresponding p-values.
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Kilian extends the sample period from 1991:4 to 1997:4 and applies both Mark’s
bootstrap methodology and the VECM bootstrap. The former methodology indi-
cates that for the extended data set the p-values of the various statistics are stable
or increasing and there is overall predictability only for Switzerland.65 Kilian also
shows that the effect of small sample bias, together with the fact that Mark’s boot-
strap is inconsistent, has a substantial impact on inference. When allowing for
a drift in the forecasts of the RW, both bootstrap methodologies detect overall
predictability for Switzerland and Canada.

22.6.1.2 Forecast evaluation measures

In the late 1990s, the scientific consensus was that the Meese and Rogoff (1983a,
1983b) results still stood (Rogoff, 1999). However, the findings of Clark and
McCracken (2001, 2003, 2005) raise concerns regarding the power of commonly
used t-type tests. This motivates McCracken and Sapp (2005) to investigate the
out-of-sample performance of exchange rate determination models using new test
statistics regarding the comparison of nested models.66

Let yt+k = st+k−st denote the variable to be predicted and x2,t = (x′1,t , x′22,t )
′ be a

vector of predictors. The number of in-sample and out-of-sample observations is R
and P, respectively, so that T = R + P. Forecasts are generated by estimating two
linear models of the form x1,tβ1 and x′22,tβ2 recursively by OLS. The forecast errors

are û1,t+k = yt+k−x′1,t β̂1,t and û2,t+k = yt+k−x′22,t β̂2,t . Under the null hypothesis
the first model is nested within the second and the two forecast errors are identical.
In the present context, the first model is the RW with a drift and the second the
long-horizon regression model, which implies that x1,t = 1 and x22,t = zt .

The first two test statistics examined are used to test for forecast accuracy. The
former is a t-type test and the latter is its F-type counterpart. The null hypothesis
is that the two mean squared errors (MSEs) are equal against the alternative that

the MSE for the second model is smaller. Let d̂t+k = û2
1,t+k − û2

2,t+k, d̄ = (P −
k + 1)−1∑T−k

t=R d̂t+k = MSE1 − MSE2, �̂dd(j) = (P − k + 1)−1∑T−k
t=R+j d̂t+kd̂t+k−j

for j � 0 and �̂dd(j) = �̂dd(−j), and let Ŝdd = ∑j̄
j=−j̄

K(j/M)�̂dd(j) be the long-

run covariance of dt+k estimated using a kernel-based estimator with function
K(·), bandwith parameter M and maximum number of lags j̄. The tests for forecast
accuracy are:

MSE − t = (P − k + 1)1/2 d̄

Ŝ1/2
dd

, (22.86)

MSE − F = (P − k + 1)1/2 d̄
MSE2

. (22.87)

The next two tests concern forecast encompassing and are built upon the statis-
tic used by Harvey et al. (1998) for non-nested models. In this case, the null
hypothesis is that the forecast of the RW model encompasses that of the struc-
tural exchange rate model and, therefore, the covariance between the forecast
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errors of the RW and the difference of the forecasts errors of the two models will
be equal to or smaller than zero. Under the alternative, the deviations from fun-
damentals contain valuable information, implying that the covariance is positive.
Let ĉt+k = û1,t+k (̂u1,t+k − û2,t+k). The forecast-encompassing test statistics are:

ENC− t = (P − k + 1)1/2 c̄

Ŝ1/2
cc

, (22.88)

ENC− F = (P − k + 1)1/2 c̄
MSE2

. (22.89)

The limiting distributions of the test statistics considered so far are non-standard
and depend upon nuisance parameters. Thus, critical values for the test statistics
should be generated by bootstrap procedures, such as the VECM bootstrap of Kilian
(1999).

The final statistic, derived by Chao et al. (2001), is also used to test for fore-

cast encompassing and follows a χ
2 distribution. Let ĥt+k = û1,t+kx1,t , b̂t+k =

û1,t+k + x22,t , b̄ = (P − k + 1)−1∑T−k
t=R b̂t+k, F̂ = −(P − k + 1)−1∑T−k

t=R x22,t x
′
1,t ,

and B̂ = [(P − k + 1)−1∑T−k
t=R x1,t x

′
1,t ]−1. Furthermore, let �̂bb(j) = (P − k +

1)−1∑T−k
t=R+j b̂t+kb̂′t+k−j, �̂hh(j) = (P − k + 1)−1∑T−k

t=R+j ĥt+kĥ′t+k−j, �̂bh(j) = (P −
k + 1)−1∑T−k

t=R+j b̂t+kĥ′t+k−j, for j � 0, with �̂bb(j) = �̂bb(−j), �̂hh(j) = �̂hh(−j),

�̂bh(j) = �̂bh(−j). Finally, let Ŝbb =
∑j̄

j=−j̄
K(j/M)�̂bb(j), Ŝhh =

∑j̄
j=−j̄

K(j/M)�̂hh(j),

Ŝbh =
∑j̄

j=−j̄
K(j/M)�̂bh(j). The test statistic is written as:

CCS = (P − k + 1)b̄′�b̄, (22.90)

where � = Ŝbb+ λ̂bh(F̂B̂Ŝ′bh + Ŝ′bhB̂′F̂′)+ λ̂bbF̂B̂Ŝ′hhB̂′F̂′, π̂ = (P − k+ 1)R−1, λ̂bh =
1− π̂

−1ln(1+ π̂), λ̂bh = 2[1− π̂
−1ln(1+ π̂)]. The null hypothesis of no predictability

based on macroeconomic fundamentals requires the covariance between u1,t+k
and x22,t to be zero. If fundamentals contain predictive power then the covariance
should deviate from zero.

McCracken and Sapp (2005) employ the long-horizon regression (22.80), but
follow Meese and Rogoff (1983a, 1983b) and determine the fundamental value of
the exchange rate according to various structural models. This approach results in
a vast number of tests, which raises concerns about the reliability of inference.67

In order to mitigate the multiple testing problem, McCracken and Sapp (2005) fol-
low recent developments in the statistical genetics literature and calculate q-values
along with the p-values.68 Using both p-values and q-values, they find evidence of
predictability for many cases. The encouraging results can be attributed to the fact
that the new F-type tests are more powerful than the t-type tests. Despite the fact
that RMSEs are similar to those reported by Kilian (1999), the F-type tests are able
to detect the superiority of the structural models over the RW with a drift. As far as
the monetary model is concerned, F-type tests of equal forecast accuracy indicate
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more short horizon predictability for Germany and more long-horizon predictabil-
ity for Canada and Switzerland. Moreover, tests of forecast encompassing appear
to be superior in detecting predictability of exchange rates compared to tests of
forecast accuracy.

22.6.2 Nonlinear models

Taylor and Kilian (2003) investigate the forecasting performance of long-horizon
regressions in the presence of ESTAR dynamics in the real exchange rate. They
employ the long-horizon regression of Mark (1995) and draw inferences from boot-
strap distributions of the test statistics generated under the null hypothesis that the
nominal exchange rate st follows an RW and the real exchange rate zt is an ESTAR
process:69

st = μs + us,t , (22.91)

zt = μz +
[
φ1(zt−1 − μz)+ (1− φ1)(zt−2 − μz)

]
× exp

⎛⎝−γ

5∑
d=1

(zt−d − μz)
2

⎞⎠+ uz,t . (22.92)

Taylor and Kilian (2003) use quarterly data for seven OECD countries for the period
1973:1 to 1998:4. Long-horizon regressions appear to be significantly more accu-
rate than the naive RW model in several cases, especially when the Newey–West
standard errors are used with the truncation lag specified by Andrews’ procedure.
However, the out-of-sample results are not as encouraging.70 The DM-statistics
indicate that the long-horizon regression model is capable of beating the RW model
only for the UK and Switzerland at the three-year horizon. The authors conclude
that incorporating nonlinearities increases the predictability of models based on
macroeconomic fundamentals. However, it is difficult to detect the improvement
in the forecast accuracy due to the small time span and the rarity of large deviations
from the fundamentals.

Another group of recent studies focuses on the Markov-switching (MS)
model, which allows exchange rate dynamics to alternate between regimes.71

Clarida et al. (2003) argue that the forward rate has predictive content regarding
the spot rate. The authors build upon the results of Clarida and Taylor (1997) and
apply an MS-VECM model, which allows for shifts in the intercept and the error
variance. Their findings indicate that the MS-VECM outperforms both the linear
VECM and the naive RW model, especially at long horizons.

Sarno et al. (2004b) employ a long span of data for the US dollar exchange rate
and show that fundamentals are useful in explaining the behavior of numerous
exchange rates under different monetary regimes by estimating MS-VECM models.
Frömmel et al. (2005), motivated by the market microstructure literature (Lyons,
2001) and questionnaire surveys (e.g., Cheung and Chinn, 2001) showing that mar-
ket participants regard the importance of fundamentals as time-varying, establish
that there are significant regime changes in real interest differential (RID) variants
of the monetary model (Frankel, 1979) for three major US dollar exchange rates.72
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The MS model employed can be written as (see Hamilton, 1994):

rt = α(St )+ β(St )fundt + εt , St = 1, . . . , M , (22.93)

where rt is the 12-month percentage change of the exchange rate and fundt
denotes the vector of RID fundamentals, which covers relative changes in money
supply, industrial production, money market interest rates and the government
bond yield. The vectors of coefficients, α and β, are governed by the unobserv-
able state variable, St . In MS models the regime-generating process is an ergodic
Markov chain with a finite number of states, M , defined by the transition probabil-

ities pij = Pr(St+1 = j|St = i) with
∑M

j=1 pij = 1 ∀i, j ∈ 1, . . . , M . Frömmel et al. (2005)
set the number of states equal to two and assume that the error term, εt , is a white-
noise process with constant variance. The estimation of the model is implemented
by using an expectation maximization (EM) algorithm (Kim and Nelson, 1999).

Wald tests indicate that the null hypothesis of constant parameters can be
rejected for all exchange rates. For each exchange rate the coefficients are in line
with the RID model for one of the regimes. Furthermore, the MS-RID model pro-
duces a lower RMSE than the RW model. In contrast to the in-sample results, the
out-of-sample performance of the MS-RID model is not as encouraging. Fröm-
mel et al. (2005) use a rolling sample of ten years and calculate the conditional
expectations of the percentage change of the exchange rate. Although the MS-
RID model is superior to the standard RID model, it cannot beat the naive
RW on the basis of the DM-statistic. This finding is not surprising, since non-
linear models in general, and MS models in particular, may produce superior
in-sample fits compared to linear models but not necessarily superior forecasts
(see Dacco and Satchell, 1999).

22.6.3 Real-time forecasting and market expectations

It is common practice in studies of exchange rate forecasting to employ the most
recent datasets on macroeconomic fundamentals. However, these datasets are sub-
ject to extensive revisions and are not available to real-time forecasters. Provided
that market participants’ expectations depend on currently available data on funda-
mentals, real-time data may lead to a better approximation of market expectations
than revised data (Neely and Sarno, 2002). According to the present value model
(22.61), exchange rates are influenced by market expectations of future fundamen-
tals and, therefore, real time data may improve upon the predictability of exchange
rates.

Faust et al. (2003) investigate the impact of using real time data for the currencies
examined by Mark (1995). Their findings indicate that long-horizon predictability
is present only in less than a two-year window around the vintage used by Mark. In
order to isolate the effect of data revisions from the sample period, the authors fix
the estimation and the forecast periods to be the same as Mark’s and use all vintages
of data from 1992 onward. Overall, the evidence of predictability weakens. As far as
real-time forecasting is concerned, the out-of-sample performance of the monetary
model is poor. The RMSEs are generally greater than those of the RW model and
increase with the horizon. However, real-time forecasts produce significantly lower
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Theil U -statistics than forecasts based on the revised data, indicating the superiority
of real-time data.73

Engel and West (2005) provide a thorough analysis of the role of market expec-
tations and the value of the discount factor. According to the rational expectations
present value model (22.61), the importance of expected future fundamentals rel-
ative to current fundamentals increases with the discount factor, b. For large b and
non-stationary fundamentals, the movement in the exchange rate at time t will be
almost uncorrelated with information known at time (t − 1), since the exchange
rate will be largely driven by the expected future path of the fundamentals. By
the Engel and West (2005) theorem, if a′1xt ∼ I(1) and a2 = 0 or a′2xt ∼ I(1)
then, as b → 1, the exchange rate exhibits near random walk behavior.74 The
theorem highlights the fact that movements in the exchange rate reflect changes
in expectations. If expectations contain valuable information about future fun-
damentals then changes in the exchange rate should be useful in forecasting
fundamentals. This provides an alternative approach concerning the evaluation
of the performance of the various models under examination.

A different perspective for the implications of the Engel and West theorem is
provided by Evans and Lyons (2005) in the context of market microstructure.
Lyons show that micro-based models can establish a link between expectational
surprises and specific types of non-public information. The key idea is that the
trades of private agents reveal new information to the market makers about future
fundamentals. In this framework prices are determined by the market makers’
expectations, Em

t , about the future values of fundamentals. The market makers
construct their information sets and revise their forecasts on the basis of the order
flow, xo,t , that is signed transaction flow. Suppose that innovations in order flow
are correlated with the innovations in fundamentals growth:

�xo,t = λ�xo,t−1 + ηt , (22.94)

�ft = φ�ft−1 + ut + δηt , (22.95)

and that market makers observe order flow innovations and, hence, the current
state of the economy, with a time delay ft − Em

t ft = δηt . Evans and Lyons (2005)
show that, under these assumptions, the present value model (22.61) implies that
changes in the exchange rate depend on lagged order flow:

�st+1 =
1− b

b
(st − Em

t ft )+
1

1− bφ
ut+1 +

[1+ φ(1− b)] δ
1− bφ

(xo,t − λxo,t−1). (22.96)

It follows from the above equation that b → 1 does not rule out forecastability. In
order to test whether order flow contains predictive power for the movements in
the exchange rate, they employ the following regression equations:

st+1 − st = α0 + αxagg
o,t + εt+1, (22.97)

where xagg
o,t denotes aggregate order flow, and:

st+1 − st = α0 +
6∑

j=1

αjx
j
o,t + εt+1, (22.98)
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where xj
o,t denotes order flow from end-user segment j. Six end-user segments are

considered: trades implemented in the US and non-US markets for non-financial
firms, investors and leveraged trades. The forecasting performance of the micro-
based model is compared to that of an RW and a structural model using data for
the largest spot market, the US dollar/euro, for the period from 1993 to 1999.
In general, the findings indicate that, for horizons between 10 and 20 days, the
micro-based models are able to beat the RW benchmark and the structural model,
irrespective of the type of order flow used.

Large values of the discount factor and highly persistent fundamentals provide
an explanation for the failure of structural models in out-of-sample forecasting.
However, forecastability of the changes in the exchange rate is still possible in the
presence of stationary terms. Consider the present value model (22.61) and let
ft = a′1xt and a′2xt = rpt . If the deviations from the UIP, rpt , follow a stationary
AR(1) process:

rpt = θrpt−1 + et , (22.99)

where et ∼ i.i.d. and σ
2
e = var(et ), and ft is an RW process, with innovation ηt

and σ
2
η = var(ηt ), then the forward solution for the exchange rate is:

st = ft +
b

1− bθ
rpt . (22.100)

The k-period change in the exchange rate is:

st+k − st = ft+k − ft +
b

1− bθ
(rpt+k − rpt )

=
k∑

j=1

ηt+k +
b

1− bθ
(θ

k − 1)rpt +
b

1− bθ

k∑
j=1

θ
k−jet+k (22.101)

=
k∑

j=1

ηt+k + (1− θ
k
)zt +

b
1− bθ

k∑
j=1

θ
k−jet+k,

where zt are the deviations from the observed fundamentals, and the correspond-

ing R2
k is:

R2
k =

(θ
k − 1)2var(ft )

var(st+k − st )

= (1− θ
k
)
2
σ

2
e

(1− θk)2σ2
e + (1− θ2k)2σ2

e + k(1− θ2)(1− bθ)2σ2
η /b2

. (22.102)

Engel et al. (2007) set b = 0.9, θ = 0.95 and ση/σe = 3 and calibrate the model. They

find that predictability, in terms of R2
k , exhibits a hump shaped pattern with respect

to k. At short horizons there is not much evidence of predictability, e.g., R2
1 = 0.02,
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but, as the horizon increases, the value of R2 becomes larger and reaches a maxi-

mum at a horizon of 44 quarters, where R2
44 = 0.38. The authors argue that, in this

framework, panel estimation techniques may be useful in detecting predictability
by picking up a common element to the risk-premium across exchange rates.

22.6.4 Panels

Empirical studies based on country-by-country estimations are confronted with the
problem of low power and poor parameter estimates. The possibility of common
elements in the DGPs motivates the use of pooled time series estimation in order to
increase the power of predictability tests.75 A number of recent studies using panel
datasets provide evidence in favor of a long-run relationship of the deviations of
the exchange rate from its fundamental value.76

Mark and Sul (2001) investigate if panel estimation techniques are useful in fore-
casting exchanges rates by exploiting interdependencies of exchange rates with
the same numeraire, namely the US dollar, the Swiss franc and the Japanese
yen. The dataset includes 19 OECD countries and spans the period from 1973:1
through 1997:1. Their study centers on the panel version of the equation employed
in Mark (1995):

si,t+1 − si,t = βzi,t + ei,t+1, (22.103)

ei,t+1 = γi + θt+1 + ui,t+1, (22.104)

where γi is a country-specific effect, θt+1 is a time-specific error and ui,t+1 is an
idiosyncratic error. Before examining the out-of-sample performance of the multi-
country monetary model, Mark and Sul (2001) follow Berkowitz and Giorgianni
(2001) and test for cointegration. However, due to the fact that the standard least
squares dummy variable (LSDV) estimator suffers from second-order bias, caus-
ing the t-statistic to diverge asymptotically, the panel dynamic OLS estimator is
adopted. The system of equations for the changes in the exchange rates is:

si,t+1 − si,t = γi + θt + βzi,t−1 +
pi∑

j=−pi

δij�xi,t−j−1 + ui,t . (22.105)

Although the corresponding t-ratio is asymptotically normally distributed, Mark
and Sul (2001) also use a bootstrap procedure to account for possible finite sample
bias. The null DGP for the bootstrap is a restricted VAR:

�si,t = μ
i
s + ε

i
s,t , (22.106)

�zi,t = μ
i
z +

qi∑
j=1

φ
i
1,j�si,t−j +

qi∑
j=1

φ
i
2,j�zi,t−j + ε

i
z,t . (22.107)

The equations for �zi,t are fitted by iterated seemingly unrelated regres-
sion (SUR).77 For all three numeraire currencies, both the asymptotic and the
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bootstrap p-values indicate that the null hypothesis of no cointegration is rejected
at the 5% level. In turn, Mark and Sul (2001) test for short-horizon in-sample pre-
dictability in the presence of cointegration.78 The results provide strong evidence
in favor of predictability based on both monetary and PPP fundamentals. Finally,
the authors examine whether macroeconomic fundamentals contain power in
forecasting exchange rates at horizons k = 1, 16. They use Theil’s U -statistic and
construct bootstrap critical values under the assumption of cointegration. Over-
all, forecasts based on monetary fundamentals dominate forecasts based on the
PPP fundamentals and the RW with a drift for the majority of countries when
the US dollar or the Swiss franc is the numeraire currency, but not in the case of
the Japanese yen.79

In this section we have shown how, more than 30 years after the breakdown
of Bretton Woods, the difficulty of forecasting exchanges rates using economic
fundamentals has become a stylized fact in international finance. Although the
availability of longer datasets on modern floating rates and the application of recent
sophisticated econometric techniques regarding panel data, nonlinear models, as
well as forecast evaluation measures, are promising, researchers and practitioners
are still faced with the problem of deriving models with robust behavior in terms
of out-of-sample forecasting across exchange rates and time periods.

22.7 Conclusions

We have provided a selective overview of a few of the key relationships which will
play critical roles in determining the behavior of the exchange rate and an eval-
uation of the efficacy of forecasting methods. The major change in their analysis
over the last decade has been the application of more sophisticated time series tech-
niques motivated by theoretical considerations such as the limits to arbitrage and
the microstructure of the exchange market. Nonlinear models seem able to provide
some explanation of the PPP puzzle and the forward bias problem. However, issues
of how data sampled at a different frequency to the economic decision impacts on
the nonlinear models needs further investigation. Also, the recent finding of joint
long memory and nonlinearity in these relationships is a new puzzle. The possibil-
ity that the exchange market can exhibit bubbles is of long-standing interest. The
new analysis of Phillips et al. (2006) would appear to be an exciting development
and might provide new insights on this issue over the next few years.

The nonlinear methods appear to offer scope for improved forecasts than the
previous linear models. However, researchers and practitioners are still faced with
the problem of deriving models with robust behavior in terms of out-of-sample
forecasting across exchange rates and time periods, even when the model employed
for estimation or forecasting is appropriate for the policy regime in operation (or
anticipated).

Notes

1. In fact, the first example of such arrangements was apparently Austria-Hungary between
1896 and 1914 (Flandreau and Komlos, 2003). Other important examples where the
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anticipation of a change in policy regime has been an important focus of the analysis
of exchange rates are: (i) the possible anticipation of the return to gold of sterling prior
to April 1925 (e.g., Flood and Garber, 1983; Michael et al., 1997), (ii) the anticipation of a
fixed exchange rate between the East and West German Mark following German monetary
union (Burda and Gerlach, 1993).

2. Similarly, chaotic behavior, which we do not have space to consider (see, e.g., De Grauwe
et al., 1993).

3. This would imply a half-life of around five years. Assuming yt ∼ AR(1), the half-life (h) of
a unit shock would be 0.5 = βh, or taking logs, ln 0.5 = h lnβ, h = ln 0.5

lnβ
.

4. Linear univariate autoregressive time series models for the real exchange rate have not
been restricted to integer orders of integration. Explosive as well as fractional processes
have been used to model real exchange rates. Bleaney et al. (1999) fitted a stochastic unit
root process to the real exchange rate of high inflation countries (Argentina, Brazil, Chile,
and Israel). The real exchange rate process is as follows:

yt = (1+ δt )yt−1 + vt ,

where vt ∼ i.i.d.(0, σ2
v ) δt ∼ i.i.d.(0, σ2

δ ). Leybourne et al. (1996) derive a test for the null
hypothesis H0 : σ2

δ = 0 against H1 : σ2
δ > 0. It is worth mentioning that, even under the

null, PPP is assumed non-stationary in this model. A different order of integration for PPP
deviations is proposed by the fractional literature (see section 22.3.2: see, e.g., Diebold
et al., 1991; Pippenger and Goering, 1993; Taylor et al., 2001). These papers also show
that standard unit root tests may exhibit low power against the fractional alternative.
However, neither the stochastic unit root nor fractional process have clear theoretical
underpinnings.

5. Paya and Peel (2007a) also analyze the asymptotically efficient estimator for cointegration
regression introduced by Saikkonen (1991). Cointegration is then tested using the Shin
(1994) statistic, which is a residual-based test where the null hypothesis is that of co-
integration or stationary residuals in the Saikkonen regression. Using simulated data, Paya
and Peel (2007a) find that the Saikkonen estimator produces estimates of the cointegrating
weights which are much closer on average to their true values, and with much smaller
standard errors than the Johansen method.

6. The smooth adjustment process is suggested in the analysis of Dumas (1992), noted by
Teräsvirta (1994) and demonstrated by Berka (2002).

7. The other common form of STAR is the logistic STAR (LSTAR), where the transition
function F(·) is logistic:

F(zt−d ; γ , c) = [1+ exp(−γ (zt−d − c))]−1.

The LSTAR transition function is asymmetric about (yt−d − c) and admits the limits:

F (·; γ )→ 1 as (zt−d − c)→+∞,

F (·; γ )→ 0 as (zt−d − c)→−∞.

LSTAR models have also been fitted to real exchange rates (see Sarantis, 1999; Copeland
and Heravi, 2007). Even though the theoretical argument is not as strongly supported as
with ESTAR, there are some attempts to rationalize the asymmetric adjustment in the real
exchange rate (see Campa and Goldberg, 2002).

8. The effect of nonlinearities on traditional cointegration techniques have been examined.
Paya and Peel (2007a) assume that the DGP is given by the ESTAR process. Using simulated
data from such a model, in which proportionality, (1,−1), is imposed, they examine the
empirical results obtained when the Johansen method is employed to determine whether
the spot exchange rate is cointegrated with domestic and foreign prices and whether pro-
portionality can be rejected. Empirical results show that the Johansen method produces
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poor estimates, on average, of the cointegrating vector, with a range of values that include
those reported in the literature.

9. Conventional maximum likelihood theory is therefore not applicable. If one were to use
a maximum likelihood estimator, the testing procedure would be analogous to the one
described below but using the partial derivatives of the likelihood function evaluated
under the null (see Granger and Teräsvirta, 1993, Ch. 6).

10. That is, yt = β ′̃yt + γφ ′̃yt (yt−d − c)2 + γφ ′̃yt (yt−d − c)4. Note that even powers of the
Taylor approximation of the logistic function are all zero while odd powers of the Taylor
approximation of the exponential are all zero. The logistic function has one inflection
point while the exponential possesses two, which is the point of using a second-order
Taylor expansion.

11. In particular, they propose to use the White heteroskedasticity consistent covariance
matrix in the LM test. Their analysis is based on MacKinnon and White (1985). See also
Wooldridge (1990).

12. See Lundbergh and Teräsvirta (1998) for the specification, estimation and evaluation of
models with nonlinear behavior in the mean (STAR) and in the conditional variance
(STGARCH), the STAR-STGARCH model.

13. See below for a description and references of this methodology.
14. However, its distribution is the same when the transition variable y∗t−1 is substituted by

y∗t−d or moving averages of y∗t−1 (see Venetis et al., 2005). What changes is the form of the
auxiliary regressions, which generalize to:

�y∗t = δy∗t−1y∗2t−d + error,

�y∗t =
p∑

j=1
aj�y∗t−j + δy∗t−1y∗2t−d + error.

The corollary results in Venetis et al. are particularly important since it is possible to
generalize KSS tests against wider alternatives that assume longer adjustment periods.

15. The linear unit root hypothesis against an ESTAR has also been tested using a different
methodology to that of a Taylor approximation. Kiliç (2003) overcomes the identification
problems for γ and c in his test by using a grid search over the space of values for the
parameters γ and c to obtain the largest possible t-value for φ in the following regression:

�y∗t = φy∗3t−1

[
1− exp(−γ (zt − c)2)

]
+ error,

where zt is the transition variable, which in our framework would be �y∗t−1. He tests the
null hypothesis of H0 : φ = 0 (unit root case) against H1 : φ < 0. Kiliç (2003) claims that
the advantages of his procedure over KSS is twofold. First, it computes the test statistic even
when the threshold parameter needs to be estimated in addition to the transition param-
eter. Second, it claims to have higher power. Using quarterly data for 17 real exchange
rates of developed countries against the dollar for the floating period, Kiliç finds strong
evidence of nonlinear ESTAR behavior.

16. This approach is suggested by Vogelsang (1998).
17. PPP has also been tested using nonlinear cointegration. Kapetanios et al. (2003b) (KSSb)

propose a testing procedure to detect the presence of a cointegrating relationship that
follows a STAR process. Venetis et al. (2005) and Paya and Peel (2006a) find evidence of
nonlinear cointegration between the real exchange rate and productivity proxies. Further
support for nonlinear cointegration has been found with a cointegration method that
uses a transformation of the variables. Breitung (2001) suggests a rank test procedure
based on the difference between the sequences of ranks of the variables involved in the
cointegrating relationship. Haug and Basher (2005) also apply the Breitung test for the
dollar and DM based real exchange rates of the G10 countries and only found evidence
of nonlinear long-run PPP in two of them, the pound/dollar and Belgian franc/DM.
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18. The order of autoregression is chosen through inspection of the PACF function of y∗t .
19. In the ESTAR model (22.15), if the error variance is not reported as standardized but

has a standard error of se, it is necessary to multiply the estimated speed of adjustment
parameter γ by (se2) for comparison purposes.

20. Under the null hypothesis H0 : γ = 0, yt is generated as an RW with initial values{
yi
}0
i=−max{d,p} = 0 and sample size set equal to the observed sample size. The under-

lying noise process ut is NID(0, s2). The value of s is chosen to be equal to the standard
error of each estimated model. Regression (22.15) is estimated using the respective d val-
ues and the t-ratios are stored for the estimates of γ . This is repeated 10,000 times and the
critical values are obtained from the upper empirical quantiles since the empirical distri-
butions are not symmetric and interest rests on the one-tail alternative γ > 0. See Paya
and Peel (2006b) for a discussion of possible bias in the estimated γ for small samples.

21. We know from the transition function F(·) in ESTAR models that adjustment is time-
varying and depends on the size of the deviation. However, for comparison purposes, we
need a value of speed in time periods. The generalized impulse response function (GIRF)
introduced by Koop et al. (1996) successfully confronts the challenges that arise in defining
impulse responses for nonlinear models and is defined as:

ĜIRFh(h, δ,ωt−1) = E(yt+h|ut = δ,ωt−1)− E(yt+h|ut = 0,ωt−1),

where h = 1, 2, . . . denotes horizon, ut is a random shock of size δ occurring at time t ,
ωt−1 is defined by all sets {y∗1+i, . . . , y∗d+i}T−d−1

i=0 , and �t−1 is a random variable defining
possible history sets. Since analytic expressions for the conditional expectations involved
in the expression above are not available for h > 1, Gallant et al. (1993) and Koop et al.
(1996) used stochastic simulation to approximate it (see Venetis et al., 2007, for an ana-
lytical expression for the “naive” impulse response function of an ESTAR model). Taylor
and Peel (2000) conduct GIRF analysis on the deviations of real exchange rates from mon-
etary fundamentals and Taylor et al. (2001) use impulse response functions to gauge how
long shocks survive in real exchange rate nonlinear models. The half-life of shocks is
dramatically shorter than that obtained or implied by linear models.

22. Analytic results are available on the impact of temporal aggregation on a linear series (e.g.,
Rossana and Seater, 1995) but not for nonlinear series.

23. For instance, MacKinnon and White (1985) showed that in finite samples the White
HCCME can be seriously biased.

24. In Paya and Peel (2006a) the real dollar–sterling exchange rate series spans several
exchange rate regimes, and within this context, a parametric form may not adequately
capture the conditional heteroskedasticity in the data (see Gonçalves and Kilian, 2003).

25. Wild resampling typically underestimates the variance of the parent distribution. This can

be remedied by replacing the observed residuals with “leveraged” residuals ût
1−ht

, where

ht is the leverage for the ith residual estimated from the parametric model (see Davidson
and Hinkley, 1997).

26. An alternative wild bootstrap has the following distribution: εi = 1 with p = 0.5; and
εi = −1 with p = 0.5 (see Davidson and Flachaire, 2001).

27. The wild bootstrap matches the moments of the observed error distribution around the
estimated regression function at each design point (̂yb). Liu (1988) and Mammen (1993)
show that the asymptotic distribution of the wild bootstrap statistics are the same as the
statistics they try to mimic.

28. For the cases where the time-varying equilibrium is defined by deterministic components,
such as dummies and time trends, see Paya and Peel (2003, 2004).

29. Kapetanios (1999) considers the properties of model selection using information criteria
in the context of nonlinear threshold models: in particular, Akaike information criterion
(AIC), Schwarz criterion (SC), Hannan–Quinn (HQ) criterion, the generalized information
criterion (GIC) and the informational complexity criterion (ICOMP). In a Monte Carlo
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exercise he shows that standard information criteria (AIC, SC, HQ) have an important
role to play in model selection for nonlinear threshold models. Others (GIC, ICOMP) are
less reliable.

30. This particular type of TAR model is called a self-exciting threshold autoregressive (SETAR)
model.

31. Peel and Taylor (2002) adopted a similar strategy in a threshold model under the null
of RW. See Duarte et al. (2005, Appendix B) for the case where the errors display
autocorrelation.

32. Estimate the model using the actual data for a set of values of c in the range C and in
each case calculate the likelihood ratio (LR) statistic LR(c) for that value of c against the
value of the likelihood obtained by unrestricted LS, i.e., LR(c) = T(σ̂2

T (c) − σ̂2
T (ĉ))/σ̂2

T (ĉ).
Notice that for c = ĉ we get LR(c) = 0. Then plot LR(c) against c and draw a flat line that
corresponds to the β-level critical value c∗(β) given in Hansen (1997, table 1, p. 5). For
β = 5%, c∗(β) = 7.35. The confidence interval LRc is given by LRc = {c : LR(c) ≤ c∗(β)}.

33. This is generalized for the case where the attractor might be different than 0, say a0, and
also for the case of a linear trend, a0 + a1t .

34. The threshold value λ should be between the 15th (λ1) and 85th percentile (λ2) of yt .
λ ∈ % = [λ1, λ2].

35. Further support for the TAR behavior of real exchange rates is found in De Jong et al.
(2007). They consider an extension of the simple TAR model above: an asymmetric TAR
model where the adjustment in the upper part of the “action band” might differ from the
one in the lower part of the “action band.” The asymmetric TAR can be written as:

�yt =

⎧⎪⎨⎪⎩
ut if c1 ≤ yt−1 ≤ c2,

ρ1(yt−1 − c1)+ ut if yt−1 < c1,

ρ2(yt−1 − c2)+ ut if yt−1 > c2,

(22.26)

where ρ1, ρ2 ∈ (−2, 0). De Jong et al. (2007) propose a three-regime threshold unit root
(TUR) test that is robust to errors that are not i.i.d. They propose an asymptotically pivotal
test statistic that optimizes over the parameter that is unidentified under the null and
allows for weakly dependent errors. De Jong et al. (2007) apply their statistic to monthly
real exchange rates of six developed countries against the dollar. While ADF and PP could
not reject the null of a unit root, their test statistic found evidence against unit root real
exchange rates.

36. See Taylor (1995) and Sarno and Taylor (2002) for numerous references and further
discussion.

37. Canjels et al. (2004) employ threshold autoregression to analyze the efficiency of inter-
national arbitrage under the gold standard from 1879 to 1913. A theoretical model is
developed and estimated employing continuous daily data.

38. For example, Monoyios and Sarno (2002) employ an ESTAR model to describe the mis-
pricing between spot and futures. Employing daily data, they report a lag structure of five
days. The impulse response functions reported by them imply an arbitrage process taking
weeks for small shocks and days for large shocks. However, other researchers using minute
by minute data for the same market, and ESTAR or TAR adjustment mechanisms, report
adjustment mechanisms taking several minutes (Dwyer et al., 1996; Taylor et al., 2000).

39. This estimator retains the properties of the FM-OLS estimator in that it can deal with
non-stationary data and serial dependence in the equation errors. However, the FM-LAD
estimator is based on a “fully modified” extension of the LAD regression estimator, which
is a robust procedure well known in the treatment of non-normality of error terms when
the regressors are stationary (Bassett and Koenker, 1978; Phillips, 1991). The FM-LAD
estimator developed by Phillips has all the features of the LAD estimator but is applicable
in models where the regressors are non-stationary, there is endogeneity in the regressors
and serial dependence in the errors. In addition, the FM-LAD estimator is valid even when
the data do not have finite variances.
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40. When st and ft are integrated variables, a regression of st+n on ft will give the same
coefficient as one of st on ft , at least asymptotically. Maynard and Phillips (2001) show
that in small samples the overlapping errors induced by employing st+n in the regressions
can give rise to different estimates.

41. See Minford and Peel (2002) for a textbook derivation.
42. However, we note that the properties of regressions with ft − st as the dependent variable

and the conditional variance as a regressor would be of interest in this context. They would
determine whether the estimates of the conditional variance have predictive content for
the forward premium.

43. An alternative economic explanation of the anomaly that might be relevant for particular
periods is the one advanced by McCallum (1994). He suggests that the negative co-
efficient may be the result of simultaneity induced by the existence of a policy reaction
function where the interest rate differential is set in order to stabilize current exchange rate
movements. Another important possibility is set out by Evans and Lewis (1995) and Spag-
nola et al. (2005). They show that if the “long” swings in exchange rate regimes between
depreciating and appreciating periods have ex ante predictability, then in small samples
a peso problem occurs. They assume that the exchange rate regimes can be captured by
a Markov-switching process (see, e.g., Hamilton, 1990). Again, whilst the peso problem
is undoubtedly important to some policy periods, the systematic nature of the forward
anomaly over different time periods and different numeraire currencies suggests there are
other factors at work.

44. At the one extreme, d = 0 represents the short memory case. If d > 0.5, the process
is not wide-sense stationary, having infinite variance. And at the other extreme, d = 1
corresponds to the ordinary integrated process, familiarly known as an RW, which is well
known not to revert to the mean, but eventually to wander arbitrarily far from the starting
point. The autocorrelations of a fractional process dissipate but at a slow hyperbolic rate
rather than the geometric rate of a standard ARMA process (see Granger, 1980; Granger
and Joyeux, 1980). (see Granger , 1980; Granger and Joyeux, 1980).

45. Peel and Davidson (1998) fit a nonlinear error correction mechanism to the spot-forward
relationship based on the idea of nonlinearities in the unobserved risk-premium which
might be captured by a bilinear process.

46. Baillie and Kiliç (2006) prefer the logistic function as the transition function. This implies
asymmetric behavior of the deviations as to whether they are positive or negative. Given
this, their results have the same qualitative implications as those of Sarno et al. (2006), even
though the symmetric transition function appears to be better economically motivated.

47. The standard ESTAR model exhibits a maximum expected deviation from equilibrium.
Note that if the dataset does not actually include a maximum or minimum then the value
of γ estimated has to be such, i.e., smaller, to ensure that a max or min occurs outside of
the range of estimated data. An economic rationale for the maxima or minima is unclear.
This line of reasoning suggests a simple modification of the ESTAR model, which is to
assume that the variable forcing the process towards its equilibrium value is not observed
from past deviations but from the expected deviation at time t .

48. They employ survey data to measure anticipated excess returns.
49. See also Van Dijk et al. (2002) for an earlier application to unemployment rates, and Tsay

and Härdle (2007), who set out a general class of Markov-switching ARFIMA processes.
50. Baillie and Kapetanios (2005) consider a test based on neural networks.
51. The FI-STAR model is clearly of interest. If it is the case that forward premia (or PPP) are

parsimoniously described by such a process then it seems to pose a challenge for theoretical
work.

52. We note that numerous studies have been conducted to determine the empirical relation-
ship between real interest rates and the real exchange rate. From the uncovered parity
conditions, ignoring any time-varying risk-premia for simplicity:

it − Et pt+n + pt = i∗t − Et p
∗
t+n + p∗t + Et yt+n − yt , (22.55)
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where i and i∗ are the domestic and foreign nominal interest rates, p and p∗ are logs of
the domestic and foreign price level, and y is the log of the real exchange rate. We note
immediately that empirical work that examines the relationship between real interest
rates and excludes the real exchange rate will, in general, be misspecified unless the real
exchange rate follows an RW as suggested by Roll (1979). However, this does not appear
to be either theoretically or empirically justified (see Taylor and Sarno (2004); Minford
and Peel (2007), and the references suggesting real exchange rates are nonlinear mean
reverting processes above).

The empirical studies on the relationship between real interest rates and real exchange
rates are problematic and inconsistent. For example, a number of studies have examined
the relationship in a cointegration framework, though there are no theoretical grounds for
expecting the real exchange rate to be cointegrated with the real interest rate differential,
as noted by Baxter (1994).

The implications of nonlinear real exchange rate adjustment have also not been inte-
grated into the empirical literature. As discussed above, temporal aggregation of the
“monthly” process changes the form of the ESTAR process (Paya and Peel, 2006b). In
particular, the number of autoregressive terms increases. One procedure, if the correct
DGP is an ESTAR process, is to derive multi-period forecasts from it using Monte Carlo
methods. These forecast changes should be employed as regressors in empirical work.
Our exercise shows why, in empirical studies, the reported results and their implications
are likely to change as the horizon of expectations and the temporal nature of the data
changes. These implications appear worthy of investigation in further work.

53. Bertola and Svensson (1993) consider imperfect credibility, Miller and Weller (1991) con-
sider price-stickiness. Bauer et al. (2007) develop a non-rational model based on chartists
and fundamentalists.

54. Chung and Tauchen (2001), using the efficient method of moments proposed by Gallant
and Tauchen (1996, 2000), allow for intermarginal intervention. They report evidence
that this model parsimoniously describes the dynamics of the French franc/Deutsche Mark
exchange rate from January 1987 until July 1993. We note that they employ weekly data,
and further tests with daily data appear warranted.

55. Lundbergh and Teräsvirta (2006) point out that the asymmetry parameter is essential to
ensure that movements of the exchange rate are restricted by the bounds. The parameter
restrictions γ > 0, θ > 0 are identifying restrictions, and μ < 1 identifies an implicit
bound. Non-symmetry around the lower or upper bound – explicit or implicit – can be
allowed for by different values of γ , θ .

56. The STARTZ model can capture the dynamics of behavior implied by many theoretical
target zone models. When the exchange rate is near the centre of the band, such that Gl

and Gu are close to zero, then the exchange rate will depend on its own lags, ϕ′xt . Given
previous research we would anticipate that the exchange rate would appear to be a unit
root process in this vicinity. As the exchange rate approaches the edges of the bands, so
that Gl and Gu are close to unity, then the exchange rate process will be described by
white noise like behavior around μsl or μsu. Also, as the deviation from the central parity
increases, so that Gl and Gu approach unity, there is smooth transition from the standard
GARCH model represented by η′wt towards a constant δ > 0 that is expected to be close
to zero. The assumption that δ is non-zero means there is a positive probability that the
exchange rate could leave the band even though no realignment takes place. This feature
implies that a credible zone can be one in which occasional breaches occur.

57. Following Mark (1995), the money demand income elasticity is set equal to one.
58. The mathematical form of the bubble is the same as that obtained in the stock market. If

the exchange model exhibited sticky prices the process followed by the speculative bubble
would be different although the features are qualitatively the same. For example, with a
simple sticky-price adjustment of the form pt − pt−1 = θ(st − pt−1), θ ∈ [0, 1], the bubble
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takes the form:

Bt =
b

b + θ
Et Bt+1 −

(1− θ)b
b + θ

Et−1Bt +
(1− θ)b

b + θ
Bt−1.

For θ = 1 we obtain the bubble solution as in (22.68) above. If Et+1Bt = δBt then the
analysis can proceed as above. The magnitude of δ > 1 could be important as to whether
the bubble is asymptotically stationary (see Yoon, 2005).

59. In the latter case, the form of the bubble depends on the time series process followed by
the fundamentals. For the geometric process:

Bt = csβf ,t ln sf ,t − ln sf ,t−1 = μ+ ωt ,

where ωt ∼ N(0, σ2
h ) and μ is a drift term, β is the solution of βμ+0.5β2σ2

h + ln λ = 0 and
c is an arbitrary constant. Minford and Peel (2002) provide a textbook treatment, while
Bidarkota and Dupoyet (2007) extend the analysis.

60. Diba and Grossman (1988) tested for bubbles by applying unit root tests to the asset price,
real stock prices and dividends. If the fundamental is an integrated process, say I(1), then
from (22.67) the bubble will imply rejection of cointegration. The important insight of
Evans was to show via simulation that standard unit root and cointegration tests have
little power to detect his periodically collapsing bubble. Yoon (2005) demonstrates that
Evans bubbles tail indices are less than one, a property we comment on below. Gurkaynak
(2005) has a useful survey of many of the empirical tests for bubbles.

61. Phillips et al. (2006) demonstrate that Evans bubbles with a π as low as 0.25 may be
detectable.

62. Note that, for comparison, the tail index for the student t-distribution is its degrees of
freedom.

63. The latter justification is in line with recent empirical evidence which suggests that the
relationship between the exchange rate and the fundamental value is characterized by
significant nonlinearities (Taylor and Peel, 2000; Taylor et al., 2001).

64. However, spurious regression problems may rise even at short horizons. Ferson et al. (2003)
decompose asset returns into expected returns and an unpredictable noise component. In
this setting, although the dependent variable is not a persistent process, the possibility of
persistent expected returns and explanatory variables may lead to spurious results.

65. Hence, Mark’s conjecture that the mixed evidence on long-horizon predictability is due
to the small sample size is not supported by the data.

66. Abhyankar et al. (2005) adopt a different approach which utilizes the realized end-of-
period wealth so as to evaluate forecasts based on monetary fundamentals. Their findings
suggest that there is evidence of economic value to exchange rate predictability, especially
at long horizons.

67. Four hundred tests are implemented since four models, four bilateral exchange rates, five
forecast horizons and five test statistics are considered.

68. A q-value is defined as the minimum possible false discovery rate for which the null
hypothesis is rejected (Storey, 2003). The false discovery rate is the ratio of the num-
ber of tests for which we reject the null, F, over the total number of tests, S, given that
the null is true, E(F/S). A detailed description of the computation of q-values and their
properties is provided in McCracken and Sapp (2005) and the references therein.

69. The particular ESTAR specification remains the same under the null and the alternative,
and is determined in the preliminary analysis on the basis of the goodness-of-fit, the sig-
nificance of the coefficients and residual diagnostics (Eitrheim and Teräsvirta, 1996). The
bootstrap procedure is similar to the VECM bootstrap of Kilian (1999) and was described
in section 22.6.1.1.

70. Taylor and Kilian (2003) conduct Monte Carlo experiments to investigate the power and
size properties of the tests. Their findings indicate that in-sample tests have substantially
higher power than out-of-sample tests.
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71. A regime switching behavior of the exchange rate can be attributed to factors such as
the heterogeneity of opinions among agents, the presence of transaction costs, the inter-
action of chartists and fundamentalists, the peso problem, different monetary and fiscal
policies between countries, as well as the implications of the dirty floating exchange rate
regime (see Engel and Hamilton, 1990; De Grauwe and Vansteenkiste, 2001; Lee and Chen,
2006).

72. The use of MS is also motivated by parameter instability in empirical exchange rate models
(see Rossi, 2006), which may be attributed to “swings” in expectations about future values
of the exchange rate (Frankel, 1996), as well as by rational expectations models of exchange
rate determination in which the weight attached to fundamentals by practitioners changes
over time (Bacchetta and van Wincoop, 2004).

73. In a related study, Sarno and Valente (2005) examine the evolution of the relationship
between fundamentals and the exchange rate by employing the recursive procedure of
Pesaran and Timmermann (1995) to real-time data. The authors use a broad set of fun-
damentals for five major US dollar exchange rates over the post-Bretton Woods era. In
the preliminary analysis, a “virtual search” is conducted over all possible models and the
optimal combination of fundamentals is determined period by period. In the cases where
the best model outperforms the RW, a real-time forecasting exercise is implemented. The
main implication of the experiment is that fundamentals contain predictive power for the
movements of the exchange rate. However, the importance of each of the fundamental
variables changes over time. Furthermore, conventional model selection criteria cannot
identify the “correct” model to beat the RW in real time.

74. Engel and West (2005) note that estimates of the interest semi-elasticity of money
demand λ typically range from 29 to 60, which implies that in the monetary model b
is between 0.97 and 0.98.

75. However, Sarno and Taylor (1998) note that panel unit root tests tend to reject the null
of a unit root even if a single series is stationary. Moreover, Rapach and Wohar (2004)
emphasize the importance of the homogeneity assumption. If such an assumption is
not empirically supported then pooling data across countries may result in false infer-
ence.

76. For example, Frankel and Rose (1996) and Lothian (1997), among others, show that real
exchange rates mean revert in the long run by using pooled data; Groen (2000) and Groen
and Kleibergen (2003) find evidence of cointegration between monetary fundamentals
and exchange rates.

77. Bootstrap samples are generated according to the fitted VAR by sampling from the esti-
mated residuals with replacement. Next, the slope coefficient is estimated by panel
dynamic OLS and the corresponding t-ratio is computed. The above procedure is
repeated 2,000 times so as to obtain bootstrap distributions and p-values.

78. The bootstrap procedure is the same as before, with the exception that the second equation
of the previous null DGP becomes:

�zi,t = μi
z + γizi,t−1 +

qi∑
j=1

φi
1,j�si,t−j +

qi∑
j=1

φi
2,j�zi,t−j + εi

z,t .

Cointegration requires −2 < γi < 0.
79. Groen (2005) emphasizes the importance of expectations on the validity of the monetary

model. He examines the European Union exchanges rates of Canada, the US and Japan
for the period from 1975 to 2000. The cointegration framework adopted is an extension
of the Johansen method for a panel of VECM models which allows heterogeneous short-
run dynamics (see Groen and Kleibergen, 2003). Overall, exchange rates appear to be
predictable at medium- to long-term horizons, i.e., one to four years. However, the results
are sensitive to the cointegrating parameters restriction.
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The Econometrics of Convergence
Steven N. Durlauf, Paul A. Johnson and Jonathan R.W. Temple

Abstract
The presence or absence of convergence between rich and poor countries represents one of the
most important questions in the new growth economics. New growth theories have been explicitly
designed to explain forms of divergence which do not appear in their neoclassical counterparts.
Despite substantial empirical work on convergence, there is no consensus as to whether it is present
in cross-country data. This chapter surveys the econometrics of convergence as well as the range
of empirical claims that have appeared. Particular attention is given to the relationship between
statistical versus economic notions of convergence. We argue that the disparities in claims across
empirical studies can to some extent be understood as reflecting inadequate attention to the
relationship between the statistical and economic notions.
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23.1 Introduction

The question of whether nations converge or diverge has long been of interest to
historians and social scientists. One classic passage of Edward Gibbon’s The Decline
and Fall of the Roman Empire1 expresses the hope that all societies will exhibit
progress in the long run:

If, in the neighbourhood of the commercial and literary town of Glasgow, a race
of cannibals has really existed, we may contemplate, in the period of Scottish

1087
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history, the opposite extremes of savage and civilised life. Such reflections tend
to enlarge the circle of our ideas; and to encourage the pleasing hope, that
New Zealand may produce, in some future age, the Hume of the Southern
Hemisphere. (book II, ch. XXV)

But another famous passage notes the permanent effects of particular events, argu-
ing that, had the Franks not defeated the Arabs at the Battle of Poitiers in 732,
“Perhaps the interpretation of the Koran would now be taught in the school of
Oxford, and her pulpits might demonstrate to a circumcised people the sanc-
tity and truth of the revelation of Mahomet” (book V, ch. LIII). Modern social
science is neither as literary nor as broad in its sweep, yet Gibbon’s remarks res-
onate with the broad questions involved in the study of convergence. Over long
epochs, will initially different societies or economies evolve towards a common
form, or will their initial conditions play a role in determining their long-run
outcomes?

The nature of interest in convergence has varied over time, referring to differ-
ent countries and different socioeconomic forms. From the vantage point of the
Cold War, one debate concerned the extent of the differences between the West
and the Soviet bloc. It was not uncommon to argue that capitalist and socialist
economies would converge over time, as market institutions began to shape social-
ist economies, while capitalism might increasingly be accompanied by extensive
government regulation and intervention, and a range of activist social welfare
policies. More recently, a new convergence debate has focused on issues related to
the persistence or transience of differences between rich and poor countries, with
parallel interest in the income differences of regions, states, and districts. Conver-
gence here is typically conceived in terms of narrowing differences in per capita
income, rather than broader socioeconomic institutions. It is this literature that
we will review in this chapter. The possibility of income convergence has been
studied more intensively than any other hypothesis in growth economics, even if
the effort to identify growth determinants, both proximate and fundamental, has
become the main area of current empirical research.

Contemporary interest in the convergence hypothesis stems from at least three
factors. The first is the enormously high levels of international inequality, and
attendant levels of human suffering in poorer societies. This inequality means that
the extent to which economies are converging or diverging, and at what rate,
forms the background for almost any discussion of globalization and the work
of international institutions and aid agencies. In popular commentary, it is often
claimed that the gap between rich countries and poor countries is widening, and
the study of convergence helps to evaluate such claims in a rigorous way.

Second, endogenous growth models, at least when based on increasing returns
to scale, often imply long-run divergence of per capita incomes. Hence the inves-
tigation of convergence came to be seen – perhaps mistakenly, as we will discuss
below – as the best way to discriminate between the new growth theories and
their neoclassical predecessors. Finally, the greater availability of internationally
comparable data for a broad cross-section of countries, primarily due to the work
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of Summers and Heston (1988, 1991), has meant that it is now possible to study
convergence for a wide range of countries.2

In this chapter, we first describe various statistical notions of convergence that
have arisen as part of the modern economic growth literature. Our goal is not only
to characterize the range of convergence notions that have been used in empirical
work, but also to give some sense of their links to substantive economic claims.

23.2 β-convergence

The first statistical convergence concept used in the modern growth literature is
based on the relationship between initial income and subsequent growth. Intu-
itively, this convergence notion is simple: two countries exhibit convergence if
the one with lower initial income grows faster than the other and so tends to
“catch up” with the higher-income country. This is the concept used in Abramovitz
(1986), Baumol (1986) and Marris (1982), and which also plays a central role in
Barro (1991), Barro and Sala-i-Martin (1992) and Mankiw, Romer and Weil (1992).3

One posited driving force behind catching-up is that a position well below the
technological frontier creates the potential for rapid advancement, through the
installation of capital embodying the current frontier technology, for example.
Another convergence mechanism, which is usually associated with the neoclassical
growth model and which has played a greater role in the literature, emphasizes the
role of diminishing returns. It predicts that countries which begin with a relatively
low level of income will grow relatively rapidly, but this growth will slow down
as the economy approaches its balanced growth path and the marginal product of
capital declines towards its steady-state level.4

23.2.1 Convergence and the neoclassical growth model

Convergence as a property of the neoclassical growth model may be understood in
terms of the behavior of output around the model’s unique and stable steady-state.
Let Yi,t denote output, Li,t the labor force, and Ai,t the level of (labor-augmenting)
efficiency in economy i at time t . From these, following the standard logic by

which steady-states are constructed in the neoclassical growth model, define yE
i,t =

Yi,t/(Ai,t Li,t ) as output per efficiency unit of labor input at any time t and yE
i,∞ =

limt→∞ yE
i,t as its associated stable steady-state value. Assuming that yE

i,0 > 0, a
log-linear approximation around the stable steady-state implies the law of motion:

log yE
i,t = (1− e−λit ) log yE

i,∞ + e−λit log yE
i,0. (23.1)

The parameter λi, which may be shown to be positive, depends on the other param-

eters of the model and characterizes the speed with which yE
i,t adjusts towards its

steady-state value.5

Given this general law of motion for output per efficiency unit of labor, it
is straightforward to describe the behavior of the observable output per unit of
labor input, yi,t = Yi,t/Li,t . Letting gi be the (constant) rate of (labor-augmenting)
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technological progress, so that Ai,t = Ai,0egit , equation (23.1) may be rewritten as:

log yi,t − git − log Ai,0 = (1− e−λit ) log yE
i,∞ + e−λit (log yi,0 − log Ai,0) (23.2)

so that:

log yi,t = git + (1− e−λit ) log yE
i,∞ + (1− e−λit ) log Ai,0 + e−λit log yi,0.6 (23.3)

Letting γi = t−1
(
log yi,t − log yi,0

)
denote the growth rate of yi,t between 0 and t

and subtracting log yi,0 from both sides of (23.3), division by t yields:

γi = gi + βi(log yi,0 − log yE
i,∞ − log Ai,0), (23.4)

where βi = −t−1
(1− e−λit ).

Equation (23.4) decomposes the growth rate of yi,t into two parts. The first,

gi, is growth due to technological progress, and the second, βi(log yi,0 − log yE
i,∞

− log Ai,0) is growth due to the closing of the initial gap between output per
worker and the steady-state value – “catching up.” Because βi → 0 as t → ∞,
the importance of this term, and hence the role of initial conditions in determin-
ing contemporaneous output, diminishes to zero. The long-run rate of growth of
the economy is gi, the rate of technological progress.

While equation (23.4) provides a characterization of the sources of economic
growth, it is not yet in a form that can be estimated. One reason is that the
parameters λi and gi are country-specific. The empirical growth literature often
assumes that these parameters are identical across countries, so that we have
λi = λ and gi = g, ∀i. Under these assumptions, (23.4) simplifies to:

γi = g − β log yE
i,∞ − β log Ai,0 + β log yi,0. (23.5)

Equation (23.5) implies, ceteris paribus, a negative relationship between average
rates of growth and initial levels of output per capita, over any time period, when
estimated for a cross-section of countries. Those countries with low income are
further below their balanced growth path and will grow relatively quickly: their
low income implies that the capital-output ratio is lower, and the marginal prod-
uct of capital higher, than in countries starting with a higher level of income.
This mechanism leads to a period of relatively fast growth, so that the countries
initially behind will catch up with other countries that have the same levels of
steady-state output per effective worker and initial efficiency. Similarly, countries
that begin above their balanced growth path, perhaps because some determinants
of steady-state income have deteriorated over time, must grow relatively slowly.
In these economies, the capital-output ratio is high and the marginal product of
capital relatively low, leading to a period of growth at below the rate of technical
progress. This movement towards a balanced growth path is the economic notion
of convergence implied by the neoclassical model.
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23.2.2 Cross-country regressions and β-convergence

In order to translate this economic notion of convergence into a statistical model,

it is necessary to address the unobservable variables yE
i,∞ and Ai,0. One possibility

is to assume that (i) all countries have a common steady-state so that yE
i,∞ is a

constant, yE
∞; and (ii) log Ai,0 = log A + εi where, εi is a country-specific shock.7

Subsuming yE
∞, log A and g into the constant term, unconditional β-convergence

holds if β < 0 in the regression:

γi = α + βyi,0 + εi. (23.6)

When using a sample of countries, one rarely finds unconditional β-convergence,
unless the sample is restricted to similar entities such as the Organization for
Economic Cooperation and Development (OECD) member countries. There is
rarely a strong correlation between initial income and subsequent growth in large,
heterogeneous samples, such as those found in the Penn World Table.8

Relative to equation (23.6), heterogeneity in countries naturally suggests that

yE
i,∞ is not, in fact, constant. In the augmented Solow model estimated by Mankiw

et al. (1992), for example, yE
i,∞ is shown to depend on the rates of physical and

human capital accumulation and the rate of population growth. More generally,
letting Zi be the set of variables that determine a country’s steady-state income
level, conditional β-convergence is said to hold if β < 0 in the regression:

γi = α + βyi,0 + Zi� + εi. (23.7)

While many differences exist in the choice of controls, most studies include several
determinants inspired by some version of the Solow growth model. Unlike uncon-
ditional β-convergence, evidence of conditional β-convergence has been found in
many contexts. For the cross-country case, the finding is generally attributed to
Barro (1991), Barro and Sala-i-Martin (1992) and Mankiw et al. (1992).

The Mankiw et al. (1992) analysis is of particular interest, as it is based on a
regression suggested by the dynamics of the Solow growth model. Their findings
have been widely interpreted as evidence in favor of diminishing returns to capital
(the source of β < 0 in the Solow model) and as evidence against some endogenous
growth models. The analysis especially calls into question models which emphasize
increasing returns in capital accumulation (either human or physical) as a source of
perpetual growth. However, some endogenous growth models are consistent with
β-convergence, and therefore some caution is needed in drawing inferences about
the nature of the growth process from the results of β-convergence tests.9

Given an estimate of β, an estimate of λ, the implied rate of convergence, can be

obtained from β = −t−1
(1− e−λt

). In cross-section studies, this typically yields an
estimated convergence rate of about 2% per year; in other words, over the course
of a year, countries will close just 2% of the gap between their current position and
the balanced growth path.10 This result is found using datasets on a wide variety
of economic entities and from time periods more than 100 years apart.11 While
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some have (perhaps with a degree of irony) accorded the 2% value a status akin
to that of a universal constant in physics, others have been rather more skeptical
of its generality. There is nothing in the logic of the neoclassical growth model to
suggest that this parameter should be invariant across environments, and this in
itself might lead to skepticism about the supposed universality of the 2% figure.
On the other hand, there are reasons to believe that the time series structure of
per capita output data could produce a “universal” convergence estimate because
of inadequate attention to temporal dependence in the data. Quah (1996b), for
example, suggests that the 2% finding may be a statistical artifact that arises for
reasons unrelated to convergence per se. Specifically, he argues that, if each per
capita output series in a cross-section regression contains a unit root, this can
produce a β estimate such that a 2% convergence rate is produced, even if the series
are independent. Quah’s argument is important in motivating the importance of
time series approaches to evaluating convergence, which are discussed later.

23.2.3 Critiques

The evidence of convergence obtained from cross-country growth regressions has
been subjected to a number of criticisms. Here we focus on those that seem
most important (see Durlauf, Johnson and Temple, 2005, for a more complete
treatment).

The first criticism relates to the choice of control variables, and whether claims
about convergence are robust to alternative choices. Any claims about conditional
convergence, in particular, necessarily depend on a specific choice for the set of
control variables Zi. This is a serious concern, given the lack of consensus in growth
economics about which growth determinants are empirically important. This lack
of consensus is reflected in the “growth regression industry” that has arisen, as
researchers have added a range of controls, of varying degrees of plausibility, to
those of the basic Solow model.12

The most conceptually satisfying response to this problem has been the use of
model averaging methods, as in Fernandez, Ley and Steel (2001) and Sala-i-Martin,
Doppelhofer and Miller (2004). The model averaging approach constructs esti-
mates (or posterior means, depending on whether one is evaluating convergence
along frequentist or Bayesian lines) based upon a model space of candidate growth
regressions. Information on convergence in each model is aggregated with weights
corresponding to posterior model probabilities. These studies show that the cross-
country finding of conditional β-convergence is robust to the choice of controls.
Both studies conclude that the posterior probability that initial income is part of
the linear growth model is high. The Sala-i-Martin et al. study reports a posterior
expected value for the β regression parameter of −0.0085, implying an estimated
convergence rate of 1% per year.

A second critique, which is perhaps better called a class of critiques, is that there
are many good reasons to believe that the model errors in growth regressions are
correlated with the associated regressors, leading to inconsistent estimates. One
can understand a number of developments in the econometrics of β-convergence
as efforts to address this problem.
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A first source of correlation derives from country-specific heterogeneity. Cross-
section growth regressions assume that the error terms εi are uncorrelated with the
log yi,0 terms, but this is unlikely to hold if there is country-specific unobserved
heterogeneity in output levels. If such effects were present, they would typically
imply a link between εi and yi,0. For this reason, a number of researchers have
investigated convergence using panel data. This leads to models of the form:

gi,t = ci + yi,t−1β + Zi,tγ + εi,t (23.8)

where growth is now measured between t − 1 and t . This approach means that
individual (“fixed”) effects can be used to control for (time-invariant) unobserved
heterogeneity. In practice, this has often been supplemented with the use of instru-
mental variables to address the endogeneity of variables like investment rates.
Panel analyses have been conducted by Bond, Hoeffler and Temple (2001), Caselli,
Esquivel and Lefort (1996), Islam (1995, 1998) and Lee, Pesaran and Smith (1997,
1998), among others. These studies generally find that conditional convergence
takes place at higher rates than estimated in the cross-section studies. For example,
Caselli et al. (1996) report annual convergence rate estimates of 10%.

As discussed in Durlauf and Quah (1999) and Durlauf et al. (2005), panel data
approaches to convergence suffer from the problem that, once country-specific
effects are allowed, it becomes harder to interpret the results in terms of specific
economic explanations. One problem is that, once the growth model includes
individual effects, then the question of convergence is changed, at least if the goal
is to understand whether initial conditions matter; simply put, the country-specific
effects may partly reflect the effects of varying initial conditions. When studies
such as Lee et al. (1997, 1998) allow for rich forms of parameter heterogeneity
across countries, β-convergence becomes the equivalent of the proposition that
there is some mean reversion in a country’s output process. The rate of mean
reversion could be informative about the extent of diminishing returns, but not
about whether certain types of contemporaneous inequalities are increasing or
decreasing. This does not lessen the interest of these studies as statistical analyses,
but means their economic import can be unclear.

A second source of correlation between the error term and explanatory variables
is that some variables are endogenously determined. Variables such as invest-
ment rates and initial income13 are themselves equilibrium outcomes, in the
same way as growth rates. This has led some authors to propose instrumental
variables approaches to estimating β. Barro and Lee (1994) analyze growth data
in the periods 1965–75 and 1975–85 using five-year lagged explanatory variables
as instruments, but find that this makes little difference to the coefficient esti-
mates. Although motivated by the possibility of measurement error, Romer (1990)
finds that estimating a growth regression using instrumental variables (IVs) elim-
inates the negative and significant coefficient on initial income typically found
when the equation is estimated by ordinary least squares (OLS). As noted above,
Caselli et al. (1996) find estimates of β of the order of 10% – much larger than
the typical 2% of cross-section studies – using a generalized method of moments
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(GMM) estimator to analyze a panel variant of the standard cross-country growth
regression. The variation in the outcomes of these responses to endogeneity sug-
gests that the effects of endogeneity on β-convergence tests remain an open
question.

A distinct third source of correlation between errors and regressors is measure-
ment error. This is a particular concern in growth contexts since, despite the best
efforts of those compiling the data, it is inevitable that output per capita will be
mismeasured, particularly in developing economies. Measurement errors in ini-
tial levels of per capita income will tend to bias estimates of β in favor of the
β-convergence hypothesis, through the effects of the standard attenuation bias.
One way to see this is to consider convergence in terms of the association (or cor-
relation) between final output and initial conditions. When convergence is rapid,
final output will be only weakly associated with initial conditions; when conver-
gence is slow, the two will be strongly associated. The standard attenuation bias
implies that when initial output is measured with temporary error, this weakens
the partial correlation between initial and final output, and so biases the regression
finding towards a rate of convergence that is too fast. Exactly the same logic carries
over when the dependent variable is the growth rate, since a model relating growth
to initial log income can alternatively be reparameterized as a model that relates
the log of final output to the log of initial output.14

However, as Temple (1998) notes, in more general settings the actual direction of
the bias will depend on the stochastic properties of the measurement error itself, as
well as the possibility of measurement errors in several of the Zi control variables.
He investigates the effects of allowing for measurement error in the models esti-
mated by Mankiw et al. (1992), using the measurement error diagnostics developed
by Klepper and Leamer (1984) and Klepper (1988), together with classical method
of moments adjustments. The possibility of small errors in the measurement of
initial income implies a lower bound on the estimated rate of convergence that,
while positive, is too close to zero to give conditional convergence the status of a
stylized fact.

Mindful of the possible effects of measurement error, Romer (1990) estimates a
growth equation by both OLS and IV using the number of radios per 1,000 inhab-
itants and (the log of) per capita newsprint consumption as instruments for initial
income and the literacy rate. In the OLS case, he finds a negative and significant
coefficient on initial income, but in the IV case the coefficient is insignificant,
perhaps suggesting that the significance in the OLS case is attributable to measure-
ment error. Using lagged income as instruments for initial income, Barro (1991)
and Barro and Sala-i-Martin (2004) find little change in the estimated convergence
rates compared to OLS, and conclude that measurement error is not an important
factor behind their findings supporting β-convergence.

Another important criticism of β-convergence regressions concerns the power
of the test against non-convergent alternatives, such as models with endogenous
growth or poverty traps. As shown above, β < 0 is an implication of the neoclas-
sical growth model, but β < 0 is also potentially consistent with economically
interesting alternatives. To see this, assume that there is no technical change or
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population growth, that each country has a common set of control variables Zi,
and that convergence does not occur because of the presence of a threshold exter-
nality, as in Azariadis and Drazen (1990). In the Azariadis–Drazen model, such an
externality can produce multiple steady-states, with the long-run outcome for an
economy depending on whether its initial capital stock is above or below a thresh-
old. Those starting below the threshold will converge to one steady-state, while
those starting above will converge to another.

Relative to the economic idea of convergence as manifested in the neoclassical
model, the Azariadis–Drazen model does not exhibit convergence, and different
initial conditions lead to different steady-states. Yet the data generated by the
Azariadis–Drazen model will not necessarily lead to the finding that β ≥ 0, as
shown in Bernard and Durlauf (1996). To see why, consider the growth process:

γi = k + β(log yi,0 − log y∗l(i))+ εi, (23.9)

where country i has steady-state l
(
i
)

with associated output per capita y∗l(i), a value
common across all countries with that steady-state. Suppose that the (now misspec-
ified) cross-country growth regression (23.6) is employed to test for convergence.
The regression coefficient will, in the probability limit, equal:

βm = β

(
1− cov(log y∗l(i), log yi,0)

var(log yi,0)

)
. (23.10)

The sign of βm cannot be determined a priori, as it depends on cov(log y∗l(i), log yi,0),
which is determined by the relationship between initial incomes and steady-states.
It is clearly possible for βm to be negative, implying statistical convergence, defined
as β < 0, despite the absence of economic convergence.

This problem is more than a theoretical possibility, as shown in Durlauf and
Johnson (1995). They estimate a model with multiple growth regimes motivated
by the Azariadis and Drazen (1990) framework and find that it fits cross-country
data better than does the linear Solow model. The issue is also highlighted in work
by Liu and Stengos (1999) and Durlauf, Kourtellos and Minkin (2001), who find
that β appears to depend nonlinearly on initial conditions and may be equal to
zero for some countries. These and related findings will be discussed in the next
section on nonlinearities and multiple regimes.

Similar results may be derived in linear environments in which the distinc-
tion between neoclassical and endogenous growth theories depends on returns to
scale in the aggregate production function as embodied in a particular parameter
value. Kocherlakota and Yi (1995) analyze a representative agent model in which
yt = Atk

α
t−1, so that log yt = log At + α log kt−1. For this production function,

the difference between the neoclassical and endogenous growth models concerns
the value of the parameter α. The case of α ≥ 1 represents a version of endoge-
nous growth: the model yields perpetual growth regardless of whether there is a
deterministic drift in technology.
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Specifically, the Kocherlakota–Yi analysis provides conditions under which:

E(log yt − log yt−1
∣∣log A1, log k 1) is decreasing in log A1, (23.11)

even if α ≥ 1. This means that a finding of β-convergence may occur when
endogenous growth is the relevant case. The key assumption for this case is that
log At = g + ρ log At−1 + εt with 0 < ρ < 1 − δ, where δ is the discount rate. In
this case, the presence of an endogenous growth component is swamped by transi-
tional dynamics, as the effects of shocks die out. These findings parallel the result
in Bernard and Durlauf (1996) but using a different mechanism.

Kocherlakota and Yi (1995) also give conditions under which:

E(log yt − log yt−1
∣∣log A1, log k1 ) is increasing in log A1, (23.12)

even if α < 1. This means that a positive β can occur in a cross-country growth
regression, even when returns to capital are diminishing. The key to the result is a
unit root in the level of technology; formally, they assume log At = g+log At−1+εt .
Intuitively, intertemporal optimization, at least for their choice of utility function,
means that higher initial income leads to higher investment, and this can yield a
positive correlation between growth and initial income.

These findings show the difficulties that can arise when convergence findings are
used to discriminate between growth models. The above analyses may be under-
stood as arguing that tests for β-convergence fail to distinguish between behavior
along a transition path to a steady-state and behavior in the steady-state, in the
way needed to allow reliable discrimination between neoclassical growth models
and newer alternatives.

23.3 Nonlinearities and multiple growth regimes

Clearly, tests for β-convergence may have low power against the alternative
hypothesis of multiple steady-states. With this in mind, some studies have
explicitly searched for statistical evidence of multiple steady-states. Durlauf and
Johnson (1995) use classification and regression tree (CART) methods to search
for nonlinearities in the growth process implied by the existence of multiple steady-
states.15 This procedure identifies sub-groups of countries that obey a common
linear growth model based on the Solow variables, and enables a test of the null
hypothesis of a common growth regime against the alternative hypothesis of mul-
tiple regimes. In their study, allowing for multiple regimes means that economies
with similar initial conditions (such as literacy rates) are allowed to converge or
behave in similar ways, without imposing any requirement that steady-states are
unique. Using the Mankiw et al. (1992) data, Durlauf and Johnson (1995) reject the
single regime model required for global convergence. Instead, they conclude that
there is a role for initial conditions in explaining variation in cross-country growth
behavior, even after controlling for the structural heterogeneity implied by the
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augmented Solow model estimated by Mankiw et al. (1992).16 These findings are
extended in Tan (2008), who employs GUIDE (generalized, unbiased interaction
detection and estimation) and finds strong evidence that measures of institutional
quality and ethnic fractionalization define sub-groups of countries which obey
common growth models.17

Other research has produced additional evidence consistent with multiple
regimes using alternative statistical methods. Some of these study the behavior
of the entire cross-country distribution of per capita income, as we discuss below.
Here we highlight the work of three other researchers. Desdoigts (1999) uses projec-
tion pursuit methods and finds several interesting clusters, which can be described
as the OECD member countries, Africa, Southeast Asia, and Latin America.18 He
argues that the first of these is identified by variables that proxy for the effects of
initial conditions on subsequent growth behavior. Kourtellos (2003) uses projec-
tion pursuit to construct models of the growth process and finds evidence of two
steady-states. Canova (2004) utilizes a procedure with Bayesian origins that both
estimates the number of groups and assigns countries to groups. The researcher
orders the countries by various criteria (for example, output per capita in the
pre-sample period) and the estimation procedure chooses cluster boundaries and
memberships to maximize the predictive ability of the overall model. He finds that
ordering the data by initial income divides the regions of Europe into four clus-
ters, with statistically and economically significant differences in long-run income
levels and little across-cluster mobility, consistent with the existence of multiple
steady-states. He also finds two clusters among the OECD countries with initial per
capita income again being the preferred ordering variable. There is little mobility
between the clusters, and the implied long-run difference in the average incomes
is “economically large.”

As discussed in Durlauf and Johnson (1995) and Durlauf et al. (2005), studies of
nonlinearity also suffer from identification problems with respect to questions of
convergence. One problem is that a given dataset cannot fully uncover the nature
of growth nonlinearities without strong additional assumptions. As a result, it
becomes difficult to extrapolate those relationships between predetermined vari-
ables and growth to infer steady-state behavior. Durlauf and Johnson (1995) give
an example of a data pattern that is compatible with both a single steady-state
and multiple steady-states. A second problem concerns the interpretation of the
conditioning variables in these exercises. Suppose one finds, as in Durlauf and
Johnson, that high- and low-literacy economies are associated with different aggre-
gate production functions. One interpretation of this finding is that the literacy
rate proxies for unobserved fixed factors, for example, culture, implying that these
two sets of economies will never obey a common production function, and so will
never exhibit convergence. Alternatively, the aggregate production function could
structurally depend on the literacy rate, so that as literacy increases, the aggre-
gate production functions of economies with low current literacy will converge to
those of the high literacy ones. Data analyses of the type that have appeared to
date cannot easily distinguish between these possibilities.
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23.4 σ -convergence

An alternative statistical convergence concept focuses on the cross-section dis-
persion of log per capita output across countries, and whether it is increasing or
shrinking. This has a natural connection to debates on whether inequality across
countries is widening or diminishing. Discussion of this form of convergence often
emphasizes the cross-section variance of log incomes, but the variance is not a
sufficient statistic for the overall dispersion, and so can mask interesting forms
of cross-section inequality. Although most empirical studies use the log variance,
other measures of inequality can easily be used, such as the Gini coefficient or the
Atkinson (1970) class of measures. These will sometimes be preferable to the log
variance on axiomatic grounds.

A reduction in the dispersion of log income is interpreted as convergence because,
as with β-convergence, it suggests that contemporary income differences are tran-

sitory. Letting σ
2
log y,t denote the variance across i of log yi,t , σ -convergence occurs

between t and t + T if:

σ
2
log y,t − σ

2
log y,t+T > 0. (23.13)

Barro and Sala-i-Martin (2004, Ch. 11) report declines in the variance of the log-
arithm of income for the US states between 1880 and 2000, for the Japanese
prefectures between 1930 and 1990, and for regions within five European countries
between 1950 and 1990. In contrast, the variance of log income per capita in the
world as a whole increased between 1960 and 2000.

These results are consistent with the outcomes of unconditional β-convergence
tests, but there is no necessary relationship between β- and σ -convergence. It is
easy to see how σ -divergence can occur even when, by an economic measure, con-
vergence is present. For example, if all countries start from the same position but
shocks are present, then divergence will occur, regardless of the speed of mean
reversion. A more subtle point is that, if output changes for all countries obey
yi,t−yi,t−1 = βyi,t−1+εi,t , then β < 0 is compatible with a constant cross-sectional
variance, which in this example will equal the variance of yi,t . The alternative, but
mistaken, idea that mean reversion in a time series must imply a falling variance is
known as Galton’s fallacy. The mistake here is to ignore the role of ongoing shocks
in sustaining the variance. The relevance of these types of arguments to under-
standing the relationship between convergence concepts in the growth literature
was identified by Friedman (1992) and Quah (1993a).

Several authors have recently proposed tests for σ -convergence that employ
regression specifications. Following Friedman (1992), Cannon and Duck (2000)
argue that a possible test for σ -convergence could use regressions of the form:

γi = T−1
(log yi,t+T − log yi,t ) = α + π log yi,t+T + εi. (23.14)

As the probability limit of the OLS estimator of π is T−1
(
1 − σlog yi,t ,log yi,t+T

/
σ

2
log yi,t+T

)
, a negative estimate of π implies σlog yi,t ,log yi,t+T

> σ
2
log yi,t+T

. This

mailto: rights@palgrave.com


Steven Durlauf, Paul Johnson and Jonathan Temple 1099

inequality in turn implies σ
2
log y,t > σ

2
log y,t+T , as otherwise (σlog yi,t ,log yi,t+T

)
2

<

σ
2
log yi,t+T

σ
2
log yi,t

, the condition for positive definiteness of the variance-covariance
matrix of log yi,t and log yi,t+T , would be violated. Hence a test that rejects the null
hypothesis π = 0 in favor of the alternative π < 0 is evidence of σ -convergence.
Their application of the test finds convergence among the US states and the
European regions but not among the countries of the world.

Egger and Pfaffermayr (2007) suggest a test of conditional σ -convergence that, in

the growth context, would involve a test of the hypothesis that πT = 1−σ
2
uT

/σ
2
log yi,t

against the alternative that πT < 1 − σ
2
uT

/σ
2
log yi,t

, where πT is the coefficient on
log yi,t in the cross-section regression log yi,t+T = πT log yi,t + Zi� + uiT , where,
as above, Zi is a vector of country-i specific, time-invariant control variables. This
test generalizes the unconditional σ -convergence test of Carree and Klomp (1997),
which those authors use to provide evidence of σ -convergence within the OECD
countries. Egger and Pfaffermayr (2007) apply their test to a large dataset on the
size of European manufacturing firms; its power for the samples typically used in
growth applications is not yet clear.

Bliss (1999a, 1999b) points out that the interpretation of tests of σ -convergence
can be problematic in the presence of non-stationarities; an evolving distribution
for the data makes it difficult to think about the distributions of test statistics under
the null hypothesis. Further difficulties arise when unit roots are present.

23.5 Convergence and the cross-country distribution of per
capita income

Both β- and σ -convergence are directly motivated by the law of motion of the
neoclassical growth model. A distinct approach to convergence was pioneered by
Quah (1993a, 1993b, 1996a, 1996b, 1996c, 1997). He focuses on “distribution
dynamics”: the evolution of the entire cross-country distribution of income per
capita. We will question whether analyses of this kind can speak directly to the
convergence hypothesis, but the approach has helped to establish some stylized
facts that could be important in assessing the empirical salience of different growth
theories.

One strand of this literature takes snapshots of the distribution of income per
capita at points in time. For example, Bianchi (1997) tests for multimodality in
kernel density estimates of the cross-country distribution of per capita income. He
finds evidence of bimodality in densities estimated using Penn World Table data on
gross domestic product (GDP) per capita for 1970, 1980 and 1989.19 He also notes
a tendency for the two modes to become more distant from each other over time,
supporting the view that the cross-country distribution of per capita income has
become increasingly polarized. He finds very little mobility within the distribution;
most of the countries nearer to either the upper or lower mode in 1970 are still there
in 1989. Henderson, Parmeter and Russell (2007) confirm Bianchi’s findings using
a longer span of data and more advanced statistical tests.
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Others have estimated the density of the cross-country distribution using mix-
ture models, based on weighted sums of component distributions.20 Multiple
components, like multiple modes, can be indicative of multiple steady-states in
the dynamic process describing the evolution of per capita income. Paap and van
Dijk (1998) fix the number of components at two a priori, based on the bimodality
of histograms of their data, and then use goodness-of-fit tests to select the shapes
of the component distributions. They study mobility between the components
by assigning each country to a component in each year according to the maxi-
mal conditional probabilities of component “membership,” computed using their
parameter estimates. They find only limited mobility across components: most of
the countries initially assigned to the poorer component remain so throughout the
sample period. Pittau, Zelli and Johnson (2008) estimate mixture models of the dis-
tribution of GDP per worker at five-year intervals from 1960 to 2000.21 They use
goodness-of-fit and likelihood ratio (LR) tests to conclude that a three-component
mixture is the preferred model. As in Paap and van Dijk (1998), they find little
mobility between components, and so interpret their results as evidence of the
presence of multiple steady-states, contrary to the convergence hypothesis. The
results of Davis, Owen and Videras (2007), who fit a mixture model that allows
for conditioning on a typical set of proximate growth determinants, suggest that
these results are robust to cross-country variation in those variables.

Bloom, Canning and Sevilla (2003) also derive a mixture model for log yi,t . They
argue that, if long-run outcomes are determined by fundamental forces alone, the
relationship between income levels and exogenous variables ought to be unique.
If there are multiple steady-states, so that initial conditions play a role in long-run
outcomes, the relationship will not be unique. Instead, under suitable regularity
conditions, it will be described by a two component mixture model if there are two
steady-states and if large shocks and resultant movements between steady-states
are sufficiently infrequent.22 Using 1985 income data from 152 countries with the
absolute value of the latitude of the (approximate) center of each country as the
fundamental exogenous variable, they are able to reject the null hypothesis of a
single regime model in favor of the alternative of a model with two regimes. The
regimes correspond to a high-level (“manufacturing and services”) steady-state, in
which income does not depend on latitude, and a low-level (“agricultural”) steady-
state in which income does depend on latitude, perhaps through its influence
on climate and agricultural productivity. Further, the probability of being in the
high-level steady-state is found to rise with latitude.

Other analyses of the distributions of income and growth have focused on
the differences in these distributions across time and across sub-sets of countries.
Anderson (2004) uses stochastic dominance methods to compare distributions at
different points in time and to construct measures of polarization, arguably the
antithesis of convergence. Using nonparametric estimates of the cross-country dis-
tribution of per capita income, he finds increased polarization – shifts in probability
density mass that increase disparities between relatively rich and relatively poor
economies – between 1970 and 1995. Pittau, Zelli and Johnson (2008) reach a
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similar conclusion using the Duclos, Esteban and Ray (2004) polarization index.
Maasoumi, Racine and Stengos (2007) find that the distributions of growth rates for
OECD and non-OECD member countries are persistently different between 1965
and 1995, with the OECD distribution’s variance reducing over time whereas the
non-OECD distribution appears to be becoming less concentrated.

The methods discussed above permit comparison of distributions at different
points in time, but are not explicitly dynamic. In most of these contributions,
the process describing the evolution of the cross-country distribution of per
capita income over time is not specified or described. Quah (1993a, 1993b,
1996a, 1996b, 1996c, 1997) introduced methods into the growth literature for
studying the evolution of distribution dynamics, in order to illuminate issues
of mobility, stratification, and polarization that are typically obscured by the
standard regression approaches used for testing the convergence hypothesis. In
addition, a description of the process governing the evolution of the cross-
country income distribution enables analysis of the long-run tendencies implied
by that process, through computation of long-run or ergodic distributions.23

One way of studying distribution dynamics is to assume that the process describ-
ing the evolution of the distribution is described by a time-invariant and first-order
Markov chain.24 Using cross-country per capita income data from the early 1960s
through to the mid 1980s, Quah (1993b) takes this approach. He finds that the ele-
ments on the main diagonal of the estimated transition matrix are often close to
unity, indicating a high degree of persistence, or lack of mobility, within the distri-
bution. Moreover, the implied ergodic mass function is bimodal or “twin-peaked.”
Together, these findings of persistence and bimodality could be seen as consistent
with the presence of multiple basins of attraction or “convergence clubs.”

Evidence of bimodality in the long-run cross-country distribution of per capita
incomes is also found by Kremer, Onatski and Stock (2001), who update Quah’s
analysis using more recent data. However, their point estimates imply that most
countries will ultimately move to the high-income state, and they are unable to
reject the hypothesis that there is a single right-hand peak in the long-run distribu-
tion. Quah (2001) observes that the imprecision of their estimates of the ergodic
distributions is sufficiently large that it is not possible to reject a wide range of
null hypotheses about their shape, including, as it is the point estimate, that of
bimodality.

Feyrer (2003) observes that the development traps implied by the “twin peaks”
finding could stem from traps in the accumulation of physical or human capital
or in total factor productivity (TFP). He uses a combination of Quah’s methods
and those of development accounting to examine this question, based on data
from 1970 to 1989. In particular, he examines whether the possible bimodality in
the distribution of GDP per capita can be traced to bimodality in the distributions
of aggregate TFP (measured as a residual), the capital-output ratio, or the average
level of human capital, measured in the usual way as a Mincerian function of years
of schooling. If traps in the accumulation of physical capital are, for example,
an important proximate cause of the bimodality in the distribution of output per
capita, the distribution of the capital-output ratio should also be bimodal. Feyrer’s
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estimates imply that the ergodic distributions of both GDP per capita and the pro-
ductivity residual are bimodal, while those of the accumulable factors of production
are not.25 Consistent with the emphasis of Klenow and Rodriguez-Clare (1997) and
Hall and Jones (1999) on productivity differences, he concludes that the proximate
cause of the “twin peaks” in the distribution of GDP per capita is bimodality in the
distribution of productivity, and accordingly advocates more research on models
that emphasize traps in TFP.

Fitting a Markov chain to a continuous variable like GDP per capita requires a
discretization of the state space. This is problematic, as it can easily alter the prob-
abilistic properties of the data (Quah, 1996c, 1997, 2001; Bulli, 2001). Reichlin
(1999) showed that the inferred dynamic behavior and the long-run implica-
tions of that behavior can depend on the discretization scheme that is used. To
address this problem, Quah (1996c, 1997) proposed a continuous state space ver-
sion of the approach that avoids the problems caused by discretization. If the
cross-country income distribution at time t has a density function, ft (x), and if the
process describing the evolution of the distribution is time-invariant and first-order
Markov, the density at time t+τ , τ > 0, will be given by ft+τ (x) =

∫∞
0 gτ (x|z)ft (z)dz,

where gτ (x|z) is the τ -period-ahead density of x conditional on z. The function
gτ (x|z) is the continuous analog of the transition matrix. The implied ergodic (long-
run) density function, f∞(x), if it exists, solves f∞(x) = ∫∞

0 gτ (x|z)f∞(z)dz. Quah
(1996c, 1997) uses kernel density methods to estimate various gτ (x |z ) using cross-
country data on output per capita, and finds a general concentration of the mass
near points where x = z, that is, along the “main diagonal,” as well as a tendency
for peaks in the plot near the ends of the main diagonal and a trough in the mid-
dle. These features imply a lack of mobility within the cross-country distribution
of income per capita and a tendency for mass to accumulate in the tails of the
long-run distribution.26 The estimated ergodic densities in Bulli (2001), Johnson
(2005) and Fiaschi and Romanelli (2008) are also bimodal and hence support this
conclusion. While Quah (2001) observes that there is not yet a theory of inference
for these methods, Fiaschi and Romanelli (2008) propose a bootstrap procedure
for computation of confidence intervals for the ergodic density, and their results
suggest that the bimodality is statistically significant.

These methods have been important in establishing stylized facts concerning
the cross-country distribution of per capita output, but there have been relatively
few attempts to explore the implications for the empirical relevance of alternative
growth theories. Quah (1996c) finds that conditioning on measures of physical
and human capital accumulation similar to those used by Mankiw et al. (1992),
and a dummy variable for the African continent, has little effect on the estimated
dynamics of the distribution. This suggests that the heterogeneity revealed by
the distributional approaches is, at least in part, due to the existence of conver-
gence clubs rather than heterogeneity in steady-state determinants.27 Azariadis and
Stachurski (2003) derive the form of the gτ (x|z) function implied by a stochastic
version of the model in Azariadis and Drazen (1990). They estimate the model’s
parameters and compute forward projections of the sequence of cross-country
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income distributions as well as the ergodic distribution implied by the model. Con-
sistent with Quah (1996c, 1997), they find bimodality to be a pervasive feature of
the sequence of distributions for about 100 years, even though the ergodic distri-
bution is unimodal. Hence, even if bimodality eventually disappears, it may persist
for a long time, as Quah notes in his response to Kremer et al. (2001).

There are some possible limitations to the use of distributional dynamics in
reaching conclusions about substantive economic questions, especially when con-
vergence is the main focus of interest. It is true that multiple modes in a distribution
are consistent with the hypothesis of non-convergence, as they can be a conse-
quence of multiple steady states. But they can also arise in the Solow model if, for
example, there are multiple modes in the distribution of investment rates or popu-
lation growth rates. Hence multimodality is not sufficient for concluding in favor
of the existence of convergence clubs. Moreover, the existence of meaningful clubs
also requires some degree of immobility within the distribution, so that countries
in the vicinity of a mode will tend to remain there for extended periods.

A further point is that, while multimodality and immobility provide evidence of
a lack of global convergence in the form of convergence clubs – groups of countries
that converge locally but not globally – convergence clubs may be relevant even if
the unconditional distribution of GDP per capita is unimodal. We can summarize
some of these points by observing that the distribution dynamics literature typi-
cally investigates the shape and evolution of the whole cross-country distribution
of per capita income at particular points in time, whereas economic debates about
convergence are partly about the shape of the long-run or ergodic distribution for
a given country.

23.5.1 Structural analysis

A final approach to convergence is to take a theoretical model with multiple steady-
states and calibrate it to cross-country data. Graham and Temple (2006) carry out
this kind of exercise for a two-sector general equilibrium model. The combina-
tion of increasing returns to scale in one sector (manufacturing and services) and
intersectoral capital and labor mobility gives rise to multiple steady-states. They
calibrate the model to data for 127 countries, and find that about a quarter are in a
low-output equilibrium. The income differences across the equilibria are sizeable,
and imply that multiplicity is capable of explaining up to a quarter of the cross-
country dispersion in the logarithm of GDP per worker. Given the importance of
structural models in business cycle analysis, it is remarkable how little work of this
type has appeared in the convergence literature.

23.6 Time series approaches to convergence

Time series approaches to convergence are based on direct evaluation of the per-
sistence or transience of income per capita differences between economic units,
for example between pairs of countries or regions. This approach permits precise
statistical definitions of hypotheses about convergence, but has the disadvantage
of not being explicitly linked to particular growth theories.
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Bernard and Durlauf (1995) define convergence for a set of countries I as
occurring if:

lim
T→∞Proj(log yi,t+T − log yj,t+T

∣∣&t ) = 0 ∀i, j ∈ I , (23.15)

where Proj(a|b) denotes the projection of a on b and &t denotes some information
set, which will generally include functions of time as well as current and lagged
values of log yi,t and log yj,t . Such a &t would imply a type of unconditional con-
vergence, whereas inclusion of control variables such as investment rates would
admit conditional convergence, but this has not been explored in the literature.

Most implementations of this definition have generally focused on the detection
of deterministic or stochastic trends in log yi,t − log yj,t , as the presence of either
implies a violation of (23.15). Consequently, time series tests of convergence have
typically been implemented by testing for the presence of a unit root in the log yi,t−
log yj,t process.

Using an approach based on unit root tests, Bernard and Durlauf (1995) find
little evidence of convergence in a group of 15 advanced industrialized economies
between 1900 and 1989 based on data from Maddison (1982, 1989). Hobijn
and Franses (2000) similarly find little evidence of convergence across a group of
112 Penn World Table countries over the period 1960–89.28 Their work is based on
a clustering algorithm to identify groups of converging countries. They find many
small clusters, which they view as having distinct steady-states; but their multi-
plicity, and the absence of controls for structural characteristics, means that these
clusters could simply reflect differences in those characteristics, rather than differ-
ences in long-run outcomes due to differences in initial conditions. The breadth
of the sample used also suggests that the Bernard and Durlauf (1996) argument,
about the need for consideration of the substantive economic assumptions that
underlie time series methods for studying convergence, is applicable in this case.

One criticism of these tests focuses on the validity of unit root tests in the pres-
ence of structural breaks. Perron (1989) has argued that the failure to allow for
structural breaks can lead to spurious evidence in support of the presence of a unit
root (or, more precisely, can diminish the ability to reject the null of a unit root).
Greasley and Oxley (1997) impose breaks exogenously and find convergence for
Denmark and Sweden, in contrast to Bernard and Durlauf (1995), who did not
allow for breaks. Li and Papell (1999) allow for endogenous trend breaks and find
that this reduces, relative to Bernard and Durlauf (1995), the number of country
pairs that fail to exhibit convergence.

Carlino and Mills (1993) study US regions and reject convergence except with
specifications that allow for a trend break in 1946. However, a trend break vio-
lates (23.15), as it implies that some component of log yi,t − log yj,t is predictable
in the long run. Thus claims that allowing for data breaks produces evidence in
favor of convergence invites the question of what is meant by convergence. Note
that the sort of violation of (23.15) implied by a trend break is different from the
type implied by a unit root, as a break associated with the level of output means
that the output difference between two countries is always bounded. The issue of
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trend breaks raises the general question of whether convergence dynamics obey a
nonlinear process. Chong et al. (2008) employ a smooth transition autoregressive
process to model output and conclude that OECD member countries are converg-
ing to the US level of output per capita. Their analysis is again difficult to interpret
in economic terms, as their functional form assumptions do not correspond to any
particular economic model and therefore invite questions about the appropriate
choice of nonlinear structure.

A second criticism of time series tests has been made by Michelacci and Zaffa-
roni (2004). They argue that evidence of unit roots in per capita output may be
spurious because of a lack of attention to the possibility that dependence in these
individual series exhibits long memory, that is, dependence decays at a hyperbolic
rather than a geometric rate. If it is the case that the individual series are stationary
in levels, the differences between them cannot contain unit roots, so that con-
vergence is occurring. They further argue that long memory can explain the 2%
convergence rate found in cross-section regressions. This is an intriguing argument,
although Durlauf et al. (2005) question the strength of the empirical evidence for
long memory as well as its theoretical plausibility. Michelacci and Zaffaroni also
do not directly study the behavior of per capita output differences, so it is unclear
how to match their analysis with other studies.

The time series and σ approaches to convergence are merged in Evans (1996).

He studies the time series properties of σ2
t , the cross-section variance of log yi,t . He

shows that, when there is no cointegration among the series log yi,t , σ
2
t may be

represented as a unit root process with a quadratic time trend, and this suggests
a time series test of convergence based on unit root tests applied to a time series

for σ
2
t . He uses this test to conclude that there is convergence to a common trend

among 13 industrial countries over the period 1870–1989 and among a group of
51 countries over the period 1950–92, although the evidence in the latter case is
less conclusive.

Evans (1997) provides a time series approach to estimating rates of convergence.
For the contiguous US states over the period 1929–91, he finds that about one-
third of the point estimates are negative and about two-thirds of the confidence
intervals contain zero. For a sample of 48 countries over the period 1950–90, about
half of the point estimates are negative and all but two of the confidence intervals
contain zero.

23.6.1 Transitions versus steady-state dynamics

There are important differences between the time series approach to convergence
and the β and distribution shape approaches. As argued in Bernard and Durlauf
(1996), time series tests assume that the underlying stochastic processes are time
invariant, so that countries have transited to an invariant output process. In con-
trast, cross-section approaches, such as β-convergence and σ -convergence, are
motivated by the assumption that countries are in transition to a steady-state,
so that the data for a given country at time t are drawn from a different stochastic
process than the data at some future time.29 Bernard and Durlauf further indicate
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how convergence under a cross-section test can, in fact, imply a failure of con-
vergence under a time series test, because of these different assumptions. To be
clear, it is possible for data from a stationary process to exhibit β-convergence, for
example, but it is not clear what the economic interpretation is.

Harvey and Carvalho (2002) and Carvalho and Harvey (2005a, 2005b) propose
a number of time series analyses of convergence which distinguish between eval-
uating whether countries have converged, and whether countries are converging.
The idea of this framework is to interpret convergence as involving adjustments
of output in a given country to gaps between its past output and that of other
countries. It allows one to evaluate the presence of common deterministic trends,
as well as tendencies for economies to adjust based on differences with the rest
of the world. Relative to the other unit root tests, this approach allows for level
differences between economies and so distinguishes between convergence to a
common level and convergence to common growth paths. Harvey and Carvalho
(2002) use this approach to conclude that there is convergence between the US
and Japanese growth paths; Carvalho and Harvey (2005a, 2005b) find both con-
vergence and divergence between Euro zone countries and various pairs of US
regions respectively. An additional finding of these papers is that unit root tests
of convergence are highly sensitive to the inclusion of time trends and constant
terms.

Phillips and Sul (2006) extend the distinction between economies that have con-
verged and economies that are converging, by explicitly addressing the question of
invariance of the time series process for output. Their analysis focuses on models
of the form:

yi,t = bi,tβt + κi,t , (23.16)

where βt is a common trend (deterministic and/or stochastic) and κi,t is a cyclical
term. The key advance in this formulation is that bi,t , the weights on the com-
mon trend, are allowed to vary both with respect to the country and with respect
to time. This approach allows one to estimate a transition curve for individual
economies which, by tracing out bi,tβt , allows for explicit evaluation of how the
long-run components of national output co-evolve. Their analysis finds evidence
of convergence for the OECD member countries and for US states, but not for a
broader sample of countries drawn from the Penn World Table.

23.7 The economics of convergence

The various approaches to convergence that we have discussed are all purely sta-
tistical, so it remains to consider convergence as an economic concept, in order
to assess what can be learned from econometric studies. In this section we pro-
vide some definitions of convergence that, while statistical in nature, can be used
to move between the economic notion of convergence and the statistical notions
that have been employed to assess it.

Broadly speaking, we take the substantive economic content of the conver-
gence hypothesis to be the claim that initial conditions have no effect on long-run
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economic outcomes. As argued in Durlauf et al. (2005), the empirical task is then to
determine the role of initial conditions in explaining cross-country differences in
per capita output. This task is complicated by the role of structural heterogeneity
in also explaining those differences; so the empirical literature must disentan-
gle the effects of initial conditions and structural heterogeneity. There are three
possibilities: (i) unconditional convergence (to a common long-run level) occurs
if differences in per capita incomes are temporary; (ii) conditional convergence
occurs if permanent differences reflect only cross-country structural heterogeneity;
and (iii) club convergence occurs if initial conditions determine, to some extent at
least, long-run outcomes, with countries with similar initial conditions exhibiting
similar long-run outcomes.30

To formalize these ideas, we associate with economy i initial conditions ρi,0 and
say that these initial conditions do not matter in the long run if:

lim
t→∞μ(log yi,t |ρi,0) does not depend on ρi,0, (23.17)

where μ (·) is a probability measure.31 Letting ‖‖ denote a metric for computing the
distance between probability measures, we say that countries i and j converge if:

lim
t→∞‖μ(log yi,t |ρi,0)− μ(log yj,t |ρj,0)‖ = 0, (23.18)

which implies convergence in average income levels in the sense that:

lim
t→∞E(log yi,t − log yj,t |ρi,0, ρj,0) = 0. (23.19)

This definition can be modified to require that the limiting expected difference
between log yi,t and log yj,t is bounded if the equality of steady-state growth rates is
of interest. This definition is the one that underlies all of the time series approaches
to convergence: the differences between Harvey and Carvalho (2002) and Phillips
and Sul (2006) and the earlier time series tests of Bernard and Durlauf (1995) and
others reflect differences in how this long-run forecast similarity is calculated. This
is also consistent with the economic notion of convergence that appears in the
neoclassical growth model. Our criticism of some of the cross-section and panel
approaches to convergence partially derives from their failure to evaluate this
condition fully.

Bernard and Durlauf (1996) suggest a definition of partial convergence that
requires contemporaneous income differences be expected to diminish, that is:

E(log yi,t − log yj,t |ρi,0, ρj,0) < log yi,0 − log yj,0, (23.20)

for log yi,0 > log yj,0. Hall, Robertson and Wickens (1997) suggest a definition that
requires the variance of output differences to diminish to zero, that is:

lim
t→∞E((log yi,t − log yj,t )

2|ρi,0, ρj,0) = 0, (23.21)
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and hence convergence requires output for a pair of countries to behave similarly in
the long run. This is a strong requirement since it does not permit log yi,t − log yj,t
to be stochastic in the long run, as would be the case if the two countries have
different short-run shock processes. Hall et al. point out the lacuna in the definition
(23.19) in the case of long-run deviations whose current direction is not predictable.
If, for example, log yi,t − log yj,t obeys a random walk with current value zero,
then definition (23.19) would hold despite the fact that future output deviations
between countries i and j could be large. This problem is avoided by the modified
definition:

∀r ≥ 0, lim
t→∞E(log yi,t − log yj,t |ρi,r , ρj,r ) = 0. (23.22)

This modification has no bearing on the relationship between long-run unfore-
castability of differences and either theory or the various convergence tests we
have described.

The β-convergence concept represents the idea of the long-run irrelevance of
initial output per capita by decomposing the growth rate of yi,t into two parts,
technological progress and “catching up.” In the Solow model a positive rate of
conditional convergence, λ, implies that final output is ultimately independent
of initial conditions, so that the initial gap between output and its steady-state
value ceases to play a role in long-run growth. As we have discussed, a testable
implication of a positive λ is a negative β.

In contrast, the literature that focuses on nonlinearities in the growth process
seeks to identify sub-groups of countries that obey a common growth model dis-
tinct from that obeyed by the countries in other groups. Such behavior is consistent
with initial conditions that are relevant even in the long run, as it is consis-
tent with a global growth model with multiple steady-states in which economies
with similar initial conditions tend to converge to one another. The convergence
approaches that study the behavior of the entire cross-country distribution of out-
put per capita look for evidence of the long-run importance of initial conditions in
the form of accumulation points in the distribution, as evinced by intervals with
large quantities of probability mass, between which there is little mobility. This
behavior is consistent with a dynamic growth process that exhibits multiple basins
of attraction and so produces convergence clubs.

The convergence definitions given in (23.19) and (23.20) above make no dis-
tinction between the long-run effects of initial conditions and those of structural
heterogeneity, and so fail to distinguish conditional convergence from the exis-
tence of convergence clubs. This is a serious deficiency for those seeking to use the
outcomes of convergence tests to adjudicate between competing theories of eco-
nomic growth. Long-run effects of cross-country differences in preferences are, for
example, consistent with both the neoclassical and endogenous or “new” classes
of growth theories. However, neoclassical theories are inconsistent with long-run
effects of cross-country differences in initial human and physical capital stocks,
whereas this would not be the case for all endogenous growth models. In other
words, the finding of a long-run role for initial conditions constitutes evidence in
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favor of non-neoclassical models, but care must be taken to control for the long-run
effects of differences in preferences and other structural characteristics.

More formally, successful empirical work on the convergence issue requires the
distinction between initial conditions ρi,0 and structural characteristics θi,0. Steady-
state effects of the former imply the existence of convergence clubs, but steady-state
effects of the latter do not. In order to make this distinction we modify (23.18) and
say that countries i and j exhibit convergence if:

lim
t→∞‖μ(log yi,t |ρi,0, θi,0)− μ(log yj,t |ρj,0, θj,0)‖ = 0 if θi,0 = θj,0. (23.23)

The corresponding modification to the notion of convergence in expected value is:

lim
t→∞E(log yi,t − log yj,t |ρi,0, θi,0, ρj,0, θj,0) = 0 if θi,0 = θj,0, (23.24)

and the other convergence concepts discussed above can be similarly modified.
While conceptually clear, the distinction between initial conditions and struc-
tural heterogeneity is potentially difficult in practice. Typically, researchers have
treated initial human and physical capital stocks as instances of initial conditions,
and other variables as representing structural heterogeneity – for example, those
that often appear as controls in cross-country growth regressions, a practice that
is problematic if these variables are, in fact, endogenously determined by initial
conditions.

Disentangling the respective roles of structural heterogeneity and initial con-
ditions in determining growth performance remains one of the most important
challenges for the convergence literature. Economic theory does not always pro-
vide a guide to the relevant control variables, let alone the appropriate distinction
between variables that capture structural heterogeneity and those that should be
classed as initial conditions. It is also important to emphasize that none of the
statistical definitions of convergence discussed above is necessarily of any intrinsic
interest per se; each is useful only to the extent that it can illuminate some eco-
nomically interesting notions of convergence such as that in (23.24). The failure
to distinguish between convergence as an economic concept and convergence as
a statistical concept has led to much confusion in the growth literature.

23.8 Conclusions

The empirical convergence literature contains many interesting findings and has
helped to identify a number of important generalizations about cross-country
growth behavior. At the same time, it has yet to reach any sort of consensus
on the deep economic questions for which the statistical analyses were designed.
It is not difficult to highlight some of the relevant problems. The fundamen-
tally nonlinear nature of endogenous growth theories renders the conventional
cross-section and panel convergence tests inadequate as ways to discriminate
between the main classes of theories. Evidence of convergence clubs may simply
be evidence of deep nonlinearities in the transitional dynamics towards a unique
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steady-state. Time series evidence against divergence does not distinguish between
conditional and unconditional convergence. Further, cross-section, panel, and
time series approaches to convergence not only yield different results, but are pred-
icated on different views of the nature of transitory versus steady-state behavior of
economies, differences that themselves remain hard to test.

None of this is to say that the study of convergence is not a meaningful or
productive subject for research. Clearly, considerable progress has been made, and
Phillips and Sul (2006) represents a key first step in integrating the transitory and
steady-state perspectives. Much remains to be done, and research on convergence
should continue to develop in interesting ways. Our belief is that progress is most
likely if the economic content of specific versions of convergence is placed at the
center of the analysis, so that statistical sophistication is not an end in itself.

Further, we think that more attention should be made to time horizons. Much
of the convergence literature has treated the question as a zero–one outcome,
whereas it is probably more sensible to ask questions about partial convergence
over shorter horizons. While attention to convergence rates addresses this ques-
tion, it generally has not focused on understanding differences in timing across
regions or how timing is affected by various initial conditions. These questions
are especially important in assessing anti-poverty policies such as those advocated
by the United Nations in the Millennium Development Goals, and they perhaps
matter for introducing some much needed modesty into the growth literature.

Finally, we see value in shifting discussions of convergence away from national
per capita incomes. Cross-country differences in mortality and morbidity are an
obvious context where convergence is of intrinsic interest. In addition, we see some
scope for considering convergence for units outside the nation state. This seems
clear when one considers the effects of institutions and culture on economic activ-
ity. We go so far as to conjecture that important aspects of long-run persistence in
national incomes mirror long-term divergence in phenomena that are not nation-
specific, which is, of course, an idea that goes back to Max Weber. Thomas Macaulay
wrote,32 comparing the Catholic Church to the British Empire: “she may still exist
in undiminished vigor when some traveler from New Zealand shall, in the midst
of a vast solitude, take his stand on a broken arch of London Bridge to sketch the
ruins of St. Paul’s,” which well illustrates how all claims of convergence versus
divergence or permanence versus transience depend on the choice of context.

Notes

1. Quotations are taken from the Penguin edition.
2. See Durlauf (1996) and the subsequent papers in the July 1996 Economic Journal; Durlauf

and Quah (1999), Islam (2003), Barro and Sala-i-Martin (2004), and Durlauf, Johnson
and Temple (2005) for, inter alia, surveys of the convergence literature.

3. Abramovitz (1986) also uses σ -convergence, which we will discuss below.
4. Mankiw (1995, p. 301), for example, argues that for “understanding international expe-

rience, the best assumption may be that all countries have access to the same pool
of knowledge, but differ by the degree to which they take advantage of this knowl-
edge by investing in physical and human capital.” Dowrick and Rogers (2002) argue
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that both diminishing returns and technology transfer are important contributors to
the convergence process. See also Bernard and Jones (1996) and Barro and Sala-i-Martin
(1997).

5. That limt→∞ yE
i,t = yE

i,∞ follows from λi > 0. This long-run independence of yE
i,t from

yE
i,0 implies that initial conditions do not matter in the long run – an interpretation of

convergence that we discuss below.
6. In parallel to equation (23.1), limt→∞(yi,t − yE

i,∞Ai,0egit ) = 0, so that again the initial
value of output per worker does not affect its long-run value.

7. This assumption is made, for example, by Mankiw et al. (1992), who argue that Ai,0
reflects not just technology, which they assume to be constant across countries, but
country-specific influences on growth, such as resource endowments, climate and insti-
tutions. They assume these differences vary randomly across countries, independently
of the determinants of the steady-state level of output per worker.

8. Barro and Sala-i-Martin (2004, Chs. 11, 12) implement β-convergence tests for a variety
of datasets. As pointed out by DeLong (1988), the use of homogeneous groups runs the
risk of ex post sample selection, especially if the homogeneity relates to final outcomes.
In particular, he views the Baumol (1986) finding of unconditional β-convergence over
1870–1979 among a set of countries that were affluent in 1979, as tending to overstate
the true degree of convergence. DeLong extends the sample to include countries with
similar starting positions in 1870, but which have been less successful since, and this
weakens the evidence for convergence.

9. In both Jones and Manuelli (1990) and Kelly (1992), steady-state growth occurs with-
out exogenous technical change, but initially poor economies grow more quickly as
β-convergence requires.

10. As Barro and Sala-i-Martin (1992) note, while there is some variation in estimated conver-
gence rates, estimates generally range between 1% and 3%. They attribute this variation
to unobserved heterogeneity in steady-state values; but to the extent that it is correlated
with variables included in the regressions, this heterogeneity implies the parameter esti-
mates are inconsistent. Panel studies such as Islam (1995), Caselli et al. (1996) and Lee,
Pesaran and Smith (1998) have found more rapid rates of convergence.

11. For example, Barro and Sala-i-Martin (1991) present results for US states and regions
as well as European regions; Barro and Sala-i-Martin (1992) for US states, a group of
98 countries and the OECD; Mankiw et al. (1992) for several large groups of countries;
Sala-i-Martin (1996a, 1996b) for US states, Japanese prefectures, European regions, and
Canadian provinces; Cashin (1995) for Australian states and New Zealand; Cashin and
Sahay (1996) for Indian regions; Persson (1997) for Swedish counties; and Shioji (2001)
for Japanese prefectures and other geographic units.

12. As Durlauf et al. (2005) document, the number of suggested control variables is now
almost as large as the number of countries in the world.

13. Den Haan (1995) is an especially sophisticated discussion.
14. See Abramovitz (1986), Baumol (1986), DeLong (1988), Romer (1990) and Temple (1998).
15. An appendix to Durlauf and Johnson (1995) discusses the application of regression tree

methods to the issue of locating multiple regimes in growth models. Breiman et al. (1984)
contains a detailed general treatment of regression tree methods. While these methods
suffer from the lack of a well-developed asymptotic theory for testing the number of
regimes present in a dataset, they are consistent in the sense that, under relatively weak
conditions, the correct model will be revealed as the sample size grows to infinity, if
there are a finite number of regimes.

16. Papageorgiou and Masanjala (2004) observe that Durlauf and Johnson’s findings could be
due to misspecification of the aggregate production function. They estimate a version of
the Solow model based on a constant elasticity of substitution (CES) production function
rather than the Cobb–Douglas, following findings in Duffy and Papageorgiou (2000),
and ask whether or not Durlauf and Johnson’s multiple regimes remain under the CES
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specification. Using Hansen’s (2000) approach to sample splitting and threshold estima-
tion, they find statistically significant evidence of four distinct growth regimes, broadly
consistent with those found by Durlauf and Johnson (1995). Johnson and Takeyama
(2001) also use the regression tree approach and find evidence of thresholds in US state
economic growth behavior defined by variables likely to be proxies for the capital/labor
ratio, agglomeration effects and communication effects.

17. For more on GUIDE methods, see Loh (2002).
18. Appendix A of Desdoigts (1999) provides a useful primer on projection pursuit which is

developed in Friedman and Tukey (1974) and Friedman (1987).
19. Kernel density estimation is a nonparametric method of estimating density functions

that has the attraction of flexibility as it does not impose a priori a functional form for
the density. See Silverman (1986).

20. The finite mixture model is a semi-parametric alternative to the nonparametric kernel
approach to density estimation. See McLachlan and Peel (2000).

21. Tsionas (2000) applies mixture models to US state data while Pittau (2005) and Pittau
and Zelli (2006) apply them to EU regional data.

22. This requirement is consistent with the documented lack of mobility within the cross-
country distribution of per capita income.

23. Again, multimodality in the ergodic distribution is neither necessary nor sufficient to
imply the existence of convergence clubs – not sufficient because it reveals nothing about
mobility and not necessary because the existence of multiple stochastic steady-states does
not imply multiple modes in the long-run distribution.

24. Applications of Markov chain methods to the study of mobility issues in the social sci-
ences predate the modern empirical growth literature. See, for example, Prais (1955).
The time-invariance and first-order Markovian assumptions are testable, with Quah
(1993b) presenting an informal test of the latter, while Fingleton (1997) and Bicken-
bach and Bode (2003) present more formal tests in the cases of EU regions and US states
respectively.

25. Johnson (2005) re-examines Feyrer’s (2003) results using the continuous state space
methods discussed below and finds that, rather than TFP playing an exclusive role in
the apparent bimodality in the long-run distribution of GDP per capita, the ergodic
distribution of the capital-output ratio is also bimodal.

26. Quah’s methods have been widely applied. For example, Andres and Lamo (1995) apply
these methods to the OECD; Lamo (2000) to the regions of Spain; Johnson (2000) to
US states; Bandyopadhyay (2004) to the Indian states; Andrade et al. (2004) to Brazilian
municipalities; Ezcurra et al. (2005) to EU regions; Fotopoulos (2006) to Greek regions,
and Pittau and Zelli (2006) to EU regions. In some cases, the small cross-section dimen-
sion of the samples must limit the reliability of the findings. These methods have also
been extended to broader notions of distributional dynamics. Fiaschi and Lavezzi (2004)
develop an analysis of the joint distribution of income levels and growth rates; their find-
ings are compatible with the existence of multiple equilibria in the sense that countries
may become trapped in the lower part of the income distribution.

27. Other efforts to find determinants of intertemporal mobility have produced mixed
results. For the OECD countries, Andres and Lamo (1995) condition on the steady-
state implied by the Solow model and find little change in the tendency to polarization
unless country specific effects are permitted. Lamo (2000) finds only a small increase in
mobility for Spanish regions after conditioning on interregional migration flows, while
Bandyopadhyay (2004) shows that differences in infrastructure spending and education
contribute to polarization between the rich and poor states of India.

28. These findings are echoed in Pesaran (2007), who uses both the Maddison and Penn
World Table datasets and employs a convergence definition that explicitly focuses on
the probability of large deviations between log yi,t and log yj,t .
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29. Panel studies circumvent this issue by heavy reliance on the adequacy of the log-linear
approximation. The assumption is that countries in the sample are sufficiently close to
their steady-states that their dynamics can be described by a stationary process. This is
potentially problematic for studies that employ a broad cross-section of countries, at
least some of which may begin far from their steady-state.

30. This taxonomy is due to Galor (1996), who discusses the relationship between it and the
theoretical growth literature. His paper, and those of Azariadis (1996) and Azariadis and
Stachurski (2005), give many examples of models in which initial conditions matter for
long-run outcomes.

31. The discussion here is in terms of log yi,t , the log level of output per capita in country i
at time t ; but these definitions could be applied to other variables such as real wages or
life expectancy. We use log yi,t rather than yi,t due to the general interest in the literature
in relative rather than absolute inequality.

32. “Von Ranke,” The Edinburgh Review, 1840. Quotation taken from Critical and Historical
Essays: The Complete Writings of Lord Macaulay Part 4, reprinted by Kessinger Publishing.
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This chapter provides an overview of current practices in the econometric analysis of economic
growth. We describe some of the main methodologies that have been developed to study growth
as well as some of the major empirical findings with which they are associated. Further, we explore
the relationship between econometric analyses and growth theories. While we argue that there
are a number of respects in which growth econometrics is not adequately integrated with growth
theory, we believe that substantial methodological progress has been made.
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24.1 Introduction

In this chapter we will review some of the methods that have been used in the
emerging field of growth econometrics. We define this field as the use of statistical
models to explain variation in growth rates and productivity levels across countries
or regions. This has long been an active field of research, especially since the mid
1980s, but the position of this field within economics remains somewhat uneasy.
There are thoughtful and well-informed observers who regard this form of evidence
as essentially inadmissible.

It is important to understand why this is so, and it is true that the field faces many
problems, not least the constraints imposed by the available data. We will review
these problems in detail, but argue that there are some grounds for optimism. At
least in adopting methods appropriate to these datasets and economic questions,
genuine progress has been made, and we will highlight areas where further progress
seems especially likely. Moreover, the prospects for useful findings seem likely to
improve over time, as more and better data become available, and more is learnt
about the appropriate methods for analyzing such data.

The abiding interest of the study of aggregate productivity, whether in levels or
growth rates, perhaps speaks for itself. Seeking to understand the wealth of nations
is one of the oldest and most important research agendas in the entire discipline. At
the same time, it is also one of the areas in which genuine progress seems hardest
to achieve. The contributions of individual papers can often appear slender. Even
when the study of growth is viewed in terms of a collective, incremental endeavor,
the various papers cannot easily be distilled into a consensus that would meet the
standards of evidence routinely applied in other fields of economics.

Faced with such criticisms, one traditional defence of empirical growth research
is phrased in terms of expected payoffs. Each time an empirical growth paper is writ-
ten, the probability of gaining genuine understanding may be low, but when and
where it does emerge, the payoff to that understanding could be vast. Moreover,
some contributions can be seen as stepping stones in the development of credible
evidence. That gradual process, working towards better methods and more reliable
findings, may take years, but could ultimately have a high payoff. From this per-
spective, even if much of this evidence lacks credibility, the literature is gradually
evolving towards methods and findings that should be taken more seriously.

These arguments are plausible, but rely on an important tacit assumption. They
all depend on the ability of researchers and policy makers to discriminate between
the status of different pieces of evidence – the good, the bad and the ugly – and
this process of discrimination carries many difficulties of its own. The accuracy,
or otherwise, of such judgments plays a key role in the overall development and
intellectual health of any empirical literature. This reinforces the case for building
an understanding of the relevant methods, their strengths and limitations, and the
ways in which the existing literature is often flawed or inconclusive.

Caution will be needed throughout. Rodriguez and Rodrik (2001) begin their
skeptical critique of the evidence on trade policy and growth with an apt quote
from Mark Twain: “It isn’t what we don’t know that kills us. It’s what we know
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that ain’t so.” This point applies with some force to almost the entirety of the
empirical growth literature. It is well known that some claims have not survived
later scrutiny, with Levine and Renelt (1992) an especially famous demonstration
of the lack of robustness of some early results. To take a more recent example, few
papers in economics have been as directly influential on policy debates as the study
of foreign aid and growth by Burnside and Dollar (2000). Yet its claims have been
vigorously contested in a series of subsequent papers, and a careful reading of those
papers might suggest that the key hypotheses cannot be reliably tested given the
limitations of the available data.

Such concerns have not prevented the proposals for growth determinants from
increasing with every passing year. Indeed, the number of proposed determinants
is now similar to the number of countries for which data are available. It is hard
to believe that all these variables are central, yet the range of possibilities, the
small number of countries that can be studied, and the arbitrary choices that are
often involved in estimating a specific model, all conspire to make learning about
economic growth unusually difficult.

These and other difficulties have prompted the field to evolve continuously, and
to adopt a wide range of methods. We argue that the statistical tools that have
been applied to growth questions are sufficiently rich that they collectively define
a distinct field, growth econometrics. This chapter provides an overview of the cur-
rent state of this field, updating and revising our earlier survey in Durlauf, Johnson
and Temple (2005). The chapter will survey the body of econometric and statistical
methods that have been brought to bear on growth questions, and provide some
assessments of the value of these tools. In keeping with the rest of this book, the
focus will predominantly be on the application of econometric methods and tech-
niques and their interpretation, rather than attempting to summarize substantive
findings. For an earlier survey with a greater focus on substantive findings, see
Temple (1999), and for an earlier evaluation of the econometrics of growth, see
Durlauf and Quah (1999).

The techniques that have been used in growth econometrics largely reflect the
specialized questions that naturally arise in this context. Consider the identifica-
tion of empirically salient determinants of growth when the range of potential
factors is large relative to the number of observations. The associated model
uncertainty is one of the most fundamental problems facing growth researchers.
Individual researchers, seeking to communicate the extent of support for particular
growth determinants, typically emphasize a single model (or small set of models)
and then carry out inference as if that model had generated the data. But there are
usually other models that have equally strong claims on our attention, and hence
the standard errors will often understate the true degree of uncertainty about the
parameters. Moreover, the decision to report one model rather than another is
often somewhat arbitrary. The need for a more systematic and objective approach,
one that properly accounts for model uncertainty, naturally leads to Bayesian or
pseudo-Bayesian approaches to data analysis.

Bayesian approaches seem especially natural for growth econometrics, given the
paucity of the available data. This represents a major constraint on the scope for
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identifying causal effects. It may seem trivial to say that the main obstacle to under-
standing growth is the small number of countries in the world, but the problem
goes beyond a fundamental lack of variation or information. It also limits the extent
to which researchers can address obvious problems, such as measurement error and
parameter heterogeneity. Sometimes the problem appears in especially stark form:
imagine trying to infer the consequences of democracy for long-run development
in poorer countries. The twentieth century provided relatively few examples of
stable, multi-party democracies among the poorer nations of the world, and so sta-
tistical evidence can make only a limited contribution to this debate, unless one is
willing to make exchangeability assumptions about nations that would seem not
to be credible.1 As we discuss later in the chapter, the recent literature has explic-
itly sought to address this kind of problem by considering the effects of transitions
to democracy using within-country variation. This leads to some interesting find-
ings, but the short span of the available data currently precludes the long-term
assessment that will often be of most interest.

If there were a larger group of countries to work with, many of the difficulties
that face growth researchers could be addressed in ways that are now standard
in the microeconometrics literature. For example, Harberger (1987), Solow (1994)
and many others have expressed considerable skepticism about any exercise that
assumes a common linear model for a heterogeneous set of countries. In principle,
these concerns might be addressed by estimating more general models, using inter-
action terms, nonlinearities or semiparametric methods, so that the marginal effect
of a given explanatory variable can differ across countries or over time. The problem
is that these solutions will require large samples if the conclusions are to be robust.
Similarly, some methods for addressing other problems, such as measurement error,
are only useful in samples larger than those available to growth researchers. This
helps to explain the need for a flexible approach, and why growth econometrics has
evolved in such a pragmatic and eclectic fashion, drawing on a range of statistical
methods to a greater extent than is the norm in applied econometrics.

Given the small number of countries in the world, the scope for reliable evidence
is likely to rest on the use of time series variation within countries, especially as
new data become available. Many empirical growth papers are now based on the
estimation of dynamic panel data models with fixed effects, sometimes in conjunc-
tion with a time-varying “treatment” variable, such as the advent of democracy
or trade reform. The later sections of this chapter will discuss some of the rele-
vant technical issues, and the connection between some of these studies and the
microeconometric literature on treatment effects and program evaluation. This
connection not only helps to clarify the strengths and limitations of this form
of evidence, but also some of the weaknesses of the empirical growth literature
generally.

Despite the many difficulties that arise in empirical growth research, we believe
genuine progress has been made. Researchers have uncovered stylized facts that
growth theories should endeavour to explain, and developed methods to investi-
gate the links between these stylized facts and substantive economic arguments.
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They have also helped to establish the clear limits that exist in employing statis-
tical methods to address growth questions. One implication of these limits is that
narrative and historical approaches have a lasting role to play in empirical growth
analysis, as we will repeatedly emphasize.

The remainder of the chapter is organized as follows. Section 24.2 briefly
sketches some of the relevant stylized facts. Section 24.3 describes the relationship
between theoretical growth models and econometric frameworks for growth, with
a focus on cross-country growth regressions and then an alternative approach, the
“levels regression.” Section 24.4 describes methods for identifying growth deter-
minants, and a range of questions concerning model specification and evaluation
are addressed. Section 24.5 discusses econometric issues that arise according to
whether one is using cross-section, time series or panel data. Section 24.6 provides
an extended discussion of endogeneity and the associated use of instrumental vari-
able methods. Section 24.7 covers some remaining econometric issues, including
the role of outliers and measurement error. Section 24.8 concludes by highlighting
some possible directions for future research.

24.2 Stylized facts

The survey by Durlauf et al. (2005) and the textbook by Acemoglu (2008) include
overviews of stylized facts, concentrating on the period between 1960 and 2000.
Some of the relevant facts can be summarized as follows:

1. Over the 40-year period as a whole, most countries have grown richer, but
vast income disparities remain. For all but the richest group, growth rates
have differed to an unprecedented extent, regardless of the initial level of
development.

2. Although past growth is a surprisingly weak predictor of future growth, it is
slowly becoming more accurate over time, and so distinct winners and losers are
beginning to emerge. The strongest performers are located in East and Southeast
Asia, which have sustained growth rates at unprecedented levels. The weakest
performers are predominantly located in sub-Saharan Africa, where some coun-
tries have barely grown at all, or even become poorer. The record in South and
Central America is also distinctly mixed. In these regions, output volatility is
high, and dramatic output collapses are not uncommon.

3. For many countries, growth rates were lower in 1980–2000 than in 1960–80,
and this growth slowdown is observed throughout most of the income distribu-
tion. Moreover, the dispersion of growth rates has increased. A more optimistic
reading would also emphasize the growth take-off that has taken place in China
and India, home to two-fifths of the world’s population and, historically at least,
a greater proportion of the world’s poor.

Recent observers, such as Collier (2007), have particularly emphasized the emer-
gence of a distinct set of countries, home to perhaps a billion people, where
stagnation or slow growth is the norm. These countries appear locked out of
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the transitions to modern economic growth that have been seen elsewhere. The
idea that countries have divided across two distinct paths is weakly supported by
evidence in Durlauf et al. (2005) that correlations of growth rates across decades
are tending to increase over time. Perhaps more directly and persuasively, it is sup-
ported by the finding that the proportion of countries that have stagnated over
a 20-year period has gradually increased since the 1960s. It remains to be seen
whether the strong world growth and commodity boom of the early 2000s, which
has clearly benefited some of the countries in sub-Saharan Africa, will help to
overturn this finding.

Even this brief overview of the stylized facts reveals that there is much of interest
to be investigated and understood. The field of growth econometrics has emerged
through efforts to interpret and understand these facts, partly in the light of pre-
dictions made by simple growth models. The complexity of the growth process
and the limitations of the available data combine to suggest that scientific stan-
dards of proof are unattainable. Perhaps the best this literature can hope for is to
constrain what can legitimately be claimed, but that in itself would be an achieve-
ment. As a direct consequence of growth econometrics, there are now various
claims about the world – for example, that growth is independent of the extent
of financial development – that are harder to sustain than would once have been
the case.

Researchers such as Levine and Renelt (1991) and Wacziarg (2002) have argued
that, seen in this more modest light, growth econometrics can provide a signpost
to interesting patterns and partial correlations. Ultimately, this helps to rule out
some versions of the world that might otherwise seem plausible, and shift the
burden of proof in particular debates. Seen in terms of establishing stylized facts,
empirical studies also help to shape the demands made of future theories, and can
act as a discipline on quantitative investigations using calibrated models. These are
important contributions. In discussing them further, we first describe the models
that are usually applied in empirical growth research.

24.3 Cross-country growth regressions: from theory to empirics

The stylized facts of economic growth have led to two major themes in the devel-
opment of the literature. The first theme is the study of convergence, and we review
this work in our companion chapter. The second theme concerns the identification
of growth determinants. This has been the more active area in recent research, and
will be our central focus in this chapter. Section 24.3.1 provides a general theoret-
ical framework for understanding growth dynamics. The framework is explicitly
neoclassical and leads to a model which is the basis for most empirical growth
research. Section 24.3.2 examines the relationship between this model and the
specification of a growth regression. This also provides relevant background for
section 24.3.3, which focuses on the “levels regression” that has become a popu-
lar alternative in the recent literature. We will argue that its advantages, relative
to growth regressions, have sometimes been exaggerated. Finally, Section 24.3.4
discusses the interpretation of error terms in growth regressions.
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24.3.1 Growth dynamics: basic ideas

Our exposition in this section and the next closely follows Durlauf et al. (2005). At
the heart of the empirical growth literature is a cross-country regression, founded
on the one-sector neoclassical growth model. That model implies that, to a first-

order approximation, yE
i,t , output per efficiency unit of labor, evolves according to:

log yE
i,t =

(
1− e−λit

)
log yE

i,∞ + e−λit log yE
i,0, (24.1)

where yE
i,∞ is the steady-state value of yE

i,t and limt→∞ yE
i,t = yE

i,∞. As is standard,

we define output per efficiency unit of labor input as yE
i,t = Yi,t/(Ai,t Li,t ), where

Yi,t , Li,t , and Ai,t denote, respectively, the level of output, the labor force, and
the level of efficiency in economy i at time t . The labor force is assumed to follow

Li,t = Li,0enit , where the population growth rate ni is constant, while Ai,t = Ai,0egit ,
where gi is the (constant) rate of labor-augmenting technical progress. The param-

eter λi measures the rate of convergence of yE
i,t to its steady-state value and will

typically depend on other parameters in the model. Assuming that yE
i,0 > 0 and so

eliminating the trivial equilibrium yE
i,t = 0 ∀t when the convergence rate λi > 0,

then the value of yE
i,∞ is independent of yE

i,0. In this sense, initial conditions do
not matter in the long run.

Equation (24.1) expresses growth dynamics in terms of the unobservable yE
i,t . In

order to describe dynamics in terms of the observable variable, output per labor

unit yi,t = Yi,t
Li,t

, we can use yi,t = yE
i,tAi,t = yE

i,tAi,0egit to write (24.1) as:

log yi,t − git − log Ai,0 =
(
1− e−λit

)
log yE

i,∞ + e−λit
(
log yi,0 − log Ai,0

)
, (24.2)

so that:

log yi,t = git +
(
1− e−λit

)
log yE

i,∞ +
(
1− e−λit

)
log Ai,0 + e−λit log yi,0. (24.3)

Defining the growth rate of output per worker between 0 and t as γi =
t−1

(
log yi,t − log yi,0

)
and subtracting log yi,0 from both sides of equation (24.3)

allows it to be written as:

γi = gi + βi

(
log yi,0 − log yE

i,∞ − log Ai,0

)
, (24.4)

where βi = −t−1(1− e−λit ). This expression decomposes the growth rate in coun-
try i into two distinct components: the first, gi, measures growth due to technical

progress, while the second, βi

(
log yi,0 − log yE

i,∞ − log Ai,0

)
, measures growth due

to the gap between initial output per worker and the steady-state value. This sec-
ond source of growth is one aspect of “catching up” and, as t →∞, its importance,
which reflects the role of initial conditions, diminishes to zero.
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Assuming that the rates of technical progress and convergence are constant across
countries allows (24.4) to be rewritten as:

γi = g − β log yE
i,∞ − β log Ai,0 + β log yi,0, (24.5)

with the key implication of a negative relationship between initial levels of output
and subsequent growth in a cross-section of countries, over any time period. The
mechanism is diminishing returns to capital: a country further below its balanced
growth path will tend to grow more quickly, other things equal, because a given
rate of investment has a larger effect on the growth rates of capital and output.

24.3.2 Cross-country growth regressions

The typical cross-country growth regression, the foundation of the empirical
growth literature, is motivated by adding a random error term υi to (24.5), giving:

γi = g − β log yE
i,∞ − β log Ai,0 + β log yi,0 + υi. (24.6)

Operationalization of (24.6) requires empirical analogues for log yE
i,∞ and log Ai,0.

Mankiw, Romer and Weil (1992) do this by assuming that aggregate out-
put is described by a three-factor Cobb–Douglas production function Yi,t =
Kα

i,tH
φ

i,t

(
Ai,t Li,t

)1−α−φ
, where Ki,t denotes physical capital and Hi,t denotes human

capital, assumed to follow the accumulation equations K̇i,t = sK,iYi,t − δKi,t and
Ḣi,t = sH ,iYi,t − δHi,t , respectively, where δ denotes the depreciation rate and sK,i
and sH ,i are the respective (time-invariant) saving rates for physical and human
capital and dots above variables denote time derivatives. These assumptions imply
that the steady-state value of output per effective worker is:

yE
i,∞ =

⎛⎝ sαK,is
φ

H ,i(
ni + g + δ

)α+φ

⎞⎠
1

1−α−φ

, (24.7)

giving a cross-country growth regression of the form:

γi = g + β log yi,0 + β
α + φ

1− α − φ
log

(
ni + g + δ

)
− β

α

1− α − φ
log sK,i − β

φ

1− α − φ
log sH ,i − β log Ai,0 + υi. (24.8)

Mankiw et al. argue that initial efficiency Ai,0 should be interpreted as reflect-
ing not just technology, which they assume to be constant across countries, but
also country-specific influences such as resource endowments, climate and insti-
tutions, assumed to vary randomly in the sense that log Ai,0 = log A + ei, where
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ei is a country-specific shock that is distributed independently of the explanatory
variables.2 Substitution into (24.8) and defining εi = υi − βei gives the regression:

γi = g − β log A+ β log yi,0 + β
α + φ

1− α − φ
log

(
ni + g + δ

)
− β

α

1− α − φ
log sK,i − β

φ

1− α − φ
log sH ,i + εi. (24.9)

Note an appealing feature of this regression: although the role of initial income
is predicated on diminishing returns to capital, the regression can be estimated
without using capital stock data. The measurement of capital stocks, especially for
developing countries, is fraught with problems, as discussed in Pritchett (2000b).
The specification derived by Mankiw et al. (1992) neatly sidesteps some of these
problems.

After assuming that g+δ = .05 (based on data from the US and other economies),
Mankiw et al. use data from 98 countries over the period 1960–85 to obtain esti-
mates of β̂ = −.299 (implying an estimated λ of 0.0142), α̂ = .48 and φ̂ = .23. They
are unable to reject the parameter restriction, implicit in (24.9), that the final three
slope coefficients sum to zero.

There are many extensions to this “augmented” Solow model that can be char-
acterized as adding control variables, Zi, to the regression and understood as
modeling heterogeneneity in the level of technology at a given instant. In effect,
the gi − β log Ai,0 terms in (24.4) are replaced with g − β log A + πZi − βei, giving
the regression:

γi = g − β log A+ β log yi,0 + β
α + φ

1− α − φ
log

(
ni + g + δ

)
− β

α

1− α − φ
log sK,i − β

φ

1− α − φ
log sH ,i + πZi + εi. (24.10)

Note that (24.10) does not identify whether the Zi are correlated with steady-state
growth gi or the initial technology term Ai,0, so a believer in a common long-
run growth rate will not be dissuaded by the finding that particular choices of Zi
help predict growth beyond the Solow regressors. The attribution of the predictive
content of Zi to technology levels versus steady-state growth must largely depend
on a researcher’s prior beliefs about the long-run process driving the diffusion of
technology. It seems plausible, however, that the controls Zi may sometimes be
associated with differences in efficiency growth gi, rather than simply explaining
differences in initial technology levels. Even if all countries have the same rate of
technical progress in the long run, that assumption is somewhat implausible over
a sample period as short as 20 or 30 years.

The canonical growth regression can be understood as a version of (24.10) in
which the embedded parameter restrictions are ignored. A generic representation
of the regression is:

γi = β log yi,0 + ψXi + πZi + εi, (24.11)
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where the vector Xi contains a constant, log
(
ni + g + δ

)
, log sK,i and log sH ,i. The

variables spanned by log yi,0 and Xi thus represent the growth determinants sug-
gested by the Solow model, whereas the vector Zi represents growth determinants
that lie outside that model.3 The distinction between the Solow variables and Zi
is important in understanding the empirical literature. The Solow variables appear
in many of the specifications estimated in the literature, reflecting the use of the
Solow model as an organizing framework for growth analysis, but choices con-
cerning which Zi variables to include often vary greatly across studies. This clearly
introduces a degree of arbitrariness which will be discussed later in this chapter.

Equation (24.11) represents the baseline for much of growth econometrics and
these regressions are sometimes known as “Barro regressions,” following the influ-
ential early contribution of Barro (1991).4 This workhorse of empirical growth
research has been generalized in a number of dimensions. Some of these exten-
sions reflect the application of (24.11) to time series and panel data settings. Others
reflect the use of more general production functions, or allow for nonlinearities and
parameter heterogeneity, and we will discuss all these variants below.

24.3.3 Levels regressions

An alternative approach became especially popular after the work of Hall and Jones
(1997, 1999). Their work sought to model the cross-section variation in the level
of development, rather than the growth rate over a specific time interval. In other
words, the dependent variable is the level of gross domestic product (GDP) per
capita or GDP per worker, and there is no role for initial GDP on the right-hand side
of the regression. In principle, this “levels regression” approach could be attractive
for a number of reasons. It seems better suited to theories which emphasize long-
run, fundamental sources of differences in development levels, such as geographic
characteristics or the historical path taken by institutions. It may also give a direct
answer to a key question of interest: “What is the long-run effect of a particular
variable on the level of GDP per capita or GDP per worker?”

There are two important limitations of this approach. The first can be seen by
contrasting it with the framework for modeling economic growth described above.
In that framework, modeling the level of GDP per capita, without allowing for a
conditional convergence effect, is akin to assuming that we observe the country in
its long-run steady-state. Mankiw et al. (1992) initially adopted this approach: hav-
ing derived the implications of the Solow model for the steady-state level of income,
they estimated models with the level of income as the dependent variable. But they
also noted that this approach is only valid if countries are distributed randomly
around their steady-state positions, and so they moved on to estimate conditional
convergence regressions, which did not require that strong assumption. Put differ-
ently, the levels regression approach risks omitting a relevant variable, a point that
Bhattacharyya (2007) has recently emphasized.

The second limitation is that many candidate explanatory variables are likely to
be endogenous to the level of income. A researcher could readily run a regression
which “explains” income levels in terms of luxury car ownership, or the number
of televisions, but it would be hard to interpret this as a meaningful explanation
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of differences in development levels. The same point holds for variables such as
institutions or the extent of corruption, where the quality of institutions, and the
nature of social norms, may well be partly a function of the level of development.
The standard response in the literature has been to use instrumental variables,
with Frankel and Romer (1999), Hall and Jones (1999) and Acemoglu, Johnson
and Robinson (2001) as three particularly well-known and influential examples.
This approach is potentially informative, and has greater claims to identify causal
effects than much other work. But it is also open to a range of important criticisms
that we will discuss in detail in section 24.6.

Some of these criticisms could be avoided by estimating models in which initial
income appears on the right-hand side. In that case, the empirical model may still
be used to identify the long-run impact of institutions on the level of development.
Recall that in a conditional convergence regression, the explanatory variables are
not necessarily explaining long-run growth, but instead determine the long-run
steady-state position that countries are converging towards. Put differently, imag-
ine that the hypothesis of interest is the effect of institutional quality on long-run
income levels. If we take two countries with the same initial level of income, the
country with better institutions should grow more quickly over a given time inter-
val. This is because it must be further below its steady-state growth path; otherwise,
its better institutions would not be consistent with initial income levels that are
the same.

Hence, growth regressions are often best seen as models of the height of the bal-
anced growth path – that is, as models of long-run level effects. This point is perhaps
most easily understood by considering how the analysis in Mankiw et al. (1992)
would be adapted to include geographical characteristics or measures of institu-
tional quality. In either case, the extension is straightforward, and the growth
regression framework can be retained. These points suggest that some of the argu-
ments usually advanced in favour of levels regressions are potentially misguided,
and that the conditional convergence regression still has much to recommend it.
Based on arguments like these, Bhattacharyya (2004) is an example of a study which
revisits the evidence on institutions and development using a conditional conver-
gence specification, rather than a levels regression. One remaining issue concerns
whether the convergence specification can identify long-run effects with sufficient
precision for the approach to be informative.

24.3.4 Interpreting errors in growth regressions

The development of the relationship between cross-country growth regressions and
neoclassical growth theories in section 24.3.2 illustrates the practice, common in
the literature, of deriving a deterministic growth relationship and then appending
an error term in an ad hoc way to capture all aspects of the growth process omit-
ted from the model. One problem with this practice is that some types of errors
often have important implications for the asymptotic behavior of the estimator
used in the subsequent empirical analysis. Binder and Pesaran (1999) conduct an
exhaustive study of this question and conclude, inter alia, that if one generalizes
the assumption of a constant rate of technical change so that technical change
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follows a random walk, the induced non-stationarity in many of the levels series
raises attendant unit root questions.

Beyond such issues of asymptotics, the ad hoc addition of regression errors
described above leaves unanswered the question of the substantive economic
assumptions implicitly made by a researcher. Brock and Durlauf (2001a) address
this issue using the concept of “exchangeability” and many criticisms of growth
regressions can be interpreted as claims that exchangeability has been violated.
Loosely, their argument is that researchers working with regressions such as (24.11)
typically think of the errors εi as interchangeable across observations, so that dif-
ferent patterns of realized errors would be equally likely to be observed if the
realizations were permuted across countries. That is, the information available to
a researcher about the countries is not informative about the error terms.

This idea can be formalized as F-conditional exchangeability, defined as:

μ
(
ε1 = a1, . . . , εN = aN

∣∣F1 . . . FN
) = μ

(
ερ(1) = a1, . . . , ερ(N) = aN

∣∣F1 . . . FN

)
,

(24.12)

where, for each observation i, Fi is the associated information set available to the
researcher and ρ () is an operator that permutes the N indices. In the growth con-
text, Fi may include knowledge of a country’s history or culture as well as any more
purely “economic” variables that are known. Omitted regressors then, for example,
induce exchangeability violations as these regressors are elements of Fi. Parameter
heterogeneity similarly leads to non-exchangeability.

Brock and Durlauf argue that exchangeability can be an organizing principle to
connect substantive social science knowledge with the error structure. This suggests
that it would be good empirical practice if researchers were to question whether
or not the errors in their model are genuinely exchangeable and, if not, to deter-
mine whether the violation invalidates the purposes for which the regression is
being used. As subject-specific knowledge is needed to evaluate the plausibility
of exchangeability: this cannot be done in an algorithmic fashion, but instead
requires judgments by the analyst.5

24.4 Statistical models of the growth process

Although the initial focus of empirical work in this field was the convergence
hypothesis, the primary focus of more recent work has been the identification
of potential growth determinants. This work may be divided into three main cat-
egories, which we discuss in turn in the next three subsections. Section 24.4.1
discusses the analysis of whether specific determinants affect growth, focusing
on alternative ways to address the uncertainty about which explanatory vari-
ables should be included in a model. Section 24.4.2 explores methods to account
for parameter heterogeneity and summarizes some of the relevant evidence.
Section 24.4.3 focuses on the analysis of nonlinearities and multiple regimes in
the growth process. Models of poverty traps and endogenous growth are often
highly nonlinear, or associated with multiple steady-states in the growth process,
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with important implications for econometric practice. Observe that in each case,
while the associated analyses are often motivated by formal theories, operationally
they represent efforts to develop statistical growth models that are consistent with
particular specification tests.

24.4.1 Specifying explanatory variables in growth regressions

The first point to emphasize is the sheer number of growth determinants that have
been proposed; the number of potential growth determinants now approaches the
number of countries available. The table in Appendix B of Durlauf et al. (2005) lists
many of them, with references to studies that represent either the first use of the
variable or an especially well-known use of the variable. That table contains 145
different regressors, the vast majority of which have been found to be significant
at conventional levels in at least one study. One reason why so many alternative
variables have been identified is due to questions of measurement. For example,
even given a specific claim that political freedom might affect growth, there could
be many ways to measure such freedoms. But even taking this into account, the
multiplicity of possible theories is striking. Durlauf et al. organize the empirical
literature into 43 distinct growth “theories” (that is, conceptually distinct growth
determinants) and it would not be difficult to add further examples.

Moreover, this list does not consider interactions between variables or nonlinear
transformations of variables, even though both are often used. The range of possi-
bilities hints at one of the fundamental problems with empirical growth research:
a lack of consensus on which growth determinants ought to be included in a sta-
tistical model. In this section, we discuss attempts to address this question and to
limit the degree of arbitrariness otherwise present.

To fix ideas, let Si denote the set of regressors always included by the researcher
while Ri denotes the set of additional candidate regressors, so that:

γi = ψSi + πRi + εi, (24.13)

is the putative growth regression. The inclusion of a variable in S does not mean
the researcher is certain that it influences growth, only that it is to be included in
all models considered. If one takes the regressors that comprise R as fixed, then
statements about elements of ψ are straightforward. A frequentist approach to
inference will compute an estimate of the parameter ψ with an associated distribu-
tion that depends on the data-generating process (DGP). Bayesians would compute
a posterior probability density of ψ given the researcher’s prior, the data, and the
assumption that the linear model is correctly specified. Designating the available
data as D and a particular model as m, this posterior may be written as μ (ψ |D, m ).

While extant growth theories can be used to identify candidates for R, the funda-
mental problem in developing statistical statements about either ψ̂ or μ (ψ |D, m )

is that there do not exist good theoretical reasons to favour one particular model
and exclude others. As Brock and Durlauf (2001a) point out, growth theories are
typically “open-ended” in the sense that different theories are often compatible
with one another, rather than mutually exclusive. For example, a theory that insti-
tutions matter is not logically inconsistent with a theory that emphasizes the role
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of geographic characteristics. A set of K potential growth theories, all of which are
logically compatible with combinations of one another, implies that there exist

2K − 1 potential specifications of the form (24.13), each one of which corresponds
to a particular combination of theories.

One approach to this model uncertainty is to examine robustness with respect
to variation in the model specification. This is the idea behind the classic Levine
and Renelt (1992) paper which, building on Leamer (1978, 1983) and Leamer and
Leonard (1983), used extreme bounds analysis to assess growth determinants. For a
model m ∈ M within the space of possible models, the growth process is specified as:

γi = ψmSi + πmRi,m + εi,m, (24.14)

where the m subscripts reflect the model specific nature of the parameters and asso-
ciated errors. Let ψ̂m denote the point estimate of ψ for every m ∈ M and let the
vector S be composed of a variable of interest, sl, and other variables which are
included in all the specifications considered. Motivated by Leamer (1983), Levine
and Renelt (1992) use the following rule: there is strong evidence that sl affects
growth if (and only if) the sign of the associated regression coefficient ψ̂l,m is con-
stant and the coefficient estimate is statistically significant across all m ∈ M . In their
analysis, the vector S includes the constant term, initial income, the investment
share of GDP, the secondary school enrollment rate, and the population growth
rate, as suggested by the augmented Solow model. The possible models are dis-
tinguished by alternative combinations of between one and three variables, taken
from a set of seven; these correspond to alternative choices of Ri,m. Applying their
rule, they conclude that the only robust growth determinants are initial income
and the share of investment in GDP.

These two findings are confirmed in subsequent work by Kalaitzidakis,
Mamuneas and Stengos (2000), who allow for potential nonlinearities in (24.14)
by considering models of the form:

γi = ψmSi + fm
(
πRi,m

)
+ εi,m, (24.15)

where f (·) is a function allowed to vary across specifications of R. Like Levine
and Renelt, they find that initial income and physical capital investment rates are
robust determinants of growth, but also find that inflation volatility and a measure
of exchange rate distortions are robust, providing an example of how failing to
account for nonlinearity in one set of variables can mask the importance of another.
A related exercise by Minier (2007) allows for nonlinearities in a parametric way
(including squared and interaction terms) and also examines what happens when
the Levine–Renelt sample is restricted to the lowest 75% of countries when ranked
by initial income, which broadly corresponds to a sample of developing countries.
She shows that a wider range of variables is found to be robust, including several
fiscal indicators that Levine and Renelt had classed as fragile. An open question here
is the extent to which certain kinds of nonlinearity, such as quadratic terms, may
be highly sensitive to outliers. Temple (2000b) discussed how an extreme bounds
analysis could be combined with robust estimation methods.
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More fundamentally, as explained in Brock and Durlauf (2001a) and Brock,
Durlauf and West (2003), even a sophisticated extreme bounds approach is some-
what problematic when viewed from a decision-theoretic perspective. Suppose,
for example, that interest in ψl derives from country i’s consideration of a policy

change in which a variable si,l will be increased by one unit. Let El
(
si,l, m

)
repre-

sent the policy maker’s expected loss associated with a policy indicator in country
i, and suppose that she is only interested in the case where the increase in the
indicator will raise growth, so that the policy change is sensible only if ψ̂l,m > 0.
One can approximate a t-statistic rule, requiring that the coefficient estimate for sl
be statistically significant, as:

El
(
si,l + 1, m

)
− El

(
si,l, m

)
=
(
ψ̂l,m − 2sd

(
ψ̂l,m

))
> 0, (24.16)

where sd
(
ψ̂l,m

)
is the estimate of the standard deviation associated with ψ̂l,m and

the required significance level is assumed to correspond to a t-statistic of 2. As odd
as it seems, this is the form of the loss function implicitly assumed when t-statistics
are used to make policy decisions. Extreme bounds analysis requires that (24.16)

holds for every m ∈ M so that El
(
si,l

)
, the expected loss for a policy maker when

conditioning only on the policy variable, must have the property that:

El
(
si,l + 1

)
− El

(
si,l

)
> 0 ⇒ El

(
si,l + 1, m

)
− El

(
si,l, m

)
> 0 ∀m, (24.17)

which means that the policy maker must have minimax preferences with respect
to model uncertainty. That is, she will make the policy change only if it yields a
positive expected payoff under the least favorable model in M . Such extreme risk
aversion seems hard to justify, notwithstanding claims that individuals do indeed
assess uncertainty about models in different ways to the uncertainty that arises
within models.6

Even when one moves away from decision-theoretic considerations, extreme
bounds analysis encounters substantial problems.7 One practical criticism is devel-
oped carefully in Hoover and Perez (2004). Using simulations, they show that an
extreme bounds analysis can easily lead to the conclusion that many growth deter-
minants are fragile even when they are part of the DGP. Intuitively, adding more
and more irrelevant variables to such an analysis always has the potential to over-
turn any specific finding, including relationships that are part of the true DGP.
Hoover and Perez also find that the procedure has poor power properties, in the
sense that some regressors that do not matter may spuriously appear to be robust.
The first concern, that extreme bounds analysis is excessively conservative, had
already led Sala-i-Martin (1997a, 1997b) to propose less demanding criteria. These
were justified in essentially heuristic terms, with their statistical properties remain-
ing somewhat uncertain. Again using simulations, Hoover and Perez (2004) found
that these newer robustness criteria, although less demanding, could again have
poor size properties, in the sense that “true” growth determinants are still likely to
fail to be identified.
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Dissatisfaction with extreme bounds analysis and its close relatives has led some
authors to advocate more systematic methods for model selection. Hendry and
Krolzig (2004) and Hoover and Perez (2004) both employ the general-to-specific
modeling methodologies associated with the research program of David Hendry,
in order to select one version of (24.13) out of the model space. Essentially, these
papers use algorithms which select a particular regression model from a space of
possible models, through comparisons based on a set of statistical tests. The attrac-
tiveness of this approach is closely linked to that of the broader Hendry research
program (see Hendry, 1995). We do not provide an extended evaluation here, but
note that relying solely on model selection procedures does not possess a clear
decision-theoretic justification, which makes it harder to evaluate the output of
the procedure in terms of the objectives of a researcher. That said, automated pro-
cedures have the important virtue that they can identify sets of models that are
well supported by the available data, and may be especially useful as a preliminary
step in model-building.

In our judgment, the most promising approach to model uncertainty is the use of
model averaging in the Bayesian tradition, and especially the methods developed
by Adrian Raftery and co-authors (for example, Raftery, Madigan and Hoeting,
1997). Versions of these methods have been applied to growth data in Brock
and Durlauf (2001a), Brock et al. (2003), Ciccone and Jarocinski (2007), Durlauf,
Kourtellos and Tan (2008), Fernandez, Ley and Steel (2001a), Masanjala and Papa-
georgiou (2005) and Sala-i-Martin, Doppelhofer and Miller (2004), among others.
The basic idea is to treat the identity of the “true” growth model as an unobservable
variable about which the researcher is inevitably uncertain.8 In order to account
for this, each element m in the model space M is associated with a posterior model
probability μ (m |D ). By Bayes’ rule,

μ (m |D ) ∝ μ (D |m ) μ (m) , (24.18)

where μ (D |m ) is the likelihood of the data given the model and μ (m) is the prior
model probability. These model probabilities are used to eliminate the dependence
of parameter analysis on a specific model. For frequentist estimates, averaging is
done across the model-specific estimates ψ̂m to produce an estimate ψ̂ via:

ψ̂ =
∑
m

ψ̂mμ (m |D ), (24.19)

whereas, in the Bayesian context, the dependence of the posterior probability mea-
sure of the parameter of interest, μ (ψ |D, m ), on the model choice is eliminated
via standard conditional probability arguments, that is:

μ (ψ |D ) =
∑

m∈M

μ (ψ |D, m )μ (m |D ) . (24.20)

Brock et al. (2003) argue that the strategy of constructing posterior probabilities
that are not model-dependent is especially appropriate when the objective of the
statistical exercise is to evaluate alternative policy questions, such as whether to
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change an element of Si by one unit. This assumes that the ultimate goal of the
exercise is to estimate a parameter, rather than to identify the “best” growth model.

Bayesian model averaging is still relatively new, and many practical questions
arise. The implementation of the approach in economics has often closely fol-
lowed the early work by Raftery (1995) and Raftery et al. (1997). One issue concerns
the specification of priors on parameters within a model. In line with Raftery’s
approach, Brock and Durlauf (2001a), Brock et al. (2003), and Sala-i-Martin et al.
(2004) assume a diffuse prior on the model specific coefficients. This has the advan-
tage that, when the errors are normal with known variance, the posterior expected
value of ψ , conditional on the data D and model m, is the ordinary least squares
(OLS) estimator ψ̂m. One disadvantage of this approach is that, since the diffuse
prior on the regression parameters is improper, one has to be careful that the pos-
terior model probabilities associated with the prior are interpretable. But as long as
the posterior model probabilities include an appropriate penalty for model com-
plexity, we do not see any conceptual problem in interpreting this approach as
strictly Bayesian. Brock and Durlauf (2001a), Brock et al. (2003), and Sala-i-Martin
et al. (2004) all compute posterior model probabilities using Bayesian information
criterion (BIC)-adjusted likelihoods. Fernandez et al. (2001a) and Masanjala and
Papageorgiou (2005) employ proper priors and therefore avoid any such concerns.9

So far there is only limited evidence that use of improper versus proper priors has
important consequences in practice. Masanjala and Papageorgiou compare results
using proper priors with the improper priors we have described, and find that
the choice is unimportant in their application. Arguably the most important evi-
dence that the conventional approach is problematic can be found in Ciccone and
Jarocinski (2007), and we will discuss their study in detail at the end of this section.

Other work has examined the effects of different proper priors. Letting Zi denote(
Si, Ri,m

)
and ηm =

(
ψm
πm

)
, Fernandez et al. (2001b) propose the use of the

Zellner (1986) g-prior:

μ
(
ηm

∣∣∣m, σε,m

)
∝ N

(
0, σ2

ε,m

(
gZ′mZm

)−1
)

, (24.21)

with g = 1/max
{
n, k2

m

}
, n denoting the number of observations and km denoting

the number of regressors in model m. Ley and Steel (2008) extend this analysis by
considering the performance of this within-model prior for different model space
priors; the model space priors all assume that each variable appears in the true
model with equal probability and that variable inclusions exhibit conditional inde-
pendence as described above. They conclude that, for growth contexts, models of
interest typically involve a sufficiently large number of growth determinants such

that k2
m > n, so that g = k−2

m . They additionally argue that the frequentist/Bayesian

hybrid employed by Sala-i-Martin et al. (2004) is well approximated by the g = n−1

case and therefore may be criticized on the grounds that this value of g is generally
inappropriate. A different approach to within-model parameter priors is proposed
by Eicher, Papageorgiou and Raftery (2008). They suggest the use of what Kass and
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Wasserman (1995) called a unit information prior; the prior is implicitly defined
to ensure that posterior model probabilities are well approximated by the Bayesian
information or Schwarz criterion. This paper concludes that the combination of a
unit information prior for within-model probabilities and a uniform prior across
models produces superior performance against a range of alternatives.

A distinct approach to within-model priors is developed by Magnus, Powell and
Prufer (2008), who employ the distinction between variables that are included in all
models, Si, and variables that are model-specific, Ri,m. For each model they propose
estimating a regression based on Si and ei,m, the residual of Ri,m when projected
against Si. A Laplace prior is assigned to the ei,m parameters, which corresponds
to the idea that a researcher is ignorant as to whether the absolute value of the t-
statistic (computed at population values) is greater than 1. They argue that this prior
has the advantage that it is not dependent on an arbitrary choice of a parameter,
such as occurs because of the need to set g in (24.21).

There is also no consensus on the appropriate specification of the prior model
probabilities μ (m). In the model averaging literature, the usual assumption has
been to assign equal prior probabilities to all models in M . This corresponds to
assuming that the prior probability that a given variable appears in the “true” model
is 0.5 and that the probability that one variable appears in the model is independent
of whether others appear. Sala-i-Martin et al. (2004) consider modifications of this
prior, in which the probability that a given variable appears in the true model is
p < 0.5 while preserving the assumption that the inclusion probabilities for each
variable are independent. The Sala-i-Martin et al. probabilities may be written as:

p#(m) (1− p
)k−#(m) , (24.22)

where # (m) denotes the number of regressors in model m. This prior can be gen-
eralized by treating (24.21) as the conditional probability of a model given p and
then assigning a prior to p, an idea developed in Brown, Vannucci and Fearn (1998)
and applied to growth regressions by Ley and Steel (2008).

The conditional independence assumption may be unappealing given collinear-
ity between regressors. One reason for this is that the different growth regressors
are sometimes included as proxies for a common growth theory. Durlauf et al.
(2008) address this by using dilution priors, due to George (1999), which down-
weight models that contain potentially “redundant” variables, as when a dataset
contains multiple proxies for the same underlying economic concept. This is
done by multiplying (24.21) by the determinant of the correlation matrix for the
included variables in a given model, which reweights model probabilities so as to
downweight those with redundant variables.

The issue of redundant variables is part of a wider set of conceptual problems
which arise when a researcher uses a prior which treats all models as equally likely.
Brock and Durlauf (2001a), Brock et al. (2003) and Durlauf et al. (2008) criticize
the widespread use of prior model probabilities which assume that the inclusion
of one variable should be independent of the inclusion of another. The conceptual
problem is analogous to the “red bus/blue bus” problem in discrete choice theory.
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Clearly some regressors are similar, such as alternative measures of trade openness,
whereas other regressors are quite disparate, such as measures of geography versus
institutional quality.

To address this, Brock et al. (2003) propose a tree structure to organize model
uncertainty for linear growth models. First, they argue that growth models suffer
from theory uncertainty. Hence, one can identify alternative classes of models
based on what growth theories are included. Second, for each specification of a
body of theories to be embedded, they argue there is specification uncertainty. A
given set of theories requires determining whether the theories interact, whether
they are subject to threshold effects or other types of nonlinearity, and so on. Third,
for each theory and model specification, there is measurement uncertainty; to say
that climate affects growth does not specify the relevant empirical proxies, such as
the number of sunny days or average temperature. Finally, each choice of theory,
specification and measurement is argued to suffer from heterogeneity uncertainty,
which means that it is unclear which sub-sets of countries obey a common linear
model. Brock et al. (2003) argue that one should assign priors that account for the
interdependence implied by this structure in assigning model probabilities.

We now briefly summarize some of the main findings of model averaging studies.
Sala-i-Martin et al. (2004) find that four variables have posterior model inclusion
probabilities above 0.9, namely initial income, the fraction of GDP from mining,
the number of years the economy has been open,10 and the fraction of the popula-
tion following Confucianism. Fernandez et al. (2001a) also find that four variables
have posterior model inclusion probabilities above 0.9, substantially overlapping
with Sala-i-Martin et al. (2004) despite working with a different model space: initial
income, the fraction of the population following Confucianism, life expectancy,
and the share of equipment investment in GDP.11 These findings appear to be
somewhat dependent on details of the way in which priors are assigned within
and across the model space.12 Eicher et al. (2008) work with the same dataset
as Fernandez et al. (2001a) and find that the combination of a unit information
within-model prior and a uniform model space prior generates 16 different growth
variables whose posterior inclusion probabilities are 0.9 or greater. Interestingly,
if one reduces the variable inclusion probability so that the expected number of
variables in a model is seven (which is the prior used by Sala-i-Martin et al., 2004),
only four variables have posterior inclusion probabilities above 0.9; these are the
same as those identified by Fernandez et al. (2001a).

Durlauf et al. (2008) have applied model averaging to an unbalanced panel based
on three time periods spanning 1965–94, with a focus on evaluating the robustness
of various fundamental growth determinants. They confirm the importance of
initial income and investment, and also find a role for population growth and two
macroeconomic variables, the share of government consumption (net of defense
and education spending) in GDP and the rate of inflation. Their approach differs
from those above in that the conventional BIC approximation is applied in the
context of two-stage least squares (2SLS), rather than OLS. The development of a
rigorous combination of model averaging and instrumental variable methods is an
interesting area for further work.
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In other applications, Brock and Durlauf (2001a) and Masanjala and Papageor-
giou (2005) have employed model averaging to study the reason for the poor
growth performance of sub-Saharan Africa. Both papers identify some important
differences between Africa and the rest of the world in terms of the relevant growth
determinants. The study of Brock et al. (2003) takes this idea further by exploring
the use of growth regressions in the evaluation of policy recommendations. Specif-
ically, the paper assesses the question of whether a policy maker should favor a
reduction of tariffs for sub-Saharan African countries. The analysis assumes that
the policy maker has a specific set of mean-variance preferences with respect to the
effects of a change in current policies. At first glance, the analysis supports a tariff
reduction: it shows that a policy maker with these preferences should be in favor,
unless the policy maker has a strong prior that sub-Saharan African countries obey
a growth process distinct from the rest of the world. In the latter case, there is suf-
ficient uncertainty about the relationship between tariffs and growth for African
countries that a change in trade policy cannot be justified. In statistical terms, this
result is a consequence of the strong prior belief in the possibility of heterogeneity.
The prior implies that the growth experiences of non-African countries will have
little effect on the precision of estimates of marginal effects that are constructed
using data for sub-Saharan Africa.

To date, perhaps the most important critique of the Bayesian approach, at least
as applied to growth data, is that developed in Ciccone and Jarocinski (2007).
Their central point is that agnostic empirical approaches, such as model averag-
ing, appear to be sensitive to modest changes in the data. One of their examples
is based on Sala-i-Martin et al. (2004) and its application of model averaging to
1960–96 growth determinants, using Penn World Table (PWT) version 6.0 data for
output levels and growth rates. When Ciccone and Jarocinski update those results
with the revised data provided in PWT version 6.1, they find that the two versions
of the PWT lead to disagreement on 13 of 25 determinants of 1960–96 growth that
emerge using one version of the data or the other. When they carry out a further
exercise, now using the latest PWT 6.2 data for 1960–96, they again find scope for
considerable disagreement. They illustrate the potential concerns using a Monte
Carlo study, which confirm that the Bayesian approach can be sensitive to data
revisions that are modest by the historical standards of revisions to the PWT. Their
results imply that a priority for future research should be the development of meth-
ods which are less sensitive to small changes in the data, perhaps by reformulating
the priors on model coefficients or explicitly allowing for mismeasured data. In this
respect, it is worth noting that the growth literature has made relatively little use
of the methods for simultaneous model selection and outlier identification that
were developed by Hoeting, Raftery and Madigan (1996).

24.4.2 Parameter heterogeneity

The estimation of linear growth models, at best an approximation to the true
law of motion of an economy, has generated unease about the statistical foun-
dations of the exercise. It is difficult to sustain the claim that the data for very
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different countries are realizations of a common DGP, and many of the modeling
assumptions and procedures of the empirical growth literature can appear arbitrary.
In the well-known question posed by Harberger (1987): “What do Thailand, the
Dominican Republic, Zimbabwe, Greece and Bolivia have in common that merits
their being put in the same regression analysis?”

The extent to which this objection is fundamental remains an open question,
but there seems to be agreement that, when studying growth, it will be difficult
to recover a DGP even if one exists, and the prospects for recovering causal effects
are clearly weak. The shortcomings of the relevant economic theory, as well as
those of the data and econometric analysis, are considerable. Those who will be
satisfied only with the specification and estimation of a structural model, in which
parameters are either “deep” and invariant to policy, or correspond to precisely
defined causal effects within a coherent theoretical framework, are bound to be
disappointed. The more appropriate goal for the growth literature is less ambi-
tious: investigating whether or not particular hypotheses have any support in the
data and whether it is possible to rule out some possible claims about the world, or
at least shift the burden of proof from one side of a debate to another. In practice,
growth researchers are looking for patterns and systematic tendencies that, in com-
bination with historical analysis, case studies, and relevant theoretical models, can
increase our understanding of the growth process. A related goal, more difficult
than it may appear at first sight, is to communicate the degree of support for any
patterns identified by the researcher.

The issue raised by Harberger is essentially that of parameter heterogeneity. Why
should we expect disparate countries to lie on a common regression surface? Of
course, this criticism could be made of most empirical work in social science:
whether the data points reflect the actions and characteristics of individuals and
firms, or the aggregations of their choices that are used in macroeconometrics. It
is the small sample sizes available to growth researchers that limit the scope for
addressing this problem, and mean that Harberger’s remark retains some force. In
other contexts, an appropriate response would be to use a model that has sufficient
flexibility to be a good approximation. But this approach will often be fragile when
the sample is rarely greater than 100 observations, as is the case when studying
economic growth using cross-country data.

If parameter heterogeneity is present, the consequences are potentially serious,
except in the special case where the slope parameters vary randomly across units,
and are distributed independently of the variables in the regression and the dis-
turbances. In this case, the coefficient estimate should be an unbiased estimate of
the mean of the parameter distribution. However, the assumption of independence
will often be unwarranted. For example, when estimating the relationship between
growth and investment, the marginal effect of investment will almost certainly be
correlated with aspects of the economic environment that should also be included
in the regression, such as political stability or the protection of property rights.

Some researchers have allowed greater flexibility in the functional form of
their models, often beginning with the canonical Solow regression which, for

mailto: rights@palgrave.com


1140 The Methods of Growth Econometrics

comparison purposes, we restate:

γi = k + β log yi,0 + πn log
(
ni + g + δ

)+ πK log sK,i + πH log sH ,i + εi. (24.23)

For example, Liu and Stengos (1999) estimate a semiparametric partially linear
version of this model, namely:

γi = k + fβ
(
log yi,0

)+ πn log
(
ni + g + δ

)+ πK log sK,i + fπH

(
log sH ,i

)+ εi, (24.24)

where fβ(·) and fπH
(·) are arbitrary functions except for variance smoothness

requirements. They find that the value of fβ(log yi,0) is only negative when ini-
tial per capita income exceeds about $1,800; below that level, there is less evidence
for the conditional convergence effect predicted by the Solow model. Banerjee
and Duflo (2003) use a similar approach to study nonlinearity in the relationship
between changes in inequality and growth, estimating a version of (24.24) where
Solow-type variables and some additional variables enter in a linear way, supple-
mented by a nonlinear function fG(Gi,t −Gi,t−5), where Gi,t is the Gini coefficient.

Using an alternative method, Durlauf, Kourtellos and Minkin (2001) estimate a
version of the augmented Solow model that allows the parameters to vary across
countries as functions of initial income:

γi = k
(
yi,0

)+ β
(
yi,0

)
log yi,0 + πn

(
yi,0

)
log

(
ni + δ + g

)
+ πK

(
yi,0

)
log sK,i + πH

(
yi,0

)
log sH ,i + εi. (24.25)

Hence each initial income level defines a distinct Solow regression, and thereby
shifts the emphasis away from nonlinearity and towards parameter heterogeneity.
This study indicates considerable parameter heterogeneity, especially among the
poorer countries, and confirms the Liu and Stengos (1999) finding that β(yi,0) is
positive for low yi,0 values and negative for higher ones. Durlauf et al. (2001) also
find that πK(yi,0) fluctuates greatly over the range of yi,0 values in their sample. The
extension by Kourtellos (2003a) uncovers systematic heterogeneity in the parame-
ters on initial literacy and initial life expectancy. A varying coefficient approach is
also employed in Mamuneas, Savvides and Stengos (2006), who consider a model
in which the coefficient on human capital is allowed to vary with the level of
human capital and a measure of trade openness. Constancy of the human capital
coefficient is rejected across a range of specifications.

At a minimum, it makes sense for empirical researchers to test for neglected
parameter heterogeneity, either using interaction terms or by carrying out diagnos-
tic tests. As an alternative, some authors have used panel data to identify parameter
heterogeneity without the imposition of a functional relationship between parame-
ters and various observable variables. An important early contribution along these
lines is Canova and Marcet (1995). Defining si,t as the logarithm of the ratio of
a country’s per capita income to the time t international aggregate value, and
using data either on the regions of Europe or 17 western European countries, they
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estimate models of the form:

si,t = ai + ρisi,t−1 + εi,t . (24.26)

The long-run forecast of si,t is given by ai
1−ρi

, with 1 − ρi being the rate of con-
vergence towards that value. Restricting the parameters ai and ρi to be constant
across i gives a standard β-convergence test and yields an estimated annual rate of
convergence of approximately 2%, similar to other findings in the literature. But
allowing for heterogeneity in these parameters produces a “substantial” and sta-
tistically significant dispersion of the implied long-run si,t forecasts. The positive
correlation of those forecasts with the initial values of si,t implies a dependence of
long-run outcomes on initial conditions that contradicts the convergence hypoth-
esis. For the country-level data, differences in initial conditions explain almost
half the cross-sectional variation in long-run forecasts. This shows how key find-
ings can be sensitive to the treatment of parameter heterogeneity, and we return
to this issue when we discuss panel data models in section 24.5.

24.4.3 Nonlinearity and multiple regimes

We now discuss research that has attempted to disentangle the roles of hetero-
geneous structural characteristics and initial conditions in determining growth
outcomes. These papers employ a variety of statistical methods, but there is con-
siderable agreement in their findings. Many of them indicate the existence of
convergence clubs even after accounting for the role of structural characteristics.
We have discussed some of this work in our companion chapter on convergence
(Chapter 23 in this volume), and here we concentrate on the wider implications
of multiple regimes for the statistical methods that should be adopted.

One of the first contributions to this literature was Durlauf and Johnson
(1995). They used classification and regression tree (CART) methods to search for
nonlinearities.13 More specifically, the CART procedure identifies sub-groups of
countries that obey a common linear growth model based on the Solow variables.
These sub-groups are identified by initial income and literacy; a typical sub-group l
is defined by countries whose initial income lies within the interval ϑl,y ≤ yi,0 < ϑ̄l,y
and whose literacy rate Li lies in the interval ϑl,L ≤ Li < ϑ̄l,L. The number of sub-
groups and the boundaries for the variable intervals that define them are chosen
by an algorithm that trades off model complexity (the number of sub-groups) and
goodness of fit. Because the procedure uses rules to sequentially split the data into
finer and finer sub-groups, it organizes the data into a tree structure, where the
branches of the tree ultimately divide the sample into groups of countries that
follow distinct regimes.

Durlauf and Johnson (1995) also test the null hypothesis of a common growth
regime against the alternative hypothesis of a growth process with multiple
regimes. Taking Mankiw et al. (1992) as their starting point, and using income
per capita and the literacy rate as possible threshold variables, Durlauf and John-
son reject the single regime model. This finding has been confirmed in subsequent
research by Papageorgiou and Masanjala (2004). They estimate a version of the
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Solow model that is based on a constant elasticity of substitution (CES) production
function, building on Duffy and Papageorgiou (2000). By using the Hansen (2000)
approach to sample splitting and threshold estimation, they find statistically sig-
nificant evidence of thresholds in the data. The estimated thresholds divide the
sample into four distinct growth regimes that are broadly consistent with those
found by Durlauf and Johnson.14 Relative to the regression tree approach, the
Hansen methods have the significant advantage of allowing inference on the level
of the estimated threshold.

Another closely related analysis is that of Tan (2004). He employs a procedure
known as GUIDE (generalized, unbiased interaction detection and estimation),
due to Loh (2002), to identify sub-groups of countries which obey a common
growth model. Relative to CART, the GUIDE algorithm has two advantages. First,
the algorithm explicitly looks for interactions between explanatory variables when
identifying splits. Second, the penalties for model complexity are supplemented
with some within-model testing, which reduces the tendency for CART proce-
dures to produce an excessive number of splits in finite samples. Tan (2004) finds
strong evidence that measures of institutional quality and ethnic fractionaliza-
tion define convergence clubs across a wide range of countries. He also finds
some evidence that geographic characteristics distinguish the growth process for
sub-Saharan Africa from the rest of the world.

Further research has corroborated the evidence of multiple regimes using alter-
native statistical methods, including projection pursuit.15 Desdoigts (1999) uses
these methods to identify groups of countries with relatively homogeneous growth
experiences based on the characteristics and initial conditions of each country. The
idea is to find the orthogonal projections of the data into low dimensional spaces
that best display some interesting feature of the data; this can be seen as a gen-
eralization of principal components analysis. When using principal components
analysis, a researcher will typically retain only the components needed to account
for “most” of the variation in the data. Similarly, in projection pursuit methods,
a researcher will consider as many dimensions as needed to account for “most” of
the clustering in the data. Some evidence of their utility can be found in Kourtellos
(2003b). Unlike Desdoigts, Kourtellos uses projection pursuit to construct models
of the growth process. Formally, he estimates models of the form:

γi =
L∑

l=1

fl
(
yi,0βl +Xiψl + Ziπl

)
+ εi. (24.27)

Each element in the summation represents a distinct projection. Kourtellos uncov-
ers evidence of two steady-states, including one that corresponds to countries with
low initial income and low initial human capital.

Another approach to multiple regimes is employed by Bloom, Canning and
Sevilla (2003). This is based on the observation that if long-run outcomes are deter-
mined by fundamental forces alone, the relationship between exogenous variables
and income levels ought to be unique. If initial conditions play a role there will
be multiple relationships, one for each basin of attraction defined by the initial
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conditions. If there are two (stochastic) steady-states, and large shocks are suffi-
ciently infrequent,16 the system will, under suitable regularity conditions, exhibit
an invariant probability measure that can be described by a “reduced form” model
in which the long-run behavior of log yi,t depends only on the exogenous variables,
mi, such as:

log yi,t = log y∗1
(
mi
)+ u1,i,t with probability p

(
mi
)
, (24.28)

and:

log yi,t = log y∗2
(
mi
)+ u2,i,t with probability 1− p

(
mi
)
, (24.29)

where u1,i,t and u2,i,t are independent, zero mean deviations from the steady-state

log means logy∗1(mi) and logy∗2(mi) respectively, and p(mi) is the probability that
country i is in the basin of attraction of the first of the two steady-states. From
the perspective of the econometrician, log yi,t thus obeys a mixture process. The
two steady-states associated with (24.28) and (24.29) might be interpreted as a low-
income regime or poverty trap, and a high-income or growth regime, respectively.
Bloom et al. (2003) estimate a linear version of this model using 1985 income data
from 152 countries, with the absolute latitude of the country as the fundamental
exogenous variable. They are able to reject the null hypothesis of a single regime
model in favor of the alternative of a model with two regimes: a high-income
steady-state in which income is independent of absolute latitude, and a low-income
(“agricultural”) steady-state in which income is increasing in absolute latitude. In
addition, the probability of being in the high-income steady-state is found to be
increasing in absolute latitude.

Adding extra complexity to this model could well be constrained by the small
number of countries available. More generally, the empirical investigation of
multiple steady-states raises some complex problems for standard methods. One
response is to draw more heavily on structural theoretical models as a framework
for understanding the data, as in Graham and Temple (2006). Another possibility
would be to exploit time series variation in a single country, in order to identify
jumps from one equilibrium or steady state to another. But in either case, it is clear
that these forms of analysis would have to proceed under strong assumptions, some
of which will be difficult to test.

24.5 Time series methods, panel data and event studies

Our discussion now explores alternative ways of modeling growth: time series mod-
els, the use of panel data, and studies based on discrete “events” which draw on
panel data methods. At the risk of stating the obvious, choices on research design
involve significant trade-offs, which depend partly on statistical considerations
and partly on the economic context. This means that attempts at universal pre-
scriptions are misguided, and we will try to show the desirability of matching
techniques to the economic question at hand. One example, to be discussed below,
would be the choice between panel data methods and the estimation of separate
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time series regressions for each country. The use of panel data is likely to increase
efficiency and allow richer models to be estimated, but at the expense of poten-
tially serious biases if the parameter homogeneity assumptions are incorrect. This
trade-off between robustness and efficiency is another running theme of our sur-
vey. The scientific solution would be to base the choice of estimation method on
a context-specific loss function, but this is clearly a difficult task, and in practice
more subjective decisions are involved.

Section 24.5.1 examines the econometric issues that arise in the use of time
series data to study growth, emphasizing some of the drawbacks of this approach.
Section 24.5.2 discusses the many issues that arise when panel data are employed,
an increasingly popular approach to growth questions. We consider the estimation
of dynamic models in the presence of fixed effects, and alternatives to standard pro-
cedures. Section 24.5.3 describes another increasingly popular approach, namely
the use of “event studies” to analyze growth behavior, based on studying responses
to major events such as political reform or changes in trade policy.

24.5.1 Time series approaches

At first glance, the most natural way to understand growth would be to examine
time series data for each country in isolation. In practice, however, a time series
approach runs into substantial difficulties. One key constraint is the available data.
For many developing countries, some of the most important data are only available
on an annual basis, with limited coverage before the 1960s. Moreover, the listing
of annual data in widely used sources and online databases can be misleading.
For example, population figures are often based primarily on census data, while
measures of average educational attainment are often constructed by interpolating
between census observations using school enrollments. The true extent of infor-
mation in the time series variation may be less than appears at first glance, and
conventional standard errors will be misleading.

Some key growth determinants display relatively little time variation. Even where
a variable appears to show significant variation, this may not correspond to the con-
cept the researcher originally had in mind. An example would be political stability.
Since Barro (1991), researchers have sometimes used the incidence of political rev-
olutions and coups as a measure of political instability. The interpretation of such
an index clearly varies depending on the length of the time period used to con-
struct it. If the hypothesis of interest relates to underlying political uncertainty
(say, the ex ante probability of a transfer of power) then time series observations on
political instability would need to be averaged over a long time period. The varia-
tion in political instability at shorter horizons casts light on a different hypothesis,
namely the direct impact of revolutions and coups, rather than on the effects of ex
ante political uncertainty.

There are other significant problems with the time series approach. The hypothe-
ses of most interest to growth theorists are mainly about the evolution of potential
output, not deviations from potential output, whether business cycles or larger-
scale output collapses. Since measured output is a noisy indicator of potential
output, it is easy for the econometric modeling of a growth process to be
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contaminated by short-run dynamics. These problems are likely to be even more
serious in developing countries, where large slumps or crises are not uncommon,
and output may deviate for long periods from any previous structural trend. As
Pritchett (2000a) emphasizes, output often behaves very differently in developing
countries compared to Organization for Economic Cooperation and Development
(OECD) member countries, and a major collapse in output is not a rare event. There
may be no underlying trend in the sense commonly understood, and conventional
time series methods should be applied with caution.

The problem of short-run output instability extends further. It is easy to construct
examples where the difference between observed output and potential output is
correlated with variables that move up and down at high frequencies, with inflation
being one obvious example (Temple, 2000a). At a minimum, this means that any
time series or panel data analysis should distinguish carefully between short-run
and long-run effects.

Nevertheless, despite these problems, there are some hypotheses for which time
series variation may be informative. Jones (1995) and Kocherlakota and Yi (1997)
show how time series models might be used to discriminate between different
growth theories. More specifically, they develop a statistical test of endogenous
growth models based on regressing growth on lagged growth and a lagged policy
variable (or the lagged investment rate, as in Jones). Exogenous growth models
predict that the coefficients on the lagged policy variable should sum to zero, indi-
cating no long-run growth effect of permanent changes in this variable. In contrast,
some endogenous growth models would imply that the sum of coefficients should
be non-zero. A simple time series regression then provides a direct test. More for-
mally, as in Jones (1995), for a given country i one can investigate a dynamic
relationship for the growth rate γi,t , where:

γi,t = A(L)γi,t−1 + B(L)zi,t + εi,t , (24.30)

where z is the policy variable or growth determinant of interest, and A(L) and B(L)
are lag polynomials assumed to be compatible with stationarity. The hypothesis of
interest is whether B(1) �= 0. If the sum of the coefficients in the lag polynomial
B(L) is significantly different from zero, this implies that a permanent change in
the variable z will affect the growth rate indefinitely. As Jones (1995) explicitly dis-
cusses, this test is best seen as indicating whether a policy change affects growth
over a long horizon, rather than firmly identifying or rejecting the presence of a
long-run growth effect in the theoretical sense of that term. The theoretical con-
ditions under which policy variables affect the long-run growth rate are strict,
and many endogenous growth models are best seen as new theories of potentially
sizeable level effects.17

A related idea is that of Granger causality, where the hypothesis of interest would
be the explanatory power of lags of Zi,t for γi,t conditional on lagged values of γi,t .
Blomstrom, Lipsey and Zejan (1996) carry out Granger causality tests for invest-
ment and growth using panel data with five-year sub-periods. They find strong
evidence that lagged growth rates have explanatory power for investment rates,
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but weaker evidence for causality in the more conventional direction from invest-
ment to growth. In a similar vein, Campos and Nugent (2002) find that, once
Granger causality tests are applied, the evidence that political instability affects
growth may be weaker than usually believed.

A familiar objection to the more ambitious interpretations of Granger causal-
ity is that much economic behavior is forward-looking (see, for example, Bils
and Klenow, 2000, on the forward-looking nature of educational investments).
The movements of stock markets are another obvious instance where temporal
sequences can be misleading about causality. Nevertheless, it could be argued
that evidence on timing has been under-utilized in the growth literature to date,
especially in panel data studies.

An underlying assumption of most studies is that timing patterns and effects will
be similar across units such as countries or regions. Potential heterogeneity has
only sometimes been acknowledged, as in the observation of Campos and Nugent
(2002) that their results are heavily influenced by the African countries in the
sample. The potential importance of these factors is also established in Binder and
Brock (2004) who, by using panel methods to allow for heterogeneity in country-
specific dynamics, find feedbacks from investment to growth beyond those that
appear in Blomstrom et al. (1996).

Since testing for Granger causality using panel data requires a dynamic model,
the use of a standard fixed effects estimator is likely to be inappropriate when
individual effects are present. We discuss this further in section 24.5.2. In the
context of investment and growth, a comprehensive examination of the associated
econometric issues has been carried out by Bond, Leblebicioglu and Schiantarelli
(2004). Their work shows that these issues are more than technicalities: unlike
Blomstrom et al. (1996), they find strong evidence that investment has a causal
effect on growth.

24.5.2 Panel data

As we emphasized above, the prospects for reliable generalizations in empirical
growth research are often constrained by the limited number of countries avail-
able. This constraint makes parameter estimates imprecise, and limits the extent
to which researchers can apply more sophisticated methods, such as semiparamet-
ric estimators. A natural response to this constraint is to use the within-country
variation to multiply the number of observations. Using different episodes within
the same country is ultimately the only practical substitute for somehow increasing
the number of countries. To the extent that important variables change over time,
this appears the most promising way to sidestep many of the problems that face
growth researchers. Moreover, as the years pass and more data become available,
the prospects for informative work of this kind can only improve.

We first discuss the implementation and advantages of panel data estimators
in more detail, and then some of the technical issues that arise in the context
of growth. We will use T to denote the number of time series observations in
a panel of N countries or regions. At first sight, T should be relatively high in
this context, because of the availability of annual data. But the concerns about
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time series analysis raised above continue to apply. Important variables are either
measured at infrequent intervals, or show little year-to-year variation. Moreover,
variation in annual growth rates may give misleading answers about the longer-
term growth process. For this reason, growth research using panel data has typically
averaged data over five- or ten-year periods. Given the lack of data before 1960, this
implies that growth panels not only have relatively few cross-sectional units, but
also low values of T , often just five or six once lagged values have been included
as explanatory variables or instruments.18

Most of the estimated models have been based on the hypothesis of conditional
convergence, namely that countries converge to parallel equilibrium growth paths,
the levels of which are a function of a few variables. As we saw in section 24.3,
a corollary is that an equation for growth (essentially the first difference of log
output) should contain some dynamics in lagged output. In this case, the growth
equation can be rewritten as a dynamic panel data model in which current output
is regressed on controls and lagged output, as in Islam (1995). In statistical terms
this rewritten model is identical in all respects, except that the coefficient on initial
output (originally β) is now 1+ β:

log yi,t = (1+ β) log yi,t−1 + ψXi,t + πZi,t + αi + μt + εi,t . (24.31)

This regression is a panel analogue to the cross-section regression (24.11), but now
includes a country-specific effect αi and a time-specific effect μt . The inclusion of
time effects is important in the growth context, not least because the means of
the log output series will typically increase over time, given productivity growth at
the world level. Inclusion of a country-specific effect allows permanent differences
in the level of income between countries that are not captured by Xi,t or Zi,t . In
principle, one can also allow the parameters 1+β, ψ , and π to differ across countries
or regions.

Standard random effects estimators require that the individual effects αi are dis-
tributed independently of the explanatory variables, and this requirement is clearly
violated for a dynamic panel such as (24.31) by construction, given the depen-
dence of log yi,t on αi. Hence the vast majority of panel data growth studies use
a fixed effects (within-group) estimator. Given their popularity, it is important to
understand how these estimators work. In a fixed effects regression there is a full
set of country-specific intercepts, one for each country, and inference proceeds
conditional on the particular countries observed, a natural choice in this context.
Identification of the slope parameters, usually constrained to be the same across
countries, relies on variation over time within each country. The “between” varia-
tion, namely the variation across countries in the long-run averages of the variables,
is not used.

The key strength of this method, familiar from the microeconometric litera-
ture, is the ability to address one form of unobserved heterogeneity: any omitted
variables that are constant over time will not bias the estimates, even if these
omitted variables are correlated with the explanatory variables. Intuitively, the
country-specific intercepts can be seen as picking up the combined effects of all
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such variables. This is the usual motivation for using fixed effects in the growth
context, as discussed in Islam (1995), Caselli, Esquivel and Lefort (1996) and Tem-
ple (1999). In more recent work, fixed effects estimators have been used in studying
the effects of distinct events or “treatments,” such as democratization or trade
reform. We will discuss this approach in section 24.5.3.

A particular motivation for the use of fixed effects arises from the Mankiw et al.
(1992) implementation of the Solow model. As discussed in section 24.3, their
version of the model implies that one determinant of the level of the steady-state
growth path is the initial level of efficiency (Ai,0) and cross-section heterogeneity
in this variable should usually be regarded as unobservable. Islam (1995) explicitly
develops a specification in which this term is treated as a fixed effect, while world
growth and common shocks are incorporated using time-specific effects.

The use of panel data methods to address unobserved heterogeneity can bring
substantial gains in robustness, but is not without costs. There are times when the
question of interest precludes a fixed-effects approach, and sometimes the limita-
tions of the data will make it uninformative. Some variables of interest are measured
at only one point in time. Others are highly persistent, and this dependence implies
that the amount of useful information in the within-country variation will be
limited. At one extreme, some explanatory variables of interest are essentially
fixed factors, like geographic characteristics. Here the only available variation is
“between-country,” and empirical work will have to be based on cross-sections or
pooled cross-section time series. Alternatively, a two-stage hybrid of these methods
can be used, in which a panel data estimator is used to obtain estimates of the fixed
effects, which are then explicitly modeled in a second stage as in Hoeffler (2002).

A common failing of panel data studies based on within-country variation is
that researchers do not pay enough attention to the dynamics of adjustment, and
the important distinction between short-run and long-run effects. There are many
panel data papers on human capital and growth that test only whether a change
in school enrollment or years of schooling has an immediate effect on aggregate
productivity, which seems an implausible hypothesis. It would be more natural
to consider education as having a lagged effect, especially once various possible
externalities are considered. Another example, given by Pritchett (2000a), is the use
of panels to study inequality and growth. All too often, changes in the distribution
of income are implicitly expected to have an immediate impact on growth. Yet
many of the relevant theoretical papers highlight long-run effects, associated with
the political process for example, and there is a strong presumption that much of
the short-run variation in measures of inequality is due to measurement error. In
these circumstances, it is hard to see how the available within-country variation
can shed much useful light, at least until better data become available.

There is also a more general problem. Since the fixed effects estimator ignores
between-country variation, the reduction in bias typically comes at the expense
of higher standard errors. Another reason for imprecision is that either of the
devices used to eliminate the country-specific intercepts – the within-groups trans-
formation or first-differencing – will tend to exacerbate the effect of measurement
error.19 As a result, it is common for researchers using panel data models with fixed
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effects, especially in the context of small T , to obtain imprecise sets of parameter
estimates. Given the potentially unattractive trade-off between robustness and effi-
ciency, Barro (1997), Temple (1999), Pritchett (2000a) and Wacziarg (2002) all argue
that the use of fixed effects in empirical growth models has to be approached with
care. The price of eliminating the misleading component of the between variation
– namely, the variation due to unobserved heterogeneity – is that all the between
variation is lost. This is costly, because growth episodes within countries inevitably
look a great deal more alike than growth episodes across countries, and therefore
offer less identifying variation. Restricting the analysis to the within variation elim-
inates one source of bias, but makes it harder to identify growth effects with any
degree of precision. Many of the explanatory variables currently used in growth
research are either highly stable over time, or tending to trend in one direction.
Without useful identifying variation in the time series data, the within-country
approach is in trouble. Moreover, growth is quite volatile at short horizons. It will
typically be hard to explain this variation using predictors that show little varia-
tion over time, or that are measured with substantial errors. The result has been a
number of panel data studies suggesting that a given variable “does not matter,”
when a more accurate interpretation is that its effect cannot be identified using the
data at hand.

Depending on the sources of heterogeneity, even simple recommendations, such
as including a complete set of regional dummies, can help to alleviate the biases
associated with omitted variables (Temple, 1998). More than a decade of growth
research has identified a host of fixed factors that could be used to substitute for
country-specific intercepts. A growth model that includes these variables can still
exploit the panel structure of the data, and the explicit modeling of the country-
specific effects is directly informative about the sources of persistent income and
growth differences.

In practice, the literature has focused on another aspect of using panel data
estimators to investigate growth. Nickell (1981) showed that within-groups esti-
mates of a dynamic panel data model can be badly biased for small T , even as N
goes to infinity. The direction of this bias is such that, in a growth model, out-
put appears less persistent than it should (the estimate of β is too low) and the
rate of conditional convergence will be overestimated. The Nickell bias explains
why the within-groups estimator is often avoided when estimating dynamic mod-
els. The most widely-used alternative is to difference the model to eliminate the
fixed effects, and then use 2SLS or generalized method of moments (GMM) to
address the correlation between the differenced lagged dependent variable and the
induced MA(1) error term. To see the need for instrumental variable procedures,
first-difference (24.31) to obtain:

� log yi,t = (1+ β)� log yi,t−1 +�Xi,tψ +�Zi,tπ +�μi + εi,t − εi,t−1, (24.32)

and note that (absent an unlikely error structure) the log yi,t−1 component of
� log yi,t−1 will be correlated with the εi,t−1 component of the new composite
error term, as is clearly seen by considering equation (24.31) lagged one period.
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Hence, at least one of the explanatory variables in the first-differenced equation
will be correlated with the disturbances, and instrumental variable procedures are
required.

Arellano and Bond (1991), building on work by Holtz-Eakin, Newey and Rosen
(1988), developed the GMM approach to dynamic panels in detail, including spec-
ification tests and methods suitable for unbalanced panels. Caselli et al. (1996)
applied their estimator in the growth context and obtained a much faster rate of
conditional convergence than found in cross-section studies, consistent with the
view that OLS estimates, by ignoring country effects, will yield an upward bias on
the lagged dependent variable.

The GMM approach is typically based on using lagged levels of the series as
instruments for lagged first differences. If the error terms in the levels equation (εit )

are serially uncorrelated then � log yi,t−1 can be instrumented using log yi,t−2 and
as many earlier lagged levels as are available. This corresponds to a set of moment
conditions that can be used to estimate the first-differenced equation by GMM.
Bond (2002) and Roodman (2006) provide especially accessible introductions to
the theory and application of this approach.

In principle, this strategy can alleviate biases due to measurement error and
endogenous explanatory variables. In practice, many researchers are sceptical that
lags, or “internally generated” instruments, are appropriate choices for instru-
ments. It is easy to see that a variable such as educational attainment may influence
output with a considerable delay, so that the exclusion of lags from the growth
equation can look arbitrary. More generally, the GMM approach relies on a lack of
serial correlation in the error terms of the growth equation (before differencing).
This assumption can be tested using the methods developed in Arellano and Bond
(1991), and can also be relaxed by an appropriate choice of instruments, but will
sometimes be restrictive.

In practice, many applications of these methods have used “too many” moment
conditions. The small-sample performance of the GMM panel data estimators is
known to deteriorate as the number of moment conditions grows relative to the
cross-section dimension of the panel. In that case, the coefficient estimates can be
severely biased, and a further consequence is that the power of Sargan-type tests of
overidentifying restrictions may collapse, as shown in Bowsher (2002). When tests
of the overidentifying restrictions yield p-values near unity, this is an important
warning sign that too many moment conditions are in use, and this problem can
be seen relatively frequently in the literature. This can be avoided by using only a
sub-set of the available lags as instruments, or summing moment conditions over
time, while retaining enough overidentifying restrictions to ensure that Sargan-
type tests will have some power. Roodman (2007) discusses these issues in more
detail.

Another concern is that the explanatory variables may be highly persistent, as
is clearly true of output. Lagged levels can then be weak instruments for first dif-
ferences, and the GMM panel data estimator is likely to be severely biased in short
panels. Bond, Hoeffler and Temple (2001) illustrate this point by comparing the
Caselli et al. (1996) estimates of the coefficient on lagged output with OLS and
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within-group estimates. Since the OLS and within-group estimates of β are biased in
opposing directions then, leaving aside sampling variability and small-sample con-
siderations, a consistent parameter estimate should lie between these two extremes,
as discussed in Nerlove (1999, 2000). Formally, when the explanatory variables
other than lagged output are strictly exogenous, we have:

p lim β̂WG < p lim β̂ < p lim β̂OLS, (24.33)

where β̂ is a consistent parameter estimate, β̂WG is the within-groups estimate
and β̂OLS is the estimate from a pooled OLS regression. For the dataset and model
used by Caselli et al. (1996), this large-sample prediction is not valid, which raises
a question mark over the reliability of the first-differenced GMM estimates. The
problem may be one of weak instruments, and unless this can be resolved, it is
not difficult to imagine circumstances in which the within-groups estimator, or
bias-corrected versions of it, may be preferable to the GMM approach.

One device that can be informative in short panels is to make more restrictive
assumptions about the initial conditions. If the observations at the start of the
sample are distributed in a way that is representative of steady-state behavior, in a
sense that will be made precise below, efficiency gains are possible. Assumptions
about the initial conditions can be used to derive a “system” GMM estimator, of
the form developed and studied by Arellano and Bover (1995) and Blundell and
Bond (1998), and also discussed in Ahn and Schmidt (1995) and Hahn (1999). In
this estimator, not only are lagged levels used as instruments for first differences,
but lagged first differences are used as instruments for levels, which corresponds
to an extra set of moment conditions. Blundell and Bond (1998) provide Monte
Carlo evidence that this estimator is more robust than the Arellano–Bond method
in the presence of highly persistent series. As also shown by Blundell and Bond, the
necessary assumptions can be seen in terms of an extra restriction, namely that the
deviations of the initial values of log yi,t from their long-run (steady-state) values
are not systematically related to the individual effects.20 For simplicity, we focus
on the case where there are no explanatory variables other than lagged output. The
required assumption on the initial conditions is that, for all i = 1, . . . , N, we have:

E
[(

log yi,1 − ȳi

)
αi

]
= 0, (24.34)

where the ȳi are the long-run values of the log yi,t series and are therefore functions
of the individual effects αi and the autoregressive parameter β. This assumption
on the initial conditions ensures that:

E
[
� log yi,2αi

]
= 0, (24.35)

and this, together with the mild assumption that the changes in the errors are
uncorrelated with the individual effects:

E
[
�εi,tαi

]
= 0, (24.36)
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implies T − 2 extra moment conditions of the form:

E
[
� log yi,t−1(αi + εi,t )

]
= 0 for i = 1, . . . , N and t = 3, 4, . . . , T . (24.37)

Intuitively, as is clear from the new moment conditions, the extra assumptions
ensure that the lagged first difference of the dependent variable is a valid instru-
ment for untransformed equations in levels, since it is uncorrelated with the
composite error term in the levels equation. The additional moment conditions
build in some insurance against weak identification, because if the series are per-
sistent and lagged levels are weak instruments for first differences, it may still be
the case that lagged first differences will have some explanatory power for levels.21

Nevertheless, the analysis of Bun and Windmeijer (2007) indicates that weak instru-
ment problems can emerge even for the system GMM estimator, especially when
the variance of the country effects is high relative to the variance of the transitory
shocks, which may well be the case for growth data.

Moreover, the extra moment conditions are based on assumptions about the ini-
tial conditions that are unlikely to command universal assent. In principle, these
assumptions can be tested using the incremental Sargan statistic (or C statistic)
associated with the additional moment conditions. Yet the validity of the restric-
tion should arguably be evaluated in wider terms, based on some knowledge of
the historical forces giving rise to the observed initial conditions. This point,
that key statistical assumptions should not always be evaluated only in statisti-
cal terms, is one that we will return to later, when discussing the wider application
of instrumental variable (IV) methods.

Alternatives to GMM have been proposed. Kiviet (1995, 1999) derives an analyt-
ical approximation to the Nickell bias that can be used to construct a bias-adjusted
within-country estimator for dynamic panels. The simulation evidence reported
in Judson and Owen (1999) and Bun and Kiviet (2001) suggests that this estima-
tor performs well relative to standard alternatives when N and T are small. More
recently, Bun and Carree (2005) have developed an alternative bias-adjusted esti-
mator. One serious limitation of the currently available bias-adjusted estimators,
relative to GMM, is that they do not address the possible correlation between the
explanatory variables and the disturbances due to simultaneity and measurement
error. Nevertheless, there is a clear case for implementing these estimators, at least
as a complement to other methods.

A further issue that arises when estimating dynamic panel data models is that
of parameter heterogeneity. If a slope parameter such as β varies across countries,
and the relevant explanatory variable is serially correlated, this will induce serial
correlation in the error term. If we focus on a simple case where a researcher
wrongly assumes homogeneity in the coefficient on lagged output, or βi = β for
all i = 1, . . . , N, then the error process for a given country will contain a compo-
nent that resembles

(
βi − β

)
log yi,t−1. Hence there is serial correlation in the errors,

given the persistence of output. The estimates of a dynamic panel data model will
be inconsistent even if GMM methods are applied. This problem was analyzed in
more general terms by Robertson and Symons (1992) and Pesaran and Smith (1995)
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and has been explored in depth for the growth context by Lee, Pesaran and Smith
(1997, 1998). Since an absence of serial correlation in the disturbances is usually a
critical assumption for the GMM approach, parameter heterogeneity can be a seri-
ous concern. Some of the possible solutions, such as regressions applied to single
time series, or the pooled mean group estimator developed by Pesaran, Shin and
Smith (1999), have limitations in studying growth for reasons already discussed.
An alternative solution is to split the sample into groups that are more likely to
share similar parameter values. Groupings by regional location or the initial level
of development are a natural starting point.

Perhaps the state of the art in analyzing growth using panel data and allowing for
parameter heterogeneity is represented by Phillips and Sul (2003). They allow for
heterogeneity in parameters not only across countries, but also over time. Temporal
heterogeneity is rarely investigated in panel studies, but may be important.

One drawback of many current panel studies is that some of the necessary deci-
sions, and perhaps especially the construction of the time series observations, can
appear arbitrary. There is no inherent reason why five or ten years represent natu-
ral spans over which to average observations. Similarly, there is arbitrariness with
respect to which time periods are aggregated. A useful endeavor would be the devel-
opment of tools to ensure that panel findings are robust under alternative ways of
assembling the panel from the raw data; it is also possible that the field could draw
more heavily on the econometric literature on time aggregation than it does at
present.

More fundamentally, the empirical growth literature has not fully addressed the
question of the appropriate time horizons over which growth models should be
assessed. For example, it remains unclear when business cycle considerations, or
instances of output collapses, may be safely ignored. While cross-section studies
that examine growth over 30–40-year periods might be exempt from these consid-
erations, it is less clear that panel studies employing five-year averages are genuinely
informative about medium-run growth dynamics. As more data become available
with the passage of time, concerns over the scope for arbitrary choices can only
increase. It will also be important to develop robust methods for inference about
long-run effects.

24.5.3 The event study approach

Although we have focused on the limitations of panel data methods, it is clear
that the prospects for informative work of this kind should improve over time.
The addition of further time periods is valuable in itself, and the history of devel-
oping countries in the 1980s and 1990s offers various events that introduce richer
time series variation into the data. These events include waves of democratization,
macroeconomic stabilization, financial liberalization and trade reform, and panel
data methods can be used to investigate their consequences for growth. This can
proceed in a similar way to event studies in the empirical finance literature. In
event studies, researchers look for systematic changes in asset returns after a dis-
crete event, such as a profits warning. In other fields, before-and-after studies like
this have proved an informative way to gauge the effects of inflation stabilization,
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as in Easterly (1996), and the consequences of the debt crisis for investment, as in
Warner (1992).

The obvious analogue for growth econometrics is to study the time paths of
variables such as output growth, investment and total factor productivity (TFP)
growth, before and after discrete events such as democratizations. When using
fixed effects combined with a binary indicator to capture discrete events, the logic
of the approach is similar to the differences-in-differences estimator in the literature
on program evaluation. Examples include the work of Giavazzi and Tabellini (2005)
on economic and political liberalizations, Henry (2000, 2003) on stock market
liberalization, Papaioannou and Siourounis (2007) and Rodrik and Wacziarg (2005)
on democratizations, and Wacziarg and Welch (2003) on trade reforms. Depending
on the context, one can also study the response of other variables in a way that
is informative about the channels of influence. For example, in the case of trade
reform, it is natural to study the response of the trade share, as in the work of
Wacziarg and Welch.

The rigor of this method should not be exaggerated. As with any other approach
to empirical growth, one has to be cautious about inferring a causal effect. This is
clear from drawing explicitly on the literature on treatment effects and program
evaluation.22 In the study of growth, “treatments” such as democratization are
clearly not exogenously assigned, but are events that have arisen endogenously.
This means, for example, that treatment and control groups may differ system-
atically, either in terms of time-invariant unobservables, or in factors that vary
over time. Methods based on fixed effects can address the first of these considera-
tions, but allowing for the second is more complicated. To illustrate the problem,
Papaioannou and Siourounis (2007) draw a useful analogy between democratiza-
tions and “Ashenfelter’s dip” in the program evaluation literature. It is possible
that countries experiencing a downturn or weak economic performance are espe-
cially likely to democratize, in which case the estimated effect of democratization
risks conflating the true effect with the effects of a separate recovery from the
pre-treatment “dip.”

Moreover, in growth applications, the treatment effects are highly likely to be
heterogeneous across countries and over time. They may depend, for example, on
whether a policy change is seen as temporary or permanent, as Pritchett (2000a)
observes. In these circumstances, the ability to quantify even an average treatment
effect is strongly circumscribed. It may still be possible to identify the direction
of effects, and here the limited number of observations does have one advantage.
With a small number of cases to examine, it is easy for the researcher to present
a graphical analysis that allows readers to gauge the extent of heterogeneity in
responses, and the overall pattern. Another useful and informative approach,
adopted by Papaioannou and Siourounis (2007), is to estimate a model that allows
the treatment effect to vary over time, using the methods developed in Laporte
and Windmeijer (2005).

There is one remaining problem to note. When growth researchers look at the
effects of discrete events, they typically study the effects on serially correlated out-
comes such as output or investment. A particular concern in cross-country samples
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is that the errors may then be serially correlated, and the standard errors unreli-
able. Using simulations, Bertrand, Duflo and Mullainathan (2004) showed that
differences-in-differences estimators are potentially highly vulnerable to this prob-
lem, to the extent that “placebo” interventions are often found to have effects
that are statistically significant. This could well be a major concern for the cor-
responding growth studies carried out to date. In samples with the cross-section
dimensions associated with cross-country data, some of the available solutions for
calculating panel-robust standard errors may also face problems.

24.6 Endogeneity and instrumental variables

In this section, we consider the use of instrumental variables in cross-section and
time-series contexts. One obvious criticism of growth regressions is that they do
little to establish directions of causation. As well as reverse causality, there is the
standard problem that two variables may be correlated but jointly determined by
a third. Variables such as growth and political stability could be seen as jointly
determined equilibrium outcomes associated with, say, a particular set of institu-
tions. The usual response has been the use of instrumental variables, for reasons
discussed in section 24.6.1, but there are some grounds for caution in their appli-
cation. These include the difficulty of establishing credible exclusion restrictions
(section 24.6.2) and the problems raised by heterogeneous effects in small samples
(section 24.6.3).

24.6.1 Concepts of endogeneity

There are many instances in growth research when explanatory variables are clearly
endogenously determined in an economic sense. The most familiar example would
be a regression that relates growth to the share of investment in GDP. This may
tell us that the investment share and growth are associated, but stops short of
identifying a causal effect, or explaining why investment varies; presumably it is
endogenous to a range of economic variables. When variables are endogenously
determined in the economic sense, there is also a strong chance that they will
be endogenous in the statistical or technical sense, namely correlated with the
disturbances in the structural equation for growth. To give an example, consider
what happens if political instability lowers growth, but slower economic growth
feeds back into political instability. The OLS estimator will conflate these two effects
and yield an inconsistent estimate of the causal effect of instability.23

Views on the importance of these considerations differ greatly. One position is
that the whole growth research project effectively capsizes before it has even begun.
Mankiw (1995) and Wacziarg (2002) have suggested an alternative and more posi-
tive view. According to them, one should accept that reliable causal statements are
almost impossible to make, but use the partial correlations of the growth literature
to rule out some possible hypotheses about the world. Wacziarg uses the example
of the negative partial correlation between corruption and growth found by Mauro
(1995). Even if shown to be robust, this correlation does not establish that some-
how reducing corruption will be followed by higher growth rates. But it does make
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it harder to believe some of the earlier suggestions, rarely based on evidence, that
corruption could be actively beneficial.

Given the likelihood that variables are inter-related, one response is to model as
many as possible of the variables that are endogenously determined. One promi-
nent example is Tavares and Wacziarg (2001), who estimate structural equations
for various channels through which democracy could influence development. This
approach has some important advantages in both economic and statistical terms.
It can be informative about underlying mechanisms in a way that much empiri-
cal growth research is not. From a purely statistical perspective, if the structural
equations are estimated jointly by methods such as three-stage least squares (3SLS)
or full information maximum likelihood (FIML), this is likely to bring efficiency
gains. That said, systems estimation is not necessarily the best route: it has the
important disadvantage that specification errors in one of the structural equations
could contaminate the estimates obtained from the others. Importantly, these spec-
ification errors could include invalid exclusion restrictions, a possibility that is
often hard to rule out.

24.6.2 Exclusion restrictions

The most common response to endogeneity has been the application of instru-
mental variable procedures to a single structural equation, with growth as the
dependent variable. Appendices C and D in Durlauf et al. (2005) describe a wide
range of other instrumental variables that have been proposed for the Solow vari-
ables and other growth determinants respectively, where the focus has been on
the endogeneity of particular variables. Whether these instruments are genuinely
plausible is another matter. In our view, the belief that it is easy to identify valid
instrumental variables in the growth context is often mistaken. Many applica-
tions of instrumental variable procedures in the empirical growth literature are
undermined by a failure to address properly the question of whether these instru-
ments are valid, in the sense of being uncorrelated with the error term in a growth
regression. When the instrument is invalid, instrumental variables estimates will
be inconsistent. Not enough is currently known about the consequences of “small”
departures from validity, but there are circumstances in which the 2SLS bias is worse
than the OLS bias, especially if the instruments are “weak.” It is certainly possible
to envisage circumstances under which ordinary least squares would be preferable
to instrumental variables on, say, a mean square error criterion.

A common misunderstanding, perhaps based on confusing the economic and
statistical versions of “exogeneity,” is that predetermined variables, such as geo-
graphical characteristics, are inevitably strong candidates for instruments. There
is, however, nothing in the predetermined nature of these variables to preclude
a direct effect on growth, or the possibility that they are correlated with omitted
growth determinants, and hence with the error term. Even if we take the extreme
example of geographic characteristics, there are many channels through which
these could affect growth, and therefore many ways in which they could be corre-
lated with the disturbances in a growth model. Brock and Durlauf (2001a) use this
type of reasoning to criticize the use of instrumental variables in growth economics.
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Since growth theories are often mutually compatible, the validity of an instru-
ment requires a positive and explicit argument that it cannot be a direct growth
determinant or correlated with an omitted growth determinant. For many of the
instrumental variables that have been proposed, such an argument is difficult to
construct.

Discussions of the validity of instruments inevitably suffer from some degree
of imprecision because of the need to make qualitative and subjective judgments.
When one researcher claims that it is implausible that a given instrument is valid,
unless this claim is made on the basis of a joint model of the instruments and
the variable of original interest, another researcher can always reject the asser-
tion as unpersuasive. To be clear, this element of subjectivity does not mean that
arguments about validity are pointless.24 Rather, one must recognize that not all
statistical questions can be adjudicated on the basis of formal tests.

To see how different instruments might be assigned different levels of plausi-
bility, we consider some examples. Hall and Jones (1999) use various indicators
of Western European influence as instruments for openness to trade and institu-
tional quality. As subsequent authors, including Acemoglu (2005), have pointed
out, these indicators of Western European influence may have affected long-run
development through a variety of channels, in which case their usefulness as instru-
ments appears doubtful at best. The case for exclusion is easier to make for the
measure of Western European influence constructed by Acemoglu et al. (2001),
namely the mortality rates of colonial settlers. Glaeser et al. (2004) discuss some of
the relevant issues in more detail.

As an example where instrument validity may be relatively plausible, consider
Cook (2002). He employs measures of the damage caused by World War II as instru-
ments for various growth regressors, such as saving rates. The validity of Cook’s
instruments again relies on the orthogonality of World War II damage with omitted
post-war growth determinants. It may be that levels of wartime damage had con-
sequences for post-war growth performance in other respects, such as institutional
change. Nevertheless, that argument would clearly be more involved, and specu-
lative, than would be necessary for some other examples in the growth literature.

To be clear, this discussion is nowhere near sufficient to conclude that one set
of instruments is valid and another is not. Our central point is that exclusion
restrictions need to rest on careful and explicit arguments. In particular, it is not
enough to appeal to a variable being predetermined. The fact that a variable may
be exogenous from an economic point of view is not enough to ensure that it
is uncorrelated with the disturbances in the structural equation being estimated.
This implies that historical information has a vital role to play in evaluating the
plausibility of exclusion restrictions.

This discussion of instrumental variables indicates another important, albeit
neglected, issue in empirical growth analysis: the relationship between model spec-
ification and instrumental variable selection. One cannot discuss the validity of
particular instruments independently from the choice of the specific growth deter-
minants under study and decisions about how to specify their relationship with
growth. As we noted earlier, an important research question is whether model
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uncertainty and instrumental variable selection can be integrated simultaneously
into methods for model averaging and model selection. The recent work of Hendry
and Krolzig (2005) on automated methods includes an ambitious approach to sys-
tematic model selection for simultaneous equation models, in which identifying
restrictions are primarily determined by the data.

24.6.3 Instrumental variables and heterogeneous effects

Another issue that arises in applying instrumental variable methods to cross-
country data is the possible heterogeneity in the effects of the instrument, and
in the marginal effect of the explanatory variable that is instrumented. This is
closely related to the idea of “local” average treatment effects. Stock and Watson
(2004, sec. 11.7) provide a useful discussion of the issues in the context of 2SLS.
Assume that the parameters in the first stage and second stage of 2SLS vary across
countries, and are distributed independently of the variables (and instruments) in
the model and the error terms. It can then be shown that the probability limit
of the 2SLS estimate of the coefficient on the endogenous explanatory variable is
not the average causal effect, but a weighted average of the effects for individual
countries. The weighted average gives most weight to the countries for which the
instrument has the largest effect on the endogenous explanatory variable. A corol-
lary is that, when heterogeneity is present, the estimated effect depends on the
choice of instrument. A further consequence is that claims for the exogeneity of
the instruments become harder to sustain.

We can illustrate the potential importance of this by considering some of the
most influential papers that apply IV methods to cross-country data, using the
“levels regressions” approach discussed in section 24.3.3 above. In particular, Ace-
moglu et al. (2001), Frankel and Romer (1999), and Hall and Jones (1999) all study
the determinants of income levels using IV methods. The dependent variable is
a measure of (log) GDP per capita or per worker, and the explanatory variables
include one or more regressors that may determine income levels, but that are
themselves likely to be endogenous to the level of development.

What direction of bias should be expected when estimating such models by
OLS? The usual expectation would be that policy variables like institutional quality
“improve” (that is, move in the direction of promoting development) as GDP per
capita increases. Under this view of the world, an OLS estimate of the effect of
variables like institutions is likely to overstate their importance. The OLS slope
coefficient will be biased away from zero, and correcting for this using IV should
lead to a parameter estimate closer to zero, sampling variability aside. But the
papers of Acemoglu et al. (2001), Frankel and Romer (1999) and Hall and Jones
(1999) all have in common the opposite result. Somewhat surprisingly, the IV
estimate associated with the variable of interest, such as the quality of institutions,
is typically larger in magnitude than the OLS estimate.

There are a number of possible explanations. One is sampling variability, while
another is measurement error. But if we take the view that development is likely
to encourage improvements in (say) institutions, so that OLS estimates of their
effect on output per worker are biased away from zero, the required extent of
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measurement error is unlikely to be trivial. It has to be large enough to more than
offset the effect of the simultaneity bias acting in the other direction.

A more sceptical view is that the IV coefficient may be larger because either (i)
the effects may be heterogeneous; or (ii) the exclusion restrictions used in these
papers are not genuinely valid; or some combination of the two. One interesting
perspective on the IV results in the cross-country literature is that the instruments
might have a more powerful effect on the endogenous explanatory variable (such
as institutions) in those countries where the explanatory variable has an especially
powerful effect on development outcomes. To give a concrete example, this would
be the case if the Acemoglu et al. (2001) instrument, namely mortality rates of colo-
nial settlers, had greatest influence on institutional development in sub-Saharan
Africa, and if the marginal effect of institutions on development outcomes is most
powerful in Africa. Were this true, the estimated effect of institutions will be larger
than the average causal effect, because the IV estimate gives more weight to the
causal effect for countries where the instrument has greatest influence. This does
not invalidate the finding that institutions matter, but does make it harder to
generalize about the extent to which they matter.

This is admittedly a speculative hypothesis, but there is some possible supporting
evidence in Table 4 of Acemoglu et al. (2001). The 2SLS coefficient on institutions is
roughly halved when African countries are excluded from the sample, although still
precisely estimated. The sensitivity of the 2SLS estimate suggests that the effects
of institutions differ substantially across countries. A deeper and more rigorous
investigation would be possible when there is at least one additional instrument,
so that estimates can be compared across different instrument sets. If the effects of
policy are homogeneous across countries, the estimated effect should be the same
regardless of the choice of instrument (abstracting from sampling variability). That
invariance no longer holds under heterogeneous effects. Then, as we have seen, it
is likely that the IV estimate will be influenced by the choice of instrument, and
the estimated effect will no longer relate to the whole population.

24.7 Other econometric issues

In this section we consider a range of questions that arise in growth econometrics
from the properties of data and errors. Starting with data issues, section 24.7.1
examines how one may handle outliers in growth data. Section 24.7.2 examines
the problem of measurement error. This is an important issue since there are good
reasons to believe that the quality of the data is sometimes poor for less developed
economies. In section 24.7.3 we consider the case where data are missing. Turning
to issues of the properties of model errors, section 24.7.4 examines the analysis of
heteroskedasticity in growth contexts. Finally, section 24.7.5 addresses the problem
of cross-section error dependence.

24.7.1 Outliers

Empirical growth researchers often work with small datasets and estimate relatively
simple models. In these circumstances, OLS regressions are almost meaningless
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unless they have been accompanied by systematic investigation of the data, includ-
ing the sensitivity of the results to outlying observations. There are many reasons
why some observations may be unrepresentative. It is possible for variables to be
measured with error for that particular region or country. Alternatively, the model
specified by the researcher may omit a relevant consideration, and so a group of
observations will act as outliers. It is inherent in least squares estimators that they
are highly sensitive to unrepresentative observations, and the dangers of using
OLS were forcibly expressed by Swartz and Welsch (1986, p. 171): “In a world of
fat-tailed or asymmetric error distributions, data errors, and imperfectly specified
models, it is just those data in which we have the least faith that often exert the
most influence on the OLS estimates.”

Some researchers respond to this concern by using leverage measures or single-
case diagnostics such as Cook’s distance statistic. There are well-known problems
with these approaches, because where more than one outlier is present, the extent
of the influence of one observation can easily be hidden by the presence of another
(the “masking” effect). By far the best response is to use a more robust estimator,
such as least trimmed squares, at least as a preliminary way of investigating the
data.25 These issues are discussed in more detail in Temple (1998, 2000b).

24.7.2 Measurement error

We now turn to a more general discussion of measurement error. It is clear that
measurement errors are likely to be pervasive, especially in data that relate to devel-
oping countries, yet relatively few empirical studies of growth consider the impact
of measurement error in any detail. This rather casual approach often appeals to
the best-known statistical result, which applies to a bivariate model where the inde-
pendent variable is measured with error.26 The estimate of the slope coefficient will
be biased towards zero, even in large samples, because measurement error induces
a covariance between the observable form of the regressor and the error term. This
attenuation bias is well known, but sometimes misleads researchers into suggesting
that measurement error will only mask effects, a claim that is not true in general.
When there are multiple explanatory variables, but only one is measured with
error, then typically all the parameter estimates will be biased. Some parameter
estimates may be biased away from zero and, although the direction of the bias
can be estimated consistently, this is rarely done. When several variables are mea-
sured with error, the assumption that measurement error only hides effects is even
less defensible.

Where measurement error is present, the coefficients are typically not identified
unless other information is used. The most popular solution is to use instrumental
variables, if a separate instrument can be found which is likely to be independent
of the measurement error. A more complex solution, which does not need an
additional variable, is to exploit higher-order sample moments to construct IV
estimators, as in Dagenais and Dagenais (1997) and Arcand and Dagenais (2005).
The reliability of these procedures in small samples is uncertain, since the use of
higher-order moments could make them sensitive to outliers.

mailto: rights@palgrave.com


Paul Johnson, Steven Durlauf and Jonathan Temple 1161

Sometimes partial identification is possible, in the sense that bounds on the
extent of measurement error can be used to derive consistent estimates of bounds
on the slope parameters. Although it can be difficult for researchers to agree on
sensible bounds on the measurement error variances, there are easier ways of for-
mulating the necessary restrictions, as discussed by Klepper and Leamer (1984).
Their reverse regression approach was implemented by Persson and Tabellini (1994)
and Temple (1998), but has rarely been used by other researchers. Another strat-
egy is to investigate sensitivity to varying degrees of measurement error, based on
method of moments corrections. Again, this is easy to implement in linear models,
and should be applied more routinely than it is at present. Temple (1998) provides
a discussion of both approaches in the context of the Mankiw et al. (1992) model.

24.7.3 Missing data

Some countries rarely appear in growth datasets, partly by design: it is com-
mon to leave out countries with small populations, oil producers, and transition
economies. These are countries that seem especially unlikely to lie on a regression
surface common to the majority of the OECD member countries or the developing
world. Other countries are left out for different reasons. When a nation experiences
political chaos, or lacks economic resources, the collection of national accounts
statistics will be a low priority. In other cases, countries appear in some studies but
not in others, depending on the availability of particular variables of interest.

Missing data can be a serious problem. If a researcher started from a represen-
tative dataset and then deleted countries at random, this would typically increase
the standard errors but not lead to biased estimates. More serious difficulties arise if
countries are missing in a non-random or systematic way, because then parameter
estimates are likely to be biased. This problem is given relatively little attention in
mainstream econometrics textbooks, despite a large body of research in the statis-
tics literature. A variety of solutions are possible, with the simplest being one form
or another of imputation, with an appropriate adjustment to the standard errors.
Hall and Jones (1999) and Hoover and Perez (2004) are among the few empirical
growth studies to implement this. It may be especially useful when countries are
missing from a dataset because a few variables are not observed for their partic-
ular cases. It is then easy to justify using other available information to predict
the missing data, and thereby exploit the additional information contained in the
variables that are observed. Alternative approaches to missing data are also avail-
able, based on likelihood or Bayesian methods, which can be extended to handle
missing observations.

24.7.4 Heteroskedasticity

It is common in cross-section regressions for the underlying disturbances to have
a non-constant variance. As is well known, the coefficient estimates remain unbi-
ased, but OLS is inefficient and the estimates of the standard errors are biased. Most
empirical growth research simply uses the heteroskedasticity-consistent standard
errors developed by Eicker (1967) and White (1980). These estimates of the standard
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errors are consistent but not unbiased, which suggests that alternative solutions to
the problem may be desirable. For datasets of the size found in cross-country empir-
ical work, the alternative estimators developed by MacKinnon and White (1985)
are likely to have better finite sample properties, as discussed in Davidson and
MacKinnon (1993) and supported by simulations in Long and Ervin (2000).

There are at least two other concerns with the routine application of White’s
heteroskedasticity correction as the only response to heteroskedasticity. The first is
that by exploiting any structure in the variance of the disturbances, using weighted
least squares, it may be possible to obtain efficiency gains. The second and more
fundamental objection is that heteroskedasticity can often arise from serious model
misspecification, such as omitted variables or neglected parameter heterogeneity.
Evidence of heteroskedasticity should then prompt revisions of the model for the
conditional mean, rather than mechanical adjustments to the standard errors. See
Zietz (2001) for further discussion and references.

24.7.5 Cross-section error dependence

An unresolved issue in growth econometrics is the treatment of cross-section
dependence in model errors. This dependence may have important consequences
for inference. As noted by DeLong and Summers (1991) in the growth context,
failure to account for cross-sectional error correlation can lead to inaccurate stan-
dard errors. Furthermore, there are several reasons to expect cross-sectional error
dependence to be present when studying growth. For example, countries that
are geographically close together, or trading partners, may well experience com-
mon shocks. Output growth may often be related to the growth of large, leading
countries within a particular region or world.

The general issue of error dependence has been a focus of recent research, in the
context of panel data and panel time series estimators in particular. Whether the
effect of dependence is sizeable in practice remains an open question, but one that
might be addressed using ideas developed in Baltagi, Song and Koh (2003) and
Driscoll and Kraay (1998), among others.

In the context of growth regressions, work on cross-section dependence may
be divided into two strands. One concerns tests to identify the presence of cross-
section dependence. Pesaran (2004) develops tests that do not rely on any prior
ordering; this framework in essence sums the cross-section sample error correla-
tions in a panel and evaluates whether they are consistent with the null hypothesis
that the population correlations are zero. Specifically, and recalling that N denotes
the cross-section dimension and T the time dimension, he proposes a cross-section
dependence statistic CD:

CD =
√

2T
N (N − 1)

⎛⎝N−1∑
i=1

N∑
j=i+1

ρ̂i,j

⎞⎠ , (24.38)

where ρ̂i,j is the sample correlation between εi,t and εj,t . Pesaran gives conditions
under which this statistic converges to a Normal (0,1) random variable (as N and
T become infinite) under the null hypothesis of no cross-section correlation. This

mailto: rights@palgrave.com


Paul Johnson, Steven Durlauf and Jonathan Temple 1163

test statistic is based on earlier work by Breusch and Pagan (1980) and appears to
possess good finite sample properties in comparison to this earlier work. Using a
country-level panel, Pesaran (2004) strongly rejects the null of no cross-section
dependence for the world as a whole, and within several geographic groupings.

The CD test need not be consistent for some alternatives of interest, however.
With this in mind, Pesaran, Ullah and Yamagata (2008) develop a bias-adjusted
version of the Breusch and Pagan Lagrange multiplier (LM) test statistic for cross-
section error independence, for panels with strictly exogenous regressors and
normally distributed errors. This approach retains some power in some circum-
stances where the CD test does not, but is less robust to departures from normality
and the presence of regressors that are only weakly exogenous.

The second strand of research on cross-section error dependence has constructed
empirical models that take it explicitly into account. One approach relies on for-
mulating a statistical model of the dependence. Phillips and Sul (2003) model the
error term in a growth panel as:

εi,t = δiθt + ui,t , (24.39)

where θt and ui,t are independent random variables and ui,t is assumed to be i.i.d.
across countries and across time. Pesaran (2006) develops an alternative estimation
strategy based on a generalized form of this error structure, one in which θt may be
a vector. While Phillips and Sul consider how to account for error dependence in a
generalized least squares (GLS)-type structure, Pesaran considers ways to filter the
individual observations in order to eliminate the dependence. From the perspective
of growth dynamics, (24.39) suffers from the problem that it does not account for
aspects of the error process associated with growth. In order to account for cross-
section dependence in convergence analysis, Phillips and Sul (2007a, 2007b) study
the case where δi is replaced with δi,t in (24.39), arguing that transition dynamics
produce time varying coefficients of this type as less advanced economies catch up
to more advanced ones.

Another possibility when analyzing error dependence is to treat the problem as
one of spatial correlation. This issue has been much studied in the regional science
literature, and statisticians in this field have developed spatial analogues of many
time series concepts (see Anselin, 2001, 2006, for an overview). Spatial methods
may yet have an important role to play in growth econometrics. However, when
these methods are adapted from the spatial statistics literature, they raise the prob-
lem of identifying the appropriate notion of space. One can imagine many reasons
for cross-section correlation. If one is interested in technological spillovers, it may
well be the case that in the space of technological proximity, the United King-
dom is closer to the United States than is Mexico. Put differently, unlike the time
series and spatial cases, there is no natural cross-section ordering to elements in the
standard growth datasets. Following language due to Akerlof (1997), countries are
perhaps best thought of as occupying some general socioeconomic-political space
defined by a range of factors; spatial methods then require a means to identify their
locations.
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One approach is pursued by Conley and Ligon (2002). In their analysis, they
attempt to construct estimates of the spatial covariation of the residuals εi in a cross-
section. In order to do this, they construct different measures of socioeconomic
distance between countries. They separately consider geographic distance (mea-
sured between capital cities) and measures of the costs of transportation between
these cities. Once a distance metric is constructed, these are used to construct a
residual covariance matrix. Estimation methods for this procedure are developed
in Conley (1999). Conley and Ligon (2002) find that allowing for cross-section
dependence in this way is relatively unimportant in terms of appropriate calcu-
lation of standard errors for growth model parameters. Their methods could be
extended to allow for comparisons of different variables as the source for cross-
section correlation, as in Conley and Topa (2002) in the context of residential
neighborhoods. A valuable generalization of this work would be the modeling
of cross-section dependence as a function of multiple variables. Such an analysis
would allow further progress on the measurement of distances in socioeconomic
space, which may arise through multiple channels.

An alternative approach is to build spillover effects directly into the structure of
an empirical model. Easterly and Levine (1997) is an example of a study which
incorporates a direct effect of the growth of neighboring countries, but such
examples remain rare. Some of the relevant issues have been highlighted in the
theoretical literature on social interactions, inspired by empirical problems such
as the measurement of peer effects in schools. While a structural approach has
advantages, the presence of spillovers has consequences for identification that
are not easily resolved, for the reasons explained in Manski (1993) and subse-
quently discussed in Brock and Durlauf (2001b). These consequences have yet to
be fully explored in the context of empirical growth studies. Binder and Pesaran
(2001) and Brock and Durlauf (2001b) analyze identification and estimation prob-
lems for intertemporal environments that are particularly relevant to the growth
context.

24.8 Conclusions: the future of growth econometrics

In this section, we offer some closing thoughts on the most promising directions
for empirical growth research. We explicitly draw on previous contributions along
these lines, many of which deserve wider currency. It is especially interesting to
compare the current state of the field against the verdicts offered in the early survey
by Levine and Renelt (1991).

A dominant theme will be that the empirical study of growth requires an eclectic
approach, and that the field has been harmed by a tendency for research areas to
evolve independently, without enough interaction.27 This is not simply a question
of using a variety of statistical techniques. It also suggests the need for a closer
connection between theory and evidence, a willingness to draw on ideas from
areas such as trade theory, and more attention to particular features of the countries
under study, including the historical context.
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Pritchett (2000a) has listed three questions for growth researchers to address:

• What are the conditions that initiate an acceleration of growth or the conditions
that set off sustained decline?

• What happens to growth when policies – trade, macroeconomic, investment –
or politics change dramatically in episodes of reform?

• Why have some countries absorbed and overcome shocks with little impact on
growth, while others seem to have been overwhelmed by adverse shocks?

Although this research agenda is almost ten years old, it retains considerable
relevance, not least because it focuses attention on substantive economic issues
rather than technicalities. The importance of the first of Pritchett’s questions is
evident from the many instances where countries have moved from stagnation to
growth and vice versa. Hausmann, Pritchett and Rodrik (2005) explicitly model
transitions to fast growth (“accelerations”) and make clear the scope for informa-
tive work of this kind. The second question we have discussed in section 24.5.3,
and research in this vein is increasingly prominent. Here, one of the major chal-
lenges will be to relax the (sometimes only implicit) assumption that policies are
randomly assigned, and to find ways of carrying out inference that are robust in
small samples. The third question has been addressed in an important paper by
Rodrik (1999).

In all three cases, it is clear that econometric work should be informed by detailed
studies of individual countries, such as those collected in Rodrik (2003). Too much
empirical growth research proceeds without enough attention to the historical and
institutional context. For example, a newcomer to this literature might be surprised
at the paucity of work that integrates growth regression findings with, say, the
known consequences of the 1980s debt crisis. Another reason for advocating case
studies is that much of the empirical growth literature essentially isolates only
reduced-form partial correlations. These can be useful, but it is clear that we often
need to move beyond this. A partial correlation is more persuasive if it can be
supported by theoretical arguments. The two combined are more persuasive if there
is evidence of the intermediating effects or mechanisms that are emphasized in the
relevant theory. There is plenty of scope for informative work that tries to isolate the
mechanisms by which variables such as financial depth, inequality, and political
institutions shape the growth process. Wacziarg (2002), in particular, highlights the
need for a “structural” growth econometrics, one that aims to recover channels of
causation.

A more extreme view is that growth econometrics should be supplanted by the
calibration of theoretical models. Klenow and Rodriguez-Clare (1997) emphasize
the potential of such an approach. The analysis of Mankiw et al. (1992) can be
seen partly as a comparison of estimated parameter values with those associated
with specific theoretical models, but relatively little of the empirical work that
has followed has achieved a similarly close connection between theory and evi-
dence. This has been a recurring criticism of the literature since at least Levine and
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Renelt (1991). It would be premature to say that econometric approaches should
be entirely replaced by calibration or “quantitative theory,” but the two methods
could inform each other more often than at present. Calibrated models can help
to interpret parameter estimates, not least in comparing the magnitude of the esti-
mates with the implications of plausible models. At the same time, the partial
correlations identified in growth econometrics can help to act as a discipline on
model-building and can also indicate where model-based quantitative investiga-
tions are most likely to be fruitful. This role for growth econometrics is likely to
be especially useful in areas where the microeconomic evidence used to calibrate
structural models is relatively weak, or standard behavioral assumptions may be
flawed.

The need for a tighter connection between theory and evidence is especially
apparent in certain areas. Most empirical growth papers are based on the one-
sector, closed-economy Solow model, which leaves out aspects of interdependence
that are surely important. Howitt (2000) has shown that standard empirical growth
models can be reinterpreted in the light of a multi-country theoretical model with
a role for technology diffusion. More generally, there is a need for researchers to
develop frameworks that are consistent with international flows of goods, capital
and knowledge. These issues are partly addressed by the theoretical analyses of
Barro, Mankiw and Sala-i-Martin (1995) and Howitt (2000), and empirical work
that builds on such ideas deserves greater prominence. Here especially, research
that draws on the quantitative implications of specific theoretical models, as in
the work of Eaton and Kortum (1999, 2001) on technology diffusion and the role
of imported capital goods, could be an important advance.

The neglect of open economy models is just one example of the narrowness with
which empirical growth models are often conceived. Much of the empirical liter-
ature uses a theoretical framework that was originally developed to explain the
long-run growth experiences of the US and other developed nations. This frame-
work is routinely applied to study developing countries, while incorporating few
of their distinctive features. A list of these could include the potentially important
roles of agricultural employment, dualism, and structural change; a relatively large
informal sector, which often accounts for a substantial share of total employment;
and periods of extensive state involvement in production, sometimes reflect-
ing the legacy of nationalist movements and many years of socialist economic
policies.

The narrowness of focus in existing studies has many limitations. For example,
the conventional use of one-sector models depends on unrealistic assumptions
about aggregation. It also prevents many relevant and interesting questions from
even being asked, including the role of changes in sectoral and occupational
structure in productivity growth. Given the scope for more general and more infor-
mative models, empirical growth researchers have really only scratched the surface,
with a few recent exceptions. Temple (2005, 2006) and Temple and Wößmann
(2006) discuss some of the relevant issues, and provide further references.

Some of these issues are closely linked to an especially important research
agenda, namely the need to distinguish between different types of growth and
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their distributional consequences. For example, the general equilibrium effects of
productivity improvements in agriculture may be very different to those in services
and industry. Identifying the nature of “shared growth” will require more detailed
attention to particular features of developing countries. It will also require an effort
to understand how these influence the forms taken by growth, and their distribu-
tional consequences. Given that the main source of income for the poor is usually
labor income, there is a need to integrate theoretical and empirical growth models
with theory and evidence from labor economics, in order to study how growth
and labor markets interact. Agénor (2004) and Temple (2005) consider some of the
relevant issues. Partly because of the weaknesses of data on income distribution,
too little work in growth econometrics has differentiated between types of growth,
even though the policy relevance of these questions is clear.

Ideally, research along these various lines will utilize not only statistical methods,
but also the power of case studies in generating hypotheses, and in deepening our
understanding of the economic, social and political forces at work in determining
growth outcomes. Case studies may be especially valuable in at least two areas.
The first of these is the study of technology transfer. As emphasized in the survey
by Klenow and Rodriguez-Clare (1997), we do not know enough about why some
countries are more successful than others in climbing the “ladder” of product qual-
ity and technological complexity. What are the relative contributions of human
capital, foreign direct investment and trade? In recent years some of these issues
have been intensively studied at the microeconomic level, especially the role of
foreign direct investment and trade, but there remains work to be done in relating
firm and sector-level evidence to aggregate implications.

A second area where case studies may be especially valuable is the study of polit-
ical economy, in its modern sense. It is a truism that economists, particularly
those considering development, have become aware of the need to account for the
two-way interaction between economics and politics. A case can be made that the
theoretical literature has outpaced the empirical literature in this regard. Analyt-
ical case studies of individual countries, drawing on both economic theory and
political science, would help to close this gap.

Thus far, we have highlighted a number of limitations of existing work, and
directions in which further research seems especially valuable. Some of the issues
we have considered were highlighted much earlier by Levine and Renelt (1991).
The extent to which limitations have stubbornly persisted over time might lead to
pessimism over the long-term prospects of this literature.28 This also shows that our
prescriptions for future research could seem rather pious, since the improvements
we recommend are easier said than done. But the literature has also evolved in some
interesting and unpredictable ways, and we will end our review by considering
some areas in which genuine progress has been made, and where further progress
appears likely.

One reason for optimism is the potential of recently developed model averaging
methods. These help to address the model selection and robustness issues that have
been identified as a major weakness of cross-country growth research since at least
Levine and Renelt (1992). By framing the problem explicitly in terms of model
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uncertainty, the Bayesian approach can consider many candidate explanatory
variables simultaneously, and the extent of their robustness to changes in spec-
ification. Researchers can then communicate the degree of support for a particular
hypothesis with more faith that the results do not depend on arbitrary modeling
choices. Perhaps the main open questions about these methods are those identi-
fied by Ciccone and Jarocinski (2007). From their analysis, it is clear that current
approaches to Bayesian model averaging may have significant limitations of their
own. The development of methods to overcome these should be a research priority.

Another reason for optimism is that the quality of available data is likely to
improve over time. The development of new and better data has clearly been one
of the main achievements of the empirical growth literature since the early 1990s,
and one that was not foreseen by critics of the field. Researchers have developed
increasingly sophisticated proxies for drivers of growth that previously appeared
resistant to statistical analysis. One approach, pioneered in the growth literature by
Knack and Keefer (1995) and Mauro (1995), has been the use of country-specific rat-
ings compiled by international agencies. Such data increasingly form the basis for
measures of corruption, government efficiency, and protection of property rights.
More recent work, such as that of Kaufmann, Kraay and Zoido-Lobaton (1999a,
1999b) and Kaufmann, Kraay and Mastruzzi (2003), has established unusually com-
prehensive measures of various aspects of institutional quality. Similarly, research
in political science, notably the POLITY project at the University of Maryland, has
developed a range of indicators of political institutions that have already played
an important role in empirical growth studies.

As more variables become available, the construction of proxies is likely to make
increasing use of latent variable methods. These aim to reduce a set of observed
variables to a smaller number of indicators that are seen as driving the majority
of the variation in the original data, and that could represent some underlying
variable of interest. For example, the extent of democracy is not directly observed,
but is often obtained by applying factor analysis or extracting principal compo-
nents from various dimensions of political freedom. There are obvious dangers
with this approach, but the results can be effective proxies for concepts that are
otherwise hard to measure.29 Using latent variables makes especially good sense
under one view of the proper aims of growth research. It is possible to argue that
empirical growth studies will never give good answers to precise hypotheses, but
can be informative at a broader level. For example, a growth regression is unlikely
to tell us whether the growth effect of inflation is more important than the effect
of inflation uncertainty, because these two variables are usually highly correlated.
It may even be difficult to distinguish the effects of inflation from the effects of
sizeable budget deficits.30 Instead, a growth regression might be used to address a
less precise hypothesis, such as the growth dividend of macroeconomic stability,
broadly conceived. In this context, it is natural to use latent variable approaches
to measure the broader concept.

Another valuable development is likely to be the creation of rich panel datasets
at the level of regions within countries. Regional data offer greater scope for
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controlling for some variables that are hard to measure at the country level, such
as cultural factors. By comparing experiences across regions, there may also be
scope for identifying events that correspond more closely to natural experiments
than those found in cross-country data. Work such as that by Besley and Burgess
(2000, 2002, 2004), using panel data on Indian states, shows the potential of such
an approach. In working with such data more closely, one of the main challenges
will be to develop empirical frameworks that incorporate movements of capital
and labor between regions: clearly, regions within countries should only rarely be
treated as closed economies. Shioji (2001) is an example of how analysis using
regional data can take this into account.

Even with better data, at finer levels of disaggregation, the problem of omit-
ted variables can only be alleviated, not resolved. It is possible to argue that the
problem applies equally to historical research and case studies, but at least in these
instances, the researcher may have some grasp of important forces that are difficult
to quantify. Since growth researchers naturally gravitate towards determinants of
growth that can be analyzed statistically, there is an ever-present danger that the
empirical literature, even taken as a whole, yields a rather partial and unbalanced
picture of the forces that truly matter. Even a growth model with high explanatory
power, in a statistical sense, has to be seen as a rather provisional set of ideas about
the forces that drive growth and development.

This brings us to our final points. We once again emphasize that empirical
progress on the major growth questions requires attention to qualitative sources
such as historical narratives and studies by country experts. One example we have
given concerns the validity of instrumental variables: understanding the historical
experiences of various countries seems critical for determining whether exclusion
restrictions are plausible. In this regard work such as that of Acemoglu et al. (2001,
2002) is exemplary. More generally, nothing in the empirical growth literature
suggests that issues of long-term development can be disassociated from the his-
torical and cultural factors that fascinated commentators such as Max Weber, and
the examination of these factors must rely at least partly on case studies, or risk
missing some of the most interesting and important issues.

These questions have been asked for many decades, and the quest to understand
the wealth of nations is as old as the discipline of economics itself. In contrast,
growth econometrics is an area of research that is still in its infancy. Researchers
in this field have shown flexibility in responding to the specific challenges and
questions that arise in this context. They have introduced a number of statistical
methods into applied economics, including classification and regression tree algo-
rithms, robust estimation, threshold models and Bayesian model averaging, all of
which appear to have wider utility. As with any new literature, especially one tack-
ling questions as complex as these, it is easy to identify significant limitations of
the existing evidence, and of the tools that are currently applied. Yet it seems clear
to us that significant progress has been and continues to be made, even from the
vantage point of our (2005) review. We therefore see good reasons for continued
optimism.
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Notes

1. See Temple (2000b) and Brock and Durlauf (2001a) for a conceptual discussion of this
issue.

2. This independence assumption is sometimes defended either on theoretical grounds or
because the parameter estimates are consistent with those predicted by the augmented
Solow model.

3. Given the role it plays in the analysis of convergence, the initial income variable log yi,0
is usually distinguished from the other Solow variables.

4. Other early studies include Baumol (1986), DeLong (1988), Grier and Tullock (1989),
Kormendi and Meguire (1985) and Marris (1982).

5. Note that while some failures of exchangeability call into question the interpretation
of the regression, this is not always the case. For example, a heteroskedastistic error,
while violating exchangeability, does not undermine the interpretation of the point
estimates of the parameters. See Draper et al. (1993) for further discussion of the role of
exchangeability in empirical work.

6. See the discussion in Brock et al. (2003) of the Ellsberg paradox.
7. For further discussion of extreme bounds analysis, see Temple (2000b) and the references

therein.
8. In this discussion, we will assume that one of the models in the model space M is the

correct specification of the growth process. When none of the model specifications is the
correct one, this naturally affects the interpretation of the model averaging procedure.

9. Fernandez, Ley and Steel (2001b) provide a general analysis of proper model specific
priors for model averaging exercises.

10. Sachs and Warner (1995) use this variable as an index of overall openness of an economy.
11. The posterior inclusion probabilities of single variables ignores their interdependence

and so may be criticized for reasons similar to those we have raised with respect to model
space priors that assume, for inclusion in a given model, conditional independence
across variables. Doppelhofer and Weeks (2007) propose ways to measure the jointness
of variable inclusion. Letting k and l denote the events “variable rk appears in the true
model” and “variable rl appears in the true model,” and using k and l to denote the
complements of these events, the authors propose the jointness statistic

Jk,l = log

⎛⎝ μ
(
k
∣∣l, D, M

)
μ
(
k
∣∣l, D, M

) · μ
(
k
∣∣∣l, D, M

)
μ
(
k
∣∣∣l, D, M

)
⎞⎠

to measure the degree of dependence between two candidate variables. The authors find
that positive dependence is a common feature of the candidate growth determinants
studied by Sala-i-Martin et al. (2004).
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12. Here we are being imprecise in referring to within-model priors for Sala-i-Martin et al.
(2004), but note that, following Ley and Steel (2008), their analysis is interpretable in
this way.

13. A detailed discussion of regression tree methods appears in Breiman et al. (1984). The
technical appendix of Durlauf and Johnson (1995) presents a treatment tailored to the
specific question of identifying multiple regimes in growth models.

14. Motivated by the debate over trade openness and growth, Papageorgiou (2002) applies
Hansen’s (2000) methods to the Durlauf and Johnson (1995) data, with the trade share
added to the set of variables on which sample splits may occur.

15. Projection pursuit methods are developed in Friedman and Tukey (1974) and Friedman
(1987). Appendix A of Desdoigts (1999) provides a useful primer.

16. The assumed rarity of large shocks implies that movements between basins of attraction
of each of the steady-states are sufficiently infrequent that they can be ignored in estima-
tion. This assumption is consistent with, for example, the Bianchi (1997) and Paap and
van Dijk (1998) findings that there is relatively little mobility within the cross-country
income distribution.

17. See Temple (2003) for more discussion of this point and the long-run implications of
different growth models.

18. This is true of the many published studies that have used version 5.6 of the Penn World
Tables. Now that more recent data are available, there is more scope for estimating panels
with a longer time dimension.

19. See Arellano (2003, pp. 47–51) for a more formal treatment of this issue.
20. Note that the long-run values of log output are evolving over time when time-specific

effects are included in the model.
21. An alternative approach would be to use small-sample bias adjustments for GMM panel

data estimators, such as those described in Hahn, Hausman and Kuersteiner (2001).
22. This connection with the treatment effect literature is sometimes explicitly made, as

in Giavazzi and Tabellini (2005), Papaioannou and Siourounis (2007) and Persson and
Tabellini (2003). The connection helps to understand the limitations of the evidence,
but the scope for resolving the associated identification problems may be limited in
cross-country datasets.

23. Although this “reverse causality” interpretation of endogeneity is popular and important,
it should be remembered that a correlation between an explanatory variable and the error
term can arise for other reasons, including omitted variables and measurement error. As
we discuss, it is important to bear a general interpretation of the error term in mind when
judging the plausibility of exclusion restrictions in instrumental variable procedures.

24. Put differently, one does not require a precise definition of what makes an instrument
valid in order to debate whether a given instrument is valid or not. To take an example
due to Taylor (1998), the absence of a precise definition of money does not weaken my
belief that the currency in my wallet is a form of money, whereas the computer on which
this paper is written is not. To claim such arguments cannot be made is known as the
Socratic fallacy.

25. This estimator should not be confused with trimmed least squares and other methods
based on deleting observations with large residuals in the OLS estimates. A residual-based
approach is inadequate for obvious reasons.

26. This and the following discussion assume classical measurement error. Under more gen-
eral assumptions, it is usually even harder to identify the consequences of measurement
error for parameter estimates.

27. To give a specific example, the macroeconomic literature on international technol-
ogy differences only rarely acknowledges relevant work by trade economists, including
estimates of the Heckscher–Ohlin–Vanek model that suggest an important role for
technology differences. See Acemoglu (2008) and Klenow and Rodriguez-Clare (1997)
for more discussion.
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28. Only now are researchers beginning to engage with some of the issues they raised, such
as the varying conditions under which it is appropriate to use international rather than
national prices in making productivity comparisons and constructing capital stocks.

29. A relevant question, not often asked, is how high the correlation between the proxy and
the true predictor has to be for the estimated regression coefficient on the proxy to be
of the “true” sign. Krasker and Pratt (1986, 1987) have developed methods that can be
used to establish this under surprisingly general assumptions.

30. As Sala-i-Martin (1991) has argued, various specific indicators of macroeconomic insta-
bility should perhaps be seen as symptoms of some deeper, underlying characteristic of
a country.
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The Econometrics of Finance and
Growth
Thorsten Beck

Abstract

This chapter reviews different econometric methodologies to assess the relationship between finan-
cial development and growth. It illustrates the identification problem, which is at the center of the
finance and growth literature, using the example of a simple ordinary least squares estimation.
It discusses cross-sectional and panel instrumental variable approaches to overcome the identifi-
cation problem. It presents the time series approach, which focuses on the forecast capacity of
financial development for future growth rates, and differences-in-differences techniques that try
to overcome the identification problem by assessing the differential effect of financial sector devel-
opment across states with different policies or across industries with different needs for external
finance. Finally, it discusses firm- and household-level approaches that allow analysts to dig deeper
into the channels and mechanisms through which financial development enhances growth and
welfare, but pose their own methodological challenges.
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25.1 Introduction

Economists have discussed over the past 100 years whether or not financial devel-
opment has a causal impact on economic development. Theory suggests that
effective financial institutions and markets that help overcome market frictions
introduced by information asymmetries and transaction costs can foster economic
growth through several channels. Specifically, they help (i) ease the exchange of
goods and services by providing payment services, (ii) mobilize and pool savings
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from a large number of investors, (iii) acquire and process information about enter-
prises and possible investment projects, thus allocating society’s savings to its most
productive use, (iv) monitor investments and exert corporate governance, and (v)
diversify and reduce liquidity and intertemporal risk. However, other models show
that higher returns from better resource allocation may depress saving rates, result-
ing in overall growth rates actually slowing with more effective financial markets
and institutions.1

While the finding of a positive correlation between indicators of financial
development and economic growth cannot settle this debate, advances in com-
putational capacity and availability of large cross-country datasets with relatively
large time dimensions have enabled researchers to rigorously explore the rela-
tionship between financial development and economic growth. Further, as more
disaggregated datasets have become available, the finance and growth literature
has proceeded from using country-level data, to using industry- and firm-level
data, to more recently using household data. While the cross-country literature
has developed more sophisticated models to address biases introduced by mea-
surement error, reverse causation and omitted variables, the progress to firm- and
household-level data allows not only additional ways to address these biases, but
also tests of the specific channels through which finance might enhance economic
growth.

The econometrics of finance and growth can be summarized in the following
simple regression model:

g(i, t) = y(i, t)− y(i, t − 1) = α + βif (i, t)+ C(i, t)γi + μ(i)+ ε(i, t), (25.1)

where y is the log of real GDP per capita or of another measure of welfare, g is
the growth rate of y, f is an indicator of financial development, C is a set of con-
ditioning information, μ and ε are error terms, i is the observational unit – be it
a country, an industry, a firm or a household – and t is the time period. While ε

is a white-noise error with a mean of zero, μ is a country-specific element of the
error term that does not necessarily have a mean of zero. The explanatory vari-
ables are measured either as an average over the sample period or as an initial
value. The sign and significance of the coefficient βi is at the center of the debate.
As discussed in the remainder of this chapter, the estimate of βi can be biased for
a variety of reasons, among them measurement error, reverse causation and omit-
ted variable bias. While the cross-country literature assumes βi = β, with some
research supporting this assumption (Loayza and Ranciere, 2006), the time series
literature does not impose this restriction. Further, several industry- and firm-level
studies test whether β varies across industries or firms with different characteristics,
utilizing interaction terms.

This chapter is concerned with an unbiased, consistent and efficient estimator of
βi.

2 In this context, we abstract from a number of other problems in the finance and
growth literature. First, this chapter does not cover problems arising from the lack
of appropriate data, although we are concerned about measurement error in the
financial indicators and the bias this introduces in the estimation. Second, while
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we are concerned about the bias introduced by the potential reverse causation from
growth to finance, we are not concerned about this reverse causation per se, that
is, we do not discuss in depth the literature focusing on the impact of economic
growth on financial development and bidirectional causality. Finally, this chapter
does not intend to be a fully-fledged survey of the empirical finance and growth
literature, as is Levine (2005), but rather focuses on studies with methodological
contributions.

While this chapter is concerned about estimating the relationship between
finance and growth, some remarks about measuring financial development might
be useful. While the theoretical literature links specific functions of the financial
system to economic growth, data limitations have forced researchers to focus on
variables capturing the size, activity or efficiency of specific financial institutions
or markets. The first generation of papers in the finance and growth literature
have built on aggregate data on financial institutions, mainly banks, available for
30–40-year periods for a large number of developed and developing countries. Such
indicators include monetization variables, such as the ratio of M2 or M3 to gross
domestic product (GDP), or financial depth indicators, such as the ratio of private
credit (outstanding claims of financial institutions on the private sector) to GDP.
Later papers have added indicators of the size and liquidity of stock markets, albeit
available for fewer countries and shorter time periods. Indicators for the efficiency
and competitiveness of financial systems, non-bank financial institutions such as
institutional investors and, most importantly, the outreach of financial systems,
are available for only a few countries and often do not have a time dimension.3

Within-country studies allow researchers to utilize more micro-based data or focus
on specific policy interventions or reforms.

The remainder of the chapter is structured as follows. Section 25.2 illustrates the
identification problem, which is at the center of the finance and growth literature,
using the example of a simple ordinary least squares (OLS) estimation of regres-
sion (25.1). Section 25.3 discusses instrumental variable (IV) approaches using
cross-sectional and panel data. Section 25.4 discusses time series approaches, and
section 25.5 differences-in-differences techniques. Section 25.6 discusses the use
of firm- and household-level data and the methodological challenges this implies.
Section 25.7 concludes and looks forward to new research directions.

25.2 Correlation versus causality: the identification problem

Goldsmith (1969) was the first to empirically show the positive correlation between
financial development and GDP per capita, using data on the assets of financial
intermediaries relative to GNP and data on the sum of net issues of bonds and
securities plus changes in loans relative to GNP for 35 countries over the period
1860–1963. Such a correlation, however, does not control for other factors that
are associated with economic growth and might thus be driven by other country
characteristics correlated with both finance and growth. Second, such a correlation
does not provide any information on the direction of causality between finance
and growth. The early finance and growth literature has therefore used standard
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cross-country OLS regressions that build on an augmented Barro growth regression
as in (25.1), with data for each country averaged over the sample period, assuming
βi = β and γi = γ for all countries, and including the lagged dependent variable as
a control variable:

g(i) = y(i, t)− y(i, t − 1) = α + βf (i)+ C(i)γ + δy(i, t − 1)+ ε(i). (25.2)

Unlike regression (25.1), regression (25.2) has thus only a cross-country, but
not a time series, dimension. The log of initial income per capita is included to
control for convergence predicted by the Solow–Swan growth models. Including
other country characteristics, such as initial levels of human or physical capital,
and policy variables, such as government consumption or trade openness, in a set
of conditioning information allows testing for an independent partial correlation
of finance with growth. The coefficient β is of interest for finance and growth
researchers, who interpret a positive and significant coefficient as evidence for a
positive partial correlation between finance and growth.

Running this cross-country regression for a sample of 77 countries over the
period 1960–89, King and Levine (1993) found a positive and significant relation-
ship between several financial development indicators and GDP per capita growth.
Their study focuses mostly on monetization indicators and indicators measuring
the size and relative importance of banking institutions. Using initial values of
financial development confirms their finding. Levine and Zervos (1998) expanded
the analysis to include measures of stock market development and found a posi-
tive partial correlation of both stock market and bank development with GDP per
capita growth over the period 1976–94.4 Interestingly, they found a positive and
significant link between liquidity of stock markets – as measured by a turnover indi-
cator or value traded to GDP – and economic growth, but no robust relationship
between the size of stock markets and economic growth. The empirical relationship
between finance and growth, however, is not only statistically, but also economi-
cally, significant. Levine and Zervos found that a one standard deviation change in
stock market liquidity and banking sector development explains an annual GDP
per capita growth difference of 0.8 and 0.7 percentage points, respectively, adding
up to a total difference in GDP per capita of 31% over the 18-year sample period.

OLS estimates, however, are only consistent if the following orthogonality
conditions hold:

E[C(i)′ε(i)] = 0; E[y(i, t − 1)′ε(i)] = 0; E[f (i)′ε(i)] = 0. (25.3)

A violation of this condition can arise for several reasons. First, the presence of
an unobserved country-specific effect μ(i) – as in regression (25.1) – results in a
positive correlation of the lagged dependent variable with the error term as, unlike
the error term ε(i), μ(i) does not have a mean of zero, so that:

E[y(i, t − 1)′(μ(i)+ ε(i))] �= 0. (25.4)

Omitted variable bias can also arise if other explanatory variables are correlated
with the unobserved country-specific effect or if explanatory variables that should
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be included in regression (25.2) are (i) not included and (ii) correlated with included
explanatory variables, so that:

E[C(i)′(μ(i)+ ε(i))] �= 0. (25.5)

Second, reverse causation from GDP per capita growth to financial development or
another explanatory variable could violate the orthogonality condition and thus
bias the estimator of β if ε(i) and ν(i) are correlated with each other, as would
occur if:

f (i) = λy(i, t − 1)+ ν(i). (25.6)

Third, one of the explanatory variables could be mismeasured, so that:

f ∗(i) = f (i)+ u(i), (25.7)

where f ∗ is the true level and f is the measured level of financial development.
This could result in attenuation bias if the measurement error is correlated with f .

Several simple approaches to overcome these biases have been suggested. First,
controlling for other country traits and policies can help minimize the omitted
variable bias and allow testing for the robustness of the finance and growth link
(Levine and Renelt, 1992). However, the number of observations, and thus degrees
of freedom, severely limits this approach in a typical cross-country regression.
Second, several studies have used initial values of financial development, rather
than values averaged over the same period as GDP per capita growth. If the true
time span over which an improvement in financial development results in higher
growth is shorter than the sample period used in the regression, then using initial
values might reduce biases stemming from reverse causation. On the other hand,
using initial values does not correct for biases introduced by omitted variables,
measurement error or the inclusion of the lagged dependent variable, and implies
a loss of information to be used in the estimation. Third, using panel regressions
with fixed country effects would eliminate any time-invariant omitted variable bias
and time-invariant measurement bias. However, the correlation between the trans-
formed lagged dependent variable and the transformed error term will make the
fixed-effect estimator biased, and this bias is only eliminated as the number of time
periods goes towards infinity, which is certainly not the case for the typical growth
regression with fewer than 40 annual data points. Finally, fixed-effect regressions
also have the conceptual shortcoming that they effectively limit the analysis to
within-country variation in growth and financial development by differencing-out
cross-country variation.

25.3 The IV approach

The classical approach in cross-country growth regressions to overcome the biases
related to OLS is to identify an instrument that helps isolate that part of the vari-
ation in the endogenous variable that is not associated with reverse causation,
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omitted variables and measurement error. Following the seminal work by La Porta
et al. (1997, 1998), who identified variation in countries’ legal origin as an historical
exogenous factor explaining current variation in countries’ level of financial devel-
opment, an extensive literature has utilized this variable to extract the exogenous
component of financial development.

To overcome biases related to the inclusion of the lagged dependent variable
and omitted variable bias, while at the same time controlling for reverse causation
and measurement error, researchers have utilized dynamic panel regressions using
lagged values of the explanatory endogenous variables as instruments. Finally, to
control for country heterogeneity in the finance–growth relationship, researchers
have utilized pooled mean group estimators. We will discuss each methodology
in turn.

25.3.1 Cross-sectional regressions

Underlying IV estimation is the following specification:

g(i) = y(i, t)− y(i, t − 1) = α1 + β1f (i)+ C(i)γ1 + δ1y(i, t − 1)+ ε(i) (25.8)

f (i) = α2 + Z(i)β2 + C(i)γ2 + δ2y(i, t − 1)+ ν(i) (25.9)

f ∗(i) = f (i)+ u(i), (25.10)

where C are the included exogenous and Z the excluded exogenous control vari-
ables; the latter are also referred to as IVs which allow us to extract the exogenous
component of f (i) that is not correlated with ε(i), that is, E[Z(i)′ε(i)] = 0, and
E[Z(i)′u(i)] = 0.5 Estimating regression (25.8) with instruments can help alleviate
biases arising from reverse causation, omitted variables and measurement error.

Regression (25.8) is typically estimated with a two-stage least squares (2SLS) esti-
mator. Unlike the OLS estimator, the 2SLS estimator only uses the variation in
the explanatory variables that is correlated with the instrument and therefore uses
less information than the OLS estimator. If OLS is consistent, it is therefore more
efficient than IV, whereas if OLS is inconsistent, the IV estimator is both consistent
and efficient.6

The 2SLS estimator can also be derived as a generalized method of moments
(GMM) estimator that minimizes a set of orthogonality conditions (Hansen, 1982).
In the case where there are more excluded exogenous than endogenous variables, a
weighting matrix has to be used. While the 2SLS estimator uses a weighting matrix
constructed under the assumption of homoskedasticity, the weighting matrix of
the GMM estimator is constructed as the inverse of the variance-covariance matrix,
thus assigning different weights to the orthogonality condition, according to their
variances. While the 2SLS estimator is thus consistent, it is inefficient as it does not
use all the available information. On the other hand, the GMM estimator relies on
asymptotic characteristics and therefore suffers from a finite-sample bias as the
optimal weighting matrix is a function of fourth moments (Hayashi, 2000).7

Using legal origin as an instrument for financial development, Levine (1998,
1999) finds a positive relationship between finance and economic growth.
Researchers have also used other historical and exogenous country characteristics
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as instruments for financial development, such as settler mortality and latitude, to
proxy for geographic conditions, ethnic fractionalization, religious composition
of the population, and years since independence (McCraig and Stengos, 2005).
Guiso, Sapienza and Zingales (2004) use sub-national variation in historical bank
restriction indicators across 20 Italian regions and its 103 provinces as IVs to assess
the impact of financial development and competition on economic growth and
other real sector outcomes.

IV regressions depend on the quality of the IVs, independent of whether 2SLS
or GMM is applied. As discussed above, these instruments are typically exogenous
country characteristics, such as geographic traits, or based on historical experience,
such as legal origin. The challenge is to identify the economic mechanisms through
which the IVs influence the endogenous variable – financial development – while
at the same time assuring that the instruments are not correlated with growth
directly. An extensive literature has discussed the historic determinants of financial
sector development and the channels through which, for example, legal origin
has helped shape current financial sector development,8 but there are also several
formal econometric conditions to be fulfilled in order for an instrument to be
valid. First, the exogenous variables cannot be correlated with error terms, that
is, E[Z(i)′ε(i)] = 0 (orthogonality or exogeneity condition). Second, the excluded
exogenous instruments have to explain the variation in the endogenous variables
after controlling for the included exogenous variables, that is, the F-test for Z(i) in
(25.9) is rejected at conventional levels (relevance condition).

The orthogonality condition is typically tested with the Sargan (1958) test of
overidentifying restrictions (OIR) if there are more instruments than explanatory

variables, that is: ε̂
′Z(Z′Z)

−1Z′ε̂/σ̂2, where σ̂2 = (ε̂
′
ε̂)/n and ε̂ is the vector of

residuals from estimating regression (25.8). This test can easily be calculated from
a regression of the IV regression residuals on included and excluded exogenous

variables. It is distributed as χ
2 with (J – K) degrees of freedom under the null

hypothesis that the residuals are not correlated with the exogenous variables,
where J is the number of instruments and K is the number endogenous variables.9

Hansen’s (1982) J-test is a generalization of the Sargan OIR test to the GMM context
and is the value of the GMM objective function evaluated at the efficient GMM

estimator: ε̂
′Z(Z′�̂Z)

−1Z′ε̂, where �̂ is the estimated variance-covariance matrix
of the residuals from regression (25.8). As with the Sargan test, Hansen’s test is

distributed as χ
2 with (J – K) degrees of freedom.

The test of OIR, however, is relatively weak. First, the test only assesses the valid-
ity of any additional instruments, that is, it cannot be performed if the number
of excluded exogenous variables is the same as the number of endogenous vari-
ables. Further, the test tends to reject the null hypothesis of valid instruments too
often in small samples (Murray, 2006). Most importantly, the test over-rejects if
the instruments are weak, that is, if they do not explain the endogenous variables
in the first stage.

The second condition of instrument relevance can be tested in different ways.
First, one can use an F-test of the joint significance of the instruments in (25.9);
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the critical values of this F-test for IV estimation, however, are larger than for OLS
estimation; for the case of a single endogenous variable, Staiger and Stock (1997)
show, using Monte Carlo simulations, that for most specifications and indepen-
dent of the degrees of freedom, a critical value of 10 is sufficient to reject the null
hypothesis, and Stock and Yogo (2005) derive critical values for this F-test for the
case of several endogenous variables, with the critical values increasing with the
number of instruments.10 Second, one can use a partial R2 of the first-stage regres-
sion (25.9) that takes into account the intercorrelation among the instruments
(Shea, 1997). Specifically, Godfrey (1999) shows that this statistic for endogenous
regressor i is:

σ̂
OLS
i

σ̂ IV
i

⎡⎣
(
1− R2

IV

)
(
1− R2

OLS

)
⎤⎦ ,

where σ̂i is the estimated asymptotic variance of the coefficient i. This measure
thus tests for the relevance of the individual instruments, unlike the F-test, which
tests for the overall relevance.

Weak instruments can bias the IV results towards OLS and turn them inconsis-
tent. Further, weak instruments can result in an over-rejection of the overidentifi-
cation test discussed above. If instruments are both invalid and irrelevant, the bias
thus increases in a multiplicative way.11

Most of the cross-country finance and growth papers utilizing IVs find that the
IV estimator of β1 is higher than the OLS estimator.12 Manipulating regressions
(25.8), (25.9) and (25.10), one can show that this implies:

δ̂2 + ρ̂
σ̂ (υ)

σ̂ (ε)
< β̂1

(
1− β̂1δ̂2

) σ̂ (u)

σ̂ (ε)
, (25.11)

where ρ is the correlation between ε and υ, and the other parameters are taken from
regressions (25.8), (25.9) and (25.10). There are several possible explanations for
this finding and thus for inequality (25.11) to hold (Kraay and Kaufman, 2002).
First, there could be negative reverse causation (δ2 < 0), which would bias the
OLS estimator of the β1 coefficient downwards. Given empirical studies show-
ing the positive relationship between economic and financial development, this
explanation seems rather unlikely (Harrison, Sussman and Zeira, 1999). A sec-
ond explanation that makes inequality (25.11) hold is that omitted variables are
correlated with growth and finance with opposite signs (ρ < 0), an explanation
for which, again, little evidence exists. A third – and most commonly adopted –
explanation relies on attenuation bias, where measurement error in financial devel-
opment (σ̂ (u)) biases the OLS estimate downwards and makes inequality (25.11)
hold. Critically, however, if the IVs are positively correlated with omitted vari-
ables and the exclusion condition is thus violated, the IV estimator of β1 is biased
upwards. This is of concern, as a few IVs, such as historical country traits, have been
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used for many different institutional variables in the context of growth regressions
(Pande and Udry, 2006). Specifically, legal origin has been shown to be associated
with an array of institutional arrangements, ranging from financial markets over
general regulatory approaches, to labor market institutions. A significant corre-
lation between institutional variables left out of the regressions and the IVs can
therefore also result in an upwardly biased IV estimator of β1.

25.3.2 Dynamic panel analysis

While the cross-sectional IV regressions address biases related to omitted variables,
reverse causation and measurement error, they do face several limitations. First,
cross-country studies using cross-sectional IV regressions typically control only for
the endogeneity and measurement error of financial development, but not of other
explanatory variables entering the growth regressions. Second, in the presence of
country-specific omitted variables, the lagged dependent variable is correlated with
the error term if it is not instrumented.

As an alternative to cross-sectional IV regressions, researchers have therefore used
dynamic panel regressions of the following format:

g(i, t) = α + βf (i, t)+ C(1)
(i, t)γ1 + C(2)

(i, t)γ2 + δy(i, t − 1)+ μ(i)+ λ(t)+ ε(i, t),
(25.12)

where C(1) represents a set of exogenous explanatory variables, C(2) a set of endoge-
nous explanatory variables, and λ a vector of time dummies. Note that β is still
assumed to be constant across countries, a restriction that we will relax further
below.

Unlike the cross-sectional regressions, which use external instruments, that is,
variables that are completely external to the second-stage regression, the dynamic
panel regressions use internal instruments, that is, lagged realizations of the
explanatory variables. While this method does not control for full endogeneity,
it does control for weak exogeneity, which means that current realizations of f or

variables in C(2) can be affected by current and past realizations of the growth rate,
but must be uncorrelated with future realizations of the error term. Thus, under the
weak exogeneity assumption, future innovations of the growth rate do not affect
current financial development.

In order to address the different biases in regression (25.12), Arellano and Bond
(1991) suggest first-differencing the regression equation to eliminate the country-
specific effect, as follows:13

�g(i, t) = β�f (i, t)+�C(1)
(i, t)γ1 +�C(2)

(i, t)γ2 + δ�y(i, t − 1)+�λ(t)+�ε(i, t),
(25.13)

where �x(t) = x(t) − x(t − 1). This procedure solves the omitted variable bias, as
described above, but introduces a correlation between the new error term, �ε(i, t),
and the lagged dependent variable, �y(i, t −1). To address this correlation and the
endogeneity and measurement problems, Arellano and Bond suggest using lagged
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values of the explanatory variables in levels as instruments for current differences
of the endogenous variables. Under the assumptions that there is no serial corre-

lation in the error term ε and that the explanatory variables f and C(2) are weakly
exogenous, one can use the following moment conditions to estimate regression
(25.13):

E[f (i, t − s)′�ε(i, t)] = 0, for each t = 3, . . . , T , s ≥ 2

E
[
C(2)

(i, t − s)′�ε(i, t)
]
= 0, for each t = 3, . . . , T , s ≥ 2

E[y(i, t − s)′�ε(i, t)] = 0, for each t = 3, . . . , T , s ≥ 2. (25.14)

Using these moment conditions, Arellano and Bond propose a two-step GMM
difference estimator. In the first step, the error terms are assumed to be both inde-
pendent and homoskedastic across countries and over time, while in the second
step, the residuals obtained in the first step are used to construct a consistent
estimate of the variance-covariance matrix, thus relaxing the assumptions of inde-
pendence and homoskedasticity. Simulations, however, have shown very modest
efficiency gains from using the two-step as opposed to the one-step estimator, while
the two-step estimator tends to underestimate the standard errors of the coefficient
given that the two-step weight matrix depends on estimated parameters from the
one-step estimator (Bond and Windmeijer, 2002).

There are several conceptual and econometric shortcomings with the difference
estimator. First, by first-differencing we lose the pure cross-country dimension of
the data. Second, differencing may decrease the signal-to-noise ratio, thereby exac-
erbating measurement error biases (see Griliches and Hausman, 1986). Finally,
Alonso-Borrego and Arellano (1999) and Blundell and Bond (1998) show that, if
the lagged dependent and the explanatory variables are persistent over time, that
is, have very high autocorrelation, then the lagged levels of these variables are weak
instruments for the regressions in differences.14 Simulation studies show that the
difference estimator has a large finite-sample bias and poor precision.

To address these conceptual and econometric problems, Arellano and Bover
(1995) suggest an alternative estimator that combines the regression in differences
with the regression in levels. Using Monte Carlo experiments, Blundell and Bond
(1998) show that the inclusion of the level regression in the estimation reduces the
potential biases in finite samples and the asymptotic imprecision associated with
the difference estimator. Using the regression in levels, however, does not directly
eliminate the country-specific effect μ. Lagged differences of the explanatory vari-
ables can be used as instruments for the levels of the endogenous explanatory
variables under the assumption that the correlation between μ and the levels of
the explanatory variables is constant over time, such that:

E[f (i, t + p)′μ(i)] = E[f (i, t + q)′μ(i)], for all p and q

E
[
C(2)

(i, t + p)′μ(i)
]
= E

[
C(2)

(i, t + q)′μ(i)
]

, for all p and q. (25.15)
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Under this assumption, lagged differences are valid instruments for the regression
in levels, and the moment conditions for the regression in levels are as follows:

E[�f (i, t − s)′(ε(i, t)+ μ(i))] = 0, for each t = 3, . . . , T , s = 2

E
[
�C(2)

(i, t − s)′(ε(i, t)+ μ(i))
]
= 0, for each t = 3, . . . , T , s = 2

E[�y(i, t − s)′(ε(i, t)+ μ(i))] = 0, for each t = 3, . . . , T , s = 2. (25.16)

The system thus consists of the stacked regressions in differences and levels, with
the moment conditions in (25.14) applied to the first part of the system, the regres-
sions in differences, and the moment conditions in (25.16) applied to the second
part, the regressions in levels.15 As with the difference estimator, the model is
estimated in a two-step GMM procedure.

The consistency of the GMM estimator depends both on the validity of the instru-
ments (exclusion condition) and the assumption that the error term, ε, does not
exhibit serial correlation. Arellano and Bond (1991) propose two tests to exam-
ine these assumptions. The first is a Sargan test of OIR, which is constructed in a
similar manner to the cross-sectional test discussed above. In the context of the sys-
tem estimator, one can also compute a “difference-in-Sargan” test, the C-statistic
(Eichenbaum, Hansen and Singleton, 1988), to test the orthogonality condition of
a sub-set of instruments, such as the instruments applied to the level regressions.
The C-statistic is computed as the difference of two Sargan/Hansen statistics, the
one for the regression using the full set of instruments and the one using a smaller

set of instruments. The C-statistic is distributed as χ
2 with the degrees of freedom

equal to the number of instruments dropped from the second regression.
The second test examines the assumption of no serial correlation in the error

terms, specifically whether the differenced error term is second-order serially cor-
related as, by construction, the error term �ε(i, t) from the difference regression is
first-order serially correlated and we cannot use the error terms from the regression
in levels since they include the country-specific effect μ. This test is based on the
standardized average residual autocovariances and, under the null hypothesis of
no second-order serial correlation, has a standard normal distribution.

Rousseau and Wachtel (2000) use the difference estimator with annual data over
the period 1980–95 across 47 countries and find a positive link between indi-
cators of bank and stock market development and economic growth.16 Using
five-year averages over the period 1960–95 across 74 countries, Beck, Levine and
Loayza (2000) and Levine, Loayza and Beck (2000) use both the difference and the
system estimator and find a positive and significant relationship between indica-
tors of financial intermediary development and GDP per capita growth, with the
specification tests referred to above confirming the validity of both instruments
and econometric model.17 Beck et al. (2000) also find that the effect of finance
on growth is through productivity growth, while there is no robust relationship
between financial development and capital accumulation when controlling for
biases due to simultaneity, omitted variables and measurement error.
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The dynamic panel estimators have typically been applied to panels with few
time periods and many countries. Further, the instrumental variable matrix Z
is typically constructed with separate columns for instruments in different time
periods, resulting in a quadratic increase in the number of columns of Z as the
number of time periods increases (Roodman, 2007). This results in an overfit of the
endogenous variables, biasing the coefficient estimates towards OLS estimates and
biasing the Sargan/Hansen test for joint validity of the instruments towards over-
accepting the null hypothesis (Bowsher, 2002). In order to avoid overfitting, one
can limit the number of lags used in the difference regression or combine instru-
ments into smaller sets, effectively imposing the constraint that instruments of
each lag distance have the same coefficient when projecting regressors onto instru-
ments (Beck and Levine, 2004; Roodman, 2007). In this case, the orthogonality
conditions for the difference regressions are:

E[f (i, t − s)′�ε(i, t)] = 0, for each s ≥ 2

E
[
C(2)

(i, t − s)′�ε(i, t)
]
= 0, for each s ≥ 2

E[y(i, t − s)′�ε(i, t)] = 0, for each s ≥ 2, (25.17)

and the orthogonality conditions for the levels regressions are:

E[�f (i, t − s)′(ε(i, t)+ μ(i))] = 0, for each s ≥ 2

E
[
�C2

(i, t − s)′(ε(i, t)+ μ(i))
]
= 0, for each s ≥ 2

E[�y(i, t − s)′(ε(i, t)+ μ(i))] = 0, for each s ≥ 2. (25.18)

Given that data on financial sector indicators for a broad cross-section of coun-
tries are only available for a 25–40-year period, most studies split the sample period
into non-overlapping five-year periods, thus controlling for business cycle effects,
while at the same time having a reasonable number of time periods. An alternative
to splitting the sample period into a number of five-year periods is to utilize over-
lapping five-year periods, as proposed by Bekaert, Harvey and Lundblad (2005),
thus allowing researchers to increase the number of time periods in the panel. In
order to control for the MA(4) character of the data, the weighting matrix of the
GMM estimator has to be adjusted accordingly.

Both the cross-sectional and the dynamic panel regressions discussed up to now
assume a homogeneous relationship between finance and growth across countries,
that is, βi = β. At the other extreme, the time series approach, discussed in the
next section, assumes complete country heterogeneity, but relies on a sufficiently
large time series of data. When both cross-country and time series dimension
are sufficiently large, Pesaran, Smith and Im (1995) show that a consistent mean
coefficient across countries is the unweighted average of the coefficients from inde-
pendent country regressions (mean group (MG) estimator). The pooled mean group
(PMG) estimator, introduced by Pesaran, Shin and Smith (1999), is in between

mailto: rights@palgrave.com


1192 The Econometrics of Finance and Growth

these two extremes of cross-country and time series approaches, as it imposes
the same coefficient across countries on the long-run coefficients, but allows the
short-run coefficients and intercepts to be country-specific. Loayza and Ranciere
(2006) use the PMG estimator on a sample of 75 countries and annual data over
the period 1960–2000 and find a positive long-run relationship between financial
development and growth, while the mean short-run coefficient on current finan-
cial development enters negatively.18 Using the Hausman test that compares the
MG with the PMG model, they cannot reject the hypothesis that the long-run co-
efficients on finance are the same in a cross-country panel growth regression. This
is also evidence that the assumption that βi = β in the cross-country estimations
discussed so far is a valid one, as long as the focus is on the long-term relationship
between financial development and economic growth.

25.4 The time series approach

The use of higher-frequency data, often limited to one or a few countries, and
the concept of causality are the main differences between the time series approach
and the cross-country approach discussed in the previous section. First, the time
series approach relies on higher-frequency data, mostly yearly, to gain econometric
power, while the cross-country approach typically utilizes multi-year averages.19

Further, the time series approach relaxes the somewhat restrictive assumption of
the finance–growth relationship being the same across countries, that is, βi = β,
and allows country heterogeneity of the finance–growth relationship; most studies
therefore focus their analysis on a few countries with long time series data. The
time series approach also directly addresses biases introduced by the persistence
and potential unit root behavior of financial development, as we will see in the
following.

Second, and more importantly, different causality concepts underlie the two
approaches. The time series approach relies on the concept of Granger causality,
as first developed by Granger (1969). A time series X is said to Granger-cause Y
if, controlling for lagged Y values, lagged X values provide statistically significant
information about the current value of Y . Granger causality tests are tests of fore-
cast capacity; that is, to what extent does one series contain information about
the other series? Unlike the cross-country panel regressions discussed earlier, this
concept therefore does not control for omitted variable bias by directly including
other variables or by controlling with instrumental variables. Rather, by including
a rich lag structure, which is lacking in the cross-sectional approach, the time series
approach hopes to capture omitted variables. The cross-country approach, on the
other hand, estimates the empirical relationship between finance and growth con-
trolling for the different biases discussed in section 25.2, including the omitted
variable bias, by extracting an exogenous component of finance that is related to
growth only through finance.

In the context of the finance and growth literature, finance is said to Granger-
cause GDP per capita if the inclusion of past values of finance in a regression of
GDP per capita on its lags and the conditioning information set reduces the mean
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squared error mse. Formally:

mse[y(t + s)/y(t), y(t − 1), . . .] > mse[y(t + s)/y(t), y(t − 1), . . . , f (t), f (t − 1), . . .],
(25.19)

where the null hypothesis of no Granger causality is typically tested using F-tests on
current and lagged values of f . Most studies test for bidirectional Granger causality
using the following vector autoregression (VAR) system:

Y(t) = α1Y(t − 1)+ α2Y(t − 2)+ · · · + αjY(t − j)+ μ(t), (25.20)

where Y is a vector comprising both GDP per capita and finance, as well as possibly
other macroeconomic variables, and μ is a vector of error terms. Jung (1986) finds
evidence for Granger causality from finance to GDP per capita for a sample of 56
countries, with some evidence of reverse Granger causality in the case of developed
countries.

Testing for Granger causality between finance and GDP per capita using a levels
VAR has the shortcoming that both finance and GDP per capita are non-stationary
variables in most countries, as shown by standard tests for unit roots, such as the
augmented Dickey–Fuller (ADF) and Phillips and Perron (PP) tests, but stationary
in first differences. However, only if two (or more) non-stationary series are co-
integrated, that is, if some linear combination of the series is stationary, can one
use a levels VAR to test for Granger causality (Toda and Phillips, 1993, 1994). Co-
integration thus implies a long-run equilibrium relationship between finance and
GDP per capita. As in the case of Granger causality, cointegration does not directly
control for omitted variable or measurement biases, but rather exploits the long
time series of data to assess whether there is a stable relationship between these
two variables.

If the vector Y is cointegrated, regression (25.20) can be rewritten in the vector
error correction (VEC) form (Engle and Granger, 1987):

�Y(t) = α1�Y(t − 1)+ α2�Y(t − 2)+ · · · + γ δ
′Y(t − 1)+ μ(t), (25.21)

where the vector γ of error correction coefficients (loading factors) indicates the
direction and speed of adjustment of the respective dependent variable to tempo-
rary deviations from the long-run relationship, while δ is the cointegrating vector.
If there exists a non-zero cointegrating vector such that δ

′Y(t) is stationary, the
variables in Y are considered cointegrated. Testing for cointegration of the vector
Y(t) therefore is equivalent to a test that δ

′Y(t) is stationary. If we can reject the
null hypothesis that δ

′Y(t) is stationary, we can also reject the null hypothesis that
Y(t) is cointegrated. In the case of two variables, this implies testing the residuals
from a regression of y(1, t) on y(2, t) or y(2, t) on y(1, t) for stationarity. While the
standard ADF test can be applied, the critical values are not the same as the test is
performed on estimated residuals (Engle and Yoo, 1987). If there is no unit root,
the two variables are cointegrated. In the case of more than two variables, infer-
ences on the number and coefficients of the cointegrating vectors can be based
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on Johansen’s (1991) full information maximum likelihood approach. Johansen
(1988) and Johansen and Juselius (1990) show that the maximum likelihood esti-
mator of γ and δ can be derived as a solution of a generalized eigenvalue problem,
and likelihood ratio tests, based on these eigenvalues, can be used to test hypothe-
ses on the number of cointegrating vectors.20 The number of linear independent
cointegrating vectors is equal to the rank of the matrix δ. Alternatively, one can
test the hypothesis of a specific known cointegrating vector (Horvath and Watson,
1995), as done by Neusser and Kugler (1998).

Demetriades and Hussein (1996) and Luintel and Khan (1999) use the VEC spec-
ification and test for weak exogeneity of finance to GDP per capita by testing the
null hypothesis that the corresponding loading factor in the GDP per capita regres-
sion in (25.21) is zero, while they follow Toda and Phillips’ (1993) suggestion and
use the product of the loading factor and the cointegrating parameter to test for
long-run causality. While Demetriades and Hussein (1996) find evidence for bi-
directional causality and reverse causation from income to finance across a sample
of 16 developing countries with at least 27 annual observations, with results vary-
ing substantially from country to country, Luintel and Khan (1999) find consistent
evidence for bidirectional causality across a sample of ten developing countries
with at least 36 years of data.

In the case of a cointegrating relationship between finance and GDP per capita,
however, a levels VAR as in (25.20) can be used to test for short-term Granger causal-
ity, with conventional F-test statistics applying (Toda and Phillips, 1993, 1994;
Sims, Stock and Watson, 1990),21 and the VEC representation in (25.21) to estimate
the adjustment speed γ . Rousseau and Wachtel (1998) use both the VAR specifi-
cation of (25.20) and the VEC specification of (25.21) to determine the direction
of causality between economic and financial development for five industrialized
countries for the period 1870–1929. Specifically, using the VEC specification of
(25.21), they find a cointegrating relationship for all five countries, while Granger
causality tests suggest that finance leads GDP per capita in all five countries.22 In
addition, Neusser and Kugler (1998) apply the Granger and Lin (1995) test to mea-
sure the strength of causality from finance to GDP per capita at frequency zero,
that is, in the long term, which is a function of the correlation of the errors in a
bivariate VEC model and the adjustment coefficient vector γ .

In order to gain degrees of freedom, as unit root and cointegration tests have low
power in the case of short time series, several studies have expanded the time series
approach to panel data (Neusser and Kugler, 1998; Christopoulos and Tsionas,
2004). Averaging individual Dickey–Fuller unit root tests yields the Im, Pesaran
and Shin (2003) test, while combining p-values from individual ADF tests yields
the Maddala and Wu (1999) test, both of which allow testing for a unit root in
panels. To establish cointegration relationships in a panel, Pedroni (1997) suggests
estimating the cointegrating regression by OLS separately for each country before
a unit root test similar to the PP test is applied to the stacked residuals. Further, the
VEC specification (25.21) can be extended to a panel with country-specific fixed
effects to test for both long- and short-run relationships between finance and GDP
per capita. Christopoulos and Tsionas (2004) find evidence for cointegration and
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long-run Granger causality from finance to GDP per capita for a sample of ten
developing countries for the period 1970–2000, both for individual countries and
for the panel. Unlike other studies in the time series tradition, they also confirm
their findings by applying dynamic panel regression techniques using lagged values
as instruments in the panel version of (25.21).

Using Geweke’s (1982) measure of linear dependence, Calderon and Liu (2003)
compute the relative strength of Granger causality from finance to GDP per capita,
from GDP per capita to finance and the instantaneous feedback between finance
and GDP per capita. Specifically, using variance-covariance matrices calculated
under different restrictions on the system (25.20) allows calculating a measure of
the overall strength of the relationship between the two variables and the three
different sources. They find a stronger effect from finance to GDP per capita than
for the reverse effect for developing countries, which increases when they average
data over longer time periods. While they consider the linear decomposition in
the context of panel regressions, with data averaged over five-year periods, they do
not assess the finance–GDP per capita relationship at different frequencies.

25.5 Differences-in-differences estimations

While the cross-country IV approach focuses on identifying instruments to over-
come the different biases found in an OLS regression, and the time series approach
focuses on the forecast capacity of finance in a VAR including GDP per capita,
the differences-in-differences technique can be understood as a “smoking gun” or
controlled treatment approach. Specifically, traditional differences-in-differences
estimation consists of comparing the difference between the treatment and the
control groups before and after a treatment, such as a policy change, thus
controlling for other confounding influences on growth.23

The seminal paper in this literature is Jayartne and Strahan (1996), who exploit
the fact that states across the US deregulated intrastate branch restrictions at differ-
ent times over the period 1970–1995 and relate this policy change to subsequent
state-level growth. In this case the treatment and control groups are in flux; at
any point in time, the treatment group consists of states that have deregulated,
while the control group consists of those states that have not deregulated yet. By
controlling for state- and year-specific effects, this approach effectively measures
the impact of deregulation on state-level growth relative to the average state-level
growth rate over the sample period and relative to the average growth rate in the
US in this specific year. The specification is:

g(i, t) = α(i)+ λ(t)+ βd(i, t)+ C(i, t)γ + δy(i, t − 1)+ ε(i, t), i = 1, . . . , 49;

t = 1976, . . . , 1994, (25.22)

where α(i) is a vector of state dummies, λ(t) a vector of year dummies, C(i, t) a
vector of time-varying state characteristics and d the treatment variable, which
is branch deregulation in the case of Jayaratne and Strahan (1996), who found a
positive and significant coefficient β, thus suggesting that branch deregulation led
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to higher growth.24 They also find evidence for a large economic effect of branch
deregulation, explaining an annual growth difference of at least 0.5 percentage
points, compared to an average annual growth rate across states of 1.6%. Consis-
tent with cross-country results, they also find evidence that the finance–growth
nexus worked through improved lending efficiency rather than more lending and
investment.

The differences-in-differences estimator reduces, but does not eliminate, the
biases of reverse causation and omitted variables. Specifically, any omitted vari-
able has to be time-variant in order to bias the results, because otherwise it would
be picked up by the state dummies. Further, by considering sub-national varia-
tion, differences-in-differences estimation is less subject to biases introduced by
unobserved heterogeneity across countries and measurement error is reduced as
the focus is on one specific policy measure, implemented in the same way but at
different times across sub-national units.25 On the other hand, the events in differ-
ent states, such as branch deregulation, were not independent from each other, but
rather came in waves, which might bias the estimate of β (Huang, 2008). Further,
the concern of reverse causation can only be addressed by utilizing instrumental
variables or by showing that the decision to implement the policy change across
states is not correlated with future growth rates, as was done by Jayaratne and
Strahan (1996).

Apart from the problem of endogeneity, serial correlation of the error terms
in differences-in-differences estimations can lead to underestimation of standard
errors, as shown by Bertrand, Duflo and Mullainathan (2004).26 This problem
increases with the number of time periods and the persistence of the dependent
variable and is exacerbated by the fact that the treatment variable, for example,
branch deregulation, shows little change across states, at most one change from
zero to one. Using Monte Carlo simulation, Bertrand, Duflo and Mullainathan
show that collapsing data to before and after-treatment27or allowing for correlation
within states (clustering) are solutions that resolve the problem of underestimated
standard errors.

Going even more local, Huang (2008) uses county-level data from contiguous
counties only separated by a state border in cases where one state deregulated
at least three years earlier than the other. This helps reduce concerns of omitted
variables, as one can assume a very similar structure of two contiguous counties and
also helps reduce concerns of reverse causation, as expected higher future growth
of a specific county is unlikely to affect state-level political decisions.28, 29

A somewhat related differences-in-differences approach is suggested by Rajan and
Zingales (1998), who conjecture that the effect of financial development should
vary by sector or industry according to the financing need of each sector or indus-
try. They thus assess the finance and growth link by focusing on a specific channel
through which financial development should foster economic development, that
is, the channeling of society’s savings to industries with the highest demand for
external finance. Specifically, they use variation across industries in their depen-
dence on external finance and variation across countries in their level of financial
development to assess the impact of finance on industry growth, and apply the
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following specification:30

g(i, k) = α(i)+ λ(k)+ β(External(k)∗f (i))+ γ Share(i, k)

+ (Industry(k)∗Country(i))δ + ε(i, k), (25.23)

where g is growth of value added in industry k in country i; α and λ are vectors of
country and industry dummies; Share is the initial share of industry k’s value added
in total manufacturing value added of country i; External is the external dependence
of industry k; f is a measure of financial development in country i; Industry is a vec-
tor of other industry characteristics that do not vary across countries; and Country
is a vector of other country characteristics that do not vary across industries. By
including industry and country specific effects, the coefficient β measures the dif-
ferential growth impact of financial development on high-dependence industries
relative to low-dependence industries. When redefining this exercise in terms of a
controlled experiment, we could see industries (rather than states) as the treated
objects, some of which (high external dependence) are subjected to the treatment
of financial development. In a sample of 41 countries and 36 manufacturing indus-
tries, Rajan and Zingales (1998) find robust evidence for a significant and positive β,
which is even stronger when focusing on young firms in the computation of exter-
nal dependence. To gauge the economic significance, Rajan and Zingales assess the
growth difference between the industries at the 75th and 25th percentiles of exter-
nal dependence in the countries at the 75th and 25th percentiles of their financial
development indicator. Their results suggest that the annual growth difference
between Machinery (75th percentile of external dependence) and Beverages (25th
percentile of external dependence) is 1.3 percentage points higher in Italy (75th
percentile financial development) than in Philippines (25th percentile financial
development). This compares to an average industry growth rate of 3.4%, and
thus is a relatively large effect.

As in the case of Jayaratne and Strahan (1996), regression (25.23) does not
control for biases due to omitted variables or reverse causation. Rajan and Zin-
gales (1998) address concerns about the endogeneity of the treatment, that is, of
financial development, by focusing on the smallest 50% of industries in terms
of initial value added in each country, as it is less likely that the financial sec-
tor develops in response to the smallest industries. They address the omitted
variable bias by including other interaction terms between industry and coun-
try characteristics that can explain cross-country, cross-industry growth variation
and utilizing instrumental variables for financial development.31 Critically, the
differences-in-differences estimator depends on the assumption that there are
industry-inherent characteristics that do not vary across countries and that they
are properly measured by the data in the US (von Furstenberg and von Kalckreuth,
2006, 2007).

25.6 Firm- and household-level approaches

While the three approaches discussed so far, cross-country instrumental variable
regressions, VAR models and differences-in-differences estimation, have tried to
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address the different biases resulting from the standard OLS cross-country growth
regression, a fourth approach has used disaggregated firm and, more recently,
household-level data to assess the impact of access to financial services on firm
growth and household welfare. The advantage of using micro-level data is that it
allows more clearly the disentangling and testing of the mechanisms and channels
through which financial development enhances economic growth. A disadvan-
tage is that it focuses on the direct effect of finance on firm growth and household
welfare but commonly does not consider spillover effects on other firms and house-
holds and therefore does not allow for individual effects to be added up to an
aggregate growth effect.32

Further, as in the case of cross-country regressions, biases due to omitted vari-
ables, measurement error and reverse causation have to be addressed. This section
discusses several studies using micro-data that assess whether easier access to
finance is associated with faster firm growth and higher household welfare. Unlike
the previous section, this section does not introduce new methodologies, but rather
discusses methodological challenges stemming from the use of micro-, as opposed
to country-level data.

25.6.1 Firm-level approaches

The different approaches discussed in this section consist of relating firm-level
growth or investment to country-level financial development measures. As in the
case of cross-country regressions, however, this implies controlling for biases stem-
ming from reverse causation and omitted variables. A first approach, suggested by
Demirgüç-Kunt and Maksimovic (1998), compares firm growth to an exogenously
given benchmark. Specifically, they calculate for each firm in an economy the rate
at which it can grow, using (i) only its internal funds or (ii) its internal funds and
short-term borrowing, based on the standard “percentage of sales” financial plan-
ning model (Higgins, 1977). Given a set of simplifying assumptions, the external
financing needs EFN at time t of a firm growing at rate g(t) is given by:33

EFN(t) = g(t)∗Assets(t)− [1− g(t)]∗Earnings(t)∗b(t), (25.24)

where b(t) is the fraction of the firm’s earnings that are retained for reinvestment at
time t . Assuming that the firm retains all its earnings, that is, b(t) = 1, the internally
financed growth rate IG(t) is the maximum growth rate that can be financed with
internal resources only, that is:

IG(t) = ROA(t)/[1− ROA(t)]. (25.25)

Demirgüç-Kunt and Maksimovic (1998) then regress the percentage of firms in a
country that grow at rates exceeding IG(t) on financial development, other country
characteristics and averaged firm characteristics in a simple OLS set-up and show,
for a sample of 8,500 firms across 30 countries, that the proportion of firms growing
beyond the rate allowed by internal resources is higher in countries with better
developed banking systems and more liquid stock markets.34
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An alternative approach to assess the impact of access to finance on firm growth is
the use of firm-level survey data, as done by Beck, Demirgüç-Kunt and Maksimovic
(2005), who use firm-level survey data for over 4,000 firms in 54 countries to run
the following regression:

g(i, k) = α + β1o(i, k)+ β2f (i)+ β3o(i, k)∗f (i)+ C(1)
(i, k)γ1 + C(2)

(i)γ2 + ε(i, k),
(25.26)

where g is sales growth of firm k in country i over the period 1996–99, C(1) is a set of

firm-level control variables, C(2) is a set of country-level control variables, o is the
financing obstacle as reported by the firm and f is a country-level financial develop-
ment indicator. The financing obstacle is the response by the firm to the question
of whether financing is an obstacle to its operation and growth, and responses are
coded as no obstacle (1) minor obstacle (2), moderate obstacle (3), and major obsta-
cle (4). While β1 indicates the relationship between the reported financing obstacle
and firm growth, β3 indicates whether this relationship varies across countries with
different levels of financial development. Beck, Demirgüç-Kunt and Maksimovic
find a negative and significant coefficient on β1 and a positive and significant
coefficient on β3, suggesting that firms reporting higher financing obstacles expe-
rience slower sales growth, but that this relationship is less strong in countries
with better developed financial systems. Further, using triple interaction terms,
they show that the mitigating effect of financial development on the relationship
between financing obstacles and firm growth is stronger for small firms than for
large firms.

Another methodology consists of assessing the relationship between country-
level financial development and firms’ financing constraints derived from a
structural investment model, such as the Euler equation (Love, 2003; Laeven,
2003). Specifically, the Euler equation derives the optimal investment decision as
the point where the marginal cost of today’s investment is equal to the discounted
marginal cost of postponing investment until the next period, which includes
the marginal product of capital, the adjustment cost and the price of investment
tomorrow. In the absence of credit market constraints, firms’ investment decisions
should thus be independent of firms’ cashflow holdings, while the investment deci-
sions of credit constrained firms should be a positive function of available cash.
Financial sector development, on the other hand, should reduce the dependence
of firms’ investment on cash holdings. To test for the presence of credit market
constraints and the impact of financial development on the relationship between
credit market constraints and investment, the following regression is used:

I(k, t) = α(k)+ λ(t)+ β1Cash(k, t − 1)+ β2Cash(k, t − 1)∗f (i, t)

+ C(1)
(k, t)γ1 + C(2)

(k, t − 1)γ2 + ε(i, k, t), (25.27)

where I is investment, α(k) is a vector of firm dummies, λ(t) a vector of time
dummies, Cash is liquid assets relative to total assets, C(1) and C(2) are sets of cur-
rent and lagged firm-level control variables, such as investment-to-capital ratios
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and sales-to-capital ratios, and the i refers to countries. The existence of credit
constraints implies β1 > 0, while the alleviating role of financial sector devel-
opment implies β2 < 0. As regression (25.27) poses similar problems in terms
of the different biases identified in section 25.2 for cross-country growth regres-
sions, most studies use the dynamic panel techniques suggested by Arrellano and
Bond (1991) and Arrellano and Bover (1995) to control for these biases. Using
data for 5,000 firms across 36 countries, Love (2003) shows that financial devel-
opment reduces firms’ dependence on cash holdings for investment, while Laeven
(2003) shows, for a sample of 400 firms across 13 countries, that financial liberal-
ization helped reduce small firms’ financing dependence on internal cash, while it
adversely affected large firms’ financing possibilities. The effect of financial devel-
opment and liberalization is also economically significant. Love (2003) shows that
firms’ financing constraints – as measured by the cost of capital – in countries with
low levels of financial development are twice as high as in countries with average
levels of financial development, while Laeven (2003) shows that financial liberal-
ization had a significant economic effect on firms’ financing constraints, reducing
small firms’ constraints by 80%.

25.6.2 Household-level approaches

While the availability of financial information for listed companies and survey
data for non-listed companies has resulted in a rapid expansion of firm-level stud-
ies, the lack of comparable data for households has impeded similar research for
the effect of access to finance on household welfare until recently. As in the case
of aggregate and firm-level studies, the identification problem prevents inference
from cross-sectional household surveys with data on welfare and access to finance
variables. A final and very recent technique therefore uses controlled experiments
with households and/or micro-entrepreneurs, whose financing constraints are ran-
domly alleviated and who are then compared to a control group whose constraints
were not alleviated. The challenges of these studies are less in estimation tech-
niques than in the proper identification of treatment and control groups and of
the experimental treatment itself. In the following, we will discuss three examples.

First, Pitt and Khandker (1998) use household survey data to assess the impact
of micro-credit on household welfare across several programs in Bangladesh. How-
ever, as in the case of cross-country regressions, omitted variable bias and reverse
causation would bias the result of simple OLS estimation, as illustrated by the
following system:

y(i, j) = C(i, j)α1 + βf (i, j)+ η(i)+ ε(i, j) (25.28)

f (i, j) = C(i, j)α2 + Z(i, j)δ + μ(i)+ ν(i, j), (25.29)

where y is a measure of household welfare of household i in village j, f is the
amount of credit obtained by a household, C is a vector of household characteris-
tics, and Z is a set of household or village characteristics that serve as instruments
for the endogenous credit variable. μ and η are unobservable village characteristics,
that are correlated with household welfare and credit, respectively. Correlations
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between μ and η and between ε and ν can result in a biased OLS estimate of β

in (25.28). These correlations can arise because micro-credit program placement
is non-random, often related with specific village characteristics, such as poverty
levels. Further, unmeasured household and village characteristics can influence
both the demand for micro-credit and household outcomes y. Pitt and Khandker
(1998) therefore use the exogenously imposed restriction that only farmers with
less than a half-acre of land are eligible to borrow from micro-finance institutions in
Bangladesh as an exclusion condition to compare eligible and non-eligible farmers
in program and non-program villages. Using survey data for 1,800 households and
treating landownership as exogenous to welfare outcomes, they exploit the discon-
tinuity in access to credit for households above and below the threshold and find
a positive and significant effect of credit on household consumption expenditures.
Morduch (1998), however, shows that mistargeting, that is, allowing farmers with
landholdings above the threshold to access micro-credit, violates the exclusion
condition, and that different econometric techniques exploiting the landholding
restriction lead to different findings.

Coleman (1999) exploits the fact that future micro-credit borrowers are identi-
fied before the roll-out of the program in Northern Thailand and can thus exploit
the differences between current and future borrowers and non-borrowers in both
treated and to-be-treated villages.35 His model is:

y(i, j) = C(1)
(i, j)α + βp(i, j)+ C(2)

(j)γ + δM(i, j)+ ε(i, j) (25.30)

where y is an array of measures of household welfare, C(1) is a set of observable

household and C(2) a set of observable village characteristics, M is dummy that
takes the value one for current and future borrowers and p is a dummy that takes
the value one for villages that already have access to credit programs. M can be
thought of as a proxy for unobservable household characteristics that determine
whether a household decides to access credit or not, whereas β measures the impact
of the credit program by comparing current and prospective borrowers. Coleman
(1999) does not find any robustly significant estimate of β and therefore rejects the
hypothesis that micro-credit helps households in this sample and this institutional
setting.

A final example is Karlan and Zinman (2006), who use a sample of marginally
rejected applicants of a South African consumer credit institution. They convinced
the credit institution to provide loans to a randomly chosen sub-set of these bor-
rowers. Surveying both treatment and control groups six and twelve months after
providing credit to the treatment group, they find that borrowers were more likely
to retain wage employment and less likely to experience hunger in their household
and be impoverished:

y(i) = C(i)α + βp(i)+ ε(i), (25.31)

where y is an indicator of household welfare, C is a vector of household characteris-
tics and p is the treatment dummy that takes the value 1 if the individual surveyed
has received a loan.
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While controlled experiments can assess the effect of access to credit (or other
financial services) on the growth of micro-enterprises or household welfare, there
are shortcomings to this methodology. First, they are very costly to conduct.
Second, they are environment-specific and it is not clear whether the results will
hold in a different environment with a different sample population. Third, the
controlled experiments, as they have been undertaken up to now, do not consider
any spillover effects of access to credit by the treated individuals or enterprises to
other individuals or enterprises in the economy.

25.7 Concluding remarks

The finance and growth literature has come a long way from simple correlation and
OLS regressions to dynamic panel regressions and the use of firm- and household-
level data. While each of the different methodologies and aggregation levels has its
shortcomings, the body of evidence accumulated over the past 15 years provides a
strong case for a relationship between financial development and economic growth
that is not driven by omitted variables, measurement error or reverse causation.

While the profession has made great progress in measuring financial devel-
opment, especially by moving towards micro-data, this chapter has focused on
methodological advances to overcome the biases illustrated by a simple cross-
country OLS regression. Most importantly, overcoming endogeneity and simul-
taneity biases with a proper identification strategy has been the main challenge
for researchers. While the cross-country literature has focused on finding external
and internal instruments, the time-series literature has exploited high-frequency
data, a rich lag structure, and the forecast capacity of finance for GDP per
capita. Differences-in-differences approaches address the identification challenge
by assessing natural experiments, exploiting either exogenous policy reforms or
inherent industry characteristics that result in a differential impact of financial
development.

Using firm- and household-level data allows a deeper look into the mecha-
nisms through which finance enhances firm growth and household welfare and
thus provides additional evidence, but poses its own set of identification chal-
lenges. While many of the methodologies used at the cross-country-level, such as
instrumental variables or differences-in-differences, can also be applied at the firm
and household level, randomized controlled experiments with households and
micro-entrepreneurs open new and exciting research opportunities, as they allow
researchers to subject households and micro-enterprises to a specific treatment
under the control of the researcher.

Different methodologies imply different aggregation levels. While assessing the
finance and growth relationship on a more disaggregated level might allow better
controlling for different biases – such as measurement error when considering a
specific policy change on the sub-national level or simultaneity bias when using
household data in a controlled randomized experiment – this has to be balanced
with the limited extent to which we can draw policy conclusions from such a
specification. Further, using firm- or household-level data does not properly control
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for spillover effects, are often very costly exercises, and do not lend themselves
easily to compute the aggregate growth effect of financial development. While
randomized experiments have the advantage that they are the cleanest exercise
possible, as they are controlled by researchers, they might not properly mimic the
real world, and might not allow inferences outside the geographic and institutional
experiment area.

While a wide array of cross-country techniques has been applied to the finance
and growth field, some techniques have not been used yet, such as identification
through heterogeneity in structural shocks (Rigobon, 2003). Further, it is easy to
predict that there will be further advances in GMM techniques that control better
for country heterogeneity and in techniques to assess the finance and growth rela-
tionship at different frequencies. As before, the finance and growth literature will
benefit in the years to come from methodological advances in neighboring fields,
especially in growth econometrics. Merging VAR and cross-country techniques –
two literatures which have moved mostly parallel to each other up to now – also
promises further methodological insights.

More important than these advances at the aggregate level, however, will be
advances at the micro-level, and specifically on two fronts. First, randomized exper-
iments involving both households and micro- and small enterprises will shed light
on the effect of access to finance on household welfare and firm growth. One
of the challenges to overcome will be to include spillover effects and thus move
beyond partial equilibrium results to aggregate results. Second, further studies eval-
uating the effect of specific policy interventions can give insights into which policy
reforms are most effective in enhancing financial development and positive real
sector outcome.36 Advances in both areas, however, will depend on the collection
of micro-based data on access to and use of financial services.
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Notes

1. See Levine (1997, 2005) for surveys of the theoretical literature.
2. For a broader survey on the econometrics of growth regressions, see Durlauf, Johnson

and Temple (2005).
3. See Beck, Demirgüç-Kunt and Levine (2000) for an overview of different cross-country

indicators of financial development and Beck et al. (2008) for a discussion of the different
dimensions of financial development, such as depth, efficiency and reach. See World
Bank (2007) for a discussion of financial outreach indicators.

4. Other early finance and growth studies using cross-sectional OLS regressions include Atje
and Jovanovic (1993) and De Gregorio and Guidotti (1995).

5. Most of the papers using this approach assume that only financial development is an
endogenous variable and thus treat all control variables as exogenous.

6. The literature has developed several tests to resolve the issue of OLS versus IV, including
the Hausman test.
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7. The presence of heteroskedasticty can be examined with a test proposed by Pagan and
Hall (1983).

8. See Beck and Levine (2005) for an overview.
9. An alternative test was developed by Basmann (1960) and does not impose the

overidentifying restrictions.
10. In the case of several endogenous variables, the Stock and Yogo test also requires each

instrument to predict primarily just one of the endogenous variables.
11. For further discussion on weak instruments and how to deal with them, see Murray

(2006) and Baum, Schaffer and Stillman (2003).
12. Most papers in the literature, however, do not formally test whether the difference

between the OLS and the IV estimate is significant, which could be done with a Hausman
test.

13. Alternatively, one can use the forward orthogonal deviation transformation.
14. Formal unit root tests as discussed in section 25.4 are not feasible in this context, as there

are too few observations.
15. Given that lagged levels are used as instruments in the difference regressions, only the

most recent difference is used as an instrument in the level regressions, as using addi-
tional differences would result in redundant moment conditions (Arellano and Bover,
1995).

16. Rousseau and Wachtel (2000) was also the first paper to combine dynamic panel
techniques with vector autoregression techniques discussed in the next section.

17. Other papers using dynamic panel techniques include Rioja and Valev (2004a, 2004b)
and Benhabib and Spiegel (2000). The latter, however, assume exogeneity of financial
development and weak exogeneity only for capital accumulation, but not the other
control variables.

18. This negative short-run coefficient is consistent with the finding of the banking crisis
literature. See, for example, Demirgüç-Kunt and Detragiache (1999).

19. It is important to note, however, that the power of such high-frequency tests depends
on the span of the time series rather than the number of observations.

20. Specifically, the “trace” test can be used to test the hypothesis of r against zero cointe-
grating vectors, while the “λ-max” or maximum eigenvalue test can be used to test the
hypothesis of r + 1 cointegrating vectors against r cointegrating vectors.

21. Specifically, Toda and Phillips (1993, 1994) and Sims, Stock and Watson (1990) show
that in the case of cointegrated series the conventional Wald statistic converges to a χ2

distribution.
22. Following this approach, Rousseau and Sylla (2005) use data for the US over the period

1850–1997, Bell and Rousseau (2001) use data for India, and Xu (2000) uses data for 43
countries over the period 1960–93; all find robust evidence for a leading role of finance.

23. While we treat such exogenous policy changes in the context of differences-in-differences
estimations, one could also use them as instruments for financial development in the
context of regular cross-sectional regressions (Guiso, Sapienza and Zingales, 2004).

24. Following the model of Jayartne and Strahan (1996), Dehejia and Lleras-Muney (2007)
show that, over the period 1900–40 across states of the US, regulatory changes that
allowed branching accelerated the mechanization of agriculture and spurred growth in
manufacturing, while the introduction of deposit insurance had negative consequences.

25. On the other hand, focusing on one country reduces the policy relevance of its findings,
as the relationship might vary across countries with different economic and institutional
settings. Further, sub-national variation might not be independent from each other given
the higher mobility of capital and labor within rather than across countries.

26. Bertrand, Duflo and Mullainathan (2004) find over-rejection of the null hypothesis using
randomly assigned placebo treatments in Monte Carlo simulation.

27. Specifically, this would imply regressing growth on state and year fixed effects and other
time-varying control variables, taking the residuals and averaging them for the period
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before and after the treatment for each state. The estimate of the treatment can then be
obtained from a regression of this two-period state panel on the treatment dummy.

28. This argument, however, is only valid if there is sufficient variation in growth across
different counties within the state.

29. Given the lack of randomness of the sample relative to the population, Huang (2008)
constructs critical values from a distribution of the effects of fictitious placebo treat-
ments on county pairs on non-event borders, taking into account spatial correlation
across counties along the same borders. Only if 95% of all placebo treatments result in a
growth difference below a certain value can this value be considered a significant growth
difference for a real world treatment at the 5% significance level.

30. Rajan and Zingales (1998) compute the industry-level dependence on external finance
from data of listed firms in the US, that is, firms that should have the least problems in
raising external finance and thus face a perfectly elastic supply curve, to get measures of
industry-level demand for external finance. They conjecture that demand for external
finance measured in this way proxies for the industry-inherent demand for external
finance, rather than country- or firm-specific characteristics, in the US.

31. The differences-in-differences approach of Rajan and Zingales (1998) has subsequently
been used by many other researchers interested in the linkage between financial devel-
opment and growth and specific mechanisms and channels, including Beck and Levine
(2002), Beck (2003), Beck et al. (2008), Braun and Larrain (2005), Claessens and Laeven
(2003), Fisman and Love (2003), and Raddatz (2006).

32. Indirect effects of financial development can be very important, as shown by Beck, Levine
and Levkov (2007), who find that the main channel through which branch deregulation
across US states led to lower income inequality was through labor market effects rather
than through providing increased access to finance.

33. The three simplifying assumptions are as follows. First, the ratio of assets used in produc-
tion to sales is constant. Second, the firm’s profits per unit of sales are constant. Finally,
the economic deprecation rate equals the accounting depreciation rate.

34. Subsequently, this technique has been applied by Demirgüç-Kunt and Maksimovic
(2002) and Guiso, Sapienza and Zingales (2004), among others.

35. This technique is also referred to as “pipeline matching” (Goldberg and Karlan, 2005).
36. One example assessing the effect of different legal reforms is Haselmann, Pistor and Vig

(2005).
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Abstract
In this chapter, we focus on some econometric aspects related to a sub-set of hedonic house
price models, which we refer to as spatial hedonic models. In these, the locational aspects of
the observations are treated explicitly, and the estimation of the models is an application of spa-
tial econometrics. As defined in Anselin (2006), spatial econometrics “consists of a sub-set of
econometric methods that is concerned with spatial aspects present in cross-sectional and space-
time observations.” These methods focus in particular on two forms of so-called spatial effects in
econometric models, referred to as spatial dependence and spatial heterogeneity. In this chapter
we provide a review of the principles underlying the hedonic house price model, and continue
to extensively discuss spatial econometric aspects due to spatial models and spatial data specific
to house price applications. We review and discuss the treatment of spatial dependence (includ-
ing space-time dynamics) and spatial heterogeneity with selective illustrations from the empirical
literature.
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26.7 Concluding remarks 1243

26.1 Introduction

Hedonic pricing models have become a common tool in applied microeconomics,
going back to the classic contributions of Lancaster (1966) and Rosen (1974) (for a
recent review, see, e.g., Malpezzi, 2002). The ability of hedonic models to relate the
price of a product to the relative contributions of different characteristics has led to
a wide range of applied econometric work using these specifications. An important
class of applications pertains to house price models, in which characteristics of the
property, the neighborhood and other amenities are included in an econometric
specification for the sales price or assessed value of a housing unit. Such models
are now routinely used in mass appraisal exercises as well as in the valuation of
non-market amenities that contribute to the price of the house. The rationale for
the latter is that, in an efficient market, superior amenities (such as clean air, access
to parks or beaches, and views) should be capitalized into the value of the house. In
other words, ceteris paribus, houses with superior amenities should be more expen-
sive and the price differential constitutes a measure for the value of the amenity as
expressed through market transactions.

In this chapter, we focus on some econometric aspects related to a sub-set of
hedonic house price models, which we refer to as spatial hedonic models. In these,
the locational aspects of the observations are treated explicitly, as an application of
spatial econometrics. As defined in Anselin (2006), spatial econometrics “consists of
a sub-set of econometric methods that is concerned with spatial aspects present in
cross-sectional and space-time observations.” These methods focus, in particular,
on two forms of so-called spatial effects in econometric models, referred to as spatial
dependence and spatial heterogeneity (Anselin, 1988).

As outlined in Anselin, spatial dependence or spatial autocorrelation is a spe-
cial case of cross-sectional dependence in which the structure of the covariation
between observations at different locations is subject to a spatial ordering. This
ordering is related to the relative positioning, distance or spatial arrangement of
the observations in geographic space, or, more generally, in (social) network space.
This type of dependence differs from time series dependence in that it is both
two-dimensional as well as multidirectional. This implies a simultaneous feedback
between observations (“I am my neighbor’s neighbor”), which requires the appli-
cation of specialized techniques that are not simply an extension of time series
methods to two dimensions.

Spatial heterogeneity is a special instance of structural instability, which can be
observed or unobserved. The spatial aspect of this issue is that spatial structure pro-
vides the basis for the specification of the heterogeneity. This may inform models
for spatial structural change (referred to as spatial regimes), heteroskedasticity, or
spatially varying and random coefficients.
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Spatial patterns in the housing market are expected to arise from a combina-
tion of spatial heterogeneity and spatial dependence (Anselin, 1998). For example,
spatial heterogeneity may originate from spatially differentiated characteristics
of demand, supply, institutional barriers, or racial discrimination. This system-
atic variation in the behavior of economic agents across space warrants special
attention, since any model that imposes homogeneity will be misspecified.

Spatial autocorrelation may appear when either the prices or characteristics of
houses that are closer together are more similar to each other than those from
houses that are farther apart. Alternatively, it may also stem from measurement
problems in explanatory variables, omitted variables, and other forms of model
misspecification (Baumont, 2004). A major class of such misspecifications pertains
to so-called neighborhood effects, which are typically unobserved and modeled
as part of the error term. Importantly, spatial heterogeneity and spatial autocor-
relation may be observationally equivalent (Anselin, 2001a), which may lead to
difficulties in isolating the two effects in practice. Spatial autocorrelation may also
result from spatial heterogeneity not being modeled correctly (Anselin and Griffith,
1988; Baumont, 2004).

The consequences of ignoring spatial autocorrelation and spatial heterogeneity
when they are, in fact, present in the data-generating process have been widely
discussed in the literature and has led to the separate field of spatial economet-
rics (Anselin, 1988; Anselin and Bera, 1998). A recent comprehensive review of
the field can be found in Anselin (2006). Also, after some initial work by Dubin
(1988) and Can (1990, 1992), among others, the explicit consideration of spatial
effects through the application of spatial econometrics has become more common-
place in empirical studies of housing and real estate markets. Reviews of the basic
specifications and estimation methods applied to these spatial hedonic models
are provided in Anselin (1998), Basu and Thibodeau (1998), Pace et al. (1998),
Dubin et al. (1999), Gillen et al. (2001), and Pace and LeSage (2004), among
others.

The literature on hedonic models is vast, both theoretical as well as empirical.
We do not attempt to review this in the current chapter, but instead focus on the
methodological aspects related to the implementation of spatial hedonic house
price models in empirical studies. We illustrate how different spatial econometric
approaches have been applied and their implications for model specification, esti-
mation and interpretation. We do not attempt to provide a comprehensive review
of the empirical literature, but consider a wide range of articles, illustrative of the
different perspectives taken in applied work.

We begin the remainder of the chapter by setting the stage with a brief review of
the principles underlying the hedonic house price model, followed by an extensive
discussion of spatial econometric aspects due to spatial models and spatial data,
specific to house price applications (for a more comprehensive technical review,
see Anselin, 2006). We then review in turn the treatment of spatial dependence
(including space-time dynamics) and spatial heterogeneity, with selective illustra-
tions from the empirical literature. We close with a discussion of policy implications
and some conclusions.
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26.2 Hedonic house price models

In this section, we first outline the main properties of the hedonic price model
in the context of specifications for house prices. Next, we discuss some important
features of the estimation and identification of such models. We postpone the
discussion of specific spatial aspects to the next section.

26.2.1 General framework

In the second half of the 1960s, a new branch of utility theory evolved from the
pioneering work of Lancaster (1966), in which utility was defined as a function of
the characteristics of a good. Initially, the focus was primarily on consumer models,
until Rosen (1974) generalized this to a model of market equilibrium that took into
account both consumers and producers. In this, the individual’s utility becomes a
function of the characteristics of a commodity, and producer costs depend on the
characteristics of the good.

The hedonic price equation defines a market equilibrium after all interactions
between supply and demand have taken place. A considerable literature has built
upon this basic model (for a review, see, e.g., Malpezzi, 2002), and active research
pertaining to both theoretical and econometric aspects continues apace (e.g.,
Ekeland et al., 2004).

In the specific context of house price models, the basic hedonic specification
assumes that the utility of a household or an individual is a function of a compos-
ite good x, a vector of location specific environmental characteristics q, a vector
of structural characteristics S, a vector of social and neighborhood characteristics
N, and finally a vector of locational characteristics L (Freeman, 1999). One of the
main assumptions of the hedonic model is that preferences are weakly separa-
ble in housing and its characteristics. This implies that the demand for housing
characteristics can be written as a function of “expenditure and prices within the
group alone” (Deaton and Muellbauer, 1980, p. 124). Specifically, this implies
that housing demand can be written as a function of the house price, with the
prices of all other goods represented by a composite good x as the numeraire.
Also, perfect information is assumed, in the sense that a consumer perceives all
relevant house characteristics and takes them into consideration when purchasing
a house.

The decision problem involved in a house purchase then consists of maximizing
utility subject to the usual income constraint. Formally, for house i:

Max U
(
x, qi, Si, Ni, Li

)
(26.1)

s.t. M = Pi + x,

where M is the household income, Pi is the price of house i, and the composite
good x is the numeraire.

For each characteristic of interest, the first-order condition defines the marginal
willingness to pay (MWTP) for changes in the levels of such a characteristic. For
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example, for environmental characteristic qi, this would yield:

∂U/∂qi
∂U/∂x

= ∂Pi/∂qi. (26.2)

The hedonic price function is an equilibrium price equation where the price of
house i is defined as a function of the house characteristics:

Pi = P(qi, Si, Ni, Li). (26.3)

With estimates for the coefficients in this function to hand, it then becomes
possible to estimate the individual’s marginal willingness to pay for any character-
istic that enters the utility function. As shown in equation (26.2), differentiating
equation (26.3) with respect to the characteristic of interest yields the desired result.

The marginal willingness to pay can be interpreted as a “price” for the char-
acteristic and exploited to construct an inverse demand function. To accomplish
this, the MWTP is “observed” at different levels of the characteristic, say qi, and
combined with additonal demand shifter variables C in a demand function:

MWTPi = f (qi, Ci). (26.4)

This allows for the analysis of non-marginal changes in the characteristic.

26.2.2 Estimation

The operational implementation of a hedonic analysis consists of two stages: the
estimation of a hedonic price function and the construction of the inverse demand
function for house characteristics. In most applied work, the second stage is not
carried out.

In the first stage, a hedonic price function is specified in terms of the relevant
characteristics of the house, typically a combination of individual house features
(size, number of rooms, amenities such as air conditioning, etc.), environmen-
tal characteristics, neighborhood characteristics and location. Different functional
forms can be used, either linear or nonlinear, the most commonly being linear,
semi-log and log-log. Alternatively, a flexible Box–Cox approach can be taken. In
a much cited study, Cropper et al. (1988) carried out a large number of simula-
tions to assess the sensitivity of the results to functional specification. They found
that when there are omitted variables or when proxies are used in the absence of
a measure of the real variable, simpler functional forms such as linear or semi-log
perform better than more complex forms. In most applied work, this is the path
taken.

The estimates of the parameters in the price function yield the marginal price
for each characteristic as the partial derivative of the function with respect to the
characteristic. Depending on the functional form, this marginal price may change
with the level of the characteristic. It is interpreted as the marginal willingness to
pay for the characteristic.

The second stage of a hedonic analysis is to relate the marginal willingness to pay
to different levels of the characteristic in order to yield an inverse demand function
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for the characteristic. The general form of this expression is as in equation (26.4).
This second stage is especially important when interest centers on the effect of
non-marginal changes in the characteristic.

One important problem associated with this second stage is identification
(Palmquist, 1991; Freeman, 1999). This is primarily a result of the fact that the
prices used in the second-stage inverse demand function are not actually observed,
but derived from the coefficient estimates in the first stage (the hedonic price func-
tion). Also, the MWTP is computed as a function of at least one of the explanatory
variables used in the price specification. In order to be able to separately identify
the inverse demand function, it is necessary that additional variables (demand
shifters) be included in the second stage.

Furthermore, the attribute variable (amount of the characteristic) is an explana-
tory variable in both the first and second stage and is thus endogenous. This follows
because the selection of a point on the hedonic price function simultaneously
determines the level of the characteristic and the marginal price associated with it.
This endogeneity must be taken into account in the second stage estimation, typi-
cally by using instrumental variables. The instruments should be truly exogenous
to the model, which in practice may be difficult to establish.

One solution to the identification problem, suggested by Palmquist (1991), is to
use information from spatially or temporally distinct sub-markets. The rationale
behind this is that the heterogeneity between the sub-markets provides sufficient
variability to identify a demand function for the characteristic. This is estimated by
taking marginal prices from different sub-markets as well as demand shifters that
vary sufficiently across the sub-markets (e.g., income).

Apart from the identification issue for the demand function (the second stage),
sub-markets should also be explicitly considered when spatial heterogeneity inval-
idates the assumption of a single equilibrium. After defining meaningful spatially
delineated sub-markets, a separate hedonic price function should be estimated
for each.

In practice, interest has focused on the first stage of the hedonic model and on
estimation of MWTP for various characteristics. An important body of applications
pertains to the valuation of amenities, such as environmental quality, access to
open space and views. Very few spatial econometric applications have carried out
the second stage of estimating the inverse demand function. Recent exceptions are
Beron et al. (2004) and Brasington and Hite (2005).

26.3 Spatial models

Increasingly, applied econometric work dealing with hedonic house price mod-
els has taken an explicit spatial econometric perspective. Some recent examples
include Basu and Thibodeau (1998), Dubin et al. (1999), Bell and Bockstael (2000),
Bowen et al. (2001), Bourassa et al. (2003), Kim et al. (2003), Beron et al. (2004), Pace
and LeSage (2004), Brasington and Hite (2005), Anselin and Le Gallo (2006), Neill
et al. (2007) and Anselin and Lozano-Gracia (2008). This work focuses, in partic-
ular, on the treatment of market interactions or unobserved neighborhood effects
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through the incorporation of spatial dependence and on the use of model spec-
ifications that allow for spatial heterogeneity in the form of submarkets. Several
different model formulations and estimation methods have been applied, reflecting
the richness of the spatial methodology (Anselin, 2006).

The motivation for incorporating spatial effects into the specification of a hedo-
nic house price model is based on two main concerns. One, which we refer to as
substantive, is that the model form is intended to capture either interaction effects,
market heterogeneity, or both. The other is more pragmatic and we refer to it
as a nuisance, in that spatial autocorrelation in omitted variables, or unobserved
externalities and heterogeneities, are relegated to the error term. In dealing with
spatial dependence, these two perspectives are reflected in the lag and error mod-
els (Anselin, 1988). In addressing spatial heterogeneity, varying coefficient models
and spatial regimes reflect substantive models, whereas various specifications for
heteroskedasticity deal with nuisance effects.

The econometric treatment of these two types of effects differs considerably.
Substantive models require a new class of estimation methods and specification
tests, whereas nuisance models are simply special cases of a non-spherical error
variance-covariance matrix. The consequences of ignoring these effects differ as
well. Omitting substantive effects when they should be included results in model
misspecification. Consequently, the estimates of the remaining parameters will be
biased and inconsistent, and inference may be spurious. In a hedonic context,
this implies that conclusions about the marginal price of specific characteristics
(e.g., environmental improvements) may be wrong. On the other hand, nui-
sance effects are primarily a problem of efficiency. Ignoring those effects when
present will yield biased estimates of standard errors in a traditional ordinary
least squares (OLS) regression if the proper adjustments are not carried out. This
will yield biased t-tests and misleading indications of precision. Since the co-
efficient estimates in hedonic models are used in further calculations (e.g., of
marginal willingness to pay), it remains important to have correct measures of
standard errors in order to properly address uncertainty in a policy decision making
context.

One additional complexity with spatial models is that spatial dependence and
spatial heterogeneity are often difficult to distinguish in a cross-sectional setting.
The properties of specification tests and estimators developed for one type of effect
are affected by the presence of the other type. In practice, one typically addresses
one type of spatial effect first, carries out specification tests for remaining problems
and subsequently addresses those if warranted.

In this section, we review the main model specifications and estimation methods
that have been applied in hedonic studies. Here, we only focus on the basic proper-
ties and do not intend to duplicate the extensive methodological reviews provided
in Anselin and Bera (1998) and Anselin (2006), among others. We also limit our
discussion to the most commonly used specifications. For spatial (and space-time)
dependence, these are the lag and error models, as well as some recently suggested
semiparametric approaches. For spatial hetereogeneity, we cover the treatment of
discrete (regimes) and continuous (varying coefficients) spatial heterogeneity.
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26.3.1 Spatial dependence

26.3.1.1 Spatial lag model

The spatial lag specification is characterized by the inclusion of a new variable
on the right-hand side of the equation. This variable, referred to as a spatially
lagged dependent variable (Anselin, 1988) captures the spatial interaction effect as
a weighted average of neighboring observations. This is most commonly applied
in a linear form, as:

y = ρWy +Xβ + u, (26.5)

where y is an n× 1 vector of observations on the dependent variable, X is an n× k
matrix of observations on explanatory variables, W is an n × n spatial weights
matrix, u is an n× 1 vector of independent and identically distributed (i.i.d.) error
terms, ρ is the spatial autoregressive coefficient, and β is a k×1 vector of regression
coefficients.

The n × n spatial weights matrix defines the neighbor set for each individual
location. Its positive elements wij are non-zero when observations i and j are neigh-
bors, and zero otherwise. By convention, self-neighbors are excluded, such that
the diagonal elements of W are zero. In addition, in practice the weights matrix is
typically row-standardized, such that

∑
j wij = 1. Many different definitions of the

neighbor relation are possible, and there is little formal guidance on the choice of
the “correct” spatial weights.1 The term Wy in equation (26.5) is referred to as a
spatially lagged dependent variable, or spatial lag. For a row-standardized weights
matrix, it consists of a weighted average of the values of y in neighboring locations,
with weights wij.

As stated in Anselin and Bera (1998), there are two main interpretations for a
significant spatial autoregressive coefficient ρ. First, this may suggest a contagion
process or the presence of spatial spillovers. However, this interpretation is valid
only if the process takes place at the spatial unit used in the analysis, and is sup-
ported by a theoretical model. In the context of spatial hedonic models, this is often
difficult to maintain, since it is unlikely that economic agents simultaneously take
into account the prices of neighboring units. An alternative explanation for a sig-
nificant spatial autocorrelation coefficient is the existence of a mismatch between
the observed spatial unit and the true spatial scale of the process being studied.

The theoretical motivation for a spatial lag specification is based on the literature
on interacting agents and social interaction. For example, a spatial lag follows as the
equilibrium solution of a spatial reaction function (Brueckner, 2003) that includes the
decision variable of other agents in the determination of the decision variable of an
agent (see also Manski, 1993, 2000). In hedonic models, however, where a purely
cross-sectional setting is more common, it is often difficult to maintain such a
theoretical motivation, since it would imply that buyers and sellers simultaneously
take into account prices obtained in other transactions.

An alternative interpretation is provided by focusing on the reduced form of the
spatial lag model:

y = (I − ρW)
−1Xβ + (I − ρW)

−1u, (26.6)
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where, under standard regularity conditions, the inverse (I − ρW)
−1 can be

expressed as a power expansion:

(I − ρW)
−1 = I + ρW + ρ

2W2 + . . . . (26.7)

The reduced form thus expresses the house price as a function of its own charac-

teristics (X), but also of the characteristics of neighboring properties, (WX, W2X),
albeit subject to a distance decay operator (the combined effect of powering the
spatial autoregressive parameter and the spatial weights matrix). In addition, omit-
ted variables, both property-specific as well as related to neighboring properties, are
encompassed in the error term. In essence, this reflects a scale mismatch between
the property location and the spatial scale of the attributes that enter into the
determination of the equilibrium price.

From a purely pragmatic perspective, one can also argue that the spatial lag spec-
ification allows for a filtering of a strong spatial trend (similar to detrending in the
time domain), i.e., ensuring the proper inference for the β coefficients when there
is insufficient variability across space. Formally, the spatial filter interpretation
stresses the estimation of β in:

y − ρWy = Xβ + u. (26.8)

In most spatial hedonic applications, the use of a spatial lag specification follows
as the result of a specification search based on specialized Lagrange multiplier tests
that indicate the preference of this alternative over an error specification (Anselin
and Bera, 1998; Anselin, 2001a; Florax et al., 2003). In such instances, the selection
of this model is mostly pragmatic, without necessarily implying a theoretical model
of social interaction.

The most commonly applied estimation method for the parameters of the spatial
lag model is maximum likelihood, following the principles outlined by Ord (1975)
(for additional technical details, see, e.g., Anselin, 1988; Anselin and Bera, 1998;
Anselin, 2006). More recently, an instrumental variables or spatial two stage least
squares approach has gained greater popularity, because it lends itself more readily
to application in the large datasets characteristic of hedonic studies. Early results
were given in Anselin (1988) and Kelejian and Robinson (1993), but more recently
interest has focused on formal proofs of asymptotic properties and the choice
of optimal instruments, e.g., in Lee (2003, 2007), Das et al. (2003) and Kelejian
et al. (2004). Bayesian estimation of spatial autoregressive models is covered in
LeSage (1997).

We leave a more detailed discussion of specific applications of spatial hedonic
models to section 26.5.

26.3.1.2 Spatial error model

From a theoretical viewpoint, a spatial error specification is the more natural way to
include spatial effects in a hedonic model. Unobserved neighborhood effects will be
shared by housing units in the same area and naturally lead to spatially correlated
error terms. This results in a non-diagonal error variance-covariance matrix:

Var[uu′] = E[uu′] = �, (26.9)
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where � �= I, with I as the identity matrix. Typically, � contains “nuisance”
parameters that need to be estimated consistently. This, in turn, yields consistent
estimates for the regression coefficients by means of a feasible generalized least
squares (FGLS) estimation. The interpretation of the nuisance parameters is very
different from the spatial autoregressive coefficient in the spatial lag model, in that
there is no particular relation to a substantive model of spatial interaction. These
parameters are only included in order to obtain better estimates for the regression
slope coefficients.

The particular structure of � follows from a spatial ordering of the observations
(e.g., as argued in Kelejian and Robinson, 1992). In practice, the most commonly
used specification assumes a spatial autoregressive process for the error terms:

y = Xβ + ε, (26.10)

with:

ε = λWε + u, (26.11)

with u ∼ i.i.d., and λ as the spatial autoregressive coefficient.
The resulting error variance-covariance matrix is as follows:

E[εε′] = σ
2[(I − λW)(I − λW ′

)]−1. (26.12)

A commonly used alternative in hedonic analyses is to base the structure of the
error variance-covariance matrix on principles from geostatistics. Early work by
Dubin (1988) (see also Dubin, 1992; Basu and Thibodeau, 1998; Dubin et al., 1999;
Miltino et al., 2004) suggested a so-called direct representation for the elements of
the variance-covariance matrix.

In this approach, the covariance between each pair of error terms is specified as
an inverse function of the distance between them. Formally:

E[εiεj] = σ
2f (dij,φ), (26.13)

with εi, εj as the regression error terms, σ2 the error variance, and dij the distance
separating i and j. The function f should be a distance decay function that ensures a
positive definite covariance matrix. This requires ∂f /∂d < 0 and |f (dij,φ)| ≤ 1, with

φ ∈ # as a p× 1 vector of parameters on an open sub-set # of R
p. This approach is

closely related to the variogram models used in geostatistics, and requires assump-
tions of stationarity and isotropy (see Cressie, 1993, for an extensive review). The
complete variance-covariance is then:

E[εε′] = σ
2
�(dij,φ). (26.14)

A commonly used specification is based on a negative exponential distance
decay:

E[εε′] = σ
2[I + γ!], (26.15)
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with the off-diagonal elements of ! being !ij = e−φdij , and γ as a non-negative
scaling parameter. In order to facilitate interpretation and specification testing, the
diagonal elements of ! are often set to zero (the variance is captured by the term

σ
2I). The distance metric and parameter space must be such that the elements

of e−φdij yield a valid spatial correlation matrix (see Anselin, 2001a, for technical
details).

Estimation in parametric spatial error models is most commonly based on the
ML principle (see Anselin, 1988; Dubin, 1988). Due to computational limitations
in very large datasets, recent attention has shifted to alternatives, such as the
generalized moments (GM) and generalized method of moments (GMM) estima-
tors suggested by Kelejian and Prucha (1998, 1999). An early application of this
approach to a hedonic specification can be found in Bell and Bockstael (2000) (see
also section 26.5 for further examples). Generalization of this approach to an error
structure that contains both spatial autocorrelation and heteroskedasticity can be
found in recent papers by Lin and Lee (2005) and Kelejian and Prucha (2006).

A different approach is to avoid the parametric specification of spatial covariance
as a function of a distance metric and to use a nonparametric perspective. This is
an extension to the spatial domain of the principle behind the heteroskedasticity
and autocorrelation consistent covariance matrix estimation of Newey and West
(1987) and Andrews (1991), among others.

As in the direct representation approach, the spatial covariance is a func-
tion of the distance separating two observations, but the functional form is left
unspecified. For example, for the regression error terms:

E[εiεj] = f (dij), (26.16)

where dij is a “proper” positive and symmetric distance metric (for regularity
conditions on the distance metric, see Conley, 1999; Kelejian and Prucha, 2007).

This estimator follows essentially the same principle as in the time series domain
by adding up sample spatial autocovariances. In order to ensure positive definite-
ness of the estimator, a kernel is applied to the cross-products. For example, in the
recent paper by Kelejian and Prucha (2007), a general covariance matrix estimator
takes the form:

V̂ = n−1∑
i

∑
j

xix
′
j ε̂iε̂jK(dij/d), (26.17)

where K() is a kernel function and d a suitable cutoff distance. This yields a so-
called heteroskedastic and spatial autocorrelation consistent, or HAC, estimator.
A recent application of this approach to spatial hedonic models can be found in
Anselin and Lozano-Gracia (2008).

Arguably, the treatment of spatially structured omitted variables may be
addressed without resorting to a spatial error. The most commonly used technique
in the empirical literature is to address this by means of spatial fixed-effects, e.g.,
by including a dummy variable for a larger spatial area that individual housing
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units belong to, such as a census tract or block group. This rests on the assump-
tion that the spatial range of the unobserved heterogeneity/dependence is specific
to each spatially delineated unit. In practice, there may indeed be spatial units
(such as school districts) where such a spatial fixed effects approach is sufficient
to correct the problem. However, the nature of omitted neighborhood variables
tends to be complex, as is the definition of the correct “neighborhood,” and in
many instances the fixed-effects approach will be insufficient to remove all residual
spatial autocorrelation.

26.3.1.3 Other models of spatial dependence

In addition to the familiar spatial lag and spatial error models just outlined, a num-
ber of other techniques have been adopted to deal with spatial effects in hedonic
house price functions. We briefly review here semiparametric approaches.

An alternative way to account for space in a hedonic regression is to incorporate
it directly in the hedonic price function in the form of a trend surface, while main-
taining the assumption of constant marginal prices across space. In a parametric
approach, this would consist of including a polynomial in the X, Y coordinates
of the observations as explanatory variables in the hedonic equilibrium equation.
This could also be combined with a fixed-effects approach in the form of dummy
variables for administrative units, such as zip code or census tracts.

A semiparametric alternative, first discussed by Clapp et al. (2002), includes, in
addition to the usual hedonic variables, a nonparametric function f (Xc , Yc) of the
location of the observations. This is to model the omitted spatial variables in the
mean function, rather than relegating them to the error term. Formally, this yields:

P = Xβ + f (Xc , Yc)+ ε. (26.18)

This function may be estimated using standard nonparametric techniques such as
local polynomial regression. The Nadaraya–Watson estimator is the method most
frequently used in the literature.

Clapp et al. suggest estimating this model in an iterative fashion consisting of
two main steps. First, the parameters of all house characteristics are estimated
using OLS. In a second step, the residuals from this regression are fitted using
Bayesian or local polynomial regression techniques. The first step thus yields OLS

residuals η̂
0 as:

η̂
0 = P −Xβ̂

0. (26.19)

In a first iteration, these residuals are then smoothed using a Nadaraya–Watson
estimator, as:

η̄
0 =

q∑
i=1

Kh(Xci
−X0)Kh(Yci

− Y0)(η̂
0
)∑q

i=1 Kh(Xci
−X0)Kh(Yci

− Y0)
. (26.20)

Then, the estimated residuals from a first iteration are obtained as:

ε
0̂ = η

0̂ − η
0̄. (26.21)
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In the next iteration, the linear part of the model is estimated again using OLS, but

now using Ŷ1 as the dependent variable, where:

Ŷ1 ≡ Xβ̂
0 + ε̂

0. (26.22)

Iterations between the parametric and nonparametric portions of the model
continue until the β̂s change by no more than 5%.

A different estimation approach for this model is described in Gibbons (2003)
and Day et al. (2007), who use spatially filtered variables to consistently estimate the
β coefficients, following the steps first outlined in Robinson (1988). To implement
this, the model in equation (26.18) is rewritten as:

P − E[P|Xc , Yc] = (X − E[X|Xc , Yc])β + ε. (26.23)

Estimates for the marginal prices are obtained by using the spatially weighted
means of the explanatory variables. First, the conditional means E[P|Xc , Yc] and
E[X|Xc , Yc] are estimated using nonparametric regression. Estimates of these func-
tions are then substituted into equation (26.23) and, following Robinson (1988),
consistent estimates for the β coefficients are obtained from OLS on equation
(26.23).

Day et al. (2007) consider an additional complication and allow for the presence
of spatial error autocorrelation in the form of a spatial autoregressive process (as in
equation 26.11). Rather than applying OLS, estimates for the β in equation (26.23)
are obtained using the Kelejian and Prucha (1999) GM approach.

Alternatively, Clapp et al. (2002) utilize Bayesian methods to remove any remain-
ing spatial autocorrelation from the model. In standard Bayesian fashion, the error
terms are specified as consisting of two components; one being spatial, the other
a white-noise process. Formally:

ε̂(ci) = δ(ci)+ ψ(ci), (26.24)

in which δ(ci) is assumed to come from a stationary Gaussian spatial process with

mean 0 and spatial covariance function cov(δ(c), δ(c′)) = σ
2exp(−ψ‖c − c′‖) and ψ

is assumed i.i.d ∼ N(0, τ). Bayesian fitting is then applied to the first stage residuals
using Gibbs sampling combined with a Metropolis–Hasting procedure to account
for remaining spatial autocorrelation in the residuals.

26.3.1.4 Models for space-time dependence

The temporal dimension has not received much attention in spatial hedonic mod-
els. There are both theoretical as well as practical reasons for this omission. First,
using data for several time periods would require the assumption that the marginal
prices stay constant through time. While this assumption may seem appropriate
for a short period of time, it is unlikely to hold when several years are considered.
As a result, hedonic analyses have tended to favor pure cross-sectional approaches.

Furthermore, explicitly including both the temporal and spatial dimension
requires complex estimation methods. Most applications have used Bayesian meth-
ods to tackle this complexity. Some examples of spatio-temporal hedonic analyses
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include Pace et al. (1998), Pace et al. (2000), Gelfand et al. (2004), Sun et al. (2005)
and Huang et al. (2006).

As an example, consider Pace et al. (1998) and Pace et al. (2000). They propose
a spatio-temporal specification in which a filtering approach is carried out across
both dimensions. The model is:

(I −W)Y = (I −W)Xβ + u, (26.25)

where W is a row-standardized N × N lower triangular spatio-temporal weights
matrix. The weight matrix W is used to filter out the spatio-temporal correla-
tion and the model is then estimated for the uncorrelated variables (I − W)X
and (I −W)Y .

Data are ordered by time period, so that the first row in the data refers to the
earliest observation. Therefore, only previous sales are allowed to influence cur-
rent house prices. This explicit relation between time periods contrasts with the
approach taken in cross-sectional studies, where all sales are assumed to have taken
place during the same period. As a result, in a cross-sectional set-up, there is a simul-
taneous feedback between all house prices in the sample, even though technically
the sales may have taken place at different times during the period (so, conceiv-
ably, a later sale could affect an earlier sale). The explicit inclusion of space-time
correlation allows for a more realistic model of the actual timing of real estate
transactions.

In this approach, W is not assumed a priori but rather defined through a flexible
form, where (I − W) = (I − φSS − φT T − φTSTS − φST ST), with T and S respec-
tively defined as temporal and spatial weight matrices. The expanded definition
of (I −W) is then plugged back into equation (26.25) and the model is estimated
using Bayesian methods for the unfiltered variable Y .

Gelfand et al. (2004) introduce time and space in the model by allowing the
coefficients to change over time. They define three possible forms for the error term
in a separable form, which avoids explicit specification of space-time interactions:

U(s, t) = α(t)+W(s)+ ε(s, t), (26.26)

U(s, t) = αs(t)+ ε(s, t), (26.27)

U(s, t) = Wt (s)+ ε(s, t), (26.28)

with ε(s, t) as i.i.d.N(0, σ2
ε ) error terms, αs(t) as the temporal effect and W(s) as the

spatial effect.
Equation (26.26) provides a structure that is additive in spatial and temporal

effects. In contrast, equation (26.27) suggests that the temporal effects are local,
changing from one site to the other. Finally, the form for the error term suggested
in equation (26.28) pertains to the case where the spatial effects are specific to the
time period. Gelfand et al. (2004) then outline a fully Bayesian approach and specify
the associated likelihoods together with the prior distributions for all parameters
in the model.
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A simpler spatio-temporal approach is introduced in Huang et al. (2006). Here, an
expanded version of a spatial lag model is estimated using ML, under the assump-
tion that spatial correlation remains constant through time. Furthermore, after the
inclusion of the spatially lagged dependent variable, the error terms are assumed
to be correlated only in time. This spatio-temporal version of the spatial lag model
takes the following form:

y∗ = ρ(W ⊗ IT )y∗ +X∗β + u∗, u∗ ∼ N(0, σ2
u ), (26.29)

with y∗ = (IN ⊗ Q)y, X∗ = (IN ⊗ Q)X, and u∗ = (IN ⊗ Q)u. Q is a transformation
matrix that “removes the effect” of the AR(1) process in the residuals following
a method suggested in Judge et al. (1988) and Hsieh et al. (2001). If the AR(1)
correlated residuals are defined as:

uit = λui,t−1 + υit , (26.30)

with υit ∼ N(0, σ2
υ ), E[uitu

′
is] = σ

2
υ �(λ), and t �= s, then:

�(λ) = In ⊗
1

1− λ2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 λ λ
2 · · · λ

T−1

λ 1 λ · · · λ
T−2

λ
2

λ 1 · · · λ
T−3

...
...

...
. . .

...

λ
T−1

λ
T−2

λ
T−3 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (26.31)

and Q is the transformation matrix such that �
−1 = I ⊗ (Q(λ)

′Q(λ)). In particular,
Q takes the following form:

Q(λ) =

⎡⎢⎢⎢⎢⎢⎢⎣

√
1− λ2 0 0 · · · 0 0
−λ 1 0 · · · 0 0
0 −λ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −λ 1

⎤⎥⎥⎥⎥⎥⎥⎦. (26.32)

This Q is used to define the transformed model in equation (26.29), which can
then be estimated using ML. Huang et al. (2006) conclude that introducing these
spatial and temporal correlations improves the goodness-of-fit of the model.

26.3.2 Spatial heterogeneity

26.3.2.1 Discrete spatial heterogeneity

Discrete spatial heterogeneity is a special case of structural instability in the model
specification (functional form and/or parameters), where the form of the instabil-
ity follows a spatial structure, referred to as spatial regimes (Anselin, 1988, 1990).
In practice, this often occurs when structural breaks can be observed between dif-
ferent sub-regions, such as core and peripheral regions or urban and rural areas. In

mailto: rights@palgrave.com


1228 Spatial Hedonic Models

hedonic models, discrete spatial heterogeneity is taken into account in the form of
separate models for sub-markets. For example, inelasticities in supply and demand
may lead to market segmentation that results in spatial heterogeneity in the form
of varying marginal prices (Goodman and Thibodeau, 1998). Sub-markets can be
defined spatially or non-spatially but, in practice, preference goes to delineations
that follow clearly observed spatial boundaries (for examples, see section 26.6.1).

More formally, discrete spatial heterogeneity can be expressed as:

yi = fi(Xi,βi, εi), (26.33)

with i as an index corresponding to a given discrete sub-set of the data. This gen-
eral formulation includes as special cases functional instability, fi �= fj (e.g., linear
model for one region, log-linear in another), parameter variation, βi �= βj (e.g., dif-
ferent parameter values for house characteristics in different sub-markets), as well
as heteroskedasticity, Var[εi] �= Var[εj].

These examples represent fairly standard methodological issues that can readily
be addressed and do not require an explicit spatial econometric treatment. How-
ever, in practice, in many instances heterogeneity and spatial dependence occur
together, or, are difficult to identify separately (Anselin and Griffith, 1988). For
example, spatial spillover may not be constrained to each specific spatial sub-set
of the data, but may reach across the boundaries. In those cases, the treatment of
the heterogeneity becomes complicated by the presence of spatial dependence, and
extensions of the standard spatial lag and error models and associated specification
tests are in order. One example of such tests is the so-called spatial Chow test of
coefficient stability, which is an extension of the standard case that incorporates
spatial dependence (Anselin, 1990).

In spatial hedonic models, attention has focused primarily on the delineation of
sub-markets, and the acknowledgment of spatial dependence between sub-markets
has only received limited attention. We provide specific examples in section 26.6.1.

26.3.2.2 Continuous spatial heterogeneity

As an alternative to considering discrete spatial sub-sets of the data, heterogene-
ity can be viewed as a smooth continuous process of varying parameters. One of
the earliest applications of this perspective to spatial analysis was in the so-called
spatial expansion method proposed by Casetti in the early 1970s (see, e.g., Casetti,
1972, 1997).

Spatial expansion is a special case of a varying coefficients model and also shows
great similarity to the approach taken in multi-level modeling (e.g., Goldstein,
1995). Using Casetti’s terminology, the first step is a so-called initial equation,
which is a simple linear regression specification for each observation i:

yi =
∑

k

xkiβki + εi, (26.34)

for k explanatory variables, including a constant term. Next, an expansion
equation expresses the variability of the regression coefficient over i as a function
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of additional explanatory variables zhi (again, including a constant term):

βki =
∑
h

zhiγh, (26.35)

where the γh are an additional set of parameters. Note that, unlike the standard
multilevel model, the observational unit for the x and z variables is the same (i).
The combination of the initial model with the expansion equation yields the so-
called final equation, which contains the original explanatory variables, as well as
interaction variables, the product of each xki with all the zhi:

yi =
∑

k

xki

⎛⎝∑
h

zhiγh

⎞⎠+ εi. (26.36)

A slight generalization is obtained when the expansion equation includes an error
term, which yields a heteroskedastic model (Anselin, 1992). A common problem
in the implementation of this approach is a high degree of multicollinearity.

In spatial hedonic specifications, the expansion method is used to model het-
erogeneity in the form of so-called neighborhood drift (Can, 1992). This may also
account for some omitted variables at the neighborhood level and therefore reduce
the intensity of the spatial autocorrelation problem. However, it is important to
note that, even if a parametric drift is introduced, spatial autocorrelation and
heterogeneity may remain as a problem.

An alternative to the parametric specification of the expansion equation is a
nonparametric approach, in which the variability of the model parameters is deter-
mined by the data. The best known among these approaches is arguably the geo-
graphically weighted regression (GWR), popularized in the work of Fotheringham
and collaborators (for an overview, see Fotheringham et al., 2002).

GWR is essentially a special case of a local regression model (LRM) (e.g., as
proposed in Cleveland and Devlin, 1988), in which the weighting scheme that
determines the variability in the parameters is based on the spatial closeness
of observations (for examples of spatial hedonic applications, see Pavlov, 2000;
Gelfand et al., 2003; Cho et al., 2006; Kestens et al., 2006, among others). In this
approach, a model parameter is defined as a function of the location of individual
observations. In addition, a weighting scheme is designed such that greater weight
is given to locations that are closer in space. To illustrate this approach, consider a
hedonic model specified as:

P = β0(c)+
∑

k

Xkβk(c)+ ε, (26.37)

where c is a vector of Xc , Yc coordinates that define the location of the data points.
The parameters are estimated by minimizing a weighted residual sum of squares:

minp,q
∑

i

⎧⎪⎨⎪⎩Wi(c)

⎡⎣P − β0(c)−
∑

k

Xkβk(c)

⎤⎦2
⎫⎪⎬⎪⎭, (26.38)
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where Wi(c) are the weights that depend on the location (c). The solution to
the minimization problem in equation (26.38) yields the standard weighted least
squares expression, in matrix notation:

β̂ = (X′WX)
−1

(X′Wy). (26.39)

In this expression, W is not a spatial weights matrix, but a matrix that extracts the
observations used in the estimation of the parameter for each location i. Several
approaches have been suggested, such as a straightforward k-nearest neighbors
weighting scheme (Pavlov, 2000), or a kernel smoother. The latter is the common
approach taken in GWR, where a Nadaraya–Watson-type kernel smoother ensures
that those observations near the point where the parameters are being estimated
have more influence than those observations further away. Using such a kernel
function in GWR then yields the function to be minimized as:

minp,q
∑

i

⎧⎪⎨⎪⎩Kh(d0i)

⎡⎣P − β0(c)−
∑

k

Xkβk(c)

⎤⎦2
⎫⎪⎬⎪⎭, (26.40)

where Kh(·) = K(·/h), K is a given kernel function and h a bandwidth parameter.
Common choices for the kernel are the bi-square function:

K(t) =
{

(1− t2
)
2, if |t | ≤ 1,

0, otherwise,
(26.41)

and the Gaussian kernel:

K(t) = exp
(
−1

2
t2
)

. (26.42)

Since the term “GWR” was first introduced in Brunsdon et al. (1996), an extensive
set of papers has been published treating various theoretical issues related to model
estimation, specification testing and cross-validation (see, among others, Fother-
ingham et al., 1998, 2002; Paez et al., 2002a, 2002b). Specific empirical applications
to spatial hedonic specifications are reviewed in section 26.6.2.

26.4 Methodological challenges

Spatial hedonic analysis not only considers the specification of spatial relation-
ships in the model, but also the estimation of relevant parameters on the basis of
spatial data. In this section, we briefly point out some important methodological
issues that need to be accounted for, especially the problem of spatial scale and the
treatment of endogeneity.

26.4.1 Spatial scale

Spatial scale is important in the empirical implementation of hedonic models in a
number of ways. The standard assumption is that the spatial units of observation
match the process under consideration. However, with spatial data, this is not
necessarily the case, and errors due to aggregation or interpolation need to be
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accounted for. In addition, it is not always obvious how the sample of observations
relates to a population (or super-population), which has repercussions for the type
of asymptotics that can be applied.

26.4.1.1 Spatial observations

The theoretical framework outlined in section 26.2 implies that the proper esti-
mation of the model parameters should be based on observations for individual
transactions. In practice, this is not always possible and many studies instead rely
on spatially aggregated data for units such as block groups, census tracts, and even
counties (e.g., Brasington and Hite, 2005; Capozza et al., 2005; Chay and Green-
stone, 2005; Huang et al., 2006). This leads to the problem of ecological inference,
also known in geography as the modifiable areal unit problem, or in the statistical
literature as the change of support problem (Gotway and Young, 2002). As shown in
Anselin (2002), the parameters of spatial models estimated at an aggregate level (in
particular the spatial autoregressive coefficient) do not correspond to those at the
individual level. Consequently, estimates of hedonic specifications based on such
aggregate units have only a tenuous basis in micro-theory and rely on a notion of
representative agents (representative housing units) that may be highly unrealistic.
The crucial aspect determining the extent of the problem is the intra-unit hetero-
geneity. If housing units, their characteristics, or the profiles of the household
units that occupy them, vary considerably within a spatial unit, then an aggregate
analysis based on a mean or median characteristic will not be very meaningful.

A second issue related to the change of support problem occurs when observa-
tions on some housing characteristics are not available for each individual unit.
For example, in many instances, data on socioeconomic variables related to the
households, such as income and education, cannot be obtained at the micro-level,
but instead are proxied by spatial aggregates, such as the median income or per-
centage high school graduates at the census tract. All individual observations in
the same census tract thus share the same value for these explanatory variables.
At the very least, this leads to heteroskedastic error terms, but it may also result in
more serious specification problems, as pointed out in Moulton (1990).

In other instances, the change in support problem manifests itself in a mismatch
between the location and scale at which observations are collected for specific
explanatory variables and the location of the housing units. A common example
is the use of interpolated values for environmental variables related to air qual-
ity (e.g., ozone), which are typically collected at a small number of monitoring
stations. In Anselin and Le Gallo (2006), the effect of applying different inter-
polation methods on the resulting estimates of MWTP for air quality is assessed.
In a comparison of Thiessen polygons, inverse distance weighting, kriging and
splines, the geostatistical kriging method yielded the best results in terms of model
fit. More importantly, the differences in both coefficient estimates as well as in the
calculations of MWTP were significant between the various interpolation methods,
suggesting that greater attention to this aspect of the data is warranted.

26.4.1.2 Spatial sampling

The statistical foundations for the analysis of spatial hedonic models derive from
two very different paradigms, related to the way in which the sampling of
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observations is conceptualized (for details, see Anselin, 2002). The most widely
used framework is referred to as lattice analysis, due to the fact that considerable
early work in this area pertained to regularly spaced or gridded observations (e.g.,
Besag, 1974). In lattice analysis, the observations are discrete spatial units that
exhaust the space, such as contiguous census tracts or counties. The main dis-
tinction is that the notion of interpolation is not supported, since observations
are available on all spatial units in the “population.” Asymptotics are based on a
notion of expanding domain, i.e., growing the sample by adding additional units
at the edge. In contrast, in so-called geostatistical analysis (Cressie, 1993), obser-
vations are a sample from a continuous surface. The main objective is to extract
the characteristics of the continuous surface, so that interpolation (spatial predic-
tion) can be carried out. The proper asymptotics are referred to as infill asymptotics
and can be conceived of as increasing the density of sampling. Importantly, the
two forms of asymptotics are different and properties that hold under one do not
necessarily hold under the other (see, e.g., the discussion in Lahiri, 1996).

Hedonic house price studies are typically based on a sample of individual sales
transactions or appraisals, and seldom include the full population. This is only
the case in analyses for aggregate spatial units, such as census tracts or counties.
Because of the nature of the sales sample, a geostatistical perspective should be the
preferred approach. However, in practice, most empirical work is couched in a lat-
tice perspective, using the standard spatial lag and spatial error specifications with
spatial weights derived from contiguity or nearest neighbor criteria. This aspect is
seldom highlighted, but it does raise potential problems in terms of the asymptotics
necessary to obtain the consistency of estimators. For example, when a simple con-
tiguity weights matrix is used between the locations of sales transactions (e.g., by
using Thiessen polygons to define neighboring sales), a lattice approach assumes
that the observed houses are the only houses in the population. In other words, the
effect of the neighbors should be interpreted as the effect of neighboring sales, but
not of neighboring properties. When the sales only constitute a sample of all trans-
actions, the underlying assumption becomes that the effect of sampled neighbors
is the same as that of the unobserved true neighbors. The validity of this assump-
tion rests on the degree of spatial homogeneity of the housing market, in terms
of both house and household characteristics. Without further information, this is
very difficult to verify in practice.

26.4.2 Endogeneity

The issue of endogeneity in the estimation of demand equations that arise from a
nonlinear hedonic price schedule is a familiar problem (see, e.g., Palmquist, 2005).
Much less common is the focus on endogeneity in the estimation of the hedonic
price equation itself. In the context of spatial hedonic models, this has received
some attention, specifically in the study of the valuation of the contribution of air
quality (and, to a lesser extent, of school quality).

There are two different perspectives on the endogeneity problem. In one, atten-
tion focuses on a specific house characteristic and the degree to which this is truly
exogenous. For example, this would not be the case if air quality is correlated with
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other unobserved characteristics of the house. Alternatively, if the house purchase
decision is taken jointly with the assessment of environmental quality, endogeneity
would also result. Similarly, sorting by house purchasers when there is heterogene-
ity in their preference functions associated with different pollution levels would
result in endogeneity of the air quality variable. This aspect was treated extensively
in a recent paper by Chay and Greenstone (2005), in the context of an application
where air quality is measured by total suspended particles. They suggest the use of
instrumental variables to obtain consistent estimates. While considerable care is
taken in addressing these specification problems, the model itself is estimated at a
fairly aggregate spatial scale of US counties.

Bayer et al. (2006) follow Chay and Greenstone (2005) by considering the pos-
sibility that local air pollution is correlated with unobserved local characteristics.
They address this form of endogeneity by using the contribution of distant sources
to local air pollution as an instrument. However, this study is also carried out at the
spatially aggregate county level, and could therefore suffer from ecological fallacy.

The potential correlation of specific house or household characteristics with
unobserved errors is considered by Gibbons (2003). Using a semiparametric model,
the potential endogeneity of educational composition is accounted for by using the
postcode-sector proportion of households in social housing as an instrument for
educational composition.

In the second perspective, endogeneity follows as a consequence of an “errors
in variables” problem. This is a special case of the change in support problem due
to the limited number of sample points for air pollution. As a result, the “obser-
vations” of air quality at individual house locations are actually the result of a
statistical spatial interpolation process with its own prediction error. In Anselin
(2001b), it was pointed out that the spatial structure of the prediction error is likely
to lead to correlation with the overall model disturbance term and thus to the famil-
iar simultaneity bias. Anselin and Lozano-Gracia (2008) elaborate on this idea and
estimate a spatial lag hedonic price equation using spatial two-stage least squares
(2SLS), including additional instrumental variables to address the endogeneity of
the air quality variable. Specifically, they use the components of a polynomial in
the coordinates of the house locations as instruments.

Irrespective of the actual source of the endogeneity, the use of instrumental
variables for some of the characteristic variables will yield consistent estimates.
However, in the absence of optimal instruments, the precision of these estimates
(and of the resulting computations of MWTP and other related measures) may be
improved upon. This remains a subject of future investigation.

26.5 Empirical evidence: spatial dependence

The first attempts to incorporate spatial considerations into empirical hedonic
house price studies consisted of including distance from the central business dis-
trict as an explanatory variable in the model specification. While appropriate for
monocentric cities, this is less suitable for polycentric areas, such as the Los Ange-
les metropolitan area. This resulted in several empirical studies reporting either
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insignificant or positive signs for distance decay, a finding not compatible with
theory (Dubin, 1992).

Dubin (1988) introduced the concept of spatial autocorrelation into the treat-
ment of hedonic house price models. Her approach was based on geostatistical
principles, in which the structure of spatial autocorrelation follows from an esti-
mated theoretical semi-variogram.2 As argued in section 26.4.1.2, the geostatistical
approach is conceptually most suited to the analysis of a sample of house sales
transactions. In spite of this, it has seen relatively few applications in applied spa-
tial hedonic work. Other than the work of Dubin and co-authors (e.g., Dubin, 1992,
1998; Case et al., 2004), some notable examples include articles by Thibodeau (Basu
and Thibodeau, 1998; Gillen et al., 2001), Miltino et al. (2004), and Bourassa et al.
(2007), as listed in in Table 26.1. An overview of the major methodological issues
is given in Dubin et al. (1999).

The bulk of applied work in spatial hedonic house price analysis takes a lattice
data perspective and employs the standard spatial lag and spatial error models.
An overview of several illustrative studies is given in Tables 26.2 and 26.3, for
cases where, respectively, the spatial lag and spatial error specifications were the
primary focus of attention. Topics covered range from the simple definition of
the hedonic equilibrium and explanation of price differentials to the valuation of
environmental benefits, accessibility to transportation systems, wildfire risk, and
the impact of preservation policies.

Around the same time as Dubin’s article appeared, Can (1990) was one of the
first to consider the implications of spatially autocorrelated errors in the estimation
of spatial regression models using the lattice perspective. Specifically, she allowed
coefficients of the structural characteristics to vary across observations in a spatial
lag specification. Using a sample of 577 house sales for 1980 in Columbus, Ohio,
she concluded that a linear neighborhood quality drift expansion model is the most
appropriate hedonic price specification. Later on, Can (1992) used data from 563
single-family house sales in 1980 for Franklin County to obtain heteroskedastic
consistent estimators for a spatial autoregressive model based on bootstrapping
techniques.

In recent years, the application of spatial econometric techniques in empiri-
cal hedonic studies has become more widespread. Most analyses still rely on ML

Table 26.1 Spatial dependence: geostatistics

Article Source

Dubin (1988) Review of Economics and Statistics
Dubin (1992) Regional Science and Urban Economics
Basu and Thibodeau (1998) Journal of Real Estate Finance and Economics
Dubin (1998) Journal of Real Estate Finance and Economics
Dubin et al. (1999) Journal of Real Estate Literature
Case et al. (2004) Journal of Real Estate Finance and Economics
Miltino et al. (2004) Journal of Real Estate Finance and Economics
Bourassa et al. (2007) Journal of Real Estate Finance and Economics
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Table 26.2 Spatial dependence: lag

Article Source

Can (1990) Economic Geography
Can (1992) Regional Science and Urban Economics
Bowen et al. (2001) Growth and Change
Gawande and Jenkins-Smith (2001) Journal of Env. Economics and Management
Kim et al. (2003) Journal of Env. Economics and Management
Miltino et al. (2004) Journal of Real Estate Finance and Economics
Capozza et al. (2005) Real Estate Economics
Hunt et al. (2005) Ecological Economics
Anselin and Le Gallo (2006) Spatial Economic Analysis
Armstrong and Rodríguez (2006) Transportation
Huang et al. (2006) American Journal of Agricultural Economics
Donovan et al. (2007) Land Economics
Neill et al. (2007) Southern Economic Journal
Richards et al. (2007) Journal of Agricultural and Res. Economics
Anselin et al. (2008) World Bank Working Paper
Anselin and Lozano-Gracia (2008) Empirical Economics

Table 26.3 Spatial dependence: error

Article Source

Pace and Gilley (1997) Journal of Real Estate Finance and Economics
Bell and Bockstael (2000) Review of Economics and Statistics
Legget and Bockstael (2000) Journal of Env. Economics and Management
Beron et al. (2004) Advances in Spatial Econometrics
Brasington (2004) Journal of Real Estate Finance and Economics
Case et al. (2004) Journal of Real Estate Finance and Economics
Rodríguez and Targa (2004) Transport Reviews
Boxall et al. (2005) Resource and Energy Economics
Brasington and Hite (2005) Regional Science and Urban Economics
Rogers (2006) Land Economics
Day et al. (2007) Environmental and Resource Economics
Donovan et al. (2007) Land Economics
Hui et al. (2007) Building and Environment
Munroe (2007) Environment and Planning B: Planning and Design
Neill et al. (2007) Southern Economic Journal
Noonan (2007) Economic Development Quarterly
Osland et al. (2007) Journal of Real Estate Research
Richards et al. (2007) Journal of Agricultural and Resource Economics

estimation (e.g., Kim et al., 2003; Brasington, 2004; Capozza et al., 2005; Hunt
et al., 2005; Armstrong and Rodríguez, 2006; Hui et al., 2007), although alter-
native methods are being increasingly considered as well. For example, general
method of moments estimators were applied in Bell and Bockstael (2000), Legget
and Bockstael (2000), Anselin and Le Gallo (2006), Munroe (2007), Anselin et al.
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(2008) and Anselin and Lozano-Gracia (2008), among others. A comparative per-
spective is offered in Bell and Bockstael (2000), using about 1,000 observations on
parcel data for Anne Arundel County, Maryland. Overall, the average difference
between estimates for the characteristics based on ML and GM methods is less
than 5%. However, the estimates for the (error) spatial autoregressive coefficient
differ between 10% and 29%.

In general, studies using a spatial econometric approach show significant differ-
ences in the estimates of marginal prices, in particular when employing a spatial
lag specification. For example, Pace and Gilley (1997) find that the simultaneous
spatial autoregressive (SAR) model ML estimator obtains a much better fit than
the OLS estimator using data from 506 sales in Boston SMSA (Standard Metropoli-
tan Statistical Area). Pace and Gilley (1998) also compare a SAR with OLS and
a grid adjustment model and conclude that, by going from the OLS to the SAR
specification, the estimated residuals fall by 44%.

For a spatial error model, the issue is not consistency of the estimates, but pre-
cision. Here again, a spatial approach seems to pay off. For example, Legget and
Bockstael (2000), using data on coastal properties from Ann Arundel County in
Maryland, suggest that the significance of the coefficients improves considerably.
This allows them to confirm the relationship between residential prices and water
quality with more confidence relative to the estimates obtained from OLS.

An important sub-set of empirical studies focuses on the way in which environ-
mental quality, and air quality in particular, becomes capitalized into the house
price. Considerable differences between the results of spatial and non-spatial esti-
mates are observed in these studies as well. For example, Kim et al. (2003) found
that the marginal price for air quality estimated using spatial 2SLS for a spatial lag
model was half the size of the estimate obtained through OLS. Using a survey of
609 owner-occupied households in Seoul, Korea, they estimated a hedonic price
equation in which air pollution is introduced as NOx and SO2, obtained from read-
ings from 20 monitoring stations. The air pollution measures were interpolated to
allocate a value to each of 78 residential sub-districts. An important contribution
made in Kim et al. (2003) is to spell out the estimation of the marginal benefit in
a spatial lag model. They note that it does not only include the direct effect seen
in traditional OLS applications, but also a so-called spatial multiplier effect that
captures the “induced effects of a neighborhood’s housing characteristics change.”

Beron et al. (2004) go one step further and consider the welfare effects of non-
marginal changes in air pollution by estimating the second stage of the hedonic
model. They compare the welfare estimates from a 10% reduction in air pollution
between a standard regression using OLS and SAR-based models. Using single-
family home sales records for four counties in the South Coast Air Basin (Los
Angeles, Orange, San Bernardino and Riverside Counties), they estimate a semi-
log form of the hedonic price equation for six different years (1980, 1983, 1986,
1989, 1992 and 1995). Air quality is measured as the annual average of PM10 (air-
borne particulate matter resulting from the burning of fossil fuels, such as petrol
in cars) at each of 40 monitoring stations, and interpolated using the geostatis-
tical kriging technique. Interestingly, an additional random resampling is carried
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out to eliminate the effects of spatial autocorrelation, which reduces the ultimate
sample size to 51,110 observations. The WTP estimates obtained from the differ-
ent models ranged between $15,719 and $34,154 for the SAR model and between
$15,639 and $30,489 for the OLS-based models. Beron et al. (2004) suggest that,
even though a spatial model for the first stage of the hedonic model provides a
statistically superior specification, it does not reduce the variability seen in esti-
mated benefits derived from different model specifications. While it is clear that
both spatial heterogeneity and spatial dependence violate the assumption of spher-
ical error terms, the implications for the empirical results of the hedonic model of
taking these misspecifications into account may vary from one case to the other.

The wide range seen in the estimated WTP for reductions in air quality calls
for further research in this area. Additional insight remains to be gained into the
sensitivity of the WTP to different specifications. In addition, many studies do not
obtain standard errors for the calculated welfare effects, which makes meaningful
comparisons difficult.

Further attention to non-marginal changes in environmental quality is given in
Brasington and Hite (2005), who found that the demand for environmental quality
is considerably more inelastic in spatial models than non-spatial models suggest.
They use house sales data in Ohio for 1991, aggregated to the census block group
(CBG) level, to estimate a hedonic specification that considers the presence of
spatial autocorrelation in both first and second stages of the model.3 The original
number of house transactions considered is 44,255. However, since the study is
carried out at the CBG level, the effective sample size consists of the number of
CBG in the study, 5,051. Brasington and Hite estimate a model that includes both
a spatial lag and a spatially correlated error term, with the environmental variable
measured as the distance to the nearest hazard.3

They show that the explanatory power of the spatial model is higher and, most
importantly, this model suggests a more inelastic demand function than the other
specifications. For example, using the non-spatial model, the estimated consumer
surplus loss from a decrease of half a mile in the median distance to a hazard is
$2,276 per household. In contrast, the spatial model gives an estimate of $3,278.
These results suggest that ignoring spatial characteristics may lead to underestimat-
ing the consumer surplus loss of a reduction in environmental quality. However,
since no standard errors are reported, it is difficult to assess the significance of the
difference in estimates.

Other recent examples of spatial econometric hedonic applications include
Anselin and Le Gallo (2006), Donovan et al. (2007), Hui et al., (2007), Munroe
(2007), Anselin and Lozano-Gracia (2008) and Anselin et al. (2008), among others.

Anselin and Le Gallo (2006) point out that the spatial interpolation method used
to create some of the explanatory variables included in hedonic models determines
to a great extent the estimates of marginal prices. They recommend the kriging
interpolator as the preferred method. Donovan et al. (2007) use a spatial lag model
to estimate the effect of wildfire risk on house prices. This study follows an inter-
esting approach to define the weights matrix, in which a correlogram is used to
determine the extent of spatial correlation. They conclude that ignoring spatial
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autocorrelation leads to biases for the estimated risk measures that range between
37% and 167%.

Munroe (2007) combines geovisualization of single-family residential site prices,
exploration of univariate and bivariate measures of spatial autocorrelation, and
spatial econometric estimation of a hedonic model, to identify factors that are
likely to affect the land value in Mecklenburg County, North Carolina.

Finally, Anselin and Lozano-Gracia (2008) consider the endogeneity from an
errors in variable problem of the interpolated air pollution variable. Furthermore,
they provide the first empirical application of the HAC estimator suggested in
Kelejian and Prucha (2007). By reporting standard errors and 95% confidence inter-
vals, they compare the estimates from spatial and non-spatial models. Although
statistical differences are mainly seen between estimates that ignore (or not) endo-
geneity, they point out that the spatial models allow for a distinction between
direct and multiplier effects in the estimation of benefits associated with marginal
changes in house characteristics, which is not possible in the standard non-spatial
specification.

An interesting set of studies has focused on comparing the performance of geo-
statistical and lattice spatial econometric models, with particular attention given
to the estimates in the hedonic price equation and out of sample prediction. For
example, Miltino et al. (2004) compare a conditional autoregressive model (CAR)
and a SAR model with a geostatistical model and a linear mixed effects model. The
parameters of these four specifications are estimated using a relatively small sam-
ple, consisting of 293 dwelling sales in Pamplona, Spain. Coefficient estimates are
very similar across models. Using AIC and BIC information criteria, the CAR model
seems to be a better alternative than the SAR model, but differences do not appear
to be significant. Miltino et al. (2004) suggest that using a linear mixed effect model
may be a better alternative, because this type of model avoids the problems asso-
ciated with the selection of an appropriate weights matrix. A similar comparison
for a larger dataset remains to be carried out.

Case et al. (2004) find superior out of sample prediction performance for three
spatial models relative to OLS using 50,000 house sales observations for Fairfax
County, Virginia. Bourassa et al. (2007) extend this work by also including an OLS
model that includes dummy variables for different sub-markets. This is assessed
for 4,880 house sales from Auckland, New Zealand. Specifically, they compare
the performance of a geostatistical model, lattice spatial models, and a standard
model with dummy variables (spatial fixed effects) for mass appraisal purposes. The
addition of sub-market dummy variables seems to outperfom both geostatistical
as well as lattice models in terms of out of sample predictions. However, these
conclusions may need to be put into perspective, since the sub-market models
considered did not include spatial effects (see also section 26.6). To some extent
then, the spatial and dummy variable specifications are not directly comparable.
Also, for lattice models, the notion of out-of-sample prediction is complicated
when some observations are removed from the original dataset. Since this alters
the specification of the weights matrix, additional uncertainty is introduced, which
needs to be taken into account (see also section 26.4.1.2).
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Overall, there is ample empirical evidence that properly accounting for spatial
dependence by means of spatial econometric methods pays off in terms of superior
estimates of marginal price coefficients as well as welfare effects. However, several
methodological issues still require further investigation.

26.6 Empirical evidence: spatial heterogeneity

Following the same organization as the methodological discussion, spatial hetero-
geneity can be classified as either discrete or continuous. In this review of some
of the empirical literature, we follow the same distinction. An overview of the
empirical applications considered is given in Table 26.4.

26.6.1 Discrete heterogeneity: sub-markets

Heterogeneity in the determination of house prices across spatial sub-units of the
market is commonly approached by considering this as a special case of market seg-
mentation (see Stevenson, 2004, for a review). This segmentation may result from
the existence of market barriers or other types of market imperfections across space.

Table 26.4 Spatial Heterogeneity

Article Source

Goodman (1981) Journal of Regional Science
Can (1990) Economic Geography
Can (1992) Regional Science and Urban Economics
Allen et al. (1995) Journal of Real Estate Finance and Economics
Goetzmann and Spiegel (1997) Journal of Real Estate Finance and Economics
Goodman and Thibodeau (1998) Journal of Housing Economics
Bourassa et al. (1999) Journal of Housing Economics
Pavlov (2000) Real Estate Economics
Fotheringham et al. (2002) Geographically Weighted Regression
Bourassa et al. (2003) Journal of Housing Economics
Fik et al. (2003) Real Estate Economics
Gelfand et al. (2003) Journal of the American Statistical Association
Goodman and Thibodeau (2003) Journal of Housing Economics
Theriault et al. (2003) Property Management
Day et al. (2004) CSERGE Working Paper
Ugarte et al. (2004) Spatial and Spatiotemporal Econometrics
Brasington and Hite (2005) Regional Science and Urban Economics
Cho et al. (2006) Journal of Agricultural and Resource Economics
Farber and Yeates (2006) Canadian Journal of Regional Science
Kestens et al. (2006) Journal of Geographical Systems
Bitter et al. (2007) Journal of Geographical Systems
Bourassa et al. (2007) Journal of Real Estate Finance and Economics
Long et al. (2007) Working Paper: Center for Spatial Analysis

McMaster University, Hamilton, ON
Bourassa et al. (2008) Swiss Finance Institute Research Paper
Wang et al. (2008) Environment and Planning A
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The main methodological problem is then how to delineate the submarkets. In
the literature, this has been approached in a number of different ways. Examples
include the use of political boundaries, such as census tract, zip code zone or county
boundaries (see, e.g. Goodman, 1981; Goetzmann and Spiegel, 1997; Brasington
and Hite, 2005), or subjectively determined areas defined by real estate agents or
appraisers (e.g., Bourassa et al., 2003, 2007). Alternatives rely on the application of
statistical techniques, such as principal component and cluster analysis (Bourassa
et al., 1999, 2003, 2008), including model-based clustering (Day et al., 2004), hier-
archical models (Goodman and Thibodeau, 1998, 2003), and mixtures of linear
models (Ugarte et al., 2004). In addition to geographical boundaries, physical char-
acteristics of a property, such as the number of rooms, the lot and floor area, and
the type of property, have also been used to define sub-markets.

In practice, most attempts to account for this type of spatial heterogeneity
include dummy variables for each sub-market in the hedonic specification, rather
than estimating a separate hedonic equilibrium for each sub-market (e.g., Bourassa
et al., 2007). The inclusion of sub-market dummies may improve the predictive
power of the model, which is usually the stated objective. However, it does not fully
account for parameter heterogeneity, which may be important for identification
purposes.

Representative examples of the prior selection of sub-markets are the work of
Bourassa and co-authors. For example, in Bourassa et al. (2003), sub-markets
defined by real estate agents are compared to those derived from the application
of principal components and cluster analysis for 8,421 house sales transactions in
Auckland, New Zealand, in 1996. Specifically, factor scores obtained using princi-
pal components are used in k-means cluster analysis, which results in sub-markets
that do not impose contiguity. In terms of out of sample prediction, the geograph-
ically defined sub-markets used by appraisers outperform those based on statistical
criteria. Also, for mass appraisal purposes, urban boundaries seem to be better as
definitions of spatial sub-markets.

Further comparative evidence is provided in Bourassa et al. (2008), where alter-
native specifications of sub-markets are evaluated using a sample of 13,000 housing
transactions for Louisville, Kentucky. Districts defined by local property tax assess-
ment, as well as a classification of census tracts generated by principal components
and cluster analysis, are used to derive sub-markets. For the purposes of mass
appraisal, both the use of sub-market dummy variables as well as geostatistical
methods increase the predictive accuracy of hedonic models.

In contrast to this spatial fixed effects approach, Allen et al. (1995) suggest
that the differences between the sub-markets identified may be treated as random
effects. The specific application is a study of an aggregate residential rental market.
Through this approach, the authors allow for the possibility of individuals consid-
ering more than one property type in their choice set, while still considering an
aggregated rental market, instead of modeling each sub-market independently.

Goodman and Thibodeau (1998), on the other hand, suggest that submarkets
should not be imposed but specified explicitly using a hierarchical approach. For
example, they use 28,939 single-family property transactions in Dallas, Texas,
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between 1995 and 1997 and derive aggregates of school zones as sub-markets. The
procedure starts by estimating a hierarchical model for two adjacent school zones.
Then, if the coefficient associated with the sub-market is significant, those school
zones are considered to pertain to different sub-markets. If, on the other hand,
the coefficients are not significant, the two zones are merged. One by one, each
school zone is added until all zones have been included. To avoid sub-market def-
initions that are path dependent, sensitivity checks are included of how the final
sub-market definition depends on the starting point.

Comparative evidence is provided in the evaluation of the hierarchical approach
to a sub-market definition using zip codes and census tracts in Goodman and
Thibodeau (2003). In terms of prediction accuracy, the Goodman and Thibodeau
(1998) hierarchical approach outperforms the other two methods.

In more recent work, Ugarte et al. (2004) propose the use of a mixture of linear
models. This first provides a classification of the observations into groups (sub-
markets), and then estimates the parameters for the hedonic price equilibrium in
each group. The data are allowed to determine the group structure and coefficients
are estimated jointly. A linear mixed model with random effects is estimated by
means of nonparametric ML. However, due to the small number of properties con-
sidered (293 in Pamplona, Spain), the degree of generality of this approach remains
a topic for further research.

In the empirical literature, the discussion of sub-market definition and evaluation
of the performance of different methods has tended to focus primarily on the
out-of-sample predictive precision. The effect of different sub-market definitions
on the substantive interpretation of the value and MWTP of specific house (and
environmental) characteristics largely remains to be investigated.

26.6.2 Continuous spatial heterogeneity: spatially varying coefficients

Early efforts to allow for continuous variation of the parameters in a hedonic spec-
ification were based on applications of Casetti’s expansion method. This was first
implemented by Can (1990) as a way to address spatial heterogeneity in house
prices at the neighborhood level. In her specification, the marginal price of housing
attributes are assumed to vary as a function of neighborhood characteristics. Specif-
ically, Can defined a composite neighborhood quality (NQ) index and introduced
linear and quadratic functions of NQ as the expansion equation. The hedonic price
equilibrium is then specified as:

P = α +
∑

k

βkSk + ε, (26.43)

where the Sk are the structural characteristics of the house and βk is a function of
a neighborhood variable NQ. For example, for the linear case:

βk = βk0 + βk1NQ + u. (26.44)

Other examples of applications of the expansion method to hedonic specifica-
tions can be found in Can (1992), Theriault et al. (2003), Fik et al. (2003) and

mailto: rights@palgrave.com


1242 Spatial Hedonic Models

Kestens et al. (2006). However, their feasibility in practice is typically limited due
to the severe problems of multicollinearity that follow from the interaction terms.

Continuous spatial heterogeneity as implemented in GWR has seen several appli-
cations to hedonic specifications. Fotheringham’s text contains multiple examples
of hedonic price models (Fotheringham et al., 2002), but others have applied this
methodology as well, such as Cho et al. (2006), Kestens et al. (2006), Farber and
Yeates (2006), Long et al. (2007), Bitter et al. (2007) and Wang et al. (2008). Related
applications to repeat house sales models include McMillen (2003, 2004).

Pavlov (2000) suggests that the spatial varying coefficient model forms an alter-
native approach to dealing with sub-markets that outperforms several competing
specifications in terms of cross-validation residuals. The models evaluated include
a standard linear regression and a linear regression that includes dummy variables
for zip codes, as well as a parametric model including a quadratic polynomial of
the X, Y coordinates of the points in the data.

Other applications focus more on the parameter instability related to specific
characteristics in the hedonic specification, such as environmental quality. For
example, Cho et al. (2006) investigate whether public open space is capitalized
into nearby residential property values. They use an original dataset that includes
over 22,000 single-family housing sales transactions between 1998 and 2002 in
Knox County, Tennessee. Of this total sample, 15,500 transactions were randomly
selected for analysis. GWR estimation of a hedonic specification that includes prox-
imity to water bodies and parks suggests considerable variation in the marginal
prices of both amenities along different regions of the county. The resulting local
marginal prices would be obscured in a global model that assumes a constant
marginal price across the whole region.

A number of studies have compared the performance of the parametric expansion
method to the nonparametric GWR. For example, using data on 761 single-family
properties sold between 1993 and 2001 in Quebec City, Canada, as well as infor-
mation on the profiles of buyers, Kestens et al. (2006) compare the results from a
spatial expansion method and GWR. They also suggest that introducing detailed
household-profile data into the hedonic specification helps in explaining spatial
heterogeneity while at the same time reducing spatial dependence. Household
income, previous tenure status and age of the buyer show a significant effect on
house prices.

A similar comparison is carried out by Farber and Yeates (2006), who consider
global specifications, such as a standard linear and a SAR model (both estimated

using OLS) relative to local models such as GWR. Using an adjusted version of R2

as the criterion, they conclude that GWR obtains the best fit. Similarly, Bitter et al.
(2007), using data for over 10,000 single-family house sales in Tucson, Arizona, find
that GWR outperforms the expansion method in terms of both explanatory power
and predictive accuracy.4 On the other hand, Kestens et al. (2006) suggest that, in
their application, GWR and the expansion method have similar explanatory power.

Long et al. (2007) assess the difference in predictive accuracy between moving
windows regression (MWR), GWR, kriging, and moving windows kriging (MWK)
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using data on 33,494 transactions of single-family detached houses sold between
January 2001 and December 2003 in the City of Toronto; 10% of this sample is
taken out for out-of-sample validation. The MWR is an alternative to the locally
weighted regression (LWR) (and therefore GWR) in which a window (neighbor-
hood) is defined at every location. All points inside the window, and only those
points, are used to estimate the parameters for each observation. Therefore, in
contrast to LWR/GWR, a constant weight is given to all observations within the
window, ignoring observations outside the window. Similarly, MWK uses a local
spatial covariance structure that varies at every point in the sample (Haas, 1990).
In this example, MWR and GWR provide the most accurate results in terms
of prediction, while MWK produces very poor results in terms of out-of-sample
prediction.

Overall, the explicit incorporation of spatial heterogeneity in hedonic specifica-
tions illustrates the need to better understand the nature of market segmentation
and the complex interactions between location and the value of individual house
characteristics.

26.7 Concluding remarks

The contribution of spatial econometrics to hedonic analysis is not limited to
improving the quality and precision of the estimates obtained, as reviewed in the
previous sections. Spatial econometric methods also provide additional insight for
policy analysis. In this concluding section, we focus on two aspects in particular,
the notion of the spatial multiplier and its implications for the interpretation of
welfare effects, and the use of spatially explicit simulations to assess the impact of
non-marginal changes in characteristics.

As outlined in detail in section 26.2.1, the marginal implicit price derived
from the hedonic price equilibrium may be interpreted as a measure of a house-
hold’s marginal utility. Therefore, the derivative of the hedonic price equilibrium
equation with respect to the characteristic of interest forms the basis for the
estimation of MWTP.

In a non-spatial log-linear model, this MWTP equals the estimated coefficient
for the characteristic of interest zk times the price (P), or:

M̂WTPzk
= ∂P

∂zk
= β̂zk

P. (26.45)

As shown in Kim et al. (2003), in a spatial lag model this is no longer the case.
Instead, a spatial multiplier effect needs to be accounted for to accurately compute
the MWTP. Specifically, in the case of a uniform change in the amenity across all
observations, the MWTP can be shown to be:

M̂WTP = β̂zk
P
(

1
1− ρ̂

)
, (26.46)

with ρ̂ as the estimate of the spatial autoregressive coefficient.
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The distinction between equations (26.45) and (26.46) is important in light of
the points recently raised by Small and Steimetz (2006). They considered a different
interpretation of welfare effects between the direct valuation in equation (26.45)
and the multiplier effect included in (26.46). In their view, the multiplier effect
should only be considered as part of the welfare calculation in the case of a
technological externality associated with a change in amenities. In the case of
a purely pecuniary externality, the direct effect is the only correct measure of wel-
fare change. Only in a spatial lag specification is it possible to distinguish between
these two effects.

The use of an analytical approach to deriving MWTP in impact analysis is limited
in a number of ways. It is constrained by the functional specification of the hedo-
nic model. Specifically, if nonlinearities are introduced in the hedonic model, such
nonlinearities will be transfered to possible dependencies and/or nonlinearities in
the MWTP itself. Also, the analytical derivation of MWTP is limited to marginal
changes in the characteristics. For non-marginal changes, the inverse demand func-
tion needs to be estimated, which is often difficult in practice. Moreover, nonlinear
specifications require a value for the price and/or characteristics in the calculation,
which is typically simplified by using a mean or median value.

An alternative to the analytical derivation is to use a simulation approach, as
outlined in Anselin and Le Gallo (2006). The essence of the approach is that valu-
ation is based on the computation of predicted values for individual observations
given their actual household characteristics. In essence this boils down to a discrete
approximation to the notion of marginal willingness to pay. A major advantage of
the simulation approach is that it allows greater flexibility, both in the specification
of the type of policy experiment as well as in the valuation. Since the valuation is
computed for individual house observations, the results can be obtained for any
desired level of spatial aggregation, such as by county or zip code (for an extensive
application, see Anselin et al., 2008).

In a non-spatial linear model, the change in predicted values can be expressed
as follows:

p̂0 − p̂−k = (z0 − z−k)βk, (26.47)

where p̂0 − p̂−k is the change in valuation and (z0 − z−k) is the change in charac-
teristic k. If a spatially lagged dependent variable is included in the hedonic price
equilibrium, the change in valuation resulting from a change in characteristic k

would turn out to be (I − ρ̂W)
−1

(z0 − z−k)βk. Any nonlinearities of the hedo-
nic price function would also be reflected in this approximation to the change in
valuation.

By ignoring this multiplier effect and looking at individual or private benefits
only, underestimation of the overall social welfare from changes in house char-
acteristics may result, such as reductions in air pollution, greater access to public
facilities, and public services. In decision making under strict efficiency rules, this
may lead to an underinvestment in such characteristics.

In sum, a spatial econometric approach yields more efficient estimates of policy
effects of interest, allows for a distinction between direct and indirect welfare effects
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and forms the basis for flexible policy simulation experiments. While the field has
made significant progress to date, several important methodological issues remain
to be addressed satisfactorily. Foremost among these are the treatment of spa-
tial scale, endogeneity and sub-market heterogeneity. It is hoped that the current
chapter has raised awareness of these issues and will stimulate further progress.

Notes

1. For a more extensive discussion, see Anselin (2002, pp. 256–60) and Anselin (2006,
pp. 909–10).

2. Commonly used theoretical specifications include the negative exponential, spherical and
Gaussian semi-variograms. A detailed discussion of specific functional forms is given in
Dubin et al. (1999).

3. Note that, rather than estimating the more traditional inverse demand function, Brasing-
ton and Hite (2005) estimate a direct demand function in the second stage of the hedonic
model.

4. Bitter et al. (2007) also introduce a spatially lagged variable into the GWR specification,
but it is doubtful that the OLS estimation procedure used would yield consistent estimates
of this lag term.
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Abstract

This chapter reviews some of the major econometric models, approaches and issues related to the
spatial dimensions of economic convergence and inequality. Key themes concern the implications
of spatial dependence (autocorrelation) and heterogeneity for the specification, estimation, and
interpretation of convergence models on the one hand and, on the other, the treatment of these
spatial effects in the analysis of distributional dynamics and the application of related exploratory
data analysis methods. We draw linkages between recent contributions in the mainstream econo-
metric literature and developments in spatial econometrics and regional science We identify a
number of areas where cross-fertilization between these fields would be beneficial.
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27.1 Introduction

The last two decades have witnessed a renaissance in the field of growth econo-
metrics. Defined as the set of statistical tools for the study of growth (Durlauf et al.,
2005), growth econometrics can be organized along two dimensions. In the first,
which we refer to as the regression approach, predictions from formal neoclassi-
cal (and other) growth theories have been tested using cross-sectional, time series
and panel data econometric specifications. The second group of methods departs
from the representative economy assumption underlying most of the regression
approaches and instead examines the entire distribution of incomes. Here the focus
shifts to how different parts of the distribution may behave over time, and to ques-
tions of whether there are changes in modality and shape of the distribution and
concerns with the intradistributional dynamics and mixing. These methods are
distinct not only in their focus, but also in the specific statistical techniques that
are employed.

A prominent trend in the growth literature has been a decidedly regional turn,
where the focus has shifted from cross-country analyses to examine the nature
of convergence as it may operate at the sub-national scale (cf. Barro and Sala-i-
Martin, 1992; Carlino and Mills, 1993; Neven and Gouyette, 1995; Sala-i-Martin,
1996; Rey and Montouri, 1999; Fingleton, 2004). Early in this regional turn, there
was some appreciation for the challenges that regional data posed for the appli-
cation of standard growth models. Given that regions typically display a greater
deal of openness than is the case for national economies, various forms of regional
interdependencies, such as labor and capital flows along with trade, take on
increased importance at the finer spatial scale. Yet there was also a perception that
there was a lack of econometric methods for modeling regional interdependen-
cies. When confronted with evidence of spatial dependence and heterogeneity in
regional growth sets, the strategy adopted by many researchers has been to remain
in the closed-economy model but to adjust the closed model for these spatial
effects.

Paradoxically, during this period of renewal and resurgence of interest in growth
econometrics, there was a similar burst of activity in the fields of spatial econo-
metrics and spatial statistics (for example, Anselin, 1988; Cressie, 1993; Anselin
et al., 2004). Indeed, as Arbia (2006, p. 3) has noted: “until a few years ago, spatial
econometric methods were well developed in the literature but the drama was that
no one used them in the mainstream applied economic analysis!”

Towards the close of the century this began to change, with a number of stud-
ies adopting methods and tools of spatial analysis to the question of regional, or
sub-national, economic convergence beginning to appear in the literature. The
intersection of these two literatures has generated a large, and growing, body of
empirical studies, as well as the identification of a number of challenging method-
ological issues and some advances in the modeling and analysis of spatial growth
and convergence. The growing recognition of the unique characteristics of spatial
data is reflected by Durlauf et al. (2005), who note: “The problem of spatial corre-
lation has been much studied in the regional science literature, and statisticians in
this field have developed spatial analogues of many time series concepts ...”
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While this recognition is promising, it is also indicative of the need for further
interaction between the growth econometric and spatial analysis literatures. As
we develop more fully in what follows, spatial correlation is not a simple spatial
analogue to temporal correlation, nor are the methods that have been developed
in the spatial literature simple extensions of time series methods. Moreover, spatial
correlation/dependence is but one of several types of spatial effects encountered in
the analysis of geographically referenced data.

This chapter explores the intersection of the growth empirics and spatial analysis
literature. Our objectives for doing so are threefold. First, while there have been
some efforts at providing overviews of regional convergence research, these have
tended to appear in the regional science and economic geography literature (e.g.,
Magrini, 2004; Abreu et al., 2005; Rey and Janikas, 2005) and not the wider growth
literature. Because of this the amount of cross-fertilization between the traditional
growth econometrics literature and the spatial analysis is not as advanced as it
could be. Thus we hope that by updating previous reviews we can bring this work
to a wider audience.

At the same time, existing reviews have divided the literature into those studies
adopting a confirmatory approach to formal growth modeling on the one hand
and, on the other, the “atheoretical” exploratory literature. In our view this is an
artificial distinction as we see both literatures as complementary, and thus our sec-
ond objective is to explore the potential synergies between these two fields. Finally,
there are a number of outstanding methodological issues that require further atten-
tion in order for the field of regional convergence analysis to move forward. We
identify these and suggest an agenda for future research.

The chapter is organized as follows. Section 27.2 provides a selective survey of
the treatment of space in empirical econometric work on convergence. Section
27.3 examines methods for distributional dynamics and related exploratory data
analysis and their application to spatially referenced data. Section 27.4 concludes
with a summary evaluation of progress to date and the identification of possible
directions for future research.

27.2 Space and econometric modeling of convergence

27.2.1 Models of economic growth

The primary basis for the analysis of spatial effects in empirical convergence studies
has been cross-country growth regressions, based on the seminal studies by Barro
and Sala-i-Martin (1992) and Mankiw et al. (1992). The main prediction of the
neoclassical growth models is that the growth rate of an economy is positively
related to the distance that separates it from its own steady-state. Let us take as a
starting point the canonical form for such regressions:

1
T

log(yi,t0+T /yi,t0) = α + β log(yi,t0)+X1,iδ1 +X2,iδ2 + εi, (27.1)

where yi,t is the per capita income of country or region i at time t , and X1,i is a set
of additional structural regressors suggested by the Solow growth model (popula-
tion growth, technological change and physical and human capital savings rates).
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They are transformed in ways implied by the model (see Durlauf and Quah, 1999,
for additional insights into this specification). X2,i is a set of additional control
variables capturing differences in aggregate production functions and εi is an error

term with the following properties: εi ∼ i.i.d.(0, σ2
ε ).

In this specification, the average growth rate in per capita income over the period
t0 to t0 + T is related to the initial level for income yi,t0 and a set of steady-state
determinants (X1,i and X2,i). There is conditional convergence if the estimate of β

is significantly negative, with a convergence speed equal to b = − log(1 + Tβ)/T
and a half-life equal to τ = − log(2)/ log(1+β). The concept of unconditional con-
vergence is defined when all the economies are assumed to be structurally similar,
that is, that they are characterized by the same steady-state, and differ only by
their initial conditions. This assumption is tested with the cross-sectional model,
including only the initial per capita income as an explanatory variable.

As frequently pointed out in the growth econometrics literature, the tests of
conditional convergence face several problems, such as robustness with respect
to choice of control variables, multicollinearity, heterogeneity, endogeneity, and
measurement problems (Durlauf and Quah, 1999; Temple, 1999; Durlauf et al.,
2005). Durlauf et al. question the assumption usually made on the error terms.
Indeed, by assuming that they are independent and identically distributed (i.i.d.),
the researcher thinks of them as interchangeable across observations. This is the
concept of exchangeability: “different patterns of realized errors are equally likely
to occur if the realizations are permuted across countries. In other words, the
information available to a researcher about the countries is not informative about
the error terms” (2005, p. 36). They show that many econometric problems
highlighted in growth regressions can be interpreted as violations of exchange-
ability. Parameter heterogeneity (discussed below) or omitted regressors induce
non-exchangeability.

The assumption of constant returns to scale, on which neoclassical theory is
based, has been challenged by new economic growth and new economic geogra-
phy theories. Consequently, Fingleton and McCombie (1998) suggest alternative
theoretical frameworks that allow increasing returns to scale, especially when one
deals with regions. At the heart of this approach is Verdoorn’s law, based on Kaldor’s
second law, which has been traditionally estimated as a linear relationship between
the exponential growth rate of labor productivity (p) and output (q):

p = b0 + b1q + ε, (27.2)

where ε ∼ i.i.d.(0, σ2
ε ). In equation (27.2), the coefficient b0 is the autonomous

rate of productivity and the coefficient b1 is called the Verdoorn coefficient. Its
estimated value is consistently about one-half when the model is fitted to vari-
ous data on manufacturing productivity growth and output growth. This implies
that a one-percentage-point increase in output growth induces an increase in the
growth of employment of one-half of a percentage point and an equivalent increase
in the growth of productivity. The increasing returns implied by Verdoorn’s law
have been illustrated by Fingleton (2000) using a static Cobb–Douglas production
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function model. While exchangeability problems have not been discussed in this
specific context, it is also relevant given the type of assumption made on the errors
terms.

27.2.2 The cross-sectional approach to growth and convergence

We focus in this section on another possible violation of the exchangeability
assumption: spatial dependence in the error terms (Ertur and Koch, 2007). Indeed,
in the cross-sectional context, the observational units are spatially organized and
the i.i.d. assumption may therefore be overly restrictive. Various alternative spec-
ifications are appropriate to deal with different forms of spatial dependence (Rey
and Montouri, 1999). They are best described if we rewrite equations (27.1) and
(27.2) in matrix form:

y = Xγ + ε, (27.3)

where y is the (N×1) vector containing the observations on the dependent variable,
X is the matrix containing the observations on all explanatory variables including
the constant term, ε is the (N×1) vector of error terms, the properties of which we
describe below, and α and γ are the unknown parameters to be estimated. In the
convergence case, y contains the vector of average growth rates of per capita income
between date t0 and t0+T and X contains the initial log per capita income and all
the other control variables. In the Verdoorn case, y contains the labor productivity
growth rate. Several spatial econometric specifications have been used to control
for spatial dependence in growth econometrics models: the spatial lag model, the
spatial error model and the spatial Durbin model.1 In the spatial lag model, or
mixed regressive spatial autoregressive (AR) model, a spatially lagged dependent
variable Wy is added to the right-hand side of the regression specification:

y = ρWy +Xγ + ε, (27.4)

where W is an (N × N) spatial weights matrix, usually row-standardized, and ρ is
the spatial autoregressive parameter. In a convergence context, for instance, this
specification allows measuring how the growth rate in a region may relate to the
ones in its surrounding regions (as defined in W) after conditioning on the starting
levels of per capita income and the other variables. Unlike the time series case, the
spatial lag term is endogenous, since it is always correlated with ε (Anselin, 1988).
Therefore, this specification must be estimated using instrumental variables (IVs)
or, assuming that ε follows a multivariate normal distribution with zero mean and a

constant scalar diagonal variance-covariance matrix σ
2IN , by maximum likelihood

(ML). In the former case, Kelejian and Prucha (1999) show that the low-order spatial
lags of the exogenous variables can be used as instruments for Wy. Of course, if
additional endogenous variables are present in the specification, this approach can
easily be extended by adding additional instruments.2

The spatial error model is a special case of a non-spherical error covariance matrix
in which the spatial error process is based on a parametric relation between a loca-
tion and its neighbors. Two specifications have commonly been used in spatial
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econometrics: the autoregressive and the moving average specifications. It is inter-
esting to note that only the former has been extensively used for the modeling
of spatial error dependence in convergence or Verdoorn’s law models. A spatial
autoregressive specification for the (N × 1) error vector can be expressed as:

ε = λWε + u, (27.5)

where λ is the spatial autoregressive parameter and u ∼ i.i.d.(0, σ2
u IN ). Note that

this model can be rewritten in another form, called the spatial Durbin model: if
(27.3) is premultiplied by (I − λW), we get (I − λW)y = (I − λW)Xγ + u. Hence:

y = λWy +Xγ + δWX + u, (27.6)

with δ = −λγ . These restrictions can be tested by the common factor test (Burridge,
1981). If it cannot be rejected, then model (27.6) reduces to model (27.5). In this
model, the average growth rate of a region i is influenced by the average growth
rate of neighboring regions, by the initial per capita income of neighboring regions
and the spatial lags of the other explanatory variables.

Conversely, the spatial moving average specification can be expressed as:

ε = λ̃Wu+ u, (27.7)

where λ̃ is the spatial autoregressive parameter and u ∼ i.i.d.(0, σ2
u IN ). Both models

can be estimated by ML, under the normality assumption, or generalized methods
of moments (GMM) (see Kelejian and Prucha, 1999, for the AR case and Fingleton,
2008, for the moving average (MA) case). These two specifications differ in the
terms of the range of spatial dependence in the variance-covariance matrix and
of the diffusion process they imply. More precisely, in the first case, the variance-

covariance matrix for ε is � = σ
2
u (A′A)

−1 with A = IN − λW . While W may be

sparse, the inverse term (A′A)
−1 is not. As a consequence, a random shock at one

location i is transmitted to all other locations of the sample: the spillovers are
global. Rey and Montouri (1999) and Le Gallo et al. (2005) illustrate this property
in the context of a β-convergence model and show how a random shock in one US
state or in one European region impacts upon the per capita income growth rates of
all the regions in the sample. Conversely, in the MA case, the variance-covariance

matrix does not involve a matrix inverse: �̃ = σ
2
u Ã′Ã. Therefore, the spillovers

remain local: a shock at location i will only affect the directly interacting locations
as given by the non-zero elements in W . Finally, higher-order spatial models have
been investigated by Kosfeld et al. (2006).

This basic framework has been extensively used to analyze the convergence pat-
terns among several sets of countries and regions: convergence among US states
(Rey and Montouri, 1999; Lee, 2004; Garrett et al., 2007), European regions (Fingle-
ton, 1999; Maurseth, 2001; Carrington, 2003; Le Gallo et al., 2003; Arbia, 2006; Le
Gallo and Dall’erba, 2006), Brazilian states (Lall and Shalizi, 2003; Magalhães et al.,
2005; Azzoni and Silveira-Neto, 2006), Spanish regions (Villaverde, 2005, 2006)
and Turkish regions (Gezici and Hewings, 2004; Yildirim and Öcal, 2006). Similarly,
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these spatial econometric models have been fitted to Verdoorn’s law specifications
by Bernat (1996), Fingleton and McCombie (1998), Pons-Novell and Viladecans-
Marsal (1999) and Dall’erba et al. (2008).3 Several methodological issues should be
kept in mind when dealing with these models.

First, in the absence of sound theoretical foundations for the specific form taken
by spatial autocorrelation in these models, most of these papers apply a classical
“specific to general” specification search approach outlined in Anselin and Rey
(1991) and Anselin and Florax (1995) to discriminate between the two forms of
spatial dependence – spatial error autocorrelation or spatial lag. Several Lagrange
multiplier (LM) tests are used for that purpose. Florax et al. (2003) show by means
of Monte Carlo simulation that this classical approach outperforms Hendry’s “gen-
eral to specific” approach. Note that this classical approach has several drawbacks,
including the problem of multiple comparisons highlighted by Savin (1984): the
significance levels of the sequence of tests conducted in this section are unknown.

Second, particular attention should be given to the interpretation of the co-
efficients in the spatial lag model, as compared to those of the spatial error model
or the simple model estimated by ordinary least squares (OLS). Indeed, in these
latter models, the marginal effect of one explanatory variable xk corresponds to
the associated parameter βk. Conversely, the spatial lag model (27.4) can be rewrit-

ten as y = (I − ρW)
−1

(ρWy + Xγ + ε). Since (in most cases) the elements of the
row-standardized weights matrix W are less than one, a Leontief expansion of

the matrix inverse follows as: (I − ρW)
−1 = I + ρW + ρ

2W2 + .... Consequently,
the growth rate of per capita income (in the convergence context) or of labor pro-
ductivity (in the Verdoorn context) of one region i is not only affected by a marginal
change of the explanatory variables of region i but is also affected by marginal
changes of the explanatory variables in the other regions, more importantly so for
closer regions. As a consequence, the estimated coefficients in a spatial lag model
include only the direct marginal effect of an increase in the explanatory variables,
excluding all indirect induced effects, while in the standard model estimated by
OLS, they represent the total marginal effect. It is therefore not relevant to compare
OLS and ML or two-stage least squares (2SLS) estimates for a spatial lag. This aspect
has so far been overlooked in the spatial econometrics literature in general (Pace
and LeSage, 2007) and in the spatial growth empirics literature in particular (Abreu
et al., 2005) and should be kept in mind when drawing inference on determinants
of the economic growth process using, for instance, the computationally feasible
means of summarizing the output into direct and indirect impacts of each variable
of interest suggested by Pace and LeSage (2007).

Third, endogeneity in cross-country regression models is a problem that is com-
monly encountered as output growth, investment rates, and so on, in a particular
period are likely to be jointly determined. Caselli et al. (1996) note that “At a
more abstract level, we wonder whether the very notion of exogenous variables is
at all useful in a growth framework (the only exception is perhaps the morpho-
logical structure of a country’s geography).” In a non-spatial context, they deal
with this issue using the Arellano and Bond (1991) GMM procedure. Similarly,
while Verdoorn’s law is usually treated as a single equation and estimated via OLS,
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there is a debate on the assumed endogeneity and exogeneity of this specification
(Kaldor, 1975; Rowthorn, 1975a, 1975b).

In a spatial context, as mentioned previously, the case of a spatial lag model
with additional endogenous variables is straightforward since it can be estimated
by 2SLS. However, the estimation of a model with a spatial error process and
endogenous variables is not possible with the usual ML approach. In this case,
Fingleton and Le Gallo (2008) have extended the Kelejian and Prucha (1998) fea-
sible generalized spatial two-stage least squares (FGS2SLS) estimator to account for
endogenous variables due to system feedback, given an AR or a MA error process.
Angeriz et al. (2008) use this strategy in the Verdoorn context. Alternatively, rather
than modeling the error process, Kelejian and Prucha (2007) have suggested a non-
parametric heteroskedastic and autocorrelation consistent (HAC) estimator of the
variance-covariance matrix in a spatial context (SHAC), which can be computed for
general regression models allowing for endogenous regressors, their spatial lags and
exogenous regressors. This methodology may also prove useful in spatial economet-
ric growth studies. Coupled with this is an extensive taxonomy of simultaneous
equation frameworks for spatial process models, recently suggested by Rey and
Boarnet (2004), that appears well-suited to convergence research.

Finally, the problem of model uncertainty has been raised by Brock and Durlauf
(2001), Fernandez et al. (2001), Doppelhofer et al. (2004) and Sala-i-Martin (1997).
This problem can arise from several sources. First, the selection of appropriate
conditioning variables is a difficult issue in convergence models and involves a
trade-off between the arbitrary selection of a small number of variables, which may
imply some omitted variables bias, and the introduction of a larger set of variables
with a number of econometric problems such as endogeneity or multicollinearity.
Second, as is typical in all regression models, we also face parameter uncertainty.
Fernandez et al. (2001) and Doppelhofer et al. (2004) employ Bayesian model
averaging techniques that can accommodate both model and parameter uncer-
tainty. In a convergence framework, they find that the posterior distribution of
β computed across alternative specifications assigns all probability mass to the
negative half interval. This results in strong support to the convergence hypoth-
esis. However, LeSage and Fischer (2007) point out that in a spatial setting an
additional source of model uncertainty arises: one also has to specify the appropri-
ate weights matrix W that defines connectivity between regions. In other words,
the estimates and associated inferences in spatial growth regressions are not only
conditional on the set of explanatory variables employed but also on the chosen
spatial weights matrix. Extending the approach of LeSage and Parent (2007), LeSage
and Fischer (2007) derive a Bayesian model comparison approach that simultane-
ously specifies the spatial weights structure and the explanatory variables in spatial
Durbin models, with an application to the convergence process among European
regions.

27.2.3 Dealing with heterogeneity

In this section, we deal with heterogeneity problems and how the literature has
considered them in conjunction with spatial autocorrelation. We consider the
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convergence literature here as these problems have been mainly encountered in
this context. First, unobserved heterogeneity is one of the most common problems
related with conditional convergence models, in particular due to technological
differences between economies. Given the difficulty in accounting for technolog-
ical differences in a cross-sectional framework (Islam, 2003), an alternative tactic
is to resort to the panel data approach to eliminate unobservable economy-level
heterogeneity. For that purpose, a dynamic panel data model with individual fixed
effects has been suggested by Islam (1995). Panel data techniques have several
advantages. They allow controlling for unobserved heterogeneity in the initial
level of technology and omitted variables that are persistent over time. Moreover,
endogeneity bias, common in convergence equations as stated above, may also
be rectified by estimating the panel data convergence model using Arrelano and
Bond’s (1991) GMM procedure.

Inclusion of spatial autocorrelation in this context has investigated been by few
authors to date. One possibility is to get rid of spatial autocorrelation in order to
apply the usual estimators. This strategy has been adopted by Badinger et al. (2004),
who propose a two-step estimation procedure. First, they apply the filtering tech-
nique suggested by Getis and Griffith (2002) that separates the spatially correlated
component from the data. Second, standard GMM estimators are used to provide
inference on convergence. However, the properties of the estimators obtained in
this two-step procedure are unknown. Moreover, this approach assumes that spa-
tial autocorrelation is only a nuisance, whereas the following section shows how
spatial autocorrelation can be considered as a component of the growth process in
its own right. In their suggestion to deal with spatial autocorrelation directly, Arbia
and Piras (2005) analyze the European growth process by including a spatial lag
variable or a spatial error term in a convergence model with region fixed effects.
The spatial parameters are assumed to be fixed over time and the model is esti-
mated using ML. One drawback of this method is that consistent estimation of the
individual fixed effects is not possible as N →∞, due to the incidental parameter
problem (Anselin et al., 2008).

Heterogeneity may also concern the regression parameters. While absolute β-
convergence is frequently rejected for large samples of countries and regions, it is
usually accepted for more restricted samples of economies belonging to the same
geographical area. This observation can be linked to the presence of convergence
clubs: there is not only one steady-state to which all economies converge. Rather,
there may be multiple, locally stable, steady-state equilibria. Therefore, a con-
vergence club is a group of economies whose initial conditions are near enough
to converge toward the same long-term equilibrium. It is noteworthy that the
hypothesis β < 0 can be consistent with non-converging alternatives, such as a
threshold growth model with multiple steady-states (Azariadis and Drazen, 1990).
The determination of those clubs, when they exist, is then a critical issue. In this
respect, some select a priori criteria, such as initial per capita gross domestic prod-
uct (GDP) cut-offs (Durlauf and Johnson, 1995). On the contrary, endogenous
methods of club detection are quite diverse and include regression trees (ibid.),
projection pursuit methods (Desdoigts, 1999), Bayesian methods that identify a
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mixture distribution for the predictive density of per capita output (Canova, 2004),
among others.

It is noteworthy that Durlauf and Johnson (1995), by endogenizing the split-
ting using the regression tree method, point out the geographic homogeneity
within each group. This is even more bound to happen in a regional context,
as regional economies are often characterized by strong geographic patterns. In
Europe, the core–periphery pattern has frequently been underlined as representa-
tive of a form of spatial heterogeneity. In a regression context, spatial heterogeneity
can be reflected by spatially varying coefficients, that is, structural instability,
and/or by spatially varying variances across observations. With this observation
in mind, several attempts aimed at analyzing spatial convergence clubs have been
suggested. A first strand of papers just use a priori spatial regimes. For example,
Neven and Gouyette (1995) define two regimes: Northern and Southern European
regions. Ramajo et al. (2008) split their sample of European regions between the EU
cohesion-fund countries (Ireland, Greece, Portugal and Spain) and all the others.
Using a model with groupwise heteroskedasticity, two spatial regimes and spatial
dependence, they show that, over 1981–96, there was a faster conditional con-
vergence speed in regions belonging to cohesion countries than in the rest of the
regions. A similar strategy has been adopted by Roberts (2004) on a sample of
British counties, by distinguishing between northern and southern counties.

Others explicitly take into account the spatial dimension of the data and use
exploratory spatial data analysis to detect spatial regimes. These techniques are
described in more detail in the following section. We note here that Ertur et al.
(2006) use Moran scatterplots (Anselin, 2006), based on the initial per capita
GDP of a sample of European regions, to determine spatial clubs. Two clubs are
constructed this way: HH (High–High) regions and LL (Low–Low) regions, corre-
sponding respectively to regions with High (Low) initial per capita GDP surrounded
by regions with High (Low) initial per capita GDP. Atypical regions (that is, regions
classified as High–Low or Low–High) are eliminated from the sample as they are
not numerous enough to constitute a club. Alternatively, Le Gallo and Dall’erba
(2006), Dall’erba and Le Gallo (2008) and Fischer and Stirböck (2006) prefer the use
of Getis–Ord statistics (Ord and Getis, 1995), applied to initial per capita GDP, that
lead to a two-way partitioning of the sample: spatial clusters of high values of per
capita GDP (corresponding to positive values of the statistic) and spatial clusters of
low values of per capita GDP (corresponding to negative values of the statistics). We
can think of these methods as being “semi-endogenous,” as the number of clubs
is fixed (four in the case of Moran scatterplots and two in the case of Getis–Ord
statistics) but the economies are endogenously allocated to the clubs.

The endogenous detection of convergence clubs in data characterized by spatial
autocorrelation remains a serious problem, as the properties of the methods already
suggested (regression trees, and so on) remain unknown in the presence of spatial
autocorrelation. A first step in this direction is described in the paper by Basile and
Gress (2005), who suggest a semiparametric spatial autocovariance specification
that simultaneously takes into account the problems of nonlinearities and spatial
dependence. To that end, Liu and Stengos’ (1999) nonparametric specification is
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extended by allowing a spatial lag term or a spatial error process. Another method-
ological problem is the fact that spatial heterogeneity (representative of spatial
convergence clubs) and spatial dependence may be observationally equivalent in a
cross-section (Abreu et al., 2005). Indeed, a cluster of high-growth regions may be
the result of spillovers from one region to another or it could be due to similarities
in the variables affecting the regions’ growth. Moreover, standard tests of structural
instability and heteroskedasticity are not reliable in the presence of spatial auto-
correlation. Therefore, as Rey and Janikas (2005) note, the existing specification
search procedures should be extended to be able to distinguish between spatial
dependence and spatial heterogeneity, while formal specification search strategies
for spatial heterogeneity have yet to be suggested.

Rather than partitioning the cross-sectional sample into regimes based on struc-
tural characteristics, parameter heterogeneity might also be country- or region-
specific. For example, Durlauf et al. (2001) allow the Solow growth model to vary
according to a country’s initial income by using the varying coefficient model sug-
gested by Hastie and Tibshirani (1993). In a spatial context, Ertur et al. (2007) argue
that similarities in legal and social institutions, as well as culture and language,
might create spatially local uniformity in economic structures, which lead to sit-
uations where rates of convergence are similar for observations located nearby in
space. One possibility is to use geographically weighted regression (GWR) (Fother-
ingham et al., 2004), which is a locally linear, nonparametric estimation method
aimed at capturing, for each observation, the spatial variations of the regres-
sion coefficients. For that purpose, a different set of parameters is estimated for
each observation by using the values of the characteristics taken by the neighbor-
ing observations. For the conditional β-conditional convergence model (equation
27.1), this procedure allows estimation of the set of unknown parameters (β and
coefficients associated with the other structural characteristics) for each economy
of the sample:

1
T

log(yi,t0+T /yi,t0) = αi + βi log(yi,t0)+X1,iδ1i +X2,iδ2i + εi. (27.8)

This model is estimated using weighted least squares with the weights being spe-
cific to each observation: for an observation i, the weights are a continuous and
monotone decreasing function of the distance between observation i and all other
observations. This method is useful for identifying the nature and patterns of spa-
tial heterogeneity over the observations and the results of a GWR (local estimated
coefficients, local t-statistics and measures of quality of fit) can be mapped. In a
convergence context, this method has been used by Bivand and Brunstad (2003)
for a sample of European regions and by Eckey et al. (2007) for 180 labor mar-
ket regions in Germany. Eckey et al. show that the German labor market regions
are moving at different speeds towards their steady-states, with the value of the
half-life increasing from North to South.

While useful for capturing heterogeneity in growth experiences in a sample of
economies, inference in this context is problematic. Indeed, Wheeler and Tiefels-
dorf (2005) show that the local regression estimates are potentially collinear even if
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the underlying exogenous variables in the data-generating process are uncorrelated.
This collinearity can degrade coefficient precision in GWR and lead to counter-
intuitive signs for some regression coefficients. Another methodological problem
has been pointed out by Paez et al. (2002) and Pace and LeSage (2004). Indeed, one
of the motivations of this approach is that, if spatial autocorrelation only arises
due to inadequately modeled spatial heterogeneity, GWR can potentially elimi-
nate this problem. However, this is not necessarily the case as substantive spatial
interactions may coexist with parameter heterogeneity, as we will show in the next
section. Therefore, Pace and LeSage (2004) have generalized GWR to allow simulta-
neously for spatial parameter heterogeneity and spatial autocorrelation: the spatial
autoregressive local estimation (SALE). Formally, estimates are produced using n-
models, where n represents the number of cross-sectional sample observations,
using the locally linear spatial autoregressive model:

U(i)y = ρiU(i)Wy + U(i)Xγi + U(i)ε, (27.9)

where U(i) represents an (N×N) diagonal matrix containing distance-based weights
for observation i that assign the weight of one to the m nearest neighbors to obser-
vation i and weights of zero to all other observations. The product U(i)y then
represents an (m × 1) sub-sample of observed per capita income rates associated
with the m observations nearest in location to observation i. The other products
are interpreted in a similar fashion. As m → N, U(i) → In, and the local estimates
approach the global estimates from (27.4) as the sub-sample size increases. This

model is estimated by recursive ML for εi → N(0, σ2
i U(i)IN ). This approach has

been implemented by Ertur et al. (2007) for a sample of 138 European regions for
the period 1980–95. Moreover, they also control for non-constant variances with
a Bayesian spatial autoregressive local estimation. They show that, while the mean
of the estimates for ρ is near zero, there are still a number of regressions for which
spatial dependence estimates take on large and significant values. Country-level
differences are also obvious for the different estimates of the convergence parame-
ter β, with negative and significant values across EU regions in Spain, Portugal and
some French regions.

27.2.4 Theoretical foundations of spatial effects

As pointed out by Islam (2003), the specifications of growth regressions used in
initial studies of β-convergence were not derived from theoretical growth models.
Only at a subsequent stage were the regression specifications formally derived from
the neoclassical growth models by Barro and Sala-i-Martin (1992) and Mankiw et al.
(1992). The literature focusing on the relationships between space and growth has
evolved quite similarly. All the studies surveyed above included spatial effects in
an ad hoc way, allowing for spatial autocorrelation and/or spatial heterogeneity in
conditional β-convergence models or Verdoorn models in order to obtain a better
fit and consistent estimates. Spatial autocorrelation in this context may reflect
spatial spillovers arising between economies but can also be the result of some
model misspecification or omitted variables. Recently, some authors have tried to
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provide sound theoretical foundations for the inclusion of spatial dependence in
β-convergence or Verdoorn models. We review some of this recent work here.

Ertur and Koch (2007) show how a spatial Durbin version of the β-convergence
model (equation 27.6) can be obtained from a theoretical growth model with
Arrow–Romer externalities and spatial externalities that imply inter-economy tech-
nology interdependence. They start with an aggregate Cobb–Douglas production
function for economy i at time t that exhibits constant returns to scale in labor
and reproducible physical capital:

Yi(t) = Ai(t)K
α
i (t)L1−α

i (t) (27.10)

where Ai(t) = �(t)k#i (t)
N
�
j �=i

A
γwij
j (t),

where Yi(t) is output, Ki(t) is the level of reproducible physical capital, Li(t) is the
level of labor, N is the number of economies and Ai(t) is the aggregate level of
technology of economy i at time t . This level depends on three terms. First, as
in the standard Solow growth model, Ertur and Koch (2007) assume that some
proportion of technological progress is exogenous and identical in all countries:

�(t) = �(0)eμt , where μ is the constant growth rate. Second, each economy’s
aggregate level of technology increases with the aggregate level of physical capital
per worker ki(t) = Ki(t)/Li(t), and the parameter # (with 0 ≤ # < 1) describ-
ing the strength of home externalities generated by physical capital accumulation.
Finally, as these externalities may spill over to neighboring economies, it is also
assumed that there is technological interdependence generated by the level of spa-
tial externalities γ (with 0 ≤ γ < 1). The wij are the usual terms of the spatial
weights matrix.

This specification yields a spatially augmented β-convergence model, similar to
a non-constrained spatial Durbin model, where the growth rate of real income
per worker not only depends on its own saving rate and population growth rate,
but also depends on the same variables in the neighboring economies and on
the growth rate of its neighboring economies weighted by their speed of conver-
gence. Interestingly, complete parameter heterogeneity can be allowed for when
the speed of convergence is not assumed to be identical across economies. Ertur
and Koch (2007) estimate this heterogeneous model on a set of countries using the
SALE model as in equation (27.9). Other such attempts to motivate theoretically
the presence of spatial dependence have been suggested. For instance, López-Bazo
et al. (2004) assume that the spatial externalities originate from physical and human
capital accumulation rather than knowledge, yielding a β-convergence model with
a spatial lag term as in (27.4). Egger and Pfaffermayr (2006) decompose the speed
of convergence term into three components: one measuring the speed of conver-
gence net of spillovers, and the other two accounting for the importance of spatial
spillovers.

A similar path has recently been followed to provide theoretical foundations
for the spatial versions of Verdoorn’s law. In particular, Fingleton (2000) shows
how Verdoorn’s law including a spatial lag term can be motivated by inter-regional
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technology diffusion. Indeed, take as a point of departure a static Cobb–Douglas
production function given by:

Q = A0 exp(λt)KαEβ , (27.11)

in which A0 is the level of technology at time 0, λ is the growth of total factor
productivity or exogenous technical change, Q, K and E are the levels of output,
capital, and employment at time t ; α and β are elasticities. Fingleton (2000) assumes
that the technical progress made by firms as a result of the growth of capital per
worker (p) is not fully internalized but spills over to benefit other firms and indi-
viduals. Two forms of technology spillovers are envisaged: one occurs as a result of
intraregional technical change and one occurs as a result of extraregional technical
change in neighboring regions:

λ = λ
∗ + φp+ κWp. (27.12)

λ in one region is then proportional to p in the same region and, through the
matrix product Wp, is also a function of capital accumulation occurring within
the neighbors for each region, as specified by W . Taking equation (27.11) in logs,
differentiating with respect to time and assuming that capital stock growth and
output growth are approximately the same,4 he shows that the reduced equation
can be written as:

p = ρWp+ b0 + b1q +Xb + ε, (27.13)

where X contains other determinants of labor productivity growth, such as the
initial level of technology gap between each region and the leading technology
region, and measures of peripherality and urbanization. In subsequent papers,
Fingleton (2001a, 2001b) shows that the spatial lag version of Verdoorn’s law is,
in fact, also consistent with assumptions that underpin new economic geogra-
phy with, as a starting point, a Cobb–Douglas production function for the level
of output produced by manufacturers that depends on the input of manufactur-
ing labor efficiency units, on composite intermediate services and on the input of
land. Increasing returns are modeled via the product variety theory emphasized by
Dixit and Stiglitz (1977) and the rate of technical progress is assumed to be as in
equation (27.11).

27.3 Exploratory spatial data analysis of convergence

While a great deal of work has been done on confirmatory econometric analysis
of growth and convergence, a number of criticisms have been pointed at the rel-
atively restrictive nature of the underlying theoretical frameworks, their inability
to account for empirical regularities in growth datasets and the general problem of
using cross-section regressions to explain time-averaged growth rates with which
to make inferences about growth dynamics (Quah, 1993b). In response to some of
the criticisms, a number of researchers have adopted novel methods of exploratory
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data analysis (EDA) to examine growth datasets. EDA has its roots in the work of
John Tukey (Tukey, 1977), who defined the field as a set of statistical methods
designed to detect and describe patterns, trends, and relationships in data. EDA
methods often rely on interactive statistical graphics to support different types of
interrogation of the data.

In this section we provide an overview of the main branches of EDA methods that
have appeared in the convergence literature. These follow from some of the partic-
ular challenges posed by the study of growth and convergence in a spatial context.
On the one hand, traditional EDA techniques often rest on the same restrictive
assumptions regarding random sampling that we encountered in early economet-
ric work on regional convergence. There has been much recent work developing
spatially explicit methods of EDA designed to take the spatial characteristics of the
data into account. These methods fall under the heading of exploratory spatial data
analysis (ESDA) (Anselin, 1996).

At the same time, the dynamic characteristics of growth datasets pose inter-
esting challenges for the use of ESDA methods, since the latter have primarily
been designed for cross-sectional datasets. The second branch of the exploratory
literature we review consists of efforts designed to extend ESDA methods to the
dynamic context. We refer to this branch of the literature as exploratory space-time
data analysis (ESTDA).

The use of ESDA and ESTDA methods for convergence and growth analysis relies
on a number of computational tools as well as interactive statistical graphics and
maps for data exploration. In what follows, we draw on examples using the sta-
tistical package STARS: Space-Time Analysis of Regional Systems (Rey and Janikas,
2006), which has implemented a number of these methods for spatial convergence
analysis.5

27.3.1 Exploratory spatial data analysis

27.3.1.1 Spatial σ -convergence

The point of departure in the EDA branch of the convergence literature has been
the entire distribution of regional incomes itself, with a focus on a number of char-
acteristics of this distribution. The earliest studies examined the level of dispersion
in the distribution and its evolution over time. Labeled as σ -convergence, the typ-
ical approach is to consider the cross-sectional variance (or standard deviation) of
the incomes:

σ̂
2
t =

1
(n− 1)

n∑
i=1

(yi,t − ȳt )
2, (27.14)

where yi,t is the per capita income or product of economy i in time period t and ȳt =
1
n
∑n

i=1 yi,t . Implicit in the application of this measure is its theoretical relationship
to β-convergence:

σ
2
t = (1− β)

2
σ

2
t−1 + σ

2
ε , (27.15)
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where α, β, and σ
2
ε are as defined in equation (27.1). If 0 < β < 1 the difference

equation is stable and β-convergence gives rise to the steady-state variance:

σ
2
∗ =

σ
2
ε

1− (1− β)2
. (27.16)

The cross-sectional variance in incomes will fall with increases in β (in the stable
range) but rise with the initial σ2

ε .
There are a number of limitations of σ -convergence for studying the dynamics

of the distribution. First, it focuses on only the second moment of the distribution
and is thus silent on other moments, such as skewness and kurtosis, which can be
important from a substantive perspective. Second, the sample variance would also
mask any multimodality or twin-peakedness in the distribution, which tends to
be a common finding at the international scale. In addition to being silent on the
morphology of the distribution, measures of σ -convergence provide no insight on
the degree of intradistributional mixing and mobility.

While these criticisms are generally well known, there are also several lesser
known problems with the application of σ -convergence to spatially referenced
data. The first is a spatial identification problem. This arises from the sample vari-
ance being what is known as a “whole map” statistic. More specifically, given a
map (spatial distribution) of n incomes yi,t : i = 1, 2, . . . , n, with sample variance

σ̂
2
t , there are n! spatial permutations of the map that would have the same sample

variance.
The second difficulty with σ -convergence in a spatial context relates to the i.i.d.

assumption on ε. As is the case for the confirmatory econometric modeling of
convergence, the presence of spatial dependence in the error term of the model
complicates the analysis. The impact of spatial dependence on the interpretation
of σ -convergence has been examined by Egger and Pfaffermayr (2006) and Rey and
Dev (2006), who show that, in addition to the β coefficient and the initial variance
level, the value of the sample variance will also reflect the level and structure of the
spatial dependence. More specifically, if the underlying data generating process is
the spatial lag specification, then the sample variance for the income levels will
be sensitive to the value of the spatial lag parameter and the specific structure of
the spatial weights matrix. These additional sources of dynamics complicate the
interpretation of the sample variance as a measure of σ -convergence.

27.3.1.2 Markov chain models

Quah (1993a, 1996a) has adopted a discrete Markov chain approach to study the
evolution of income distributions. Using international data for 1962–84, Quah
discretizes the income distribution in each period into k classes, and the proba-
bility of an economy transitioning between each pair of classes is estimated from
the income series for the country economies. An application of this approach to
the lower 48 state incomes for the US over the period 1929–2000 is reported in
Table 27.1. The income values are standardized to the national value each year and
the class cut-offs are taken from the quintiles of the relative distribution for the
first year in the sample. Thus, for a state that had an income level below 66% of
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Table 27.1 Markov transitions: US state incomes 1929–2000

t + 1

t 0.661 0.884 1.031 1.309 1.934

0.661 0.893 0.107 0.000 0.000 0.000
0.884 0.013 0.913 0.073 0.001 0.000
1.031 0.000 0.054 0.872 0.074 0.000
1.309 0.000 0.001 0.065 0.913 0.021
1.934 0.000 0.000 0.000 0.112 0.888

Note: The row (column) headings are the upper bounds for the quintiles
of relative incomes normalized by the national average. The values in
the body of the table are the empirical transition probabilities of moving
from class i in period t to class j in period t + 1.

Table 27.2 Ergodic US state income distribution

x 0.661 0.884 1.031 1.309 1.934

P(x) 0.029 0.233 0.314 0.358 0.067

Note: Column headings are the upper bounds for the quintiles
of relative incomes normalized by the national average.

the national average, the probability of moving up into the next higher income
class during one year was 0.107. At the other end of the distribution, states with
incomes greater than 193% of the national level moved down one income class
with a probability of 0.112.

Based on an estimate of the transition probability matrix, one can in turn gen-
erate an estimate of the ergodic distribution for the regional incomes. For the US
case, the long-run distribution implied by these transitional dynamics is reported
in Table 27.2. The tendency towards convergence is clearly evident in this distribu-
tion, as the extreme classes lose mass over what they had in the quintile distribution
at the beginning of the period (1929).

While the Markov chain is an innovative approach to the exploration of dis-
tributional dynamics, the estimates of the transition probabilities rest on several
assumptions, such as order, time-homogeneity and independent transitions. Inde-
pendent transitions mean that the spatial context facing a given economy is
not taken into account when estimating the probability of movement out of a
particular income class.

27.3.1.3 Spatial Markov

Rey (2001) extends the discrete Markov approach to consider this context by esti-
mating transition matrices subject to the spatial lag of the income values for an
economy. This is done for the US example in Table 27.3, where the same five income
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Table 27.3 US state incomes: spatial Markov transition matrix

t + 1

t 0.661 0.884 1.031 1.309 1.934

Lag class 0.661 0.661 0.985 0.015 0.000 0.000 0.000
0.884 0.032 0.871 0.097 0.000 0.000
1.031 0.000 0.222 0.778 0.000 0.000
1.309 0.000 0.000 0.000 0.000 0.000
1.934 0.000 0.000 0.000 0.000 0.000

Lag class 0.884 0.661 0.842 0.158 0.000 0.000 0.000
0.884 0.022 0.940 0.038 0.000 0.000
1.031 0.000 0.046 0.881 0.073 0.000
1.309 0.000 0.000 0.321 0.679 0.000
1.934 0.000 0.000 0.000 0.000 1.000

Lag class 1.031 0.661 0.857 0.143 0.000 0.000 0.000
0.884 0.007 0.916 0.077 0.000 0.000
1.031 0.000 0.056 0.873 0.071 0.000
1.309 0.000 0.000 0.060 0.936 0.004
1.934 0.000 0.000 0.000 0.231 0.769

Lag class 1.309 0.661 0.000 0.000 0.000 0.000 0.000
0.884 0.000 0.795 0.192 0.014 0.000
1.031 0.000 0.050 0.870 0.080 0.000
1.309 0.000 0.002 0.059 0.904 0.035
1.934 0.000 0.000 0.000 0.137 0.863

Lag class 1.934 0.661 0.000 0.000 0.000 0.000 0.000
0.884 0.000 0.000 0.000 0.000 0.000
1.031 0.000 0.000 0.889 0.111 0.000
1.309 0.000 0.000 0.024 0.929 0.048
1.934 0.000 0.000 0.000 0.048 0.952

classes are used to estimate transition matrices for subsets of the states at different
points in time. The sub-setting is based on the spatial lag of the incomes. For exam-
ple, focusing on the first matrix, we see that poor states that were surrounded by
poor states (i.e., those with incomes less than 66% of the national average) moved
out of the bottom class with a probability of 0.015. However, if this is contrasted
with other states in the lower class, but those who had neighbors that were slightly
better off (i.e., in the second class), the probability of moving out of the bottom
class now jumps to 0.158. The impact of the spatial context can also be seen for
the higher-income states, as the wealthiest states, when surrounded by similarly
wealthy states, have a probability of remaining in the upper class of 0.952. How-
ever, when a wealthy state is surrounded by states with average incomes in the
next lower class, the probability of remaining in the upper class of the distribution
drops to 0.863.

The spatial Markov approach has been applied by Le Gallo (2004) to a sample of
European regions and by Hammond (2004) to US labor markets. This approach has
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also been adopted to explore the question of regional heterogeneity. Bickenbach
and Bode (2003) do this by estimating transition matrices for the groups of states in
each of the Bureau of Economic Analysis (BEA) regions of the US. They also suggest
formal tests of regional homogeneity and find strong evidence that the transitional
dynamics are not homogeneous across the US space economy.

While the spatial Markov approach offers an interesting extension of the classic
Markov chain to the geographical context, there are a number of methodological
issues associated with the approach that require further investigation. The first issue
surrounds the data-intensive requirements needed to estimate a spatial Markov

matrix. Rather than having to estimate k2 transition probabilities as in the classic
approach, when one is conditioning on k classes for the spatial lag, the number of

probabilities to estimate grows to k3. This can lead to many zero, or small count,
observations for specific types of transitions, which in turn means a loss of precision
in the estimation of those probabilities.

One solution to this degrees of freedom problem is to combine the thin count
cells with other cells and estimate the transition probabilities for the new aggre-
gated cells. This could be done in several ways. One approach would be to keep the
number of classes for the spatial lag fixed, and then collapse the same group of cells
within each of the k conditional transition matrices. This would result in k condi-
tional matrices of order r × c, with r ≤ k and c ≤ k. An alternative approach would
be to keep the number of income classes fixed at k but reduce the number of classes
for the spatial lag, essentially aggregating together cells across the conditional tran-
sition matrices. In this case one would have l ≤ k conditional transition matrices
of order k × k. Of course, a third option would be to aggregate both the number
of classes for the income variable as well as the spatial lag. The choice between
these alternatives is not inconsequential, as the first approach would trade a loss
in resolution of the income class transitions for maintaining detail in the effect of
spatial context (that is, the spatial lag). In the second approach, more detail on
the class transitions is gained at the expense of a coarser view of spatial context
effects. To date, however, the relative merits of these different approaches remain
unexplored.

A final issue with the spatial Markov approach is that it focuses only on the
transitions of individual economies within the income distribution subject to the
level of income in the surrounding economies in the initial period. It does not also
treat the transition of the spatial lag, but uses that as the conditioning variable.
Joint consideration of the transitions of the spatial lag and the income of an econ-

omy would require estimating k4 transition probabilities (assuming k classes for
incomes and the spatial lag). Clearly this would exacerbate the degrees-of-freedom
problem.

27.3.1.4 Spatial rank mobility

Rank mobility measures attempt to address the problems with discretization to
provide a more comprehensive picture of regional income mobility (Boyle and
McCarthy, 1997; Webber et al., 2005). One classic measure is Kendall’s rank
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correlation statistic:

τ = nc − nd
(n2 − n)/2

, (27.17)

where nc is the number of concordant pairs of economies over a given interval.
Concordant pairs are those that maintain the same relative pair-wise ranking in
two periods. nd is the number of discordant pairs, where a discordant pair are
two economies whose relative ranks are reversed over the period. If all pairs are

concordant in a given period then nc = (n2 − n)/2, nd = 0 and τ = 1. Conversely,
if all pairs are discordant, then τ = −1.

To introduce a geographical dimension to this rank mobility measure, Rey
(2004b) suggested a decomposition of the concordance measure as:

nc = nc,r + nc,o, (27.18)

where nc,r is the number of concordant pairs in which the economies involved were
geographical neighbors, while nc,o includes those discordant pairs that involve
non-neighboring economies. Together with a similar spatial decomposition of the
discordant pairs, spatial versions of the rank correlation statistic can be defined as:

τr =
nc,r − nd,r

(n2
r − nr )/2

, (27.19)

for the neighboring pairs, and:

τo =
nc,o − nd,o

(n2
o − no)/2

, (27.20)

for the non-neighboring pairs of economies. The traditional measure of rank
mobility can be related to these spatial versions:

τ = ψτr + (1− ψ)τo, (27.21)

where:

ψ = ωr
ω

, (27.22)

with ωr being the number of neighboring pairs of economies, and ω = (n2 − n)/2
being the number of all pairs.

Figure 27.1 summarizes the results of a spatial rank mobility analysis of state
incomes. The right-hand figure shows the definition of the neighborhood sets, here
based on BEA regions. The left-hand figure shows the z-value for the τ test statistic
standardized against its expected value based on spatial permutations of the income
values. The statistic is significantly negative in the earlier periods, indicating that
the amount of intraregional concordance was below what would be expected if
there was no spatial structure to income growth. In other words, the differences in
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income levels between states from the same region are smaller (and the discordance
in rank changes over time greater) than is the case for states from different regions.
This form of spatial dependence weakens over time as the spatial rank mobility
statistic lessens in absolute value.

27.3.2 Exploratory space-time data analysis

The previous sets of ESDA methods can be seen as attempts to extend a-spatial
methods of exploratory convergence analysis to include a spatial component. A
second set of methods have been developed that extend exploratory spatial data
methods to the dynamic context.

27.3.2.1 Spatial transitions

Since full estimation of a square spatial Markov transition matrix is likely to be
infeasible in most data contexts, alternative approaches towards analyzing the
movements of the income level of an economy and that of its neighbors have been
suggested. These are based on the notion of a local indicator of spatial association
(LISA) statistic originally developed by Anselin (1995).

The LISA statistics can be visualized in a Moran scatterplot (Anselin, 1996),
depicted in the right-hand panel of Figure 27.2. In the first quadrant are
located relatively high-income economies that are neighbored by high-income
economies reflected in the spatial lag (HH). Quadrant two contains lower-income
(L) economies with wealthier neighbors (LH), while quadrant three might be con-
sidered spatial poverty zones since it contains poor economies with poor neighbors.
Finally, quadrant four has the “diamonds in the rough” economies – those with
high incomes and poor neighbors. These statistics have been extensively used to
analyze spatial distributions in several samples of European regions (López-Bazo
et al., 1999; Le Gallo and Ertur, 2003; Ertur and Koch, 2007) or other sub-sets of
regions (Ying, 2000; Mossi et al., 2004; Patacchini and Rice, 2007).

The spatial concentration of the low values is seen in the map on the left where
the user has selected a sub-set of the Southern states. In response, the positions
of those states in the scatterplot are indicated by solid black circles. The degree of
spatial association for this local cluster (dashed line) is contrasted against the global
pattern (solid line). The user can move the lasso around on the map to explore
the stability of the spatial clustering over regions of the map. Alternatively, the
scatterplot could serve as the origin view and the lasso moved over regions of the
plot to reveal the location of selected observations in geographical space, as shown
in Figure 27.3.

A number of summary measures of distributional mobility have appeared in the
literature. One such measure, due to Shorrocks (1978), is based on the estimates of
the classic Markov transition matrix:

SI = k −∑i pii
k − 1

, (27.23)

which is bounded on the interval [0, k/(k− 1)], with the lower bound indicating a
complete lack of mobility and the upper bound maximum mobility.6 This captures
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class mobility within the distribution and, as such, it is subject to the criticisms
associated with the discretization of the income distribution to define the classes.
Chief among these is that moves that cross a class boundary are the only kind
recorded, while other moves of the same magnitude but remaining within the class
are not recorded. Since it is based on the classic Markov approach, the measure also
ignores any spatial dependence. However, one could construct a test statistic based
on values for this index taken from the specific conditional matrices of the spatial
Markov approach to explore whether mobility was affected by spatial context.

To incorporate a spatial dimension to the mobility analysis, Rey (2001) has sug-
gested analyzing the movement of a LISA statistic over a given time interval and
noting whether a particular LISA statistic remains in the same quadrant or tran-
sitions to a different quadrant. In any period there are four possible states for a
LISA – HH, LH, LL, HL, so between any two periods there are 16 different spatial
transitions that are possible. These can be summarized in a LISA Markov transition
matrix, as is done for the US case in Figure 27.4.

Applying the summary mobility index (27.23) to the traditional Markov tran-
sition matrix generates a value of 0.130, which is also found for the case of the
LISA Markov transitions, suggesting similar rates of mobility for the spatial versus
a-spatial transitions. However, a closer inspection of the two tables reveals some
subtle but important differences. In the classic Markov model, the probability of
remaining in an extreme (poorest or richest) class is lower than the probability of
remaining in the intermediate (2nd or 4th quintile) classes, reflecting a tendency
away from polarization in the extreme tails of the distribution. By contrast, for the

HH    0.929    0.037   0.004
LH     0.079    0.859   0.060
LL     0.005    0.020   0.947
HL    0.053    0.002   0.070

t HH LH LL

t + 1

1.602

Spatial Lag per 1929

1.337

1.073

0.809

0.544

0.441 0.799 1.157

per 1929

1.515 1.873

Figure 27.4 LISA Markov transitions
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LISA Markov transitions there is evidence of spatial polarization in the transitions,
as the “extreme” classes are the HH and LL cells, which have higher retention
probabilities than is the case for the HL and LH cells.

27.3.2.2 Space-time paths

In addition to characterizing the global spatial dynamics, a more meso-level scale
of analysis is possible. Figure 27.5 contains the space-time paths for Virginia (left)
and New Jersey (right). The paths are generated interactively by selecting the states
in the Moran scatterplot (lower left) and clicking. The time paths trace out the
local statistic for each state, showing how its income and that of its neighbors co-
evolve over the sample period. At first glance, a comparative view of the two states
suggests that the same general trend is evident, reflecting strong spatial cohesion
between each state and its neighbors. Closer inspection reveals, however, that

Figure 27.5 Space-time paths
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the directionality between the two paths is distinct, with New Jersey’s evolution
moving downwards towards the mean of the distribution, while for Virginia the
dynamics are upward.7 Rey and Ye (2008) develop approaches for summarizing the
properties of these time paths and their use in comparative analysis.

27.3.3 Stochastic kernels

A very active area of exploratory analysis has been the application of stochastic
kernels to regional growth series (Magrini, 1999; López-Bazo et al., 1999; Bulli,
2001; Basile, 2006). Here the focus is on the evolution of the distribution itself
and a number of novel approaches towards the estimation of densities and their
interpretation have been suggested.

27.3.3.1 Estimation

Letting fx(t) represent the regional income density for n economies in period t ,
the evolution of the cross-sectional distributions is modeled through the use of a
stochastic kernel:

fx(t+s) =
∫ ∞
−∞

Mt ,sfx(t)dx, (27.24)

where Mt ,s is the stochastic kernel which traces where points in fx(t) move to in
fx(t+s). The kernel can be viewed as a continuous analog of the Markov transition
matrix that we examined in the previous section. As such, the stochastic kernel con-
tains important information regarding the distributional dynamics and thus the
question of its estimation becomes important. One approach relies on an estimate
of the conditional distribution:

M̂t ,s = f̂x(t+s)|x(t) =
f̂x(t+s),x(t)

f̂x(t)
. (27.25)

Estimates of the joint or marginal densities themselves rely on, somewhat confus-
ingly, kernel density estimates. For example:

f̂x(t) = f̂ (x, t ; h) = (nh)−1
n∑

i=1

K{(x−Xi,t )/h}, (27.26)

where K is a function such that
∫

K(x)dx = 1, referred to as the kernel, h is the
bandwidth and Xi,t is the income for economy i for a given time period.

Based on the estimate of the stochastic kernel, alternative visualizations can
be generated to explore the implied transitional dynamics. These include three-
dimensional representations and the analogous two-dimensional contour plot.
Evidence of polarization in the income distributions would be reflected in peaks in
the 3D kernel or concentrated values in the contour. The sphericality of either of
the graphs would be indicative of heightened income mobility and leap-frogging,
while elongated ellipses along the 45-degree line would suggest a lack of mobility
and convergence.
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Other types of kernel visualizations are shown in Figure 27.6. The conditional
densities (Figure 27.6(a)) have been estimated for a 71-year transition period from
1929 to 2000 for the US. By stacking the conditional densities, the figure shows
how the regional income distribution from 1929 evolves into that in 2000. The
highest-density region (HDR) plot in Figure 27.6(b) identifies the smallest region in
the sample space that covers a given probability. For each conditional distribution,
the darker shaded area is the 50% HDR, while the lighter shade represents the 99%
HDR. The HDR plot reflects strong convergence over the 71-year period, as each of
the conditional modes (dots) falls away from the diagonal, indicating that states
tend to move towards the overall mean of the distribution.8

Alternatively, estimates of the marginal densities for the two periods could be
examined. Bianchi (1997) has suggested that the multimodality of a density could
serve as an indication of polarization. In this way, movement to a single mode
would be reflective of convergence. It should be noted that this marginal approach
risks loss of information on the transitions and can mask internal mixing.

While kernels provide novel visualizations of growth dynamics, their use with
spatially referenced data is not without problems. To gain some understanding of
the potential implications for spatial dependence in the estimation, rewrite the
kernel density estimator for a given time period as:

f̂ (x; h) = n−1
n∑

i=1

Kh(x−Xi), (27.27)

where the incomes X1, . . . , Xn are no longer independent but are identically dis-
tributed with a common density, so that Cov(Xj, Xj+k) depends only on k. In such

a setting the bias of f̂ (x; h) is robust to the dependence, but the variance becomes:

V
[
f̂ (x; h)

]
=n−1V

[
Kh(x−X1)

]
+ 2n−1

n−1∑
j=1

(1− j/n)COV
[
Kh(x−Xj), Kh(x−Xj+1)

]
. (27.28)

Applications of kernel density estimators to regional income datasets have implic-
itly assumed that the observations were pairwise independent. With spatially
referenced data, however, such an assumption can be questionable. The impli-
cations for the properties of kernel density estimators and the related methods
of stochastic dominance (Carrington, 2006) and relative distribution approaches
(Janikas, 2007) have been largely ignored to date in the growth literature.

27.3.3.2 Regional conditioning and spatial filtering

Canova and Marcet (1995) suggest that income cross-correlations among countries
need to be treated prior to constructing kernels. Their approach is to base the
kernel on:

x∗i,t = xi,t/
∑

i

xi,t , (27.29)
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where xi,t is per capita income for a given country. Canova and Marcet (1995, p. 9)
argue that this alleviates potential problems of income cross-correlations among
countries since recessions and expansions which affect the whole aggregate of
regions would be factored out. This is not spatial autocorrelation, however, but
rather a shift in the mean of the series over time.

In the same spirit, a number of approaches to regional conditioning have been
suggested as ways to mitigate the impact of spatial autocorrelation in income series.
Quah (1996b) and Arbia et al. (2003) rely on the following transformation:

x̃i,t =
xi,t∑

j wi,jxj,t
, (27.30)

where a region’s income is now expressed relative to its geographical neighbors
rather than the national average. Applying this transformation to European data
results in the removal of the bimodal characteristic of the income distribution.

Fischer and Stumpner (2008) apply the spatial filtering approach of Getis and
Ord (1992) to European data using the following filter:

x̃i,t =
xi,t

[
1

n−1 Wi

]
Gi(δ)

, (27.31)

where Wi =
∑

j wi,j(δ) and wi,j(δ) is the (i, j)th element of the binary spatial weights
matrix such that wi,j(δ) = 1 if a region’s i and j are separated by a distance of less
than the critical distance band δ, and wi,j(δ) = 0 otherwise. Gi(δ) is the local statistic
defined as:

Gi(δ) =
∑

j wi,j(δ)xj,t∑
j xj,t

. (27.32)

Comparing the unfiltered, f (x), and the spatially filtered, f (x̃), distributions, Fis-
cher and Stumpner (2008) find that the latter displays much less dispersion than
the former, yet over the 1995–2003 period, the level of dispersion in the filtered
series increases by 15%, while the unfiltered series experiences an actual decline
in dispersion of 3.3%. Because the unfiltered series is highly spatially autocorre-
lated, the overall finding of σ -convergence is attributed to the role of the spatial
dependence.

While the spatial filtering and regional conditioning approaches provide avenues
to explore the impact of spatial dependence on the evolution of regional income
densities, several questions remain. First, as Fischer and Stumpner (2008) note,
there is currently a lack of a formal inferential framework to test hypotheses about
distribution dynamics in the presence of spatial effects. Second, the filters applied
in (27.30) and (27.32) keep wi,j fixed over time. In other words, the spatial structure
is specified as time-invariant. Finally, the interpretation of just what the identified
spatial components represent is not at all clear.

27.3.4 Space-time kernels

Rather than filtering out the spatial component, kernels that explicitly incorporate
space can be developed. Figure 27.7 contains examples of how this can be done.
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Figure 27.7 Space-time kernels US
Note: y1929 is relative income in 1929 (per capita income for a state relative to national per capita income),
wy 1929 is the spatial lag of relative income for 1929 (see section 27.2.2).

The conventional HDR plot for US incomes from 1929 and 2000 is contained in
the upper left figure. Next to it is the Moran HDR plot, which extends the Moran
scatterplot to a conditional kernel density for the year 1929. The strong spatial
autocorrelation is clearly evident as the modes for the conditional distributions
for the spatial lag of high-income states in 1929 are all above the average, while
for lower-income states, the mode of the conditional distributions are all below
average.

The Moran HDR for 2000 in the lower left of the figure is radically different from
the HDR for 1929. First, all the conditional spatial lag distributions display much
less dispersion in 2000 than in 1929, while the range of the marginal distribution
for relative incomes in 2000 is also much narrower than in 1929. Second, the
strength of the spatial autocorrelation has weakened over the period, as reflected
in the number of conditional modes located in the HH or LL quadrants of the HDR
scatter dropping to 10 in 2000 from 15 in 1929.
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The space-time Moran HDR in the lower right panel of Figure 27.7 provides a
composite view of the spatial dynamics over this period. Here the spatial lag for
incomes in 2000 is conditioned on state income in 1929. In contrast to the Moran
HDR for 1929, the mode of the conditional lag distributions in 2000 display lin-
ear independence for low and moderate values of income in 1929. Moreover, in all
cases, the respective modes of the conditional lag distributions have moved towards
the overall average income value, with the convergence being upward for the con-
ditional distributions below one, and downward for conditional distributions for
y1929 > 1.0.

27.4 Conclusion

The previous two sections have reviewed a rapidly evolving body of literature
concerned with spatial analysis of economic convergence. In both the formal
confirmatory work and more recent exploratory data analysis, the unique chal-
lenges that spatially organized data pose continue to attract much attention. In
this section we offer some final thoughts and identify some remaining outstanding
issues for future research.

In the study of regional economic convergence it has become abundantly clear
that spatial dependence tends to be the rule rather than the exception in regional
income and product series. As a result, there is a growing recognition of the impor-
tance of treating this form of dependence in both formal confirmatory econometric
models as well as in newer exploratory methods of data analysis.

While spatial autocorrelation and spatial dependence have attracted the majority
of the attention in the literature, spatial heterogeneity has also been recognized as
an important dimension of many regional series. In general terms, however, the
treatment of spatial heterogeneity is more easily done using traditional (that is,
a-spatial) econometric methods, while spatial dependence has necessitated a new
body of models and methods.

Despite the growing awareness of spatial dependence and heterogeneity in
empirical work, most studies tend to focus on only one type of spatial effect. Work
on developing specification strategies within spatial econometrics (Anselin and
Rey, 1991; Anselin and Florax, 1995; Florax et al., 2003) has provided guidance to
practitioners on how to detect and discriminate between different forms of spatial
dependence, yet similar approaches to deal with alternative forms of geographical
heterogeneity are lacking. Durlauf and Johnson (1995) use regression trees to exam-
ine whether international growth data obey a single Solow-type growth model or if
there are specific sub-groups or regimes with distinct parameter values. They find
evidence of substantial geographic homogeneity within the subgroups. That is,
model parameters are found to vary across the regional regimes but are assumed
to hold for all economies within a given regime. As acknowledged by Durlauf and
Johnson, there is no asymptotic theory available to access the statistical signifi-
cance of the identified regimes. An additional qualification offered is that there is
the possibility that the parameter heterogeneity could hold within each regime as
well as across the regimes. Moreover, the question of how to deal with the joint
presence of spatial dependence and spatial heterogeneity remains unanswered.
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Spatial dependence and heterogeneity do not exhaust the class of spatial effects
that confront the regional convergence literature. The issue of the appropriate spa-
tial scale has largely been ignored as the specification of the geographical unit of
analysis has tended to be based on data availability rather than theoretical con-
cerns. In the context of convergence research, the geographical unit has varied
from countries, to regions, states and metropolitan areas (Drennan, 2005). As a
vast literature in spatial analysis has demonstrated (cf. Wong and Amrhein, 1996),
the modifiable area unit problem can give rise to inferences that are not robust to
changes in the spatial scale and aggregation of the data.

The aggregation issue can also be confounded with the regional heterogeneity
question. As work by Miller and Genc (2005) demonstrates, alternative definitions
of regional groupings can lead to different inferences regarding the speed of con-
vergence. Similarly, Rey (2004a) shows that changes in regional definitions can
have similar impacts on measuring regional inequality dynamics. In these stud-
ies the groups are taken exogenously with regard to administrative boundaries,
yet the possibility of endogenously determining these groupings was touched on
in section 27.2.3. Regionally constrained clustering algorithms (Rey and Anselin,
2007) could be used to determine spatially explicit convergence clubs.

In existing studies of regional convergence, the underlying spatial structure has
been assumed time invariant. Over the short run, the assumptions that the bound-
aries of economies, spatial weights matrices, and the composition of convergence
clubs are unchanging, are likely to be plausible. However, as the period under con-
sideration lengthens, such assumptions become increasingly untenable. A critical
area for future research will be the integration of evolving spatial structure into
formal growth models and distribution dynamics approaches.

Closely related to the issue of spatial scale is the relationship between regional
inequality dynamics and personal income distribution dynamics. In the case of the
US we have witnessed an apparent paradox of convergence over the last 150 years
at the state and regional scales, yet strong evidence of growing polarization in per-
sonal and household income distributions (Jones and Weinberg, 2000). Regional
patterns in personal income inequality, that is, the spatial distribution of personal
income distributions, has attracted some attention (Bishop et al., 1994; Levernier
et al., 1995; Partridge et al., 1996; Morrill, 2000). However, the link between con-
vergence in the mean of these distributions (that is, regional convergence) and
the evolution of increasing inequality between individuals within these distribu-
tions remains largely unexplored and is an important avenue for future research.
In particular, the relationship between spatial clustering at one scale and the pace
of convergence at a higher spatial scale has received only limited attention (Janikas
and Rey, 2008).

Finally, although we organized our review along the dimensions of confirma-
tory and exploratory analysis, we see these approaches as complements rather
than substitutes. We can identify several areas where cross-fertilization between
these literatures is likely to lead to new advances. The first is the use of ESDA
methods applied to regional data series to identify interesting new patterns from
which suggestions for new types of theories and hypotheses about the spatial
nature of economic convergence may emerge. Rather than seeing ESDA as a case of
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“measurement without theory,” such applications may actually lead to theoretical
advances.

The gap between the restrictive nature of most growth theory on the one hand
and empirical complexity of regional datasets on the other has clearly been a moti-
vating factor in the turn to EDA methods in convergence analysis. But rather than
abandoning the classical regression based approach, we suggest that using ESDA
and EDA methods to refine model specifications could work to relax some of the
restrictions. In this regard, there is a rich conceptual literature on spatial poverty
traps (cf. Bowles et al., 2006) that could, in our view, be tied to recent work in ESDA
to develop operational measures for these theoretical constructs. A final area is the
use of ESDA methods in enhanced diagnostic methods for spatial econometric
modeling (Ord, 2008).

Notes

1. We focus here on the essential properties of these models, as they have been applied in
the growth econometrics literature. For extensive technical discussion on these models,
see Anselin and Bera (1998), Anselin (2003, 2006).

2. In assessing the effect of structural funds on the European regional convergence process,
Dall’erba and Le Gallo (2008) use a spatial lag model and estimate it with IV by considering
that both the spatial lag variable and the structural funds variable are endogenous.

3. See Fingleton and López-Bazo (2006) for a more complete description of papers including
spatial effects in growth and Verdoorn regressions.

4. This assumption corresponds to one of Kaldor’s stylized facts.
5. For a recent overview of software for ESDA, see Rey and Anselin (2006).
6. Since the probability of moving out of the current income class is 1 in each period and

class.
7. The solid black circle indicates the first year in the time path for each state.
8. The conditional kernel and HDR plot were generated using the HDRCDE package

(Hyndman, 1996; Hyndman et al., 1996).
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Testing Econometric Software
B.D. McCullough

Abstract

The first part of this chapter is a non-technical survey of the relatively sparse literature on testing
the accuracy of econometric software. Accuracy is primarily assessed by taking a test problem, with
known inputs and outputs, giving it to the software, and comparing the software’s output with
the output of the test problem. We discuss the various types of tests (introductory, intermediate,
and advanced) and the types of errors that these tests have uncovered. The reader is directed
to specific resources for further information. The second part, which is technical, constructs a
test problem (i.e., benchmark) for autoregressive moving average (ARMA) estimation. In 1994 it
was reported in the literature that different packages give different answers to the same ARMA
estimation problem. To date, this open problem has been unresolved. We provide benchmarks for
conditional least squares and unconditional least squares ARMA estimation.
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28.1 Introduction

McCullough (2000a) rhetorically entitled an article, “Is it safe to assume that soft-
ware is accurate?” The answer, of course, is “No.” Testing econometric software

1293
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is important because econometric software does not always produce accurate
answers. Sometimes the inaccuracy can be traced to a bug, an incorrectly written
line of code; at other times the algorithm is simply not up to the task of calcu-
lating the correct answer (e.g., as will be discussed in section 28.2, do not use the
“calculator formula” to compute the sample variance, and, as will be discussed in
section 28.3, do not invert the (X′X) matrix when calculating the least squares
regression coefficients β̂; neither of these approaches is numerically sound for eco-
nomic data). Unless the software is tested, the user has nothing more than mere
hope or the software developer’s blandishments on which to base his or her con-
fidence that the computer program’s output is correct. As we shall see, such blind
confidence is misplaced.

Forty years ago, back when mainframe computers took their input from lines
of code on punchcards, and a program consisted of a stack of punchcards, Lon-
gley (1967) worked out by hand the solution to a linear regression problem with
a constant and six independent variables, for 16 observations, and he did so to
several digits of accuracy. The dependent variable was “total employment” and
the independent variables were: implicit price deflator, gross national product,
unemployment, size of armed forces, population, and time. When he compared
his hand-calculated results to those from the computer programs, he found wildly
disparate results. As he put it (ibid., p. 822):

Test problems were run on available programs for use on the following electronic
computers: IBM 1401, 7070/7074/ 360 model 50, 7090/7094, and General Elec-
tric 235. With identical inputs, all except four programs produced outputs which
differed from each other in every digit.

To convey the essence of what Longley found, below we reproduce (to only three
decimals) some of the regression coefficients produced by four computers/software
packages from his Table 10 in our Table 28.1.

Within several years, most (if not all) linear regression programs could meet the
so-called “Longley benchmark.” In the present day, it is almost unheard of for
any program not to meet the Longley benchmark. One may think that several
different packages giving several different answers to the same problem is a relic of
the “old” days, but it is very much a problem that still persists. In 1999, McCullough
and Vinod (1999, p. 534) published three widely divergent sets of full information

Table 28.1 Some of Longley’s regression results

Defl. GNP Unem. Mil. Pop. Time Constant

Correct 15.026 −0.036 −2.020 −1.033 −0.051 1829 −3482258
IBM 7074 −36.187 0.059 −0.593 −0.607 −0.344 183 −269126
G.E. 235 13.944 −0.346 −2.00 −1.028 −0.055 1809 −344297
BMD 27.082 −0.032 −1.946 −0.987 −0.013 1653 146264
NIPD −0.039 0.536 −0.068 −0.064 −3.44 31.5 −5.22
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Table 28.2 Multivariate GARCH results

Package μc μf c1 a1 b1 c2 a2 b2 c3 a3 b3

Package A 0.064 0.064 0.377 0.128 0.411 0.566 0.145 0.365 0.474 0.128 0.348
Package B 0.062 0.069 0.012 0.041 0.946 0.012 0.034 0.956 0.011 0.035 0.953
Package C 0.061 0.037 0.010 0.037 0.952 0.010 0.031 0.961 0.009 0.032 0.959
Package D 0.073 0.082 0.076 0.112 0.798 0.125 0.134 0.762 0.099 0.120 0.773

maximum likelihood (FIML) estimates for Klein’s Model I. Clearly, not all three sets
of answers can be correct. McCullough and Renfro (1999) published seven different
estimates for the parameters of the same generalized autoregressive conditional
heteroskedasticity (GARCH) model. What does this make one think of the GARCH
results published in the literature? As far as GARCH estimation is concerned, recall
that any nonlinear estimation procedure requires starting values which need to be
carefully chosen if the solver is to have much of a chance to find an extremum.
Some GARCH procedures in some packages do not allow the user to set the starting
values! What does one think of the developers of such packages? (What do the
developers of such packages think of their users?) Brooks, Burke and Persand (2003)
did the same thing for multivariate GARCH models, and it is instructive to present
the model they estimated; the results from their Table II are given in our Table 28.2.

The multivariate GARCH model estimated by Brooks, Burke and Persand was:

st = μs + εs,t

ft = μf + εf ,t

hs,t = c1 + a1ε
2
s,t−1 + b1hs,t−1

hf ,t = c2 + a2ε
2
f ,t−1 + b2hf ,t−1

hs,f ,t = c3 + a3εs,t−1εf ,t−1 + b3hs,f ,t−1.

Study the coefficients in Table 28.2. Each package estimates completely different
parameters for the same model. What does this say about multivariate GARCH
results published in the literature? Perhaps the multivariate GARCH likelihood is
complicated and difficult to optimize, and may have multiple optima. Not that
these numerical difficulties are an excuse for inaccuracy, but maybe a user could
have more faith in a simple nonlinear estimation problem for a convex likelihood
like the probit model? Surely nothing could go wrong with that? Stokes (2004)
gave the same probit problem to six packages and got six different answers. What
is particularly interesting is that, for this particular probit problem, no solution
exists. The problem, as posed, exhibited what is called “complete separability” and
so there is no set of parameters that maximizes the likelihood. This phenomenon is
ignored by most econometrics texts that present the probit model (but see Davidson
and Mackinnon, 2004, pp. 458–9, for an exception). This minor impediment did
not stop the six packages from reporting that they had found solutions. A seventh
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package correctly reported that the problem has no solution. If you were to estimate
a probit model, which package would you prefer to use?

Do not think that in the present day this lack of accuracy affects only nonlinear
problems. McCullough (2004a) reported on econometrics packages that produced
correlation coefficients larger than unity. Further evidence of inaccuracy of statis-
tical and econometric software will be presented in subsequent sections. For the
present, what is of interest is this: “How can a user protect him/herself against
inaccurate econometric software?” The answer is, “Test the software.” The natural
follow-up question, “How?,” is the subject of this chapter.

In its purest form, to test a software package is to give it some input for which the
correct output is known. In the aforementioned case of the Longley benchmark,
the input is the dependent and independent variables, and the correct output is
the coefficients that he calculated by hand. For some problems it is too difficult
to work out the correct answer, and an alternative is to have two (or more) inde-
pendent programming efforts reach the same conclusion. This is the method used
by Drukker and Guan (2003) to produce a benchmark for a particular panel data
estimator. This chapter will concern itself with the former method – known inputs
and known outputs. There are three classes of tests: introductory, intermediate,
and advanced. We provide an overview of each class, including a description of
inaccuracies uncovered, with directions to further reading for those who wish to
read up on the subject. Section 28.2 briefly introduces a few necessary ideas about
the numerical limitations of computational software. Section 28.3 discusses a set
of introductory tests, known as “Wilkinson tests.” Section 28.4 discusses a set of
intermediate tests. Section 28.5 discusses a pair of advanced tests, one for FIML
estimation and one for GARCH estimation. To illuminate the numerical issues
involved, Section 28.6 creates a benchmark for ARMA estimation. Section 28.7
offers some conclusions.

In what follows we typically do not mention specific software packages, even
when they were identified in the article or review that is cited. The reason for this
is that many of the errors we recount have long since been corrected. A notable
exception is Microsoft Excel, because Microsoft has a track record of not fixing
errors in Excel. Should Excel even be mentioned in this chapter? Yes. One need
only surf the web to find that many professors teach introductory econometrics
with Excel.

28.2 Computer arithmetic

Generally, computers do not store numbers that are perfectly accurate, nor are
the calculations performed on those numbers carried out with perfect accuracy. A
computer stores numbers in bits (a bit is simply a single binary digit that holds
either a zero or a one) and bytes (eight bits to a byte). Currently, most desktop
computers have a 32-bit word length, but there do exist 64-bit computers, and
soon there will be 256-bit computers.

To make ideas concrete, suppose that we have a 4-bit word, with each bit being
a zero or a one. All counting must be in base-2 with up to four places. Zero is
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represented as 0000, one is represented as 0001, two is represented as 0010, and
three is represented as 0011. The biggest number that can be represented is 15,
which is represented as 1111 = 1000 (8) + 0100 (4) + 0010 (2) + 0001 (1).

With a 32-bit word, rather than devote all 32 bits to representing powers of
two, we use some for a mantissa and others for an exponent (which can be either
positive or negative) to which the number two can be raised. This two raised to the
exponent is then multiplied by the mantissa. Such a scheme provides for a wider
range of representable numbers. This single-precision scheme has one sign bit,
eight bits for the exponent (which can range from −126 to 127) and 23 bits for the
mantissa. The smallest mantissa is 22 zeros followed by a one, which equals one,
and the smallest exponent is−126, so the smallest number that can be represented

is 1 × 2−126 ≈ 1.2 × 10−38. Similarly, the largest number that can be represented

is (2 − 2−23
) × 2127 ≈ 3.4 × 1038. If two words are chained together to permit a

larger exponent and larger mantissa, then this is called “double precision.”
Because a computer represents numbers in base-2, it cannot accurately represent

all the real numbers. For example, the number 0.5 can be represented exactly,

since it equals 1/2, which is 2−1. The number 0.1 cannot be represented exactly.
The binary representation of the real number 0.1 is given by 0.0001100110011...
where the 0011 repeats infinitely. With a finite word length, this infinite sequence
must be truncated, and when it is truncated and converted back to base-10, we get
0.099999994. For a quick overview of this topic, see McCullough and Vinod (1999,
sec. 2.1). For a much more detailed, yet still very accessible discussion of computer
arithmetic, see Goldberg (1991).

This small difference between 0.1 and 0.099999994 is an example of rounding
error. A similar type of inaccuracy is called truncation error, an example of which is
the calculation of sin(x) by infinite series. In a computer, the series cannot be cumu-
lated infinitely, and must be terminated at some point. The difference between
termininating and continuing forever is truncation error. Like a rounding error,
it can be very small. Some calculations, e.g., matrix inversion, can require mil-
lions of operations, and these small rounding and/or truncation errors can add up.
Eventually, they can swamp all the accurate digits, producing a final answer that
is completely inaccurate. This is very probably what happened in Longley’s paper.

28.3 Introductory tests

In 1985, Leland Wilkinson, developer of the SYSTAT statistical software package,
produced a pamphlet describing some simple tests of software accuracy. The pri-
mary documents for understanding and applying Wilkinson tests are Wilkinson
(1985) and McCullough (2004a). The tests are all based on a dataset that he called
the “Nasty” dataset, which is reproduced in Table 28.3.

The Wilkinson tests are fully described in Wilkinson (1985). They have been
applied by Sawitzki (1994a, 1994b), Bankhofer and Hilbert (1997a, 1997b), McCul-
lough (2004a) and Choi and Kiefer (2005). These papers usually report errors in
packages. For example, some packages could not accurately compute the sample
standard deviation for either BIG or LITTLE. What this reveals is that the packages
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Table 28.3 Dataset NASTY.DAT

LABEL$ X ZERO MISS BIG LITTLE HUGE TINY ROUND

ONE 1 0 . 99999991 0.99999991 1.0E12 1.0E-12 0.5
TWO 2 0 . 99999992 0.99999992 2.0E12 2.0E-12 1.5
THREE 3 0 . 99999993 0.99999993 3.0E12 3.0E-12 2.5
FOUR 4 0 . 99999994 0.99999994 4.0E12 4.0E-12 3.5
FIVE 5 0 . 99999995 0.99999995 5.0E12 5.0E-12 4.5
SIX 6 0 . 99999996 0.99999996 6.0E12 6.0E-12 5.5
SEVEN 7 0 . 99999997 0.99999997 7.0E12 7.0E-12 6.5
EIGHT 8 0 . 99999998 0.99999998 8.0E12 8.0E-12 7.5
NINE 9 0 . 99999999 0.99999999 9.0E12 9.0E-12 8.5

in question employed the “calculator formula”:

s2 =
∑n

i=1 x2
i − (

∑n
i=1 xi)

2
/n

n− 1
. (28.1)

This formula makes one pass through the data and squares the observations.

Consider squaring the first two observations on the variable BIG: 999999912 =
9999998200000081 and 999999922 = 9999998400000064. Now subtract the for-
mer from the latter: 9999998400000064 − 9999998200000081 = 199999983. On
a typical desktop econometric package, executing the command 999999922 −
999999912 produces 199999984. The squaring of these large numbers has just
barely used up the computer’s finite precision. To see this, simply drop the lead-
ing nines and perform the following subtraction on your desktop computer:
8400000064− 8200000081 = 199999983, which does not exhaust a desktop com-
puter’s precision. Think of what would happen if nine-digit numbers were used
instead of eight-digit numbers! Using the calculator formula to compute the sam-
ple variance of the variable BIG yields 2.424 instead of the correct 2.738. This is an
example of what was described in the first section as an algorithm simply not being
up to the task. The calculator formula contrasts sharply with the usual formula:

σ̂
2 =

∑n
i=1(xi − x̄)2

n− 1
, (28.2)

which squares much smaller numbers, and so it is more difficult for this formula
to exhaust the computer’s finite precision.

The calculator formula, often presented in textbooks in the pre-computer era,
was designed for use on toy problems found in textbooks, not for real-life problems.
This fact was known in the statistical computing literature at least as far back as
Ling (1974), and in one of the two classic texts on statistical computing that every
competent statistical programmer would have read, i.e., Thisted (1988) (the other
classic text is Kennedy and Gentle, 1980). Nonetheless, the calculator formula
appeared in many statistical and econometric software packages. What this tells us
is that the people who designed these programs were not versed in the basics of
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statistical computing, one of the primary tenets of which is this: do not program
the formula from statistics texts. The fact that allegedly competent programmers
would implement the calculator formula underscores the need for users to test their
software.

Calculating the correlation coefficient is conceptually simple, especially since it
is bounded between +1 and −1. Yet some packages returned a correlation between
BIG and HUGE, or LITTLE and ROUND, or X and BIG, that was bigger than unity!
The developers of these packages never revealed why their packages were unable to
compute correctly a correlation coefficient. Also of interest, the correlation between
ZERO and any other variable should be undefined by definition because ZERO is a
constant so its standard deviation σz = 0 and:

ρzx =
cov(z, x)
σzσx

. (28.3)

The 0 in the denominator means that the value of the ratio is undefined, yet some
packages computed ρzx = 0, and one package even managed to compute ρzz = 1.

Plotting BIG against LITTLE obviously should produce a straight line. Some pack-
ages were unable to do this. In one case, the software produced a single point in
the middle of the graph, dropping all the other points. Again, the developers did
not reveal the reasons for the failure.

Performing operations that involved the MISS variable revealed that not all
packages correctly handled missing values.

Regressing X on a constant, BIG and LITTLE should produce an error, since BIG
and LITTLE are linear transforms of each other, i.e., the matrix of independent
variables is singular. If a package does not recognize the singularity, then it can
grind through all the calculations and produce an answer – an incorrect answer,
but an answer nonetheless. Not all packages passed this test.

Wilkinson tests have been applied to many statistic and econometric software
packages, almost invariably revealing flaws of one sort or another. The only mystery
is why software developers don’t apply these tests themselves and fix the errors
before someone writes an article or software review about it. These tests are quick
and easy, taking less than an hour, and every user should make sure his package
passes all these tests – or if it doesn’t, have the developer fix the problem. If he or
she doesn’t fix it fast enough, a well-placed software review will convince him or
her to do so.

28.4 Intermediate tests

McCullough (1998a) proposed an intermediate set of tests covering three areas:
coefficient estimation based on the then recently released National Institute of
Standards and Technology’s (NIST) Statistical Reference Datasets (StRD), random
number generation, and statistical distributions (e.g., the functions used to deter-
mine critical values for various distributions). This methodology has been applied
by McCullough (1999a, 1999b), Vinod (2000), Sall (2002), Altman and McDonald
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(2002), Kitchen, Drachenberg and Symanzik (2003), Teyssiere (2005), Keeling and
Pavur (2004, 2007), Yalta and Yalta (2007), and Yalta (2008), among others.1

28.4.1 StRD

The StRD presents estimation problems in four suites: univariate summary statis-
tics, one-way analysis of variance, linear regression, and nonlinear least squares.
Each suite contains test problems at three levels of difficulty: lower, average, and
higher. The primary discussions for understanding and applying the StRD are found
in McCullough (1998a, 2000b). For the linear problems, NIST computed accurate
solutions by carrying 500 digits through all calculations, effectively eliminating
rounding error, and then rounding the final answer to 15 digits. Nonlinear prob-
lems were solved using different algorithms in quadruple precision, and rounding
the final solution to 11 digits. For each nonlinear problem there are two sets of
starting values: Start I and Start II. The former is far from the solution, which
makes it harder for a solver to find the solution. The latter is closer to the solution,
making it easier for a solver to find the solution.

One of the nine univariate problems (six lower, two average, one higher
difficulty) require the calculation of three summary statistics: mean, standard
deviation, and first-order autocorrelation coefficient. One of the lower-difficulty
problems, NumAcc1, consists of just three observations: 10000001, 10000003,
10000002. A program that employs the “calculator formula” will fail this test
starkly, even in double precision. It is a bit easier to diagnose a failure with these
data than with the similar data in Wilkinson tests. Many packages fail to get good
accuracy when calculating the first-order autocorrelation coefficient because they
use bad algorithms.

The ANOVA suite has four lower-, four average-, and three higher-difficulty prob-
lems. Even a good ANOVA algorithm that does not recenter the data will return a
completely inaccurate answer for the most difficult problem. If a package returns
four digits of accuracy on this problem, then it is safe to conclude that the pack-
age recenters the data (to reduce the effect of squaring) before calculating all the
relevant sums of squares. It is not uncommon to see packages, especially those
that have been around for a long time, fail even on the average difficulty tests.
The reason is that the packages use legacy code left over from the days of single-
precision computers. After the StRD is applied to such packages, the developers
usually update the code.

The linear regression suite has 11 test problems, two of lower difficulty, two of
average, and seven of higher difficulty. One of the higher-difficulty test problems is
the Longley benchmark, which most packages can handle easily these days. A prob-
lem that many packages cannot handle is the Filip dataset, which is a tenth-order
polynomial that is nearly singular. A good package will either produce accurate
coefficients or detect the singularity and refuse to produce a solution. This latter
result is not a failure, because the user has not been misled. A package that fails
this test, e.g., Excel 2000 and earlier (McCullough and Wilson, 2005), is capable
of producing completely inaccurate coefficients when confronted with collinear
data. A package that directly solves the normal equations, e.g., that calculates

mailto: rights@palgrave.com


B.D. McCullough 1301

β̂ = (X′X)
−1X′y will fail many of the linear regression tests. The reason is that

computing the inverse of (X′X) is like a squaring operation that produces a great
deal of cumulated rounding error, sometimes enough cumulated rounding error
to completely ruin the estimate β̂. A better method is to use what is called the
QR decomposition, which avoids the squaring in the computation of β̂. If a pack-
age fails many of these linear problems, it is safe to say that the package does not
use a good QR decomposition, and almost certainly calculates the least squares
coefficients by inverting (X′X).

Most nonlinear solvers offer various options to the user: different algorithms,
convergence tolerance, etc. Two major lessons have been learned from the early
application of the StRD nonlinear suite. First, the default options for most nonlin-
ear solvers will not find the correct answer. One primary example is the convergence
tolerance. Suppose the solver is set, at default, to stop when the difference between
the sum of squares on two successive iterations changes by less than 0.001. This
might not be tight enough and the solver might give a “failure to converge” mes-
sage; it might be necessary to set the tolerance at 0.000001. For a nonlinear least
squares problem, changing the tolerance by this amount may well dramatically
alter the coefficients and markedly reduce the sum of squares. Do not rely on the
default options for nonlinear solvers!

Normally, this first problem would not be of much consequence; simply change
the options until convergence is declared. However, there is a common second
problem that greatly complicates the matter: many packages have a tendency to
stop at a point that is not a solution and claim that they have found a solution.
(How is a user to know whether his/her solver has this second problem? See whether
anyone has applied the StRD nonlinear suite to his/her software package!) If a
user happens to have such a defective solver, then a reasonable strategy is to keep
decreasing the convergence tolerance – getting a “convergence achieved message”
every time – until the user verifies that the coefficients have stopped changing,
that the solver really has achieved a stationarity point. For a detailed example of
applying this strategy, see McCullough (2004b). For extended discussion of using
nonlinear solvers to find solutions to nonlinear problems, see McCullough and
Renfro (2000) and McCullough and Vinod (2003a, 2004).

To belabor this important point, almost any nonlinear problem solved using a
package that has this second problem will produce an incorrect answer. The user
simply accepts the default options, the solver produces an incorrect answer, and the
user accepts the incorrect results. The literature is filled with results from such pack-
ages, and because journals typically do not even compel authors to identify their
software packages, let alone make their data and code available, there is little hope
of purging these incorrect results from the literature. As will be discussed in the
conclusions, replication of published results and software accuracy are intimately
connected.

One interesting aspect of the nonlinear StRD suite that has yet to be published
in the literature is the following. The StRD nonlinear suite is for nonlinear least
squares problems. Nonlinear least squares solvers make use of the special structure
of nonlinear least squares problems. Reformulating these problems as maximum
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likelihood problems and giving them not to the package’s nonlinear least squares
solver, but instead to its maximum likelihood solver, would produce a method for
testing the efficacy of maximum likelihood solvers. To date, there has been no such
systematic testing of the maximum likelihood solver of any econometrics package.
Preliminary examination of this topic by the author suggests that many packages
have maximum likelihood solvers that tend to stop at points that are not solutions
but nonetheless declare that a solution has been found. The implications of this
line of research for applied econometrics would be enormous.

28.4.2 Random number generators

Random numbers form the basis of many econometric estimators, e.g., simula-
tion and bootstrapping. Yet the efficacy of these methods depends on the random
numbers being truly random. In fact, the random number generator (RNG) in an
econometrics package does not produce random numbers, but deterministic num-
bers. However, they are nonlinearly deterministic and can give the appearance of
being truly random. For a short primer see McCullough (2001) or McCullough and
Vinod (1999, sec. 5). The physics literature is filled with stories of bad simulation
results due to bad RNGs (see, e.g., Coddington, 1994, 1996). The economics litera-
ture has no such examples because there is practically no replication in economics.
When was the last time one economist took another economist’s simulation code
and swapped out one RNG for another RNG to see if the results would change?
Nonetheless, the literature on testing econometric software has found bad RNGs,
and the usual response by a developer is to put in a good RNG.

The primary method for determining whether an RNG produces “random” num-
bers is to take the numbers and apply a statistical test of some sort. As a simple
example, take 1,000 random numbers, compute the first-order autocorrelation
coefficient, and test the null that the coefficient equals zero. Rejecting the null
constitutes evidence that the numbers are not random; they are correlated. There
are many, many types of tests because there are many, many ways for a sequence
of numbers not to be random. One of the first standard collections of such tests
was given by the eminent computer scientist Donald Knuth in the 1981 first edi-
tion of his classic text (Knuth, 1998). Coding these many tests and applying them
was time-consuming and tedious. The random-number specialist George Marsaglia
(1996) collected several tests and coded them as “DIEHARD: a battery of tests of
randomness.” DIEHARD has been used to uncover bad RNGs in many statistical
and econometric software packages.

As the scale of computing has grown since then, the DIEHARD tests are no longer
up to the task of validating RNGs for the huge simulations that are run today. The
RNG testing program TESTU01 has been the new standard since its first release in
2002. The program is reviewed by McCullough (2006) and described in more detail
in L’Ecuyer and Simard (2007). Using TESTU01 requires a passing knowledge of C,
and is available freely. It comes with three batteries of tests pre-programmed, Small
Crush (which can take a few minutes), Crush (which can take a few hours), and
Big Crush (which can take a day or more). By contrast, on a modern PC, DIEHARD
takes several seconds. If an RNG passes Small Crush, then give it to Crush. If it
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passes that, then give it to Big Crush. If it passes that, then it is fit to use. There are
too many good RNGs to use one that fails any reasonable test of randomness. There
are many bad RNGs, even ones published in journals, so testing is imperative.

It is not enough that the underlying uniform RNG passes tests. Often the need
for random normal variates, or random variables with other distributions, arises.
These are usually obtained from the uniform RNG via transformation. However,
the process of turning seemingly good uniforms into normals, e.g., requires not just
good uniforms, but also a good transformation. The transformations from unifor-
mity to another distribution, e.g., standard normal, can be flawed. The Marsaglia
Multicarry RNG, which passed all the DIEHARD tests and was popular for some
years, does not play well in the tails with the Kinderman–Ramage transform to
normality. So if your econometric software package uses the Multicarry, and it pro-
duces random normals via the Kinderman–Ramage, then the tails of the so-called
random normals actually deviate substantially from true random normals. For a
graphical depiction of this phenomenon, see Figure 28.1. Note the slight gap at
about 3.4 and a pronounced gap at about 3.6. These gaps would wreak havoc upon
any simulation that focused on the tails of the standard normal.2

Further, the Multicarry fails both Small Crush and Crush batteries in TESUT01
(there was no need to apply Big Crush). Testing random normals, random-t’s, and
random chi-squares needs to be done. As this time, such testing is in its infancy.
A common approach is to back transform the random normals (say) to unifor-
mity, and then apply tests for uniformity to the backtransformed uniforms. This
approach was used successfully by Tirler et al. (2004). Do you think it safe to trust
the random normals in your software package?
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Figure 28.1 The extreme tails of 4,000 samples of random normals from Marsaglia Multicarry
and Kinderman–Ramage
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Generally speaking, econometric discussions of simulation simply assume a high-
quality RNG the same way that econometrics texts discussing nonlinear estimation
assume a high-quality solver. For example, the text on simulation in econometrics
by Gouieroux and Montfort (1997) makes no mention of testing RNGs.

28.4.3 Statistical Distributions

Bai and Perron (2003) (henceforth BP) published an article in the Journal of Applied
Econometrics about structural change models, and used an econometric software
package to write software for their method. Zeileis and Kleiber (2005) (henceforth
ZK) attempted to port the code to R. We first note that the Journal of Applied Econo-
metrics has a data-only mandatory archive, i.e., BP were under no obligation to
supply their code to would-be replicators, but they did so. While ZK were able
to reproduce much of what BP did, they were unable to match some confidence
intervals for break-points. As one example, both packages estimated a break-point
at the third quarter of 1972, 1972:3, but the BP interval was [1970:3, 1972:4] while
the ZK interval was [1969:1, 1972:4]. After much numerical detective work, ZK
finally ascertained that the BP software package had a function for the Normal
CDF (cumulative distribution function) that was inaccurate in the tails, while the R
package had a Normal CDF that was accurate in the tails. The accuracy of statistical
distributions matters.

On a related note, there is a definite need for the profession to find every article
using the Normal CDF function in the package used by BP, and check to see if the
results are wrong. Of course, since journals largely do not require authors even to
identify what package they use, let alone supply the code, there is no hope of ever
accomplishing this task. This example shows how replication can uncover errors
not only in published articles, but in software, too.

To test statistical distributions, one needs an accurate source for the desired
quantities – not just any software package will do. For years the primary sources
were Knüsel’s (1989) ELV package and Brown’s DCDFLIB (available in C and For-
tran). McCullough (2000c) showed that the program Mathematica was at least as
good as ELV and, lately, Yalta (2008) showed that Mathematica produces results
more accurate than ELV. One simply compares the output from one of these
three programs to the output produced by the econometric software in question.
Naturally, one cannot assess all possible outputs, so one examines a carefully
chosen subset. For the normal distribution, one might first test the following
percentiles: {0.0001, 0.001, 0.01, 0.1, 0.2, . . .0.9, 0.99, 0.999, 0.9999} and check the
extreme tails to find out where the algorithm in the econometric software breaks
down; it might be completely inaccurate for the 0.9999999999 percentile. A sim-
ilar approach might be undertaken for the t-distribution, except it has to be done
for different degrees of freedom. The process gets more complex for distributions
with two or more parameters, e.g., the F-distribution. Complete details for testing
can be found in McCullough (1998a, sec. 6). Most packages are able to compute
these distributions for simple hypothesis testing, but methods that require distribu-
tions to be evaluated in the extreme tails, e.g., value-at-risk testing or saddle-point
approximation, should only be undertaken with packages that have very accurate
distributions.
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28.5 Advanced tests

Look at the table of contents of an advanced econometrics text, or the list of func-
tions in any econometrics software package, and you will see many familiar names:
Kalman filtering, multinomial logit, ARMA, etc. Just as in the case of multivariate
GARCH, with which this chapter opened, different packages will give different
answers to the same problem, and no one has any idea which package, if any, is
correct. This is because there are no benchmarks for any of these procedures.

We have already alluded to different packages giving different answers to the
same FIML problem. In fact, a benchmark was worked out for this problem by
Calzolari and Panattoni (1988). Not many software developers were aware of this,
because it was not advertised as a benchmark. Silk (1996) recognized that it was
benchmark-quality work, and used it as a benchmark for his comparison of software
packages.

When Bollerslev (1986) published the first GARCH article, he did not completely
describe his method, leaving developers to guess at important details. Conse-
quently, while every package soon had a GARCH command, they all gave different
answers. McCullough and Renfro (1999) (henceforth MR) documented this fact,
but also sought to alleviate the problem. Fiorentini, Calzolari and Panattoni (1996)
published an article entitled “Analytic derivatives and the computation of GARCH
estimates.” Recognizing that two of the remaining three authors had already writ-
ten benchmark-quality code, MR suspected that this might be code of a similar
quality. Indeed, it was, and MR offered the “FCP GARCH benchmark” on which
many developers quickly converged. MR analyzed seven packages, and found that
four of them could not estimate the FCP GARCH model, and only one of the
remaining three was reasonably accurate. When Brooks, Burke and Persand (2001)
reassessed the situation only two years later, they found that most packages could
estimate the model and do so with reasonable accuracy (but see McCullough and
Vinod, 2003b, for another example of many packages giving different answers to
the same GARCH problem). Developers will converge on a benchmark if one is
available.

Bruno and De Bonis (2004) wrote a benchmark for a garden-variety panel data
estimator, for both fixed and random effects. They then gave the data to three
software packages. All packages agreed on the fixed effects estimation, but disagreed
on the random effects. Investigation of the matter required correspondence with
the developers because the user guide and reference manuals did not provide much
information on the algorithms employed (which is typical of econometric software
packages). As Bruno and De Bonis (2004, p. 281) discovered, “it is clear that all
the numerical differences produced by the random-effects estimates are caused by
the differences in the small-sample formulas for the computation of the between-
regression variance.” All three packages used consistent estimators, so there was no
theoretical reason to prefer one over the other. The literature provided no guidance,
so Bruno and De Bonis conducted a Monte Carlo study to determine which of the
three estimators had the better finite-sample properties.

The Yule–Walker equations are often used to compute partial autocorrelation
coefficients; the method is presented in most econometrics texts, and most econo-
metric software packages offer the method. What is not presented is that it is the
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least reliable method for such computation. The classic time series text by Priestley
(1981) presents four methods for computing partial autocorrelation coefficients,
and he presents them in decreasing order of reliability: the Yule–Walker method
is presented fourth. The Yule–Walker equations are, from a computational stand-
point, easy to implement, and they might have been justified back in the days
when computing power was expensive; in the present day, they cannot be jus-
tified. Very few econometric packages offer better methods. One such method is
the Burg algorithm. However, there was no benchmark for the method, so McCul-
lough (1998b) computed one. Now some econometrics time series packages offer
the Burg method as an improvement over the Yule–Walker equations.

There are not many advanced benchmarks for econometric software, and there
is precious little tangible evidence that any econometric software package is giving
the correct answer for any moderately complicated problem.

28.6 Benchmarks for ARMA models

In an important article, Newbold, Agiakloglou and Miller (1994) (henceforth NAM)
observed: “fitting the same model to the same data will yield more or less identical
results whatever software is used for multiple regression. That is not the case for
the estimation of the parameters of an ARIMA model.” In part, this may be due to
the fact that NAM placed themselves in the position of a novice user, i.e., “though
many programs allow the user a range of optional modifications, we generally ran
them in default mode.” If one thing has been learned from the literature on sta-
tistical and econometric software accuracy, it is that default options for nonlinear
estimation procedures typically do not produce accurate answers. Such matters
as choice of algorithm, convergence criterion, convergence tolerance, and initial
conditions, can all greatly affect the quality of the answer produced by a nonlinear
estimation procedure. For example, in the case of autoregressive integrated mov-
ing average (ARIMA) procedures, some packages conduct preliminary estimations
to determine starting values, while others simply use zeros. This fact alone could
account for much variation between packages. Therefore, it may seem entirely
possible that the packages examined by NAM would have exhibited little varia-
tion in the range of results produced if only they had adopted the posture of an
experienced user. Such, however, turns out not to be the case, as will be shown.

Given that the differences are not due to the use of default options, the notion
that algorithmic differences may be responsible comes to mind. In the case of
unconditional least squares (ULS) with backcasting, there is no one preferred
method of backcasting, so perhaps this may account for the differences. NAM
(1994, p. 580) pointedly address this notion in the discussion of their conditional
least squares (CLS) results, for which no such difference is possible. Even in the
cases when point estimates agree, NAM note substantial variation in the estimates
of standard errors.

Thus, the only means to resolve the discrepancies between packages is the pro-
duction of a benchmark. The production of a benchmark typically requires the
use of extended precision computation, i.e., more than double precision. One
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common method of achieving this level of accuracy is to use FORTRAN with a
multiple precision pre-processor (e.g., Bailey, 1993). An alternative is to employ
the software package Mathematica, which can combine symbolic calculation with
extended precision computation to produce benchmark-quality results. For exam-
ple, on the NIST StRD ANOVA tests, 32-bit word double precision can do no better
than four or five digits of accuracy. Mathematica can, on these problems, return
a full 15 digits of accuracy (McCullough, 2000c). For this analysis, we therefore
employ Mathematica.

Here we consider only Box and Jenkins (1976) (henceforth BJ) methods based on
least squares for two reasons. First, these are by far the most widely-used methods;
only two of the packages considered by NAM offered exact maximum likelihood.
Second, there is a definitive reference for the procedures – BJ. There exist many
alternative methods for computing maximum likelihood methods, and computing
a maximum likelihood benchmark for ARIMA estimation constitutes a project in
itself.

This is not an unimportant topic. ARMA estimation and forecasting is a mainstay
of applied time series analysis. Note that forecasts have not been benchmarked: this
needs to be done, too. Recently, Yalta and Jenal (2009) attempted to double-check,
by hand, the forecasts coming from an ARMA procedure. They could not reproduce
the program’s results. On further investigation, they found that not only were the
forecasts incorrect, even the ARMA coefficients were incorrect. (For a benchmark,
they used the approach of having several packages give the same answer to the
same problem – the package in question did not agree with all the other packages.)

Sub-section 28.6.2 describes definitions and notations. Sub-section 28.6.3
presents CLS results; analytic derivatives are employed for the ARMA(1,1) case, and
comparison with numerical derivatives sheds light on the choice of the differencing
interval for the computation of numerical derivatives. Then, using extended preci-
sion computation, a benchmark for CLS is presented. Sub-section 28.6.4 presents
a benchmark for ULS.

28.6.1 Definitions and notation

The ARMA(p,q) model can be written as:

at = w̃t − φ1w̃t−1 − φ2w̃t−2 − . . .− φpw̃t−p + θ1at−1 + θ2at−2 + . . . θqat−q, (28.4)

where wt = ∇dzt and w̃t = wt − μ with E[wt ] = μ. In general, when d > 0 it is
assumed that μ = 0. However, we take μ �= 0 as an additional parameter to be
estimated. The form in which the equation is written affects the intercept term
in an ARMA model. For example, BJ write (1 − #(B))yt = c + (1 − �(B))at , while
an alternate formulation, adopted here, takes (1 − #(B))(yt − μ) = (1 − �(B))at .

Comparing the two formulations, it is obvious that μ = c/(1 −∑p
j=1 φp). In the

sequel, only the case p = 1, q = 1 is treated.
The variation on the Marquardt algorithm proposed by BJ, and which is imple-

mented in several packages, is extremely simple, and focuses on minimizing a sum
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of squares. In the case of CLS, the relevant quantity is:

S∗(φ, θ) =
n∑

t=1

a2
t (φ, θ |w∗, a∗,w), (28.5)

where the subscript asterisks emphasize conditioning on the choice of starting
values. The problem, obviously, is in the choice of pre-sample values for w and a,
i.e., how to define w∗ and a∗.

BJ (1976, p. 211) consider two approaches. The first involves setting w∗ and a∗
equal to their unconditional expectations, which are μ and 0, respectively. In the
event that μ �= 0, w̄ can be substituted for each element of w∗. This preserves
the full sample. However, due to potential instabilities when the roots of φ(B) are
near the unit circle, this method is not much used. A more reliable method is to
discard observations so that actual values of w are used for all calculations. This
implies that the sum of squares can be taken only over observations p+ 1 through
n. (Clearly, when p = 0 this method is equivalent to the previous method.) Thus,
the second approach sets at = 0 for t = 1, . . . , p and calculates the a’s from ap+1
onward; observations must be dropped from the sample. It is the second approach
that BJ adopt for CLS, and which is considered here.

Setting to zero values that might vary substantially from zero may induce a tran-
sient effect that can adversely affect the quality of the final estimates. BJ (1976, p.
211) notes that CLS is “not satisfactory” for seasonal models.

To derive the ULS method, BJ introduce the unconditional sum of squares:

S(φ, θ) =
n∑

t=−Q

[at |(φ, θ ,w]2, (28.6)

where the at , t ≤ 0 are computed recursively by taking expectations of
equation (28.4). The values necessary to compute these at , t ≤ 0, are the [wt ], t ≤ 0,
which can be calculated via the procedure known as backcasting.

In the usual fashion, the backward and forward representations are given by:

et = (wt − μ)− φ(wt+1 − μ)+ θet+1 (28.7)

at = (wt − μ)− φ(wt−1 − μ)+ θat−1. (28.8)

Given initial estimates of the parameters, μ0,φ0 and θ0, setting en+1 = 0 allows
equation (28.7) to be executed from t = n to t = 1. At t = 0 the value et = 0, and
so the equation can be rewritten as an expression for wt , from which [wt ], t ≤ 0
can be calculated back to some t = −Q, the quantity (wt − μ) being neglible for
t < −Q. These backcasted values of wt can then be used to start the recursion
equation (28.8) from −Q upon setting a−Q−1 = 0.

Exactly when the quantity wt − μ becomes neglible is not explicitly stated in
BJ. Their example in their Table 7.4 (1976, p. 218) suggests that wt − μ < 0.01
is an appropriate stopping rule. Other stopping rules for backcasting have been
described in the literature. For example, Granger and Newbold (1977, p. 88) suggest
stopping when the magnitude of three successive values of Ec(Yt ) is less than 1%
of the standard deviation of yt .
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In whatever way it is determined, the choice of Q, the number of observations
to backcast, will affect the final estimation results. What is surprising is that many
packages that offer the ULS method do not mention the stopping rule employed.
Even more surprising, when this researcher contacted many such developers, they
refused to reveal their stopping rules. Not only is this tantamount to refusing to
reveal the method of computation, but it also makes provision of a benchmark
impossible for these packages. Thus, users of such packages are in the unenviable
position of relying on unproven and unverifiable code.

The variation of the Marquardt algorithm proposed by BJ for estimating CLS and
ULS models is the essence of simplicity. Given initial estimates of the coefficients,
μ0,φ0 and θ0, compute the vector of residuals a, which will have length n − p in
the case of CLS and length n+Q + 1 in the ULS case. Compute the derivative of a

with respect to the parameters, denoted a(μ), a(φ) and a(θ), and run the regression:

a = bμa(μ) + bφa(φ) + bθa(θ), (28.9)

to obtain estimates b̂μ, b̂φ and b̂θ . Compute the coefficient estimates at the end of

the first iteration as μ1 = μ0+ b̂μ, φ1 = φ0+ b̂φ and θ1 = θ0+ b̂θ . To commence the
second iteration, based on μ1,φ1 and θ1, compute a (note that the value of Q on
this iteration may well not be equal to the value of Q on the previous iteration) and
repeat the process until a termination criterion is achieved (e.g., successive sum of
squared residuals is less than ε, etc.). Suppose the termination test is successful at
the end of the cth iteration. Then the procedure is said to have terminated after c
iterations. Note, though, that the gradients currently in the computer’s memory
are computed based on μc−1,φc−1 and θc−1.

Computation of the standard errors is effected in the usual fashion. First, the
gradients must be recomputed using μc ,φc and θc , and each gradient will have
length n−p (CLS) or Q+1+n (ULS). In the latter case, drop the first Q+1 elements
of each vector. Form the matrix with three columns and either (n − p) (CLS) or n

(ULS) rows: g = [a(μ) a(φ) a(θ)]. The covariance matrix is given by (g ′g)−1 which,

when multiplied by
∑

a2
i /n, has as its trace the variances of the coefficients.

28.6.2 Calculation of derivatives

Given the general superiority of analytical derivatives over numerical derivatives,
no benchmark for a nonlinear procedure should be attempted on the basis of
numerical derivatives alone, except in exceptional circumstances (e.g., when cal-
culation of the derivatives is nearly impossible). Comparing the performance of
numerical and analytic derivatives in a benchmark setting can determine whether
it is safe for a user to rely on numerical derivatives or whether, as Fiorentini, Calzo-
lari and Panattoni (1996) found in the case of GARCH models, analytic derivatives
are necessary to achieve decent accuracy.

Computation of numerical derivatives is easy. Consider computing a(φ) on the
ith iteration. Compute the residuals based on μi,φi and θi, and call this vector ai.

Now for some differencing interval h, compute ah
i based on μi,φi + h and θi. Then

the numerical estimate of a(φ) is given by ai−ah
i . The choice of differencing interval
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can greatly affect the quality of the numerical derivatives. For example, in the days
when single precision was common, h = 0.01 or h = 0.001 were common choices.
In the present day, when double precision is standard, smaller values of h are used.

It is well known that analytic derivatives are generally more accurate than numer-
ical derivatives. It is also well known that there exist some problems for which
implementing analytic derivatives is too difficult, and there is no recourse to
numerical differentiation. ARIMA estimation is just such a case. For CLS, analytic
derivatives are not difficult to implement. Backcasting, however, is another case.
BJ (1976, p. 235) provide the analytic derivatives for an ARMA(1,1) model, where

a(φ)
t denotes ∂[at ]/∂φ:

e(φ)t = w(φ)
t − φw(φ)

t+1 + θe(φ)t+1 − [wt+1] (28.10)

a(φ)
t = w(φ)

t − φw(φ)

t−1 + θa(φ)

t−1 − [wt−1] (28.11)

e(θ)t = w(θ)
t − φw(θ)

t+1 + θe(θ)t+1 + [et+1] (28.12)

a(θ)
t = w(θ)

t − φw(θ)
t−1 + θa(θ)

t−1 + [at−1], (28.13)

where: [
wt
] = wt , t > 0 (28.14)

w(φ)
t = w(θ)

t = 0, t > 0 (28.15)

[e−j] = 0, j ≥ 0. (28.16)

These derivatives are tedious but straightforward to implement, and are simi-

lar to the previous use of backward and forward equations. Setting e(φ)n+1 = 0,

equation (28.10) can be solved from n to 1. For t = 0, e(φ)t = 0 and so this equation

can be re-expressed to solve for values of w(φ)
t , t ≤ 0. Then, setting a(φ)

−Q−1 = 0 and

using the backcasted values of w(φ)
t , t ≤ 0, equation (28.11) can be solved from

t = −Q to t = n, and similarly for equations (28.12) and (28.13).
By comparison, the analytic derivatives for an ARIMA(1,0,1) are much more

difficult to implement. Then differentiating equations (28.7) and (28.8) yields:

e(φ)t = w(φ)
t − (wt+1 − μ)− φw(φ)

t+1 + θe(φ)t+1 (28.17)

a(φ)
t = w(φ)

t − (wt−1 − μ)− φw(φ)

t−1 + θa(φ)

t−1 (28.18)

e(θ)t = w(θ)
t − φw(θ)

t+1 + et+1 + θe(θ)t+1 (28.19)

a(θ)
t = w(θ)

t − φw(θ)
t−1 + at−1 + θa(θ)

t−1 (28.20)

e(μ)
t = (w(μ)

t − 1)− φ(w(μ)

t+1 − 1)+ θe(μ)

t+1 (28.21)

a(μ)
t = (w(μ)

t − 1)− φ(w(μ)

t−1 − 1)+ θa(μ)

t−1, (28.22)

and programming these, of course, is more difficult than the ARMA(1,1) case.
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More sophisticated BJ models are much more difficult. Were it the case that the
most estimated ARIMA model was an ARIMA(1,0,1) then it would be worthwhile
for a developer to implement analytic derivatives. For example, the FCP GARCH
benchmark (Fiorentini, Calzaroli and Panattoni 1996; McCullough and Renfro,
1999; Brooks, Burke and Persand, 2001) is based on a GARCH(1,1) model, with
analytic first and second derivatives because most applications of GARCH involve
the GARCH(1,1). The same is not true of ARIMA models.

Nonetheless, it is of interest to know what price is paid for the use of numerical
derivatives instead of analytic derivatives. Moreover, the use of analytic derivatives
can shed light on the appropriate choice of h, the differencing interval. Since
analytic derivatives are easily implemented in CLS, this will be done in the next
section.

28.6.3 Conditional least squares

We are now in a position to create a CLS benchmark. We use the 197 observa-
tions from Box–Jenkins Series A. In the CLS case, the analytic derivatives given by
equations (28.17)–(28.22) reduce to:

a(φ)
t = (wt−1 − μ)+ θa(φ)

t−1 (28.23)

a(θ)
t = at−1 + θa(θ)

t−1 (28.24)

a(μ)
t = −1− φ + θa(μ)

t−1 (28.25)

which can be calculated recursively after setting a(φ)

0 = a(θ)
0 = a(μ)

0 = 0.
Carrying 50 digits through all calculations,3 using the maximum of the relative

change in the coefficients as the convergence criterion, setting the convergence tol-
erance to 1E-13, and rounding to 11 digits produced the benchmark. To determine
what we can expect from ordinary double-precision calculation, we also re-ran the
program using ordinary double precision. As can be seen in Table 28.4, double
precision delivers the benchmark answer for the first seven digits of the constant,
five digits of φ, and four digits for θ . The standard errors are computed on division
by n, not n− k.

Recall that the benchmark was produced with analytic derivatives. We can
use some capabilities of Mathematica to obtain this level of accuracy without

Table 28.4 CLS benchmark with analytic first derivatives

Parameter μ φ θ

Double precision 17.093753099 0.90658876305 0.56881361427
Benchmark 17.093752390 0.90658703600 0.56880910281
Standard error (MLE) 0.10520938686 0.045388753586 0.086811221485

Note: MLE = maximum likelihood estimation.
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the trouble of implementing analytic derivatives. Issuing the commands: “$Min-
Precision=50,” rationalizing the input data, setting h = 1E-12 and using the
“Rationalize” command on the input data series enabled numerical differenti-
ation to recover the full eleven digits of the benchmark. Thus, without using
analytic derivatives, Mathematica is capable of producing the same accuracy as
if analytic derivatives were employed. This information will be useful in produc-
ing the benchmark for ULS – it will save us the trouble of implementing analytic
derivatives.

Next we investigate the accuracy that can be attained with numerical derivatives
with varying sizes of the forward differencing parameter, h. The forward difference
derivative is computed by f ′(x) = (f (x+h)− f (x))/h. We do not consider numerical
derivatives via central differences, because the software packages in question do
not offer such an option for estimation.

Though obviously the desired degree of accuracy depends on the particular prob-
lem at hand, based on the limits of achievable accuracy in this situation as discussed
above, we take as our desideratum that the ARMA estimation procedure should pro-
duce at least three accurate digits for the coefficients and standard errors. Table 28.5
shows the effect of various choices of h on the accuracy of the estimates.

Recall that we ran analytic derivatives two ways: at regular double precision,
and also carrying 50 digits; the former agreed with the latter to about five digits.
Clearly, we cannot expect more than five digits of agreement when using numer-
ical derivatives. We see that this level of accuracy is attained in the bottom row,
and almost in the penultimate row. Hence, we see that, for best accuracy, the dif-
ferencing parameter h should be set to at most 0.00001. (Very few packages even
permit users to control this feature, so this information is mostly for the benefit of
software developers rather than users.)

Programming analytic derivatives, especially recursive ones, can leave the pro-
grammer wondering whether he/she did it correctly. A useful device in this

Table 28.5 Effect of differencing interval on accuracy (MLE standard errors)

Derivative μ φ θ

Analytic 17.0938 0.906587 0.568809
(0.105209) (0.0453888) 0.0868112)

h = 0.01 17.0945 0.908317 0.573343
(0.106161) (0.0454922) (0.0866366)

h = 0.001 17.0938 0.906760 0.569260
(0.105303) (0.0453983) (0.0867941)

h = 0.0001 17.0938 0.906604 0.568854
(0.105219) (0.0453897) (0.0868095)

h = 0.00001 17.0938 0.906589 0.568814
(0.105210) (0.0453888) (0.0868111)

h = 0.000001 17.0938 0.906587 0.568810
(0.105209) (0.0453888) (0.0868112)
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Figure 28.2 Analytic minus numerical derivative for a(θ)
t at various differencing intervals h

for all 197 observations on Series A

Table 28.6 CLS benchmark – parameters

Package μ φ θ

Benchmark 17.093752390 0.90658703600 0.56880910281
Mathematica default 17.093753099 0.90658876305 0.56881361427
Package X 17.09375129 0.90658475 0.56880310
Package Y 17.09366504 0.90660389 0.56883103
Package Z 17.0937032318 0.90648328387 0.568536846

situation is to compare the difference between the numeric and analytic deriva-
tives (which should be close to zero) for different values of h (it should get smaller
as h gets smaller). Both these conditions can be seen in Figure 28.2.

Having determined the benchmark coefficients and standard errors, we are now
in a position to see whether our packages can hit the benchmark. In Table 28.6 we
present default estimation for three packages that offer CLS.

Package X is the most accurate, followed by Package Y, followed by Package Z.
The first two seem to provide about four accurate digits, and the third about three
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Table 28.7 How close to the benchmark?

Package Tolerance μ φ θ

Benchmark – 17.093752390 0.90658703600 0.56880910281
Package X Default 17.09375129 0.90658475 0.56880310
Package X 1E-6 17.09375234 0.90658690 0.56880876
Package X 1E-8 17.09375234 0.90658690 0.56880876
Package X 1E-10 17.09375234 0.90658690 0.56880876

Table 28.8 CLS benchmark – standard errors (constant omitted)

Package φ θ

Benchmark 0.045388753586 0.086811221485
Package X 0.0457 0.0874
Package Y 0.0547 0.1186
Package Z 0.0433 0.0894

digits. How much more accuracy can be squeezed out of a package by varying the
default options? We consider only the case of Package X.

The primary option in this case is the convergence tolerance which, by default,
is set to 0.00001, i.e., 1E-5. What this tolerance controls is unknown, because the
package’s extensive documentation does not say! (This is typical of econometric
software packages.) Let us vary this convergence tolerance nonetheless.

As can be seen in Table 28.7, tightening up to 1E-6 yields a small improvement in
about the sixth digit (which is negligible since the difference between the bench-
mark with 50 digits and the benchmark with double-precision occurs in about the
same place), and no further improvement occurs with more tightening.

We now turn to the question of standard errors. Since all packages do not use the
same parameterization for the constant term, the standard errors thereof are not
directly comparable and are omitted. NAM noted that even when the parameters
were the same, different standard errors could be observed, and we find the same
with our three packages, as seen in Table 28.8. There are many possible sources for
this (see McCullough and Renfro, 2000, for a discussion); here we mention just one.
There is no single method for computing standard errors for nonlinear estimators;
the product of the gradient (recommended by BJ, as discussed at the very end of
sub-section 28.2.2), which is used in our benchmark program, the inverse of the
Hessian, and the information matrix are all prime candidates.

Though the documentation for Package X gives no indication of how its stan-
dard errors are computed, we can see that Package X probably uses the product
of the gradient method. Similarly, the documentation for both Packages Y and Z
are silent on this important point. We have no idea whether these standard errors
are incorrect or based on some other approach, e.g., inverse of the Hessian or the
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information matrix. The users of these packages will just have to trust that these
standard errors – whatever type they are – are correctly programmed.

28.6.4 Unconditional least squares

We have seen that an important part of ULS is the determination of Q, the number
of observations to backcast. Many packages claim to use backcasting and offer
only BJ as a reference. Given the atrocious state of software documentation, it
is not surprising that most packages that offer backcasting do not give the rule
used to determine the number of backcasts. What is perhaps surprising is that,
when this author contacted the developers who did not mention the rule in their
documentation, only one of them would reveal its rule.

This is either pathetic or amusing, depending on your point of view, because the
text does not give the rule used to determine the number of backcasts. The back-
casts in an example in BJ (1976, pp. 217–18) “die out quickly and to the accuracy
with which we are working are equal to zero” for backcasts number 4 and greater.
Confusingly, BJ do not declare the accuracy to which they are working! In their
code in the back of the book, BJ (ibid., p. 502) recommend stopping backcasts when
wt − μ̂ becomes negligibly small, but they do not state what constitutes “negligibly
small”: is it 0.1, 0.01, 0.001, or even smaller? For this benchmark we backcast until
wt − μ̂ < 0.01. Decreasing this tolerance to 0.001 changes the estimates of φ and θ

in the third decimal.
Analytic derivatives are not used here, as mentioned in the previous section; yet

we can be confident that we are achieving the same level of accuracy as if we were
implementing analytic derivatives. The benchmark is presented in Table 28.9.

Note that this result comports with BJ’s Table 7.13, the BJ results for estimation
of Series A. BJ report (with standard errors in parentheses) a constant of 1.45, a φ of
0.92(0.04) and a θ of 0.58(0.08). The BJ constant is consistent with our benchmark
constant because 17.066 ≈ 1.45 × 1/(1 − 0.9149...). Note that our standard errors
agree with those of BJ. Further, BJ give the residual variance as 0.097 while that
from the benchmark, to four decimals, is 0.0974. So it seems that we are estimating
the same model for which BJ present results.

Of interest is whether any of the three packages that offer backcasting come close
to the benchmark. These results are presented in Table 28.10.

Overall, no package comes close to the benchmark. As mentioned, this is because
they use different, secret methods for determining Q that, for some reason, they
will not reveal to their users. There is no point in checking the standard errors.

Table 28.9 ULS benchmark

Parameter μ φ θ

Coefficient 17.065547663 0.91494836959 0.58268097638
Standard error (MLE) 0.10808561791 0.042209513625 0.083811338527
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Table 28.10 Packages that backcast

Package μ φ θ

Benchmark 17.065503687 0.91492053108 0.58262567074
Package U 17.11392 0.917600 0.607982
Package V 17.08580 0.919264 0.595042
Package W 17.06372 0.884730 0.530030

28.6.5 Final thoughts on ARMA benchmarking

We have used analytic derivatives and extended precision calculation in Math-
ematica to produce much-needed benchmarks for ARMA least squares models.
Generally, packages can hit the point estimates for the CLS benchmark, but the
method of standard error calculation for most packages is unknown. Packages offer
disparate answers for the ULS benchmark because each uses its own specialized,
undocumented algorithm for backcasting.

While this is a damning indictment of customary practice in econometric and
statistical software practice, what can we hope for the future? Should we expect
developers to fix these problems? Generally, no. To rewrite the CLS and ULS code
would be very time-consuming and of little benefit. CLS is an approximation to ULS
which, in turn, is an approximation to maximum likelihood. Everybody should
be using exact maximum likelihood instead of CLS or ULS (Choudhury, Hubata
and St. Louis, 1999). There is currently no exact maximum likelihood benchmark.
Someone should develop it, and all packages should converge on it. A package
that does not offer exact maximum likelihood should either implement it, or bet-
ter document its existing CLS/ULS code, and ensure that it hits the benchmark
presented in this section.

28.7 Conclusions

We have seen that it is not safe to assume that econometric software is accu-
rate, and we have reviewed methods of testing econometric software, of which
there are far too few. While this chapter has primarily concerned itself with the
“known inputs – known outputs” approach to testing, it was mentioned that there
is another approach: two independently developed methods producing the same
answer. The former approach is very time-consuming and requires some knowledge
of numerical methods. The latter approach simply requires two (or more) soft-
ware packages, and the ability to use them correctly. This latter method has not
been much employed simply because of the dearth of replication in economics.
However, it is reasonable to expect that there will be much more replication in
economics in the future, and the relation between the accuracy of econometric
software and replication merits exposition here in the concluding section.

Over 20 years ago, Dewald, Thursby and Anderson (1986) attempted to replicate
many articles from the Journal of Money, Credit and Banking. Dewald, Thursby and
Anderson advised against the adoption of an honor system, whereby publishing
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authors pledge to provide their data and code to researchers wishing to replicate
the published results, due to the obvious incentive-compatibility problems. They
recommended a mandatory data/code archive, whereby authors would have to
deposit their data and code prior to publication. The American Economic Review,
which published the article, nevertheless adopted an honor system. McCullough
and Vinod (2003a) attempted to replicate every article in a single issue of the Amer-
ican Economic Review and discovered that half the authors would not honor their
pledges; the percentage of compliant authors at other journals with honor systems
was much less.

Under the then editor, Ben Bernanke, in direct response to McCullough and
Vinod (2003a), the American Economic Review adopted a mandatory data/code
archive (Bernanke, 2004). Many journals followed suit: Econometrica, 2005; Review
of Economic Studies, 2005; Journal of Political Economy, 2006; Spanish Economic
Review, 2007; Canadian Journal of Economics, 2008; and the Review of Economics
and Statistics, 2009. More can be expected to follow. It should be noted that simply
having a mandatory data/code archive is no guarantee of replicable research being
published (see McCullough, McGeary and Harrison, 2006, 2008, for details). The
topic of replication in economics, including its relation to software, is covered in
great detail in Anderson et al. (2008).

As more data code and published results (read “inputs and alleged outputs”)
are available, more and more code will be run on more than one econometric
software package, both uncovering discrepancies that need to be resolved as well
as verifying that two different programs give the same answer to the same problem
(increasing our confidence that both programs are correct). In the case of uncovered
discrepancies, software developers are generally willing to fix these problems. The
net result will be more accurate software, as evidenced by some cases we have
discussed here: Drukker and Guan (2003), Zeileis and Kleiber (2005) and Bruno
and De Bonis (2004).

While some journals have always been willing to publish software reviews that
address accuracy issues, software reviews carry little professional credit, and until
recently practically no journal would publish articles on accuracy. Computational
Statistics and Data Analysis, Computational Statistics, the International Journal of Fore-
casting and the Journal of Statistical Software have all published such articles in recent
years. So there are outlets for persons willing to do the computational work of cre-
ating benchmarks. And there will be a much greater need for it as progress on
the replication of economic research leads to the identification of fruitful areas for
developing such benchmarks.
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Notes

1. Because using the StRD is much more interesting than, and not nearly so tedious as testing
random number generators or statistical distributions, some of these authors only apply
the StRD.
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2. The R code to produce this graph is two lines: f <- function(n)max(rnorm(n)), and
plot(sapply(rep(5000,4000),f)).

3. In Mathematica, this is effected by issuing the command “$MinPrecision=50.”
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Trends in Applied Econometrics
Software Development 1985–2008: An
Analysis of Journal of Applied
Econometrics Research Articles, Software
Reviews, Data and Code1

Marius Ooms

Abstract

Trends in software development for applied econometrics emerge from an analysis of the research
articles and software reviews of the Journal of Applied Econometrics ( JAE) appearing since 1986.
The data and code archive of the journal provides more specific information on software use for
applied econometrics since 1995. GAUSS, Stata, MATLAB and Ox have been the most important
software since 2001. I compare these higher-level programming languages and R in somewhat
more detail. An increasing number of packages are being used. A surprisingly low number of
products have been discontinued since 1987. I put the time series count data on the number of
articles using different software and on the number of reviews discussing different products in
a historical perspective, where I distinguish several software types. Two waves of new products
showed up in the period under study, the first associated with the introduction of the personal
computer and new graphical interfaces, the second with the appearance of the internet. The JAE
has reviewed 77 packages. In this chapter I discuss 13 other relevant packages. A table with all
mentioned packages, their authors and latest versions provides a comprehensive overview of the
relevant software as in June 2008.
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29.1 Introduction

In this chapter I provide an overview of academic applied econometrics software
development, deriving time series count data from the JAE software reviews (1987–
2008), JAE research articles and the JAE data archive (1995–2008). The JAE has
promoted documentation and indexing of softwares and codes for applied econo-
metrics by publishing software reviews and replication studies. Most importantly,
James MacKinnon has patiently, successfully and consistently added the software
codes of JAE authors to the JAE data archive.

I first provide a contingency table of used data type versus year of publication.
The types of data used indicate a gradual shift from traditional macroeconometrics
and time series analysis to microeconometric applications and panel data research.
Second, I present the distribution of reviews per software category per two years,
and I check which software still existed in June 2008. Third, I present the yearly
distribution of software use over the 25 specifically mentioned software packages.

During the observation period, the JAE reviewed the usefulness of 77 dif-
ferent packages for applied econometrics research and education. Surprisingly,
only a handful of these products have been discontinued before June 2008 and
a large majority have recently been updated. Trends in general and individual
applied econometric software development emerge from the corresponding tables.
In recent years the range of effective specific softwares in applied econometric
research has increased. GAUSS, Stata and MATLAB dominate. Freely downloadable
alternatives like R and Ox have not had a similar impact as yet.

Econometric programs such as LIMDEP, SHAZAM, TSP, RATS and Ox are also used
for scientific research outside applied econometrics, not only in the traditionally
related areas of econometric theory, applied statistics and applied economics, but
also in marketing, finance, management science, accounting, regional science and
transportation science. For example, Altman and McDonald (2001) survey the use
of software in Political Science, including many econometrics packages. My anal-
ysis is therefore admittedly very focused. Many interesting applied econometrics
articles have been published outside the JAE, but data on software use and devel-
opment for other journals are not easy to obtain and results are therefore difficult
to check.

This chapter implicitly defines applied econometrics as the econometrics that
leads to publication in the JAE. Cleaning and preparing complicated empiri-
cal datasets, writing code for advanced estimation procedures or new types of
inference, and presenting and interpreting results for JAE articles involves expert
knowledge that distinguishes applied econometrics from both applied economics
and econometric theory.

The remainder of this chapter is organized as follows. The JAE research articles,
software reviews, data archive and software use are discussed in sections 29.2–
29.5, respectively. The most intensively used high-level programming languages
are treated in more detail in section 29.6.

A deeper understanding of the tables is obtained by a selective description of
the history and characteristics of the packages, given in section 29.7. This section
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draws heavily on Ooms and Doornik (2006) and on the extensive account of
Renfro (2004b), who corresponded with many econometric software developers
in preparing his article and in editing Renfro (2004a). It also reflects my expe-
rience as editor of the Econometric Software Links of the Econometrics Journal at
http://www.econometriclinks.com. Section 29.8 discusses the combination of soft-
ware and the concluding section 29.9 looks into future aspects of econometric
modeling software.

29.2 JAE research articles

The JAE is an important source of information on trends in software development.
The founding editor, Hashem Pesaran, has been based at the Cambridge (UK)
Department of Applied Economics (DAE) for most of the time since 1986. Richard
Stone, the founder of the DAE, wrote the first JAE article, this being his Nobel
Prize lecture on national accounts (Stone, 1986). Stone’s methods still underpin
the basic data source for applied macroeconometric research today. Whereas Stone
pioneered mainframe econometric software development in Cambridge, Pesaran
was one of the first to produce user-friendly software for the PC, Data-Fit and
Microfit, as reviewed in Ericsson (1988). He initiated the software review section
and a replication section for the JAE. He has written influential publications in
theoretical and applied time series econometrics, and in theoretical and applied
microeconometrics for cross-section and panel data.

The JAE publishes applied econometric research in all important areas in the
field. Special issues of the journal indicate the wide range of topics and meth-
ods: time series and cross-section model specification as in McAleer (1989) and
Magnus and Morgan (1997); event counts as in Trivedi (1997); nonlinear dynam-
ics as in Pesaran and Potter (1992); simulation-based inference (frequentist and
Bayesian) as in Brown et al. (1993), macro time series as in Pagan (1994), Diebold
and Watson (1996), Hendry and Pesaran (2001) and Franses et al. (2005); micro-
econometric structural dynamics as in Kapteyn et al. (1995) and Christensen et al.
(2004); semiparametric microeconometrics as in Horowitz et al. (1998); statistical
decision making (Bayesian and frequentist, macro, micro and finance) as in Geweke
et al. (2000); financial time series analysis as in Franses and McAleer (2002); social
and spatial interactions as in Durlauf and Moffitt (2003); and, finally, empirical
industrial organization as in Bauwens et al. (2007).

The JAE co-editors have worked on both sides of the Atlantic and the Pacific
and represent the major fields and schools of applied econometrics. Table 29.1
also illustrates this point. It shows the frequency distributions of the dataset types
over three main categories, panel data, time series data and cross-section data, for
the years 1995–2008, although with only four issues of 2008 covered. The basic
source of these counts were the JAE authors’ readme files on the JAE data archive.
If these were unclear I checked the corresponding articles on the JSTOR archive
and on Wiley Interscience. The gradual shift from traditional macroeconometrics
and time series analysis to microeconometric applications and panel data research
emerges. Time series articles are overrepresented in the years with corresponding
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Table 29.1 Research articles in JAE per data type per year

95 96 97 98 99 00 01 02 03 04 05 06 07 08 Total

Panel data 9 5 7 8 5 8 4 4 15 21 9 17 21 7 140
Time series 16 22 13 14 18 15 24 18 14 16 30 27 18 8 253
Cross-section 8 4 10 8 4 7 5 5 3 9 6 14 16 6 105
Simulated . 1 . . . . 1 . 1 . . 1 . . 4
Experiment 1 . . 1 . . . . . . 2
Meta-data 1 . . . . . . . 1 . 2
Auction 1 . . . 1 . . 2 . . 4
Scanner 1 . . . . . . 1 . 2
Algebra 1 . . . . . . 1

Total 33 32 30 30 30 31 34 29 34 46 45 61 57 21 513

Notes: panel data: data with a small time series dimension and a large cross-section dimension; time
series: data with large time series dimension, larger than cross-section dimension; cross-section: cross-
section data without time series dimension; experiment: data from experimental economics; simulated:
data from random number generator (RNG) and known data-generating process (DGP); meta-data: data
summarizing results from other articles; auction: empirical data from auctions.
Sources: JAE data archive, http://www.econ.queensu.ca/jae/; JSTOR, http://www.jstor.org; http://www3.
interscience.wiley.com; ISSN code JAE: 08837252.

special issues: 1996, 2001 and 2005. Four articles are based on simulated (Monte
Carlo) data, reflecting the research interest of James MacKinnon. Two articles use
data from economic experiments and four from auctions, new fields for serious
applied econometrics. One article uses cross-section meta-data in a traditional way,
and Baltagi (1999) uses bibliographical panel meta-data to construct rankings of
authors and departments in applied econometrics. Finally, Meddahi (2002) is the
only pure econometric theory JAE article I have come across. In computing the
total number of research articles, I have included articles from the JAE’s replication
section, edited by Badi Baltagi.

29.3 JAE software reviews

The JAE software reviews have been edited by Pravin Trivedi (1988–92) and James
MacKinnon. The reviews vary greatly in length. Most reviews concentrate on one
package, others compare up to six different packages on many features (data man-
agement, model formulation, simulation, availability of procedures, speed, help
functions and documentation), as in Brillet (1989) and Cribari-Neto (1997). Other
reviews compare specific functions like survival modeling, as in Goldstein et al.
(1989); GARCH modeling, as in Brooks et al. (2003); or properties like numerical
reliability, as in McCullough (1999).

Many packages have been reviewed only once, but dedicated widely used (inside
and outside the JAE) econometric packages show up several times in these 20
years. Table 29.2 details the reviews of dedicated econometric software since 1987,
split into two-year periods to show the distributions over time for each package.
Repeated reviews of the same product occur because the package receives a major
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update (in the beginning of its life) or because it is interesting, important and acces-
sible enough to include in a comparison. JSTOR provides extensive bibliographical
information on archived JAE articles in database entries like “Reviewed work(s),”
but so far, this information is inaccurate and incomplete for the JAE reviews, so
the numbers in Table 29.2 are based on the full text of the 92 articles.

I also checked the latest update and version number to make the table interesting
as a reference for the state of relevant software in June 2008. I was first surprised
to find recent updates for most of the packages. This may have been caused by the
introduction of Windows Vista and Excel 2007, which made updating necessary for
users who are not able to choose between operating systems. Table 29.2 also shows
the current software companies and main author names. This entry is not relevant
for the modern freely downloadable “team” software and these are therefore miss-
ing. The last column gives the country code of the workplace of the company and
main authors. Most companies and software developers work in the US; some are
in the UK, and nearly all others are in Canada and mainland Europe. None are in
South America and Asia, although econometrics is now a well established field of
(social) science in those continents. Irregular updates of internet links to the pack-
ages will be provided on the Econometric Software links of the Econometrics Journal.

The popular econometrics package Eviews (formerly Micro-TSP) has been dis-
cussed most often. LIMDEP, SHAZAM, PcGive and Microfit received most attention
in the twentieth century. Gretl is the latest general econometrics package to appear
on the JAE pages, and S-PLUS-FinMetrics is the latest time series econometrics
package that has been reviewed. Three reviewed econometrics packages have been
discontinued, or at least I could no longer trace them on the internet: ESP, PERM
and SIMPC. All other packages have been updated since the first review. I have
included three unreviewed packages in the list. TSM for GAUSS was mentioned
in the code archive. Dynare, by Michel Juillard, is widely used in modern applied
macroeconomics. Juillard (1996) is often cited. The 2008 version is available as a
stand-alone program, but also in the form of GAUSS, MATLAB and Scilab packages.
JMulti is a teaching package for multivariate time series analysis (see Lütkepohl and
Krätzig, 2004); it previously required GAUSS to run. Markus Krätzig developed a
graphical user interface (GUI), JStatCom (see also Table 29.3, and Krätzig, 2006).
Using this GUI and GRTE (the GAUSS RunTime Engine), JMulti is now also available
as a free stand-alone package.

Table 29.3 shows the corresponding review counts of programs and two packages
for Bayesian econometrics (Micro-EBA and BACC), specific panel data economet-
rics (Frontier, DPD and ExPEnd), the econometric programming language Ox, and
other packages used for scientific word processing, mathematics and computer
science. I added the DPD package for dynamic panel data analysis. This code, by
Manuel Arellano and Stephen Bond, has been instrumental for the breakthrough of
dynamic panel data econometrics, catering for large unbalanced panels as encoun-
tered in practical applications. The fundamental article, Arellano and Bond (1991),
has the exceptional econometrics citation scores of 900+ in the ISI Web of Knowl-
edge and 4,000+ in Google Scholar. Their procedures have now been implemented
in most econometric packages, both in the original time series-oriented packages
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(PcGive) and in the original cross-section packages (LIMDEP). FORTRAN in Table
29.3 and BIOGEME, Excel and SPSS in Table 29.4 have been included to keep consis-
tency with Table 29.5 below. BIOGEME and SPSS are discussed later in this chapter.
Stat/Transfer has not been reviewed, but it is referred to on the JAE data archive. It
allows for user-friendly transfer of datasets between statistics packages and LIMDEP,
GAUSS, MATLAB and Excel.

Finally, Table 29.4 considers the statistical software reviews and provides sum-
mary statistics. Here I also added BUGS by Lunn et al. (2000), because it is widely
used in Bayesian econometrics teaching; WinBUGS is a popular version for Win-
dows. The preferred version is called OpenBUGS. The summary shows that 77
different packages have been reviewed 128 times in 92 articles. Thirteen packages
have not been reviewed. The number of “reviews” in the table equals or exceeds the
number of “articles” by definition. As explained above, a large difference between
these two numbers indicates the discussion of several packages in single articles.
This phenomenon occurred in 1989–90 when many PC packages for econometrics
became fit for review, and in 1999–2000 when the first “GNUwares” came into use
among econometricians.

29.4 The JAE data and code archive and reproducibility

The data (and code) archive of JAE, http://www.econ.queensu.ca/jae/, consistently
coordinated by James MacKinnon, contains detailed references of all articles pub-
lished since 1995. Most authors (85%) have complied with the policy to provide
their data in a well documented human-readable format, fit for different operating
systems and econometric software, and usable for many years to come. This is a
high success rate, compared to journals in economics or statistics who intend to
have a similar policy. Authors who do not provide data for no reason whatsoever
receive the remark: “Contrary to the policy of the Journal, the author has failed to
submit the data used in this paper.”

In recent years a growing number of microeconometric datasets and even some
software codes are confidential for reasons of privacy, so the overall coverage of the
data archive will go down in the coming years. On the other hand, the number of
articles providing details on used software and codes has been high and increasing.
This is the main motivation for choosing JAE articles, data and code as the main
sources of information for this chapter.

The existence of a carefully managed and indexed data and code archive is
an essential prerequisite for the scientific ideal of effortless reproducibility of key
results in applied econometrics. Anderson et al. (2008) set the JAE data and code
archive as an example. William Greene is a leading econometric software devel-
oper, and Bruce McCullough and Hrishikesh Vinod are influential reviewers. They
discussed the disappointing compliance rates for leading American economics jour-
nals for a recent American Economic Association meeting. The situation is hardly
better for leading statistics journals, like the Journal of Business and Economic Statis-
tics, where the latest instructions for the FTP (file transfer protocol) data archive
are now eight years old.
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Of course, thanks to automatic indexing by Google and free specific internet
aggregators of economic and econometric research (papers, articles, books, cita-
tions, data and software) like RePEc (http://www.repec.org), it is relatively easy to
find properly documented econometric source code outside official peer-reviewed
archives. Unsurprisingly, given the working environment of most econometricians,
robust, high-quality econometric procedures seldom come free. Here, the situation
in computer science and statistics seems to be much better as the (much larger)
programmer communities are funded in a different way.

Buckheit and Donoho (1995) gave a lively discussion of the difficulties in repro-
ducing (even) one’s own computer intensive results in computer science. Koenker
and Zeileis (2007) elaborate on the difficulties in reproducing exact econometric
results using codes from data archives. This is a nontrivial exercise, even using the
original econometric software and a similar operating system. They advocate the
use of internet-based tools for subversion control (SVN) for programmer commu-
nities and recent R applications to consistently develop reproducible econometric
results. Roger Koenker is the father of quantile regression in econometrics (see
Koenker, 2005). Achim Zeileis is a key R developer.

The good news to derive from Tables 29.2–29.4 is that it is now unlikely that
the current software and code will become completely useless because of the
discontinuation of products.

29.5 Software used in JAE research articles

Table 29.5 details the time-varying impact of the main software in applied econo-
metrics research since 1995. The software packages are ordered by first-mentioned
use to get a clear picture of the growing range of products used. Up to three soft-
ware packages were mentioned per article; for example, S-PLUS, FORTRAN and
Stata for a cross-section study. The basic sources of the counts were the readme
files on the data archive. If these were unclear I checked the corresponding articles
on the JSTOR archive and on Wiley Interscience.

The “Range” indicates the number of different products per year, which reached
a maximum of 14 in 2006. The row labeled “Missing” counts the number of articles
that don’t mention specific software. This number has increased in absolute terms,
but it has decreased compared with the number of (research) “Articles” mentioned
in the bottom row. Twenty-five packages have been used. I have distinguished
seven general econometrics packages (E), four statistical programming languages
(SPL), three econometric time series packages (ETS), two mathematical matrix
programming languages (MPL), two third-generation numerical programming lan-
guages (NPL), Ox as an econometric matrix programming language (EMPL), BACC
as an econometric MCMC (Markov chain Monte Carlo) package (EMC2), and
finally, SPSS and Excel.

GAUSS is number one and consistently mentioned over time. In addition, two
specific GAUSS applications figure once. Stata and MATLAB have only become
attractive for applied econometrics since 2000. SAS and Ox (in later years) appear
regularly. RATS has been the most important econometrics package for time series
applications. FORTRAN has been consistently more important than C. Other
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Table 29.5 Research articles in JAE with specific software package per software package per
year

Software Type Year

95 96 97 98 99 00 01 02 03 04 05 06 07 08 Tot.

TSP E 1 1 . . . 1 . 1 . . . . . . 4
GAUSS MPL 6 1 2 3 2 3 . 2 4 5 5 8 10 7 58
RATS ETS 2 . . . . . 1 . . 1 . 2 . . 6
SAS SPL 2 . 1 3 . 1 1 . . 1 1 1 2 . 13
Fortran NPL 2 2 1 2 5 . 2 . . 1 . 1 . . 16
C NPL 1 . . . . . . 1 . . . . 2
LIMDEP E 1 . 1 . . . . . 1 . . 3
S-PLUS SPL 1 . . . . . . . 2 1 . 4
MATLAB MPL 2 . . 2 . . 2 5 5 1 17
SHAZAM E 1 . . . . . . . . 1
Stata SPL 1 . . . 7 1 4 2 6 21
SPSS SSS 1 . . . 1 . 1 . . 3
Ox EMPL 2 . 2 2 1 2 2 1 . 12
GAUSSX E 1 . . . . . . . 1
Xplore SPL 1 . . . . . . . 1
PcGive E 2 . . . . . . . 2
STAMP ETS 1 . . . 1 . . . 2
Ox G@RCH ETS 1 . . 1 . . 2
Excel SG 1 . . . . 1
Eviews E 2 1 . . 3
R SPL 2 . 1 . 3
BACC EMC2 1 . . 1
GAUSS TSM ETS 1 . . 1
EasyReg E 1 . 1
BIOGEME SPD 1 . 1

Range 5 3 4 5 3 8 7 4 3 9 8 14 9 3 25
Missing 21 28 25 21 21 22 26 22 28 30 32 37 37 8 358
Articles 33 32 30 30 30 31 34 29 34 46 45 61 57 21 513

Notes: software ordered by time of first-mentioned use in JAE article (1995.1–2008.4). Counts of research
articles using the specific software. Range: number of different softwares mentioned per year; Missing:
research articles not mentioning specific software; Articles: number of research articles per year. Type
descriptions as E: econometrics package; ECS: econometrics cross-section package; EMC2: econometrics
Bayesian Markov chain Monte Carlo package; EMPL: econometrics matrix programming language; ETS:
econometrics time series package; NPL: numerical programming language (third generation); SG: statis-
tical graphics package; MPL: matrix programming language; SPL: statistical programming language; SSS:
statistical package for social sciences; SPD: statistical panel data package.
Sources: data archive JAE, http://www.econ.queensu.ca/jae/; JSTOR: http://www.jstor.org; http://www3.
interscience.wiley.com, ISSN code JAE: 08837252.

packages appear less than five times. S-PLUS appears four times and R appears
three times. SHAZAM, Xplore and PcGive do not reappear after 2001. The other
packages cannot be written off as tools for applied econometrics software devel-
opment. They may well have been used in the preparation of the articles, but the
authors did not develop new programs or procedures that they wanted to publish.
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In sum, Table 29.5 shows that the programming languages GAUSS, MATLAB,
Stata and Ox are the most important tools for applied econometrics software devel-
opment. GAUSS, MATLAB and Stata are apparently widely available in economics
and econometrics departments all over the world.

29.6 High-level programming languages in econometrics

Table 29.6 illustrates some characteristics of the dominating languages GAUSS,
MATLAB, Stata and Ox. The table displays very short programs that load a simple
dataset from a human-readable ASCII file, estimate regression coefficients using
ordinary least squares (OLS) and show these on screen. The examples are adapted
from first lessons of course notes available on the internet. The table also includes
code for R (and S-PLUS) as this is an increasingly important alternative, as discussed
below.

The codes for the matrix programming languages GAUSS and MATLAB are very
similar. Beginning is easy, because variables don’t have to be declared. The “default
type” is a matrix (of double-precision floating-point numbers); and statements end
with a semicolon. MATLAB uses square brackets for concatenation, GAUSS has spe-
cial concatenation operators. GAUSS uses square brackets for indexing, MATLAB
indexes with parentheses. Indexing in GAUSS and MATLAB starts at one. Fortu-
nately, arguments in clear function calls are in parentheses. GAUSS provides the
least squares solution for the coefficients by the “divide symbol” /, which looks
a bit weird and mathematically incorrect, but is easy to use; MATLAB uses the
more sensible \ operator instead. Neither GAUSS nor MATLAB use a formal print
function to show the regression coefficients.

The Stata code is totally different and is reminiscent of many command-line-
driven packages in the early 1980s. Stata is, as Baum (2002) put it, “on the middle
ground” between econometric packages and matrix languages. The default regres-
sion method requires variable names (of columns of dataset, rather than a matrix)
to read the data. OLS is the default estimator of the easy-to-read-and-remember
regress command, which also adds a constant term and computes standard errors
and p-values by default. The matrix command extracts the regression coefficients
in vector format. The mathematical structure is hidden from the programmer. The
standard output of regress (not shown in the table) is in the ANOVA format, rather
than the standard regression output of econometrics programs. Stata recently intro-
duced the matrix language Mata. So far, Mata has not explicitly been used for JAE
publications.

Like Stata, R starts with a dataset rather than a matrix. In the R example we
assume that the variable names are on the first line of the data file, so that
“header=T(rue)”. OLS is performed using a challenging call of lm() (linear
model). This function creates a model object, and the corresponding function
coefficients extracts the coefficient estimates from the model. The model is
specified with the names of the variables and the dataset. The operator ˜ sepa-
rates regressand and regressor, the operator + separates the regressors. The “dollar”
operator makes sure we use the coefficients from the linear model object.
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Table 29.6 OLS in programming languages for applied econometrics

Software Type How to Statements/commands

GAUSS MPL begin, declarations not necessary
read data load myX[4,3]=yX.asc;
select y y=myX[.,1] ;
add constant to X X=ones(rows(myX),1)∼myX[.,2:3];
get b b=y/X;
show b print b;

MATLAB MPL begin declarations not necessary
read data myX=load(’-ascii’,’yX.asc’);
select y y=myX(:,1);
add constant to X X=[ones(size(myX,1), myX) myX(:,2:3)];
get b b=X\y;
show b b

Stata SPL begin, declarations not necessary
read data infile y x1 x2 using yX.mat
add constant to X added by default
get b regress y x1 x2
show b matrix list e(b)

R and SPL begin, declarations not necessary
S-PLUS read data myX<-read.table("yX.dat", header=T)

add constant to X added by default
get b b=lm(y1∼x1+x2,data=myX)$coefficients
show b b

extra line in yX.dat y1 x1 x2 \\ variable names

Ox EMPL begin main program main()
{

declarations decl myX, mX, vy, vb, vyhat;
read data myX=loadmat("yX.mat");
select y vy=myX[][0];
add constant to X mX=1 So just a one: mX=1∼myX[]1:2];

is the total command;
get b olsc(vy, mX, &vb);
fit y: ŷ = Xb vyhat=mX*vb;
show b println("b: ",vb);
end }

extra line in yX.mat 4 3 \\ dimensions

Notes: MPL: matrix programming language; SPL: statistical programming language; EMPL: econometric
matrix programming language. Computation 3×1 regression coefficient vector b in linear model y = Xβ+u,
where X is a 4 × 3 matrix starting with a column of ones. y and X are read from file. myX: 4 × 3 matrix
with numerical data read from human-readable data file yX.asc. For R we read yX.dat, and for Ox we read
yX.mat, starting with an extra line as indicated.
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Ox has a syntax similar to C++ (and Java), so all statements are executed in a
main() function, square bracket pairs index a matrix, and indexing starts at zero.
Doornik (2002) discusses differences and similarities of C++ and Ox. Variables have
to be declared, but they automatically get a type (double, matrix) when they are
assigned. Ox uses the same matrix concatenation operator as GAUSS. A dedicated
least squares function olsc() is provided, but the (slower and less robust) explicit
matrix formula for OLS could have been used instead. The ampersand (reference)
is used to deliver the coefficients directly at the memory address of the vector
variable b. This reduces memory use. I added a statement for computing fitted
values ŷ to clarify the matrix programming nature of Ox. I use slightly adapted
Hungarian notation, where vector names start with v and matrix names with m,
but this is not required. The Object Oriented (OO) nature of Ox does not appear
in this example, but a Modelbase class, derived from a Database class, is standard.
Both classes are extendible. Unlike R and S-Plus, Ox does not force the OO features
upon novice users.

Table 29.6 shows that Stata code is probably the most easy to use for students and
researchers with limited programming experience. GAUSS and MATLAB require
knowledge of matrix algebra and numerical programming, but this should not be
a problem for econometricians. R is harder to get into as it requires a profound
knowledge of statistical terminology and object-oriented programming. Ox is easy
to learn if a basic programming language and matrix algebra are known.

Readability and complexity are not the only selection criteria for high-level pro-
gramming languages. Large models require an extendible modeling language (like
Stata and R), and new models require an efficient programming language in which
to code new algorithms to estimate and evaluate new model types (like GAUSS and
Ox). The programming language should also cater for effective data management,
robust optimization methods, state-of-the-art stochastic simulation, and decent,
easily adaptable, graphical and textual output facilities.

For maintenance and reproducibility one requires explicit documentation facil-
ities that can transform comments in the code into context-sensitive, clearly
structured and indexed help functions for existing and new procedures. One should
be able to integrate existing numerical procedures from low-level languages. For
business use, the econometric programming language should be applicable as an
engine within other software, so that econometric procedures can be called by, and
feed results to, programs like Excel, Access, or commercial front-office and back-
office applications written in lower-level languages like C++ or Perl. In computing
intensive simulation-based methods, one wants to automatically optimize code
for parallel computing or for specific hardwares at a low level to increase speed.
Multiprocessor computers are now standard. Efficient computing will probably
return as a very important issue as electricity prices go through the roof.

The econometric language should have an interface to the Structured Query
Language (SQL), a standard language that provides an interface to many rela-
tional database systems, and to specific economic, financial, and energy data
management software, like FAME (http://www.fame.com), or HAVER (http://www.
haver.com). For example, none of the above-mentioned languages can be used to
manipulate and select data from the vast datasets on the WRDS (Wharton Research
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Data Service), which is now the leading academic archive for econometric time
series data. Only SAS, C and FORTRAN can be used on the WRDS server.

The next section discusses other important aspects of a large array of packages
and adds a historical perspective, concentrating on the period since 1980. This dis-
cussion should help the reader in interpreting the preceding tables on the historical
impact of the different products.

29.7 The historical development of econometric software

Over the last 50 years, econometric software development has developed from
writing complicated sets of computer specific instructions into coding in structured
purpose built programming languages and into interactive GUI-based model devel-
opment. Increased backward compatibility, cross-platform and cross-operating
system applicability of new software, and low cost of maintaining existing soft-
ware, has increased the lifetime of packages and procedures. Less than 10% of the
77 packages reviewed in the JAE have been discontinued.

Econometric software development started around 55 years ago. Renfro (2004b)
gives a detailed account of the history of econometric software development in
the English-speaking world. Early econometric software development was labor-
intensive and served only a few institutions that could manage and pay the
substantial capital input for the required programmable computers. Today, this
situation has completely changed. Modern econometric software is written by a
few individuals and thousands of users perform econometric estimations, fore-
casts and tests on thousands of machines. The joint cost of standard econometric
software and hardware is low and dropping. Thanks to a concentration in hard-
ware and software development, a few developers now serve an entire community.
However, expert support and tailored innovative development of user-friendly
platform-independent applications is still expensive.

Three structural changes affected econometric software development in a major
way in the period 1985–2008. The first was the breakthrough in hardware devel-
opment: the onset and subsequent quick improvement in computer power and
graphical displays of personal computers (PC or Micro computer) during the 1980s
opened opportunities for new developers. Many textbook authors wrote their own
packages. Cheap standard storing devices for the PC (floppy disks) made distribu-
tion (and copying) of econometric software easy. This change is reflected in the
large number of different software packages reviewed in 1990, as detailed in the
summary statistics of Table 29.4.

The second change was the introduction and standardization of effective GUIs
for data analysis, programming and operating systems. Graphing became easy, and
it was no longer necessary to memorize a list of basic commands and options.

The third change was the development and widespread use of the internet since
the 1990s, more specifically the WWW standard and the later development of
powerful search engines like Google. This led to the development of “free” products
in mathematics, statistics and computer science. These products have now become
powerful, stable and easier to use so that they are effectively applied in econometric
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software development and in innovative research in econometrics, leading to JAE
publications.

The interfaces of many computer programs for data input, programming, text
processing, formula and graph editing became more and more similar, due to
the worldwide concentration in operating systems and standardization of other
scientific applications like LaTeX. Only three operating systems remain impor-
tant: MS-Windows (Microsoft), Mac OS X (Apple) and Linux (many distributions;
Ubuntu/Linux is the most popular version of late). Products developed on one
platform can be ported or recompiled on other platforms, although this is far from
trivial for most econometricians. Racine (2000) discusses some aspects of Cygwin
ports of basic Unix tools to Windows.

Hendry and Doornik (2000) discuss and illustrate the necessary changes of
the time series econometric program PcGive during the 1980s and 1990s: from
command interaction to menu interaction and IDE (Integrated Development Envi-
ronment); from text menus to mouse-pointer-driven drop-down menus and dialogs
of a WIMP (Windows, Icons, Menus, Pointing) GUI; from black-and-white text
graphs to colored bitmap, to high-quality, adjustable, publication-ready figures;
from a static manual to a context-sensitive help system, from static presentation
to live presentations of simulation exercises; from basically one program code in
FORTRAN, and later in C++, to a modular object-oriented architecture allowing
user-built extensions with an up-to-date user interface with the same look and
feel as the standard applications. PcGive was extended with an independent Win-
dows interface, GiveWin. Jurgen Doornik (1998) also developed the object-oriented
econometric matrix programming language Ox, which allowed independent devel-
opment of new packages and was later integrated within OxMetrics (Doornik,
2007), together with PcGive and the time series programs STAMP and G@RCH. The
new interface for OxMetrics was built with the free cross-platform GUI wxWidgets.
Other software packages have provided similar updates in order to keep old users
and get new customers. For example, Stata introduced object-oriented features and
GUI programming in Stata 8 and the matrix language Mata in Stata 9.

In the remaining sub-sections I make a distinction between five admittedly
overlapping categories of software: macroeconometric software, (pure) time series
econometric software, microeconometric software, statistical software for econo-
metrics and mathematical software for econometrics. I treat each in turn.

29.7.1 Macroeconometric software

Back in the 1960s, Robert Hall laid the foundations of TSP (Time Series Processor)
software. At the end of the 1970s, TSP already had many of the characteristics of a
modern econometric software package: it read and wrote a variety of data formats,
it included a matrix language, it made use of symbolic differentiation, it contained
good nonlinear solvers, a powerful optimizer and simulation procedures. In this
sense TSP can be considered as the most original econometric software on the
market.

In the PC era of the 1980s, TSP was split into two separate programs, Micro-TSP,
headed by David Lilien, and PC-TSP, headed by Bronwyn Hall. Micro-TSP later
became the Windows program Eviews, Econometric Views, whereas PC-TSP is now
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simply called TSP (see Hall and Cummins, 2005; Eviews, 2004). TSP retained the
numerical and algebraic programming features. Eviews later introduced its own
object-oriented programming language. One of the main attractions of Micro-TSP
and Eviews was the timely interface for the first univariate econometric time series
models: ARCH (autoregressive conditional heteroskedasticity), and GARCH (gener-
alized autoregressive conditional heteroskedasticity). This user-friendly implemen-
tation of GARCH models was developed in close cooperation with Robert Engle,
the father of ARCH. A special issue of the JAE (Franses and McAleer, 2002) was
published to celebrate Engle’s seminal ARCH article (Engle, 1982).

Ken White started the package SHAZAM at Wisconsin and is now at UBC in Van-
couver, where SHAZAM is updated by a small team. Whistler et al. (2004) describe
the latest version. Nobel Laureate Lawrence Klein founded the Wharton Economet-
ric Forecasting Association (WEFA) at the University of Pennsylvania: WEFA is now
part of Global Insight and markets the econometric software AREMOS, which was
strongly influenced by Klein’s modeling methodology. AREMOS is not frequently
updated, but is still being used.

In the UK, at the Department of Applied Economics of the University of Cam-
bridge, Hashem and Bahram Pesaran used their expertise in econometric estimation
and testing for the development of Data-FIT, later called Microfit, for the PC. At
the Department of Statistics at the London School of Economics, econometric
software development was inspired by the hands-on tradition of Denis Sargan.
David Hendry, a student and later a colleague of Sargan, developed the programs
AUTOREG and GIVE. In Oxford, Hendry developed PcGive (generalized instru-
mental variable estimator) and PCFIML (full information maximum likelihood)
on the IBM PC. Jurgen Doornik modernized and extended PcGive, as explained in
the first part of this section.

More recently, Michel Juillard developed a stand-alone version of Dynare, pre-
viously only available for GAUSS and MATLAB. Dynare implements modern,
small-scale, but very computer-intensive DSGE (dynamic stochastic general equi-
librium) modeling. These highly nonlinear structural models are difficult to solve
and estimate and require Bayesian econometric techniques to do inference. DSGE
models are introduced and used at central banks throughout the world.

On the educational side of the spectrum, Gretl, by Allin Cottrell and Ricardo
Lucchetti, is an international GNU (GNU’s Not Unix: a free, open source Unix-like
operating system) econometrics program, with menus in French, Italian, Span-
ish, Polish and German as well as English. It is based on code for a textbook by
Ramu Ramanathan. As in other packages mentioned in this section, the traditional
macroeconometric procedures are being supplemented with microeconometric
functions, DPD and procedures in particular.

29.7.2 Time series econometric software

One can no longer imagine applied econometrics without implementations of
ARMA (autoregressive moving average), VAR (vector autoregression) and GARCH
(generalized autoregressive conditional heteroskedasticity) time series models. The
Box–Jenkins methodology is a standard procedure in many fields of science. Under
the direction of George Box, the first special software for ARMA analysis was
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written by David Pack, and David Reilly turned this into AutoBox. He also coded
the Multivariate Time Series (VARMA) program MTS. AutoBox and MTS are now
marketed by Reilly’s company AFS.

Chris Sims developed SPECTRE at the end of the 1970s. This was one of the
first econometric programs offering spectral analysis. Subsequently, Sims’ 1980
VAR modeling methodology was made available in RATS (Regression Analysis of
Time Series) by Thomas Doan (see Doan, 2004). CATS in RATS was (shortly after
PcGive) one of the first widely available software packages for Søren Johansen’s
likelihood-based analysis of the concept of cointegration, eventually published as
Johansen (1991).

The Census Bureau in Washington, DC, produced the first reliable software for
seasonaladjustmentofeconomic timeseries, CensusX-11, implementingamethod-
ology (updated to X-12 ARIMA) that is now an international standard and available
in most time series econometrics softwares (see Ladiray and Quenneville, 2001).

At the London School of Economics, Andrew Harvey initiated the develop-
ment of STAMP, for structural time series modeling, implementing an econometric
methodology which serves as an alternative both to Box–Jenkins forecasting mod-
els and to Census X-11 seasonal adjustment. Siem Jan Koopman now develops the
(multivariate) STAMP software at the VU University in Amsterdam (see Koopman
et al., 2007).

At the Bank of Spain, Victor Gómez and Augusín Maravall developed the sec-
ond influential alternative software for seasonal adjustment: TRAMO/SEATS. Their
procedures are also available in many time series programs.

Herman Bierens is the independent author of EasyReg International, a free
software package (developed in visual Basic), primarily developed for economet-
rics education but equipped with many advanced procedures in Bierens’ area of
research (nonparametric methods, first for time series and later for cross-sections),
and therefore also featuring in a recent JAE research article.

29.7.3 Microeconometric software

This sub-section is short as there is only one surviving dedicated econometric
software for nonstandard econometric models for cross-section data, LIMDEP.
Microeconometricians have mainly been using lower-level programming languages
and statistical packages, discussed below.

William Greene based the first versions of LIMDEP, for LIMited DEPendent vari-
able econometrics on code for multinomial logit models by Marc Nerlove and
James Press at the University of Wisconsin. Greene (2007) describes the current
features of the program. Previous versions of Greene’s influential and popular text-
book, now in its sixth edition (Greene, 2008), contained a special student edition,
EA/LIMDEP, of the software. Over the last 20 years, most standard econometric
procedures (time series and panel data) have been added. Greene also authored the
packages ET and NLOGIT. Greene is now at New York University.

29.7.4 Statistical software for econometrics

In the last 25 years, several statistical programs have become more geared towards
econometrics and subsequently widely used by econometricians. The general
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statistics package SAS (SAS, 2004) has a long tradition (starting in the 1960s)
of implementing macroeconometric and microeconometric procedures for large
datasets. In academic research and education in econometrics, SAS/ETS has lost
ground from its strong position at the end of the 1980s, though its econometrics
features are still being developed, recently in state space procedures, in generalized
maximum entropy estimation and in automatic model selection for forecasting.
Of course, SAS is widely used in official institutions and in business applications,
but few modern econometrics textbooks continue to use SAS examples.

SPSS, dating back to the 1970s, is not particularly suited for econometrics, but it
is used for handling large and complicated datasets. Interesting third party pack-
ages for SPSS exist, like Jeroen Vermunt’s LATENT GOLD for Latent Class models
and event history modeling in marketing and social sciences. It is also suitable
for modern microeconometrics problems (as other packages which were primarily
developed for the social sciences).

The beginning of the PC era saw the birth of the “Data Analysis and Statisti-
cal Software” Stata. Stata, by William Gould, was not an instant success among
econometricians, whereas it was for statistics in medicine. At first, it did not have
extensive programming facilities and specialized in applications for survival data
(see Goldstein et al., 1989). It was not suited for dynamic econometric model-
ing. Peterson (1991) correctly predicted: “this shortcoming could be mitigated
substantially in future versions.” Later Stata introduced more programming tools
and eventually a matrix language and it was completed with more and more
econometric models. Stata’s data management features made it well suited for the
econometric analysis of complicated panel data like event histories. Time series pro-
cedures have been added. Stata is now a popular package in applied economics and
econometrics and a large number of introductory econometric textbooks present
examples using Stata. Kit Baum maintains a large Statistical Software Components
(SSC) archive within RePEc with over 1,000 free open-source Stata procedures and
programs for statistics, economics and econometrics. Baum (2006) also wrote an
applied econometric textbook for Stata.

S-PLUS and corresponding packages cater for financial econometrics and opera-
tions research: financial time series analysis, modeling credit risks and optimizing
asset allocation. S-PLUS, originally a product of StatSci, founded by R. Douglas Mar-
tin in Seattle, Washington, is a commercial version of the object oriented statistical
programming language S, which Martin learned at Bell Laboratories in Murray Hill,
New Jersey, now Lucent Technologies. The software was primarily developed for
statistical data analysis of many types (see Venables and Ripley, 2002), with excel-
lent graphs. Martin added robust estimation procedures, inspired by John Tukey,
inventor of the term “bit,” FFT (fast Fourier transform) and EDA (exploratory data
analysis). The current owner of S-PLUS, Insightful, focuses on data mining and
risk management. Zivot and Wang (2005), also in Seattle, Washington, devel-
oped the S-PLUS FinMetrics software for financial econometric time series analysis.
The package also includes financial engineering procedures developed by Carmona
(2004) and efficient Kalman filter state-space procedures by Siem Jan Koopman (see
Koopman et al., 1999). The popular financial time series textbook by Tsay (2005)
makes intensive use of S-PLUS FinMetrics.
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The popularity of the internet motivated the start of the statistical software
Xplore in the later 1990s. There was great optimism about online cooperative
development and use of software for advanced statistical computations. Härdle
and Horowitz (2000) envisaged that the establishment of well-documented method
archives, central common platform independent compilers and new web user inter-
faces would give easy access to the most advanced nonparametric methods. One of
their suggested method and data technology centers was created and a (Java-based)
web interface, Xplore Quantlet Client (XQC), was realized. Online electronic books
with econometric and financial time series applications were provided for educa-
tional purposes, but online web-based econometric computing has not caught on
yet. Xplore is now freely downloadable from http://www.xplore-stat.de.

In recent years, Michel Bierlaire has developed BIOGEME, an open source pack-
age (in C++ and Python) for modern random coefficient (or mixed) discrete
choice modeling; he cooperates with Moshe Ben-Akiva and Nobel Laureate Daniel
McFadden. Train (2003) treats this important topic in a textbook.

Young and old econometricians are switching from S-PLUS and other packages to
the freely-available statistical system R, an open source statistical system that was
initiated by statisticians Ross Ihaka and Robert Gentleman from Auckland, New
Zealand. R has the S syntax (and is also known as GNU S). Graphs in R are pro-
vided via Gnuplot (which is also used in SHAZAM, discussed above, and TSMod,
discussed below). R is part of the free GNU operating system (OS) and is part of all
standard installations of this OS and therefore of many Linux installations. Offi-
cially, Gnuplot does not belong to GNU. Over 1,200 packages are available for
R at the CRAN (Comprehensive R Archive Network) at http://www.r-project.org.
Cribari-Neto and Zarkos (1999) reviewed an early version of R from an econometric
research point of view, and Racine and Hyndman (2002) took a teaching perspec-
tive. Shumway and Stoffer (2006) provided up-to-date R code for their time series
textbook. Rossi et al. (2005) developed an R package (bayesm) for their market-
ing statistics textbook. Li and Racine (2007) wrote the np package for a text on
nonparametric econometrics. Modern statistical methods are often made available
in R. For example, Hastie et al. (2001) discuss their well-known automatic model
selection methods for regression and classification implemented in R.

Most R developers seem to work under the Linux OS and choose short, Unix-style
package names. Many R packages are not difficult to use under Windows and Mac
OS. Developing R packages under MS Windows has not been too easy, though as
Rossi (2006) reports in his 15-page tutorial on this topic: “There is a sense in which
the Windows R environment is a house of cards that must be carefully assembled
or it won’t work!” A specialized archive of R for econometrics does not exist. A
comprehensive package for financial engineering, http://www.rmetrics.org, which
encompasses many econometric time series functions, has been built by Diethelm
Würtz at the ETH in Zürich.

29.7.5 Mathematical software for econometrics

The beginning of the PC era also witnessed the start of the matrix programming
language GAUSS developed by Lee Edlefsen and Sam Jones in Washington State.
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GAUSS did not offer a new econometric methodology, but it did have a very appeal-
ing combination of price and features for econometricians and economists (see
GAUSS, 2005). It soon became popular and has remained popular ever since. It has
a simple language with short matrix expressions (as illustrated in Table 29.6), decent
graphs, fast numerical algorithms, tools to handle large datasets with limited mem-
ory, and a wide range of free and powerful packages implementing econometric
applications for cross-section models and time series. Ron Schoenberg (1997),
affiliated with Washington University, developed early procedures for constrained
maximum likelihood for GAUSS, which found widespread application in the esti-
mation of GARCH models. Schoenberg also wrote FANPAC, a financial time series
analysis package with early applications of multivariate GARCH models.

The matrix programming language and signal processing tools of MATLAB
(MATLAB, 2004), of the Mathworks, founded by Clive Moler, are used by many
econometricians to implement model solvers and estimation methods. Econo-
metricians use the free and comprehensive archive of econometric tools, at
http://spatial-econometrics.com, administered by James P. LeSage at the university
of Toledo, Ohio. Although the archive is set up for spatial econometrics proce-
dures (LeSage and Pace, 2004), it contains many “estimation functions that provide
printed and graphical output similar to that found in RATS, SAS or TSP.”

Table 29.3 lists seven other mathematical programming languages which have
not been used for JAE research articles so far, but code for these languages is pro-
vided by prominent econometricians. For example, Scilab code can be obtained for
Dynare. Christopher Sims provides recent Octave code for solving rational expec-
tations models on his own (Ubuntu/Linux) web server: http://sims.princeton.edu.
Octave is a free alternative for MATLAB, but Sims points out that procedures with
the same names can have different effects in the two languages.

Computer algebra packages like Mathematica and Maple are now also used for
fast numerical computations, and are therefore more suited for applied econo-
metrics, but they haven’t had a big impact yet. The recently developed package
MathStatica for Mathematica, by Colin Rose and Murray Smith, can save applied
econometricians work in the analytical derivations of complicated likelihoods.

29.8 Simultaneous use of different software

As the tables and the discussion in the previous sections illustrate, many economet-
ric techniques can now be implemented using existing mathematical and statistical
software packages. No single software can serve all purposes, which explains why
more and more packages coexist and why many researchers use several products
next to each other.

Thanks to the search engine Google and free specific internet aggregators of
economic and econometric research (papers, articles, books, citations, data and
software) like RePEc, it is now easy to find properly documented econometric source
code written for one of the main econometric softwares on the web. However, it
is still difficult to assess the quality of this code if one does have access to the
software for which it was originally developed. As most of these codes for academic
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research papers are available free of charge, authors cannot be expected to set up
a helpdesk, and one has to resort to mailing lists and internet forums, which also
may be unreliable. Unsurprisingly, given the background of most econometricians,
robust, high-quality econometric procedures seldom come free.

The modular structure of econometric and statistical software makes it possible
to use codes outside their original environment. This helps the reproducibility
required in academic econometrics. For example, Laurent and Urbain (2003)
provide an interface called M@ximize for Ox, based on OxGauss, so that the
wide range of econometric GAUSS programs available on the internet can be
run without a licence for GAUSS or constrained maximum likelihood for GAUSS.
Markus Krätzig developed a GUI for econometric modeling, JStatCom (see Kräet-
zig, 2006), which he built on top of GAUSS code and the GRTE (Gauss run time
engine) to create JMulti as a stand-alone program. JStatCom can also be used in
combination with MATLAB and Ox. John Breslaw of Econotron software intro-
duced Symbolic Tools, which extends GAUSS and the GRTE with the infinite
precision computer algebra of Maple. Cameron Rookley wrote the free GTOML
(GAUSStoMATLAB) scripts which translate GAUSS code into MATLAB. This requires
the free powerful OO programming language Perl (see http://www.perl.com, and
http://www.cameronrookley.com).

Diethelm Würtz, author of Rmetrics, provided an interface in R for the G@RCH
package that Laurent and Peters (2005) developed for Ox, but this still requires the
availability of Ox. Many statistical packages have been ported to R; for example,
BRugs, which embeds OpenBUGS in R. Robert Henson (2004) introduced a MAT-
LAB R-link with functions for calling R from within MATLAB; Bengtsson (2005)
increased the communication possibilities between MATLAB and R.

Integrating codes from different applications can save time, but has its dangers.
Evaluation and improvement of existing implementations for nontrivial proce-
dures should be a constant concern (see, for example, the discussion of numerical
precision of econometric packages by McCullough and Vinod, 1999, which gener-
ated a series of changes in testing procedures). Note also the evaluation of random
number generators (RNGs) as in McCullough (2006) and Doornik (2006). Relia-
bility of RNGs is now extremely important as simulation-based inference starts
to dominate both macroeconometrics and microeconometrics. Even if the RNG
is right, and expert econometric knowledge is available, there is plenty of room
for undetected mistakes. The home page of the BUGS project (Bayesian infer-
ence using Gibbs sampling) phrases this as follows: “Independent corroboration of
MCMC results is always valuable!”; “MCMC is inherently less robust than analytic
statistical methods. There is no in-built protection against misuse.” Even before
econometric modeling starts, one should apply Hendry’s (1980) “three golden rules
of econometrics: test, test and test” to the freshly developed or imported software.

29.9 New econometric modeling features and conclusions

Pagan and Wickens (1989) surveyed applied econometric methods 20 years ago.
Four estimation methods were discussed: maximum likelihood, GMM (generalized
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method of moments), M-estimators and nonparametric estimation, and different
types of inference: frequentist and Bayesian, large sample asymptotics and the
bootstrap for tests in small samples. They concluded: “when it comes to an area
such as econometrics. Gone are the days when a single individual could have
a detailed knowledge of all divisions of the subject. Just twenty years ago this
might have been possible”; “the years since then have witnessed a fragmentation
of econometrics. The biggest division has been between micro and macro econo-
metrics.” As indicated in section 29.2, many new data types, estimators, inference
methods and diagnostic procedures have been analyzed by applied econometri-
cians since 1989. The fragmentation now also applies to software development,
with dozens of procedures published on the internet for the same purpose.

Although applied nonparametric econometrics has been on the rise, model-based
econometrics still dominates the field of applied econometrics. A key aspect that
distinguishes model-based econometric software is the standard availability of fea-
tures for the interactive modeling cycle: models not only are easily specified and
estimated, but diagnostic tests, easy respecification, and re-estimation facilities are
provided in order to make the interpretation of parameter estimates and forecasts
as credible as possible. Today, this requires a graphical (WIMP) interface that is
sufficiently intuitive and easy to learn and remember for new users.

This recursive modeling is especially relevant for the econometric analysis of time
series, where new observations become available in a natural order, with associated
testing possibilities and possible adaptations of existing models. In the context
of dynamic linear regression models, PcGive was the first program to cater for
the influential general-to-specific methodology of econometric model selection.
A “Progress” menu in PcGive simplifies the interactive model selection process.
Although this feature per se has not been copied in other packages, a wide range of
standard specification tests and diagnostics for estimated models has now become
a crucial ingredient of every econometric software.

The model selection process can be automated. Successful automated model
selection has long been available for pure Box–Jenkins time series modeling for fore-
casting in the AutoBox software by David Reilly and in the Census X-11-ARIMA
program for seasonal adjustment of the US Census. Automated linear dynamic
model selection for economic analysis, based on a wide range of robust diagnos-
tic tests and multiple-path general-to-specific modeling, is available in the PcGive
procedure Autometrics (Doornik, 2008).

However, automated model selection methods, even if they encompass general-
ized linear models of “Statistical Learning,” as in Hastie et al. (2003), or fractional
instead of zero-one model weights of Bayesian model averaging (BMA), as in Raftery
et al. (1997), still require a “most general” adequately specified model, for which
extensive tests should be available.

Stochastic simulation and bootstrap analysis of econometric models should be
available as a matter of course, both for the interpretation of nonlinear models and
for associated statistical inference. James Davidson’s (nonlinear) time series model-
ing package TSMod, reviewed by Fuertes et al. (2005), has this feature for all models
in the package: “Bootstrap p-values for diagnostic and significance tests, using the
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simulation module to generate bootstrap draws.” If the inference is simulation-
based, one also needs diagnostics on the efficacy and reliability of the associated
simulation methods.

User interfaces will have to be updated. Following Google and Gretl, users
will expect econometric software to deal with labels and numbers in their native
language and application menus to use their own character sets. The graphical
interface will also need reconstruction as customers adapt to modern graphical
interfaces. New interfaces will help to make better use of the many options that
programs and procedures have, both on the user’s own computer and on inter-
net archives. Many procedures are ineffective because they are hard to find in the
current menu structures. Based on a user history, the menus will “automatically”
select the best options for the user.

The market for specific econometric software is too small for one program to
keep up with all recent scientific developments in econometrics, mathematics and
statistics, to keep advanced knowledgeable customers interested in buying updates,
and to implement lessons from human–computer interaction (HCI) research to
keep attracting new customers.

The presence of trends implies some predictability of future developments. The
pattern that has emerged in the last 25 years does not make it likely that new, fully-
fledged, dedicated econometric software packages with high academic standards
are going to be developed. Academic returns on high-quality, robust, versatile,
and well-documented and supported econometric software development are low.
Changing citation practices for software use, as exemplified by the JAE data and
code archive, may increase these returns in the years ahead.

In this chapter I have discussed over 20 years of changing software use and soft-
ware development for innovative applied econometrics. An increasing range of
software has became relevant in this period. I also classified this large collection
of programs and assessed the continuity of their use. Finally, I pointed out new
direction for econometric modeling software development.
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Note
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