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Preface

Linear programming has been one of the most important postwar developments in
economic theory. Its growth has been particularly rapid, thanks to the joint efforts of
mathematicians, business and defense administrators, statisticians, and economists. Yet
the economist who wants to learn how linear programming is related to traditional
economic theory can nowhere find a comprehensive treatment of its many facets. The
present book hopes to give the economist, who knows existing economic theory but
who does not pretend to be an accomplished mathematician, a broad introduction to the
theory of linear programming, or, as it is sometimes called, activity analysis. It hopes
also to be useful to the practitioner of managerial economics, and possibly to provide
the growing body of mathematicians interested in programming problems with insights
into the vast body of modern economic theory.

When asked by The RAND Corporation to undertake the book, we agreed to avoid
higher mathematics. We planned to stress the economic aspects of the problem, paying
attention to practical problems of computation and giving important concrete
applications but laying no stress on them. So vast has the theory become that we have
had to be selective, reluctantly deciding to omit many interesting topics and applications.
Thus, we have not dealt with the important role of linear-programming concepts in
statistical decision theory.

On the other hand, we have gone into the extensive interrelations between the
celebrated von Neumann theory of games and linear programming, particularly since
every economist will want to know the interrelations between game theory and
traditional economic theories of duopoly and bilateral monopoly. And modern
economists will be interested in the interrelations between linear programming and
modern welfare economics and the insights that linear programming gives into the
determinateness of Walrasian equilibrium—as perfected by the recent works of K.
Arrow, G. Debreu, L. W. McKenzie, and others.

This book can also serve as an expository introduction to the student interested in the
Leontief theory of input-output, which has played so important a role in the last twenty
years. Similarly, we have treated extensively problems of dynamic linear programming,
not only because of their intrinsic interest but also because of their vital connections
with the economist’s theory of capital—that most difficult field of modern economic
theory. Had we more space and time at our disposal we might have added some material
summarizing the related “dynamic programming” methods of Richard Bellman, also
developed at RAND. This new theory is of considerable interest to economists but
mathematically more difficult than what we have attempted here. Fortunately, Bellman



has just published a full exposition of his own.

Our task took more time than we had expected, primarily because we found
ourselves in somewhat the same situation as the friend of Dr. Samuel Johnson who
explained that he had hoped to become a philosopher but “cheerfulness kept breaking
in.” Our task of quickly providing an explanation has been frustrated because originality
kept breaking in—as gaps were discovered in the existing theory or as whole new fields
for analysis suggested themselves. The RAND Corporation has been extraordinarily
patient in putting up with our explorations and extraordinarily generous in providing
interested scholars with our research memoranda for a period of more years than we
dare recall. However, in a field characterized by such intimate cooperation among
numerous individuals from diverse disciplines, there is no need to stake out claims for
new results. And needless to say, the book is the joint work of the three authors, with
each taking responsibility for all.

 

Our acknowledgments can be brief, since footnotes within the text and a selective
annotated bibliography at the end will relate our work to the literature. Yet we cannot
fail to mention the names of George B. Dantzig, A. W. Tucker, H. W. Kuhn, David
Gale, Tjalling C. Koopmans, A. Charnes, A. Wald, and John von Neumann, who laid
the foundations of the theory of linear programming.

And within The RAND Corporation itself we must give our thanks to many people.
First, to Professor Armen Alchian of UCLA whose many suggestions in theoretical
interpretation have improved the work. Second, to Charles J. Hitch, the head of the
RAND Economics Division, who had the original idea for such a work. Third, to
Joseph A. Kershaw. Fourth, to Melvin Dresher, Reuben Kessel, and Russell Nichols,
who read and improved parts of the manuscript. Finally, to a number of others at
RAND for countless favors over a long period of time.

We alone take responsibility for all flaws, but we dare to hope that this group
operation may be a minor exception to the view of those who, forgetting that the King
James Bible was the work of a committee, categorically deny value to any work not
produced by a single, isolated individual.

Robert Dorfman 
Paul A. Samuelson 

Robert M. Solow
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1

Introduction

1-1. HISTORICAL SKETCH
At any time, an economy has at its disposal given quantities of various factors of

production and a number of tasks to which those factors can be devoted. These factors
of production can be allocated to the different tasks, generally, in a large number of
different ways, and the results will vary. There is no more frequent problem in
economic analysis than the inquiry into the characteristics of the “best” allocation in
situations of this kind.

We have just outlined a rudimentary problem in welfare economics or in the theory
of production. It is also a problem in linear economics, the word “linear” being
introduced to call attention to the fact that the basic restrictions in the problem take the
form of the simplest of all mathematical functions. In this case the restrictions state that
the total amount of any factor devoted to all tasks must not exceed the total amount
available; mathematically each restriction is a simple sum.

This illustration suggests that many familiar problems in economics fall within the
scope of linear economics. Like Molière’s M. Jourdain and his prose, economists have
been doing linear economics for more than forty years without being conscious of it.
Why, then, a book on the subject at this date? Because until recently economists have
passed over the linear aspects of their problems as obvious, trivial, and uninteresting.
But in the last decade the stone which the builders rejected has become the headstone of
the corner. New methods of analysis have been developed that depend heavily on the
linear characteristics of economic problems and, indeed, accentuate them. The most
flourishing of these methods are linear programming, input-output analysis, and game
theory.

These three branches of linear economics originated separately and only gradually
grew together. The first to be developed was game theory, the central theorem of which
was announced by John von Neumann1 in 1928. The main impact of game theory on
economics was delayed, however, until the publication of Theory of Games and
Economic Behavior2 in 1944. Briefly stated, the theory of games rests on the notion that
there is a close analogy between parlor games of skill, on the one hand, and conflict
situations in economic, political, and military life, on the other. In any of these
situations there are a number of participants with incompatible objectives, and the extent
to which each participant attains his objective depends upon what all the participants do.



The problem faced by each participant is to lay his plans so as to take account of the
actions of his opponents, each of whom, of course, is laying his own plans so as to take
account of the first participant’s actions. Thus each participant must surmise what each
of his opponents will expect him to do and how these opponents will react to these
expectations.

It was von Neumann’s remarkable achievement to demonstrate that something
definite can be said about such a welter of cross-purposes and psychological
interactions. He showed that under certain assumptions, which we shall have to
examine, each participant can act so as to be guaranteed at least a certain minimum gain
(or maximum loss). When each participant acts so as to secure his minimum guaranteed
return, then he prevents his opponents from attaining any more than their minimum
guar-anteeable gains. Thus the minimum gains become the actual gains, and the actions
and returns for all participants are determinate.

The implications of this theory for economics are evident. It holds out the hope of
banishing oligopolistic indeterminacy from economic situations in which von
Neumann’s assumptions are satisfied. The military implications are also evident. And, it
turns out, there are important implications for statistical theory as well. Since 1944 the
development of these three fields of application of game theory has gone forward
actively.

Input-output analysis was the second of the three branches of linear economics to
appear. Leontief published the first clear statement of the method in 19363 and a full
exposition in 1941.4 Input-output analysis is based on the idea that a very considerable
proportion of the effort of a modern economy is devoted to the production of
intermediate goods, and the output of intermediate goods is closely linked to the output
of final products. A change in the output of any final product (say automobiles) implies
changes in the outputs of the intermediate goods (copper, glass, steel, etc., including
automobiles) used in producing that final product and, indeed, in producing goods used
in producing those intermediate goods, and so on.

In its original version, input-output analysis dealt with an entirely closed economic
system—one in which all goods were intermediate goods, consumables being regarded
as the intermediate goods needed in the production of personal services. Equilibrium in
such a system exists when the outputs of the various products are in balance in the
sense that just enough of each is produced to meet the input requirements of all the
others. The specification of this balance and its pricing implications was Leontief’s first
objective.

Beginning with World War II, interest has shifted to a different view of Leontief’s
model. In this view final demand is regarded as being exogenously determined, and
input-output analysis is used to find levels of activity in the various sectors of the
economy consistent with the specified pattern of final demand. For example, Cornfield,



Evans, and Hoffenberg have computed employment levels in the various sectors and,
hence, total employment consequent upon a presumed pattern of final demand,5 and
Leontief has estimated the extent to which fluctuations in foreign trade influenced
activity in various domestic sectors.6 The input-output model, obviously, lends itself
well to mobilization planning and planning for economic development.7

The last of the three branches of linear economics to originate was linear
programming. Linear programming was developed by George B. Dantzig in 1947 as a
technique for planning the diversified activities of the U.S. Air Force.8 The problem
solved by Dantzig has important similarities to the one studied by Leontief. In any
operating period the Air Force has certain goals to achieve, and its various activities of
procurement, recruitment, maintenance, training, etc., are intended to serve those goals.
The relationship between goals and activities in an Air Force plan is analogous to the
relationship between final products and industrial-sector outputs in Leontief’s model; in
each case there is an end-means connection. The novelty in Dantzig’s problem arises
from the fact that in Leontief’s scheme there is only a single set of sector output levels
that is consistent with a specified pattern of final products, while in Air Force planning,
or in planning for any similar organization, there are generally found to be several
different plans that fulfill the goals. Thus a criterion is needed for deciding which of
these satisfactory plans is best, and a procedure is needed for actually finding the best
plan.

This problem is an instance of the kind of optimizing that has long been familiar to
economics. Traditionally it is solved by setting up a production function and
determining that arrangement of production which yields the desired outputs at lowest
cost or which conforms to some other criterion of superiority. This approach cannot be
applied to the Air Force, or to any other organization made up of numerous
components, because it is impossible to write down a global production function
relating the final products to the original inputs.9 Instead it is necessary to consider a
number (perhaps large) of interconnected partial production functions, one for each
type of activity in the organization. The technique of linear programming is designed to
handle this type of problem.

The solution of the linear-programming problem for the Air Force stimulated two
lines of development. First was the application of the technique to managerial planning
in other contexts. A group at the Carnegie Institute of Technology took the lead in this
direction.10 Second, a number of economists, with T. C. Koopmans perhaps in the
forefront, began exploring the implications of the new approach for economic theory
generally.11 The present volume belongs to this general direction of effort. We shall
regard linear programming as a flexible and powerful tool of economic analysis and
hope that the applications to be presented below will justify our position.

These are the three major branches of linear economics. The relationship between



input-output analysis and linear programming is evident. Input-output analysis may be
thought of as a special case of linear programming in which there is no scope for choice
once the desired pattern of final outputs has been determined.

The connection of these two with game theory is more obscure. Indeed, after the
sketches we have given of the problems handled by the three techniques, it may seem
surprising that there is any relationship, and, as a matter of history, the connection was
not perceived for some time after the three individual problems and their solutions were
well known. The connection resides in the fact that the mathematical structures of linear
programming and of game theory are practically identical. Is this a pure coincidence?12

Probably it does not pay to search for an economic interpretation. It may make the
connection seem less mysterious if we put it this way: Both game theory and linear
programming are applications of the same branch of mathematics—the analysis of
linear inequalities—a branch which has many other applications as well, both in and out
of economics. The connection is analogous with the connection between the growth of
investments at compound interest and Malthusian population theory.

1-2. OUTLINE OF THE BOOK
Linear programming is the core of linear economics, and we take it up first. Chapter 2

sets forth the basic concepts and assumptions of linear programming and illustrates
them by two examples, one from home economics and one from the theory of
international trade. The truism that the problem of allocation and the problem of
valuation are inseparable applies as well to linear programming as to other modes of
economic analysis. The valuation aspect of linear programming is explored in Chap. 3.

Chapters 2 and 3 together take up the leading ideas of linear programming; Chap. 4
goes on to the mathematical properties of linear-programming problems and practical
methods of solution. This latter chapter is somewhat technical and may be omitted since
it adds no new economic concepts. Readers who are interested in actual solutions will
find it indispensable, however.

Chapter 5 presents a particularly simple and important application of linear
programming. It deals with this problem: Suppose that a homogeneous commodity is
produced at a number of places and consumed at a number of places, and suppose also
that the total demand at each point of consumption and total supply at each point of
production are known. How much should each consuming point purchase from each
producing point so that all demands are satisfied and total costs of transportation are
kept as small as possible? This “transportation” or “assignment” problem is interesting
not only for its own sake but because it has useful generalizations.

In Chap. 6 the linear-programming approach is applied to the theory of the
competitive firm. The conclusions are consistent with those of the marginalist theory of
production. But, as we noted earlier, the marginalist theory invokes the concept of a



global production function comprehending all the activities of the firm, while in a
multiproduct or multistage firm it may be more convenient to work with a number of
partial production functions. Chapter 7 covers the imputation of values to the resources
used by a competitive firm.

Chapters 6 and 7 were restricted to competitive firms because of one of the linearity
assumptions. In a competitive firm, gross revenue is a linear function of the physical
volume of sales, namely, the sum over all the kinds of commodity sold by the firm of
price times quantity sold. In a firm not in perfect competition the relationship between
revenue and physical sales volume is more complicated; it is, in fact, nonlinear. Chapter
8 discusses the analysis of such firms and the problem of relaxing some of the linearity
assumptions in linear programming.

Input-output analysis is taken up next. The basic input-output system is set forth,
illustrated, and discussed in Chap. 9. Chapter 10 is a more technical discussion of the
system and may be omitted by readers who wish to avoid the more mathematical
aspects of the subject. It deals with more difficult questions of interpretation than does
Chap. 9, including an examination of Leontief’s strongest assumption—that there is a
unique combination of factor and material inputs for the product of each economic
sector.

Chapters 11 and 12 extend the input-output model dynamically, i.e., to a sequence of
time periods, and link it up with the theory of capital. In this pair of chapters, again, the
earlier chapter is primarily conceptual and the later is devoted to the more difficult and
technical problems. Here, almost uniquely in this volume, our presentation takes issue
with previously published results. We have mentioned above that in Leontief’s static
system there is only one set of levels of sector outputs that will produce a specified
pattern of final products. There is therefore no room for choice once the pattern of final
output has been determined. Leontief has extended his system dynamically in a way that
preserves this fully determined character. Our position is that the possibility of holding
intermediate and final products in inventory makes choices inevitable, so that Leontief’s
analysis ignores an important aspect of economic dynamics. But we cannot pursue the
issues here; the reader will have to wait until Chap. 11. These chapters also arrive at
some new criteria for economic efficiency in a dynamic context and some new
conclusions concerning the operation of competitive markets in a dynamic context.

Rather surprisingly, linear programming has turned out to be the most powerful
method available for resolving the problems of general equilibrium left unsolved by
Walras and his immediate successors. Under what conditions will there exist an
equilibrium position for an economy in which all prices and all outputs are
nonnegative? Under what conditions is this equilibrium unique? The techniques at
Walras’ disposal did not permit him to reach satisfactory answers to these questions.
Solutions by means of linear programming are given in Chap. 13. Linear programming



has also proved to be an easy and powerful method for deriving the basic theorems of
welfare economics and is used for this purpose in Chap. 14.

The final two chapters deal with game theory. Chapter 15 deals with the basic
concepts of game theory as applied to economic problems and discusses some methods
of practical solution of game situations. Chapter 16 explores thoroughly the
mathematical connections between game theory and linear programming.

The crucial dependence of game theory on the measurability of utility warrants some
discussion, particularly in view of the old issue of the relevance of the measurability of
utility for economics. Appendix A is devoted to this issue.

The reader will shortly become aware that linear economics makes liberal use of the
results of matrix algebra. The text is nearly, but not completely, free of matrices.
Nevertheless, to help readers who wish to gain some insight into matrix methods we
have added Appendix B on matrix algebra, which, it is hoped, despite being called an
appendix, will not be a useless appendage.
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Basic Concepts of Linear Programming

2-1. INTRODUCTION
Since at least the time of Adam Smith and Cournot, economic theory has been

concerned with maximum and minimum problems. Modern “neoclassical marginalism”
represents the culmination of this interest.

In comparatively recent times mathematicians concerned with the complex problems
of internal planning in the U.S. Air Force and other large organizations have developed
a set of theories and procedures closely related to the maximization problems of
economic theory. Since these procedures deal explicitly with the problem of planning
the activities of large organizations, they are known as “linear programming.” The
mathematical definition of linear programming is simple. It is the analysis of problems
in which a linear function of a number of variables is to be maximized (or minimized)
when those variables are subject to a number of restraints in the form of linear
inequalities. That definition is a bit arid, to be sure, but there is nothing difficult about
it.

The difficulties begin to enter when we raise the question of applying methods
derived from linear programming to economic problems. Notice that the word “linear”
occurred twice in stating the mathematical definition of linear programming. Can
economic problems be cast in this strict format without doing them mortal violence? On
the surface it may not seem so. The U-shaped cost curves, the gently curving isoquants,
the nests of indifference lines on which so much of economic theorizing depends seem
to stand in the way of expressing meaningful economic problems in terms of strictly
linear relationships.

Yet it can be done, and with advantage. That is the theme of this and the following
five chapters. We shall develop, in some detail, the way in which economic problems
have to be reformulated in order to be amenable to the methods of linear programming.
The gain from this reformulation will be seen to be twofold. First, we shall be able to
bring to bear on economic problems the powerful computational and solution methods
developed for handling linear-programming problems. Second, by looking at familiar
problems from an unfamiliar point of view we shall gain some new insights of
economic importance.

A word of caution before we embark. The linear-programming models we shall



develop will, of course, not be strictly accurate representations of the economic
situations with which they deal. Strict descriptive faithfulness is an unreasonable
demand to make of any conceptualization. The most completely accepted of economic
concepts—the production function, the demand curve, or whatnot—would fail if held
up to that standard. What we have a right to ask of a conceptual model is that it seize on
the strategic relationships that control the phenomenon it describes and that it thereby
permit us to manipulate, i.e., think about, the situation.

In the present chapter we shall illustrate the application of linear programming to
economic problems by discussing two examples. The first of these—the so-called diet
problem—was brought into prominence in recent years by mathematical linear
programmers, who used it as a kind of trial run for their new methods. The second
example—the theory of comparative advantage—was devised a long time ago by
economists, who had no thought of linear programming in mind. Both bring out
important aspects of the concepts and uses of linear programming.

2-2. THE DIET PROBLEM
The diet problem is famous in the literature of linear programming because it is the

first economic problem ever solved by the explicit use of this method.13 It was originally
intended merely to serve as an illustration and test of the use of the method, but, like so
many toy models, it has turned out to have unexpected but important practical
applications. The essential issue in this problem is that a diet to be acceptable must meet
certain quality specifications; e.g., it must contain so many calories, so many units of
riboflavin, etc. Moreover, the quality of a diet in terms of these specifications is the
mathematical sum of the qualities of its component parts, i.e., of the foods that comprise
it. These characteristics—attention to quality specifications derived by addition from the
qualities of components—are the structural elements on which the solution to the
problem depends.

Do problems with this structure have any important place in economics? They do.
They occur in such industries as livestock feeding, gasoline and textile blending, and
ice-cream manufacturing, to name a few. Thus they enter into many significant business
decisions and play a role in determining the shapes of supply and demand curves in
many industries.

Now consider a hyperscientific and hard-pressed housewife who desires to provide
an adequate diet for her family at the minimum possible cost. What foods shall she buy,
and how much of each? To answer this question she must take into account the data we
now outline.

2-2-1. Health Standards. The National Research Council (NRC) has published a
table purporting to show, on the basis of present scientific knowledge, the minimum
(annual) amounts of different nutritional elements—calories, niacin, vitamin D, etc.—



that a typical adult should have. Opinions change rapidly in this field, and no claim can
be made for great accuracy in such a specification. Moreover, the penalties for having
less than these amounts are known only for extreme cases of unbalanced diet; and there
is the further point that too much of some elements, such as calories, may be as harmful
as too little. But for our purposes we may take the table as definitive and write it
symbolically as shown in Table 2-1.

TABLE 2-1. MINIMUM STANDARDS OF NUTRITIONAL ELEMENTS

Nutr i t i onal  e l ement s Minimum
standards

1 C1

2 C2

3 C3

• •

• •

• •

i Ci

• •

• •

• •

m Cm

Each of the requirements C1, . . . , Cm is, naturally, positive.

2-2-2. Nutritional Composition of Foods. Our second bit of information comes
from biologists and chemists. It analyzes the nutritional content of a large number of
common foods (cooked in some agreed-upon way). We may call these foods, measured
in their appropriate units, X1, X2, . . . , Xn. We shall make the (somewhat doubtful)
assumption that there is a constant amount of each nutritional element in each unit of
any given food; so that if 10 units of X1 gives us 100 calories, 20 units will give us 200,
and 100 units will give us 1,000 calories—all this independently of the other X’s that are
being simultaneously consumed. This “constant-return-to-scale” and “independence”
assumption helps to keep the problem within the simpler realms of linear-programming
theory. It also permits us to summarize our second type of information in one
rectangular table (Table 2-2).



TABLE 2-2. NUTRITIONAL CONTENT OF UNITS OF VARIOUS FOODS

In words, the amount of the third nutritional element contained in the seventh food is
a37. If we think of one slice of toast as having 50 calories, we could say acalories, toast = 50
(calories per slice), etc.

Usually the number of foods will be much greater than the known number of
nutritional elements, so that n > m. (But this need not be the case; indeed it would not be
the case on a desert island or for a community subject to many taboos.) So long as each
prescribed element is actually present in at least one food, it is clear that the given
standard of nutrition can somehow be reached. (This means that we must not have all
the a’s zero in any row.) Ordinarily, the prescribed standard of nutrition (C1, C2, . . . ,
Ci, . . . , Cm) can be reached and surpassed in a variety of different ways or diets; but the
different diets will not all be equally tasty or cheap.

How do we test whether a given diet, say

(x1, x2, . . . , xk, . . . , xn) = (100, 550, . . . , 3.5, . . . , 25,000)

is adequate? Here xk denotes the quantity of Xk. We must test each nutritional element in
turn. Since each unit of the first food contains a11 units of the first element, we get
altogether a11x1 of such an element from the first food. Similarly we get a12x2 of this first
element from the second food. We must compare the sum of this element from all foods
in the diet with the prescribed minimum C1 to make sure that

a11x1 + a12x2 + . . . + a1kxk + . . . + a1nxn ≥ C1

and similarly for the second element, we must have

a21x1 + a22x2 + . . . + a2kxk + . . . + a2nxn ≥ C2

and so forth, for the ith or mth element.

We have not yet introduced the cost of food into the picture, but when we do it will
become apparent that it is desirable not to have to pay for any excess consumption of
food. In the above equations we should like, if possible, to have the equality signs hold
rather than the inequalities, to avoid paying for excess nutrition. But this will not always



be possible, as an ambitious dietician might discover after trying to find a diet that
exactly reaches the prescribed standard in every respect. And even where it is in fact
possible, she will discover that it is an exceedingly difficult arithmetical feat to find such
an exact diet. Moreover, and this may surprise her still more, it may turn out to be most
economical not to follow such an exact diet, since there will often turn out to be a
cheaper diet that overshoots the mark in some respect.14

2-2-3. Economic-price Data. Thus far no mention has been made of the economic
costs, in terms of dollars, of the various diets. In theory we can hope to get from the
Bureau of Labor Statistics (BLS) data on the prices of the different foods, such as might
be indicated in Table 2-3.

TABLE 2-3. PRICE (PER UNIT) OF DIFFERENT FOODS

For any given diet, x1, x2, · · · , xn, the total cost would be easily calculated as the sum
of the costs of each of the n foods (it being understood that in most relevant diets only a
few of the possible foods would appear, the rest having zero weight). Mathematically,
the total dollar cost of a diet would be

Z = p1x1 + p2x2 + . . . + pkxk + . . . + pnxn

We may state the full problem as that of minimizing this last sum subject to the m
basic inequalities which guarantee that the minimum of each nutritional element is in
fact secured. That is,

Z = p1x1 + . . . + pnxn

is to be a minimum subject to

(2-1)
It is clear that if the set (2-1) of dietary conditions can be met at all, then there is some

minimum cost at which it can be met, and this cost will correspond to one or more
least-cost diets, which we shall refer to as optimal diets.15

2-3. A NUMERICAL EXAMPLE
A simple hypothetical example will illustrate the nature of the problem. Assume only



two nutritional elements 1 and 2, or “calories” and “vitamins,” with (C1, C2) = (700,
400). Assume that there are five foods. Let the first, X1, contain only calories and be
measured in units that result in the coefficient a11 = 1, with a21 being zero; let the
second, X2, contain only vitamins as indicated by a given a22 = 1, with a12 being zero; let
the third food be like the first in that it contains only calories so that a13 = 1 and a23 = 0;
let the fourth food contain equal amounts of both elements, and let us define a unit of
the fourth food as being the quantity such that a14 and a24 are equal to each other and to
unity; finally let a unit of the fifth food possess twice as many calories as the fourth
food, so that a15 = 2 and a25 = 1. Finally, we must assume some prices to make the
problem complete. Let (p1, p2, p3, p4, p5) = (2, 20, 3, 11, 12), where all prices are in
dollars per unit. Our numerical data can be summarized in Table 2-4. Our problem is to
find a best diet (x1, x2, . . . , x5) and the least cost Z as indicated by the question mark.

TABLE 2-4. SYMBOLS AND DATA FOR NUMERICAL DIET PROBLEM

If one tackled this problem by trial and error, by luck, or good judgment, one would
finally find that (1) the cheapest Z is 4,700. It happens that (2) this can be reached in
only one way: by the diet

(x1, x2, x3, x4, x5) = (0, 0, 0, 100, 300)

with nothing of the first three foods being bought. Note that (3) there are only as many
foods bought as there are nutritional elements, the rest being consumed at zero level.
Finally, it happens that (4) this “best diet” is also an “exact” one, yielding no surplus of
either element.

How do we arrive at these answers? For the moment such questions may be deferred.
Let us first ascertain how general these results are. Is our first conclusion, of a single
best Z, universally true in linear programming? The answer is “yes” for all well-behaved
programs. There cannot be two different best Z’s, for in any pair of unequal Z’s one
will be better than the other. Moreover, in a meaningful linear-programming problem
there will be a limitation on how good (i.e., how large or how small, as the case may be)
Z can be made, and linear-programming problems are almost invariably set up so that
the most extreme permissible values of Z will actually be assumed.16 Thus there will be



a greatest (or a least) possible Z, and this will be the optimum.

But our second conclusion—that the x’s are unique—is not universally true. Often the
best Z will be reached by a number of alternative x’s, and if so by an infinite number of
such. For example, suppose that the first three foods had been given extremely cheap
prices compared with the last two. Obviously, the best diet would be found among the
first three foods. But suppose Food X1 and Food X3, which are exactly alike, were given
equally low prices. Then the best way of getting our calories could involve any one of
an infinite number of combinations of X1 and X3, providing only that their sum added
up to 700.

In this last case our final diet could involve three foods instead of only two. But even
in this case there could be no harm in setting either x1 or x3 equal to zero and achieving
the best Z with as few foods as there are nutritional elements. This suggests a general
proposition in the field of linear programming:

THEOREM. In a linear minimum or maximum problem involving n variables (i.e.,
x’s) and m inequalities [e.g., Eq. (2-1)], the number of nonzero x’s will never have to
be greater than m.

This general statement of conclusion 3 above will have to be proved later.17 Note that
the theorem would not help much if m were greater than n, as can happen in many
problems. Note too that we could sometimes have more than n = m zeros. A simple
example will demonstrate this possibility. Suppose the price of X4 were extremely low
compared with all other prices; then it stands to reason that all our required calories and
vitamins could be bought most cheaply by purchasing 700 units of X4, and buying a
single food would be the best way to get two elements.18

The last example shows that our cheapest diets will not always be exact, so that
conclusion 4 above, that an “exact” optimal diet exists, is not generally true. Often some
of the m side conditions or constraints will turn out not to be binding; however, they
cannot be thrown away, because for other prices or standards they may become
binding.

It is intuitively clear that changing any Ci, for example, increasing the calorie
requirements, will cause a definite change in the best Z; but it is also clear that changing
a nonbinding C will have zero effect on Z, until it begins to be binding. The rates of
change of the form dZ/dCi are in the nature of marginal costs and will be found to have
an important economic and mathematical significance, related to “shadow prices” and
so-called Lagrangean multipliers.

2-4. SOLUTION BY ELIMINATION
There are two factors that make the diet problem and, as we shall see, all linear



programming problems hard to solve. They are so closely related that it takes some
subtlety to distinguish them. Yet, for the sake of clarity, we shall try.

The first complicating feature is the sheer numerousness of the conditions to be met,
represented by Eqs. (2-1). If there were only one restriction, say the restriction of
providing adequate calories, the problem would be trivial. You would simply find the
food that provided most calories per dollar and procure only that one.19 Incidentally,
this case of trying to minimize or maximize something subject to a single requirement is
the standard case of economic analysis. The firm in production theory is assumed to
maximize profits subject to a single production function or to minimize costs for a given
volume of output. The consumer is conceived of as maximizing satisfaction subject to a
single budgetary restraint.

Add just one more restraint, to make a total of two, and the problem cannot even be
expressed without invoking some special concepts that would interrupt the thread of the
exposition if introduced at this point. It is inevitable, then, that the problem for a general
number of restrictions will require novel methods of expression and solution designed
to meet this novel situation.

The second complicating feature is the fact, noticed several times already, that the
requirements do not have to be fulfilled exactly. This is no complication, to be sure,
when there is only one requirement. If we seek the minimum-cost diet that provides at
least 3,000 calories a day, we shall surely not find it to be one that provides 3,005
calories a day, so we can treat our inequality as if it were an equality condition. Not so
when there is a single additional restraint. The cheapest diet that provides at least 3,000
calories and 1,500 milligrams of thiamin a day may turn out to yield 3,010 calories or
1,550 milligrams of thiamin (but not both). Thus the inequality signs have to be
respected.

This complication, the fact that we cannot tell in advance which restraints will be
satisfied with equal signs in the best solution and which (if any) with inequalities, is not
a fine point. It is really central. Suppose that some occult source could provide us with a
helpful hint such as that there will be an excess of thiamin in the optimal solution. Then
we could forget about thiamin and solve for the cheapest diet that provided adequate
calories, as if we had a one-restriction problem. Or suppose that this useful source of
clues told us that both requirements would be met exactly in the end. Then the problem
would be a bit more complicated, but still, as we shall see almost immediately, this
advance information would be extremely valuable. In actual practice, though, we have
to solve problems in initial ignorance of which restrictions are really going to be binding
and which we can ignore safely. This makes life harder.

At this stage we cannot present generally adequate methods of solution but we can
present two elementary approaches that suffice for the diet problem with only two
restraints. These will be taken up in the present and the following sections. The first of



these elementary methods is solution by elimination.

Let us see how elimination works by applying it to the vitamin-calorie problem.
Suppose, first, that someone told us that the vitamin restraint would turn out to be not
binding, i.e., that when we have found the cheapest diet with adequate calories it will
turn out to have at least enough vitamins. Then we could forget about the vitamin
restriction and look for the cheapest diet that satisfied the calorie side condition

or

We can use this equation to solve for any variable, except x2 which has a zero
coefficient. Suppose we decide to eliminate x5 as redundant; then we solve for it and
substitute into our cost data to get

Our cost function has now been expressed in terms of one less variable than we had
originally. But presumably these four variables are now free to move independently
over all nonnegative values.

How should we optimally adjust x2? Because it has a positive coefficient, it is clear
that ∂Z/∂x2 = 20 > 0 and every increase in x2 sends up costs. Therefore we go into
reverse and reduce x2 in order to effect savings. This we continue until we reach the
limit x2 = 0. The exact same can be said for x4, which also has a positive coefficient.

So far so good. But applying the same reasoning to the other x’s leads to a perplexing
situation: x1 and x3 have negative coefficients, and it would seem that increasing them
indefinitely would be in order. This is surely absurd. Or is it? Will increasing x1 and/or
x3 cause the total of calories to become excessive, and therefore be a foolish procedure?
No, it will not; it will not because x5 is always being reduced so as to keep total calories
= 700 = C1. That is the meaning of our earlier substitution.

In disposing of one objection we encounter another. If x1 and x3 are increased
enough, x5 will ultimately become a negative number, which it is not permitted to do
since it is nonsense to consume a negative amount of any food. This means that x1 and



x3 can be increased only until x5 is zero; from that point on, if we increase x1, we must
decrease x3, and vice versa. This means that, with x2 and x4 already set equal to zero, and
with x1 and x3 made so large as to set x5 = 0, we are finally left with the following
choices for x1 and x3, as can be seen from the first equation of this section:

We substitute into Z to get

Since x3 is now our remaining free variable and since it has a positive coefficient, we
shall realize economies by making it as small as possible. When x3 is set equal to zero,
then obviously—from the above relation between x1 and x3, or from the original calorie
constraint—we must have x1 = 700.

At long last we have our optimal diet:

(x1, x2, x3, x4, x5) = (700, 0, 0, 0, 0)

As we had reason to expect earlier, where there is only one effective constraint, there
need be only one nonzero variable.

An intuitive economist might have arrived at this result almost immediately. He is
used to working with the concept “marginal utility of the (last) dollar spent on each
commodity.” In this problem, he would replace utility by calories and look for the most
calories per dollar, or for the maximum of

(2-2)
Clearly x1 is the cheapest way of getting calories. It is too bad that this simple device will
not get the solution to more complicated problems.

As a matter of fact, the more tedious method of substitution outlined above can
follow many paths. With good luck we might have picked a path which would have
gotten us our solution in almost a single step. Suppose we had used our calorie relations
to solve for x1 rather than x5. Then our cost would have turned out to be



All the coefficients of the variables are positive; each variable is best set to zero; from
our constraint we find that x1 = 700. Hindsight always helps.

We have labored hard to get the best solution. The only trouble with our solution is
that it is wrong. We have already been informed that the best diet for our original
problem is

(x1, x2, x3, x4, x5) = (0, 0, 0, 100, 300)

What is lacking about (700, 0, 0, 0, 0) ? Clearly it yields the correct calories, but it fails
to yield the specified amount of vitamins. It is definitely the cheapest diet under the
assumption made that only the calorie constraint would be binding. But this was a
gratuitous assumption that we had no right to make, as can be determined by seeing
whether the full conditions of the problem are satisfied.

Nevertheless, our work has not been entirely in vain. We have the answer to the
problem in which vitamins are of no importance. (Or alternatively if the first food, x1,
contained a great quantity of vitamins so that a21 were very large instead of being zero
and so that we could be sure that the vitamin requirements would be more than
satisfied, then our solution would be a correct one.) This is clearly a lower bound to the
best obtainable cost: If calories alone cost at least the amount

700 × 2 = 1,400

then a diet adequate in every respect must cost that much or more.20

The main purpose of this discussion was, however, expository. When only one
constraint is binding, the problem of elimination by substitution is at its simplest and the
logic of the process is revealed most clearly.

We may recapitulate just what was done in this process:

1. We found an expression for one of the variables by using our constraint.

2. We substituted this expression into our Z sum wherever the dependent variable
appeared, thus eliminating the dependent variable from our Z sum.

3. The remaining variables were not perfectly free to move as they pleased. When one
became zero, it hit an inflexible stop. Worse than that, when a movement of the
independent variables caused the eliminated dependent variables to hit zero, we again
ran into an inflexible wall and could at best move along that wall.

4. But our minimizing procedure, within these constraints, was logically simple. We
kept repeating firmly to ourselves: “ Every day in every way, we must be getting better
and better. We just keep moving, as long as we are moving down the cost trail.”
(Specifically, when we had chosen to eliminate x5, we then moved to x2 = 0 because the
positive coefficient of x2 meant that this would be a downward direction; then we



moved further downward by setting x4 = 0. Since x1 and x3 had negative coefficients,
our next downward move involved increasing one or both of them; this went on until
we hit the “geometrical plane or wall” represented by

We proceeded to edge our way along this wall in a downward direction by decreasing x3

which had a positive coefficient in the expression for Z defined in terms of x3 along this
final wall. If x3’s coefficient had been negative instead of positive, we would have
increased it at the expense of x1, up to the C1 = 700 limit. If its coefficient had been zero,
any point on the wall would have been indifferently good.)

So much for the process of elimination of dependent variables when there is only one
constraint. If there are two or more constraints, the logic of the process is unchanged;
but the numerical steps are considerably more tedious. Let us illustrate by examining
briefly our simple calorie-vitamin problem, where we have been told that both
constraints are in fact to be binding. Here we have two effective constraints, and so we
can eliminate two variables. Actually, in this case, except for x1 and x3 we can eliminate
any two variables from the numerical relations

1x1 + 0x2 + 1x3 + 1x4 + 2x5 = 700 
0x1 + 1x2 + 0x3 + 1x4 + 1x5 = 400

Applying the methods of high-school or more advanced algebra, we shall soon find
that it is much easier to eliminate the “pure” variables, x1 and x2 or x3 and x2, than any
other pair. In fact, to express x4 and x5 in terms of the remaining variables involves
solving two simultaneous equations (or as a mathematician would say, involves
“inverting a matrix”). This is logically easy to do but tedious in practice.

Let us therefore agree to eliminate x1 and x2, to get

x1 = 700 – 1x3 – 1x4 – 2x5 
x2 = 400 – 0x3 – 1x4 – 1x5

We now substitute these into our cost expression

Because x3 has a positive coefficient (or “net cost ”), we must obviously reduce it to
zero. Just as clearly the negative coefficients of x4 and x5 mean that we must increase



them at the expense of x1 and x2. But x1 and x2 can never be reduced below zero. When
they both reach zero, x4 and x5 take on the values (100, 300), which we earlier said were
the best values.21

In the general case in which we know that there are r (≤m and ≤n) independent and
consistent binding constraints, we can always eliminate r variables and substitute for
them in the Z expression. The resulting expression for Z will be defined in terms of the
remaining (n – r) quasi-free variables; and depending on their coefficients, we can
proceed to find some (n – r) variables that can be set equal to zero. The final values of
the nonzero variables can be found by solving our r effective equations. If, and only if,
we have selected the right set of effective constraints, will the whole process be
consistent.

The picturization of this process in terms of higher geometry is conceptually very
helpful, but will be reserved for a later section.

2-5. GRAPHIC SOLUTION
The elimination method of solution is not practically useful because it depends on

knowing in advance which restraints can be used for performing eliminations, i.e.,
which restraints will be binding. We discussed it chiefly in order to show how the levels
of the various choice variables (e.g., the food quantities) are interrelated. The graphic
method, to be discussed now, is practical when there are as few as two restraints and
serves to clarify some additional aspects of programming problems. This method can
handle any number of choice variables, so long as only two constraints are present. In
Sec. 3-3, in which we study the so-called “dual” to the diet problem, we shall be led to
an alternative graphical method which can handle any number of constraints so long as
there are only two variables.

The graphic method depends on considering the quantity of each food element—in
the case of our example, vitamins and calories—that can be purchased for a fixed sum,
say $1,000, spent on each food. These quantities, for our numerical example, are given
in Table 2-5 and shown graphically in Fig. 2-1.

In Fig. 2-1 a point, indicated by a ringed numeral, is plotted for each food, showing
the quantity of calories and vitamins provided by $1,000 worth of it. A glance at the
figure (or at Table 2-5, for that matter) shows that there are two foods which cannot, at
the quoted prices, enter into an economical budget. Food 3 provides fewer calories per
dollar than Food 1 and no more vitamins, and so will never be purchased. Similarly,
Food 2 is inferior to either Food 4 or Food 5 with respect to both nutritive elements. We
therefore drop Foods 2 and 3 out of consideration forthwith and attend only to the other
three.



FIG 2-1

Now, suppose we split $1,000 between Foods 1 and 5, spending, say, $500 on each.
From Table 2-5 we compute that the resulting diet will provide 333.33 calories [½(500 +
166.67)] and 41.67 vitamins. This is indicated by point A in Fig. 2-1. Similarly, $250
worth of Food 1 and $750 worth of Food 5 will yield 250 calories and 62.5 vitamins,
shown by point B in the figure. Note that points A and B both lie on the straight line
connecting the points for Foods 1 and 5, and it is easy to see that all combinations of
$1,000 spent on those two foods will correspond to points on that line. The line
connecting Foods 4 and 5, similarly, represents the results of splitting $1,000 between
them. Now, what about splitting $1,000 between Foods 1 and 4? The yields of such
divisions would lie along the straight line connecting those two foods, but we haven’t
drawn the line because for any point on that line there will be some point on one of the
previous two lines which represents a diet that provides more of both elements without
costing any more. The two lines which we have drawn, then, represent the locus of
efficient diets.

TABLE 2-5. QUANTITY OF CALORIES AND VITAMINS PER $1,000 SPENT ON
EACH OF FIVE FOODS22



Of course, this locus represents just the efficient ways of spending $1,000. There will
be analogous loci for all other levels of expenditure. A sum of $2,000 spent on Food 4
will provide twice as much of both food elements as $1,000 and so will be represented
by a point twice as far out along the radius vector through point 4. We have designated
this point by 4′. There is a similar point, 5′, for the results of spending $2,000 on Food
5, and similar points could be graphed for all other foods. Using those points we can
construct a locus of efficient expenditures for $2,000 and, similarly, for any other
budget. We have drawn the loci for $1,000, $2,000, . . . , $5,000.

Now consider the shaded area in Fig. 2-1. Its lower left-hand corner is at 400
vitamins, 700 calories. Thus, this is the region of adequate diets, and our problem is to
determine the least expensive diet in this region. Obviously it will be the diet in the
region which lies on the lowest possible efficient diet locus, and, equally obviously, the
point in question is the lower left-hand corner itself. We see at once that this point lies
on a line segment connecting Foods 4 and 5. In other words, the minimum-cost diet will
consist of Foods 4 and 5 in some amounts yet to be determined and will exclude all
other foods. Furthermore, the minimum-cost diet will not provide an overage of either
food element; i.e., both restrictions are binding. This is indicated by the fact that the
minimum-cost diet, observed diagrammatically, provides just the stated amounts of the
two food elements.

The rest is elementary algebra. We have two unknowns, the amounts of Foods 4 and
5, and two restraints, one for each food element. Thus we have exactly the correct
number of the equations to determine the two unknowns and to write them

1x4 + 2x5 = 700 
1x4 + 1x5 = 400

The solution is, as we found previously, x4 = 100, x5 = 300.

Obviously, any number of foods can be handled in this way, provided there are only
two nutritional requirements. Each of the latter requires an axis, so if there were a third
nutrient to be accounted for, this method would need three dimensions.

2-6. COMPARISON WITH THE THEORY OF
CONSUMPTION

The diet problem can be stated (but not solved!) by means of the familiar concepts of
indifference maps, budget lines, etc., used in the theory of consumption. We shall state
the problem in these terms in order to see what in this problem is new and different and
requires a new and different approach.

In order to picture the situation graphically let us suppose that the problem involves
two foods and three nutritive elements. In this special case we have to choose the



quantities x1, x2 of the two foods so as to make the total cost

Z = p1x1 + p2x2

a minimum subject to the three nutritive restraints

a11x1 + a12x2 ≥ C1 
a21x1 + a22x2 ≥ C2 
a31x1 + a32x2 ≥ C3

FIG. 2-2
The x’s, of course, cannot be negative.

These data are depicted in Fig. 2-2, where the quantities of the two foods are
measured along the two axes and each of the lines AA′, BB′, and CC′ represents those
combinations of the two foods that exactly meet (i.e., with no excess) one of the three
requirements.

This is not an indifference map, though its axes are the same as the axes of an
indifference map. In order to construct an indifference map we must express the
preference scale implicit in the problem. It is a very simple scale. All diets that meet the
three requirements are satisfactory and, as far as the problem goes, are equally
satisfactory. Let us assign them a utility index of 1. All other diets are unsatisfactory. Let
us give them a utility index of 0. In the diagram, then, all diets on or above the broken-
line boundary CDEA′ have a utility index of 1 and all those below it an index of 0. If we
add a third dimension, for utility, we obtain the picture shown in Fig. 2-3. This is the
utility map for the diet problem. To solve the problem, all that is needed is to find the
lowest budget line that touches the raised portion of the diagram in at least one point.
We have sketched in one budget line—one that obviously is not the lowest.

The peculiarities of this indifference map are evident at once. Instead of a utility hill
we have a mesa with a precipitous face; instead of a family of indifference curves we
have two indifference regions; instead of continuously curved contours we have some
broken lines. The concept of a marginal rate of substitution, the basic concept of the



theory of consumers’ choice, doesn’t apply to this diagram except for points on the
boundary of the two regions. This diagram does not lead to any of the helpful principles
that indifference maps usually teach us.

FIG. 2-3
The trouble is that this diagram and the utility scale that it represents are artifices, and

ignoble ones at that. The problem as it came to us involved three restraints, one for each
nutritive element. Our procedure was to construct a utility scale that incorporated all the
restraints and thereby to reduce the problem to the following apparently standard form:
Find the least expensive diet with a utility index of unity. But, alas, this kind of trickery
can only sweep difficulties under the rug; it cannot dispose of them. In this case all we
have accomplished is to substitute one mathematically intricate condition for three
simple ones.1

Thus the presence of several conditions to be met distinguishes the diet problem
fundamentally from the familiar problems of the theory of consumption. 1 The
condition that the budget line touch the raised portion of the diagram may not seem
intricate, because the eye can solve it easily. But remember that in dealing with problems
that can be visualized the eye will put the most gigantic electronic computer to shame.

The condition in question can be expressed mathematically in a number of ways. The
following is perhaps the easiest. Let I(u) be the step function defined by I (u) = 0 if u <
0, I(u) = 1 if u ≥ 0. Then I (ai1x1 + ai2x2 – Ci) equals 1 if the ith nutritive requirement is
satisfied and equals zero otherwise. The utility index of any diet—x1, x2—can then be
written

This is clearly not a very nice function to have to work with. An interesting intermediate
case that points up the complications attendant on numerous restrictions is the case of
consumer choice when a point-rationing scheme is in effect. Then any good will have



both a money price and a ration price associated with it, and the consumer will have to
live within two limitations, one on the total value of consumption and one on its ration-
point value. The situation in which there are two commodities, which shows the
essential issues, is illustrated in Fig. 2-4. Each panel of that figure shows two
indifference curves U′ and U′′, a conventional price line AB, and a ration-point budget
line A′B′. Let us look first at Fig. 2-4b. There is only one pattern of consumption in
which the consumer uses both all his dollar budget and all his ration points, namely, the
pattern represented by point C. It is evident from this figure that point C does not
represent an optimal budget; point E corresponds to a superior attainable budget even
though it involves leaving some dollar purchasing power unused. The three panels
together show three possible situations: in Fig. 2-4a, all dollars and points are used; in
Fig. 2-4b, dollars are redundant; and in Fig. 2-4c, points are redundant.

FIG. 2-4. The lines AB and A′B′ represent the dollar and ration-point budget
equations, respectively. The heavy locus ACB′′ represents the locus available to the
consumer, since the “scarcest currency” is always the bottleneck. In a, this locus

touches but doesn’t cross the highest indifference curve at C. In b, this phenomenon
occurs along CB′, where dollars are redundant; in c, the ration points are redundant.
When there are only two x’s and when both constraints are known to be binding, there

is no room left for maximizing behavior; only when there are more goods does the
problem become interesting.

Thus as soon as two restraints are imposed on the consumer we can no longer
assume that the budget equality will be satisfied and must express our restraints by



means of “not-greater-than” inequalities. But inequalities are much less useful in
analysis than equalities, essentially because equalities can be used to eliminate variables
and inequalities cannot. The appearance of the inequalities, as in Fig. 2-4a and b,
disqualifies the usual analysis via the calculus and its graphic analogs. For example, it is
not true in either Fig. 2-4a or b that at the optimal consumption point the marginal rates
of substitution of the commodities are proportional to their money prices. The problem
would be much simplified if only we knew in advance which limitation would actually
be binding. But discovering this is part of the solution.

This simple point-rationing example is our first glimpse of nonlinear programming.
The point-rationing case is one in which some nonlinear function of variables of choice
is to be maximized but where the scope for choice is constricted by linear restraints. The
same type of problem, as we shall see, arises in connection with imperfect competition.

Thus we see that new approaches are needed when we have to analyze problems of
economic choice subject to several distinct limitations. It seems worthwhile to point out
another contrast between the linear-programming approach—as exemplified by the diet
problem—and the theory of consumption, this being a contrast of emphasis rather than
of content. The familiar theory of consumer choice, whether expressed in terms of
curves of diminishing marginal utility or in terms of convex indifference curves,23 was
designed to explain how a limited budget is allocated among diverse commodities. This
theory is consequently much handier for explaining how much is consumed of each
commodity purchased, and how those quantities respond to changes in underlying data,
than it is for explaining which commodities are purchased and which are not, and how
this selection responds to changes in the data. This some-or-none decision is often the
important one, as the diet problem suggests. The standard two-commodity indifference
map shows that the range of relative prices at which positive amounts of both
commodities will be purchased depends on the amount of curvature in the indifference
contours; if the two commodities are close substitutes, the range of price ratios at which
both are purchased may be very narrow.

Whenever the optimal allocation of a budget entirely excludes one or more of the
commodities considered, the familiar marginal equalities are no longer strictly valid and
should be replaced by inequalities. These conclusions follow straightforwardly from the
conventional theory, and we mention them only because they are so frequently glossed
over and because the conventional analysis becomes decidedly awkward when the zero-
consumption case arises.24

The linear-programming approach lays its major emphasis on the problem of which
commodities are to be included in the budget. The possibility that one or more of the
available commodities may not be consumed at all therefore presents no particular
difficulties or complications. This added generality, naturally, has to be paid for, and the
price is that the linear-programming approach is consistently more complicated than the



marginal one.

2-7. SOME CONCEPTS AND GENERALIZATIONS
We have now seen an illustrative linear-programming problem and two elementary

methods of solution. The problem selected was typical in form but certainly not in
substance. The reason for this last reservation is that linear-programming problems arise
in many varied contexts. Let us therefore turn to the formal characteristics of the
problem.

In the first place, we had to minimize something. All linear-programming problems
are concerned with either minimizing or maximizing something. In general, the quantity
to be minimized or maximized is called the “objective function”; in the diet problem the
objective function is the aggregate cost of the food purchased. There is some temptation
to classify linear-programming problems into two types according as the objective
function is to be minimized or maximized, but this is pointless because there is no real
difference between the two operations. Every time a quantity is maximized, some other
quantity—for example, its negative—is minimized. Thus we do not distinguish between
minimizing and maximizing problems and discuss each aspect of the method in terms of
whichever type of extremum seems most convenient at the time.

In the second place, there were certain conditions which prevented us from making
the objective function infinitely small. The equations expressing these conditions are
called, in general terminology, the “constraints,” or “restraints,” of the problem. The
restraints are of two sorts, both generally and in the diet problem. There are the
restraints expressing the fact that certain variables (the food quantities in the diet
problem) cannot be negative. This type of restraint, identical in every respect to the
form in which we have encountered it, appears almost universally in linear-
programming problems. Also, there are the restraints which express the special
conditions of the problem. The minimum nutritional requirements in the diet problem
were of this kind. The nature and number of special restraints vary, of course, from
problem to problem.

In the third place there are “choice variables,” the numbers which are to be chosen so
as to minimize (or maximize) the objective function and to satisfy all the restraints, e.g.,
the food quantities in the diet problem. The objective function is, in general, a linear
function of the choice variables, and the restraints are either equalities or inequalities
involving linear functions of the choice variables.

Quite frequently, though not invariably, each choice variable indicates the extent to
which something is to be done. In the diet problem, for instance, x1 indicated the extent
to which Food 1 was to be purchased. For this reason it is convenient (and usually
sufficiently accurate) to think of each choice variable as indicating the level of some
operation, called an “activity,” or a “process.” Intuitively, as we have just suggested, a



process is some physical operation, and it may be almost any physical operation, e.g.,
consuming something, storing something, selling something, throwing something away,
as well as manufacturing something in a particular manner. In the diet problem, each
process consisted in purchasing something (and presumably consuming it). But it is
often convenient to think of fictitious processes which do not correspond to any
physical operation. For instance, in the diet problem we may think of the process of
purchasing excess calories.25 We shall see below that in many important problems the
choice variables represent prices, in which case the processes have no physical
significance whatsoever.

The essential characteristic about a process from the point of view of linear
programming is not its physical nature (the process may be entirely fictitious and have
no nature) but the way it enters into the objective function and the restraints. This
characteristic is contained entirely in the coefficients by which the choice variable
corresponding to the process is multiplied in the objective function and in the restraints.
The coefficient by which the choice variable is multiplied in the objective function is
known as the “value” of the process. The list of coefficients by which that variable is
multiplied in the restraints is known as the “process vector.”26 Some of these
coefficients may, of course, be zero. For example, using the data in Table 2-4 for the
two-element diet problem, Process 5 consists in buying Food 5, its value is 12, and its
process vector is (2,1). Since the process vector includes all the information about the
process that is relevant to linear programming, the terminology is frequently shortened,
so that when we talk about the process we mean simply the list of its coefficients. This
terminology is not only shorter but, in a sense, more exact since a process always
possesses coefficients (or else it could not enter the problem) and need not possess
anything else.

Just as each choice variable specifies the level at which some process is to be used, so
a list of levels of all the choice variables that occur in a problem specifies the levels at
which all processes considered are to be used. Such a list is therefore called a
“program.” For example, the list (0, 0, 0, 100, 300) is a program. If the list satisfies all
the restraints, it is called a “solution,” or a “feasible program.” If a solution maximizes
(or minimizes, as the case may be) the objective function, it is known as an “optimal
solution,” or an “optimal feasible program.” Linear programming is concerned with
finding optimal solutions and studying their characteristics.

This whole array of definitions is on an abstract level. But as soon as they are applied
to an economic problem, another substantive aspect arises. Consider, for instance, the
objective function. We have defined it simply as whatever is to be maximized. In an
economic context the objective function is usually the measure of social valuation
adopted by whatever social unit controls the values of the choice variables. To invest
the objective function with meaning then involves locating the social unit which has
effective control (which is not always easy) and ascertaining its objectives (which is



almost never easy). Similarly the whole structure, social, economic, and technical, in
which the deciding unit is embedded is involved in the practical identification of the
choice variables, the processes, and the restraints, which specify the field of choice
open to the unit of decision. These are the significant and difficult problems from the
point of view of the economist. We shall deal with some of them in later chapters. At
present we concentrate on presenting linear programming as a conceptual apparatus
which can justify itself in practical analysis.

2-8. ILLUSTRATION FROM THE THEORY OF
COMPARATIVE ADVANTAGE

The classical theory of international trade illustrates the concepts of linear
programming in an entirely different context. More than a century ago the English
economist David Ricardo outlined a simple theory to explain the pattern of international
trade and to proclaim its benefits to all participating countries. A traditional numerical
example (somewhat simplified) is of the following form: Portugal can divert resources
from food to clothing production and in effect convert one unit of food into one unit of
clothing; England, on the other hand, can convert one unit of food into two units of
clothing.

Almost certainly Portugal will specialize completely in food, England completely in
clothing. England will export clothing in exchange for food imports, the “terms of
trade” (or barter-price ratio) being almost certainly somewhere between 1 food: 1
clothing and 1 food: 2 clothing. Both countries will be better off than if they do not
specialize. World production will be optimal.

These four standard economic conclusions can be derived from the linear-
programming framework. Mathematically, we may consider any one country—say
England—to be subject to a linear relation (“production-possibility” curve) of the type
shown in Fig. 2-5.

FIG. 2-5. England’s production possibilities.
If there exists an international price ratio p1/p2, somewhere between 1 and 2, at which



England can exchange food for clothing, the real value of its National Product
(expressed in clothing units) may be written as

(2-3)
The problem is to maximize National Product (NP) subject to the technical

production-possibility curve of England. Or mathematically, to maximize a linear sum
of the form (2-3) subject to a linear inequality of the form 2x1 + x2 ≤ C. In this inequality
C is the maximum output of clothing when no food is produced. According to our
assumption, clothing output must be cut back two units for every unit of food
produced. Thus the maximum output of clothing when x1 units of food is produced is x2

= C – 2x1, and this is equivalent to the inequality stated. This is a typical problem of
linear programming.

Graphical or numerical experimentation will soon convince one that the highest NP
will be reached only when x1 = 0, x2 = C, and Z = NP = C. This may be seen by
considering in Fig. 2-5 the contour lines of equal NP. These are a family of parallel
lines, all with a slope of p1/p2; these parallel lines will be less steep than the single
production-possibility line of Fig. 2-5, because the price ratio is less than 2. We want to
get up to the highest NP line, which we can only do by climbing northwest along the
production-possibility line until we reach the X2 intercept, where food production is
zero. (If negative numbers were allowed, we would want to continue moving northwest
indefinitely. This is what happens in an arbitrage situation in which two powerful and
rich agencies try to maintain different relative price ratios between the same pair of
commodities.) 27 Any other solution will lead to a lower NP. Thus, if unemployment is
allowed to develop so that England is inside its production-possibility curve, NP will
suffer. Or if it should specialize on the wrong commodity, food, then NP will turn out
to be only 0.75C = 1.5C/2.

The reader may easily verify that for Portugal the best production pattern, when p1/p2

is greater than 1, involves zero clothing production and complete specialization on food.
Only in that way will she maximize her NP:28

subject to

We have expressed the international problem of resource allocation as two separate
problems, one for each country. The reader should translate the formulations we have



arrived at into the terminology introduced in Sec. 2-7.

2-9. THE EFFICIENCY FRONTIER
Throughout the foregoing argument we have assumed that we were given a food-

clothing price ratio p1/p2 greater than 1 and less than 2. We found that England would
then concentrate on clothing production and Portugal on food. Furthermore, since each
unit of English resources produces most “value” if devoted to clothing production and
each unit of Portuguese resources produces most “value” if devoted to food, there is no
need for a national or international planning authority to bring about the efficient
allocation. Under atomistic competition it will come about automatically.

However, fingers were made before forks, and we can imagine this situation as it
might appear to a naive scientist from Mars who had never heard about prices and
competitive private enterprise. He might still ask the noncommercial question: What is
the “optimal” pattern of world production of food and clothing between England and
Portugal? If he were acute, the Martian scientist would be troubled by his own question,
particularly by the word in quotation marks—optimal. Optimal in what sense? Certainly
not—as we have already agreed—in the sense of money value, since this is a
precommercial Martian. The scientist might be tempted to consider evaluating food and
clothing by their “intrinsic worth”; but unless he had been contaminated by a course in
heavy German philosophy, he would soon realize that this is an undefinable concept for
food and clothing in a world where some people are more like peacocks and others
more like gluttons.

A sagacious Martian would soon settle for a more modest definition of the optimum.
He would say, “I don’t know how the final choice between food and clothing is to be
made, whether English millionaires will have the greatest say, or the United Nations
Commission on Living Standards. But it is my job as a production expert to give the
world the best menu from which to choose. Or, in other words, for each specified
amount of any one good—say food—I must make sure that the production of the other
good is as large as possible.”

In saying this, the scientist has unwittingly defined a definite class of problems in
linear programming. Prices as such have nothing to do with the problem, although—
like Voltaire’s God—it may be desirable to invent them if they do not exist! To the
economist, at least, it will seem natural to introduce a system of “shadow” or accounting
prices or some sort of system of numerical points.29

But first let us write down the mathematical problem that the scientist has posed for
himself. He wants (1) to maximize the total of clothing production in Portugal and
England, subject to (2) a prescribed total of food, and subject to (3) the two linear-
production-possibility constraints of the two countries, and where (4) all quantities must
by their nature not be negative numbers. This can be stated mathematically using the



notation introduced already. Recall that x1 and x2 denote the output of food and
clothing, respectively, in England, and let C denote the total of resources available for
food and clothing production in England. Similarly,  , and C′ denote food output,
clothing output, and resources in Portugal. Finally X1 and X2 denote the total outputs of
food and clothing in the two countries. Then the mathematical problem is

is to be a maximum subject to

and

This is a typical problem in linear programming, which is defined as the problem of
maximizing one linear relation subject to a number of linear inequalities. It is important
to realize that every linear programming problem has the same formal structure. To
drive this home, let us give systematic new names, z1, z2, z3, z4, to the four unknowns of
this problem and rewrite it as follows:

Maximize

Z = 0z1 + 1z2 + 0z3 + 1z4

subject to

and

Here, of course, x1 = z1, x2 = z2, , , C = C1, C′ = C2, and — X1 = C3. Of the
three main inequalities above, only the last requires explanation: it corresponds to the
equality x1 +  in the earlier formulation. We have taken the liberty of writing
this equality as an inequality in order to keep our problem within the standard form so
far discussed. This is legitimate provided there is no harm in overshooting the
prescribed amount of X1 (e.g., provided X1 is not poisonously radioactive or, if it is,
provided we can dispose of any excess of it at zero cost). Of course, in most economic
problems we would not want to ignore the valuable original information that the last
inequality will in fact turn out to be a binding equality.

Note that with C and C′′ being given, there will be a different best Z (or X2) for each



prescribed X1. Actually, our economic intuition—if pushed far enough—tells us that the
resulting “menu,” or world production-possibility curve, looks like Fig. 2-6. The
broken-line curve ARB is known as the ”efficiency frontier“ because it gives the
maximum possible world clothing output for each postulated level of food output and,
conversely, the maximum possible food output for any preassigned output of clothing.

FIG. 2-6
The flatter of the two line segments of the efficiency frontier has a slope of —1, equal

to Portugal’s food-clothing technical ratio; the steeper segment has a slope of —2
corresponding to the similar technical ratio for England. The absolute maximum of X2

(corresponding to zero X1) occurs at A, where all resources in both countries are used to
produce x2 alone, giving us (from the technical relations) C/1 + C′/1 of clothing. The
maximum of food comes at B, where all resources in both countries are going to food
and yielding, in all, C/2 + C′/1 of food.

The critical corner point on the X2X1 curve occurs at R, where England is specializing
completely on clothing and Portugal on food. It might be called the “Ricardo point,”
since it is there that the classical theory of comparative advantage tells us we shall
almost certainly end up. 30

There is another remarkable economic feature of our final so-called world
opportunity-cost relation between food and clothing. The curve is a concave one: In
economic terminology, the “marginal opportunity cost” of converting one good into the
other is increasing as we want more of any one good. Or more accurately, it is
nondecreasing, since along any one of the line segments it is constant, neither
increasing nor decreasing. But between line segments it is strongly increasing, a result
that may at first seem surprising in view of the so-called constant-cost assumptions of
the classical theory of comparative advantage.

Economic and mathematical importance attaches to the concept of marginal cost as
defined by – dX2/dX1, the absolute slope of our curve. To the left of the Ricardo point
this is exactly equal to one of the technical coefficients of the problem, that of Portugal.



To the right, it is equal to the corresponding coefficient of England. At the critical point
R it is, strictly speaking, undefined, since the right-hand and left-hand limits that define
a mathematical derivative are different. We may adopt the convention whereby marginal
cost at such a point is defined as any number between the limiting right- and left-hand
slopes. A similar problem arises in defining marginal cost (MC) at the limiting intercept
points where the curve hits the axes. It is natural and convenient to define MC at the X2

intercept as any number equal to or less than the absolute right-hand slope at that point;
that is, MC is 1 or any number less than 1. Similarly, at the X1 intercept the MC, or
slope, is any number equal to or greater. than 2.31

2-10. ECONOMIC CONSIDERATIONS
An economic theorist who is used to thinking of problems in terms of market

situations will immediately be struck by a rather remarkable fact: The purely technical
concept of MC, or slope, which could be arrived at from the pure logic of the maximum
problem, without reference to prices or markets, does behave remarkably like a market-
price ratio. His economic intuition tells him as follows:

1. When 1 < p1/p2 < 2, each country will specialize on its best product and the world
will in fact be at the Ricardo point where 1 ≤ MC ≤ 2.

2. When p1/p2 < 1 (or > 2), both countries will specialize completely on the same
product and the world will actually be at one (or the other) intercept with MC ≤ 1 (or ≥
2).

3. When p1/p2 = 1 (or = 2), we shall actually be anywhere on one (or the other) of the
two line segments with MC, if uniquely defined, being = 1 (or = 2).

Not only does a market-price ratio have the properties of world MC, but by creating a
shadow-price ratio even where none existed and playing the game of competition, we
could end up at any specific point of the final optimal locus.32 Moreover, in the special
case of this problem in which the production conditions in the two countries are
independent, the problem of decision making can be in a certain sense decentralized and
partitioned into separate parts.

Thus, if we invent a parameter λ, which is to play the role of a shadow price p1/p2, we
can split our original maximum problem into two quasi-separate ones. Instead of
maximizing

I

subject to



let us separately maximize

II

z = λx1 + x2

subject to

2x1 + x2 ≤ C

and II′

subject to

There is some choice of λ for which separate optimal solutions to the latter problems, II
and II′, do add up to the optimal solution to I for any X1. Also it is clear that solving
both II and II′ is equivalent to solving the world problem of maximizing

I′

subject to

To arrive at an optimal point (on our X2X1 locus) of each of the following types:

1. At the upper, or X2, intercept, A
2. On the upper flat-line segment, AR
3. At the Ricardo point, R
4. On the lower steep-line segment, RB
5. At the lower, or X1, intercept, B

we must have

1. λ ≤ 1
2. λ = 1
3. 1 ≤ λ ≤ 2
4. λ = 2
5. 2 ≤ λ



As λ grows from small to large, X1 goes from nothing to the maximum, always at the
expense of X2. The correspondence between λ and the separate solutions is shown in
Fig. 2-7.

FIG. 2-7
The international-trade example has taken us a little further than the minimum-cost

diet example. In the diet problem we regarded food prices as given and came out with a
unique optimal diet. In the international-trade example we saw that to each given
structure of prices there corresponds an optimal output, and, further, we saw how the
optimal output changed in response to changes in the price structure. In the diet
problem we found a single optimal diet; in the international-trade problem we traced out
an entire family of optimal outputs by permitting price ratios to change. The
international-trade problem illustrates “parametric programming,” i.e., programming in
which one of the parameters is permitted to vary. These contrasts are not inherent in the
problems but result only from our choice of considerations to be discussed in each
context.



3

The Valuation Problem; Market Solutions
We have already noted that linear programming is based on a mathematical problem.

It happens that mathematical linear-programming problems come in pairs; every
mathematical linear-programming problem is intimately related to another problem
called its “dual.” This statement would be no more than an interesting mathematical
curiosity if it were not for the fact that if an economic problem can be formulated as a
linear-programming problem, then there will generally be a related economic problem
that corresponds to the dual. We shall soon see some examples.

These facts are not intuitively evident, and, indeed, it took a while after linear
programming had been discovered for the dualism feature to be recognized and
appreciated. But they should not be surprising to an economist who, after all, is familiar
with the fact that resource allocation and pricing are two aspects of the same problem.
An economist would expect that since linear programming solves the allocation
problem, it would solve the pricing problem also, and this, in essence, is what the
dualism property consists in. In this chapter we shall develop the duals of the two
problems discussed in Chap. 2 and shall investigate their economic meaning and
implications.

3-1. THE MATHEMATICAL DUAL
Let us take things up in historical order. In the development of linear programming

some dual problems were encountered before their usefulness was appreciated. To
follow this sequence we shall set up some duals first and subsequently consider their
interpretation.

A typical linear-programming problem can be expressed in the following way: It is
required to find the n numbers x1, x2, . . . , xn which make the expression

(3-1)
as great as possible, where c1, . . . , cn are given constants, subject to the restrictions that
no x shall be negative and that the x’s shall satisfy the m inequalities:



(3-2)
The diet and international-trade examples of the last chapter had precisely this form.

We now construct a different problem by rearranging the data of the problem just
stated. Conditions (3-2) consist of m inequalities. First we introduce a variable to
correspond to each of the inequalities and call these new variables u1, u2, . . . , um. Then
we form the sum of the cross products of these new variables with the constants on the
right-hand side of the inequalities; i.e., we form

(3-3)
Next we form an inequality involving the u’s to correspond to each of the variables x, in
the original problem, using for that purpose the coefficients of the x’s in the original
problem. For example, by using the coefficients of x1 in the original problem we derive
the inequality

a11u1 + a21u2 + .  . . + am1um ≥ c1

Note that we have reversed the sense of the inequality sign. Next we pick up the
coefficients of x2 in the original problem and cross-multiply them with the u’s to obtain
the second dual constraint. Continuing in this way we derive the whole set of dual
inequalities:

(3-4)
We then consider the problem of finding a nonnegative set of values u1, u2, . . . , um

which make expression (3-3) as small as possible while satisfying the inequalities (3-4).
This is another linear-programming problem, called the “dual” of the problem involving
the x′s.

The relationship between a problem and its dual may be summarized as follows:

1. The dual has one variable for each constraint in the original problem.

2. The dual has as many constraints as there are variables in the original problem.

3. The dual of a maximizing problem is a minimizing problem, and vice versa.



4. The coefficients of the objective function of the original problem appear as the
constant terms of the constraints of the dual, and the constant terms of the original
constraints are the coefficients of the objective function of the dual.

5. The coefficients of a single variable in the original constraints become the
coefficients of a single constraint in the dual. Stated visually, each column of
coefficients in the constraints of the original problem becomes a row of coefficients in
the dual.

6. The sense of the inequalities in the dual is the reverse of the sense of the
inequalities in the original problem, except that the inequalities restricting the variables
to be nonnegative have the same sense in the direct problem and the dual.

All this is no more than a peculiarly intricate formal manipulation. To make sense of
it we shall form and interpret the duals of the two examples discussed in Chap. 2, taking
up the international-trade example first because it is the easier of the two.

3-2. THE DUAL OF THE INTERNATIONAL-TRADE
EXAMPLE

The international-trade example concerned the allocation of production of food and
clothing between two mythical countries called England and Portugal. England was
supposed to have a comparative advantage in clothing production. We found that the
optimal allocation of effort depended on the terms of exchange between food and
clothing, but that at no terms of exchange would England produce the food and
Portugal the clothing. We now ask a different question: Suppose that the terms of
exchange (or relative prices) of the two commodities are given. What will be the value
of English resources relative to Portuguese resources?

To answer this question let us define a unit of resources in either country as sufficient
resources to produce a unit of clothing.33 Then, recalling the numerical data assumed,
one unit of English resources can produce one-half unit of food and one unit of
Portuguese resources can produce one unit of food. Let a unit of food be worth p1 and a
unit of clothing be worth p2. A unit of English resources can then be used to produce
either ½ p1 of food or p2 of clothing and, of course, will be devoted to whichever of
these has the greater value. Similarly a unit of Portuguese resources can be used to
produce either p1 of food or p2 of clothing and, again, will be used to produce the
greater value.

If we assume, as we did in Chap. 2, that p2 < p1 < 2p2, English resources will be used
to produce clothing, the price of which is p2, and Portuguese resources will be used to
produce food, the price of which is p1. Thus we arrive again at the optimum found in
Chap. 2. In addition, we arrive at a rule for valuing the services of the resources



themselves. On standard marginal-productivity principles, the value of the services of a
resource equals the value of its output in its most profitable employment. Thus if u and
u′ denote the values of English and Portuguese resources, respectively, u = p2 and u′ =
p1.

This answers the question with which we started this section, but what has it to do
with the relationship between a linear-programming problem and its dual? Just this: our
analysis was simply a thinly disguised solution to the dual of the comparative-advantage
example. To see this we restate the original problem, this time bringing in resources
explicitly. Denote the number of units of English resources devoted to food and
clothing production by y1, y2, respectively, and similarly the allocation of Portuguese
resources by  . Let Q, Q′ be the number of units of resources in the two countries.
Then the restrictions on resource allocation are:

For England:

y1 + y2 ≤ Q

For Portugal:

The total value of output, which is to be maximized subject to these restrictions, is

Next we construct the dual of this problem by following the directions given in Sec.
3-1. The dual problem will have two variables, one for each of the two constraints of
the direct problem—call them u and u′. We need not be concerned with their
significance yet. The objective function of the dual uses the constants of the restraints of
the original problem as coefficients of the dual variables. Thus it is

z′ = Qu + Q′u′
The dual has four constraints, one corresponding to each variable in the original
problem. The first of these constraints, for example, is that u times the coefficient of y1

in the first constraint of the direct problem plus u′ times the coefficient of y1 in the
second constraint of the original problem34 must be no smaller than the coefficient of y1

in the objective function of the original problem. Thus, the dual of the international-
trade example is as follows:

Minimize

z′ = Qu + Q′u′
subject to



These relations, plus a little detective work, will tell us what the new variables u and
u′ must signify. If the constraints are to make sense economically, u and u’ must be
prices because in each case u and u′ are compared in magnitude with p1 and p2, which
are prices. The objective function shows that u must be the price of English resources
because it is multiplied by Q, the quantity of English resources, and no other
interpretation would give the product Qu an intelligible meaning. Similarly u’ must be
the price of Portuguese resources. Thus z′, the quantity to be minimized, is the total
valuation of English and Portuguese resources. We can now interpret the restraining
inequalities of the dual problem. They require that English and Portuguese resources be
given high enough values so that whether they are used to produce food or clothing, the
value of the resources used will be at least as great as the value of the goods produced.

This dual problem can be solved at a glance. If p2 < p1 < 2p2, as we have been
assuming, the solution is obviously u = p2, u′ = p1. Comparing this result with the
previous solution we see that u, u‘ are just the values of output of the two types of
resources when devoted to their most profitable uses. The dual problem, then, amounts
to finding the smallest total valuation of resources z′ such that the value of output is
completely imputed to the resources.

Things stand as follows: We assumed that the prices of food and clothing were
known and started with the problem of finding the optimal allocation of food and
clothing production between England and Portugal. That turned out to be a linear-
programming problem. Then we formed the dual of this allocation problem and
interpreted it. The dual was the problem of assigning values to English and Portuguese
resources in such a way as to minimize the total resource valuation without giving rise
to unimputed profits in any possible use of the resources. This system of valuation is
reminiscent of the operation of a competitive market in which resource users are forced
by competition to offer to resource owners the full value to which their resources give
rise, while competition among the resource owners drives down resource prices to the
minimum consistent with this limitation.

This analysis illustrates (but of course does not prove) some important general
properties of the relationship between the two members of a pair of duals. These are,
indeed, the features that make the dualism property important both mathematically and
economically. Let us state them in general terms and then apply them to the
international-trade example.

1. The maximum value of the objective function of a maximizing problem equals the
minimum value of the objective function of its dual. Similarly, the minimum of the



objective function of a minimizing problem equals the maximum of the objective
function of its dual.

2. When a linear-programming problem has been solved, some of its choice variables
will be positive and others may be equal to zero. The dual problem has one constraint
corresponding to each variable in the original problem. If a variable is positive in the
solution to the direct problem, then the corresponding constraint will be satisfied with
exact equality in the solution to the dual. If a variable takes the value zero in the solution
to the direct problem, then the corresponding constraint in the solution to the dual will
usually be satisfied with an inequality.

Similarly, the dual problem has one variable for each constraint in the original
problem. If any constraint is satisfied by an inequality in the solution to the direct
problem, the corresponding variable in the solution to the dual will equal zero. And if a
constraint is satisfied with exact equality in the solution to the original problem, the
corresponding dual variable will usually have a positive value in the dual solution.

These are the crucial rules which tell us which of the dual variables have to be solved
for and which of the dual constraints will have equal signs and thus be available for use
in an elimination process. By virtue of these rules, once a linear-programming problem
has been solved, its dual reduces to a straightforward system of linear equations.

3. The dual of the dual problem is the original problem itself. The reader can verify
this readily by constructing the dual of the problem expressed in Eqs. (3-3) and (3-4).35

To test these properties by applying them to the international-trade example, first
recall that in solving the resource-allocation problem we found that the maximum
attainable total value of output was

z = p1Q′ + p2Q

In solving the resource-valuation problem we found that the minimum permissible total
imputed value of resources was z′ = p2Q + p1Q′, or the same. Thus the first general
property is confirmed in this case.

To test the second general property note that in the resource-allocation problem there
were four choice variables, y1, y2, , of which two, y2 (English resources devoted to
clothing) and  (Portuguese resources devoted to food) were positive in the optimal
solution. The assertion was that the dual constraints corresponding to these two
variables, the second and third constraints as written, should be satisfied with equal
signs, while the remaining constraints are satisfied with inequality signs. This is just
what happened. Furthermore, since both constraints in the original problem were
satisfied with exact equality, both dual variables should have positive values in the
solution to the dual, and this occurred also. The reader can check easily to assure
himself that the direct international-trade example is the dual of its dual, in accordance



with the third assertion.

3-3. THE DUAL OF THE DIET PROBLEM
In the preceding section we constructed the dual of the international-trade example

and interpreted it, finding that the dual was simply the problem of imputing values to
the services of the factors of production. The reader can test how well he is catching on
to this kind of manipulation by thinking back to the diet problem and trying to surmise
the significance of its dual.

In the diet problem36 we have to minimize the total cost of a diet chosen from among
five foods and still provide given amounts of calories and vitamins. Symbolically, we
have to minimize

z = 2x1 + 20x2 + 3x3 + 11x4 + 12x5

subject to

Following the dualism rules, the dual of the minimizing problem in five variables and
two restraints is the following maximizing problem in two variables and five restraints:

To maximize

z′ = 700u1 + 400u2

subject to

Each of the numbers on the right-hand side of these restraints is a price, the price of
some food. Thus if the restraints are to make sense, the left-hand sides must be prices
too. In the objective function 700 is a number of calories and 400 a number of vitamins.
So z’ will have the dimensions of a value if we interpret u1 as the price of calories and
u2 as the price of vitamins.

On this interpretation the function to be maximized, z’, is the imputed value of an
adequate diet, i.e., the imputed value of 700 calories plus 400 vitamins. The five
inequalities, one for each food, state that in every case the price of a food must be at
least as great as the imputed value of the calories and vitamins that it provides. For
example, suppose u1 = $1 and u2 = $10. Then we can compute a table, shown as Table



3-1, comparing the cost of each food with the value of the nutritive elements that it
contains. To illustrate the calculation, consider Food 5. It contains 2 calories (each
worth $1) and 1 vitamin (worth $10), giving a total value of $12. The two prices we
have assumed satisfy the inequality conditions because the value of the nutrients is in no
case greater than the price of the food.

TABLE 3-1. MINIMUM-COST-DIET EXAMPLE: FOOD PRICE AND VALUES OF
NUTRITIVE CONTENT

The problem dual to the minimum-cost-diet problem can then be stated: To assign
nonnegative values to the two food elements in such a way that the total “nutritive
value” assigned to a food never exceeds its market price and, consistent with this
limitation, so that the total nutritive value of the minimal acceptable diet is as great as
possible. This amounts to imputing the market values of the foods to the nutritive
elements, which are what make the foods worth purchasing.

Perhaps this doesn’t sound like a very sensible way to impute values to the nutritive
elements. We intend to justify it in the next few sections. But first, look at the useful
properties of the values we have assumed, $1 per calorie and $10 per vitamin. They tell
us that buying Food 1 is a bit like paying $2 for a table d’hôte dinner when the prices of
the individual dishes add up to $1. We may assume that the economical housewife will
never buy a food unless the value of its nutrients is at least as great as its price. Thus, if
she lets herself be guided by the prices we have been assuming, the wise housewife will
eschew the first three foods and buy only the fourth and fifth, and this, as we already
know from Chap. 2, is the way to get an adequate diet at minimum cost. So these prices
are sensible guiding prices for the diet problem. They are also, we shall see below, the
solution to the dual problem.

Granted, then, that the dual problem yields sensible prices such that if a person
follows the principle of never buying a food if its price is greater than the value of its
nutritive content, that person will be guided to a minimum-cost, adequate diet. Still the
question remains: Why does the dual problem have this property? The answer to this
question is not transparent, and we approach it slowly.

3-4. THE SIMPLE CASE OF “PURE” FOODS
Suppose we tackle a rather simple problem first—that in which all foods are “pure”



foods, each containing something of one nutritional element and nothing of all others.
Thus, X1 may have only calories, X2 only vitamins, X3 perhaps calories only (but not
necessarily with the same number as X1 or with the same market price), etc. In this pure-
foods case our problem obviously breaks up into m different, independent, simple
problems. Among all the calorie foods we select that one which most cheaply gives us
our calorie requirements. Similarly, we select among the pure foods containing only
vitamins the cheapest way of buying vitamins. Our final cost of an optimal diet is the
sum of the cost of getting calories and each of the other elements.

Let us consider calories alone. For this purpose we might as well number all the pure
calorie foods X1, X2, X3, . . . , with market prices p1, p2, p3, . . . , and with unit calorie
contents a11, a12, a13, . . . . We must minimize

z = p1x1 + p2x2 + . . .

subject to

We could get our answer by simply picking the greatest of a11/p1, a12/p2, etc., and
concentrating on the corresponding food.

It will turn out to be a little more convenient to define a shadow imputed price for
calories. Let this be called u1. As yet we don’t know its value (in dollars per calorie).
The “unit profitability” of any food can be thought of as dollars of calorie value it
contains minus its cash cost per unit, or as

These are definite numbers once u1, is given a definite value. At first glance one
might suppose that we should pick the largest of these profitability numbers and get our
calories from the corresponding food. But a second thought will convince us that this is
not valid. If one food cost twice as much as another and had twice as many calories, its
profitability would be twice as great; but there would be no advantage whatever in
choosing that food over the other.

Our profitabilities have to be put on a per-dollar basis if they are to be comparable.
We could work with



The greatest of these would give us our cheapest source of calories. For any positive u1,
or calorie shadow price, this would be the same thing as picking the greatest a1i/pi, or
number of calories per dollar.

Let us suppose that the kth food is the best one, so that

Our best calorie diet is (x1, x2, . . . , xk, . . . , xi, . . .) = (0, 0, . . . , c1/a1k, . . . , 0, . . .), and
its cost is

Obviously the (cheapest) extra or marginal cost of increasing our calorie requirements
from c1 to c1 + 1 units would be

The cost of calories—and note that we do not say the worth of calories—would seem to
be given by pk/a1k. This is the shadow price of calories, or

With our shadow price now determined, we can go back and look at our original
profit figures π1, π2, . . . , etc. Our objection to them—that they are not on a per-dollar
basis—now disappears. In every case the profits are negative except in the case of our
very cheapest calorie source Xk. Thus

If the unusual should happen and some other food also had exactly zero profit, then it
would be a matter of indifference as to how we divided our calorie expenditure between
the cheap food and Xk.

In effect we have determined the highest imputed shadow price u1, that is possible for
calories; or more accurately, the highest possible calorie price compatible with some
food in the system “breaking even.” All other nonoptimal foods will show a loss. In
order to solve a minimum problem (lowest cost from selecting best x’s), we have in
effect chosen to solve a maximum problem (highest price for calories). Thus our correct
u1 is the solution of



z = c1u1

to be a maximum subject to

All that we have established in the pure-calorie-foods case also holds for the pure-
vitamin-foods case and for any other pure foods. Let us recapitulate what we have
established.

1. We can define the profitability of any pure food in terms of dollars per unit, i.e.,
the π1, π2, . . . .

2. To do this we must first know the imputed (shadow) price of the nutritional
elements, i.e., the u1 per calorie, the u2 per vitamin, . . . , um, etc.

3. The shadow prices of the nutrients have a number of properties:
a. They are in dollars per unit of each nutritional element.
b. They reflect marginal costs, i.e., the least cost of an extra prescribed unit of the

element in question.
c. They must be such as to make profits negative for a category of foods,

namely, those foods that are not bought at all.
d. They must be such as to make profits zero for any food that is bought in

positive quantities.
e. They are, in economic jargon, “derived demands,” and these values depend on

the prices of the foods (p1, . . . , pn), on the food contents (aij), and (possibly)
on the specified requirements (c1, . . . , cm).

f. The shadow prices (u1, . . . , um) are the solution of the “dual,” or “transpose,”
problem to our original problem. They give us the maximum amount of what
might be called “economic rent” that can be imputed to the nutritional
elements; and the sum total of optimal rents on nutrients must add up to
exactly the same value as the total optimal cost of foods.37

3-5. GENERAL CASE OF MIXED FOODS
3-5-1. Marginal Costs and Imputed Values. The above conclusions were

developed for the almost trivial case of pure foods, where no food had more than one
nutritional element. It so happens that they remain substantially unchanged if we
consider the more realistic and complicated case in which foods are mixtures of many
elements. A slightly more complicated argument is necessary to demonstrate this; at the
same time the actual task of finding a best diet is also slightly more complex.

The argument depends on an analysis of the marginal cost of the nutritive elements
and, in particular, on the fact that each nutritive element has a determinable marginal



cost even when the nutrient cannot be purchased individually but has to be bought in
mixed bundles called foods.

Take an example. Suppose the foods available, their prices, and the nutritive
requirements are given in Table 2-4. Take as a point of departure from which to
compute marginal costs the diet consisting of 25 units of Food 1, 5 units of Food 2, 25
units of Food 3, 50 units of Food 4, and 300 units of Food 5. It is easy to verify that this
diet meets the nutritive standard (i.e., is feasible), but we know from our previous
solution in Chap. 2 that it is not the cheapest diet that does so.

The marginal cost of a calorie, say, can be defined as the increase in the cost of the
diet that would result from increasing the number of calories required by unity. In the
present instance there are three ways in which a unit increase in caloric requirement
could be met: (1) purchase one more unit of Food 1, at a cost of $2; (2) purchase one
more unit of Food 3, at a cost of $3; (3) increase consumption of Food 5 by one unit
and simultaneously reduce consumption of Food 4 by one unit, at a net cost of $12—
$11 = $1. The third method is obviously the cheapest, thus determining the marginal
cost of calories at $1.38

This example suggests several generalizations. First, the pure foods 1, 2, and 3, being
relatively expensive, did not affect the calculation. We would have found the same
marginal costs even if those foods had been omitted from the list of possibilities. The
essential requirement for establishing marginal costs for the separate nutritive elements
is the possibility of substituting foods of different nutritive composition for each other,
as in method 3.

Second, the marginal costs of the nutrients depend not only on the prices of the foods
and their nutritive contents, but also on the diet used as a point of departure. If, for
example, the diet considered above had not included at least one unit of Food 4, method
3 for increasing its caloric content would not have been available and the marginal cost
of calories would have been $2, derived from method 1. Another illustration of the
dependence of marginal costs on the diet used as a point of departure is given by the
diet consisting of 400 units of Food 5. This meets the minimum requirement—indeed it
provides 100 calories to spare. As a result the marginal cost of calories with reference to
this diet is zero, since the same diet would suffice if the caloric requirement were
increased to 701. In general, each feasible solution to a programming problem—in this
example each feasible diet—implies a set of marginal costs. There may be numerous
feasible diets, however, corresponding to a single set of marginal costs.

Third, this set of marginal costs would inform us at once, if we had not known it in
advance, that the suggested diet is needlessly expensive. This is shown by the fact that
the prices of three of the foods, namely, the first three, are greater than the values of
their constituents valued at marginal cost. Thus, Food 3 provides one calorie at a cost of
$3, while a calorie can alternatively be obtained by method 3 for a net cost of $1.



Clearly money can be saved without changing the nutritional content of the diet by
substituting 25 units of Food 5 for 25 units each of Food 3 and 25 units of Food 4, i.e.,
by eliminating Food 3 from the diet and restoring its nutritive content by method 3.39

Since the nutritive elements can in effect be purchased individually, by artful
substitution if they are not offered in pure form, the table d’hôte analogy suggested
earlier applies. No food can be included in the economical diet if its price is greater than
the marginal cost of its nutritive content.

By similar reasoning a diet cannot be optimal if there is any available food, whether
included in the diet or not, whose price is less than the sum of the marginal costs of its
constituent nutrients. In the first place it would be a mathematical contradiction for such
a food to be included in the diet. The reason is that the marginal costs are the lowest
prices at which the various nutrients can be obtained. For any food in the diet to be
priced below the marginal-cost value of its constituent nutrients would mean that a
package of nutrients could be acquired at less than its marginal-cost value. This would
mean that at least one nutrient could be purchased at less than its lowest cost. This
deduction may be more transparent if it is remembered that the marginal costs of the
nutrients reflect the prices of the foods in the diet; change those and you change the
marginal costs.

In the second place if any food not in the diet were priced below the sum of the
marginal imputed costs of its nutritive content, then that diet could not be optimal. The
reason is that if this food were substituted for a combination of foods in the diet with
the same nutritive content, then money would be saved.

The upshot of this argument is that (1) the price of every food must be at least as
great as its marginal-cost value computed on the basis of an optimal diet, and (2) the
price of any food included in the optimal diet must be exactly equal to the marginal-cost
sum of its nutritive contents. These statements, it should be noted, do not characterize
the prices of the foods, which are regarded as given data in this discussion. Rather, they
characterize the marginal costs of the nutrients, which are to be imputed from the food
prices. We have been calling these marginal costs of nutritive elements, chosen so as to
satisfy these requirements, “shadow prices.”

3-5-2. Dual Problem. We have not mentioned the dual problem of linear
programming so far, but it is emerging all the same. The requirement we have just
arrived at, namely, that the sum of the marginal costs of nutrients associated with each
food in an efficient diet must be not less than the price of that food, is the same as the
constraining inequalities of the dual linear-programming problem. Written algebraically,
it is

i.e., the excess of the nutritional worth of the ith food over its price cannot be positive.
Moreover, the equality (as distinct from the inequality) must hold for all foods included



in the optimal diet.

3-5-3. Five-food Example. Let us revert to the five-food example given in Table 3-2.

TABLE 3-2. NUTRIENTS AND PRICES IN FIVE-FOOD EXAMPLE

Our unknowns are the best diet and its cost; also the correct shadow prices for
vitamins and calories. We happen to have been told that the best diet is (0, 0, 0, 100,
300). It can also be revealed that the correct shadow prices for calories and vitamins are
(u1, u2) = (1, 10). How can we find this out for ourselves? And what good is this last
information once we have acquired it?

To find it out for ourselves, we might set down the rule:

Find shadow prices that permit of no positive profits anywhere in the system and
that permit zero profits somewhere in the system.

This rule certainly will help us to rule out a number of price configurations. Thus we
could never have the vitamin price greater than 20 because that would make

π2 = 1u2 — 20 > 0

Likewise, we could never have the calorie price greater than 2 since that would make π1

> 0. We might simply examine all our profit figures and try all combinations of the u’s
until we end up with a pattern of profits:

where the equality sign holds at least once.

After much experimentation, we might be lucky enough to hit upon the combination
(u1, u2) = (1, 10), which results in

We might conclude that our rule had led us to the true equilibrium prices. But this is



too hasty a conclusion. Perhaps there are other lucky guesses for the u’s that would also
give us a pattern of profits compatible with the above rule. Even worse, our result
seems to be independent of the C’s.

Our darkest suspicions are confirmed when we happen to try any of the following
price combinations:

(A)

(u1, u2)

= (0, 11)

(B) = (1, 10)

(C) = (2, 8)

(D) = (2, 0)

We have already seen that B satisfies our profit rule. The reader may verify that any of
these other points also gives profits which are nowhere positive. Thus, he will find that
for D,

(π1, π2, π3, π4, π5) = (0, — 20, — 1, — 9, — 8)

Our rule leads not to one solution but to four solutions. Actually, the multiplicity of
price patterns is much greater; it is infinite. Any weighted average of the prices in A and
B, or in B and C, or in C and D also satisfies our rule. For example, the point (u1, u2) =
(1.3, 9.4), which is three-tenths of the way between B and C, gives a profit pattern, the
algebraic signs of which are (—, —, —, —, 0), etc.

FIG. 3-1
All this is summarized in Fig. 3-1. The lines π1π1, . . . , π5π5 represent the

combinations of the shadow prices that will make each food show zero profitability.
The “pure foods” x1, x2, and x3 all yield east-west or north-south lines. The mixed foods
have profit boundaries that slope downward depending upon the mixture of calories
and vitamins.



Our rule of no positive profits means that we must always be below or to the left of
every line. Also shadow prices cannot be negative, so that, in all, our profitability rule
constrains us to the five-sided area ABCDE.

Our rule of no positive profits certainly needs amplification. So long as we had only
one constraint—as in the simple theory of comparative advantage—the rule worked out
satisfactorily. But now that we have two (or more) constraints, the rule gives us too
many possible sets of equilibrium prices. What we seem to need in Fig. 3-1 is a “best”
direction toward which to aim. And intuitively one feels that this best direction can only
be supplied by a knowledge of the C’s, or minimum nutritional requirements.

The incompleteness of our rule can be seen also from another point of view.
Consider any set of shadow prices that satisfies the rule, i.e., that is such that the price
of every food is at least as great as the imputed value of its nutritive contents. Then
whatever diet the housewife purchases will cost her at least as much as the imputed
value of the nutrients it contains. Suppose, now, that the housewife buys a nutritionally
adequate diet. That diet will contain at least as much of every nutrient as the nutritional
standard calls for and therefore—and this is the result we are aiming for—will cost at
least as much as the shadow-price value of the nutrients required by the adequate diet.

Now suppose that strict inequality happens to hold, i.e., that at given shadow prices
and market prices the housewife pays more for an adequate diet than it is worth in
shadow-price terms. Then either the housewife is purchasing wastefully (not an
unheard-of possibility) or there is an inconsistency in the system of prices, since what a
thing is worth in a market economy is what a wise buyer has to pay or forego in order
to obtain it. Let us rule out the possibility that the housewife is wasteful. Then she
spends her money exclusively on foods with prices exactly equal to the shadow worth
of their nutritive contents, and any excess of the cost of her purchases over the shadow
worth of an adequate diet must arise from purchasing more of certain nutrients than the
nutritive standard calls for.

For example, suppose u1 = 2, u2 = 8. Then the housewife, following the table d’hôte
rule,40 is restricted to Foods 1 and 5. The cheapest way that she can meet the nutritional
requirement is to buy 400 units of Food 5 at a cost of 12 × 400 = 4,800. On the other
hand, the shadow worth of the minimum adequate diet is only 2 × 700 + 8 × 400 =
4,600. Somehow she has been euchred out of 200 money units. How this happened is
clear: she has bought 100 more vitamins (worth 2 each) than the requirement called for.
Furthermore, the inconsistency in this system of prices is clear: since she has an excess
of vitamins over the nutritional minimum, their marginal cost (as defined previously) is
0 and not 2.

We can now see an additional requirement for the set of shadow prices: they must be
such that it is possible to satisfy the nutritional requirement for a cost that does not
exceed the shadow worth of the nutritional requirement. This implies that the shadow



prices must be such that either it is possible to satisfy the requirements exactly, using
only foods permitted under the table d’hôte rule, or, if there has to be an excess of any
nutrient, the shadow price of that nutrient is zero.

An equivalent—and more convenient—way to state this requirement is:

Consistent with every food’s costing at least as much as the shadow worth of its
nutritive contents, the shadow prices must maximize the imputed value of the schedule
of nutritive requirements.

Why is this statement equivalent? Because when no food is assigned a shadow worth
greater than its market price, the shadow worth of a specified schedule of nutrients
cannot be greater than the market price of the cheapest diet that meets that schedule.
When that shadow worth of nutrients equals the market price, then that shadow worth is
as great as possible, subject to the condition.

Why is this mode of statement convenient? Because it puts the price-imputation
problem in linear-programming form. Specifically, it formulates the problem as follows:
The total imputed worth of the schedule of requirements is the sum of its calorie worth,
c1u1, plus its vitamin worth, c2u2, . . . . Hence the shadow prices are to be chosen so that

Z′ = c1u1, + c2u2 + . . . + cmum

is a maximum subject to

A minimum-cost problem has been turned into a maximum-rent problem! A
quantities problem has been turned into a prices problem! This is the implication of the
remarkable mathematical duality feature. discovered by von Neumann and other
mathematicians, but quite consistent with economic reasoning. Thus we should expect
the national income (“rents”) paid to factors to equal in a simple economic system the
value of the national output sold; or maximum Z’ = minimum Z.

We note, further, that under the expanded rule the housewife will not buy an excess
of any nutrient unless that nutrient has a shadow price of zero Thus this rule leads both
to efficient purchasing on her part and to a consistent system of market and shadow
prices.

One last question: Will the system of shadow prices that satisfies this criterion
completely close the gap between the cost of the cheapest adequate diet and the shadow
worth of the nutritive requirements? The remark in the last paragraph suggests that it
will; a mathematical proof (which amounts simply to spelling out this remark carefully)
is given in Chap. 4.



Let us apply our generalized rule to see whether it does select out the correct one of
the four consistent price patterns: (0, 11); (1, 10); (2, 8); (2, 0). Our four different totals
of rents are

Clearly the second case, B, represents the true optimum or maximum Z’, which does
equal the minimum Z = 4,700 that we have seen earlier.41

Figure 3-2 indicates this same solution for optimal prices. We are free to move in
ABCDE so as to maximize Z’. Contours of equal Z’ are given by parallel lines with
absolute slopes C1/C2 =  . The arrows (perpendicular to the contour) indicate the
direction in which our optimum lies. Clearly, the best place to end up is at B, where Z’
= 4,700; anywhere else will give a lower Z’; only at B will the broken line ABC be
touching (but not crossing) the highest Z’ contour.

FIG. 3-2
If we imagine an Office of Price Administration (OPA) that tries to find the best

prices by the deliberate use of intelligence, its task is now finished. It has posed for
itself a prices-maximum problem in linear programming, rather than the quantities-
minimum problem that a War Production Board (WPB) might formulate.

It is easy to verify that the problem of finding a minimum-cost adequate diet and the
problem of imputing values to nutritive elements form a pair of duals with all the
properties listed in Sec. 3-2. The first property held that the cost of the minimum-cost
adequate diet would be equal to the maximum value imputable to the nutritional
standard under the restraint that every food cost at least as much as its imputed
nutritional worth. We found that the minimum-cost diet was to consume 100 units of
Food 4 and 300 units of Food 5 at a cost of

100 × 11 + 300 × 12 = 4,700 = minimized Z



The solution to the valuation problem was to value a unit of calories at 1 and a unit of
vitamins at 10, giving as the total valuation of the required standard of nutrition: 700 × 1
+ 400 × 10 = 4,700 = maximized Z’. The two are equal, as they should be.

The second property concerned the relationship between the restraints satisfied with
equalities and inequalities in the direct problem, on the one hand, and the variables that
took on zero and positive values in the solution of the dual problem, on the other. In
this example, both restraints are satisfied exactly in the solution to the diet problem, so
neither dual variable is zero. Further, since x4 and x5 are positive in the solution to the
diet problem, the fourth and fifth constraints will be satisfied exactly in the solution to
the dual. The dual thus reduces to

from which u1 = 1, u2 = 10 could be calculated readily if not already known.

The solution in the reverse direction illustrates the underlying logic more clearly.
Once the shadow prices of the nutrients are given, we can use this information to select
the best diet without solving a linear-programming problem at all. For, given the best
prices, that is,

(u1 u2) = (1, 10)

we know that at least all but m = 2 of the foods can be regarded as unprofitable and
their quantities set equal to zero. Thus, for

(u1, u2) = (1, 10)

we have (π1, π2, π3, π4, π5) = ( – , –, –, 0, 0), so that our best diet will be (x1, x2, x3, x4, x5)
= (0, 0, 0, x4?, x5?). We can therefore concentrate on only two foods, in this case x4 and
x5. We must select the precise amounts of these foods so as to achieve our nutritional
constraints. These constraints are also 2 (or m) in number, so that we have enough
equations to determine our two unknowns.

Our general procedure is as follows:

Suppose we know our best prices. They are m in number at most; but some prices
may be zero, so that we may have only r ≤ m effective constraints. This means there will
be some r economical goods which will exactly satisfy the effective constraints. We
solve these r equations for exact values of the r economical X’s.

The exact solution to our arithmetic problem is to determine the amounts of X4 and X5

from our calorie and our vitamin equations; or from

or



as substitution or elementary algebra will verify.

A sophisticated economist might notice in this problem that it would be possible to
define certain composite commodities, or market baskets of X4 and X5, which, if
properly weighted, would be found to consist entirely of calories and entirely of
vitamins. He would have to be sophisticated because the relative weights could not be
positive numbers. I cannot buy X4 and X5 and put them into a basket and hope that there
will be only vitamins in the basket. But if I buy 2 units of X4 and sell 1 unit of X5 I will
end up with 1 unit of vitamins and nothing else! My market basket, or composite
commodity, has weights (+2, – 1). Similarly, to get pure calories, I must buy 1 unit of X5

and sell 1 unit of X4, leaving me with 1 calorie unit and nothing else.

What is the market cost or price of each of these composite commodities or
constructed “pure” foods? For the vitamin basket it is twice the price of X4 minus once
the price of X5, or +2(1) – 1(12) = 10. For the calories, it is the net algebraic cost of the
foods in the second basket, or +1(12) – 1(11) = 1. It is not surprising that we have
ended up with 1, 10, already seen to be the shadow prices u1, u2 and MC1, MC2.42

The reader may verify that if the NRC set the vitamin requirement C2 = 0, then a best
set of prices would be (u1, u2) = (2, 0), and we would have only x1 a nonzero quantity.43

We would solve for the exact x1, by the r = 1 equation system:

1x1 = 700

or

x1 = 700

3-6. THE DUAL AND DECENTRALIZATION
The dual and its connection with valuation invite us to apply linear programming to

the study of markets and prices as well as to the direct study of production and
allocation. We do this in two stages, using the international-trade example for
concreteness. In this section we discuss the way in which the solution to the dual or
valuation problem can be used to guide production to an efficient allocation. This
discussion will reinforce the identity of the solution of the linear-programming dual
with the determination of equilibrium prices in familiar economic theory.

We have already seen, in Sec. 2-10, that the food-clothing price ratio λ = p1/p2 can
lead the two countries to their most advantageous specialties without any more explicit
form of coordination. The problem can be decentralized even further. Consider the
maximum problem within any one of the countries, such as England. A central planning
board could issue shutdown orders so as to maximize



subject to

using the notation of Sec. 3-2. But alternatively, we might abolish all planning agents
and think of food and clothing industries each made up of a myriad of small
independent firms. They incur costs and earn revenues from the sale of their products.
This they do by converting resources into products. So far we have not spoken much
about the character of the resources involved (labor, as in Ricardo’s theory, etc.). But it
will be obvious on reflection that Q is a measure of total resources that can be parceled
out to the various firms in the two industries, and thus that all the little y’s provided to
the firms must add up to not more than Q. Also, the production function of, say, the
999th food producer is of the form

x1,999 ≤ ½ y1,999

and the corresponding production function of the 77th clothing firm is

x2,77 ≤ y2,77

where total output of England’s food is the sum of all food firms’ output,

x1 = x1,1 + . . . + x1,999 + . . .

and total output of England’s clothing is

x2 = x2,1 + . . . + x2,77 + . . .

and where the total of all resources used by all firms cannot exceed the total of all
resources available in the country; or where

Q ≥ y1,1 + . . . + y1,999 + . . . + y2,1 + . . . + y2,77 + . . .

Note too that England’s grand production possibility curve, as given earlier in Fig. 2-5,
is simply an aggregation of these individual-firm production relations.

One minor point should be noted. Why is there an inequality in the production
function? This is because a firm may be inefficient and not be getting as much product
as known technology permits. It must be shown that such inefficient behavior—which
is clearly inconsistent with a final optimum—will in fact be heavily penalized by a
competitive market and thus be eliminated. The similar inequality with respect to the
sum of the y’s, which would imply wasteful unemployment of available resources, will
also turn out to be prohibited by a perfect market mechanism.

To the observer with world vision, p1, p2 are shadow prices constructed for a
purpose. To the domestic English planners interested in selecting the various x’s and y’s
in order to maximize the value of English NP, they are real enough external prices,
giving a barter ratio at which goods can be converted into each other by international



trade. But the English planners could let the decentralized (but not uncoordinated)
individual firms seek out the optimal solution. The planners need, in order to do this, to
introduce a shadow price, or internal-accounting point price, for resources. Let this
price, be u. Then for any food producer, say the 999th, the profit statement reads

Total revenue – total cost = p1x1,999 – uy1,999

and the “profitability per unit of output” will be

from the production function for food. Similarly for the 77th clothing producer, unit
profits are

In the above profit expressions, we may omit the inequality signs whenever we are
speaking of the most efficient producers.

How shall the resource price u (what we earlier called shadow price) be determined?
At first let us suppose that there is an all-powerful Office of Price Stabilization (OPS)
that will use high intelligence to solve this problem, but that once the best price has been
established we shall try to rely on the quasi-automatic response of competing firms to
determine appropriate output quantities. The planning authorities will probably set up
some such rule of behavior for firms as follows:

1. If you make losses, you must contract your scale of operations until finally you go
out of business.

2. If you make positive profits, you may (and hence will) expand your scale of
operations at some positive rate.

3. If you just break even with zero profits, let us for the moment say you stand pat at
any existing level of activity.

In terms of this rule, there are certain obvious things that the OPS must do in setting
the best price or wage for resources. At the least, u must be set so as not to lead to
positive profits anywhere in the system—in other words, set so high that even the most
efficient producers in clothing and food are unable to realize surplus profits. This means
we must have

It will be noted that there is no longer an inequality sign accompanying the left-hand
equality signs in the above profit expression. This is because we are considering the
profitability of the most efficient producers of food and clothing; not even they are



permitted to have (excess) profits. These are the same inequalities for u as we found
when we solved the dual in Sec. 3-5.

Our above conditions determine a minimum below which u must not go, but they do
not rule out still higher shadow prices. However, it is reasonable to add the further
condition that profits are not to be everywhere negative—that they are to be somewhere
zero. Otherwise, no firms could stay permanently in business and the total of resources
used would be zero, and all production and income would also be zero.

If the equality sign must hold for at least one of our profit expressions, it follows
logically that

This means that if p1 = 30 and p2 = 20, we must set our shadow price equal to max
(30, 40), or to 40. This yields negative profits for all food firms and zero profits for all
most efficient clothing firms; profits for inefficient food firms are always negative.

If the international prices should be p1 = 60, p2 = 20, then

u = max (60, 40) = 60

and it is clothing that has negative profits. Only in the critical case where p1 = 2p2 will
both industries be capable of simultaneous operation in England.

Our OPS has solved its price problem satisfactorily. But there is one major difficulty
about our setup when it comes to determining the exact quantities of resources and
output. This difficulty is a consequence of the extreme constant-cost assumption
involved in all simple versions of linear programming, assumptions which put the word
“linear” into the name of the subject. At our final best price, firms are not forced all to
contract or all to expand indefinitely. Efficient firms in the proper industry are permitted
to have a large or small output. But there is nothing driving them in total toward 100 per
cent use of society’s resources, neither more nor less. The atomistic firms are suspended
in a kind of neutral equilibrium: they have no incentive to do other than what they are
doing. Profit considerations neither encourage nor discourage them from doing what
society desires.

At the very last stage OPS must call upon WPB for a few direct quantity fiats. Once
the proper prices have been promulgated by the pricing authorities, the production
authority does not have to use much intelligence; but it does have to use a little. It must
lead the neutral (efficient) producers—by their moustaches so to speak—to use up
exactly 100 per cent of the available resources.

If we call the actual amount of total resources currently in use at time t, y(t), then



The WPB must make sure that

y(t) = Q
if a true optimum is to be reached, and it must have the intelligence to recognize this
condition.44



4

The Algebra of Linear Programming

4-1. INTRODUCTION
Thus far linear programming has been regarded as an economic and business

problem. We have seen how it arises naturally in the course of economic optimization.
In this chapter we shall consider it as a problem in algebra, because the current
importance of linear programming stems from the fact that when economic problems
are formulated in this manner they can be solved by relatively simple, though
sometimes tedious, algebraic methods.

In the diet problem of Chap. 2 we considered n different foods X1, . . . , Xn and m
different nutritive elements. We assumed that one unit of the jth food contained aij units
of the ith nutritive element. Then, if a housewife purchased x1 units of the first food, x2

units of the second food, . . . , and xn units of the nth food, she would be purchasing

y1 ≡ a11x1 + . . . + a1nxn

units of the first nutritive element,

y2 ≡ a21x1 + . . . + a2nxn

units of the second nutritive element, . . . ,

ym ≡ am1x1 + . . . + amnxn

units of the mth nutritive element.

We then assumed that the housewife’s family required c1, c2, . . . , cm units of the m
nutritive elements, respectively. Thus the housewife could satisfy her family’s
requirements by buying any quantities x1, . . . , xn of the n foods, provided that the
nutritive requirements were satisfied, i.e., provided that

(4-1)
and, since it is meaningless in this context to buy a negative amount of a food, provided
that



(4-2)

There may be an infinite number of diets45 which satisfy the inequalities (4-1) and (4-
2). Any such diet is called a feasible diet. We assumed that the housewife would want to
purchase the most economical feasible diet. In order to express this we introduced the
market prices of the n foods, P1, P2, . . . , Pn, respectively, and the aggregate cost of a
diet,

(4-3)
Then we asserted that the housewife’s problem was to find a set of food quantities x1, . .
. , xn which satisfied inequalities (4-1) and (4-2) and made Z as small as possible.

That was an economic, or planning, problem. It can be converted to an algebraic
problem simply by omitting most of the explanatory text. Thus, let c1, . . . , cm, P1, . . . ,
Pn, a11, a12, . . . , a1n, . . . , am1, . . . , amn be any numbers whatsoever. We may pose the
algebraic problem of finding the numbers x1, . . . , xn which satisfy the inequalities (4-1)
and (4-2) and make the expression (4-3) as small as possible. If we can solve this
problem, then we can solve the diet problem or any other economic (or noneconomic)
problem of the same form. This is the linear-programming minimum problem.

Similarly, if c1, . . . , cm, P1, . . . , Pn, a11, . . . , amn are any numbers whatsoever, we
can set the problem of finding a set of numbers x1, . . . , xn such that

(4-4)

(4-5)
and

(4-6)
is as great as possible. This is the linear-programming maximum problem.

This chapter will discuss the solution of the linear-programming maximum problem.
The solution of the linear-programming minimum problem is similar. In fact, since
minimizing Z is the same as maximizing – Z, a minimum problem can easily be
converted into an equivalent maximum problem.46



4-2. THE EXISTENCE OF SOLUTIONS
It is quite possible for a linear-programming problem to have no solution. Suppose,

for example, that n = 2, m = 2, and the problem is to find x1, x2 such that

(4-7)

(4-8)
and

Z = 3x1 + 4x2

is as great as possible. Equations (4-7) can be written in the form

or

which is impossible. In this case the inequalities were inconsistent and the consequence
is similar to that encountered in ordinary algebra when a system of simultaneous
equations is inconsistent.

There is also a second kind of nonsolvability. Consider the problem of finding x1, x2

such that

and

Z = 3x1 + 4x2

is as great as possible. In this case the inequalities will be satisfied for any positive value
of x1 and x2 = 10x1. Then Z = 3x1 + 40x1 = 43x1 and can be made as large as we please.
The inequalities are consistent, but there is no upper limit to Z. In the following we shall
always assume that the inequalities are consistent, thus avoiding the first kind of
nonsolvability. The second kind of nonsolvability will be dealt with in the course of the
discussion.

4-3. THE STRATEGY OF LINEAR PROGRAMMING
No direct method for solving linear-programming problems is known; i.e., there is no

formula which can be used to calculate the solution of a linear-programming problem



directly by substituting in the values of the coefficients and other given data. This
contrasts with the closely allied problem of solving simultaneous linear equations,
where direct formulas do exist. For example, the simplest case of simultaneous
equations is the case with two equations in two unknowns, as follows:

It can be verified easily that the solution to these equations is

if the denominator is not zero. Similar explicit formulas can be given for solving
systems of any size desired.

In the absence of direct solutions to linear-programming problems we resort to
iterative solutions, i.e., solutions carried out in a number of steps each of which brings
us closer to the desired result. A number of methods of solution have been proposed,
all of this general type. In this chapter we shall discuss two of them: the “simplex
method” due to Dantzig and the “complete-description method” due to Motzkin, Raiffa,
Thompson, and Thrall.

4-4. THE SIMPLEX METHOD, GENERAL ARGUMENT
The description of a linear-programming problem given in Eqs. (4-4) to (4-6) is

rather inconvenient for use in the simplex method. A more manageable formulation can
be obtained by the simple device of introducing “slack,” or “disposal,” variables which
permit us to replace the inequalities of Eqs. (4-4) by equalities. The ith equation of set
(4-4), for example, is

(4-9)
Suppose we replace that inequality by the equation

(4-10)
where xn+i ≥ 0. Then any set x1, . . . , xn which satisfies (4-9) will satisfy (4-10), and
conversely. The new variable xn+i is known as a slack variable because it merely
accounts for the excess of the right-hand side of (4-9) over the left-hand side. We may
therefore write the linear-programming maximum problem in the following form:

Find x1, x2, . . . , xn, xn+1, . . . , xn+m such that



(4-11)

(4-12)
and

(4-13)
is as great as possible.

By this device, the inequalities of (4-4) are replaced by the equalities of (4-11) at the
cost of introducing m additional nonnegative unknowns.

We shall usually write equations like (4-11) in a slightly disguised but more
symmetric form. Suppose we let

Then (4-11) can be written

(4-14)
Equations (4-14), (4-12), and (4-13) are the form of the linear-programming problem
which we shall solve.

Any set of values (x1, x2, . . . , xn+m) which satisfies (4-11) and (4-12) and which
makes (4-13) as large as possible will be called an optimal solution. There may be more
than one. Any set of values which satisfies (4-11) and (4-12), whether or not it makes
(4-13) as large as possible, will be called a feasible solution. The simplex method,
conceptually, solves a linear-programming problem in two stages. First, it gives a
procedure whereby we start with any set of values at all (a zeroth approximation) and,
by iteration, find a feasible solution. Second, it gives a procedure for starting with any
feasible solution and finding, by iteration, an optimal solution. We shall see that in



practice these two stages can usually be combined, but it is useful to separate them in
explaining and justifying the method.

The two stages can be discussed in either order, but the second stage, the one which
begins with a feasible solution and ends with an optimal solution, is the core of the
method, and we shall begin with it.

To see the idea behind the method, consider Eqs. (4-11). They consist of m equations
in m + n unknowns. Thus, if we set any n of the unknowns arbitrarily equal to zero,
there will remain an ordinary set of m simultaneous equations in m unknowns.
Elementary algebra teaches that under certain conditions (which we shall consider later
in this chapter and in Appendix B), such a set of equations has a unique solution.
Furthermore, we can select an arbitrary set of n unknowns from a set of m + n in only a
finite (though maybe large) number of ways. Thus there is only a finite number of these
unique solutions, each involving a different set of m of the variables. We shall call a
solution which involves no more than m of the variables a basic solution. A particular
value of Z, given by Eq. (4-13), corresponds to each basic solution. When the values of
the variables associated with a basic solution are nonnegative it is called a basic feasible
solution.

Each nonbasic feasible solution, i.e., each solution in which less than n variables are
zero, can be thought of as a positive weighted average of the values of the
corresponding variables of two or more basic feasible solutions. The value of Z
corresponding to a nonbasic solution is, because of the linear form, the same weighted
average of the values of the Z’s of the basic solutions which combine to form it. Thus
the value of Z corresponding to a nonbasic feasible solution cannot be greater than the
highest value of Z corresponding to its component basic solutions. It follows that if
there is any optimal solution to a problem, at least one of the basic solutions will be
optimal. Thus, in searching for an optimal solution we need to consider only basic
feasible solutions of which there are only a finite number. The heart of the simplex
method is a procedure for starting with any feasible basic solution and from it
computing another feasible basic solution which corresponds to a higher value of Z.
Since there are only a finite number of basic solutions this procedure must lead in a
finite number of steps to a basic solution which corresponds to the highest possible
value of Z.

In this outline of the argument we have made a number of plausible statements. We
must now prove those statements and, in the course of the proof, develop the simplex
method of solution.

4-5. A DIGRESSION ON SIMULTANEOUS EQUATIONS
The foregoing discussion has perhaps made it clear that linear programming is closely

related to ordinary simultaneous equations. Before going into any details we shall recall



some basic facts about simultaneous equations.

We can use a system of three equations in three unknowns to bring out all the facts
that we require. The general form of such a system is

(4-15)
The discussion and solution of such systems is usually conducted with the aid of the

algebraic concept of a “determinant,” and this is very convenient. The discussion of
determinants would take us too far afield, however, and we shall deny ourselves this
device with one slight exception: it will simplify our work considerably to make use of
second- and third-order determinants. A second-order determinant is a symbol
involving four numbers, thus:

Where no confusion will result, we abbreviate it by writing only the first and last
elements, thus: |c, f|. The value of a second-order determinant is defined by a simple
formula depending on the four numbers which comprise it. The formula is

For example,

Now turn to the simultaneous equations (4-15). Multiply the first equation by a21 and
the second by a11 and subtract the first result from the second. We obtain

The coefficients of x1 are zero, and the coefficients of the remaining terms are second-
order determinants. We therefore have

(4-16)
Similarly, multiplying the first equation by a31 and the third by a11, and subtracting the



first from the third, we obtain

(4-17)
In these formulas we used the abbreviated form of the determinants since the first and
fourth elements of each determinant form two corners of a square, the other corners of
which can be found by referring to Eqs. (4-15).

Equations (4-16) and (4-17) are a pair of simultaneous equations in two unknowns,
and one of the unknowns can be eliminated by the same procedure. Eliminating x2 we
obtain

(4-18)
Equation (4-18) involves determinants each of whose elements is a determinant. Since
determinants are merely numbers expressed in complicated form, this causes no
difficulty. To understand what this compact notation means, let us write out the
coefficient of x3, in full:

The expression inside the parentheses consists of six terms, each being one of the six
possible ways of selecting three of the a’s of Eqs. (4-15) without using two from the
same row or column. The assignment of plus and minus signs follows a complicated
rule that can best be explained in terms of Fig. 4-1.

FIG. 4-1. Explanation of terms of a determinant.
Figure 4-1 consists of the pattern of a’s from Eq. (4-15) with the first two columns

repeated. All possible complete diagonals are drawn in. Each of them corresponds to
one of the terms in the parentheses. The solid diagonals, the ones that run northwest-



southeast, correspond to terms with plus signs; the dashed diagonals to terms with
minus signs.

This expression in parentheses is known as a third-order determinant.

In summary, we define a third-order determinant by the equation

Now, finally, if the determinant

is not equal to zero we can divide through by it in Eq. (4.18)47 and obtain

(4-19)
Warning: This explanation applies to third-order determinants only. It would take us

too far afield to introduce the general definition of a determinant—of which the second
and third orders are special cases—and no higher-order determinants will be
encountered in this chapter.

The concept of the determinant is important enough to be explained twice, and it is
explained again from a different point of view in Appendix B. The reader to whom the
concept is new may get a firmer grip on it by consulting Appendix B.48

Similar formulas can be found for x1 and x2. If, however, the denominator
determinant is zero, the solution breaks down. The coefficients a11, a12, . . . , a33 are then
said to be “linearly dependent” for the following reason. Suppose b1 = b2 = b3 = 0. This
will not affect the value of the denominator determinant, but it will make the numerator
determinant in Eq. (4-19) and in the similar equations for x1 and x2 equal to zero. Then
if the denominator determinant is not equal to zero, the solution will be x1 = x2 = x3 = 0,
and this solution will be unique. But if the denominator determinant is equal to zero, Eq.
(4-19) will not be valid (division by zero being illegitimate), but Eq. (4-18) will hold
whatever may be the value of x3. We may give x3 any value we choose—1 or 10 or 100
—substitute the value in Eq. (4-16), and thus solve for x2 and x1. There will thus be an
infinite number of solutions. We can now interpret the term “linear dependence.” Each
one of Eqs. (4-15) can be visualized as a plane in three-dimensional space. Each



solution to Eqs. (4-15) is a point in three-dimensional space, which lies in all three
planes. If the solution to the equations is unique, the planes have just one point in
common. But if there is an infinite number of solutions the three planes must have at
least an entire line in common. Since the three planes have a line in common, they are
said to be linearly dependent.

Now let us free b1, b2, b3 from the assumption that all of them are zero while still
considering the case in which the determinant on the left-hand side of Eq. (4-18) is zero.
There are two possibilities. First, the determinant on the right-hand side of Eq. (4-18)
might be zero. In that case, the argument we have just gone through applies, and there
are an infinite number of solutions to Eqs. (4-15). Equations (4-15) are then said to be
linearly dependent, or, alternatively, the numbers b1, b2, b3 are said to b6 linearly
dependent on the coefficients of x1 and x2 because those are the only coefficients which
enter into the right-hand determinant.

Second, the determinant on the right-hand side of Eq. (4-18) might be different from
zero. Then it would be impossible to solve Eq. (4-18) or, consequently, Eqs. (4-15). In
that case we would say that there is a linear dependence among the coefficients a, but
that the b’s are independent of any pair of columns of the a’s. Such a situation, as we
have seen, admits no solution. It is analogous to searching for the intersection of two
parallel lines.

Let us summarize and generalize the results of this discussion. Suppose we have a
system of m linear equations in m unknowns. We can derive from it, by successive
elimination, a single equation in one of the unknowns. If the coefficient of the
remaining unknown is zero, the coefficients of the unknowns in the original set of
equations are said to be linearly dependent, otherwise they are linearly independent. If
the constant term in the final equation is zero, then the constant column of the original
equations is said to be linearly dependent on the coefficients of m – 1 of the unknowns;
i.e., the m original equations are said to be linearly dependent. Then three situations are
possible:

1. If the coefficients of the unknowns are linearly independent, the system has a
unique solution.

2. If the coefficients of the unknowns are linearly dependent and the constant column
is not linearly dependent on the coefficients of m – 1 unknowns, the system has no
solution. It is inconsistent.

3. If the coefficients of the unknowns are linearly dependent and the constant column
is linearly dependent on the coefficients of m – 1 unknowns, then the system may have
an infinite number of solutions.49

One final word. This whole digression has been concerned with the possibility that
certain determinants might turn out to be zero. It might appear that this would be an



unlikely coincidence, not deserving of all this attention. Unfortunately, however,
vanishing determinants occur quite frequently, and all sound theory and application
must be prepared for them.

4-6. THE SIMPLEX METHOD: FUNDAMENTAL
THEOREMS

For the sake of clarity we shall consider the linear-programming problem [Eqs. (4-
14), (4-12), (4-13)] in the special case where m = 3 and n = 2. Our results, however, will
be valid for the general case. Thus we shall deal with this problem:

Find x1, x2, . . . , x5 such that

(4-20)

(4-21)

(4-22)
Comparing Eqs. (4-20) with Eqs. (4-15) we note that Eqs. (4-20) have two additional
unknowns, x4 and x5. This is the characteristic which provides scope for the
maximization called for in Eq. (4-22). We may eliminate two of the unknowns in Eq. (4-
20) by the same process that we used in boiling down Eqs. (4-15). Let us eliminate x1

and x2. Eliminating x1 we obtain

Now eliminate x2:

(4-23)
We now introduce a very important assumption. We assume that the constant column

of Eqs. (4-20) is linearly independent of every pair (or, in general, of every set of m —



1) of coefficient columns on the left-hand side of those equations. We shall refer to this
as the nondegeneracy assumption. It states that the constant column cannot be expressed
as a linear combination of any pair of columns of coefficients on the left-hand side.
Hence any solution of (4-20) must include at least three nonzero x’s.

Moreover, there must be at least one set of three linearly independent columns on the
left. For if this were not so, all three determinants on the left-hand side of Eq. (4-23)
would be zero and the equation would be unsolvable. Another way to see this is to note
that if there were no set of three linearly independent columns on the left, it would be
possible to select two of the columns and to express each of the remaining columns as a
linear combination of those two. Then in any solution of (4-20) these expressions could
be used to substitute for all but two of the x’s, contrary to the hypothesis that the
solution of (4-20) required three nonzero x’s. For further details see Appendix B. Thus
we have proved:

THEOREM 1. If a nondegenerate linear-programming problem with m restrictions
and k(>m) unknowns has a solution (feasible or not),50 then there must be at least one
set of m of the unknowns whose coefficients are linearly independent.

In addition we can state:

THEOREM 2. If a nondegenerate linear-programming problem with m restrictions
and k( > m) unknowns has a feasible solution, then it has a basic feasible solution, i.e.,
one which involves at most m of the unknowns at non-zero values.

Proof: It is only the nonnegativity of the x’s that causes any difficulty. We know that
there are three linearly independent columns of a’s. Since we are dealing with systems
of three unknowns, we know from Appendix B that any column of constants (including
the column of c’s) can be solved for in terms of three unknowns. Hence there is no
question but that (4-20) has a solution with exactly three nonzero x’s. But we cannot yet
guarantee that those three x’s will be positive. We now prove, in a constructive way,
that they will be.

We shall develop the proof in terms of the case where m = 3, k = 5. We suppose that
Eqs. (4-20) express a nonbasic feasible solution; i.e., we suppose that x1, x2, . . . , x5 in
Eqs. (4-20) are all nonnegative and that at least four of them are positive. Suppose, for a
minute, that x5 = 0. Then the last term could be omitted from the left-hand side of each
of the Eqs. (4-20) and Theorem 1 would tell us that at least one of the determinants

is different from zero. Thus there is at least one nonzero determinant on the left-hand
side of Eq. (4-23) which involves the coefficients of three unknowns which are not zero
in the solution. We are thus justified in assuming that the unknowns have been



numbered in such a way that x1, x2, x3, x4 are all positive and

We now drop the assumption that x5 = 0; it has served its purpose. Consider the
following equations:

(4-24)
The constants in these equations have been taken from Eqs. (4-20). Therefore if we

solve for the y’s by boiling down we shall obtain

Since the left-hand-side determinant is not zero, there is a solution. Of course, some of
y1, y2, y3 may be negative, but inspection of Eqs. (4-24) shows that they cannot all be
zero. We now perform the critical step. We multiply each of Eqs. (4-24) by some
constant θ (to be specified later) and subtract each from the corresponding equation of
set (4-20). The result is

(4-25)
If θ = 0, Eqs. (4-25) are the same as Eqs. (4-20). If θ is slightly different from zero, then
the numbers x1 – θy1, x2 – θy2, x3 – θy3, x4 + θ, x5 will be slightly different from the
numbers given by Eqs. (4-20). But, since the numbers given by Eqs. (4-20) were all
positive (with the possible exception of x5), so will these be (with the same possible
exception), and these new numbers will also constitute a solution to the problem. Now
think of θ as starting at zero and slowly decreasing. The first three parentheses may
increase or decrease, depending on the signs of y1, y2, y3, but the fourth parenthesis will
surely decrease. Thus eventually we shall come to a feasible solution which has one
fewer nonzero component than the one we started with. This process can be repeated
until there are just three nonzero components.

We have now shown, as we set out to do, that if there is any feasible solution to a
nondegenerate linear-programming problem, then there is a basic feasible solution.



Furthermore, our proof has been constructive; we have described a procedure for
starting with any feasible solution and deriving from it a basic feasible solution.

We now take into account the maximizing part of the problem, i.e., Eq. (4-22). The
value of Z corresponding to the solution to Eqs. (4-20) is given by Eq. (4-22). Call it Z0.
The value of Z corresponding to the solution of Eqs. (4-25) is, by direct substitution,

Z(θ) = P1(x1 – θy1) + P2(x2 – θy2) + P3(x3 – θy3) + P4(x4 + θ) + P5x5

The change in Z is the difference:

(4-26)
The parenthesis occurring in Eq. (4-26) is of great importance because it indicates which
of a number of feasible solutions corresponds to the largest value of Z. Suppose, first,
that the parenthesis is zero. Then we may vary θ at will without changing Z, and,
starting with a nonbasic feasible solution, we can derive a feasible solution with one
fewer nonzero variable without decreasing Z. Next, suppose that the parenthesis is
negative. Then, if θ < 0 we shall have Z (θ) > Z0. In this case, by taking a large enough
negative value of θ we can eliminate one unknown and at the same time increase Z.
Finally, suppose that the parenthesis is positive. Then in order to increase Z we must
take θ > 0. Now two subcases arise. If none of y1, y2, y3 is positive, then inspection of
Eqs. (4-25) shows that there is nothing to prevent us from taking θ as large as we please,
for none of the parentheses will become negative no matter how large θ is. Then we
may make Z as large as we choose simply by taking θ large enough. This is one of the
no-solution cases which we mentioned at the outset. The second subcase is the one in
which at least one of y1, y2, y3 is positive. Then as θ increases from zero, at least one of
the parentheses in Eqs. (4-25) will approach and finally reach zero. When the first of
those parentheses reaches zero we shall have a feasible solution with a reduced number
of nonzero variables and an increased value of Z. We have now dealt with all possible
cases and have demonstrated the following theorem.

THEOREM 3. Suppose that a linear-programming problem is nondegenerate and
that a nonbasic feasible solution exists. Then, either

1. The function to be maximized, Z, can be made as large as desired, or
2. A feasible solution with fewer nonzero unknowns can be derived such that this new

solution will correspond to a value of Z at least as large as that corresponding to the
nonbasic solution whose existence was posited.

An immediate consequence is the following key corollary.

COROLLARY TO THEOREM 3. If a nondegenerate linear-programming problem
has an optimal solution, then it has an optimal solution which is also basic.



To prove the corollary we have only to notice that if there is a nonbasic optimal
solution we can apply Theorem 3 to reduce the number of non-zero variables step by
step until a basic feasible solution is reached. Since this procedure does not decrease the
value of Z, the resultant basic feasible solution will be optimal.

This array of results permits us, in solving a linear-programming problem, to restrict
our attention to basic solutions, for if there is any solution, it will be one of these.

4-7. GEOMETRIC INTERPRETATION
A geometric interpretation of the concepts we have been working with may provide

welcome relief at this stage.51 The basic ideas can be seen most easily in terms of the
geometry of two dimensions. The most familiar way to represent two-dimensional
quantities is by means of points referred to a pair of Cartesian coordinates. For present
purposes it is more convenient to use an alternative but exactly equivalent
representation. Instead of using a single point to depict a two-dimensional quantity we
use a line segment that begins at the origin and ends at the ordinary Cartesian point.
Thus the two-dimensional quantity (5,3) would be shown as a line segment that begins
at the origin and ends at the point whose x coordinate is 5 and whose y coordinate is 3.
Such a line segment is a “vector,” in particular, a two-dimensional vector. We denote a
vector by the coordinates of its end point. Thus, (5,3) denotes not only the point (5,3)
but the vector ending there. We now define some mathematical operations that will
enable us to relate vectors to one another. First, a multiple of a vector: k times any
vector is the vector whose direction is the same as that of the original vector and which
is k times as long. A moment with a scratch pad will convince us that 2 times (5,3) is the
vector (10,6); 0.5 times (5,3) is the vector (2.5,1.5). By a slight extension, negative
multiplication of a vector means going backward instead of forward along it. Thus, –
(5,3) is ( – 5, – 3); – 2(5,3) is ( – 10, – 6).

Two vectors can be added by a process which is familiar to everyone who has
encountered the “parallelogram of forces” in his elementary physics. Draw the two
vectors to be added, say vector A and vector B, and at the end of one of them, say A,
draw a line parallel to the other vector and of the same length. The end point of this line
is the desired sum, A + B. The reader had better make some sketches here. If he does he
will find, for example, that

(5,3) + (2,1) = (5 + 2, 3 + 1) = (7,4);

or, to take another example, (5,3) + (2, – 1) = (7,2). Finally, these two processes of
multiplication and addition can be combined. As an example, 3(5,3) + 2(2,1) = (15,9) +
(4,2) = (19,11).

These two operations permit us to state the following fundamental theorem: If we are
given any pair of two-dimensional vectors that do not lie on the same straight line



through the origin, then we can write any third two-dimensional vector as a weighted
sum of the two of them. For instance, if we are given the two vectors A = (5,3) and B =
(2,1), then, as the reader can verify easily, any third vector (x,y) can be written as

(x,y) = (2y – x)A + (3x – 5y)B

for example, (1,0) = – A + 3B. Such a pair of vectors is known as a “basis,” and we can
restate our theorem by saying that any vector in the plane can be expressed in terms of a
basis consisting of two noncolinear vectors. This is the two-dimensional case of the
general theorem that underlies Theorem 2 of Sec. 4-6, above.

The geometric principle at work is that we can get from the origin to any point in the
plane by going an appropriate distance in one direction assigned in advance and then
another appropriate distance (perhaps zero) in another assigned direction. Each of the
two assigned vectors simply sets a direction; how far we go in that direction depends on
the multiplier (which may be zero or negative, of course) applied to that vector.

How is it in three dimensions? Now a scratch pad is not much help, but the mind’s
eye will suffice. Any three vectors which do not all lie in the same plane will provide us
with three directions, and if we march appropriate distances in these three directions in
succession we can arrive at the end point of any other vector in three-dimensional
space. Thus, three vectors form a basis for three-dimensional space, provided that they
do not all lie in the same plane. Why is this proviso necessary? Because if all three
vectors lie in the same plane we can never get out of that plane by following the
directions they determine, and thus can never reach the end point of any vector not in
that plane. In general, any m vectors which do not all lie in any (m – 1) dimensional
hyperplane can be used as a basis for expressing all the vectors in an m-dimensional
space; i.e., any vector in m-dimensional space is equal to some weighted sum of m
preassigned vectors in that space, provided that the preassigned vectors do not all lie in
some smaller space.

Now we apply these ideas to the argument of Sec. 4-6. Look at Eqs. (4-20). The
coefficients of each of the five xi’s can be thought of as determining a vector in three
dimensions. Thus the five xi’s give us five vectors. The three numbers in the constant
column also determine a vector in that space. The discussion of vectors that we have
just gone through shows that the constant column can be expressed in terms of any
three noncoplanar activity vectors. If this is done (and it can be done by solving
ordinary simultaneous equations), the multipliers of the three selected vectors are
nothing but the activity levels, and if these multipliers are all nonnegative, the three
selected activities constitute a feasible basis. Thus the basic theorem of linear
programming is nothing but an application of a simple geometrical principle.

In just the same way, if we select any three vectors as a basis, we can express any
fourth activity in terms of them. This is the graphic interpretation of Eqs. (4-24), (4-25),



etc. The y’s in those equations are, in graphic terms, simply the multipliers of the three
vectors used as a basis for expressing other vectors.

This graphic approach helps us to visualize the meaning of feasible and infeasible
solutions. Think, for a moment, of the two-dimensional case. Under what conditions
can a vector in two dimensions be expressed as a sum of multiples of two other vectors
without using negative multipliers? A glance at our scratch pad tells us: A vector can be
so expressed if it does not lie outside the angle formed by the two vectors in terms of
which it is to be expressed. For example:

In general, a column of constants can be expressed as a feasible combination of a set of
activities if its vector (in the appropriate number of dimensions) does not lie outside the
cone formed by the vectors of those activities.

All the theorems that we have deduced algebraically can be derived geometrically by
using the concepts of vectors and combinations of vectors. We shall not pursue this
approach further, however.

4-8. THE SIMPLEX METHOD: FINDING AN OPTIMUM
We assume that we have a basic feasible solution to start with. Later we shall discuss

how to find such a starting point. To be specific, we assume that x1 > 0, x2 > 0, x3 > 0, x4

= 0, x5 = 0 is a set of values which satisfies Eqs. (4-20). We shall call the variables with
nonzero values the dependent, or basic, variables, and those with zero values can be
called independent, or nonbasic, or excluded, variables. We shall call them excluded
variables.

Then, since x4 = x5 = 0, the values of the basic variables satisfy

(4-27)
a set of ordinary simultaneous equations. Equations (4-24) still apply. Just as we did in
the last section, we may multiply each equation of set (4-24) by a constant θ4 and
subtract from the corresponding equation of set (4-27). The result is

(4-28)
If θ4 is slightly greater than zero this will be a nonbasic feasible solution involving the



first four variables at values x1 – θ4y1, x2 – θ4y2, x3 – θ4y3, θ4, respectively. The value of Z
corresponding to θ4 = 0 is

The value of Z corresponding to any value of θ4 is

The effect on Z of taking θ4 different from zero is thus given by the difference

(4-29)
This is the same parenthesis as the one which occurred in Eq. (4-26), and again it is
critical. The new feature of this situation is that θ4 cannot now be negative, for this
would signify a solution in which the fourth variable had a negative value in violation
of Eq. (4-21). If the parenthesis is zero or negative, therefore, Z cannot be increased by
varying θ4 in the permissible range, i.e., by introducing the fourth variable. But if the
parenthesis is positive, Z can be increased by taking θ4 > 0. Again we must consider two
subcases. If the parenthesis is positive and if none of y1, y2, y3 is positive, then Eqs. (4-
28) show that there is no restriction on the size of θ4 and Eq. (4-29) shows that there is
no upper limit to the size of Z. This is the unsolvable case.

The second subcase is the one in which the parenthesis is positive and at least one of
y1, y2, y3 is also positive. In that case let

(4-30)
where, however, only fractions which have positive denominators are taken into
account. The result will be to replace the basic feasible solution defined by Eqs. (4-27)
by a new basic feasible solution in which the fourth variable appears with the value θ4

given by Eq. (4-30) and that one of the first three variables which corresponds to the
smallest positive fraction in Eq. (4-30) has dropped out. This new basic solution will
correspond to a larger value of Z. The effect is to obtain a new and superior basic
feasible solution in which the fourth variable has been introduced and one of the
formerly basic variables has been excluded.

The indicated procedure for solution is as follows. Suppose that we have a basic
feasible solution to start with and that, to be specific, the first three variables are
included. The first step is to calculate y1, y2, y3 bv solving Eqs. (4-24). Then calculate



(4-31)
This quantity,  , is the sum of the negative terms in the parenthesis of Eq. (4-29). Then
compute the “simplex criterion,” P4 –  . There are two possibilities:

(1) P4 –  > 0. In this case compute θ4 by formula (4-30) and

One of  ,  ,  will turn out to be zero. The result is an improved basic solution, and
we are ready to repeat the whole procedure, with appropriate changes in notation, to see
if we can obtain still further improvement.

(2) P4−  ≤ 0. In this case no improvement can be made by introducing the fourth
variable. We therefore pass on to the fifth variable and, inserting its coefficients in place
of the coefficients of the fourth variable in Eqs. (4-24), go through the same procedure.

If there are sixth, seventh, or later variables, the same procedure applies with respect
to each of them. In this way, if there is any variable, say the ith, for which Pi –  > 0,
we shall find it and use it to obtain an improved basic solution. But suppose there is no
such variable; i.e., suppose that Pi –  ≤ 0 for all variables. Then the basic solution we
are considering is optimal. It is easy to show this by generalizing our previous
demonstration. Suppose that we have gone through the procedure for the fourth
variable, solving Eqs. (4-24) in the course of it and, for the fifth variable, including the
solution of

(4-32)
Multiply Eqs. (4-24) by θ4 and Eqs. (4-32) by θ5 and subtract both from Eqs. (4-27). The
five variables then become x1 – θ4y1 –  , x2 – θ4y2 –  , x3 – θ4y3 – , θ4, θ5.
Substituting these in Eq. (4-22) we obtain

If neither parenthesis is positive we cannot make Z(θ4,θ5) greater than Z0 by giving θ4

and θ5 any positive values; i.e., if we cannot obtain an improved solution by introducing
any of the nonbasic variables singly, then we cannot obtain an improvement by
introducing any combination of them and we must already be at the optimum.

The simplex criterion, which determines whether an excluded variable should be



introduced, has a significant economic interpretation in economic problems. This will
be treated in Chap. 6.

Thus far we have consistently assumed that we had a feasible solution to use as a
starting point. In many cases it is easy to find a feasible solution by inspection.
Consider, for example, Eqs. (4-11). If c1 > 0, c2 > 0, . . . , cm > 0, then we can write
down at sight the feasible solution x1 = x2 = . . . = xn = 0, xn+1 = c1, xn+2 = c2, . . . , xn+m =
cm. Sometimes, however, things are not so easy. In Eqs. (4-20), for example, no feasible
solution is evident on sight. In such a case a feasible solution may be found by the
following neat device, due to Dantzig. Using the constants of Eqs. (4-20), set up the
following auxiliary problem:

Find x1, x2, . . . , x5, x6, x7, x8 such that

(4-33)

(4-34)

(4-35)
Two features of the auxiliary problem should be noted. First, since its restraints have

the same form as Eqs. (4-11), a feasible solution can be written down at sight. Second,
the minimum possible value of z is zero, and this value occurs when x6 = x7 = x8 = 0.
But when these last three variables vanish, Eqs. (4-33) are the same as Eqs. (4-20). Thus
an optimal solution to the auxiliary problem is a feasible (but not necessarily optimal)
solution to the original problem.52

4-9. THE SIMPLEX METHOD: COMPUTATION
The computations required for solving a linear-programming problem by the simplex

method (or any other method) can undoubtedly be formidable. The method would
indeed be impracticable for many important applications that involve large numbers of
variables and restraints, except that it can be performed mechanically by punch card and
by electronic calculating machines. Whether performed by hand or by machinery,
however, the method can be made much simpler than the foregoing algebraic treatment
may suggest. In this section we shall describe and illustrate an efficient computing
procedure.

The bulk of the computing task described in the last section consisted in solving
systems of simultaneous equations such as Eqs. (4-24) and (4-32). According to the



procedure, given any basic solution, one such set of equations had to be solved for each
variable excluded from the basis. But all these equations have an important saving
grace: they have the same coefficients on the left-hand side and differ only on the right.

When all the sets of simultaneous equations for any basic solution have been solved,
the result will be either that that solution is optimal (in which case the work is complete)
or that some new basic solution is preferable. In the latter case, some new sets of
simultaneous equations must be solved, but they have the saving grace that they have
the same coefficients on the left-hand side as the sets just solved, with the exception of
one column. The idea behind all systematic methods of solution is to take advantage of
these two features.

The simplification possible when two sets of simultaneous equations have the same
left-hand side can be seen by combining Eqs. (4-24), (4-27), and (4-32). We write

(4-36)
In this setup we have indicated by commas three alternative right-hand sides. Now we
eliminate the variables u1 and u2:

Thus we obtained three values simultaneously for u3, one corresponding to the
solution of each of the three sets of equations. The first simplification, then, consists
simply of carrying along a number of right-hand sides simultaneously.

The second simplification is known as “basis-shifting,” i.e., the process of shifting
from one basic solution to a second. Suppose that we have solved Eqs. (4-24) and (4-
27), both of which involve the first three variables as the basic solution, and wish to
solve

(4-37)
In Eqs. (4-37) the basic solution includes the first, second, and fourth variables. We can
form at once Eqs. (4-28) with θ4 = x3/y3. The result is



(4-38)
Comparing these equations with Eqs. (4-37) we see that the values of the variables
given in Eqs. (4-38) constitute a solution to Eqs. (4-37). Thus,

(4-39)
It is therefore not necessary to solve the simultaneous equations afresh every time we
consider a new basic solution.

4-10. THE SIMPLEX METHOD: AN EXAMPLE
All the concepts and theorems we have been discussing can be illustrated by a

straightforward example. Table 4-1 sets forth the situation of a firm that processes a
certain raw material by the use of two major types of equipment, called stills and retorts.
We assume that four different production processes are available to the firm and that
they are characterized by the input coefficients and value data given in the first four
columns of the table. Thus, one unit of Process 1 will treat 100 tons of raw material and
will absorb 7 per cent of the weekly capacity of the firm’s stills and 3 per cent of the
weekly capacity of its retorts. It will yield a final product worth $1,110 but will consume
$1,000 worth of raw material and will require $50 worth of other direct costs, leaving a
net value of $60. The next three columns are interpreted similarly.

The firm’s operations are limited by the total capacity of its stills and retorts (100 per
cent in both instances, of course) and by the availability of its raw materials, which is
assumed to be 1,500 tons per week. Thus, suppose that Process 2 is used. If it is
operated at a level of 15 units, it will absorb 15 × 100 = 1,500 tons of raw material, 15 ×
5 = 75 per cent of still capacity, and 15 × 5 = 75 per cent of retort capacity. Furthermore,
it will produce a net value of 15 × 60 = $900 per week. This is as much as can be earned
by the use of Process 2 alone since it uses all the raw material available.

TABLE 4-1. INPUTS OF RAW MATERIALS AND OUTPUTS PER WEEK FOR
MANUFACTURING BY FOUR DIFFERENT PRODUCTION PROCESSES



We now undertake to find the best combination of Processes 1, 2, 3, and 4, that is, the
combination that yields the greatest net value without violating any of the restrictions
assumed. To express the situation algebraically, let x1, x2, x3, x4 denote the levels of the
four processes, respectively. Total net value as a function of these four variables is,
then,

z = 60x1 + 60x2 + 90x3 + 90x4

This sum is to be maximized subject to the restrictions

(4-40)
To eliminate the first three inequalities, introduce slack variables x5, x6, x7 so that Eqs.
(4-40) become

(4-41)
The economic significance of x5, x6, x7 is clear: x5 is the number of tons of raw material
which could be purchased but which are not, x6 and x7 denote the percentage of
equipment capacity left unused.

We are now ready to solve the problem by the simplex method. Since there are three
restrictions in the problem (aside from the nonnegativity restraints), a basic solution will
include three of the seven variables. We have already seen that if all 1,500 tons of raw
material is treated by Process 2, some of both types of capacity will be left over. Hence,
x2 = 15, x6 = 25, x7 = 25 is a feasible basic solution, as the reader can verify easily. We
adopt it as our starting point.

The calculations are carried out in Table 4-2. This table looks a bit cryptic, as any



good worksheet should, because nothing is written down in it that is not absolutely
necessary. It is easy to follow, however. Our first task is to determine formally (even
though we know the answer already) the values of x2, x6, x7, which constitute the trial
solution we have selected, that satisfy the restraints. Thus we must solve the equations

Note that by selecting a number of included variables equal to the number of restraints
we have derived an ordinary set of simultaneous equations in which the number of
equations equals the number of variables.

Now look at the first three lines of Table 4-2. The coefficients of x2 in these equations
appear in the column headed x2, the coefficients of x6 are in its column, similarly for the
coefficients of x7, and the numbers on the right-hand side of the equations appear in the
constant column. Thus these entries in the table are nothing but an abbreviated
transcription of the equations which determine the feasible levels of x2, x6, x7. This kind
of table is known as a table of detached coefficients. In such a table each line
corresponds to an equation. The variables appear as column headings rather than being
repeated in each equation, and the vertical bars that separate the columns perform the
roles of plus and minus signs in a readily understandable way.

Now we turn to the remaining columns of the first three lines. Our second task will
be to solve some equations of the form of Eqs. (4-24) above, in which the coefficients
of the included variables appear on the left-hand side, and those of one of the excluded
variables appear on the right.53 The effect of solving these equations will be to
determine the combination of levels of the included variables which has the same effect
on the restraint equations as each of the excluded variables at unit level. This operation
is known as expressing the excluded variables on the basis of the included ones. The
last four columns are provided for expressing the excluded variables on the basis of the
included ones. Each column contains in its first three lines the coefficients of one of the
excluded variables as given in Eqs. (4-41). The first three lines of the columns headed
x2, x6, x7, x1 summarize the equations

which are recognized as a special case of Eqs. (4-24). The remaining columns are
interpreted similarly.

TABLE 4-2. WORKSHEET FOR SIMPLEX SOLUTION OF TABLE 4-1



In short, the first three lines of Table 4-2 merely record all the fundamental equations
of the problem in a manner which singles out x2, x6, x7 as the included variables in the
first trial solution.

Our next task is to solve these sets of simultaneous equations, and we handle all of
them at the same time, as suggested in the previous section. How to solve simultaneous
linear equations is no part of the technique of linear programming because such
equations are handled in the same way in linear-programming computations as in any
other kind of problem in which they occur.54 Sometimes the solution of simultaneous
equations is so tedious that an electronic calculator has to be used; sometimes, as now,
they are so simple that the solution can be written down practically at sight. In the
present instance, elementary algebra suffices. Remember that each of the first three lines
of Table 4-2 is a shorthand expression for a family of ordinary equations of the general
type given in Eqs. (4-1). Therefore, new valid equations can be derived by multiplying
any line through by a constant, by adding one line to another, or by combining these



two operations. We therefore multiply through line 1 by  and record the result on line
4. We subtract line 4 from line 2, placing the result on line 5, and subtract line 4 from
line 3, placing the result on line 6. Finally, we multiply line 1 by  , entering the result
on line 7, and transcribe lines 5 and 6 onto lines 8 and 9, respectively. The result— lines
7, 8, and 9—is the solution to the original equations. For example, written out in full,
line 7 says that

x2 = 15, 1, 1, 1, 0.01

these numbers being the value of x2 in the basic feasible solution and in the basic
expressions of x1, x3, x4, x5, respectively. Lines 8 and 9, similarly, give the values of x6

and x7. Note that the values of x2, x6, x7 in the basic feasible solution are 15, 25, 25—as
our preliminary inspection indicated.

We are now ready to apply the simplex criterion described in Sec. 4-7. On line 10 we
record in each column the coefficient of the variable corresponding to that column
found in the objective function. Since the slack variables do not appear in the objective
function their coefficients are all zero. On line 11 we first compute the value of the
objective function by multiplying the level of each included variable, given in the
constant column, by its coefficient, given in line 10. The result is 900, entered in the
constant column. Next we compute  , defined by Eq. (4-31), for each excluded
variable, by multiplying the level of each included variable in the expression for the
excluded variable (given in lines 7 to 9) by its coefficient on line 10. For example, in the
column for x3 we find

1 × 60 − 2 × 0 + 5 × 0 = 60

which is duly recorded on line 11. Finally, on line 12 we compute the simplex criterion
by subtracting line 11 from line 10.

In Sec. 4-7 we saw that if the simplex criterion is positive in any column, then a basic
feasible solution can be found with a higher value of the objective function if we add
the variable in whose column the positive value occurs to the list of included variables
and drop out one of the included variables in the trial set. In this example, positive
values occur in the columns for x3 and x4. Thus either of these can be introduced with
advantage, and since the positive values happen to be equal, there is no evident reason
for preferring one to the other. We select x3 to introduce, arbitrarily. Which of the
previously included variables should be dropped? Equation (4-30) tells us: it is the one
for which the ratio of the entry in the constant column to the entry in the x3 column is
smallest, considering only lines for which the entry in the x3 column is positive. This
ratio is 15/1 = 15 for x2 (looking at line 7) and 25/5 = 5 (looking at line 9) for x7. We
skipped line 8 because the entry in the x3 column there was negative. Since 5 is less than
15, x7 is to be dropped. Thus we know that x2, x3, x6 constitutes an improved set of



included variables.

Our next task is to find the solutions to the same old sets of equations, using our
revised list of included variables. Rather than start this whole business ab initio we use
the basis-shifting technique, i.e., Eqs. (4-38), described in Sec. 4-9. From here on it is
convenient to list the columns corresponding to the various variables in their natural
order rather than in the scrambled order used to get the initial solution. Thus we start
the second panel of Table 4-2 with a new set of column headings. In this panel there is
one line for each of the included variables in the new set.

The first computation now is to find the levels in the various columns of the newly
introduced variable x3. As seen from Eqs. (4-39) these are obtained simply by dividing
the entries on the x7 line of the old solution, the line for the variable being dropped, by
the entry on that line in the column for x3, the variable being introduced. Thus we must
divide each number on line 9, which corresponds to x7, by 5. This has been done, and
the results, rearranged in accordance with the rearrangement of the columns, have been
recorded in the line for x3 in the second panel.

Next we fill in the entries for the remaining included variables x2 and x6. This is done
column by column using the following restatement of Eqs. (4-39) :

 

New constant column = old constant column – θ
× old solution for the variable being introduced

 

where θ = the value just found for the level of the variable being introduced in the
constant column

 

New column for any variable = old column for that variable – θi

× old solution for the variable being introduced

 

where θi = level of the newly introduced variable in that column

These are not easy formulas to read on first acquaintance, but they are easy to apply
and will become clear as soon as we have illustrated them. The formula for the new
constant column works as follows:



Note that the old constant column has been taken from lines 7 to 9, and the old solution
for x3, the variable being introduced, has been taken from those same lines and
multiplied by 5, the level of x3 in the new constant column. The result tells us that the
new value of x2 is 10, the new value of x6 is 35, and the new value of x7 is 0, so that it
drops out as we intended. Since the values of x2 and x6 are recorded in the constant
column of the second panel and we knew already the value of x3 in that column, we
have no further interest in x7; therefore work is completed.

The calculation of the other columns is similar. For example, to compute the column
for x4 we note that we have already found x3 = 2 in that column and write

The first column in this calculation is the column for x4 on lines 7 to 9, the second
column is the same as the second column in the previous computation, and the
coefficient 2 has already been accounted for. Again x7 takes on a value of zero and
drops out; the values for x2 and x6 are recorded on the appropriate lines of the x4 column
in the second panel. The other columns are to be filled in similarly. Of course, in
practice it is not necessary or advisable to do all the transcribing that we have done for
expository reasons.

The result of all this is the set of levels of the new set of included variables which
would have been obtained if we had set up and solved a new set of simultaneous
equations. But since, in general, basis shifting is much less work than solving
simultaneous equations, this less transparent method for deriving the solutions is
preferable in practice.

We are now ready to apply the simplex criterion to the new set of included variables
and do so on the last three lines of the panel just as we did on lines 10 to 12. The result
is that the simplex criterion is positive only for x1, which must, accordingly, be
introduced. Equation (4-30) tells us that x2 is going to drop out.

The rest is repetition. In the third panel we shift the basis from x2, x3, x6 to x1, x3, x6,
using the procedure already described. Then we apply the simplex criterion and this
time find that no excluded variable gives a positive value to the criterion. Thus this third
basis is optimal, and the maximum attainable weekly net value is $1,135.714, found on
the  line of the constant column of the third panel. The optimal levels of the variables
are those given in the constant column. The variables which do not occur in this
column, i.e., the excluded variables, are, of course, to be set at zero. The problem is
solved.



4-11. THE SIMPLEX METHOD: DEGENERATE CASE
We have now set forth the principles of the simplex method on the assumption that

the problem is not degenerate. That is, we have assumed that the constant column is
linearly independent of every set of m – 1 columns of coefficients on the left-hand side
of Eqs. (4-20). It happens that degeneracy, in this sense, is a fairly frequent occurrence
in economic problems. Fortunately, it does not require a major modification in the
procedure of solution. Suppose, then, that degeneracy does occur so that when the
eliminations are carried out as in Eqs. (4-18) and (4-23) the right-hand determinant is
zero. The first set of equations of the simplex method [Eqs. (4-36)] can still be solved.
The trouble is that one or more of x1, x2, x3 in the solution will be zero, and when that
solution is substituted into Eq. (4-30), the shifting constant θ may also be zero. If this
occurs, the significance is either that the basic solution being tested is optimal or that it
is impossible to go from it to a superior solution in one step.

The signal that a problem is degenerate flashes in the course of the regular basis-
shifting procedure. What occurs is that at some stage in the iteration when some
excluded variable is to be added to the basic set in accordance with the simplex
criterion, it displaces not one (as would be proper) but several of the variables of the
basic set. This happens when several of the ratios xi/yi in Eq. (4-30) are tied for being
the smallest. If we dropped all these tied variables from the basic set, we should be left
with an insufficient number of basic variables to continue the work. We must therefore
drop only one of them, and we need some rule for breaking the tie. One simple rule is
to drop that one of the tied variables having the smallest subscript. Another acceptable
rule is to drop the tied variable whose subscript turns up first in a table of random
numbers. Both of these rules are, of course, arbitrary, but they have the desired effect of
permitting the work to continue in the standard way.

When any such rule is applied it may be found that at the next stage of iteration the θ
of Eq. (4-30) equals zero, so that no improvement in the objective function is possible.
Indeed, zero improvement may occur for several iterations before the system breaks out
of deadlock and starts to move ahead once more. But the breakout will eventually occur
unless the process of iteration leads us back to some basic set which had turned up
before, thus leading us around in a circle.

Recycling, as the return to a previously rejected basis is called, is a theoretical
possibility which has never been observed in a practical problem. Even this theoretical
danger can be avoided, but a more elaborate rule for breaking the tie would be needed
to do so, and we shall not go into this refinement.55

4-12. THE COMPLETE DESCRIPTION METHOD:
INTRODUCTION



The simplex method is only one of four or five methods which have been proposed
for solving linear-programming problems. Although it is the most frequently used
method and appears to be the most efficient method in many instances, the comparative
merits of the procedures have not yet been definitely established. In order not to tie the
problem of linear programming to any single approach, we now describe an alternative
procedure, the “complete-description method.”

Refer now to the original definition of a linear-programming problem [Eqs. (4-4) to
(4-6)]. All the difficulties of the problem arise from the fact that Eqs. (4-4) incorporate
so many restrictions, all of which have to be satisfied. In the case m = 1, where there is
only one restriction, the problem is very easy. We could then try out, for example, the
solution x1 = c1/a11, x2 = x3 = . . . = xn = 0, in which case, Z = P1c1/a11. Then we could try
out x2 = c1/a12, x1 = x3 = . . . = xn = 0, so that Z = P2c1/a12. We could go through the
whole list of n variables in this way and finally try the solution x1 = x2 =. . . = xn = 0, for
which Z = 0. Then we could throw out all the trials in which the x value turned out to be
negative. In this way we would obtain a complete listing of all the basic feasible
solutions, i.e., a complete description of the problem. We know already that if there
were an optimal solution, it would be included in this list. We would only have to look
down the list and pick out the solution or solutions corresponding to the largest value of
Z to solve the problem.

If m > 1, things are not so easy. We can use the insight gained by considering the case
m = 1 to conceive of the following strategy: Consider the first restriction alone and find
all the basic feasible solutions which satisfy it. Then consider the second restriction and
find all the basic feasible solutions which satisfy it as well as the first restriction.
Continue in this manner, taking up all m restrictions one at a time. The result will be a
complete description of the permissible ranges of the variables, and if there are any
optimal solutions, the list will include some of them. The final step is to compute the
value of Z corresponding to each solution in the list and select those solutions which
have the maximum value of Z.

4-13. THE COMPLETE DESCRIPTION METHOD: BASIC
ALGEBRA

The essential issue in the complete description method is as follows: Suppose that we
have considered k < m restrictions and have compiled a set of solutions which satisfy all
of them. We now have to take up the (k + 1)st restriction. The problem is to determine
which solutions should be deleted from the list and what new solutions should be added
to it.

Our standard is that, after considering each restriction, we shall want a tentative list of
solutions which includes all the basic feasible solutions to all the restrictions thus far
considered. In order to be able to recognize basic feasible solutions in this context we



make a distinction. Consider any possible solution, say  ,  , . . . ,  , in relation to any
one restriction, say,

ai1x1 + ai2x2 + . . . + ainxn ≤ ci

If this solution satisfies the restriction, then either

or

If the first relationship holds, we say that  , . . . ,  is an “extreme” solution to the
ith restriction; otherwise it is an “internal” restriction. The extreme solutions are the
important ones, for they indicate the limits on the permissible values of the variables.

Let us now think of taking up the restrictions one at a time. We have already seen
how to get extreme solutions to the first restriction considered in isolation. They have
the form

Note that each of these solutions has only one nonzero element. Such solutions will be
referred to below as corner solutions.

Next consider the first two restrictions simultaneously. Any solution which is an
extreme solution to both of them must satisfy the following two equations:

We know from elementary algebra that if a pair of equations like this can be satisfied
at all, it can be satisfied by two unknowns, but not, usually, by fewer. Hence we shall
call a solution  , . . . ,  a basic solution to the first two restraints if it is an extreme
solution to both restraints and has no more than two nonzero components.

In general we shall call any solution a basic solution to k restraints if it is an extreme
solution to all k restraints and involves no more than k nonzero components. Since basic
solutions, in this sense, mark out the boundary of the permissible ranges of the
variables, we are interested in this type of solution and only in this type.

We are now ready to consider the procedure for revising the list of basic solutions
when k restrictions have been considered and the (k + 1)st restriction is to be taken up.

To be more concrete, consider the problem of maximizing

subject to the restrictions



Suppose also that we have a set of solutions that satisfy the first two restrictions and
want to take into account the third restriction, namely,

It is convenient to write this restriction in the form

(4 – 42)

Now consider any solution in the list, say . Substitute these values in Eq.
(4-42). If the result is positive, that solution does not satisfy the third restraint and
should be dropped from the list. If the result is zero or negative, the point should be
retained. Thus we determine the deletions.

The additions are of two types. First, suppose

x2 = x3 = . . . x6 = 0

Then from Eq. (4-42), x1 = c3/a31, x2 = . . . = x5 = 0 satisfies the third restraint. If,
moreover, the fraction is nonnegative and if it is not greater than c2/a21 and c1/a11, the
corresponding fractions derived from the first two restraints, then this solution is
feasible and satisfies the first three restraints and should be added to the list. In a similar
manner we consider x1 = 0, x2 = c3/a32, x3 = x4 = x5 = 0, etc. These solutions, in which
only one variable is different from zero, are “corner solutions,” as we mentioned above.

The other type of addition we shall call “vertex solutions.” Suppose that there were a
pair of solutions to the first two restrictions, one of which gave rise to a positive and the
other to a negative value of d(3); i.e., denoting the two solutions by , . . . ,  and , . .
. , , suppose that

Multiply the first of these by – d″ (which will be a positive number) and the second by
d’ and add:

The quantities in parentheses will all be nonnegative since none of the quantities which
enter into them are negative; for example,



Finally, divide both sides by d’ − d’’ and transpose:

(4-43)
Let

We now consider whether the solution  should be added to the list of basic
solutions. We note that it is a solution. In the first place, none of  is negative.
In the second place, it satisfies the first two restrictions. To see this, consider the first
restriction. By assumption,

(4-44)
Multiply the first of these by −d″, multiply the second by d’, add, and divide by d′ − d’.
The result is

A similar argument applies to the second restriction. But although  will be a
solution, it may not be basic. To tell whether  will be basic, we notice three
things. First,  will be an extreme solution to the third restraint. Second, a
component of  will be zero only if the corresponding component is zero in
both the solutions  and  which combine to form it. Third, 

 will be an extreme solution to any restriction previous to the third if and
only if both solutions which combine to form it are extreme solutions to that restriction.
[This can be proved simply by dropping the inequality signs from Eqs. (4-44).] Thus
the number of nonzero components in  will be equal to the number of
components which have a nonzero value in either  or  . Further, 

 will be an extreme solution to all restraints to which  and 
 are extreme solutions, plus 1. If the number of restraints to which 

is an extreme solution is as great as the number of nonzero components in  ,
or greater, then  is a basic solution and belongs in the list.

In this manner the list of basic solutions is modified by considering the third
restriction, and we are ready to go on to the fourth. When all the restrictions have been
taken into account we compute the value of Z for each solution in the final list and
determine the optimum by inspection.



To complete the description of the method we need only state that it is started by
calculating the corner points for the first restraint.

4-14. COMPLETE DESCRIPTION METHOD: EXAMPLE
Let us illustrate the complete-description method by applying it to the problem we

have just solved by the simplex method. The solution is carried out in Table 4-3. The
three restrictions, written in the form of detached coefficients, are recorded in the first
three lines. The coefficients of the function to be maximized are written in the fourth
line. The remaining 14 lines, which we shall discuss immediately, constitute a list of
solutions.

TABLE 4-3. WORKSHEET FOR SOLUTION OF TABLE 4-1 BY COMPLETE
DESCRIPTION

The columns headed x1, x2, x3, and x4, obviously, give the four coordinates of each
solution listed. It should be noted that slack variables are not required for the complete-
description method. The columns headed d(2) and d(3) give the results of applying
formula (4-42) and the analogous formula for the second restraint to each solution. Note
that it is not necessary to fill in these columns completely.

The remaining columns are used for bookkeeping. An x in the column headed Ri

signifies that the solution on whose line the x occurs is an extreme solution to the ith
restraint. Similarly an x in the column headed 0j indicates that xj = 0 in the solution on
whose line it appears. These columns are useful, as we shall see, in determining whether
combined solutions are basic. The “notes” column is used to record the derivation of



each solution.

We can now trace through the table. Lines S-1 to S-4 (i.e., solutions 1 to 4) are the
corner points of the first restraint. Each of them is an extreme solution of the first
restraint—hence the x’s in the R1 column, and for each (since they are corner solutions),
three of the variables are zero.

We are now ready to consider the second restraint, R2. For each of the four points we
calculate d(2) by the formula

d(2) = 7x1 + 5x2 + 3x3 + 2x4 − 100

We note that S-1 and S-2, S-1 and S-3, and S-1 and S-4 form pairs whose d(2) values
have opposite signs. Now look, for example, at the pair S-1 and S-2. The columns 01, . .
. , 04 tell us that x3 and x4 are zero for both members of the pair. They will therefore be
zero if we average the pair so as to satisfy R2 by applying the analog to formula (4-43).
This average will therefore have only two nonzero components, x1 and x2. It will satisfy
two restraints, R1 and R2. It will therefore be a basic solution and should be added to the
list. It is found and entered as solution S-5, and x’s are recorded in the columns for
which it is an extreme solution. Solutions S-6 and S-7 arise from the other two pairs.

Solution S-8 is the only corner solution of R2 which also satisfies R1, as is shown by
the fact that the coordinate in the x1 column is lower than the coordinate of the
corresponding corner solution of R1. Finally, we delete S-1, indicated by placing a
parenthesis around its designation, because it had a positive value in the d(2) column.

We now go on to restraint R3. We calculate d(3) for all solutions in the revised list and
examine all pairs with opposite signs in the d(3) column. The pair S-2 and S-3, for
example, if averaged, will have a nonzero x2 coordinate and a nonzero x3 coordinate,
since only one member of the pair has an x in each of the columns 02 and 03. It will be
an extreme solution to R1 (since both members of the pair have x’s in that column) and
to R8 by virtue of formula (4.43). Thus the pair S-2 and S-3 gives rise to a solution
which is an extreme solution to two restraints and involves only two nonzero
coordinates. This solution is therefore basic and appears as S-9. The analysis of the pair
S-3 and S-5, however, has a different result. This result is an extreme solution to two
restraints, R1 and R3. But it has only one zero component, namely, x4. The number of
non-zero components is therefore greater than the number of restraints to which it is an
extreme solution. It is therefore not basic and is not computed.

In this manner, the complete list of basic solutions to all the restraints is built up. The
final list includes eleven solutions, S-2 to S-14, with the exception of S-3 and S-4.56

Finally Z is computed for each solution in the final list. This is done for any solution by
multiplying each of its coordinates by the number in the same column of the Z line and



adding the results. The last step is to pick out the solution with the highest Z value. It is
S-10.

It is instructive to compare this solution with the simplex solution to the same
problem, Table 4-2. In Table 4-2 we calculated only three of the basic solutions, while
in Table 4-3 we found all eleven basic solutions plus three other solutions which were
discarded in the course of the work. The first trial solution of Table 4-2 appears as S-2
in Table 4-3. Note that the values of the two slack variables in Table 4-2 are the
negatives of d(2) and d(8) on the S-2 line of Table 4-3. Similarly, the second trial solution
of Table 4-3 appears as S-9 of Table 4-3. If d(2) were computed for S-9 (which did not
turn out to be necessary), it would be found to be – 35, the negative of the disposal
value in Table 4-2. S-10 is, of course, the final trial solution of Table 4-2, and its d(2)

value, if computed, would check.

The complete-description method thus requires the calculation of many more
solutions than the simplex method, which moves steadily toward the optimum. The
simplex method, however, requires much more calculation to obtain each point. In the
present example, the complete-description method appeared to be the more convenient
of the two. The weight of opinion, however, is currently that the simplex method will
usually be superior because, if there are very many restrictions, the number of solutions
required by the complete-description method can build up alarmingly.

4-15. DUALISM
We conclude this algebraic discussion by considering a rather surprising aspect of

linear programming which is important both mathemati-cally and economically.
Consider the linear-programming problem of finding x1, . . . , x4 such that

(4-45)
is as great as possible subject to the conditions

(4 – 46)

(4 – 47)
The same data can be used to construct a different problem, as follows:

Find u1, u2, u3 such that



(4-48)
Is as small as possible subject to the conditions

(4-49)

(4-50)
In deriving the second problem from the first we have interchanged the roles of P1, . . .
, P4 with those of c1, c2, c3, used each row of coefficients of the first problem as a
column of coefficients in the second, changed the sense of the inequalities in the first set
of restrictions, and substituted a minimum for a maximum problem. Any two linear-
programming problems which are related in this manner are known as duals of each
other. It is clear that every linear-programming problem has a dual.

Although this chapter is not devoted to applications, it may help to mention two
interpretations of duality in order to indicate why this phenomenon is of interest. The
first occurs in the theory of games. A two-person zero-sum game may be solved by the
methods of linear programming. If this is done, the problem of finding the best strategy
for one player is the dual of the problem of finding the best strategy for the other. The
second application occurs when linear programming is used to find an optimal
allocation of scarce resources. In this case, the problem of imputing values to the
resources is the dual of the allocation problem. In short, in many instances duals are
significant rather than artificial constructs.

The principal features of the relations of a linear-programming problem to its dual are
these: First, if a linear-programming problem has a solution, so does its dual. Second,
the maximum value of Z corresponding to the direct problem equals the minimum value
of w corresponding to the dual. Third, if the direct problem has been solved, then the
solution of the dual is greatly facilitated, and vice versa.

In order to establish these facts, we shall assume that the direct problem [Eqs. (4-45)
to (4-47)] has been solved. Then we shall give a formula for computing some numbers,
u1, u2, u3, from the solution to the direct problem. Finally we shall show that these
numbers are the solution to the dual.

In order to formulate the solution to the direct problem, introduce slack variables x5,
x6, x7 and write Eqs. (4-46) in the form



where a15 = a26 = a37 = 1 and all the other new coefficients are zero.

Equation (4-45) then becomes

and three new lines are added to Eqs. (4-49), namely,

(4-51)
Note that these three lines really amount to u1 ≥ 0, u2 ≥ 0, u3 ≥ 0 and therefore add no
new restrictions to the problem. Then, assuming that no degeneracy occurs, precisely
three of the x’s in the optimal basic solution will be positive and all the rest will be zero.
For convenience we assume that the first three x’s are the positive ones. If one or more
slack variables is included in the optimal solution, this assumption would require a
renumbering of the variables but would cause no other difficulty. We are thus assuming
that the optimal solution, after suitable renumbering of variables, satisfies

(4-52)
We now select as u1, u2, u3, our proposed solution to the dual problem, the numbers

resulting from the solution of

(4-53)
The idea behind this selection is that we look back at Eqs. (4-49) and make equations
out of those inequalities that correspond to nonzero x’s in the basic solution to the direct
problem. Note also that if, after renumbering, one of the nonzero x’s is, say, the disposal
variable for the second constraint, then the second equation of (4-53) will read simply
u2 = 0. Since the dual variables frequently represent shadow prices or valuations on
limiting resources, this remark has the followinginterpretation: Any resource that has
excess capacity in an optimal solution must have a zero shadow price. We now show
that the solutions to Eqs. (4-53) satisfy the restrictions (4-49) and (4-51). Since Eqs. (4-
53) are the same as the first three equalities of (4-49), those are taken care of. Turn now



to the fourth inequality of (4-49). Equations (4-24) can be applied to its left-hand
members, yielding

Rearranging terms we obtain

These three parentheses are simply the left-hand sides of Eqs. (4-53). So the fourth
restriction of set (4-49) can be written

or, using Eq. (4-31),

This, of course, is simply the simplex criterion, and since our hypothesis was that x1, x2,
x3 formed an optimal solution, this inequality holds. In the same manner the remaining
conditions of set (4-49), if there are any, and of set (4-51) can be established. Thus the
values u1, u2, u3, defined by Eqs. (4-53), satisfy Eqs. (4-49) and (4-51) of the dual
problem. It remains to show that they satisfy Eq. (4-48). To do this, let 1, 2, 3 denote
any set of numbers that satisfies Eqs. (4-49) and (4-51). If we substitute these numbers
into the first three equations of Eqs. (4-49) we obtain

(4-54)
Multiply the first of these by x1, the second by x2, the third by x3, and add. Applying
Eqs. (4-52) we obtain

(4-55)
Comparing this with Eq. (4-45) we see that the right-hand side is the maximum value of
Z, which corresponds to the solution of the direct problem. The left-hand side is the
value of w corresponding to 1, 2, 3. Hence Eq. (4-55) states that the value of w
corresponding to any 1, 2, 3 which satisfies Eqs. (4-49) and (4-50) will be at least as
great as the Z corresponding to the solution of the direct problem. From Eqs. (4-53) we
note that if u1, u2, u3 are substituted for 1, 2, 3, the inequality sign will be replaced by
an equality. Thus the values defined by Eqs. (4-53) correspond to the minimum possible
value of w as well as satisfying Eqs. (4-49) and (4-51). They are therefore an optimal



solution to the dual problem, as we set out to prove. Simultaneously, we have proved
that the minimum value of w equals the maximum value of Z.

The dualism feature has an interesting consequence that we shall find useful in our
discussion of general equilibrium in Chap. 13. Consider any linear-programming
problem. We have already seen that it is perfectly possible to have a feasible solution
even though no optimal feasible solution may exist. This may happen because it is
possible that no matter which feasible solution we obtain, there may exist some other
feasible solution that gives rise to a larger value of the objective function. In such a case
the objective function can be made indefinitely large, and there is no optimum. This
situation was discussed in Sec. 4-6, especially on pare 77.

Of course, the same situation exists with respect to the dual. The existence of a
feasible solution does not guarantee the existence of an optimal feasible solution, i.e.,
one which makes w so small that no other feasible solution makes it smaller. But if a
linear-programming problem and its dual both have feasible solutions, the situation is
otherwise. In this case, as we shall now show, both the problem and its dual have
optimal solutions. The proof follows at once from the fact that, as we have just seen in
Eq. (4-55), any feasible solution to the dual gives an upper limit to the objective
function of the direct problem and any feasible solution to the direct problem provides a
lower limit to the objective function of the dual. Hence the objective function of the
direct problem cannot be made infinitely large without violating the restraints, and,
since we have assumed at least one feasible solution, there is a maximizing feasible
solution. The proof that there is a minimizing feasible solution to the dual is similar.

EXERCISES
4-1. Solve the diet problem of Chap. 2 by the simplex method.

4-2. Solve the diet problem by the complete-description method.

4-3. Suppose that a market research firm wishes to meet the quotas given
in the first column of the following table:

DATA FOR MARKET RESEARCH PROBLEM: QUOTAS AND
PROBABILITIES OF RESPONSE

How should calls be distributed among the three types of family by the three times of
day so as to be expected to fulfill the quotas with a minimum of calls when the contracts



with enumerators impose the following requirements: (1) the number of morning calls
must not exceed the number of afternoon calls; (2) the number of evening calls must not
exceed half the number of afternoon calls? Partial answer: The minimum number of
calls that satisfies these conditions is 540.



5

The Transportation Problem

5-1. A SIMPLE CASE
One special case of linear programming is of particular interest both because of its

economic applications and because of its computational simplicity. This is the
“transportation problem,” originated by F. L. Hitchcock57 and solved by him several
years before the general concept of linear programming was formulated. This problem
has numerous economic and business applications which have nothing to do with
transportation, but its designation, which stems from its original formulation, is still
used. The most remarkable mathematical characteristic of this problem is that whereas
linear-programming problems typically require such elaborate calculations that high-
speed computing machinery is needed, the transportation problem is frequently best
solved by nothing more complicated than pencil and paper.

The essence of the problem is conveyed by a simple example. Suppose that a
manufacturer has three factories, which we shall call A, B, and C, and supplies five
localities, which we shall call 1, 2, 3, 4, 5. Suppose also that the costs of shipping a ton
of product from each factory to each locality are given, that the capacities of the
factories are known, and that the number of tons to be supplied to each locality is fixed.
The data that we shall use in this example are given in Table 5-1. The problem is to find
a pattern of shipments that involves the least possible total transportation cost consistent
with these conditions. This calls for a decision regarding the number of tons (if any) to
be shipped by each plant to each locality. Clearly the shipments planned from each plant
must not exceed its capacity, while the shipments planned to each locality must equal its
requirements. There are many possible routings that meet these conditions; the
transportation problem is the problem of finding one that does so with the least possible
total transportation cost.

According to Table 5-1 the capacities of the three factories are 50, 100, and 150 tons
per month. The quantities to be shipped to each locality are given in the last column.
Transportation rates are given in the body of the table. Thus, the cost of shipping a ton
of product from Factory C to locality 1 is $30. An important characteristic of this
example and of many transportation problems (in the technical sense of the phrase) is
that the total capacity of all the plants just equals the total requirements of all the
consumers.

TABLE 5-1. TRANSPORTATION COSTS PER TON CAPACITIES AND



REQUIREMENTS

A good start on solving this problem can be made by setting it up in the usual linear-
programming form. Let xij denote the nonnegative number of tons shipped from Factory
i to Locality j, and let cij denote the transportation cost per ton for shipments between
these termini. Then the total transportation cost, the sum to be minimized, is

(5-1)
To achieve this minimum we can select any values of xij which satisfy three sorts of
restriction. First, the shipments planned for each factory must not exceed the capacity of
that factory. Now the total requirements which must be met by the three factories are
just equal to the total capacity of the three factories. Thus, if the shipments planned for
any factory were less than its capacity, the shipments planned for some other factory
would have to exceed capacity. In consequence, a stronger restriction must be met than
the one which we started with, namely, the shipments planned for each factory must
equal the capacity of that factory. This set of restrictions can be written

(5-2)
The second restriction is that the total shipments to each locality must equal the
requirements of that locality. Symbolically,

(5-3)
The third restriction is that the shipment variables cannot be negative, i.e.,

(5-4)
These equations suggest why the computations required by the transportation

problem are exceptionally simple: all the choice variables enter the restraining equations
with the same coefficient, namely, unity.



Considering this as an ordinary linear-programming problem, we have to minimize a
weighted sum T of 15 choice variables xij. There are 15 variables because i takes on
three values, j takes on five values, and all combinations are permissible. These 15
variables are apparently subject to 8 restraining equations, one for each of three
factories plus one for each of five localities. Actually, however, one of the restraining
equations is redundant. For suppose that any set of xij satisfies all the capacity
restrictions and meets the requirements of the first four localities. Then, since the total
capacity is equal to the total requirements, the volume of shipments corresponding to
that set of xij will be equal to the total volume of requirements of all five localities.
Furthermore, since the shipments going to the first four localities are equal to their
requirements, the volume of shipments left over must be just sufficient to meet the
requirements of the last locality. In setting up the problem, then, we could leave out one
of the restrictions, any one we please, except for considerations of symmetry.

Effectively, then, there are seven rather than eight restraining equations. We now
apply the general principle of linear programming which tells us that an optimum
program exists in which the number of activities at positive levels is no greater than the
number of restraining equations, in this case seven.

To state this conclusion in general form, assume a transportation problem in which
there are m > 1 points of origin and n > 1 destinations. We define an activity to be the
making of a shipment from a specific point of origin to a specific destination. There
would then be mn activities to be considered. The levels of these activities would have
to satisfy m restrictions relating to origins and n restrictions relating to destinations, a
total of m + n. But if any m + n − 1 restrictions are satisfied, the remaining restriction
would have to be satisfied also, by an argument similar to the one we gave for the
special case. Thus only m + n − 1 restrictions will be effective, and a minimum-cost set
of routes will exist in which only m + n − 1 of the activities are used at positive levels.

We now return to the numerical example. The strategy of solution is the same as that
used in ordinary linear programming. A “basic” solution is a set of routes in which the
number of routes used at positive levels is equal to the number of restraining equations,
i.e., the number of origins plus destinations less 1. We start with any basic solution and
then, by an iterative routine, derive from it successively better basic solutions until an
optimal one is obtained. The criterion for improvement is analogous to the ordinary
simplex criterion. In order to see how any proposed solution can be improved, we
examine all the routes not used in that solution and see whether any of these is more
economical than its indirect equivalent made up of routes used in the solution. We shall
see that this process of test and improvement is very much easier than the procedure
given for solving a general linear-programming problem.

The first step is to obtain a starting basic solution. This can be done at sight. Looking
at the Factory A column of Table 5-1 we see that unit transportation costs are least if



Factory A ships to Locality 1. Therefore we provisionally choose to have Factory A
supply the full requirement of Locality 1, or 25 tons. Since 25 tons of Factory A’s
capacity remains, we ship it to the next cheapest locality, Locality 2. After this
allocation, Locality 2 requires 90 more tons, and comparing costs in row 2 we see that it
can be supplied most economically by Factory C. Continuing in this manner, the
provisional allocation shown in Table 5-2 results. This allocation satisfies all the
restrictions, but does not necessarily correspond to minimal transportation costs.

TABLE 5-2. INITIAL SHIPMENT PLAN, TONS

Now we must test each of the routes not used in the initial shipping plan, i.e., each of
the excluded activities, and for each determine whether the cost of shipping a ton along
the route is cheaper than achieving the same result indirectly by means of the routes
included in the initial shipping plan. If the direct cost of an excluded route is lower than
the indirect cost of achieving its result, then total transportation cost can be reduced by
introducing that route into the shipping plan and dropping one of the included routes.
These observations are just a restatement of the familiar simplex criterion.

Conceptually the process of testing excluded routes consists of three stages: (1)
determining the combination of included routes which accomplishes the same result as
each of the excluded routes, (2) computing the cost of each of these combinations, (3)
comparing the cost of using each combination with the cost of using the corresponding
direct route. In practice the first two stages are performed simultaneously by means of
the simple arithmetic that we now derive.

We denote a route or activity by writing the points of origin and destination in
parentheses. Thus (B−1) denotes the activity of making a shipment from Factory B to
Locality 1. We note from Table 5-2 that activity (B−1) does not occur in the initial
solution. How can we express it in terms of the activities which do occur? A helpful,
though somewhat artificial, way to phrase this question is: How can we make a
shipment from Factory B to Locality 1 by following only routes which appear in the
basic solution? Since the basic solution does not include the direct route from Factory B
to Locality 1, our shipment would have to follow a zigzag path. In fact, tracing through
Table 5-2, we see that the shipment would have to move from Factory B to Locality 5,
from Locality 5 to Factory C, from Factory C to Locality 2, from Locality 2 to Factory A,
and finally from Factory A to Locality 1. We have already introduced a symbol to



denote a shipment from a factory to a locality; let us use the same symbol with a minus
sign to indicate a shipment over the same route in the reverse direction. Then we can
write the equivalence

(B−1) = (B−5) − (C−5) + (C−2) − (A−2) + (A−1)

This “equation” can be interpreted as follows: If we try to ship 1 ton from Factory B
to Locality 1, some compensating adjustments must be made in the other routes. For
example, Factory B’s shipments to some other destination must be reduced by 1 ton
(capacity restriction), and if (B−5) is reduced, shipments to Locality 5 from some other
source must be increased (requirements restriction). If shipments from Factory C to
Locality 5 are increased by 1 ton, Factory C’s shipments elsewhere must be reduced by
1 ton, etc., until the chain of adjustments can be completed with a reduction in
shipments to Locality 1. These compensating adjustments must take place over routes
present in the initial plan for two reasons: no shipment not taking place can be reduced;
and if we increase a shipment not taking place, we introduce two new routes into the
plan instead of one. Thus the right-hand side above gives the feasible compensations
that must be made to accommodate a 1-ton shipment from Factory B to Locality 1.58

Clearly we could work out all the routes in this same way. This would be equivalent to
solving the linear equations for expressing excluded activities in terms of included ones
in ordinary linear programming, but computationally it is very much easier. Even this,
however, is not necessary. It will be recalled that one of the main purposes of
computing all the equivalent combinations in ordinary programming is to help compare
the cost of performing an activity directly with the cost of performing it indirectly by
means of the equivalent combination of included activities. In the transportation
problem we can make this comparison of costs without actually going through the work
of expressing the excluded activities in terms of the included ones.

The cost of a direct shipment over the route (B−1) is, from Table 5-1, $20 per ton.
We now need to find the cost of a shipment over the zigzag route. This is done by
considering the five legs of the journey separately. A unit shipment from Factory B to
Locality 5 costs $30. The next leg of the journey is to ship from Locality 5 to Factory C.
Now, the initial shipment plan included a shipment of 30 tons from Factory C to
Locality 5. Rather than indulging in a cross-hauling between Factory C and Locality 5 it
is more economical to accomplish the results of a shipment from Locality 5 to Factory C
by reducing the volume of shipments from the factory to the locality. This, then, saves
money. From Table 5-1 we see that it saves $25 per ton. Incidentally, the fact that
reverse shipments save money justifies the use of the minus sign in symbolizing them.
Continuing in this manner for the other three legs of the journey, we find

Cost of indirect shipment from Factory B to Locality 1

= $30 − $25 + $35 − $15 + $10 = $35

Comparing this result with Table 5-1 we see that if we restrict ourselves to routes



contained in the initial shipment plan, a shipment from Factory A to Locality 1 (which is
direct) costs $10 per ton and a shipment from Factory B to Locality 1 (which is indirect)
costs $35, or $25 more than a shipment from Factory A. Thus if we introduce a direct
shipment of 1 ton over route (B−1) there is a transport cost of $20. But the
compensating adjustments yield a saving of $35. Obviously, then, it is advantageous to
introduce route (B−1). Each ton that can be shipped over this route will yield a net
saving of $15.

We now want to show that a shipment from Factory B to any locality costs $25 more
per ton than a shipment from Factory A to the same locality if the only routes used are
those contained in the initial shipment plan. To see this we note that a shipment from
Factory B to any locality, say j, can be achieved indirectly by shipping from Factory B to
Locality 1 (this will be an indirect shipment, but that does not affect the argument), from
Locality 1 to Factory A, and from Factory A to Locality j. In symbols,

(B−j) = (B−1) − (A−1) + (A−j)
To evaluate the cost of this, recall that we have already defined cij to denote the cost

of a direct shipment from Factory i to Locality j. Let  denote the cost of indirect
shipment between these two points. Of course, if the route (i−j) is included in the initial
shipment plan,  Using these symbols, the formula for (B−j) gives as the cost of
that shipping route:

or

i.e., the difference between the cost of indirect shipment from Factory B to any locality
and from Factory A to the same locality is the same constant, namely,  , for all
localities.

By the same argument we could show that the same constancy of differences holds
between any pair of factories. This fact makes it very easy to calculate the initial indirect
costs of shipment between every factory and every locality. The calculation is made in
Tables 5-3 and 5-4.

TABLE 5-3. INITIAL DIRECT AND INDIRECT COSTS, INCOMPLETE, PER
TON



TABLE 5-4. INITIAL DIRECT AND INDIRECT COSTS, PER TON

In Table 5-3, which is the first step in calculating a table of indirect costs, we have
entered the transportation costs for every route which appears in the initial shipment
plan, given in Table 5-2. We note that the cost of shipment from Factory B to Locality 5
is $5 greater than the cost of shipment from Factory C to the same locality. We have just
seen that this same difference must hold for every locality. Thus the indirect cost of
route (B−4) is $60, that of route (C−3) is $10, and that of route (B−2) is $40. These
indirect costs have been entered in Table 5-4. At this stage we can see, without repeating
the previous argument and simply by comparing columns A and B in the partially
completed Table 5-4, that a shipment from Factory B to any locality costs $25 more than
a shipment from Factory A to the same locality. We can now fill in the indirect shipping
costs for routes (A−3), (A−4), and (A−5); in every case they are $25 less than the entries
in the same line of column B. We can also fill in the indirect cost for route (B−1) and,
finally, for route (C−1), which must be $20 greater than the cost for (A−1). Note that the
indirect cost for route (A−3) is negative. This is not objectionable. Clearly, indirect costs
are much more easily obtained in the transportation problem than in ordinary linear
programming.

The procedure just described depended on the fact that the difference in indirect
shipment cost between shipments starting in any two factories is the same in these two
factories for all localities. It is also sometimes helpful to use the fact that the difference
between cost of shipment to any two localities is the same for all factories. The proof of
this fact is similar to the one which we have given.

Table 5-4 permits us to compare the direct cost of any shipment (all values in Table
5-1), cij, with the indirect cost,  . We have placed an asterisk next to every shipment



from a particular factory to a particular locality for which the indirect cost is greater than
the direct cost and a double asterisk next to the route for which this difference is
greatest. We have now completed our examination of the initial routing.

The next stage is to derive a revised routing which includes the route marked with a
double asterisk, i.e., route (B−4), since this is the revision that promises the greatest
saving per ton.59 To do this we must express route (B−4) in terms of the routes included
in the initial shipment plan.60

The procedure is the same as before. We determine how a shipment may be made from
Factory B to Locality 4 using only routes which were included in the initial shipment
plan. Clearly the path is from Factory B to Locality 5, from Locality 5 to Factory C, and
from Factory C to Locality 4. In symbols,

(B−4) = (B−5) − (C−5) + (C−4)
In order to introduce direct shipments from Factory B to Locality 4 and still satisfy the
restrictions, we must reduce shipments over the equivalent indirect route. Table 5-2
shows that shipments over the indirect route can be reduced to the extent of 30 tons per
month because, at that level, shipments from Factory C to Locality 4 will be entirely
eliminated and cannot be decreased further. The critical number is the smallest positive
shipment on the right-hand side of the above equation. Thus, an improved routing is to
ship 30 tons per month directly from Factory B to Locality 4, to reduce by 30 tons per
month the shipments from Factory B to Locality 5 and from Factory C to Locality 4, and
to increase by 30 tons per month the shipments from Factory C to Locality 5. In general,
in substituting a direct route for an indirect one, we reduce shipments over all routes
which appear with positive signs in the formula for the indirect route and increase
shipments over all routes which appear with negative signs. The resulting shipment plan
is shown in Table 5-5.

TABLE 5-5. SECOND SHIPMENT PLAN, TONS

It is instructive, though not an essential part of the computation, to see how this
rerouting has affected total transportation costs. Total transportation costs
corresponding to the initial shipment plan can be found by multiplying the volume of
shipments over each route (found in Table 5-2) by the transportation costs over those
routes (found in Table 5-1). The result is $8,275. By using Table 5-5 in place of Table



5-2 we find that the transportation cost of the second shipment plan is $7,375. The
saving is $900. We can account for this magnitude by noting that the cost of direct
shipment from Factory B to Locality 4 was $30 a ton as compared with $60 for indirect
shipment. The rerouting has thus saved $30 on each of 30 tons, or a total of $900, as we
found.

The second shipment plan is thus an improvement on the first. To see whether
further improvement is possible we simply repeat the process. We construct a second
indirect-cost table on the basis of the second shipment plan, following the same
procedure as was used in constructing the first indirect-cost table. The result is shown in
Table 5-6. Only one entry in Table 5-6 is greater than the corresponding entry in Table
5-1; that is, only one indirect routing is more costly than the corresponding direct
routing. This is a shipment from Factory B to Locality 1 and is indicated by the asterisk
in the table. Total costs can be reduced by making this shipment directly. In preparation
for this we express the route (B−1) in terms of the routes which are used in the second
shipment plan. From Table 5-5 we find the formula

(B−1) −(B−5) − (C−5) + (C−2) − (A−2) + (A−1)

TABLE 5-6. SECOND SET OF INDIRECT COSTS, PER TON

The minimum shipment of the positive-signed terms (B−5), (C−2), (A−1) is seen from
Table 5-5 to be 10 tons. In order to ship 10 tons directly from Factory B to Locality 1
and still satisfy all the restrictions, we should have to ship 10 fewer tons over the
indirect route. This would exactly eliminate direct shipments from Factory B to Locality
5 and is, therefore, the maximum extent to which direct shipments from Factory B to
Locality 1 can be introduced. The rerouting, then, is to ship 10 tons directly from
Factory B to Locality 1 and to compensate by sending 10 fewer tons over routes (B−5),
(C−2), and (A−1) and sending 10 more tons over routes (C−5) and (A−2). The resultant
routing is shown in Table 5-7.

Is this third shipping plan optimal? We repeat the previous analysis. The revised
indirect costs, calculated in the familiar manner, are shown in Table 5-8. A comparison
of Table 5-8 with Table 5-1 shows that in no case are indirect costs greater than direct
costs. This indicates that no further improvement is possible and that the routing shown
in Table 5-7 corresponds to the smallest possible transportation cost. This cost is



$7,225.

TABLE 5-7. THIRD SHIPMENT PLAN, TONS

TABLE 5-8. THIRD INDIRECT-COST TABLE, PER TON

It is interesting to note that the solution to this problem is not unique. Table 5-9 gives
an alternative routing with a total cost of $7,225. There are still other optimal plans as
well, but that is a matter of indifference. In general, if the final indirect-cost table
includes no indirect costs larger than the corresponding direct costs, but does contain
some that are equal, then there is a multiplicity of optimal routing plans.

TABLE 5-9. ALTERNATE OPTIMAL SHIPMENT PLAN, TONS

The allocation of output that we have arrived at is optimal, from the point of view of
minimizing transportation costs, whether the three factories are under unified
management (as we have assumed) or not. The question then arises: Will this allocation
be achieved in a free market or not? That, of course, depends on the structure of the
market, but the reader undoubtedly suspects already that the allocation corresponding to
a competitive equilibrium is optimal. The reason is that any other allocation will permit
cost-saving arbitrages precisely analogous to the reroutings employed in computing our
solution.



5-2. APPLICATION TO COMPARATIVE ADVANTAGE
What really underlies this problem is the familiar principle of comparative advantage.

To make this clear we shall work through an example of the classic application of
comparative advantage to international trade. In constructing this example, which is
purely fictitious, we have pointedly ignored tariffs and transportation costs and have
chosen numbers which illustrate a technical aspect of the transportation problem, the
possibility of degeneracy.

TABLE 5-10. DATA FOR INTERNATIONAL-TRADE EXAMPLE

The data for this example are contained in Table 5-10. In this table we assume that 20
units of labor per acre is required to produce a ton of wheat per acre in the United
Kingdom and that the same yields per acre can be obtained by using 14 units of labor
per acre in France and 17 units in Spain. The data on barley and on oats are to be
interpreted similarly. The bottom line of the table gives the total acreages available for
these three crops in the three countries, and the last column gives the total number of
acres cultivated with the assumed intensity required to satisfy the demand for the three
crops. Note that the total number of acres available and the total number of acres
required to satisfy demand are the same, namely, 26,500,000 acres. The problem is to
allocate the three crops among the three countries in such a way that the over-all
requirement for labor is as small as possible.

The procedure is just the same as before. We start with an arbitrary allocation which
satisfies the row and column restrictions. Such an allocation is shown in Table 5-11. But
there is a difficulty in Table 5-11. Recall that a basic solution to a transportation
problem involves a number of entries at positive levels equal to the number of rows
plus the number of columns minus 1. In this case, with three rows and three columns, a
basic solution should have five positive entries. But in this case, because of the
coincidence that the number of acres available in the United Kingdom is just equal to
the number of acres required to supply the demand for oats, there are only four positive
entries in Table 5-11. This makes it impossible to construct an indirect-cost table.

TABLE 5-11. TRIAL ALLOCATION OF PRODUCTION, THOUSANDS OF ACRES



This is an instance of the algebraic degeneracy referred to in Sec. 4-10, because we
have found it possible to satisfy five algebraic conditions by using fewer than five of
the variables at our disposal. Degeneracies in transportation problems are not always as
transparent or as easy to detect as this one, but the consequence is always the same,
namely, that at some stage it will be impossible to construct an indirect-cost table.
Fortunately, although degeneracies complicate the theory of linear programming, they
do not prevent solution or even make the calculations more difficult.

We now deal with the degeneracy by means of a device which is necessary for
purposes of theoretical justification, but not, as we shall see, for purposes of practical
computation. The device is to change the data so as to obtain a new, related problem
free of degeneracy. This can be done in several ways. Our choice is to change the
demand for oats to 7,000 + δ thousands of acres worth and to assume that the acreage
available in Spain is 7,100 + δ thousands of acres. We shall conceive of δ as a small
nonnegative number and shall discuss its magnitude more precisely later. The data,
altered in this fashion, are shown in Table 5-12. The initial allocation of production and
the corresponding indirect costs are shown in Table 5-13. Comparison of the indirect
costs with Table 5-12 indicates that Spain should produce barley. The economic
interpretation of this comparison is that in the allocation being tested, Spain obtains
barley by growing wheat (at a cost of 17 labor units per acre), shipping wheat to France
(thereby saving France 14 labor units per acre), and importing French barley (which
costs 12 labor units per acre). The net cost is then 17 − 14 + 12 = 15 labor units, as
shown in Table 5-13. But Spain can grow barley for 12 labor units per acre, according
to Table 5-12. Hence a revision is necessary.

TABLE 5-12. ALTERED DATA, INTERNATIONAL-TRADE EXAMPLE

TABLE 5-13. INTERNATIONAL-TRADE EXAMPLE, FIRST ALLOCATION



To revise the allocation we note that the indirect equivalent of Spanish production of
barley is given by the formula

(S,B) = (S,W) − (F,W) + (F,B).

in which initial letters are used to indicate countries and products and the symbolism is
the same as was used before. Spanish production of barley must therefore be offset by
decreases in Spanish production of wheat and in French production of barley. French
production of barley can be reduced by 5,800 acres; therefore Spanish barley can be
introduced to this extent.

Table 5-14 shows the reallocation of production and the corresponding indirect costs.
The comparison test shows that Spain should produce oats. The indirect equivalent of
Spanish oat production is given by the formula

(S,O) = (S,W) − (F,W) + (F,O)

Thus if Spain is to produce oats, Spanish wheat production and French oat production
must be decreased. French oat production can be reduced by δ thousand acres. Table 5-
15 shows the reallocation and the corresponding indirect costs. Comparison with Table
5-12 shows that the allocation of production given in Table 5-15 is optimal. The
problem is solved, except for the unfortunate appearance of δ in the final allocation.

TABLE 5-14. INTERNATIONAL-TRADE EXAMPLE, SECOND ALLOCATION

We did not specify δ except to state that it was small and nonnegative. In working
through the calculation, we carried the δ along, treating it at every stage as if it were an
ordinary number. Thus the allocation of production in Table 5-15 would be optimal for
any value of δ for which it was technically feasible. In particular, it would be optimal
for δ = 0, in which case the altered problem is the same as the original problem that we



had to solve. We then assign this value to δ.

TABLE 5-15. INTERNATIONAL-TRADE EXAMPLE, THIRD ALLOCATION

Now we can see why the δ, while necessary in tracing through our reasoning, is not
necessary in the actual work of solution. We did not have to wait until the final step
before setting δ = 0; we could have done this right at the beginning. In that case we
would not have needed Table 5-12. Instead, in calculating Table 5-11 from Table 5-10
we would have written a zero in the (F,O) space instead of a blank,61 and thereafter we
would have treated the zero in every respect in the same way as an activity at positive
level. This would have provided the necessary five entries, and the work would have
proceeded smoothly. Degeneracies, then, can be handled by taking either explicit or
virtual account of a δ variation and do not affect a transportation problem or its solution
in any essential manner.

The allocation of production arrived at in Table 5-15 conforms with expectations and
is easily interpreted. The United Kingdom, under our assumptions, has a comparative
advantage in oat production since the gap between labor requirements for oat
production and for the production of the other crops is greater there than in the other
countries. Similarly, inspection of Table 5-10 shows that Spain has a comparative
advantage in barley production. The optimal solution which we found conforms to
these two comparative advantages.

It should be noted that the international-trade example, while an illustration of the
transportation problem, has nothing to do with transportation costs. Neither, in any
fundamental sense, does the transportation problem, in spite of its misleading name.
The essential characteristic of the transportation problem is that restraints are imposed
on both inputs and outputs and that, subject to those restraints, some number which
depends on the allocation of the inputs is to be either minimized (as in both our
examples) or maximized. Any economic or business problem of this general structure is
a transportation problem.

5-3. OTHER INTERPRETATIONS OF THE PROBLEM
Another straightforward application of the same procedure is the so-called personnel-

assignment problem. It goes like this: Suppose there are 10 men to be assigned to 10
positions in an organization and that a numerical estimate can be made of the



contribution which each man could make to the organization if assigned to each job.
These values, of course, would reflect both the importance of the jobs and the
capabilities of the men. Then the problem is to assign the men to the jobs in such a way
that the total value of the group to the organization is as great as possible. This problem
may be varied by considering categories of men and categories of jobs rather than
individual men and jobs, but the principle is the same.

Still another group of applications concerns the allocation of raw materials. Suppose
that a soap company has a number of different kinds of vegetable oil that may be
substituted for one another in certain proportions to form a number of different soap
products. Suppose that the total amount of each kind of oil to be used is predetermined
and also the total amount of each kind of soap and, further, that some measure of the
value of each oil in each use is known. Then a problem of the same general kind
results. In short, the transportation problem is of a quite general nature.

5-4. IMPLIED VALUES: THE DUAL
The solution of a transportation problem implicitly places values on the various

inputs and outputs involved, just as does any other linear-programming problem. This
aspect is somewhat obscured by the usual formulation of the transportation problem,
which we presented in Eqs. (5-1) to (5-4). Let us now set up the problem in a slightly
altered form which will enable us to derive the dual form, and thereby perceive the
value implications.

The three-factory, five-locality example can be stated in the following form. We
require a schedule of shipments which will minimize the total transportation cost,

(5-1)
subject to the restrictions that no factory be required to ship a greater amount than its
monthly capacity, i.e., that

(5-5)
and that each locality receives at least its monthly requirement, i.e., that

(5-6)
where the symbols have the same definitions as before. We retain the assumption that
total capacity equals total requirements, or that



(5-7)
Formulas (5-5) and (5-6) have inequality signs where their analogs in the previous

statement of the problem, formulas (5-2) and (5-3), had equality signs. Apart from that,
the problem is exactly as it was before. The change in the problem is, however, formal
rather than substantive; i.e., any solution to the first form of the problem is a solution to
the second, and conversely. The reason for this is contained in Eq. (5-7), which
guarantees that the inequality signs in Eqs. (5-5) and (5-6) will never be effective.
Consider Eq. (5-5) and suppose that for Factory A we had jxAj < kA; then when we
added up the outputs of all the factories we should have to have i jxij < iki, since, by
virtue of Eq. (5-5), neither of the other factories could make up the deficit created by
the fact that Factory A was producing at less than capacity. Because of Eq. (5-7) this
would mean that total output is less than total requirements. which is forbidden by Eq.
(5-6). It follows that it is impossible for inequality signs actually to occur in any
admissible solution, even though they appear in the restatement of the problem.

In Eqs. (5-5) and (5-6) the inequality signs run in opposite directions. In order to put
this problem in standard linear-programming form we multiply Eq. (5-5) through by −
1, which has the effect of changing the sense of the inequality. Thus, and finally, the
restrictions take the form

(5-6)

(5-8)
Equations (5-1), (5-6), and (5-8) now constitute a standard linear-programming
problem. This problem involves 15 variables, xij, and 8 restraints, 5 in Eq. (5-6) and 3 in
Eq. (5-8). The restraining equations are written out in full in Table 5-16. The sum to be
minimized is given on the last line of that table.

TABLE 5-16. RESTRAINING EQUATIONS FOR GENERALIZED FORM OF
TRANSPORTATION PROBLEM

Now we form the formal dual of the direct problem that has just been started. It will
be recalled that the relationships between any problem and its dual are as follows:



1. The dual of a minimum problem is a maximum problem.

2. The dual problem has one restraining inequality for each variable in the direct
problem, and one variable for each restraining inequality in the direct problem.

3. The inequalities in the dual problem have the opposite sense to the inequalities in
the direct problem.

4. The coefficients of the objective function of the direct problem appear as
restraining constants in the dual, and the restraining constants of the direct problem are
the coefficients of the objective function of the dual.

5. The restraining equations of the dual problem are constructed from those of the
direct problem in the following manner. Each restraining equation in the dual problem
corresponds to one of the variables in the direct problem. Each variable in the direct
problem appears with some coefficient, possibly zero, in each equation in the direct
problem. Each variable in the dual problem corresponds to one of the equations in the
direct problem. Suppose that the ith dual variable corresponds to the ith direct equation
and that the jth dual equation corresponds to the jth direct variable. Then the coefficient
of the ith dual variable in the jth dual equation is the same as the coefficient of the jth
direct variable in the ith direct equation.

These rules relating the dual problem to the corresponding direct problem are not, of
course, susceptible of proof. They merely define the dual. The essential algebraic
properties of the dual were discussed in Chap. 4.

To construct the dual of the transportation problem let vj be the dual variable
corresponding to the requirement that the jth locality receive its full quota, so that, for
example, v1 corresponds to the top line in Table 5-16. Similarly, let ui be the dual
variable corresponding to the restriction that Factory i cannot be required to ship more
than its capacity. Then the dual problem involves 8 variables and 15 restraints. This
problem is set forth in Table 5-17 and in the following equations.

To maximize

(5-9)
subject to the restrictions

(5-10)
Thus far we have performed only a formal algebraic manipulation. But the economic

interpretation is evident. Let us interpret ui as the value of the product f.o.b. Factory i
and vj as its value delivered at Locality j. Then Eqs. (5-10), which may be written



vj ≤ ui + cij

state that for any factory-locality pair the value at the locality must be no greater than the
value at the factory plus the transportation cost; i.e., transportation of the commodity
must never rise to an unimputed surplus of value over and above f.o.b. value and
transportation cost. Equation (5-9), the expression to be maximized, is the total excess of
delivered value over value at the factory. In fact, over routes actually used, delivered
value equals factory value plus transport cost. Over routes not used, delivered value
falls short of factory value plus transport cost (or equals it, in which case the route
could be included in an alternative optimal shipping plan).

Since we have already solved the direct problem, the solution of the dual is trivial.
We use the principle that in Eqs. (5-10) the equality holds for those pairs of values or i
and j which enter into the optimal shipment plan, while either equality or inequality
holds for the rest. Table 5-7 gives the pairs which enter into the shipment plan as (A−1),
(A−2), (B−1), (B−3), (B−4), (C−2), and (C−5). Hence we have these seven simple
equations:

TABLE 5-17. DUAL OF THE THREE-FACTORY TRANSPORTATION PROBLEM

This is a set of seven equations in eight, unknowns. We can therefore give an arbitrary
value to one of the unknowns, and, just for definiteness, we set uc = 0. Then,
substituting in these equations, the values shown in Table 5-18 result.



Table 5-18 contains two sorts of useful economic information. (1) The values of u
measure the comparative locational advantages of the three factory sites. The product of
Factory A is worth$20 per ton more than the product of Factory C, simply because of
proximity to points of consumption. This differential is not entirely obvious from Table
5-1, where it appeared that Factory C was actually closer than Factory A to the second
largest market. (2) The values of v are the delivered prices that correspond to the most
economical allocation of output from the viewpoint of minimum aggregate
transportation cost. The results are not the same as those of either a single- or a
multiple-basing-point pricing system, though they have some aspects relating them to
both. Our results are similar to those of basing-point prices in that the realized prices at
each factory site (the u’s) are influenced by the transportation costs pertaining to the
other factory sites. Thus prices f.o.b. Factory A are greater than prices at the site of
Factory C because C suffers from locational disadvantages and cannot dispose of its
output without loss otherwise. This disparity in realized f.o.b. prices among factories is
also observed in the single-basing-point system. Since this disparity is present in the
optimal allocation, one may conclude validly that its presence in single-basing-point
systems is not an adequate reason for condemning those systems. But neither is it an
argument in their favor. On the other hand, our values contrast with a pure basing-point
system because the price structure is such that no factory can supply all localities
without accepting a realized price lower than the value of the product at the factory. The
delivered prices do not correspond to any simple multiple-basing-point system either.
Of course, our problem diverges in one important respect from the kind of situation in
which basing-point systems normally arise. We have assumed that there is no excess
capacity, whereas basing-point systems-are typically a response to the existence of
excess capacity at one or more of the producing points.62 The implications of our
method of analysis for the allocative efficiency of basing-point systems are not affected
by this reservation, however.

TABLE 5-18. IMPLICIT VALUES, THREE-FACTORY EXAMPLE

It should be remarked that the alternative optimal shipping plan given in Table 5-9
corresponds to precisely the same structure of implicit values, as the reader can easily
verify.

These results recall the remarks that we made at the end of Sec. 5-1 about the
relationship of our solution to competitive equilibrium. The prices that we have
obtained are the competitive equilibrium prices that would result from the



uncoordinated efforts of the three factories to sell their entire outputs at the maximum
possible prices. In this sense the economic system can be viewed as a gigantic analog
computer and director in which the computations of optimal values and the directing of
resources are simultaneous and interdependent.

5-5. THE DUAL OF THE INTERNATIONAL-TRADE
EXAMPLE

The analysis of the pricing implications of the international-trade example follows the
same lines. We let ui denote the rental value of acreage in country i, and v, the value per
ton of crop j. Values are here measured in terms of the cost data given in Table 5-10,
that is, in terms of labor units. The only novel aspect of the trade example is that we
have to remember to count oat production in Spain (at zero level, of course) as one of
the activities appearing in the final solution, in order to have sufficient equations. Table
5-19 shows the resulting values with rentals in the United Kingdom being set, arbitrarily,
at zero. The interpretation of these figures is that land should rent for 1 labor unit per
acre in Spain and for 4 labor units per acre in France, while wheat should sell for 18
labor units per ton, barley for 13, and oats for 12. The word “should” indicates only that
these are the prices which correspond to the most efficient allocation of production in
the light of the data of this problem.

TABLE 5-19. IMPLICIT VALUES, INTERNATIONAL-TRADE EXAMPLE

5-6. TECHNICAL NOTE
The transportation problem is, as we have seen, peculiarly simple to solve. The

reason for this is revealed by the equations that we solved implicitly, without writing
them down, in arriving at the initial shipment plans. In the three-factory illustration the
variables that occurred at positive levels in the initial plan were xA1, xA2, xB3, xB5, xC2; xC4,
xC5. The equations connecting these variables can be written



Now notice that the first equation involves only one unknown and serves to determine
that unknown; the second equation introduces one additional unknown; and each
subsequent equation adds just one more unknown. Thus the unknowns can be
determined seriatim without elaborate computation. Such a system of equations is
known as “triangular”—a name suggested by the appearance of the setup—and is a
godsend whenever it occurs.

There is still an additional simplifying feature in the transportation problem:
whenever an unknown appears, its coefficient is unity. As a result, if the requirements
and capacities (the right-hand sides of the equations) are integral numbers, so will be
the levels of the activities in the solution, because each level will be determined in its
turn by simple addition and subtraction of integers.

It is easy to see that any transportation problem must work out in this simple way.
Consider a transportation problem with n row restraints and m column restraints and
focus attention on any activity level in the array. Now set this level equal to its row or
column total, whichever is smaller. If the row total is smaller, this operation will
determine all the other activity levels in that row: they will be zero. Similarly, if the
column total is smaller, all the other activities in that column will be zero. In either case
the result is to leave a transportation problem with one less row or one less column.
This process can be repeated until only one row or one column is left, at which time all
the activity levels will have been determined (not necessarily optimally, of course). And,
since these levels will have been determined seriatim, the equations connecting them
and implicit in this process must have been triangular in form.

In this chapter we have not dealt rigorously with many of the theoretical issues that
arise in the transportation problem. For a more thorough treatment the reader is referred
to the definitive developments by G. B. Dantzig and T. C. Koopmans.63

EXERCISES
5-1. A race-horse owner has four horses, named Smith, Malthus, Ricardo, and Mill,

and plans to enter them in four races. If he wishes to enter one horse in each race and
cannot enter any horse in more than one race, how should he enter them so as to make
his expected total purse winnings as great as possible? The data are given below.

HORSERACE EXERCISE: PROBABILITIES AND PURSES



Partial answer: Maximum expected purse winnings are $1,150.

5-2. Set up, solve, and interpret the dual to Exercise 5-1.



6

Linear-programming Analysis of the Firm

6-1. THE LINEAR-PROGRAMMING CONCEPT OF THE
FIRM

We have already seen that linear programming is a method for calculating the best
plan for achieving stated objectives in a situation in which resources are limited. As
such it is a method for solving the classic problem of economizing, whether in the
context of an entire economy, in that of a government program, or in a single firm. In
this chapter we consider the application of linear programming to the problems of the
individual firm.

The problem of the optimal utilization of limited resources by the individual firm has
long been studied in economics, particularly in the analysis of the theory of production
in the short run. The received doctrine provides us with a convenient point of
departure. Consider, then, a competitive firm which cannot influence the prices of the
factors that it uses or the products that it produces. The model usually employed for
discussing the behavior of such a firm conceives of it as a unit of control whose
objective is a maximum time rate of profit and those variables of choice are the time
rates of consumption of various inputs and of production of various outputs. The
choices of production and consumption rates are interdependent; otherwise output
would be chosen very large (perhaps infinite) and input very small. The necessary
interrelationships are expressed by means of a production function, and if we regard a
production function as specifying all technologically feasible combinations of inputs
and outputs, the problem of production amounts to selecting the most profitable point
of the production function.

For most purposes of economic analysis we assume that this problem is solved. We
do not care how it is solved in practice, although presumably it is usually not done by
formulating the production function mathematically and finding its optimum by the
methods of the differential calculus. More plausibly, the solution process is one of trial
and error or survival of the fittest. But all this is neither here nor there. The important
thing is that the problem is solved, by one means or another, and we can use the
solution (which, however arrived at, satisfies the conditions deduced from the
differential calculus) to characterize the behavior of markets and their responses to
changes in prices, techniques, tastes, or other conditions.

The conventional theory can be justified in terms like these, and often has been,



because the analysis of the firm is but a step in the analysis of markets. But what if we
are interested in the firm per se? What if we are interested in giving a prescription to the
firm as to how to solve its optimizing problem? Then the method of finding the firm’s
optimum ceases to be irrelevant and we must look at the assumptions about the
production function with a more critical eye.

The production function is a description of the technological conditions of
production, and the economist takes no direct responsibility for ascertaining it. Instead
he regards it as falling within the purview of the technologist or engineer. But there
seems to have been a misunderstanding somewhere because the technologists do not
take responsibility for production functions either. They regard the production function
as an economist’s concept, and, as a matter of history, nearly all the production
functions that have actually been derived are the work of economists rather than of
engineers.

The engineers do not, on these grounds, stand convicted of neglect of duty. The fact
is that engineers look at things somewhat differently from economists and the
production function does not usually enter explicitly into an engineer’s analysis. This is
true for two reasons. First, the activities of firms, even small firms, are generally too
complex to be considered as a whole. The engineer can analyze an assembly line
without studying the shipping room or billing department, and therefore he has no
occasion to formulate a production function for the firm as a whole. Second, the
variables of choice as they appear to the engineer are not the ones on which economic
analysis is based. His problem, typically, is not whether to use slightly more capital and
slightly less labor but how many units to install of a new machine that costs slightly
more but requires less tending and has other distinguishing characteristics as well.
Putting it roughly, the choice is not among various time rates of input and output but,
more directly, among different ways of doing things, each of which implies its own
characteristic pattern of input and output rates.

The distinction we are drawing between the engineer’s approach and the production-
function approach does not bear directly on the facts of life or on empirical realism. We
are stating merely that the production function short-circuits certain aspects of the
problem that the engineer cannot afford to neglect. The economist cannot afford to
neglect them either when he wants to look inside the firm. Moreover, there is some
advantage in talking the engineer’s language. For, among other things, this is the
language in which engineering and accounting data are expressed. This is the point of
view taken in linear programming.

Our point of view, then, will be that the essential choices made by a firm do not deal
directly with levels of input and output, but rather concern the extent to which “different
ways of doing things” are used. This concept of a “way of doing things” is by no means
easy to define. The underlying idea is that a change in a way of doing things implies a



change in the composition of ingredients or results or both. Thus, to use the agricultural
illustrations so prevalent in the theory of production, if a farmer sows his acre with a
new variety of seed (thus decreasing the input of the old seed and increasing that of the
new), or if he switches to a new crop entirely, or if he sows the old seed more thickly
than last year—in any of these cases we should say that he is doing things differently.
But if he should plant twice as many acres with the old seed using the old density of
sowing, etc., then he is “doing the same things in the same way,” except, as we shall say,
at a higher level or intensity.

This attitude toward choices implies an assumption closely related to the assumption
of constant returns to scale. We assume that if acreage is doubled while the treatment
given each acre is unchanged, then output will be doubled and so will be all associated
inputs. As an empirical matter, this might or might not hold true. In this agricultural
example one feels that constant rates of return to an unchanged way of doing things will
hold approximately but cannot hold exactly. Exact proportionality is impossible
because, to suggest a few reasons, (1) yields toward the edge of a field are different
from yields in the center and the proportion of edge to total changes with scale; (2) this
edge problem also enters into the difficulties of cultivation; (3) the length of fencing is
not proportional to acreage; (4) travel time to, from, and within the plot is not
proportional to acreage. These examples should illustrate the kind of nonproportional
effects that are inevitable and also the possibility that the deviations from
proportionality may be unimportant. In our formulation we shall assume that deviations
from proportionality are unimportant and shall neglect them.

We can now define a concept which incorporates the idea of a “way of doing things.”
This concept is that of a “process,” or “activity,” which we define as a set of ratios
obtaining among rates of consumption of various inputs and rates of production of
various outputs. We conceive of a firm as making choices among a number of
processes (each presumably corresponding to different physical operations, but that is
not part of our definition). Each process, we assume, can be operated at any positive
level so long as the necessary inputs are available. By changing the level of a process we
mean, of course, changing the time rates of consumption of all its inputs and the rates of
production of all its outputs in the same proportion. We repeat: The assumption that the
level of a process can be varied is an assumption of fact which is not likely to be exactly
true. We assume also that a firm may use several processes simultaneously so long as
necessary supplies are available. This assumption is subject to the same empirical
qualifications as the preceding one.

Still another assumption is that a firm has only a finite number of processes available
to it. In cases in which this assumption does not apply, the traditional marginal analysis
of smooth curves is likely to be more appropriate than the methods of linear
programming with which we are concerned.64 Agriculture, obviously, provides many
examples in which the number of processes available is, to all intents and purposes,



infinite. On the other hand, there are many practical cases, even in agriculture, in which
the number of processes available is finite, sometimes very small.

If a firm employs several processes, then it follows from our definitions that the
firm’s total consumption of factors and total production of products will be the sum of
the quantities of factors consumed by the various processes and the sum of the products
produced by the individual processes, respectively. Thus a change in the proportions
among the quantities of factors consumed and products produced by the firm can result
only from a change in the levels at which the various activities are utilized.

In this view of production the quantities of inputs and outputs of the firm cannot be
altered directly, but only indirectly by means of changes in the levels of various
processes. Thus linear programming does not seek to determine directly the optimal
quantity of each factor and product but, instead, the optimal level of each activity. From
these levels, the factor and product quantities follow in due course.

Two simple examples will illustrate this approach.

6-2. An Automobile Example.
Let us consider a hypothetical automobile company equipped for the production of

both automobiles and trucks. We shall assume that this company’s plant is organized
into four departments, namely, sheet-metal stamping, engine assembly, automobile final
assembly, and truck final assembly, and that raw materials and all other components are
purchased from supply companies.

The capacity of each department of the plant is limited, of course. We assume that the
metal-stamping department can turn out sufficient stampings for 25,000 automobiles or
35,000 trucks per month or for some appropriate combination of automobiles and
trucks. To illustrate what we mean by an “appropriate combination,” note that, for
example, 15,000 automobiles represents 60 per cent of capacity of this department
(15,000 = 60 per cent of 25,000) and 14,000 trucks represents 40 per cent of capacity.
Thus, 15,000 automobiles plus 14,000 trucks could be produced with the department
operating at full capacity, and this would be an appropriate combination.

In a like manner we assume that the engine-assembly department has monthly
capacity for 33,333 automobile engines or 16,667 truck engines or, again, some
combination of fewer automobile and truck engines.

TABLE 6-1. MONTHLY CAPACITIES OF DEPARTMENTS OF AUTOMOBILE
PLANT, UNITS PER MONTH

Depar tment
Product

Automobi l es Trucks



Metal stamping 25,000 35,000

Engine assembly 33,333 16,667

Automobile assembly 22,500

Truck assembly ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 15,000

The automobile assembly line is assumed to accommodate 22,500 automobiles per
month, and the truck assembly line 15,000 trucks. These assumptions are summarized in
Table 6-1.

We can now define two processes or activities: the production of automobiles and the
production of trucks. The process of producing an automobile would have as an output
one automobile and as inputs 1/25,000 = 0.004 per cent of metal-stamping capacity,
1/33,333 = 0.003 per cent of engine assembly capacity, and 1/22,500 = 0.00444 per cent
of automobile assembly capacity. In a similar way we deduce from Table 6-1 that the
process of producing one truck requires as inputs 0.00286 per cent of metal-stamping
capacity, 0.0067 per cent of engine assembly capacity, and 0.00667 per cent of truck
assembly capacity. These data are summarized in Table 6-2.

The scope for choice in this firm consists in deciding how many automobiles and
how many trucks to produce each month subject to the restriction that no more than 100
per cent of the capacity of any department be used. Clearly, if automobiles alone are
produced, at most 22,500 units per month can be made, automobile assembly being the
bottleneck. Similarly, if only trucks are produced, the maximum output is 15,000 units
because of the limitation on truck assembly. Which of these alternatives should be
adopted or whether some combination of trucks and automobiles should be produced
depends on the relative profitability of manufacturing automobiles and trucks. Let us
assume that the sales value of an automobile is $300 greater than the total cost of
purchased materials, labor, and other direct costs attributable to its manufacture. And
similarly, let us assume that the sales value of a truck is $250 more than the direct cost
of manufacturing it. Then the manufacturing profit of the plant for any month is 300
times the number of automobiles produced plus 250 times the number of trucks. The
statement of the problem is now complete: Find the combination of automobile and
truck outputs that yields the greatest manufacturing profit without requiring more than
100 per cent of the capacity of any department.

TABLE 6-2. PER CENT OF CAPACITY REQUIRED PER UNIT OF
AUTOMOBILE AND TRUCK PRODUCTION



FIG. 6-1. Choices open to an automobile firm.
Because this example involves only two activities, the situation can be portrayed

graphically, and we have done this in Fig. 6-1. In this figure the number of trucks
produced is measured horizontally and the number of automobiles is measured
vertically. The line labeled “metal stamping,” which runs from 25,000 automobiles and
no trucks to 35,000 trucks and no automobiles, represents all combinations of
automobile and truck outputs that require 100 per cent of metal-stamping capacity. In a
like manner, the “engine assembly,” “truck assembly,” and “automobile assembly” lines
show the other three capacity limitations. Then the area between the origin and the
broken line segment ABCDE shows all combinations of automobiles and trucks that can
be produced, i.e., that do not violate any of the capacity restrictions. The dashed lines
on the figure are “isoprofit” lines; i.e., each of them is the graph of one of the equations

300 × automobiles + 250 × trucks = constant

for a particular constant (for example, 4.5 million dollars), so that all combinations of
automobiles and trucks that lie on the same dashed line yield the same manufacturing
profit. Graphically speaking, then, the problem is to find the point in the polygon
OABCDE that lies on the highest possible dashed line. Clearly this is point C. This
simple graph solves the problem handily in this simple case, but obviously such a graph
will not suffice if more than two processes have to be considered. We therefore
formulate the problem algebraically.

Let x1 denote the number of automobiles produced per month, and x2 the number of
trucks. Table 6-2 gives the proportion of the capacity of each department required for



each automobile and truck. Using those data we can write

Since the capacity limitation is 100 per cent, in every case the algebraic restrictions on x1

and x2 are

In addition, since we do not permit the production of negative numbers of automobiles
and trucks, we require x1, x2 ≥ 0. Subject to these conditions we wish to find x1, x2 so
that

Manufacturing profit = 300x1 + 250x2 = as great as possible

Methods for finding such a pair of values are discussed in Chap. 4 and later in this
chapter. By applying these methods we can show that the maximum profit for the
automobile firm is obtained when 20,370 automobiles and 6,481 trucks are produced
per month.65The reason for this is easy to see. Suppose the company produced as many
automobiles as possible, namely; 22,500 (point E in the figure). There would be unused
capacity in all departments except automobile assembly. The firm could manufacture as
many as 3,500 trucks without reducing its automobile output (point D), but at this stage
metal-stamping capacity would be fully utilized. Further increases in truck output could
be achieved only by reducing automobile output. Would further expansion of truck
production be worthwhile? Each truck requires 0.00286 per cent of metal-stamping
capacity, or the same as five-sevenths of an automobile. Thus every 7 trucks
manufactured require a reduction of 5 in the output of automobiles in order to stay
within the metal-stamping capacity limitation. But the profit on 7 trucks is $1,750 (i.e., 7
× $250), while the profit on 5 automobiles is only $1,500 (that is, 5 × $300). So it is
worthwhile to substitute trucks for automobiles.

The substitution of truck output for automobile production increases the utilization of
engine assembly capacity. When this capacity is fully absorbed (point C) the picture
changes. From there on, as can be seen from Table 6-2, a cutback of two automobiles
per month is required to free sufficient capacity for one truck. This is not worthwhile,
and the optimal schedule is given by the values of x1 and x2 which fully utilize both
metal-stamping and engine-assembly capacity. Those are the values that we have given.

This example conforms to the simplest possible linear-programming model of the



firm, and it is important to recount explicitly the simplifying assumptions that have been
made. The most obvious assumption is that the total capacity requirement for the
production of automobiles is directly proportional to the number of automobiles made,
and the same holds true for trucks. Further, although automobiles and trucks compete
with each other for the use of productive facilities, they do not interfere with each other,
so that if both automobiles and trucks are made, the total capacity requirement for the
production program is simply the sum of the requirement for automobiles and that for
trucks. Actually, changeover time is a factor in costs.

There is another important set of assumptions which was carried, so to speak, in the
margin. Consider the production of automobiles. In addition to the assumed amounts of
the four capacities listed, it requires raw materials, components purchased from outside
suppliers (which are also raw materials from the point of view of the firm), financing,
and labor. In short, it requires certain direct expenses or variable costs. The production
of an automobile results in the creation of a salable commodity and, eventually, in the
receipt of a certain gross revenue. We shall refer to the net revenue from the production
of an automobile as the excess of the gross revenue per unit over direct costs per unit.
Now we note that our model has assumed that this unit net revenue is a constant,
independent of the number of automobiles and trucks produced. Mathematically
speaking, this is the only assumption which we have made about direct expenses, gross
revenue, and net revenue; i.e., we have assumed only that

Unit net revenue = unit gross revenue – unit direct costs = constant

But, economically speaking, this results from assuming that

1. Unit gross revenue = constant.
2. Unit direct costs = constant.

The first of these assumptions is an assumption of pure competition, i.e., an
assumption that all units which can be produced can be sold at the going price and none
can be sold at a higher price. Linear-programming models can be constructed for
somewhat more complicated marketing situations, and we shall discuss one such model
later.

The second assumption postulates that marginal direct costs are constant up to the
point at which capacity is fully utilized and thereafter are infinite. In effect, we have
divided total costs of production into two categories. First, there are the expenses of
providing the stated amounts of productive capacity. Second, there are the operating
costs that are regarded as variable and simply proportional to the level of operation. In
later examples we shall show how the revenue and cost assumptions can be
incorporated explicitly in the mathematical formulation of the model. In models as
simple as the present one, the explicit introduction of the assumptions would add
complications without any real advantage.



Our second example will bear a closer resemblance to the type of problem considered
in the familiar marginal analysis.

6-3. AN INCREASING-COST EXAMPLE
Consider a manufacturing firm which produces a single product. We shall imagine

that this firm owns a main plant with a capacity of 100 units of output per hour and
some stand-by obsolete equipment capable of producing 25 units per hour. We shall
assume that direct material cost is $0.50 per unit for production in the main plant and
$0.55 per unit for the stand-by plant. Direct labor cost is $0.60 per unit in the main plant
and $0.70 per unit in the stand-by plant for schedules of operation up to 40 hours a
week. After 40 hours, time and a half must be paid until 60 hours a week are reached.
Conditions do not permit operations at more than 60 hours a week. Further alternatives,
such as multishift operation, can easily be imagined, but the foregoing are sufficient for
our purposes. We have now defined four productive activities, as follows:

1. Production in main plant on regular time

Unit marginal cost: $1.10 
Capacity: 4,000 units per week

2. Production in stand-by plant on regular time

Unit marginal cost: $1.25 
Capacity: 1,000 units per week

3. Production in main plant on overtime

Unit marginal cost: $1.40 
Capacity: 2,000 units per week

4. Production in stand-by plant on overtime

Unit marginal cost: $1.60 
Capacity: 500 units per week

Clearly, these four activities will enter operation successively as demand conditions call
them forth.

This situation gives rise to an increasing-cost curve of the familiar sort. The average
cost of any output x, denoted by AC(x), can be derived from the marginal costs as
follows. For x ≤ 4,000,



For 7,000 < x ≤ 7,500 we have

Figure 6-2 shows these marginal- and average-cost curves. Note that although the
average-cost curve in the figure looks like a sequence of broken-line segments, it is
really composed of very flat hyperbolas for all outputs above 4,000 units per week.

FIG. 6-2. Discontinuously increasing costs.
This simple example was introduced to show how conditions of varying marginal

cost can be comprehended within the framework of linear programming. Suppose we
postulate that a change in marginal cost must reflect some physical or economic change
in the conditions of production. Then, if each change in productive conditions is
thought to give rise to a new productive activity, a linear-programming model will
describe the situation. If the number of variations to be considered is large, the linear-
programming model will become unwieldy.66 Apart from this there is no difficulty
about it, provided marginal costs are increasing. Note that we do not need to specify that
the four activities be introduced in the order listed. It will come out as part of the



solution to any maximum-profit problem that no high-cost process should be used until
all lower-cost processes have been exhausted.

These two examples illustrate the linear-programming point of view. This point of
view, as compared with that of the traditional smooth marginal analysis, involves a shift
in the focus of attention. Instead of seeking the optimal combination of inputs and
outputs, we seek the optimal combinations of levels of activities. Thus the linear-
programming analysis provides more information than the marginal approach; it not
only defines a goal in terms of optimal quantities of inputs and outputs, but it also gives
specific directions for achieving this goal in terms of the various activities available to
the firm. It should be noted, though, that linear programming requires more detailed
information about the physical conditions of production than does the marginal
approach.

On the other hand, a question of applicability arises. The marginal analysis assumes
that the quantities of each factor and product can be varied infinitesimally and
individually. Marginal analysis grows out of the concept of “dosing,” best exemplified
in agricultural production. In linear-programming terminology, the usual marginal
analysis assumes that an infinite number of different processes are available, each
derived from a similar one by a slight alteration in the proportions of inputs and
outputs. Linear programming, by contrast, assumes that the production function can be
decomposed into a finite number of activities, each characterized by physically
determined ratios among inputs and outputs. Linear programming grows out of the
limitations of production with the use of machinery. Which method is to be used in any
specific analysis depends in part upon which assumptions conform best to the facts of
the case at hand. By considering increasing numbers of processes, linear programming
can be made to approach the continuous case as closely as may be desired.

6-4. A CHEMICAL EXAMPLE
Still working within the framework of the simplest set of economic assumptions, let

us illustrate a slightly more complex production model. In the automobile example we
discussed a multiproduct firm whose products competed with each other for the use of
the limited means of production. Now we shall discuss an instance in which the
products not only compete with each other in production, but stand in a complementary
productive relationship as well. Such situations are likely to arise in vertically integrated
firms.

Let us then imagine a chemical firm which produces three chemicals called simply C1,
C2, and C3. The firm uses four types of chemical equipment which we shall designate as
E1, E2, E3, and E4. We assume that the firm has available three productive activities, as
follows:



1. The production of $100 worth of C1 per month. This requires 10 per cent of the
available capacity of E1, 5 per cent of the available capacity of E2, and $70 in direct
costs.

2. The production of $100 worth of C2 per month. This requires 4 per cent of the
available capacity of E2, 5 per cent of the available capacity of E3, $30 worth of C1, and
$50 in direct costs.

3. The production of $100 worth of C3 per month. This requires 2 per cent of the
available capacity of E2, 10 per cent of the available capacity of E4, $10 worth of C1, $50
worth of C2, and $15 in direct costs.

These production opportunities are summarized in Table 6-3, in which a positive
entry indicates that a commodity is produced and a negative entry indicates that a
commodity or factor of production is consumed by the activity in question.

TABLE 6-3. MONTHLY PRODUCTION AND CONSUMPTION PER UNIT OF
ACTIVITY IN A CHEMICAL PLANT

In Table 6-3 we exhibit the production opportunities open to the firm. But selling, not
production, is the firm’s objective. Accordingly we must introduce three selling
activities, one for each of the products, as follows:

4. The sale of $100 worth of C1 per month. This consumes $100 worth of C1 and
produces a gross revenue of$100.

5. The sale of $100 worth of C2 per month. This consumes $100 worth of C2 and
produces a gross revenue of $100.

6. The sale of $100 worth of C3 per month. This consumes $100 worth of C3 and
produces a gross revenue of $100.

The expanded schedule of activities is shown in Table 6-4.

We now express the situation of this firm algebraically and, to do so conveniently,



shall use the concepts of “vectors” and “matrices.”67

TABLE 6-4. PRODUCTION AND SELLING ACTIVITIES IN A CHEMICAL
PLANT

A vector is simply a list of numbers. Thus each of the activities defined above and
listed in Table 6-4 is a column vector. We shall exclude the “net revenue” line of Table
6-4, so that each of the column vectors will be considered to have seven elements. We
denote by Ai(i = 1, . . . ,6) the column vector of the ith activity. For example, for
Activity 1 we have

A matrix can be defined as a row of column vectors.68 Let A denote the matrix
consisting of the six activity vectors:

A = (A1 A2 A3 A4 A5 A6)

Then A will be simply the first seven rows of Table 6-4.

Let xi(i = 1, . . . , 6) denote the level of the ith activity. Thus if $1,000 worth of C2 is
produced, x2 = 10, and if $500 worth of C3 is sold, x6 = 5. Let y1, y2, y3 denote the total
production of C1, C2, C3, respectively. Negative production will indicate consumption.
And let y4, y5, y6, y7 denote the production of E1, E2, E3, E4, respectively. We must now
express the relationship between the x’s and the y’s, i.e., between the activity levels and
the quantities of input and output.

The program of the firm, i.e., its complete schedule of activities, is completely
specified by the list of activity levels x1, x2, . . . , x6. We shall call such a list an activity
vector and, sometimes, denote it by x (without a subscript) for short. Such an activity



vector determines all the inputs and outputs; for consider its first component, x1. This
signifies that Activity 1 is being operated at level x1; and as a result, looking at Table 6-4,
100x1 units. of C1 are produced, − 10x1 units of E1 are produced (i.e., 10x1 units of E1

are consumed), and −5x1 units of E2 are produced. Thus if Activity 1 is operated at level
x1 we can describe the resultant schedule of inputs and outputs by writing

Similarly, if Activity 2 is operated at level x2 we can obtain the vector of inputs and
outputs resulting from this activity by multiplying the vector A2, element by element, by
the level x2. We write this as A2x2. Finally, the over-all schedule of inputs and outputs is
the sum of the inputs and outputs of the six individual activities, or,

(6-1)
For short we shall let y stand for the column of the seven y’s. We also introduce a more
convenient notation for the right-hand side. The matrix A, it will be recalled, is simply
the matrix made up of the six activity vectors. The vector x is the vector composed of
the six activity levels. We then define the matrix product Ax to mean the result of
multiplying each of the six vectors Ai by the corresponding level xi and adding. Then Ax
is just the right-hand side of Eq. (6-1), and we can write the relationship between the list
of inputs and outputs, y, and the list of activity levels, x, as

y = Ax
We must next consider limitations on the operations of the firm because, apart from

them, the firm could obtain infinite profits per unit of time. One type of restriction
results from the fact that in a static equilibrium solution, net change in inventories must
be zero; i.e., y1 = y2 = y3 = 0. This means that the whole gross output of each chemical
must be absorbed either as input to another production process or as input to its selling
activity. Even if we were to permit net accumulation of inventories, to do so would
require direct costs and would add nothing to net revenue. Hence no optimal or



maximum net-revenue solution would ever involve adding to inventory. Of course, a
model that extended over several time periods might well involve varying inventories.
Another type of restriction results from the presence of four kinds of fixed equipment.
The total utilization of each of the four kinds of equipment must be no greater than 100
per cent. Symbolically, yi ≥ −100 for i = 4, 5, 6, 7. These considerations lead to a vector
of restrictions, which we call s. Writing it out in full,

The restrictions within which the firm must operate can now be summarized as

(6-2)

A combination of activities x is feasible for the firm if and only if it satisfies Eq. (6-2)
and the requirement that no activity can be operated at a negative level.

Before passing on, let us illustrate this restriction. It consists of seven lines. The fifth
line, to choose an example, is

y5 = −5x1 − 4x2 − 2x3 + 0x4 + 0x5 + 0x6 ≥ − 100

The left-hand member is the symbol for the production of equipment services of type
E2. The middle member is made up of the coefficients found on the fifth row of Table
6-4, each multiplied by the level of the corresponding activity. The whole sum is the
output of services of type E2 and is essentially negative, indicating that such services are
consumed rather than produced. The right-hand member sets a limit to the rate at which
such services can be consumed.

Equation (6-2), it should be noted, actually permits inventories to be accumulated,
though not drawn down; i.e., it permits the net output resulting from Activities 1, 2, and
3 to exceed sales. It seems unlikely that such inventory accumulation would turn out to
be advisable in a static problem, but there is no harm in permitting it and it simplifies
the exposition a little.

Now we have specified what the firm can do and how that range of choice is related
to the technical characteristics of the available activities and to the resource limitations.
We next consider the specification of the best program within that range of choice. The
net revenue resulting from any program is the sum of the inflows and outflows of
money that result from the activities included in that program. Thus, referring to the last
line of Table 6-4, if Activity 1 is operated at level x1 (meaning the production of $100x1



worth of C1), it causes an outflow of $70x1; if Activity 5 is operated at level xi (meaning
the sale of $100x5 worth of C2), it causes an inflow of $100x5. Thus the total net
revenue, which we shall denote by r, is

r = −70xi − 50x2 − 15x3 + 100x4 + 100x5 + 100x6

Note that the net revenue r is the sum of the cross products of the activity levels x1, . . . ,
x6, i.e., of the activity vector x, with a list of coefficients −70, −50, −15, 100, 100, 100.
We have already learned to call such lists vectors. Let us call this vector v and its
components v1, . . . , v6, respectively. Then r is the sum of the cross products of the
components of vectors v and x. Such a sum of cross products of two vectors is called
an “inner product” and is written [v,x]. Using this notation, we can write69

r = [v,x]

We now assume that the objective of the firm is to achieve a production program x
that will make net revenue r as great as possible, subject to the resource and other
limitations imposed. Thus we can state the production problem succinctly. It is to find a
program vector x which satisfies

1. x ≥ 0. (No activity can be carried on at a negative level.)

2. Ax ≥ s. (No more than the total supply of any commodity or equipment can be
consumed.)

3. r = [v,x] = as great as possible. (Net revenue is to be maximized.)

The rest is a matter of calculation in accordance with the methods presented
elsewhere in this volume. The calculations, however, have an economic as well as an
algebraic significance, and we shall examine now the economic ideas underlying the
numerical solution.

As a preliminary to this examination we must restate the problem in a convenient
form for solution. The object of the restatement is to avoid some of the inequalities
which resulted from the economic analysis and which are awkward mathematically. In
our analysis, for example, we found the inequality

(6-3)
which expressed the requirement that the production program x1, x2, . . . , x6 could not
consume more than 100 per cent of the capacity of E2. We now define a new activity A8

which consists of allowing 1 per cent of the capacity of E2 to go unused. Let x8 denote
the level of A8.

Then x8 is the amount of unused capacity of type E2, or



x8 = 100 − (5x1 + 4x2 + 2x3)

The requirement expressed by inequality (6-3) can be expressed equally well by

5x1 + 4x2 + 2x3 + x8 = 100 
0 ≤ x1, x2, x3, x8

This is only a formal and not a conceptual change, but it has definite mathematical
advantages. To gain these advantages we define

A7 = activity of allowing 1 % of E1 to be unused 
A8 = activity of allowing 1 % of E2 to be unused 
A9 = activity of allowing 1 % of E3 to be unused 
A10 = activity of allowing 1 % of E4 to be unused

x7 = level of A7 
x8 = level of A8 
x9 = level of A9 
x10 = level of A10

The problem now becomes that of maximizing

r = [v,x] = −70x1 −50x2 −15x3 + 100x4 + 100x5 + 100x6 + 0x7 + 0x8 + 0x9 +
0x10

subject to

(a)
and



(b)
In interpreting condition b we use the definition of the product of a matrix and a

column vector. It may help to restate the definition in the following way: The product of
a matrix and a column vector is itself a column vector. The first element of the product
vector is the inner product of the first row of the matrix with the given column vector;
the second element of the product is the inner product of the second row of the matrix
with the given column vector; etc. Thus condition b is a set of seven simultaneous linear
equations in 10 unknowns. If arbitrary values are assigned to any three of the
unknowns, the result will be a set of seven equations in the remaining seven unknowns.
To be sure, if three arbitrary values are assigned, some of the unknowns may turn out to
be negative, thus violating condition a, but condition b can be satisfied easily enough.

We shall now go through the simplex method for finding an optimal program of this
example. The algebra of the simplex method was discussed in Chap. 4. Our present
objective is to reveal the economic interpretation of this method. The procedure for
finding an initial set of activity levels (i.e., an activity vector x) that satisfies both
restrictions a and b begins with setting three of the x’s equal to zero. Economically this
consists in deciding not to use three of the activities. For instance, if we set x8 = x9 = x10

= 0, the reader should verify that the effect is to decide to manufacture and sell all three
of the chemicals, to permit a surplus of equipment E1, and to utilize fully E2, E3, and E4.
Is it possible to carry out this decision? This question can be answered by setting x8 = x9

= x10 = 0 and solving the equations of condition b for the remaining x1, x2, . . . , x7. If all
the x’s in the solution should turn out to be nonnegative, the program is possible;
otherwise it is not. A possible program is known technically as a “feasible” program.

Making this calculation for x8 = x9 = x10 = 0, straightforward algebra yields

Since x4 turned out to be negative, i.e., since the program required selling minus $700
worth of C1, the program is not possible. We shall not go into the mechanics of
searching for a feasible program. A number of mathematical procedures are available,
but in a small problem like this one the best method is simply trial and error. Thus, if
we set x7 = x8 = x10 = 0, restriction b reduces to



and solution of these equations yields

x1 = 10 i.e., produce $1,000 worth of C1

x2 i.e., produce $ 750 worth of C2

x3 = 10 i.e., produce $1,000 worth of C3

x4 = 6.75 i.e., sell $ 675 worth of C1

x5 = 2.5 i.e., sell $ 250 worth of C2

x6 = 10 i.e., sell $1,000 worth of C3

x9 = 62.5 i.e., leave unused 62.5% of
capacity of type E3

Since none of the x’s are negative, this program is feasible.

In general there will be many feasible programs, i.e., programs which satisfy both
restrictions; and the essence of the problem is to select from all the feasible programs
the one which yields the greatest possible profit. The theory of linear programming
assures us that an optimal program can be found by searching through all feasible
programs of a certain type, namely, those feasible programs which involve using no
more processes than there are equations in restriction b. Programs of this type are
known as basic programs. In this case there are seven equations in restriction b, and the
feasible program we have just found involves no more than seven processes. So this is
a basic program.

The idea underlying the search is this: It begins with any basic and feasible program.
A rule is provided for testing whether that choice is optimal. (Indeed, the economic
significance of this rule is our primary interest in going through the detailed
calculation.) If the program under test does not turn out to be optimal, there is a
procedure for finding a better program which is also basic. The improved program is
then tested, and the procedure is repeated as many times as is necessary until an optimal
program is found. An optimal program always will be found (if one exists) since each
revision results in improvement and there are only a finite number of programs among
which to search.

We now need the rule for testing whether a given program, in particular the one just
found, is optimal. Recall that the program is completely specified by selecting three
processes and setting their levels equal to zero. In the present case we set the levels of
A7, A8, and A10 equal to zero. Now consider A7. If we add a small amount of it to the
program and readjust the levels of the previously used processes so that the resulting
eight-process program is feasible, we might either increase or decrease net revenue. If



this increases net revenue, the program under test could not be optimal, for we have
found a better one. Turning to the contrary case, assume that the introduction of A7

does not increase profits, and neither does the introduction of A8 or A10. Then it can be
shown that if profits cannot be increased by introducing A7, A8, A10 individually, they
cannot be increased by introducing any combination of them and, therefore, cannot be
increased at all.

All that is needed then is a procedure for determining the effect on profits of
introducing each of the excluded processes separately. Consider the effect of
introducing one unit of A7, i.e., of allowing 1 per cent of E1 capacity to go unused. The
levels of the previously used seven processes must now be changed so that in the
aggregate they consume 1 per cent less of E1 capacity while still satisfying all the other
equations of condition b. In more general terms, if any excluded process is introduced,
then the previously used processes must adjust by amounts which just offset the
consumption of materials by the process being introduced. Now suppose we introduce
A7 in amount Δx7. Let Δx1 denote the necessary change in the level of A1, Δx2 the change
in the level of A2, etc. Then the set of ratios

is known as the “equivalent combination” to A7 because it is the combination of
previously used processes that consumes the same amount of all resources as a unit of
A7. The equivalent combination is perfectly determinate,70 as we shall see.

We have already introduced the numbers v1, . . . , v6 to denote the net revenue per
unit of Activities 1 to 6, respectively. Let us define v7, v8, v9, and v10 analogously for
Activities 7 to 10. These four values are all zeros, but that does not affect the argument.
In these terms the effect of introducing Δx7 units of A7 is to increase total net revenue by
v7 Δx7 and to decrease total net revenue, because of the readjustment of the previously
used processes, by v1 Δx1 + v2 Δx2 +    + v9 Δx9. The net effect on over.-all net revenue
is favorable if

or, dividing by Δx7, if

otherwise it is not favorable.

This is the test we have been looking for. The v7, v1, v2, . . . , υ9 are elements of the v
vector previously defined, so all that remains is to determine the equivalent



combination. In the matrix notation previously introduced, Ai denoted a vector whose
elements showed how much of each resource 1 unit of the ith process produced or
consumed. The Ai’s are just the columns of restriction b. Thus,

and so forth.71

Now consider a set of changes such as Δx1, Δx2, . . . , Δx9. These changes may be
positive or negative or zero. The aggregate effect of these changes is to change the
consumption of resources by

The equivalent combination to A7 is the set of changes Δx1, Δx2, . . . , Δx9 which
consumes the same amount of all resources as a unit of A7, namely, the combination
which satisfies

This is a set of seven equations in seven unknowns and can be solved
straightforwardly.

To recapitulate: In order to test the optimality of any program, consider separately
each process excluded from that program. Compute the equivalent combination for
each excluded process. Find the net profitability of each equivalent combination and
compare it with the profitability72 of the excluded process. If any excluded process is
more profitable than its equivalent combination, then the program under test is not
optimal and that excluded process should be added to the program. If every equivalent
combination is at least as profitable as the corresponding excluded process, then the
program under test is optimal.

We now apply this test to the program we have found. Naturally the test is purely
formal and hides the economic considerations which justify it. The first step in the test
is to compute the equivalent combination for A7. The equations are abstracted directly
from the data in condition b and are

This is a simple set of linear equations with the solution



The profitabilities of the seven processes in the program are

Cross-multiplying these two sets of numbers and adding, the profitability of the
equivalent combination for A7 is found to be 0.5. The profitability of A7 is v7 = 0, so
that in this case the equivalent combination is more profitable than the excluded
process.

Process A8 is considered next. Its equivalent combination is

and the profitability of that combination is 5.0. This again exceeds the profitability of
the direct process, namely, v8 = 0. And finally with respect to A10, the profitability of the
equivalent process is 1.5, which exceeds v10 = 0, the profitability of the direct process.

Thus the program we have found is not only feasible but optimal. It will yield a net
revenue of $700 per month, and that is the greatest profit which can be obtained in the
circumstances of this firm.

Inspection of this result shows that the firm should use its full capacity of E1 E2, and
E4, but only 37.5 per cent of its capacity of E3. This conclusion is not entirely surprising
if we note (from Table 6-3 or 6-4) that E2 is used for manufacturing all three chemicals,
while each of the other types of equipment is used in only a single activity. Now,
making $100 worth of C1 requires 5 per cent of the capacity of E2 and yields a net
revenue (value of output minus direct costs) of $30. Hence when E2 is used to
manufacture C1 it produces a net revenue of $6 per per cent of capacity. Similarly when
E2 is used to produce C2 it yields $5 per per cent of capacity, and when it is used to
manufacture C3 it yields $12.50 per per cent of capacity. Clearly, then, C3 should be
manufactured to the greatest extent possible (the limitation lying in the capacity of E4)
and the preferred use of the remaining capacity of E2 is the manufacture of C1. The
limitation on the output of C1 is the capacity of E1, and when this is reached there is still
more capacity of E2 left over. C2 should then be manufactured to the extent made
possible by this remaining capacity, and when this limit is reached there is still some
excess capacity of E3 which must be left unused.



In the last paragraph we used a common-sense analysis to arrive at the conclusions
which we had already reached by means of linear programming. It will be noted that
this common-sense reasoning was rather tortuous and that it involved at several stages a
careful weeding out of possibilities, depending on which of the possible limitations on
output was effective. This method of reasoning was possible at all only because we had
a small number of possibilities to take into account and at each stage things fell out in
the simplest possible way. Even in this simple case, the common-sense reasoning was
delicate, and a more complicated problem could hardly be analyzed without recourse to
formal linear programming.

It is worth drawing attention to the three selling activities introduced in Table 6-4.
These are examples of the “slough-off,” or “disposal,” activities which play an
important role in the simplex solution of linear-programming problems: Such activities
consist in getting rid of or not using the various items which enter into the problem. In
the numerical solution of this chemical example, seven disposal activities appear: the
three selling activities plus one disposal activity for each of the four types of equipment.
Thus in this example, although there are only three productive processes, a total of 10
different activities must be considered. In the optimum program we found that four
disposal activities must be used: the three selling activities plus the disposal of 62.5 per
cent of the capacity of E8. Optimal solutions to linear-programming problems quite
typically include disposal activities along with actively productive ones.

6-5. A SUIT-MANUFACTURING EXAMPLE73

We have now presented the basic framework for analyzing the production problem of
the firm by means of linear programming. We have seen that this mode of analysis
becomes applicable when a firm engages in a number of interrelated processes whose
relationships can be approximated to a satisfactory degree by a set of linear equations
and inequalities. All the examples discussed so far have depended on the fact that the
various processes available to the firm competed for the use of resources whose
availability to the firm was subject to an absolute limitation. It is true that the problem of
production frequently takes this form, especially for planning in the relatively short run.
But other situations, too, can give rise to problems of the linear-programming type. One
class of such problems arises when a number of products are produced jointly and, for
some reason, must be sold in certain definite proportions. Then if the productive
conditions are such that the products need not be produced in precisely the proportions
required for sale, a linear-programming problem exists even if there are no limitations
on the supply of the factors of production at constant cost.

Consider, for example, a manufacturer of men’s suits.74 His raw material consists of
large bolts of cloth on which he must arrange his patterns so as to obtain as many suits
as possible from each bolt. A suit may consist of a coat and a pair of trousers or a coat



and two pairs of trousers. In any event, because of the difficulty of arranging irregular
clothing patterns on a rectangular bolt of cloth, there is no guarantee that any
arrangement can be found which will produce coats and trousers in exactly the desired
proportions without excessive wastage, or, what is the same thing, that it is efficient to
obtain the desired proportions from each bolt individually.

Suppose, to be concrete, that with respect to a certain model of suit a cutter reports to
the manufacturer that he can arrange the patterns in four different ways, as shown in
Table 6-5.

TABLE 6-5. OUTPUT OF COATS AND TROUSERS PER BOLT IN A CLOTHING
FIRM

Pattern Trouser s Coats

1 90 35

2 80 55

3 70 70

4 60 90

Suppose also that this manufacturer deals in two-pants suits. The manufacturer must
decide how many bolts to cut according to each pattern.75

The problem is thus to find a combination of patterns which will yield as many
complete suits as possible from a definite number of bolts of cloth, say 100. This is
equivalent to requiring that the manufacturer cut as many trousers as possible subject to
the requirements that (1) he obtain at least one coat for every two pairs of trousers, and
(2) he use no more than 100 bolts of cloth.

Now set up the problem in terms of six alternative activities as follows:

Act i v i t y Def ini t i on

1 Cutting a bolt according to Pattern
1

2 Cutting a bolt according to Pattern
2

3 Cutting a bolt according to Pattern
3

4 Cutting a bolt according to Pattern
4



5 Discarding or sloughing off a bolt
6 Discarding or sloughing off a coat

Denote by x1, x2, x3, x4, x5 the number of units used of the first five activities,
respectively. For arithmetic convenience, let 5x6 denote the number of units of the sixth
activity.

Using this notation, the number of pairs of trousers produced is

90x1 + 80x2 + 70x3 + 60x4

This is to be maximized. The restraints under which this maximization is to be achieved
are

Gathering terms, we can write this last equation:

or

We may now restate the problem in linear-programming form, as follows:

To maximize

90x1 + 80x2 + 70x3 + 60x4

subject to

We know that since the number of restraining equations is two, no more than two of
the six processes have to be used. Our problem is to determine which two. Now each
process has a value which is equal to the number of pairs of trousers obtained by using
a unit of the process. These values are given in Table 6-6.

TABLE 6-6. VALUES OF SIX PROCESSES IN A CLOTHING FIRM

Process Value

1 90

2 80



3 70

4 60

5 0

6 0

Each of these six processes may be performed either directly or by an equivalent
combination. This may be seen as follows. Consider Process 2. It consists in converting
a bolt of cloth into 55 coats and a certain number of pairs of trousers. We can obtain the
same result by cutting  of a bolt by Pattern 1 and  of a bolt by Pattern 3 for

and thus a combination of Processes 1 and 3 converts a bolt into the same number of
coats as Process 2. But the direct Process 2 produced 80 pairs of trousers, while the
equivalent combination of Processes 1 and 3 produced only  pairs. Thus a direct
process and its equivalent combination do not necessarily, or generally, yield equivalent
results in terms of a measure of value.

The same reasoning applies to a disposal process such as Process 5, since Process 5
merely consumes a bolt of cloth without producing any coats. But if any production
plan is altered by cutting 2 additional bolts by Pattern 1 and 1 less bolt by Pattern 3, the
consumption of cloth will be increased by 1 bolt without changing the output of coats.

Thus 2 units of Process 1 minus 1 unit of Process 3 is an equivalent combination to 1
unit of Process 5. But Process 5 does not produce any trousers, while 2 units of Process
1 minus 1 unit of Process 2 yields a net increase of 110 pairs of trousers. Here again,
when the item we are trying to maximize (output of trousers) is considered, the direct
process and its equivalent combination are not equal.

The existence of equivalent combinations is fundamental to the solution. Consider
any two processes. By using them we can construct an equivalent combination for each
of the remaining four processes. We can also compare the “value” (i.e., the number of
pairs of trousers produced) of each direct process with the value of its equivalent
combination. Now suppose that we make these comparisons and find that in each case
the value of the equivalent combination is at least as great as the value of the direct
process. Then, according to the simplex criterion, the two processes that were used in
constructing the equivalent combination are the two which should be used by the
manufacturer. On the other hand, if any pair does not pass this test it is not the best pair
for the manufacturer to use.

By means of the simplex method the pair of processes which meets this test is found
to be Processes 1 and 2. The best use that the manufacturer can make of his 100 bolts is
to cut 60 according to Pattern 1 and 40 according to Pattern 2, obtaining 4,300 complete



suits.

In order to see how solutions to such problems respond to changes in the conditions
it is interesting to look for the best plan for manufacturing suits with one pair of
trousers. The analysis is the same as before except that now the second restraint on the
maximizing process becomes

35x1 + 55x2 + 70x3 + 90x4 − 5x6 = 90x1 + 80x2 + 70x3 + 60x4

which simplifies to

11x1 + 5x2 − 6x4 + x6 = 0

In linear-programming form, then, we must maximize

90x1 + 80x2 + 70x3 + 60x4

subject to

Exactly the same considerations apply as before, and this time we find that the optimal
plan includes Activities 2 and 4, but not Activity 3, which, all by itself, would produce
coats and trousers in the desired proportions.

The reason for this can be seen by making a graph of the situation.

FIG. 6-3. Yields of four patterns for cutting suits.
Figure 6-3 shows the alternatives open to the manufacturer. The four points on the

heavy solid broken line show the number of coats (ordinate) and trousers (abscissa)
produced by cutting 1 bolt according to each of the patterns. Cutting ½ bolt or 2 bolts or
any other number of bolts according to Pattern 1 would yield points corresponding to
radius vector 1, and the other radius vectors show similarly the yields obtained by



cutting any desired number of bolts according to one or another of the patterns. Let us
call these points P1, P2, P3, P4. The lines connecting them have an important
significance. If the manufacturer takes a bolt and cuts it partly according to Pattern 1
and partly according to Pattern 2, the yield will be somewhere along the line connecting
P1 and P2, and similar interpretations apply to the other lines shown.76

Now notice that P3 lies below the line connecting P2 and P4. This means that if the
manufacturer cuts part of a bolt according to P2 and part according to P4, and if these
parts are chosen correctly, he can get coats and trousers in the same proportion (1:1) as
if he cut the whole bolt according to P3. And furthermore, since P3 lies below this line,
it means that he can get more coats and trousers per bolt by using the appropriate
combination of P2 and P4 than by using P3. Thus the equivalent combination of P3 is
preferable to the direct use of P3. If, however, P3 yielded 72 coats and 72 trousers
instead of 70 coats and 70 trousers, the reverse would be the case. P3 would then be
above the line P2P4 and solution of the linear-programming problem in this altered form
would show that the most economical plan for the manufacturer would be to cut all his
cloth according to P3.

In analyzing this problem we came across some rather peculiar equations like

2x1 − 3x2 − 7x3 − 12x4 + x6 = 0

which did not have any apparent economic significance. These equations crept into the
discussion because we did not treat the outputs of coats and trousers symmetrically.
They can be avoided, if desired, by formulating the problem in an alternative, but
equivalent, manner. Let us consider the two-pants-suit case from a different point of
view. We can suppose the manufacturer to ask himself: How can I manufacture a
definite number of coats (say 1,000) and a definite number of pairs of pants (say 2,000)
from the smallest possible amount of cloth?

As before, let x1, x2, x3, x4 be the numbers of bolts cut according to Patterns 1, 2, 3,
and 4, respectively; let x6 be one-fifth the number of coats discarded; and let x7 be one-
tenth the number of pairs of trousers discarded. Then the manufacturer wants to find
positive numbers, x1, x2, x3, x4, x6, x7, such that

and x1 + x2 + x3 + x4 is as small as possible.

In linear-programming form, he has to minimize

z = x1 + x2 + x3 + x4

subject to



We now look for a pair of patterns (or activities) which satisfies the following
requirement: if we compute the equivalent combination for each remaining process in
terms of this pair, then in every case the direct process requires at least as much cloth as
its equivalent combination. Just as before, we find that Patterns 1 and 2 satisfy this
requirement. Thus the linear-programming problem may be expressed in either a
maximization or a minimization form, whichever is more convenient.

The analysis of this coats-and-pants problem was very easy, and, indeed, the most
efficient method of solution was simply to construct an elementary graph, as shown in
Fig. 6-3. We achieved this simplicity by imagining that a suit consisted of only two
components, whereas in fact it comprises left and right front coat panels, left and right
rear coat panels, left and right sleeves, collar fillets, four trouser panels, etc., and all
these components must be cut in rigid proportions. Even such a straightforward
problem as the one here in mind would quickly elude graphic analysis. On the other
hand, linear-programming analysis applies no matter now many components are
considered, although the arithmetic may become very laborious.

6-6. SOME GENERAL CONCLUSIONS
We have now seen three applications of the linear-programming method—the

automobile example, the chemical example, and the suit example—designed to bring out
different features of the method. All these applications are instances of a single type of
problem or, more precisely, of two equivalent problems. Before proceeding to other
aspects of the method and to other types of problem it will be well to recapitulate the
main consequences of our analysis.

Let us restate the general formulation of the linear-programming problem as applied
to the competitive firm in terms of the matrix notation explained in Sec. 6-4. Suppose
that a firm has n activities available. These include methods of production, selling,
disposal of unneeded factor services, and anything else the firm can do. Each of these
activities, for example the ith, can be described completely by a column vector of k
elements;77 e.g.,

where k is the number of restrictions to which the firm must conform. These restrictions
can take on a practically infinite variety of meanings. In the examples we have
encountered restrictions that expressed such requirements as that (1) the capacities of



the various components of fixed plant be limited; (2) the inputs for some activities may
be produced within the firm, in which case activities that produce those inputs must be
in balance with activities that consume them; (3) certain outputs may be usable only in
rigidly fixed proportions. In addition to restrictions of these types, there may be others,
not exemplified thus far, such as (4) quality specifications for some or all products; (5)
minimum quantities of inputs or outputs, set by contractual obligations or other
considerations; (6) financial constraints. It obviously does not pay to try to list all the
sorts of restrictions that a firm might encounter. But whatever may be the economic
significance of the restrictions, we can think of them as requiring some functions of the
activity levels to satisfy certain equalities or inequalities. Furthermore, if the restrictions
include inequalities, we can convert them to equalities by adding disposal activities to
the list.

In linear programming we assume that the functions that express the restraints are all
at least approximately linear. There is ample empirical evidence to indicate that this is
the case in many practical instances. In this case a typical restriction can be written

and all the restrictions together can be written

using the notation developed in Sec. 6-4.

The economic significances of the coefficients aij are, naturally, as varied as those of
the restrictions themselves, and it does not pay to try to enumerate them. In every case,
however, aij is the effect of a unit increase in the ith activity level on the function
subject to the jth restraint. We have illustrated such coefficients many times in this
chapter.

We have not heretofore defined the concept “activity level,” which came up in the
preceding paragraph and in earlier passages, but its meaning is obvious. The intent is to
define activities in terms of the proportions in which they produce and consume the
various commodities or, more generally and more precisely, in terms of their effects on
the functions involved in the restraints. Now two physical events may produce and
consume commodities in exactly the same proportions but in very different amounts.
We wish to form our definition so that we can say that these two events are instances of
the same activity and, further, that the event that involves the larger amounts represents
a higher level of the activity than the other. In short, we need a metric for the level of an
activity. The linearity assumption provides us with such a metric easily, for, since all the
inputs and outputs of an activity are linked together in strict proportionality, we may
choose the absolute level of any of the inputs or outputs as a complete specification of
the extent to which an activity is being used. Thus, in the automobile example, we
defined the number of units of the truck-producing activity to be equal to the number of



trucks produced. We might just as validly have defined it to be equal to the number of
units of truck-assembly capacity that were consumed.

The activity vector, or program vector, x specified the levels of all the activities
available to the firm. Some of the components of x may be zero; none can be negative,
for negative levels of operation are meaningless. If a program vector satisfies all the
restrictions, i.e., if x satisfies

x ≥ 0

Ax = s
then it is said to be feasible. A firm may choose among all feasible program vectors. Let
us assume that the profits earned by the firm are a linear function of the activity levels.
Using the notation of Sec. 6-4, we write this as

where vi denotes the contribution of a unit level of the ith activity to the profitability of
the firm and v is the vector comprised of the vi. The profitabilities vi can be positive,
negative, or zero, as we have seen.

The profit-maximizing firm, then, seeks that feasible program vector x which makes
the profitability r as great as possible. We can now set forth the two main theorems of
linear programming, both of which have already been exemplified.78

THEOREM 1. If in any problem there is any optimal feasible program, then there is
an optimal feasible program which involves no more than k activities at nonzero
levels, where k is the number of restrictions to which the solution must conform.

This theorem is fundamental to our method of searching for an optimal feasible
solution, and we have invoked it in each of our examples.

The second theorem gives the criterion for telling whether a given program is
optimal. It depends on the concept of an “equivalent combination,” which we now
recall.

Still letting k denote the number of restrictions in a problem, consider any k + 1
activities, e.g., A1, A2, . . . , Ak, Aq, q ≥ k + 1. Then, except in certain algebraically
peculiar cases which we ignore, it is possible to find a set of levels for A1, A2, . . . , Ak

such that these k activities operated at the specified levels have the same effect on the
restraints as does Aq operated at unit level. For instance, if all the restraints impose
limits on the quantities of factor services to be consumed, then A1, A2, . . . , Ak operated
at this set of levels will consume precisely the same amount of each factor service in
limited supply as Aq operated at unit level. If we denote these activity levels by y1, y2, . .
. , yk, we may express this fact by saying that we can find a set of y’s such that



(6-4)
Formally, Eq. (6-4) is nothing but a system of k simultaneous linear equations in k
variables, the y’s, so that determining these y’s involves nothing more than some rather
extensive arithmetic. We refer to the vector y whose components are the solution to Eq.
(6-4) as the “equivalent combination” to Aq in terms of A1, . . . , Ak. A number of
equivalent combinations were deduced in the course of the chemical example. It may be
remarked that a basic solution to a linear-programming problem is simply an equivalent
combination to the constant column, s. In contrast with a feasible solution, however, an
equivalent combination may contain some negative elements.

The contribution of an equivalent combination to the profits earned by a firm is the
algebraic sum of the values of the k activities that it contains, each multiplied by its level
(positive, negative, or zero) in the combination. Thus if  denotes the value (i.e., the
contribution to profits) of the equivalent combination to Aq in terms of A1, A2, . . . , Ak,
we define

We may then, by comparing vq with , see whether the value of Aq is greater or less
than the value of its equivalent combination on the basis of any k other activities.

Now consider any feasible program

We shall suppose that, at most, k of the xi’s are greater than zero, since Theorem 1
assures us that if there is any optimal feasible program, there will be one of this type.
Assume k < n; otherwise there will be no scope for choice. This assumption is generally
appropriate because, if for no other reason, the introduction of a disposal activity for
each inequality restriction will assure that there will be more activities available than
restraints. Thus we are assuming that some of the xi’s in x are zero.

Now we must think of two cases. In the first case, precisely k of the xi’s are greater
than zero. Then we shall call every activity which corresponds to a nonzero xi an
“included” activity, and every activity which corresponds to a zero xi an “excluded”
activity. This terminology is reasonable, since the included activities are just the ones
which would actually be used in the program denoted by x.

In the second case, fewer than k of the xi’s are greater than zero. We shall again call
all the activities which correspond to nonzero xi’s “included” activities. In addition we
shall add to the list of included activities sufficient activities which correspond to xi’s
with zero values so as to have a list of k included activities. How these additional



activities are to be selected is immaterial for our present definitional purposes. Thus, in
either case, we have k included activities and n − k excluded activities. We can now
state Theorem 2.

THEOREM 2. A feasible program is an optimal feasible program if and only if it
contains a list of included activities such that no Excluded activity is more profitable
than its equivalent combination in terms of those included activities.

This is the theorem that we have used in solving the chemical- and suit-
manufacturing examples. The economic significance of comparing the value of an
activity with the value of its equivalent combination has been set forth at length in the
treatment of those examples.

At the outset of this section we mentioned that there were two equivalent problems
illustrated by our examples. One of them is the problem of maximizing profit, which we
have just described in detail. The other is the problem of minimizing cost, best
exemplified by the suit-manufacturing example, in which the objective was to consume
as little cloth as possible in the manufacture of a given number of suits.

There is no need to repeat the detailed analysis of the maximum-profit problem for
the minimum-cost case. The only change in formulation required is to revise the
criterion of Theorem 2 to read as follows:

THEOREM 2a. A feasible program is an optimal feasible program in the sense of
minimum cost if and only if it contains a list of included activities such that no
excluded activity costs less per unit of operation than its equivalent combination in
terms of those included activities.

We can state the upshot of our examples and discussion in two sentences. (1) If a
firm’s situation can be described adequately by a linear-programming model, then for
that firm to maximize its time rate of profits, it should use a number of activities which
does not exceed the number of the restrictions that limit its operations. (2) No activity
excluded from an optimal operating program for such a firm should be more profitable
than its equivalent combination in terms of activities included in that program. These
two theorems together are the linear-programming analog of the “equate your marginal
productivities” dictum in the orthodox marginal analysis.



7

Application to the Firm; Valuation and Duality

7-1. MARGINAL PRODUCTIVITY IN LINEAR
PROGRAMMING

We have now discussed a method for finding the optimal production program for a
firm in perfect competition. It turned out that the method, though initially strictly
mathematical in form, really depended on an economic criterion, namely, the criterion
that no activity should be used if a more profitable activity or combination of activities
was available to the firm. In addition to yielding this intuitively reasonable result, our
analysis led to a systematic procedure for applying the criterion.

It is economically obvious that the method can do more than find an optimal
production program. The method implies values to be placed on the various scarce
resources which define the opportunities open to the firm. This can be seen by recalling
that, in addition to finding the optimal program, the linear-programming solution yields
the net revenue that will result from applying that program. This net revenue, the
maximum that can be obtained under the circumstances faced by the firm, is a measure
of the economic, or business, worth of the firm considered as a whole. Furthermore, if
we have the maximum net revenue obtainable with any list of resources and then set up
and solve the corresponding problem with the same list of resources except that the
quantity of one of the resources has been decreased by one unit, we shall find that the
second problem may yield a smaller net revenue than the first. The decrease in net
revenue is, of course, the marginal revenue product of the resource whose quantity was
decreased.79 Thus a linear-programming solution implies a value to be imputed to each
unit of each fixed resource.

The method just suggested for calculating the marginal revenue products of the scarce
resources, to which we shall refer from now on as their values,80 is cumbersome. One
of the remarkable properties of the linear-programming solution is that the values of the
fixed resources emerge in the course of determining the optimal program and do not
require additional computation. To see how this occurs we shall first present a simple
method for finding the values of the scarce resources and then shall see why even this
simple computation is unnecessary.

Consider a firm that has k types of fixed resources available to it and let s1, s2, . . . , sk

denote the quantities available of the various resources. We define, as before, the value



of the unit of any fixed resource to be the decrease in maximum obtainable net revenue
which would result from subtracting a unit of that resource from the list of resources
available to the firm. We shall denote these unit values by u1, u2, . . . , uk.

As usual we think of the firm as having a certain number of activities, A1 A2, . . . ,
available to it. Each activity absorbs resources and produces a net revenue which we
have previously defined to be the excess of the total value of output per unit of the
activity over the direct expenses for the purchase of factors in the open market. We
know that the optimal program for a firm with k types of fixed resource will generally
require the use of k activities at positive levels. Let us assume that in the firm under
consideration the activities A1, A2, . . . , Ak appear at the positive levels x1, x2, . . . , xk,
respectively, in the optimum program, and that the net revenues per unit of these
activities are v1, v2, . . . , vk. Since revenue can arise only from the operation of the
various activities, the total net revenue must be the sum of the net revenues yielded by
the activities used, or

(7-1)
Our first task is to show that the total value imputed to the fixed resources, u1s1 + u2s2

+. . .+ uksk, equals the maximum total net revenue r. To do this we inquire how much
the total revenue would increase if one more unit of one of the resources was available.
We may break this question into two parts. First, we ask how much each of the k
activity levels x1, . . . , xk would change if one more unit of one of the resources was
available. This is clearly the same as finding an equivalent combination, i.e., the
combination of activity levels that absorbs one more unit of the resource in question
and nothing else.81 We shall denote this set of changes from an initial optimum by Δx1, .
. . , Δxk. Second, we ask what the increase in revenue is that results from these changes
in activity levels. The answer to the second question is clearly

(7-2)
or the sum obtained by multiplying each change by the unit revenue of the activity to
which it applies and adding. It should be noted that some of the changes may be
negative.

Now we turn to the first question, the determination of Δx1, . . . , Δxk. Since we shall
have to do some algebra, it will be worthwhile to simplify the notation a little by
imagining that the firm is subject to just three restraints, that is, k = 3, and that the
activities in the optimal program are A1, A2, A3. As usual we assume that a typical activity
Ai absorbs ai1 units of the first fixed factor per unit of operation, ai2 units of the second,



and ai3 units of the third.

Suppose that the factor whose quantity has been increased by one unit is the first.
Then the set of changes in activity levels must absorb one unit of the first fixed factor
and no units of any other. Thus Δx1, Δx2, Δx3 must satisfy

(7-3)
The resultant change in net revenue is v1 Δx1 + v2 Δx2 + v3 Δx3, where Δx1, Δx2, Δx3

satisfy Eqs. (7-3). Since u1 denotes the marginal revenue product of the first factor, we
have

(7-4)
The response to the availability of an additional unit of the second factor would be a

similar set of changes. Let us call them  .

These changes would satisfy the equations

(7-5)
and define the marginal value of the second factor as

(7-6)
Finally, letting the activity changes that absorb a unit increase in the third factor be 

 , we have the equations

(7-7)

(7-8)
The total value of s1 units of the first factor, s2 units of the second factor, and s3 units

of the third factor will be denoted by



Multiply Eq. (7-4) by s1, Eq. (7-6) by s2, Eq. (7-8) by s3, and add. The result is

(7-9)

All that remains is to determine these three parentheses. Let us call them 
respectively. Multiply Eqs. (7-3) by s1, term by term, Eqs. (7-5) by s2, and Eqs. (7-7) by
s3. Then add the corresponding equations in the three sets. The result is a new set of
three equations, which is a weighted combination of the old sets. Note that the a
coefficients are the same in the three sets of equations. Thus, in the first equation of the
combined set we find, for example, that a11 is multiplied by  .
Carrying out this work completely, the combined set of equations is found to be

(7-10)
Equations (7-10) tell us all we need to know about  since they are precisely the
equations for a set of levels of A1, A2, A3 that absorb the available supplies of the
limiting resources; i.e., the three starred quantities satisfy the same equations as the
optimal activity levels x1, x2, x3. In consequence, . Substituting this result
in Eq. (7-9), we get

by virtue of Eq. (7-1).

We have now proved

(7-11)
i.e., the total value imputed to the fixed resources by our definition of resource value
just exhausts the maximum total net revenue.

7-2. DETERMINATION OF RESOURCE VALUES
Consider any activity in the final solution, say activity A1. Per unit of operation it

absorbs a11 units of the first fixed factor. a12 units of the second fixed factor, . . . , a1k

units of the kth fixed factor. The value of resources absorbed by this activity is, then,



(7-12)
per unit of use, and the value produced is v1. We shall refer to w1 as the imputed cost of
activity A1 and, similarly, to

as the imputed cost of activity A2, etc. If the level of activity A1 were reduced by one
unit, a revenue equal to v1 would be sacrificed, but at the same time resources capable
of producing a revenue equal to w1 would be released for use by the other activities.
This would be worth doing if w1 were greater than v1. But activity A1 was assumed to
appear in the optimal solution. Therefore it is not worthwhile to cut back the level of
activity A1, and v1 must at least be as great as w1. The same reasoning applies, of course,
to all the activities in the final solution. Now the activities in the final solution absorb
the total available supplies of all fixed resources, i.e.,

As above we use uj to denote the marginal revenue product of the jth resource, vi to
denote the given net revenue of the ith activity, and wi to denote the imputed cost of the
ith activity. If we multiply the first equation of this set by u1, the second by u2, etc., and
add, the right-hand side becomes r by Eq. (7-11). Regrouping terms on the left-hand
side of the sum, the coefficient of x1 is seen to be w1, the coefficient of x2 is w2, etc.
Thus,

(7-13)
Subtracting Eq. (7-13) from Eq. (7-1), we get

(7-14)
Our discussion of the relation between v1 and w1 showed that if the ith activity appeared
at a positive level in the optimal solution, i.e., if xi were positive, then vi − wi could not
be negative. Therefore none of the terms on the left-hand side of Eq. (7-14) is negative,
and the equation can be satisfied only if every term is zero. We have established that if
xi, the level of the ith activity, is positive, then the resources used up in the activity,
valued at marginal productivity, will exactly absorb the net revenue; i.e.,



(7-15)
If k activities are actually used in the optimal program (the usual case), then Eq. (7-15)
provides k linear equations for determining the k unknowns, u1, . . . , uk, from the
known values v1, . . . , vk. Although these equations can be solved easily, we shall show
in a moment that it is unnecessary to solve them. But first let us see how these general
formulas apply to the automobile example.

In the automobile firm analyzed on pages 133—138 of Chap. 6, the optimal program
was found to consist of manufacturing 20,370 automobiles and 6,481 trucks per month.
The program also involved underutilizing automobile assembly capacity by 9 per cent
and underutilizing truck assembly capacity by 57 per cent. The list of fixed resources
available to the firm was as follows:

Fixed resources Quanti ty
avai l abl e Value  per  uni t

Metal-stamping capacity 100% = s1 u1

Engine-assembly capacity 100% = s2 u2

Automobile-assembly capacity 100% = s3 u3

Truck-assembly capacity 100% = s4 u4

The four activities which appeared in the optimal program and their input coefficients
are given in Table 7-1.

Our problem is to determine the unit values u of the four types of resource. To do
this we require, in addition to the data just listed, the net revenues per unit of the four
activities in the optimal program. In setting up this example we assumed that the net
value above direct costs from producing an automobile is $300 and that the net value
above direct costs from producing a truck is $250. Activities A3 and A4 are both disposal
activities, so that their net revenues are both zero.

TABLE 7-1. OPTIMAL ACTIVITIES AND THEIR COEFFICIENTS IN AN
AUTOMOBILE PLANT



We can apply Eq. (7-15) to these data, obtaining

From this set of four equations we find

Note that the values of the two underutilized types of capacity are zero; economically
speaking, they are free goods. This follows from the fact that decreasing the availability
to the firm of one of these already underutilized capacities will not decrease net revenue
at all. Stated differently, we have arrived at an opportunity-cost type of valuation. Since
either the automobile or the truck division of the firm could use more automobile-
assembly capacity if it desired, without sacrificing other opportunities, no charge is to
be made against the divisions for the use of automobile (or truck) assembly capacity.

The chemical example is only a little more complicated. In that example the optimal
program turned out to be to produce $1,000 worth of C1, $750 worth of C2, and $1,000
worth of C3. This program utilized the full capacities of equipment E1, E2, and E4 and
underutilized equipment E3 by 62.5 per cent. The valuation problem is to determine the
value per per cent of capacity of each type of equipment. Let

Since E3 is underutilized, u3 = 0. The data for determining the other three values are
found in Table 6-3 (p. 142).

This problem differs from the automobile example and from the setup that led to Eq.
(7-15) in that two of the activities consume as inputs not only fixed resources, but also
outputs of other activities. We must therefore reconsider both Eq. (7-15) and the
concept of the net revenue of an activity. Recall that Eq. (7-15) amounted to



Net revenue per unit of an activity = total value of fixed factors absorbed
by a unit of that activity

If we add back direct costs to both sides of this equation we have

Gross revenue per unit of an activity = total value of fixed factors
absorbed per unit of that activity + unit direct costs

Furthermore, we must count as unit direct costs not only cash disbursements for factors
acquired on the open market, but also the value of final products absorbed by the
activity and which, therefore, cannot be sold on the open market. Considering activity
A2, for example, we see that the unit gross revenue, or, what is the same thing, the unit
gross value of output is $100. Unit direct costs are $50 in cash expenditures plus $30
worth of C1, giving a total of $80. Applying these concepts, we equate total gross unit
revenue to total unit costs for the three activities as follows:

Terms involving u3 have been omitted from these equations since u3 is already known
to be zero. The solution is

The method of analysis applied in these two instances is obviously general. Once an
optimal program has been found, values can be found for all the owned factors of
production by the straightforward solution of a system of simultaneous linear equations.
Actually, however, the determination of the resource values implicit in a linear-
programming solution is even easier than that; the values emerge as a by-product of
finding the optimum program. This can be seen by looking at the details of the solution
to the chemical example.

The optimal program for the chemical firm was found by selecting three activities, A7,
A8, and A10, that were not to be used. We then tested the optimality of that program by
computing the profitability of the equivalent combination to each excluded activity and
comparing it with the profitability of the excluded activity. Let us define the “gain” from
excluding an activity to be the excess of the profitability of the equivalent combination
over the profitability of the activity itself. Applying this term to the calculations in the
chemical example, we found that

Gain from excluding A7 = 0.5 
Gain from excluding A8 = 5.0 
Gain from excluding A10 = 1.5

Comparing these with the valuations we see that



Gain from excluding A7 = u1 
Gain from excluding A8 = u2 
Gain from excluding A10 = u4

This is no coincidence. A7, recall, was the activity of discarding 1 per cent of type E1

capacity. The gain from excluding A7, therefore, is the negative of the economic loss
resulting from a reduction of 1 per cent in type E1 capacity; it equals the value of a unit
of type E1 capacity to the firm. The other gains can be interpreted similarly as measures
of the values of the resources to which they relate. Note that we have a disposal activity
for each resource. In the optimal program any disposal activity whose level is set at zero
usually yields, as above, a positive value for its resource. If a disposal activity appears at
positive level the corresponding resource has zero value; i.e., it is a free good to the
firm.

In short, the problems of optimum allocation and of valuation are inseparable. In the
work of finding an optimal program, certain “gains” have to be computed, and these
“gains” are nothing but the values to be imputed to the various types of scarce
resources. Although we calculated values separately for expository reasons, this is not
necessary in actual practice.

7-3. DUALISM OF PRICE AND PROGRAMMING
The foregoing considerations show the intimate connection between the problem of

valuation, i.e., that of determining the resource values u, on the one hand, and the
problem of allocation, i.e., that of finding an optimal production program, on the other.
This, of course, is just what one would expect on the basis of usual economic
reasoning. But mathematically the relationship of the valuation and allocation problems
is even closer than may be evident from the discussion thus far. In fact we shall see that
the two problems are mathematically identical.

As a first step in making this clear, let us formulate the familiar allocation problem.
Suppose that a firm has k types of fixed resource in quantities s1, s2, . . . , sk and n
possible activities A1, A2, . . . , An whose respective net revenues per unit are v1, v2, . . . ,
vn. A production program is specified by a set of activity levels, x1, x2, . . . , xn, that
fulfills the following requirements:

1. No activity level is negative; i.e.,

2. No more than the available supply of any resource is required. Expressed
algebraically, this is



where aij is the number of units of the jth resource used by one unit of the ith activity.

The net revenue resulting from any program x = [x1, x2, . . . , xn] is, as usual,

The allocation problem is simply to find a program vector x that satisfies requirements 1
and 2 and makes r as great as possible.

We now formulate the valuation problem in analogous terms. Instead of a set of
activity levels we seek a set of unit values for fixed resources u1, u2, . . . , uk that fulfills
the following requirements:

1a. No resource value is negative; i.e.,

0 ≤ u1, u2, . . . , uk

This is the same as requirement 1, formulated for the allocation problem.

This requirement is justified by applying Theorem 2 of Chap. 6 to the disposal
activities. Consider, for example, the first scarce factor. The profitability of the disposal
activity for that factor (i.e., the net revenue resulting directly from disposing of a unit of
that factor) is zero. The profitability of the equivalent combination to that disposal
activity is the net revenue resulting from the combination of levels of A1, A2 . . . , Ak that
consumes 1 unit of the first factor and nothing else. We have seen that this profitability
is u1. By Theorem 2 of Chap. 6 (page 164), if activities A1, . . . , Ak constitute an optimal
program, the profitability of the equivalent combination must be at least as great as the
profitability of the disposal activity. Hence, 0 ≤ u1. The same reasoning applies to each
of the other resources; in every case the imputed value of the resource must be either
positive or zero. Economically, this reflects the fact that as long as we assume the
possibility of costless disposal, no resource can have negative value.

To obtain a requirement which we shall call 2a, parallel to 2, we note that u1, . . . , uk

constitutes a set of k prices. If we select any set of k activities we can choose the k prices
so that in each activity of the set the imputed cost of the resources required by a unit of
the activity, calculated from these prices, is equal to the net revenue of a unit of the
activity. 82 If the set of k activities selected is an optimal set, then, as we have just seen,
the set of k prices will satisfy requirement 1a, and the simplex criterion will show that
for each activity not in the optimal set the imputed cost of the resources absorbed will
be at least as great as the unit net revenue. This is true because each activity not in the
optimal set can be compared with an equivalent combination of activities in the optimal
set. The imputed value of resources absorbed by the equivalent combination will be



equal to the resulting net revenue, since this holds for each activity in the combination.
At the same time, the imputed cost of the activity will be the same as the imputed cost of
its equivalent combination, since they absorb the same quantities of all resources, while
the net revenue of the activity will be no greater than the net revenue of the equivalent
combination and will generally be smaller. In other words, the gain from excluding a
nonoptimal activity will never be negative. In summary,

 

Imputed cost of an activity not in the optimal program

= imputed cost of its equivalent combination 
= net revenue of the equivalent combination 
≥ net revenue of the activity

We have now justified the second requirement:

2a. The imputed cost of a unit of each activity is at least as great as its unit net
revenue. This may be written

(7-16)
Thus the two requirements on the resource values, u, have the same form as the two
requirements on the activity levels, x. It remains only to find a feature in the valuation
problem that is analogous to the profit-maximizing objective in the allocation problem.

Let us suppose, now, that u1, . . . , uk is any set of values which satisfies requirements
1a and 2a and that x1, . . . , xn is an optimal set of activity levels. Multiply the first
equation in set (7-16) by x1, the second by x2, etc. Since the x’s are nonnegative, the
inequality signs will be undisturbed. Adding the inequalities, the left-hand side will
become

v1x1 + v2x2 + .·. . + vnxn = r

On the right-hand side the coefficient of u1, for example, becomes

a11x1 + a21x2 + . . . + an1xn = y1 (say)

where y1 denotes the total quantity of the first fixed resource required by the program x1,
. . . , xn. Clearly y1 ≤ s1. In a similar manner the coefficient of u2 is y2 and y2 ≤ s2, etc.
Thus,



(7-17)
The first member of, Eq. (7-17) is the maximum total net revenue which the firm can
obtain. The last member is the total value of the fixed resources computed on the basis
of u1, . . . , uk. We shall denote this value by r’, so that Eq. (7-17) may be summarized
as r ≤ r’ for all values u1, . . . , uk that satisfy the requirements. In words, if the
resources are valued in such a way that the value of the resources required by every
available activity is at least as great as its net revenue, then the total value of the
resources owned by the firm will be at least as great as the maximum total net revenue.

But we have already seen that if the resources are assigned values equal to their
marginal productivities, then the total value of the resources will be just equal to the
maximum total net revenue. It follows that resource values equal to the marginal
productivities make the aggregate value of the resources as small as it possibly can be,
subject to the two requirements. Thus, instead of searching directly for the marginal
productivities, we may obtain them by searching for a set of values which minimizes r’,
the aggregate value of the resources, that is, we may minimize

r′ = s1u1 + s2u2 + . . . + skuk

subject to the requirements 1a and 2a.

Matters now stand as follows: On the one hand, the allocation problem is the problem
of finding a set of activity levels x1, . . . , xn that satisfy requirements 1 and 2 and that
make total net revenue r as great as possible. It is a linear-programming maximizing
problem. If we solve this problem we obtain as by-products the maximum net revenue
obtainable in the circumstances of the firm and the marginal productivity values of the
fixed resources.

But on the other hand, we may solve the valuation problem without first solving the
allocation problem. This requires finding a set of values u1, . . . , uk that satisfy
requirements 1a and 2a and that make the total value of the fixed resources, r’, as small
as possible. It is a linear-programming minimizing problem. The strong parallelism
between the two problems shows that if the valuation problem is solved, the optimal set
of activity levels will emerge as a by-product and the minimum value r’ that is obtained
will be equal to the maximum value r associated with the corresponding allocation
problem.

Thus we may address ourselves to either the valuation or the allocation problem, as
we please. Whichever one we choose, we shall obtain the solution to the other
simultaneously as a by-product. The two problems are identical in form, but it
frequently turns out that one of them is appreciably simpler computationally than the
other, so there is a real advantage in having this choice available This phenomenon, the
parallelism and inseparability of the valuation and allocation problems, has been called
the “dualism of pricing and allocation.”



7-4. DUALISM IN THE CHEMICAL EXAMPLE
Let us exemplify the dualism by solving the chemical example in the other order and

seeking ab initio values to be imputed to the four types of equipment. The 10 possible
activities have already been defined and Table 7-2. discussed. They are listed, together
with their coefficients, in

TABLE 7-2. ACTIVITIES AND COEFFICIENTS IN A CHEMICAL FIRM

Substituting the coefficients in this table, restriction 2a becomes

(7-18)
We require the set of values u1, u2, u3, u4 that minimizes

r′ = 100(u1 + u2 + u3 + u4)

since the total supply of each type of capacity is 100 per cent, subject to Eqs. (7-18). The
last four equations in set (7-18) are unnecessary since they are merely a restatement of
requirement 1a. Just as in the solution of the allocation problem we introduce some new
nonnegative variables to take up the slack in Eqs. (7-18) and convert them to equalities.
These new variables will be

u5 = “loss” on activity A1 
u6 = “loss” on activity A2 
u7 = “loss” on activity A3



We now replace Eqs. (7-18) by

(7-19)
The left-hand sides of Eqs. (7-19) are the imputed costs of the three manufacturing
activities. They depend on the seven values u1, . . . , u7. Our problem is to find a set of
values, all nonnegative, which satisfies Eqs. (7-19) and which makes r’ as small as
possible.

We proceed, as in any other linear-programming problem, by making a guess and
then seeing whether it can be improved. In making our guess we are guided by the basic
theorem of linear programming, namely, that the number of nonzero values in the final
solution can be made equal to the number of equations which have to be satisfied. In
this case, there are three equations. Accordingly we guess that u1, u2, and u4 will not be
zero.83 With the other u’s set equal to zero, Eqs. (7-19) become

whence

Since these values are all positive, requirement 1a is satisfied.

We must now test whether there exists any set of values satisfying requirements 1a
and 2a that makes r′ smaller than does the set just given. In Chap. 6, we derived
Theorem 2a, which provided a test of optimality for a program that satisfied a
minimum-cost objective. Now we require a test for a set of imputed resource values that
satisfies a minimum-aggregate-value objective. The two problems are so analogous that
we have only to adapt Theorem 2a to the present set of concepts. To do this we note
that the imputed values with which we are working are of two kinds: positive values, of
which there are three, and zero values, of which there are four. For each zero value we
may find an equivalent combination, as follows: Suppose we raised the imputed value
of any zero-valued resource to $1. This would change the imputed costs of the various
activities. We may calculate this change in imputed costs and then calculate the change
in the imputed values of the positive-valued resources that would have the same effect
on the imputed costs of the activities. This is the equivalent combination to the zero
value that was supposed to be raised.

This will be clear if we restate it algebraically. Suppose, as before, that aij denotes the
number of units of the jth resource used by a unit of the ith activity. Then, given any set



of values, u1, . . . , u7, the imputed costs of the three activities are

(7-20)
If only u1, u2, and u4 are different from zero, these equations become

(7-21)
and, as we saw, since w1 = v1, w2 = v2, w3 = v3, these equations determine u1, u2, u4. Now
suppose u3 = 1, all other values remaining unaltered. Each of the imputed costs w will
change. Let the change in w1 be δw1, so that the new imputed cost of activity A1 is w1 +
δw1, etc. Then, letting u3 = 1 in the first of Eqs. (7-20), we have

a11u1 + a12u2 + a13u3 + a14u4 = w1 + δw1

By subtracting the first of Eqs. (7-21) from this, we get

a13 = δw1

and by performing the same operations on the other two equations of (7-20), we get

a23 = δw2 
a33 = δw3

Thus, in general, the effect on imputed costs of raising the value of any resource by $1
is given by the input coefficients of that resource. In the present example,

δw1 = a13 = 0 
δw2 = a23 = 5 
δw3 = a33 = 0

Now we determine the equivalent combination to u3, i.e., the set of changes in u1, u2, u4

which will have the same effect as a $1 increase in u3. Let δu1 be the change in u1, δu2

the change in u2, etc. These changes must satisfy

Subtracting Eqs. (7-21) from these equations, we get



(7-22)
These three equations determine δu1, δu2, δu4, and the changes so determined are the
equivalent combination we seek. As applied to the chemical example, Eqs. (7-22) are

giving, as the Equivalent combination to u3,

Now, the aggregate of resource values is

(7-23)
In the present case,

r′ = 100(u1 + u2 + u3 + u4)

If the u’s have the values that we guessed, then r′ = 700, as an easy substitution will
show. If, now, we set u3 = 1 and offset this change by subtracting the equivalent
combination from u1, u2, u4, then r′ takes on the value

100(u1 − δu1 + u2 − δu2 + 1 + u4 − δu4)

This increases r′ by s3 (s3 = 100, in this case) and decreases it by s1 δu1 + s2 δu2 + s4 δu4.
If s3 is less than s1 δu1 + s2 δu2 + s4 δu4, the over-all effect is to decrease r′, so that it
would be advantageous to give a positive value to u3. Any combination of changes such
as we are discussing, of course, leaves the imputed costs of the individual activities
unaltered.

In the present case, s3 = 100, and

s1 δu1 + s2 δu2 + s4 δu4 = 100(−0.625 + 1.25 − 0.25) = 37.5

Therefore the over-all effect on r′ of giving u3 a positive value would-be adverse.

We can now state a general criterion for testing whether any set of imputed values is
optimal in the sense of minimizing r′. Recall that sj, the coefficient of uj in Eq. (7-23), is
the available quantity of the jth resource. Assume that δu1, δu2, δu3, . . . is the equivalent
combination to uj and let us call s1 δu1 + s2 δu2 + s3 δu3 + . . . the change in aggregate
valuation equivalent to a change in uj. Then we can state Theorem 2a as follows:



A nonnegative set of imputed values is optimal if and only if the available quantity
of each resource assigned an imputed value of zero is at least as great as the change
in aggregate valuation equivalent to a change in the imputed value of that resource.

To prove this assertion we need only note that it is a restatement of Theorem 2a. The
common sense of this rule is that if we raise any zero value to $1 or any other positive
number and then correct the previously positive values so as to leave the imputed costs
of all activities equal to their net revenues, then the over-all effect will be to increase the
aggregate value of resources, r′ if the conditions of the rule are satisfied. But we have
already seen that the marginal-productivity set of values that we seek makes r′ as small
as possible, subject to requirements 1a and 2a.

We have already applied this criterion to u3. To finish applying the criterion we make
similar calculations for u5, u6, u7, obtaining the values that appear in Table 7-3.84 The
available quantity of each resource is greater than the equivalent change in aggregate
valuation. Therefore the set of values that we have selected is optimal. It is, of course,
the same set that we obtained by first solving an allocation problem and then deriving a
set of resource values from that solution.

TABLE 7-3

Resource  value Avai l abl e  quanti ty of
resource

Equival ent change in aggregate
valuation

u3 100 37.5 5

u5 0 —10

u6 0 — 7.5

u7 0 —10

We have now seen that the valuation problem can be solved without first solving the
allocation problem, and, in the present example, it has turned out that the valuation
problem is the easier one arithmetically. We have yet to see that the allocation problem
can be solved as a by-product of the valuation problem. To complete this final step,
subtract the last column of Table 7-3 from the middle column, to obtain the values that
appear in Table 7-4. These numbers, it will be noted at once, are the optimum levels of
the disposal of equipment E3 and of the three manufacturing processes, respectively.
Thus these excesses are analogous to the “gains” computed in the allocation problem,
and, as we said earlier, the allocation problem stands in the same relation to the
valuation problem as the valuation problem stands in relation to the allocation problem.
The duality between the two problems is complete.

TABLE 7-4



Resource
value

Excess  of avai l abl e  quanti ty of r esource  over  equival ent
change in aggregate  valuation

u3 62.5

u5 10

u6 7.5

u7 10

Economically, the duality shows that just as an optimal-production program implies
definite prices for the services of the scarce resources, so a properly selected set of
prices implies an optimal-production program. It reaffirms in a new context the
fundamental economic theorem that a pricing system can serve as an efficient guide to
production under appropriate technological conditions. The essential characteristics of
the prices which correspond to an efficient allocation of resources are as follows:

1. They are nonnegative.

2. If the resources used by each activity are valued by these prices, the net revenue of
each activity in an efficient program will be imputed completely to the resources
absorbed.

3. If the resources used by each activity are valued by these prices, there will exist no
activity whose net revenue is greater than the value of the resources it absorbs.

4. These prices measure the marginal productivities of the scarce resources.

7-5. CONCLUSIONS
The importance of this exploration of the value implications of linear programming is

twofold. In the first place, we have broadened the contact between linear programming
and ordinary economic analysis by showing that the principle of allocation according to
linear programming stands in the same relation to a set of prices as do the principles of
allocation employed in more familiar economic analysis. We have shown that the
procedure of process substitution considered in linear programming leads to results
consistent with the procedure of factor substitution considered in the conventional
analysis and may, indeed, be used in place of the conventional analysis to impute factor
values.

In the second place, these results have important implications for cost accounting. In
analyzing the allocation problem we found the over-all production program that
maximized profits and we assumed that the management of the firm, equipped with this
program, would pass orders down the line to have it implemented. Thus we conceived
of a highly centralized management. But many firms, especially large ones, operate on a



rather decentralized principle. In such firms, accounting or control prices are established
by a central planning authority or committee and the individual department heads are
expected to do as well as they can in the light of those prices. (Of course, in such firms
the major decisions of the department managers are subject to review and revision by
higher-ups.) Decentralized administration of this type has many advantages, but it is
important to note that its success depends upon the establishment of proper accounting
prices. If factors are used predominantly in fixed proportions, the estimation of
marginal productivities of individual factors cannot be used directly as a guide to the
establishment of accounting prices. Nor is it generally feasible administratively to permit
department heads to bid against each other for the use of fixed resources, after the
manner of competitive markets. But we have now seen that linear programming can be
used for this purpose and is thus a significant aid as well as an alternative to cost-
accounting guidance.

These values also, of course, are useful guides for decisions concerning the
acquisition or disposition of fixed resources. The stock of a fixed resource should be
increased, for example, only when the value of its services as computed by linear
programming is at least as great as its rental value as calculated from its cost of
acquisition and expectation of useful life.

7-6. TECHNICAL POSTSCRIPT
Most of the difficult reasoning encountered in this chapter can be avoided by the use

of a little matrix algebra. Suppose that an optimal program involves activities A1, . . . , Ak

at levels x1, . . . , xk, respectively. Let B be the matrix B = [aij] of k rows and k columns,
and let x be the column vector of activity levels. Then Bx = s, where s is the vector of
factor limitations.

Now let yi be the vector of activity levels that absorbs 1 unit of the ith factor and
nothing else. This vector is the solution of Byi = Ii, where Ii is a k element vector with 1
in the ith position and zeros elsewhere. If B is nonsingular, yi = B−1Ii. Let v = [v1, . . . ,
vk] be the vector of net revenues of included activities, and let v′ be its transpose. Then
the net revenue afforded by the program yi is the sum of the net revenues of its
components, or [v,yi] = v′B—1Ii. We take this as our definition of the value, or marginal
revenue product, of the ith factor. Thus,

This is the same as Eq. (7-4).

Let u be the column vector of factor values, and u′ be its transpose. Since the matrix
of the vectors Ii is the identity matrix I,



(7-24)
Postmultiplying by s, the vector of factor limitations, we get

(7-25)

But, since Bx = s, we have x = B—1s, and, substituting in Eq. (7-25), u′s = v′x = r. This
is Eq. (7-11). Postmultiply Eq. (7-24) by B. The result is u′B = v′, or, taking transposes,
B′u = v. This is Eq. (7-15).

Up to now we have neglected the activities excluded from the optimal program. Let
Aq be such an activity. The equivalent combination to Aq is B—1Aq. The net revenue
flowing from this equivalent combination is v′B—1Aq. Since we are assuming that
activities A1, . . . , Ak form an optimal selection, we have, by the simplex criterion,
v′B−1Aq ≥ vq where vq is the unit net revenue of Aq. Using Eq. (7-24), u′Aq ≥ vq; i.e., the
imputed cost of any excluded activity is at least as great as its net revenue. We have
already found that if Aq is an included activity, then u′Aq = vq. This justifies Eqs. (7-16).
If Aq is a disposal activity, vq = 0, and u′Aq = u′Iq = uq, where q now is the designation
of the corresponding factor, and uq is its unit imputed value. Inserting these in the
previous result, uq ≥ 0, which justifies requirement 1a.

The rest of the results in this chapter are dualism formulas, for which see Chap. 4.



8

Nonlinear Programming

8-1. THE PROBLEM OF NONLINEAR PROGRAMMING
In the preceding two chapters we have dealt with programming for firms which could

regard the prices of the products they produce and of the factors and services they
consume as given constants, unaffected by any decisions they might make. Thus we
have excluded from consideration the whole field of monopoly, monopolistic
competition, and similar market forms. We now address to ourselves the question: Can
programming analysis be applied to firms not in perfectly competitive markets?

The same issue can be raised in a broader framework. The objective functions that
we have been maximizing and minimizing throughout the book are, as we have noticed
before, nothing but measures of the utility of the programs to which they correspond.
The marginal utility of any activity is the rate of change of the objective function with
respect to changes in the level of that activity. Heretofore we have been assuming that
these marginal utilities were constant. But this assumption is galling to any economist
worthy of the name. Diminishing marginal utility (or, if you prefer, diminishing
marginal rates of substitution) has been one of the most fruitful postulates of economic
theory. We ask then: Can programming methods be used in problems in which marginal
utility (or rate of substitution) is not constant?

A simple example will bring out the difficulties that arise as soon as the marginal
utilities of activities are considered to be variable. Consider the automobile firm of
Chap. 6 and suppose that the demand curve for its automobiles slopes downward but
that the demand curve for its trucks is horizontal. To be specific, suppose that the firm’s
market conditions are specified by the demand equations

that is, v1, the net revenue per automobile sold, is a linearly declining function of x1, the
volume of automobile sales, but v2, the net revenue per truck sold, is constant. We
assume the same technical conditions and restrictions as in Chap. 6. Then the only part
of the problem that is changed is the shape of the curves of constant net revenue. The
altered situation is depicted in Fig. 8-1, which should be compared with Fig. 6-1 (page
135). The two figures are identical except that the isoprofit lines of Chap. 6 have been
turned into isoprofit parabolas.85 The essential new feature is that if the isoprofit



contours are straight lines, then the highest attainable one must touch the accessible
region at one of its vertexes, but if the contours are curved, as we are now assuming,
then the highest attainable one may touch the accessible region anywhere on its
boundary. In the example, it is evident from the figure that the optimal program
corresponds to point P, which is not at any vertex.86

FIG. 8-1. Profit possibilities for the automobile firm, Monopolistic Case.
Even worse possibilities have to be taken into account. Suppose that the automobile

company faced a sloping demand curve for its trucks, too.

The pair of curves, for example, might be

Then, as the reader can verify readily, the curves of constant net revenue are the nest of
ellipses given by the formula

(x1 − 18,750)2 + 2(x2 − 6,000)2 = constant

The maximum possible profit for these demand curves is attained by the following
output: x1 = 18,750 automobiles, x2 = 6,000 trucks. This optimum is shown by point Q
in Fig. 8-1, which does not even lie on the boundary. Note that it leaves excess capacity
in all four departments; i.e., that six activities (including disposal activities) are used at
positive levels.

We see, thus, that the introduction of diminishing marginal utilities has altered the
geometry of the problem fundamentally. No longer can we limit our search for the
optimum to a finite number of vertexes of the accessible region. We cannot even
confine our attention to the boundary of the accessible region, for the optimum may
occur anywhere.



These variants of the automobile example illustrate a type of problem that fits neither
the linear-programming model nor the familiar marginal approach to profit
maximization. It is instructive to consider these problems from the viewpoint of the
marginal analysis. Let us take up first the case in which both demand curves slope.
Then, disregarding the resource limitations, the procedure is to find the output point at
which marginal net revenue is zero for both commodities. The marginal net revenue of
automobiles when x1 are sold is

and this is zero when x1 = 18,750. Similarly the optimal output of trucks is x2 = 6,000.
So the marginal analysis gives the right answer; i.e., it did this time, because when we
disregarded the resource limitations we made use of our illegitimate foreknowledge that
the resource limitations were ineffective. Without this foreknowledge we should not
have known what restraints to impose in applying the marginal technique.

To reaffirm this, consider the case in which the demand curve for trucks was
horizontal. Obviously, unless we impose restraints, the optimum will call for producing
an infinite number of trucks. We must therefore introduce one or more of the restraints
into the maximization procedure. But which ones? Until we know this we are stuck, and
the conventional procedure provides no clue.

In general, then, the conventional methods of analyzing the firm succeed if we know
which limitations are binding and which can be disregarded. Usually this information is
denied us, and a new method is required for such problems. This is the problem of
nonlinear programming.

The upshot of this introductory discussion is that when we try to solve a nonlinear
problem we are deprived of the most powerful tool used in the linear case—the advance
knowledge that the optimum would have to occur at one of a finite number of vertex
points. The sad consequence is that no sure-fire practical method for solving nonlinear-
programming problems has yet been found. This fact does not end the possibilities of
fruitful discussion, however. To an economist the important question is not how to find
an optimal program, but rather what will be the characteristics of such a program when
found.87 Fortunately, a good deal is known about this. The conditions for the optimum
of a nonlinear-programming problem, we shall see, are a generalization of the familiar
marginal-equality conditions for the optimum of a firm and constitute a bridge between
them and the conditions for an optimum in linear programming.

8-2. THE KUHN-TUCKER OPTIMALITY CONDITIONS
Let us state the nonlinear programming problem in the most general form in which

we shall consider it.88 Suppose that a firm has available k activities, not counting



disposal activities. As before, we denote a program by a vector (or list) of activity levels
x1, x2, . . . , xk and assume that the firm desires to maximize some net-revenue function

r = r(x1, x2, . . . , xk)

of the activity levels. We assume also that the choice of activity levels is limited by a set
of n linear-inequality restraints; thus,

(8-1)
Furthermore, of course, none of the xi (i = 1, . . . , k) can be negative.

Now we think of a particular program, say x1
0, x2

0, . . . , xk
0, which we assume to be

optimal, i.e., to maximize r subject to the restraint of Eqs. (8-1). Two of the properties
of this program are trivial: none of its elements is negative, and it satisfies Eqs. (8-1).
Now we search for less obvious properties.

Let us exclude for the present the possibility that

x1
0 = x2

0 =    = xk
0 = 0

that is, the case in which the best thing to do is nothing at all. Then some of the xi
0 will

be positive. To be specific, let us assume that the activities are numbered in such a way
that xi

0 = 0 for i = 1, 2, . . . , k1, and xi
0 > 0 for i = k1 + 1, . . . , k. We do not exclude the

possibility that k1 = 0, that is, that all activities are used at positive levels.

Now think of substituting x1
0, x2

0, . . . , xk
0 in Eqs. (8-1). Some of these restraints may

turn out to be binding; i.e., the left-hand side may be exactly equal to the right-hand
side. Let us suppose that the restraining conditions have been listed in such an order that
the first n1 of them are binding. If n1 = 0, none of the restrictions is binding; if n1 = n,
they all are. We include both of these possibilities and also any intermediate case.

This setup permits us to describe an admissible variation in the program. Let δxi

denote a small change in the level of xi from the optimal level xi
0. Then δx1, δx2, . . . , δxk

is a specification of a set of changes in the whole program. It is admissible if the new
program, xi

0 + δxi, satisfies all the restraining conditions. Let us consider variations
which satisfy the following conditions:

(8-2)
and



(8-3)

Condition (8-2) assures us that none of the activity levels that were zero in the xi
0

program will become negative as a result of the variation, and condition (8-3)
guarantees that none of the restraints that were binding before the variation will be
violated if the variation is applied. But neither of these conditions on the δxi protects us
from violating the other restrictions of the problem. Fortunately, all the other conditions
have some play in them (because they were satisfied with strict inequalities by the xi

0

program) so we can imagine the δxi as being small enough to satisfy those conditions,
too. The reason this is satisfactory is that the hypothesis that xi

0 is optimal implies that
there is no permissible direction of change89 which will increase r. Conditions (8-2) and
(8-3) suffice to define the permissible directions of change, i.e., the directions in which
at least a small variation can be made without violating the restrictions of the problem.

Now we assume that r(x1, . . . , xk) is continuous and has continuous partial
derivatives in the neighborhood of x1

0, . . . , xk
0. If we apply small variations δx1, . . . ,

δxk, the effect on r will be given by the total differential90

where the partial derivatives are evaluated at x1
0, . . . , xk

0.

We now make use of the fact that x1
0, . . . , xk

0 is an optimal program. This tells us
that there is no permissible direction of change in which the net-revenue function
increases. Algebraically,

(8-4)
for all sets of variations satisfying

(8-3)
and

(8-2)
At this stage we cite and apply a very useful theorem due to J. Farkas.



FARKAS’ THEOREM.91 If the inequality
y0 = b01z1 + b02z2 +. . .+ b0nzn ≤ 0

is satisfied for every set of numbers z1, z2, . . . , zn that satisfies all the inequalities

y1 = b11z1 + b12z2 +. . .+ b1nzn ≤ 0

y2 = b21z1 + b22z2 +. . .+ b2nzn ≤ 0

ym = bm1z1 + bm2z2 +. . .+ bmnzn ≤ 0

then there exist some nonnegative multipliers u1, u2, . . . , um, independent of z1, . . . , zn,
such that

y0 = u1y1 + u2y2 +. . .+ umym

The inequalities (8-4), (8-3), (8-2) satisfy the hypothesis of Farkas’ theorem. Hence
there exist nonnegative numbers, which we can denote by 
, such that

This expression is an identity, true for all values of δx1, . . . , δxk without restriction.
Now change the order of summation in the double sum, transpose it to the left-hand
side of the equation, and collect terms in δxi to obtain

for all values of δx1, . . . , δxk. Let us define uj = 0 for j = n1 + 1, n1 + 2, . . . , n, so as to
be able to extend the range of summation for j over all n restraining inequalities of (8-
1), and write the last equation in the weaker but more useful form

(8-5)
for all δx1, . . . , δxk such that

(8-6)
A little more trickery, and we shall have some results. Let us consider the effects of



varying one activity at a time; i.e., let us let δxi = 1 for some particular value of i while
setting all the other variations equal to zero. There are two cases to be considered: (1) i
≤ k1, and (2) i > k1. In case 1, from the definition of k1, xi

0 = 0, we see that Activity i is
not used in the optimal program under consideration. Let δxi = 1, and let all the other
variations be zero. Then inequality (8-6) is satisfied (remember that ωi is nonnegative)
and, substituting in inequality (8-5), we find

(8-7)
Now consider case 2. In this case, Activity i is used at a positive level in the optimal
program, and δxi is beyond the range of summation of inequality (8-6), Thus if we set
all the variations equal to zero except the ith, inequality (8-6) will be satisfied, whatever
the value of δxi. Then from inequality (8-5) we have

for all values of δxi. Trying just the two convenient values δxi = 1 and δxi = − 1, we see
that this condition can be satisfied only if the expression in parentheses is precisely zero.

The algebra is done (for a while). We have only to gather together our results and
interpret them. We have proved the following theorem: If a certain program x1

0, x2
0, . . .

, xk
0 maximizes an objective function r(x1, . . . , xk) subject to restrictions (8-1), then

there must exist some nonnegative numbers u1, u2, . . . , un such that for all values of i,
i = 1, 2, . . . , k, either

1. xi
0 = 0 (Activity i is not used) and

(8-7)
or

2. xi
0 > 0 (Activity i is used) and

(8-8)
The theorem tells us merely that u1, u2, . . . , un are “ numbers,” but by now we are



familiar enough with this kind of problem to recognize them as imputed values. We
note three obvious facts to bear out this interpretation. First, each of the uj corresponds
to one of the restrictions in Eqs. (8-1). Second, none of the uj can be negative. Third, uj

= 0 if j > n1; that is, if the jth restriction is satisfied with room to spare, then the jth
resource is a free good. Adopting this interpretation, we see that

is the total imputed value of all resources used per unit of the ith activity—in other
words, its imputed cost. At the same time, ∂r/∂xi is clearly the marginal effect of the ith
activity on the objective function. Let us call this the marginal-revenue product of the
ith activity. Then we can restate our theorem in economic terms, as follows: If x1

0, x2
0, .

. . , xk
0 is a program that maximizes a nonlinear objective function subject to n linear

restrictions, then there exists a set of n nonnegative imputed values such that the unit
imputed cost of each activity used exactly equals its marginal-revenue product and the
unit imputed cost of each activity not used is at least as great as its marginal-revenue
product. Furthermore, the imputed value corresponding to each restriction that is
overfulfilled by the optimal program is zero.

We have used a great display of mathematics to confirm our economic common
sense. But it is confirmed.92

8-3. SUFFICIENCY OF THE KUHN-TUCKER
CONDITIONS

In the last section we saw that any optimal solution to a nonlinear-programming
situation satisfies the mathematical Kuhn-Tucker conditions, given in Eqs. (8-7) and (8-
8), conditions that have a sound economic meaning. We now raise the converse
question: If a program satisfies the Kuhn-Tucker conditions, is it optimal?

The answer is affirmative with some reservations. Suppose that some program, x1
0,

x2
0, . . . , xk

0, together with some set of nonnegative imputed values, u1, u2, . . . , un,
satisfies the conditions of the last section, but that x1

0, x2
0, . . . , xk

0 is not known to be
optimal. Then it is easy to see that x1

0, x2
0, . . . , xk

0 must be a local optimum, i.e., that
there is no permissible direction in which the program can be changed a small amount
so as to increase net revenue. For, suppose that x1, . . . , xk is some alternative
permissible program close enough to x1

0, x2
0, . . . , xk

0 so that we can express the
difference in net revenues as



(8-9)
From Eqs. (8-7) and (8-8) we see that for every i, i = 1, . . . , k, either 

 . Multiplying the two together we find, for all i,

Substituting this result in Eq. (8-9) we obtain

Also from Eqs. (8-7) and (8-8), making use of the fact that x1, . . . , xk is permissible so
xi ≥ 0, we have

Inserting this also in the expression for δr we find

Now consider this last summation for j, term by term. There are two classes of terms. In
the first class uj = 0. These contribute nothing to the sum. In the second class uj > 0. All
such terms correspond to effective restrictions, i.e., to values of j for which ajixi

0 = cj.
For such terms, since x1, . . . , xk is permissible, ajixi ≤ ajixi

0 and the expression in
parentheses is nonpositive. In summary, there are no positive terms on the right-hand
side of this equation, δr ≤ 0, and the net revenue yielded by x1

0, ... , xk
0 is at least as

great as the net revenue yielded by any nearby program. A program that satisfies the
Kuhn-Tucker conditions is, at least, locally optimal.

This is as much as can be said without making use of nonlocal properties of r(x1, . . .
, xk). Suppose, to take the favorable case, that we know that

(8-10)

for all permissible x1, . . . , xk, where the partial derivatives are evaluated at x1
0, . . . , xk

0.



Geometrically, Eq. (8-10) asserts that, throughout the permissible region, r(x1, ... , xk)
lies on or below the tangent plane to it drawn at x1

0, . . . , xk
0. In this case,

and we have already seen that the sum on the right-hand side is nonpositive for
permissible x1, . . . , xk if the Kuhn-Tucker conditions are satisfied at x1

0, . . . , xk
0. Thus

if the objective function satisfies Eq. (8-10) and if the Kuhn-Tucker conditions are
satisfied by any program, then that program corresponds to a maximum maximorum.
Fortunately, Eq. (8-10) is likely to be satisfied in many economic circumstances because
it corresponds to the results of decreasing marginal revenue (or utility) or of increasing
marginal costs. It is possible for a program that satisfies the Kuhn-Tucker conditions to
be the optimal program in the permissible region even though Eq. (8-10) is not satisfied.

8-4. THE AUTOMOBILE COMPANY AGAIN
We illustrate these results by applying them to the example of the automobile

company. Consider first the version in which the demand curve for automobiles sloped
downward but the curve for trucks did not. Let x1 denote the sales of automobiles and
x2 denote the sales of trucks. Then the function to be maximized is

The restraints were discussed in Sec. 6-2 and were

0.00400x1 + 0.00286x2 ≤ 100

0.00300x1 + 0.00600x2 ≤ 100

0.00444x1 ≤ 100

0.00667x2 ≤ 100

As a first try at solving this problem, let us assume (incorrectly, it will turn out) that the
first restraint is effective and that the others are not. This converts the problem into a
standard calculus exercise in finding a maximum subject to a single restraint. We form
the Lagrangean expression

L(x1,x2) = r(x1,x2) + λ(0.004x1 + 0.00286x2 − 100)

compute the partial derivatives,



and solve for x1, x2, and λ by equating these partials to zero. The result is x1 = 8,250, x2 =
23,450, λ = −87,500. Comparison with the four restrictions shows that this solution is
infeasible; it violates the second restraint by requiring about 165 per cent of available
engine-assembly capacity. We must thus try again, and this time we assume that the
second restraint is the only effective one. The Lagrangean expression becomes

L(x1,x2) = r(x1,x2) + λ(0.003x1 + 0.006x2 − 100)

Following the same procedure we find, as a trial optimum, x1 = 15,000, x2 = 9,167, λ = −
41,667. Checking the four restraint equations shows that this solution satisfies the
second restraint exactly and the first, third, and fourth with room to spare. It is therefore
feasible. To test whether it is optimal (locally) we must see whether it satisfies Eq. (8-8).
Equation (8-7) is inapplicable in this case because both available activities are used at
positive levels. We thus need imputed values for the four resources u1, . . . , u4. Since
there is excess capacity for metal stamping, automobile assembly, and truck assembly,
their imputed values u1, u3, u4, respectively, all are zero. It remains for us to determine
u2, the imputed value of engine assembly, the fully utilized resource.

To find u2 we use the requirement that the marginal-revenue product of truck
production must equal its unit imputed cost.93 The marginal-revenue product of truck
production is

The unit imputed cost of truck production is, since u1 = u4 = 0,

0.00286u1 + 0.006u2 + 0.00667u4 = 0.006u2

Equating these two we obtain u2 = 41,667. Note that u2 = −λ. This is not just
coincidence. The mathematician’s Lagrange multipliers and the economist’s imputed
values are intimately related concepts.

It is now trivial to verify that the solution x1 = 15,000, x2 = 9,167, u1 = 0, u2. = 41,667,
u3 = 0, u4 = 0 satisfies Eq. (8-8) and, indeed, all the conditions for an optimum. The
problem is solved.

As a final illustration, consider the problem of the automobile firm, assuming
declining demand curves for both automobiles and trucks. The net-revenue function,
using the data assumed in Sec. 8-1, is



To maximize this function subject to the restraints let us guess that none of the resource
restrictions is binding and equate the partial derivatives of r(x1,x2) to zero. We find x1 =
18,750, x2 = 6,000. This solution is easily seen to be feasible with an excess of every one
of the resources. Thus u1 = u2 = u3 = u4 = 0. Equation (8-8) is obviously satisfied, and
this solution is optimal.

8-5. LESS AND MORE GENERAL FORMULATIONS
In this chapter we have made no assumptions about the objective function r(x1, . . . ,

xk) except that it is differentiable for positive values of the arguments. In particular it
might be linear, in which case the nonlinear-programming problem becomes a linear
one. This remark suffices to show that many of the results presented in the earlier
chapters are special cases of the ones contained in this chapter. (Recall, especially,
footnote 1, p. 194.)

Two distinctions between the linear-programming problem and the present more
general situation are worth mentioning, however. First, the explicit solution methods
that work so powerfully in the linear case do not apply in general for the reasons noted
in Sec. 8-1. This endows the linear case with its special practical importance. Second, in
our discussion of the linear-programming problem we were able to deduce the
conditions satisfied by an optimal program and even to find computational procedures
for determining such a program without raising the “dual” problem of implicit
valuation. In the general case this independent discussion of programming and
evaluation proved impossible. In order to make any progress at all, we had to introduce
the dual variables (the u’s), and the result of our labors was a statement of conditions
involving both the activity levels and the imputed values. If, as we noted, the
programming and valuation problems are intimately related in the linear case, they are
inextricably connected in the nonlinear one.

Now let us face in the other direction. Kuhn and Tucker, in their fundamental paper
cited above, actually solved a still more general problem than the one we have dealt
with. Let us state their problem and, without proof, their results. Suppose that it is
desired to maximize some objective function r(x1, . . . , xk), subject to n inequality
restraints on the activity levels; thus,

(8-11)



We assume only that all these functions are differentiable and that the feasible region
defined by conditions (8-11) is convex. By this last we mean that if two programs x1

0, . .
. , xk

0 and x′1 , . . . , x′k both satisfy conditions (8-11), so does the intermediate program
σ0x1

0 + σ1x′1, . . . , σ0xk
0 + σ1x′k for all nonnegative σ0, σ1 satisfying σ0 + σ1 = 1. Verbally

this requires that if any two programs are both feasible, then so is any internal average
of the two.

We have already treated the case in which the restraining functions fj(x1, . . . , xk) were
linear. In that case it was unnecessary to distinguish between the average imputed cost
of any activity and its marginal imputed cost because average costs were constant. With
the more general restraining functions, however, we must make the distinction. To do
this we consider the partial derivatives evaluated for any particular program, x1

0, . . . ,
xk

0:

and

Then if we have a set of imputed values u1, . . . , un associated with the n restrictions,
clearly

is the marginal imputed cost of the ith activity.

We can now state the Kuhn-Tucker conditions for an optimal solution of this more
general problem. If x1

0, . . . , xk
0 maximizes r(x1, . . . , xk) subject to conditions (8-11)

and to x1
0 ≥ 0, . . . , xk

0 ≥ 0, then there must exist a set of nonnegative imputed values u1,
. . . , un such that the following conditions are satisfied:

1. fj(xi
0, . . . , xk

0) ≤ 0 j = 1, . . . , n

i.e., the solution is feasible.

2. If fj(x1
0, . . . , xk

0) < 0, then uj = 0

i.e., if the jth restraint is satisfied with a surplus, then the associated imputed value is
zero.

3.



i.e., the marginal imputed cost of every activity is at least as great as its marginal net
revenue.

4.

i.e., if the marginal imputed cost of any activity exceeds its marginal net revenue, that
activity is not used.

The conditions deduced in Sec. 8-2 are clearly the special case of these in which
∂fj/∂xi = aji.

The converse question arises here also, of course. If we have a feasible program x1
0, .

. . , xk
0 and can find some nonnegative imputed values u1, . . . , un such that conditions 1

to 4 are satisfied, is that program optimal? Just as in the case in which the restraints
were linear, such a program is locally optimal, at least; but before we can declare it to be
the best attainable program, some additional assumptions must be satisfied. For
example, suppose that

for all admissible x1, . . . , xk (the same assumption that we made in Sec. 8-3) and

(8-12)
Assuption (8-12), by the way, is not a new assumption but follows from the convexity
of the feasible region, which we postulated earlier. If these conditions hold in addition
to conditions 1 to 4, then Kuhn and Tucker show (and the proof is not hard) that x1

0, . .
. , xk

0yields the greatest net revenue that can be obtained.

In this most general formulation, linearity has completely vanished. Since
assumptions are good things to eliminate, this is an advance. But we have already noted
the cost; convenient methods of practical solution go by the board along with the
linearity assumptions. This fact does not entirely rob nonlinear programming of its
importance for practical guidance, however, because mathematicians have ways for



getting around the difficulty. The situation is analogous to the problem of integration in
the calculus. There are many functions for which no formal integral approximate
integrals for such functions, accurate to any desired degree, can be found by numerical
methods. In the same spirit, practical non-linear-programming problems can frequently
be solved to a high degree of precision by a variety of mathematical tricks. The problem
is difficult technically, however, and the methods used throw no light on the logical or
economic significance of nonlinear programming, so we shall not go into this subject.

8-6. COMPARISON WITH THE CONVENTIONAL
THEORY OF PRODUCTION

Now, having banished the linearity assumptions of linear programming, have we
come back to the orthodox marginal-productivity analysis of maximization? The
comparison between general programming, as we may call the last formulation, and the
conventional analysis of production is surprisingly intricate because, although the two
methods of analysis deal with the same problem, they focus attention on different
variables and therefore meet rather obliquely.

We may take Sune Carlson’s presentation as typical of the conventional approach. He
writes:94

If we denote the quantity of output by y, and the quantities of the variable productive
services, m in number, by v1, . . . , vm, we write

y = φ (v1, . . . , vm)

This is our production function. The production function, it must be remembered, is
defined in relation to a given plant; that is, certain fixed services.

A given amount of output may frequently be produced from a number of different
service combinations. It may also be true that the same combination of productive
services gives varied amounts of output, depending upon how efficiently the productive
services are organized. . . . If we want the production function to give only one value
for the output from a given service combination, the function must be so defined that it
expresses the maximum product obtainable from the combination at the existing state of
technical knowledge. Therefore, the purely technical maximization problem may be
said to be solved by the very definition of our production function,

If we compare this with the formulation given in Eqs. (8-11), we see the same
ingredients, very differently expressed. Carlson focuses attention on the flows of inputs
and outputs95 because these are the variables that convey the impact of the firm in
question on the markets in which it operates. In the programming formulation these
flows play a subsidiary role (buried in the activity-level variables) because, just by
reason of being freely variable, the variable inputs and outputs do not delimit the field



of choice and are not “scarce” to the firm in question. On the other hand, in the
programming formulation, most explicitly when the restraints are linear, the quantities
of the fixed productive factors are central to the problem because they are essential data
in determining what the firm can and cannot do, while in the conventional formulation
these same fixed factors are regarded as being somewhat aside from the problem just
because their quantities are fixed and predetermined. Another way to state the same
contrast is to note that the programming approach takes the prices of the variable factors
as given, and therefore not deserving explicit attention, and is concerned with imputing
values to the fixed factors, while the conventional analysis regards the costs of fixed
factors as “sunk” and concentrates on the influences that determine the flows and prices
of the variable factors. In short, the programming approach is inward-looking, into the
firm; the conventional approach is outward-looking, out into the market, even when it
deals with a single firm.

It is worth reiterating that although the two approaches emphasize different questions,
they both answer the full range. The conventional approach has been used to impute
values to all the cooperating factors of production, fixed and variable; the programming
method does provide a firm’s demand schedules for variable factors. We mustn’t be
fooled by appearances.

The contrast between the choice of explicit variables in the two approaches is
something more than the appearance of a difference. Consider a firm in which the
number of available activities is greater than the number of variable inputs. If we solve
the programming problem for that firm in given market circumstances, we shall know
the quantities of the inputs that that firm will consume under those circumstances. Thus
the programming approach solves the conventional problem. But is the converse true?
On the contrary. Carlson’s production function (i.e., the conventional one) cannot even
be written down until a programming problem has been solved. That is what Carlson
meant by the last sentence quoted. In order to derive the production function we must
consider various definite combinations of inputs, and for each of them (i.e., holding the
variable inputs temporarily constant) we must determine the program that maximizes
output. This is the “purely technical maximization problem” to which Carlson refers. It
may, perhaps, be regarded as “purely technical” so long as the firm has a single output
(as in the equation given), but as soon as multiple products are admitted, an undeniably
economic question of resource allocation arises. In short, the use of production
functions presumes that a large proportion of the problem of allocation has been solved
before the analysis begins.

It is illuminating to pause here to note that the definition of an activity used, say, in
Chaps. 6 and 7, does not apply in the most general formulation of the programming
problem. In the most general conditions the input and output flows generated by an
activity are not assumed to be directly proportional to the level of that activity. What,
then, is the significance of an activity? Each activity is merely the designation of one of



the decision variables of the production plan. These are the variables which can be
decided upon independently and which jointly determine all the inflows and outflows
of the enterprise.96 It is for this reason that a programming problem (of this general
kind) underlies the production problem no matter which way it is formulated.

We see, thus, that the production function as conventionally defined summarizes the
solutions to the underlying programming problems for various values of the variable
factors. The numerous restraints and the inequality signs that clutter up a programming
problem are absent from the conventional formulation, not because they are
inapplicable, but because it is assumed that they have already been handled. Perhaps
economists would not have gotten into the habit of making this assumption so glibly if
they had realized what, and how much, they were assuming.



9

The Statical Leontief System
One of the most interesting developments in the field of economics of recent years is

the model of industrial interdependence known as input-output. Largely the creation of
Professor Wassily W. Leontief of Harvard University, the theory of input-output has at
least three important aspects: (1) It is of interest to the economic theorist because it
provides the simplest form of Walrasian general equilibrium; its form is so simple that it
holds out the hope of empirical statistical measurement. (2) Input-output is of interest to
the national-income economist because it provides a more detailed breakdown of the
macroaggregates and money flows. (3) The theory of input-output can also be regarded
as a peculiarly simple form of linear programming: in the simplest Leontief system, in
which no substitutions of inputs are technologically feasible, the optimizing solution is
the one and only efficient solution possible; but in more general models, in which
substitution is possible, the system can be made determinate only by solving an
appropriately formulated linear-programming problem (or by requiring the solution to
satisfy some restrictive outside conditions).

The present chapter gives a relatively brief exposition of the statical, or “flow,” model
of the Leontief system, while the next chapter takes a more advanced point of view.
Subsequent chapters deal with dynamic models involving time and stocks of capital,
and also with more general statical models of the type met with in the neoclassical
theories of Leon Walras and J. B. Clark.97

9-1. INPUT-OUTPUT FLOW TABLES
We begin with a brief exposition of what input-output is generally about. Leontief

imagines an economy in which goods like iron, coal, alcohol, etc., are produced in their
respective industries by means of a primary factor such as labor and by means of other
inputs such as iron, coal, alcohol, etc. He rejects as unrealistic the Austrian economists’
view that you can identify certain industries as being in “earlier” stages of production
and certain other industries as being in “later” stages. Thus, Leontief argues against the
inevitability of finding an industry such as agriculture which sells only to an industry
such as manufacturing, buying nothing from it; he denies that you can follow a loaf of
bread from the early stages through a one-directional hierarchy of industries with value
being added to the bread by virtue of primary factors employed in each of the
industries.98

Instead Leontief finds that the real world requires you to recognize the “whirlpools”



of industrial relationships characteristic of general models of interdependence. For the
production of coal, iron is required; for the production of iron, coal is required; no man
can say whether the coal industry or the iron industry is earlier or later in the hierarchy
of production.

9-1-1. A Two-industry Example. Perhaps Leontief’s model will be most clear if we
imagine a grossly oversimplified economy in which there are two industries, agriculture
and manufacturing. Each directly requires some of a primary factor called labor in its
productive process, and each requires in its production process inputs of the other.99

Table 9-1 provides a simplified picture of our economy. Agriculture and
manufacturing are the first two entries, and each of their rows will show what happens
to their total output. The third row is given to the primary factor, labor, of which the
community has a total of 50 units (thousands of man-years) per year. These 50 units of
labor are allocated as inputs to the two industries in the respective amounts 10 and 40.

The first-row total shows that all together the agricultural output totals 250 units
(millions of tons) per year. Of this total 50 units go directly to final consumption, i.e., to
households and government, as shown in the third column of row 1. What happens to
the remaining 200 units of agricultural output? They are required as inputs to help make
possible the community’s production of manufactured and agricultural goods. Thus 175
units of agricultural output is required as materials inputs in order to make possible
manufacturing production: this is shown in the second column of the first row. The
remainder of agricultural output, 25 units, is required in agriculture itself, e.g., oats used
to feed horses that pull harvesters of wheat and oats, and is shown in column 1 of row
1. Similarly row 2 shows the allocation of the total output of manufacturing industries,
120 units (thousands of dozens) per year, among final consumption and intermediate
inputs needed in society’s two industries. In row 2, columns 1, 2, and 3 show
allocations of 40, 20, and 60 units of manufactured goods per year to agriculture,
manufacturing, and final consumption (households and government). The reader
should remember that all the items in Table 9-1 are flows, i.e., physical units per year.

TABLE 9-1

There are some preliminary remarks to be made about this miniature tableau
économique. Since the entries in any row are all measured in the same physical units, it
makes good sense to add across the rows. The “total outputs” column gives the over-all
input of labor and output of each commodity. On the other hand, items in the same



column are not measured in the same units, so that it would be nonsense to add down
the columns. But each column, thought of as a whole (i.e., as a “vector”), does have
meaning. The first column describes the input or cost structure of the agricultural
industry: the 250-unit agricultural output was produced with the use of 25 units of
agricultural goods, 40 units of manufactured goods, and 10 units of labor. Similarly the
second column describes the observed input structure of the manufacturing industry. To
put it slightly differently, a column gives one point on the production function of the
corresponding industry. The “ final demand” column shows the commodity breakdown
of what is available for consumption and government expenditure. We make the
convention that labor is not directly consumed. Direct labor services are assumed away
solely to restrict this example to two final commodities.

Suppose, however, that we had deliberately chosen the physical units in which each
commodity is measured so that at some given base prices, one unit costs $1 million.100

Then each entry in Table 9-1 becomes a (million) dollar value and we can interpret the
columns literally as cost figures. In these special units it does make sense to add down
the columns, and the sum gives the total cost of producing the industry’s output. Since
the output is also measured now in millions of dollars’ worth, total output is the same as
total revenue. Thus agricultural revenue (at the base prices) is $250 million, and cost of
production is $75 million. In manufacturing, revenue is $120 million and cost $235
million. Thus in agriculture there was a profit of $175 million, and in manufacturing
there was a loss of $115 million. Clearly, then, the prices mentioned in the footnote are
not long-run competitive equilibrium prices (price is not equal to average cost, and
there are profits and losses). We shall soon see how equilibrium prices can be found;
but as soon as prices change the column sums again become nonsense, for the entries
cease to be in millions of dollars’ worth. At any other prices, costs and revenues have to
be separately computed from the physical flow items.

Those items in Table 9-1 that show the sales of the two industries to themselves and
to each other might be described as “non-GNP” items. The “ final demand” column
represents the output side of GNP, and the labor row represents the factor-cost side.
The interindustrial sales have no “welfare” significance at all. Social benefits come from
final consumption, and social costs come from the use of labor. The economy can be
viewed as a machine that uses up labor (and has 50 units of labor per year at its
disposal) and produces final consumption. We know from observation that with its 50
units of labor the economy is capable of turning out an annual flow of 50 units of
agriculture and 60 units of manufacture. Part of our problem will be to calculate what
other menus of final consumption society could produce with its 50 units of labor and
its present technology.

Suppose we were to change the agriculture-to-manufacturing sales figures from 175
to 185 and, say, decrease the agriculture-to-agriculture item from 25 to 15, thus keeping
final demands and row totals the same. As compared with Table 9-1, this would indicate



a less productive manufacturing industry (more input for same output) and a more
productive agricultural technology (less input for same output). But at the moment the
two societies would be equally well off—they supply the same amount of labor and
enjoy the same final consumption. However, the two societies would have different
technologies, and therefore we would confidently expect them to have different possible
menus of final consumption (which happen to cross at the observed point). In fact, we
suspect that a society that might prefer a final-demand mix weighted more heavily than
60 – 50 on the manufacturing side would do better with the technology of Table 9-1;
while for demand mixes with a heavier dose of farm products, the amended technology,
containing a more efficient agricultural industry, would be superior (leaving aside any
nonpecuniary advantages of manufacturing over agricultural employment, or vice
versa). We must formulate all this more precisely.

So far Table 9-1 is just a handy way of arranging data about certain transactions in an
economic system. It is more detailed than a simple statement of national-income totals
would be; it is less detailed than a complete accounting which distinguishes firms within
each industry. But it is certainly a useful bird’s-eye view, primarily because of its
double-entry character: each entry can be viewed as a revenue (the row aspect) or as a
cost (the column aspect). An additional advantage of such a tabulation is that even for a
very large and complicated economy the required numbers can actually be found or
estimated, at some expense.101

9-1-2. Technological Assumptions. To convert Table 9-1 from a descriptive device
to an analytical tool requires some strong assumptions. We have already spoken loosely
of the technology of the system. Of course Table 9-1 far from describes the
technological possibilities available to the society. What we need are the production
functions which do exactly that. If we call agriculture Industry 1, manufacturing
Industry 2, and give labor the subscript 0, then Table 9-1 becomes schematically Table
9-2, which establishes a notation for us. Items in the same column are the inputs in the
same production function.

TABLE 9-2

Thus we could write production functions

(9-1)



since X1 and X2 are the total outputs. In addition, we can always add across the rows, so
we know that

(9-2)
Now the observations in Table 9-1 tell us very little about the production functions—

just that 250 = F102(25,40,10) and 120 = F103(175,20,40). If we care to assume the
existence of constant returns to scale, then we can also be sure that, say, 500 =
F102(50,80,20) and 24 = F103(35,4,8), and so forth. We can also assume that the isoquant
surfaces have the usual convexity, that is to say, we can assume generalized diminishing
returns. The distinctive feature of input-output analysis is that Leontief makes both
these assumptions and the far stronger one of fixed coefficients of production; i.e., he
supposes that it takes a certain minimal input of each commodity (possibly zero) per
unit of output of each commodity. The word “minimal” is of some importance;1 if it
takes 2 tons of ore to yield 1 ton of iron, no doubt the same iron could be produced
from even more ore, but as long as iron ore has value, nobody will be silly enough to
use more than the absolutely required 2 tons.

This special Leontief production function can be written in the usual form (9-1). Let
aij be the required minimal input of Commodity i per unit of output of Commodity j (in
our example i = 0, 1, or 2, and j = 1 or 2). Then,103

(9-3)
The reader can verify that if each of the xij is multiplied by a constant, the
corresponding Xj is multiplied by the same constant, so that we do indeed have constant
returns to scale. The isoquant surfaces are nested right-angled corners, so that we do
indeed have convexity. If any aij is zero (a commodity not needed at all in a certain
industry), we can either omit the corresponding term from the right-hand side of (9-3),
or else we can think of xij/aij as + ∞, in which case it will certainly never be the limiting
smallest number in (9-3).104

An alternative way of writing (9-3) is to note that since X1 equals the smallest of
x11/a11, x21/a21, x01/a01, it must be ≤ all three of the ratios.

Hence we have Xj ≤ xij/aij, or, written out in full,



(9-4)
with equality holding at least once in each row (in fact with equality holding everywhere
if none of the commodities concerned are free goods).

Under these narrow assumptions the flow data of Table 9-1 do completely describe
the technology of our model economy. Assuming that no goods are free, we can divide
each item in the first column of Table 9-1 by the first-row total and each item in the
second column by the second-row total, and since from Eqs. (9-4) xij/Xj = aij, we get
Table 9-3.

TABLE 9-3

From Table 9-3 we can read that it takes an input of 0.10 unit of Commodity 1 to
fabricate 1 unit of Commodity 1, that it takes 0.33 unit of labor to make 1 unit of
Commodity 2, etc. We have included also the final demands, the total outputs, and the
total labor supply. We shall shortly see that from the first three columns of Table 9-3 we
could deduce the fourth column except for the value of X0.

If we convert Table 9-2 as we did Table 9-1, we get Table 9-4.

TABLE 9-4

9-2. A LINEAR-PROGRAMMING INTERPRETATION
This model of production is really only a special case of the linear-programming or

activity-analysis model studied in Chaps. 2 to 8. There we were talking about a firm and
here about whole industries, but the technique is the same. The first column of Table 9-
3 tells us that Industry 1 has one (and only one) process which converts 0.10 unit of
Commodity 1, 0.16 unit of Commodity 2, and 0.04 unit of the primary factor, labor, into
1 unit of Commodity 1. This process can be expanded or contracted in proportion to
any extent, as long as enough inputs are available to feed it. Another way of describing



this process is to say that it has a “net” output of 0.90 unit of Commodity 1 (the gross
output of 1 unit minus the 0.10 unit needed as input) and inputs of 0.16 of Commodity
2 and 0.04 of labor. We might choose to call the level that yields 1 unit of net output of
Commodity 1 the “unit-level operation” of the process. To do this we have to expand
output and inputs by the factor  , and we get 1 unit of net output (gross output of 
minus inputs of  ×  , or  ) and net inputs of 0.177 and 0.044 unit of Commodity
2 and labor, respectively. As still another alternative we could normalize on an input of
1 unit of labor, which would yield a gross output of 25 units and a net output of 25 −
2.5 = 22.5 units of Commodity 1, an input of 4 units of Commodity 2, and, of course, 1
unit of labor. All these ways of looking at the process are essentially equivalent.
Industry 2 also has a process whose vital statistics can be read from the second column
of Table 9-3. The basic resource limitation on the system is the availability of no more
than 50 units of labor.

Thus we are in a straightforward linear-programming situation. [We shall discuss
later whether or not there is anything to be maximized or minimized here: one possible
problem is to achieve given final consumption with minimum use of labor—remember
that final consumption is the only social benefit, and use of labor (if labor is irksome)
the only social cost in this model.] It is even more than straightforward, it is especially
simple. In the case of a firm the main problem was to decide which activities to use and
which not. Here there is only one activity producing each commodity. If some of each
commodity is desired for final consumption, or if each commodity is needed as an input
for some desired commodity,105 then we know at once that all processes must be used,
and the problem reduces to the simpler one of choosing the levels.

There is already one restriction on the aij coefficients of Table 9-4 that we can state. If
a technology is to be viable at all, each of the “own” input coefficients, a11 and a22, must
be less than unity. Otherwise there would be negative net outputs (1 − a11 and 1 − a22).
A production process in which it took more than 1 ton of coal to make 1 ton of coal (if
you can call this “making”) is not a method of production at all, but just a hard way of
running down preexisting stocks of coal. Note that if a table such as Table 9-3 or 9-4 is
deduced from an observed flow table such as Table 9-1 or 9-2, viability conditions will
automatically be satisfied. The diagonal elements must, by the rules of arithmetic, be
less than the sums of their own rows, and so dividing will always leave aii < 1. This
reflects the fact that if we ignore the existence of stocks, an observable economy must
be productive in this sense. There is another related but more subtle condition of
viability that we shall reach shortly.106

9-2-1. Feasible Final Demands. In our linear-programming formulation of the
Leontief system, how do the balance relations (9-2) look? We repeat them here, for
ready reference:



(9-2’)
The first of these says, for example, that the total output of X1 was allocated either as
input to Industry 1, or as input to Industry 2, or as final consumption, since in Table 9-2
X1 was defined as the sum of the other three items. But now if we shift our point of
view and think of X1 as the total output of Commodity 1, we must change the sign = to
the sign ≤. The available output certainly can’t be less than the sum of its alternative
uses, but it could, physically, be greater. Again we have confidence that unless the
commodity is a free good, there will be no waste or excess tolerated. But in Eqs. (9-2)
we have kept the inequality because in the dynamic extension of this model it will play a
key role.

Now the production process of Industry 1 turns out 1 unit of Commodity 1, gross,
when operated at unit level. Therefore, to produce a gross output of X1 units of the
commodity, the process must be operated at level or intensity X1. Similarly with the
process of Industry 2 we can identify the total output X2 with the process intensity.
Whatever the process intensities X1 and X2, we can account for the output X1 as follows:
a11X1 will be used up in Industry 1 itself, and a12X2 will be used up in Industry 2 (all this
from Table 9-4). What’s left, namely, X1 − a11X1 − a12X2, must, according to Eqs. (9-2),
be at least equal to the final consumption C1. An exactly similar relation must hold for
X2. For labor, the accounting relation in Eqs. (9-2) is even simpler. Labor is not
produced, but is available in amounts up to X0; the use of labor is a01X1 in Industry 1
and a02X2 in Industry 2. Thus we get

(9-5)

(9-6)
Suppose society (by fiat or by market processes) specifies a set of final demands C1

and C2. The question immediately arises: Is this bill of goods achievable? Is this bill of
goods within society’s net-production-possibility schedule? In the first instance this
means: Does society have at its disposal enough labor to produce the specified final
demands? But we can also step outside the model for a moment and imagine that the
two industries have capacity limits, so that we must verify that the bill of goods can be
produced without gross output overstepping the available capacity. (The reason that this
thought is outside the model is that if there are capacities, there are usually ways of



increasing them. This is the province of the dynamic model.) In both cases we must first
find out what gross outputs are needed to yield final demands C1 and C2. The answer is
easy: Any gross outputs which satisfy both inequalities (9-5) will do.

FIG. 9-1
Graph X1 on the horizontal axis and X2 on the vertical, as in Fig. 9-1. The line (1 −

a11)X1 − a12X2 = C1 is drawn as L1, and it is easily verified that the region where the ≥
holds consists of the line and all the area R1 to the right of the line, horizontally shaded.
Note that the distance OA is C1/(1 − a11) (positive because 1 − a11 > 0, as discussed
earlier). The slope of L1, dX2/dX1 = (1 − a11)/a12, is also positive (if a12 = 0, L1 is
vertical). We draw only the positive quadrant, since negative gross outputs have no
meaning.107

The line L2 is where − a21X1 + (1 − a22)X2 = C2, and the vertically shaded region R2 is
where the inequality is satisfied. The distance OB = C2/(1 − a22), and the slope of L2 is
a21/(1 − a22).

But the gross outputs which will yield both C1 and C2 are those which lie in both
shaded regions and therefore in the crosshatched region of Fig. 9-1, the cone-shaped
angular region between L1 and L2 extending outward from the intersection point L. Any
gross-output levels, or process intensities, in this region will enable society to consume
C1 and C2 of the two commodities.

The intersection point L has special properties. At the outputs represented by L, both
equalities hold in Eqs. (9-5) and nothing of either commodity is being wasted. What is
more, any other output in the crosshatched region has both outputs bigger than at L.
Clearly the efficient way to produce net outputs of C1 and C2 is to produce the smallest
compatible gross outputs, namely, and  at L. But does L represent a feasible set of
process intensities, or industry outputs? Now this question is easy to answer. First, if
Industry 1 has a capacity limit, say M1, we can compare to see if  . If so, all is
well; if not then L is not feasible, and surely no program with  , is feasible, and



we would have to conclude that society can’t make available final consumptions of C1

and C2. Second, we can do the same with the capacity limit M2 of Industry 2. Finally,
there is the labor-supply restriction. The input of labor at L is  . We have to
compare this with X0. If Eq. (9-6) is satisfied, the program is feasible. If not, the
program will require too much labor, and of course so will any program with still
higher gross outputs.

Graphically the restriction X1 ≤ M1 represents a vertical line and the area to the left; X2

≤ M2 is a horizontal line and the area below. The labor restriction (9-6) a01X1 + a02X2 ≤
X0 is a downward-sloping line (L3 in Fig. 9-1) and the area on the origin side of it. The
region of feasible gross outputs is then the polygon OM2CDM1 drawn in Fig. 9-1. If L
lies inside this polygon, as it does in Fig. 9-1, then the final demands specified are
attainable. If L lies outside, then society cannot produce such large final consumption.
If, again as in Fig. 9-1, L lies strictly inside the feasible region, then both outputs can be
expanded beyond L and society could increase both final consumptions beyond C1 and
C2.

Must a point like L always exist? A look at Fig. 9-1 shows that if the. lines L1 and L2

were parallel, i.e., if they had equal slopes, there would be no point L. After all L is a
point of intersection, and parallel lines don’t meet. In fact, if L2 had a bigger slope than
L1, there would also be no point L. The two lines would intersect, to be sure, but not in
the positive quadrant. If L2 rose more steeply than L1, the two lines would simply fan
out. Not only would there be no point L, but there would be no crosshatched region.
The regions R1 and R2 would have no points in common. It would be impossible to
satisfy Eqs. (9-5) for meaningful positive outputs. We can go one step further: it would
be impossible to satisfy Eqs. (9-5) for any positive final demands, no matter how small.
That is to say, no final demands would be producible at all. We would be in much the
same fix as if a11 or a22 were to exceed unity.

9-2-2. The Hawkins-Simon Conditions. What is the condition that L exist, or that
some bills of goods should be producible?108 It is that the slope of L2 be less than the
slope of L1. But that says:

or

(9-7)
Another way to write this is in determinant form:



(9-7a)
This is the more subtle restriction on the input coefficients referred to at the end of

the previous section. It can be given the following interpretation: Just as we earlier
required that it not take a direct input of more than one ton of coal to make one ton of
coal, Eq. (9-7) or (9-7a) assures us further that if we add up the direct and indirect
inputs of coal that go into a ton of output (the coal to make coal, the coal to make coal
to make coal, the coal to make steel to make coal, the coal to make steel to make coal to
make coal, the coal to make steel to make steel to make coal, etc., ad infinitum), that all
this will be less than one ton. Clearly if a ton of coal “contains,” directly and indirectly,
more than a ton of coal, self-contained production is not viable. The inequality of (9-
7a) together with the earlier 1 − a11 > 0, 1 − a22 > 0 comprise what are called the
Hawkins-Simon conditions.109 These conditions extend to systems of more than two
commodities, with strings of bigger and bigger determinants appearing in Eq. (9-7a).
The interpretation is always that all subgroups of commodities should be “self-
sustaining,” directly and indirectly.

9-3. SOLVING AN INPUT-OUTPUT SYSTEM
In searching for the gross outputs which would yield specified final consumptions

(which we had to do in order to test feasibility) we could have proceeded differently.
We could have started with the given final demands C1 and C2. To C1 we would have
added the “first-round” input requirements of Commodity 1, namely, a11C1 + a12C2, and
to C2 we would have added the first-round inputs of Commodity 2, namely, a21C1 +
a22C2. Then we would have proceeded to the second round, which is more complicated.
There are second-round inputs of Commodity 1 into each of the four first-round inputs,
namely, a11(a11C1 + a12C2) + a12(a21C1 + a11C2). For Commodity 2 the second-round
inputs are a21(a11C1 + a12C2) + a22(a21C1 + a22C2). Then on to the third-round, etc., ad
infinitum. The rule by which the kth-round inputs can be found from the (k − 1)st
round is easy: if Xi

(k) represents the kth-round inputs, then

X1
(k) = a11X1

(k  – 1) + a12X2
(k  – 1) 

X2
(k) = a21X1

(k  – 1) + a22X2
(k  – 1)

Our method of solution is much less laborious. By considering the two equations or
inequalities simultaneously as in Fig. 9-1, we cut through the infinite chain of fictitious
“rounds.”

It is a theorem (if it weren’t, all would be lost) that if the productive system is viable
—the Hawkins-Simon conditions again—the infinite sum of all the rounds converges to



a limit, and this limit is the same as the simultaneous solution we worked out earlier.
The convergence of the infinite process is a relatively delicate thing to prove. But we
can prove the equivalence of the two solutions with only a little algebra.

In the first place, it is evident from the form of the first- and second-round terms
written out above that when all is said and done the solution is going to be of the form

(9-8)
i.e., the gross outputs are linear functions of the final demands. The A’s are coefficients
whose values are defined by Eqs. (9-8); we want to evaluate them in some simpler form.

There is another way we could look at this. We could build up  in two steps. First
there is the final consumption itself, C1. Then we could imagine the system to be
presented with the first-round derived demands as a sort of secondary final demand.
The gross output necessary to support this supplementary demand will be A11(a11C1 +
a12C2) + A12(a21C1 + a22C2). Thus we have

(9-9)
and similarly,

(9-9a)
We now have two ways of computing  and . Since they are always to give the

same result, they must be identical, coefficient by coefficient. Thus we get four
equations to solve for the four unknowns A11, A12, A21, A22.

For example:

A11 = 1 + a11A11 + a21A12

A12 = a12A11 + a22A12

or

(1 − a11)A11 − a21A12 = 1

−a12A11 + (1 − a22)A12 = 0 .



By substitution or elimination of determinants these two equations can be solved to give

(9-10)
and the other pair of equations can be written down and solved to give

(9-10a)
Again we have used a simultaneous solution to circumvent an infinite multiplier
chain.110

Now go back to our original technique in Fig. 9-1. The point  was the solution
of a pair of simultaneous equations,111 namely,

(9-11)

Multiply the first equation by 1 − a22, the second by a12, and add. After solving for 
there results

(9-12)
Then multiply the first equation by a21, the second by 1 − a11, and add, to get

(9-12a)
Compare this with (9-8) and with (9-10) and (9-10a). They are identical. We have thus
proved that the “rounds” method and straightforward simultaneous solution of (9-11)
yield the same result.

This proof has taught us something else. Equation (9-12) shows that the gross outputs
are built up linearly out of the final demands C1 and C2. The numbers Aij and their
values as given in (9-10) and (9-10a) have a simple meaning. Aij is the total direct and
indirect gross output of Commodity i needed to support 1 unit of final consumption of
Commodity j. A11C1 is the amount of X1 needed to support C1, A12C2 is the amount



needed to support C2. Therefore  .

9-3-1. A Numerical Example. Let us use the results of the preceding section on the
numbers of Table 9-3. (Of course, apart from rounding errors we already know what
the result will be, namely,  , with a labor utilization of 50.) First of all,
the Hawkins-Simon conditions are satisfied:

The region R1 of Fig. 9-1 is given by

or

R2 is given by

or

To find the coordinates of the point L we have to solve

We can solve these directly, or else compute the coefficients Aij according to (9-10) and
(9-10a):

Then from (9-12),

as we expected (the difference from 250 and 120 comes from rounding  to 1.46
and  to 0.17 in Table 9-3). To compute the total labor input we use (9-6):

(0.04)(250.9) + (0.33)(120.5) = 10.04 + 39.77 = 49.81

which is close enough to X0 = 50.

The same calculations can be made for any proposed final demands, which can thus



be tested for feasibility.

To conclude this section we compute in Table 9-5 the first few rounds of derived
demands to see how their sum converges to  and  . From Table 9-5 it can be seen
that the contributions of successive rounds dwindle away. After four rounds, the
remaining error in and is of the order of magnitude of 10 per cent.

TABLE 9-5

9-4. THE PRODUCTION POSSIBILITY SCHEDULE
Any proposed bill of final consumption can, by the methods already described, be

converted into the required gross outputs for each industry. The fixed-factor restriction
in (9-6), together with capacity constraints if any, define a gross-output-possibility
schedule. Thus we can test whether any particular set of final demands can be
produced, given the labor endowments of the economy. Can we do better? Can we
present explicitly the whole menu of producible final demands, the net-output or
consumption-possibility schedule? We can.

To do so we need a different graphical representation of the input-output technology.
In Fig. 9-2 we again graph Commodity 1 horizontally and Commodity 2 vertically, only
now we are really going to be concerned with net outputs, so we label the axes C1 and
C2. Now what is the net effect of unit operation of Industry 1? There is a net addition of
1 − a11 units of Commodity 1 and a net subtraction of a21 units of Commodity 2. This is
shown by the point P1 in the diagram, lying to the right of the origin to indicate a net
output of Commodity 1 and below the origin to indicate a net input of Commodity 2.
Because of constant returns to scale, doubling or halving the intensity or gross output of
the industry will double or halve the net output and input. Thus the net result of the
industry operated at any level is given by points like P1 on the ray through P1. In exactly
the same way Industry 2 at unit level produces the net result shown by P2: net outputs 1
− a22 of Commodity 2 and – a12 of Commodity 1. Also the ray through P2 contains the
net results of Industry 2 operated at any level of gross output.



FIG. 9-2
At P1 the input of the fixed factor, labor, into Industry 1 is a01 units. Where along the

ray will the net input of labor be exactly 1 unit? At a gross output of  units [net
output of (1 − a11)/a01 units of Commodity 1, −a21a01 units of Commodity 2], as
represented by the point . Similarly  uses up 1 unit of labor in Industry 2. Given any
point P on the ray through P1, the ratio OP/OP1 is the corresponding gross output at P
and the ratio  is the corresponding input of labor.

Now suppose there were only 1 unit of labor to be divided between Industries 1 and
2 in some proportion to be decided. What net results could be obtained? We already
know that if all the unit of labor is devoted to Industry 1, we get , and if all of it is
used in Industry 2, we get  . If we compute the net result of dividing up the labor in
all possible proportions, we get all the points on the line connecting  and . If we
divide the labor 50-50, we get the point exactly halfway between  and ; if we divide
the labor 0.60 to Industry 1 and 0.40 to Industry 2, we get the point on the line 40 per
cent of the way from  to ; etc.

Thus if there were only 1 unit of labor available to society (X0 = 1), the net outputs
producible would be those on the line between  and . But since negative net output
is meaningless (barring the presence of stocks to be run down), the only really available
net outputs would be those on the line segment AB. Of course, since we could always
throw away some net output, any point in the triangle OAB would be attainable,
although only those on the frontier AB would be efficient.

Now whatever the available supply of labor X0, we can find points  and  on the
two rays which would just exhaust it. The coordinates of , for instance, would be C1 =
[(1 − a11)/a01]X0, C2 = − (a21/a01)X0. Then to find the possible net outputs attainable by
allocating X0 between the two industries we simply draw the straight line between 
and  . Again we are interested only in the segment  which represents nonnegative
net outputs. OAB shows the attainable net outputs and  itself is the consumption-
possibility sched- . ule we have been seeking.



Given the available supply of labor, society can choose to have final consumption of
the two commodities in any amounts on the frontier  . All points on  use up all the
available labor; points inside the triangle leave some labor unused.112

FIG. 9-3
Suppose that the two rays of Fig. 9-2 had come out as they are drawn in Fig. 9-3.

Note that if we join  and  by a straight line, there are no points in common with the
first quadrant. In fact, there is no way of joining a pair of points, one on each ray, so
that the straight line crosses the positive quadrant. Economically speaking, by no
combination of the two industries can a positive net output be produced. This is
reminiscent of our earlier discussion of the Hawkins-Simon condition. In both Figs. 9-2
and 9-3 we have tacitly assumed both that 1 − a11 > 0 and that 1 − a22 > 0: each industry
can produce positive net output of its own commodity. What additional condition must
hold to ensure the configuration of Fig. 9-2 rather than that of Fig. 9-3? It will be seen
that in Fig. 9-2 the slope of the P1 ray is flatter (algebraically greater, since both slopes
are negative) than that of the P2 ray, and as a result the connecting lines go northeast of
the origin. In Fig. 9-3 the P1 ray has swung around to have steeper slope than the P2 ray.
The crucial characteristic of Fig. 9-2 is that −a21/(1 − a11), the slope of the P1 ray, is
greater than −(1 − a22)/a12, the slope of the P2 ray; i.e.,

or

(1 – a11) (1 – a22) – a12a21 > 0

This is exactly the Hawkins-Simon condition again.

This graphical study has already told us nearly all we need to know about the
consumption-possibility schedule. We know, for example, that the frontier is a straight
line (with three commodities it would be a plane, etc.), and we could get from Fig. 9-2 a
pretty good idea of how it would change if one of the aij coefficients were to change. It
remains only to develop an analytical expression for the frontier in terms of the data: the
aij and X0. This can be done in two ways: a straightforward but laborious way, and an
indirect but quick way. We choose the latter here, and leave it to the reader to go
through the straightforward computations and show that they lead to the same result.

The straightforward approach is to go back to the C1, C2 plane in Fig. 9-2. We know



the coordinates of the points  and  , namely, at  , C1 = [(1 − a11)/a01]X0,C2 =
(−a21/a01)X0; while at  , C1 = −(a12/a02)X0, C2 = [(1 − a22)/a02]X0. It is a matter of
elementary algebra to find the equation of the straight line joining this pair of points.
But that straight line is the consumption-possibility frontier itself.

However, by using some earlier calculations we can go directly to the equation of the
schedule. Equation or inequality (9-6) provides at once a gross-output-possibility
frontier:

a01,X1 + a02X2 = X0

But by (9-8) the gross outputs can be expressed as linear functions of the final demands:

X1 = A11C1 + A12C2

X2 = A21C1 + A22C2

Hence we can substitute for X1 and X2 to get

a01(A11C1 + A12C2) + a02(A21C1 + A22C2) = X0

or, collecting like terms,

(9-13)
which we may write, introducing two new coefficients A01 and A02,

(9-14)
Here, explicitly, is the consumption-possibility frontier. The final demands satisfying

A01C1 + A02C2 ≤ X0 are all producible; if the strict inequality holds, not all the labor
available is being used, and the point lies under the frontier.

The coefficients A01 and A02 have a simple interpretation, much like the other capital
A’s. It can be seen from (9-13) that A01 is the direct labor input not into a unit of C1 but
into the gross direct and indirect X1 and X2 needed to support a unit of C1. In other
words, A01 represents the total direct and indirect labor embodied in a unit of final
consumption of Commodity 1, and A02 is the same for a unit of final consumption of
Commodity 2. The schedule in (9-14) simply says that only those bills of final demand
are producible and efficient which require X0 units of labor to support them.

A consumption-possibility schedule [Eq. (9-14)], drawn in Fig. 9-4, can be thought of
as a social transformation curve. If it is desired to consume only C1, an amount X0/A01

can be produced, given the available resources and technology. If it is desired to give up



some C1 in favor of C2, such substitutions are possible along the transformation curve.
Because the frontier is a straight line, substitution of C2 for C1 takes place at constant
costs. The marginal rate of substitution (MRS) is a constant, namely − (dC2/dC1) =
A01/A02. Giving up 1 unit of C1 liberates (directly and indirectly) A01 units of labor. To get
1 more unit of C2 requires A02 units of labor. By giving up 1 unit of C1, society can
therefore procure for itself A01/A02 units of C2. The straight-line constant-cost nature of
the transformation curve reflects not only the linearity of the technology, but also the
presence of only one primary factor and the absence of joint production.113 One might
think that constant costs are fundamentally a consequence of the absence of substitute
processes in the Leontief scheme. It will shortly be shown that this is not the case. Even
if there were alternative ways of producing the various commodities, with different
input ratios, as long as we assume constant returns to scale, one primary factor, and no
joint production, we can deduce that the marginal rate of transformation must be
constant.

FIG. 9-4

9-4-1. Numerical Example. Let us return to our earlier numerical example and find
its consumption-possibility frontier. We have already computed that

A11 = 1.61, A12 = 2.84, A21 = 0.31, A22 = 1.75

We know from Table 9-3 that a01 = 0.04, a02 = 0.33. We can calculate, then, that

A01 = (0.04)(1.61) + (0.33)(0.31) = 0.169

A02 = (0.04)(2.84) + (0.33)(1.75) = 0.691

Therefore the equation of the transformation schedule is

0.17C1 + 0.69C2 = 50

and the MRS is 0.17/0.69 = 0.25.

As a check, we can find the equation of the line by the alternative method. The point
P1 (compare Fig. 9-2) has coordinates C1 = 0.9, C2 = – 0.16.  has coordinates C1 =
(0.9/0.04)50 = 1,125, C2 = −(0.16/0.04)50 = −200. The point P2 has coordinates C1 =
−1.46, C2 = 0.83. Thus  is at C1 = −(1.46/0.33)50 = −219, C2 = (0.83/0.33)50 = 125.



The equation of the line through  and  is

This becomes

325C1 + 1,344C2 = 98,825

Divide through on both sides by 1,976.5, and the equation becomes

0.17C1 + 0.68C2 = 50

which is close enough to what we found by the first method. In particular, we verify
that the MRS is 0.25.

9-5. A THEOREM ON SUBSTITUTION
It is a remarkable implication of the Leontief system that even if there were available

several different processes for each industry, only one of them would ever be observed.
The economy would always behave as if it knew only one set of input ratios for each
commodity. This substitution theorem (for references, see Chap. 10) is sometimes
misunderstood. It does not mean that changes in technological information will not
result in changes in observed input ratios. It does mean that with given technology there
is one preferred set of input ratios which will continue to be preferred no matter what
the desired bill of final consumption happens to be. It does not mean that changes in
relative prices will not induce changes in proportions. In fact, part of the point of the
theorem is that in a Leontief technology relative prices can’t change.

The reason is essentially that there is by assumption only one fixed factor, only one
true social cost. Relative prices of commodities will depend only on their direct and
indirect labor content.114 A change in wage rates, for example, will simply increase the
prices of all commodities in the same proportion, leaving relative prices unchanged.
Since there is only one thing to be economized, labor, it is perhaps plausible that one set
of activities should turn out to be the most economical of labor, regardless of what final
goods are desired.

Let us imagine an expanded technological matrix like Table 9-6; for each industry
there are several different columns, representing different processes or methods of
production. For example, 1 unit of Commodity 1 can be produced with inputs of a11

115

of Commodity 1, a21
115 of Commodity 2 and a01

115 of labor, or with inputs of a11
(2),

a21
(2), and a01

(2), etc. Moreover, under our usual constant returns to scale and additivity
assumptions, each industry can operate any subset of its processes simultaneously, and
the inputs and outputs can be calculated separately for each process and then combined.



TABLE 9-6

Figure 9-5 is like Fig. 9-3, except that there is a different point P1
115, P1

(2), . . . , P1
(h)

for each of the processes known to Industry 1, and similarly, there is a different point
P2

115, P2
(2), . . . ,P2

(k) foreach process in Industry 2. So also we get several rays for each
industry, and on each ray we get a point  These h + k points
show the net results if the whole supply of labor were to be applied to just one of the
known processes. Now in Fig. 9-3 we remarked that if you split the available labor
between two processes, you get net results represented by a point on the line joining the
corresponding barred points. Exactly the same proposition holds in Fig. 9-5; moreover,
we can think of combining two processes in the same industry, and we can think of
combining three or more points by taking a weighted average of the barred points.115 In
this way we generate the totality of all weighted averages (with nonnegative weights) of
the pure processes. The corresponding set of points in Fig. 9-5 is called the “convex
hull” of the points  Any point of the convex hull (the irregular-
shaped set  represents a bill of final consumption
producible by some combined operations of the seven known processes—eight,
counting the origin. Clearly the consumption-possibility frontier is the line segment AB,
a straight line as before. Note well that all points on the frontier AB are obtained as
weighted averages of a single process in Industry 1 and a single process in Industry 2.
In Industry 1, the process P1

115 is preferred. For Industry 2, the situation is a bit
different. There are two preferred processes, P2

(2) and P2
(4); and any mixture of these

two is equally good. But it is still true that Industry 2 can light on one set of input
proportions once and for all, and need never change, regardless of what bill of goods is
desired. This proves the substitution theorem.



FIG. 9-5

FIG. 9-6
Figure 9-6a shows what would happen if there were a second fixed factor, say, land.

On each process ray we must distinguish two points,  and  on one ray, and  and 
 on the other.  represents net outputs if all the labor is allocated to the ith process; 

represents net outputs if all the land is allocated to the process. In the usual way, we
find a consumption frontier for each fixed factor taken separately. But only those net
outputs are attainable which lie on or under both frontiers. Hence the final
consumption-possibility schedule is the broken line ABC. The marginal rate of
substitution changes suddenly at the vertex point B. Thus the presence of two factors
destroys the constant-cost characteristic even when there is only one process per
industry, a fortiori when there are several.

In Fig. 9-6b we return to the case of a single fixed factor, but along with  and  we
introduce a third process, represented by the ray through  . This is a joint-production
process; it uses labor as an input and produces positive net output of both commodities.
It is easy enough to see, by our previous line of reasoning, that the consumption-
possibility frontier is given by  . Net outputs on  are produced by a blend of P2

and Q, those on  are produced by a blend of Q and P1.

Other proofs of the substitution theorem appear in the next chapter.

9-6. PRICES IN THE LEONTIEF SYSTEM
As economists we already know enough about the structure of an input-output

system to guess with considerable confidence what the accompanying competitive price
relationships must be. The (constant) marginal rate of substitution was shown to be
A01/A02; this must determine the relative price of the two commodities:

(9-15)
Next, we have interpreted A01 as the total labor content of 1 unit of final output of



Commodity 1. If we designate the wage rate by w, this tells us that

(9-16)
since labor is the only cost-generating element in the system. This is as far as we can
hope to go; a real system like Leontief’s can only hope to determine relative prices. The
absolute level of prices is completely indeterminate. It would be natural here to choose
labor as the numeraire.

These price relationships can be verified in another, equally intuitive, way. In a long-
run competitive equilibrium we may put prices equal to unit costs. To be more exact,
we should say that we may put prices at most equal to unit costs; if a commodity is
produced at all, the equality must hold, but price may fall short of unit cost for a
commodity not being produced—in fact, this is why it is not being produced. The
inputs into 1 unit of Commodity 1 are a11 units of Commodity 1, a21 units of
Commodity 2, and a01 units of labor; the unit cost is then a11p1 + a21p2 + a01w. Thus we
can write as a condition of equilibrium

p1 ≤ a11p1 + a21p2 + a01w 
p2 ≤ a12p1 + a22p2 + a02w

or, after rearranging,

(9-17)
In our system we are sure that both commodities will be produced, and hence we can
insert both equality signs and solve the resulting pair of linear equations. We get

From (9-13) and (9-10) this will be recognized as just the assertion that p1 = A01w,
verifying the first half of (9-16). That p2 = A02w follows similarly, and hence, by
division, the fact that the price ratio equals the marginal rate of substitution.

We can now highlight the fact that a Leontief system is an extremely simplified linear-
programming model. Return to our old commodity-accounting inequalities (9-5):

(9-5)
Comparing these with the price-cost inequalities of (9-17), we observe that the



coefficients on the left-hand sides are transposes of each other—columns become rows,
and rows become columns. Moreover, the direction of the inequalities has been
reversed. This suggests viewing (9-5) and (9-17) as the constraints in dual linear
programs (the variables—prices and gross outputs—are necessarily nonnegative):

1. Subject to (9-5), minimize wa01X1 + wa02X2.
2. Subject to (9-17), maximize p1C1 + p2C2.

In other words, subject to the production of a specified bill of goods, choose gross
outputs to minimize total labor costs; and subject to the price-cost inequalities, choose
prices to maximize the value of net output.116

A glance back at Fig. 9-1 will show that the intersection point L is the only solution to
the minimum problem. At L, both gross outputs are smaller than at any other point
satisfying (9-5). Hence any positively weighted sum such as total labor cost will be
minimized at L. We leave it to the reader as an exercise to draw the corresponding
diagram for the constraints of (9-17), and to show that again there is an intersection
point P at which both prices are greater than at any other point satisfying (9-17). Hence
any positively weighted sum, such as value of the given net output, will be maximized
at P. This characteristic—that there is a unique minimum point L regardless of the labor
inputs a01, and a02, and a unique maximum point P regardless of the final demands C1

and C2—is what makes the Leontief system so easy to handle.

Finally, we have a theorem from linear programming that states that the minimum
value of the total labor cost just equals the maximum value of the form to be
maximized. We deduce then that at the intersection points L and P, when all equalities
hold in (9-5) and (9-17),

(9-18)
We can interpret this equation as saying that the total value of net output is just imputed
as wages to the scarce factor labor. Alternatively, we have in (9-18) the basic identity of
income analysis: that net product is the same whether measured as factor costs or
market values.



10

The Statical Leontief System (Continued)117
Let (X1,X2, . . . ,Xn) stand for the totals of producible outputs, and let X0 stand for the

total of a primary nonproduced good (such as “labor”).

Let (C1,C2, ... ,Cn) stand for the total final consumption of each of the produced
goods. By convention C0 = 0.

Let xij stand for the amount of input of the ith good used in the production of the jth
good’s output. Consequently x0j represents the labor allocated to the production of the
jth good’s output.

10-1. REAL OR NONPRICE RELATIONS
The total of any good, such as Xi, is allocated as final consumption Ci, or as

intermediate inputs xi1,xi2, . . . ,xin, so that118

(10-1)
These represent pure bookkeeping relations, and it will be noted that the primary good
X0, or labor, is subject to a similar relation.

Ruling out joint production and assuming classical constant returns to scale, we may
write the production function relating the output Xj to its inputs xij, as follows:

(10-2)

where Fi is a homogeneous function of the first degree.

Leontief makes the special fixed-coefficient assumption that each input xij is required
in fixed proportion to output Xj, so that119

(10-2a)
where, by definition,



(10-2b)
represent the given nonnegative technological coefficients showing the requirements of
the ith input needed to produce a single unit of the jth output. Dimensionally, each aij

represents input units required per output unit: it is illegitimate to add aij + aik or aij +
akj; note too that doubling the size of the output unit j will double aij, but doubling the
size of the input unit i will halve aij, for obvious reasons.120

Combining (10-1) and (10-2a), we have, for every unknown variable,

(10-3)
where by convention C0 = 0.

If we are given (C1, . . . ,Cn), Eq. (10-3) represents n + 1 linear equations in the n + 1
unknown X’s. Disregarding the first equation, which defines X0, we see that the last n
linear equations completely determine (X1, . . . ,Xn) in terms of the final C’s. Elementary
algebra tells us that, by successive substitution or elimination, we can finally express
each produced Xi linearly in terms of the C’s.121 Without going into detail, we may
finally note that this gives us

(10-4)
where Aik represents the total Xi needed to produce 1 unit of Ck alone. These A’s depend
only on the nonlabor a’s.

The form of (10-4) is quite remarkable in that it is linear. This means that the total of
any output needed to produce an assigned target of consumption goods can be built up
by adding the separate outputs needed to produce each item of the target. Thus, to
produce 100 consumable hats and 500 consumable shirts, we first work out 100 times
the requirements for 1 hat alone, and then add to this 500 times the requirements for 1
shirt alone. The A’s represent the total production requirements, direct and indirect, of
each good needed for each single unit of consumption.



It is not immediately obvious that a relationship of the form (10-4) holds for labor.
But recall from the first equation of (10-3) that

The expressions in parentheses are seen to represent the total increases in labor
needed in every industry to produce 1 extra unit of the consumption good in question.
Again note that our final answer can be built up by a simple superposition of
independent linear terms. Hence, a relation like that of (10-4) holds for X0 too, provided
we define (A01,A02, . . . ,A0n) so that

(10-5)
where any A0j represents the total labor needed (in all industries) to produce 1 extra net
unit of consumable good j. This gives us

(10-6)
This last relation is the final all-important production-possibility menu for the

Leontief economy. For any preassigned “bill of goods” (C1, . . . ,Cn), it gives us the
needed total labor X0. Alternatively, for any given amount of total labor, we see how we
can linearly convert—at constant costs—one good into any other.

Once again we note the surprisingly simple juxtaposition of linear terms.
Schematically, the requirements for any basket of consumption goods can be depicted
as follows:

There are no diminishing returns of one good for labor in the Leontief model, or of
one good in terms of another. With labor the only primary factor, the changes in factor
proportions underlying the classical laws of variable proportions cannot take place. A
simple statical Leontief model would never be able to explain why food prices rise
relative to other prices in periods of prosperity; it fails to recognize our inability to
produce land or new capital capacity at constant costs. On this score it errs in the one



direction of being overly optimistic as to convertibility of goods from war to peace.
This optimistic bias must be set off against its pessimistic bias in ruling out technical
substitutions of one factor for another.

FIG. 10-1
Imagine an economy whose production-possibility menu corresponding to (10-6) has

the usual convex shape—either because of variable proportions and diminishing returns
in production, or the existence of several primary factors, or both. This is illustrated in
Fig. 10-1. Now suppose a Leontief statistician observes point S and tries to squeeze
what he measures into the Leontief framework. If he knows that competition prevails
and therefore that price ratios measure marginal rates of transformation, he may make
his computations in such a way as to yield the tangent line through S as his linear-
production-possibility frontier. Because of the assumed convexity of the true frontier, it
can be seen that the net result is necessarily an optimistic bias. If, on the other hand, he
simply measures the interindustry flows (our xij) and proceeds as in (10-2a), then in all
likelihood the resulting frontier will cut the true frontier (see Fig. 10-1 again) and the
bias will be optimistic over one range and pessimistic over the other. In this case, the
computed prices (see Sec. 10-2) would not agree with observed competitive prices.

10-2. COST AND PRICE RELATIONS
The coefficient A0j represents the total cost in terms of labor of the jth consumption

good Cj. This total labor cost exceeds the direct-labor cost a0j by the amount of “indirect
labor” needed to produce the intermediate products xij, needed in turn to produce the jth
consumption good.

The total labor “congealed” in the jth good cannot—as in the simplest Austrian
structure of production in which each good is produced only by direct labor and the
output of the “previous stage of production”—be simply decomposed into the sum of
labor embodied in all the previous stages of production. In such a simple Austrian
model we could write A0,17 as the sum of direct labor in the seventeenth stage a0,17 and
the total congealed labor of the raw materials used from the sixteenth stage A0,16a16,17.

In a general Leontief model, everything is needed to produce everything. There are
no early and late stages, no previous stages, no higher or lower stages. Coal is needed to
produce fertilizer; fertilizer is needed to produce coal. Neither is prior to the other. In
fact coal may be needed in order to produce coal. These non-Austrian “whirlpools,” or



circular interdependences, make it impossible ever to decompose total labor of j, A0j,
into direct-labor requirements of a finite number of previous stages. Rather we should
have to decompose fertilizer into its direct labor plus the previous direct labor involved
in coal plus the previous direct labor involved in the fertilizer needed to produce the
coal plus an infinite chain of such previous stages. It can be proved that the infinite
chain is a dwindling one as we go into the hypothetical remote past, so the sum of all
past direct-labor requirements will in fact rigorously add up to each A0j.122

However, we have already seen how the A0j’s are defined by solving the simultaneous
equations of (10-3) alone. No infinite series need be summed. The only point at issue is
the proper interpretation of any A0j as the “total labor requirement or cost of one unit of
consumption good j.” This interpretation is rigorously provided by (10-5).

To drive home the point and relate total labor cost in a Leontief model to that in an
Austrian model, we ought to be able to prove that any A0j is in fact exactly equal to its
direct labor cost a0j, plus the total labor costs of each and every intermediate good xij

used in its production. Thus we should have

(10-7)
There are n linear equations to determine the n A0j’s. Except in a crypto-Austrian case,
where each stage depends upon definable “previous” stages only, these equations must
be solved simultaneously. Simultaneity is the mathematical economist’s way of cutting
through circular interdependence and avoiding all infinite-series multiplier chains.

How do we know that the A0j’s as defined by (10-7) are really identical with our
previous definition of them in (10-5)? This is a purely algebraic question that admits of
a simple affirmative answer, confirming mathematically our intuitive expectations.123

This completes a brief survey of the Leontief system. Note that we have purposely
dealt with it in natura, using no money relations and no competitive markets. So simple
a system could be run by fiats, using punch-card machines rather than markets.
However, there is no reason why such a system could not be organized by means of
perfectly competitive markets, which give prices (P0,P1,P2, . . . ,Pn) to labor and to each
of the n goods.

Under perfectly competitive statical conditions, the equilibrium price for each
producible good must be exactly equal to its unit cost of production. The latter consists
of the costs per unit of each and every needed intermediate good, plus direct-labor cost.
The cost per unit for the jth good of the needed ith input would be Piaij, and the direct-
labor cost would be the wage times needed labor, or P0a0j. Thus, for each of the n
produced goods, we have the following market conditions:



(10-8)
Now it is obvious that the absolute level of prices plays no role in the Leontief model

as we have described it. We cannot hope to solve for determinate prices of all n + 1
variables. Instead we may designate any one price as numeraire and solve for the
remaining n prices in relation to it. In the Leontief system, it is natural to use “wage
units,” placing P0 = 1, or, what is the same thing, solving for (P1/P0, . . . ,Pn/P0).
Dividing the equations of (10-8) all through by P0, we have n linear equations to
determine our n unknown price ratios.

If we look closely at (10-8), we see that these linear equations have exactly the same
“a” coefficients as did Eqs. (10-7). This reaffirms what we have already suspected: The
A0j coefficient denoting the total labor costs of the jth good will be exactly the same
thing as Pj/P0, the competitively determined price ratio of that good relative to the wage
rate.124 Note also from (10-6) that the competitive price ratios correspond exactly to the
slopes, or marginal rates of transformation, of the production-possibility schedule.

Compare Eqs. (10-8) and our original (10-3). You will note that many of the a’s are
involved. In fact both involve (a11, a12, . . . , an1, an2, ... , ann), the square array of
nonlabor a’s, but with an important difference: the rows of (10-3) become columns in
(10-8); that is, aij is transposed to become aji; also, the constant coefficients of (10-3) are
consumption goods—often called the “open-end” items of the model—while the
constant coefficients of (10-7) are direct-labor coefficients, labor being the sole open-
end primary factor.

To summarize, there is a simple “duality” relation between quantities and prices in the
Leontief system: transpose the a’s of the quantity problem and you get the price
problem; similarly transpose the a’s of the price problem and you get the quantity
problem.

Such dualities are common in mathematics. In particular, they turned up earlier in
connection with the valuation problem of the competitive firm, and they will occur
again in connection with game theory. To illustrate one of the macroeconomic
applications of duality principles, let us show how we can derive one of the basic
relations of all national-income accounting.

National income or product can always be looked at in two ways: as the value of a
flow of final outputs or as the total cost of factor inputs. In most accounting systems
these become tautologically equal by virtue of a residual definition of “profits” as a
factor payment. In a statical competitive system it is an equilibrium condition, not an
accounting definition, that equilibrium profits are zero. So for such systems we arrive at
a more meaningful equality between the two ways of looking at net income.



The total value of final output in the Leontief system is not hard to evaluate. It
definitely is not P1X1 +  + PnXn, since much of each Xi is intermediate goods used up
in production. Only consumption Ci counts as final output; so our total is P1C1 +  +
PnCn.

The total cost of inputs in the Leontief system is not given by the total cost of all
needed materials plus the total labor cost. This would involve double counting, since
cost of intermediate goods is itself “decomposable,” as we have seen, into labor costs.
In a statical time-saturated, one-primary-factor Leontief system, all “value added” is
measured by labor cost alone, so that the second way of measuring product is by P0(x01

+ x02 +  + x0n), or more simply, P0X0, the wage bill.

The fundamental identity we seek must then be

(10-9)
Will this hold? Yes. To verify this algebraic fact most simply, recall our successful

identification of Pj/P0 with A0j; and then note that our constant-cost production-
possibility menu for society, previously established in (10-6), is exactly equivalent to the
desired national-income identity.

This income identity is so basic as to appear almost trivial. But involved in it is the
whole “adding-up or exhaustion-of-the-product problem,” so intimately tied up with the
assumption of constant returns to scale and Euler’s theorem on homogeneous
functions.125

10-3. QUANTITATIVE MEASUREMENT OF A LEONTIEF
MODEL

So far we have dealt with physical quantities of outputs: of Xi’s, Ci’s, and xij’s. The
aij’s consequently are definite, physically measured inputs/outputs. Leontief, however,
dealt originally in dollar values only, and most statisticians have since followed him in
this. To the superficial eye, the whole subject appears to be more a branch of money
national-income accounting than the structure of physical production. Let us therefore
try to relate the statistical measurements of dollar flows to our model.

Leontief begins by measuring value flows:  , which is PiXi, rather than Pi and Xi

separately;  , which is PiCi;  , which is Pixij, etc. These value quantities can be
arranged in a tableau, as shown in Table 10-1.

The sum of the rows shows the total value that has been sold or allocated to
consumption and all industrial uses. It is a little dangerous to add the columns at this



stage; but if we are willing to accept the fact that all profits are zero and all capital
accumulation and other complications can be ignored, then we may risk doing so. The
sum of any column would then, by definition, be the same as the sum of the
corresponding row, and these are included in Table 10-1 in parentheses. Note that the
sum of all the items in the table equals the sum of either set of marginal totals. This
dollar sum is a very gross total, involving double counting of intermediate goods. The
net national product in our static model is given by the first-row or column sum. The
dotted lines separate the open-end consumption and labor part of our system from the
inner industrial part.

TABLE 10-1

Now nobody can stop us from forming a new table by dividing the elements of each
column by the total of the column. In our new table,  is replaced by  , which we
may call ij. These new elements will be the fraction of total revenue (= cost) of the jth
industry that goes to buy the ith input. The total of all such fractions, including direct-
labor costs, must of course add up to unity, as shown by the marginal totals at the
bottom of each column of Table 10-2.

TABLE 10-2. TECHNOLOGICAL-VALUE COEFFICIENTS PER DOLLAR OF
OUTPUT

In Table 10-2, we have omitted the consumption column, since 10, 20, . . . , n0

would represent the percentages of total income spent by consumers on different goods.
These would be psychological budgetary facts rather than technological facts, and in his
later exposition Leontief has tended to work with open-end systems that exclude these
and thus avoid Malthusian complications. Even had we included them, it would make
no sense to add the elements of any row: the result would be 

 ; because of the different column divisors, this is a
meaningless total, about which little could be said.



The resemblance between our ij coefficients and the original physical aij coefficients
of (10-2b) is striking. The ’s are simply a’s defined in special units. We can write
down all the remaining relations between the barred quantities, regarding these as
simply one choice of units for all our variables. The reader may verify that the
following relations do hold:

(10-3a)

(10-4a)
However, because the columns of ij add up to exactly 1, we can see that the solution of
the price equations

(10-7a)
is

1 = 1 • oj + i • 1j + . . . + 1 • nj

that is,  = 1.

This shows us that the barred variables have the following interpretation: Leontief is
working with dimensional units of outputs and inputs defined by “a dollar’s worth.”
Thus if eggs are 50 cents a dozen, Leontief is using 2 dozen eggs as his physical unit in
which  is expressed. The prices of these artificial units— , not Peggs—are all
exactly 1, by convention. The interested reader can verify that Eqs. (10-5), when put in
terms of barred a’s, will yield unit values for any new 0j, and that Eq. (10-6) becomes
the rather-trivial-looking relation

(10-6a)

As Leontief126 has shown, the use of value data alone gives rise to certain paradoxes.
It is as if we are looking at the pale shadows on a screen of a system and it turns out that
two systems with the same shadow may be quite different indeed.

Thus, two systems with the same  pattern might differ in the following ways: (1) one
system might use dollars and the other francs (or dimes), which is only a trivial



difference; (2) one might be characterized by double the price level of the other, with all
else unchanged; (3) one might be a tenth the scale of the other (e.g., the State of New
York versus the United States); (4) one might have an entirely different taste pattern for
consumption goods, with a resulting difference in the allocation of labor to industries
and in the mix of outputs.

None of the above differences is significant. More important are the following: (5)
one system might be opulent and the other poverty-stricken by virtue of lower labor
productivity in every line; (6) one system might impart an entirely different physical
meaning to “a dollar’s worth of coal,” so that it requires more physical coal in every use
but in compensation is able to produce that much more physical coal with the same
inputs of the other items—so long as the physical labor requirement for a physical unit
of coal consumption or, more importantly, of housewarming remains the same, this is
of no consequence.

The usefulness of the simple Leontief system as a predictive device rests upon two
conditions: (1) It depends on the degree to which each industry (such as j) continues to
expend its money among labor and other industries in the same fractions regardless of
the changes going on (from year to year, from place to place, from new discovery to
new discovery, etc.). (2) Since what consumers want is physical-consumption goods
rather than dollars per se, it depends too upon the degree to which a given physical
pattern of consumption goods can be predictably converted into physical production.

In general, this means that physical aij’s must be predictable or constant, and not the
percentage expenditure ij’s, alone. A crucial test between any two periods—such as
1939 and 1948—would be to compare 39 ij39Pj/39Pi. with the similar magnitude for
1948.127

10-4. CONSOLIDATION AND AGGREGATION
In terms of value units it is easy to see what happens when we consolidate two or

more industries and treat them as if they were a single industry. For example, let us
consolidate together all the last industries from m to n: call this M and leave all other
industries unchanged. To economize on writing bars, let the barred x’s be written as y’s.
The results are given in Table 10-3.

Since we have not followed Leontief’s practice of netting out all intraindustry items,
there is no difficulty connected with the definition of yMM and no need to eliminate
items of the type ymm.

TABLE 10-3



We can compute new ’s by the usual formulas

(10-10)
The first of these relations tell us that the composite industry must provide to other

industries the simple sum of what its constituents provide. The second of these relations
tell us that the new ’s giving the requirements of the composite industry are weighted
averages of the requirements of the constituent parts, the weights being the
proportionate importance of each constituent industry’s production.

The new consolidated coefficients iM are no longer invariant constants. Instead their



numerical values will depend upon some of the unknown variables of the problem
whose values we seek: specifically, they depend on the proportionate importance of the
constituent parts of the consolidated industry.128 What does this mean? It means that we
shall be in error if we use the observed iM of a given period and set up our linear
equations to grind out answers for a period when the composition of output has
changed.

How important will our errors be? Equations (10-10) show us the conditions under
which the resulting error will be small. Any iM will be a close approximation to the
needed correct value if (1) all the separate ij’s of which it is a weighted average are
nearly equal in value. This means that we should try to classify industries so that those
that we aggregate together are industries requiring the same types and relative quantities
of inputs for their production. Autos and walking shoes serve the same purpose but do
not meet our test; autos and military tanks serve different purposes, but they have
similar production functions and can therefore be lumped together without serious
error. (Of course, intraindustry planners will not be content to know the total values of
their sales to other industries: in programming ahead, they will want to know how much
of the different constituents—trucks, tanks, bulldozers—other industries and consumers
will be wanting. If your interest is in detail, no aggregation can satisfy you. A saving
consideration is the fact, not explicitly relevant to a simple statical Leontief system but
important in practice, that constituents with similar production functions can probably
use each other’s capital capacity. Consequently, predicting the future aggregate may
suffice for present planning.)

Equations (10-10) show us that a given iM will err very little, provided that (2)
production of all the constituent parts of the aggregate invariably changes in about the
same proportion so that the weights ωj remain constant; or failing this, the weight
changes should be uncorrelated with the differences in the separate ij’s.

When is this condition of unchanged relative production likely to be met? One
probable case is that of different stages of a given vertical process of production.
Spinning and weaving can be usefully consolidated into one industry because they go
up and down together. Or to put the matter more technically, the fundamental A
coefficients defined by Eqs. (10-4) are likely to have the row for spinning which is
exactly proportionate to the row for weaving.129 (The intraindustry programmer is quite
content to know aggregate demand for all output of the vertical stages since he can
easily infer the needs for the constituent vertical stages.)

Our first type of aggregation was possible when different industries had similar input
needs (cars and tanks, etc.). We may summarize our second type of aggregation by
saying that it is possible when different industries are needed in the same proportion by
other industries (e.g., the need for nuts and bolts, or for spinning and weaving).



10-4-1. Macroanalysis versus Microanalysis. Before leaving the question of
consolidation and aggregation, let us notice a third justification for the use of macro
rather than micro magnitudes. Let us suppose that in fact the n arbitrarily prescribable
consumption items empirically move together, rather than freely and independently. If
every point of the economy had an income elasticity of exactly 1, all C’s would move in
fixed proportions: in fact, we should have one degree of freedom rather than n. Or to
take a less special case, suppose all the C’s increased in some definite pattern depending
upon the consumers’ Engel’s curves and determinate shifts in income distribution,
taxes, etc. Again we would have a single degree of freedom (albeit not a completely
linear system).

In such a case, the crude methods of correlating each item with national income
would give a satisfactory prediction of all requirements.130 Such methods are commonly
used; perhaps we should be surprised that the results are not worse than they are.
However, if we are considering a shift from a peace economy to a war economy, the
shift of final demand is such as to belie the hypothesis of a single degree of freedom.
An ideal Leontief system can then hope to do better by showing how more steel and less
car washers will be required—even at the same level of employment and “aggregate
income.”

It may turn out to be the case, however, that the C’s can be adequately described by a
few degrees of freedom m, where m is greater than 1 but a good deal less than n. Thus,
if every economy could be regarded as a quantitative mixture of a peace and war
economy, we should have m = 2 degrees of freedom. To the extent that we can
approximate reality by m < n degrees of freedom, our n × n requirements matrix [Aij]
can have its n columns combined into a fewer number of columns, giving us finally a
new rectangular n-row-m-column requirement matrix.131 Specifically, this means that
aluminum requirements can be estimated once you specify the degree to which the
economy is to be war, high-consumption, autarchic, etc., for only a few descriptive
variables.

But how do we get quantitative knowledge of the new A’s? If we had the full Leontief
detail, we could take weighted sums of the separate columns of A’s. But the whole point
of this discussion is to see how far we can go without having detailed industrial
breakdowns. In that case we must hope that history or nature has presented us with
statistical data covering identifiable differences in the m factors determining the
consumption composition: by multiple regression or other techniques, we can hope to
estimate the quantitative variation in any given Xi as each (G1, . . . ,Gm) varies. Given
enough sufficiently varied observations, we could take the regression of each of n X’s
on the collection of m G’s. The mn regression coefficients would be our estimates of
the elements of the n X m matrix [Ar] of the last footnote. A limiting case is when the Cj

really are independent, in which case, by taking the regression of each Xi on all the Cj,



we estimate the n131 elements of the matrix

[Aij] = (I − a)−1

Having done this we could actually estimate the input coefficients them- selves by I −
[Aij]−1. But remember that this approach would require that the C’s vary widely and
independently and that we have more observations than C’s. The first condition might
require a fine commodity breakdown, which would in turn require, via the second
condition, an extremely large number of observations.

Since nature rarely performs the ideal controlled experiments that we are interested
in, such estimation will often be crude or impossible. In that case we may be thrown
back on hypothetical thought experiments, from the imagined results of which rough
estimates are formed. This is what is meant by “using judgment.” The results can be
very good or very bad, depending upon how good the judgment turns out to be. (It may
be mentioned that one possible aid to good judgment in determining, let us say, what
war rather than peace would mean for 1960 requirements is the use of a Leontief system
worked out in detail for some other time or place. There may be enough rough
correspondence and continuity in the structure of somewhat similar economies to make
such information better than useless.)

This third general way of avoiding detailed breakdowns of industries has formally
little relation to the problem of consolidating industries. In the absence of the special a’s
needed for the first two methods, we can think of ourselves as aggregating or
consolidating the C’s into simple patterns. But this does not require or permit us to
consolidate the industries into a new m ×m pattern, which is then to be run through the
usual mill of Leontief algebra.132

10-5. LEONTIEF’S CLOSED-END SYSTEM
During World War II and since, Leontief has worked with an “open-end system”

rather than his earlier “closed system.”133 .Thus far we have followed him in this
because the closed system is much harder to understand. In it we become Malthusian
and speak of the consumption by people (e.g., of food) as really being much like the
consumption by machines or horses. Just as fertilizer is needed to produce corn, silk
shirts are thought of as being needed to “produce” the labor of households. Of course,
to Malthus and others who believed in a minimum-of-subsistence theory of wages, the
consumption items were as physiologically necessary as is hay to a horse or oil to a
diesel engine. Originally, Leontief adopted the convention of regarding consumption
(even of luxuries) as the input requirements of the household output of labor.
Consequently, Ci becomes ai0X0, where ai0 is treated just like any other aij constant.

Actually, the ratios ai0 are determined by people’s psychological propensities and
habits with respect to spending extra income, as Leontief recognized. A completely self-



contained system, with no degrees of freedom left, must, in order to exist, satisfy special
balance relations, a commodity-by-commodity Say’s law. Hence the new ai0’s must be
dependent on all the old technical aij’s.134 The full significance of a closed system can
only be appreciated in connection with the questions of (1) dynamic growth of a system
that plows back or accumulates part of its consumable output and, (2) the capability of a
system to stand still and reproduce itself at the same time that households are
experiencing specified levels of consumption. This must be deferred to the later
discussion of von Neumann and other dynamic models.135

The deeper problem raised by the closed system has nothing to do with the
convention adopted for consumption. It has to do with the question of what we wish to
predict. If we wish to predict changes in the level of employment brought about by
changes in any autonomous variable—such as foreign investment, tax rates, or
investment—we may have to recognize that the C’s of the open-end Leontief model are
not constants that will stay at prescribed levels, but rather are variables related to
changes in employment X0. In that case, all the familiar elements of the income-
multiplier analysis must apply, and marginal propensities to consume—which we may
designate as proportional to ai0 or to any other set of constants—can be shown to enter
into the final results much as if we gave them the earlier Leontief-Malthus interpretation.
So the closed system is of real interest.

Instead of trying to show that consumers’ psychological propensities are like
industries’ technological input requirements, let us reverse the analogy. We can think of
a Leontief dollar tableau as giving the break-down in dollar expenditure patterns of all
industries; and it is natural to adjoin to it the column showing the percentage breakdown
(marginal or average) of the household consumption dollar.136

If the C’s are variables (or if parts of the C’s are “induced” terms) we may
conveniently label them with the unused symbols  and put them on the left-hand side
of (10-3a). But that will leave zeros on the right-hand side and a zero solution to the
equations for a stable multiplier system. 137 To register a change in the system we must
put on the right-hand side some “autonomous multiplicand” terms (E0,E1, . . . ,En), e.g.,
a dollar of government or private spending on shoes, etc. Then we solve the system for
the resulting changes in X’s and in labor. Mathematically we have the linear relations
like (10-3a) and (10-4b):

(10-11)
where the ’s differ from the A’s of (10-4a) by virtue of the fact that the zeroth rows



and columns have been adjoined to the system.

How do the a’s, defined when the  are variable, differ from the ’s defined for
fixed right-hand constant  coefficients? This is an important formal question. If we
know the answer to it, we shall be able to predict the effect of modifying (10-3a) and
(10-4a) in the opposite direction; i.e., we shall know what the effect on the A’s would
be if we were to hold some variable such as X1 strictly constant in solving the remaining
n 1 equations.138 (Thus, X1 might be exportable food, held constant by rationing and
foreign-exchange controls.)

The relation between A’s with an excluded variable to α’s with that variable included
can be simply stated in terms of determinants and of inverse matrices. Since the
presence or absence of bars does not matter, they are eliminated. The result is as
follows, and will be more easily remembered if we agree to write Aij as αij.00.

(10-12)
The second of these equivalent forms is easiest to grasp intuitively. If we hold X0

constant and do not let it give rise to secondary induced spending, we shall get a smaller
multiplier than if we let X0 grow and induce further growth in all the X’s. By how much
additional will any Xi grow if we let X0 grow? By the amount that X0 will grow, a0j,
times the growth in i associated with each unit increase in X0, which is αi0/α00.139

Much argumentation has taken place as to (1) what should be autonomous and what
induced in an income model, and (2) what should be “multiplicand” and what
“multiplier.” The answer must depend upon the question asked, e.g., what change do
you assume takes place, and the factual hypotheses concerning empirical invariances.

10-6. SUBSTITUTABILITY IN LEONTIEF SYSTEMS
Since Leontief works with so-called fixed coefficients of production, aij, it is usually

thought that he must rule out the possibility of substitution, as assumed in the classical
Clark-Wicksteed-Walras theory of production and general equilibrium. However, it can
be shown140 that in a one-primary-factor Leontief system all the Leontief theory is
compatible with the general case of substitutability. Even if substitution is physically
possible, it will be ruled out on economic grounds.

The conclusion and reasoning can be briefly sketched. But first it may be useful to
indicate in an intuitive way why all this is so. Suppose we raise wages in a Leontief
system. What will happen to employment in any line of activity? An economist will be
tempted to answer: If substitutability is possible, other factors (such as machinery, etc.)



will be substituted for labor and employment will drop. Remember, however, that
everything is congealed labor in a Leontief system. Hence, when you raise wages you
are also raising the cost of machines by the same proportion. Even if technical
substitutability is possible, there will be no actual substitution because there will be no
change in the relative prices of any factors. The same Leontief a’s will continue to be
observed.

FIG. 10-2

FIG. 10-3
Arguments like the above are to be found in wage discussions of a century ago. As

applied to the real world, they are not conclusive, since an increase in money wages
may or may not mean a change in real wages, and may or may not mean a change in
labor costs relative to the cost of short-run fixed resources, and may or may not be
followed by a change in interest rates and in the dynamic temporal pattern of
production. But as applied to a simple Leontief system, which abstracts from time and
technological change and which assumes that everything but labor is currently
reproducible at constant costs, the argument is ironclad.

Potential substitutability need never give rise to actual substitution because there can
never be any relative price changes no matter how extreme are the changes in
consumption.

Figure 10-2 shows the production function for the Leontief fixed coefficients case.
Figure 10-3 shows the general classical case of a production function subject to the
usual law of constant returns to scale and diminishing returns to changes in proportions.
Knowledge of a single contour, perhaps that corresponding to unit output, will tell us
how any output can be produced. The unit-output contour for Industry j can directly
give us one implicit relation between the technical coefficients (a0j,a1j, . . . ,anj). Instead
of having a single jth column in the Leontief matrix, we have in the jth column a basket



of possible technologies, a menu, so to speak, from which we can choose. In Fig. 10-3,
we can pick a’s as given by the solid ray through the origin, or if we wish we can use
a’s as given along the dotted ray.

We shall show the following: If the circled points along the solid ray are observed for
one set of consumption C’s, then no matter how we change the C’s we shall never
observe any other techniques (such as indicated along the broken line). This means that
we shall never be able, from the observed facts alone, to infer whether the fixed
coefficients of Fig. 10-2 are really true or whether the variable substitutable coefficients
of Fig. 10-3 are true. Nor does it matter.141

The cited Activity Analysis of Production and Allocation contains a mathematical
proof of the above assertions based on marginal-productivity analysis.142 This need not
be repeated here. Within the framework of Leontief algebra, we can see why an
alternative set of coefficients, such as ( ) in Fig. 10-3, can never turn out to
be distinctly preferable to the a’s observed in the initial situation (a01, a11, ... ,an1).

To see this let us examine our price equations (10-8). Using a’s rather than a*’s, we
have determined our (P1/P0, . . . ,Pn/P0). Now let us replace our a’s in the first industry’s
cost-of-production equation by the alternative a*’s. Let us try the old P’s for all the
other goods and see whether our new cost of production is greater or less than the old.
What must the answer be? Certainly in the original setup, with the original C’s, one or
the other is optimal; for definiteness, let us suppose that the a’s gave a lower P1/P0 than
did the a*’s, so that we definitely rejected the latter. (Here “we” means the “impersonal
invisible hand of perfect competition,” which can be expected to reach optimal
configurations in this ideal setup of constant-returns-to-scale and statical conditions.)

Now, let us change the C’s drastically. Again we can make the same computation for
Eqs. (10-8). But notice that these price, or unit-cost-of-production, equations are
unchanged by any change in C’s. There are no extensive scale quantities, such as C or
X, in these equations. Whatever was definitely true in the first place remains definitely
true. Again the a*’s must be rejected as too costly; and if any entrepreneur is too stupid
to see this, the competitive law of survival of the fittest will eliminate him. It follows by
induction that the same a’s must be observed for every industry, regardless of the
change in the bill of goods.143

Figure 10-4 gives a picturization of the nonsubstitution theorem for the two-industry
case. Suppose only C2 were to be prescribed with C1 = 0, then we could pick best
methods for every industry so as to yield the most C2 for a given unit of labor. The
point D shows the maximum of C2 producible by our first set of methods. Similarly, if
we want only C1, we can pick a best set of methods or a best Leontief matrix so as to
reach a maximum of C1, as shown at E. The second set of methods might conceivably
be different from the first; but what we can prove is that the first set of methods will



necessarily get us to the point E.

FIG. 10-4
Now it is clear that we can end up anywhere on the straight line between D and E.

How? By dividing up our unit of labor between the above-described sets of methods in
a 50:50 ratio, 60:40, 90:10, 10:90, etc. At any such intermediate point, say F, we are
using both sets of methods simultaneously. If we wish we can define a third Leontief
matrix, which is a blend of the two polar matrices, the weighting being that given by the
relation of F to D and E. From Eq. (10-6) of our previous analysis, we know that this
third simple Leontief system has a straight-line consumption-possibility schedule going
through F. If it didn’t coincide with DE, there would be a contradiction to the statement
that D and E are each optimal. Therefore it must coincide. Hence we have proved that a
single simple Leontief system, the third one mentioned, can without any substitution do
as well as anyone can do with substitution, which completes the proof. (It may be noted
that the two coexisting systems at F must yield exactly the same prices or they could not
continue to coexist.)

This discussion should clarify the reasons why substitution occurred in the linear-
programming models of earlier chapters but not in the static input-output system. There
are two important differences (in both respects input-output is a special case of the
linear-programming setup): absence of joint production and the presence of only one
primary factor in the Leontief system. If either assumption is given up, the economic
possibility of substitution arises. We can think of a Leontief matrix as giving one or
more activities for each industry. If the industries are bound together by flows of
intermediate inputs, then we can expect at least one activity from each industry to be in
operation. The question is which one, and will the choice change if the final demands
change? In the case of the competitive firm the answer was “yes.” In the Leontief case,
because of the differences mentioned, the answer is “no.” Because there is only one
scarce factor to be economized, the choice of activities is independent of final demand.
If there were two or more scarce factors, activities would have to be chosen to
economize most on the one whose fixed supply is most burdened by the desired
consumption mix (e.g., land, if agricultural consumption should be heavily stressed).
Joint production would have a similar effect—some activities might be ruled out
because they produce commodities in proportions too different from final demands.
With a shift in demand these activities might become profitable.



10-7. EMPIRICAL-ALGEBRAIC PROPERTIES OF A
LEONTIEF SYSTEM

Using matrix terminology, we can readily summarize the Leontief system as follows:

(10-3)

(10-4)

(10-6)

where  is the row matrix or row vector [A01, . . . ,A0n].

(10-7)

Corresponding to the elementary formula for a convergent geometric series 1 + r + r2

+· · · ·= 1/(1 — r), we can find “multiplier expansions” to approximate our unknown
X‘s and P’s without ever solving simultaneous equations. Thus,

(10-13)
gives us the Cornfield-Leontief multiplier process: according to this, we first compute
the output requirements of the new C itself; then we compute the first-round direct
requirements to produce the C, which gives us aC; then we compute the second-round
direct requirements to produce the first-round items; etc. We thus build up a growing
total until the terms in the dwindling infinite chain dwindle to negligible proportions.
For Leontief a’s, the process can be shown to be convergent, and rather rapidly so.

To arrive at final P’s as the sum of direct labor congealed in an infinite number of
previous stages, we write down the Gaitskell multiplier chain:

(10-14)
here we interpret total labor cost of a good as the sum of its initial direct-labor cost, plus
the direct-labor costs of the inputs it directly uses on the first round, plus the direct-



labor costs of the second-round factors needed to produce the first-round factors, etc.,
until the terms of the infinite series become negligible. This series will be convergent; it
is simply another way of looking at the previous multiplier series. Needless to say, the
rounds of which we speak do not take place in calendar time, with the second round
following the first, as in Robertson-Metzler dynamical Keynesian systems. Artificial
computational time is involved, and if we insist on giving a calendar-time interpretation
we must think of the Gaitskell process as going backward in time and the Cornfield
process as showing how much production must be started many periods back if we are
to meet the new consumption targets today.144

Intuitively, we should expect a decrease in any nonlabor requirement aij to lower all
the X’s and a decrease in any a0; to lower the X0 required. We should also expect such
technological improvements to lower all (P/P0)’s. This turns out to be the case, since it
is easily verified that

To see why this is so, we need only reason that if the direct requirement ars increases
infinitesimally, the total requirement of r must increase by enough to produce Asj, and
therefore the total requirement of i must increase by a factor AirAsj. All such derivatives
are nonnegative. It follows that decreasing the requirements of any well-behaved
Leontief system leaves it well behaved. But increasing requirements will eventually
render it incapable of producing any positive net consumption at all and will give rise to
divergent multipliers, to negative values of variables, and to other anomalies that could
never be observed in nature by a Leontief statistician.

How do we know that a Leontief system will be well behaved in the sense of having
convergent multipliers, unique solutions, and nonnegative consumption, inputs, and
outputs? It turns out that our system is of the beautifully simple type, studied by the
mathematicians Minkowski, Frobenius, and Markoff, with well-behaved properties,
which can be simply analyzed. It further turns out that the Leontief system has close
affinities to Keynesian multicountry income models and to the Hicksian model of
stability of multiple markets.

10-8. INDECOMPOSABLE AND DECOMPOSABLE
GROUPS OF INDUSTRIES

Before stating a general theorem on observable Leontief systems, we must note some
possible arrangements of industries. (1) Every industry might directly use some positive
input of every other industry. Failing this, (2) every industry might indirectly use some
positive input of every other industry, if not buying directly from it, at least buying from
intermediary industries which buy directly or indirectly from it—the chain of



intermediary industries consisting of 1, 2, . . . , up to n − 1 industries.

If sales could be calculated to the last dollar, it is probable that any actual economy
would have the above so-called “indecomposable” property, in which all pairs of
industries are interlocked directly or indirectly in a two-way fashion.

This, however, is in contrast with the simple Austrian structure of production, in
which an industry will directly or indirectly sell to another but not buy from it. Thus, a
group of industries may have the property that some of its pairs are only in a one-way
(direct or indirect) connection: Frobenius, the mathematician to whom most of these
concepts are due, called this a “decomposable” group.145

According to Air Force and BLS computations, we can renumber American industries
so that the structure is almost triangular, so that Industry 20 buys from no industry with
index greater than 20, etc. Thus, treating small a’s as zero, we could approximate the
facts by a decomposable model.

Strictly speaking, though, zeros and small positive numbers are not the same thing.
And the concepts of decomposability and indecomposability are purely qualitative and
nonquantitative: they depend only on the pattern of positive and zero a’s, and not at all
on the size of the positive a’s. To the empirical purist, a theorem stated for
indecomposable systems may therefore be of greatest interest—which is a blessing,
since such a theorem is most briefly stated. It can then be generalized to include
decomposable systems as well.

In all that follows we shall be considering an observed or observable Leontief system
with every xij nonnegative. The system is indecomposable so that each pair of industries
is directly or indirectly in a two-way connection. By “observable” we mean a system
which is productive in the sense that it can produce positive net outputs. An
unproductive system in this sense could produce net output only by running down
preexisting stocks.

THEOREM. Any indecomposable observable Leontief system has each and every one
of the following strictly equivalent properties; i.e., each one implies all the rest.

1a. At least one a0j is positive.

b. All price ratios Pj/P0 are positive.

2. At least one price ratio Pj/P0 is positive.

3a. At least one bill of final demand is producible.
b. Any bill of final demand is producible, provided only that there is sufficient labor

available.
4a. There is at least one set of measurement units in which no row sum (column sum)

is greater than unity and at least one row sum (column sum) is less than unity.



b. In the special units in which each Pj/P0 = 1, 1j + 2j + · · · + nj ≤ 1, with the
inequality holding for at least one index j.

c. In the special units in which each Xj = 1, âi1 + âi2 + · · · + âin ≤ 1, with the
inequality holding for at least one index i.

5a. The characteristic roots of the matrix [aij], which are invariant to any change in
units, are all less than 1 in absolute value, so that the “multiplier series” I + a + a2 + ·
· · converges to (I − a)−1 = (Aij).

b. I +  + 2 + · · · = (I − )−1.

c. I + â + â2 + · · · = (I − â)−1.

d. a∞ = ∞ = â∞ = 0.

6. All the elements of (I − a)−1 are positive.
7. (I − θa) is nonsingular for all θ, 0 ≤ θ ≤ 1.

8. Decreasing any requirement coefficients aij decreases every element of A.

9a. I − a is Hicksian; i.e., all its principal minors are positive.
b. All the indecomposable subsystems of a have all the properties of a.

If we start not from an a matrix but from an observed tableau  and define the usual 
ij, the above equivalences still hold for these coefficients.

Note that if knowledge of a’s comes not from an observed tableau but rather from
engineering estimates of technologies of separate industries, the result might not be a
well-behaved viable Leontief system capable of steadily producing consumption goods.
Thus, until the crucial experiments were made, no one knew whether a self-sustaining
chain reaction of atomic fission was possible. Similarly, processes that require us to use
up finite stocks of exhaustible materials may not be capable of a sustained steady-state
reaction.

We can now reconcile our formulation with Leontief’s practice of “netting out” all
intrafirm and intraindustry transactions so as to make all his diagonal terms aii = 0. So
long as we stick to statics, this is pure convention and either procedure is perfectly
adequate. If 10 per cent of coal output is used within the mines itself, Leontief works
with an output Z, which is only 1 – 0.1 of our X. Now if 18 units of fertilizer is needed
to produce 1 of our units of coal, then 18 units is needed to produce 0.9 of a Leontief
unit; for a full Leontief unit, therefore, 20 units is needed, which shows how his a’s
must be related to ours so as to lead to the same substantive results.

Mathematically, Leontief outputs Zi are given by

Zi = (1 − aii)Xi



and (10-3) is written

where the j is summed over all variables except i and where the fractional expressions
are the Leontief a’s, with the diagonal ones zero. Note that our analysis has shown that
every well-behaved Leontief system will have positive 1 − aii, so the transformations are
always possible.

When we leave the realm of statics and assume a time interval between inputs and
output, the problem ceases to be one of convention. That corn is needed today to
produce next year’s corn may be literally as true as that fertilizer is needed today to
produce next year’s corn. The proper aii’s then become questions of brute fact, and for
this reason we have adhered to the more general formulation.

A literary explanation of the meaning of the above equivalences is omitted here at this
time. References to the mathematical and economic literature can be found in a paper by
Solow.146

That 9a implies 6 was known to Minkowski and in the economic literature was early
proved by Mosak in connection with Hicks-type multiple markets; the converse is due
to Hawkins and Simon. Metzler, in connection with Keynesian income models, proved
the relation between 4b and 5b and many similar results. Solow integrated the related
theorems and showed how the Frobenius concepts of “indecomposability” and
“acyclicity” affect the inequalities and dynamic iterations.

10-8-1. Decomposable Systems. For completeness, we briefly treat the
decomposable case. Even though they agree with intuition, the results are complex to
state, and this section may be skipped without great loss.

If the industries are not all in two-way communication with each other, it may happen
that we can find distinct subgroups of industries which are never in direct or indirect
contact with each other either as suppliers or demanders of inputs. Such “completely
separable” subgroups can clearly be treated completely independently of each other, and
of course there are all zero repercussions in one subgroup resulting from a change in
consumption or input coefficients in another independent subgroup In matrix terms we
can, in the case of our completely separable subgroups, renumber industries so that

where each ak and Ak = (I − ak)−1 is square and consists of nonnegative elements.

The completely separable case is very simple. More interesting is the situation within



each ak, to which all our remaining remarks apply. We can concentrate on a1 and
suppose that it has no industries which cannot be split further into completely separable
subsystems. It follows that every industry is, directly or indirectly, in some kind of
connection with every other industry. Thus, it might be the case that Industry 1 both
buys from and sells to Industry 2; and Industry 1 might sell to Industry 3 but not buy
from it; similarly, Industry 4 might buy from Industry 1 but not sell to it; Industry 5, on
the other hand, might neither buy nor sell from Industry 1, but might be indirectly
linked to Industry 1 by virtue of the fact that it does have transactions with either
Industry 2 or 3 or 4.

Of course, the nature of the linkages between the industries might be such that we do
have the already-described case of an indecomposable system—with each industry in
direct or indirect two-way contact with every other industry. The interesting
intermediate case for present discussion is that in which (1) there is always some linkage
between every pair of industries so that complete separability is ruled out, but (2) not all
the linkages are two-way.

In this case, we can rearrange our industries so that our a1, which is now called a for
simplicity, can be written as

where each diagonal hi is an indecomposable submatrix, where below the diagonals are
only zeros, and where above the diagonals are blocks of nonnegative elements with at
least one positive element in each column. There may be some zeros above the
diagonal, but not all can be zero or the system would be completely separable.

The industries in the first subgroup h1 buy only from each other; at least one does sell
to some other industries. The industries in the second subgroup h2 buy and sell to each
other; at least one buys from an industry in the first block, and at least one sells to the
remaining industries. The industries in the third subblock buy and sell to each other; at
least one such industry buys from the “earlier” blocks 1 or 2, and at least one sells to a
“later” block. Note that the position of the first block is unique: in a decomposable but
not separable system, only one set of industries can fail to buy from any other set of
industries. However, the relative positions of h2 and h3, or of the remaining hi’s, may be
arbitrary, as the following example illustrates:



or

Since no earlier block of industries ever requires any input from later industries, it
follows that an increase in an earlier C will not cause an increase in a later X. Hence, the
A matrix must have all zeros below the diagonal.

It is clear that an increased C for any industry in any subgroup will have to increase
X’s in all other industries of the same subgroup. This is because all members of each
subgroup are in two-way connection with each other. It follows that the A’s in the
diagonal blocks are all distinctly positive.

It is also clear that every industry requires some amount of input from at least one of
the first subgroup’s industries. It follows that an increase in any C will require some
extra output from one of the first industries. And since each of the first group of
industries requires (directly or indirectly) all of the other, it follows that an increase in
any C whatsoever will increase every X in the first subgroup. Hence all the A’s in the
first row of blocks are definitely positive.

Beyond this, we can say nothing definite about the sign of any other A. Unfortunately,
we cannot be sure that the h2 industries are really “earlier” than the h3 industries. Our
previous numerical example shows that h2 may really be “nonlater” than h3; and at the
same time h3 may be “nonlater” than h2. In such ambiguous cases, an increase in a C in
either group will have zero repercussions in the other group. Thus, the above-diagonal
A’s may be zero rather than definitely positive; in no observable Leontief system can an
A be actually negative.

We can make one definite statement about the above-diagonal A’s. In any particular
block above the diagonal, there must either be all zeros or all positive numbers; no
mixtures of zeros and positive numbers is admissible. For suppose that an increased C
of any industry, say Ci’, of the jth block, were to increase the X of at least one industry
in hk. Call it Xk’. Then all the industries in hk, which by definition are in two-way
connection with each other, must be needed for the production of Xk and so all totals
must rise. This shows that all the A’s in the column pertaining to the industry whose C
has increased must be of the same algebraic sign.

But exactly the same sign as the above must hold for all changes induced by a C of
any other industry in the jth block. This is because such a change necessarily increases
all the X’s in that jth block, including Xi. But an increase in Xj will have the same
qualitative effect on Xk’ as did an increase in Cj’, which proves that every element in the



(k,j) block is positive.

We may summarize the form of A corresponding to the earlier given general
decomposable but nonseparable a. Thus,

where plus or zero in a block above the diagonal means all pluses or all zeros in that
block.

One final remark. In Leontief’s open-end system, with labor or X0 the sole primary
factor, the (n + 1)2 matrix of the system of Eq. (10-3) can be written

Inclusive of labor the system is decomposable, since labor, being nonproducible, is
definitely “earlier” than all the other inputs.

But if we rule out the Land of Cockaigne, where candy grew on trees and was
available without even a need for plucking, then labor will not be completely separable
from the rest of the system. This ensures that no goods are free and that all wage costs
A0j are distinctly positive.

10-9. A NUMERICAL EXAMPLE
Consider a simple Leontief system consisting of labor and two industries, X1

manufacturing and X2 agriculture. Labor is measured in man-hours, manufacturing in its
physical units, and agriculture in its physical units. The coefficients of production are
given by

Equations (10-3) then give us

and using the last equation to substitute in the first gives

and hence



Thus, the fundamental Aij coefficients of Eqs. (10-4) are

and the reader can verify that solving Eqs. (10-3) for each Ci separately (with all other
C’s zero) will in fact lead to each of the columns of this A matrix. It is easy to verify
that A is the so-called “inverse matrix” to the matrix with a’s subtracted from 1’s in the
diagonal (i.e., I − a).

From Eqs. (10-5) we find

and it is easy to identify these with the price ratios (P1/P0,P2/P0) satisfying (10-8):

The production-possibility schedule for society is given by (10-6):

X0 = 10C1 + 500C2

If we arbitrarily assume wages to be at $2 per man-hour and specify definite
consumption totals, C1 = 50 million units and C2 = 2 million units, then we can easily
calculate the P’s and X’s, and so arrive at the national accounts giving values. It is easy
to verify that for such an economy the Leontief statistician would record the tableau
économique given in Table 10-4 in dollar terms.

A useful exercise for the reader would be to work backward from this table as the
statistician must do. (1) Work out the  coefficients and use them to determine the new
table when all consumption dollars are spent on each good alone, or on any arbitrary
dollar combination of the two consumption goods. (2) Being told that P0 = $2, P1 =
$20, and P2 = $1,000, work out all the physical quantities and the original unbarred a‘s
and all the A’s. Show that a wartime shift from agriculture to industry would not affect
relative prices.

As a last useful exercise, given the a’s, we can use the Cornfield-Leontief multiplier
method to compute the requirements for C1 = 50 and C2 = 2. Instead of working in
dollars, as the BLS would largely do, we work in physical quantities to facilitate
comparison of the approximate method with the exact simultaneous solution of Eqs.
(10-3), which yields X1 = 260 and X2 = 4.6. Table 10-5 shows the successive
approximations, or rounds. Note that after five rounds X1 sums up to 231.6835 out of
260 units, X2 sums up to 3.95435 out of 4.6 units, and X0 sums up to 1,342.169 out of



1,500 units.

TABLE 10-4. VALUES, IN MILLIONS OF DOLLARS

An alternative way of computing labor requirements X0 would be to approximate to
A01 and A02 by the Gaitskell multiplier chain and then to apply the result to C1 and C2. If
many different C’s were to be prescribed, and if we were interested only in labor, this
would be a preferable procedure. However, if we were interested in all the X’s for many
different C’s, it would be best to compute by the Cornfield iteration all the A’s. Thus we
work out a table such as Table 10-5 for (C1,C2) = (1,0) and for (C1,C2) = (0,1); the
extension to the n variable case is obvious.147

Need the multiplier chains converge? Looking at the five rounds of X1, you might
have your doubts. But algebraic analysis elsewhere shows that there must be
convergence. This can be seen arithmetically as follows: (1) note that convergence for
one set of units means convergence for all sets; (2) note that using value units and ’s
gives columns 11 + 21 = 1 − 01 and 12 + 22 = 1 − 02. These right-hand terms
represent a positive percentage of “leakage” at each stage: just as saving-hoarding
leakages cause convergence of the Keynes-Kahn multiplier chain, so does the above
leakage force the Gaitskell multiplier chain to converge. This shows that the Cornfield
multiplier must also converge, a fact which can also be proved by showing that use of
output units (so that  gives new a’s whose rows add up to 1 minus the positive
percentage of consumption to total output.148

A survey of methods of numerical computation of input-output systems can be
briefly given. The elementary high-school methods of “cross elimination” or
“substitution” are optimal numerical methods. (They are often today referred to under
the names of Gauss, Doolittle, Chio, Aitken, Crout, Dwyer, and others.) Usually a
systematic ritual is best, in which the last (or first) equation in (10-3) is used to eliminate
Xn (or X1) from all the remaining equations; then the last of the remaining n − 1
equations is used to eliminate Xn−1, etc., until we finally solve for X1; and then we solve
for X2 in terms of the known X1,etc. We proceed with the “back solution” until finally
we solve for Xn in terms of the remaining variables. All this may be most quickly done
for given numerical C’s; alternatively, at slightly greater length, it can be done for literal
C’s—or what is the same thing, for columns of zeros and 1, so that the inverse matrix



[Aij] is calculated. Similar remarks apply to the calculation of the P’s.

TABLE 10-5

The numerical work grows with the cube of n. With a desk calculator, a single
experienced computer can invert a 10 × 10 system in less than one day. For systems of
50 × 50, or beyond, large-scale digital computers, which use the same high-school
methods, would be very useful.149

In actual practice, a modified Cornfield or Gaitskell multiplier may in a few rounds
give a good approximate answer. Empirically, it seems to be true that we can renumber
industries so that the structure is almost “triangular,” with almost negligible feedbacks
and whirlpools. This means that we can avoid solving simultaneous equations, instead
solving recursively and in tandem, for the variables. This yields approximate values for
the X’s. These can be improved by taking into account a few local whirlpools, either by
local multiplier chains or by solving a few simultaneous equations for circularly
interlocking groups of industries.150 The ease of solving a Leontief system and its
immunity to accumulation of round-off errors are for empirical reasons much greater
than we could in general expect for any n × n equations.



11

Dynamic Aspects of Linear Models

11-1. INTRODUCTION AND OUTLINE
The object of this and the next chapter is to analyze some simple situations in

economics that involve optimizing over time. Earlier in this book linear programming
was described as a special kind of theory and practice of maximizing this or minimizing
that, subject to certain constraints on the decision variables. Up to a point, the fact that
some maximization processes extend over time makes no difference at all. For instance,
if the process (e.g., the operation of a firm or of a military campaign) is to last for some
given finite number of periods of time, no new principles are involved. Most
economists are familiar, in one context or another, with the device of treating
commodities available at different times or different places as different commodities.
The same procedure can be used in this special kind of dynamic optimization problem,
together with some self-evident identities concerning inventories carried over from one
period to the next. This use of new variables for each time period reduces the problem
formally to a standard programming one, and no new methods are needed for its
solution.

But time does make a difference in economics—witness years of controversy over the
theory of capital. To treat dynamic problems as nothing but special cases of static ones
may simply rob us of the insights that a more direct theory might yield. After all, n
commodities at each of T dates are not simply nT separate commodities. There is a
structure: sometimes it is useful to view them as T groups of commodities with date in
common, sometimes as n groups with physical characteristics in common. Certain
features of the situation (prices and discount rates) make economic sense when applied
to the groups and to their ordering in time. The occurrence of physically identical
commodities in time leads to a kind of recursive structure that it is useful to exploit. Our
immediate preoccupation is with the explicitly dynamic formulation and analysis of
optimization and programming problems.

The natural parallel in economic theory is the theory of capital and investment (we
speak of “investment programs”). This parallel forces itself upon us when we try to
connect up maximization over time with some kind of market mechanism. The shadow
price duality relations turn out to involve what can only be interpreted by the economist
as discount factors, interest rates, and the like. The programming approach casts new
light on some vexing questions of classical and neoclassical capital theory.



Perhaps this is the place to explain the connection between the dynamic models now
to be discussed and the static input-output scheme of Leontief. The remarkable thing
about the Leontief model of production is that it is “locked.” No real optimization needs
to take place. Any particular bill of goods can be produced in one and only one way.151

Professor Leontief has recently made his theory dynamic by introducing stocks of fixed
capital and inventories. In so doing he has attempted to maintain its “locked” character.
Given proper initial conditions his dynamic system is meant to be determinate; it should
generate its own future, still with no explicit choice or optimization at all.

Later on in this chapter it will be indicated that this cannot really be done. No matter
how rigid we make our assumptions about fixed coefficients of production or fixed
capital-output ratios, the introduction of a time dimension and stocks of capital
inevitably “unlocks” the model. It is no longer possible to dispense with explicit choice
and optimization. Commodities desired later can be produced now and stored, or
resources can instead be devoted to investment in facilities for subsequent production
of the commodity. Redundant capital can be held idle, or output proportions can be
adjusted so that no capital is redundant. Output proportions must in any case be decided
by some rule. In a dynamic Leontief model a choice must be made at every instant of
time, deliberately or by a market mechanism. From this point of view the “unlocked”
Leontief dynamic model falls into the framework of programming or maximization over
time as a special case.

Section 11-2 will discuss the simplest possible linear model of production over time,
the case of a single dynamic process of production. We may call this the Ramsey
model.152 The case of a nonlinear dynamic production process will also be discussed, as
will certain simple extensions to the case of two or more alternative processes for
producing a single commodity, and to the case of two commodities produced essentially
independently.

Section 11-3 will cover the dynamic Leontief model. We may describe this as the case
of many commodities, each produced by a single dynamic production process, but with
all the production processes mutually interrelated and interdependent.

Section 11-4 is a brief exposition of a still more general model of production over
time, which we may identify with the name of von Neumann. It allows many
commodities, several alternative production processes for each commodity, and even
joint production. The same model is taken up again in Chap. 13.

Section 11-5 merely introduces smooth transformation functions of a kind familiar
from neoclassical international trade, welfare, and other theory. Later, in the next
chapter, we shall investigate the problem of efficient and optimal programs of
investment and capital development, and there we shall have occasion to use this
smooth production model.

In some ways this chapter can be viewed as a preliminary to the next. Our object



here, once we get past the simple one-good case, is to explore production possibilities
from one period of time to the next, but no further. Most practical planners and students
of economic growth are interested in processes extending over longer periods. The next
chapter will take up the nature and structure of optimal production and investment
programs extending to arbitrary horizons. But the indispensable building blocks for this
theory are the one-period production-possibility schedules of this chapter.

11-2. THE RAMSEY MODEL
11-2-1. A Single Linear Dynamic Process. Consider the simplest possible case

where a single commodity—rabbits, trees, gold coins, or simply output—can be used at
time t as an input to produce itself as an output at time t + 1. The output at any time
such as t + 1 can be split into two nonnegative parts: consumption, or C(t + 1), and
input for the next period’s output, to be designated x(t + 1). We make the simplest
linear assumption that 1 unit of input gives rise in the next period to a units of output,
where a is a given technical constant, and that constant returns to scale prevail. Hence
total output at time t + 2 will be ax(t + 1). Our production function at any time period
may be written as

(11-1)
where the left-hand side is total output at t + 1, expressed in terms of the quantity of
input one period earlier. The inequality is included in recognition of the fact that people
might by stupidity or inadvertence get less output than is technically feasible. The linear
character of the technology is clearly visible.

If at time t = 0 we start out with K units of our goods, at that time our choice between
consumption then and provision for the future is given by

C(0) + x(0) ≤ K
and if we are maximizing, the inequality can be dropped.

Our choice for period t = 1 is given by

C(1) + x(1) ≤ ax(0) ≤ a[K — C(0)]

Similarly, for the second period, our choice is

C(2) + x(2) ≤ ax(1) ≤ a{a[K — C(0)] — C(1)}

or in general for any period, we can verify the formula

(11-2)



The economist who remembers his formula for present discounted value of an
income stream will be able to think of a as 1 + interest rate and of the productive
process as a bank that pays this rate of compound interest on all deposits; he will
recognize the above formula as saying that the amount in the bank today is the
cumulated value of the original deposit minus the cumulated value of all consumption
withdrawals. This formula can also be written in the equivalent alternative form,

(11-2a)
The reader can provide a “present-value” interpretation of (11-2a).

There is very little scope for choice in this model. If we make all the inequalities into
equalities, relations like (11-2) are optimal ones. They give us the maximum amount of
consumption in any period for specified initial and terminal amounts of output and for
prescribed amounts of consumption in all other periods. It gives us the “menu” of
consumption possibilities among which we can choose. For example we have for t = 1,
C(1) + aC(0) ≤ aK − x(1). If we specify a value for x(1) (the “capital stock” for
subsequent production), we get a feasible set of consumptions and an efficiency frontier
of optimal consumptions. The slope of the efficiency frontier (or its negative) is, as
usual, the marginal rate of substitution between C(0) and C(1) : MRS10 = −∂C(1)/∂C(0)
= a. This is illustrated in Fig. 11-1a.

We can use the fundamental relation (11-2) to find the feasible and the efficient
consumption programs extending over any number of periods. In two dimensions we
can fix the terminal capital stock x(n), and all but two consumptions C(i) and C(j), (j >
i), and draw the possibilities open to us.153 The fundamental relation becomes an—iC(i) +
an—iC(j) ≤ a constant depending on a, K, C(0), . . . , C(n), x(n).154 We find in this way
that the marginal rate of substitution between any two consumptions is constant,
namely,

(11-3)
This is illustrated in Fig. 11-1b. If the system is “productive,” a > 1, and a unit of
consumption foregone now can be transformed into more and more consumption as it
is postponed until later and later. Geometrically, the efficiency locus gets steeper as j − i
increases.



FIG. 11-1
In this case it was trivially easy to get to the optimum. We simply decided never to

waste any unconsumed output but to put it all back into the productive process. Can we
justify this procedure by means of the statical theory of linear programming? We can.
Dynamic processes can be squeezed into the statical framework.

A single productive process will involve, over a long enough period of time, an
indefinitely large number of variables. The production relation (11-1) is really as many
equations as we have time periods; and there are as many variables x(0), x(1), . . . , x(n),
. . . as we care to consider. Let us keep matters simple and consider t = 0, 1, 2, 3, 4 only,
and let us seek to maximize C(3) with K, C(0), C(1), C(2), C(4), and x(4) all being
arbitrarily prescribed. In standard linear-programming terms, we wish to maximize

C(3) = B3x(3) + B2x(2) + B1x(1) + B0x(0)

= −1 · x(3) + ax(2) + 0 + 0

subject to

(11-4)
[In the maximand we have put C(3) = − x(3) + ax(2), since we know that C(3) ≤ − x(3)
+ ax(2), and for a maximum the equality must hold.] We shall be at the maximum C(3)
only if every inequality is discarded. This can be seen in the following way. To
maximize C(3) we must make x(3) as small as possible and x(2) as large as possible
consistent with the constraints. This enforces equality in the last two constraints, and in
addition tells us to make x(1) as large as possible. But this requires making the second
constraint an equality and making x(0) as large as possible, i.e., discarding the inequality
in the first constraint.

The remarkable thing about this strict-equality property is that it does not change as
we vary C(0), C(1), etc. A related singular feature is the fact that if we were to extend
our sequence beyond t = 4, all the efficient decisions made up to that point would be



invariant. Both of these properties are associated with the simple and special form taken
by the constraints in such primitive dynamic sequences. The array of coefficients is of
the form and it builds downward and to the left without any feedback influences on the
earlier inequalities.

An easy but important special case—related to von Neumann’s model—arises if all
output is used to produce further outputs so that

0 = C(0) = C(1) = · · · = C(t) = · · ·

The basic formula (11-2) still holds and shows that an optimal system will grow in
geometric progression

(11-5)
with a growth factor given by

(11-6)
Previous experience with duality relationships as well as general economic reasoning

lead us to expect prices to play a role even in such simple dynamic sequences.
Specifically, we should guess that the exchange ratio between the outputs of two
periods would be equal to the marginal rate of substitution in production between the
outputs of those periods. Let us set p(0) = 1, which is just a choice of units. Then (11-3)
suggests that

(11-7)

(11-8)
One way of verifying that these are true equilibrium relationships is to seek a set of

(shadow) prices which will make profits zero on each process used. There is only one
process available for each period; in it we invest one unit of x(t) worth p(t) and get in
return a units of output worth p(t + 1)a. Our profit is defined as



(11-9)
This is what must be zero for every t, so that the price relations of (11-8), and thence
(11-7), immediately follow.155

The formal similarity between (11-5), (11-6) and (11-7), (11-8) is our first dynamic
instance of the duality between prices and quantities. Here we have an especially simple
case, since there is only one commodity and almost no optimizing or equilibrating to be
done.

11-2-2. Digression: A Single Nonlinear Process. In the simple one-commodity
world we have so far been exploring, the assumption of constant returns to scale can
easily be lifted. Nothing changes except that the dynamic production process becomes
nonlinear, with increasing or decreasing returns to scale, or phases of both. The analysis
of this more general case will give us some insights which can then in turn reflect more
light on the linear model.

Let technology be such that x units of input yield y = f(x) units of output. Then the
basic equation (11-1) becomes

(11-10)
where f(x) is an increasing function.

Nothing prevents us from proceeding as before. We start with x(0) + C(0) ≤ K. Hence
x(1) + C(1) ≤ f(x0) ≤ f[K − C(0)]. Still another iteration and x(2) + C(2) ≤ f(x1) ≤ f{f[K −
C(0)] − C(1)}. And yet again, x(3) + C(3) ≤ f(x2) ≤ f(f{f[K − C(0)]−C(1)} − C(2)). As
before, if we optimize, all the equality signs hold. It is easy to see, but hard to write
down, how this process can be continued to give us a generalization of Eq. (11-2).
Some simple examples and graphs will tell us all we need.

First, let us take f(x) = √x, a case of diminishing returns to scale (we can imagine that
a second factor, land, is used in production but is available in a fixed nonaugmentable
amount). Figure 11-2 is the analog of Fig. 11-1 and shows the familiar convex
transformation or substitution curve between consumption at times zero and 1. The
marginal rate of substitution of C(1) for C(0) is no longer a constant, but diminishes
with C(0).156 On the same graph we can show the terms on which C(2) of the next
period can be substituted for original C(0), as of a constant intermediate C(1). For
convenience we can set C(1) = 0. The new substitution curve shows even more sharply
diminishing MRS than the first.157 There are other less obvious things to notice. For
example, the MRS20 depends on what particular level we give to C(1), but in the linear
case it did not. The curve for C(2) could lie either wholly outside or could cross that for
C(1), depending on the size of K, but in the linear case it would be wholly outside if a >
1, or wholly inside if a < 1, but always one or the other. A nonlinear system can be



“productive” or self-sustaining at some levels of output but not at others, as we shall
show later.

FIG. 11-2
Finally, we can wonder about the substitution curves for C(3) and also about how

they are affected by intervening consumptions. If we take the easy way out and put all
intervening consumption equal to zero, a little experiment will show that the general
formula is

C(n) + x(n) + [K − C(0)]1/2n

A little further experimentation will show that the substitution curve approaches a limit,
namely, the boxlike one in Fig. 11-3.158 This behavior also differs from the earlier linear
case; there C(n) must go to infinity (a > 1) or zero (a < 1). But a diminishing-returns-to-
scale economy can have a finite equilibrium.

It must not be thought, however, that this must happen. Consider for example the
production function y = x + √x. Then

and

These two substitution curves are shown in Fig. 11-4 with, as usual, the intermediate
consumption C(1) = 0 in the latter curve. Each successive substitution curve between
C(0) and C(1), between C(0) and C(2), between C(0) and C(3), etc., lies entirely outside
the previous ones.159 If C(0) does not entirely exhaust the initial stock of capital, future
consumption can be increased beyond all bounds as we postpone it indefinitely. But
choices are always along a convex substitution curve. And MRS’s depend on the levels
of all intermediate consumption.



FIG. 11-3
The reader will find it instructive to work out for himself a simple case of increasing

returns to scale. He should draw some of the diagrams showing the opposite convexity
to the more traditional ones. An easy example to work with is y = f(x) = x159.

There is another way of looking at the nonlinear case. Go back to the basic Eq. (11-
10) and eliminate the inequality, with the assumption that we optimize. The equation
then can be thought of as a recurrence relation or difference equation: x(t + 1) + C(t +
1) = f[x(t)]. If we maintain the earlier device of putting all intermediate consumption
equal to zero, we can also absorb C(t + 1) into x(t + 1), and the equation takes the form
x(t +1) = f[x(t)]. Thus, as we already know,

x(1) = f[K−C(0)] 
x(2) = f{f[K−C(0)}}

etc. Graphically this is very simple: Fig. 11-5 has x on the horizontal and f(x) on the
vertical axis and also contains a 45-degree line. The production function has been
drawn with decreasing returns. Anyone who has ever traced out a cobweb cycle or,
better still, a Cournot duopoly-reaction path will see immediately how the arrows show
the path to the ultimate equilibrium, the input-output which satisfies x* = f(x*). Note
how a diminishing-returns system can have a finite equilibrium, and how this is not
because marginal productivity falls to zero (it doesn’t), but because average productivity
falls below 1. More input will always yield some extra output, but beyond a certain
point input will fail to reproduce itself, and so the system decays. Figure 11-6a shows
the opposite state of affairs for an increasing-returns system. The same kind of
equilibrium may exist, but it will be unstable. Once capital stock exceeds a critical level
x* it can reproduce itself and more, and output can expand and capital grow over time.
But if the initial capital is below x*, even total reinvestment will not prevent the stock
from dissipating. The linear system treated earlier is shown in Fig. 11-6b. If a > 1, then
any initial capital can expand without limit as (11-5) showed. If a < 1, the reader can
show how decay is inevitable.



FIG. 11-4

FIG. 11-5
Here we can also treat perhaps the most interesting case: decreasing returns to scale,

but indefinitely expansible production. The production function y = x + √x is drawn in
the now-familiar way on Fig. 11-6c. The difference equation is  and the
arrows show how output and capital grow without limit. No decay occurs, because
average productivity of capital y/x = 1 + 1/√x, while decreasing with the size of the
capital stock, never falls to 1. We can get some notion of the rate of growth of capital
and output by writing

The relative rate of growth diminishes steadily but never falls to zero. Study of
nonlinear models such as this one provides a healthy antidote to the tacit assumption in
linear models of the Harrod-Domar type that “growth” is geometric growth. In our
present case the system grows at about the speed of t2, or much more slowly than
geometrically.



FIG. 11-6
The same device enables us to treat a slightly more general case where consumption

C(t) is held at some nonzero constant level through time. The difference equation
becomes

(11-11)
The new g function is just the old production function lowered by  all along the line.
Figure 11-7 should by now speak for itself. In both the decreasing-returns case and the
linear case, a first phase appears in which, while a small stock of capital can reproduce
itself, it cannot simultaneously throw off the required consumption. If it tries to do so it
will decay. The nonlinear case may still have an equilibrium x* which satisfies 

.

The shadow price and marginal-rate-of-substitution propositions are less simple in
this nonlinear model. The economic theorist will recognize right away that we cannot
impose a zero-profit condition once we lose constant returns to scale. Instead all we
have is a zero-marginal-profit condition. By creating a second factor to absorb the
residual we could again have zero profits. Price ratios will still equal marginal rates of
substitution, but the latter now vary with society’s consumption-investment choices. In
the linear case [see Eqs. (11-7) and (11-8)] the price ratios were independent of these
decisions.



FIG. 11-7
A little calculus and a lot of notation will suffice to calculate any MRSji from the

fundamental relation

(11-12)
Once this is done we shall have, as usual, MRSji = p(i)/p(j). An example is given above
(p. 272, footnote 2) in which an MRS20 is explicitly calculated, and it shows how the
price ratio varies with the choice of C(0) and C(1). Thus, if we use the square-root
production function and assume C(1) = 0, then

The larger the C(0), the lower the relative price p(2), as one would expect. These price
ratios and MRS’s are, of course, just the (now variable) slopes of the corresponding
transformation curves.160

One more relation. For adjacent periods we have

x(t + 1) + C(t + 1) = f[x(t)] = f{f{x(t − 1)] − C(t)]}
Hence,

(11-13)
On the other hand, total profit for the operations of period t is

p(t + 1)f[x(t)] − p(t)x(t) = π[x(t)]
Setting marginal profit equal to zero we find

(11-14)



or p(t)/p(t + 1) = f’[x(t)], exactly as in (11-13). We can substitute the x(t) time path in
this and find in this way the course of prices over time.

Now we return to linear processes; leaving until the next chapter further discussion of
the nonlinear case.

11-2-3. Alternative Processes. The case of a single process is almost trivial from the
standpoint of linear programming and maximizing decisions. Scarcely any intelligent
choices had to be made. Consider therefore a slightly more interesting case, but still an
exceedingly simple one. Suppose that we can allocate the unconsumed output of any
period as inputs to either of two productive processes. Let x1(t) be the input to the first
process and let a1x1(t) be the maximum output resulting in the following period;
likewise, let x2(t) be the second process input and let a2x2(t) be its output in the
following period. Note that we have two production functions; but we can add the
identical outputs of the processes and allocate the total between consumption C(t + 1)
and the two inputs for the following period’s production, to get the relation

(11-15)
This is the generalization of our first equation; and as in the case of a single process, we
suspect that the inequality signs can be dropped in any optimal process.

But now if we start with initial output

C(0) + x1(0) + x2(0) = K

the resulting process does not give us a unique choice among the consumptions of
different periods. Depending upon how we decide to determine x1(t) and x2(t) at each
stage, we shall get a different menu of consumption choices. How do we resolve this
ambiguity? By the same principle as before: With initial and final outputs being given
us, and with all but one consumption item being given us, we must try to maximize that
remaining consumption item.

The solution is intuitively obvious—as obvious as the answer to this question: If two
banks offer you different interest rates on your bank balances, how should you invest
your money? Only in the bank that gives you the higher interest rate is the obvious
answer. Likewise, in this problem, if a1 > a2, we never allocate any input to the second
process; and our solution is exactly as in the case of a single process, but with a
subscript 1 on all the earlier a symbols. Thus,



(11-16)
where the p’s are the prices of the output of any period. Note the negative profitability
of ever using any x2(t) as given by

π2(t) = p(t + 1)a2 − p(t) = (a2 − a1)p(t + 1) < 0

As in the single process, we get a geometric progression if all consumption is zero
and all output is ploughed back into the business. We also get the obvious dual relations

(11-17)
Note that in this special case, as in the single-process case, the system can go instantly
into its maximal rate of growth regardless of how we start it off. This will not be
generally true. Note too that three or more independent alternative processes, with
specific a1, a2, a3, . . . , would be subject to the same rule: Select the process with the
highest a (i.e., the highest “net reproductive rate,” or “rate of interest in natura”).

11-2-4. Transient Unbalance. The two linear cases considered so far have had the
special property of always being in a constant relativeprice configuration: regardless of
the pattern of desired consumption, the same price ratios have prevailed over time; and
regardless of the initial endowments of the various commodities, the system can
generate itself at a stable geometric rate. In more general systems this will not be the
case. An example of joint production will make this clear.

Suppose that a unit of the first commodity, x1, will reproduce itself by tripling in
every period. Suppose that at the same time it produces as a by-product a unit of a
second product, x2. Assume that x2 can also reproduce itself by doubling every period,
so that there are two separate ways of getting x2. As before, assume that the output of
any good may be consumed in any period or can be used as input for the next period’s
output. Mathematically, our equations are

(11-18).
How will the system grow if there is no consumption? Suppose we start out with no

x1 and 1 unit of x2, so that [x1(0), x2(0)] = (0, 1). In the next period x2 will double, so we
have [x1(1), x2(1)] = (0, 2). This will be followed by (0, 4), (0, 8), (0, 16), . . . , (0, 2t),
which is obviously a steady geometric progression.

But suppose we had started with one unit of each good, with (1, 1). The x1 will triple



itself and provide 1x2 as a by-product. The x2 unit will double itself. Altogether we will
have (3, 3). Similarly in the next periods (9, 9), (27, 27), . . . , (3t, 3t). Again we have a
steady geometric progression, but with a tripling per period instead of a doubling.

FIG. 11-8
Suppose we start with any amounts of the two goods—say (1, 10). The obvious way

to handle this is to decompose it into our previous two cases: into one (1, 1) and nine
(0, 1)’s. Does the result grow at a tripling rate or a doubling rate? The answer is:
Neither, but somewhere in between; after a long period of time the tripling items
become over-whelmingly great compared to the doubling ones, so that in the limit, the
strongest geometric progression dominates. The interested reader may easily work out
the case (10, 1) and show that x2 will at first grow at more than a tripling rate.

Let us bring consumption back into the picture. What are our choices between, say,
C1(1) and C2(1)? Or between C1(2) and C2(2)? Or between C1(t) and C2(t)? Or between
C1(0) and C2(2)? The answer now depends upon our initial values. In Fig. 11-8a we
have assumed

x1(0) = K1 = 1 
x2(0) = K2 = 0

and have indicated the consumption menus at t = 0, 1, 2, 3 (on the postulate that
consumption at other dates is zero).

Figure 11-8b shows the substitution relations between C2(t) and C1(0) under the same
conditions. Note that the price ratio,

is steadily dropping in the sequence 1, 5−1, 19−1, . . . , (3t − 2t)−1, . . . , which is no longer
a simple geometric sequence, except asymptotically.

Mathematically, we must always have



(11-19)
One rather subtle point should be mentioned. The above charts and price formulas

hold on the assumption that we are choosing between C2(t) and C1(0), not giving a hang
about future consumption and inputs. Let us also prescribe some future inputs, x2(t + 1),
x2(t + 2), . . . , etc. If these are prescribed low enough, then our formulas may still hold.
But if we insist on their being still higher, then the effective menu between C1(0) and
C2(t) will change. Thus if x2(t + k) is made high enough to be the limiting factor, then
the effective MRS between C1(0) and C2(t) will be

(11-20)
This can be verified by differentiation of the formula for x2(t + k) in (11-19).

The important thing to notice about this third case is the fact that constant costs no
longer hold. Depending upon the patterns of C1(t) and C2(t) that we specify, there will
be different rates at which the different consumption items can be substituted one for
another.

11-2-5. Exceptions to Steady Growth. In every case so far, setting consumption at
zero has resulted ultimately in an approach to a state of steady maximal growth. Must
this always be the case? The answer is clearly no.

Suppose rabbits obey the production function

x1(t + 1) = 100x1(t)

and cheese obeys the production function

x2(t + 1) = 2x2(t)

The production functions are entirely independent and lead to two different “own rates
of interest” and two different rates of growth. Obviously the price of rabbits must
deteriorate over time relative to the price of cheese161 [see Eq. (11-7)].

In this context we can consider the Malthusian theory of population. Without
preventive checks or the positive check of inadequate food, population might double
every generation. Malthus argued that food could not grow at so fast a rate so that
checks would operate to prevent a doubling of population every generation. Some of
his early critics argued that food consisted of animals and plants and that these also
grew by nature in a geometric progression. Granting this for the moment, we may still



deny that the geometric rate of growth of subsistence need be at the same rate as for
humans, namely, a doubling every quarter century or so. There are two possibilities:
subsistence may grow, when all the time being drawn on to feed man at the level he is
accustomed to, at a faster rate or a slower rate than man himself. It is pretty clear that
the needed component of slowest growth will set the pace for the whole. If shmoos
double every century instead of every quarter century, and man must eat shmoos to live,
then positive checks will keep man’s growth rate down to that of shmoos. But if man
can make subsistence grow so as to double in less than every quarter century, then man
will be the bottleneck.

In point of fact, Malthus based his theory on the assumption that inorganic natural
resources—“land”—were limited and could not grow in effectiveness in a geometric
ratio. The zero own-rate of growth of land would set the pace for organic food and for
man, so that a stationary population would be reached in a technologically stationary
society.

11-3. GENERALIZED LEONTIEF SYSTEMS
It is time we turned to the more interesting case of several commodities,

interdependently used in producing each other. The problem of optimal allocation of
resources, so trivially simple in the one-good model. now steps closer to the center of
the stage.

11-3-1. The Transformation, or Efficiency Locus. Henceforward we shall operate
under the assumption of constant returns to scale, which frees us from worry about the
distribution of output among competing firms. If we make our time period short
enough and admit enough joint products, we can easily handle both fixed and
circulating capital: we simply assume that a machine tool produces not only fabricated
metal products, but also a one-period-older machine tool.

At any time t, then, there are stocks of each factor or commodity S1(t), S2(t), . . . ,
Sn(t). If convenient, we may count labor as one of these. There will always be one or
more optimal ways of allocating these initial resources among the possible technological
processes of the economy. By “optimal” we mean simply that the next period should
dispose of maximal total amounts of (1) consumption Ci(t + 1) of these same goods
plus (2) further stocks Si(t + 1) of each good to be fed back into the economy as inputs.
These maximal amounts form a production-possibility frontier, or efficiency locus. A
point on this locus has the properties that it is producible from the initial stocks and that
any movement or change to another producible configuration requires us to sacrifice
some of one or more goods.



FIG. 11-9
We may write this transformation locus in the form

(11-21)
A variant interpretation of this locus is that for given initial stocks and given values for
all but one of the Si(t + 1) + Ci(t + 1), it gives the maximum consumption plus
investment possible in the remaining commodity.

In the one-good case of Sec. 11-2, efficiency simply meant not wasting any input. In
the notation used there, we always put xt+1 + Ct+1 = f(xt). If we write this xt+1 + Ct+1 −
f(xt) = 0, we have (11-21) exactly. Thus we are generalizing the Ramsey model.

The transformation locus is subject to constant returns to scale and defines a convex
frontier: the weighted mean between any two frontier points will be on or “inside” the
frontier. This statement, and Figs. 11-9a—c, show the usual laws of diminishing returns
and diminishing rates of substitution obeyed by this locus. In each figure all variables
are held constant except the two whose axes are drawn,

The existence at each t of this efficiency locus is for the moment taken for granted as
a familiar piece of economics. Actually, it is one of the tasks of economic theory—
either by marginal productivity, or linear programming, or some more general analysis
—to deduce the allocation conditions that characterize this locus. We shall shortly have
to cover a little of this ground in the special case of the dynamic Leontief model.

From now on, to make life simple, we shall make believe that there are only two
goods. Even so, we shall have for each point of time S1(t), S2(t), S1(t + 1), S2(t + 1), C1(t
+ 1), C2(t + 1) to worry about. The reader who yearns for generality will be able to see
that all our considerations extend straightforwardly to n goods. Occasional footnotes
will point the way.162

11-3-2. The Leontief Dynamic System.163 The dynamic input-output system is a
straightforward generalization of the static model of the last chapter. Its distinguishing
characteristics are the same: (1) joint products are ruled out; and (2) for each output
there is only one possible activity or technological process, with fixed proportions. As
in the static model, it then appears that no quantitative problems of optimization could



arise (except for the simple problem of whether we should use all of each input—the
problem of inequalities). This is the point of view taken by Leontief himself. Our own
approach will be clearer if we begin in general neoclassical terms and then specialize.

Assume that current consumption of any good Ci(t) is produced as the sole product of
one industry, the ith. We need a new symbol Xi(t) to represent the total flow of output
of the industry in period t. These current flows do not appear in the basic efficiency
locus of (11-21), and we shall show later how they can be eliminated and the whole
argument conducted in terms of stocks. In the meantime, Xi(t) can be used for three
purposes: (1) as consumption for the next period Ci(t + 1), (2) as net addition to the
stock of a particular kind of capital good, Si(t + 1) − Si(t), or (3) as current flow of
materials needed for production in the economy’s two (or n) industries, Xi1(t), Xi2(t),
etc. For example, X12 is the flow from the first to the second industry, and X11 is
internally used flow. There is a balance relation:

(11-22)
The inequality sign would come into play only if the output of an industry were so great
as to surpass any useful purpose, requiring us to dispose (costlessly) of the surplus.

Now how are the current outputs X1(t) and X2(t) produced? Leontief assumes a
production function relating each single164 flow of output to two classes of factor inputs:
flows of raw materials or current inputs, already denoted as X11, X12, X21, X22; and stocks
of capital goods (inventories, machines, buildings, etc.) used in each industry, namely,
S11, S12, S21, S22. As with current flows, the first subscript describes the physical nature
of the commodity concerned, and the second subscript refers to the industry in which
the capital good is employed. Thus S11 + S12 is the economy’s stock of capital in the
form of the first commodity, and (S11, S21) (it would be senseless to add these two
numbers) describes the capital structure of the industry producing the first
commodity.165 In the simplest model these capital stocks are to be thought of as being
present for production purposes, but not as being used up by current production. In
other words, all stocks of capital are being currently maintained; some of the factors
required by each industry may be used not to produce current output, but just to keep
the capital items physically maintained.166

All this said, we can write each current output as a constant returns-to-scale function
of all the relevant inputs:

(11-23)



These production functions may or may not have the smooth marginal productivities of
neoclassical theory. Also some inputs may simply not appear in the production function
of any particular industry. Some variation in timing is possible without changing the
basic structure of the model. For example, in (11-23) we might think of outputs at t + 1
being produced by flows at time t, thus eliminating a kind of simultaneity in (11-23) and
(11-22) which together imply that somehow flow inputs are produced and used up in
the same period.

11-3-3. The Structure of Capital Stock. Before proceeding, we must settle the
relation of the elements of the double subscript Sij to each other and the relation of the
double subscript to the single subscript totals Si. Initially we assume that each grade of
capital Si is homogeneous and nonspecific to any industry.167 Hence the total Si(t) may
be regarded as the sum of the separate allocations of the stock among different
industries, i.e.,

(11-24)
Here an important warning should be sounded. We have written (11-24) so that it can

be an inequality, not an equation. If an inequality is in effect, this means that there is
excess capacity in terms of the capital good in question. Now an inequality, even if it
holds for every t, tells us nothing about the rates of change of the two sides. We cannot
infer from (11-24) that

(11-24a)
where ΔSi(t) means Si(t + 1) − Si(t), etc. If the equality holds and continues to hold in
(11-24), then (11-24a) must be an equality also. But when (11-24) is an inequality, the
two sides are independent and their rates of growth are independent, and either rate of
growth may exceed the other.

Leontief does find it convenient in his first exposition to assume ΔSi(t) to be
nonnegative, so that disinvestment of capital is ruled out for the economy as a whole.
This introduces the “irreversibility” connected with the existence of a maximum
possible rate of disinvestment, as stressed by Goodwin, Hicks, and other modern
expositors of business-cycle theories containing a nonlinear acceleration principle.
Actually, Leontief is prepared to generalize slightly and go on to handle a maximum rate
of disinvestment different from zero. A particularly simple alternative would be the
assumption that gross investment must be nonnegative. Then net investment ΔSi(t) can
be negative so long as it does not numerically exceed the rate of current depreciation of
capital. Since we are not explicitly allowing for depreciation, gross and net investment
coincide as a matter of definitional convenience.



To summarize: We are assuming that ΔSi(t) = Si(t + 1) − Si(t) ≥ 0. However, the
components of any capital item, ΔSij(t), may be of any sign, with capital transferred out
of use in any one industry into any other industry, or into excess capacity.

11-3-4. Fixed Coefficients of Production. As things stand, our economic model is
grossly incomplete. Obviously, the behavior in time of our system will not be
determinate until it has some way of deciding its choices among alternative methods of
production and allocations of available resources. This inevitably involves a problem of
optimization: Given “society’s” tastes, either the “invisible hand,” operating through a
decentralized competitive pricing system, effectuates all such decisions and makes the
outcome determinate; or else some computing intelligence must solve the same problem
by methods of linear programming or calculus. Only when enough efficiency
conditions (marginal equalities and inequalities) are added to (11-22), (11-23), and (11-
24) will our system become determinate.

Leontief tries to avoid all such problems of optimization by assuming fixed
coefficients of production with only one way of producing each output. We can write
down in our terminology these special nonsubstitutability assumptions and see how far
they take us toward pinning the system down.

The Leontief production functions require a fixed minimum amount, say aij, of Xij(t)
for each unit of Xj(t) and a fixed minimum amount, say bij, of Sij(t) for each unit of Xj(t)
produced. The word “minimum” must not be forgotten; under our assumption of free
disposal, production. is limited by the first bottleneck reached. The a’s are flow
coefficients, of dimensionality flow input per unit of flow output. The b’s are capital
coefficients, of dimensionality stock input per unit of flow output, i.e.,
commodity/(commodity/time). Hence, like all acceleration coefficients and unlike the
a’s, the b’s depend on the time unit used: expressed in weeks they yield numbers 52
times as large as when expressed in years.

Leontief’s special production function can be brought into the framework of (11-23)
for each t by saying

(11-25)
where min(a,b,c, . . . ,z) means the smallest of the numbers a, b, . . . , z, and we agree to
omit from the parentheses any term whose aij or bij is zero. Such inputs never limit
production. We can’t draw the complete isoquant surfaces, because each production
function contains four inputs. But if we imagine all inputs but two as held constant, the
equal-output contours appear as in Fig. 11-10.



We can read (11-25) to say

since if X1 is equal to the smallest of these ratios, it certainly cannot exceed any of them.
A similar reading can be given for X2. Now we can get the equivalent form:

FIG. 11-10

(11-26)

with at least one equality holding in each line.168

If a flow or stock is not required at all by an industry, the corresponding an or bij

coefficients will be zero; but these technically given constants are never negative (which
would mean that the “input” is really an output) or infinite. Aside from this, there are no
other restrictions on the capital coefficients. Two industries can have identical capital
structures; some industries may use no capital; others may have heavy requirements.169

The aij flow coefficients don’t get off so easily, however. They must still satisfy the
so-called Hawkins-Simon conditions. These were discussed in connection with the
statical Leontief system in the previous chapter. We recall the interpretation that we
placed there on the Hawkins-Simon conditions: to produce 1 unit of a good must never
require, directly or indirectly (as second- or third- or later-round inputs), more than 1
unit of itself.170 If we were to set all the capital coefficients equal to zero, we could
convert the dynamic system into the older statical system. Naturally enough, if the
dynamical system is to be viable, capable of reproducing itself and at the same time
yielding some consumption flows, the aij coefficients must at least satisfy all the
productivity conditions they satisfied when capital requirements were ignored.
Furthermore, it can be shown that no more stringent conditions need to be imposed on
the a’s, even when there are positive capital requirements. The net yield that provided
consumption in the static model is now divided among consumption and gross
investment.

An alternative and perhaps more realistic way of formulating the model would be to
change the timing a little. Suppose that society has available, at time t, stocks S1(t) and
S2(t) of the two commodities. Instead of imagining, as we do, that the flow inputs are



produced and used up within the production period, we could think of the initial stocks
as having to provide both for the flow inputs and for the capital stocks. Instead of (11-
24) we would then require that Si ≥ Xi1 + Xi2 + Si1 + Si2. The over-all balance equations
(11-22) are unchanged. The main difference between the two formulations is that in this
alternative setup, if the Hawkins-Simon conditions fail to be satisfied by the a’s, the
system simply runs down gradually over time; the initial stocks are eaten into as flow
inputs that the system is too unproductive to make good. Much the same effect on the
meaning of the Hawkins-Simon conditions results if we make output at time t + 1
depend on flow inputs at time t (and provide for flows at t + 1).

11-3-5. The Transformation, or Efficiency Locus Again. Before we reduce the
Leontief system to the efficiency-locus form of (11-21), let us pull together the various
equations and inequalities of the model. All our notation is established. For each t, S1

and S2 stand for the total stock of capital in the form of Commodities 1 and 2; ΔS1 = S1(t
+ 1) − S1(t) and ΔS2 = S2(t + 1) − S2(t) are their rates of growth; X1 and X2 are total
current outputs; and bij and aij are the observable nonnegative unit requirements of the
jth industry for the ith capital and flow inputs.

Finally C1 and C2 are the open-end final consumptions of the two commodities. The
current input flows Xij and the capital-stock breakdowns Sij are now superfluous, for
we have expressed the special Leontief production functions in the form (11-26). We
can then substitute for Xij in (11-22) and for Sij in (11-24). Note that in both cases the
inequalities all flow unambiguously in the same direction. Let us make these
substitutions and recall that the Xi (by their very nature) and the ΔSi (by explicit
assumption) are nonnegative. Then the Leontief dynamic system can for every t be
written:171

(11-27)
We might describe (11-27) as a set of difference inequations; the dynamic element is

introduced by the terms Si(t + 1) − Si(t). At this stage we have parted company with
Leontief himself.172 He insists on equality everywhere in (11-27), no excess capacity
anywhere, and permits himself to do what we are unable to do in (11-24a). Thus he
ends up with a system of difference equations corresponding to (11-27).173 This lends
an air of determinacy to his presentation which we shall find to be logically unjustified
when we return to this point subsequently.

Our objective is to get from (11-27) to the familiar efficiency locus (11-21). This is
essentially just what we did in the static Leontief model. For given amounts of the



primary factor labor, we there eliminated the intermediate commodity flows and ended
up with a production-possibility frontier. This showed the maximal bill-of-goods menu
as limited by the available primary factor. In the dynamic model, at any point of time,
the available capital stocks play the role of primary factors. They are historically given
quantities, and nonaugmentable for the moment, although of course the accumulation of
capital is exactly the process we are studying. Final demand now includes both
consumption flows and net additions to capital stock. We can hope to proceed much as
we did statically, by taking Si(t) and S2(t) as given, and finding an efficient or maximal
set of (C1 + ΔS1,C2 + ΔS2), or [C1(t + 1) + S1(t + 1) − S1(t), C2(t + 1) + S2(t + 1) − S2(t)].
Since and S2(t) are given, we might just as well seek maximal [C1(t + 1) + S1(t + 1),C2(t
+ 1) + S2(t + 1)].

Indeed, this turns out to be nothing but a standard linear-programming problem for
each t. One way to see this is to consider  ,  ,  all as given and
X1(t), X2(t), and S2(t + 1) + C2(t + 1) as variables. The problem is then to maximize

0 X1(t) + 0  X2(t) + 1[S2(t + 1) + C2(t + 1)]

subject to

Of course, for the historically given S1(t) and S2(t), there will be some choices of 
and for which the problem will have no solution. With the given capital

stocks, the system certainly cannot be capable of expanding indefinitely and providing
unlimited consumption in one period of time. But if we run through all admissible
choices of  and  , we can find for each such choice the maximal
producible S2(t + 1) + C2(t + 1). For the given S1(t) and S2(t) we can in this way indicate
the maximal combinations of [S1(t + 1) + C1(t + 1), S2(t + 1) + C2(t + 1)] that are
possible. This collection is nothing but our sought-for efficiency or transformation
locus (11-21).

A more symmetrical procedure is to take any pair of nonnegative numbers K1 and K2

and find the X1, X2, ΔS1 + C1, ΔS2 + C2 that maximize K1(ΔS1 + C1) + K2(ΔS2 + C2)
under the constraints174



By varying the constants Ki we trace out the very same locus. We can then impose our
conventional constraint that Si(t + 1) ≥ Si(t).

Note that, as expected, the current flows Xii and Xij wash completely out of the
efficiency locus. The K’s here play the role of guiding prices, or valuations placed on
the new stocks. The bigger the ratio K1/K2, the more effort will be channeled into
increasing S1, and vice versa. All that really matters is that the future’s capital stock and
consumption are limited by the present’s capital stock.

We can get a very good idea of the shape of this locus by working directly with (11-
27) and doing some manipulating. For example, we can rewrite the first two lines of
(11-27) as follows:

Now we multiply the first inequality by a21 and the second by 1 − a11. Both of these are
positive numbers (the latter by the Hawkins-Simon conditions), so the inequalities
remain valid. This gives us

Now we add term by term to get

[(1 − a11)(1 − a22) − a21a12]X2 ≥ a21(ΔS1 + C1) + (1 − a11)(ΔS2 + C2)

Naturally it is legitimate to add inequalities this way. Finally the coefficient (1 − a11)(1 −
a22) − a21a12 on the left will be recognized as the determinant

and the Hawkins-Simon condition tells us that this too is a positive number. Hence,

Similarly

or, to simplify,

(11-28)
where the Aij coefficients are positive numbers; in fact, these A’s are the very same A’s



that appeared in the static Leontief model (cf. p. 232). We have been working quite
statically except that the terms ΔSi have been added to final demand. Hence Aij is
nothing but the total output of Commodity i needed directly and indirectly to support 1
unit of final demand for Commodity j.175 We could have passed directly from (11-27) to
(11-28) via an appeal to the static model.

Still on the trail of the efliciency locus, let us substitute (11-28) in the second pair of
inequalities in (11-27), noting that the direction of all inequalities is preserved. We find,
after a little regrouping,

which we may shorten to

(11-29)

The B’s are all positive,176 since the A’s and b’s are.177

The inequalities (11-29) are the efficiency relations we want. We can rewrite them
slightly to say

(11-30)
It is easy enough now to sketch the efficiency locus as in Fig. 11-11.

Each of the equalities in (11-29) is a straight line, and the inequality defines the region
under the corresponding line. The first part of (11-29), for example, expresses the
limitation on final demand (consumption plus net investment) imposed by the fact that
there is only a certain amount of capital stock S1 available to the economy. This leads us
directly to the interpretation of the Bij. As can be seen from the original definitions, Bij

represents the amount of Capital Stock i needed to support 1 unit of final demand for
Commodity j, taking account of the fact that secondary inputs also require capital for
their production. Thus the Bij are the summed direct and indirect capital-requirement
coefficients. The second line of (11-29) gives the limitation on final demands imposed
by the availability of S2(t). Producible final demands are those that satisfy both
inequalities, and so we get a polygonal region like that in Fig. 11-11.

The efficiency locus is the solid-line boundary, made up of two “faces” in this simple
case. Along one of the faces, S1 is the bottleneck and the available S2 is not being



completely used. Along the other face, the situation is reversed. At the point L and only
there, both capital stocks are being fully used and there is no excess capacity. Thus the
efficiency locus is defined by (11-29) with the proviso that at least one equality shall
hold. Of course Fig. 11-11 holds as of the given S1(t), S2(t). If these were different, the
locus would be different. It would still be made up of a pair of straight lines with the
same slopes as those shown in Fig. 11-11 [since the slopes in (11-29) depend only on
the B’s]; but the lines would be raised or lowered, depending on whether the
corresponding Si were increased or decreased. For example, if both Si were increased,
the efficiency locus would shift uniformly outward. In fact, if both ΔSi are positive, this
is exactly what will happen in period t + 1.

FIG. 11-11

FIG. 11-12
Figure 11-12 is based on (11-30) instead of on (11-29). Along the axes are measured

Si(t + 1) + Ci(t + 1). Figure 11-11 can be derived from Fig. 11-12 just by shifting the
origin to the given point P[ ,  ]. If we hold to the assumption ΔSi ≥ 0, we are
limited to that part of the plane lying northeast of the point [  ]. One advantage
of this presentation is that we can see two (and even more) points of time on one
diagram. For instance, starting from P, the economy may choose to allocate resources
(capital stocks) in such a way as to go to Q on the efficiency locus. From Q we can
deduct an allowance for consumption C1(t + 1) and C2(t + 1), and this brings us to the
point R = [S1(t + 1), S2(t + 1)], which can be used as an initial point from which to start
the whole process over, with a new efficiency locus. The system has progressed,



efficiently, from P to R. The extension to many periods of time is not so simple as one
might think, and will be the subject of the next chapter.

11-3-6. Cost Imputation and the B Coefficients. By definition, B12 (for instance) =
b11A12 + b12A22, where the b’s are direct capital coefficients and the A’s are total (direct
and indirect) flow coefficients. It takes a total output of A12 units of Commodity 1 to
yield 1 unit of final output of Commodity 2, and this in turn requires b11A12 units of
Capital Stock 1. Similarly, it takes A22 units of the second output to yield 1 unit of final
demand for Commodity 2, and this requires b12A22 units of Capital Stock 1. Thus B12

measures the total amount of Capital Stock 1 tied up in the production of 1 unit of net
output of Commodity 2. Since in this model the capital stocks are the only scarce
resources, the Bij can be interpreted in terms of cost. If the current services of a
particular Si cost (or rent for) ri dollars per unit of time, and if all other capital were free
or were not needed, then the costs of production of Good j would be riBij and in
stationary equilibrium this would have to be the price per unit of Good j.

Now what if each Si had a rent, namely, (r1,r2, . . . ,rn)? Then the total unit costs of
flow Xj would be the sum of all the separate costs; and in equilibrium we would have

(11-31)
provided that both flow outputs could actually be produced without loss.

Thus the price of each flow is imputed back in total to the scarce factors.

In this connection it is interesting to go back to the second linear-programming
problem we used to define the efficiency locus and examine its dual problem (we label
the four dual variables p1, p2, r1, r2 for reasons which will become obvious):

Minimize r1S1(t) + r2S2(t) subject to

Now if we interpret the dual variables as flow prices and stock rents we see that we
have to choose these shadow prices to minimize the rent on the preexisting capital. In
the direct original problem we maximized K1(ΔS1 + C1) + K2(ΔS2 + C2), so that the K’s
were essentially valuations placed on the final demands. The first two dual constraints
say that the shadow flow prices must be at least equal to the corresponding valuation
K’s. If both final demands are positive, we shall have pi = Ki. Now as to the second pair
of constraints: If we rewrite them as



and then perform the same kind of arithmetic we used to get from (11-27) to (11-28),
the result will be

(11-31a)
which is exactly the same as (11-31), except for the inequalities. But if both flows are
positive, equality will hold in (11-31a); and correspondingly, if X1 (for example) were to
be zero, there would be no need for the flow price p1 to equal total factor costs. In fact,
price less than cost would reflect the unprofitability of producing any X1. Moreover, the
duality relations tell us that if production takes place at any point other than L in Fig. 11-
11, one or the other capital stock will be redundant and its rent r will be zero.

These price and valuation aspects of the theory of capital expansion will come up
again in the next chapter.

11-3-7. Balanced Growth in the Leontief System. We return now to the relations
(11-27), which summarize the period-to-period production possibilities of the Leontief
system. These simultaneous inequalities define the transformation locus (11-2). Because
of the special assumption of nonsubstitutability, only simple linear-programming
computations were needed to reject inefficient points. Figures 11-11 and 11-12 showed
the general appearance of the resulting locus.

Note that the inequalities in (11-27) are as important as the equalities. If our initial
stocks S1(0) and S2(0) are prescribed arbitrarily, it may be literally impossible to use up
both. Indeed, holding S1 constant and increasing S2 must ultimately render it redundant,
making a free good of its current services. In that case the transformation locus looks as
in Fig. 11-13. The transformation locus degenerates to the line AB, to which the stock S1

limits net output, and there literally is no point L at which all excess capacity is
eliminated. We would have r2 = 0 and pi = B1,r1, i = 1, 2.

Of course, the stocks of any historical economy are unlikely to take on completely
arbitrary values. So it can certainly happen that all the equalities in (11-27) will hold,
with no stock redundant. There will be a whole region of relative values of the initial
S’s178 which are compatible with zero excess capacities. However, even if some pattern
of production could use all the stocks, the pattern of open-end demand for the C’s and
ΔS’s might still be such as to create a redundancy of one or more stocks.179 In fact, this
is, in a sense, by far the likeliest outcome. We shall then be on one of the straight-line
facets of the locus, and not at the vertex point L in Figs. 11-11 and 11-12.



FIG. 11-13
In the interesting Malthus-von Neumann case in which all consumption is zero (a

“stock” of labor is “produced” by an input of goods and can be treated like any other S),
we can prove that there will always exist one and only one relative configuration of
initial stocks that will permit all capacities to grow at the same percentage rate with no
excess capacity.180 Hence in the special Leontief technology there must be such a mode
of balanced growth. We can go further and prove that this particular positive rate of
balanced growth is the greatest rate of growth of which the system is capable. This
means: Suppose there is an initial configuration of stocks such that the system can
increase each stock at a relative rate at. least equal to X, say, and some stocks at a
greater rate; then λ is smaller than the unique rate of balanced growth described above.
Alternatively stated, every initial configuration can give rise to balanced growth with
excess capacity. All such rates are smaller than the special rate we have described.181

11-3-8. Causal Indeterminacy of the Leontief System. We have proved that every
“normal” dynamic Leontief system has one initial relative configuration that can
continue to satisfy all the equalities of (11-29), and in fact does so by generating steady,
balanced growth. We have also seen that only a very special initial configuration can do
this. We must now point out a rather surprising fact: Leontief systems are as often as not
such that the slightest disturbance of initial conditions away from the razor’s edge of
balanced growth will necessarily result in a growth of capitals that will ultimately either
(1) violate the requirement that Si ≥ 0 or (2) require us to replace by inequalities one or
more of the equalities in (11-29).

A single numerical example will illustrate this result. Suppose a11 = a22 = a12 = a21 = 
 and b11 = b22 = 1, b12 = b21 = 0. Then B11 = B22 = 2, B12 = B21 = 1, and if we insist on

equalities, (11-29) becomes

If we choose initial conditions S1(0) = S1
0, S2(0) = S2

0, these difference equations have a
unique solution:



If S1
0 = S2

0, we are in the maximum rate of balanced growth with S1/S2 = S2/S2 = 
per unit time, and S1(t) = S2(t) forever.182 But the important thing to note is that the
much more rapidly growing component 2t appears with coefficients of opposite signs in
the solutions for S1(t) and S2(t). Thus if S1

0 ≠ S2
0, one of the solutions will contain 2t

with a negative sign, and since 2t gets big faster than  eventually one of the Si must
become negative. For example if S1

0 > S2
0 > 0, a simple calculation shows that S2(t)

would finally become negative for

with t* positive as long as S2(0) > 0.

After this point of time, what shall be the rules of our system’s183 development?
Something must give. We cannot insist that S2 ≥ 0 and that all equalities hold. But
from all that has gone before, it is clear that there is no real economic reason to insist on
the equalities. The path so defined (as long as a path is defined) is just one among many
possible, and efficient, paths. The point of our present discussion is that the dynamic
Leontief system is causally ambiguous, and hence there is no simple way of deducing
the behavior of the system. To repeat for emphasis: Recognition of the prominent role
played by the inequalities in (11-27) and (11-29) reveals the Leontief dynamic system to
be causally indeterminate and incomplete, even if we postulate complete technological
nonsubstitutability.

Leontief’s own procedure, as we have remarked, is to insist on equalities and
determinacy. Numerical examples like ours above indicate that sometimes these
“Leontief trajectories” (defined by always moving to the vertex point) arrive at an
impasse. They insist that some Si < 0, which is contrary to assumption. Even if we
were to relax the assumption and permit decumulation, this would only postpone
trouble, since eventually many Leontief trajectories would lead to some Si itself being
negative and this is clearly nonsensical. Leontief’s solution is to maintain determinacy
and to make his acceleration coefficients bij nonlinear. Since he never permits excess
capacity he can write

To avoid contradictions he makes these equations hold only if X1 and X2 are ≥0.
When any X becomes negative, the corresponding b’s are put equal to zero (no



acceleration on the downswing) with perhaps some allowance for disinvestment via
depreciation. Even so, a peculiar kind of impasse may arise at the moment when this
switch of regimes is supposed to take place.184

From our point of view these “switching troubles” are irrelevant. Figures 11-14a and
b illustrate the causal indeterminacy of the two-good case. Even if the Leontief vertex
point L is in the positive quadrant, the economy must choose among all the alternative
infinity of points on the locus ALB. In Fig. 11-14, from any initial point such as E, the
alternative rates of current growth are indicated by the fanning-out arrows. Society must
choose at what relative rate it would like to invest in the two commodities. It may
choose to increase S1 and S2 in the proportions represented by point C or D. A point
like C or D (or for that matter A or B) may easily be preferable to L, even though idle
capacity may be involved. (Imagine S1 and S2 to be military and civilian capital.) A
similar need for decision making exists in every subsequent configuration.185

FIG. 11-14
In the last chapter we saw how a static Leontief system dispenses with all choice.

There was only one efficient way of producing any given bill of goods. The system
was, so to speak, “locked.” Leontief, by leaping to the case in which all equalities hold,
attempts to achieve the same freedom from the necessity to choose among alternative
efficient dynamic plans.186 We now see that when the system is made dynamic by the
introduction of capital stocks, choice becomes inevitable. There are many efficient ways
of producing specified consumption goods, differing among themselves in terms of the
efficient pattern of capital accumulation implied. Since the historically given initial
stocks play the role of primary factors, which can be increased over time by investment,
there are too many things to economize. No amount of fixity of flow and capital
coefficients can prevent the system from becoming unlocked. We cannot (as Leontief
does) speak of the path of the system from some given initial configuration. There is no
one path without further criteria of social choice.

In the next chapter we shall show how such choice criteria can resolve the causal
indeterminacy of general systems, subject to technological relations of the kind given in



(11-21) or (11-29). Then we shall be in a position to show how a Leontief system’s
efficient paths of development can be defined. We shall give the name “Leontief
trajectories” to the special class of paths or motions in which all the equalities of (11-29)
or (11-30) hold, and we shall later show that they do possess special efficiency
properties in the process of capital accumulation over time. But they share these
properties with an infinity of other motions and take no primacy over these other
efficient paths.

11-4. THE VON NEUMANN MODEL
11-4-1. Alternative Production Processes. The Leontief production technology

cries out for generalization in two ways. One is to permit joint production so that a
single productive activity can have more than one output. The other is to relax the
assumption of a fixed ratio of inputs to output. Both of these generalizations can be
accomplished without affecting the basically “linear” (constant returns to scale and
additivity of the results of separate processes) character of the technology. Actually, the
general-equilibrium model of von Neumann,187 which has both of these generalizations,
was first announced in a Princeton lecture in 1931 and was published in German in
1936. We deal here with the second generalization only, retaining the Leontief
assumption that each process or activity has only one output. This relieves us of the
necessity of keeping track of commodities and activities separately and enables us to
identify each industry or activity with the commodity it produces.188

Suppose that the total flow Xi in any period can be produced by several Leontief-like
production processes. Then Xi = Xi

188 + Xi
(2) + · · · , where the superscripts correspond

to the various production processes. We can represent by [a1i
188,a2i

188;b1i
188,b2i

188],
[a1¡(2),a2i

(2);b1i
(2),b2i

(2)], · · · , the alternative input requirements per unit of output, where
the same meaning attaches to the superscripts, and as before, the a’s are flow
coefficients and the b’s are capital coefficients.

We can’t easily draw pictures of the isoquants of this new production function; there
are too many inputs. And we can’t appeal to the device used earlier in this chapter of
holding all but two inputs constant, because each of the alternative processes requires
the other inputs to be held constant at different levels. To get some visual idea,
however, we can imagine the singular coincidence to have occurred that all processes
for producing Commodity 1 have identical values for two of the four coefficients, say,
a11 and b21. Then, with those two inputs (X11 and S21) held constant at the appropriate
level, we can draw, in Fig. 11-15, the unit-output isoquants of four processes producing
Commodity 1. Since the separate processes are each simply Leontief-type production
activities, we know what their individual isoquants look like (see Fig. 11-10, p. 287),
and we could represent on the graph such numbers as a21

(3) and b11
(2). It is quite obvious

that we can forget about Process 2. This is because it requires more of both inputs X21



and S11 (and by assumption the same amount of X11 and S21) to produce the same output
as Process 1 can produce. Process 1 is always better than Process 2 on sheerly
technological grounds. For only slightly less obvious reasons, Process 4 can also be
disregarded. Process 4 uses less S11 to produce 1 unit of output than does Process 3 and
less X21 than does Process 1. But since we assume constant returns to scale and
additivity, by some judicious weighting of Processes 1 and 3 we can get our unit of
output of Commodity 1 with inputs anywhere we please along the straight line joining
points 1 and 3. And Process 4 is clearly inferior to some such combinations of 1 and 3.
If we rule out all such technological inefficiencies, we are left with the heavy line as our
combined unit isoquant. Anywhere on the oblique portion of this combined isoquant,
Processes 1 and 3 are both in use. The isoquant could have two or more facets on each
of which two different processes are in use.

FIG. 11-15

11-4-2. The Transformation Locus. At every moment of time, each industry must
decide which of its processes or activities to use. This choice involves an optimization
problem, which may be solved by linear-programming techniques. The simplest way of
viewing this optimization problem is the standard Paretian way: given the existing
stocks S1(t) and S2(t), the prescribed rates of consumption C1 and C2, and one (in
general, all but one) of the rates of investment, say S1, choose the nonnegative activity
levels X1

(1), X1
(2), · · · , X2

(1), X2
(2), · · · in such a way as to achieve the highest feasible

rate of investment S2 ≥ 0 in the remaining capital stock. Naturally production
constraints analogous to (11-27), with account taken of the multiplicity of activities,
have to be satisfied. Of course the prescribed consumptions and rates of investment
have to be attainable themselves: it would be possible to set some consumptions so high
that the program can be met only by living off capital; this possibility is still ruled out.
In the familiar neoclassical way we can vary the prescribed rates of investment and trace
out a curve or surface analogous to (11-29), which has the well-known Pareto-
optimality, or efficiency, property.

The same end result comes to pass if we attach a positive “price,” or valuation
constant, to each rate of investment and maximize instead a weighted sum of the Si.



This has the advantage of treating all components of final demand symmetrically and
leading to an interesting dual problem. By varying the valuation constants we trace out
the same efficiency locus as before.

We are thus led to the following problem for each t: Pick nonnegative activity levels
and rates of final output X1

(1) ≥ 0, X1
(2) ≥ 0, . . . , X2

(1) ≥ 0, X2
(2) ≥ 0, . . . , C1 + S1 ≥ 0, C2

+ S2 ≥ 0 such that

(11-32)
and so that Z = K1(C1 + S1) + K2(C2 + S2) is at a maximum.

The reader should see that the first set of constraints states that for each of the two
commodities the currently produced flow—no matter by which activity it is produced—
must at least cover use as current-flow inputs into all the processes of the economy plus
consumption plus addition to the capital stocks of the commodity held in the system.
The second set of constraints says that the use of capital stocks of each commodity by
all the processes of the economy cannot exceed the given stock availabilities.

The solution189 to this linear-programming problem (there is one for each period of
time) will of course depend on the prescribed values of S1, S2, K1, and K2. The K’s are
the valuation coefficients (only their ratio really counts) that can be varied through all
nonnegative values to generate the whole production-efficiency locus.

What will the efficiency locus of this von Neumann model look like? We can get a
good idea by using what we already know about the Leontief system. Suppose we were
to select one process or activity or set of input coefficients for each commodity. This
collection of processes would be a Leontief model, and we know what its efficiency
locus would look like. There are many such Leontief submodels that we could select
from the given von Neumann technology. If there are n1 processes for producing
Commodity 1 and n2 for producing Commodity 2, then there are n1n2 Leontief-type
submodels. Let us superimpose the efficiency loci of all such submodels on one graph,
as in Fig. 11-16, where there are four altogether. Any point on or under any one or
more of these loci is feasible.



This is because the von Neumann technology can behave like a Leontief technology if it
wants to, by suppressing some of its activities. But in general, a von Neumann
technology can do better. It can behave like a combination of any two or more of its
Leontief subtechnologies by splitting its available resources among them. By constant
returns to scale and additivity, this means that any point on the line between two
feasible points is also feasible.190 Filling in this way in Fig. 11-16 we see that the feasible
final output points are those on or under the heavy broken line, and the heavy broken
line is the efficiency locus we seek.

FIG. 11-16
This transformation locus can now have many more corners than it could have in the
Leontief nonsubstitution case; but it will almost certainly have fewer than n1n2 corners.
Evidently the von Neumann model is a halfway house between the single-corner, no-
substitution Leontief locus and the smooth, no-corner transformation locus of
neoclassical theory.191

To relate this feasible set to the linear-programming problem that generates it, we may
observe that the “budget lines”

K1(C1 + S1) + K2(C2 + S2) = constant

form a family of parallel lines, sloping downward to the right. Maximizing such a sum
over the feasible set means finding the outermost member of the family which touches
the feasible set. By varying the slope of the line —(K1/K2) we trace out the northeast
frontier of the feasible set, our transformation locus.

11-4-3. Shadow Prices and the Dual Problem. Exactly as in the Leontief system,
the dual problem to (11-32) will determine nonnegative prices p1 and p2 of the Xi flows
and nonnegative rents r1 and r2 of the capital stocks Si, such that



(11-33)

and so that  is a minimum.

We can make the now-standard remarks about the shadow prices. (1) The optimal
(minimum) value of Z* will equal the optimal (maximum) value Z of total consumption
and capital formation. Thus the entire value of net output is completely imputed back to
the scarce capital stocks  and  . At any nonoptimal configuration, Z* will exceed
Z. (2) No activities have positive profitabilities (which is why optimal imputation
exhausts value of net output and nonoptimal imputation exceeds); activities with
negative profitabilities, as indicated by strict inequalities in the dual, will be at a zero
level in the solution to (11-32); all activities actually used will have zero profitabilities.
(3) If any capital stock is redundant, as indicated by an inequality in the original
problem, then its services will be a free good in competitive equilibrium, and its rent ri

will be zero. (4) In all “normal” indecomposable economic systems, the Xi flows will
never be free goods, and their prices pi will be positive.192 (5) No flow price can fall
short of the valuation placed on consumption and net investment in that commodity.

11-5. A NEOCLASSICAL MODEL
To conclude this chapter we survey very briefly the way in which the basic

transformation locus (11-21) is defined in the case of smooth neoclassical production
functions. The explicit distinction between flow and stock inputs is not usually made in
standard treatments, but otherwise the technique is familiar and we do not dwell Upon
it. The marginal-productivity calculus and Lagrange multipliers replace the linear-
programming setups we have found heretofore.

Our symbols retain the same meaning as before; only now for production functions
we write

(11-34)

and F193 and F2 possess continuous marginal productivities and obey all the laws of
diminishing returns and diminishing marginal rates of substitution. Graphs of sections



of these functions have already been given in Fig. 11-9.

Introducing the valuation constants K1 and K2, our problem now is to maximize K1(C1

+ S1) + K2(C2 + S2) subject to the following constraints:

(11-35)
It would be more exact to write the sign ≤ instead of the sign = in each of these
constraints, as we have done previously. But the tacit assumption is nearly always made
in neoclassical theory that factor proportions are variable over so wide a range that
marginal productivities never fall to zero. Similar satiation phenomena are ruled out in
consumption. Strong assumptions of this kind will assure us that no commodities will
be free and no excess capacity will exist anywhere in the system; i.e., our maxima will
be interior maxima, and all equalities hold.193

We can substitute for X1 and X2 from the second pair of constraints into the first pair,
and then introduce Lagrange multipliers λ1, λ2, μ1, μ2 to form the Lagrangean expression

Now we have to differentiate L partially with respect to the unknowns X11, X12, X21, X22,
S11, S12, S21, S22, C1 + S1, C2 + S2 and set these derivatives equal to zero. This will
yield 10 equations. The six constraints provide additional equations to determine X1, X2

and the four multipliers.

When we differentiate with respect to Ci + ΔSi, we get

(11-36)
When we differentiate with respect to Xij, we get



(11-36a)
When we differentiate with respect to Sij, we get

(11-36b)

Remarkably enough we can think of the Lagrange multipliers as, shadow prices.194 λ1

and λ2 are our flow prices p1 and p2, and µ1 and µ2 are our stock rents r1 and r2.

Equations (11-36) simply say that at our interior maximum, with something of
everything being produced and no idle factors, the flow prices must equal the valuations
placed on final demands.

The first two equations of (11-36a) say that the marginal flow productivity of a
commodity in producing itself must be equal to 1.195 If it were greater than 1, it would
always pay to increase the flow input and get a still larger amount of the same flow as
output. If it were less than 1, it would similarly pay to decrease the input.

The second pair of equations in (11-36a) and all four equations in (11-36b) are
straightforward marginal-productivity conditions. The former say that value of marginal
product of flow input equals price of flow input.196 The latter say that value of marginal
product of stock input must equal rent of stock. It is a useful exercise to see how
inequalities could enter into these conditions, along with the duality interrelationships.
The interested reader can also go through the usual process of eliminating the
multipliers in (11-36a) and (11-36b) by taking ratios, thus stating the optimality
conditions in terms of ratios of marginal productivities or marginal rates of substitution.

Just as before, we can vary the ratio of the valuation constants K1 and K2 through all
nonnegative values and trace out the whole transformation locus. It gives the
nonimprovable combinations of C1 + ΔS1 and C2 + ΔS2 [or S1(t + 1) + C1(t + 1) and S2(t
+ 1) + C2(t + 1)] that can be produced from the initial endowments S1(t) and S2(t). We
see that, when all is said and done, whether we start with fixed proportions, alternative
fixed proportions, or neoclassically variable proportions, society must in all cases
choose among an optimal menu of final outputs: consumptions plus capital formation.
We can rule out the nonoptimal combinations that lie beneath the efficiency locus, but
there still remains a basic choice for every period of time.

In the next chapter we shall make use of the efficiency locus developed here to study
society’s alternatives for consumption and investment programs extending over many



periods of time. We shall see that intertemporal efficiency requires more than the
period-to-period optimality we have studied so far. And we shall find what choices
society has to make to render determinate its path of capital accumulation over time.



12

Efficient Programs of Capital Accumulation

12-1. INTRO DUCTION
The end result of the previous chapter was to supply us with the instantaneous

technological transformation locus (or production-efficiency locus):

(12 – 1)
Most of the time we shall want to use this locus in slightly different form, after it has
been solved for one of the net outputs, say,

(12-2)
These loci have the virtue of being able to include as special cases almost any economic
theorist’s model of capital, e.g., the special point-input, point-output model of Jevons,
the Böhm-Bawerk triangular capital model, the various models involving produced
durable goods (Evans, Lange, and others).

We know already that this instantaneous, one-period locus requires many efficiency
conditions to be satisfied in the background. It might naturally be thought that no more
can be required in the way of production-efficiency conditions than that the system be
operating optimally at each and every instant of time. Consumers or the market would
then decide, via tastes and time preference, how rapidly capital stocks are to grow to
increase future consumption possibilities at the expense of current consumption.

Such a view is short-sighted and incomplete. It overlooks important additional
intertemporal production-efficiency conditions which have received little emphasis in
the literature of economic theory. It is the task of this chapter to elucidate these
multiperiod requirements for optimality and to indicate some of the dual price and
interest implications.

For this analysis we reverse the order of the previous chapter and study the smooth
neoclassical production-possibility schedule first. Afterward comes the Leontief no-
substitution model. This is to take advantage of the economist’s familiarity with
marginal-rate-of-substitution and own-rate-of-interest concepts. The Leontief case will
then be clearer by analogy, and linear programming provides the needed analytical



technique. Throughout this chapter we continue the previous convention of treating the
graphically accessible case of two commodities and of counting time in discrete periods.
The case of continuously flowing time can be handled by the more sophisticated
methods of the calculus of variations in terms of n commodities and capital stocks, but
we do not give this extension here.

12-2. INTERTEMPORAL EFFICIENCY CONDITIONS IN
THE SMOOTH CASE

The transformation function (12-2) can be thought of as derived from neoclassical
production functions in which inputs are smoothly substitutable for each other, obeying
the law of constant returns to scale and the generalized law of smoothly diminishing
returns as proportions are varied. It represents an efficiency frontier in the sense of
giving the maximum obtainable S2(t + 1) + C2(t + 1) for specified capital-stock
availabilities S1(t) and S2(t) and specified carryover S1(t + 1) + C1(t + 1). Because the
underlying production functions have smooth marginal productivities, so will the
transformation function F. Because we banish all scale effects, doubling all the variables
in F will just double the left-hand side. F is a homogeneous function of the first
degree.197

12-2-1. Intertemporal Efficiency Conditions. At any one point of time, F describes
the best menu available to society. But life goes on. Whatever stocks S1(t + 1) and S2(t +
1) are retained will become the inputs to produce a menu for t + 2. We must inquire
whether extending the horizon in this way adds anything not already contained in our
instantaneous efficiency locus. Imagine initial stocks [S1(0), S2(0)] to be given. Imagine
consumption [C1(1), C2(1)] to be specified at whatever level tastes might have decreed.
Then what maximum frontier or best menu of S1(2) + C1(2), S2(2) + C2(2) can we hope
for at the end of two periods? We might just as well take [C1(2), C2(2)] as also specified
and ask for the maximal frontier of capital stocks [S1(2), S2(2)] which we can bequeath
to posterity. It is clear, or experiments will soon show, that there are numerous
alternative time paths of development which do satisfy the instantaneous relations (12-
2) at each period of time and which provide the same profile of consumption, but
which wind up at the end of Period 2 with different amounts of capital. One such path
might easily end up with less of every capital stock than some other path. Obviously,
we must regard such a time path as inefficient, even though it satisfied (12-2) at t = 0
and t = 1. The point is simply this: There are many efficient ways of providing C1(1)
and C2(1), and each way leaves a different composition of capital stocks S1(1) and S2(1).
Some of these capital stocks will be quite inappropriate for the subsequent provision of
C1(2) and C2(2). We must select among the instantaneously efficient time paths only
those whose final stocks cannot all be improved upon.



FIG. 12-1
Figure 12-1a is familiar from the last chapter. For the initial endowment [S1(0), S2(0)]

it shows how much is producible at Time 1, over and above the prescribed
consumption point R: [C1(1), C2(1)]. Figure 12-1b shows the isoquant, or input aspect,
of (12-2). To each point of outputs for Period 2, such as S, there is a concave locus of
minimal required inputs in the previous period, such as KL.

Now note that each and every point on the instantaneous efficiency frontier MN in
Fig. 12-1a will, after Period 1’s consumptions have been subtracted off, be regarded as
an initial input for the output of Period 2. Hence every point such as a, b, and c on MN
generates in Fig. 12-1c a new and different instantaneous efficiency locus such as MaNa,
MbNb, McNc, etc. Intertemporal efficiency means that we want to get as northeast as
possible in Fig. 12-1c. Clearly, to get the most of both goods in this sense we must (and
can) end up on the envelope EF of the separate loci MaNa, MbNb, etc. The fact that
perpetual one-period efficiency can be inefficient over longer periods can now be
illustrated. If society wants commodities in Period 2 in the proportions given by point S
in Fig. 12-1c, efficiency requires that the way station for t = 1 be point b. A path to a,
and thence to S’, violates no one-period efficiency rule, but is inefficient compared with
the path to b and S. Only paths leading to the envelope are efficient.



FIG. 12-2
Anyone familiar with modern economic theory could guess the rule that leads to the

efficiency envelope. He would suspect that marginal rates of substitution must be
proportional in some sense. And he would be right. We shall show presently that a
necessary condition for intertemporal efficiency is the following: The MRS between any
two goods regarded as outputs of the previous period must equal their MRS as inputs
for the next period.

Graphically, this rule is shown by the tangency conditions in Fig. 12-2. Point e is an
efficient envelope point. Why? Because the required-inputs isoquant to e, labeled KL, is
tangential to MN at b. An inefficient point like g generates a requirements locus K‘L’
that intersects MN at a. Observe that by moving along MN from a toward b it would
have been possible to achieve more of both stocks than at, say, d. But d can produce g.
Hence g must be inefficient. This kind of production arbitrage through time is
impossible if the MRS tangency conditions hold.

12-2-2. Analytic Formulation. In terms of partial derivatives the proportionality rule
can be written

or in terms of the derivatives of the transformation curve as

(12-3)
The left-hand side is the slope of MN, the right-hand side the slope of KL (Fig. 12-2).

To derive this all-important marginal efficiency-envelope condition we have to
maximize

S2(2) + C2(2) = F[S1(2) + C1(2); S1(1), S2(1)]

subject to prescribed C1(1), C2(1), C1(2), C2(2), S1(2), S1(0), S2(0), and F[S1(1); S1(0),



S2(0)] – S2(1) – C2(1) = 0. The variables in our problem are S1(1), S2(1), and S2(2). The
last of these disappears because we can maximize F. We can also get rid of S2(1) by
using the constraint. In abbreviated but unambiguous notation, we have to maximize

F[S1
2 + C1

2; S1
198, F(S1

198; S1
0, S2

0) – C2
198] = f(S1

198)

since S1(1) is the only variable left. Hence all we have to do is differentiate with respect
to S1

198 and set f’(S1
198) = 0. With a little calculation we get (12-3).198

We can strengthen our intuitive grasp of (12-3) by juggling it around to make it read

(12-4)
The left-hand side is ∂S2(2)/∂S2(1), a direct own rate of interest in terms of Good 2. It
shows how much more of Good 2 we could dispose of over this period, had there been
a little more of it in the productive “bank” in the previous period. The right-hand side is
a little complicated. It tells us how much more of Good 2 we could have in this period
had we indirectly sacrificed some S2(1) to get more S1(1) (the denominator) and used
the latter to produce more S2(2) (the numerator). The intertemporal efficiency condition
(12-4) says that on the margin the direct and indirect processes must yield the same.

12-2-3. Many Goods and Many Periods. Without going into detail it can simply be
stated that the same envelope rule applies for any number of goods. Any pair of goods
must satisfy the rule (as the reader can prove by holding all but two S’s constant and
going through the previous reasoning). With three goods, this yields two independent
conditions.199 With n goods we select any one as numeraire, pair each of the other n – 1
with it, and derive n – 1 independent conditions, much like (12-3) or (12-4).

It is much more interesting and important to consider optimal programs extending
over more than two future time periods. The two-good case will provide enough
generality. Refer back to Fig. 12-1c. Starting with the initial stocks [S1(0),S2(0)] at P,
and with all consumption points prescribed, we have the efficiency locus for t = 1, and
the envelope frontier EF of goods that the system can have left at t = 2. Now what can t
= 3 provide? Each point on EF in Fig. 12-1c or 12-2 can generate a new instantaneous
efficiency locus in Period 3, as shown by RfSf, ReSe, RgSg in Fig. 12-3a. The best that
society can arrange to do in this period is to reach the envelope E‘F’, a sort of
envelope-to-the-envelope.



FIG. 12-3
The logic is the same for any future period. For t = 4, 5, ... , we wish to reach the

maximal frontier compatible with technological possibilities, consumption profiles, and
initial conditions. Reflection shows that the solution to this problem is given by the
succession of envelopes-to-envelopes-to-envelopes, etc. To see this it is enough to note
that once we have found the maximal frontier for T periods of time, the frontier for T +
1 periods must be the envelope of instantaneous efficiency loci starting from all points
of the T envelope. It can never pay to start from inside the T envelope, it is impossible
to start from outside, and this is the best that can be done from points on it. Figure 12-
3b shows the proliferation of envelopes attainable at each subsequent period from the
initial point P; it is understood that consumptions Ci(1), Ci(2), ... , are specified. It will
bear repeating that only paths which hop from envelope to envelope to envelope have
any claim to efficiency. Once we are off the sequence of envelopes, a uniformly better
point can be found, and hence a uniformly better future. Such an optimal path is Pbexy
... z in the diagram. Pbe‘x’ is inefficient.

The relationship between efficiency envelopes and efficient paths should be
understood. The envelopes could be defined as the loci of successive terminal points on
optimal paths. Conversely, optimal paths are those that go from envelope to envelope.
Each optimal path crosses each efficiency envelope once and only once. Each point on
an efficiency envelope lies on one optimal path (and only one, if we assume
diminishing MRS).

Do we have to find new super-duper envelope rules to cover programs involving
more than two periods? Fortunately not, and the above reasoning shows why. Our
simple envelope rule (12-3) or (12-4) handles all cases! All we need do is replace 0, 1,
2, by t, t + 1, t + 2 and require the equation to hold for all t.

12-2-4. Formal Analysis. The mathematical maximum problem involved is easily set
down. We are given initial stocks S1(0) = S1

0, S2(0) = S2
0; consumptions Ci(0) = Ci

0,
Ci(1) = Ci

200, . . . , Ci(T) = Ci
T, i = 1, 2; and one terminal stock Si(T) = S1

T. Subject to

F(S1
t + C1

t; S1
t – 1, S2

t – 1) – C2
t – S2

t = 0 t = 1, 2, . . . , T



maximize S2
T + C2

T = F(S1
T; S1

T – 1, S2
T – 1).

The variables in this problem are the intermediate capital stocks Si
200, Si

2, . . . , Si
T – 1.

The S2
t could be eliminated by the instantaneous efficiency constraint, and the resulting

function differentiated with respect to its remaining variables S1
200, S1

2 . . . . But this
substitution procedure is lengthy, and here it is best to introduce Lagrange multipliers,
one for each time period, and to write the new expression200 as follows:

Now differentiate with respect to S1
t and S2

t and set the derivatives equal to zero:

Hence,

and dividing one equation by the other we find

or, written out in full, without abbreviation,

(12-5)
t = 1, 2, . . . , T

Comparing this with (12-3), we verify what was said above. The frontier for a T-
period program is defined by the original two-period envelope condition (12-3),
repeated for each two-period stretch. The interpretation in terms of paths moving
always from envelope to envelope has already been given.201

It is worth noting explicitly that (12-5), together with the instantaneous locus itself,



(12-2a)
provides a system of two difference equations for the unknown capital accumulation
programs S1(t), S2(t). Equation (12-5) is of second order—it involves two lags; (12-2a)
is of first order. Correspondingly there are three boundary conditions: S1(0), S2(0), and
S1(T) are prescribed [as are the Ci(t), which play the role of arbitrary functions]. The
dynamic efficiency equations are nonlinear. We shall have to analyze them a bit more
closely later.202

12-2-5. Own-rates of Interest, Flow Prices, and Stock Rents. We have already
given a purely “technocratic” interpretation of the efficiency conditions in terms of
direct and indirect processes of production over time. It is natural to wonder whether a
shadow price formulation is possible, linking up intertemporal efficiency with
competitive market behavior. Such is indeed the case.

Let the money price of a unit of Commodity 1, delivered at Time t, be p1(t) and that
of the second commodity p2(t).203 We also need the concept of the rent per period of
each capital good Si. Thus r1(t) is the rent, for the tth period, of the services of 1 unit of
S1, reckoned in money terms. Likewise r2(t) is the money rent per unit of Stock S2.
These rents are net earnings over and above necessary maintenance and replacement
expense.

Now consider r1/p1, the rent per period of 1 unit of S1 divided by the price of 1 unit
of S1. This ratio is a pure number, or percentage, per unit time. If r1 = 2 and p1 = 20,
then r1/p1 =  and we may say that one period’s use of S1 costs  unit of S1. An
owner of S1, can consume one-tenth of his stock annually, and his rental earnings will
just suffice to maintain his stock intact. In money terms he can consume r1(t)S1(t). If he
wishes to devote all his rents to investment in S1, he can convert money rents of
r1(t)S1(t) into [r1(t)S1(t)]/[p1(t)] new units of S1. Hence his capital stock will grow
according to the rule

(12-6)
From this formula it is clear that r1(t)/p1(t) behaves like an interest rate; it is in fact the
own-rate of interest per period of Good S1.204

The own-rates of different goods need not be equal in equilibrium. In fact, they must
not all be equal if relative prices are changing. Any good whose relative price is rising
will have a low own-rate; any good whose relative price is falling will have a high own-
rate. The fundamental arithmetical relationship between own-rates can be easily worked
out. One dollar will buy 1/p1(t) units of S1. According to (12-6), this will yield money



rents of r1(t)/p1(t) and the stock itself will have a sale value of p1(t + 1)/p1(t) in the next
period. And the same applies to S2. Under competition the net advantages of investing
in the two stocks must be equal; hence,

(12-7)
The extreme-right-hand member shows what would happen to a numeraire good; that
is, r0 is essentially a money rate of interest. Equation (12-7) confirms that appreciating
goods have low own-rates and depreciating goods have high own-rates. If the
equivalence of (12-7) were not realized, an arbitrager could change from one kind of
investment to another, thereby tending to make sure profits and also tending to wipe out
the discrepancies. For example, if r1(t)/p1(t) + p1(t + 1)/p1(t) were to exceed r2(t)/p2(t) +
p2(t + 1)/p2(t), it would clearly pay to convert cash and S2 into S1, to hold the S1

(collecting rents) for one period, and then, if desired, to convert back to cash, or S2.
This would tend to increase p1(t), decrease p2(t), and restore the equality. Anyone will
be content with a lower rent if he can be sure that his stock will be increasing relatively
in value.

12-2-6. Competitive Markets and Dynamic Efficiency. Now let us use what we
know about competitive equilibrium to connect up these price relationships with
technological characteristics. For stock rents we have the usual value-of-marginal-
product equations and for commodity prices we have the usual MRS equations. Thus,
r2(t) must equal the value (at next period’s prices) of the marginal product of S2(t) in the
production of S2(t + 1).

12-8)
The – 1 appears because we don’t want to count the initial increment in S2(t) as part of
its own marginal product. Using subscripts 1, 2, and 3 for partial derivatives with
respect to the successive arguments, we can simplify the notation so that (12-8) becomes
r2(t) = (F3

t+1 — 1)p2(t + 1). Correspondingly, the net marginal product of S1(t) in
producing S1(t + 1) is  – 1, and we get

(12-8a)
Finally, the price ratio p1(t)/p2(t) must under competition equal the MRS between S1(t)



and S2(t) as outputs; hence,205

(12-8b)

(12-8c)
Equations (12-7) and (12-8a – c) are the competitive price and own-rate equilibrium

conditions for a dynamical capital-accumulating system. We shall now show that
together they imply the purely “technological” intertemporal efficiency. conditions
(12-5), which we deduced from entirely nonmarket considerations.

Insert (12-8) and (12-8a) in (12-7) to get

The last term on each side cancels off against the—1 in parentheses. In what is left,
substitute for p1(t) and p1(t + 1) from (12-8b) and (12-8c) and divide out common
factors. What is left is

which is nothing but (12-5). This enables us to assert the following very important
“invisible-hand” principle.

If perfectly atomistic competitors cause resources to be channeled into consumption
and investment programs so as (1) to maximize their current net profits or in any case to
prevent net profits from becoming negative, and (2) to make it a matter of indifference
how further increments of investment are scheduled, then an efficient program of
capital accumulation will result.

This presumes no uncertainty so that ex ante expected prices or rates of change of
prices—which each competitor knows but cannot himself affect—will correspond
exactly to ex post observed prices. Under these strong assumptions of perfect certainty,
where the ex ante future must agree with the ex post past, the whole future pattern of
prices is knowable but each small competitor need know with certainty only the present
instantaneous rate of change of prices.

A glance back at Fig. 12-3b will reduce the relation of prices and intertemporal
efficiency to familiar terms. An efficient capital program is one that hops from envelope
to envelope, like Pbexyz. Now with each such efficient path we can associate exactly
one profile of relative prices, that is to say, draw the successive tangent “budget lines” to



the envelopes at the successive points of the path. As usual the slopes of these tangent
lines will give the relative prices corresponding to this particular path. There are various
ways of verifying this. Perhaps the easiest is to recognize first that competitive current-
profit maximization will necessarily equalize the price ratio and the instantaneous MRS.
This is the content of Eq. (12-8c). But Fig. 12-3a shows the basic envelope relationship
according to which at each point of an efficient path its instantaneous transformation
curve is tangent to (i.e., has the same slope as) the envelope. So the slope of the
envelope will also come into equality with the price ratio.

A geometrically obvious consequence of this is that along an efficient path, at each
point of time the total value of capital stocks p1(t)S1(t) + p2(t)S2(t) is at a maximum at
the corresponding efficiency prices. In other words, if the whole history of future prices
were to be announced initially, entrepreneurs would allocate resources in such a way as
to maximize the current value of their assets at each point of time. But now we come to
a subtle point. Not every time profile of relative prices can lead to consistent behavior in
this way. In fact only price profiles which correspond to efficient paths will work. Any
other price profile will lead to inconsistency of the following kind: a certain capital
program will maximize, say, V(to) = p1(t0)S1(t0) + p2(t0)S2(t0), for the given prices. But
this program will involve S1(t0 – 1), S2(t0 – 1), and earlier capital stocks which do not
maximize V(t0 – 1), etc., at the earlier given prices. In Fig. 12-3b, suppose that prices for
t = 3 are announced which would maximize V(3) at the point x. Then the corresponding
capital program isPbex. But if prices for t = 2 other than those determined by the slope
at e were announced, then V(2) and V(3) could not both be maximized. This
inconsistency does not arise if prices corresponding to an efficient path are announced.
In this case entrepreneurial short-run and long-run maximization coincide.

But we have just finished proving that under full competition only the consistent
case can arise. That is the meaning of the invisible-hand principle. The little-
appreciated fact is that the arbitrage-induced own-rate relations (12-7) have this effect.
They knit successive price ratios together in such a way that only sequences leading to
efficient programs can arise. Thus we needn’t worry about arbitrarily announced time
profiles of future prices. Under competitive assumptions only price ratios obeying (12-
7) are eligible. Under such prices, long-run asset-value maximization and current-profit
maximization coincide. Economic intuition should tell us this. In the example of the last
paragraph, there is a clear differential between a program aimed at maximizing V(3) by
production and one aimed at first maximizing V(2) by production and then by trade at
current prices converting to capital stocks in proportions best suited to maximizing V(3)
in the next period. The function of competition is to wipe out such gaps, and no prices
which permit them can endure.

The reader familiar with the theorems of modern welfare economics will not need to
be reminded that competition guarantees only that some efficient capital program will be



followed. There are infinitely many such time paths, fanning out from initial point P in
Figs. 12-3a and b. One goes through each eligible206 point of MN and continues on so
that one path goes through each point of EF and E’F’, etc. A particular efficient
program is picked out by the invisible hand only if one arbitrary bit of information is
added, e.g., the price ratio at t = 1 (which picks out a point on MN and the
corresponding path), or the price-ratio at some horizon date t = T [which picks out the
point of budget-line tangency on E(T)F(T) and the path leading to it].

Mathematically, this arbitrariness reflects the fact that the difference equations of
intertemporal efficiency (12-2a) and (12-5) were shown to be subject to three boundary
conditions. Competition ensures that the equations will hold, and history provides two
initial conditions. The remaining degree of freedom lets us pick out one more point
through which the efficient path must pass.

The truly remarkable thing about the intertemporal invisible hand is that while it
results in efficiency over long periods of time, it requires only the most myopic vision
on the part of market participants. Just current prices and current rates of change need
to be known, and at each moment long-run efficiency is preserved. But for society as a
whole there is need for vision at a distance. If, for example, it is desired that at t = T
capital stocks should be in some given proportions S2(T)/S1(T), only explicit calculation
will show what prices p2(T), p2(T)207 need to be quoted in order that competition should
lead a myopic market inevitably to the appropriate point on the envelope for t = T.

One interesting sidelight before we leave the subject of intertemporal pricing:
Consider any efficient capital program and its corresponding profile of prices and own-
rates. At every point of time the value of the capital stock at current efficiency. prices,
discounted back to the initial time, is a constant, equal to the initial value. This law of
conservation of discounted value of capital (or discounted Net National Product)
reflects, as do the grand laws of conservation of energy of physics, the maximizing
nature of the path.208

12-2-7. Maintainable Consumption Levels. Having deduced the relations that
efficiency requires we are now in a position to investigate the behavior of efficient paths
under special assumptions about consumption. We might consider (1) the case of zero
net capital formation, with all the productive potential of the system going into
consumption, or (2) the case of zero consumption (labor treated as just another stock)
with all the productive potential going into capital accumulation, or (3) an intermediate
case in which some fraction of available resources is used for current consumption and
the remainder for net investment. Naturally, the more stringent the assumptions, the
more we can say about the resulting paths. In this section we turn to the case 1, in which
capital is just being maintained intact.

By substituting S1(t + 1) = S1(t) into our transformation function (12-2a) we get



(12-9)
This gives a whole frontier of possible consumption combinations that are obtainable
from any given endowment of capital [S1(t),S2(t)]. In fact Eq. (12-9) defines the
consumption-possibility schedule of static economic theory. The capital stocks play the
role of fixed nonaugmentable resources. This consumption frontier is obtainable at the
time t for which the capital stock is prescribed. But more than that, these consumption
levels are steadily obtainable from then on. This is because of our assumption that
capital is maintained intact, neither growing nor diminishing, so that this frontier repeats
itself indefinitely.

Figure 12-4 shows the menu of different consumption bundles available for one
particular stock of capital. Note the infinity of different consumption possibilities: the
ones under the curve are clearly nonoptimal.

In national-income statistics an attempt is made to give a single number which will
characterize the consumption frontier. In real life where the number of commodities,
however aggregated, greatly exceeds two, the national-income statistician is trying to use
a single number—real national product—to summarize what is really a surface of n – 1
dimensions, an (n – 1)-fold infinity of different values.

So far we have been following Leontief in assuming that negative capital formation is
physically impossible. The income statistician cannot make such a simplifying
assumption; he knows that economies can for a short time speed up their consumption
levels at the expense of capital maintenance and replacement. Therefore he cannot
accept any observed amounts of consumption and presume that they fairly reflect the
economy’s real national-product potential. He must make sure that the presupposition of
(12-9) is realized, so that Si(t) = Si(t + 1).; or, if this is not so, he must make appropriate
allowances. Actually, in the simple case in which the flow of consumption is addible to
the stock of capital, the statistician can work with the quantities Ci(t + 1) + S1(t + 1) or
Ci(t + 1) + ΔSi and from them compute his measures of real product. All allowances for
keeping capital intact will then have been made. His task would be somewhat more
difficult, but our analytic task would not, if the transformation curve in (12-2) had been
replaced by the more general and perhaps more realistic one:

S2(t + 1) = f[S1(t + 1); C1(t + 1), C2(t + 1); S2(t),S2(t)]

FIG. 12-4



All our previous analysis of efficiency would hold good except that now ∂f/∂Ci ≠
∂f/∂Si(t + 1). However, note that up to now we have had no need of derivatives like
∂f/∂Ci.

From now on we shall drop the assumption that net investment cannot be negative,
but we shall retain the assumption that consumption and investment flows are additive
and shall at most require that their sum Ci + ΔSi be nonnegative.

Equation (12-9) and Fig. 12-4 summarized the stable consumption possibilities of our
economic system. But they did so without regard to intertemporal efficiency conditions.
As long as we prescribe the arbitrary strait jacket of maintaining every single capital
stock intact, no discretionary power remains to reject inefficient programs and (12-9)
does fairly represent the steady-state consumption possibilities. But it ignores the
possibility of changing the capital structure over time while maintaining steady
consumption levels.

We can restate the problem in a way that does not ever seem to have been done in the
literature of national-income or pure-capital theory. We ask ourselves: Why do we
stipulate that capital be maintained intact? We do it because we fear that letting any
capital shrink in amount will ultimately jeopardize the maintenance of current
consumption levels. If we could be sure that current consumption could be indefinitely
maintained, we would not care what specifically is happening to the various capital
stocks.

Now it is easy to show that most of the consumption levels shown to be possible in
Eq. (12-9) represent definitely inefficient capital programs maintained over time with
zero net investment. If we pick at random one of the feasible consumption levels in Fig.
12-4, someone else can show us how to get still more of every consumption good,
forever.

FIG. 12-5
For any given  , we can expect only one stationary consumption level to be

efficient. For if we are to have Si(t) ≡  and Ci(t) ≡ , and our efficiency conditions
(12-5) and (12-2) are to be satisfied, we must have



(12-10)
Here are two equations. If we take  and  as given, the law of diminishing returns
assures us that we can solve these equations for one and only one set of consumptions 

 . Any other prescribed feasible consumption program must be inefficient.

Just what does inefficiency mean in this context? It means that (1) we can drop the
assumption that each capital be maintained intact; (2) we can permit some stocks to
increase and others to decrease; and (3) we can end up with a program that from now
until kingdom come gives us more of every single consumption flow than the
prescribed inefficient program.

Figures 12-5a and b illustrate this. When Si(t) ≡  we stay at A in Fig. 12-5a and
enjoy steady consumption levels aa and a‘a’ in Fig. 12-5b. By letting S1 increase and S2

decrease to B in Fig. 12-5a we are able to enjoy the heavy-line consumption levels.
Only the asymptotic levels bb and b‘b’ corresponding to B are efficient levels satisfying
(12-10). From A, some quite different consumption levels are efficient (although, when
tastes are consulted, not necessarily desirable).

Any particular composition of capital stocks is appropriate for only one composition
of steady consumption levels, namely, the consumption levels obtained by finding the
efficient path with ΔSi ≡ 0, which gives (12-10), and then solving these equations for 
and  . If, as is overwhelmingly likely to be the case, the given initial capital structure is
not appropriate for the particular desired steady-state consumption program, we can
find the capital structure which is appropriate. All we have to do is solve Eq. (12-10) in
reverse. By disinvesting in one stock and investing in the other, it will be possible
simultaneously to improve consumption of both goods, preserving the desired
proportion, and over time to create a capital structure appropriate for the desired
composition of consumption. As this is done, physical capital is not maintained intact,
but the consumption potential to eternity is maintained and even improved.

In an efficient stationary state, defined by Eq. (12-10), all the own-rates of interest are
equal. [This follows from (12-10) in conjunction with Eqs. (12-8) to (12-8c).] In turn
(12-7) or (12-8b) and (12-8c) then imply that relative prices are constant. If the
economy is capable of capital growth in all its parts—and many economies dependent
on exhaustible resources are not—the common own-rate of interest will be positive. Its
numerical value will differ depending on the exact taste pattern for consumption flows.
Though capable of growth, consumption is so large that the system is stationary.
Consequently the earlier figures with expanding frontier envelopes are no longer
appropriate. Consumption is here so great as to make the envelope be a single
negatively inclined locus passing through the initial  point.



Parenthetically we may remark that positive time preference in the Fisher or Böhm-
Bawerk sense would have to be assumed if a maximizing individual or set of
individuals is to come into such a stationary (efficient or inefficient) equilibrium.

12-2-8. Closed Consumptionless Systems. So much for the case of steady
consumption in a stationary state. Another important and interesting case is that of a
closed system with consumption zero and all production plowed back into capital
formation.

How can consumption be zero and still keep people and horses alive? In the usual
interpretation of Malthus, Marx, von Neumann, and Leontief (who have all studied such
systems) it is “extraneous final consumption” that is zero. The minimum of subsistence,
needed by horses and men to keep themselves alive and productive and willing to
reproduce themselves, is not counted as consumption, but rather is treated as a
necessary cost of production or as intermediate goods used up.209 The stock of horses
and of labor become capital stocks like any other.

Formally all we have to do is put Ci(t) ≡ 0 in all previous considerations. Nothing is
substantively changed, since the consumption flows have been completely arbitrary up
to now. We still have the instantaneous efficiency curve

(12-11)
The concept of intertemporal efficiency keeps all its force; there are efficient and
inefficient ways of accumulating capital. The intertemporal efficiency conditions are still
with us:

(12-12)
Freed of the arbitrary consumption flows we can study efficient programs, i.e.,
solutions of (12-11) and (12-12), in some detail.210

12-2-9. Balanced Growth. Mention of Malthus irresistibly recalls the notion of
geometric growth; and this is all the more interesting since the growth models of Harrod
and Domar are essentially very special cases (fixed coefficients and only one
commodity) of this model or of the one discussed in footnote 2, this page. We can
certainly inquire whether the difference equations of intertemporal efficiency have a
steady-growth solution: S1(t) = S1

0gt, S2(t) = bS1(t) = bS1
0gt. This would imply capital

stocks always in the same ratio S2/S1 = b, both increasing at a rate g — 1 per period. If
we substitute this into (12-11) we find, remembering that F is homogeneous of first
degree,



(12-13)
When we substitute in (12-12) we must remember that the partial derivatives of
functions homogeneous of first degree are themselves homogeneous of zero degree, so
we can simply cross off common factors of all the variables. This gives

(12-14)
In (12-13) and (12-14) we have two equations in the two unknowns g and b. They

are analogous to the characteristic equations associated with linear difference equations
with constant coefficients. If any efficient path happens to be of this special balanced-
growth type, the b and g will satisfy (12-13) and (12-14); and any numbers g and b (not
negative numbers, of course, or we lose all meaning) that satisfy (12-13) and (12-14)
determine a steady-growth efficiency path.

Remember, there are many efficient paths, or solutions to (12-11) and (12-12). Even
if we fix the initial capital stocks, there remains a whole one-parameter family of
efficient paths, because there is one more arbitrary constant at our disposal. We can use
this to prescribe one terminal stock, say S1(T) or S2(T), or we can prescribe the terminal
composition of capital S2(T)/S1(T), or anything else (within reason). Let us take S,(0)
and S2(0) as fixed and historically given. Then we are currently asking whether any of
the many efficient paths into the future are of this especially simple steady-growth type.
Even if some are, it would be coincidence indeed if the particular b should come out
just equal to our S2(0)/S1(0). But balanced growth is an interesting state anyway.

FIG. 12-6
Consider for a moment Eq. (12-13). Its interpretation is simple and is quite

independent of any questions of efficiency. Suppose we start with capital stocks in the
proportion S2/S1 = b/1 and wish to preserve this ratio. Then (12-13) says we can, after
one period, have g of S1 and bg of S2. This is, of course, steady growth for one period.
Graphically Fig. 12-6 shows a one-period instantaneous efficiency locus. We start at P,
with the slope of OP being b. To preserve this ratio we can go to Q. Then OQ/OP = g,



the rate by which both stocks can be expanded. If we start with some other ratio b, we
wind up with some other g (Fig. 12-6 is, of course, completely independent of scale
effects because of constant returns to scale). It is obvious that (12-13) defines g as a
single-valued function of b. For every slope OP we can find the corresponding ratio
OQ/OP. Note that no question of efficiency has entered, beyond the instantaneous kind.

It is natural to wonder what proportions b result in the largest rate of steady growth.
To find out, we have to calculate dg/db and d211g/db211212 from (12-13):

Since b > 0 and F1 < 0, the denominators are positive. We find dg/db = 0 when g =
F3(g;l,b). And when dg/db = 0, we find

since our assumption that F obeys the law of diminishing returns entails F33 < 0. What
does this add up to?

First, among all balanced-growth expansion paths, efficient. or not, the fastest
attainable balanced expansion rate g* and its corresponding stock-ratio b* must
satisfy211

(12-15)

Secondly, we can assert213 that there is only one stock ratio b* which can yield the
maximal rate of growth. We can go slightly further: If we plot g against b, the curve
rises to a maximum at b* and falls away from the maximum forever, on both sides of
b*.

Finally, we have an important connection with efficiency. Euler’s theorem says that
g*b* = F(g*;1,b*) = F1g* + F2 + F3b*. But again from (12-15), g* = F3(g*;1,b*), and
hence,

F1(g*;1,b*)F3(g*;1,b*) + F2(g*;1,b*) = 0

Look at (12-14). We have proved that the maximal balanced-growth path satisfies (12-
14), and of course (like every balanced-growth path) it satisfies (12-13). Hence,
maximal balanced growth, is efficient. If initial stocks should happen to be in
proportions S2/S1 = b*, then among the possible efficient paths is one which involves
steady growth at rate g*. What is more, it can be shown that no other balanced-growth



path is efficient. Balanced growth is possible in any proportions, at some rate
determined by (12-13), as in Fig. 12-6. But except for the special maximal-growth path,
such balanced growth is inefficient. We could find some unbalanced path which would
make both stocks grow faster.

To summarize: Malthus-Cassel-Harrod balanced growth is always possible but always
inefficient, with one important exception. Every composition of capital has its own
possible rate of steady growth. One and only one configuration has the largest possible
rate. Call this the von Neumann rate (since he was the first to study this problem,
although not in these terms). The von Neumann path is always efficient, whenever
initial stocks are in the right proportion. It is the only steady-growth path which is ever
efficient. Of course there are many other nonbalanced efficient paths emanating from
the same initial conditions.

12-2-10. Balanced Growth in the Very Long Run. States of steady growth have in
the past been studied for their own intrinsic interest as a natural generalization of the
classical stationary state.214 From the present point of view we have to ask whether or
not steady growth has any maximum or efficiency significance that sets it apart from
other programs of capital accumulation. Quite clearly no such importance can be
assigned to just any old state of balanced growth. General balanced growth is not even
intertemporally efficient, let alone somehow special among efficient paths.

But maximal steady growth, growth at the von Neumann rate and in its particular
proportions, is special. For one thing, it is efficient. In fact, even more is true. In the
very long run, maximal balanced growth is in a sense the best way for the economy to
expand. We must now make this precise.

Suppose we are at Time 0, technocratically planning a capital program for the distant
future. We already know how to find the intertemporal efficiency conditions which
must govern any such program if society’s capital stocks are to be on the outermost
frontier attainable at the terminal date T. Given the initial capital stock, society must still
choose which of the infinitely many points on the envelope frontier it would like to
reach at t = T. There are at least three ways that it can do this, illustrated in Fig. 12-7.

One way is to specify the desired stock  and then to procure the biggest
compatible S2(T). This defines an efficient path leading from P to Q. Another way is to
prescribe the desired ratio of S2(T) to S1(T). This prescribes the slope of a radius vector
OR, and defines an efficient path leading from P to R, where the radius vector cuts the
envelope (the path will not coincide with OR, which in general will not even pass
through P). Finally, society could attach relative weights or desirabilities or prices p1(T)
and p2(T) to the two stocks at the end of the program and choose a path which
maximizes p1(T)S1(T) + p2(T)S2(T), a procedure which emphasizes the “programming”
character of the problem.



FIG. 12-7

FIG. 12-8
The optimal path would then lead to S, a point of tangency between the envelope and
the farthest-out “budget line.” Because of the traditional downward-sloping, convex
shape of the envelope it doesn’t matter which of these three methods we choose. For
convenience we use the second, the specification of the terminal stock ratio.

Back to our very-long-run program. Society has decided in what proportions it would
like to possess capital stocks at the end of the planning period. The problem is to end up
as far out as possible on a specified radius vector, that is, at a point such as R in Fig. 12-
8.

Now suppose a terrific coincidence had occurred so that (1) OR passed through P,
i.e., the initial stock ratio coincided with the prescribed terminal one; and (2) the slope
S2/S1 of OR happened to be equal to b*, the special von Neumann proportions of
maximal steady growth. Since this kind of growth is known to be efficient, our problem
would already be solved. Society’s best bet would be to perform maximal steady growth
from P to R, along the path PR.215

Such a double coincidence need not detain us. But its analysis suggests the general
proposition illustrated in Fig. 12-8: Take any initial capital structure P and any desired
terminal structure, like the ray OR. Then if the programming period is very long, the
corresponding optimal capital program will be describable as follows: The system first
invests so as to alter its capital structure toward the special von Neumann proportions.
When it has come close to these proportions, it spends most of the programming period
performing steady growth at the maximal rate (more precisely, something close to
maximal steady growth). The system expands along or close to the von Neumann ray



ON until the end of the programming period approaches. Then it bends away from ON
and invests in such a way as to alter the capital structure to the desired terminal
proportions, arriving at R as the period ends.

Thus, in this unexpected way, we have found a real normative significance for steady
growth—not steady growth in general, but maximal von Neumann growth. It is, in a
sense, the single most effective way for the system to grow, so that if we are planning
long-run growth, no matter where we start and where we desire to end up, it will pay in
the intermediate stages to get into a growth phase of this kind. It is exactly like a
turnpike paralleled by a network of minor roads. There is a fastest route between any
two points; and if origin and destination are close together and far from the turnpike,
the best route may not touch the turnpike. But if origin and destination are far enough
apart, it will always pay to get on to the turnpike and cover distance at the best rate of
travel, even if this means adding a little mileage at either end. The best intermediate
capital configuration is one which will grow most rapidly; even if it is not the desired
one, it is temporarily optimal.

12-2-11. Sketch of a Proof.216 We can fairly briefly verify the proposition stated
above, omitting the details. We go back to the difference equations of intertemporal
efficiency, (12-11) and (12-12), and we have to show that their solutions have this
particular property. First we make a change of variable, which has the advantage of
reducing the system to second order and putting the maximal balanced-growth solution
in a clear light. Suppose we define

(12-16)
Thus yt is the capital-stock ratio at time t, and xt is 1 plus the relative rate of increase of
S1. Now we have to make these substitutions in the basic difference equations (12-11)
and (12-12). In (12-11) we divide both sides by S1(t) and use the fact that F is
homogeneous of first degree and that S2(t + 1)/S1(t) = [S2(t + 1)S1(t + 1)]/[S1(t + 1)S1(t)]
= yt+1xt to get

(12-17)
Since the partial derivatives in (12-12) are homogeneous of zero degree, we can divide
each argument by the same number and not change anything. Hence

(12-18)



Observe that (12-17) and (12-18) are a pair of difference equations each of first order.
There are two boundary conditions we can set; if we prescribe S1(0) and S2(0), the initial
stocks, and S2(T)/S1(T), the terminal-stock ratio, we are also prescribing y0 and yT. The
three conditions on the S’s reduce to only two on y.

Suppose xt and yt are both constants. Then according to (12-16), the stock ratio
remains fixed over time and S1 increases at a steady geometric rate. And because S2/S1 is
fixed, S2 also increases at the same geometric rate. In other words, a constant solution of
(12-17) and (12-18) is a state of steady balanced growth in terms of the S’s. Now we
already know that the only steady-growth path satisfying the intertemporal efficiency
condition is maximal von Neumann growth. But (12-17) and (12-18) came from the
efficiency conditions themselves, so we should expect that the only constant solution of
(12-17) and (12-18) would be the von Neumann solution:

This is indeed true. If we put xt = b and yt = g in (12-17) and (12-18) we get

which is nothing but (12-13) and (12-14) all over again. These are the equations used to
define g* and b*. We conclude then that our new equations (12-17) and (12-18) have
only one equilibrium or constant solution, namely, xt = b*, yt = g*, which implies
maximal steady growth for the original system.

The theorem about very-long-run steady growth that we are trying to prove can be
stated as follows: As long as T (the terminal date) is large enough, every solution (xt,yt)
of (12-17) and (12-18) spends a long time with xt very close to g* and yt very close to
b*.

Suppose we take (12-17), write it yt+1 = F(xt;l,yt)/xt, and expand the right-hand side in
a Taylor series around x, = g*, yt = b*, keeping only the linear terms. The result is

By referring back to (12-15) we find that we can simplify this to

(12-19)



(12-19a)
Now we have to linearize (12-18). This is an even dirtier job. Rather than reproduce

the calculations here, we leave them to the persistent reader with the following hints:
After differentiation, one has to use the fact that the derivatives F1 and F3 are
homogeneous of zero degree, so that, for example, F11g* + F12 + F13b* = 0; one also has
to use the assumption that F is smooth enough so that Fij = Fji; and finally one has to
use (12-19a). The end result is

(12-20)
or

(12-20a)
From these linear approximations the qualitative properties we are after can be

deduced. One way is to observe that if the stock ratio yt tends to any finite limit, the left-
hand side of (12-19a) will tend to zero. Then so must the right-hand side, so xt tends to
g*. But then the left-hand side of (12-20a) tends to zero, and so must the right-hand
side, so yt tends to b*.

Another way is to draw a “phase diagram” of (12-19a) and (12-20a) in analogy to the
treatment of differential equations. We measure x on the vertical axis and y on the
horizontal axis. Any solution of (12-19a) and (12-20a) traces out a path in this plane.
These paths turn out to be a family of hyperbolas. The asymptotes are the lines

running through the point x = g*, y = b*. (Because of diminishing returns and
diminishing MRS, F33 and F11 are both negative, so the square root makes sense.)

Such a phase diagram is sketched in Fig. 12-9. It can be verified that the motion is
always in the direction of the arrows. For example, F1 – b* is negative and F33/F11,
positive, so that northeast of the point x = g*, y = b*, where xt > g* and yt > b*, (12-
19a) tells us that yt – b* is decreasing, and (12-20a) tells us that xt – g* is decreasing.
The reader should be certain that he follows this. In Fig. 12-9 we have drawn vertical
lines representing one set of boundary conditions y0 and yT.

It can be verified that movement along the hyperbolas is slower, the closer the
hyperbola lies to the center or singular point (g*,b*). So the inner hyperbolas are the
slowest, particularly in their inner portions. Now let us concentrate on y0 and yT and



imagine T getting larger and larger. It will be seen that the only solution starting at y = y0

and ending at y = yT is one following one of the upper group of nested hyper-bolas.
Further, as T gets larger, the solution passes to lower and lower hyperbolas, which take
longer and longer to get from y0 to yT. But the lower the hyperbola, the longer it spends
near (g*,b*). No matter how the boundary conditions are chosen, the same result
occurs. Even if yT is chosen far to the right of y0, it works. For small T the solution may
be along a lower branch of the right-hand hyperbolas or the right-hand branch of the
lower hyperbolas. But as T gets longer, there comes a time when only the right-hand
hyperbolas will do, and eventually the solution must start at the top and work down one
of the right-hand hyperbolas, and it gets forced closer and closer to (g*,b*). The reader
should practice translating these paths in Fig. 12-9 into paths in a diagram such as Fig.
12-8.

FIG. 12-9

12-2-12. Interest and Prices in Steady Growth. We conclude our analysis of this
neoclassical model with the remark that all our earlier price and own-rate considerations
carry over to this special case in which all consumption is set at zero. Because of
constant returns to scale, all the marginal-product derivatives in (12-8) to (12-8c) remain
constant during a steady-growth process. Then (12-8b) tells us that in such a state
relative prices are constant. Therefore if any one price is held absolutely constant, all
prices must be constant (for example, if there is a produced numeraire).

Assume that this is so. Also let us restrict ourselves to maximal steady growth, the
only efficient kind (and therefore the only kind competition will tolerate). Then
comparing (12-8) and (12-15) tells us that r2/p2 = g*−1, or the own-rate of Commodity 2
is equal to the rate of growth of the system. And now a glance at (12-7) shows that the
own-rate of Commodity 1 must equal that of Commodity 2 (since prices are not
changing), and so it must also equal the rate of growth. And both are equal to the
money rate (or numeraire rate) of interest.

We have by no means exhausted the content of our model. But rather than work out
all its implications, we use the economic insights it gives to study the dynamic Leontief



model from the standpoint of intertemporal efficiency.

12-3. INTERTEMPORAL EFFICIENCY IN LEONTIEF
MODELS

We can now drop the assumption of smooth neoclassical production functions with
well-behaved marginal productivities. What happens if we replace this model of
production with the dynamic Leontief assumptions of fixed flow and capital
coefficients, one process for each commodity, and no joint production? The answer is
very simple: essentially the same things happen as in the neoclassical case!

There are minor technical differences, of course. The instantaneous efficiency locus,
as developed in the preceding chapter, is an angular polygon or polyhedron, with flat
faces and occasional sharp vertexes, or corners. But although no longer smooth, it is the
same general kind of convex frontier we have been analyzing. The successive outward-
expanding envelopes will also behave in much the same way, but they too will have
corners. The trouble with the corners is that there no unique marginal rate of
substitution is defined. For this reason the MRS and marginal-product proofs offered in
the last section fail in the Leontief case. Fortunately linear programming offers a
technique which can handle this situation. Apart from this change in analytical
techniques, it turns out that there is no qualitative difference between the dynamic
Leontief model and the more old-fashioned one we have been studying so exhaustively.
Much the same theorems are true about both.

12-3-1. Graphical Formulation—Envelopes. The basic fact with which we start is
the instantaneous efficiency locus. This was derived from first principles in the previous
chapter, where it was shown that even this basic building block is not a purely
technological given, but already involves some unavoidable optimization. In the
neoclassical case we could express this locus as a smooth function [as in (12-1)]. Now
we have to write it as a set of linear inequalities, which show how each period’s net
output (consumption plus net capital formation) is limited by the preexisting stocks of
capital:

(12-21)
Taking note of the fact that ΔSi(t) = Si(t + 1)—Si(t), we can rewrite this as

(12-22)



The first inequality expresses the limitation on net output due to the scarcity of S1(t); the
second that due to the limited availability of S2(t). Figure 12-10 describes this
graphically.

FIG. 12-10

FIG. 12-11
The distinction between (12-21) and (12-22) turns on whether we use P or O as an

origin. (Also we can deduct the prescribed consumption before drawing the locus, or
include it in the locus.)

This ground we have covered before. Now how about capital programs extending
over two periods or longer? Just as in the smooth case, each point on the locus ELF
represents an efficient one-period program. Moreover, each point of ELF can be the
starting point for the production of period t + 2. Analytically this amounts to putting t +
2 and t + 1 in (12-22), instead of t + 1 and t, and inserting the appropriate values for S1(t
+ 1) and S2(t + 1) on the right-hand side. Graphically this gives rise to a whole family of
one-period efficiency loci, each coming from a different point on ELF. This is
illustrated in Fig. 12-11. But of course we must reject any two-period program which is
not efficient, i.e., which can be improved upon in the sense that some other program
providing the same consumption can end up with more of both capital stocks.

This means that we are interested only in the outward envelope of this family,
namely, the frontier E’L’F’, and only two-period paths which get from P to the
envelope (via ELF) are efficient. Now to consider three-period programs we must draw



one-period loci starting from each point of E’L’F’ (or two-period envelopes from ELF)
and take the envelope of the resulting family. Thus we get E"L"F", and in this way we
can continue for any number of periods.

12-3-2. Linear-programming Formulation. The neatest way of finding an efficient
capital program extending over T periods is to take as given S1(0) and S2(0), to prescribe
all the consumptions Ci(t) from t = 1 to t = T and to find a program that will maximize
K1S1(T) + K2S2(t) among all feasible programs. As usual, K1 and K2 are arbitrary (but
nonnegative) valuation constants. By putting the problem this way we seek on the T-
period envelope a point of tangency with a “budget line.” (If the budget slope happens
to coincide with that of a flat face of the envelope, there will be many such points.) As
we vary the ratio of the K’s (the slope of the budget line), we can trace out the whole
efficiency envelope.

We must of course restrict ourselves to feasible programs, i.e., programs which
satisfy (12-21) or (12-22) at each point of time (t = 0, 1, . . . , T—1), and which in
addition have all Si(t) ≥ 0.217 Thus we are led to what is easily recognizable as a
straightforward (if somewhat grandiose and overblown) linear program (see p. 338). In
all this the consumptions C1(t) and C2(t) are to be taken as given time sequences,
prescribed from outside. Naturally, we shall assume the consumptions to be prescribed
in such a way that there is at least one feasible program. One can imagine higher
consumptions than the system, with its given technological productivity and limited
initial capital, can produce.

In spite of its imposing size (with n commodities and T periods there are nT variables
and constraints), this is just another linear program. In fact it is simpler than most,
because of the way the constraints build down and to the right. Nothing but zeros
appears in (12-23) below the diagonal. This reflects the fact that once, say, Si(3) are in
existence, the earlier history of the capital stocks plays no further part. Their legacy is in
the limited availability of S1(3) and S2(3), and that is all. This is an example of what
Dantzig and Jacobs have called “block-triangular” systems in linear programming, and
many computational short cuts are available.218



For any given K1 and K2, we have defined a whole path of capital accumulation Si(1),
Si(2), . . . , leading up to an optimal S1(T) and S2(T). If we run through all possible
ratios of the K’s, we can trace out in this way not only the efficiency envelope for
period T, but also the whole collection of intertemporally efficient capital-accumulation
paths fanning out from the initial point P[S1(0),S2(0)].

12-3-3. Shadow Prices and the Dual. It will hardly come as a surprise that if we flip
the maximum problem (12-23) on its side we get a related dual minimum problem
whose variables can be interpreted as competitive shadow prices [see Eq. (12-24), p.
338].

Think of the u’s as being shadow prices on the capital stocks at different moments of
time. (More precisely they are discounted shadow values.) Then let us compute the



shadow profits to be earned by producing 1 unit of S1 in period t = 1. The costs are
simply B11u1(1) + B21u2(1), the cost of acquiring at t = 1 an outfit of capital goods
sufficient to produce one unit of S1. We need not worry about current raw-material
costs: the B’s are total direct- and indirect-capital coefficients and include in themselves
all prime costs resolved back into capital costs. Now in period 2 our revenues are
simply u1(2), the shadow value of the unit of Commodity 1 produced, plus B11u1(2) +
B21u2(2), the shadow value of the one-period-older outfit of capital, which we still
own.219 Costs minus revenues (all discounted) turns out to be B11u1(1) + B21u2(1) – (1 +
B11)u1(2) – B21u2(2). The first constraint in (12-24) simply says that this can’t be
negative, i.e., that revenues can’t exceed costs or that profits can’t be positive. We know
a bit more: Any time a particular stock is being held in positive amounts, there will
actually be zero shadow profits earned in producing the corresponding flow. If the
stock is at zero, profits may be negative.220

The quantity to be minimized in the dual problem looks complicated but really isn’t.
What one would expect to find is something like u1(0)S1(0) + u2(0)S2(0), which would
be the imputed shadow value of the initial capital stocks. But we have no shadow prices
for t = 0. Thus the first two terms in the minimand actually do represent this imputed
value, only in terms of the shadow prices for t = 1, which is what makes it look so
complicated. The negative terms in the minimand are easy to understand: from the
imputed value of initial stocks we subtract off the shadow value of the capital tied up in
producing the prescribed consumptions. So the minimand amounts to the net imputed
value of initial capital stock after appropriate allowance for capital set aside to produce
consumption rather than capital growth. The duality theorem of linear programming
then tells us that in an optimal program this net imputed value just exhausts the
maximum “budget line” value of terminal capital stocks K1S1(T) + K2S2(T). Another way
of looking at this is to say that the gross imputed value of initial capital just eats up the
value of terminal capital stocks plus the shadow value of consumption (or, what is the
same thing, the shadow value of the total capital tied up in consumption). In any
nonoptimal program, moreover, the net imputed value of initial capital will exceed the
value of terminal stocks. This is one of the mechanisms by which competitive markets
lead to optimal programs.

Finally, if in an optimal program a capital stock should be in excess supply, so that it
is not fully used up in the production of that period, then its corresponding shadow
value in the same period will be zero.

12-3-4. The Leontief Trajectories. Both in the general neoclassical case and in the
more restricted Leontief model of production, the theory of capital accumulation and
growth over time has been developed in terms of a sequence of optimizing choices. In
fact this is unavoidable. No matter how restricted we make the technological
possibilities of production, once we admit the existence of long-lived capital goods, the



necessity of choice appears. There is a whole frontier of future possibilities from which
society must choose, whether by central decision or decentralized competitive markets
(and a historically given distribution of tastes and incomes), whether optimally or
inefficiently. In this respect our theory differs radically from Leontief’s own and is
more complicated. Leontief insists on equalities in (12-23) where we set only
inequalities. He assumes that resource allocation is always such that no capital stock is
in excess supply, less than fully utilized. In our theory excess capacity may quite
possibly happen, accompanied by a zero shadow price.

In terms of Fig. 12-10, Leontief makes his dynamic system determinate by simply
assuming that from P the economy must move to L, and from L (in Fig. 12-11) to L’,
and so forth. We, on the other hand, simply say that the whole of ELF, and then of
E’L’F’, is accessible to society (although once a point of ELF is chosen, most of E’L’F’
is no longer accessible; the long-run goal governs the initial steps). The special capital
program which requires all capital to be fully utilized we may nickname the Leontief
trajectory, or path.

The first thing to note about the Leontief trajectory is that none may exist. Suppose
society moves, as per instructions, from P to L. Then Leontief says: Draw the one-
period efficiency locus from initial point L and move to the corner L’. And then repeat
the process from L’. But in this way, as we showed in the previous chapter, there is
very likely to come a time when no “next” Leontief corner exists, because to reach it we
would have to violate one of the rules of the game, namely, to decumulate capital. And
even if we permitted decumulation of capital at any rate, this would only postpone the
evil day. Sooner or later, maintenance of all the equalities would require that some
capital stock become negative, and here we must certainly stop. The reader of Leontief’s
pioneer essay will recall how he treats this kind of impasse by so-called “switching
rules.” From our point of view the impasse arises only because of the artificial rigidity
which results from making determinate a system which contains choice in an essential
way. Figure 12-12 illustrates the impasse that may befall a Leontief trajectory, namely, at
L" we would have S2(3) < S2(2), which is ruled out.

FIG. 12-12
But suppose that over a span of T periods a Leontief trajectory does exist. Then it is a

theorem (and not an easy one) that the Leontief trajectory is an efficient path. In other
words, if from given initial conditions it is possible to allocate resources in such a way
as to avoid excess capacity, then it must be efficient to do so. Of course, this only says



that the Leontief trajectory is one among an infinity of efficient paths, and each of the
other efficient paths allows some excess capacity at one time or another. There are some
choices of the terminal-stock ratio or some choices of the valuations to be placed on
terminal stocks which will make the Leontief trajectory appropriate. For other choices,
the Leontief trajectory is just as definitely inappropriate.

There seems to be no simple way of proving the proposition that the Leontief
trajectory, if it exists, is an efficient path. We relegate the proof to a footnote which the
nonmathematical reader will skip.221

12-3-5. Stationary States and Maintainable Consumption. We can if we like
return to the one-period efficiency locus (12-21) and put each ΔS1 and ΔS2 equal to
zero. This freezes both capital stocks, and so the same situation will repeat itself period
after period. If we require all net investment to be zero, (12-21) becomes

(12-25)
where  and  are the frozen levels of the two capital stocks. This yields, in Fig. 12-13,
a frontier of perpetual consumption levels available to society forever and ever.

FIG. 12-13
That such a stationary state can be inefficient is pretty obvious. Suppose society’s

tastes are such that it desires to consume C1 and C2 in proportions given by W. Since W
is not at the vertex, one of the two capital stocks is in excess supply and is not being
fully utilized. Suppose this is S1. Then it would clearly be to society’s advantage to run
down its stock of S1 somewhat and simultaneously build up its stock of S2 somewhat.
This could be done according to (12-21) without sacrificing any consumption and, in
fact, with an increase in both consumptions. Graphically, the VB part of the frontier will
shift parallel to the left as S1 decumulates, and the AV part will shift parallel upward as
S2 accumulates. The intersection V will move upward and to the left until it falls on the
ray through W. The final situation is shown by the dotted lines in Fig. 12-13, with
consumption at W1.



FIG. 12-14
The moral is that not every stationary state is efficient, even if the existing capital

stock is being efficiently utilized. It is still necessary that the efficiency conditions of
(12-23) be satisfied. But in this case the consequences are easy to see.

12-3-6. Closed Growing Systems. Finally we come to the interesting case in which
consumption is zero and all the net productivity of the system is plowed back into
capital accumulation. Technically this case is covered by what has already been said;
since we have treated consumption as arbitrary, we can always set it equal to zero.

The dynamic Leontief technology has essentially the same steady-growth properties
as the neoclassical model. Some of this was established in Chap. 11 (see pp. 295-297).
A Leontief system can expand in any proportions. In Fig. 12-14 we simply go from P to
Q, draw the instantaneous efficiency locus from Q, and go to R, etc.

But in general a path like PQR ... is inefficient. The envelope for t = 2 passes
somewhere northeast of R; it would be possible to find an unbalanced expansion path
definitely superior to PQR . . . .

There is, however, one (and only one) initial stock ratio which has the special
property that its Leontief trajectory is a balanced-growth path; i.e., this initial stock ratio
can undergo balanced growth without excess capacity. The situation is shown in Fig.
12-15.

We already know that a Leontief trajectory is efficient. Since P’Q’R’ is a Leontief
trajectory, we have a case of efficient balanced growth. In fact this is the only balanced-
growth path that is efficient. Moreover, we showed in the previous chapter that this
special steady-growth rate was faster than any other possible steady-growth rate.
Comparing Figs. 12-14 and 12-15, we would have O’Q’/O’P’ > OQ/OP. This special
steady-growth path has all the same distinguishing characteristics as the “von Neumann
path” that we studied earlier. Indeed the correspondence is quite exact.



FIG. 12-15
The maximal-steady-growth path plays the same role in the Leontief technology as in

the neoclassical. If we are optimizing over a sufficiently long run, all efficient paths of
capital accumulation have the following property: They first transform the initial capital
structure into one approaching the maximal steady-growth proportions; they then spend
a long time performing approximate maximal steady growth; and then at the end of the
period they bend away and grow into the desired terminal proportions.

More could be said on this subject, but although the terminology and methods of
proof would necessarily differ, the economic consequences would be essentially those
already described in the corresponding discussion of the neoclassical model of
production, particularly with reference to the shadow-price consequences.

The reader familiar with matrix algebra should study in detail the consequences of
maximal steady growth for the dual problem. In particular, equality in the dual
constraints (as employed in our proof that Leontief trajectories are efficient) yields a
special set of shadow prices, proportional to u+, which represents the competitive
equilibrium price configuration for the steadily growing Malthus – Cassel – von
Neumann – Harrod economy.222



13

Linear Programming and the Theory of General
Equilibrium

The linear model of production has other uses besides its obvious one as a practical
way of computing solutions to practical maximum problems. It doubles as .a useful
theoretical tool, a convenient way of idealizing the production and profit-maximizing
side of a model designed for answering abstract economic questions. The purpose of
this chapter is to exhibit linear programming in this role, describing production
possibilities in the theory of general economic equilibrium. Section 13-1 will discuss
some preliminary and general connections between linear programming and general
equilibrium. Section 13-2 will set out in detail a specific model of a competitive
economy, which we may call the Walras-Cassel model. The following section shows
what modifications in the original model are suggested by the natural requirement that it
should possess an economically meaningful equilibrium solution, and in Sec. 13-4 we
show how a proof that such a solution exists can be carried out using the theory of
linear programming. Section 13-5 contains a brief reference to some recent literature
and relates the earlier considerations to more traditional models of production. Finally,
the chapter concludes with a similarly quick survey of the dynamical (but again linear)
general-equilibrium system of von Neumann.

13-1. EQUILIBRIUM THEORY AND LINEAR
ECONOMICS

The systematic study of linear models of production, under names like input-output,
linear programming, and activity analysis, is a fairly recent development. But this way
of idealizing society’s production process has a long and respectable past in the history
of economic doctrine.

One of the examples used in Chap. 2 to introduce the concepts of linear programming
was the Ricardian theory of comparative cost. Textbooks of international trade still
devote detailed analysis to the case of constant costs, where society’s production-
transformation schedule is a straight line in the case of two commodities or a plane or
hyperplane in the case of three or more.

For some purposes it may be convenient to ignore the fact that goods are made from
other goods.223 Then society can be thought of as having a set of production processes
or activities, one for each commodity. Each activity converts a unit of labor into a given



amount of a particular commodity. These particularly simple activities can be expanded
or contracted with constant returns to scale and do not interact with each other except
by using up the common resource.224 In short, the Ricardian model of production is a
member of the linear-programming family, old in years and relatively lacking in
complications.

International trade provides one of the first examples of general-equilibrium analysis
in economics, and in this spirit Frank Graham generalized the Ricardian model to the
case of many countries and a simplified world-demand schedule. In this more difficult
situation the nature of the world-trading equilibrium and even its very existence are far
from obvious. But these problems have lately received a more exact working-over, and
the formal tools are exactly those of linear programming.225

But the constant-cost model is, after all, only a special case, even within the general
linear framework. There is no reason why we should not consider society’s production
potential as subject to two or three or more resource limitations. When we do this, as in
Chaps. 6 and 11, we get a case intermediate between the straight-line constant-cost
schedule and the smooth convex transformation curve of neoclassical theory. We get a
transformation curve which is a polygon, made up of several flat linear stretches,
changing direction at corner vertexes. It is easy to see how this comes about. Each single
resource limitation, taken by itself, determines a straight-line constant-cost
transformation schedule. But all limitations must be satisfied simultaneously; hence we
must always look for the most restrictive limitation. The flat portions of the production-
possibility curve occur at output proportions for which a single resource constraint is
binding. At a vertex or edge there is a changeover; a new constraint becomes binding
and the old one ceases to be. Of course some constraints are always redundant; these
correspond to resources which are absolutely abundant and will be free goods no matter
what the pattern of tastes and output.

This is the model of production used by Walras in the first and second editions of the
Éléments d’économie politique pure.226 The famous coefficients of fabrication are
defined as “the respective quantities of each of the productive services which enter into
the production of a unit of each of the products.” As this definition indicates, Walras for
the most part finesses the problem of intermediate goods and operates as if production
transformed ultimate resources directly into final commodities. But he mentions (p. 233)
the existence of produced means of production and shows how they could be
accommodated into his scheme by what amounts to the solution of a set of
simultaneous linear equations of the Leontief type.227 We shall return to this question
later on when we take up the Walrasian system in detail.

Even while he worked with a fixed-coefficient model Walras had a more general
situation in mind. He mentions in the second edition that he takes the coefficients of
fabrication as given only for convenience, that of course technical substitution is



possible, that the coefficients depend on the prices of the factors of production. In fact,
in the third edition he goes over to variable coefficients of fabrication, to be determined
by a cost-minimization process as unknowns of the general-equilibrium system.

Now there are two things to be said about this. The first is that by continuing to speak
of coefficients of fabrication (inputs per unit of output), variable as factor proportions
change but fixed as output changes, Walras maintains the assumption of constant
returns to scale. In fact, the assumption is a vital one if he is to be able to talk about the
outputs of various commodities without worrying about the allocation of output among
firms.228 Secondly, the mere possibility of substitution of one input for another, of
alternative processes of production, to be selected according to some criterion of
minimum cost or maximum profit, does not at all take us beyond the scope of the
linear-programming model. In fact, in Chaps. 2 and 6, the choice of which of the
available production processes are actually to be used is the essence of linear
programming. Given the basic assumptions of constant returns to scale and the
additivity of the various processes, the production-possibility frontier for society is still
the broken-line convex polygon we have come across before. It is only when we insist
on infinitesimal substitution, on continuously varying marginal rates of transformation,
on sensitivity of factor proportions to all price variations no matter how slight, that we
have to give up the polygonal frontier for the neoclassical smooth curve.229

Cassel,230 the popularizer of the Walrasian system, went unequivocally back to the
fixed-coefficient model and also introduced some further simplifications, to which we
shall return.

Before going on to formulate a simple general-equilibrium system in the linear-
programming vein, it is worth wondering what kinds of questions can usefully be asked
of such a model. Or more precisely, what questions can be asked that cannot be
answered by less ambitious models? It seems apparent that a system which leaves many
supply and demand functions (or the utility and production functions which lie one step
further back) almost completely unspecified as to shape can yield only incomplete
results. If we ask the Walrasian equations what will happen to the price of Commodity
A if the supply of Factor T shifts to the right, the answer we get is literally the
disappointing “That depends”—depends on the shape of just about every schedule
appearing in the equations of the system. To learn any more would require drastic
simplifying assumptions or numerical knowledge of the schedules or, more likely,
both.231

Actually, in connection with abstract Walrasian systems, the main question that seems
to have been studied in the literature has to do with the existence of an equilibrium
solution to the collection of equations and with the uniqueness of the equilibrium if it
exists. If we add some dynamical assumptions describing the response of price and
quantities to disequilibrium situations, then we can also study the stability of possible



equilibria.

Walras was aware that these were legitimate and important questions and believed
himself to have done much to settle them. But his remarks on this score were far from
rigorous, and satisfactory treatments were given only much later. For example, Walras
dismissed the question of existence of an equilibrium (and occasionally also its
uniqueness) by showing carefully that his system contained exactly as many equations
as unknowns to be determined. But, contrary to what generations of beginning
economic theorists have been led to believe, equality of the number of equations and
the number of unknowns is neither necessary nor sufficient for the existence of a
solution (let alone a unique solution) to a system of equations.

It takes only a little reflection to see this. The example x2 + y2 = 0 shows that one
equation in two unknowns can have a unique solution, namely, x = 0, y = 0. The
example x2 + y2 = ± 1 shows that one equation in two unknowns can have either
infinitely many solutions or none at all. The system xy = 10, x + y = 1, two equations in
two unknowns, has no solution in real numbers (all that matters here). The system x − y
= 4, xz = 0, z log (y + 5) = 0, three equations in three unknowns, has infinitely many
solutions. Evidently a detailed analysis of a system of equations is required before we
can pass judgment on the existence of solutions and their number. Equation counting is
not enough.

In the case of economic equations this care is all the more necessary because there are
some additional, usually unspoken, restrictions on the solutions. To be meaningful,
numbers which are to serve as prices and quantities must be nonnegative. Even if we
are willing to relax this restriction for prices of some commodities, it can hardly be
evaded when we deal with the quantities and with the prices and rents of productive
services. Now there is never any guarantee, just from equation counting, that if one or
more solutions exist, they will contain only nonnegative numbers where nonnegative
numbers are required for economic sense.232 The reader can easily construct examples
to illustrate this. The fact that linear-programming analysis takes explicit account of
nonnegativity and inequality restrictions hints that these methods will prove useful in
this field.

One might ask why all this bother about the existence of an equilibrium solution to
the Walrasian equations. If there is anything clear about the real economic world, it is
that it exists, it functions. The dynamic super-equations that really in some Laplacian
way describe the economic system must have a solution. But to reason this way is to
miss the point. In the first place, it is not so clear that the ever-changing, imperfect,
oligopolistic world has a statically timeless, frictionless, perfectly competitive
equilibrium. In the second place, we can’t blithely attribute properties of the real world
to an abstract model. It is the model we are analyzing, not the world. We wish to use the
model or parts of it for studying real economies. It is important to know whether this



collection of supply-and-demand relations really captures what is important about
economic systems. One test is provided by the existence problem. Just because no real
existence problem can occur, a system of equations whose assumptions do not
guarantee the existence of a solution may fail to be a useful idealization of reality. This
may be a minimal test, but it is a test with some cutting power. It will subsequently turn
out that the simple Walras-Cassel model does have to be modified to assure the
existence of solutions.233 The study of inconsistent systems may indeed be useful
precisely because they direct our attention to the sources of inconsistency and display
them in a new light. And on the technical side, the pursuit of the existence problem
leads to new analytical tools and focuses attention on neglected aspects of the structure
of general-equilibrium systems.234

13-2. THE WALRAS-CASSEL MODEL
In this section we shall formulate a simple version of the Walras-Cassel general-

equilibrium system and look into some of its properties from the activity-analysis point
of view. Then in the next two sections we shall show how the theory of linear
programming can be used to obtain a proof of the existence of a competitive
equilibrium.

Consider an economy with n commodities and m resources or factors of production.
Let ri be the amount of the ith resource supplied and let xj be the amount of the jth
commodity produced. Technical production possibilities are characterized by mn fixed
numbers aij, representing the physical amount of the ith resource used up in the
manufacture of a unit of the jth commodity. Thus aij is an input coefficient235 of the
Walras-Leontief type.

Producers of the first commodity then demand ai1x1 units of Resource i, producers of
the second commodity will demand ai2x2, and the total demand for the ith resource is
then ai1x1 + ai2x2 +    + ainxn. Putting supply equal to demand for each resource, we get
m equations:

(13-1)
Now we need price variables, m + n, in all. Let p1, . . . , pn be the prices of the

commodities and υ1, . . . , υm the prices or rents of the services of the m resources or
factors. The market-demand equations for the commodities can then be written



(13-2)
The factor prices appear in the demand functions to allow for changes in demand

induced by shifts in the level and distribution of income.236 Doubling or halving all
commodity and factor prices will leave each household’s real position the same, and so
will not affect individual or market demands. Technically, all the demand functions Fi

are homogeneous of zero degree.

Since we are dealing with long-run competitive equilibrium, another set of conditions
states that the price of each commodity must equal its unit costs. Since intermediate
goods are washed out, unit costs consist of payments for resources. . Per unit of
Commodity 1, for instance, resource requirements are a11 units of the first resource, a21

units of the second, etc. Thus we get n equations:

(13-3)
All that is needed now to round out the Walras-Cassel system is some consideration

of the supply of resources. Quite generally we can suppose that the offer of resources
depends on the market prices of all the productive services and in addition on the prices
of final commodities. Our last set of equations is

(13-4)
m in number.

Like the demand functions (13-2) these supply functions237 have to be homogeneous
of zero degree. Even more can be said. Each household’s demands and supplies are
subject to a budget constraint which says that outlays on goods equals income from
factor services. Since this is true for each household separately, it is true for the
aggregate. Hence the market supply and demand functions are not independent.

They satisfy an identity,



an identity in the commodity and factor prices. This has been christened Walras’ law.
Actually, because of the constant-returns-to-scale nature of the technology we can
deduce this exhaustion-of-product relation as an equilibrium condition from (13-1) and
(13-3).238

Sometimes it is expositionally convenient to do as Cassel did and assume that the
factor supplies ri are constants given by nature. That is equivalent to saying that the
supply functions (13-4) are perfectly inelastic with respect to all the prices. No
additional difficulty of principle occurs when we let factor supplies be elastic, but often
no essentially new point of economic interest is illuminated either, and mathematical
difficulties are created to boot. When convenient, we shall treat the simpler case of
given resource amounts first and then show how the argument can be extended to the
general situation.

Summing up, in (13-1) to (13-3) we have 2n + m equations for the 2n + m unknowns
xj, pj, and υi (with the ri given). If we add the supply relations (13-4), the number of
equations is increased to 2n + 2m, and we acquire the m additional unknowns ri. At this
point we have to do something about the absolute price-relative price dichotomy.
Walras’ law tells us that (13-2) and (13-4) really contain only m + n — 1 independent
equations. The demand and supply functions are such that if all but one of these m + n
equations are satisfied, the last one must be. But even as we lose one equation we lose
one unknown. For suppose we have found a solution and we proceed to multiply all the
prices (p’s and v’s) by the same constant. Nothing changes in (13-2) and (13-4) because
the demand and supply functions are homogeneous of zero degree. Nothing changes in
(13-1) because the prices do not enter. And (13-3) also continues to hold, since both
sides will simply be multiplied by the same constant. As every economist knows, this
“real” system determines only relative prices; the absolute price level is at our disposal.
The Walrasian way of handling this is to choose one commodity, say the first, as
numeraire. We can then arbitrarily set p1 = 1 and thus reduce the number of unknowns
by one. In effect we solve for relative prices, relative to the price of the numeraire.
Walras even omits the demand equation for x1 from (13-2) and determines x1 by the
equation

1  x1 + p2x2 +    + pnxn = υ1r1 + υ2r2 +    + υmxm

We shall not do this. Instead it will prove convenient to leave the equations as they
stand and to keep in mind that we are free to subject the “absolute” prices to one
reasonable condition. For instance, instead of setting p1 = 1, it may be more helpful to



set

p1 + p2 +    + pn + υ1 + υ2 +   + υm = 1

This is a condition without any apparent economic meaning, but it is clear that if we
like, we can find an absolute price level that will satisfy this condition. In any case, the
addition of one such “normalizing” condition preserves the equality of the number of
independent equations and the number of unknowns. By now the reader should realize
that we cannot simply conclude from this that the Walras-Cassel system has a solution,
still less that it has exactly one solution, or that it has an economically meaningful
solution with all the prices and quantities taking on nonnegative values.

13-2-1. Intermediate Goods and Alternative Processes. Before making a closer
analysis, let us digress to see how intermediate goods and alternative production
processes fit into the framework of the system (13-1) to (13-3) or (13-1) to (13-4). It is
particularly easy to handle intermediate goods in the simple case of Leontief-type
production functions: only one process per commodity and no joint production. For
then we can proceed exactly by way of the Leontief recipe as given in Chap. 9 or 10.
Define new variables yi, the final output of Commodity i, the net national-product
contribution of the ith commodity; that is to say, net out the intermediate-good
component from xi, leaving the bill of goods only. The yi are the appropriate variables
to appear in the demand functions. In Chap. 9 it was shown that in the case of the
Leontief system total output xi can be expressed as a linear combination of final
demands. We know there are nonnegative constants Aij such that239

xi = Ai1y1 + Ai2y2 +    + Ainyn i = 1, 2, ... , n

Now Eqs. (13-1) still stand, for resource use depends on total, not final, output. But in
(13-1) we can substitute for each xi its linear expression in terms of the y’s. The first
equation of (13-1) becomes

The same goes for every equation of (13-1). We get a new set of m equations just like
(13-1) with the a coefficients replaced by new c coefficients which can be computed
from the a’s and the Leontief A’s. We have, namely, cij = ai1A1j + ai2A2j +    + ainAnj.
Obviously the c’s, like the a’s and A’s, are nonnegative. The cost-covering equations
(13-3) must now show that the price of each commodity is just equal to its unit resource
cost, including the resource cost of the intermediate commodities consumed in its
manufacture. The reader can easily convince himself that to accomplish this it is only
necessary again to replace the a’s by the new c’s. The end result is that we have new
equations just like (13-1) to (13-4), with new but qualitatively similar coefficients, and



the total outputs x replaced by the final outputs y everywhere, even in the demand
functions. Thus the existence of intermediate goods does not alter the model at all.240

When we come to the general linear model of production, things are not so easy. We
have three complications to allow for: (1) intermediate goods, (2) joint production—
more than one output to a single process, and (3) the existence of alternative production
processes. Of these, only the last really makes a difference, but it makes enough of a
difference to prevent us from reducing this general case to exactly the Walras-Cassel
equations (13-1) to (13-4). It is possible to formulate the general linear case so that it
comes out very much like the Walras-Cassel model, and just about everything we shall
subsequently say about the latter carries over directly. We shall not take time here to
discuss the general case, because to do so would involve a lot of extra notation for
which we have no real need. Instead we can take a couple of paragraphs to see why the
Walras-Cassel formulation is not quite general enough to encompass the triply
complicated linear model.

The reason is fairly simple. Because of the last two complications mentioned, we
have to distinguish between processes and commodities. A process is a fixed-
proportion, divisible, constant-returns-to-scale method for turning resources and some
commodities into other commodities. We could introduce new numbers, say kij, to
represent the output of Commodity i from Process j operated at unit level. If i is a net
input to Process j, kij will be negative. We can let our old xj represent the level of
operation of the jth process—there are n processes altogether. Let us say there are s
commodities (not resources). Generally there will be many more processes than
commodities, and this is the nub of the matter. Equations (13-1) will still hold: process
levels determine the demand for resources. But (13-2) needs to be modified. There is no
final demand for activities as such. Final demand is for commodities. So we need
symbols to represent commodity outputs, and these would appear as the left-hand
variables in (13-2), as functions of commodity and factor prices. Then (13-3) would
need a slight modification: in competitive equilibrium the resource cost of a process will
have to equal the “net value added” of the process: value of commodity outputs minus
value of commodity inputs.

It almost seems as if we have succeeded in doing what was just said to be impossible
—putting the general linear case in Walras-Cassel form. But we haven’t, and the tip-off
is that different variables appear in (13-1) and (13-2). The former contains activity
levels, the latter commodity outputs. It is easy enough to compute commodity outputs
from activity levels—add up the process outputs of any given commodity. But it is
impossible straightforwardly to compute process levels from commodity outputs. There
are more processes than commodities, and the same bundle of commodities can be
produced in many ways. Which way it will be produced depends on a cost-minimization
process which is not yet written into our equations. The closest we can come is to
express each commodity output in terms of all the process levels and put this expression



on the left-hand side of (13-2), which would now read

Certainly this is enough like the Walras-Cassel equation (13-2) to make it plausible that
nothing terrifically new is involved [the modification to (13-3) is even less vital]. This is
not to blink at the fact that the more general model is genuinely more general. It forces
the issue of choice among activities. But still, if we can handle the simpler model, we
are more than halfway to mastering the more complicated one.241

13-3. EXISTENCE OF SOLUTIONS
With an eye to the existence of solutions let us consider the system consisting of the

market equations for factors (13-1), the demand functions for final goods (13-2), and
the price-equals-unit-cost equations (13-3). We delete the factor-supply functions (13-4)
temporarily and consider the factor amounts as given quantities. In this simple case, one
possible obstacle to the existence of a solution sticks out at first glance. The subsystem
(13-1) consists of m linear equations, one for each resource, in n unknown commodity
outputs. Now it is possible to lay down fairly simple rules which determine when m
linear equations in n unknowns possess a solution, and if so, how many.242 One of these
rules states: If m, the number of resources and equations, exceeds n, the number of final
goods and unknowns, then Eqs. (13-1) will possess no solution unless the coefficients
aij and the factor supplies rk stand in a very special relationship to each other. Since the
a’s are supposed to represent technological constants and the r’s the existing,
inelastically supplied, factor supplies, there is no reason to expect any such good
fortune. We must conclude that if m > n, the Walras-Cassel system as we have written it
will in general have no equilibrium solution.243 Suppose there is only one commodity, a
unit of which is produced by 1 unit of labor and 1 unit of land. If the available supplies
are 2 labor and 1 land, how can Eqs. (13-1) be satisfied and all of both factors used?

There are ways around this obstacle. In the first place, the constancy of factor
supplies was an assumption of convenience, and if it leads to difficulty, it must be
abandoned. This converts r1, . . . , rm into variables and removes the immediate
problem. It is no sure cure, however, as we shall later see. To be realistic we would
have to admit that some factors are inelastic in supply and that the quantities supplied of
others can’t be made to vary with complete freedom (for example, there may be a
minimum below which supply will not fall even at zero price). It is quite conceivable
that some valid factor-supply functions would still leave (13-1) incapable of solution.
Actually we shall later evolve a different kind of modification of (13-1) which will
guarantee a solution even in the case of given factor quantities.

Another possible way out of this impasse is to give up the fixed-coefficient



assumption and permit the aij to vary as functions of factor prices. Actually this would
add very little economic generality to the model. Remember that with minor alterations
the model could be interpreted as already involving alternative production processes for
the same products; i.e., variable coefficients. As remarked in the preceding section we
must then think of n not as the number of final goods but as the number of processes.
This makes it less likely that we shall find m bigger than n, so that the problem we are
now discussing is less likely to arise. By going over to the familiar smooth production
function we in effect create an infinity of processes, so that m can never be bigger than
n. The outward sign of this would be the appearance of factor prices as new variables in
(13-1). As before, this kills the problem in its present form, but is not by itself sufficient
to ensure the existence of meaningful solutions. In the example at the top of this page
we could let the ratio of labor to land in production vary as freely as it likes between 0.5
and 1.99. It would still be impossible to satisfy (13-1). In any case, we want to pursue
the implications of the activity-analysis model of production, and so we shall continue
to treat the a’s as constants. There will be a little more to say about smooth
transformation functions subsequently.

Taking Eqs. (13-1) literally, let us ask exactly what they state, in economic terms.
They require that the demand for each resource should just equal the given constant
supply. This amounts to full employment of each factor. In effect, the solution of the
equations would be something like the intersection of a derived demand curve with a
perfectly inelastic supply curve. Why do we insist on this equality of supply and
demand as a necessary characteristic of competitive equilibrium? Because if demand
were to exceed supply, the price of the resource would rise; if supply were to exceed
demand, the price would fall. In any case, one can hardly imagine a set of outputs using
up more of a resource than is available; that is a physical impossibility. But the reverse
is not a physical impossibility. Some of the available amounts of a particular resource
could be left unused, unemployed. But then the price of that resource would fall. So it
would, but there is a limit to how far a price can fall. It can’t fall to less than zero.244

And if the price falls to zero and the supply still exceeds the demand at a zero price,
there will be some of the resource unemployed. There is nothing internally inconsistent
about this as a description of competitive equilibrium. What we have described is
nothing but the process by which some resources become free goods. They cease to be
“scarce,” in this sense: no price can be obtained for their services.

If we describe this condition as being one of unemployment (“nonemployment,” or
“redundancy,” would be a better word), the reader must not think of it as something
which “ought” to be eliminated without further thought. This kind of nonemployment
reflects real production and taste conditions; it signals that the intrinsic economic value
of the redundant factor has fallen to zero. We do not necessarily think it a calamity if a
resource becomes a free good. Nonemployment of labor is calamitous for social and
ethical reasons. Recent writers on the economics of overpopulated and underdeveloped



areas suggest that in some cases it is a fair statement that the marginal productivity of
agricultural labor is zero; i.e., that labor could be withdrawn from agriculture with no
consequent decrease in output. This is a case of absolute redundancy, and only the
obvious social and sociological reasons explain why positive wages are paid. In more
developed countries it is sometimes tempting to attribute “structural” unemployment to
this kind of redundancy. This must be done with care; if labor alone, with no other
inputs, can produce any single commodity of value (shaves and haircuts, domestic and
personal service, etc.), then labor cannot be redundant.

Considerations like this don’t contradict the “law of supply and demand” in any
sense. We usually visualize price determination as in Fig. 13-1a. But the situation of Fig.
13-1b is by no means inadmissible. The paradox is resolved if we realize that the supply
curve is not simply SS", but OSS’, and price is determined definitely at zero. Quantity is
a little ambiguous, but if we are talking about a productive resource, quantity will be
determined on the demand curve at OQ. In the diagram the supply curve is not perfectly
inelastic, but of course it might be.

It was early pointed out by Zeuthen and Neisser245 that the market determines which
goods shall be free and which scarce. There is no external badge of intrinsic scarcity or
abundance. It depends on the structure of demand, on the availability of complementary
factors, on production relations. Thus the list of resources appearing in the Walras-
Cassel model must be all-inclusive. One of the jobs of the general-equilibrium system is
to decide, in terms of the given data, which resources will be free and which will
command a positive price.

FIG. 13-1
Zeuthen suggested one way of incorporating this process into the model. Equations

(13-1) have to be modified to read

(13-1a)
with the further condition that if the strict inequality holds in any line of (13-la), i.e., if



any resource—say the kth—is less than fully employed, then its price υk must be zero.

One thing we note right away is that as far as the inequalities (13-la) are concerned,
there will always exist x’s which satisfy them, regardless of how many resources there
are and how many final goods. Since the r’s are all246 positive and the a’s nonnegative,
there will in fact always be an infinity of sets of x’s which satisfy all the inequalities. So
our initial objection to the system has been eliminated.

Perhaps a small numerical example will help clarify what has been done. Let a11 = 1,
a12 = 2, a21 = 3, a22 = 4, r1 = 2, r2 = 20. There are thus two final goods and two
resources. Suppose both goods have independent unit-elastic demand curves
(independent of factor prices): p1 = 8/x1, p2 = 10/x2. Then the three systems of equations
read

Inspection shows that Commodity 1 uses the two resources in the ratio 3:1, and
Commodity 2 uses them in the ratio 4:2. But the supplies of the factors are in the ratio
10:1. It will not surprise us to learn that no way of juggling the two outputs will ever
fully employ both factors. An even simpler case to visualize would be one in which the
production of the two commodities requires the two resources in exactly the same ratio,
say 2:1. Then no matter what the outputs turn out to be, the resources will always be
demanded in just the ratio 2:1. If the independently given resource supplies are in any
other ratio but 2:1, it is a manifest impossibility for both to be fully employed. The best
that can be done in this respect is for production of the two commodities to expand (in
proportions dictated by demand considerations) until one resource is fully used. The
abundant resource will suffer nonemployment, and its price under our assumptions will
fall to zero. In general, the only factor demand ratios that can come about under any
pattern of production are those between the largest and smallest ratios in which single
processes demand the factors. Making the factor supplies elastic might clear up the
situation, or it might not. The reader should experiment until he has constructed
plausible supply functions which still fail to yield a solution.

In the numerical example, solution of the general-equilibrium system strikes a snag
with the very first set of equations. If we solve the two linear equations in x1 and x2, we
obtain x1 = 16, x2 = −7, which makes no economic sense. The commodity which uses
the abundant factor less intensively and the scarce factor more intensively has a negative
output. The equations are trying to run this production in reverse to procure some of the
scarce factor to be used with the released abundant resource and the nonemployed part
of the redundant resource. But production doesn’t work that way. One can’t transform
sausage into pigs by running the grinder in reverse, and so we must reject this



“solution.”

We can give several graphical descriptions of this difficulty. In Fig. 13-2a the straight
lines representing the two equations are drawn. The “solution” is the point P where the
lines intersect; but this point is not in the nonnegative quadrant which alone has
economic meaning. Since resource use cannot exceed, but can fall short of, the
availability limits, it is always the inmost line, closest to the origin, that binds. The
physically producible outputs are those in the triangle OAB. Were the two lines to have
the appearance shown in Fig. 13-2b, then the point P would be a meaningful solution
and it would be technologically possible to employ both factors fully. This is not the
whole story; there is no guarantee that demand conditions are such as to make P an
equilibrium. The possible outputs are those in the polygon OAPD. If output should
settle anywhere on AP, one resource would be less than fully employed. On the segment
PD, the other resource would be less than fully employed. In the constellation of Fig.
13-2b, which resource, if either, suffers nonemployment depends on real taste and
demand conditions. In Fig. 13-2a one resource is “absolutely” in excess. Another,
“dual,” graphical depiction appears in Fig. 13-2c. Here the variables are the resource
amounts demanded. The resource requirements for a single process are represented by
rays from the origin; resources are used in fixed ratios, but the absolute amount expands
with the process intensity. The two rays determine a “cone” between them. Any point in
the cone and only such a point represents factor demands achievable by these processes
operated at nonnegative levels. If the factor supplies are represented by a point such as
Q’, inside the cone, then full employment is physically achievable; if the factor supplies
are represented by a point such as P’, outside the cone, full employment of both
resources is not achievable.

FIG. 13-2



Still another graphical representation is the Edgeworth box diagram in Fig. 13-2d. The
(right-angled) isoquants for the two products are drawn from the southwest and
northeast corners. In the usual case, the locus of efficient resource allocations, the
“contract curve,” is given by points of tangency between the two families of smoothly
curved isoquants. In the present case the contract curve becomes a zone or area. Any
point between the rays through the isoquant corners represents an unimprovable pair of
outputs. But except at the one point where the rays cross, one factor is redundant. This
intersection point corresponds to P in Fig. 13-2b. (What does it correspond to in Fig.
13-2c? Hint: How would the resource supplies appear in Fig. 13-2c?) Anywhere outside
the contract zone both factors are redundant; this is clearly inefficient. If the dimensions
of the box were to change, or if the slopes of the rays were different, it would be
possible for there to be no intersection point in Fig. 13-2c. Then the same resource is
always redundant.

Let us return to the numerical example. We would like to solve the first set of
equations for x1 and x2, insert these numbers in the demand functions to get p1 and p2,
and use these prices in the final set of equations which could be solved for υ1 and υ2.
But we are blocked at the start by our inability to get meaningful x’s. Note that since the
second factor is obviously the excessively abundant one our amended rules tell us that
we may have 3x1 + 4x2 < 20 and υ2 = 0. But if υ2 = 0, the third pair of equations becomes
υ1 = p1, 2υ1 = p2; that is, p2 = 2p1. Make this substitution in the demand functions: p1 =
8/x1, 2p1 = 10/x2. We deduce that 8/x1 = 5/x2, or 5x1 — 8x2 = 0. Combine this with the
remaining equation of the first set: x1 + 2x2 = 2. The reader can discover that these two
equations have the solution  Therefore, p1 = 9, p2 = 18, υ1 = 9. We have a
solution to the general equilibrium system, namely, x1 =  , x2 =  , p1 = 9, p2 = 18, υ1

= 9, υ2 = 0. The first resource is fully employed. Of the second resource an amount
equal is used; the rest is nonemployed, and the rent of this factor
has fallen to zero. It is, in fact, a free good, sand in the Sahara. The modification of the
original system has provided a solution where none existed before. In this case the
reader can check that the solution was unique at each stage, and hence unique over-all.

It was earlier remarked that the kind of nonemployment dealt with here is purely
structural. It is not caused by a shortage of effective demand; in fact no expansion (or
even redirection) of demand could eliminate it. The unemployed factor is simply
redundant. However, this is not the only kind of nonemployment possible in the model.
Unemployment can occur even in the situation described by Fig. 13-2b; this kind of
unemployment is not technologically necessary but reflects real taste or demand
conditions, and hence is as “structural” as the other. Consider the following numerical
example:



Note that the production of Good 1 uses factors in the ratio 4:1; the second good uses
them in the ratio 5:2; and the resources are supplied in the ratio 3:1. Thus over-all full
employment is possible. Indeed if we solve the first two equations we find x1 =  , x2 =

 . With these outputs, both factors are used up. We have cleared the hurdle that
stopped us last time. From the demand functions we find p1 = 3, p2 =  . So far, so
good. Now inserting these values in the final set of equations, we find υ1 =—  υ2 = 

 There is a unique “full-employment” pair of outputs. These outputs will be cleared
off the market at a certain pair of prices. But these prices can be made to cover costs
only if the first resource commands a negative wage. Looked at from the other side, the
demand for the first factor intersects the vertical supply curve only at a negative price,
as in Fig. 13-1. This solution has no economic meaning. But we can resort to our
modified setup. Suppose we set the price of the first factor at its minimum value,
namely, υ1 = 0. Then the last equations show that 4υ2 = p1, 5υ2 = p2, hence p1 =  p2.
From the demand equations, x1/x2 =  or

4x1 — 50x2 = 0

Combine this with the equation of the scarce factor, 4x1 + 5x2 = 30, and we find x1 = 
 x2 =  The total amount of the first resource used up is  .

There are  unemployed units of the first factor. Summing up, our modified general-
equilibrium system has the solution x1 = , x2 = , p1 = , p2 = , υ1 = 0, υ2 =

. This kind of nonemployment would disappear were demand relationships to
change. The reader can verify for himself that if the demand functions were altered to x1

=  p1, x2 =  p2, the system would possess a solution with both factors fully
employed.247 But there is no economic reason for “tampering” with demand functions;
people’s tastes are given facts. If only people liked elephant meat more, African jungle
land would bear high rents.

The possibility, indeed the likelihood, of structural unemployment such as we have
been discussing was noticed by writers already cited, like Neisser, Stackelberg, Valk,
and others. Some, like Stackelberg, took the position that this possibility reflected
mainly the excessive rigidity of the Cassel system. In particular the assumptions of (1)
inelastic factor supplies and (2) fixed technical coefficients violate the usual neoclassical
picture and seem to be largely responsible for the appearance of redundant factors. It is
quite apparent that elastic factor-supply functions could work against the occurrence of
unemployment. If a fall in factor return reduces the supply of the factor, the extent of
redundancy diminishes. Some of the unemployment is converted into “voluntary”
unemployment. It is equally apparent that the insertion of factor-supply schedules like



(13-4) cannot without further ado assure the existence of solutions to the system. Even
on the simplest level, a factor price may be reduced to zero without cutting sufficiently
the quantity offered. Once this zero-price point is reached, no further price reduction is
possible. No doubt one could put strong enough conditions on the factor-supply
schedules to rule out involuntary unemployment. But these would be too strict to be
satisfying—some factors are inelastic in supply, and backward-rising supply curves can
offer more trouble—so that even with supply schedules added, (13-1) will have to be
replaced by (13-1a) if a solution is always to exist.

The case of variable coefficients of production is more difficult to discuss without
getting involved in deep questions which are not really of direct concern to us here.
Certainly the notion that it may be technically impossible to employ the given quantities
of all factors seems to be inextricably bound to the idea of fixed, or at least limited,
coefficients. If a fall in the price of an initially redundant factor decreases the supply
and at the same time induces all industries to use the factor at higher intensity, both
blades of the scissors are working to wipe out the margin of unemployment. If
productive technique is such that for each factor there is always a desired commodity in
which its marginal product can never fall to zero, no matter how intensively the factor is
used, then structural redundancy of this kind is ruled out. Thus, even in the linear-
programming case of fixed coefficients there are situations in which structural
unemployment of the kind illustrated in Fig. 13-2 can’t occur. For example, suppose for
each factor we can find a never-free good into which the factor is the sole input. Then
in Fig. 13-2c there are rays running along the positive r1 and r2 axes and the cone
between them is the whole quadrant. Any factor endowment ratio will then be fully
employed.

This remark points up the fact that what happens when coefficients are variable is
qualitatively no different from the nonemployment that occurs in the linear-
programming case. In the former model, factor returns fall until factor intensity
becomes high enough to absorb the total offer. In general, as factor intensity increases,
the marginal productivity of the factor falls. In the fixed-coefficient case we may regard
the appearance of unemployment together with a zero wage as indication that the
marginal productivity of the factor has fallen to zero. And at near-zero wages, the
demand for most factors probably becomes quite elastic;248 i.e., in many cases there
exists for any factor one or more low-productivity employments in which it is the only
input. For labor, the standard example is personal service of a kind that requires almost
no equipment. When the wage falls to zero (or thereabouts)249 employment like this can
take up all the slack in the factor supply. Thus the linear-programming model produces
essentially the same result as the standard neoclassical setup. What appears as
unemployment in one appears as low productivity in the other. And with the further
inclusion of one-factor fringe employments (of low value productivity) even the latter
phenomenon can be brought under the purview of linear programming. 250 That some



such qualitative parallel should exist is not surprising. If a set of empirical facts can be
idealized by either of the two theories of production, it can also be idealized by the
other.

13-4. RIGOROUS PROOF OF EXISTENCE OF
SOLUTIONS

The first rigorous study of the Walras-Cassel equilibrium conditions was made by
Abraham Wald in 1935. 251 Wald investigated the existence and uniqueness of solution
to the system consisting of (13-1a), (13-2), and (13-3), with factor supplies given.252

Apart from some assumptions which are too obvious to require discussion,253 Wald’s
only further restrictions are on the demand functions in (13-2). These restrictions are
not all intuitively satisfying, and we shall find it convenient to alter them.

Since Wald (as remarked earlier) wrote his demand functions in the economically
illegitimate form pi = Fi(x1, . . . ,xn), we cannot follow his procedure. Some of the
assumptions we must make about the nature of our correct demand functions (13-2)
will, however, be parallel to his, and some will not. For example, Wald required his
demand functions to be defined for all positive quantities x1, . . . , xn. An economist
can’t accept this condition; there may be some bundles of commodities that the market
will not take at any positive price. If, for instance, x1 and x2 are perfect complements,
only bundles containing them in proper proportions are eligible. We do not have to
make this assumption. Instead we assume that our demand functions are defined for all
configurations of commodity and factor prices.254 This condition is quite
unexceptionable. The market must give a definite response to any wage-price situation.
(Wald also omitted the factor prices from his demand functions. This could be justified
if market demand depended only on total income but not on its distribution, or by some
equivalent assumption. But since it is little extra effort to include the factor prices, we
do so.)

Next we follow Wald in requiring our demand functions to be continuous. This is a
minimal assumption of mathematical regularity which can hardly be dispensed with.
Without it one could hardly hope to prove the existence of a competitive equilibrium
(compare the case of the simple Marshallian cross when the demand curve can have
“holes,” i.e., fail to be continuous).

We can dispense with another economically unreasonable assumption that Wald
made. He postulated that no matter how high the price of a commodity became, there
was still some positive demand. In other words, it would take an infinite price
(whatever that means) to choke the demand down to zero. Exactly the opposite assertion
would seem to be more plausible, that there is a price high enough to eliminate the
demand for any commodity. Wald seemed to need this condition only to ensure that the



equilibrium outputs xi are all positive. In our further considerations we shall have no
need to prevent one or more outputs from falling to zero, and so we can afford to leave
this whole question open.

Finally, Wald made a rather peculiar assumption. He required the demand functions
to satisfy what later came to be called the (weak) axiom of revealed preference. To be
precise, if pi255 and xi1 are prices and quantities satisfying (13-2) and pi2 and xi

2 are
another such set, then Σpi

255xi
255 ≥ Σpi1xi

2 must imply Σpi
2xi

2 < Σpi
2xi

255. In words, if at the
prices p255 commodity bundle x2 costs no more than x255, and the consumer chooses x255,
then bundle x255 has been revealed to be superior to x2. Therefore, at prices p2, when x2

is actually bought it must cost less than x255 or the preference previously revealed would
be contradicted. Why is this assumption peculiar? Because the demand functions (13-2)
are market demand functions, not individual demand functions. “Rationality” cannot be
required of market demand functions because changes in prices normally change the
distribution of income. With a changed income distribution, different “preferences” will
be revealed. In other words, Wald really assumed that there is essentially only one
rational consumer. But the only use made of this overly strong assumption is to show
that the competitive equilibrium is unique. This is, as every economist who has studied
international trade knows, an overly strong conclusion, and so we can dispense with
this assumption too.

Wald’s theorem is as follows. The assumptions just discussed, together with the three
assumptions mentioned in footnote 2 on page 367, imply that the system (13-1a), (13-2),
and (13-3) possesses an economically meaningful solution in the variables x, p, and v.
This solution is unique in x and p: only one set of outputs and commodity prices is
consistent with equilibrium. If in addition we can rule out such phenomena as two
resources being used in the same proportions in every production process, then the
equilibrium factor prices v are also unique. Evidently some such qualification is needed:
if the production of every commodity requires one man and one horse, then clearly only
the return to the combined man-horse team is determinable.255

Wald’s proof of this theorem is extremely intricate and opaque. Nevertheless, it is a
beautiful achievement, perhaps the most difficult piece of rigorous economics up to that
time. In the next few pages we shall outline a short and relatively transparent proof,
which uses as tools the duality theorem of linear programming, and one purely
mathematical result, the fixed-point theorem of Kakutani, which will be described when
it is needed. Actually we shall solve a slightly different problem from Wald’s. We retain
the three assumptions of footnote 2 on page 367. In addition, we need only the stated
assumptions that market demand is defined for all price configurations and is
continuous. At the end we shall also show how the revealed preference assumption can
be made to imply the absence of multiple equilibria.

Now look back for a moment at the price-equals-unit-cost equations (13-3). Why



must they hold? Because if price exceeds unit cost, output will increase and factor prices
be bid up, thus lowering price and increasing unit cost. Because if unit cost exceeds
price, output will decline and so will factor prices, thus raising price and lowering unit
cost. But there is a natural limit to this last process. Output can fall as far as zero, but not
lower. Suppose output is down to zero and unit cost still exceeds price. There is nothing
wrong with this picture at all. It is exactly what one would expect of commodities not
being produced—that price should not cover unit costs at any positive output. It is no
accident that silk diapers are so rare. We are led to the following change in the general
equilibrium system: replace the n equations (13-3) by n inequalities:

(13-3a)
with the provision that if inequality holds in one or more lines of (13-3a), the
corresponding outputs x must be zero.

We shall show that, subject to the assumptions stated above, the general-equilibrium
system consisting of (13-1a), (13-2), and (13-3a) possesses an economically meaningful,
nonnegative solution in the variables x, p, and υ. (If in addition the demand functions
satisfy the axiom of revealed preference, the solution is unique in x and p.) Then we
shall widen the system to include factor-supply functions (13-4) and sketch how our
theorem extends to this case.

Suppose we rewrite (13-1a) for ready reference:

(13-1a)
If we recollect that the variables x and υ have to be nonnegative, (13-11a) and (13-3a)

look very much like the constraints of linear-programming problems. In fact, they look
like the constraints of dual linear-programming problems, since the same coefficients
appear in both sets of inequalities, except that they are transposed. To go one step
further, we can even write down the dual linear-programming problems concerned.
One is as follows.

Maximize p1x1 + p2x2 + . . . + pnxn (= value of output) subject to (13-1a) and xi ≥ 0.

The dual problem is as follows:

Minimize r1υ1 + r2υ2 +    + rmυm (= total factor income) subject to (13-3a) and v; ≥ 0.



Now we can use some results from the theory of linear programming. One
fundamental theorem says that a linear-programming problem has a solution if both it
and its dual are feasible (cf. Chap. 4, p. 104). But this condition is satisfied here: there
are nonnegative x’s and υ’s satisfying (13-1a) and (13-3a). Whatever the positive r’s
and nonnegative p’s, one can always find a set of x’s so small that (13-1a) is satisfied
and a set of υ’s so large that (13-3a) is satisfied. Therefore the pair of dual-
programming problems possess solutions. It is also known256 that whenever we solve a

pair of dual problems, the maximum value of the linear form being maximized (here, 

pjxj) equals the minimum value of the form being minimized (here,  riυi). Thus if we
can find an equilibrium solution of the general equilibrium system which is also a
solution of the pair of dual programming problems, we have another way of showing
that total expenditure equals total factor returns. The converse is also true: if total
expenditure equals total returns in a solution of the general equilibrium system, then the
linear-programming problems are also solved. But we already know that the demand
and supply functions are such as to force this equality. Hence the logic of linear
programming has inevitably alerted us to the following vital but little-appreciated fact.
Hidden in every competitive general-equilibrium system is a maximum problem for
value of output and a minimum problem for factor returns.

We are not through exploiting linear-programming theory. The duality theorem (Sec.
4-15) also tells us that whenever a constraint in (13-1a) or (13-3a) is satisfied with strict
inequality, the corresponding dual variable is zero. But this is exactly what we want; this
corresponds to the qualifications that economic reasoning has led us to append to the
inequalities (13-1a) and (13-3a).257

Let us see where we are. We seek a solution to the system of equations and
inequalities (13-1a), (13-2), and (13-3a). Our unknowns are n x’s, n p’s, and m v’s. We
have been led to formulate a pair of dual linear programs in which x and υ appear as
unknowns and p as givens. We have shown that for any set of nonnegative p’s, the dual
problems possess solutions. If we pick a set of prices pj arbitrarily and solve the dual
problems, the resulting x’s and v’s are such that (13-1a), (13-3a), and accompanying
qualifications are satisfied. We have almost solved our problem. The gap is that if we
choose p’s at random and get x’s and v’s from the linear-programming problems, we
have no guarantee that this particular set of p’s, x’s, and υ’s will satisfy the demand
relations (13-2). To put it differently, we can start with any p’s and get a set of x’s
satisfying (13-1a) and υ’s satisfying (13-3a). But the p’s and υ’s when inserted in the
demand functions determine a second set of commodity outputs, or x’s. If this second
set of x’s should coincide with the x’s we have already found (13-2) would also be
satisfied and our general equilibrium system would have a solution. Suppose this
coincidence does not occur. Then we repeat the process with another arbitrary initial set



of p’s. ‘ As we thus run over all possible sets of p’s, will there always be at least one set
of p’s for which this coincidence will occur? The answer will be yes, there must always
be at least one such, and we shall thus succeed in proving the existence of an
equilibrium solution. But to complete the proof we have to make use of the fixed-point
theorem of Kakutani which we must now describe.

Fixed-point theorems are useful mathematical devices for proving that solutions to
some kinds of equations actually exist. Think of a function as a way of associating with
each member or point of a set some other member of the same set. (The points in
question can be numbers, in which case we have a function of a single variable, or
vectors of n numbers, in which case the “function” is really n functions of the same n
variables, associating with each n-tuple another n-tuple.) A fixed point of such a
function is a member of the set which is associated with (or “mapped into”) itself by
this function. The simplest fixed-point theorems can be proved in a minute. For
example, let x range over the interval from 0 to 1 inclusive. Let ƒ(x) be a continuous
function whose values are also between 0 and 1; i.e., ƒ maps the interval 0 ≤ x ≤ 1 into
itself. Then it follows that ƒ has a fixed point; i.e., there is an x* such that x* = ƒ(x*). To
prove this graphically, draw the square whose side is the unit interval on the x axis, as
shown in Fig. 13-3. In the usual way, ƒ(x) is represented by a continuous curve which
lies in this square. Draw the diagonal y = x. Any time the curve y = ƒ(x) crosses the
diagonal y = x, we have x = f(x) and a fixed point. The reader can see that it is
impossible to draw a continuous curve which begins on the vertical x = 0, ends on the
vertical x = 1, and fails to touch the diagonal (including its end points).

More analytically, consider ƒ(0) and ƒ(1). If ƒ(0) = 0 or ƒ(1) = 1 we have a fixed
point. Otherwise ƒ(0) > 0 and ƒ(1) < 1., Now let g(x) = ƒ(x) — x, and g is a continuous
function. We have g(0) > 0, g(1) < 0. A continuous function can’t skip any values, so
that g(x) in getting from positive to negative values must pass through zero. But g(x) = 0
means x = ƒ(x). The crucial point here is the continuity of f. Without it, of course, the
theorem is not true.

FIG. 13-3
More complicated fixed-point theorems, like Kakutani’s, are not so intuitive. The

reader can try to visualize a continuous mapping of, say, a circular disk into itself and
look for the fixed point or points. For example, a rotation of the disk has the center as
fixed point; a simple folding-over has a whole diameter full of fixed points.258

Suppose S is a bounded closed convex set of points y. With each point y of S we
associate a closed convex subset of S, say Hυ. The sets Hy must be related to the points y



in a smooth way (technically the mapping y→Hυ must be upper semicontinuous). Then
the Kakutani theorem asserts that at least one of the Hy will contain the y with which it is
associated.259

We use this theorem in the following way. We impose, as we may, the condition that
Σpj + Συi = 1. The set of nonnegative p’s and υ’s satisfying this condition is our set S. It
is closed, bounded, and convex. With each (p,υ) point of S we associate an x according
to the demand functions (13-2); i.e., p and υ determine the outputs that the market will
demand at those prices. This market basket of outputs may not be producible, i.e., may
not satisfy (13-1a). If it does not, decrease all the x’s proportionally until (13-1a) is just
satisfied. Alternatively these outputs may be producible but not efficient; i.e., they may
satisfy (13-1a) with all the strict inequalities holding. In that case it would be feasible to
increase all outputs simultaneously. Let us do so, increasing them proportionally until
at least one equality holds, so that we can’t increase them any more. The net result is
this: with each (p,υ) of S we have associated an efficient260 set of outputs. First we
found

Then from (x1, . . . ,xn) we found a new but proportional set of outputs (kx1, . . . ,kxn)
where the constant k was chosen to make these new outputs efficient. Of course the
new outputs will no longer satisfy the demand functions, but we shall worry about that
later.

Now we know that an efficient set of outputs has the following very important
property: for some set of nonnegative p’s, it maximizes Σpixi among all feasible
outputs.261 If x happens to fall on a flat face of the efficiency frontier, it will maximize
value of output for only one particular price configuration. If x falls on a corner or an
edge, there will be a whole set of price configurations for which this is so, but these
price configurations will form what is technically called a “convex polyhedral cone,”
with accent on the convex.

So with our initial (p,υ) we have associated an x, then an efficient x, and then a set of
p’s (perhaps only one) for which the efficient x is a solution of the linear-programming
problem (13-1a). Now we can insert in turn each of the p’s of this set into the linear-
programming problem (13-3a) and solve the latter. Hence with each of the p’s we
associate the one or more υ’s which minimize Σrjυj subject to (13-3a). At the end of this
tedious process we can say: with each initial (p,υ) of S we have associated a whole
collection of (p,υ)’s. As a final step we can change each (p,υ) of the collection
proportionally until its members add up to 1, that is, until it belongs to S. This final set
we shall call Hpυ.

Now each Hpυ is a closed and convex262 subset of S. Furthermore, all the conditions



of the Kakutani theorem are satisfied: the mapping of the initial (p,υ) into its Hpυ is
upper semicontinuous because (1) the demand functions are continuous; (2) the
mapping of x onto an efficient x is continuous; and (3) the final mapping of the efficient
x into Hpυ is upper semicontinuous. The theorem then tells us that there is at least one
(p,υ)—call it (  )—that is contained in its own  . For this special (  ) we know by
construction that (13-3a) is satisfied. Also we have its associated efficient x, say , for
which (13-1a) is satisfied. We must now close the last gap and show that for  , and 
the demand functions (13-2) are satisfied. But this is easy. Take the x that does satisfy
the demand equations. The demand functions are such that  = Σrj j. But from the
linear-programming nature of (13-1a) and (13-3a) we know that for the efficient  also, 

 = Σrj j. By construction  is proportional to x,  = kxi. It can only be then that k = 1
and  = x. The demand functions are satisfied, and a competitive general equilibrium x,
p, υ must exist.263 Home is the wanderer.

This has been a long-drawn-out mathematical excursion. However, there does not
seem to be any easy answer to the complicated question of the consistency of the
Walras-Cassel system. Ask a complicated question and you get a complicated answer!

We still have to say something about the full general-equilibrium system with elastic
supply functions (13-4). Fortunately, this causes almost no additional pain (perhaps
because of the numbness induced by the “simple” case!). All through the proof we took
the r’s as given numbers. Resource supplies were perfectly inelastic. If they are not so,
we make one amendment to the proof. We start as before with an initial (p,v). Then
along with an x from the demand functions we get an r from the supply functions. And
after that we proceed word for word as before.

Finally, suppose that there are two solutions p263, x263 and p264, x264. From the linear-
programming problem hidden in (13-1a) we deduce that Σpi1xi

263 ≥ Σpi
263xi

264, because
x263 maximizes Σp263x263 for feasible x. Similarly Σp264x264 ≥ Σp264x263. Looking back at
page 368, we see that this violates the axiom of revealed preference. Hence if we accept
this assumption,264 the solution is unique in p and x.

One last word. We have shown en route that the equilibrium values p, x, v, and r
have certain maximum and minimum significance. This will come in handy when we
later turn to some problems in welfare economics.

13-5. COMPARISON WITH THE NEOCLASSICAL
MODEL

In the last couple of sections we have formulated a static general-equilibrium system,
discussed some of its properties, and even proved the existence of a competitive
solution. The production end of this system was of the linear-programming type, and as
a result no talk of marginal productivities emerged. Before leaving this subject perhaps



we might briefly write down a more orthodox neoclassical system with smooth marginal
productivities, to see how it differs from the linear-programming model and how it is
analogous.

To concentrate on essentials, we can stick to the elementary case in which there are
no whirlpools of goods made from intermediate goods. Commodities are made directly
from primary factors. The reader can convince himself that intermediate goods can be
handled by the same methods used in our previous linear model.265 Also, we shall
assume that all industry production functions have constant returns to scale. Without
this assumption we would have to worry about the allocation of output among firms.
And incidentally, if, we imagine all firms in an industry as having identical U-shaped
average-cost curves, variations in long-run equilibrium industry output will take place
by variation of the number of identical firms, all producing at minimum average cost,
and the industry production function will have constant returns to scale. This much
granted, we can write down the n industry production functions (a concept that the
reader will probably view as a long-lost friend) :

(13-5)
The new symbols rij represent the physical quantity of the ith resource actually used

by the jth industry (no joint production here). In the spirit of our earlier work, we could
put ≤ signs in (13-5) and add a convention about zero prices, but instead we stick to the
orthodox practice of supposing all production to be efficient in the sense that equality
holds and no factors are free.

There were no “production functions” in our linear model, but there were processes
or activities, ways of transforming resources into commodities, which performed the
same role. The main difference is easily seen graphically. Draw the isoquants, or equal-
output curves, of a typical production function in (13-5). Because of the constant
returns to scale we need only draw one contour line, say the one for one unit of output;
all the rest are simply radial enlargements of this. The usual assumptions give a smooth
concave curve as in Fig. 13-4a. If there is only one process for each commodity, we get
the now familiar right-angled isoquant of Fig. 13-4b. In our general linear model with
alternative processes we get Fig. 13-4c. Each vertex represents a different process; the
flat parts of the isoquant represent concurrent operation of two adjacent processes.



FIG. 13-4
While we are at it, we can find the equation of the unit isoquant pictured in Fig. 13-

4a. Because of constant returns to scale, knowing this is as good as knowing the whole
production function, and moreover we shall be able to get rid of the rij and replace them
with more familiar variables. Take the first production function of (13-5), divide both
sides by x1, and remember that with constant returns to scale if you multiply or divide
output by any number, you simply multiply or divide all inputs by the same number.
Therefore

Now a quantity like r21/x1 is the first industry’s input of Resource 2 per unit of its own
output of Commodity 1. It is just an input coefficient—what we previously called a21.
The difference now is that a21 is neither a known constant nor one of a finite set of
known constants; it is continuously variable, an unknown of the system, something we
must determine. Still, we can rewrite each of the production functions in terms of the
a’s to give us an alternative set of equations with the same content as before:

(13-5a)
Previously production decisions consisted of choosing activity or process levels. Here

entrepreneurs have to decide on outputs and input coefficients. There are mn input
coefficients, and under competition they will be determined by a cost-minimization
process. And this leads by the familiar reasoning to equilibrium conditions of the
following form: The value of the marginal product of a factor must be the same in every
industry and equal to the price of the factor. Let ∂Xi/∂rji = Xj

i be the marginal physical
productivity of factor j in Industry i (a quantity that depends only on factor proportions
and not on absolute levels of output or input). Then we can get a new set of m X n
equations (or inequalities):

(13-6)



The inequality has been slipped in, because equality need hold only if Factor j is
actually used in Industry i. But there are no potato farms at Times Square and no
surgeons used to dig ditches. To (13-6) we add the proviso that if the inequality holds,
the corresponding rji must be zero. There is one inequation of (13-6) for every factor-
commodity pair. We can replace all inequalities by equalities only if every factor is used
in every industry.

There appears to be nothing in our linear system of the earlier part of this chapter to
correspond to the marginal productivity inequations (13-6). But actually there is. To see
this, let us ask first whether our smooth orthodox system oughtn’t to include a
requirement that price equal unit cost for all commodities actually produced in
equilibrium. Evidently this competitive equilibrium condition is as applicable here as it
was in the linear model’s inequalities (13-3a). So it is; but we can show that the
marginal-productivity conditions (13-6) already imply that price equals unit cost. Take
all the equations of (13-6) corresponding to a single industry (represented by an index
i). They are

υ1 ≥ piX1
i, υ2 ≥ piX2

i, . . . , υm ≥ piXm
i

Multiply both sides of the first of these by a1i, both sides of the second by a2i, and so
forth, and then add the results. We get

(13-7)
We can drop the inequality sign because wherever there is an inequality the
corresponding aji is zero; and the inequality is converted into an equality after
multiplication. Now the expression in parentheses on the right is exactly equal to Xi(a1i,
... ,ami). This follows from Euler’s theorem and the fact that the production functions
are homogeneous of first degree. For in parentheses we have all the partial derivatives
or marginal products of Xi(a1, . . . ,ami), each multiplied by the corresponding factor
amount for unit output. The adding-up theorem says that with constant returns to scale
this will exactly exhaust the output Xi. But according to (13-5a), Xi = 1; that is, we are
operating along the unit isoquant.. Inserting all this in (13-7) we finally get

a1iυ1 + a2iυ2 + ... + amiυm = pi

and we get this for every industry which actually produces any positive output. [If xk =
0, then Eq. (13-5a), and in fact the whole notion of an input coefficient ajk, loses all
sense.] But compare this with (13-3a) ; it is the same thing. It states that price equals unit
cost for each positively produced good. It is easy to show that unit cost may exceed
price for unproduced goods.

Thus in the smooth model there is no need to require separately that price equal unit



cost; this is already implied by the minimum-cost marginal-productivity conditions and
the homogeneity of the production function. If production functions did not have
constant returns to scale, competition would require that we add as a separate
equilibrium condition that price equals unit cost.

This reasoning leads us to guess that the price-unit-cost relations in the linear model
perform the same functions as the marginal-product relations do in the smooth model.
And of course this is right. In the linear model we have processes, not production
functions. We can choose units so that operation of the ith process at unit level
produces one unit of Commodity i. Then the increment of value produced by unit
operation of the process is just pi. This is like a “value of marginal product” and
corresponds to the right-hand side of (13-6). What is the factor cost of a unit level of
operation of the ith process? Answer: a1iυ1 + a2iυ2 + . . . + amiυm. This corresponds to the
left-hand side of (13-6). The requirement that the value produced by a unit increment in
Process i should not exceed the factor cost, and should equal it if the process is
operated, leads to

a1iυ1 + a2iυ2 + . . . + amiυm ≥ pi

and of course this is just our price-unit-cost relation (13-3a) again. In the linear model
this relation coalesces completely with the marginal-productivity relations.266 In the
smooth-constant-returns model the latter implies the former, but the two conditions can
be thought of separately.

So far our smooth neoclassical model consists of (13-5a) and (13-6). The rest of it
corresponds exactly to the linear model. We still need (13-1a), which says that supply
equals demand for each factor, or else for some factors supply exceeds demand and
then the factor price is zero. We can rewrite (13-1a) briefly as

(13-1a)
The only difference here is that all the a’s are variables of the system. Also we need
demand-for-goods and supply-of-factors equations, and here too we can simply take
over what we used in the linear model. We have our generalized demand functions

(13-2a)
and supply functions

(13-4)
Counting up, we have mn unknown a’s, n unknown outputs, x, n unknown prices, p,



m unknown factor supplies r, and an equal number of unknown factor prices υ—a total
of mn + 2n + 2m unknowns. On the other side we have the n production functions (13-
5a), mn marginal-productivity relations (13-6), m factor-market clearing relations (13-
1a) and the n + m commodity-demand and factor-supply equations (13-2a) and (13-4)
—also mn + 2n + 2m in total number. It is a commonplace that a system like this
determines only relative prices. Mathematically, the demand functions (13-2) and the
supply functions (13-4) are homogeneous of zero degree in the p’s and υ’s. And
changing υ’s and p’s in proportion has no effect on (13-6). Economically, doubling all
prices, including factor prices, would change nothing real in the system. As before we
could choose a commodity, say the first, as numeraire and put p1 = 1. This reduces the
number of unknowns by one. But Walras’s law and some of our own earlier reasoning
tell us that total sales must identically equal total-factor incomes: the demand and supply
equations for goods and factors are not independent. Therefore the demand function for
x1 can be eliminated from the system, and we are still even in equations and unknowns.

We didn’t do this in our discussion of the linear model, although we could have.
Instead of pinning down p1 = 1, we there in effect pinned down the value of a peculiar
market basket of goods and factors, namely, 1 unit of each. We put

p1 ⋅ 1 +  + pn ⋅ 1 + υ1 ⋅ 1 +  + υm⋅ 1 = 1

It is shameful but true that this was solely for mathematical convenience. Of course,
once we have found an equilibrium we can adjust absolute prices so that this arbitrary
condition is no longer satisfied. We could even adjust prices to make p1 = 1 if we so
desire (provided only that p1 ≠ 0 in the equilibrium point).

Of course the counting of equations and unknowns in the smooth model can’t
guarantee the existence of solutions any more than it could in the linear model. All the
same difficulties arise, including the inherent nonnegativity of the unknowns. But as the
close similarity of the two models would suggest, the same methods and approach we
used in the linear model will also provide a proof of the existence of a competitive
equilibrium in the smooth model. We must of course make the usual assumptions of
generalized diminishing returns.

FIG. 13-5
In fact the parallel between the two models carries all the way through. Although it is

a little harder to see in the smooth case, the same nice duality between prices and



outputs holds there also, and with it the very important fact that for any set of resource
supplies and prices, competition acts to maximize the total value of output and to
minimize the total cost of inputs and only succeeds in making these two totals equal.
The importance of this will appear in the next chapter on welfare economics. When we
get right down to it, the only real difference between the two models is the one
illustrated in Figs. 13-4a and c. Or in another familiar diagram, for given resource
amounts, production possibilities in the smooth model are represented by a
transformation (or opportunity-cost) curve familiar mainly from international-trade
theory, as in Fig. 13-5a. The linear model leads to something like Fig. 13-5b. The
essential geometrical similarity is the convexity in both cases of the set of feasible
outputs. It is easy to see that by having more and more processes, and thus more and
shorter line segments in Fig. 13-5b, the linear model and the smooth model come closer
and closer to identity.

In all the considerations of this chapter the reader has probably noticed that the
demand side has been slighted. The market-demand functions and market-supply
functions were introduced without preliminary. There was no mention of individual
households and their utility-maximizing activities. Even on the production side we
began at once with global-industry production possibilities, slurring completely over the
profit-maximizing activities of individual entrepreneurs. The expositional reasons for
this will be only too clear to the reader.

For completeness’s sake it should be mentioned that it is possible to begin at the
beginning and build up a complete-equilibrium system, either linear or smooth or, even
more generally, mixed—part smooth, part linear. One can start with a list of individual
households, their labor potentialities, their tastes for work, leisure, and commodities,
and their ownership of other resources. These households are supposed to take all
prices as given and to maximize their satisfaction in the standard way. This leads as
usual to individual (and, by addition, to market) supply and demand functions. One can
start with a list of firms, each with given techniques (i.e., production possibilities),
subject to the usual restrictions. The firms are supposed to take all prices as given and to
maximize their profits in the standard way. Markets are supposed to be cleared. There is
no need to enter upon the details here. Naturally . the investigation of such a system is
more complicated than the work we have done here. There are more variables, and
more is determined; commodity and factor prices once set, the fortunes of firms and the
distribution of incomes among households follow. The essential fact is that, given
reasonable assumptions, the existence of a competitive equilibrium can be proved, and
by methods which are essentially similar to the ones we have used, although necessarily
more complicated.267

13-6. VON NEUMANN’S MODEL OF EQUILIBRIUM
GROWTH



The celebrated general-equilibrium model of von Neumann268 is in some ways very
similar to the systems so far discussed. Most especially, it deals with production in
exactly the linear-programming way, with alternative processes and intermediate goods
(in fact nothing but intermediate goods), leading up to linear inequalities. In fact, the
von Neumann paper may be considered the first explicit formulation of the linear model
of production with this degree of generality. There are also some radical differences
from the earlier systems of this chapter. There is no consumer-demand side to the
model; there are no primary factors; production is explicitly made to take time; and
“equilibrium” is defined in a very special way. In some respects von Neumann’s work
is more closely akin to the dynamic capital models investigated in Chap. 12. Indeed,
some of the explicitly dynamical aspects have already been discussed in that context. We
shall use this last section of this chapter to look a little further into the structure of the
von Neumann model; this can be done briefly, mainly as an exercise in some of the
concepts developed in earlier sections. This exposition may be of some interest because
the original paper is extremely forbidding to the nonmathematician. We shall use an
adaptation of our earlier notation rather than von Neumann’s own.

Let us repeat more precisely the basic assumptions mentioned rather casually above.
In the first place, we are now dealing with a closed system, a pure production model. It
is “closed” in the sense that there is no final demand and no fixed factor. We can think
of labor as being “produced” by households with consumption goods as inputs (in fixed
proportions and fixed amounts per unit of output of labor). Actually there can be more
than one way of producing labor, just as there can for other commodities. The
important thing is that there is no autonomous demand for commodities and no
resources which cannot be produced like other goods. Thus “land” can play no role in
this model, unless we imagine the system as occupying a small part of a large
undeveloped continent ; then land can be had on the same kind of terms (constant costs)
as other commodities, by clearing forests. But as soon as the frontier disappears and all
available land is in use, the von Neumann model will no longer serve as an idealization.
Since von Neumann’s concern is mainly with growth, it is apparent that fixed factors
would be an embarrassment, would in fact limit us ultimately to zero growth, the
stationary state. Of course there is no reason why we should not consider this case of
zero growth as a limiting case easily comprehended by the von Neumann model. (It
would be interesting to consider the “production” of technical knowledge as a possible
economic activity.) Another assumption is that each process of production takes exactly
one unit of time. This can be arranged even if different processes really have different
duration, by introducing fictitious intermediate stages in the longer processes. One of
the advantages of the von Neumann model is that it can handle capital goods without
fuss and bother, A nondepreciating capital good simply enters both as input and as
output in the corresponding process. If the capital good depreciates 3 per cent per unit
of time, 1 unit of the good may appear as input, and 0.97 unit as output.



The essential fact about the system is that goods are produced from other goods by
processes or activities of the fixed-coefficient kind we have been studying. There can be
alternative processes, intermediate goods, and joint production. All this is describable in
a notation much like our earlier one. Let aij be the input of Commodity i per unit level
of operation of Process j. Let kij be the output of Commodity i per unit level of
operation of Process j. The a’s and k’s are inherently either positive or zero. There are,
as at the end of Sec. 13-2, n processes and s commodities (remember there are no
primary factors). The process numbered 1 is a way of converting a11 units of the first
commodity, a21 units of the second, up to as1 units of the last, into k11 units of the first
good, k21 units of the second, etc. The same commodity may appear both as input and
output. There are n such processes.269 Outputs appear at 1 unit of time after inputs are
used.

Since this is a closed productive system the outputs of one period are the inputs of
the next. And while there are no literally fixed resources, time has the effect of
instantaneously fixing the supply of inputs. At any given moment of time, production is
limited by the currently available inputs, i.e., by the previous period’s outputs. The
reader is familiar with this idea from the earlier chapters on dynamic models; it is an old
notion in economics and used to be applied to the provision of subsistence for the labor
force.

Let us represent by x;(t) the intensity at which the jth process is operated in Period t.
The a’s and k’s were known numbers. The x’s are going to be unknowns of our
problem; they are nonnegative by definition. At the close of Period t the economic
system has available the outputs of Period t’s productive activity—no more, no less.
Inventories can be allowed for by inventing a process which has 1 unit of a commodity
for input and 1 unit of the same commodity for output (storage costs and spoilage can
be entered as inputs also).270 Thus the available supply of Commodity 1 is k11x1(t) +
k12x2(t) +  + k1nxn(t), the output of Commodity 1 from each process, added up over all
processes; and similarly for every other commodity. For the ith, the available supply is

Now the available supplies limit the process intensities available in Period t + 1. They
play the role of primary factors; in fact, so far as Period t + 1 is concerned, they are
fixed in amount. Now suppose in Period t + 1 activity levels are x1(t + 1), . . . ,xn(t + 1).
How much of Commodity 1 is required for this to be a feasible set of production plans?
The answer is a11x1(t + 1) + a12X2(t + 1) +  + a1nxn(t + 1). For this to be physically
possible, the required input has to be no more than the available supply. Treating each
other commodity in the same way we get



(13-8)

These inequalities correspond exactly to (13-1a).271 And just as in (13-1a), we have to
add the condition, reflecting the competitive nature of the economy, that any commodity
for which an inequality holds is absolutely redundant and must have a zero price.

Now let us turn to the profit side of the production process. Because of constant
returns to scale and additivity we can do this globally and need not worry about
individual firms. Let π1(t), . . . , πs(t) be the prices of the s commodities at Time t, and
let us fix our attention on a particular process, say the hth. If operated at unit level in
Period t, its inputs are a1h, a2h, . . . , ash, and so its unit costs amount to a1hπ1(t) +
a2hπ2(t) +  + ashπs(t). One period later outputs appear: k1h, k2h, . . . , ksh, with a unit
revenue of k1hπ1(t + 1) + K2hπ2(t + 1) + • • • + kshπs(t + 1). But because of the lapse of
time, what we have to compare with costs is not revenue, but the discounted present
value of the revenue. If the market rate of interest in Period t is pt, we would divide the
unit revenue by 1 + Pt. Corresponding to our earlier equations and inequalities (13-3a),
we can write down at once that in a competitive economy equilibrium requires that
discounted revenue from unit operation of a process cannot exceed unit costs (or else
the process would expand until input prices rise and output prices fall enough to wipe
out the profit). Thus

(13-9)
Of course, we have to add that if the inequality holds for any process, that process
operates at a loss and its level of operation, its x, must be zero. This is the usual
competitive zero-profit condition.

In a sense this is all there is to the von Neumann model. There are no demand
functions to lead us into difficulty in proving the existence of a solution. In fact, there
are embarrassingly many possible evolutions for a system described by (13-8) and (13-
9). In earlier chapters we saw that Professor Leontief’s capital model had recourse to a
full-utilization-of-capacity assumption in order to get some kind of determinateness or
narrowing down of possibilities in a similar situation. Subsequently we replaced that
condition with an efficiency or optimization-over-time requirement. Earlier in this
chapter, final demand functions provided a way of limiting the possible outcomes and



actually left us with a problem of proving all the various conditions to be consistent.
Von Neumann takes a quite different way of limiting the range. He defines equilibrium
in a very special way. “Equilibrium” is a state of steady, balanced growth in which all
process intensities remain in the same proportion and simply get multiplied by a
common constant α every unit of time. This is a generalization of the “stationary state”
of Ricardo, Mill, and the classicals. If α = 1, we have a stationary state; if α > 1, we have
growth; if α < 1, we have balanced shrinkage. On the price side we shall define
equilibrium to mean constant prices and interest rate.

Let us translate these definitions into Eqs. (13-8) and (13-9). We can replace x;(t + 1)
in (13-8) by ax;(t), and in fact we can drop the t altogether since it will be the same on
both sides and hence will play no real role. In (13-9) we simply drop the time indication
everywhere. This leads to

(13-8a)
and

( 13-9a)
The dual nature of (13-8a) and (13-9a) should now be expected by the reader.
Remember that whenever a strict inequality appears in (13-8a) or (13-9a), the
corresponding dual variable must be zero. There are, as unknowns, n x’s, s π’s, α, and
p. But since only relative prices and relative intensities matter, there are really only s + n
unknowns altogether; the x’s, π’s, and α have to be nonnegative. p may be negative, but
1 + p must be nonnegative.272

The family resemblance to our earlier system is visible. The main difference is the
appearance of the factors α and 1 + p. These make demonstrating the existence of an
equilibrium a problem of almost, but not quite, the same order of difficulty and
magnitude as it was for the Walras-Cassel system. It is interesting that von Neumann’s
pioneering proof273 depends on his prior establishment of a fixed-point theorem of
essentially the same kind as the one that we used in Sec. 13-4.

We can do no more here than summarize a few of the properties that von Neumann
proves the system (13-8a) and (13-9a) to possess. First of all, there must be at least one
equality holding in each system, since otherwise all the dual variables would be zero, a
case which we rule out as uninteresting. Then remembering the interpretation of α, we
see that it must be the growth factor of the slowest-growing commodity. By definition,



(13-8a) says that every commodity grows by a factor of at least α (or at a rate of at least
α—1). We have just indicated that (13-8a) contains at least one equality; thus at least
one commodity grows at exactly the factor α, and this commodity or commodities must
be the slowest-growing one. Any faster-growing commodity is (or becomes) a free
good.

For similar reasons there will always be one or more equalities in (13-9α). Now (13-
9a) can be interpreted as saying that for each process actually used, total revenue must
exactly equal 1 + p times total cost. The factor 1 + ρ makes it true that each process used
earns just enough to cover costs, including interest on the “capital” committed to
production for one period. By reasoning like that in the previous paragraph we
conclude that 1 + p is the ratio of revenues to costs for the most profitable processes.
Any less profitable process is unused.

Multiply each line of (13-8a) by the corresponding π, and note that this has the effect
of converting inequality into equality, since wherever there is inequality, the multiplying
πis zero. Now add all the right sides and all the left sides. Then α can be expressed as a
ratio of two expressions (“bilinear forms”), in fact as the ratio of value of output to
value of input. Now do exactly the same thing to (13-9a), and it happens that 1 + ρ can
be expressed as exactly the same ratio. Thus it is a theorem that if a solution exists
(obeying the dual restriction), then α = 1 + ρ. The rate of growth equals the rate of
interest. The economics of this result is clear. In equilibrium, used processes have zero
profits and must therefore pay out interest just equal to the percentage by which the
value of output exceeds the value of input. What is true of each used process must be
true of the whole system.274

It is fairly evident on inspection that (13-8a) will have solutions for sufficiently small
α, but not if α gets too large. Conversely; (13-9a) will have solutions for sufficiently
large 1 + ρ, but not if 1 + p gets too small. We have also just seen that in a solution α = 1
+ p. Thus there are two possibilities: either the range of α values for which (13-8a) is
soluble overlaps the range of 1 + p values for which (13-9a) is soluble, or it does not.
In the latter case there is no solution to the system; in the former case there is at least
one. Von Neumann proved that the former situation always obtains. He proved more,
namely, that the overlap consists of a single point. Hence the common solution value is
the maximum value in the α range and the minimum of the 1 + ρ range.

Hence the equilibrium values of α and 1 + ρ have extremely interesting
interpretations. Forget about prices for a moment, concentrate on (13-8a), and ask:
What is the largest value of α for which (13-8a) has any solution at all? That is, What is
the largest rate of growth such that the system is physically capable of expanding every
output by at least this rate? This maximal rate of growth is the equilibrium rate of
growth, α. This is intuitive: if the system were in equilibrium at a less than maximal rate
of growth and any set of prices, it would pay entrepreneurs to move over into the



higher rate of growth, using different processes (for all commodities), make profits at
the going prices, and show that it is not an equilibrium.

Now look at (13-9a) and ask: What is the lowest rate of interest at which a profitless
system of prices is at all possible, simply forgetting about process levels? It is
conceivable that this rate of interest may be negative. But it is clear that no profitless
system of prices is possible if 1 + p < 0: an interest rate of minus 101 per cent! In that
case (13-9a) can have no solution, so the lowest rate of interest for which a set of zero-
profit prices exists must still leave 1 + ρ ≥ 0. In any case, this lowest rate of interest is
the equilibrium rate of interest, whose existence has been assured by von Neumann’s
proof.

Remember that in equilibrium, 1 + p = α; rate of interest equals rate of growth. From
the two paragraphs above it is clear that however many solutions there are in x and π
(and there may be more than one), there can be only one solution in α and 1 + p. For if
there were two α’s, how could both be the largest technically possible rate of growth?
So the rate of growth cum rate of interest of a von Neumann system is uniquely
determined even if the price-process intensity pattern is not.275

EXERCISES
13-1. Consider a system with two commodities and three factors and no intermediate

goods. There is only one process of production for each commodity, with inputs as
given in the following table.

INPUT OF FACTOR PER UNIT OF OUTPUT

⋅ The factors are available in amounts as given in the last line of the table. Two demand
functions are as follows:

The third demand is, of course, implicitly specified, with p2 = 1.

Find a competitive equilibrium for this system.

13-2. Do the same if the supply of factor 1 should be 2 units; 6 units; 16 units. Could
you interpret the four (r1,υ1,) points thus found as points on the demand curve for the
first factor?



13-3. In Exercise 13-1, suppose that the system had a second process for producing
the first commodity, with inputs 1, 1, 1 of the three factors per unit of output. Find a
competitive equilibrium.

13-4. For each of the solutions found so far, compute the value of total sales and
verify that it equals total factor incomes. In each case, adjust the demand functions in
such a way that total sales should be $100; in such a way that p, = 1.

13-5. Formulate the static Leontief system of Chap. 9 as a general-equilibrium system
with one primary factor. Add demand functions. Use the methods of this chapter to
obtain some of the results of Chap. 9. In particular, study the “nonsubstitution” theorem
of Sec. 9-5 by our present linear-programming methods.

13-6. Indicate how intermediate goods could be included in the smooth-variable-
coefficients-general-equilibrium system.



14

Linear Programming and Welfare Economics

14-1. INTRODUCTION AND OUTLINE
This chapter will be a continuation of the preceding one in at least three ways. For

one thing, it is similarly designed to indicate how the linear-programming model of
production provides a convenient and intuitive framework for the discussion of some
well-worn and venerable questions of economic theory. By exercising the model in a
familiar context the reader can acquire some “feel” for the way it works and how it
corresponds to the textbook economics of marginal correspondences.

Secondly, without being very precise we can say that the main content of modern
welfare economics has to do with certain normative aspects of competitive equilibrium.
Before we come to welfare economics proper, then, it is only caution first to convince
ourselves that the concept of a competitive equilibrium is internally consistent. In the
previous chapter it was shown that under essentially the same assumptions as are used
in welfare economics, a competitive equilibrium does always have to exist for the model
we are talking about. We are not working in a vacuum.

Finally, it will be recalled that in the course of proving the existence of a competitive
equilibrium for a linear-programming economy we showed how such a system can
always be thought of as maximizing and minimizing certain quantities. In fact, once this
fact was recognized, the main part of the proof was done. It will now turn out that to
prove the main theorem of modern welfare economics, practically all we have to do is
go back and pick up some of the pieces of this same proposition and reassemble them
in slightly different form. The proposition that a competitive economic system (under
our assumptions about production) is a mechanism for maximizing certain value sums
contains the key to its normative welfare properties.

The plan of this chapter is as follows. Most of it—the next five sections—is devoted
to an analysis of productive efficiency.276

This concept has come up several times in earlier discussions, particularly in the
chapters on dynamic programming. In the context of welfare economics, efficiency is a
vitally important concept, so we study it in some detail. It turns out that the precise place
where linear programming and welfare theory come together is in this notion of
efficiency. We look at it first in general terms, then in a particularly simple and
satisfying mathematical (or geometrical) way, and finally we show how efficiency is



related both to solutions of linear-programming problems and to the market price
mechanism of a competitive economic system.

Efficiency is a property of production. It is of immense importance to welfare theory,
but it leaves completely untouched everything to do with consumer satisfactions. In Sec.
14-7 we introduce the concept of Pareto-optimality, which closes this gap, and in Sec.
14-8 we sketch how the basic theorem of welfare economics can be proved, making
good use of the efficiency properties already worked out.

14-2. EFFICIENT PRODUCTION PATTERNS
The distinction between efficient and inefficient patterns of output has been made

fairly casually at several points in this book. It is pretty hard to discuss either the
allocation of resources in general or linear programming in particular without stumbling
explicitly or implicitly on the concept of efficient points. For example, think of a linear-
programming problem where the thing to be maximized, the objective function,
depends positively on all the variables. Then all the choice variables represent goods—
more of them is better than less. The simple comparative cost setup is like this; so is the
problem of the individual firm. In such a situation, if you can increase one or more of
the choice variables without decreasing any of them, the value of the objective function
has to rise, so it couldn’t have been at a maximum to start with. Therefore, we can just
rule out of consideration any feasible values for the choice variables which can be
“dominated” by some other feasible choice (i.e., such that it is possible to increase some
choice variables without decreasing others and without violating any constraints).
Choices or points which can be dominated are called inefficient points. Points which
cannot be dominated by any other feasible points are called efficient277 points.

Resource allocation problems are mostly of this kind. We try to maximize a price-
weighted sum or we try to maximize a military potential which depends positively on
the weapons available. Hence, in this context, efficient production patterns will play a
special role.

14-2-1. Precise Definition. For convenience and continuity we shall carry on most
of our discussion in terms of the Walras-Cassel model we analyzed so exhaustively in
the previous chapter. With it in mind we can give a precise, definition of efficiency.
Suppose first that resource endowments are fixed. Then a pattern of outputs (x1, ... ,xn)
is efficient if (1) it is actually feasible or producible [i.e., satisfies inequalities (13-la), p.
360]; and (2) if there is no other producible pattern of outputs (y1, ... ,yn) which is such
that y1 ≥ x1, y2 ≥ x2, ⋅ ⋅ ⋅ , yn ≥ xn, with strict inequality holding at least once (or else y
and x are the same outputs). If we work with the more general model in which factor
endowments are not fixed, we need a slightly different definition. We then describe an
input-output pattern (x1, ... ,xn;r1, . . . ,rm) as efficient if (1) it is a feasible pattern [if it
satisfies (13-1a)]; and (2) if there is no other feasible pattern (y1, ... ,yn;s1, ... ,Sm) which is



such that y1 ≥ x1, . . . , yn ≥ xn, with at least one strict inequality, and S1 ≤ r1, . . . , sm < rm.
In general, a pattern is efficient if there is no way of increasing some outputs without
either decreasing some other outputs or increasing some resource inputs.

In the simple Walras-Cassel model there are only final goods and nonproduced
factors. We have simplified by omitting the fact of intermediate goods. In real life and
in slightly more complicated models there are pure intermediate goods which are not
desired for themselves at all but only for further processing. Such, for example, is pig
iron. Pure intermediate goods require somewhat different treatment:278 they do not (like
final goods) directly provide social utility, nor are they (like primary factors) direct
social costs. When there is a question of efficiency we compare input-output
configurations only as to their final outputs and primary inputs. Whether the steel is
produced with more pig iron and less scrap or vice versa is immaterial. What matters is
the output of finished steel and the input of ore, labor, etc.

The only part of the general-equilibrium system we had to refer to in defining
efficiency was the resource-use relations (13-1a), but not the demand and supply
functions, nor the price-unit cost relations. This reflects the fact that efficiency is a
purely technological concept, having to do only with production. Welfare questions, on
the other hand, are usually framed in terms of consumer satisfactions. We shall come to
this in Sees. 14-7 and 14-8. Meanwhile, we can make the obvious remark that inefficient
production patterns can never be good from the welfare point of view. Society may
have to choose among the efficient points by some other criteria, but the inefficient
points can be eliminated without a second thought. By the very definition, an inefficient
point can be improved upon or dominated by some other allocation of resources which
will yield more of some outputs without yielding less of any output or requiring more
of any input. As long as any household is nonsatiated with the extra commodities
produced, the efficient situation is certainly better than the inefficient one.279

14-2-2. Geometrical Discussion. Let us draw some pictures for the case of two
commodities and three factors. Even this would require five dimensions, so we shall
again take the factor amounts as given. Then in Fig. 14-1a we draw the constraints due
to each of the three resources in turn. An output point just uses up a resource if it lies
on the corresponding line; it leaves some of the resource unused if it lies between the
line and the origin. Since all three resource limitations must be satisfied, the collection
of producible outputs is the whole polygon OABCD. Note that for each of the flat
portions of the frontier ABCD, only one resource limitation is binding, the others being
in surplus. At the vertexes B and C two resource limitations are binding and the third is
free.280



FIG. 14-1
In Fig. 14-1a the efficient outputs are those along the frontier ABCD. A movement

which increases one or both outputs while decreasing neither is a movement in the
northeast direction (including due north and due east). Any northeastward movement
from an efficient point takes us outside the feasible set. From a point like P, however, a
feasible north-east movement is available. Hence P is inefficient. It can’t be stressed too
much that we cannot say that B is “better” than P just because B is efficient and P is not.
What we can say is that there are some efficient points (C is an example) that are
unambiguously better than P.

Figure 14-1b differs from 14-1a -1only in having a horizontal portion EF in the
boundary of the feasible set. This means that the resource whose limited supply is
binding along EF is not used in the production of x2 at all, but only in x1. Points on the
segment EF are clearly not efficient, except F itself. The efficient set is the rest of the
frontier FGH.

Now we saw in Chap. 13 that the relations (13-1a) could be thought of as the
constraints in a linear-programming problem. The outputs producible with the given
resources are just the feasible x’s in this problem. Among these feasible x’s we have to
find the one that maximizes p1x1 + p2x2. Figure 14-2a reproduces Fig. 14-1a and shows
also several lines of the family p1x1 + P2x2 = constant. The members of this family are
parallel lines, and the higher the constant, the further out the line; that is, k1 < k2 < k3 <
k4. To solve the linear program is to find the outermost “budget line” which has a point
in common with the feasible set. In Fig. 14-2a, this obviously occurs at C.

FIG. 14-2



Now suppose we change the values of p1 and. p2 (only the ratio p2/p1 counts) until the
budget line is very steep. Then the maximum will occur at D. (If we put p1 = 0, so that
the budget line is vertical, we are maximizing P2x2, so naturally we make x2 as large as
we can.) In fact, there is a whole range of values of P2/P1 for which the maximum
occurs at D. But as we pass through flatter and flatter budget lines (i.e., value x1 more
and x2 less), eventually the outermost budget line will coincide with CD. In this case
there is no unique maximum solution—any one of the infinity of points from C to D
will do—but the value of p1lx1 + P2X2 at the maximum is of course unique. Again there
is a whole range of budget-line slopes for which the maximum is attained at C, and then
finally a budget line coincides with BC. Finally, for very flat budget slopes the
maximum is at A.

Note what has happened. By varying the slope of the budget line (the coefficients P1

and P2 of the objective function) and in each case solving the corresponding maximum
problem, we have traced out the set of efficient outputs. Not only does every maximum
occur at an efficient point, but every efficient point is the maximum solution for some
budget line. We have a kind of correspondence between efficient points and price
configurations. In this correspondence the corners A, B, C, D play a special role—each
of them corresponds to a whole range of price configurations. The flat faces AB, BC,
CD correspond each to a single price configuration.

We must be careful to see exactly what is special in this setup. The essential thing is
that the objective function, the value of output, has no negative coefficients. We are
maximizing something that gets bigger (or at least that doesn’t get smaller). when we
increase a choice variable. In these circumstances the connection between efficiency and
linear programs is intuitively clear.

To sum up: Suppose we have a linear program with a positively weighted objective
function. Then by varying the weights through all possible values and solving the linear
programs, we trace out the whole efficient set. The economic significance of this result
is clear. If we can find a set of economic institutions which will always work so as to
maximize a positive-weighted value sum of outputs, then willy-nilly it will always bring
about an efficient output configuration, without anyone taking any thought. Conversely,
if a superbrain is instructed to bring about a particular efficient point, a super-enough
brain can always figure out what p’s to set in the market place, and the market will
automatically maximize pixi and march to the desired efficient point.281 Here is a very
close connection between linear programming and economic optimization.

Figure 14-2b, like 14-1b, illustrates a minor subtlety. If we maximize P1x1 + 0 ⋅ x2 (a
horizontal budget line), the maximum is attained anywhere on EF. But we know that
only F is efficient. The trouble is that if we attach zero weight to x2 nothing stops us
from getting inefficient with respect to x2. In this special situation, and only then,



maximizing by linear programming gets us some inefficient points (along with the
efficient point F). On the other hand, if we tilt the objective function a bit from the
horizontal, the maximum stays at F, but not at the other (inefficient) points of EF. If we
maximize a strictly positive-weighted sum, we get only efficient points.

For some of us, even three-dimensional geometry puts a strain on the imagination.
Nevertheless, it is probably worth trying to visualize the three-commodity situation.
Each resource constraint is represented by a plane. The feasible set is a polyhedron
whose outermost boundary is the efficient set. This boundary is made up of faces
(pieces of single resource planes), edges (where two resource planes come together),
and sharp corners (where three resource planes intersect). Budget planes replace budget
lines. Everything is a little more complicated, but nothing is really any different.

14-3. SOME SIMPLE MATHEMATICS: A DIGRESSION
In this section we shall prepare for a slightly more rigorous analysis of efficiency by

at least naming a few mathematical concepts which make the task easier. The word
“easier” is used here advisedly. The mathematics has the advantage of being intuitive,
not to say obvious.

Everybody knows that if we draw x1 and x2 axes, a single linear equation a1x1 + a2x2 =
c represents a straight line. It is less well known but just as elementary that a straight line
divides the plane into two parts: a part in which a1x1 + a2x2 ≥ c and a part in which a1x1

+ a2x2 ≤ c. These parts are called “half spaces.” The straight line itself belongs to both
half spaces. If a1 and a2 as well as c are both positive, it is especially easy to tell which
half space is which. The signs ≥goes with the half space away from the origin. If a1 and
a2 are of different signs, it may take a little experimentation.

Three and more dimensions are a little harder to visualize, but the same thing goes
with minor changes. A single linear equation,

a1x1 + a2x2 + a3x3 = c

describes a plane and divides the whole three-dimensional space into the half spaces
a1x1 + a2x2 + a3x3 ≥ c and a1x1 + a2x2 + a3x3 ≤ c. If we change c we get a new plane
parallel to the first, and above it if we increase c, below it if we decrease c.

The relevance of all this to our present subject is clear. Each resource limitation
confines the feasible outputs to a half space. (On the line or plane the resource is
entirely used up. Inside the half space some of the resource is left idle.) The common-
sense condition that outputs not be negative also determines a half space: x1 ≥ 0 is just
the special case with a1 = 1, a2, a3, and c all zero. Thus the whole collection of
producible outputs is the common part (the mathematical term is “intersection”) of all
these half spaces.



Another basic geometrical notion is that of convexity. A set of points in the x1, x2

plane is convex if the following is true: If we take any two points in the set and draw
the straight line between them, the whole line also lies in the set. In Fig. 14-3, A, B, and
C are convex; D, E, and F are not.

FIG. 14-3
We need some sort of algebraic notation for the points on the straight line joining two

given points. This is easily come by. If we have two points with coordinates (x1,x2) and 
 respectively, all points on the line between them are weighted averages of the two

end points. Thus all points on the line segment have coordinates  
Here α has to be a number between 0 and 1—otherwise we get points which

are on the line all right, but not between the two given points. If α is zero, we get 
itself. If α is close to zero we get a point on the segment close to  . As α increases,
we get points closer and closer to (x1,x2); and finally, when α reaches 1, we get (x1,x2)
itself. We can now paraphrase our definition of convexity: A set in the (X1,X2) plane is
convex if whenever  and  are points of the set, so are all points 

 for 0 ≤ α ≤ 1.

We can now prove that in the Walras-Cassel model, the set of feasible outputs is
convex. The feasible set is the collection of outputs lying in all the half spaces of (13-
1a):

and so forth. Now suppose we have two feasible output points, 
 . Since they are feasible, if we substitute them

in (13-la), the inequalities will all be satisfied. What happens if we choose an arbitrary α
between 0 and 1 and substitute a point on the line between  and into (13-1a)? Take
the first inequality. Its left-hand side becomes

Collecting the α and 1 – α terms separately, we get



Each of the terms in brackets is ≤ r1. Therefore the whole expression is ≤ αr1 + (1—α)r1,
which is just r1. Hence the first inequality is satisfied, and so are all the rest. We chose
arbitrary feasible x’ and x" and showed that any point on the line between them is also
feasible. Hence the set of feasible outputs is convex. Of course we know this
geometrically, from the way the feasible set is built up out of the resource-limitation
lines or planes.

Convex sets have a very simple and very important property. Imagine any convex set
and some point not in the set, such as the set K and the point P in Fig. 14-4. It is easy to
see that we can draw a line (in fact, infinitely many lines) through P such that the whole
set K lies entirely on one side of the line, i.e., entirely in one of the half spaces defined
by the line. Analytically, we can find numbers s1, s2, and M such that K lies entirely in
the half space s1x1 + s2x2 ≤ M. 282 This means that if (x1,x2) is any point of K, we have
s1x1 + s2x2 ≤ M. Now go one step further. Take any point like Q or R or S which lies on
the boundary of K. Then we can still find a line through Q or R or S such that all of K
lies on the line or on one side of the line, i.e., still lies entirely in one of the half spaces
defined by the line. The only difference now is that some of the points of K will lie
squarely on the line. In the case of Q, only Q itself lies on the line. In the case of S, a
whole piece of the boundary of K lies on the line. In the case of R, we have a choice.
There are lines which contain only R among the points of K. But we could also choose
either of the two linear portions of the boundary of K as our line, in which case
infinitely many points of K are on the line. Note also that at Q or S there is only one line
of this kind, but at R there are many.

Exactly the same thing holds in three or more dimensions. If we choose any point of
the boundary of K, we can find one or more planes which go through the point in
question, and such that the whole set K lies in one of the half spaces defined by the
plane. Planes like this are called supporting planes (or lines) of the convex set. Through
every point of the boundary of a convex set there is at least one supporting plane.
Another way of stating this is as follows. Let K be a convex set and Q,  , be
a point of its boundary. Then we can always find numbers s1, s2, . . . , sn, M such that
s1x1 + s2x2 + · · · + snxn ≤ M for every point of K, and  for Q
itself.



FIG. 14-4
This theorem is not true for sets which are not convex. Back in Fig. 14-3, it is easy to

pick out boundary points of D, E, and F that do not have supporting lines. For convex
sets the theorem of the supporting plane is geometrically obvious. One can feel the way
a convex set must bend away back on itself and how this permits us to draw a
supporting line or plane. The contact between a supporting line and a convex set is a
generalization of the common notion of tangency (but note that support is much simpler
and more elementary—no fussing with derivatives).

There is a crucial connection between supporting planes and maximization. This
should be suggested by the occurrence (well known to economists) of tangency in
maximum and minimum problems. We had a point  on the boundary of a
convex set K. If we drew the supporting plane through this point, we could say that s1x1

+ · · · + snxn ≤ M for every point of K. But in addition,

Comparing, we can see that

(14-1)
for every point of K. We can translate this to say: The linear function s1x1 + · · · + snxn

reaches its maximum in K at the point  . There may be ties, but the maximum
is certainly also attained at the point in question. It may seem odd that a point like S in
Fig. 14-4 can maximize anything, but a little reflection shows that if the coefficients of
the supporting plane are all negative, maximizing the linear function will require making
all the variables as small as possible.

That this apparatus is of importance to linear programming is clear from the fact that
we are already talking of maximizing a linear function over a convex set (and we know
that the feasible set in linear programming is always convex).

14-4. EFFICIENCY AND LINEAR PROGRAMMING
We are now equipped to go back and establish the fundamental interrelationships



between the welfare concept of efficiency and the purely computational technique of
linear programming. It was already suggested and made graphically plausible in Sec. 14-
2 that there is such a connection. There is a certain kind of linear-programming
maximum problem whose solution inevitably turns out to be an efficient point. And in
addition, every efficient point turns up as a solution to at least one such maximum
problem. This is interesting enough. But what is really important from the welfare-
economics point of view is that although this whole setup is formulated in sheerly
physical-technological terms, a notion of “price” rises inevitably out of the analysis.
After all, a linear program maximizes a weighted sum of outputs. An economist can
hardly resist thinking of the weights as prices and the sum as a value, especially when it
turns out that at the maximum the “prices” are proportional to marginal rates of
substitution. We want to make all this a little more rigorous.

To start with, we have a feasible set of outputs, namely, those which satisfy all the
inequalities:

(14-1a)
We are interested not in all feasible outputs, but only in the efficient ones. For example,
suppose a bundle of outputs satisfies all the strict inequalities—then it is clearly
inefficient. It would be possible to increase all outputs simultaneously (if ever so
slightly) without violating any of the inequalities. Thus the first bundle can be
dominated and is inefficient. Conversely, suppose that there is one of the inequalities in
which all the a coefficients are positive. Then if we have a bundle which makes that
inequality hold with an equals sign, the bundle is efficient. Any dominating bundle
would violate the inequality.283

Now suppose we arbitrarily think of the resource limits as the constraints of a linear
program and maximize a positively weighted objective function p1x1 + · · · + pnxn, pi >
0. Let  be any solution of the maximum problem (there may of course be a
tie). We assert that  is an efficient point.

Proof. Suppose  were not efficient. Then, by definition, there would have to be a
feasible bundle y = (y1, ... ,yn) satisfying (14-1a) and such that yi ≥  for every i, and
somewhere along the line, yj > . Since every pi is positive, piyi ≥  for every i, and
somewhere along the line, pjyj >  . But then p1y1 + · · · + pjyj + · ·  + pnyn > 

 . This is a contradiction, because  was supposed to be a
solution of the linear-programming problem and here we have a feasible y which gives
a greater value to the objective function. Since the existence of a dominating y leads to a
contradiction, no such y can exist and x must be efficient. Q.E.D.



Observe that the weights pi must be strictly positive. Otherwise we can’t conclude that
pjyj >  for some j, because it might be that although yj >  , pj = 0. We are in the
situation shown in Fig. 14-2b: a solution of the maximum problem can easily be
inefficient with respect to any output carrying a zero weight.

Now we come to the more interesting half of the basic interrelationship. We start with
any arbitrary efficient point x and show that there is at least one set of nonnegative
weights  such that  is a solution of the linear-programming maximum
problem with  as weights. This will mean that if we solve all possible linear programs,
we trace out the whole efficient set.

We know that the feasible outputs form a convex set and that the efficient program 
is on the boundary of the feasible set [i.e., can’t satisfy all strict inequalities in (14-1a)].
Here we use the results of Sec. 14-3. There must be a supporting plane through  ,
perhaps more than one; i.e., there is at least one set of numbers  such that 

  ≤ M for every feasible program (x1, . . . ,xn) and 
 = M. As in the last section, we can say that 

 for every feasible x, or that  maximizes 
 subject to (14-1a).

All that is left to prove is that the p’s can be chosen nonnegative, so that it is
legitimate to interpret them as “efficiency prices.” Our proof is again by contradiction.
We assume that, say,  is negative and show that this leads to nonsense; it follows then
that  , and similarly for every  . But first we point out a self-evident property of
the set of feasible outputs: if we start with any feasible program and reduce some
outputs without increasing any outputs, we still get a feasible (if less desirable) program.
In Fig. 14-2, any point southwest of a feasible point is also feasible, provided, of
course, that it doesn’t involve negative outputs. This property is not necessary for the
theorem that we are about to prove, but it simplifies things. Afterward we can show
how to get around it.

Now let us suppose that  is negative. Start with  · · · +  and reduce 
a little. By what has just been said, we still get a feasible point (unless  = 0, a case
which will be covered in a moment). But if  is negative, by reducing  to x1 we
increase  to  . Thus (  ) is feasible, and  > 

 , since the last n—1 terms on each side are identical and 
 . Note that this violates the basic inequality of the supporting plane: we have

found a feasible point in the half space of the supporting plane, which is impossible. So
it can’t be that  is negative, and a similar argument can be made for each  in turn.

We can now examine several minor subtleties. In the first place, we can dispense with
the fact that if some outputs in a feasible program are reduced, the new program is still
feasible. Actually, we only used the fact that this is true if the initial program is an



efficient one. In Fig. 14-5, if the feasible set were PQRS, we could always work instead
with an enlarged feasible set (such as TPQRS or even the unbounded set UPQRV)
which has the same efficiency frontier as the original set and has the desired property to
boot. For this enlarged set we can find a supporting plane with non-negative
coefficients as in the text. If we then simply throw away the added portions, this plane
will still be a supporting plane of the original set.

FIG. 14-5
In the same way we handle the situation in which the proof can’t proceed as in the

text because  is already zero and can’t be reduced any more. The feasible set can be
extended by horizontal and vertical lines to UPQRSV so that any variable can be
reduced. A support plane for the extended set will also do for the original one.

Potential mathematicians among our readers will have spotted that we have only
shown that the p’s can’t be negative—not that they must be positive. But a glance at
point F in Fig. 14-2b will show that if there is a horizontal supporting line, there must
also be one with negative slope (i.e., with  and  both positive). GF itself is such a
line, and there are others. But in more general nonlinear cases, there may be only a
horizontal supporting line at an efficient point. For example, if the feasible set is part of
a circle as in Fig. 14-6, point A is efficient and the only tangent at A is horizontal.

FIG. 14-6
Now where are we? Given any efficient point  , we have found a supporting plane

with positive (or nonnegative) coefficients. In other words, we have associated with
each efficient point at least one set of weights such that the given efficient point is a
solution of the linear-programming maximum problem with those weights in the
objective function. We remember from Fig. 14-2 that the supporting plane (or budget



line) has a sort of tangency to the feasible set at the efficient point. Hence, except at
corners, the slope of the supporting plane (which is a ratio of p’s) equals the slope of
the efficiency frontier (which is a marginal rate at which one commodity can be
efficiently substituted for another). It is irresistible to interpret the p’s as a set of implicit
efficiency prices associated with the given efficient point. At a corner or edge of the
efficiency locus, the situation is slightly more complicated. No unique marginal rate of
substitution exists—the slope of the efficiency frontier is different, depending on the
direction we take. We can imagine these different slopes as putting limits to “the” MRS.
We also know that at a corner or edge there will be more than one supporting plane,
i.e., more than one associated set of p’s. (At a really flat place on the boundary, the
supporting plane is unique and literally coincides with the boundary.)

FIG. 14-7
But all these supporting planes will have slopes within the limits set for the MRS. So
that even at corners the generalized correspondence between associated p ratios and
MRS’s persists.

To sum up briefly: We have found that any time you assign an arbitrary set of prices
and solve the linear program of maximizing value of output you wind up at an efficient
point; and that, conversely, every efficient point is the solution to at least one maximum-
value problem with certain price weights. The efficiency-price concept rises out of the
problem itself—it was not put there by institutional assumptions. But we now know that
any institutional setup that results in the maximization of value sums will achieve
efficient (but not necessarily “good”) programs.

In the two-dimensional case we can easily dig out some more about the association
between efficient points and price constellations. Let us draw in Fig. 14-7a a feasible set
whose efficiency frontier ABCD has two corners. Now with each point of ABCD we
associate one or more supporting (or tangent, or budget) lines and, more particularly,
the coefficients of the supporting line. Only the ratios of the coefficients matter, for they
alone determine slopes. The line 10x1 + 2x2 = 20 is the same as the line x1 +  = 2.

In Fig. 14-7b we are going to do the following. Each supporting line in Fig. 14-7a
determines a ray in Fig. 14-7b, namely, the ray with slope p2/p1. This is the same thing



as the ray through the point (p1,p2): it also goes through all points (kp1,kp2), among
which we do not care to distinguish. Drawing the diagram is simplified by the following
geometrical fact: the ray through (p1,p2) is always perpendicular (or “normal”) to the
lines p1x1 + p2x2 = constant.

Now at A the supporting lines consist of the horizontal line x2 = constant (or 0 · x1 +
p2 · x2 = constant) and all lines intermediate in slope between the horizontal and AB,
inclusive. Thus to A we make correspond in Fig. 14-7b the vertical ray [through (0, p2)]
and all intermediate rays up to and including the ray with slope perpendicular to AB.
Thus we get the sector (or “cone”) labeled A in 14-7b, boundaries inclusive. The right-
hand boundary is the only ray or price ratio associated with the efficient points on AB.
When we come to B itself we get not only the ray marked AB but also all rays
intermediate between this and the ray perpendicular to BC. The ray marked BC does
duty for every point of BC, including the end points. Then we get another zone
belonging to the vertex C, a single ray for all of CD, and finally a cone for D which
begins with the ray normal to CD and ends with the ray through (p1,0) corresponding to
the vertical supporting line p1x1 + 0 · x2 = constant.

In three dimensions (and in more, for that matter) the same thing happens. Associated
with every point of the efficiency frontier is one or more rays or sets of price ratios. If
there is more than one associated ray (which will be true at edges or corners of the
efficiency locus), there is a whole cone of price rays. At a corner there is a genuine solid
cone of price rays; at an edge there is a flat two-dimensional, fan-shaped cone such as
the ones shown in Fig. 14-7b, except that this one is standing right up in three-
dimensional space.

14-5. COMPETITIVE EQUILIBRIUM AND EFFICIENCY
It is now a relatively simple matter to broaden our sights to include the full Walras-

Cassel model of competitive equilibrium as described in Chap. 13. We can show that
there is a close relationship between the purely “economic” notion of competitive
equilibrium and the purely “technological” notion of efficiency. Indeed we have the
following theorem. Under the assumptions of Chap. 13, if firms maximize their profits
competitively with respect to any given set of positive prices for goods and factors, the
resulting configuration of inputs and outputs will be efficient. Conversely, if we are
given any efficient input-output situation, there is a set of nonnegative prices for which
this situation is the competitive profit-maximizing equilibrium.

Before proving this theorem we have to make some remarks about the definition of
competitive equilibrium. In Chap. 13, a competitive equilibrium was a set of prices
(p’s), factor returns (υ’s), factor supplies (r’s), and outputs (x’s) that satisfied the
equations and inequalities (13-1a), (13-2), (13-3a), and (13-4). In laying down the



definitions we made no specific mention of profit maximizing on the part of firms. But
as Sees. 13-4 and 13-5 showed, it is there all the same. We demonstrated (on p. 370 of

Chap. 13) that any competitive equilibrium solution maxi-n mized  pixi and

minimized  riyi, subject to the dual constraints (13-1a) and (13-3a). Moreover, any
solution of this pair of dual maximum and minimum problems that also satisfied the
demand and supply equations would be a competitive equilibrium. Now instead of
separately maximizing total revenue pixi and minimizing total costs rivi, we might just
as well speak of maximizing the difference between them, total profits, pixi — rivi.
Duality theory tells us that the maximum value of total profits achieved at a competitive
equilibrium is zero. Elsewhere it is negative. We need only add that in our linear,
constant-returns-to-scale technology it does not matter whether we think of profits
being maximized in the aggregate or by individual competitive firms, all facing the same
prices. Thus, with some verbal emendations, the competitive equilibrium studied in
Chap. 13 is identical with competitive equilibrium defined in terms of profit
maximization. This is also evident from the discussion in Sec. 13-4 relating to
‘marginal-productivity conditions.

Now to proceed. Suppose we have a competitive equilibrium, a set of prices, outputs,
factor prices, and factor supplies such that profits are maximized. Under our
assumptions of additivity and noninterference of production processes, we can imagine
the economic system to be integrated into one giant firm. This firm, taking the p’s and
υ’s as given, maximizes aggregate profits. Total profits are represented as revenues

minus costs,  pixi —  vjrj. Technology tells us that we must have inequalities (13-
1a) of Chap. 13 satisfied; i.e.,

We have to prove that the input-output pattern is efficient. But suppose it weren’t.
Then we could make some change in the pattern which would only increase some x’s
and (perhaps) decrease some of the binding r’s. (Decreasing nonbinding r’s does not
make a pattern inefficient; these are superfluous anyway!) But increasing x’s has the
effect of increasing revenues pixi, since the p’s are positive. And decreasing scarce r’s
has the effect of decreasing costs rjvj, since the prices of these factors are positive.
Thus any such rearrangement would increase profits, pixi — rjvj, and leave the
constraints satisfied. This is impossible, since we started with a competitive equilibrium
which, by definition, maximized total profits. No such rearrangement can exist. The
competitive pattern is efficient, and the first half of the theorem is proved.



Now for the second half of the theorem. We have an arbitrary efficient bundle of
outputs and inputs  and  . We have to find a set of commodity and
factor prices with respect to which this input-output situation forms a competitive
profit-maximizing equilibrium.284

In the previous section we showed that if  is efficient, there certainly exists at least
one price constellation  such that  + · · ·  is maximized at  among all feasible
outputs. Let us use these (  ) as our commodity prices.

Now where are factor prices going to come from? The reader who remembers our
earlier analysis of the Walras-Cassel system will see at once that the factor prices must
satisfy the dual inequalities (13-3a), page 369:

In fact we can go even further and take those υ’s which solve the dual linear-
programming problem of minimizing  subject to the price-cost
inequalities. Let us call them (  ).

Our problem is solved: we have  and  satisfying the usual competitive price-cost
relationships. All we have left to do is to verify that if this constellation of  and  is
presented to a profit-maximizing firm, the firm will choose to produce the given outputs
 with the given inputs  . But this is easy. Total profits are  . Actually, the

duality theorem tells us that profits are zero; we have to show that no higher profit is
attainable at the given prices. The price-cost inequalities say that for every production
process profits per unit of output are nonpositive. Since we have additivity and constant
returns to scale, this means that there is no additional profit to be gained by expanding
any output. In addition, the duality relationships say that any process actually being used
has zero unit profits, while only those not being used may have negative profits.
Therefore no extra profit is to be gained by reducing any output which is actually being
produced. Profits are being maximized, and every efficient production pattern is a
competitive equilibrium for some set of prices.

14-6. COMPETITION AND LINEAR PROGRAMMING
In the last few sections we have forged a link between the solution of certain linear

programs and the concept of efficiency and another link between efficiency and
competitive equilibrium or the activity of profit maximizing. Two links make a chain,
and the chain connects linear programming at one end and competitive profit
maximizing at the other. Much of this terrain is familiar from Chap. 13. The difference
is that here our objective has been the normative welfare-economic properties of
competition. We have found a two-way correspondence: competitive equilibria are
efficient, and the set of efficient points consists of nothing but all possible competitive



equilibria. One way to show that a situation is not efficient is to show that it could never
have come about by way of competition. Just this argument can be used to prove the
distorting effects of excise taxes and the nondistorting character of lump-sum taxes and
subsidies.

One important aspect of this connection between programming and competition was
not emphasized in the preceding discussion. Linear programming is, so to speak, a
centralized computational way of finding efficient patterns or even of exploring the
whole efficient set. Competitive profit maximizing, on the other hand, is a decentralized,
atomistic way of doing the same thing. To be sure, our proofs talked about aggregate
profits, and the individual firms appeared nowhere. We can imagine them to be there,
none the less. The point about additive constant-returns-to-scale production processes is
precisely that the boundaries between profit-maximizing firms lose significance. Where
one firm or industry stops and the next one starts is a matter of importance to the owner
and his heirs, but to nobody else. The functioning of the system doesn’t depend on it at
all. It is a commonplace of the theory of the competitive industry that under constant
returns to scale the allocation of output among firms is indeterminate. We can, if we
like, imagine equal firms, all of some given small size.

In any case the profit maximizing that leads to efficiency, that solves the linear
program, can be carried out by firms. Nobody needs to compute on a large scale. Each
firm needs only to know the price of what it sells and the wages of the factors it uses.
The market breaks up the big linear program into little profit decisions, and as long as
everybody faces the same prices, the electronic computer and the higgling of the market
place both lead to the efficiency frontier.

However, all this begs the dynamic question completely. Computers sometimes solve
problems by iteration, by successive approximation. Someone must always make sure
then that the iterations converge, that the approximations actually get better and better.
Similarly it is one thing to say that a competitive equilibrium is efficient and quite
another to suggest that over time the usual competitive process will get closer and closer
to its equilibrium, to an efficient point. This question was discussed briefly way back in
Chap. 2. It turns out that too “perfect” a model of competition may oscillate endlessly
around its equilibrium, just as too “perfect” a pendulum may do. In competitive
markets, as in pendulums, a little friction may be needed for stability. But to pursue this
would take us too far afield.

14-7. THE BASIC THEOREM OF WELFARE
ECONOMICS

To conclude this chapter we can show how the theorem on efficiency fits into the
broader frame of welfare economics. As a preliminary step we have to look still further
into our definition of competitive equilibrium, and also to introduce another important



concept, that of a Pareto-optimum.

We have already remarked that our treatment of competitive equilibrium tended to
blur the role of the individual firm, and we gave an excuse. Even more so does our
earlier definition slight the individual consumer. Households don’t appear in it
explicitly; their behavior is summed up in the market commodity demand and factor
supply functions. Since our main interest was in the production side of the model, this
simplification was quite permissible. Even now, with welfare economics our explicit
objective, it would take us too far afield and multiply the number of variables by too
high a factor if we incorporated household behavior explicitly in our model. But for
expository purposes, since this is familiar ground for most economists, we can afford a
loose and intuitive treatment. So we shall only remark that instead of taking the supply
and demand functions for granted, we could have proceeded differently. We could have
started with a given distribution of the ownership of resources among individual
households. For any set of factor and commodity prices we could suppose each
household to maximize its standard utility function subject to its own budget constraint.
Granted the usual assumptions (convexity of indifference curves, nonsatiation, etc.),
this would determine for each household a unique offer of resources and demand for
commodities. Adding up over all households, we would get a point on each of the
demand and supply functions (13-2) and (13-4). By varying the prices and the factor
returns, we could trace out the whole collection of demand and supply surfaces. All this
justifies the assertion that we could have omitted (13-2) and (13-4) from the earlier
definition of competitive equilibrium and substituted the requirement that each
household adjust its demand and offer so as to maximize its satisfaction subject to its
budget constraint. What is important here is that the budget constraint of each
household involves the same factor and commodity prices.

Now we turn to another familiar notion, that of a Pareto-optimum. This is a standard
tool of welfare economics; its importance comes from the fact that it provides a weak,
universally acceptable, criterion of when one economic configuration is “better” in a
welfare sense than another. We say that situation A is “better” than situation B if in A no
household feels worse off than it does in B and at least one household feels better off.
The reader can think in terms of Edgeworth box diagrams and the like. A Pareto-
optimum is a configuration of household consumptions and household factor supplies
that (1) is feasible in the sense that the summed-up consumption quantities (our x’s) and
the summed up factor supplies (r’s) make up a possible input-output vector in the
technology [i.e., satisfy the inequalities (14-1a)], and (2) has the property that no other
feasible configuration is “better.” Obviously we need only restrict ourselves to feasible
configurations. There can be lots of Pareto-optima, corresponding to different
distributions of real income. In a “pure exchange” Edgeworth box, the set of Pareto-
optima consists of all the points on the “contract curve.” The reason that we had to
expand our definition of competitive equilibrium is precisely because of the way the



welfare notion of Pareto-optimum is constructed around the households’ utility
functions. Although the explicit definition of a Pareto-optimum is thus concentrated on
the demand side, we saw earlier that productive efficiency is a necessary (if not
sufficient) condition for welfare optimality.

The main propositions of welfare economics are usually stated in terms of a long
string of equivalences among marginal rates of substitution in consumption and
marginal rates of transformation in production. More recently it has become common to
sum up all these in one brief and easily understood theorem which contains everything
of significance and provides the backbone of modern welfare economics. This
fundamental theorem states: Every competitive equilibrium is a Pareto-optimum; and
every Pareto-optimum is a competitive equilibrium.285

What this means is, first, that competition, defined either in terms of utility and profit
maximization with unique prices or equivalently in terms of our systems of equations
and inequalities of the previous chapter, brings about just those marginal equivalences
which guarantee that the production and consumption configuration is Pareto-optimal;
and, second, that any real configuration of production and consumption patterns which
is Pareto-optimal (a statement entirely free of explicit price considerations) will be
found to define a set of implicit prices in terms of which it is actually a competitive
equilibrium. From this proposition, and particularly from its second half, flow all the
classical statements about monopoly, tariffs, taxation, etc.

We have set out to prove that competitive equilibria are Pareto-optima, and Pareto-
optima are competitive equilibria. We already know (1) that all Pareto-optima are
efficient points, (2) that maximum-profit competitive equilibria are efficient, and (3) that
efficient points are maximum-profit competitive equilibria. These three propositions
sum up most of what we have to say about production. We must now show how the
gaps can be filled in and the argument completed. The linear-programming nature of the
technology will play no special role in the reasoning. Since the argument is just the
classical one familiar to all students of economic theory, we shall simply sketch the
steps briefly and refer once again to the literature.286

Let us start with a full competitive equilibrium and see why it must be a Pareto-
optimum. The familiar argument goes like this: We know that production is efficient;
we know more, that at this efficient point the price ratio between any pair of
commodities measures the rate at which they can efficiently be transformed into each
other (by transfer of resources).287 Also, in the usual way, consumers have arranged
their offers of factors and purchases of commodities so that the same price ratio
measures the ratio of marginal utilities (the marginal rate of substitution) for the pair of
commodities. Hence at the margin, for each consumer, commodities may be
indifferently substituted at the same rate at which they may be interchanged in
production. From this and the fact that indifference curves have a convexity opposed to



that of the efficiency locus or transformation curve, we can deduce the Pareto-
optimality of the competitive configuration. For example, the Edgeworth-box-diagram
reasoning tells us that the competitive situation lies on the contract curve for the total
commodity amounts actually produced. Thus the pure-exchange conditions for
optimality are met. And if, for example, we shift resources to get a little more x2 and a
little less x1, the convexity tells us that if we give up a unit of x1 we get in return less x2

than the amount that would just compensate any consumer for the loss of the x1.

This argument can be made a little more rigorous in the following easy way: Every
household has a budget constraint that it must meet. This constraint is of the form
Σpixi

(3) ≤ Συjrj
(s) + t(s), where the superscript refers to the household; it says that

expenditures cannot exceed income from the sale of factor services plus some given
income from external sources or transfers. For our purposes we can put all t(s) = 0. In
addition, since we rule out satiation, the equality will hold for all consumers. Another
way of saying that each consumer maximizes his satisfaction subject to his budget
constraint is to say that any consumption-factor-supply situation which is preferred to
the one actually observed must violate the budget constraint at the observed prices.
Otherwise it would displace the observed choice. With strongly convex indifference
curves it is even true that situations indifferent to the observed situation will violate the
budget constraint. Even if indifference curves have flat portions, it is at least true that no
situation indifferent to the observed one can cost literally less.

Now suppose our competitive equilibrium  were not a Pareto-optimum. Then
there must be a feasible configuration (x,r) that is better in the sense that no household
is worse off and at least one is better off. Then by the previous paragraph, for all
households the net budget at  is no more than at (x,r), and for one household at least
it is smaller; i.e., for all households  and for at least one
household the inequality holds. We can add these budget inequalities up over all
households, and we find that Σpixi — Σνirj >  where symbols without
superscripts are just the all-economy totals in our usual notation. But if we know
anything, we know by now that a competitive equilibrium maximizes , net profits or net
value of output, Σpixi — Σνjrj, over all feasible input-output configurations. (The
maximum value is zero, but it is a maximum all the same.) Therefore no such “better”
situation as (x,r) can exist, or else  would not be maximizing net value of output.
Thus the competitive equilibrium  must be a Pareto-optimum.

The next item on our program is a “proof” of the reverse implication, that every
Pareto-optimum is a competitive equilibrium. From the welfare-prescription point of
view this is the more important half of the theorem. The first half tells us only that in a
competitive equilibrium the lot of any household can be improved only by
redistribution of real income from some other household. It says nothing about the
goodness or badness of monopolistic elements in a noncompetitive situation. But the



second half bites deeper, and in fact provides the fundamental welfare argument against
monopoly, against indirect taxation, and against tariffs. Once we have proved that every
Pareto-optimum is a competitive equilibrium, we can argue as follows: The existence of
a monopolistic seller (marginal cost = marginal revenue < price) or of an excise tax or
of a tariff means that somewhere in the system we can find a place where not all
households and firms are maximizing with respect to the same set of prices (consumers
take the post-tax price of the taxed or dutied commodity as given, sellers take the net
price). But a unique set of price parameters for everyone is the hallmark of competitive
equilibrium. A situation with monopoly, excise, or tariff can thus under no
circumstances be a competitive equilibrium.288 Then it can under no circumstances be a
Pareto-optimum, for every Pareto-optimum is a competitive equilibrium. The
remarkable thing about this reasoning is that it demonstrates the intrinsic, more than
institutional, nature of the price system. Markets and market prices there need not be,
but starting from a completely non- “capitalistic” definition of a welfare optimum we
show that things must organize themselves or be organized as if there were a set of
universal prices or exchange ratios. The latter can actually be calculated from the data of
the problem.

The “proof” we shall give amounts to nothing more than reminding the reader of
what every economic theorist knows. Naturally a rigorous and really quite simple proof
can be given, but it involves one or two tricky points which have nothing to do with our
particular problem of linear models of production, and so it will be omitted here.
However, the reader interested in these points is referred to the papers of Arrow and
Debreu listed earlier in this chapter. The tricky points have to do with the consumption
side of the model. In the first place, one has to be quite precise about the continuity of
individual preferences and about the exact nonsatiation assumptions to be made. More
important is the fact that consumers cannot be “vertically integrated” in the way that
firms can. Because firms maximize a linear sum of prices times quantities, and because
of the simple technology we have assumed, it is easy to see that we need only worry
about a maximum of aggregate profits over the set of feasible aggregate input-output
points. The boundaries of firms are unimportant. Not so with households. There is no
grandiose aggregate utility we can think of maximizing. And because of the way that a
Pareto-optimum is defined, the boundaries of households are important. The way
around this difficulty is to stay in the world of commodities and out of the world of
utilities. For each household, think of the set of all commodity bundles preferred or
indifferent to the bundle achieved in the given Pareto-optimum. Because of the assumed
shape of indifference curves, this set of commodity bundles is convex. Now we can
define an aggregate concept as the set of grandiose over-all commodity bundles having
the property that there is some distribution of these commodity amounts among
households that will leave each household in a position preferred or indifferent to the
initial situation. This set can be shown to be convex. Naturally some of its members are
not feasible. But at least one member is feasible, namely, the initial Pareto-optimal



position. The Southwest boundary of this set now plays the role of a “community-
indifference curve”; because of Pareto-optimality this boundary can do no more than
touch the feasible set of outputs. Then we appeal to a slight generalization of the
supporting-plane theorem of Sec. 14-3-also a visually “obvious” result. Roughly
speaking, if we have two convex sets that have no points in common, we can find a
plane which separates them, i.e., such that one of the convex sets lies entirely on one
side of the plane, while the other lies entirely on the opposite side of the plane. Under
some circumstances (namely, if at least one of the sets has “interior points”), the same
theorem holds if the two sets are permitted to have boundary points in common. As in
Sec. 14-6, the coefficients of the separating plane can be interpreted as prices. In fact,
the separating plane is nothing but the supporting plane at the efficient (and now Pareto-
optimal) input-output point, as described in the last section. What we have now shown
is that this same plane can serve as a budget plane with respect to which utilities are
maximized. And this is what is meant by a Pareto-optimum being a competitive
equilibrium.

We now get on with our main task, that of outlining the proof that a Pareto-optimum
is a competitive equilibrium. We are given outputs and factor inputs at a Pareto-
optimum. We already know from earlier work that the input-output point must be
efficient and that therefore on the production side it is representable as a competitive
profit-maximizing equilibrium with respect to a certain set of positive prices. We have
to make it plausible that on the consumption side the picture is also one that would be
brought about by all households maximizing utility, subject to a budget constraint. It is
essential that this budget constraint should involve the same prices for each household
and that these prices be the same ones that we found on the production side.

Once the aggregate outputs and factor amounts are specified, as they are in our
problem, the factor-supply-consumption side of the economic system reduces to a
standard Edgeworth-box-diagram pure-exchange situation. The reader can draw such a
diagram for himself, see how the size of the box corresponds to the given input-output
data, and draw in the indifference curves (they will look a little odd in the one-factor,
one-good case). If the given situation is Pareto-optimal, it must lie somewhere on the
contract curve, the locus of points of tangency of the two properly convex indifference
maps.289 At each point on the contract curve, hence also at the given Pareto-optimum,
marginal rates of substitution are equalized for all consumers, for every pair of goods,
or pair of factors, or factor-good pair. This set of common marginal rates of substitution
will be our implicit price ratios. If these ratios were to be embodied in market prices,
households maximizing satisfaction within their budgets would find themselves in
exactly the given situation.

The implicit price ratios are the same for each household. It only remains to show
that these price ratios must match the ones found on the production side. But this
follows from the standard classroom argument. Suppose that there were a price ratio



that differed. On the production side, the price ratios were shown to measure marginal
rates of efficient transformation. Suppose that 1 unit of A foregone will enable the
output of B to be increased by 3 units, so the price ratio PA/PB = 3. Suppose on the
consumption side, PA/PB = 2; 1 unit of A foregone will need to be compensated by 2
units of B, if utility is to be maintained at the previous level. (Note that this rate of
substitution is the same for all consumers.) Then give up 1 unit of A, produce instead 3
units of B. Let each household give up its share of the A foregone and compensate each
household with its proportional share of 2 units of B. All households are as well off as
they were. But there is still 1 unit of B to be given away. Give it to any nonsatiated
household. We have found a situation better in the Pareto sense than the initial situation.
But this contradicts the assumption that we started with a Pareto-optimum. Thus we
must abandon the possibility that rates of transformation in production differ from rates
of substitution in consumption. The implicit price ratios must be the same, whether they
are deduced from the efficient nature of production or the contract-curve nature of
consumption. Any Pareto-optimum can be thought of as the joint response of profit
maximizers and utility maximizers to a certain set of prices, the same prices for
everyone. A Pareto-optimum is a competitive equilibrium.

14-8. GENERALIZATIONS
It is worth mentioning, although we cannot pursue the subject here, that the welfare

theorem we have just finished discussing can be proved under wider conditions than
the ones we used. Readers interested in the subtleties (which sometimes lead to
complicated mathematics) should turn to the papers of Arrow and Debreu already
mentioned.

The main generalizations are in two directions. We worked within a linear technology
which defines society’s feasible input-output combinations by a system of linear
inequalities. Thus if production is feasible at all,290 the feasible set of input-output points
is a convex polygon. The essential characteristic is the convexity; the linearity may be a
convenience, but not a necessity. In the linear model the combination of constant
returns to scale and the additivity of processes get us convexity. Universal decreasing
returns to scale would result in even more convexity (no flat places on the efficiency
frontier). So we could get along with a mixture of constant and decreasing returns to
scale scattered through the separate processes available. All that is required is that
society’s ultimate feasible set should be convex. The efficiency frontier or
transformation curve (or surface) must show nonincreasing marginal rates of
transformation. Once this is assumed, the proofs go through much as we sketched them.
The main mathematical tool, the existence of the supporting plane, is available in the
more general case.

Another direction in which it is possible to generalize has to do with the precise



assumptions to be made about consumers’ tastes. We can insist on more or less
continuity in consumer preferences; we can have more or less strict assumptions about
nonsatiation; we can pay more or less attention to the case of commodities not
consumed at all by some consumers. But all this is hardly to the point for expositional
purposes.

Finally, it is possible, interesting, and important to extend the theory of welfare
economics to cover production, consumption, saving, and capital formation over time.
If everyone’s horizon were finite, we could simply consider the same physical good as a
different commodity in each period of time, and a cheap generalization of the standard
results would be easily available. But the essence of the problem is that consistent
valuation of goods and incomes over a finite period of time requires some assumptions
about terminal values of stocks, capital, etc. These terminal values can only refer to the
still more distant future. So the problem is inescapably infinite. We could assume the
arrival of doomsday at the end of the period, but then the results thus deduced would be
valid only for a world in which doomsday is expected with certainty.

“Cheap” generalizations of the kind just mentioned will get us no further on the road
toward a combination of welfare theory over time and the theory of capital. It is
necessary to begin from first principles with due attention to the peculiarities of capital.
This we did in Chap. 12. In that chapter the attack was mainly from the production-
efficiency side, fully exploiting the goods-made-from-previous-goods structure of the
problem. The price implications emerged eventually. For an approach slightly more
similar in spirit to the welfare economics of the present chapter, the reader is referred to
an interesting paper by E. Malinvaud.291



15

Elements of Game Theory

15-1. INTRODUCTION
The theory of games has been hailed as a landmark in the history of ideas. “Ten more

such books,” Jacob Marschak292 once wrote, “and the progress of economics is
assured.” In the ten-odd years since its definitive presentation293 game theory has had
important applications to the science of military tactics and has contributed to a
revolution in the theory of statistics. When it comes to economic problems, for which
the theory was originally designed, the value of its contribution is more in doubt.
Because of this question and because the theory has a close affinity with linear
programming, game theory has a place in this book. We shall not pursue the subject
very far, however, developing the concepts just enough to bring out their bearing on
economic problems and discussing the technique just enough to demonstrate its
relationship to linear programming.294

The underlying insight of game theory is that parlor games, economic markets, and
military battles are all instances of social situations in which the participants pursue
conflicting interests. Moreover the fate of each participant—the poker player’s
winnings, the firm’s profits, the army’s casualties—depends in part on the actions of the
other participants. Let us call such a situation, in which the outcome is controlled jointly
by a number of participants with incompatible objectives, a game. We ask: How should
a rational person involved in a game act? A general answer to this question would
throw light on special instances of conflict situations, including those in the sphere of
economics.

15-2. DUOPOLY: AN OPPOSITION OF INTERESTS
Following time-honored precedent we illustrate the problem and method of game

theory by an example drawn from the area of duopoly, but not—for reasons that will
soon emerge—by the classic duopoly example of Cournot and his successors. The
essence of the duopoly problem, as of game theory, is that the returns earned by each
competitor depend on what both of them do. Table 15-1 presents a simplified duopoly
problem which displays this feature. Firm 1 can choose between offering 100 and 200
units of product; Firm 2 can do the same. The profits received by the two firms depend
upon both of these choices and are shown in the body of the table.



TABLE 15-1. PROFITS OF DUOPOLISTS ($1,000)

Let us now imagine ourselves in the situation of Firm 1. The most attractive
opportunity that beckons is to offer 200 units in the hope that Firm 2 will also offer 200
units. But this is also a dangerous choice, the more so because Firm 2 could wish for
nothing better than for us to offer 200 units so that he could offer 100 units, thereby
reaping a profit of $7,000 and leaving us a meager $3,000. All in all, it may seem best to
count on Firm 2’s offering 100 units. Then we should be well advised to offer 100 units
also and remain content with $5,000 profit. Once we reach this stage, though, it seems
reasonable to expect Firm 2 to expect us to be this shrewd. Thus Firm 2 will expect us
to offer 100 units, and on this expectation will offer 200 units, hoping for $6,000 profit.
This being so, it seems as though the $6,000 profit, which we mentally relinquished at
the very outset, can be realized after all; all we need do is offer 200 units. On the other
hand . . . .

We could, of course, go on like this forever. We have become involved in a process
of endless regress, and no solution can be obtained by continuing to try to form
expectations about our opponent’s expectations of our expectations. The only hope is to
cut through this welter of possibilities by some bold stroke, and this is precisely what
the theory of games purports to do.

15-3. BASIC DEFINITIONS AND CLASSIFICATIONS
By a game we shall mean a social situation in which there are several individuals,

each pursuing his own interest and in which no single individual can determine the
outcome. Parlor games, of course, fulfill this definition. So does the duopoly problem
that we just discussed. So does much of warfare. And so, obviously, do many economic
situations. The elements necessary to describe a game are a list of the individuals
concerned, a specification of the choices open to each, and a specification of the way in
which those choices determine the results realized by each participant.

The most fundamental classification of games is according to the number of
participants. One-person games are excluded by our definition. The basic classes are
two-person games and more-than-two-person games. The theories of these two sorts of
games are very different, though closely related. We shall devote almost all our attention
to two-person games (for reasons that will emerge presently), reserving a few remarks



about more-than-two-person games until the very end of the chapter.

We now focus our attention on two-person games. Our duopoly example illustrates
such a game, but the data assumed have one peculiarity to which we now draw
attention. Notice that in every one of the four possible contingencies, the sum of the
profits of the two firms is the same, namely, $10,000. For this reason our example
would be called a constant-sum game, or, more usually and less correctly, a zero-sum
game. The contrasting class is non-constant-sum games, and we have altered our data so
as to produce one in Table 15-2. Using the data of Table 15-2, we see that joint profits
can now vary from $8,000 to $11,000, depending on the choices made by the two firms.
The change may seem minor, but the consequence is fundamental since von Neumann’s
principal method of analysis applies only to the constant-sum case. Now the interests of
the two firms, though somewhat divergent, are no longer directly opposed. This is the
situation that has occupied the attention of students of markets with few participants
from Cournot to Fellner, and one of the main issues of the discussion has been whether
the duopolists would maximize their joint profit.295 The theory of two-person games
does not purport to throw much light on this clouded discussion; it merely emphasizes
the distinction between the two kinds of games. When the game is not of the constant-
sum sort, the clear opposition of interest is contaminated and new complications enter.

TABLE 15-2. PROFITS OF DUOPOLISTS, NON-ZERO-SUM VARIANT ($1,000)

From here on we narrow our attention to two-person, constant-sum games. This
makes our theory disappointingly specialized, and, indeed, whether the theory so
delimited is ever relevant in economics is an open question. Definitely, game theory
does not crack the nut of duopoly theory. But it is worth examining the special constant-
sum case to which the theory does provide a satisfying solution with some applications.

15-4. STRATEGIES AND THE PAY-OFF MATRIX
Most parlor games take the form of a sequence of moves, and so do many conflict

situations in economics, warfare, and elsewhere. A description of a game in terms of its
sequence of moves, including the rules controlling each option, is called, in the lingo of
game theory, a description of the game in extensive form. The fact that games in practice
occur in the form of a time sequence of moves, countermoves, and, perhaps, chance



shocks is purely adventitious from the point of view of game theory. To convince
yourself that the sequential aspect of games is inessential, you have only to conceive of
two chess players who are also skiers. Shortly before their big championship match, we
may suppose, one of them experiences the kind of accident that might be expected. But
pluckily, as he lies in his bed of pain, he writes a letter to the referees, explaining his
absence and including a (very bulky!) envelope in which he specifies how he would
move in every possible contingency. We do not render this situation any less plausible if
we now assume that the second skiing chess player is as unfortunate as the first and also
as plucky. The referee, then, with the two envelopes in his hand, can play the match
every bit as well as the two players face to face and with the identical result. If we call
the contents of these two envelopes the strategies of the two players, we see that the
play of a game, in spite of all its intricacy, amounts merely to a choice of strategy on the
part of each opponent. For, once both opponents have determined what they will do in
every possible contingency, the outcome of the game is determined.296 It is most
convenient to think of games in this way, i.e., as amounting to a choice of strategy, and
to represent the field of choice as in Table 15-3.

TABLE 15-3. A PAY-OFF MATRIX

Such a table is called a pay-off matrix. This table represents the possibilities in a game
played by two players, 1 and 2. Player 1 is assumed to have m strategies, identified by
numbers and listed vertically in rows. Similarly, Player 2 is assumed to have n strategies
listed in columns. We shall assume both m and n to be finite, though in some games,
like chess or bridge, they may be very large. The entries in the body of the table are the
winnings of Player 1. For example, Table 15-3 tells us that if Player 1 uses his Strategy 2
and Player 2 uses his Strategy 3, then Player 1 will win a23.

Because we are restricting ourselves to constant-sum games, there is no need for a
similar table for Player 2. His winnings are simply some constant less Player 1’s, and
therefore, just as Player 1 is interested in reaching the largest entry possible in such a
table, Player 2 is interested in reaching the smallest possible entry.297 Going back to the
duopolists of Table 15-1 we see that we can suppress the last two columns and express
all the relevant information in the form of a pay-off matrix as in Table 15-4.

TABLE 15-4. PAY-OFF MATRIX FOR THE DUOPOLISTS, CONSTANT-SUM



CASE

It should be noted that the entries in the pay-off matrix are the objective returns (e.g.,
sums of money) received by the maximizer and, by consequence, denied to the
minimizer. This presupposes that the two players are actually contending over these
measurable returns and not over prestige, safety, utility, or anything else. If the
participants in an economic conflict situation are contending over something other than
money, e.g., utility, then that something is what should be entered in the pay off matrix
in order to have the matrix represent the relevant results of various struggles. Clearly,
the unvoiced presupposition that the stakes can adequately be expressed as money (or
some other objective measure of value) is not innocuous because the contrary is often
the case. The assumption is essential because only if the stakes are something that can
be shared or exchanged, like a sum of money, does it make sense to conceive of a
constant-sum game or, indeed, of the sum of the returns to two players. We therefore
assume that monetary pay-offs are an adequate measure of the results of the game.298

15-5. THE EVALUATION OF STRATEGIES AND THE
WORTH OF A GAME

The fundamental difficulty in the analysis of conflict situations, we have already seen,
is to decide what each opponent is to expect of the other. In game theory we visualize
each player as acting on three presuppositions: (1) his opponent’s interests are
diametrically opposed to his own; (2) his opponent has all the information necessary to
construct the pay-off matrix of the situation; (3) his opponent is shrewd enough so that
if the opponent knew in advance what strategy the player had selected, the opponent
would make a wise choice of his own strategy.299

Let us apply these considerations to Table 15-3. Suppose that Player 1 (the
maximizing player, remember) is looking down the list of his strategies and comes to
Strategy 3. We assume him to look across the row for Strategy 3 and note that, say, a32

is the lowest number occurring on that row. He then is assumed to reason: If I adopt my
Strategy 3, then my opponent may, for all I can do about it, adopt his Strategy 2. Thus
by adopting Strategy 3, I run the risk of winning only a32 (which may be a negative
number). This number, which is the most that Player 1 can definitely count on winning
if he plays Strategy 3, we shall call the worth of Strategy 3 to Player 1. In general, the



worth of any strategy to Player 1 is the minimum entry on the row of pay-offs
corresponding to that strategy.

The situation as seen by Player 2 is a little different. He chooses columns, and his
concern is to concede as little as possible to his opponent. Thus the worth to Player 2 of
any of his strategies is the maximum entry in the column of pay-offs corresponding to
that strategy because if he adopts that strategy he cannot prevent Player 1 from winning
that much.

Let us apply these considerations to Table 15-4. If Firm 1 offers 100 units, there is
nothing to prevent Firm 2 from offering 200 units, thereby keeping Firm 1’s earnings
down to $4,000. Hence the top entry in the “row min” column, and the other entries are
derived similarly. In general, the worth of any strategy is a measure of the worst that can
happen if that strategy is adopted.

The worths can now serve, tentatively, as a guide for decision. Firm 1 can, by
offering 100 units, assure itself of earning at least $4,000, no matter what Firm 2 does.
Similarly, Firm 2, by offering 100 units, can prevent Firm 1 from earning more than
$5,000, no matter what.300

Let us generalize. The maximizing player can assure himself of winning an amount at
least equal to the greatest of the row minima by proper choice of strategy and
irrespective of what his opponent does. This number, called for short the “maxmin,” is
defined as the worth of the game to the maximizing player because his opponent cannot
prevent him from realizing it.301 Worth, then, means guaranteed rock-bottom worth. Of
course, the maximizer can realize a smaller return than the worth of the game by
selecting a strategy other than the one that yields the maxmin, but he does this on his
own volition.

The game has a worth to the minimizing player, too. This is the quantity that he, by
proper play, can prevent the maximizer from exceeding, and it is the smallest of the
numbers in his worth row, i.e., the minimum of the column maxima. For short this is
called the “minmax.” It is easy to prove that the maxmin can never exceed the
minmax.302

In the little example of Table 15-4, the worth of the game to Firm 1 is $4,000 (the
maxmin) and the worth to Firm 2 is $5,000 (the minmax). In less technical words, Firm
1 can be sure of earning at least $4,000 and Firm 2 can be sure of preventing Firm 1
from earning more than $5,000. Please note the gap here, for it is this gap that caused
the trouble in Sec. 15-2.

15-6. STRICTLY DETERMINED GAMES AND SOME
APPLICATIONS



Since the gap causes trouble, we pause to consider another example that doesn’t have
one. Suppose, then, that the data were as shown in Table 15-5. In this table the maxmin
(greatest row minimum) and the minmax (smallest column maximum) are both equal to
$5,000. This means that Firm 1 can be sure of earning at least $5,000 (barring its own
stupidity) and that Firm 2 can be sure of preventing Firm 1 from earning more than
$5,000. It is not attributing undue insight or cautiousness to Firm 1 to assume that in
such a situation they would realize that Firm 2 can prevent them from earning more than
$5,000. Thus the sensible thing for them to do is to settle on the strategy that guarantees
them $5,000, which is as much as they can hope to obtain. By similar reasoning we are
led to expect that Firm 2 will choose the strategy that allows Firm 1 to earn $5,000 and
no more. Thus the choices and the earnings of both players are determined.
Oligopolistic indeterminacy has vanished.

TABLE 15-5. PAY-OFF MATRIX FOR THE DUOPOLISTS, STRICTLY
DETERMINED CASE ($1,000)

A glance at the table makes it obvious why this is so. No matter what Firm 2 may do,
Firm 1 is better off if it offers 100 units, and no matter what Firm 1 may do, Firm 2 is
better off if it offers 100 units. The problem has become trivial. Yet we can learn
something from it. Table 15-5 is an example of the concept of domination. If one of a
player’s strategies is better than some second strategy (from that player’s point of view)
against every single opposing strategy, then the first strategy is said to dominate the
second. It is never to a player’s advantage to use a dominated strategy. In the example,
200 units is a dominated strategy for both firms.303

The fact that each of the duopolists has only one undominated strategy makes the
example of Table 15-5 trivial. But we shall see in a moment that a conflict situation may
be easily solvable (in the sense of discovering rational policies for the opponents) even
when this isn’t so. The important criterion for the simple solvability of such a situation
is the equality of the minmax and the maxmin. If the minmax equals the maxmin then,
in effect, the maximizing player both is guaranteed a certain amount of winnings (their
common value) and can be prevented from winning more. Thus he “will” adopt a
strategy that will win him the maximum available amount, and the minimizer will adopt
a strategy that will prevent the maximizer from winning more. The strategies of both
players and the outcome of the situation are all clearly determinate. We have a strictly
determined game.



The essential formal characteristic of a strictly determined game, we have said, is that
the minmax and the maxmin are equal. If this equality holds, an obvious extension of
the reasoning of footnote 3 on page 423 shows that there must be some element in the
pay-off matrix (ail, in the notation of the footnote) which is simultaneously the
maximum of its column and the minimum of its row. Such an element, since it is the
crest of a hill looking in one direction and the trough of a valley looking in the other, is
called a “saddle-point.” One way to state the situation is to say that a game is strictly
determined if and only if it has a saddle-point.

We now suggest two simplified, but perhaps meaningful, economic models that lead
to matrices with saddle-points, i.e., to strictly determined games.

Our first example concerns a firm whose overriding concern is its market position as
measured by its share of the market. The instrumentality being considered for
influencing the market share is the size of the advertising budget, which may be either
small, medium, or large, and the consequences of the various possible decisions are
shown in Table 15-6. The entries in the table are market shares; ours is clearly the
leading firm in the industry.

The logical structure of this table is the same as that of Table 15-5. Large advertising
expenditures dominate the other two strategies for both the minimizing and the
maximizing player, there is a saddle-point where the two dominating strategies intersect,
the maxmin equals the minmax. Both participants advertise to the fullest extent
permissible.

TABLE 15-6. PAY-OFF MATRIX, ADVERTISING MODEL

This application, trivial though it is, merits comment. In the first place we have
assumed only three possible levels of advertising budget, but this assumption was
clearly inconsequential. We might have conceived of five or ten or five hundred levels
without affecting the result. What is consequential along these lines is the assumption
that the choices are discrete, i.e., that they do not form a continuum. We shall adhere to
this assumption throughout our discussion of game theory. We do so because games
with a continuous range of choices do not always have solutions. But those games that
do are not necessarily any more difficult or easy to handle than the discrete ones.

Second, we have been quite vague about who the second person in this game was.



There might have been some major single competitor, or the opponent might have been
the entire rest of the industry. It really doesn’t matter much, if the one player is
concerned with protecting himself against all contingencies. Two-person games can thus
be used to a certain extent to deal with situations in which there are not literally two
participants, and this is often a useful extension.

Our third, and crucial, comment concerns the objective, or pay-off function, that was
adopted. By concentrating on market shares instead of gross sales or net profit or other
more usual criteria, we guaranteed that we would have a constant-sum game. This is a
limitation, to be sure, but sometimes market shares are important. What was more
damaging was the fact that the cost of advertising was regarded as negligible. No
wonder, then, that everyone advertised as much as permitted. It was practically free and
had a positive marginal return. The neglect of cost is probably the most vitiating aspect
of this example, and yet, let’s face it, costs can rarely be introduced into the framework
of the simple, constant-sum, two-person game. We shall have more comments about the
objective function later, and they will tend to confirm this statement. 304

The second example of strictly determined games is less trivial. In a famous paper
Hotelling305 considered the policies of a pair of duopolists who had to choose positions
along some continuum which might be a street, a transcontinental railroad, or a scale of
quality. The issue is best portrayed by a diagram, like Fig. 15-1. The entire market is
arranged along a scale from 0 to 100 and scaled off in such a way that the distance from
0 to any point, for example A, measures the proportion of the market to the left of that
point. If two firms enter this market they must locate at some points, say A and B. Then
we construct point H halfway between A and B and assume that each firm gets all the
trade on its side of point H. Where should the two firms locate? We assume that total
demand will be the same whatever the two firms do.

FIG. 15-1. Model of Hotelling’s type of competition.
This model fits very neatly into the format of a two-person constant-sum game. Let

us convert it to discrete form by assuming that the firms can locate only at points 0, 20,
40, 60, 80, and 100. We make the additional assumption that if the two firms choose the
same location, they split the market 50-50. Then a little elementary arithmetic yields the
pay-off matrix of Table 15-7, where Firm A is the maximizer.

Inspection of the table shows that the extreme strategies, 0 and 100, are dominated by
20 and 80, both for the maximizer and the minimizer. It never pays to locate at the end
point. So the 6 X 6 game is reduced to a 4 X 4 game. The minmax and the maxmin both
equal 50, and there are four saddle-points (in fact, multiple saddle-points will always
imply a kind of saddle-plateau in the middle of the table). Each firm can secure itself
half the market by locating as close to the center of the scale as permissible, and it



doesn’t matter which of the two central positions it chooses. This conclusion, that both
firms should locate close together and toward the middle of the scale, is the same as the
one that Hotelling arrived at. This argument from game theory is rather simple and
direct, avoiding Hotelling’s use of the calculus.306

TABLE 15-7. PAY-OFF MATRIX FOR HOTELLING’S MODEL

15-7. CHANCE AND EXPECTED VALUES
It is usual in economics to describe alternative courses of action as if the

consequences of each alternative could be predicted exactly. Ordinary demand curves
and production functions, when taken literally, illustrate this supposition of certainty. A
careful economist usually will remark somewhere in the course of his discussion that
consequences are really not exactly predictable; that the results of his analysis are only
“a first approximation”; and that allowances (presumably minor and, at any rate, usually
not evaluated) have to be made for uncertainty and chance.

Our discussion of game theory has followed this precedent up to this point. No hint
of uncertainty or randomness has entered our exposition or illustrations. But now—and
perhaps this is one of the virtues of game theory—we have to face up to this issue.307 To
see why chance fluctuations have to be taken into account, consider Table 15-8, which
represents our original pair of duopolists faced with some element of chance. In this
table the univalued pay-offs of Tables 15-4 and 15-5 have been supplanted by
probability distributions. The little graph in the upper left-hand corner, for example,
signifies that if both duopolists offer 100 units, then Firm 1 has a 0.25 probability of
earning $3,000, a 0.50 probability of earning $5,000, and a 0.25 probability of earning
$7,000.

TABLE 15-8. PAY-OFF MATRIX FOR THE DUOPOLISTS IN THE CASE OF
UNCERTAIN OUTCOMES



When faced with this more complicated (and perhaps more usual) scheme of pay-offs
it is no longer obvious which of the four outcomes Firm 1 would regard as the most
desirable and which one Firm 2 (which gets whatever Firm 1 loses) would regard as
most desirable from its point of view. The economist’s standard technique for resolving
issues of this kind is to construct a subjective preference ordering in which each of the
firms would rank the four outcomes in 1, 2, 3, 4 order of desirability. Such an ordering
would be insufficient for the purposes of game theory, however, for two reasons. First,
it would sacrifice the constant-sum feature since two individuals’ rankings cannot be
added in any meaningful way. Second, it would not disclose the relationship between
the pay-offs and probabilities of each probability distribution and the desirability of that
distribution. An analysis of that relationship is, as we shall see, essential to the
development of game theory.

A study of the connection between the desirabilities of the various pay-offs in a
probability distribution, the probabilities attached to each of those pay-offs, and the
desirability of the probability distribution as a whole is, therefore, an important part of
game theory. In order not to interrupt the chain of exposition, we have sketched this
analysis separately in Appendix A, but we can report the main results here. First, under
reasonable assumptions a numerical (and, in a sense, summable) measure can be
assigned to the desirability of either a definite pay-off or a probability distribution of
pay-offs. This measure is called, naturally, “utility.” Second, the utility of a probability
distribution of pay-offs is equal to the mathematical expectation of the utilities of the
individual pay-offs. In other words, the utility of a probability distribution of pay-offs is
equal to the sum (or integral) constructed by multiplying each pay-off by its probability



(or probability density) and adding (or integrating). Third, if the pay-offs are sums of
money and if the utility of a sum of money is proportional to its amount, then the utility
of a probability distribution of pay-offs can be taken as equal to the mathematical
expectation of the distribution. In economic applications of game theory it is ordinarily
assumed that the conditions for this kind of conclusion are fulfilled. The details of the
construction of the von Neumann-Morgenstern measure of utility and the justification
of these conclusions are given in Appendix A.

As applied to the game situation of Table 15-8, these conclusions, in particular the
third, state that the outcome of $4,000 for certain associated with the strategy pair (200,
100) is less desirable to Firm 1 than the outcome associated with any other strategy pair
and that the firm is indifferent among the other three outcomes, diverse though they are.
Thus Table 15-9 includes everything in Table 15-8 that is relevant to decisions. Table
15-9, in turn, is solvable at a glance. If Firm 1 offers 100 units, it is assured of $5,000
(expected value, of course) whatever Firm 2 may do, while if it offers 200 units, it runs
a risk of netting only $4,000 without any compensating gain. Similar considerations
apply to Firm 2’s offering 200 units. Question for the reader: Is there a saddle-point in
Table 15-9?

Thus use of the postulate that if a strategy results in a probability distribution of
outcomes the expected value of that distribution may be regarded as the pay-off makes
it possible to solve the situation represented in Table 15-8. Situations of this kind are
clearly extremely common. In economic and military life it is probably quite exceptional
to find a pay-off matrix that is free of probability distributions. Even in the severely
simplified world of parlor games, the most interesting examples, e.g., bridge, poker,
dice, include a probability element. We have seen that the postulate brings such games
and situations within the compass of game theory, if their pay-off matrices have saddle-
points.

TABLE 15-9. EXPECTED VALUES OF THE PAY-OFF MATRIX FOR THE
DUOPOLISTS IN THE CASE OF UNCERTAIN OUTCOMES

Games that include probability elements, like the ones just mentioned, are known
technically as “games with chance moves.” This terminology stems from the conceptual
device of analyzing such games by imagining a third participant in the game, called
“chance,” who makes certain moves from time to time, in accordance with the rules of
the game, but does not participate in the pay-offs. Thus, in bridge it is chance that
decides on the cards held by the actual players; in warfare it is chance that decides



whether a particular message is received by friendly forces or is intercepted and
decoded by the enemy; and in economic context it is chance that decides precisely how
effective a given advertising campaign is. In all these cases chance makes its decisions
in accordance with probability distributions prescribed in the rules of the game, and it is
these chance moves which determine the probability distributions of pay-offs associated
with each strategy adopted by the live participants.

But pay-offs that take the form of probability distributions play an even more central
role in game theory than would be inferred from the fact that chance moves are so
prevalent in games that have scientific and sporting interest. Such pay-off distributions
provide the key to the solution of games without saddle-points. This is the subject of the
next section.

15-8. MIXED STRATEGIES; GAMES WITHOUT
SADDLE-POINTS

We have postponed it long, but now the time has come when we really must try to
solve the special duopoly problem first stated. This problem, recall, boiled down to the
pay-off matrix of Table 15-4. The difficulty was that there seemed to be no possible
equilibrium position. There were only four possible pairs of strategies, but examining
each of them in turn we found that in every case one of the duopolists or the other
could increase his profit unilaterally by shifting his strategy. This is the economic
significance of the absence of a saddle-point in the pay-off matrix.

Let us consider Table 15-4 again. According to that table, if Firm 1 offers 100 units, it
can count on earning $4,000 (the row minimum), and if it offers 200 units, it can count
on earning $3,000. Yet we also saw that $5,000 (the minmax) is the lowest ceiling that
Firm 2 can place on Firm 1’s earnings. The gap between $5,000 and $4,000 shows that
by adopting either strategy Firm 1 is missing an opportunity. What opportunity?
Evidently to keep Firm 2 guessing; to open possibilities that may lure Firm 2 into
mistaken decisions.

To seize this opportunity Firm 1 will have to behave unpredictably; that is, it must not
adopt either pure strategy as a policy but must hold open the possibility of using either.
To be sure, if Firm 1 adopts an unpredictable strategy, it must be content with an
unpredictable or random pay-off. But the postulate of the previous section entails that
this will be worthwhile if the expected value of this random pay-off is larger than the
earnings that could be obtained by following a more predictable policy.

Thus we are led to seek an unpredictable policy for Firm 1 which will yield the
largest possible expected value of pay-off on the conservative assumption that Firm 2
follows the best possible counterstrategy. Suppose that Firm 1 leaves the ultimate
decision up to some chance device that has a probability p of deciding in favor of



offering 100 units and a probability 1 – p of deciding on 200 units. If Firm 2 offers 100
units, Firm 1’s expected earnings are

E1(p) = 5,000p + 3,000(1 − p)

and if Firm 2 offers 200 units, Firm 1’s expected earnings are

E2(p) = 4,000p + 6,000(1 − p)308

If Firm 2 behaves correctly for any value of p selected by Firm 1, Firm 1 must expect
the lesser of these two values. Thus the expected pay-off corresponding to a chance
device with a probability p of offering 100 units is

E(p) = min (E1,E2)

The situation is shown graphically in Fig. 15-2. In this figure the upward sloping
diagonal shows E1 as a function of p, the downward sloping diagonal shows E2, and the
heavily weighted broken line, made up of segments of the two diagonals, shows E(p).
Firm 1’s problem is to find a random device that will correspond to the highest value of
E(p). This value occurs at the corner point, which is where p = 0.75 and E(p) = $4,500.
Thus if Firm 1 cuts an ordinary deck of cards and offers 200 units if it cuts to a spade
and 100 units in any other case, it will assure itself of an expected pay-off of $4,500
whatever quantity Firm 2 offers. This is the highest expected pay-off that Firm 1 can
achieve irrespective of Firm 2’s policy.

FIG. 15-2. Expected pay-offs to Firm 1, duopoly example.
Firm 2 has a similar problem which can be solved by a similar analysis. Its solution

shows that Firm 2 should leave its decision to a toss of a coin, i.e., adopt p = 0.5. By so
doing it can prevent Firm 1 from attaining an expected value of more than $4,500. Note
that the gap that disturbed us at the beginning of this section is now closed; Firm 1 can
obtain an expected value of $4,500, and Firm 2 can prevent Firm 1 from doing any
better.

This is an example of the solution of games by the use of mixed strategies, the crucial
advance achieved in the theory of games. Let us call any of the courses of action open



to a participant in a conflict situation a “pure strategy.” A mixed strategy is a probability
distribution that assigns a definite probability to the choice of each pure strategy. Von
Neumann and Morgenstern have shown, and we shall prove below, that in any game
without a saddle-point309 there exists a pair of mixed strategies that forms an equilibrium
position. That is, if one participant adopts his member of the pair, the other participant
can do no better than to adopt his member. In other words, these mixed strategies
guarantee to each participant the most desirable expected pay-off that he can attain
against competent opposition. This pair, then, represents an equilibrium position and a
solution to the conflict situation.

15-9. GRAPHIC ANALYSIS OF SIMPLE GAMES
Additional insight can be gained from a somewhat different graphic representation of

the duopolists’ problem. Again we use the data of Table 15-4. Figure 15-3 shows the
consequences to Firm 1 of offering 100 units. If Firm 2 also offers 100 units, Firm 1
will realize $5,000 as indicated by the intersection of the diagonal with the axis labeled “
Firm 2 offers 100 units.” If Firm 2 offers 200 units, Firm 1 will realize $4,000, as shown
on the other vertical axis. The rest of the diagonal line shows the results if Firm 2
follows a mixed strategy. Thus if Firm 2 uses p = 0.5 of offering 200 units, the expected
value to Firm 1 of offering 100 units is $4,500. If Firm 2 uses p =  of offering 200
units, the expected value of Firm 1’s earnings will be $4,667, etc.

FIG. 15-3. Duopoly example—results to Firm 1 of offering 100 units. Pay-offs in
$1,000.

Figure 15-3 shows the results of one of Firm 1’s pure strategies against all the pure
and mixed strategies open to Firm 2. In Fig. 15-4 we add Firm 1’s other pure strategy.
In addition we note that any of Firm 1’s mixed strategies will correspond to a line
extending between the two vertical axes and entirely comprehended between the pure-
strategy lines because the result of any mixed strategy is a weighted average of the
results of the pure strategies involved in it. The dashed line in the figure represents one
of Firm 1’s mixed strategies. Since this dashed line bisects the vertical distance between
the two pure strategy lines, it represents p = 0.50.



FIG. 15-4. Duopoly example—pay-offs to Firm 1’s strategies, $1,000.
In terms of this graph Firm 1’s problem is to find the dashed line (mixed strategy

line) whose lowest point is as high as possible. Clearly this will be the horizontal line
through the intersection of the two pure-strategy lines. Algebraically we find the line
from the condition that Firm 1’s expected earnings must be the same when Firm 2
offers 100 units as when it offers 200 units. If we let p denote the probability that Firm 1
will offer 100 units as a result of its chance device, we have

This is the result we found before.

This graphic approach can be applied to any game in which one of the participants
has precisely two strategies. Williams310 has provided an interesting illustration:

The Firm of Gunning and Kappler manufactures an amplifier having remarkable
fidelity in the range above 10,000 cycles—it is exciting comment among dog whistlers in
the carriage trade. Its performance depends critically on the characteristics of one small,
inaccessible condenser. This normally costs Gunning and Kappler $1, but they are set
back $10 if they have to replace a defective one.

Of course, there are some alternatives open to them: They know a test procedure
which will catch a defect 3 times out of 4; unfortunately it costs $1 to apply the test.
They know another which is surefire and of negligible direct cost, except that, 9 times
out of 10, it results in breakage of the good condensers. It is possible for them to buy a
superior-quality condenser, at $4, which is fully guaranteed; the manufacturer will make
good the condenser and the costs incurred in changing it.

The problem facing Gunning and Kappler reduces to the two- by four-strategy game
shown in Table 15-10 and Fig. 15-5. The entries in this polygon ABCDEFG. The second
condition leads us to seek the lowest horizontal line that fulfills the first condition. This
is clearly the horizontal through the intersection of pure-strategy lines 2 and 3. pay-off
matrix are the sum of the costs of inspection (if any), replacement (if needed), and
purchase. Gunning and Kappler are minimizers; there is no active maximizer.311 Since
Gunning and Kappler are minimizers, their best mixed strategy corresponds to the line



that (1) can be constructed as a weighted average of the lines corresponding to their
four alternatives, and (2) has its highest point as low as possible. The first condition
restricts the choice to lines entirely contained in the irregular polygon ABCDEFG. The
second condition leads us to seek the lowest horizontal line that fulfills the first
condition. This is clearly the horizontal through the intersection of pure-strategy lines 2
and 3.

TABLE 15-10. PAY-OFF MATRIX FOR GUNNING AND KAPPLER

The mixed strategy corresponding to this horizontal will be made up of Strategies 2
and 3 only. Let p be the probability in this mixture of using Strategy 2. Then p must
satisfy

4.25p + (1 − p) = 2p + 10(1 − p)

since the expected cost must be the same, whichever strategy nature uses. This gives at
once p = . Thus Gunning and Kappler should use a chance device which gives odds
for the four strategies in the proportions 0:4:1:0. The expected cost will be $3.60, and no
other policy can assure them a lower expected cost.

Now suppose that “ nature ” is short for Natural Reproducers, Inc., a supply house
that, all unknown to G and K, would like to buy them out eventually as cheaply as
possible. Nature now becomes an active maximizer. What should it do? Nature’s choice
amounts to a choice of the probability that a defect will occur, which, diagrammatically,
is a choice of a vertical line somewhere between the two axes. We have drawn in the
best choice from nature’s point of view (and the worst from G and K’s) because the
minimum cost possible for any vertical line is the height at which the lowest diagonal
crosses that line. The best vertical is the one that goes through the highest point on the
lower boundary of G and K’s accessible region, i.e., the intersection of Strategies 2 and
3, or the same point we found before. This intersection corresponds to a proportion of
about 71 per cent defectives. The reader should satisfy himself that an inimical nature
could not harm G and K by supplying them with a higher proportion of defectives.



FIG. 15-5. Pay-off diagram for Gunning and Kappler.
Once both participants have more than two strategies, the above graphic crutch fails

us. One method of solution that is often effective in such cases is to convert the
problem of finding an optimal mixed strategy into a linear-programming problem. We
shall present one method for doing this now and discuss the matter in some detail in
Chap. 16.

15-10. A GENERAL METHOD OF SOLUTION
Consider the general game whose pay-off matrix is shown in Table 15-3. By a mixed

strategy for Player 1 we shall mean a set of probabilities x1, x2, . . . , xm, one for each of
the choices open to Player I. It is clear that any mixed strategy has a determinate
expected value when played against any of Player 2’s strategies. For example, the
expected value of the mixture x1, x2, . . . , xm against Player 2’s Strategy 1 is, using the
first column of Table 15-3,

and, in general, the expected value of this mixture against Player 2’s Strategy j is

(15-1)
Let V denote the smallest of the expected values against Player 2’s n strategies so that

(15-2)
In these terms, Player 1’s problem is to choose x1, x2, . . . , xm so as to make V as large as
possible. In words, Player 1 seeks the mixed strategy for which Player 2’s most
advantageous strategy gives him (Player 1) as large an expected pay-off as possible.



We shall think of Player 1 as having the choice variables x1, x2, . . . , xm, V. His
objective is to make V as large as possible. In doing so he is restricted by Eqs. (15-1)
and (15-2), which may be recapitulated as

(15-3)
He is also restricted by the fact that the x1, . . . , xm must be probabilities. Thus they are
nonnegative, and their sum must be unity. We also have to impose an additional
restriction on the choice of V. We know in advance that V must be at least as great as the
maxmin of the pay-off matrix because the maximizing player can assure himself of the
maxmin by choosing the strategy that corresponds to it. Therefore, if the maxmin is
nonnegative, so is V. Now suppose that the maxmin is negative. By adding a large
enough positive constant to every entry in the pay-off matrix we can derive a new game
in which the maxmin is nonnegative. And the optimal strategy for this new game will be
the same as the one for the original game because adding a constant to all pay-offs
amounts to giving a flat subsidy to the maximizer and does not affect the relative
desirability of the various strategies. Thus either we can assure ourselves in advance that
the V for any game is nonnegative or we can make this so by a trivial modification of
the game. Therefore, without loss of generality, we may assume that V is nonnegative.

It is now clear that the maximizer’s problem is the same as the following linear-
programming problem: To choose numbers x1, x2, . . . , xm, V so as to maximize V
subject to the following linear restraints:

This is the kind of problem we already know how to solve by, for example, the simplex
method.312

The situation is similar when considered from the minimizer’s point of view. The
minimizer’s mixed strategy is a set of probabilities y1, y2, .... , yn, one for each of the
choices open to him; and he desires to choose these so that the greatest of the expected
values

is as small as possible. If we denote the greatest of these expected values by W, an
argument analogous to the one we have just gone through shows that the minimizer has
to solve the following linear-programming problem: To choose numbers y1, y2, . . . , yn,
W so as to minimize W subject to the following linear restraints:



Comparison of this formulation with the maximizer’s problem shows that the two are
duals of each other. Thus when optimal strategies are selected, V and W will be equal.
The common value of V and W, that is, the most that the maximizer can assure himself
by proper choice of mixed strategies and the least that the minimizer must concede, is
called the “value” of the game.

We illustrate with an example of ruthless industrial warfare. Firm A is fighting for its
life against the determination of Firm B to drive it out of the industry. Firm A has the
choice of raising its price, leaving it unchanged, or lowering it. Firm B has the same
three options. Firm A’s gross sales in the event of each of the nine possible pairs of
choices are shown in Table 15-11. It will be seen that at Firm B’s current prices, Firm
A’s demand curve has unit elasticity. If Firm B raises its prices, Firm A’s demand curve
will shift up and become elastic. A price reduction by Firm B produces the opposite
effect on Firm A’s demand curve.

TABLE 15-11. PAY-OFF MATRIX FOR INDUSTRIAL-WARFARE EXAMPLE
(Gross Sales of Firm A)

What, now, should the two firms do? The linear-programming problem for Firm A is
to choose x1, x2, X3, V so as to maximize V subject to

This problem can be solved by standard linear-programming methods, and it turns out
that the solution is not unique. The two alternative basic solutions are

(1)

(2)



Firm B’s problem is to minimize W subject to

There are two basic solutions to this problem also:

(1)

(2)

Thus Firm B might just as well leave its price unchanged, irrespective of Firm A’s
intentions. Firm A should toss a coin between raising its prices and leaving them
unchanged. In any event, Firm A can expect to maintain its current gross sales but not to
increase them.

Williams313 has an example with an interesting interpretation. The problem concerns
an investor who has $100,000 to commit for 1 year and appeals to his broker for advice.
The broker provides the investor with Table 15-12, giving the probable returns to three
sorts of investment in the event of three possible political climates. The broker wisely
declines to express any opinion about which climate is likely to prevail.

TABLE 15-12. RETURN TO $100,000 IN THREE CONTINGENCIES

How to invest? We regard the investor as a maximizer with three available strategies
and formulate his problem as follows: To maximize V, the expected return in the most
unfavorable eventuality, subject to

The solution is x1 = 0, x2 = 0.294, x3 = 0.706, V = $6,710. This solution can be
interpreted in either of two ways. First, the investor should not buy bonds and should
leave his choice between war babies and mercantiles up to a chance device with the



odds indicated. Or, second, he should invest $29,400 in war babies and $70,600 in
mercantiles. The justification for this second interpretation is, in Williams’s words:314

In this example . . . we have done something which appears at variance with our own
rules; namely, we have countenanced an interpretation of the odds as a physical mixture
of strategies on a single play of the game. That is, we have permitted the player to use a
little of this strategy and a little of that strategy, instead of insisting that he use just one,
basing his choice on a suitable chance device.

Indeed, it is evident that we have violated some principle; otherwise the physical
mixture would not be possible. Any possible set of actions should be represented by
some pure strategy; so the possibility of using a physical mixture should not arise.

This anomalous situation is traceable to the fact that there is an infinite game which is
closely related to the finite game stated above. In the infinite game the player could
invest, in infinitely many ways, in mixtures of securities—we are ignoring the practical
limitations concerning the divisibility of securities and money. Moreover, the partial
payoff from each security is proportional to the amount purchased and the total payoff
is just the sum of the partial ones. Such situations may be analyzed as infinite games,
which turn out to have saddle-points, or as finite games, which turn out to require
mixed strategies (usually). By interpreting the latter as a physical mixture, we arrive at a
solution which is equivalent to the saddle-point of the associated infinite games.

We present one more example of a game situation without a saddle-point, partly as an
exercise and partly as a vehicle for some final interpretive comments. Two automobile
companies, A and B, foresee that they will have to merge in a year or two. The managers
of both firms therefore perceive that their overriding short-run concern is to prepare for
the negotiations by achieving as favorable an earnings-per-share rate as possible in
comparison with the rate achieved by the other firm. Thus the managers of Firm A wish
to maximize the quotient obtained by dividing Firm A’s earnings per share by Firm B’s
earnings per share, and Firm B’s managers wish to minimize that figure.

With this consideration very much in mind, each firm must decide on the horsepower
of the new model. The consequences, in terms of this critical ratio, of various choices
on the parts of the two firms are shown in Table 15-13. This table is based on the idea
that as horsepower increases sales increase too, but profit per unit falls sharply. Thus, in
general, a firm loses out, on the one hand, if its horsepower is less than that of its
opponent and, on the other hand, if its horsepower is very much greater.

TABLE 15-13. THE AUTOMOBILE MERGER: RATIO OF FIRM A’S PROFIT
PER SHARE TO FIRM B’s PROFIT PER SHARE



Inspection of Table 15-13 shows that Firm B will surely not adopt a 250-horsepower
design because this yields a less favorable result (i.e., a higher profit ratio for Firm A)
than 275 horsepower against every one of Firm A’s choices. In other words, 250
horsepower is a dominated strategy for Firm B. Eliminating this strategy leaves B with a
choice of three horsepowers and A with a choice of four. We leave the rest of the
solution, which is straightforward, as an exercise. The reader should find: For Firm A,
x275 =  , x300 =  , x325 =  ; for Firm B, y275 =  , y300 =  , y325 =  ; value of
the game =  = 0.53.

Two features of this illustration merit comment. First, the pay-off function selected is
a peculiar one, although perhaps appropriate in some circumstances. Second, we have
assumed throughout the problem that both firms adopt the same objective function and
that both estimate the consequences of the various choices in the same way. For
example, we have assumed that Firm A estimates that if they use a 250-horsepower
engine and Firm B uses a 275-horsepovver engine, then the earnings ratio will turn out
to be 0.4, at least in an expected value sense, and we have assumed that Firm B’s
estimate of the consequences agrees exactly. Agreement on such tenuous forecasts is a
strong assumption. Yet we were forced to make all these assumptions in order to have a
constant-sum game.

15-11. NON-CONSTANT-SUM GAMES AND MANY-
PERSON GAMES

It may appear that the approach just given should apply to non-constant-sum games
like that of Table 15-2. To see what happens, let us use the data of Table 15-2 and solve
two games: one in which Firm 1 is a maximizer against a passive opponent and one in
which Firm 2 is a maximizer. The result of the first game is that Firm 1 should mix its
strategies with a probability of ¾ of offering 100 units and a ¼ probability of offering
200 units. Similarly Firm 2 should use a  probability of offering 100 units and a 
probability of offering 200 units. The trouble with this solution is that either firm can do
better, provided the other firm uses the mixture just given. An easy computation shows
that if Firm 1 uses the solution given it can expect a profit of $4,500 whatever Firm 2
may do, while if Firm 1 simply offers 100 units while Firm 2 uses the mixed strategy
given, Firm 1’s expected profits are increased to $4,833. Similarly, if Firm 2 uses the
mixed strategy its expected profit is $5,333, while if Firm 2 simply offers 200 units and



Firm 1 uses the mixed strategy, Firm 2’s expected earnings increase to $5,750.

This contrasts with the situation found to be characteristic of constant-sum games, for
in the non-constant-sum example there is a gain to offset the risk of deviating from a
safe mixed strategy. Put differently, by cooperating, the players can increase the pool to
be divided. In non-constant-sum games if one player uses a safe mixed strategy the
other player can increase his expected earnings by not doing so. The situation reduces to
the kind of jockeying for advantage that we encountered when we first considered the
duopoly example, and the device of introducing mixed strategies does not help.

A sensible thing for the duopolists to do is collude, for this is the only way in which
their joint profit can be maximized. This, indeed, is the solution given by von Neumann
and Morgenstern. If collusion be ruled out, as it must be in many economic contexts,
then we are up against the problem of the “conjectural reaction.” What each participant
does depends upon his surmises about his opponent’s choice of strategy, and, as a
matter of general theory, there are no compelling reasons in favor of any one particular
surmise. We shall not discuss further the solutions that have been proposed for this
problem; we agree with McKinsey that “despite the great importance of general games
for the social sciences, there is not available so far any treatment of such games which
can be regarded as even reasonably satisfactory.”315

Games with more than two participants, whether constant-sum or not, are even more
difficult than non-constant-sum two-person games. It is easy to see why if we consider
the next stage of complexity, the three-person constant-sum game.

In a three-participant situation no pair of participants has directly opposing interests,
for, in general, any pair of participants can benefit by forming a coalition against the
third and thereby maximizing their joint return. So far the situation involving any pair is
like the non-constant-sum duopoly problem just discussed. The additional complication
enters when we recognize that in the duopoly case joint profits are maximized at the
expense of a passive public, while in the three-person case the joint profits of any pair
must be maximized at the cost of a third participant who need not remain passive. In the
duopoly case there was only one possible coalition that could form; in the three-person
case there are three possible coalitions, and once any of them has formed, the outsider is
free to try to break it up.

The theory of many-person games in the hands of von Neumann and Morgenstern is
essentially a theory of coalitions, their formation and revision. The underlying idea is
that two persons in such a situation cannot do worse by acting jointly than by acting
severally, and may do better. Thus a many-person game tends to be reduced to a
two-“person” game in which each “person” is a coalition. The problems then become:
Which coalitions will form and how will the winnings be divided among the members
of the coalition? To pursue the answers proposed for these questions would lead us into
a specialized discussion, and since these answers are not very satisfactory we refrain.



The upshot of our cursory discussion of general games is that game theory provides
convincing solutions of conflict situations only in the two-person constant-sum case. In
more general cases the concepts and approach of game theory have provided a
convenient and suggestive framework for analysis, but no really satisfactory basis for
finding concrete solutions has yet been proposed.

15-12. GAME THEORY AS AN ECONOMIC TOOL
Our discussion has disclosed severe limitations on the applicability of game theory to

economic problems. It appeared that only in the simplest case, that of two-person
constant-sum games, did game theory lead to a complete solution, in the sense of
determining the maximum gains that each player could expect to obtain and finding the
strategies that yielded those maxima. To solve even this case we had to make two
restrictive assumptions. First, we noticed that the very idea of having a constant-sum
game implied that the stakes of interest were objectively measurable and transferable.
Second, we had to assume that the players’ subjective attitudes toward gains and losses
were such that they regarded the expected value of a probability distribution of pay-offs
as just as desirable as the whole chance configuration represented by the probability
distribution.316

Most economic situations, we noted, take the form of games in which either the sum
of the winnings is not constant or in which the number of players is greater than two. In
these more complicated games the conclusions attained by game theory were much less
definite. Our major conclusions were that coalitions would tend to form (if they
promised any advantage) and that if the formation of coalitions converted the situation
into a two-person game with the coalitions as players, then the principles governing the
simple case applied.

It is not surprising, therefore, that the 13 years that have elapsed since the publication
of The Theory of Games have seen no important applications of game theory to
concrete economic problems. The theory of games has had a profound impact on
statistics and on military science; in economics it is still merely a promising and
suggestive approach.

What, in view of all these limitations, has game theory to contribute to economics?
Oddly enough, since game theory is an attempt to determine optimal strategies explicitly,
the contribution seems to be qualitative rather than quantitative. The conceptual
framework developed in game theory provides a useful set of constructs for the
qualitative discussion of problems of opposing interest in economics. For example, the
concept of coalitions maintained by means of side payments among the members is an
excellent theoretical counterpart to cartels and similar institutions. If this vocabulary had
been in use at the time that Edgeworth and von Stackelberg wrote, they could hardly
have overlooked, as they did, the possibility and importance of such coalitions.



Perhaps the most novel and fruitful concept of all those introduced by game theory is
that of mixed strategies. This concept has been the key to the valuable applications in
statistics and military science. Its applicability to economic problems has yet to be
explored fully.

This upshot may be discouraging, but it would be unreasonable to expect anything
more. Economic problems, and particularly the interactions of the economic objectives
of diverse individuals, are enormously complex; one could hardly expect to reduce them
to the level of parlor games, even theoretically. Game theory provides solutions to
simple conflict situations and valuable hints for understanding more complicated ones.
This is as much help as an economist can expect from a new branch of mathematics.



16

Interrelations between Linear Programming and
Game Theory

16-1. INTRODUCTION
The economist is interested in the problem of game theory and in the problem of

linear programming, each for its own sake. From his point of view, these are two
separate subjects. But it turns out that, from the mathematician’s viewpoint, these two
subjects are closely related—which is in the nature of a happy coincidence, since any
computing methods devised for one of these theories can be used to solve problems
arising in the other. It turns out (1) that every two-person, zero-sum game problem can
be computed by converting it into a related linear-programming problem; and (2) what
is perhaps even more important, that every linear-programming problem can be
artificially converted into a two-person, zero-sum game, so that we can, if we wish,
compute the solution to the former by computing a solution to the latter.

One might have suspected this tie-up from the fact that both theories share John von
Neumann as a progenitor (but extrapolation of such heuristic reasoning would bring
much of mathematics into the linear-programming camp). Also a suspicious clue would
be provided by the fact that saddle-points of certain simple linear functions—so-called
“bilinear forms”—occur in both theories. However, historically the two theories did
develop separately, until finally through the work of von Neumann, George Brown,
Dantzig, and Gale, Kuhn, and Tucker, the complete tie-up was brought to light.317

16-2. CONVERSION OF A GAME INTO A LINEAR-
PROGRAMMING PROBLEM

The easiest half of the tie-up between the two theories is the recognition that either
player of a game can regard his problem of finding an optimal mixed strategy as a
standard problem of linear programming. The mathematical reasoning is quite simple,
but the interpretation in common-sense words is a little complicated.318

Suppose I am Player 1 and you pay me aij if I play pure strategy i and you play pure
strategy j of the game whose pay-off matrix is



Of course I am interested in finding a best mixed strategy, i.e., a best set of probabilities
with which I should play each of my m possible strategies. Call my unknown optimal

mixed strategy (x1,x2, . . . ,xm), or simply x, where it is understood that  xi = 1 and xi ≥
0. I want to maximize the expected pay-off to me, thereby keeping down the expected
pay-off to you.

For the moment, imagine my optimal mixed strategy x to be given. You are then in a
position to calculate your expected loss to me for each of your n pure strategies (1, 2, ...
, j, ... , n). Thus, if you play Strategy 1, my gain and your loss will be

a linear function of my mixed strategy. Likewise if you were to play any pure strategy j,
your loss would be

Some of these losses E1, . . . , En will be bigger than others. If you are smart, you will
of course shun any pure strategy that gives you a bigger loss; instead you will play only
those of your strategies that give rise to minimum E’s. The value of these minimum E’s,
it will be recalled, is defined as the “value of the game” to me, V; i.e.,

Value of game to Player 1 = minimum of Player 2’s possible losses when he plays any
pure strategy against Player 1’s optimal mixed strategy or

and where Player 1 must have solved the problem of finding the best x’s so as to
maximize the above minimum value; i.e., Player 1 picks x1, . . . , xm so as to maximize
the above minimum value.

In short,

(16-1)
By the above definition of the value of a game, we may write down the following

inequalities for each pure strategy of Player 2 and for the optimal mixed strategy of
Player 1:319



(16-2)
We may note as a digression that, by taking weighted averages of these relations, we

can derive a similar inequality for any mixed strategy (y1, . . . , , yn = 1 — y1 —    — yn

– 1) of Player 2. As an example, if Player 2 adopted the mixed strategy of playing each of
his n pure strategies with equal probabilities 1/n, we would have

(16-3)
where

and  is defined as the nonnegative expression written in (16-3).

Player 1 is interested in picking his optimal xi so as to maximize V, the value of the
game to himself. In selecting his optimal x’s, he must remember that the constraints of
(16-2) will hold. Hence, his maximum problem can be written

(16-4)
We might think of V as a new variable, called xm+1, and if we were to write out this last
maximum problem in terms of (x1, . . . , xm, xm+1), we would find that it looks almost
exactly like a standard linear-programming problem.

The qualification “almost exactly” is needed because we have as yet no reason to
restrict xm+1 or V to being a nonnegative variable. Without such a restriction, our
problem is not quite in the standard programming form.

Obviously, V may in some cases turn out to be negative, depending upon the
numerical values of the aij; for example, if every aij < 0, V is certainly negative. One
simple way of ensuring that V is nonnegative is to add to every element of the original
[aij] matrix a positive constant E, sufficiently large to make the new a matrix have a
nonnegative V. Adding such a constant to all elements will obviously not change the
optimal x’s at all and will simply change V by the added amount.

For the moment, let us suppose this has been done,320 so that the aij’s we deal with



are barred from yielding a negative V. Then the formulation (16-4) can have adjoined to
it the condition xm+1 ≥ 0, and it will then be recognizable as a standard problem in linear
programming.

To summarize: Any game [aij] that (by prior adjustment if necessary) is known to
have a nonnegative value may be converted into the standard linear-programming
maximum problem form:321

Subject to

(16-5)
maximize

Thus, consider the 2 × 3 game matrix

Its value can be shown to be zero, since Player 2 will never play his third strategy and
what is left will be the “penny-matching” matrix of Theory of Games.322 However, even
if we had not been able to recognize that its V is nonnegative, we could, by noting that –
1 is its least element, easily modify it by adding E = 1 to every element, giving us a new
game matrix:

The value Z of this new game can be found by solving the following linear-
programming problem:

Subject to

maximize

Using any desired method, we can solve this and determine that



so that the value of our adjusted game is 1 and of our original game is zero.

Thus far we have ignored the optimizing behavior of Player 2 in seeking his best
mixed strategy (y1, . . . ,yn). He obviously wants to maximize – V or; what is the same
thing, to minimize V. But in putting ourselves into the shoes of Player 2, we could get a
set of inequalities exactly like those of (16-2), except that now y takes the place of x; —
aji takes the place of aij; and —V takes the place of V. The reader may write these down.
By convention V was made nonnegative and—V nonpositive. It is therefore convenient
to define a new nonnegative variable yn+1 = — (—V); and corresponding to Player 1’s
maximum problem formulation (16-5), we now have for Player 2 the standard linear-
programming minimum problem:323

Subject to

(16-6)
minimize

It was earlier shown that every linear-programming problem has a dual problem.
Suppose we ask for the meaning of the dual problem to (16-5), i.e., to Player 1’s linear-
programming problem. By writing out the dual explicitly, the reader can verify the
following important fact: The linear-programming dual to Player 1’s maximum
problem is none other than the minimum problem of Player 2 expressed as a linear-
programming problem; conversely, the dual to Player 2’s minimum problem is the
original maximum problem of Player 1.

This is a rather natural relationship. Any method of solving one of the linear-
programming problems that yields information about its dual thereby automatically
provides information about the other player’s optimal strategies. Thus the “simplex
method” applied to our previous numerical example would provide information about
the solution to Player 2’s problem, which is as follows:

Subject to

minimize



It is easy to verify that (0.5, 0.5, 0, 1) is its solution.

16-3. ALTERNATIVE METHODS OF CONVERSION
This completes our discussion of the conversion of a game to a linear-programming

problem. A few further remarks and references may be of interest to the curious.
Dantzig gives a slightly different formulation of the same problem.324 His Eqs. (3)
follow from rewriting our relations (16-2). Noting that Dantzig’s aij = our aji, we can
derive Dantzig’s formulation by substituting υ1, as defined in the first relation of our
(16-2) into each of the following relations. Then rewriting V in terms of υ1 and requiring
that it be a maximum, we arrive at Dantzig’s first formulation:

to be a maximum, subject to

(16-7)
As Dantzig recognizes, this introduces a superficial asymmetry into the problem since

the first relation of (16-2) is treated differently from the others. By using the i.’s and 
defined in (16-3), this superficial asymmetry may be avoided, and we have

to be a maximum, subject to

(16-8)
The interested reader can verify that (16-8) follows by subtracting (16-3) from each of
the relations of (16-2) and rearranging terms.

Both (16-7) and (16-8) have the disadvantage that Player 1’s dual linear-programming
problem does not directly link up with Player 2’s minimum problem. For this reason,
Dantzig’s second, symmetric formulation of the problem is of interest. So long as the
value of the game to Player 1 is assured to be definitely positive, we can divide all the



constraints of our (16-5) by xm+1. This will lead to a linear-programming problem in the
new variables

The reader can verify that minimizing 1/xm+1 subject to these constraints is equivalent to
solving our game problem and leads to the same relations as shown on the bottom of
page 331 of Activity Analysis,325 or to the following:

Subject to

(16-9)
minimize

Formulations (16-5) or (16-6) are subject to the inessential restriction that the value of
the game is assumed to be nonnegative.326 Formulations (16-7) and (16-8) are free of
this restriction. Formulation (16-9) depends upon the value of the game being assumed
to be nonzero as well as nonnegative. This means that the important class of skew-
symmetric games must be adjusted so as to increase their V from zero; it also means that
for small V, formulation (16-9) will be numerically sensitive and inaccurate.

A number of further formulations in terms of linear programming would be possible
for the game problem, but may be left to the interested specialist.

16-4. CONVERTING A LINEAR-PROGRAMMING
PROBLEM INTO A GAME

We can now turn to the other half of the relation between linear programming and
games. Since a great deal of ingenuity has been devoted to solving two-person, zero-
sum games, it is convenient to know that all the theorems in this field are at the disposal
of anyone confronted with a linear-programming problem. For such a problem can
always be converted into a game.

There is more than one way of performing this conversion. However, the most
convenient method seems to be that of converting our programming problem into a
skew-symmetric, or “symmetric,” game.327 Though the symmetric game appears to have
more rows and columns, it has the advantage of automatically yielding the solution to
the dual linear-programming problem as well, and it contains so many zeros that its



larger size is not much of a problem.

Consider the standard linear-programming problem, as follows:

Subject to

(16-10)
maximize

Recall that its dual can be written as follows:

Subject to

(16-11)
minimize

There is no reason why we shouldn’t combine these two n-variable and m-variable
problems into a third super (m + n) × (m + n) variable problem. Suppose we try to
select x’s and y’s that maximize Z—Z* subject to all the inequalities of both problems.
We have already seen328 that the basic duality principle guarantees that for optimal x’s
and y’s the Z of our original problem and the Z* of its dual must be exactly equal. So
we happen to know that the maximum Z—Z* of our new problem will eventually have
to be zero for our final solution, even though it will be negative for all feasible x’s and
y’s that are nonoptimal. Note that our super problem does contain both of the dual
problems inside it, since Z – Z* will be a maximum if, and only if, Z and – Z* are
separately maximized. This is because the third problem can be decomposed into its two
independent parts, since one set of constraints involves only x’s, and the other set only
y’s.

We already know the maximum-value answer to our new super problem. It is zero.
Our real point in formulating the problem, however, is to introduce a special kind of
symmetry or skew symmetry into the problem; this skew symmetry results from adding
or adjoining the dual problem to the original problem. We do not as yet know the
optimal x’s or y’s and solving our super problem will get us both of them.

We can now write down explicitly the new super problem, which, it is to be



emphasized, is a problem in linear programming; as yet, we have not made any
transposition into the form of a game. Our super problem, in standard maximum form,
looks as follows:

Subject to

(16-12)
maximize

or what is the same thing, since we know the optimal Z – Z* = 0, let us replace the
maximum statement of the last line by the equivalent requirement,

(16-12a)
where the > sign has been redundantly inserted in the full knowledge that no feasible
solution will ever require its presence. The complete set of Eqs. (16-12), including (16-
12a), define the optimum solution (x, y, Z – Z*) of our original problem, of its dual,
and of the new all-inclusive super problem.

As we look at this maximum problem, we instantly note its skew-symmetric (or
perhaps antisymmetric would be the better word) form. The aij’s appear twice, once
with a plus sign and once in transposed form aji with a minus sign. The b’s and c’s both
appear twice, once in the vertical and once in the horizontal, and with opposite algebraic
signs. The negative signs enter very naturally since we have, so to speak, converted the
dual minimum problem into a maximum problem by changing signs; moreover, to keep
the constraints in standard form, with the sign ≤ being used rather than >, it was
necessary to introduce negative signs.

Our super problem is a standard maximum problem. Does it have a dual? Of course
it must. We have simply to transpose its coefficients in the usual manner and formulate
the related minimum problem. But in the case of our super problem, because of its
special antisymmetry and zeros, what do we get? We get, as the reader can immediately
verify, essentially the same super problem back again—the same aij’s and aij’s. The
dual to our super problem is itself. The mathematician would say that this is a “self-
adjoint,” or “self-dual,” case and would expect our skew-symmetric formulation to lead



to this type of pattern.329

In a game all columns look alike, so it is natural to ask: How can we treat the right-
hand b and c coefficients of the programming problem so that they will look like
ordinary a’s? To aid in this, we go on to ask: What happens to the solution to any
linear-programming problem if we multiply the right-hand coefficients of its constraints
by the positive constant z?. Reflection shows that we can then multiply any previous
optimal solution by the same z to get a new optimal solution. And the quantity to be
maximized, Z, will also be multiplied by the same constant z. All this is obvious once
we reflect on the constant-returns-to-scale property of our linear relations: thus, it must
cost twice as much to buy an optimal diet that requires twice the nutrients, and the
relative proportions of the optimal diet will not be disturbed.

It is convenient to apply such a positive scale factor to our super problem. If the
right-hand coefficients of the constraints of (16-12) are all multiplied by z, then the best
Z – Z* will be multiplied by z, and because the quantity maximized, Z – Z*, previously
equaled zero, it will still be zero. However, any previously optimal solution (y1, . . . , ym,
x1, . . . ,xn) will now be equal to (zy1, ... ,zym,zx1, . . . ,zxn). If we like, we can now regard
z as one of our variables just like the x’s and y’s: thirdly, we can transfer the right-hand
coefficients of the constraints over to the left-hand side. The only advantage in doing
this lies in the fact that a game is always written without any right-hand coefficients.

How many new variables do we now have? Clearly we have n + m + 1 new variables,
namely, (zy1, . . . ,zym,zx1, . . . ,zxn,z), and the full statement of our super problem, as
given by (16-12) and (16-12a), can be written

(16-13)
and where only the ratios zyi/z and zxj/z are significant.

The connection of our super problem with a skew-symmetric game can now finally
be made. If we look closely at the inequalities defining our super problem, what do we
see? We see that these same inequalities would arise for Player 2’s optimal mixed
strategy if he were playing a game, which had a pay-off matrix to Player 1 involving the
aij’s,—aji’s, b’s, and c’s of our original problem.

Thus, examine the skew-symmetric game with pay-off matrix from Player 2 to Player
1 of



(16-14)
and suppose that Player 2 must find his optimal mixed strategy for the probabilities of
playing the different columns, (Y1, . . . ,Yn;Yn+1, . . . , Yn+m;Yn+m+1). Now we know from
the skew symmetry or symmetry of the game that the value of the game to Player 1 is 0,
since neither player has any advantage denied the other. Consequently, Player 2’s
optimal mixed strategy Yj must be such as to result in Player 1’s receiving not more than
(the value of the game or) zero for any pure strategy that Player 1 plays against Player
2’s optimal Yj. If we write down this condition for each of Player 1’s pure strategies, we
have equations essentially like those of (16-1), but with V = 0 and Y’s replacing the x’s.

These conditions become

(16-14a)
Except for the inessential normalization condition

and the condition Yn+m+1 ≥ 0 rather than > 0, the reader can verify that the game
inequalities of (16-14a) are identical with the super-linear-programming problem’s
inequalities of (16-13), provided we identify the Yj’s with our previous x’s, y’s, and z.
Thus,

The reader should carefully verify this basic identity between the game and
programming inequalities.

A recipe for solving our original linear-programming problem can now be given: (1)
Using the a’s, b’s, and c’s of the programming problem, set up the associated skew-
symmetric game of the type (16-14). (2) By any known device, solve this game for an
optimal mixed strategy (Y1, ... , Ym+n+1) or (zy1, . . . ,zx1, ... ,z), where Ym+n+1 ≠ 0. If the



original linear programming and its dual have optimal x’s and y’s that are all finite, then
the final component Ym+n+1 = z will never equal zero for any optimal strategy. But if the
set of optimal x’s and y’s is unbounded, then there will always be an extreme optimal
game strategy whose last component is zero. For example, consider a problem like Z =
x1 – x2 to be a maximum subject to x1 – x2 ≤ – 1 and x1 ≥ 0, x2 ≥ 0; its optimum is given
by the dual variable y1 = 1 and any nonnegative x’s such that x1 – x2 = – 1. The
associated super skew-symmetric game matrix is verified to be

and this has an optimal mixed strategy (zy1, zx1, zx2, z) = ( , 0, , ). Hence, y1 = 1, x1

= 0, x2 = 1 is an optimum solution. However, (0, ½, ½, 0) is also an optimal mixed
strategy for the game, But since its last component z vanishes, it is an extraneous mixed
strategy and does not solve our programming problem. Of course, any positive
weighted average of the above two strategies will also be optimal; hence [λ/3, (1 – λ)/2,
(1 – λ)/2 + λ/3, λ/3] is an optimal game strategy and [y, x1, x2] = {1, ¾[(1 – λ)/λ], ½[(3 –
λ)/λ]} for any 0 < λ ≤ 1 are legitimate solutions to the programming problem. All the
solutions of our original problem are generated by varying λ through its admissible
range. Gale, Kuhn, and Tucker330 have noted that for any “extraneous” optimal game
strategy (Y1

0, . . . , Ym
0, Ym+1

0 . . . , Yn+m
0, 0), it must follow that

Hence, in problems such as the nutrition problem, in which the b’s and c’s are all one-
signed, extraneous solutions will not arise. If the a’s are all one-signed, the same can be
shown to be true. It may be remarked that for any extraneous strategy like that just
written, provided Y1

0 + . . . + Ym
0 > 0 < Ym+1

0 + . . . + Ym+n
0, then [λY1

0, . . . , λYm
0, . . . , (1

– λ)Ym+n
0] is also an extraneous optimal strategy, 0 ≤ λ ≤ 1. (There will always exist at

least one such game solution if the programming problem has a solution.) (3) Then
Y1/Ym+n+1 = y1, . . . , Ym/Ym+n+1 = ym, Ym+1/Ym+n+1 = x1, . . . , Ym+n/Ym+n+1 = xn gives the
optimum solutions to the linear-programming super problem and to the dual problems,
and z can be computed from c1x1 + . . . + cnxn or b1y1 + . . . + bmym.

16-5. FINAL REVIEW AND ELABORATION331

This completes the discussion of how to convert a linear-programming problem into
a skew-symmetric game. A good review of this procedure, and of the earlier described
reverse problem of converting a game into a linear-programming problem, is provided
by the following: (1) start with any numerical game matrix; (2) convert it into a linear-
programming problem, as described in the first part of this chapter; (3) then convert this



linear-programming problem into a skew-symmetric game by the methods of the second
half. Note that when this has been done, we not only end up with a review of both
procedures—but in addition we have worked through one rigorous way of converting
any game into a skew-symmetric game.

We begin with our earlier 2 X 3 matrix

known to have a positive value to Player 1. It is converted into the linear-programming
problem with coefficients as shown in Sec. 16-2. The skew-symmetric game matrix (16-
14) associated with the super problem that includes the dual has a matrix of coefficients,
which (the reader should verify) is to be written down as follows:

or

(16-15)

where a‘ is a with rows transposed into columns, 1n and 1m are columns of n and m 1’s, 
 and  are rows of n and m 1’s. If we note that a is bordered by — 1’s, the pattern is

easy to remember. The optimal solution (Y1, Y2, Y3;Y4; Y4+1, Y4+2;Y4+3;Y7+1) can be verified
to be (0.1, 0.1, 0; 0.2; 0.1, 0.1; 0.2; 0.2); dividing through by the final element, we find
our optimal strategies for Players 2 and 1, and the value of the game can all be written
down as (y1,y2,y3;V ;x1,x2;V ;1) = (0.5, 0.5, 0; 1; 0.5, 0.5; 1; 1), which the reader can verify
to be the correct solution by simply remembering the penny-matching origin of the
problem.

In the general case, so long as V > 0, it can be shown that

where z = 1/(3 + 2V). If V = 0, the same formula yields a solution; but the extraneous



solution (0.5y1, ... ,0.5yn; 0; 0, ... ,0; 0; 0.5) will also arise; and any positive weighted
average of these two different solutions will also be a solution. If V < 0, only the above
extraneous solution will occur and only the optimal y strategies will be computed,
Player 1’s x’s being unobservable by this method.

Gale, Kuhn, and Tucker and George Brown and von Neumann332 have discussed
various other closely related ways of converting any game into skew-symmetric form, a
form which is seen to involve no loss of generality and which has many expositional
and computational advantages. One method, due to von Neumann, involves having
each player simultaneously play the game [aij] as it appeared to Player 1 and also
simultaneously play the game [—aji] as it originally appeared to Player 2. Thus, we may
think of Player 1 as originally being called “white” (e.g., having the first move in a game
of chess); similarly Player 2, who faces the pay-off matrix [—aji] can be thought of as
playing “black” (e.g., having the second move in chess). Von Neumann introduces
symmetry into the problem by having each player simultaneously name a pair of
strategies and play both sides of the game at once; thus, Player 1 will name strategy i for
white and j for black; Player 2 will name strategy k for his black and q for his white;
then the pay-off from Player 2 to Player 1 will be defined as aik – ajq. Since each player
has a choice of mn pairs of strategies, this von Neumann method converts an m × n
game into a very much larger one, namely, mn X mn, but in actual computation, many
fewer variables can handle the situation.

These same authors discuss a second method for making a game skew-symmetric. It
is essentially333 that given at the beginning of this section. Both methods can be given a
common-sense, but involved, heuristic interpretation. For the method given above, the
reasoning is as follows:

I as Player 1 have the choice of picking a white strategy exactly as in a normal game;
you as Player 2 have the usual choice of picking one of your black strategies. But in
addition, I have the option of naming any black strategy; and you can name any white
strategy if you wish. However, if the value of the game is assumed nonnegative to
white, what is there to keep both of us from always naming white strategies, thereby
leading always to no-contest and zero pay-off? Nothing, until we add the following
feature. Two new strategies are available to me: (1) I can make the guess that you will
name a white strategy rather than a black; or (2) I can make the guess that you will name
a black strategy rather than a white. If I make such a guess and it is right, you pay me
$1; if my guess is wrong, I pay you $1. If I guess that you will play a black or white
strategy and you name neither, then there will be zero pay-off. But now what is there to
keep both of us from always making such guesses and avoiding ever naming a black or
white strategy? To penalize such behavior, I am permitted one last option: (3) I can
make the prediction that you will make the guess that I will play white. If you do make
that guess, my prediction is verified and I receive $1. If you make the opposite guess—



that I will play black—my prediction costs me $1; if you play a black or white strategy
or indulge in a similar (3) prediction about my guesses, there is zero pay-off.

We have now defined a symmetrical set of strategies for each player. What then must
happen? It turns out that I will play a black and a white strategy with equal frequency;
moreover, I must play the different white and black strategies with relative frequencies
as dictated by their optimal mixed strategies. It further turns out that as often as I play
black or white, I must make a final (3) prediction about your guesses. The remainder of
the time I will divide equally between guessing (1) that you will play white rather than
black, or (2) that you will play black rather than white. The frequency with which I
make such guesses will be directly proportionate to V, the value of the game to white
playing against black: when the values of the game equal $1, the amount wagered on
guesses 1 and 2 and predictions 3, the five different modes of behavior will be equally
likely.

All the above is very complicated. However, it is logically equivalent to the
mathematical principles involved in converting a game to symmetric form and provides
a concrete interpretation of the resultant mixed strategies.

16-6. CONVERTING SPECIAL PROGRAMMING
PROBLEMS INTO NONSYMMETRIC GAMES

Often in linear programming we encounter problems with special properties: (1) all
the right-hand coefficients [bi] in the constraints are of the same algebraic sign; (2) all
the [cj] coefficients in the linear expression to be maximized (or minimized) are of the
same algebraic sign; and (3) all the [aij] coefficients are of the same algebraic sign.

The simple comparative-advantage problem of international trade is of this form
when we assume positive amounts of all limited resources and all international prices
positive. The simple minimum-diet problem is of this special type, since all the
minimum requirements of nutrients are positive and all food prices are positive.334 Still
other examples could be given.

The only problems of any interest with the above special properties can be put into
the minimum form as follows:

Subject to

(16-16)
minimize



where ci ≥ 0, bj ≥ 0, aij ≥ 0.

Clearly, if any ci = 0, we can remove the ith row, ignoring it as a constraint because
any nonnegative x’s will automatically satisfy it. Similarly if any bj = 0, we can look in
the jth column for any rows with non-zero aij. Each such row can be ignored since by
setting yj = maximum for such rows of [ci/aij], we can satisfy those constraints at zero
cost, and having satisfied them can proceed to ignore them in computing the optimal
remaining y’s.

It follows that we can imagine our problem as having only b’s and c’s that are
definitely positive, with all the rows and columns corresponding to zero [ci] or [bj]
having been removed from the problem matrix.335

For the remainder of this section, therefore, we consider problems of the form (16-
16) but with bi > 0, ci > 0, and no restriction on the aij except that we must have a
feasible problem with finite Z = Z*.

We rewrite (16-16) dividing each row i by ci and replace each yj by new variables uj =
bjyj to get the following:

Subject to

(16-17)
But note that, except for change of notation, (16-17) is precisely of the form (16-9)

which Dantzig and others had used in converting a positive-valued game into a
programming problem. It follows that we can solve the game

for Player 1’s best strategies [U1, . . . ,Um] and value V > 0. Then (16-17) has for its
solution (u1, . . . ,um,Z) = (U1V, . . . ,UmV,V—1). To solve the dual of our original
problem, we set



where the W’s are Player 2’s optimal strategies.336

The above method will not work if the b and c coefficients do not satisfy special
conditions. Occasionally, but very rarely, we may have a priori knowledge that will
permit us to add terms to both sides of the constraints and enable us to define new b
and c coefficients with the desired properties. But such artifices cannot, in general, be
prescribed.

Of course, by chance, we might encounter still other linear-programming problems
that can be converted directly into an m × n game. Thus, suppose the program happened
to have the special zeros of the matrix in (16-5) or (16-5a). Then, reversing the
discussion of (16-5), we could reduce these programming problems to a game. But such
lucky encounters will be rare.



Appendix A

Chance, Utility, and Game Theory
In Chap. 14 we saw that strategies that lead to probability distributions rather than to

definite numerical pay-offs are essential to the theory of games. Such strategies are
fundamental in the solution of nonstrictly determined games, and they turn up
elsewhere as well. It is thus necessary for players to be able to evaluate the desirabilities
of probability distributions just as they evaluate the desirabilities of definite pay-offs.
For this purpose game theory adopts the following postulate: In evaluating the
desirabilities of probability distributions of pay-offs players should pay attention
exclusively to the expected values of those probability distributions. We do not have to
labor the point that the solution of nonstrictly determined games by the use of mixed
strategies, the major achievement of game theory, rests squarely on this postulate.

At the same time, this assumption goes against the grain. Everyone knows that there is
a lot more to a probability distribution than its expected value, and it seems irresistible
intuitively that the reasonable player should take into account other characteristics such
as the dispersion, skewness, etc. The purpose of this appendix is to sketch a justification
of the postulate.

We can get to the heart of the issue by considering it in its baldest form. Suppose a
choice is to be made between these two outcomes: (1) A 50-50 chance of winning or
losing $10; (2) a 50-50 chance of winning or losing $10,000. It would be presumptuous
for von Neumann and Morgenstern or anyone else to maintain that because these two
outcomes have the same monetary expected value a reasonable man should be
indifferent between them, and von Neumann and Morgenstern do not maintain this.
They would agree that a man may quite reasonably prefer outcome 1 if he is more
fearful of losing so great a sum as $10,000 than he is desirous of gaining it. What they
do maintain is that a reasonable man need pay attention only to the expected value of
the utilities associated with the various outcomes, the so-called “moral expectation.” To
bring out the contrast, let U(x) denote the “utility” of winning x dollars. Then, in our
example, the moral expectation of outcome 1 is ½U(—10) + ½U(10), and the moral
expectation of outcome 2 is ½U(—10,000) + ½U(10,000). For comparison, the actuarial
expectations of the two outcomes are

½(—10) + ½(10) = ½(—10,000) + ½(10,000) = 0

The equality of the actuarial expectations does not preclude the possibility that



½U(—10) + ½U(10) > ½U(—10,000) + ½U(10,000)

in which case outcome 1 should, on the game-theory postulate, be preferred.

These considerations immediately raise numerous questions concerning the numerical
measurability of utility and other matters, and we shall have to consider some of them
later. For the sake of the argument, though, let us postpone these questions and concede
for the moment that meaningful numbers, such as U(x), can be assigned. It still is not
immediately evident that the reasonable man should take account of only the expected
value of his moral expectation and should disregard its variance, its skewness, and all
the rest. We now demonstrate the reasonableness of this postulate by starting from more
immediately appealing assumptions and showing that the game-theory postulate follows
from them.

For this argument let us define a “gamble” to be any situation in which two outcomes
are possible and in which the probabilities of the two outcomes are known. We shall
denote a gamble by [x1, x2; p], meaning that the two possible outcomes are x1 and x2, that
the probability of x1 is p and the probability of x2 is 1—p.

As our starting point we take the “strong independence axiom,” one version of which
is: If x1 is indifferent to y1 and x2 is indifferent to y2, then the gamble [x1, x2; p] is
indifferent to the gamble [y1, y2; p] irrespective of what the outcomes are and of the
value of p. This axiom says merely that if the consequences of two gambles are pairwise
indifferent and their probabilities are the same, then there is no reason to prefer one
over the other.

Let U[ ] denote the utility or desirability of any situation, be it a definite payment or a
gamble. Our task is to show that

(A-1)
whatever x1, x2, and p may be, i.e., that the utility of a gamble is equal to the expected
value of the utilities of the outcomes. To do this we conceive of a very desirable
outcome called M and a very undesirable one called N and consider gambles in which
M and N are the stakes. Such gambles, which have the form [M, N; p], will be called
“standard gambles” and will be used to evaluate the desirability of other gambles and of
fixed outcomes. We assume (this is really a second axiom) that it is possible to find a
standard gamble that is just as desirable as outcome x1 (i.e., the standard gamble and x1

are indifferent alternatives). Let this gamble be [M, N; p1]. Clearly, the more desirable x1,
the greater will be p1, the probability of the favorable outcome in the standard gamble
indifferent to x1.

Similarly let [M, N; p2] be the standard gamble indifferent to x2 and [M, N; p3] be the



standard gamble indifferent to the original gamble [x1, x2; p]. Then, by the strong-
independence axiom, the compound gamble

{[M, N; p1], [M, N; p2]; p}

is indifferent to the original gamble [x1, x2; p]. The compound gamble {[M, N; p1], [M,
N; p2]; p} is a two-stage uncertain event, the outcomes of whose first stage are the
ordinary gambles indicated. The classic example of such a compound gamble is the
Irish sweepstakes. In the case at hand, p is the probability that the outcome of the initial
chance event will be [M, N; p1], and p1 is the probability that M will result from the
second stage. Thus the probability of winning M via [M, N; p1] is pp1. Similarly, the
probability of winning M via [M, N; p2] is (1 – p)p2, and therefore the total probability
of winning M from the compound gamble is pp1 + (1 – p)p2. Now notice that the
compound gamble has the same ultimate outcomes as [M, N; p3], and since they are
both indifferent to [x1, x2; p], they are indifferent to each other. Therefore the
probability of winning M must be the same in these two gambles, and

(A-2)
Since the probabilities occurring in standard gambles indicate relative desirability,

they can be used as Paretian indexes of ophelimity, or utility. Thus the utility of any
situation, say S, is measured by the probability, say ps, of winning M in the standard
gamble indifferent to S; that is, we may write U[S] = ps, where ps, satisfies U[S] = U[M,
N; ps]. Then p1 = U[x1], p2 = U[x2], p3 = U[x1, x2; p]. Substituting these values in Eq. (A-
2), Eq. (A-1) results and is proved. This argument generalizes readily to uncertain
events with more than two outcomes. The essential assumption on which our argument
is founded is worth restating. It is that we can reduce a compound gamble to a simple
one via the rules of probability without changing its desirability.

In the course of this argument we answered the question of whether it is possible to
assign definite numbers to the desirabilities of different situations. Our answer was that
one way of doing this, and of course not the only way, is to measure the utility of any
situation by the probability of the favorable outcome in the standard gamble indifferent
to it. This procedure will assign higher numbers to more desirable situations and thus
fulfill all the requirements of an ordinal utility indicator of the sort conceived by Pareto.
Of course, any monotonic function of ps could also serve as an ordinal utility indicator,
but only the one we have chosen will have the very handy property expressed in Eq.
(A-1) and employed in the theory of games. Thus for purposes of game theory it must
be assumed that utility is measured in this way. This is, by the way, an empirically
observable measure of utility, arbitrary only up to scale and origin constants as
determined by the choice of M and N. A more complete proof would show (1) that the



choice of M and N can be arbitrary without really affecting anything, and (2) that the
utility indicator can be extended to outcomes worse than M or better than N.

Let us now make an additional and restrictive assumption. Let us assume that utility
can be measured adequately in monetary terms. Then the utility of any sum of money,
say x, is proportional to its amount. Since the scale of measurement of utility is
arbitrary, we may as well take the factor of proportionality to be unity and write U[x] =
x. Substituting this relation into Eq. (A-1), we find

U[x1, x2; p] = px1 + (1 — p)x2

or the utility of the gamble is indeed equal to its actuarial expected value. But notice that
a powerful particularizing assumption—in effect, that of constant marginal utility of
money—was needed in order to produce this result.

This analysis has significant consequences for game theory for it calls attention to the
distinction between the utilities derived by the players from the outcome of the game
and the objective pay-offs that they receive or make. The essential stakes, with which
the players concern themselves, are, clearly, the utilities and not the numerical pay-offs.
Economists have long since become reconciled to the conclusion that the utilities
derived by two or more persons from a social situation are not summable. What, then,
becomes of the concept of a constant-sum game? Answer: It must go by the board.

But all is not lost. If the utilities derived by the two participants from any outcome are
connected by a linear formula, then although the concept of a total value of the game is
meaningless, the strategic recommendations derived from an analysis of constant-sum
games will still be valid. Thus if the utilities derived by both players are proportional to
their monetary pay-offs (positive or negative), we are on safe ground. If their utilities
are proportional to the market shares they obtain, we are on safe ground again. We have
used both of these situations in our examples. In general, if there is any external
measure of returns that is proportional to the utility scales of both players, and if the
game is constant-sum in terms of this measure, then game-theory analysis is applicable.
On the other hand, if the utility derived by either player depends in any more
complicated manner on the objective results of the game, then the situation is essentially
that of a non-constant-sum game, with the unfortunate consequences noted in the text.



Appendix B

The Algebra of Matrices
B-1. INTRODUCTION

As with other branches of mathematics, the use of matrices confers two considerable
advantages. The first is analytic: mathematicians have proved a lot of theorems about
matrices. When an economic problem can be formulated in matrix terms all those
theorems are at our disposal and can occasionally lead to interesting conclusions that
might otherwise be exceedingly difficult to achieve. The second advantage is purely
notational: this is not to be underrated. The choice of a neat, natural, and suggestive
notation is sometimes half the battle in grasping a complicated setup; it frees the mind
for more useful activity than simply keeping things straight. In especially fortunate cases
—and matrix algebra is one of these—the two advantages interact. The notation, apart
from being a convenient shorthand, also suggests operations, maneuvers, and theorems,
some of which turn out to be valid.

At various places in this book the matrix notation has been too convenient to be
resisted. In most cases, fortunately, it turns out that the notation itself and a few
elementary theorems are all that is needed to enable us to reap the blessing. To make the
exposition essentially self-contained we include this brief appendix. It is intended to
carry the reader just far enough for the purposes of the text and to give him some
feeling for the way in which linear systems can be handled. No proofs are given, and
we make no attempt at generality or rigor. For those who would like to go further and
deeper, there are now available several excellent introductory textbooks on linear
algebra.337

B-2. VECTORS AND VECTOR SPACES
Nearly everyone is familiar with the fact that any point in the plane can be represented

by a pair of numbers, its coordinates. If we draw a horizontal axis, and label it the x1
axis, and a vertical, or x2 axis, then we can represent any point uniquely by giving its x1

coordinate and its x2 coordinate in order. The point (a,b) is the point that lies directly
above the point marked a on the x1 axis and level with the point marked b on the x2

axis. Naturally a or b or both can be negative. If b is negative, the word “above” in the
last sentence is replaced by “below.” Note that the order of the coordinates is important.
The points represented by (a,b) and (b,a) are not the same (unless a = b). Conversely,



to find the coordinates of any point we simply drop perpendiculars to the x1 and x2 axes
and read off the coordinates from the bases of the perpendiculars.338

We have a complete correspondence between geometrical objects, namely, points of
the plane, and purely algebraic objects, namely, ordered pairs of numbers. These
algebraic objects that correspond so exactly to points have a name of their own. They
are called vectors. Thus a vector is any pair of numbers (x1,x2). To be exact we should
call these pairs two-dimensional vectors, since we must now notice that we could do for
ordinary three-dimensional space, the space we live in, exactly what we have just done
for the plane. Take any corner of the room as an origin and notice that there are three
mutually perpendicular lines meeting there. Label these the x1, x2, and x3 axes. Then any
point in the room is in unique correspondence with an ordered triple of numbers,
namely (x1,x2,x3), its x1, x2, and x3 coordinates, and vice versa.339 Any ordered list of
three numbers can be called a three-dimensional vector.

The whole point of this new vocabulary is that geometrically defined objects can be
translated into algebraic concepts via the vector notion. For example, the circle in the
plane with center at (a,b) and radius r becomes the collection of all vectors (x1,x2) such
that

(x1 — a)339 + (x2 — b)339 = r339

The reader should make up some questions to ask himself on this point. For example:
What corresponds in three-dimensional geometry to the set of vectors with x1 = 0? To
the vectors with x2 = 10? To the vectors with x1 = 2x2? To the vectors with x1 = x2 = x3?

With three dimensions our geometrical analogy comes to an end. But algebra is
subject to no such visual limitation. There is no reason at all why we can’t go on to
define four-, five-, and n-dimensional vectors as ordered quadruples, quintuples, or n-
tuples of numbers. And so we shall. By definition, then, an n-dimensional vector is
simply an ordered list of n numbers, (x1, x2, . . . , xi, . . . , xn). The number xi is called
the ith coordinate, or component, of the vector. And by extension we can sometimes
think of an n-dimensional vector as a point in n-dimensional space with the given
coordinates.

We have an algebraic counterpart to a point in two-, or three-, or n-dimensional
space. Just as the totality of all points in the plane is called “the plane,” or “two-
dimensional space,” we shall call the totality of all two-dimensional vectors “two-
dimensional vector space” and nickname it R2; and we shall treat similarly higher-
dimensional vector spaces R3, R4, Rn.

So far we haven’t learned to do anything with vectors other than to identify them
with points. We need some operations. Here we can begin formally and then check to
see what our formal definitions amount to geometrically. Consider two n-dimensional



vectors

x = [x1, . . . , xj, ... , ,xn] and y = [y1, ... , yi, . . . , yn]

By the “sum” of these vectors we shall mean the n-dimensional vector x + y = [x1 + y1, . .

. , xj + yj ... , xn + yn]; i.e., the sum of two vectors is a vector of the same dimension as
the summands, each of whose components is the sum of the corresponding components
of the summands. Thus the sum of (—1, 0, 3, 1.2) and (10, —2, 1.6, —1.5) is (9, —2,
4.6, —0.3).

Two vectors are said to be “equal” if they are of the same dimension and if their
corresponding components are equal; that is, x = y if and only if x1 = y1, x2 = y2, . . . , xj

= yi, . . . , xn = yn. It will be seen that two vectors are equal if and only if they represent
the same geometrical point. In combination with the preceding paragraph we can
observe that z = x + y means that z = [z1, ... , zj, . . ., zn] and z1 = x1 + y1, ... , zj = xj + yj,
... , zn = xn + yn. As a consequence of what we know about the addition of ordinary
numbers we can say that x -f- y = y + x (because xj + yj = yj + xj) and
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It is convenient to have a special symbol for the null vector, i.e., the vector all of
whose components are zero. We shall call it φ. Clearly for any vector x, x + φ = x.

Now suppose that x is a vector and c is an ordinary number (sometimes called a
“scalar”). Then we shall define the product of c and x as the vector each of whose
components is simply the corresponding component of x multiplied by c. If x = [x1, ... ,
xj, . . . , xn], then

Put a little differently, y = cx means y1 = cx1, . . . , yn = cxn. Again the rules of ordinary
arithmetic show us that (c + d)x = cx + dx [since (c + d)xj = cxj + dxj] and c(dx) = (cd)x
= dc x = d(cx) [since c(dxj) = cd xj = dc xj = d(cxj)]. Also 0x = φ, for any x, and equally
obviously cx = xc.

By – x we mean the vector ( – 1)x = [—x1, . . . , —xj, . . . ,—xn], and thus the
difference of two vectors, say y – x, is the vector y + ( – 1)x, that is, y — x = [y1 – x1, . .
. , yj – xj, . . . , yn – xn]. We are now possessed of such concepts as the linear
combination of vectors, for example,

We can solve some simple equations involving vectors (remember that two vectors are



equal only if all their components agree). Thus cx + y = φ has the solution x = — (1/c)y
(provided c ≠ 0). What if c = 0? The equation 3x + 4(1,2,3,4) = (0, —0.4, 100, — 16.7)
has the solution x = 

To conclude this section, let us return to the geometry of two dimensions to see how
our algebraic definitions look in this light. In Fig. B-1 we have drawn the points x and y
corresponding to (x1,x2) and (y1, y2). The point corresponding to z = x + y is the point
each of whose coordinates is the sum of the corresponding. coordinates of x and y. The
reader can see for himself that z can be found by the familiar process of completing the
parallelogram which has the origin x, and y as three of its four vertices. The point z will
be the fourth.

FIG. B-1
Now how about multiplying a vector by a scalar? Figure B-2 will help us understand

the meaning of multiplication. This operation leaves the ratio of the coordinates the
same. Thus if we multiply x by a scalar c, we get another point on the ray from the
origin through x. If c > 1, we get a point farther out; if 0 < c < 1, we get a point between
x and the origin. If c is negative, we simply go back through the origin to the opposite
quadrant, and out the same ray a distance c times the distance from the origin to x. By
combining the two processes of scalar multiplication along a ray and addition by
completing the parallelogram, the reader should be able to start with any pair of points x
and y and find, say, the point (2x — 0.5y). Any linear combination of x and y goes the
same way. To find ax + by + cz we proceed by finding ax + by and then adding this to
cz. Our algebra tells us that we could alternatively find by + cz and add ax, to get the
same result.

FIG. B-2
The notion of a vector fits very neatly into the linear-programming scheme. In the

diet problem, for instance, if there are m nutrients, we can represent the nutrient content



of a unit of a particular food by an m-dimensional vector, say u = [u1, ... , um,], v = [υ1,
... , υm], w, x, y, z, etc., for as many foods as are available. If we consume a (a number)
units of the first food, the nutrient intake will be the vector au. The nutrient content of a
diet consisting of a, b, c, d, e, ƒ units, respectively, of each of the six foods will have a
nutrient content given by the vector au + bv + cw‘ + dx + ey + ƒz. This has to be
compared with the vector of requirements R = [R1, . . . , Rm]. The case of the flow of
commodities through the competitive firm goes similarly.

B-3. LINEAR INDEPENDENCE—BASES
The reader may have noticed that in the last paragraph we have come very close to

talking about simultaneous linear equations. Suppose we ask whether there is any diet
that exactly fulfills the dietary requirements; i.e., is there any set of numbers a, b, c, d, e,
ƒ such that the vector equation au + bv + cw + dx + ey + ƒz = R holds. Since equality
between vectors means component-by-component equality, we are really asking
whether the following system of m linear equations in six unknowns has a solution:

(B-1)
In fact, one of the notational bonuses of the vector technique is that it enables us to
compress our discussion of systems of linear equations.

Still another way of looking at Eqs. (B-1) is to ask whether the vector R can be
expressed as a linear combination of the vectors u, v, . . . , z. This leads us to the
important concept of linear dependence. A set u, v, . . . , z of vectors all belonging to
the same vector space Rn is said to be linearly dependent if (1) one of them is the null
vector, or (2) if one of them can be expressed as a linear combination of the preceding
ones. If neither of these things is true, the vectors are linearly independent. The more
usual definition is to say that the vectors are linearly independent if the only linear
combination of them which is equal to the null vector is the trivial combination 0 · u + 0
· v + · · · + 0 · z, that is, if au + bv + cw + dx + ey + fz = φ implies a = b = c = · · · = f
= 0. But these two definitions are easily shown to be equivalent.

In R2 linear dependence has a simple graphical meaning. Consider two non-null
vectors u = [u1,u2] and v = [v1,v2]. The set u, v is linearly dependent provided v is a
linear combination of u, that is, if v = au for some scalar a. But we saw in the previous
section that au is a vector or point on the ray through u. Thus u and v in R2 are linearly
dependent if they represent points on the same ray. Now consider three non-null vectors
from R2, u, v, w. They are linearly dependent if v = au or if w is a linear combination of
u and v, that is, if w = bu + cv for some scalars b and c. This latter condition states



By substitution we can solve this pair of linear equations in the unknowns b and c to
find

That is, w can always be expressed as a linear combination of u and v— always, that is,
unless the denominators in the above solution should be zero. But in that case u1v2 =
u2v1, or v1/u1 = v2/u2 and if we call this common ratio a, we see that u and v are
themselves dependent. We have shown that in either case the vectors u, v, w are linearly
dependent; i.e., one can’t find three linearly independent vectors in R2. Geometrically
this is easy to see. In Fig. B-3, if u and v are any pair of independent vectors (i.e., do
not lie on the same ray), then any third point w can be expressed as a linear combination
of u and v by the two processes of expansion along a ray and formation of a
parallelogram. In the diagram w = u* + v* where u* and v* are multiples of u and v.
What we have in effect done is to choose the rays through u and v as new axes and
express w in this new coordinate system.

FIG. B-3

So much for R341. How about R3? In three-dimensional vector space, two vectors are
linearly dependent if they lie on the same ray. Three vectors are linearly dependent if
they lie in a plane which also passes through the origin. Three linearly independent
vectors can be found, namely, any three which do not lie in such a plane (e.g., one
vector along each axis). But any set of four vectors is linearly dependent. In effect, if the
first three are independent, we can choose them as a new set of axes and always express
the fourth in terms of the new coordinate system.

The further generalization is obvious. One can find n linearly independent n-
dimensional vectors,342 but not n + 1. If we are given any n linearly independent vectors
of Rn we can express every vector of Rn as a linear combination of them.

This is really a theorem in simultaneous equations. Suppose in R6 we try to express
an arbitrary vector c as a linear combination of u, v, w, x, y, z. Then we must have
scalars a, b, . . . , f such that



(B-1a)
We now know that these six equations in six unknowns have a solution if the vectors u,
v, ... , z are linearly independent (i.e., if the columns of coefficients form a linearly
independent set of vectors).341

A set of linearly independent vectors, equal in number to the number of dimensions,
is called a “basis” of Rn. A basis of Rn has the important property that any vector of Rn

can be expressed as a linear combination of the basis vectors. (Recall that in the m-
nutrient diet problem a feasible diet using just m foods is called a “basic” solution. If the
m foods have linearly independent nutrient vectors, they form a basis of Rm. Any food’s
nutrient vector can then be expressed as a linear combination of the m foods. This linear
combination is exactly the “equivalent combination” appearing in the simplex method.)

Actually, to express a given vector in terms of a particular basis may be no easy task.
It amounts to solving a set of simultaneous equations like (B-1a). For some special
bases the job is much simplified. Most especially, consider the n vectors

(Note that ei is here a vector, not a component of a vector.) In the first place they are
linearly independent (try to express any one as a linear combination of the others). In
the second place it is trivially easy to express any vector of Rn in terms of these. If x =
[x1,x2,x3, . . . ,xn], then x = [x1e1 + x2e2 + x3e3 + · · · + xnen]. Write out the equations
corresponding to (B-1a) and see how easy they become. The vectors ei are called the
“unit vectors” of Rn, and obviously they will come in very handy. Geometrically the unit
vectors are vectors along the axes themselves. To express x in terms of the ei is to find
the coordinates of x with respect to the original axes themselves. Hence the components
xi of x are themselves the sought-for coefficients.

B-4. MAPPINGS
Every economist has some acquaintance with the notion of a function of one variable

or even of several variables. To say that y = f(x) means that to each343 value of x we
make correspond a particular value of y, namely, f(x). Similarly for y = g(x1,x2, ... ,xn).
Can we generalize this notion to the case in which y and x are vectors? Can we write a
vector y as some kind of function of a vector x? Why not? In fact, there is even no need
for x and y to belong to the same vector space, i.e., to have the same number of
components. Suppose we consider on the one hand Rn and on the other Rm. Suppose we



have a rule which associates with each point or vector of Rn a point or vector of Rm.
Then again we can write y = f(x), only now x stands for an n-dimensional point or
vector and y for an m-dimensional one. We say that the function f is a mapping from Rn

to Rm.
Let us understand what this means. A vector x = [x1,x2, . . . ,xn] determines, via the

rule or mapping, a particular vector

That is to say, knowledge of the components of x determines all the components of y.
We could express this by saying that each component yi is a function of all the
components of x. In short, the notation y = f(x) is simply shorthand for m different
functions each of n variables, to wit:

There is, of course, no reason why the m functions fi should be the same, or even
anything like each other.

In the important special case in which m = n, y = f(x) maps Rn into itself, via n
functions each of the n variables (x1, . . . ,xn).

Here are some simple examples of mappings of R2 into itself, which the reader should
be able to visualize graphically:

(B-2)
This is called a projection on the x1 axis.

(B-3)

(B-4)
Here we must exclude cases in which x1 + x2 = 0. Note that y2/y1 = x2/x1.



(B-5)

(B-6)

(B-7)

B-5. LINEAR TRANSFORMATIONS
The idea and notation of a vector is especially suited to the study of a special but

exceedingly important class of mappings called linear transformations. The mapping
T(x) of Rn into Rm is a linear transformation if it has the two following properties:

for every scalar a and all vectors u, v, and x of Rn. These are obviously properties
which deserve the adjective “linear.” They say that if the vector x is multiplied by a
scalar, then the “image” T(x) = y is multiplied by the same scalar; and the image of the
sum of two vectors is the sum of the two images (which are also vectors). It follows
from these properties that if a and b are scalars and x and y are vectors of Rn, then T(ax
+ by) = aT(x) + bT(y), and in fact

Once again the case m = n is of special interest: we have then a linear transformation
of Rn.

The reader should check his understanding by deciding which of the examples of
mappings at the end of the previous section are linear.344

Some properties of linear transformations are evident from the definition itself. For
example, T(φ) = φ; that is, a linear transformation maps the null vector into the null
vector. Proof: T (φ)= T(0x) = 0T(x) = φ for any vector x.

Here is a rather more important example. A linear transformation (or any mapping,
for that matter) is called 1:1 if no vector y is the image of more than one vector x; that
is, if T(u) = T(v) implies u = v. The 1:1 linear transformations are very important; their
importance resides in the fact that if y = T (x)and T is 1:1, then if we are presented with
y we can locate the x from which it came. More on this later.345 We can easily show that



a linear transformation T is 1:1 if and only if the only vector it maps into the null vector
is the null vector itself. We already know that in any case T(φ) = φ; we now state that T
is 1:1 if and only if it maps no other vector into the null vector. Proof: (1) We already
know that T(φ) = φ; hence, trivially, if T is 1:1, there can be no other x such that T(x) =
φ. (2) Suppose that T(x) = φ implies x = φ; if T(x) = T(y), then T(x) – T(y) = φ, but T (x)
– T(y)= T(x – y), and hence x – y = φ and x = y. Q.E.D. A linear transformation of Rn

which is 1:1 is also described as “nonsingular.”

B-6. MATRICES
So far we have Hamlet without the Prince of Denmark: the notion of a matrix has not

yet appeared in this appendix on matrices. Now the time has come. Nor have all the
preliminaries been wasted, for in this section we shall show that a linear transformation
and a matrix are “really” one and the same thing. But first some definitions.

A matrix is just a rectangular array of numbers, e.g.,

or

or

or

or

Each number that appears in a matrix is called an “element.” When we have no
particular numerical values in mind, a general matrix of m rows and n columns
(described as m by n, or m × n) is usually written in double-subscript notation as in the
third example: the first subscript identifies the row, the second the column. A matrix
with one row or one column is usually called a “row vector,” or a “column vector”; we
have tacitly been writing vectors as rows, for typographical convenience, but this is not
essential. Matrices are frequently symbolized by a single letter or by giving the typical



element inside brackets. Thus the third example might be indicated by A or by [aij]. A
matrix with as many rows as columns is said to be “square.”

Now let us return to linear transformations from Rn to Rm. Because of the linearity
properties, if we know what a particular linear mapping does to the vectors comprising
a basis for Rn, we can compute what it does to any vector of Rn. In other words, if we
know the image of each vector of a basis, we know essentially all about the
transformation. Here is where the special basis consisting of the n unit vectors e1, e2, . . .
, en comes in particularly handy.

Suppose we know T(e1), T(e2), ... , T(en) and would like to know T(x), where x is an
arbitrary vector of Rn. But x can be expressed as a linear combination of the e’s, namely,
x = [x1e1 + x2e2 + · · · + xnen]. Then by linearity

and T(x) is easily calculable.

Now let us write our vectors of Rn (and of Rm) as column vectors.

and

Each T(ei) is a vector of Rm, say,

Now we can write



(B-8
or

In the last expression we could separate out the matrix of m rows and n columns,
each of whose columns is simply the image T(ei) of a unit vector. Call it A. Thus,

In this way every linear transformation of Rn to Rm is associated with an m X n matrix,
and every m X n matrix represents a linear transformation from Rn to Rm.

It suggests itself immediately (and if it doesn’t we now suggest it) that we
conventionally define the last vector in (B-8) as the product of the matrix A and the
vector x. Thus,

(B-8a)

Since the transformation T operates only on vectors from Rn, we see that the product Ax
makes sense only if x has as many components (or rows) as A has columns.

Looking back at (B-8) we now have a rule for multiplying any m × n matrix by any n
× 1 column vector, as follows. The product is an m × 1 column vector whose first
component is the sum of the cross products of the elements of the first row of A with
the corresponding component of x; the second component is the sum of the cross
products of the elements of the second row of A with the components of x, etc. For
example,



At the end of Sec. B-4 we gave six examples of mappings of R2, three of which were
linear. Verify that the matrices associated with (B-2), (B-3), and (B-7) are, respectively,

Note also that the matrix associated with a linear transformation of Rn is a square n × n
matrix.

B-7. FURTHER OPERATIONS WITH MATRICES
Take any linear transformation from Rn to Rm, say T, and let c be a scalar. Then it is

natural to mean by the linear transformation cT the transformation Tc which maps x into
c times T(x). Formally, Tc(x) = cT(x). If T corresponds to the matrix A, then the reader
should verify that cT corresponds to a matrix which is derived from A by multiplying
every element by c and which we shall call cA. Thus, by definition, to multiply a matrix
by a scalar, multiply every element of the matrix by the scalar. For example,

If the scalar should happen to be−1, we see that the negative of a matrix is the original
matrix with the sign of every element changed.

Now consider two linear mappings S and T, each of which operates on vectors of Rn

and maps them into vectors of Rm. Then we can define a new linear transformation S +
T as the transformation which maps any vector x of Rn into the vector S(x) + T(x) of
Rm.346 Suppose A is the m × n matrix which describes T and B is the m × n matrix
identified with S. What matrix is associated with S + T? A simple example will give us
the answer: Let

Then

The matrix of [S + T], which it is natural to call [B + A], is a matrix obtained by adding
the corresponding elements of B and A. Briefly B + A = A + B = [aij + bij]. Here is our



definition of the sum of two matrices. Obviously two matrices can be added only if they
have the same number of rows and the same number of columns. By A−B, we mean A
+ ( – 1)B. For example,

Now we must define the product of two matrices. Imagine two linear transformations
S and T, and ask what happens if first we apply T to a vector x and then apply S to T(x),
that is, if we compute S[T(x)]. First off, if T is a mapping from Rn to Rm, T(x) is a vector
of Rm, say y. If S[T(x)] = S(y) is to have any meaning at all, S must be a mapping from
Rm to some vector space, say Rk. Then S[T(x)] is a vector of Rk. The combined linear347

transformation S[T(x)] which we may call ST(x), the product of S and T, is a mapping
from Rn to Rk. A, the matrix of T, is m × n; B, the matrix of S, must be k × m; and the
matrix of ST must be k × n. Let us call this matrix BA the “product” of the two matrices
and see if we can compute what it is. We know first that

and

In the last monstrous term, sort out the coefficients of x1, x2, . . . , xn in each row. For
example, extracting the x1’s in the first row, we find that the coefficient is b11a11 +
b12a21 + · · · + b1mam1. The coefficient of x2 in the first row is b11a12 + b12a22 + · · · +
b1mam2. The coefficient of x3 in the second row is b21a13 + b22a23 + · · · + b2mam3, etc.

After all m this we recognize that the coefficient of xk in the ith row is  .



Thus summarizing, finally, we see that

All the sums run on j from 1 to m, which just fits because B has m columns (the
second subscript) and A has m rows (the first subscript). The product matrix BA has k
rows and n columns, as it must. In words: The product of a k × m matrix B and an m ×
n matrix A is a k × n matrix. To find the element of BA in the first row and first
column, take the sum of the cross products of the elements in the first row of B and the
corresponding elements in the first column of A. To find the element in the second row
and third column of BA, take the sum of cross products of corresponding elements in
the second row of B and the third column of A. To find the (i,j) element of BA, sum the
products of corresponding elements in the ith row of B and the jth column of A.

Example:

Sample computation:

Note that as distinct from everyday multiplication of numbers, the order in which the
factors are written is vital in matrix multiplication. BA and AB are different. In fact,
since to multiply two matrices the first factor must have as many columns as the second
factor has rows, BA may be perfectly well defined while AB has no meaning at all.
(Remember we are really talking about linear transformations from one vector space to
another.) In the numerical example, the first matrix factor is 3 × 2, the second, 2 × 2. In
reverse order, no multiplication is possible. (Easy exercise: When is multiplication in
both orders possible?) Even if BA and AB are both defined, there is no reason why BA
and AB should be the same.

Example:



B-8. IDENTITY MATRIX—INVERSES
There is no such operation as dividing one matrix by another, but there is a similar

concept which we must now describe.

Perhaps the simplest linear transformation of Rn into itself is the one which maps any
x exactly into itself; that is, T(x) = x. It is usually called the identity transformation. It is
easily seen that the matrix corresponding to this simple transformation is the matrix

called the identity matrix and usually designated as I or In (or sometimes as E, for
Einheit). It is a square matrix, since it maps a vector space into itself. What happens if
we multiply another n × n matrix, say A, by I, either before or after; i.e., what is IA or
AI? We can answer this question without actually doing any matrix multiplication—by
just thinking about transformations. For if we represent the identity mapping by I and
the mapping corresponding to A by T, we have I(x) = x; hence TI(x) = T(x) and IT(x) =
T(x). In other words IT = TI = T, as linear transformations. Since matrices merely
represent transformations, it must follow that AI = IA = A; that is, multiplying a matrix
by I just gives us back the original matrix. And since consistency, though the hobgoblin
of little minds, is the main virtue of mathematics, it indeed works that way:

The identity matrix plays the same role in matrix multiplication that the number 1 does
in multiplying numbers.

Now dividing 6 by 3 is the same thing as multiplying 6 by , the reciprocal of 3. How
do we know that  is the reciprocal of 3? Because 3 ×  =  × 3 = 1. Take any square
matrix A. There may be another square matrix B with the nice property that BA = AB =
I. If such is the case, B is called the “inverse” of A, usually written A-1. Thus AA-1 = A-

1A = I. By virtue of the same definition, A is the inverse of A-1. Inverse matrices play
much the same role as reciprocals of numbers. For example, if

then

because



Actually, finding the inverse of a given matrix or even discovering whether a given
matrix has an inverse may be a formidable computational job.

Let us view the inverse matrix from the linear-mapping point of view. Suppose T
maps Rn into itself: what x is mapped into y by T? If, and only if, T is 1:1, this question
has a unique answer. This answer sets up a correspondence between y and x which we
can call the inverse mapping to T and designate T-1. By definition, then, if y = T(x), x =
T-1(y). It can be shown that the inverse of a linear mapping is linear. Now what happens
if we apply T to a vector x and then apply T-1 to T(x); that is, what about the mapping T-

1T? Obviously, T-1T(x) = x, for if y = T(x), T-1T(x) = T-1(y) = x: all we are doing is going
from x to y via T and then asking where did y come from, and clearly it came from x.
So T-1T is the identity mapping T-1T = I. But if A is the matrix of T, and B is the matrix
of T-1, we know that BA is the matrix of T-1T, and so BA = I, B = A-1. The inverse of a
matrix is the matrix corresponding to the inverse mapping of the original matrix. And
now we know which matrices have inverses and which do not. If a mapping is 1:1,
there is an inverse mapping, otherwise not. So square matrices belonging to a 1:1
mapping have inverses. Such matrices, like the mappings they describe, are called
“nonsingular.”

Finally, consider two 1:1 transformations S and T and apply them in succession to x
to get z = ST(x); that is, y = T(x) and

z = S(y) = S[T(x)] = ST(x)
Since S and T are both 1:1, we can get back uniquely from z to its unique “parent” y and
from y to z’s unique “grandparent” x. Hence the product transformation ST is
nonsingular and has an inverse. Moreover, we have practically worked out what that
inverse mapping is. To get from z back to y we have y = S-1(z) and to get from y to x we
have x = T-1(y). Hence x = T-1[S-1(z)] = T-1S-1(Z). This says that (ST)-1 = T-1S-1: the
inverse of a product is the product of the inverses in reverse order. As usual, we can
deduce immediately a theorem about matrices. If A and B are, respectively, the
nonsingular square matrices belonging to T and S, then we know that BA is the matrix
of ST. And (BA)-1 is the matrix of (ST)-1. But (ST)-1 = T-1S-1, and the matrix of this
transformation is A-1B-1. Hence the theorem (BA)-1 = A-1B-1: The inverse matrix of a
product is the product of the inverses in reverse order. Remember, we have assumed A
and B to be square and to possess inverses themselves.

B-9. INNER PRODUCT—TRANSPOSED MATRICES
n



In economics we often come across expressions of the form ; the maximand in a
linear program is always written in this way. Such expressions also appear in statistics,
under the name of “covariance,”  . It is possible to think of such sum-of-
cross-products expressions as generated by two vectors, namely, p = [p1, . . . ,pn] and x
= [x1, ... ,xn]. Accordingly, we define Σpixi as the inner Product of the vectors p and x,
and we symbolize it by (p,x). Obviously the order here makes no difference: (p,x) =
(x,p). Other common notations are p’x and p·x.

There is still another way of looking at the inner product. If we write the vector p as a
row vector and x as a column vector, p is 1 × n and x is n × 1 and we can compute the
matrix product px, namely,

The product is a 1 × 1 matrix, i.e., an ordinary scalar, and turns out to be just the inner
product (p,x). The inner-product notion gives us a brief way of describing the
technique of matrix multiplication. The product BA, where B is k × m and A is m × n, is
a k × n matrix whose (i,j) element is the inner product of the ith row of B and the jth
column of A.

The “transpose” of an m × n matrix is an n × m matrix whose ith row is just the ith
column of the original matrix. Thus if A is the matrix,

the transpose of A, usually written A‘ or AT, is



FIG. B-4

This notation is the origin of the expression p′x for the inner product. If we think of all
vectors as column vectors, then p′, the transpose of a column, will be a row and p′x is
just the matrix product which yields the inner product.

Inner products have an important geometric significance. Figure B-4 shows two
vectors p and x of n elements each, emanating from the origin 0. The angle between the
vectors is designated θ, and the triangle formed by the two vectors has been completed
by connecting their end points. By elementary trigonometry

where |p| and |x| denote the lengths of p and x, respectively, and |p−x| denotes the
distance between their end points. By the Pythagorean theorem of geometry and

Substituting these in the formula connecting the lengths and cos θ and remembering that
pixi is the inner product (p,x) we find

or

Since the denominator of this fraction is surely positive, this leads to the conclusion that
the angle between two vectors is acute, right, or obtuse, according as their inner product
is positive, zero, or negative.

For most purposes we need to make only slight use of the transpose idea. One
theorem on transposes that occasionally turns up states that (BA)′ = A′B′: the transpose
of a product is the product of the transposes, in reverse order. A dull but useful exercise
for the reader would be to compute both sides of the above equation for some matrices



to verify the theorem, or better, prove the theorem from the definitions of a product and
a transpose.

The mathematical significance of transposes is the following: Suppose we look at the
inner product of a vector y not with x itself but with Ax, namely, (y,Ax). Ax is of course
a vector with the same number of components as y; it is simply the product of x and the
matrix A. Now we may ask: Is there a matrix C such that (y,Ax) = (x,Cy), that is, such
that the inner product of x and Cy is the same as the inner product of y and Ax?
Straightforward computation shows that indeed there is such a C, and it is none other
than A’; that is, (y,Ax) = (x,A′y). Using this fact and recalling that (x,A′y) = (A′y,x),
since order is irrelevant in an inner product, we can give a proof of the theorem that
(BA)‘ = A’B’, namely,

(y,BAx) = [y,B(Ax)] = (Ax,B’y) = (B‘y,Ax) = (x,A’B’y) = (A’B’y,x)

Putting the ends together, (y,BAx) = (A‘B’y,x). But (BA)’ is the matrix such that
(y,BAx) = [(BA)’y,x]. Hence (BA)’ = A’B’.

B-10. SIMULTANEOUS EQUATIONS
The equipment now at hand applies very neatly to the study of simulaneous. tlinear

equations. Since many of the equation systems that come up in this book are systems
with as many equations as unknowns, we shall limit ourselves mainly to that case. A set
of n linear equations in n unknowns can be written

The a’s and b’s are given numbers; the problem is to find a set of numerical x’s which
will make all the equations true.

First off we can compress the notation considerably. If we let A be the matrix [aij], x
be the column vector

and b be the column vector



we have simply Ax = b.
Now actually solving linear equations is literally child’s play. The old-fashioned high-

school method of simply eliminating one unknown at a time and thus reducing the
problem to fewer and fewer unknowns is still a good one and is still the backbone of
most machine methods. It will always work; i.e., either it will produce a solution or it
will break down in an obvious contradiction, which tells us that the equations have no
solution, or are inconsistent. But we are not at the moment interested in computation
problems, but rather in theory.

The system of equations Ax = b can be thought of in the following way: The matrix
A represents a linear transformation T. The equations state that x is a vector which is
mapped or carried by T into the vector b. We are asked what vector x is mapped by T
into b. There are three possible answers to this question: There may be no such vector
x; there may be exactly one such vector x; there may be many such x’s. The equations
may have no solution, a unique solution, or many solutions. It is mainly the middle case
that interests us here.

If the transformation T is 1:1, that is, if T and A are nonsingular, then b has indeed
one “parent” which can be identified by the inverse mapping as T—1(b). Indeed x =
T—1(b) does satisfy the equation T[T—1(b)] = b. In matrix terms, x = A—1b. If we insert
this in the given equations, we verify that it is indeed the solution

We could have seen this directly from the equations Ax = b. Multiply both sides on the
left by A—1 to get

which is the desired solution.

We saw in Sec. B-8 that the inverse of

is

Hence the solution of the equations

should be



And a check shows that this is the case.

If we know the matrix A—1, then it is a trivial matter to solve any system of equations
Ax = b, any system whose matrix of coefficients is A. What this means is that we can
solve the system easily for varying b’s. But generally (especially if the number of rows
and columns is large) we would not know A—1. The fact of the matter is, practically
speaking, you don’t solve equations by use of the inverse. Quite the contrary, you
compute an inverse if you want it by solving linear equations. For example, suppose we
want the inverse of

i.e., we want a matrix

such that

Element by element this says that

Here we have two sets of linear equations. In the first pair the unknowns are c11 and c21,
in the second the unknowns are c12 and c22. By solving them we compute the elements cij

of A—1. A sample computation: Eliminate c11 by c11 = — (a22/a21)c21 (supposing a21 ≠ 0).
Then substitute to get — (a11a22/a21)c21 + a12c21 = 1, or c21 = —a21/(a11a22 — a12a21),
provided the denominator isn’t zero. (If it is, the matrix A isn’t nonsingular and there
will be no solution or many!)

If matrices aren’t a computational convenience, why drag them into the discussion of
simultaneous equations at all? In the first place, there is the sheer notational simplicity
of writing Ax = b instead of something full of eyesores such as double subscripts. Then
the notation x = A—1b tells us at once the important fact that each component of the
solution [x1,x2, ... ,xn] is a linear combination of the b’s. Moreover, there are important
theorems on matrices, some of which are, naturally, too advanced to be discussed here,
which make the matrix idea a great analytical convenience in the discussion of linear
equations.



B-11. SIMULTANEOUS EQUATIONS AND RANK OF A
MATRIX

So far we have discussed only the case in which the matrix A is nonsingular. We are
not even through with that case yet. How can we tell when a square matrix is
nonsingular (i.e., when it is 1:1, or possesses an inverse) ? Early in this appendix we
saw that solving linear equations can also be thought of as expressing one given vector
as a linear combination of other given vectors. The equations Ax = b can profitably be
viewed in this light. If we symbolize the columns of A by A1, A2, . . . , An, then we can
rewrite the equations as

(B-9)

expressing b as a linear combination of the columns of A. When can we guarantee that
this is possible, whatever b? There are n columns Ai, each with n components. If they
are linearly independent, they form what we earlier called a basis of Rn (i.e., a legitimate
set of axes) and any vector of Rn can be expressed uniquely as a linear combination of
the columns (a point has one, and only one, set of coordinates with respect to a set of
axes). Thus if the columns of A are linearly independent, the equations Ax = b possess
a unique solution. Hence we have the further theorem. The n × n matrix A is
nonsingular (represents a 1:1 transformation, or possesses an inverse) if and only if its
columns are linearly independent. Remember that the columns of A are nothing but the
images of the unit vectors under the transformation (in other words, Ai = Aei; try it!).
So still another way of describing a nonsingular matrix is to say that it maps the unit
vectors into a basis for Rn,

What if the columns of A are linearly dependent? Then not every vector of Rn can be
expressed as in (B-9). Two cases present themselves: either b is one of the vectors of Rn

that can be expressed as a linear combination of the Ai, or it is one of those that can’t.348

In the latter case, clearly, there is no solution to the equations. In the former case, just as
clearly, there is a solution, and indeed there are infinitely many solutions. It is not hard
to see why. Suppose An can be expressed as a linear combination of the other columns.
Then if b is a linear combination of all the Ai, it can also be represented as a
combination of Ai, . . . , An−1. As in the simplex method we can find an “equivalent
combination” for An and introduce varying amounts of it to give many different
solutions. More formally, if the columns are linearly dependent, then Ay = φ has a
nontrivial solution. If, then,  = b,

so along with x + ky is a solution for any scalar k.



For any matrix, square or not, the number of linearly independent columns is called
the “rank” of the matrix.349 Thus an n × n matrix is nonsingular if and only if its rank is
n. The next section will show that a test of nonsingularity and a method of finding a
rank is provided by the concept of a “determinant.”

In terms of the above concepts the reader might like to investigate for himself the
situation with systems of linear equations not equal in number to the number of
unknowns. The question always reduces to one of whether the vector on the right-hand
side can be expressed as a linear combination of the columns of the matrix on the left-
hand side. If A is m × n and m < n (more unknowns than equations), the greatest
possible rank is m. In this case (i.e., if the rank of A is actually m), b is always
expressible in terms of the columns of A, but never uniquely. If the rank of A is less
than m, there may again be no solution or many. If m > n (more equations than
unknowns), we can never be sure that a solution exists at all. Since there are fewer than
m columns, they cannot form a basis of Rm. Hence some b’s will not be in the subspace
spanned by the columns, and for such b’s there will be no solution.

Let us return for a moment to the square n × n case. If the right-hand vector b is the
null vector, the system Ax = φ is described as homoqeneous. If A is nonsingular, we
know that there is a unique solution to these equations, and indeed that. solution is x =
φ (recall that we long ago proved that a 1:1 transformation maps only the null vector
into the null vector; here we have that proposition coming up again). When
homogeneous equations come up in applications we usually want to know when they
have a solution other than the “trivial” one, x = φ. The answer is: Homogeneous
equations have a nonzero solution only when the rank of A is less than n, i.e., when A
is singular or its columns are linearly dependent. For if A is singular, one of its columns
can be expressed as a linear combination of the others, which is the same as saying that
a nontrivial combination of the columns can be made equal to the null vector, or Ax = φ
for  ≠ φ, and hence  is the desired nontrivial solution.350 If  is a solution, so is 
for any scalar k.

Thus if the rank of A is n—1, we get a whole family of solutions of the homogeneous
equations, namely, x and all its scalar multiples. If the rank of A is n — 2, there are two
such families of solutions (and they are themselves linearly independent) and in
addition any linear combination of solutions is a solution. If Ax = φ and Ay = φ, then

If the rank of A is n—k, then there are k linearly independent families of solutions, and
again we can use all their linear combinations.

An excellent application of all this is the Walrasian system studied in Chap. 13 of the
text. The factor market equations can be written Ax = r; the price-cost equations can be
written A’v = p. A is m × n since there are m factors and n commodities. The possibility



of satisfying these equations exactly, given the resource endowment, depends on the
rank of A. Only here we have the added difficulty that only nonnegative x’s and v’s
make sense, so something a bit more complicated is involved. We can think of the
linear transformation A as mapping nonnegative vectors x (commodity outputs) into
nonnegative factor-use vectors.

B-12. DETERMINANTS
Determinants are an almost unmitigated nuisance. You can “use” them to solve linear

equations, but they are a very inefficient computational device, and if they are to be
used only analytically, we can do better with the concept of an inverse matrix. Still they
do provide a “different” way of solving equations, and a direct way of computing an
inverse matrix and of finding the rank of a given matrix, and so we will give them a
once-over-lightly.

Suppose we solve the 2 × 2 system

by elimination. We write

Multiply the first equation by a22 and the second by a12 and subtract. This eliminates x2

and leaves

If the quantity in parentheses is not zero, we can divide it out and find a solution x1. But
if the quantity in parentheses is zero, and if the right-hand side is not zero, there is no
solution x1; and if the right-hand side is zero, any value of x1 will do as a solution. This
suggests that the expression a11a22 — a12a21 has a lot to do with the rank of the matrix
A. And indeed it has.

This number a11a22 — a12a21 is called the “determinant” of the matrix A and is written

det A =  ; that is, it is written in the same way a21 a22 as the matrix, but with
vertical bars instead of brackets. Note that det A is a number, not a conventional object
like a matrix.351 To compute any 2 × 2 determinant (determinants are always square)
simply multiply the northwest and southeast elements and subtract the product of the
northeast and southwest elements. Thus



Later we shall define the value of a 3 × 3 or n × n determinant.

Now suppose that = 0. Then

say (if neither a12 nor a22 = 0, and these cases can be handled separately as an exercise

by the reader), and the columns of A are linearly dependent, since  .What’s

more, if a22b1−a12b2 = 0, then b1/a12 = b2/a22 = d, say, so that  and b is in the

subspace spanned by and we get solutions. Note, by the way, that  a22b1 — a12b1 = 

 .

On the other hand, if  ≠ 0, the columns of A are linearly independent by the

same reasoning. For if  , then a11/a12 = a21/a22, and a11a22 — a12a21 = 0,
which contradicts the assumption that det A is nonzero. Hence the vanishing of the
determinant is a criterion of linear dependence. If the determinant is zero, the columns
(and rows) are linearly dependent; if the determinant is not zero, the columns (and
rows) are linearly independent.

One more thing. If det A ≠ 0, so that a unique solution to the equations exists, we
have all but computed that solution, namely,

and a little further calculation shows that

For 2 × 2 systems we can state that if the determinant of the matrix doesn’t vanish, the
matrix is nonsingular, and the unique solution of the equations can be described thus:
Each x1 (or x2) is a ratio of determinants—the denominator being the determinant of the
system and the numerator the determinant we get from it by replacing the first (or
second) column by the column of constants b. This rule, suitably extended to n × n
systems, is called Cramer’s rule.

We must now go on to define 3 × 3 and higher-order determinants. There are many



ways to do this; we choose an inductive method. Consider the 3 × 3 determinant:

If we cross out any row and any column, we are left with a 2 × 2 determinant, which we
know how to evaluate. If we cross out the first row and first column, we get a
determinant which is called the minor of a11. If we attach the sign (—1)1+1 to the minor,
we get the cofactor of a11, which we may call A11. Similarly, if we cross out the ith row
and jth column, we get the minor of aij, and if we prefix the sign of (—1)i+j, we get the
cofactor of aij, namely, Aij. Thus the cofactor of any element is the determinant left if
we delete the row and column in which that element lies, with an attached sign which is
positive if the numbers of the row and column add up to an even number, negative if
they add to an odd number. Thus in

352

Now to define and evaluate a 3 × 3 determinant. Pick out a row or a column and
compute the cofactor (sign and all) of each element in the row (or column). Multiply
each element of the row (or column) by its own cofactor and add the products. The
result is the determinant. It is a theorem that whichever row or column one chooses, the
end result is always the same. For example, we can “expand” the above determinant first
by the first row, then by the third column.353 We get

We can now compute any 3 × 3 determinant. Naturally, practically speaking, if a row or
column has a lot of zeros in it, that’s the one along which to expand.

In the same way, the cofactor of any element of a 4 × 4 determinant is the 3 × 3
determinant obtained by deleting the row and column in which the given element lies
(same convention as to the prefixed sign). A 4 × 4 determinant can be evaluated by
expanding along any row or column and computing the sum of the products of each
element in the row and its cofactor. This yields a number of 3 × 3 determinants, each of
which can be reduced to 2 × 2 determinants, and evaluated. Hence we have a way of
computing a determinant of any order.



It is a fact that if the determinant of a matrix vanishes, the matrix is singular, and its
columns are linearly dependent and all the usual consequences follow. We found above
that

It can be verified that

so that the matrix is indeed singular. We have that

Cramer’s rule extends to n equations in n unknowns, Ax = b. If det A ≠ 0, there is a
unique solution; each xi is a ratio of determinants. In the denominator is det A. In the
numerator is the determinant obtained from det A by replacing the ith column by b. We
repeat, however, that however nice it is to be able to state this, Cramer’s rule is a very
inefficient computational procedure, far inferior to high-school elimination for large
systems.

Determinants also give us a foolproof, if foolish, way of finding the rank of a matrix,
square or not. In an arbitrary matrix find the largest (in the sense of number of rows
and columns) nonzero determinant that can be made by deleting rows and columns. If
there is a nonzero r × r determinant and no nonzero determinant of more than r rows,
the rank of the matrix is r.

There are various legal ways of manipulating determinants which the reader can find
in any algebra text. For example, if the elements in a single row (or column) are all
multiplied by a constant c, the value of the determinant is multiplied by c.
Proof:

Hence a determinant with a row of zeros is zero. A determinant two of whose rows
(or columns) are identical is zero (rows or columns linearly dependent).



Also,

Proof: Expand along the first column. It now follows that we can add a multiple of a
row (or column) to any other row (or column) without changing the value of the
determinant. Proof: In the above equation, let d1 = ka12, d2 = ka22, d3 = ka23; then we get
the original determinant plus k times a determinant with two identical columns. These
properties can often be used to simplify the evaluation of a determinant.

There are many other theorems on determinants. We mention only a few odds and
ends. In all evaluations of determinants, we may work with rows or with columns.
Hence det A = det A′. If A and B are square matrixes of the same size, det (AB) = det A 
 det B.

Finally, determinants also offer a way to compute the inverse of a nonsingular square
matrix. If [bij] = [aij]—1, then bij = Aji/det A: the (i,j) element of the inverse is the
cofactor of the (j,i) element divided by the determinant. Also det A—1 = 1/det A.

B-13. THE LEONTIEF INVERSE
The static input-output model provides a very simple application of elementary matrix

algebra. As shown in the text, the assumption of fixed input coefficients leads to the
balance equations for total output

x = Ax + c

where A = [aij] is the square n × n matrix of input coefficients, and x and c are n-
dimensional column vectors of gross output and final demand, respectively. By their
nature, all the aij, the c’s, and the x’s must be nonnegative.

We can rewrite the Leontief equations as

(I — A)x = c

As usual, there are two ways of looking at this. We can think of I — A as a linear
transformation of Rn which carries gross outputs into final demands. The linearity
reflects the basic superposition principle: if (I — A)x = c and (I — A)x* = c*, then (I
— A)(x + x*) = c + c*. To produce the combined final demands, simply add the
respective gross outputs. In this view, we are given the vector of final demands, and the
problem is to find the gross outputs required.

If I — A is a nonsingular mapping, the solution is x = (I — A)—1c. Only now this is
not quite enough: to make economic sense, all the components of x must be ≥ 0. Not
only must I — A have an inverse mapping, but the inverse mapping must have the



following property: it must map every vector of nonnegative components into a vector
of nonnegative components. For this to be the case, the matrix [I — A]—1 must have all
nonnegative elements. If so much as one negative element appears in [I — A]—1, then
there is at least one final demand vector c which will lead to meaningless negative
outputs. Suppose the (h,k) element of [I — A]—1 is negative; then if c is a vector with
very small components except for a large ck, it will turn out that xh is negative. The
Hawkins-Simon conditions discussed in the text are necessary and sufficient conditions
on A that ensure that [I — A]—1 has nonnegative elements.

An alternative view of the linear equations is more akin to linear pro- . gramming
generally. We can think of the columns of I — A as describing a “process” or activity
for each industry, with one output and many inputs. A linear combination (with
nonnegative coefficients) of the columns yields the net flow of commodities through the
system if the industrial processes are operated at the levels indicated by the x’s. The
problem then is to find a nonnegative linear combination of columns that will yield the
given vector of final demands or net commodity flows.

Because of the special form of the Leontief matrix, i.e., I minus a matrix of
nonnegative elements, it is usually especially well behaved. The details can be found in
the literature; here we merely indicate a lead. Multiplying out will show that

(I — A)(I + A + A2 +    + An) = I — An+1

Here An means the nth power of A, the matrix A multiplied by itself n times. Now let n
→ ∞ , and suppose that every element of An+1 tends to zero.354 Then in the limit we can
write

(I — A)(I + A + A2 +    + An +    )= I

and this says that the infinite geometric series of matrices I + A + A2 +    is (I — A)—1.
This is highly reminiscent of the ordinary geometric series in which 1 + a + a2 +    =
1/(1−a) = (1 — a)−1, provided -1 < a < 1. The condition that every element of An+1 tends
to zero is naturally more complicated, and we can’t discuss it here. But one fact we can
learn: if this condition is satisfied so that

(I + A + A2 +    ) = [I — A]—1

then clearly [I−A]—1 consists of nonnegative elements only. For I and A have
nonnegative elements, and so have A2, A3, etc., since their elements come from
multiplying arid adding the elements of A, and in this way no negative numbers are ever
generated. All we have shown is that for An+1 to tend to zero is a sufficient condition for
the nonnegativity of [I−A]—1. It happens also to be necessary.



B-14. INEQUALITIES AND CONES
So far we have discussed linear equations exclusively, while much of the text has

been concerned with linear inequalities. The reason for this is straightforward:
equations are rather easier to deal with, both theoretically and computationally. In the
simplex method, for instance, the very first step is to transmute the constraining
inequalities into equations. The other kind of inequality with which we have had to deal
in the text is the restriction on many variables to be nonnegative.

First a bit of notation. An inequality x < y between vectors means that the inequality
holds component by, component (we compare only vectors of the same number of
dimensions). We write x  y to mean xi ≤ yi for each i. It is sometimes convenient to
write x ≤ y to mean xi ≤ yi for each i and xi < yi for at least one i. Graphically (as in Fig.
B-5), the shaded area consists of all.vectors x  y. The shaded area, not counting y itself,
represents all vectors x ≤ y. The shaded. area less the whole horizontal and vertical parts
of its boundary represents all vectors x < y. The vectors with all nonnegative
components form the first quadrant in the plane and what is called the “nonnegative
orthant” in Rn.

FIG. B-5

In the Walrasian system when we write Ax ≤ r, where A is m × n, we mean that the
vector of outputs in Rn must be mapped into something like the shaded region in the
diagram in Rm. Since all aij ≥ 0 and since in addition x ≥ 0, Ax will also be in the
nonnegative orthant of Rm.

Alternatively, we can think of Ax as a linear combination of the columns of A, and
the inequalities state that only those outputs are feasible which give a linear combination
≤ r. Earlier we learned to speak of the set of all linear combinations of the columns of A
as the subspace spanned by the columns of A. Here we have not quite that: we can’t
speak of all linear combinations, but only those with nonnegative coefficients. This
restricted set of linear combinations is called the “cone” spanned by the columns of A.
The difference is seen in Fig. B-6. The two vectors A1 and A2 are linearly independent:
they span the whole plane. But if we use only nonnegative linear combinations, we get
the shaded area which is indeed a cone. (Multiply A1 and A2 by positive scalars and
form a parallelogram. All vectors thus obtained will be in the cone.)



FIG. B-6
In the Walrasian case the columns of A consist of nonnegative elements. As vectors,

they will all lie in the nonnegative orthant of Rm. The cone they span will also lie in the
nonnegative orthant, but it will not be the whole nonnegative orthant unless among the
columns of A are all the unit vectors of Rm (i.e., unless each factor is the sole input into
at least one commodity). Now vectors in the cone spanned by the columns represent
factor endowments that can be exactly used up by at least one nonnegative collection of
outputs. Vectors not in the cone represent resource endowments that simply can’t be
used up, given the technological structure. This is why the Walras-Cassel system may
fail if we try to write Ax = r. As shown in Fig. B-7, r lies outside the cone spanned by
A1 and A2. There is no nonnegative vector x such that Ax = r. But if we only require Ax
≤ r, then we allow any resource-use vector in the shaded rectangle. The common part of
this rectangle and the cone represent the resource-use vectors which are feasible both
from the supply and from the demand points of view.

FIG. B-7

B-15. FARKAS’S THEOREM
The theory of linear inequalities and cones is clearly at the bottom of most of the

discussion in this book, although we have mentioned this theory explicitly at only a few
places. Farkas’s theorem typifies the kind of relationship dealt with in this branch of
mathematics and is particularly important for programming (cf. Chap. 8). We state and
prove it here both because of its own importance and because it illustrates a whole
family of theorems and a useful method of proof.

Farkas’s Theorem. Let A be a matrix of n rows and k columns and let c be a vector
of k elements. Suppose that for all k-element vectors x such that Ax  0 it is true that the



inner product (c,x)  0. Then c must be a nonnegative combination of the rows of A;
that is, there must exist a nonnegative, n-element vector v such that A′v = c.

A simple graph will make this theorem intuitively obvious. Figure B-8 represents a k-
dimensional space in which the rows of A, c, and x can all be plotted. A1, A2, A3

represent the rows of A. B1 is drawn at right angles to A1; B2 is drawn at right angles to
A3. Now consider any vector x (not shown) that lies inside the cone B10B2. It will make
an acute angle with each of the vectors Ai (or at most a right angle), and therefore the
inner products (Ai,x) will all benonnegative. On theother hand, any vector x lying
outside the cone B10B2 will make an obtuse angle with at least one of the Ai, and
therefore, for such a vector, at least one of the inner products (Ai,x) will be negative.
Therefore the cone B10B2 is coextensive with the vectors x that have nonnegative inner
products with all the vectors Ai

FIG. B-8

Now suppose that (c,x)  0 for all vectors x in the cone B10B2. Where must c lie? If it
lay to the left of A3, any vector x lying on or sufficiently close to B2 (but still in the cone
B10B2) would make an obtuse angle with it, implying (c,x) < 0. Similarly, if c lay to the
right of A1, there would be vectors x in the cone, close to B1, that made an obtuse angle
with c, implying (c,x) < 0. It follows that if (c,x)  0 for all vectors x in the cone B10B2,
c must lie somewhere in the cone A10A3, as drawn. In short, any vector in the cone
A10A3, spanned by the vectors of the rows of A, makes a nonobtuse angle with all
vectors in the cone B10B2; no vector outside the cone spanned by the row vectors has
this property.

It is clear, then, that if c has the assumed property, it lies within the cone framed by
the vectors of the rows of A. In other words, it is an average of those vectors using
nonnegative weights, as the theorem asserts. Thus the theorem is obvious; now we have
to prove it.



Instead of proving Farkas’s theorem directly, it will be easier to prove the following
slight variant formulated by A. W. Tucker.

Tucker’s Form of Farkas’s Theorem. Let A be a matrix of n rows and k columns
and let c be a k-element vector. Then either

1. There exists an n-element, nonnegative vector v such that A’v = c (that is, c is a
nonnegative combination of the rows of A), or

2. There exists a k-element vector u such that Au  0 and (c,u) < 0.

Tucker’s form is obviously equivalent to Farkas’s theorem. If Case 1 obtains, c is in
the cone spanned by the rows of A. If Case 2 obtains, there is some vector u that makes
a nonobtuse angle with every row of A but makes an obtuse angle with c, which, as we
have already seen, means that c does not lie in the cone spanned by the rows of A. Thus
Farkas’s theorem amounts to asserting that if Tucker’s Case 2 does not apply, then his
Case 1 does. We shall now prove Tucker’s version of the theorem.

Proof. Consider all vectors x that can be expressed as

where v is understood (and throughout this discussion) to be nonnegative. Each such
vector x is a nonnegative combination of the rows of A, and all such nonnegative
combinations qualify as vectors of this type. Graphically these vectors form a kind of
pyramid (which we, following accepted, illogical usage, shall call a “cone”) with its
apex at the origin and with the vectors whose coordinates are the rows of A along its
edges. For example, let

be the ith row of A. Then Ai is in the cone and so is υiAi, where υi is any nonnegative
number. Similarly, if Aj be defined in the same way as Ai, then υiAi + υjAj is a point in
the cone, where υi and υi are any nonnegative numbers. The same sort of statement is
true for combinations of three or more vectors. Note that the cone is convex. That is, if
x355 and x2 are two points in the cone, then ωx355 + (1—ω)x2 is also in the cone, where 0
≤ w ≤ 1.

Now assume that Tucker’s Case 1 does not apply, i.e., that there is no nonnegative
vector v such that A‘v = c. Then c is not in the cone. But there will be some vector, say
x°, in the cone which lies at minimum possible distance from c.355 We shall show that
the vector u defined by

is the vector whose existence is asserted in Case 2 of Tucker’s form of the theorem.
First note that x0 is at least as close to c as any point of the form ωx0 (where ω is an



ordinary, nonnegative number), since all such points are in the cone. Thus x0 is the foot
of the perpendicular from c to the line drawn from the origin through x0 (see Fig. B-9).
Therefore,

FIG. B-9

in the triangle formed by the origin (denoted by 0), x0, and c the angle at x0 is a right
angle. Since the two sides that meet at x0 are x0 – 0 = x0 and x0 – c = u, the inner
product of these two vectors is zero, and we have

Consequently the angle at c must be acute, so

or

or

Thus u satisfies one of the two requirements of Case 2. We now turn to the other,
which requires us to show (u,Ai) ≥ 0 for all row vectors Ai.

Let x be an arbitrary point of the cone distinct from x0 and consider the triangle
whose vertices are x, x0, and c. This triangle is illustrated in Fig. B-10. Note that u is the
side cx0 of the triangle. The essential fact about this triangle is that since no point in the
cone is closer to c than x0 is, side cx0 (= u) is no longer than side cx (and, indeed, is no
longer than any line that can be drawn from c to the side x0x). This implies that the
angle at x° is not acute. For, since cx is at least as long as cx0, the angle opposite it in the
triangle (the angle at x0) must be at least as great as the angle opposite cx0 (the angle at
x). Therefore if the angle at x0 were acute, the angle at x would be acute also and the
perpendicular from c to the side x0x would reach that side at some interior point, thus
determining a point in the segment x0x distinct from x0 and closer to c than x0. But since
all points in the segment x0x are in the cone, this conclusion is inconsistent with the fact
that x0 is a minimum-distance point of the cone from c. Thus the assumption that the
angle at x0 was acute leads to a contradiction, and we have established that this angle
must be either right or obtuse; so



Then

and

FIG. B-10

We have already proved that (x°,u) = 0, so we find (x,u) ≥ 0 for all points x in the cone.
In particular, choosing x = Ai, we have

for all i, completing the proof of the theorem.

By the way, it is easily seen that if Case 1 holds, Case 2 does not. For if A‘v = c, then
(c,x) = (A’v,x) = (v,Ax), and if Ax ≥ 0 and v ≥ 0, the last inner product cannot be
negative.
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(See also Competitive equilibrium; Equilibrium)
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Hawkins-Simon conditions

Hicks, John Richard Value and Capital
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Hitchcock, Frank Lauren

Hoffenberg, Marvin
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Hotelling, Harold

I

Identity transformation of matrices
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(See also Perfect competition)



Imputed values, of activity

in Kuhn-Tucker conditions

and Lagrange multipliers

test for optimal

Included activities

Included variables

Income analysis, basic identity of

Income-multiplier analysis

Income stream, formula for present discounted value of

Increasing-cost example of firm (hypothetical)

Increasing returns to scale

Indecomposability, concept of

Indifference maps

Indirect costs, in international-trade problem

in transportation problem

Industries, consolidation and aggregation of

indecomposable and decomposable groups of

Inner product of vectors

Input-output analysis, consolidation and aggregation in

cost and price relations in

described

empirical-algebraic properties of

flow tables for

and game theory

in Leontief dynamic model

in Leontief statical model

indecomposable and decomposable groups of industries in

and linear programming

matrix algebra applied to

money flows in

as new method of economic analysis

numerical example of

prices in



production-possibility schedule for

real or nonprice relations in

solving of problems in.

substitutability in

(See also Leontief production models)

interest rates

Intermediate goods

in Leontief input-output model

in neoclassical model

in Ricardian model

in von Neumann general-equilibrium model

in Walras-CasseI model

international-trade problems (hypothetical), problem of optimal clothing and food production in
England and Portugal

conversion of, to game

dual of

International-trade problems (hypothetical), problem of optimal crop allocation among United
Kingdom, France, and Spain

dual of

Intertemporal efficiency conditions

in Leontief models

in smooth neoclassical models

Inventories, accumulation of

in Leontief dynamic system

in von Neumann general-equilibrium model

Investment

and disinvestment

and dynamic economic models

and invisible-hand principle

rate of, in Paretian view

Williams’ game-theory example of

Invisible-hand principle

Irish sweepstakes as classic example of



compound gamble

Irreversibility and maximum rate of disinvestment

Isoprofit contours

Isoquant surfaces
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Jacobs, Eugene Howard

Jevons; William Stanley

Joint production

Joint profit in duopoly
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Kakutani fixed-point theorem

Keynes, John Maynard.
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Keynesian effective demand

Keynesian multicountry income models

affinities of Leontief’s system to

Keynesian unemployment

Knight, Frank Hyneman

Koopmans, Tjalling C.

Activity Analysis of Production and Allocation

Kuhn, Harold William

Kuhn-Tucker optimality conditions
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Labor, allocation of, in three-crop international-trade example

as commodity

in general-equilibrium theory

in Leontief system

redundancy of

in Ricardo’s theory

units of, as measure of value in dual of international-trade example

in von Neumann’s model

Laderman, Jack

Lagrangean multipliers

Lange, Oskar

Laplace, Pierre Simon

Leontief, Wassily W.

(See also Cornfield-Leontief multiplier process; Walras-Leontief input coefficient)

Leontief production models, dynamic

balanced growth in

causal indeterminacy of

compared with von Neumann model

intertemporal efficiency in

no-substitution model

unlocked

statical

closed-end system

connection with dynamic models

consolidation and aggregation in

cost and price relations in

empirical algebraic properties of.

fixed-coefficient assumption in

indecomposable and decomposable groups of industries in

inverse in



labor in

Leontief production models, statical,

linear-programming interpretation of

locked

numerical example of

open-end system

as predictive device

prices in

production-possibility schedule for

quantitative measurement of

real or nonprice relations in

substitutability in

(See also Input-output analysis)

Leontief trajectories

Lerner, Abba Ptachya.
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and commodity outputs

defined

indicated by choice variable

and marginal utility

optimal, determined by linear programming

use of input-output analysis to determine

Linear dependence

Linear economics, three branches of

Linear programming, algebraic methods in

and commodities in budget

and competition

complete-description method for

defined

dual problems in

and efficiency

and firm

formal characteristics of problems in



formulation of efficient capital program by

and game theory

and general equilibrium

geometry used in

implications of, for economic theory

and input-output analysis

and marginal analysis

as new method of economic analysis

nondegenerate problems in

and nonlinear programming

Linear programming, simplex method for

solution of problems in

theorems of, stated

used by U.S. Air Force

value implications of

and varying marginal-cost conditions

and vectors

and welfare economics

Linear transformations
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McKenzie, Lionel Wilfred
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Macroaggregates in input-output analysis
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Macroeconomic application of duality principles illustrated by national-income accounting

Majorant and minorant games

Malinvaud, Edmond

Malthus, Thomas Robert
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Malthusian theory of population

Managerial planning, application of linear programming to

Many-person games

Mappings

Marginal analysis, and diminishing marginal utilities

and linear programming

and nonlinear programming

Marginal costs

in automobile problem

in mixed-food case of diet problem

Marginal productivity

Marginal rate of substitution

diminishing

in Leontief system

Marginal utility

of any activity defined

diminishing

Marginalist theory of production

Market-price ratio

Markoff, Andrei Andreevich

Marschak, Jakob

Marshall, Alfred

Marx, Karl

Matrices, algebra of

definition of

determinants of

elements of

identity

input

inverse

Leontief system in terminology of

as linear transformation

nonsingular



notation

advantages of

pay-off

penny-matching

product of

and column vectors

and scalars

rank of

square

sum of

transposed

Max-min

Maximization and minimization

Maximizing player in game theory

Menger, Karl

Metzler, Lloyd Appleton

(See also Robertson-Metzler dynamical Keynesian systems)

Military implications of game theory

Mill, John Stuart

Min-max

Minimizing player in game theory

Minimum-of-subsistence theory of wages

Minkowski, Hermann

Mobilization planning aided by input-output model

Money flows in input-output model

Moral expectation

Morgenstern, Oskar

Morton, G.

Mosak, Jacob Louis

Motzkin, Theodore Samuel
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National income

accounting

implications of input-output theory for

statistics of

National Research Council

Neisser, Hans

Neoclassical economics, compared with general-equilibrium system

international trade theory of

intertemporal efficiency in smooth case of

no-corner transformation locus of

production model for

smooth marginal productivities of

theories of Walras and Clark in

Neoclassical marginalism

smooth

Net National Product, discounted, law of conservation of

Net revenue, defined

of a firm

marginal, in Kuhn-Tucker conditions

per unit of activity

“Netting out” intrafirm and intraindustry transactions

Non-constant-sum games

Nondegeneracy assumption

Nonlinear dynamic efficiency equations

Nonlinear programming

applied to automobile problem

compared, with conventional theory of production

with linear programming

and dynamic production process

general formulations of

Kuhn-Tucker optimality conditions in

in point-rationing case

problem of, stated



Nonnegative orthant

Null vectors

O

Objective function

defined

of dual

in game theory

nonlinear

Oligopolistic indeterminacy

Optimal program (see Program, optimal)

Optimal solutions (see Solutions, optimal)

Ordered triple of numbers

“Own” inputs

Own-rates of interest

P

Parallelogram of forces

Parametric programming

Paretian indexes of ophelimity

Pareto, Vilfredo

Pareto-optimality

Pay-off function

Pay-off matrix

for Hotelling’s model

Penny-matching matrix



Perfect competition

(See also Imperfect competition)

Personnel assignment as illustration of transportation problem

Phase diagram

Point-input, point-output model of Jevons

Point-rationing case

Present discounted value of income stream, formula for

Price and programming, dualism of

Price ratio, competitive

Price-unit-cost relations

Prices, absolute and relative

correspondence of, with efficient allocation of resources

with optimal output

efficiency

and equilibrium

flow

and interest in steady growth

in Leontief system

in Walras-Cassel model

in welfare economics

zero

Probability distribution of pay-offs in game theory

Process (activity), alternative

coefficients as essential characteristics of. 30

Process (activity), defined

described in matrix algebra

disposal

role of, in simplex method

distinguished from commodity

dynamic, in statical framework

excluded

gain from

fictitious



included

in Leontief system

in linear-programming problems

marginal utility of

net and gross revenues per unit of, concept of

in optimal program

unit imputed cost of

unit-level operation of

value of

Process vector, defined

Production function

conventional

global

in Leontief system

in Ramsey model

smooth neoclassical

Production-possibility frontier (curve, schedule)

(See also Consumption-possibility schedule; Transformation locus)

Productive efficiency in welfare economics

Program

basic

feasible

optimal

feasible

for firm in perfect competition

of investment and capital development

of nonlinear-programming problems

and Kuhn-Tucker conditions

and resource values

test for

(See also Solutions)

Proportionality, deviations from

Punch cards



use of, in computations by simplex method

Pure variables

Pythagorean theorem of geometry

Q

Quantities and prices, duality between, in Leontief systems

R

Raiffa, Howard

Ramsey, Frank

Ramsey model

Recycling

Resources, allocation of

employment of

fixed

imputed values of, test for

redundancy of

valuation of

Restraints, applied to competitive firm in linear-programming problems

as complicating feature of linear-programming problems

in dual problems

elimination of dependent variables, with single

with two or more

as formal characteristic of linear-programming problems

not necessarily satisfied exactly

redundant



Ricardian theory of comparative cost

Ricardo, David

Robbins, Herbert Ellis

Robertson-Metzler dynamical Keynesian systems

Rounds

Row vectors

Rubin, Herman

S

Saddle-points

games without

Samuelson, Paul Anthony

Say’s law

Scalars

Self-dual case

Shadow prices

duality relations of

Shadow prices, Lagrange multipliers as

ratio of

in solution of dual, of diet problem

of international-trade problem

in von Neumann model

Simon, Herbert A.

(See also Hawkins-Simon conditions)

Simplex criterion

Simplex method of solving linear-programming problems

applied to chemical example

compared with complete-description method

computation by

and degeneracy



equivalent combination in

example of

finding optimum by

fundamental theorems of

and game theory

general argument of

and simultaneous equations

(See also Basis shifting)

Simultaneous equations

existence of direct formulas for solving

solution of, in simplex method illustrated

Skew symmetry

Slack variables

“Slough-off” activities

in simplex solution of linear-programming problems

Smith, Adam

Smith, Harlan M.

Social transformation curve

Solow, Robert M.

Solutions, back

basic, attention in solving linear-programming problems restricted to

and basis shifting

in complete-description method

in diet problem

and equivalent combination

to nondegenerate linear-programming problems

in simplex method

in transportation problem

corner

Solutions, equilibrium, in Walrasian systems, existence of

existence of

extreme

feasible, basic



and equivalent combination

existence of

in graphic approach

in simplex method

for linear-programming problems

optimal

in simplex method

vertex

(See also Program)

Sraffa, Piero

Stackelberg, Heinrich von

Stackelberg leadership points

Stationary state

and maintainable consumption

Statistical implications of game theory

Stigler, George Joseph

Stock rents

Strategies in game theory, dominated

evaluation of

extraneous

mixed

and pay-off matrix

pure

symmetrical set of

Strong independence axiom

Substitutability

in Leontief systems

Substitution, diminishing rates of

elimination by

Suit-manufacturing problem (hypothetical)

Supporting planes of convex set

“Switching rules” of Leontief
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Table d‘hôte rule

Taylor, Fred Manville

Taylor series

Thompson, Gerald Luther

Thornton, Henry

Thrall, Robert McDowell

Transformation curve

Transformation function

Transformation locus (efficiency locus)

(See also Production-possibility frontier)

Transportation problem (hypothetical)

dual of

method of, applied to international-trade problem

other interpretations of

simplicity of solution to

Triangular capital model of Böhm Bawerk

“Triangular” system of equations

Triangularity

Tucker, Albert William

form of Farkas’ theorem according to

(See also Kuhn-Tucker optimality conditions)

Two-person games

U

Unit vectors

United Nations Commission on Living Standards



U.S. Air Force

U.S. Bureau of Labor Statistics

Utility, numerical measurability of

in pay-off matrix

V

Valk, Willem Lodewijk

Valuation, as dual of allocation

opportunity-cost type of

problem of, for firm formulated

of resources

test for imputed

(See also Imputed values)

Value-of-marginal-product equations

Variables, basic

choice, in engineer’s approach to economic analysis

as formal characteristic of linear-programming problems

in solution of linear-programming problems

in dual problems
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pure

slack
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inequality between

inner product of

linearly dependent

multiplication of, by scalar
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program
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Vertex solutions
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von Neumann, John

Theory of Games and Economic Behavior

von Neumann general-equilibrium model
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Wald, Abraham

Walras, Léon

Elements of Pure Economics

Walras-Cassel model

application of matrix algebra to

compared with neoclassical model

question of existence of solution for

Walras’ law

Walras-Leontief input coefficient

Welfare economics

basic theorem of

extended over time

and linear programming

Whirlpools of interdependence in Leontief models

Wicksell, Knut

Wicksteed, Philip Henry

Wilbur-Kelvin analog computer at Massachusetts Institute of Technology
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Zero consumption

Zero prices

Zero-profit condition
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1 “Zur Theorie der Gesellschaftsspiele,” Mathematische Annalen, 100:295 – 320
(1928).

2 John von Neumann and Oskar Morgenstern, Princeton University Press, Princeton,
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3 W. W. Leontief, “Quantitative Input and Output Relations in the Economic System
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4 W. W. Leontief, The Structure of American Economy, 1919—1929, Harvard
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6 W. W. Leontief, “Exports, Imports, Domestic Output, and Employment,” Quarterly
Journal of Economics, 60:171 – 193 (February, 1946).

7 See, for example, H. B. Chenery and K. S. Kretschmer, “Resource Allocation for
Economic Development,” Econometrica, 24:365 – 399 (October, 1956).

8 The fundamental paper was circulated privately for several years and published as G.
B. Dantzig, “Maximization of a Linear Function of Variables Subject to Linear
Inequalities,” in T. C. Koopmans (ed.), Activity Analysis of Production and Allocation ,
pp. 339 – 347, John Wiley & Sons, Inc., New York, 1951,

9 This statement is a little too strong. A global production function can be constructed,
but its construction presupposes that the relationships among the levels of operation of
the different parts of the organization have already been determined, i.e., that the
hardest part of the problem has been solved. In other words, the heart of the problem is
the construction of the over-all production function with which the usual economic
analysis starts.

10 For a typical application, see A. Charnes, W. W. Cooper, and B. Mellon, “Blending
Aviation Gasolines: A Study in Programming Interdependent Activities in an Integrated
Oil Company,” Econometrica, 20:135 – 159 (April, 1952).

11 For work in this spirit see the symposium volume: T. C. Koopmans (ed.), Activity
Analysis of Production and Allocation, John Wiley and Sons, Inc., New York, 1951,
particularly chap. 3 by Koopmans, chap. 7 by Samuelson, and chap. 10 by Georgescu-
Roegen.

12 Applied mathematics abounds in such coincidences. To take an example from
physics: the well-known “parallelogram of forces” is used both (1) in mechanics to find
the resultant of a number of forces, and (2) in electricity to find the current and phase
(i.e., timing) of an alternating current affected by resistances, inductances, etc. This is



just coincidence; these two problems have no physical connection in spite of their
mathematical identity.

13 History of the problem: 1941—independently formulated and approximately solved
by Jerome Cornfield in an unpublished memorandum. 1945—solved by G. J. Stigler,
not using linear programming; published in Journal of Farm Economics, 27:303 – 314
(May, 1945). 1947—solved by G. B. Dantzig and J. Laderman by use of linear
programming; not published.

14 To show that an exact diet may be impossible, consider the case in which every
food contains more than twice as much of the first element as of the second; and
suppose that the NRC asks for equal amounts of the two elements. Obviously, the
guinea pig must end up consuming an excess of the first element if he is to have enough
of the second element.

15 It is important to remember that the conditions imposed may be such that no
solution to the problem exists. Suppose, for example, that the diet is intended for a
patient suffering from digestive disturbances. If he requires large amounts of fats but, at
the same time, has a circulatory disorder that cannot tolerate fats, there may still be
found a starchy diet that will meet the situation. However, if a disorder of the pancreas
is also present, there may be no known resolution of the incompatible biological
demands. In general, it is quite possible for an innocent-looking problem to contain
mutually contradictory conditions which render it insolvable in principle.

16 There is a nice mathematical distinction between requiring that the diet include (1)
at least 700 calories a day and (2) more than 700 calories a day. In case 2 there is no
definite minimum to the daily caloric intake (the skeptical reader may try to name the
smallest permissible intake; 700.0001 calories is too high, 700.0 calories is too low) or,
consequently, to Z. Linear-programming problems almost invariably conform to case 1,
as we stated in the text.

17 See Chap. 4 for further discussion of this important theorem, originally due to G. B.
Dantzig. The value of the theorem is that it narrows considerably the variety of diets that
have to be considered as candidates for being the cheapest diet.

18 The reader may be tempted to stretch the theorem to cover this case. He may argue
that for this example we can forget about vitamins, since C2 is no bottleneck. In effect,
then, we have only one rather than two effective constraints, and a new m = 1 can be
substituted for m = 2. But there are many problems involved in defining such a new m
that are glossed over in this discussion. It should be emphasized that m is the number of
inequalities or possible equalities, not the actual number of equalities, that turn out to be
satisfied.

19 This extreme example highlights one of the artificialities of the diet problem. A diet
consisting of a single food would undoubtedly meet a given requirement for calories at



minimum cost and would undoubtedly be unpalatable. There is nothing in the
construction of the diet problem to ensure palatability and little reason to expect that
even with a dozen nutritional requirements a minimum-cost diet would be edible. One
solution to the Dantzig-Laderman problem consisted principally of corn meal and
evaporated milk; no steak or ice cream all year long.

20 Thus our optimal Z must be at least as great as the cheapest way of buying calories
alone, or Z ≥ mink (pkC1/a1k). This must equally be true with respect to vitamins or any
other element, or Z ≥ mink (pkCi/aik), where i = 1, 2, . . . , m. The best of these lower
bounds is given then by Z ≥ maxi mink (pkCi/aik). In these expressions maxi means
“maximum with respect to i” and similarly for mink. Note finally that if some of the a’s
in our problem could be negative, e.g., if some caloric food destroyed vitamins
contained in other foods, this line of reasoning would fail.

21 To be rigorous, we must verify that both x1 and x2 should be forced to zero levels.
If we had eliminated x4 and x5, the resulting coefficients of x1, x2, x3 would all be
positive, providing round-about verification of what can be directly shown.

22 Computed from the hypothetical data of Table 2-4. Thus, Food 1 provides one
calorie per unit and costs $2 per unit. Hence $1,000 worth of Food 1 provides 1,000 × ½
= 500 calories.

23 A curve is called “convex” if all its chords lie entirely on or above it.

24 Even Hicks’ fundamental exposition in Value and Capital falls into error when it
comes to this point. See John R. Hicks, Value and Capital, p. 20, Oxford University
Press, New York, 1939. Walras was aware of the problem and struggled with it
unsuccessfully. See Leon Walras, Elements of Pure Economics (William Jaffé, transl.),
pp. 166ff, George Allen & Unwin, Ltd., London, 1954. Walras’ difficulties illustrate
how awkward the marginal approach is when applied to situations, which clearly are
very prevalent, in which some available commodities are excluded entirely from the
budget.

25 The advantage of such fictitious processes is that they enable us to get rid of the
inequality signs which, as we already know, arc troublemakers. For instance, by using
the process of buying excess calories we can write

Calories from Food 1 + calories from Food 2 + . . . + calorics from Food n
– excess calories = minimum caloric requirement

instead of

Calories from Food 1 + calories from Food 2 + . . .

+ calories from Food n ≥ minimum caloric requirement



These two restrictions are obviously equivalent, since the number of excess calories,
technically called the “slack variable,” is inherently nonnegative.

26 These coefficients come from a column of Table 2-4, but for convenience we write
them in a row.

27 In this case, little chaps named Gresham who are on their toes can make a lot of
money, buying cheap and selling dear and repeating the process indefinitely—or rather
until one of the agencies runs out of one of the goods or changes its mind about its
price pegging. Buying and selling introduces negative as well as positive numbers. But
in linear programming, all variables must usually be positive.

28 The justifications for Portugal’s national-product formula and her production-
possibility inequality are analogous to those just given for England.

29 If such shadow prices are really useful, then it follows that many problems of linear
programming may benefit on the computational side from a process of imitating the
market mechanism.

30 The classical economists recognized that the word “almost” is needed in order to
take account of the possibility that the final market-price ratio might be at the limit of
the range of differing comparative costs instead of within the range. This case was
considered especially likely if one country was big compared with the other. In such
cases, where the final price ratio settles at the cost ratio of one of the countries,
production within that country would be indeterminate. The actual result would have to
be dictated by the final pattern of international demand.

31 We define MC at any point on the curve as the numerical slope of any straight line
that “touches” but does not “cut” the curve at that point, i.e., the slope of a line that
never lies inside the curve but does touch it at the point in question. This corresponds to
the general notion of tangency, but carries over to the case of curves with corners,
where there may be infinitely many “tangents.”

32 In order to produce at point D on Fig. 2-6 we should have to have a price ratio
p1/p2 = 1. But with that price ratio, any point on the line segment AR corresponds to an
equally large total value of product, p1x1 + p2x2. Thus some supplementary guidance
would be needed to arrive at a specified output point like D. This problem will be
discussed in the next chapter.

33 Notice that we are adopting an economic rather than a physical unit so that, for
example, a unit of English labor need not consist of the same number of man-hours as a
unit of Portuguese labor. We are assuming also that the resources within each country
are completely substitutable so that there is only a single resource limitation in each
country. Further, we are making the assumption of constant returns to scale in each
country.



34 This coefficient happens to be zero, so that this term does not appear explicitly in
this example.

35 Proofs of these assertions will be given in Chap. 4.

36 The data are given in Chap. 2, Table 2-4.

37 The interested reader can verify all this by working out our earlier arithmetical
example of calories and vitamins on the assumption that only the goods X1, X2, X3, can
be bought. The data and solution are, respectively,

38 Exercise. In what ways can the consumption of vitamins be increased without
affecting the consumption of calories? What is the marginal cost of vitamins?

39 It will be instructive for the reader to see if the other two wasteful foods can be
eliminated from the diet (they can) and to compare the resulting “economical diet” with
the optimum obtained in Chap. 2.

40 Never pay more for a dinner than the total price of the individual dishes.

41 ABCDE is a convex polygon, i. e., one that contains any straight-line segment that
connects two of its points. It follows, as common sense will confirm, that raising calorie
requirements will, if anything, raise the shadow price of calories.

42 Any algebraist will have recognized that this argument depends on what he calls a
“change of basis.” We have expressed a pure calorie and a pure vitamin, vectors (1,0)
and (0,1), respectively, on the basis of X4 = (1,1) and X5 = (2,1). The reader may be
referred to P. A. Samuelson, Foundations of Economic Analysis, pp. 135 – 146,
Harvard University Press, Cambridge, Mass., 1947, for a discussion of such composite
commodities and the laws of their price formation.

43 At C2 = 0, MC2 is ambiguous and ill defined. This is because (u1, u2) = (2, h) are
solutions to our dual problem for all 0 ≤ h ≤ 8. This means that 0 ≤ MC2 ≤ 8. Our best
direction in Fig. 3-2 is eastward, and the line segment CD represents the set of optimal
prices for our dual problem. The point C itself is not truly a correct point for our
original problem since it falsely tells us that X4 shows a zero profit and can be bought.
In the most general case of m constraints, even when we have best prices, care is
necessary in selecting the proper sets of variables (x’s) and equations (constraints).

44 There is yet another difficulty that arises. If we write down the simplest dynamic
adjustment process corresponding to decentralized competitive decision making, the
process turns out not to be dynamically stable. Instead, it oscillates endlessly about the



equilibrium position. But this leads far afield. See K. Arrow and G. Debreu, “Existence
of an Equilibrium for a Competitive Economy,” Econometrica, 22: 265 – 90 (July,
1954).

45 In this context a diet is just a set of numbers x1, . . . , xn representing food
quantities.

46 This is not the dual problem.

47 The factor a11 appears on both sides of Eq. (4-18) when written in determinantal
form. We assume that it is different from zero and cancel it out.

48 Exercise. Check the equation 

Note that the coefficient of each of the b’s is a second-order determinant.

49 We say “may” rather than “will” at this point, because it is possible for such a
system to be inconsistent. The exact conditions would carry us beyond our depth, and
we stop here.

50 By a nonfeasible solution we mean a solution of (4-20), some of whose x’s are
negative.

51 Our main discussion of the geometry underlying linear programming is contained
in Appendix B, Sees. B-2 and B-3. This section is included merely to indicate the
geometric significance of some of the basic concepts.

52 An alternative, but more laborious, method for finding a feasible solution has also
been given by Dantzig. See his “Maximization of a Linear Function of Variables Subject
to Linear Inequalities,” in T. C. Koopmans (ed.), Activity Analysis of Production and
Allocation, pp. 345 – 347, John Wiley & Sons, Inc., New York, 1951.

53 The reader may be confused by the fact that the variables in Eqs. (4-24) are called y
instead of x. But, of course, the names that we give the variables, x, y, u, or anything
else, do not make any difference; the guts of a system of equations are in the
coefficients. In general, in this chapter the variables are called x if the right-hand side of
the equations is a column of restraining constants, and y if the right-hand side is a
column of coefficients of some other variable. This notation avoids some ambiguity.
The physical or economic significance of these x’s and y’s is discussed fully in the
interpretive chapters.

54 For an excellent discussion of methods for solving simultaneous linear equations,
see Paul S. Dwyer, Linear Computations, chaps. 4, 5, and 6, John Wiley & Sons, Inc.,
New York, 1951.

55 Complete discussions of the degeneracy problem can be found in G. B. Dantzig, A.



Orden, and P. Wolfe, “The Generalized Simplex Method for Minimizing a Linear Form
under Linear Inequality Restraints,” Pacific Journal of Mathematics, 5:183—195 (June,
1955), and in A. Charnes, W. W. Cooper, and A. Henderson, Introduction to Linear
Programming, pp. 62-67, John Wiley & Sons, Inc., New York, 1953.

56 Solutions S-3 and S-4 are deleted because they give rise to positive values of d(3).

57 “The Distribution of a Product from Several Sources to Numerous Localities,”
Journal of Mathematics and Physics, 20:224-230 (1941).

58 At this point the careful reader may want to know if such a scheme of
compensating adjustments always exists for every excluded route, and if it is unique.
For proof that the answers to both of these questions are affirmative, we refer the reader
to G. B. Dantzig’s basic paper, “Application of the Simplex Method to a Transportation
Problem,” in T. C. Koopmans (ed.), Activity Analysis of Production and Allocation,
John Wiley & Sons, Inc., New York, 1951. Alternatively, we may note that this formula
is simply a special case of the basis-shifting procedure of the simplex method and is
covered by the discussion of that method in Chap. 4 above.

59 There is no guarantee that the route with the double asterisk is really the best single
adjustment to make in the initial plan, in the sense of its being the one that leads to the
optimum with the smallest number of revisions. It is certainly a plausible adjustment,
however. By looking further ahead we might do slightly better. We could calculate
which direct route would save us the largest total of transportation costs—this depends
on both the per-ton saving and on the number of tons that can be shipped over the route
within the restrictions of the problem. We forego this possibility of gain in order to
avoid the additional calculations that would be needed.

60 Our earlier work in expressing route (B−1) in terms of included routes, though use
ful for exposition, does not contribute at all to the solution of the problem.

61 The choice of the blank in which to insert the zero is arbitrary. The important thing
is to have a zero somewhere; its location has no essential effect on the result.

62 Our formulation of the transportation problem can be adapted easily to cases in
which excess capacity exists. Simply introduce a fictitious destination for which
requirements equal the amount of excess capacity and assume that the cost of
transportation from each point of origin to that destination is zero. The shipping plan
that minimizes transportation cost for this modified problem will also minimize
transportation cost for the original problem. The shipments to the fictitious destination
are, of course, to be interpreted as capacity disposal activities.

63 Activity Analysis of Production and Allocation, Chaps. 14 and 23.

64 It would be misleading to contrast the linear-programming model with marginal
analysis in general. Linear programming is marginal analysis, appropriately tailored to



the case of a finite number of activities. “Traditional” marginal analysis is tailored to the
case of a differentiable production function.

65 This is point C on Fig. 6-1. It is the point where the first two inequalities listed
above are exactly satisfied, and that, diagrammatically, is where the engine assembly line
crosses the metal-stamping line on Fig. 6-1. It is easy to see that there will be unused
capacity on both the truck and automobile assembly lines. This is visible in the figure,
and substitution in the formulas will confirm it. The manufacturing profit
corresponding to this production program is $7,731,481.

66 We mean here, conceptually unwieldy. As far as practical computations go, rising
marginal costs present no difficulties if they are describable by step functions as in Fig.
6-2.

67 The reader who is not familiar with these concepts may refer to Appendix B, in
which their basic properties are outlined and illustrated. We have tried to make the
present discussion self-contained, however, and do not assume familiarity with matrix
algebra.

68 A matrix can also be defined as a column of row vectors or as a rectangular array
of numbers. These three definitions, clearly, all amount to the same thing. We chose the
one that suited our context.

69 A statistician might use the notation r = vx to express the same relationship, but
we prefer the inner-product notation as being more consistent with the vectorial point of
view.

70 Except in certain special cases not relevant to the present discussion.

71 We have written these vectors horizontally to save space. We adopt the convention
that a list of numbers included in brackets is to be interpreted as a column vector, even
if written horizontally.

72 In subsequent discussion we shall use the word “profit” as a synonym for “net
revenue.”

73 This section presents still another elementary example and may be omitted if the
concepts seem sufficiently familiar.

74 The problem of manufacturing a suitable variety of sizes will be neglected for
simplicity. We shall also imagine that a suit consists of only two or three pieces instead
of the many different cuts which have to be sewn together in actuality. These
assumptions have no effect on the reasoning.

75 In the actual clothing industry this problem does not ordinarily arise. All sections of
better-quality suits are taken from the same part of the same bolt in order to ensure
uniform weave and dye. For less expensive suits all sections are also taken from the



same bolt, though it is not clear whether the precaution is justified in this case.
Nevertheless, this highly simplified example brings out the issues met in joint
production of commodities desired in rigid ratios.

76 Proof: Suppose Pattern 1 yields c1 coats and t1 trousers per bolt, Pattern 2 yields c2

coats and t2 trousers, and z is a number in the interval 0 to 1. Then z bolts cut by Pattern
1 and 1 − z bolts cut by Pattern 2 yield c1z + cz(1 − z) = c2 + (c1 − c2)z coats and t1z + t2(1
− z) trousers. By elementary algebra, the relationship between the number of coats and

the number of trousers corresponding to z can be seen to be 

This is the equation of the straight line connecting P1 and P2 in Fig. 6-3.

77 As before, we use brackets to signify that this is a column vector.

78 Proofs are given in Chap. 4.

79 An alternative definition would be in terms of a unit increase in the availability of a
resource. The only case in which these two definitions will yield different results is that
in which the resource is just on the border line of being redundant. We would then have
to distinguish between downward and upward marginal revenue products.

80 It would be more accurate, but unduly awkward, to call this the value of the
services of the scarce resources.

81 For the concept of “equivalent combination” see Sec. 6-6.

82 For some sets of activities some of the resultant prices may be negative, but such a
set cannot be optimal.

83 Our previous experience with this example assures us that this “guess” is correct.
By adopting it we can see the principles at work without excessive arithmetic.

84 The arithmetic of this calculation is less tedious than the description. At any rate we
omit both.

85 The formula for the isoprofit contours is

(x1 − 18,750)2 − 15,000x1 = constant

86 The optimal program is to produce 15,000 automobiles and slightly more than 9,000
trucks. The capacity of the engine-assembly department is fully utilized; excess capacity
remains in all the other departments. Instead of using four activities at positive levels
(counting disposal activities, of course), the optimal program now calls for five.

87 Furthermore, in practical applications, special approximative methods can be tailor-
made to solve individual problems as they arise.

88 For a more general derivation see H. W. Kuhn and A. W. Tucker, “Nonlinear



Programming,” in J. Neyman (ed.), Proceedings of the Second Berkeley Symposium on
Mathematical Statistics and Probability, pp. 481 – 492, University of California Press,
Berkeley, Calif., 1951.

89 Two variations are in the same “direction” if their components δxi are proportional
with a positive ratio, element by element.

90 Neglecting terms of second and higher order in the variations.

91 This theorem is fundamental to linear as well as to nonlinear programming. Further
discussion and a proof are given in Appendix B, Sec. 15.

92 Exercise. In the case where r(x1, . . . , xk) is a linear function of x1, . . . , xk, deduce
the simplex criterion from Eqs. (8-7) and (8-8).

93 It would be just as valid to form the analogous equality for automobile production.
This alternative calculation is left as an exercise.

94 Sune Carlson, A Study on the Pure Theory of Production, pp. 14 – 15, The
University of Chicago Libraries, Chicago, 1939. We have changed Carlson’s notation
slightly in order to avoid confusion with other uses of the symbols.

95 The fact that there is one output in the equation quoted is fortuitous, not an
essential characteristic of the conventional approach.

96 Exercise. The conventional statement of the firm’s maximization problem, using
Carlson’s notation, is as follows: maximize r(y, v1, . . . vm), subject to the production
function y = φ(v1, . . . , vm). (1) Show that this problem can be regarded as a special case
of the general programming problem; and (2) thence deduce the familiar marginal
equality conditions of profit maximization from the Kuhn-Tucker conditions 1 to 4.

97 See Wassily W. Leontief, The Structure of American Economy, 1919 – 1959, 2d
ed., Oxford University Press, New York, 1951; Wassily W. Leontief and others, Studies
in the Structure of the American Economy, Oxford University Press, New York, 1953;
J. Cornfield, W. D. Evans, and M. Hoffenberg, “Full Employment Patterns, 1950,” parts
I and II, Monthly Labor Review, 64:163 – 190, 420-432 (February – March, 1947).

98 This “triangularity” (or something like it) may appear as an empirical fact. If it does,
naturally all problems are much simplified.

99 Leontief usually assumes that an industry does not use any of its own good as an
input in producing itself. Thus, he would not include in his measurements the coal
burned in steam engines inside of coal mines; instead, he would use as the total of coal
production only the “net” amount of coal produced. This is a harmless convention in
the statical model, but we find it convenient to include the possibility that the industry
does require some of its own product as a necessary input in its production process.
The importance of this is that in a dynamic model in which production takes time, the



stocks of coal to be used in coal mining must be available before any new coal can be
produced.

100 Thus, given our earlier choice of units, we deduce that the wage rate was $1,000
per year, the price of agricultural goods $1 per ton, and that of manufactured products
$1,000 per dozen.

101 See W. Duane Evans and Marvin Hoffenberg, “The Interindustry Relations Study
of 1947,” Review of Economics and Statistics, 34:97 – 142 (May, 1952) for a description
of the compilation of a table involving 500 different industries.

102 Primarily when we pass to the dynamic case (see Chap. 11).

103 The notation min (a,b,. . . ,z) in Eq. (9-3) means “the smallest of the numbers a, b,
. . . , z.”

104 To be quite precise, perhaps we should replace the sign = in (9-3) by the sign ≤ .
But clearly no sensible industry will ever waste some of all inputs simultaneously.

105 Or needed as an input for a commodity that is needed as an input for a desired
commodity, etc.

106 Clearly there is no similar reason why, as in Table 9-3, it shouldn’t take 1.46 (or
more) units of Commodity 1 to make a unit of Commodity 2. In fact, we can always
make this happen by choosing to measure Commodity 1 in small units and Commodity
2 in large units. For “own” inputs this juggling with units leaves the aii unchanged!

107 The reader should verify that if a11 > 1, L1 would begin to the left of the origin,
have a negative slope, and the shaded region R1 would lie completely outside the
positive quadrant, indicating that no production is possible.

108 If one bill involving all goods is producible, then any bill of goods is producible,
provided only there are enough labor and enough capacity.

109 D. Hawkins and H. A. Simon, “Note: Some Conditions of Macroeconomic
Stability,” Econometrica, 17:245 – 248 (July-October, 1949).

110 The capital A’s will be recognized as the elements of the inverse matrix of

In the input-output literature, “input matrix” usually means our a’s, and “inverse
matrix” usually means our A’s.

111 Compare these with Eqs. (9-5). The latter express the problem: Given C1, C2, find
the gross outputs X1, X2 so that the net output of the economy is precisely C1, C2. The
desired final product, C1, C2, is attainable if neither  nor  is negative.



112 Exercise. How would capacity limitations on the separate industries affect the
consumption-possibility frontier? How would the existence of a second fixed factor, say
land, affect the consumption-possibility frontier?

113 Compare with the constant-cost opportunity-cost curves of the classical theory of
international trade.

114 Compare the marginal rate of substitution deduced above, and see the next section
for details.

115 We can get away with combinations of two processes only, but every combination
of two processes represents a new “process” which can now be mixed with still other
processes, etc.

116 The duality theorem reminds us that no gross output will be overproduced unless
the corresponding commodity is a free good; and price equals cost unless the
corresponding gross output is zero.

117 This chapter, dealing somewhat more technically with the material of the previous
one, can be skipped without loss of continuity.

118 Strictly speaking, Xi ≥ xij + Ci, but, provided Xi is a “scarce” good, we can
assume it to be fully employed and omit the sign ≥.

119 Strictly speaking, Leontief writes (10-2) in the special form

but as long as each good is scarce, the minimum will equal the maximum. Nothing will
be wasted, and (10-2) can be replaced by (10-2a). Leontief sometimes sets each aii = 0
by “netting out” intraindustry transactions, but we do not do so.

120 If the size of units of the ith good is changed in the ratio ki, then using bars to
represent the new values of any variable gives us Xi = kiXi, ij = kiaij/kj. Later it will be
shown that prices are given by Pi = Pi/ki, and the later-defined A’s transform like the a’s.

121 See the later numerical and algebraic analysis. Mathematically, Eq. (10-3) can be
written in matrix form, (I−a)X = C. The solution is X = (I − a)−1C, so that the A’s in (10-
4) are the elements of (I−a)−1. On the existence of this inverse, see below.

122 H. T. N. Gaitskell, “Notes on the Period of Production,” Zeitschrift für
National-oekonomie, 9:215-44 (1938), gives references to the voluminous German
literature on whirlpool structures of production; even a finite average period of
production can be defined for an infinite series, which must converge if consumption
and output are all positive.

123 The proof follows from the definition of the A’s in (10-4) in relation to the a’s of
(10-3).. In matrix terms, (10-5) tells us that  . But (10-7) can be written 



 , whose solution is just  .

124 We can calculate price ratios directly by solving (10-8). Alternatively, if we have
already solved (10-3) for (10-4), which is a much more formidable computation job, we
can calculate our price ratios indirectly from (10-5).

125 If marginal input requirements had deviated from the a’s depicting average input
requirements, competitive equilibrium would have been impossible and our model
would have to be described in quite different nonlinear terms.

A less obvious duality relation may be mentioned: The increase in Pi/P0 resulting
from a unit increase in Xi’s direct labor cost exactly equals the increase in total output
Xi needed for a unit increase in consumption Cj; both are equal to Aij.

126 Wassily W. Leontief, The Structure of American Economy, 1919-1939, 2d ed., p.
64, Oxford University Press, New York, 1951.

127 Note that the needed P’s for 1939 and 1948 are not 1’s but must be actual prices
or price indexes, derived from outside of the Leontief accounting data. As a matter of
fact, a purist would consider any change in relative prices as a refutation of the Leontief
system. Since agreement is never perfect, and since n2 + n comparisons are numerous,
we might have to compromise by comparing actual total physical requirements and
production for a given year with totals computed from the other year’s coefficients and
decide whether the results are better than could be accomplished by other methods.

128 That is to say, if the “product mix” in the aggregated industry should change, the
aggregate input coefficients would change too. This would occur even if all the “true”
underlying unaggregated input coefficients were stable. Since all of what we habitually
call “industries” are aggregates to some extent, this is a practical difficulty.

129 Strictly speaking, this proportionality holds for all elements except the diagonal set
of A’s referring to the “own requirements of industries aggregated,” resulting from
specifying as consumption goods spun thread and woven cloth. However, we would
rarely specify as a final consumption item an “unfinished” good such as unwoven
thread, so this qualification is unimportant—except to the mathematician who raises his
eyebrows at purple cows and inverse matrices with proportional rows.

The general mathematical theorem underlying these two types of aggregation seems
to be as follows: If we can find a block of industries such that the partitioned matrix

has B of rank 1 (with proportional columns), then we aggregate D for the first reason;
if instead C is of rank 1 (with proportional rows), we aggregate D for the second
reason. In each case the matrix (I − a)−1 = A partitions into



with the respective off-diagonal matrices (A1 11 in the first case and A 11 1 in the second)
consisting of proportional rows.

130 If we identify the single degree of freedom with a general variable G1, we can
hope by regression methods to observe for each Xi terms of the form Aikrk l, where the
r’s are constants depending on G1 alone.

131 In the simplest linear case in which C = rG, r being an n × m matrix, we get X =
AC = (Ar)G and [Ar] is the new n × m matrix. If C depends nonlinearly on G, the r’s
will be functions of the G’s rather than constants.

132 Dantzig, Koopmans, Morgenstern, Hoffenberg and Evans, Leontief, and many
others have been studying the problem of aggregation; and all who work with statistical
data are implicitly giving solutions every day of their lives.

133 Cf. the new chapters in his second edition of The Structure of American
Economy, 1919-1939 (Oxford University Press, New York, 1951), with the old.

134 Leontief expressed this by the necessary vanishing of the augmented determinant

and the resulting indeterminacy of scale of the homogeneous system. This is a pure
convention and bookkeeping tautology as applied to any table such as Table 10-1.
where saving and algebraic growth are ignored.

135 See Chaps. 11 and 12.

136 There is one important difference. Zero-profit industries spend all their money.
But if a multiplier income analysis is not to explode, some portion of consumer dollars
must be not-spent; i.e., 10 + 20 + · · · + n0 = (1 — positive “leakage,” or saving
terms), for empirical reasons and for “stability.”

137 In the strict closed system of Malthusian type, a nonzero solution of indeterminate
scale exists by virtue of the relation

0j + 1j + · · · + nj ≡ 1 for j = 0, 1, . . . , n

Incidentally, the system is unlike Malthus’ system in its neglect of land and primary
nonproducible inorganic factors.

138 Harlan M. Smith in chap. 6 of T. C. Koopmans (ed.), Activity Analysis of
Production and Allocation, John Wiley & Sons, Inc., New York, 1951, discusses this



type of question in detail, as does Leontief in part 4 of his second edition.

139 In partitioned form we can write the following relationship for the enlarged closed

system: 

or

Equations (10-12) follow from carrying out the matrix multiplication in partitioned
form and from straightforward calculation using the fact that the A matrix is the
inverse of I — a.

140 See Koopmans (ed.), op. cit., chap 7 and chap. 10, p. 171; also chaps. 8 and 9 by
Koopmans and Arrow.

141 However, if we were to change some of the other a’s by invention, or if we were
to set one of the other factors as a primary factor, not reproducible at constant costs in
the period under discussion, then there would be a difference in what we would
observe in the two alternative technological situations of Figs. 10-2 and 10-3.

142 Equations (5), p. 144, represent the crucial conditions. These show that the
proportions of the inputs in all industries are fully determined by the marginal-
productivity equilibrium conditions, independently of all scales of consumption and
production. (Note that aij in the present treatment has the meaning of aji in earlier
treatments.) See chapters by Koopmans and Arrow for a proof based on linear-
programming concepts, rather than on marginal-productivity partial derivatives. (Strictly
speaking, there may be cases of indifference where substitution could take place, but
need not do so.)

143 As mentioned before, there is the possibility of “ties,” which requires an
inessential qualification. A deeper problem will bother the careful reader. In the above
rejection of the a*’s, we used the old a prices for all the other goods. What if we had
used the new prices for all the other goods resulting from choice of the a*’s? Would we
get the same answer? Or might it now turn out that the a*’s appeared to give better



P1/P0 than the a’s? If this last should be the case, it would be catastrophic to our proof;
it would then be possible for the a’s to be both better and worse than the a*’s,
depending upon our choice of other P’s.

Fortunately, there can be no contradiction. We can use the last n — 1 equations of
(10-8) to solve for the n — 1 variables (P2/P0, . . . ,Pn/P0) as linear functions, of the
parameter P1/P0. Every coefficient in these functions will be independent of the choice
of a* or a coefficients in the first equation and will actually turn out to be positive
coefficients for any observable Leontief system, as can easily be shown from our
algebraic discussions of the properties of such systems (see pp. 253-257). Now write
the first equation in the a* or a form and substitute for the remaining P’s the above
linear expressions. This will give us final linear expressions in P1/P0 alone. If the a*
expression is definitely worse than the a expression, in the sense of giving higher P1/P0

and hence higher remaining P’s, then it must continue to be so regardless of the C’s,
which nowhere enter (10-8). This proves our theorem for the case in which only
Industry 1 has a choice between a and a*. If every industry j has a choice between a
column ai and  , we must repeat the argument and show that for the definitely optimal
set (a1, . . . ,an) every P will be less than for any set involving one or more a*’s. In
terms of linear programming, we can express all this by saying that the dual problem in
the P’s has activities that “dominate” other activities, regardless of the C’s.

144 Jerome Cornfield’s BLS memo seems never to have been published. But see W.
W. Leontief, “Interindustrial Relationships,” in Proceedings of a Symposium on Large
Scale Digital Calculating Machinery, Harvard University Press, Cambridge, Mass.,
1948; F. Waugh, “Inversion of the Leontief Matrix by Power Series,” Econo-metrica,
18:142 (April, 1950); L. A. Metzler, “Stability of Multiple Markets: The Hicks
Conditions,” Econometrica, 13:277 (October, 1945). R. M. Goodwin, J. S. Chipman, R.
M. Solow, and others have recently published in this field.

145 An extreme case of decomposability is that in which one subgroup of industries is
entirely independent of another subgroup, with zero buying and selling between
industries from the separate subgroups. This is called a “completely decomposable
group,” and we may obviously handle it by treating its separate parts entirely
separately.

146 Econometrica, 21: 29-46 (January, 1952).

147 Note that we can easily compute all requirements for any one Ck by iterating a
against the single-column vector [0, 0, . . . , δii = 1, 0, ... , 0] and summing the resulting
multiplier chain. It is not so obvious, but we can get any one industry’s response (Ak1, . .
. ,Akn) to all the C’s by repeatedly postmultiplying the single-row vector [0, 0 . . . , δkk =
1, 0, . . . , 0] by a and summing the resulting Gaitskell chain. This follows from the
duality mentioned earlier.



148 Specifically, we define new units . where ki =
1/Xij so that  In the iterations it follows that 

, provided that one C > 0. Since the sum of
nonnegative T’s goes to zero, so must each component; and it is clear that the
convergence is exponential.

149 Leontief used the Wilbur-Kelvin analog computer at Massachusetts Institute of
Technology to solve his first 10 × 10 system. His later 20 × 20 system was solved by a
desk calculator using the standard Gauss-Doolittle ritual. His 35 × 35 system was
inverted by the Harvard Mark I computer. The projected 100 × 100 and 400 × 400
systems are to be solved or approximated by use of large-scale electronic calculators.

150 We renumber industries so that aj+k.j for k > 0 turns out to be almost zero. Then

the iteration  will rapidly converge from initial
conditions Xi(0) = Ci or from any arbitrary guess. Intuitive guessing or “relaxation”
methods can alter and accelerate the approach to a correct solution.

151 Even supposing there are originally many ways of producing each good this
comes about through behind-the-scenes optimization. See the “substitution theorem,”
Chap. 10, pages 248 – 252.

152 After Frank Ramsey, the protégé of Keynes who studied it in great detail in “A
Mathematical Theory of Saving,” Economic Journal, 38:543 (1928).

153 Naturally the other consumptions must be fixed low enough so that (11-2) can be
satisfied by some C(i), C(j).

154 This constant is just  
 , where the barred variables are to

be treated as arbitrary constants.

155 It will be a useful exercise for the reader to formulate the dual linear-programming
problem to (11-4) and to similar maximum problems. He should solve the resulting
minimum problems (remembering the duality principle) and interpret the results
economically.

156 Since  .

157 Since  , with C(1) = 0, 
 or in our special case, 1/{4[K−C(0)]}¾.

158 C(n) + x(n) approaches a finite limit, namely, 1. The number 1 plays no really
special role. It enters here in this way. Let us ask what stock of capital x has the property
that it is just self-supporting; i.e., it will produce an output just equal to itself. This x



must satisfy x = f(x) = √x. Obviously x = 1 (discarding the trivial solution x = 0). Had we
assumed, say, f(x) = m √x, we would have had to solve x = m√x, which gives x = m2,
and this is the limit that C(n) + x(n) would approach.

159 This is with C(1) = 0. Needless to say, C(1) can be made large enough to reduce
the choices for C(0) and C(2) wholly inside the initial curve for C(0) and C(1).

160 The reader who can differentiate functions of functions should try his hand at
deducing the MRS and relative price relations for y = x + √x.

161 In a sense we might consider 

a limiting steady-growth motion.

162 This is a good place to mention some miscellaneous matters. Many writers,
including Ramsey and Leontief, prefer to deal with continuous time rather than discrete
periods. In their treatments consumption becomes an instantaneous rate of flow; and net
capital formation [what we would call Si(t + 1) − Si(t)] becomes a time derivative or
rate of increase Si = dSi(t)/dt. The locus (11-21) would be written as

(11-21a)
where the dots on the C’s emphasize that they are rates of flow, not stocks. Equation
(11-21a) can be rigorously derived from (11-21) by a limiting process, as the length of
the discrete time period shrinks to zero. There is no real difference between the
discrete and continuous points of view. We choose the former just to avoid the
appearance of differential equations. Our model also includes as a special case the von
Neumann discrete-time general-equilibrium model, in which there is a finite number of
possible activities, each obeying constant returns to scale. When we come to this model
in detail, later on, we shall see that it is a straightforward problem in everyday linear
programming to go from the von Neumann input and output coefficients to our
efficiency locus. As the linear-programming nature of the model suggests, a feature of
the von Neumann finite-activities formulation is that the transformation locus becomes
a polyhedron with a finite number of flat faces, meeting in a finite number of vertices.
The reader can imagine the curves of Fig. 11-9 replaced by broken lines of the same
general appearance. As the number of activities gets larger and larger, we can hope in
the limit to generate smooth loci of neoclassical type. This case of a finite number of
alternative activities is also associated with the name of the late Fred M. Taylor. It is all
but explicit in the first two editions of Leon Walras’s Elements of Pure Economics. In
the third and fourth editions, smooth neoclassical marginal productivities make their
appearance.

163 Wassily Leontief, et al., Studies in the Structure of the American Economy, Chap.



3, Oxford University Press, New York, 1953.

164 This is where the postulated absence of joint production comes in, a limitation
dropped in the von Neumann model to be discussed later.

165 Since we are getting along with only two commodities, we let the same physical
commodity do duty as both current input and capital good. In general, some
commodities may appear only as flows, others only as stocks.

166 It would be an excellent exercise for the reader to see how this assumption can be
relaxed to permit capital to depreciate both through use and from the passage of time.

167 See Leontief, op. cit., p. 69, for discussion of the case in which capital equipment
is specific to an industry and nontransferable. We could extend our model to cover such
phenomena completely. We could define each specific capital good as a separate
commodity with its own producing industry. Then if we like, we can regard the capital
as transferable; it just happens that no other industry uses this particular kind of
equipment The price we pay is (1) an increase in the number of industries, (2) many
zeros in the production functions, for factors not used in an industry; and (3) if any
capital good also serves in consumption, there will be alternative sources of production
for what appears to be several specific capital goods but is really a single consumption
service. In any case, nontransferability introduces no essentially new issues not already
implicit in the Leontief system.

168 Had we written an inequality back in (11-23) and (11-25) we could omit this
remark about equality. But why worry? We could deduce the same remark as a theorem
from the simplest efficiency condition: clearly we must never throw away something of
every input.

169 Thus the [bij] matrix can be singular. Even if it is not, we can say nothing about its
inverse as to sign or size of elements.

170 Mathematically speaking, for every connected or indecomposable Leontief system,
in which every industry directly or indirectly buys from and sells to every other
industry, the open-end system will be capable of producing some positive consumption
if and only if the determinant (and hence every principal minor) of the matrix I – a = [δij

− aij] is positive.

171 For the case of n commodities we have  ΔSi ≥ 0, Xi ≥
0, with i = 1, 2, . . . , n in every case. In matrix terms with a = [aij], b = [bij], and X(t)
and S(t) representing the vectors of Xi and Si, we have X ≥ aX + ΔS + C, S ≥ bX.

172 Op. cit., chap. 3, Eqs. (3.1), (3.2), (3.3), (3.5).

173 Since Leontief works with continuous time he actually deals with differential



equations, but the exact correspondence is easy to see.

174 Once more, since S1(t) and S2(t) are given, thinking in terms of maximal ΔSi + Ci

is equivalent to maximizing Ci(t + 1) + Si(t + 1), and sometimes neater.

175 In the n-commodity case the Aij are the elements of the inverse matrix (I — a)—1.
They are known to be nonnegative. Hence from our earlier (I — a)X ≥ ΔS + C we
deduce X ≥ (I — a)—1(ΔS + C), which generalizes (11-28).

176 The direct capital coefficients bij are nonnegative. The Aij coefficients are
nonnegative [from the Hawkins-Simon conditions or the series expansion of (I – a)-1, or
from the fact that if Aij were negative, an increase in the final demand for Good j would
decrease the required output of Good i]. Hence, at the very least, the Bij total (direct and
indirect) capital coefficients are nonnegative. Provided that (1) each capital good finds a
use in at least one industry; and (2) every industry sells goods directly or indirectly to
every other industry, we can make the stronger statement that every Bij is definitely
positive.

177 In n variables, 

Matrix notation simplifies this to S ≥ bX ≥ b(I — A)—1 (ΔS + C) = B(ΔS + C).

178 Which the reader should find explicitly as an exercise.

179 Obviously all stocks cannot be simultaneously redundant, so in our two-good
case one stock at most can be redundant. We might mention here a very singular
possibility, namely, that the two capitals should be used (directly and indirectly) in the
same proportions in the production of both goods. Then the two lines making up the
efficiency locus are parallel. For most initial stocks the two lines never intersect, as in
Fig. 11-13. But if the initial stocks are in the right amounts, the two lines coincide and
no demands induce excess capacity. A similar but more complicated situation can arise
with n goods, if the matrix [Bij] is singular.

180 If we permit excess capacity, we can always obtain steady growth. All we have to
do in Fig. 11-12 is draw the ray from the origin through the point P: [  ,  ] and
extend it until it hits the efficiency frontier. For balanced growth without excess
capacity, it is necessary and sufficient that the vertex point L lie on the ray through P.
The statement in the text asserts that there is one and only one relative initial
configuration for which this occurs.

181 If all equalities are to hold, (11-27) and (11-28) read (I – a)X = S, bX = S, or S =
b(1 – a)—1 S = B S. Now a (Frobenius) matrix with positive elements is known to



have one and only one positive characteristic root σ* corresponding to a characteristic
vector of all positive elements ( ) . Balanced growth at rate λ without excess
capacity implies S = λS; thus S = λBS or BS = 1/λS. Hence the only balanced-growth
path without excess capacity is . Any initial configuration S(t0) proportional
to V* will continue to grow in these proportions at a relative rate 1/σ* and no other
initial configuration can perpetuate itself. in this way.

That 1/σ* is the most rapid rate of growth can be shown as follows: Suppose S ≥
λS or equivalently BS ≤ 1/λS, for some positive S and λ. The inequalities can all be
converted into equalities by increasing some elements of B; thus 1/λ and S are,
respectively, the unique positive characteristic root and vector of a Frobenius matrix
whose elements are at least equal to those of B and are sometimes greater. It is known
that increasing an element of such a matrix increases its real root. Hence 1/λ > σ* or
1/σ* > λ. A more general theorem is stated by Robert M. Solow and Paul A.
Samuelson, “Balanced Growth under Constant Returns to Scale,” Econometrica,
21:412—424 (July, 1953).

182 From the symmetry of the a’s and b’s one would expect balanced growth to
require S1 = S2.

183 The example B11 = B22 = 0.1, B12 = B21 = 1 shows that there do exist some systems
which can develop according to all the equalities. For this system, given any initial
positive configuration S1

0,S2
0, S1

0, S2
0, the Si will continue to be positive, and the

system will ultimately approach the maximum rate of balanced growth. .However, the
case in the text is by no means “peculiar” in its choice of B values.

184 It can easily happen that the Leontief trajectories tell a certain Xi to become
negative, which means that some b’s must become zero. But the new trajectories (with
some b’s zero) tell Xi to become positive (which means that the old rules hold). Then
the old rules tell Xi to become negative, etc.

185 The numerical example in which S2 became negative illustrates a case in which
successive decisions to move to the vertex point L led eventually to a situation in which
the constraint lines had shifted (by virtue of the resulting capital accumulation) to a
position like that shown in Fig. 11-13, in which the vertex point has dropped below the
axis S2 = 0.

186 Leontief, op. cit., Eq. (3.5), also chooses to write his differential equations in
terms of the flows, while we write our difference inequations in terms of the stocks. But
this is a matter of convenience.

187 J. von Neumann, “Über ein ökonomisches Gleichungssystem und eine Verallge
meinerung des Brouwerschen Fixpunktsatzes,” Ergebnisse eines mathematischen
Kolloquiums, (8):73-83 (1935-1936), Franz Deuticke, Leipzig and Vienna, 1937; English



translation, “A Model of General Economic Equilibrium,” Review of Economic Studies,
13(1):1—9 (1945—1946).

188 The reader should try his hand at pushing through the exposition of this section
with a model that allows joint products. The aij coefficients can be interpreted as the net
input (positive if an input, negative if an output) of Commodity i at the unit level of
operation of Activity j. There will be a different number of commodities and activities.
This slightly more general model is discussed from a different point of view in Chap.
13.

189 We can simply omit from problem (11-32) any processes which are known in
advance to be technologically inferior to other processes, as explained in connection
with Fig. 11-15.

190 That is to say, the set of feasible points is convex.

191 The rigorous reader may wonder how we know that there are no feasible points
outside the heavy line in Fig. 11-16. Such a reader should convince himself as an
exercise that every feasible production program in the von Neumann two-good model
can be broken down into a linear combination (with positive weights adding to unity) of
Leontief-type subtechnologies.

192 A pi can be zero only if Xi is not desired for final demand (Ki = 0) and if Xi is not
an input to any desired commodity or an input to any input to a desired commodity, etc.

193 These assumptions are often stated by saying that free goods are simply not
counted in our list of goods and factors. This, however, is begging the question, since
which goods and factors are free is determined by the economic process itself, not
exclusively by nature. This problem is taken up again in Chap. 13.

194 In fact had we left the inequalities in our constraints, we would be able to say that
strict inequalities go along with zero Lagrange multipliers, just as in the duality of linear
programming.

195 Or else the corresponding shadow price must be equal to zero.

196 The first pair in (11-36a) could be interpreted this way also.

197 This assumption could be lightened, but then the role of competitive market prices
would become ticklish.

198 The calculus-trained reader can work out the second-order convexity conditions
that (12-3) determines a true maximum. We are assuming the maximum to be an interior
one, so none of the nondecumulation, nonnegativity conditions come into play.

199 There are three pairs that can be constructed from three goods. But if the rule
holds for any two pairs, it must hold for the third.



200 Some readers may prefer to skip this paragraph and just look at the results,

201 The secondary conditions for a true maximum are too long-winded to be set down
here. The calculus-trained reader should write them out for, say, T = 3, and interpret
them in terms of generalized diminishing returns.

202 Instead of beginning with initial stocks as at P in Fig. 12-3 and working outward
to successive expanding envelopes, we could have begun with a prescribed terminal
point [S1(T), S2(T)] and worked backward. First there is a locus of minimal
requirements at T — 1. Each point on this locus in turn generates a locus for T — 2, and
the inmost envelope of these loci gives the minimal requirements two periods earlier.
An excellent exercise would be to carry through the formal analysis in terms of these
ever-contracting requirement loci.

203 Prices are quoted in money terms purely for convenience. There is no cash, and
hence no liquidity problem, in our model economy. Money serves only as a unit of
account. We could instead have chosen Commodity 1 as numeraire and set p1(t) ≡ 1.
Other commodity prices would then be expressed in terms of numeraire.

204 If S1, were chosen as numeraire, so that p1 ≡ 1, then the formula would reveal r1

itself to be an own-rate. The numeraire own-rate is what we think of as the rate of
interest, “the rent of money.” Fisher, Wicksell, Marshall, Thornton, Sraffa, Keynes,
Lerner, and others have discussed own-rates.

205 The observant reader will remark that there are two more value-of-marginal-
product equations that have not been written down: one for the use of S1(t) in
producing S2(t + 1) and one for the use of S2(t) in producing S1(t) + 1).

Exercise. Formulate these two equations and show that they follow from Eqs. (12-8)
to (12-8c) and so add no independent information. (Hint: the relevant marginal
productivity of S1(t) is not ∂F[S1(t + 1);S1(t),S2(t)]/∂S1(t), because a small increment of
S1(t) will ceteris paribus increase S1(t +1), and this side effect on S2(t + 1) must be
canceled off. Hence r1(t) = (F2

t+1 – F1
t+1)p2(t + 1).}

Exercise. Using (12-8) and the calculations preceding (12-5), interpret the
Lagrangian multipliers λt.

206 If disinvestment is not allowed, only points on MN which are northeast of P are
eligible, and a similar restriction must be made on EF, etc. Observe how this confines
eligible paths to a sort of irregular cone emanating from P.

207 Or p1(1), p2(1).

208 The details of the proof are left to the reader who cares. It is to be shown that [p1(t
+ 1)S1(t + 1) + p2(t + 1)S2(t + 1)]/[1 + r0(t)] = p1(t)S1(t) + p2(t)S2(t). Here r0(t) is the



“money” rate of interest and can be substituted for in two different ways from (12-7).
The rest is manipulation of (12-8) to (12-8c) and (12-5) and use of Euler’s theorem on
the homogeneous function F. It is simplest to assume all consumption to be zero.

209 Of course the necessary level of internal consumption may be conventional, not
physiological.

210 Before proceeding, we should mention a slightly more general and often-
discussed situation. Suppose consumption of each good were always the same fraction
of total output: Ci = k(Ci + ΔSi) or Ci(t + 1) = (k/1 — k)[Si(t + 1)−Si(t)]. We could even
let k depend on relative prices or relative outputs, independently of scale. Then
substituting in the basic production relation (12-2) we get

and since F is homogeneous of first degree we can multiply through the 1−k to get

(12-11a)
If k = 0, we have the Malthus-von Neumann case of strictly zero consumption, and this
reduces to (12-11). As k approaches unity we get closer to the stationary-state case. For
0 < k < 1 we have strictly proportional consumption flows. An observer who
concentrated only on capital stocks could neglect consumption and still describe the
facts by (12-11a), which is much like (12-11) and could be treated similarly. Of course
the greater the fraction consumed, k, the less “productive” the system would appear to
an observer interested only in its growth potential and uninterested in the final
consumption it provides. Indeed k can increase so much as to lead to consumption in
excess of efficient maintainable levels, and then the system loses its apparent growth
potential and begins to live off its shrinking capital.

212 We assume F to be smooth enough so that these derivatives exist.

211 For simplicity let us rule out the case in which the maximal growth rate occurs for
S1 ≡ 0 or S2 ≡ 0, but the reader should think about it.

213 We have observed that d2g/db2 < 0 whenever dg/db = 0. Hence every regular
stationary point is a maximum. If there were two local maxima, there would have to be
a local minimum somewhere between them, which is impossible.

214 Even von Neumann, whose deep analysis turned up properties of steady growth
that we do not touch on here, defines steady growth as “equilibrium” in his model. The
recent habit of aggregating to a one-commodity economy and eliminating all choice
effectively masks many of the structural properties of steady growth.

215 Of course it doesn’t matter by what method the terminal point is chosen. If initial
and terminal points both lie on the radius vector with slope b*, then steady growth is



the solution.

216 Some readers may prefer to skip this section.

217 We could also, if we liked, require Si(t + 1)  Si(t) (no decumulation of capital). It
would make an excellent exercise for the reader to carry through all further
considerations with the addition of this constraint, with special attention to the
formulation and interpretation of the dual problem.

218 G. B. Dantzig, “Upper Bounds, Secondary Constraints, and Block Triangularity in
Linear Programming,” Econometrica, 23:174-183 (April, 1955).

219 Put differently, since all costs are resolved into capital costs and capital does not
depreciate, net profit is just sales plus capital gains (or minus losses).

220 The last pair of constraints in (12-24) has a slightly different interpretation, which
should be worked out as an exercise.

221 In partitioned-matrix terms the linear program (12-23) is as follows: Subject to

(12-23a,

maximize K’S(T).

For simplicity let us assume all consumption to be zero and permit capital to
decumulate. Suppose the initial stocks S(0) to be such that a Leontief trajectory exists,
i.e., such that we can find nonnegative vectors [S(1), S(2), . . . , S(T)] satisfying (12-
23a) with all inequalities replaced by equalities. To show that this path is efficient we
have to show that there is at least one choice of the valuation vector K such that
K’S(T) is maximized for these particular vectors S(t). The dual problem to (12-23a) is
as follows:

Subject to

(12-24a)

minimize .

From the duality theorem, if there is a K such that the dual problem has a minimum



solution with all u’s positive, then the original problem (12-23a) will have a solution
with all equalities. Let us try all the equalities in (12-24a):

B′u(1) = (I + B)u(2), B′u(2) = (I + B′)u(3), ..., B′u(T) = K
There is at least one positive solution to this set of equations. For B’ is a matrix of
positive elements and therefore has a positive characteristic root p to which
corresponds a positive characteristic vector u+. We can set u(t) = [ρ/(1 + ρ)]’u+. Then

as desired. Then we choose K = B‘u(T). It remains to be shown that with this K, these
u’s provide a minimum to the dual problem (12-24a). Remember that we also have
equality in (12-23a). Hence

K′S(T)′ = u(T)′BS(T) = u(T′)(I + B)S(T−1) = u(T−1)′BS(T−1) 
= u(T−1′)(I + B)S(T — 2) = · · · = u(1)′(I + B)S(0)

using alternatively the equalities of (12-23a) and (12-24a). Thus for this K, these
positive u’s and these S’s, the minimand equals the maximand. Hence we have a
solution to the two problems, with positive u’s, and the theorem is proved.

222 For the mathematical reader only, we sketch a proof that in the very long run all
efficient paths approach maximal steady growth. In the notation of the footnote on page
341, it follows from (12-23a) and (12-24a) that

u(t)′BS(t) ≥ u(t + 1)′(I + B)S(t) ≥ u(t + 1)′BS(t + 1) ≥ 0

(12-26)
Hence the sequence u(t)’BS(t) is nonincreasing and is bounded below; it must
approach a limit. In addition we know that [u(t)’B − u(t + 1)’(I + B)]S(t) tends to
zero. Since every component of S(t) is unbounded and the vector in square brackets is
nonnegative, it must be that every component of u(t)’B − u(t + 1)‘(I + B) tends to
zero. That is, the shadow-price configuration in any very-long-run program must come
close to the special configuration u+. Since we can require B’u(T) = K, it can always be
arranged that u(t) is bounded away from zero over the period considered. From (12-
26) it also follows that u(t + 1)’[(I + B)S(t) − BS(t + 1)] tends to zero. It can be shown
that (I + B)S(t) − BS(t + 1) tends to zero componentwise. The solutions of the
difference equation BS(t + 1) = (I + B)S(t) depend on the characteristic roots of B. If
p is a root of B, then [(1 + p)/p]’ is a fundamental solution of the difference equation.
The maximal p of B need not correspond to the maximal (1 + p)/p of the difference
equation. But if any other root of the difference equation is dominant and appears with
positive weight in a solution, some component of the solution must eventually become
negative. Hence only the maximal-steady-growth solution can subsist for the very long



run.

223 Where there is only one scarce and nonaugmentable resource such as labor, the
example of the Leontief system (described in Chap. 9) shows how we can cut through
all the circularities and interdependencies created by the existence of intermediate
goods. The end result is a “total” direct- and indirect-labor input coefficient for each
final commodity, and the production-possibility frontier is determined by the condition
that the amount of labor used up must not exceed the amount available. Final goods are
convertible into each other at constant costs, ultimately via the transfer of labor from
one set of occupations to another.

224 That we need have only one activity for each commodity follows from the
presence of only one scarce resource and the absence of joint production, as shown in
Chap. 9.

225 Frank Graham, The Theory of International Values, Princeton, N.J., 1948; Lionel
McKenzie, “On Equilibrium in Graham’s Model of World Trade,” Econometrica,
22:147 – 161 (April,1954). See also Thomson M. Whitin, “Classical Theory, Graham’s
Theory, and Linear Programming in International Trade,” Quarterly Journal of
Economics, 67:520 – 544 (November, 1953).

226 See, for instance, the Jaffé translation, George Allen & Unwin, Ltd., London,
1954.

227 Ibid., Chap. 9.

228 Walras does not miss even this fine point. If all firms in an industry have the same
production coefficients, the allocation of output among firms is indeterminate, but
unimportant.

229 In a sense these two possibilities are equally general. Any linear-programming
polygon can be closely approximated by a smooth convex curve, and reciprocally, any
smooth transformation curve can be closely approximated by a polygon with a finite
number of vertexes; i.e., smooth production functions can be replaced by a finite
number of alternative linear processes.

230 G. Cassel, Theory of Social Economy, rev. ed., pp. 137 – 155, Harcourt, Brace and
Company, Inc., New York, 1932.

231 One of the advantages often claimed for the linear-activity-analysis formulation is
that it facilitates the collection and organization of empirical information.

232 In his pioneering presentation of a marginal-utility theory of consumer choice,
Walras was extremely fastidious in pointing out that the usual marginal equivalences
need hold only for commodities which the consumer actually purchases in positive
amounts or is on the verge of purchasing. For commodities well below the margin only
certain inequalities need hold. Many later writers tended to neglect this subtlety. It is a



little surprising that Walras should completely overlook the quite analogous point about
inequalities when it came to the production part of his system.

233 Many of the most important results of the new welfare economics have to do with
the optimal character of competitive equilibria and the deadweight burden on society
associated with departures. Theorems like this are worked out in the general context of
the Walrasian system. Naturally, then, it matters whether there really is a competitive
equilibrium in this model.

234 We shall not discuss the stability of general equilibrium in this chapter, except
possibly in passing. Suffice it here to say that the famous tâtonnements by which
Walras tries to describe the dynamical approach to equilibrium fall far short of
achieving this purpose. After a long argument the main question is simply begged (op.
cit., 2d ed., pp. 236 – 249, especially 249). Only later with the work of Hicks, Lange,
Metzler, Samuelson, and others was a satisfactory approach evolved.

235 We shall show shortly how these definitions can be modified to allow for
intermediate goods,

236 Some writers on general equilibrium, e.g., Cassel and Wald, have omitted this
detail. They also often “inverted” the demand functions and wrote

pi = fi(x1, ... ,xn)

This simplifies the mathematics, but is quite illegitimate. Entirely apart from the
classical indeterminacy of absolute prices (which can easily be allowed for in Wald’s
formulation and which actually was taken explicitly into account by him), this version
says that any configuration of market demands can be brought about by one and only
one set of prices. Economic theory says no such thing. It is educational that some
economists should think that there is no mathematical difference between these two
versions and mathematicians should think that there is no economic difference and that
both should be wrong.

237 We take as given once and for all the individual household’s endowment of
owned resources. K. Arrow and G. Debreu, “Existence of an Equilibrium for a
Competitive Economy,” Econometrica, 22:265—290 (July, 1954), take explicit account
of each household’s initial inventory, and even of the way firms distribute their earnings
to households. Their complete microeconomic model is much more general than ours,
at the cost of much mathematical complication.

238 Multiply the first equation of (13-1) by υ1, the second by υ2, etc., and add the m
equations together. On the left we get the sum of all possible terms like aijνixj, and on the
right-hand side we get total factor payments Σνiri. Now multiply the first equation of
(13-3) by x1, the second by x2, etc., and add the n resulting equations. The left-hand side
is again the sum of all terms aijνixj and the right-hand side is Σpixi. Thus the value of



output is exactly imputed to the scarce resources.

239 See Chap. 9, where Aij is interpreted as the total direct and indirect input of
Commodity i per unit of final output of Commodity j.

240 This process of elimination is just what Walras sketches in a rudimentary way: op.
cit., p. 241.

241 The interested reader will learn much from trying to write out in detail the
equations of the general case. Remember the distinctions between activities and
commodities, between commodity prices and value added (how do you compute the
latter from the former and the k’s?). For hints see Sec. 13-6, and refer back to Chap 6.
The basic reference on the general linear model of production is Tjalling Koopmans,
Chap. 3 in Activity Analysis of Production and Allocation, John Wiley & Sons, Inc.,
New York, 1951. The mathematics is quite stiff. For a simpler exposition see John
Chipman, “Linear Programming,” Review of Economics and Statistics, 35:101 – 117
(May, 1953).

242 See Appendix B. We are not speaking now of the sterner requirement that no x
can be negative. First we must guarantee that there is some solution. For if no solution
exists to the subsystem (13-1), no solution can exist for the whole system.

243 This point was raised by H. von Stackelberg, “Zwei kritische Bemerkungen zur
Preistheorie Gustav Cassels,” Zeitschrift für Nationalokonomie, June, 1933, p. 464.

244 It is true that one can sometimes think of certain goods (or “bads”) as having a
negative price. But ultimate factors of production like land or labor are hardly likely to
be offered for a negative return. Only positive or zero prices are thinkable.

245 F. Zeuthen, “Das Prinzip der Knappheit, technische Kombination und
ökonomische Qualität,” Zeitschrift für Nationalokonomie, October, 1932, p. 2; H.
Neisser, “Lohnhöhe und Beschäftigungsgrad in Marktgleichgewicht,”
Weltwirtschaftliches Archiv, October, 1932, p. 422. See also W. L. Valk, Production,
Pricing and Employment in the Stationary State, DeErven F. Bohn N.V. and P. S.
King, Haarlem and London, 1937.

246 If any r is zero, we can set at zero the output of any commodity which actually
requires that resource (i.e., if rj = 0 and ajk > 0, then xk = 0). We are left with the
commodities which don’t use the absent resource, so we can throw away the
corresponding line in (13-la). Hence we might as well imagine all r’s positive.

247 It is vital to realize that this kind of unemployment is still not “Keynesian”
unemployment. For even in our modified model with (13-1a) replacing (13-1), our
previous proof that all income is spent, pixi = 2;rivi, still holds. This can be established
from the proof given in footnote 2, page 353. It only needs to be noticed that every line
of (13-la) that is a strict inequality gets multiplied by the corresponding v, which must



be zero. So the inequality does not disturb the final result.

248 In Fig. 13-1b we can think of the demand curve as following the course DQS and
the supply curve as running along OSS’. Equilibrium could be anywhere in QS
depending on the nature of the fringe employments.

249 No economist should have any difficulty visualizing what modifications have to
be made in the argument if there is a (biological, sociological, or legal) minimum wage.

250 All the above ignores questions of Keynesian effective demand. In real life, when
money demand falls it may be difficult or impossible to have factor prices fall
correspondingly, and the result is involuntary unemployment. In the fixed-coefficients
case, unemployment may be high.

251 Wald’s results were first presented in the Proceedings of Karl Menger’s
mathematical seminar in Vienna (vol. 6, 1935, and vol. 7, 1936). They were also
summarized in a paper which has since been translated and published in Econometrica,
19:368 (October, 1951), under the title “Some Systems of Equations of Mathematical
Economics.”

252 The inequalities of (13-1a) should always be thought of as including the additional
prescription that if strict inequality holds for any factor, the wage of that factor must be
zero.

253 Specifically: (1) each resource is present in a positive amount; (2) all input
coefficients aij are nonnegative; (3) for each j, at least one aij is positive (i.e., every
commodity requires at least one input in its production).

254 Except, perhaps, for the meaningless case of all commodity prices equal to zero,
which hardly need detain us. Recall also that we are free to impose one arbitrary
restriction on absolute prices, e.g., Σpi + Συi = 1.

255 The exact statement is: If the matrix [aij] appearing in (13-1a) is of rank m, the
solution is unique in the factor prices.

256 See Chap. 4, page 104.

257 Moreover we can deduce the following interesting facts. Suppose n > m (more
goods than factors). Then barring singular cases, whatever the p’s turn out to be, the
pattern of outputs established will have m goods being produced and n−m not being
produced. If m > n (more factors than goods), there will be in equilibrium only n
positive υ’s, and the remaining m−n factor services will be free goods. For the
underlying theorem in linear programming, see Sec. 4-15.

258 An enjoyable discussion of the two-dimensional fixed-point theorem is to be
found in R. Courant and Herbert Robbins, What Is Mathematics? Oxford University
Press, New York, 1941.



259 “Bounded” means just what it says: there is some sphere or cube in which all of S
is contained, which means that every point of S is within a finite distance of the origin.
“Closed” means, roughly speaking, that S includes all its boundary points. The force of
this is that if we take any sequence of points of S which tends to some limit point, then
that limit point will also be in S. “Convexity” is discussed at some length in Chap. 14. A
mapping or function which associates with each y a set Hv is upper semicontinuous if
the following is true: take any sequence of points y tending to a point z; take any
sequence of points, one from each of the corresponding image sets Hυ, and suppose that
this sequence tends to a limit point w; then w is a point of H,. This last is a rather
technical concept; it is meant to rule out situations in which, as you run along
neighboring y’s, the sets Hυ contract all of a sudden.

260 Not quite efficient, but the exception is a subtlety and we ignore it.

261 This proposition (really a foundation stone of welfare economics) will be
explored in more detail in the next chapter. But it is a common fact of economic theory
that we can trace out the maximal production-possibility frontier by maximizing Σpixi

and then varying the prices.

262 That it is convex can be shown from the fact that by construction we always have
Σpixi = Σriυi.

263 The use of the Kakutani theorem to prove the existence of an equilibrium is
McKenzie’s idea. See his study of Graham’s international-trade model, referred to in
footnote on page 347. Our treatment is similar to his, but somewhat simpler (if the
reader can believe such a thing). The simplification comes about through the explicit
use of linear programming. See also H. W. Kuhn, “On a Theorem of Wald,” Chap. 16 in
Kuhn and A. W. Tucker (eds.), Linear Inequalities and Related Systems, Annals of
Mathematics Studies No. 38, Princeton University Press, Princeton, N.J., 1946.

264 The logic here should be familiar to economists. There is no reason why a set of
market demand curves should be of a kind that might have been deduced from an
indifference map. Distributional shifts are likely to remove that kind of consistency that
comes from utility maximization.

If there are 2 or more persons, the assumption that total market demand satisfies the
“weak axiom” implies that their indifference surfaces (if they have transitive
preferences) must have unitary income elasticities for all goods; and then the market
demand can be thought of as coming from a homogeneous ordinal utility indicator
U(xi, . . . ,xn) ≡ λ-1U(λxij, . . . ,λxn) for all positive λ. The equilibrium solution would be
at the unique point of contact of the convex production-possibility frontier defined by
(13-1a) and the highest-attainable strongly convex indifference surface. It would be
exactly as if the market consisted of a single rational consumer.



265 See, for example, P. A. Samuelson, “Prices of Factors and Goods in General
Equilibrium,” Review of Economic Studies, 21(1):17.

266 For some related discussion, the reader should glance back at our earlier
discussion of duality and the competitive firm (Chap. 7, pp. 174-178),

267 For details the reader is referred to the paper by Arrow and Debreu, op. cit.

268 The paper was first read at Princeton in 1932 and published six years later in the
Proceedings of Karl Menger’s mathematics seminar in Vienna. An English translation
under the title “A Model of General Equilibrium” appeared in the Review of Economic
Studies, 13(1):1-9, with a commentary by D. G. Champernowne. The interested reader
should study chap. 4 by N. Georgescu-Roegen, in T. C. Koopmans (ed.), Activity
Analysis of Production and Allocation, which gives alternative proofs and further
results in the same vein,

269 Von Neumann makes the additional assumption that for every pair (i,j), aij + kij >
0. In words, every commodity appears in every process, either as input or output. The
point of this is to ensure that the economic system does not split up into two or more
groups of commodities which have no interrelations. In that case we are dealing with
two or more different economic systems, not one. This condition has been lightened in
two interesting recent papers on the von Neumann model. See J. Kemeny, O.
Morgenstern, and G. Thompson, “A Generalization of the von Neumann Model of an
Expanding Economy,” Ecanometrica, 24(2):115-135 (April, 1956); and D. Gale, “The
Closed Linear Model of Production,” Chap. 18 in H. W. Kuhn and A. W. Tucker (eds.),
op. cit.

270 But see the preceding footnote for some difficulties which will have to be
adjusted.

271 Similar inequalities are to be found in our discussion of the Leontief dynamic
model, Chap. 11, pp. 284 and 292.

272 It is worth noting that von Neumann’s original paper exploited intensively the
duality properties of (13-8a) and (13-9a) and the relation to maximum, minimum, and
saddle-point problems.

273 A game-theoretic proof is given in G. L. Thompson, “On the Solution of a Game-
Theoretic Problem,” and a different, very elementary proof is given by D. Gale in the
paper cited above, both in H. W. Kuhn and A. W. Tucker (eds.), op. cit.

274 This ratio of revenues to costs for the whole economy (and its analog for single
processes) is an extremely important concept. Much of von Neumann’s theory can be
phrased in terms of it. For the system as a whole this ratio depends on activity levels
and prices. One can interpret competition as requiring that as of given prices,
entrepreneurs choose activity levels to make this ratio a maximum; and that the market



“chooses” prices in such a way as to minimize this ratio as of given activity levels. It
will follow that all used activities have the same revenue/cost ratio (or else
entrepreneurs would get rid of the ones with lower ratios). There is a dual statement that
the reader should formulate. Since interest (“waiting”) is the only social cost in this
system, one can interpret the market as minimizing social cost. Georgescu-Roegen, op.
cit., treats the von Neumann model from this point of view. The reader should study his
stimulating paper.

275 The reader who is slightly familiar with game theory and knows what a saddle-
point is will recognize that the ratio of value of output to value of input referred to
above (p. 387) has a saddle-point at a von Neumann solution. It is maximized with
respect to process levels and minimized with respect to prices. At the saddle-point this
ratio is equal to a and to 1 + ρ.

276 Although this is an old notion, it has been most thoroughly analyzed and exploited
by T. C. Koopmans. The reader should look at his two expository papers, “Efficient
Allocation of Resources,” Econometrica, 19:455 – 465 (October, 1951) (Cowles
Commission Paper, New Series, no. 52), and “Activity Analysis and its Applications,”
American Economic Review, 43:406 – 414 (May, 1953) (Cowles Commission Paper,
New Series, no. 75).

277 For a minimum problem with positive coefficients in the objective function we
could just turn these definitions upside down, since decreasing the choice variables
becomes desirable.

278 See T. C. Koopmans (ed.), Activity Analysis of Production and Allocation, Chap.
3, John Wiley & Sons, Inc., New York, 1951.

279 We are dodging the possibility that under the institutional rules a “bad”
distribution of income may be associated with the efficient production pattern. Lump-
sum taxes and subsidies could get around the problem.

280 Exercise. Draw a situation with two goods and three resources in which for some
output all three resource limits hold,

281 Not quite. If a point on a flat face is desired, the best we can do by this method is
to get on the face. A little extra nudging may be necessary to pick out the desired point

282 We can always make the inequality ≤. For if we have a half space t1x1 + t2x2 ≥ M,
we can multiply both sides by -1, which changes the direction of the inequality so that it
reads (—t1)x1 + (—t2)x2 ≤ —M.

283 Why must every a coefficient be positive?

284 Naturally we can’t mean by this that the demand and supply functions will be
satisfied. For given supply and demand functions there may be only one full



competitive equilibrium. All we can require of an efficient production pattern is that
there exist some constellation of prices which would lead profit-maximizing firms to
exactly that pattern.

285 This line of thought goes back to Pareto and Barone. See also P. A. Samuelson,
Foundations of Economic Analysis, Harvard University Press, Cambridge, Mass., 1948.
The best recent treatments are to be found in K. Arrow, “An Extension of the Basic
Theorems of Classical Welfare Economics,” in Proceedings of the Second Berkeley
Symposium on Mathematical Statistics and Probability, pp. 507 – 532, University of
California Press, Berkeley, Calif., 1951; and in G. Debreu, “The Coefficient of Resource
Utilization,” Econometrica, 19:273 – 292 (July, 1951). In this chapter we are largely
following the beautifully concise treatment by Debreu in an unpublished Cowles
Commission Discussion Paper, “Linear Spaces and Classical Economics,” dated Jan. 29,
1953.

286 In addition to the items given in the above footnote 1, we might mention O.
Lange, “The Foundations of Welfare Economics,” Econametrica, 10:215 (1942), and
Abba Lerner, “The Economics of Control,” p. 57, The Macmillan Company, New York,
1944,

287 At a vertex like C in Fig. 14-1a there are two marginal rates of transformation
depending on which commodity is to be substituted for which. Here we can say that the
price ratio is intermediate between these two critical rates.

288 The fallacy (or one of the fallacies) of supposing that we need only price
proportional to marginal cost, or a universal constant degree of monopoly, is evident in
our model. Factor prices can’t possibly follow this rule if they have any internal uses in
households.

289 It must also satisfy the initial restrictions on resource ownership, and there might
also have to be a system of lump-sum transfers,

290 One can imagine, if not observe, a situation in which the inequalities are
inconsistent . Production cannot take place at all within the given resource limitations.

291 “Capital Accumulation and Efficient Allocation of Resourees,” Econometrica,
21:233-268 (April, 1953).

292 “Neumann’s and Morgenstern’s New Approach to Static Economics,” Journal of
Political Economy, 54:115 (1946).

293 J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior,
Princeton University Press, Princeton, N.J., 1944.

294 To economists who wish a readable, nontechnical, and completely honest primer
of game theory we recommend J. D. Williams, The Compleat Strategyst, McGraw-Hill
Book Company, Inc., New York, 1954. Those prepared to brave some mathematics will



find a well-rounded treatise in J. C. C. McKinsey, Introduction to the Theory of Games,
McGraw-Hill Book Company, Inc., New York, 1952.

295 Cournot concluded that they would not maximize their joint profit; Fellner that
they would (approximately). The opinions of the other authorities are similarly diverse.

296 It is neither practice nor practical in most conflict situations (e.g., chess) to
confront in advance all possible situations that may eventuate.

297 Player 1 is called the maximizing player; Player 2 the minimizing player. It is a well
established convention to list the strategies of the maximizing player vertically.

298 Some element of approximation in practice is, of course, permissible. The
problem of measuring the pay-offs is considered further in Appendix A.

299 Assumption (3) may be weakened slightly. All that the argument requires is that
each player fear that his opponent may make a wise choice, and wish to be protected
against this possibility.

300 It is not viciousness that makes this desirable from Firm 2’s point of view, but the
fact that in this conflict situation Firm 2 always earns the difference between $10,000
and Firm 1’s profit.

301 We have to split a hair here. Later on we shall define the “value” of the game. This
is a more fundamental concept than “worth” as we have just defined it, and the two do
not always agree. Our concept of “worth” is the same as von Neumann’s concept of the
“value of the minorant game.”

302 Proof: Suppose that in Table 15-3 entry aij equals the maxmin and entry akl equals
the minmax. Then aij, being a row minimum, is less than or equal to every entry in its
row and, in particular, to ail. But ail cannot exceed the maximum of its column, which is
akl. Thus aij cannot exceed ail which cannot exceed akl, and the statement is proved.

303 This definition of domination is a little stricter than it should be. An accurate
definition is: Strategy i is said to dominate Strategy j if the pay-off to Strategy i is at least
as favorable as the pay-off to Strategy j no matter what strategy the opponent may use
and if the pay-off to Strategy i is more favorable than that to Strategy j for at least one
opposing strategy,

304 As an exercise, the reader can work out a closely similar case. Suppose that the

demand curve for mineral water is of unit elasticity, viz., 

Assuming zero variable costs and a discrete set of outputs, xi(i = 1, 2), for a pair of
duopolists, draw up the game matrix and find the saddle-point solution. Note that three
or more sellers can be handled equally well in this singular case. Why are unit elasticity
of demand and the absence of variable costs necessary assumptions? What would



happen if the duopolists could vary their outputs continuously?

305 Harold Hotelling, “Stability in Competition,” in G. J. Stigler and K. E. Boulding
(eds.), Readings in Price Theory, pp. 467 – 484, Richard D. Irwin, Chicago, 1952.

306 This example gives rise to an easily solved continuous game. The method is to
construct the Edgeworth box diagram showing the position of one firm along the
horizontal axis and the position of the other along the vertical. If the reader constructs
the diagram for this game, he will find, perhaps to his surprise: (1) there are not two sets
of indifference curves, but only one; (2) each indifference contour is a straight line with
a sharp discontinuity; (3) the two reaction curves almost coincide; and (4) the point at
which the reaction curves cross (the Cournot point) is also both Stackelberg leadership
points and the game theory saddle-point. Moreover, the Edgeworth contract curve is
spread out into a region that covers the whole diagram. Aspect 1 is characteristic of all
constant-sum continuous games; aspect 4 holds for all strictly determined constant-sum
continuous games.

307 We shall not really go the whole hog. In F. H. Knight’s terminology we are going
to introduce “risk” (i.e., the results of variations with definable probability distributions)
but not “uncertainty.”

308 If Firm 2 were sometimes to use 100, sometimes 200, Firm 1 would get a result
somewhere between E1 and E2.

309 If a game is strictly determined with a saddle-point corresponding to a pair of pure
strategies, this will obviously be a special and limiting case of the use of mixed
strategies. All the probabilities are either 1 or 0.

310 Op. cit., pp. 76-78.

311 Thus this isn’t really a game. Some of game theory’s most fruitful applications are,
as here, concerned with play against an imagined opponent.

312 Inspection of the restraining equations shows that if all the aij are finite, this
problem has a finite solution, i.e., that the restraints set an upper bound to the attainable
values of V. By virtue of only the first and last restraints V cannot exceed the largest of
the numbers a11, a21, ... , am1. Taking the other restraints into account, V cannot exceed
mini maxi aij. Even this, of course, is not the least upper bound to the range of V; it is
just the lowest upper bound disclosed by superficial inspection of the restraints.

313 Op. cit., pp. 101—103.

314 Ibid., p. 103. Italics in the original.

315 J. C. C. McKinsey, Introduction to the Theory of Games, p. 343, McGraw-Hill
Book Company, Inc., New York, 1952. Our discussion of non-constant-sum games may
seem to establish a little more than it actually does. A sufficient condition for the mixed-



strategy approach to yield optimal strategies is for the game to be constant-sum. But this
is not a necessary condition. The necessary condition is that the entries in the pay-off
matrixes of the two participants be related by a linear formula. We relegate this
weakening of the conditions to a footnote because the broadening it secures is mostly
illusory. What the weaker condition says is that if one participant measures his profits in
dollars and the other measures his in francs and if the two take into account different
amounts of fixed cost, then the situation is still essentially of a constant-sum sort.

316 We were able to go beyond these restrictions slightly in the case of strictly
determined games, where it was unnecessary to introduce mixed strategies.

317 See T. C. Koopmans (ed.), Activity Analysis of Production and Allocation, chaps.
19, 20, and 22, John Wiley & Sons, Inc., New York, 1951.

318 The development now to be given is a slightly more rigorous restatement of the
argument of Sec. 15-10,

319 The nonnegative υ’s defined by Eqs. (16-2) could be interpreted as the “avoidable
losses” of each of Player 2’s pure strategies when used against Player 1’s optimal
strategy.

320 If the least algebraic element of the game matrix is mini.j aij, we may safely set E ≥
|mini.j aij|. Even this is too conservative a figure: E ≥ |maxi mini aij| = maximum of row
minima will do since the value of the game to Player 1 cannot be less than what he
would earn by playing his best pure strategy. See J. von Neumann and Oskar
Morgenstern, Theory of Games and Economic Behavior, 3d ed., p. 100, Princeton
University Press, Princeton, N.J., 1953, for a discussion of the “majorant” and
“minorant” games.

321 It will be noted that two minor changes have been made in rewriting the
constraints of (16-3). The direction of the inequalities has been reversed by changing an
algebraic sign. This was done to conform to the usual convention for a maximum
problem. More important, the sum of the probabilities has now been written as “less
than or equal to” 1 rather than as “equal to.” This too fits into the usual convention of
linear programming. It is permissible to make such a change: as long as V is positive,
Player 1 will never waste any of “the 100 per cent of probability granted to him,” instead
preferring to play whenever possible; if V = 0, he would be indifferent between xi +    +
xm = 1 or x1 +    + xm < 1, but the ratios of the x’s would still be determinate and there
will always be an optimal solution in which the equality is realized.

322 Von Neumann and Morgenstern, op. cit., p. 94.

323 Note that whenever the value of the game to Player 2 is actually negative, he
would rather not play at all and thereby earn zero; for this reason we require y1 +    + yn

≥ 1, so that he cannot fail to use all his probabilities. Of course, if —V = 0, the y’s might



exceed unity and lose their probability interpretation; their ratios would still be
determinate, and we can always confine our attention to the optimal y’s that add up to
exactly 1.

324 In Koopmans (ed.), Activity Analysis of Production and Allocation, p. 331.

325 Using this formulation, Dorfman (Activity Analysis of Production and Allocation,
chap. 22) has worked by the simplex method a 5 × 6 numerical problem. On p. 335, he
and H. Rubin have noted how information about the dual problem and about Player 2’s
optimal strategies can be gleaned from these computations. This is confirmed by the
dual relation of (16-5) to (16-6) and by the theory of the simplex method.

326 Instead of adding E to all aij so as to rule out V < 0, we can alternatively in (16-5)
and (16-6) define xm+1 = V + E = yn+1, where E is large enough to assure V + E > 0. This
will put E rather than zeros on the right of the constraints of (16-5) and (16-6) and will
require us to maximize – E + xm+1 = —Ex1 —    – Exm + xm+1 in (16-5) and to minimize -
E + yn+1 = – Ey1 –    – Eyn + yn+1 in (16-6).

327 The specialist may be referred to Activity Analysis of Production and Allocation,
p. 327, Theorem 6 of Gale, Kuhn, and Tucker, for a discussion of how an m × n
programming problem can be transformed into an (m + 1) × (n + 1) game of unknown
value. In recent years the advantage of the skew-symmetric game formulation, whose
value is known to be zero, has become apparent. See p. 372, Theorem 7, and p. 334,
Eqs. (14), of Dantzig.

328 Chap. 4, pages 100 – 104.

329 We could, of course, construct a super-super problem by combining together our
super problem and its identical-twin dual. But there is absolutely no point in doing so
since it can be easily verified that this simply leads to a copying down twice of our x and
y variables and of the aij’s and aij’s. A super-super-super problem would involve even
more pointless copying.

330 Activity Analysis of Production and Allocation, p. 328.

331 This section can be skipped.

332 D. Gale, H. Kuhn, and A. W. Tucker, “Linear Programming and the Theory of
Games,” in T. C. Koopmans (ed.), Activity Analysis of Production and Allocation;
George Brown and J. von Neumann, “Solutions of Games by Differential Equations,” in
H. Kuhn and A. W. Tucker (eds.), Contributions to the Theory of Games, Annals of
Mathematics Study 24, Princeton University Press, Princeton, N.J., 1950.

333 After we have converted the game matrix a into the super-linear-programming
problem, we can if we wish replace the normalization conditions x1 + . . . + xm ≤ 1 ≤ y1 +
. . . + yn by the single condition —y1 — . . . — yn + x1 + . . . + xm ≤ 0. This will suggest a



slight variant to (16-15)’s conversion of a into a skew-symmetric form, namely,

It can be verified that the optimal strategies for this new game (with the variables
newly numbered) have the property

where t = 1/(2 + V), provided that V ≥ 0. Hence, 2Yn+m+1/(1 – Yn+m+1) = V. This last
formula is valid for the case V = 0, but in this case the full set of optimal strategies is
given by

where ½ ≤ λ ≤ 1. If V < 0, the optimal strategies for the new game will be (y1, . . . ,yn;0,
... ,0;0), which yields only the optimal set of black strategies.

334 The case of zero requirements or zero prices can be ignored in the simple diet
problem because of the fact that the aij loadings of nutrient per unit of food are assumed
to be nonnegative. This means that any food of zero price can be assumed to have been
bought until the nutrient requirements have been fulfilled for any nutrient that it
positively contains. And any nutrient for which we have zero further requirements can
always be ignored. We should note, however, that changing the simple-diet problem to
one in which the prescribed requirements are both minimum and maximum will lead to
a problem in which the b’s or c’s do not agree in sign.

335 The dual variable xi corresponding to any ci = 0, must of course be zero since the
constraint in question does not bind. This contrasts with the dual variable yi

corresponding to any bj = 0 being equal to max (c1/aj1,c2/aj2, ... ,cn/ajn), it being
understood that no aji in the parenthesis can be zero.

It may be noted that if we may permit some aij’s to be negative, then we cannot so
easily rule out the case of zero b’s and c’s. So if we do permit some aij’s to be negative,
we had better assume from the beginning that the b’s and c’s are strictly positive. We
had also better be sure that the negative aij’s are not such as to lead to an infinite Z and
an infeasible dual.

336 G. Morton, “Notes on Linear Programming,” Economica, pp. 408—409,
November, 1951, gives a “Man-versus-nature” interpretation to this reduction of the diet
problem to a game. Von Neumann has also given this reduction of an m × n
programming problem with positive b’s and c’s to an m × n game with positive values.

337 For example, S. Perlis, Theory of Matrices, Addison-Wesley Publishing
Company, Cambridge, Mass., 1952; G. Birkhoff and S. MacLane, A Survey of Modern



Algebra, The Macmillan Company, New York, 1948.

338 (1) There is nothing holy about our original choice of axes. Any pair of mutually
perpendicular lines would have served us just as well. (2) In fact the axes don’t even
have to be mutually perpendicular. Any pair of nonparallel lines would do. Only instead
of moving perpendicularly, we move always parallel to the other axis. With these axes,
to find the point (a,b) we move out to the point a on the x1 axis and draw a parallel to
the x2 axis. Then find the point b on the x2 axis and draw a parallel to the x1 axis. Where
the parallels intersect is our sought-for point. (3) There are wholly different ways of
representing points in the plane. We could, for example, fix an origin and a base line in
the plane and represent any point by two numbers: r = its distance from the origin, and
θ = the angle a ray from the origin makes with the base line. These are called “polar
coordinates.”

339 The interested reader can reread the last footnote and ask himself what
corresponding qualifications need to be made in three dimensions. Hint: Any three lines
can serve as axes as long as they meet in some common point and don’t all lie in the
same plane.

340 We shall simply leave it at this. Some readers may know that there are
mathematical objects which don’t obey these simple so-called commutative and
associative rules. In fact, we have reversed the mathematicians’ way of doing things.
They would characterize n-dimensional vector space by these and similar properties
and then prove that we can think of vectors as ordered n-tuples of numbers. But for
economists these fine points are irrelevant.

342 A mathematician would use the maximal number of independent vectors to define
the notion of “dimension,” and he would do it without even talking about such things as
coordinates or components. But he then proves that any n-dimensional vector space is
really our Rn, or space of n-tuples, perhaps thinly disguised. We start with Rn because
it’s the space in which we are fundamentally interested.

341 Even if the columns are linearly dependent, there might be a solution, e.g., if c
should happen to be proportional to u, or a linear combination of u, w, and z, etc. But
we know there will be some c’s for which no solution exists if the columns are linearly
dependent.

343 The function f need be defined only for some special values of x, for example, for
nonnegative x, or for x equal to a whole number, or for x between 0 and 1.

344 Answer: 2, 3, and 7.

345 In anticipation, there is an inverse mapping x = T-1(y) which associates with each y
its “parent” x. If T is not 1:1, y may have many “parents,”

346 If you enter into the spirit of the mathematical game you will ask: How do you



know the mapping thus defined is linear? Proof:

347 Prove that ST is linear!

348 The set of vectors that can be so expressed is called the subspace spanned by the
columns of A. Hence the two cases occur according as b is or is not in, that subspace.

349 It is a theorem that the number of independent rows equals the number of
independent columns. Hence (1) the rank of a matrix can never exceed the smaller of
the number of rows or columns, and (2) a matrix and its transpose have the same rank.

350 Or else one of the columns of A (say the first) is φ, and then [1,0,0, . . . ,0] is a
nontrivial solution.

351 A 1 × 1 determinant is simply its single element. Thus |12|= 12.

352 Purely by accident this happens to have the same numerical value as A23.

353 This theorem (which we shall not prove here) is of course a vital one. The proof
is not hard, but it is lengthy, and it would involve us in the more usual definition of a
determinant as the sum of n! different terms, with appropriate signs, each term being a
product of n elements, one from each row and one from each column. From this
definition the desired result can be shown to follow. But the development is inevitably
long and detailed.

354 The elements of An+1 are (n + 1)st-“round” input coefficients. In a productive
system one would expect these to dwindle away to zero.

355 At this point we sweep a technical difficulty under the rug. How do we know that
there is a vector in the cone at minimum distance from c? The assertion sounds
plausible and is also true; but, since the proof is rather detailed, we leave the statement
with an appeal as to its plausibility.

356 We hasten to express our obligation to the bibliographers of linear programming,
input-output, game theory, and related topics. We have made liberal use of their work,
particularly that of Vera Riley and Robert Loring Allen and of Lily Atiyah and James H.
Griesmer.


	DOVER BOOKS ON MATHEMATICS
	Title Page
	Copyright Page
	Foreword
	Preface
	Table of Contents
	1 - Introduction
	1-1. HISTORICAL SKETCH
	1-2. OUTLINE OF THE BOOK

	2 - Basic Concepts of Linear Programming
	2-1. INTRODUCTION
	2-2. THE DIET PROBLEM
	2-3. A NUMERICAL EXAMPLE
	2-4. SOLUTION BY ELIMINATION
	2-5. GRAPHIC SOLUTION
	2-6. COMPARISON WITH THE THEORY OF CONSUMPTION
	2-7. SOME CONCEPTS AND GENERALIZATIONS
	2-8. ILLUSTRATION FROM THE THEORY OF COMPARATIVE ADVANTAGE
	2-9. THE EFFICIENCY FRONTIER
	2-10. ECONOMIC CONSIDERATIONS

	3 - The Valuation Problem; Market Solutions
	3-1. THE MATHEMATICAL DUAL
	3-2. THE DUAL OF THE INTERNATIONAL-TRADE EXAMPLE
	3-3. THE DUAL OF THE DIET PROBLEM
	3-4. THE SIMPLE CASE OF “PURE” FOODS
	3-5. GENERAL CASE OF MIXED FOODS
	3-6. THE DUAL AND DECENTRALIZATION

	4 - The Algebra of Linear Programming
	4-1. INTRODUCTION
	4-2. THE EXISTENCE OF SOLUTIONS
	4-3. THE STRATEGY OF LINEAR PROGRAMMING
	4-4. THE SIMPLEX METHOD, GENERAL ARGUMENT
	4-5. A DIGRESSION ON SIMULTANEOUS EQUATIONS
	4-6. THE SIMPLEX METHOD: FUNDAMENTAL THEOREMS
	4-7. GEOMETRIC INTERPRETATION
	4-8. THE SIMPLEX METHOD: FINDING AN OPTIMUM
	4-9. THE SIMPLEX METHOD: COMPUTATION
	4-10. THE SIMPLEX METHOD: AN EXAMPLE
	4-11. THE SIMPLEX METHOD: DEGENERATE CASE
	4-12. THE COMPLETE DESCRIPTION METHOD: INTRODUCTION
	4-13. THE COMPLETE DESCRIPTION METHOD: BASIC ALGEBRA
	4-14. COMPLETE DESCRIPTION METHOD: EXAMPLE
	4-15. DUALISM
	EXERCISES

	5 - The Transportation Problem
	5-1. A SIMPLE CASE
	5-2. APPLICATION TO COMPARATIVE ADVANTAGE
	5-3. OTHER INTERPRETATIONS OF THE PROBLEM
	5-4. IMPLIED VALUES: THE DUAL
	5-5. THE DUAL OF THE INTERNATIONAL-TRADE EXAMPLE
	5-6. TECHNICAL NOTE
	EXERCISES

	6 - Linear-programming Analysis of the Firm
	6-1. THE LINEAR-PROGRAMMING CONCEPT OF THE FIRM
	6-2. An Automobile Example.
	6-3. AN INCREASING-COST EXAMPLE
	6-4. A CHEMICAL EXAMPLE
	6-5. A SUIT-MANUFACTURING EXAMPLE
	6-6. SOME GENERAL CONCLUSIONS

	7 - Application to the Firm; Valuation and Duality
	7-1. MARGINAL PRODUCTIVITY IN LINEAR PROGRAMMING
	7-2. DETERMINATION OF RESOURCE VALUES
	7-3. DUALISM OF PRICE AND PROGRAMMING
	7-4. DUALISM IN THE CHEMICAL EXAMPLE
	7-5. CONCLUSIONS
	7-6. TECHNICAL POSTSCRIPT

	8 - Nonlinear Programming
	8-1. THE PROBLEM OF NONLINEAR PROGRAMMING
	8-2. THE KUHN-TUCKER OPTIMALITY CONDITIONS
	8-3. SUFFICIENCY OF THE KUHN-TUCKER CONDITIONS
	8-4. THE AUTOMOBILE COMPANY AGAIN
	8-5. LESS AND MORE GENERAL FORMULATIONS
	8-6. COMPARISON WITH THE CONVENTIONAL THEORY OF PRODUCTION

	9 - The Statical Leontief System
	9-1. INPUT-OUTPUT FLOW TABLES
	9-2. A LINEAR-PROGRAMMING INTERPRETATION
	9-3. SOLVING AN INPUT-OUTPUT SYSTEM
	9-4. THE PRODUCTION POSSIBILITY SCHEDULE
	9-5. A THEOREM ON SUBSTITUTION
	9-6. PRICES IN THE LEONTIEF SYSTEM

	10 - The Statical Leontief System �⠀䌀漀渀琀椀渀甀攀搀)
	10-1. REAL OR NONPRICE RELATIONS
	10-2. COST AND PRICE RELATIONS
	10-3. QUANTITATIVE MEASUREMENT OF A LEONTIEF MODEL
	10-4. CONSOLIDATION AND AGGREGATION
	10-5. LEONTIEF’S CLOSED-END SYSTEM
	10-6. SUBSTITUTABILITY IN LEONTIEF SYSTEMS
	10-7. EMPIRICAL-ALGEBRAIC PROPERTIES OF A LEONTIEF SYSTEM
	10-8. INDECOMPOSABLE AND DECOMPOSABLE GROUPS OF INDUSTRIES
	10-9. A NUMERICAL EXAMPLE

	11 - Dynamic Aspects of Linear Models
	11-1. INTRODUCTION AND OUTLINE
	11-2. THE RAMSEY MODEL
	11-3. GENERALIZED LEONTIEF SYSTEMS
	11-4. THE VON NEUMANN MODEL
	11-5. A NEOCLASSICAL MODEL

	12 - Efficient Programs of Capital Accumulation
	12-1. INTRO DUCTION
	12-2. INTERTEMPORAL EFFICIENCY CONDITIONS IN THE SMOOTH CASE
	12-3. INTERTEMPORAL EFFICIENCY IN LEONTIEF MODELS

	13 - Linear Programming and the Theory of General Equilibrium
	13-1. EQUILIBRIUM THEORY AND LINEAR ECONOMICS
	13-2. THE WALRAS-CASSEL MODEL
	13-3. EXISTENCE OF SOLUTIONS
	13-4. RIGOROUS PROOF OF EXISTENCE OF SOLUTIONS
	13-5. COMPARISON WITH THE NEOCLASSICAL MODEL
	13-6. VON NEUMANN’S MODEL OF EQUILIBRIUM GROWTH
	EXERCISES

	14 - Linear Programming and Welfare Economics
	14-1. INTRODUCTION AND OUTLINE
	14-2. EFFICIENT PRODUCTION PATTERNS
	14-3. SOME SIMPLE MATHEMATICS: A DIGRESSION
	14-4. EFFICIENCY AND LINEAR PROGRAMMING
	14-5. COMPETITIVE EQUILIBRIUM AND EFFICIENCY
	14-6. COMPETITION AND LINEAR PROGRAMMING
	14-7. THE BASIC THEOREM OF WELFARE ECONOMICS
	14-8. GENERALIZATIONS

	15 - Elements of Game Theory
	15-1. INTRODUCTION
	15-2. DUOPOLY: AN OPPOSITION OF INTERESTS
	15-3. BASIC DEFINITIONS AND CLASSIFICATIONS
	15-4. STRATEGIES AND THE PAY-OFF MATRIX
	15-5. THE EVALUATION OF STRATEGIES AND THE WORTH OF A GAME
	15-6. STRICTLY DETERMINED GAMES AND SOME APPLICATIONS
	15-7. CHANCE AND EXPECTED VALUES
	15-8. MIXED STRATEGIES; GAMES WITHOUT SADDLE-POINTS
	15-9. GRAPHIC ANALYSIS OF SIMPLE GAMES
	15-10. A GENERAL METHOD OF SOLUTION
	15-11. NON-CONSTANT-SUM GAMES AND MANY-PERSON GAMES
	15-12. GAME THEORY AS AN ECONOMIC TOOL

	16 - Interrelations between Linear Programming and Game Theory
	16-1. INTRODUCTION
	16-2. CONVERSION OF A GAME INTO A LINEAR-PROGRAMMING PROBLEM
	16-3. ALTERNATIVE METHODS OF CONVERSION
	16-4. CONVERTING A LINEAR-PROGRAMMING PROBLEM INTO A GAME
	16-5. FINAL REVIEW AND ELABORATION
	16-6. CONVERTING SPECIAL PROGRAMMING PROBLEMS INTO NONSYMMETRIC GAMES

	Appendix A - Chance, Utility, and Game Theory
	Appendix B - The Algebra of Matrices
	Bibliography
	Index



