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The two central problems of the theory that this monograph pre- 
sents are (1) the explanation of tbe prices of commodities resulting 
from the interaction of the agents of a private ownership economy 
through markets, (2) the explanation of the role of prices in an optimal 
state of an economy. The analysis is therefore organized around the 
concept of a price system or, more generally, of a value function 
defined on the commodity space. 

The first solutions of the two preceding problems were achieved by 
L. Walras [I]  and V. Pareto 111. [2], [31, [4] respectively, but neither 
the masters of the school of Lausanne nor their disciples for several 
decades gave a very rigorous account of their ideas. For example, the 
knot of the first problem was thought to be cut by the bold assertion 
that a system of equations whose number equals that of its unknowns 
can be solved. Only in 1935-36 did A. Wald [1], [2], [3] publish the 
first rigorous analysis of the problem of equilibrium. A little earlier 
J. von Neumann 111. [2] had begun to develop, in different contexts, a 
mathematical tool which was eventually to play an essential role in 
that area under the definitive form as a fixed point theorem it received 
from S. Kakutani [I]. The value of that tool for economlu was 
demonstrated in 1950 by J. Nash's [I] proof that every finite n-person 
game has an equilibrium point (a concept whose origin can be traced lo 
A. Cournot [I], Chapter 7). As for the second problem, the first 
rigorous study, using convex sets properties, of the equivalence be- 
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tween an optimum and an equilibrium relative to a price system was 
done by T .  C. Koopmans [I] in the context of linear activity analysis 
of productive efficiency. The revarch of the last decade reported in 
this volume started from these cootrihutions. But it is hardly neces- 
sary to add that many other currents of ideas have, directly or in- 
directly, influenced the substance or the form of that research. Out- 
standine amone t h e x  influences has been the work of 1. von Neumann v 0 

and 0. Morgenstern [I]  which freed mathematical economics from its 
traditions of differential calculus and compromises with logic. 

The theory of value is treated here with the standards of rigor of 
the contemporary formalist school of mathematics. The effort toward 
rigor substitutes correct reasonings and results for incorrect ones, but 
it offers other rewards tw. I t  usually leads t o  a deeper understanding 
of the problems to which it is applied, and this has not failed to happen 
in the present case. I t  may also lead to a radical change of mathe- 
matical tools. In the area under discussion it has been essentially a 
chanee from the calculus to convexitv and towloeical ornoerties. a - . -  . .  
transformation which has resulted in notable gains in the generality 
and in the simplicity of the theory. 

Allegiance to rigor dictates the axiomatic form of the analysis where 
the theory, in the strict sense, is logically entirely disconnected from 
its interpretations. In order to bring out fully this disconnectedness, 
all the definitions, all the hypotheses, and the main results of the 
theory, in the strict sense, are distinguished by italics; moreover, the 
transition from the informal discussion of interpretations to the formal 
construction of the theory is often marked by one of the expressions: 
"in the language of the theory.'' "for the sake of the theory," "for- 
mally." Such a dichotomy reveals all the assumptions and the logical 
structure of the analysis. 1 t  also makes possible immediate extensions 
of that analvsis without modification of the theorv bv simole reinter- ~, . . 
pretations of concepts; this is repeatedly illustrated below, moat 
strikingly perhaps by Chapter 7 on uncertainty. 

T o  keep the cost associated with such an axiomatization a t  a mini- 
mum, the theory is consistently set forth in the simplest possible 
mathematical framework even when immediate some 
of which will be mentioned in notes, are available. In  addition, the 
small amount of mathematics nece-v for a full understanding of - 
the text (but not of all the notes) of Chapters 2 to 7 is given in the 
first chapter in a virtually self-contained fashion. In another respect 
the reading of this monograph will be facilitated by the excellent intro- 
ductions to its problems provided by T. C. Kwpmans' [2] first essay 
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and by R. Dorfman, P. A. Samuelson, and R. M. Solow's [I] Chapters 
13, 14. 

Before concluding, must one remark that the contents of this vol- 
ume-which have been taught a t  the Univ~rsity of Chicago and a t  
Yale University since the spring of 1953, and presented as a Doctor 
of Science thesis a t  the University of Paris in June 1956-do not try 
to exhaust the theory of value? Several important questions left 
unanswered are emphasized below. One may stress here the certainty 
assumption made, a t  the level of interpretations, throughout the analy- 
sis of Chapters 2 to 6, according to which every producer knows his 
future production possibilities and every consumer knows his future 
cbnsumption possibilities (and his future resources if resources are 
privately owned-otherwise only the future total resources. need be 
known). This strong assumption is weakened, albeit insufficiently, in 
the last chapter. 

The Cowles Foundation has provided an uncommonly favorable 
environment for the research from which this monograph evolved, 
and I wish to express my gratitude to Alfred Cowles, its founder, and 
to Tjalling C. Kwpmans and Jacob Marschak for the constant in- 
terest they have taken in my work. I have an exceptional debt to 
Kenneth J. Arrow, for several of the main ideas of this volume have 
been advanced either independently (K. J. Arrow [I], G. Debreu [I]).  
or jointly (K. J. Arrow and G. Debreu [I]) by him and by me. Tjalling 
C. Kwpmans, Lionel W. McKenzie, Jacob Marschak, Roy Radner. 
and Robert M. Solow have read the whole manuscript or extensive 
parts of it, and I owe many searching comments to them. My concern 
for the theory of the school of Lausanne arose when I first met it in 
the treatise of Maurice Allais 111 and, a little later, in the book of 
Fransois Divisia 111. I also thank them. Georges Darmois. Wassily 
Leontief, Pierre Mass&. Renb Roy, and James Tobin for having greatly 
helped to create the conditions which made this investigation possible. 
Finally I gratefully acknowledge the financial support of the Office of 
Naval Research and the Social Science Research Council in the writing 
of this text, of the Centre National de la Recherche Scientifique, the 
Rockefeller Foundation, and the RAND Corporation in the pre- 
liminary work that led to it. 



CHAPTER 1 

MATHEMATICS 

This chapter presents all the mathematical concepts and results which 
will be used later (in notes, however, additional concepts and results will 
be freely used). Its reading requires, in principle, no knowledge of - .  
mathematics. 

The exnosition starts from the conced of a set of elements and araduallv - 
introduces, by means of definitions, concepts of increasing complexity. 
Simultaneously results concerning those concepts are stated. Sections 1.2, 
1.3, and 1.4 stay at a high level of generality; they deal respectively with 
sets, functions and correspondences, and preorderings. Section 1.5 is a - 
crucial step in the exposition; it introduces (real) numbers. To prepare 
for their definition it is necessary to introduce earlier the concepts of a 
binary operation (in 1.3.j) and of a least upper hound (in 1.4.g). From the 
set R of (real) numbers, one builds up the Euclidean space of m dimensions, 
R". Section 1.6 centers on the concept of a convergent sequence of 
points of R". Sections 1.7 and 1.8 are respectively devoted to the concepts 
of continuity of functions and of correspondences. Section 1.9 is built on 
the definitions of the sum of two elements of R' and of the product of 
an element of R" by a (real) number; it cohsiders R' as a vector space. 
Section 1.10 studies the concept of fixed point of a correspondence. 

The method of exposition chosen parallels that of contemporary mathe- 
matics; one of its aims is to show mathematical concepts in their proper 
light. This is of invaluable help in the formulation and the solution of 
economic problems. 

It was stated that the reading of this chapter requires no knowledge of 
mathematics. This is, admittedly, true only "in principle." It certainly 
requires an ability to think abstractly, which is usually developed through 
the practice of mathematics, and an ability to assimilate in a short time 
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1.2 THEORY OF VALUE 

a certain number of new concepts the motivation for which may not always 
be clear at first. On the other hand, the expert will notice that the logical 
foundations of set theory and even an elementary knowledge of the 
integers are taken for granted. 

The conceptsand results which will be presented form the strict minimum 
necessary for a complete understanding of later chapters. For example, 
theorem (6) of l.6.n (every subset of R" contains a dense countable set) 
is necessary for the proof of existence of a utility function in Chapter 4, 
section 6; theorem (16) of 1.9.x (the Minkowski bounding hyperplane 
theorem for convex subsets of R") is, in essence, the central result on 
economic optimum which is proved in Chapter 6, section 4 ;  theorem (2) of 
1.LO.d (the Kakutani fixed point theorem for correspondences from a 
convex subset of R" to itself) is, in essence, the central result on economic 
equilibrium which is proved in Chapter 5, sections 6 and 7. 

Furthermore those concepts and results are almost all among the most 
basic of mathematics, and their usefulness goes far beyond the applications 
which are made of them below. 

Yet the reader may lack the time to read this entire chapter and the 
proofs of the economic theorems for which it prepares. The text of the 
following chapters has therefore been presented in such a way that the 
concepts and results stand out clearly and their meaning can be grasped 
with still less mathematical preparation. 

In this chapter, proofs of assertions are not given. In many cases the 
reader could reconstruct them; it might then be a valuable exercise for 
him to do so; hints will sometimes be provided. When this reconstruction 
offers difficulties the locution "One can prove.. ." or some explicit 
warning is used. Small-type passages contain examples and heuristic 
comments. They are irrelevant for the logical development of the text 
proper and could be omitted entirely; it is therefore permissible, in them, 
to draw upon an intuitive,knowledge of the physical world, and to use 
undefined simple mathematical terms like distance, curve, rectangle, . . . 

1.2. SETS 

a. A set S of elements is also a collecrion of elements; sometimes one 
says a class of elen~ents. 

Ex*~s~rs :  (I) The set A of &nr available to n certain social agent and amng 
which he has to choose. (2) The set Nofposiliue inleprers, or whole numbers, 
{I, 2 ,3 , .  . .) (braces will denote sets). ' 

- 
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MATHEMATICS 1.2 

b. The sets which constitute the universe of discourse must always be 
explicitly listed at the outset. 

EXAMPLE: A scxial system may be described as composed of a =-in numkr m of 
agents. Any one of these agents may k indicated by a positive integer i, one of the 
positive integers 1.2, . . . , m. For any one of them, say the ith one, a set AS of available 
actions is given. The universe of direourre consists of them sets A,, . . . ,Am. 

c. z E S expresses that z denotes a certain element of S; it is read: 
z belongs to S, or z is an element of S, or z is in S, or S owns z. 

EXAMPLE: a, 6 A, indicates that o, is an action available to the ith agent. 

d. If I, y denote elements of S, then z = y (z equals y) expresses that 
they denote the same element, and z # y, (z d~zerent from y) expresses 
that they denote different elements. 

e. Let 9 be aproperty which any element z of S has or does not have. 
(z E S I z has property 5') denotes the set of all the elements of S which have 
property 5'; it may be read: the set of z in S such that z has property 8. 

E u u ~ r r :  If A is the s t  of actions available to an agmt and o' is an element of A, 
the set of tho= available netions which that agent considen more de~irablc than o' is 
(0 E A 1 o is preferred to a'). 

f. A set X of elements of S is called a subset of S; this is denoted by 
X c S ( X  contained in S). The notation X c S does not exclude the 
possibility that Xis equal to S. 

EXAMPLE to emphasize the b t  point: N c N (the set of positive integm). 

g. Careful distinction must be made between the element z of S and 
the subset {z) of S having the only element z. 

k w u :  The aucnian z Xis  equivalent to the assertion (z) c J, 

h. A property 5' defines a subset of S, namely the set of elements of S 
having that property. When no element of S has the property 9, one 
says that 9 defines the empty subset of S denoted O. This convention is 
necessary if a property is always to define a subset of S. 

EXAMPLE: In the m m p k  of 1.2.e. (a A I o is preferred to 0'1 is always a subset of A. 
If a' happens to be the most desirable action in A, then ihe above set is the cmpty 
subset of A. 

i. If X is a subset of S, and z an element of S, then z t X expresses 
that z is not an element of X (z does not belong to X). The elements of S 
which do not belong to X form a set called the complement of X in S and 
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1.2 THEORY OF VALUE 

denoted CSX. When there can be no ambiguity about S one says the 
conzplement of X, and one writes CX. 

j. Let X and Y be two subsets of S. One defines X u Y, the union of 
X and Y, as the set of elements of S belonging to X or to Y (or to both). 
X n Y, the intersection of X and Y, is the-setof elements Of S belonging 
to both Xand Y. If Xand Y have no element incommon.i.e..if X n Y = 0. 
they are said to be disjoint 

EX*MPLIS can easily be eomtructed by drawing two (overlapping or non-overlappin@ 
regions A', Y in a plane S. 

k. More generally, let X be a set of subsets of S. The union of these 
subsets, UX, is the set of elements of S which belong to at least one X 

xez 
in X. Their intersection, n X ,  is the set of elements of S which belong to 
all the X in X. XEI 

I. A collection X of subsets of S forms a partition of S if they are 
pairwire disjoint (i.e., if any two different subsets belonging to X are 
disjoint) and if their union is S. That is, if each element of S belongs to 
one and only one of the subsets in X. A partition of a set corresponds to the 
familiar idea of a daui6sltion of b J c m c n ~  

m. Consider two sets S and T; the set of puirs (z, y) where z E S and 
y T, is called their product S ,x T. The order in which z, y and S, Tare 
written in (2, y) and S x T is essential. 

EXAMPLE: Let S be the lower horizontal edge of a &angle dnwn in a plane and 
Tits left w i d  edge. If z is a point of S, y a point of T, the pair ( z , ~ )  may be 
visualired as tile i n i d o n  point of the vertical straight line through z and the 
horizontal straight line through y. The product S x Tis then visualized as the region 
covered by the rectangle. 

n. More generally, consider m sets S,, . . . , S., . . . , S,. The set of 
m-tuples (z,, . . . , z,, . . . , z 3 ,  where zj c S, for every i (= 1, . . . , m) is 

the product S, x . . . x S, x . . . x S,, also denoted TI S.. The order 
i-l 

in which the z, and the Si are written is again essential. The m-tuple 
(z,, . . . , xi, . . . , 2,) is denoted by (z,), and z, is called the ith coordinate 
(or the itb component) of (2,). 

Ex~mre:  Consider a social system mnsisting of m agents. The ith agent must 
shoolc an action a, in a given set Ai of actions available to him. When each agent has 
made his choice, the outmmc of the social activity is determined. Thus social activity 

m 
is characterized by an m-tuple (ot), an e l e m t  of H A , .  

i-L 



MATHEMATICS 1.3 

1.3. FUNCTIONS AND CORRESPONDENCES 

o. Let Sand T be two sets; if with each element s e S is associated one 
and only one element y T, a function Jfrom S to T is defined. f i s  also 
called a rronsformution of S into T. z is the variable, y is the image of z 
by f, or the transform of z by f, or the ~:olue off  at z, and one writes 
y =/(r) (read y equals Jof z), or ;r -,f(z). 

EX~MFLE: Let A be the set of action$ available to a certain agent. If the choice of 
a in A determines the amount of money (a positive integral number of cents) this agent 
receives, a function from A to Nir defined. 

b. Consider in S x T the set of elements (z, y) for which y = f(z). 
This subset of S x T is called the poph of the function f. 

EXAMPLE: In the example cf 1.2.m. the graph of a fundionjfrom S t o  Tir visualized 
as a set of points of the rectangle such that the vertical through an arbitrary point z 
of S intersects it at exactly one point. 

c. Let X be a subset of S; take the image y = f(z) of each z E X .  The 
set of the images so obtained is a subset of T called the imuge of X and 
denotedf(X). If f(S) consists of one element of T, in other words, if all 
the elements of S have the same image in T, the function f is said to be 
constant. If f(S) = T, in other words, if each element of T is the image 
of some element of S, f is said to be a function from S onto T. 

d. Conversely, let Y be a subset of T; the set of z e  S which have their 
-1 

images in Yis a subset of Scalled the inuerse image of Y and denoted f (Y). 

EXAMPLE: If a curve is taken as graph offin the example of 1.3.b, a proper choice of 
X, Y givesillustrationsoftheconccptsof 1.3.cand 1.3.d. 

It is easy to prove that: 

(I) if J IS o Junction from o set S to o set T, and if 9 is o collection of 
-1  -I 

-ubsetsof T. then f ( n Y )  = n f ( Y ) .  
I'eq YEW 

e. A y Tmay be the image of several, or of one, or of no element of S. -. 
When for each y F T the set f (I.) consists of exactly one element, in other 
words, when each y e Tis associated with one and only one element of S, 
f is said to establish a one-to-one correspondence between S and T. This 
concept will be further discussed in 1.3.11. 

j: Let f be a function from a set F to a set T, and let G be a set containing 
F. A function g from G to T i s  said to be an extension offto G if one has 
/(z) = g(z, for every z in F. 



1.3 THEORY OF VALUE 

g. Consider n sets S,, . . . , S,, . . . , S ,  and their product rr Si. The 
j 

function which associates with the generic element (x,) of S, its ith 
j 

coordinate xi in S. is called the ith projection (or the projecrion on S,). 
The image of an element (resp. of a set) by a projection function is called 
the projection of that element (resp. of that set). 

h. If with each element z in a given set S is associated a non-empty 
subset Y of a given set T, a function p, from S to the set of subsets of T 
is defined. It is sometimes preferable to consider as a correspondence 
from S to T. One writes Y = p,(z). 

1 
EXAMPLES: (I) Let f be a function fmm a set S onto a set T; for every y r T , / U  

-1 
is a nanwnpty subsel of S, h a w  f is a mrre~pondenct from T to S. (2) Let A be 
the set of opriori available actions of a social agent. Supposc that his environment 
is completely spcificd by an clement c of a r t  E. His environment restricts his freedom 
of action, it., the element e dctcrmioes thc subwt of A to which his choice is actually 
restricted. A cornspondcncc from E to A is thus intraduecd. 

i. The graph of the correspondence p, is a subset of S x T, namely 
{(z, Y) S x TI y E @)I. 

~ M P L E :  Consider the eau of the rsctanglc alnady used to illustrate the graph of 
a function in 1.3.b: the graph of mmspondencs fmm S to T i s  visualized as a set 
of points of the rectangle: the intersstion of this set with a vertical through an 
arbitrary point 2 of S i s  e noncmpty set (the projaion of which on Tir dr)). Scc also 
fig. 2.a and %. t b  of 1.8. 

j. A binary operation r on a set S associates with each pair (z, y) of 
elements of S (the order of which is essential) a uniaue element z of S. 
One writes z = z T y. Thus a binary operation on S is nothing else than 
a function from S x S to S. 

EXMLES: (1) The addition of two positive integen is a binary operation + on N. 
(2) So is the multiplication. of two positive integers. (3) Given two positive integers 
z, y, the expression z. &note the product of y positive integcn equal to s; thus a 
binary operatton A on N f a n  be dcfincd by z - y = zJ. 

k. A binary operation r on S is said to be a.ssociati~.e if for all z, y, z 
in S one has (ZT y) T z = z T (y T I). It is said to be commufariue if for all 
z,y i n S o n e h a s z r y  = y r z .  

EXAMPLES: (I) Both + and . on Narc associative and mmmutative. (2) - on N is 
neither assccktivc nor commutative. 

I. Consider two binary operations I and T defined on S. The first is 
said to be distributive with respect to the second if for all z, y, r in S one 
has z ~ ( z r y ) = ( z ~ z ) ~ ( z ~ y ) .  

6 



MATHEMATICS 1.4 

EXAMPLES: (I) On N, . ir d,rtributive with respect to +. (2) But + is not distributive 
with respect to . 

rn. A sequence (z', x2, 21,. . . , xq,. . .) of elements of a set S is an 
intuitive concept. Precisely, it is defined as a function from N to S. It will 
he denoted by (e). 

n. Intuitively, a set S is countable if it has at most as many elements as 
N. In a precise fashion, a set S is defined as countable if it can be put in 
one-to-one correspondence with a subset of N. When the countable set S 
is not empty one can always choose the corresponding subset of N so that 
it owns 1. and so that. whenever it owns two vositive inteeers. it owns - 
every positive integer between them. The image of x s S in the corre- 
spond;nce is then called the rank of z. Thus a set is countable if and only 
if all its elements can be ranked. no two different elements havine the . 
same rank. One can prove that 

(2) The product o f m  countable sets is countable. 

EXAMPLES: (1) N x N is countable. (2) However, one can prove that the set of 
subsets of N is nor countable. 

1.4. PREORDERINGS 

a. L e t 9  be a binary relation in which any two elements z, y  of S (the 
order of which is essential) stand or do not stand. If they do, one writes 
x 9 y .  

EXAMPLLS: (I) Let G be the set ofsubretr o fa  set S. The rclation SI on G mighl k "is 
contained in," then X B  Y would be equivalent to X c Y: (2) or the relation B might 
k "does not intcrstct," then X S  Y would be equivalent to X n Y = B. (3) Let A k 
the set of actions available to an agent; the relation S might k "is not preferred to." 
(4 )  Consider the relation "is not a successor of" on Nand denote it by <. 

b. The last relation corresponds to the natural ordering of the elements 
of N. To define with full generality an ordering relation on a set, one 
preserves certain properties of 2 on N. In a precise manner, a binary 
relation W on S which satisfies 

(1) z S z for every z c S (reflexivity), 
(2) "x 9 y and y .% z" implies "z  9 z" (transitiuity) 

is called a preordering (often also a quasi-ordering). When, in addition, 
"z W y and y W z" implies "z = y," the relation is called an ordering. 
Often the symbol5 will he used (in place of 3) to denote a preordering. 
By definition, y  > z means z 5 y. 

7 
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EXAMPLE: (1) Consider the set N partially ordered by the relation "is a divisor of,'' 
and let S be {I, 2, 3, 4, 5). S has three ma-.hal elements, 3, 4, 5, no greatest element, 
one minimal element, 1 ,  and one least element, 1. (2) Consider a set A of actions 
~~mplete ly  preordered by the relation "is not preferred to." If o is an action to which 
none is preferred, o is a greatest element of A (which need not be unique: there may be 
other greatest elements, all indirerent to 0). 

g. Let S be a preordered set, and consider a subset X of S. An element 
y s S such that for all z L X one has z 5 y (resp. z t y) is called an upper 
bound of X (resp. a lower bound of X). Consider the set Y of the upper 
bounds of X; the set Y has the property: "y c Y and Y' 5 y" implies 
"y' e Y." A least element of Y is a leasf upper bound of X. If X has a 
greatest element y, y is clearly a least upper bound. The concept of 
Rreatest lower bound of Xis similarly introduced. 

h. In the next section, the requirement will be put on a certain ordered 
set that every non-empty subset wluch has an upper bound bas a least 
upper bound. 

i. Let S be a preordered set. A subset I of S is an interval if "z * I ,  
y e I, and z < 2 5 y" implies "i s I." Let a,  b be two elements of S such 
that a < b;   articular cases of intervals are: - 

[ a , b ] = { z e ~ l a s z ~ b ) ,  ] a , b [ = { z ~ S l o < z < b ) ,  

[ a , b [ = { z ~ S l a s z < b ) ,  ] a , b ] = { z ~ S l a < z < b ) ,  

[ a , - [ =  {Z ~ ~ l a s z ) ,  I - , b ]=  { z e S l z ~ b ) .  

j. Denote by S,, . . . , Si, . . . , S, !n preordered sets, by 5 the pre- 

ordering on St,  by zj a generic element of S,. A preordering < is defined ." - 
on the product S = H S ,  by (2,) j (2:) if xi 5 2: for every i (= 1, . . . , m). 

i - 1  
According to the general notation of 1.4.c, (x,)< (2:) means that (a) for 
all i, z , ~  z: ond (B)  not for all i, z: 5 z,, i.e., ( p )  for at least one i, 

xi < x i .  The notation (z,) << (2:) will express that, for all i, z ,  < x:. With 
i 

the exception of trivial cases, the preordering 5 on S cannot be complete. 

EXAMPLE: S& 1.9.7. 

X. Let Sand  T he two preordered sets, and denote by 5 (resp. 5 )  the 
S T 

preordering on S (resp. on n. A function f from S to T is said to be 
increasing (or to be a representation of S in T )  if "z y z"' implies 
"f(z) f (z')" and "z < 2"' implies "f(z) < f (z')." 

S T 

9 
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a. The set R of ljinite, real) numbers is defined as a set of elements 
having the following properties (all familiar, perhaps with the exception 
of the last one). 

b. There are on R two associative and commutative binary operations 
(addition +, and multiplication .). There is an element, 0, which, ifadded 
to any element z, gives 2. Any element z has a negative, i.e., an element 
which, ifadded to z ,  gives 0. There is an element, I, which ifmultiplied by 
any element z, gioes z. Any element z different from 0 has an inverse, i.e., 
an element which, if mulfiplied by z ,  giues 1. Multiplication is distributive 
with respect to addition. 0 is different from 1. 

c. There is on R a complete ordering denoted (. I f  r is any element 
a n d z ( y , t h e n z + z < y + z .  I j O ( z a n d O < y , r h e n O z . y .  

d. Finally, every non-empty subset X of R which has an upper bound has 
a least upper bound. 

e. A few definitions and further (derived) properties of R will now be 
added. z + y is the sum of z and y, z . y is their product. If z,, . . . , 

... ,, , z ,  are n elements of R, their sum is denoted 2 z,. The product of 
j-1 

n elements equal to z is denoted z" and called thenthpower of z. 0 (resp. 1) 
is the only element having the property which defines 0 (resp. I). Any 
z R has a unique negative denoted -2. One writes z - y for z + (-y). 
The corresponding binary operation is called subtraction, and the result 
dfyerence. Any z E R different from 0 has a unique inverse denoted 112. 
One writes z/y for z .  I/y. The corresponding binary operation is called 
division, and the result quotient. For any z R one has 0 .  z = 0, and 
(- 1). z = -2. The multiplication dot will now always be dropped. 

1: x < y (resp. z < y) is read z less t h o r  equal to y (resp. z less than y). 
z 2 0 (resp. z < 0) is read znon-positive (resp. znegoiive). The expressions 
are transposed in an obvious way if the ineyuzlity sign is inverted. One 
has 0 < 1. 

g. A greatest (resp. least) element of a subset X of R, if it exists, is 
unique (1.4.f); it is d i e d  the maximum (resp. minimum) of Xand denoted 
Max X(resp. Min X). One defines the ubsolute value lzl of a number z by 
izl = Max {z, -21, and the sign of a number z # 0 by sign z = z/lzl. 
One has lz + YJ 5 lzl + Iyl. 

h. A least upper bound of a subset Xof  R, if it exists, is unique (1.4.f); 
it is called the supremum of X and denoted Sup X. Every non-empty 

10 
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subset X of R which has a lower bound has a unique greatest lower 
bound called the infrmum of X and denoted Inf X. 

The simplest rxAMeLr is provided by the "on-empty interval I = lo, b[. It has no 
maximum, its supremum is b. Its minimum, and therefore (1.4.g) its infimum, is a. 
See also example (2) of 1.5.0. 

i. The infimum (resp. supremum) of a real interval is also called its 
origin (resp. extremity). The length of an interval with origin a and 
extremity b is b - a. 
j. By repeated addition of 1 to 0, and repeated subtraction of 1 from 0, 

one obtains the set J of integers (non-negative and non-positive) as a 
subset of R. 

k .  A real number of the formplq, wherep c J, q s J, and q # 0, is called 
a rational number. The set of rationals, a subset of R, is denoted by Q. 

(I)  The set Q is countable 

(use (2) of 1.3.11 to prove that J, then Q is countable) and satisfies all the 
axioms in the definition of R with the exception of the last one. (For 
example, one can prove that the set {z s Q I xz < 2) has no least upper 
bound in Q, using the fact that there is no rational y  satisfying y2 = 2.) 

I. One can prove that the set R is nor countable. One can also prove that 

(2) i f x ,  y  belong to R and satisfy x < y, there is a rational r such that 
z < r < y .  

m. Given a number z >  0 and a positive integer n, one can prove that 
there is a unique y > 0 such that y" = z. One calls y  the nth root of z, 
and one writes y = z"". 

n. Consider a sequence (*) of numbers. Intuitively, one says that (*) 
conuerges (or tends) to the number P if ?? is as close to z0 as one wishes 
provided that q is large enough. In a precise fashion, (a?) Eonverges to z" 
if, for any number E > 0, there is an integer q' (depending on E )  such that 
p > q' implies lzq - $1 < E.  One writes xu- P. 

o .  A sequence which tends to a number is called convergent. It is clear 
that "zq-zn and ro+ yo" implies "r" yo"; thusa convergent sequence 
tends to a unique number called i t s  limit. 

E x m e ~ w :  (I) The sequence ((-IPiy) tends to 0 since, given r > 0, making llq < 6 
is equivalent to making y l i r .  (2) Note that if Y is the set (I l l ,  112,. - , 117, . . .I, 
then X has no minimum and inf . = 0. i3 )  The sequences ((-I?) and (7) are not 
convergent. 

p. The elements of R are also called poinrs. The set R may be visualized 
as rollowr. On a horizonml rlraighl Bnt. v+o differcur poinrs are chosen; they will 

1 1  
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represent 0 and I. 1 k i n g  to the right of 0. An element z of R is then represented by a 
point of the straight line at distance Jrl from 0, to the right (resp. left) of0 i f r  is positive 
(resp. negative). 

q. The letters N, J,  Q, R have throughout this volume the meanings 
introduced respectively in 1.2.a, 1.5.j, 1.5.k, 1.5.a. 

a. The set R m  is the product of n? sets equal to R, i .e ,  R x . . . x 
R x . . . x R. According to  the general definitions of 1.2.11, an element, 
or point, z of Rm is an rn-tuple of real numbers z = (23 = (z,, ..., 
z,, . . . , 2,). The ith number in the m-tuple is the ith coordinate of z. 

b. The set Rz may be visualized as follows. Draw in a plane a horizontal and a 
vertical straight line. The first (resp. second) set R in R X R will be represented by 
the horizontal (resp. vertical) line by choosing 0 at the intersection point, and 1 
arbitrarily to the right of 0 (resp. above 0). Then an element (r, y) of Rz is represented 
by the intersection point of the vertical through r and the horizontal through y. 

c. To visualize R', consider, in ordinary space, the west-earl, the south-north, and 
the vertical straight line through a point 0. They will reprewnt respectively the first, 
the second, and the third set in R x R x R. An element (z, y, r )  of RY is represented 
by the intenection point of the vertical souU1-norU1 plane through z,  the vertical 
wet-art plane through y, and the horizontal plane through I. 

d. Rm is called the m-dimensional Euclidean space. Let I be a subset 
of the set of the first m positive integers {I,  2, . . . , m). The set {z s R" 1 zi 
= 0 if i r I} is called a coordinote subspace of R". Its dimension is the 
number of elements of I. The point 0, all of whose coordinates are equal 
to 0, is the origin of R". 

e. Consider a sequence (zq) of points of R". One says that (zP) converges 
(or rends) to a point 20 of R" if, for all coordinates (i = 1 , .  . . , m),  one 
has z: -+ 2:. One writes zq- 20. 
j: As in the case of numbers (1.5.0), a sequence which tends to a point 

is called com,ergent; the unique point to which a convergent sequence 
tends is called its limit. 

g. Let X be a subset of R"; a point z = R" is adherent to X if there is 
a sequence of points of X tending to z. One can also say, in a looser 
manner, that z is adherent to X if there are points of X arbitrarily close 
to z. Any point z of X i s  adherent to X; it suffices to take the sequence 
whose points are all equal to  z. 

h. The set of the points of R" adherent to X is called the adherence 
(often also the closure) of X, and denoted R. According to the last remark 
of 1.6.g: 

( I )  x c R. 
12 
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It is also clear that: 

(2) X c Y implies x c F. 
EXAMPLLS: (1) Let k be a positive real number, and consider, in R, the square 

(withperimetererrduded) X =  (z s R jlr.l < kfori = 1.2); then K =  (z sR'j  lz, 5 
k for i = 1.2). (2) Using (2) of 1.5.1, one obtains = R: the adherence of the set 
of rationals is the set of 1 4 s .  

i. A subset X of R" is closedif it owns its adherent points. This may be 
expressed as c X. Thus, because of (I), Xis  closed if and only if it is 
equal to its adherence. One may also say that a. set is closed if and only if every 
point at zero distance from the set belongs to the set; this requirement will often be 
imposed below. 

EX~MPLEI: (I) In the examples of 1.6.h. X, the rubscl of R', and Q, the subset of 
R, are not dosed; X i s  closed. (2) The subset of R, (0, 1,1/2,1/3, - - - , l i g , .  . .I, is 
closed. 

j. One can prove: 
(3) I f  X is a subset o f  Rm. its odherence X is closed. ~, , , , 

That is, X = F. Since every closed set containing Xclearly contains ?, the 
adherence of Xcan becharacterized as the smallest closed set containine X. " 

k. It is easy to prove that: 

(4) If X is a set of closed subsets of R", their intersection, n X, is a 
closed subset of R". Xef 

It is a little more difficult to prove that: 
n 

( 5 )  If XI, . . . , Xi,  . . . , X. ore n closed subsets of R", their union, UX,, 
is a closed subset of R". i-1 

I .  Let S be a subset of R"; for a subset X of S, one defines the adherence 
of X in S as the set of points of S adherent to X. Similarly Xis said to be 
closed in S if it owns the points of S adherent to X. 

EXAMPLE: (I) Let k be a positive real number, and take S = {z E R' I Iz.1 < k for 
i 3 1, 2)) X = (z S S  I T, 2 0). From a sketch it will be clear that the set Xis clorsd 
in S but no1 closed in R. (2) Nore also that any subsel Tof R" is closed in T. 

m. Suhstituting"the adherence in S ' f o r  "the adherence," "closed in S" 
for "closed," and S for R" everywhere in (1) to (3, one obtains new 
theorems with the same proofs. 

n. One can prove: 

( 6 )  Every subset S of R" contains o countable set X such that S c R. 
In other words, an arbitrary (therefore perhaps non-countable) subset S of 
Rm contains a countable set X which is dense in S, i.e., such that for any 
point z of S there are points of X arbitrarily close to z. 

13 
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Fxruprr Let S be R" ~trclf Fmrn 0 = R (example (2) of 1 6 h) follows @ = X -  
Thus Q-, the prduct  of m u t r  equal tu Q. N e . t l ~ x t  o f p o m e d  R uhasccoordtnat~ 
are a11 rstaonal. tr denw on R" hloreo\er a" tr count.+ble (apply (21 of I I n  lo the 
m countable sets Q) 

o. Let X be a subset of Rm; a point z e R" is inferior ro Xif it is not 
adherent to the complement of X. This means, intuitively, that z is 
completely surounded by points of X .  Any point z of R" interior to X 
clearly belongs to X. The interior of X i s  the set of points interior to X, 
viz., c(cT). 
EXAMPLES: ( I )  Let k bca positive real nurnbsr, and consider, in Rz, theclosed square 

X = { Z  e R Z I / s . /  ITk  for i =  1.21; its interior is (z E R * I ~ z . /  < k for i =  I, 2). 
(2) The set Q' and the straight line Y = (y s R' 1 y, = 0) in R have empty interiors. 

As in the case of 1.6.1, if Xis  a subset of S (a subset of R"), a point z S 
is said to be interior ro X in S if it is not adherent to CsX, the complement 
of X in S. 

EXAMPLE: (3) CD~ider,  in R', the straight him S = {r c Ra 1.1  = Ol. and its subset 
Z = ( z s P ( r , = O , O S a , S 1 ) .  T h c i n t e r i o r o f Z i n S i s ( z r R 8 1 r , ~ 0 , 0 < a , <  1); 
its interior in R is mpty.  

p. Let X be a subset of Rm; a point in R" is a boundary point of Xif it 
is adherent to both Xand its complement CX. The boundary of Xis the 
set of its boundary points, viz., K n -6~. 

EXAMPLES: In fhC last group of examples, the boundary of the closed square X i s  
its perimeter, that of Q' is R, that of Y is Y. 

q. Let X be a subset of R"; the exterior of X is the complement of its 
adherence, viz., CX. It is easy to prove that the interior, the boundary, 
and the exterior of X form a partition of Rm or, what is equivalent, that 
the interior and the boundary of Xform a partition of the adherence of X. 
The last remark shows that the set X is closed if and only if it contains 
its boundary. 

r. Let z be an element of R"; its norm 1x1 is the real number Max ((r,(, 
. . , 1z,(, . . . , lz,.l}, i.e., the greatest of the absolute values of its co- 

ordinates. Let k be a non-negative real number; the set K = (z E R" I lzl 
k }  is a closed cube of R" with cenler 0, edge 2k. 
s. A subset S of Rm is said to be bounded if it is contained in some 

closed cube K. A set which is unbounded is therefore a set which has 
points arbitrarily far from the origin. 

EXAMPLT: The set J of integers (a subset of  R) is unbunded 
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t .  A subset S of R" is said to'bc co,npoct if it is closed and bounded. 
It is easily proved that: 

(7)  1/ S,, - - . , S , ,  . . . , S, or? closeil (resp. co,~lpoct) subsets (f RR" '~ ,  . . . , 
R"',, . . . . R"., then S, x . . . x S, x . . . x S,, is o closed(resp. contpoct) 

x ,,<> 
subset ofR'-' . 

u. Finally. a subset S of R"' is said to  be connected if it is not the union 
of two non-empty, disjoint subsets closed in S. In other words, a set S is 
connected if i t  cannot be partitioned into two non-empty subsets closed in 
S, i e . ,  loosely spenktng, if it is of one ptece (but perhaps with holes). One can 
prove that: 

(8) A subset ofR is connecred f o n d  on/,\. ifir is on inrrrcui. 

1.7. CONTINUOUS FUNCTIONS 

N.B. o. In  rhis secrion, S denotes a subser of R", T a subset of R", (zn)  a 

.stpence rfpoints of S, and (p) n sequence of points of T. 
b. Let/ be a function from S to 7, and consider a point 20 i S. The 

function/ is conrinuous or the point ro if: 

"rq- zO, yo = f ( r O ) ,  y G  f (9)" implies "yo- y?" 

In other words. f is continuous at P if the image of any sequence tending 
to  20 is a sequence tending to the image of zO. 

EXAMPLE: Let fbe  the real-valued function of a real variable (i.e., a function from 
R to R) defined by Y = l /z  i f  z + 0. and s = 0 i f c  = 0. The iunction/!scontinuour 
at every poznt of R, with the exception ofO, as its graph readily suggests. 

The functionf is continuous on S if it is continuous a t  every point of S. 
c. Let S,, S,, T be subsets of R",, R"?, R" respectively,f be a function 

from S, to S,, and g be a function from S, to T. Define a function h from 
S, to T by h(x) = g(f ( r ) )  for every z in S,. It is immediate that: 

( I  ) I f f is continuous ot the point z ofS,, ond f g  is continuous ot the point 
f ( r )  o/S,, then h is continuous at x. 

rl. For every k = I , .  . . , p, let T, be a subset of Rut and consider the 

product T = fi T,. It is immediate that the projection on T, (see 1.3.g) 
1 - 1  

is continuous on T. 
e. With the notations of the last paragraph, letf, be a function from 

S to T, and define a function f from S to T by f ( z )  = (/*(z)) for every 

15 
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z in S, where (l;(z)) denotes thep-tuple (f,(z), . - . . f,(z)). It is immediate 
that: 

(2) /fecer~,/, is continuous a t  the point z of S,  then f is continuous a t  z. 

J One can prove: 

(3) Afuncrionfront S to T i s  continuous on S ifnnd on!v if the inr'erse image 
qfeoery ser closed in T is closed in S.  

g. In the important particular case wherefis a real-oaluedfunction on S. 
i.e., wherefis a function from S to R, one can prove: 

(3') A Jknction from S lo R is continuous on S i j a n d  only if the inuerse 
image of e c e v  inrrraal q / R  of fhefornz I.-, y] or b. -[ is closed in S. 

EXAMPLES: (I) Let R+ be the set of positive reals, and consider the function/from 
S = R x R- to R defined by y =/(u, u )  = sju. "The function f is continuous on S" 
4s equivalent to "the inverse image of I-, y], i . e ,  the set {(u, u)  c S l u  - y o  5 01, is 
closed in S,  and similarly for Is, -I"; the second assertion is readily suggested by a 
drawing in R1, andeasily proved. (2) Theexampleof 1.7.bdoes not satisfy thecontinuity 
criterion of (31 ,  as the graph shows. 

h. One can prove: 

(4) Let f be afuncrion front S lo T. Iff is continuous on S, and ij S is 
compact, then f (S) is compact. 

i. Applying this result to the particular case where f is real-valued, one 
obtains immediately: 

(4') (Weierstrass) Letfbe a functio,~ from S to R. Iffis continuous on S, 
and if S is compact, non-empty, rhenf (S) has n maximunt and a nzinimunr. 

"f(S) has a maximum" also means (1.5.g) "there is a n  z" in S such that 
for all r E S one hasf(z) (/(z-*I)." Such an element is called a maxinzizer 
of j: The concept of a nzinimizer is similarly introduced. The maximum 
(resp. minimum) of the set f (S) is also called the maximum (resp. minimum) 
ofthe function f on S. 

EXAMPLE: Let/ be the function defined in the example of 1.7.b, and I an interval 
to which the variable z in restricted. One seer an the graph of f  how, when I is not 
bounded, or not dosed, or owns 0 and a diKrient point, /has no maximizer or no 
minimizer. 

j. It is easy to prove (using (3)), 

( 5 )  Let f be a function from S to T. Iff is continuous on S, and if S is 
connected, then/(S) is connected. 

k. Applying this result to  the particular case where f is real-valued, one 
obtains immediately (see (8) of 1.6."): 
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( 5 ' )  (Bolzano) Let f be afuncrionfrom S to R. Ijfis continuous on S, 
and if S is connected, then f (S) is an interval. 

Thus, if z'. z2 are two points of S, and y is a real number such that 
f (z') 5 y (f(z2), then there is an  z s S such that f (z)  = y. In other 
words, f takes on all values between/(zl) andf(.zz). This result is often 
applied to the case where S is an interval of R. 

1.8. CONTINUOUS CORRESPONDENCES 

a. Example (2) of 1.3.h has pointed out the interest of correspondences 
for economics; this section will study their continuity. 

N,B, 5. in this section, S denotes a subset of R", T a compact subset of R". 
(x" a ~squence ofpoints of S, (@) a sequence of points of T, and a corre- 
spondencefrom S to T. 

c. The concept of continuity for a correspondence will be introduced 
in three steps. 

d. Let d' be a point of S ;  one defines firstly: 

The correspondence p; is upper semicontinuous a t  the point zO if: 
"zq+ d', yU s p;(zQ), yo+ yo" implies "yO E p(zO)." 

In other words, if za tends to 8, and if yo tends to yO while belonging for 
all g to the image-set of zQ, one requires that yo belong to the image-set 
of 8. One could also ray, if14 tends lo ra, and if the distance from p to the irnagc-st 
of r tends to zero, one requires that yo belong to the image-at of d. This is a natural 
but rather weak continuity requirement, as the following example shows. Let Sand 7 
be two compact real intervals. The graph of p (fig. 2.a) is the shaded region, heavy- 
lined boundary included; p(zm) is the interval [a', a']. The correspondence p is upper 
xmi~onl in~ous  at zY. .w;; +;: 

S 10 S I" 

Fig. 2.a Fig. 2.b 

r.  One defines secondly: 

The correspondence p; is lower semicontinuous ot rhepolnt z0 if: 

"r" $, yo e  LO)^ implies "there is (ye) such that y' e dzQ) ,  yq- yO." 
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In other words, if zQ tends to 20, and if yO belongs to the image-set of 24 
one requires that there be an infinite sequence ( 9 )  such that 9 tends to yD 
while belonging for all q to the image-set of e. cme could also say, if ZQ 
tends toro, and if yo bclong to the image-xt of zo, one requires that the distance from 
go to the hag.-st of r tend to zero. Again, this is a natural but weak continuity 
requiRmcnt as the example of fig. 2.b shows. Here pt*) is the interval [b', b']. The 
correspondence p. is lower  mic con ti nu our at zo. Notice how the roles of 
"&'e ~(20) "  and "9. pl(z*), yQ-yO" are permuted in the two preceding 
definitions. 
/. Finally one defines: 

The correspondence p is continuous at the point 20 if it is upper and lower 
semicontinuous at 20. 

p then has all the desirable continuity properties at 20. 
g. When, for all z 6 S, p(z) consists of a single element, the definition 

of lower semicontinuity at 20 is obviously equiualent to the definition of 
continuity at 20 for a function. One can prove that, in the same case, the 
definition of upper semicontinuity at 20 is equivalent to the definition of 
continuity at P for a function. 

h. Semicontinuities and continuity on S are defined as semicontinuities 
and continuity at every point of S. It is clear that: 

(I) The correspondence p is upper semicontinuous on S if and only f i t s  
graph is closed in S x T. 

i. As in 1 . 7 . ~  let S,, S,, Tbe subsets of R"I, R"', R" respectively, f be a 
function from S, to S,, and pl be a correspondence from S,  to T. Define a 
correspondence y from S, to T by ty(z) = p( f (z) )  for every z in S,. It is 
immediate that: 

(2) I f f i r  continuous or the point z of S,, and i j p l  is upper semicontinuous 
(resp. lower semicontinuous) m the poinrf(z) of S,, then yl is upper semi- 
continuous (resp. lower semicontinuous) at 2: 

j. As in 1.7.d<, for every k = I, . . . . p let T, be a subset of R"k, and 
P 

p, be a correspondence from S to T,. Consider the product T = JJ T,, 
Y k-1 

and define a correspondence p from S to T by p(z) = JJ p)r(z) for every 
X - 1  

z in S. If every T, is compact, so is T by (7) of 1.6.t. In this case it is 
immediate that: 

(3) Ifeuery p, is upper semicontinuous (resp. lower semicontinuous) of the 
point z of S, then p is upper semicontinuous (resp. lower semicontinuous) at z. 
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k. According to example ( 2 )  of 1.3.h. the inlemt of these wnapu for economics 
lies, in particular, in the interpretations of an element z of S as the environment of a 
certain agent, of Tas theset ofactionslrprioriavailable to him, andof dz) (assumed 
here to be closed for every z in S )  as the subaet of Tto which his choice is actually 
restricted by his environment r. Let f be a continuous real-oalued function on 
S X T, and iorerpretf(r, Y) a$ the gain for that agenl when his environment is = and 
his action y. Given z, one is interested in the elements of q(z) which 
maximize f (now a function ofy alone) on q(z); they,form a set p(z). What 
can be said about the continuity of the correspondence p from S to T? 

Fig. 

One is also interested in g(z),  the value of the maximum o f f  on d z )  for a 
giuen z. What can be said about the codtinuity of the real-valued function 
g on S? An answer to these two questions is given by the following result 
(the proof of continuity of g should not be attempted). 

( 4 )  I f f  is continuous on S x T, and if q is continuous at z E S, then p is 
upper semicontinuous at z, andg is continuous at z. 

&AMPLE: LCt S and T b e  the real interval [O, 11. Define9 by dz) = 10, I] for all 
z r S, and f by /(I, y) = zy. For z # 0, p(z) wnrirts of the single element 1; for 
z = 0, p(z) = 10, I]. For all z,g(z) = z. (It will be helpful to draw the graph of p.) 

I. Throughout this section, the assumption that T is compact has been 
made; it is essential in several respects. In applications, when the set T 
is not compact, one may still be able to replace T by some compact set 
without changing the problem, and thus to use the above results. 

a.  Let z = (zJ and y = (yJ be two elements of R"; one defines their 
sum z + y as (z, + y,), i.e., the ith coordinate of z + y is the sum of the 
ith coordinates of z and y. The element 0 has been defined (1.6.d) by the 
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condition that all its coordinates are equal to 0. The negatiue of z is 
-z = (-2.). One writes z - y for z + (-y). If z', . . . , z', . . . , z" are 

n elements of R", their sum is denoted 2 z'. 
9-1 

b. Let z = (23 be an element of R", and t a real number; one defines 
their product rz, or zt, as (mi). Geometrically, gin" two points z, y of R.. one 
obtains z + y by completing the paralldogram having O-T, Oy for sides; one obtains 
-r by taking the symmetric of z with rap& to 0: one obtains I= by representing R an 
the straight line Or, choosing 0 to represent 0, r to represent 1; then r a R is repraented 
by tz. 

c. It is clear that the functions (z, y) - z + y from R" x R" to R", 
and (t, z) - tz from R x Rn to R" are continuous. 

d. The elements of R" are also called vectors. 
e. Given a vector a of R", the transformation of R" into itself defined 

by z - z + a is called the a-translation in R". 
J: Let X and Y be two subsets of R"; one defines their sum X + Y as 

the set of elements of R" of the form z + y where z 5 X, y e Y. In other 
words, one takes, in all possible ways, an element of Xand an element of Y 
and adds them; the set of elements thus obtained is X + Y. 

EXAMPLU: (I) Let X = (z E R 10 5 z, 5 I, z, = 01, and Y = (y E R2 1 y. = 0, 
O S y , S I l .  T h s n X + Y = ~ i r R ' l O S i , S I , i = 1 . 2 ~ . ( 2 ) S e e a l r o f i g . 4 i n R !  

Fig. 4 

Onedefines -Xas the set of elements of R" of the form -z where z s X. 
One writes X - Y for X + (- Y). If X,, . . . , X,,  . . . , X, are n subsets 

" 
of R", their sum is denoted 1 Xi. It is easy to prove : 

j=, 

(1) If X,, . . . , X,, . . . , X. are n subsets of R", then l , Y j  c 17. 
i i 
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That is, the sum of their adherences is contained in the adherence of their 
sum. One can also prove: 

(2) The sum o f n  conzpacr subsets of R' is comnpact. 
g. Let S be a subset of R", and for every k = I , .  . . , p  let f, be a 

function from S to R". Define a function f from S to R" by f ( z )  = 3 /,(XI 
for every z in S. It is immediate that: X i ,  

(3) I feuervf ,  is conrinuous a1 the poini z of S,  t h e n f i s  continuous at r. 

h. Similarly let S be a subset of R" and for every k = I, . . . , p let T ,  be 
a subset of R", and p., be acarrespondence from S to T,. Consider the sum 

T = 3 T,, and define a correspondence p from S to T by p(z) = 5 p,(z) 
I - ,  X = l  

for every z in S. If evety T, is compact, so is T by (2). In this case one can 
prove (for lower semicontinuity the proof is immediate): 

(4) If every p, is upper semiconrinuous (resp. lower semiconrinuour) at the 
poinr z cfS, rhen p is upper semiconrinuous (resp. lower semicontinuous) at z .  

i. Let x', zZ be two points of R", r', t' two real numbers such that 
r 1  + r Z  = 1. The point tlz' + t2zz is called the weighted overage of z' 
and z2 with uleights t1 and tZ  (respectively). 

j. Let z ,  y be two different points of R". 

The straight line z ,  y is (z c R" / t F R, z = ( 1  - f ) x  + ry}. 

The closed half-line z ,  y (the origin z is written first) is { z  E R" I t E R, 
0 < t ,  z 5 (I - t ) z  + ty}.  

The open hay--line r ,  y is { z  e R"' 1 r t R, 0 < 1, z = (I - f ) r  + ty}.  

It may be more suggestive to rewrite the expression ofz as z = ~ ( y  - z )  + z, 
i.e., one multiplies the fixed vector ( y  - x) by the variable number t ;  this 
gives the straight line (or the half-line) 0, (y - 2); then one adds the 
fixed vector z (which amounts to a translation; see fig. 5 drawn for the case 

of the half-line). 
k. Let r,  y be two points of R" (different or not). 

The closed segmenr z ,  y, denoted [z, y], is (z e R" / t s R, 0 5 t 5 1, 
z = (1 - t ) r  + ty}. (See fig. 5.)  When r = y, the closed segment [z, Y] is 
said to  be degenerate. 

I. Given a subset C of R" and a point z in C, Cis  said to be a cone with 
vertex z if it contains the closed half-line z, y whenever it owns the pointy 
(diKerent from z). 
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m. Given n cones C,, . . . , C,, . . . . C, with vertex 0, they aresaid to be 
" 

positiuely semi-independent if "z, r C,  for every j, and 2 z, = 0 implies 
.-, ,-. 

"2, = 0 for every j," i.e., if it is impossible to take a vector in each cone 
so that their sum is 0, unless they are all equal to 0. It is clear that two 
cones C,, C, with vertex 0 are pos~tively semi-rndependent if and only if 
c, n (-c,) = {o). 

Fig. 5 

n. Consider a subset S of R". To describe thow ofiU points that are infinitely 
far from 0 one introduces the mncept of its asymptotic cone, as follow. Let k be a 
non-negative real number, and denote by Sk the set (z s S I /zl 2 k }  of 
vectors in S whose norm is greater than or  equal to k. Let r (S9  be the 
least closed cone with vertex 0 containing Sk (i.e., the intersection of 
all the closed cones with vertex 0 containing SX). The asymprotic cone 
of S, denoted AS, is defined as the intersection of all the r(SL),  i.e., 
AS = n r(St):  it is clearly a closed cone with vertex 0. 

L-20 
o. It is obvious that "S, ST  implies "AS, c AS,." One can prove 

that: 

(5) I f S  is a subset of R", and z is a vector in Rm, then A(S + {z))  = AS. 

In other words, a translation of Sdoes not alter its asymptotic cone. It is 
then easy to prove that: 

(6) I f  T # 0 and S are tn80 subsers of R", then AS c A(S + T). 

One can also prove that: 

(7) Ij, for every j = I ,  . . . , n, S, is a subset of Rm+, then A ( n  S,) 
c n AS,. j 

j 

p. It is now possible to give answers to the two important questions: 
When is the intersection of a collection of sets bounded? When is the sum 
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One can prove that: 

(14) a closed, convex set owning 0, containr its asymptotic cone. 

t .  Let S he a subset of R". Its convex hull, denoted S, is defined as the 
intersection of all the convex sets containing S. According to (lo), S is 
indeed convex and can therefore also be characterized as the smallest 
convex set containing S. One can prove that: 

(15) Giren n subsets of R", the conoex hull of their sum is equal to the sum 
of their conuex hulls. 

- 
The closedconvex hullof S is, by definition, the adherence s of the convex - 
hull of S. According to (3) of 1.6.j, s is indeed closed; according to (12), 
it is indeed convex. It is easy to see that a closed convex set containing S - 
necessarily contains S, which can therefore also he characterized as the 
smallest closed convex set containing S. 

u.  Let z = (z,) and y = ( y , )  be two elements of Rm; one defines their - ... 
inner product z. y as the number zz,yi .  It is clear that the function 

I = ,  

(2, y) - z. y from R" x R" to R is continuous. 
When z .  v = 0. one savs that z and v are o r t h o ~ o ~ l .  In the ou of R', - .  

visual id as in 1.6.~. mying that two vectors z and y diiiercnt from 0 are orthogonal is 
equivalent to saying that the half-lines 0, z and 0, y are perpendicular, provided that the 
units on the three axes have the same length. 

0. Let p he an element of R" different from 0, and c a real number; 
the set H = { z  R " J p .  z = C )  is a hyperplane with normal p. If I' is a 
point in H (one says also that Hgoes through z') ,  one h a s p .  I' = c and 
the above expression may be rewritten H = {i c R" l p  . (z  - i )  = 0). 
Thus the hyperplane H is the set of points z of R" such that E - 2 '  is 
orthogonal t o p ;  p and H a r e  said to be orthogoml. I f p  and care multi- 
plied by the same real number different from 0, the hyperplane H is 
unchanged. An intersection of hyperplanes is called a linear manifold. 

w. Given a hyperplane H with normalp, the point z of R" is said to be 
ahoue H if p . z > c. The closed half-space aboue H is (z e R" I p . r 2 c]. 
One obtains similar definitions replacing aboue, >, 2 by below, <, 5. 
A closed half-space is easily seen to be closed and convex. So is a hyper- 
plane, since it is the intersection of two closed half-spaces, and hence a 
linear manifold. 

x. A hyperplane H i s  said to he bounding for a subset S of R" if S is 
contained in one of the two closed half-spaces determined by H. In 
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other words, His  bounding for S if S is entirely on one side of Hwith, possibly, points 
in it. One can prove the fundamental theorem: 
(16) (Minkowski) Let K be a convex subset of R" and z a point of Rm. 
There is u hyperplane H through r and bounding for K fund only ifr is nor 
inrerior to K. 

Fig. 7.a Fig. 7.b Fig. 7.c 

The intuitive content of the result in R' is broueht out bv fie. 7.a. where r is exterior - , - 
lo K h) fig 7 b. uhcrc 2 is in lhc hlundaw of K .  dnd b$ fig 7 c, uhcrc K (the hed,,. 
IhnrJ ,cbrmentJ has nu lnrerlor 1, 1% caw lo d a u  n non-con\cx xc on R' for uluch 
sumr nrul.nn!rrtur potnlr are in no boundtng hvprrphnc 

Fig. 8 

y. Let C be a cone with vertex 0. Itspolar is the set C = ( z e  R" / z. y 
( 0 for every y s C}. It is easy to see that C? is a closed, convex cone 
with vertex 0. 
Figure 8 provides an illustration in R. 
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z. According to the general convention of 1.4.j, an ordering is defined 
o n R " b y z < y i f z i ( y i f o r e v e r y i = l ; ~ ~ , m .  Asremarkedin 1.4.j, 
z < y means "z, 5 y, for all i and zi < y, for at least one i," and z << y 
means "2, < y, for all i." (Several authors have used the notation s,<, 
< respectively for s, <, <<.) 
The non-negatiue orthant of Rm is the set CJ = {z  R'" I 22 0). The letter 
CJ has throughout this volume the meaning introduced here. 

a. Consider a set Sand a function f from S to S, i.e., a transformation of 
S into itself. Great interest is attached to the existence of an element z' 
such that z' =f(z'),  i.c., which coincides with its image, or which don not move 

in Be transfor111ation. Such an elemenf is called afixed point of the trans- 
formation f (sse fig. 9.a). 

b. One can prove the fundamental theorem: 

(I) (Brouwer) If S is a non-empty, compact, convex subset of R", and 
ipf is a continuour functionfrom S to S, then f has afixedpoint. 

Fig. f a  Fig. 9.6 

c. The generalization of this result to correspondences from a set to 
itself will play an essential role later on. Consider now a set S and a 
correspondence pl from S to S. Afixedpoint of the correspondence rp is 
an element z' such that z' 6 dz ' ) ,  i.e., which belongs to its image-set 
(see fig. 9.h). 

d. One can prove: 

(2) (Kakutani) I f S  is a wn-empty, compact, convex subset of Rm. and if 
pl is an upper semicontinuous correspondence from S to S such thatfor aN 
z s S the set pl(z) is conrzex (wn-empty), then pl has afxedpoint. 
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MATHEMATICS 1. NOTES 

I. In a few caws the terminology and the notation adopted here are not the mort 
common. Four of them call fo; comments. 

The ret (1) and the clement = are distinguished with care. Corresponding to there two 
different concepts, two different symbols, c and c, and two different lacutions, "is 
contained in" and "belongs to," arc uwd. Two diKcrcnt verbs are therefore used here 
to read 3 and 3: for the former "contains." and for the latter "ownr," the natural 
counterpart of "belongs to." 

A eorrcrpondencc (N. Bourbaki'r [I1 term) has often k n  called a multi-valued 
function.  locution^ such as there. where the object named by a noun and an adjective 
is not in the class of objccts named by the noun alone, have bsen avoided hers. 

Preorderim is N. Bourbaki's 111 term; gum;-orderinx is G. Birkhoff's Ill. The mort . ~ " ~ ~ 

convenient way to denote a preordcring irS(1. N. Herstein and J. Milnor's [I] notation), 
a iuxtaporition of the twosymbola < for thederived asymmetric relation, and -for the . . 
derived squivalsna relation. Once the notation 5 has been adopted for the coordinate- 
wiw ordering of Rm. the above principle leads to give to l: < y the meaning "z 5 y and 
z # y." The common usage of denoting thir last relation by z S Y has therefore not 
k n  followed. As a comequencc, rc << Y is uwd, instead of z < Y, t o  denote "1.. < y. 
for every i." 

The romcwhat awkward expression porirively semi-independent has keen created to 
describe the property of n cones introduced in 1.9.m. 

2. The definition of R in 1.5.a-d raises the question: is there a wt  having all thorc 
properties? It ir affirmatively answered by constructing the Jet J of non-negative and 
non-positwe integers from t h e a t  Nof  positive integers, then the x t  Q of rationalsfrom 
the set J of integers, and finally the re1 R of r eds  from the wt  Q of rationals (using 
either Cantor's or Dedekind's procesl.  A set having all the properties of the text is 

easily wen to be unique (up la an isomorphism). Notice that, if the axiom 0 # 1 is 
omitted, a oneclement ret satisfies the definition. 

3. Mort of the subjects treated in thir chapter belong to the core of mathematicr. 
For these no references are given. There are, however, three special topie. for which a 
short bibliography may be necessary. 

A study of the continuity ofcorrcspondeneer from a topological space to a topological 
space will be found in C.  Berge [I], Chapter 6. The application of (4) of 1.8 made in G .  
Debreu[Zl (with adiKcrent, and lers satirfactory, terminology) may help to motivate the 
definitions and theorems of 1.8. 

Rcrultr on orymprorie cones and references to the literature are given in W. Fcnchsl [I]. 
Theorem (2) of 1.10 onfixedpoinrr o/ correrpondeneer is stated and proved in S. 

Kakutani [I]. It can be generalized in several directions; in particular the convexity 
assumptions on 5 and p(r) can be relaxed (wc S. Eilenkrg and D. Montgomery [I], 
6. Begle[II). 



COMMODITIES AND PRICES 

The dual concepts ofcommodity and price are introduced in this chapter. 
The meanings of these terms, somewhat different from current usage, will 
be made precise in the next sections. Many examples will be given as 
illustrations. 

I t  is possible to present in this introduction the essential features of the 
two concepts in a Hmplified and slightly imprecise manner. The economy 
is considered as of a eiven instant called the oresent instant. A commoditv 
is characterized by its physical properties, the date at which it will be 
available, and the location at which it will be available. The price of a 
commodity is the amount which has to be paid now for the (future) 
availability of one unit of that commodity. 

No theory of money is offered here, and it is assumed that the economy 
works without the help of a good serving as medium of exchange. Thus the 
role of prices is as follows. With each commodity is associated a real 
number, its price. When an economic aRent commits himself to accept 
delivery of acertain quantity of a commodity, the product of that quantity 
and the   rice of the commoditv is a real number written on the debit 
side of his account. This number will be called the amount paid by the 
agent. Similarly a commitment to make delivery results in a real number 
written on the credit side of his account, and called the amount paid to 
the agent. The balance of his account, i.e., the net value of all his commit- 
ments, guides his decisions in ways which will be specified in later chap- 
ters. 

To link the preceding concept of price with the customary notion of an 
amount of money paid when and where the commodity is available, one 
must introduce the concept of price at a qrtain date, at a certain location. 
One obtains then, by comparing prices at the same location, at different 
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dates, interest, and discount rates; by comparing prices at the same date, 
at different locations, exchange rates. 

In the next chapters the theory will be developed in terms of the two 
general, abstract concepts of commodity and price. To have concrete 
translations of its results one must use the present chapter, which provides 
a great variety of interpretations for the two concepts, as a key. 

2.2. DATES AND LOCATIONS 

The interval of time over which economic activity takes place is divided 
into a finite number of compact elernentory intervals ofequal length. These 
elementary intervals may be numbered in chronological order; the origin 
of the first one is called the present instant. Their common length, which 
may be a year, a minute, a week,. . . is chosen small enough for all the 
instants of an elementary interval to be indistinguishable from the point 
of view of the analysis. An elementary interval will be called a date. and 
the expression "at date I" will therefore be equivalent to "at some instant 
of the tth elementary interval." 

Similarly the region of space over which economic activity takes place 
is divided into a finite number of compact elernenlarv repions. These . - 
elementary regions, which may be a r b ~ t r k i l ~  numbered, are chosen small 
enoueh for all the ~ o i n t s  of one of them to be indistineuishable from the - 
point of view of the analysis. An elementary region will be called a 
;ocarion, and the expressioi "at location s" will.therefore be equivalent to 
"at some point of the sth elementary region." 

The concept of a commodity can now be introduced by means of 
examples. The simplest is that of an economic good like wheat: it will be 
discussed in detail. There are indeed many kinds of wheat, and to have a 
well-defined good one must describe completely the wheat about which one 
is talking, and specify in particular its grade, eg.,  No. 2 Red Winter Wheat. 
Furthermore wheat available now and wheat available in a week play 
entirely different economic roles for a flour mill which is to use them. 
Thus ;good at a certain date and the same good ar a later date are dfeermt 
economic obiects. and the soecification of the date at which it will be , . 
available is essential. Finally wneat available in Minneapolis and wheat 
available in Chicago play also entirely different economic roles for a Aour 
mill which is to use them. Again, a good at a certain location and the same 
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good at  another location are direrent economic objects, and the specifi- 
cation of the location at which it will be available is essential. In the case 
now discussed a commodify is therefore defined by a specification of all its 
physical characteristics, of its availability date, and of its availability 
location. As soon as one of these three factors changes, a ditferent 
commodity results. 

The g m t i l y  of a cenain kind of wheat is expressed by a number of 
bushels which can satisfactorily be assumed to be any (non-negative) real 
number. What is made available to an economic agent is callid an input' 
for him: what is made available bv an economic aeent is an outout for him. 
For some agents inputs will be represented by non-negative numbers and 
outputs by non-positive numbers. For other agents the reverse convention 
will be made. A uniform convention might seem desirable, but a more 
flexible one will make interpretation easier. With one of the above con- 
ventions a quantity of wheat can be any real number. 

Goods of the same t v ~ e  as wheat are cement. iron ore. crude rubber. , . 
wood pulp, cotton yarn, petroleum, water, gas, electricity (whose definition 
includes frequency and voltage, and whose quantity is expressed in kwhr), 
etc. 

As the prototype of a second class of goods consider trucks. The 
complete description of this good includes model, mileage, . . . To define 
the corresponding commodity one must add its date and its location. A 
quantity of well-defined trucks is an integer; but it will be assumed instead 
that this quantity can be any real number. This assumption of perfect 
divisibility is imposed by the present stage of development of economics; 
it is quite acceptable for an economic agent producing or  consuming a 
large number of trucks. Similar goods are machine tools, linotypes, cranes, . . . 
Bessemer converters; houses, refrigerators, trees, sheep, shoes, turbines, etc. 

Land reauires soecial mention. Its condition is described bv the nature 
of the soil and ofthe subsoil (the latter being of importance for construction 
work), the trees, growing crops and construction on it, etc. A quantity of 
land with specified condition, location, and date is expressed by a real 
number of acres. 

Mineral deposits, oil fields, . . . are defined by a complete description of 
their content, their location, and, as always, their availability date. Their 
quantity is expressed by a real number of tons, barrels, . . . 

The first example of an economic service will be human labor. Its 
description is that of the taskperformed; thus one has the labor of a coai 
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miner, of a truck driver, of a member of some category of teachers, of 
engineers, of draftsmen, of executives, etc. ,(all including any further 
specification necessary for a complete description). When one adds date 
and location one has again a well-defined commodity. The quonriry of a 
specified type of labor is expressed by the time worked (a real number). 

Another type of service is illustrated by the use of a truck. It will be 
assumed that a truck (and similar economic objects) can be in only a finite 
number of distinguishable conditions. The life of a truck is described by a 
succersion of time-intervals during each of which it stays in the same 
condition. The lengths of those intervals depend on the intensity of use. 
Thus the description of the service "use of a truck" is that of the truck 
(therefore of its condition during the time the service is rendered) and of 
the conditions under which it is used (mileage per day for example). One 
adds, as usual, date and location. The quantity of such a service is 
expressed by the time during which it is rendered. 

A more complex type of service is illustrated by the use of a hotel room. 
The description of this service includes a listing of everything which will be 
performed for the occupant. It must, of course, be dated and located. Its 
quantity is an integral number of days; but it will again be assumed 
instead that this quantity can be any real number. Of the same type is, 
for example, the use of an apartment. 

For other services, time is not the expression of the quantity. Such is a 
storage service which is described, for example, by the type of warehouse 
(refrigerated or no t . .  .), the dates from which to which it is rendered, and 
the location. Its quantity is expressed, for example, by a real number of 
cubic feet. One observes that in this case thetemporal specification requires 
not one but several dates. Many other services, whose purpose is no longer 
to change the date ofacommodity, require similarly more than one date to 
be temporally specified (at least when the elementary timc-intervals are 
short enough), e.g., services of a repair shop, of a laundry, of a beauty 
parlor, attendance at a show, at a course, etc. In every one of these cases a 
unit is easily recognized: it is as always supposed to be perfectly divis- 
ible. 

Finally, transportation services are described by the conditions under 
which they are rendered (rail, road, air, water, pipelines, power lines. etc., 
and any further specification necessary for a complete description), the 
locations they involve, and (since again they require a time longer than 
an elementary time-interval) the dates they involve. Their quantities arc 
expressed for goods, for example, by the weight or the volume transported. 
For passengers the unit of the service is obvious. Temporal and spatial 
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specifications of such services require several dates and several locations. 
Their quantities can, by assumption, be any real numbers. 

Summing up, a commodity is a good or a service completely specified 
physically, temporally, and spatially. I t  is assumed that there is only a 
finite number I of distinguishable commodities; these are indicated by an 
index h running from 1 to I. It is also assumed that the quantity of any 
one of them can be any real number. From now on the full generality of 
the concept of commodity, as illustrated by all the examples above, should 
always be kept in mind. By focusing attention on changes of dates one 
obtains, as aparricular care of the general theory of commodities which will 
be developed below, a theory of saving, investment, capital, and interest. 
Similarly by focusing attention on changes of locations one obtains, as 
another parrinrlar cave of the same general theory, a theory of location, 
transportation, international trade and exchan~e. The interpretation of the 
results in those terms will be left to the reader, since it offers no difficulty 
once the definition of a commoditv has been erasoed. " .  

The space R' will be called the comrnodiry space. For any economic 
agenr a complete plan of action (made now for the whole future), or more 
briefly an action, is a specification for each commodity of the quantity 
that he will make available or that will be made available to him, is., a 
complete listing of the quantities of his inputs and of his outputs. With 
one of the sign conventions of 2.3 an action is therefore represented by a 
point a of R'. 

With each commodity, say the hth one, is associated a real number, its 
price, p,. This price can be interpreted as the amount paid now by 
(resp. to) an agent for every unit of the hth commodity which will be made 
available to (reip. by) him. 

The general term price covers a great variety of terms in current usage: 
prices proper, wages, salaries, rents, fares, fees, charges, royalties, . . . 

Consider as an example the commodity No. 2 Red Winter Wheat 
available in Chicago a year from now. Its price is the amount which the 
buyer must pay now in order to have one bushel of that grade of wheat 
del~vered to him at that location and at that date. Price as understood here 
is therefore very closely related to "price" as understood on a futures 
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market. There a sale contract concerns a well-defined good to be delivered 
at a specified date, at a specified location. The "price" to be paid is also 
specified now (it is the "price" prevailing on the floor of the exchange), 
but it is understood that this "price" shall be paid at the delivery date, at 
the deliuery location. This difference from the price concept which will be 
used here is inessential (see 2.7). A difference of another kind clearly 
exists. Organized futures markets concern only a small number of goods, 
locations. and dates (not too distant in the future). whereas it is imolicitly . . . . 
assumed here that markets exist for all commodities. 

The price p, of a commodity may be positive (scarce commodity), null 
(free commodity), or negative (noxious commodity). In the last case an 
agent for whom that commodity is an output, i.e., who disposes of it, 
makes a payment to the agent for whom it is an input, is., receives from 
the latter a negative payment. The fact that the price of a commodity is 
positive, null, or negative is not an intrinsic property of that commodity; - . - .  
it depends on the technology, the tastes, the resources,. . . of the economy. 
For example, some industrial waste product may be a nuisance the disposal 
of which is costly: should an invention, i.e.. a different technology, open -. . 
uses for it, it might become a scarce commodity. 

The price system is the I-tuple p = (p,, . . . ,p,, . . . ,p,); it can clearly 
be represented by a point of RE. The volue of an action a relative to the 

price systemp is 1 p,a,, i.e., the inner product p . a. 
I - 1  

2.7. INTEREST, DISCOUNT, AND EXCHPNGE 

Imagine that a certain good circulates as money at locations, at date t, 
and let k be the index of the commodity thus defined. To obtain the 
price at s, at t of the hth commodity,p:'. i.e., the number of units of that 
money which must be paid at s, at t in order to have one unit of the hth 
commodity available, one would divide p, by p,. Doing this for all 
prices in p, one would obtain the price system at s, at t, p'.' =p(l/pd. 
Instead of referring all prices to some money at s, at I, one might refer 
them, for example, to some good or service at s, at r. One is therefore led 
to the general concept ofprice system at localion s, at date t,pl.', as derived 
fromp by multiplication by a certain positive real number A',' (determined 
by the unit of value chosen at s, at 1). In pi' the locations and the date 1 
correspond to payment, the location and date which are implicitly deter- 
mined by h correspond to delivery; the first pair and the second are 
unrelated, in particular the payment date may be earlier than, simultaneous 
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with, or later than the delivery date. p now appears as the price system at 
an unspecified location, at an unspecified instant (of which it is often 
convenient to think as the present instant). 

Let r l ,  rZ be two dates such that t' < rZ. The number GI,,. defined by 
p'." = p'.L'a:t,,, is called the accumu/ation facror or sfrom r1 to rZ.  In this 
sectionp is always assumed to be different from 0 ;  therefore u:~,,. is a 
uniquely defined positive number. Its meaning is simple: by giving one 
unit of value at s, at  /I, one receives a:,,* units of value at  s, at  tz. When, 
in particular, r' = r and r Z  = r + 1, one defines the interesr rare at s 
from t ro r + I by i:,,, = a;,,, - 1. It is the difference between the 
value at s, at I + 1, one receives and the unit of value at s, at t, one gives. 
The interest rates usually quoted, e.g., .02 or 2%, are rates per annum; 
here all interest (and discount) rates are raresper alementory rime-inrerual. 
From a:,,,, = I + i:,,,, one derives 

a:t,,a = (I + f;L l ) , . . ( l  + i;*-,,,>), 
a product of r2 - r' terms. This prompts the definition of the inreresr 
rare ar s from 1' ro rz, i3,,,, as a certain average, by 

a:,,,. = (I + i;l,,,)L"ll, 

the positive root of gl,,t being taken. 
Similarly the positive number ,@;.,,I defined by p'." =p's'',@:s,,l is called 

the discounr,facror at sfronz re ro rl.  To receive one unit of value at s, at r*, 
one gives ,5':z,,l units of value at s, at r l .  Clearly 

1 1 P;,,,, = - = 
a:,,,2 (I + i;,,.)"-~' ' 

One defines also the discount rare or s from ra ro rl, d;,,,,, by 

, = (1 - d 1.11 )'"'I 1 

the positive root of ,@;z,~I being taken. For the hth commodity, p:" = 
p~o,9;z,tl is called the price at s, at r2 discounredfrom r2 ro rl .  

Let s', s' be two locations. The positive number a y  defined by 
p~'.t = ~ ' , t  E, S'S' . IS . called the exchange rare at 1, at s1 on sP. One receives 
one unit of value at r, at sz, by giving e:'." units of value at r, at s'. For 
example, if the unit of value at  New York (resp. London) is called dollar 
(resp. pound), the exchange rate at  r at  New York on London is the number 
of dollars at t (at New York) one pays for one pound at r (at London). 
One has 
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In  fact, the set of locations is partitioned into nations, and for all the 
locations s of a nation the price system at s, at a given date r, pa, is the 
same (this statement is unrilated ;o the generally /alse statement that the 
same good or service available at r, at two different locations of a nation. - 
has the same price). Then interest and discount rates, accumulation and 
discount factors are the same for all the locations of a nation, exchange 
rates are the same for all pairs of locations belonging respectively to a 
pair of nations; the nation ocly needs to be mentioned. 

What has been said about the generality of the concept of commodity 
could be reoeated now for the conceot of orice. I t  must alwavs be remem- , A 

bered that when the price system p is known and the numbers A,,' (p. 33) 
are given, all prices proper, wages, salaries, rents, fares,. . . , all accumu- 
lation and discount factors, interest and discount rates, all exchange rates 
are determined at every date, at every location. 

2.8. THEORY AND INTERPRETATIONS 

T o  conclude this chapter it remains to sum up the formulation of all the 
above concepts in the language of the theory: 

The number I of commodities is a giuen posirioe inleger. An action a of 
an agent is a point of R', rhe commodity spoce. A price system p is a point 
of R'. The value of an action a relative to a price system p is the inner 
product p . a. 

All that precedes this statement is irrelevant for the logical development 
of the theow. Its aim is to orovide oossible internretations of the latter. 
Other interpretations will be presented in Chapter 7, 

1. The idea that a good or a service available at a certain date (and a certain location) 
is a diKerentcommadity from thesame good or rerviceavailablc at a diKercnt date(or a 
different location) is old. The first general mathematical rrudy of an economy whox 
activity extends over a finite number of elementary time-intervals under conditions of 
perfect famight war that of E. Lindahl Ill. A similar treatment of time recurs in 
J. R. Hicks [I] (ree also G.  Tintner 111, 121). 

The use of negative prices originated in K. I. Arrow Ill and T. C. Koopmanr [I]. 

2. The assumption ofa finite nvmbcr of dater has thegreat mathe~?atifal convenicncc 
of enabling one to slay within a finite-dimensional commodity space. There arc, how- 
ever, conceptual difficultisr in postulating a predetermined inaant kyond which all 
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economic activity either ceases or is outside the smp of the analysis. It is therefore 
worth noticing that many results of the following chapters can be extended to infinite- 
dimensional commodity spaces. In general, the cornmod* spocc would be assumed to 
be a vector space L over the reals and, instead of a price vectorp, one would consider a 
linear form u on L defining for every action a e L  its uldue u(o). In  this framework 
could also be studied easff where the date, the location, the quality of commodities are 
treated ar continuous variables. 

3. Two important and difficult queslions are not answered by the approach taken 
here: the integration of money in the theory of value (on this point see D. Patinkin [I] 
and his refcrenesa), and the inclusion of indivisible commodities. 



CHAPTER 3 

PRODUCERS 

An economy consists of a certain number of agents, the role of each of 
them being to choose a complete plan of action, i t . ,  ro decide on the 
?uantity of his input or of his output for each commodity. Thus an agent is 
::t;aracterized by the limitations on his choice, and by his choice criterion. 
'This chapter studies a first class of agents, that of producers. The pro- 
duction ulan 3f a producer is constrained to belong to a given set repre- 
senting essentially i i i s  limited technological knowledge. In that set the 
?reduction plan is chosen. For eiven prices, so as to maximize profit, the 
sum of all receipts mii;ua .i:e sum of all outlays. A natural program of 
work is thus suggested: to make precise from the viewpoint of the theory 
and from the -iicwpoint of interpretations the concepts of producer, of 
production plan, and ofthe set of possible production plans; to investigate 
the properties of such sets; then to introduce the profit maximization 
criterion; finally to study how the optimal production plans depend on 
prices. 

3.2. PRODUCTIONS AND PRODUCTION SETS 

In the study of production, when one abstracts from legal forms of 
arganization (corporations, sole proprietorships, partnerships,. . .) and 
types of activity (Agriculture, Mining, Construction, Manufacturing, 
Transportation, Services,. . .) one obtains the concept of aproducer, i.e., 
an economic agent whose role is to choose (and carry out) a production 
plan. It is assumed that there is a given positive integral number n of 
producers, and each one of them is indicated by an index j = 1, . . . . n. 
For aproducer, say thejth one, a production plan (made now for the whole 
future) is a specification of the quantities of all his inputs and all his 
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outputs; outputs are represented by positiue numbers, inputr by negative 
numbers. With this convention a production plan, or more briefly a 
producrion, is represented by a point yi of R', the commodity space. A . . . . 
given production yj may be technically possible or technically impossible 
for the ith nroducer. The set Y ,  of all the oroductions oossible for the ith , . 
producer is called hisproduction set. The point y, is also called the supp!y 
of the jth producer. 

The inputs of a production may include raw materials, semifinished 
products; land and equipment or their uses; labor of workers, foremen, 
executives,. . . at various dates and locations. The outputs include, in 
general, more than onecommodity, ~f only because the production involves 
several dates. The land, equipment,. . . , which were inputs at one date 
may reappear asoutputs at  alater date, in a different condition. Generally, 
inputs and outputs together contain only a relatively small number of 
commodities, in other words most coordinates of y, are null; this corre- 
snonds to the fact that Y. is. in eeneral. contained in a coordinate subsnace , .  - 
of R%itb a relatively small number of dimensions. To the various types . . 
of activity correspond production sets with different characters. 

A ~roduction v.  is classified as nossible or irnnossible for the ith nroducer ", , ' 
on the basis of his present knowledge about his present and future 
technology. The certainty assumption implies that he knows now what 
input-output combinations will be possible in the future (although he may 
not know now the details of the technical processes which will make them 
possible). n 

Given a production y, for each producer, the sum y = 2 y, is called 
j - 1  

the totalproduction, also the total supply. In forming this sum one cancels 
out all commodity transfers from producers to producers (each such 
transfer appears once as an output with positive sign and once as an input 
with negative sign); y describes therefore the net result of the activity of all 
producers together. That is t o  say, the positive coordinates of v represent - - .  
outputs ofproducen not transferred to theproductior, sector; the negative 
coordinates represent inputs of producers not transferred from the pro- 

., 
duction sector. The set Y = 2 Y,  (see 1.9.f) is called the toralproducrion 

j-1 

set; thus y, Y, for all j = 1, . . . , n is equivalent to y . Y. The last set 
describes the production possibilities of the whole economy; it is, in 
general, no longer contained in a relatively small coordinate subspace of R'. 

Fieure 1 illustrates the above concents in the case where there are three 
commodities and two producers. The straight lines 0,2 and 0,3 are 
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imagined to be in the plane of the page, the straight line 0, I to be per- 
pendicular to the plane of the page and pointing toward the reader. The 
production set of the first (resp, sccond) producer is the closed half-line Y,  
(resp. Y,) in the plane 1, 2 (resp. 2, 3). Thcn the total production set Y 
is the shaded angle. 

Fig. I 

In the language of the theory, this whole section is expressed as follows: 

The number n of producers is a giuen positive integer. Each producer is 
indicated by an index j = 1, . . . , n. The jth producer chooses a point, his 
production or his supply y,, in a giuen non-empty subset of R', hisproduction 

" 
set Y,. Given a production yi for each producer, y = 2 y, is called the ~. " 3-L 

total production or the total supply; the ser Y  = Z Y ,  is called the total 
production set. j-1 

3.3. ASSUMPTIONS ON PRODUCTION SE~Y 

All the assumptions on the sets Y, which are used at one point or  
another below, and others closely related, are discussed here. The order 
in which they are listed corresponds approximately to decreasing plausi- 
bility. 

(a) Y, is closed (continuity), 
i.e., let ($) be a sequence of productions; if all the fl are possible for the 
jth producer, and if $ + y;, then ~ is possible for the jth producer. 
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Narrowly related (see (I)) is the similar assumption for the total pro- 
duction set: 
(a') Y is closed. 

(b) 0 c Y ,  (possibility of inaction), 
i.e., the jth producer has the possibility of doing nothing. The similar 
assumption for the total production set is: 
(b') 0 E Y .  

An economy where no production activity can take place is characterized 
by Y = {0), i.e., the total production set consists of the single point 0. 

(c) Y n c {O) (impossibility of free production), 
i.e., a possible total production whose inputs are all null has all its outputs 
null. 

(d) Y n (- Y) c (0) (irreversibility), 
i.e.. if the total production y, whose inputs and outputs are not all null, 
is possible, then the total production -y is not possible. The productive 
process cannot be reversed since, in particular, production takes time and 
commodities are dated. 

To prepare for the study of the next three assumptions, a few definitions 
are introduced here. Given a production y,, to change the scale of 
operations is to multiply y, by a non-negative number t. To increase 
(resp. decrease) the scale is to restrict further t to be larger than 1 (resp. 
smaller than I). 

Fig. 2.a Fig. 2.b Fig. 2s 

Given Y,, one says that: 
non-decreasing rerurnr to scale prevail if for any possible y, one can 
arbitrarily increase the scale of operations, 
non-increasing returns to scale prevail if for any possible yj one can 
arbitrarily decrease the scale of operations, 
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constant returns lo scale prevail if for any possible y, one can arbitrarily 
change the scale of operations. 

These three cases are illustrated respectively by figs. 2.a, 2.b, and 2.c. 

(e) ( Y ,  + Y,) c Y, (additivity), 
i.e., if y: and $are productions possible for the jth producer, so is y: + $. 
The sets Y, in fig. 2.a and fig. 2.c have this property. In so far as Y, 
represents technological knowledge, it is clear that two production plans 
separately possible are jointly possible. Alternatively the jth producer 
can be interpreted as an industry rather than as a firm; then the additivity 
assumption means that there isfree enrry for firms into that industry, i.e., 
no institutional or other barrier to entry. Under (e), if y j  is possible 
so is ky,, where k is any positive integer. Therefore (e) implies a certain 
kind of non-decreasing returns to scale. 
(f) Y, is conuex (convexity), 
i.e., if y: and $ are productions possible for the jth producer, so is 
their weighted average, ty; + (1 - t)yf, with arbitrary positive weights. 
Assumptions (f) and (b) together imply that, if yj  is possible, so is ly, for 
every number t satisfying 0 < t < 1 ; in other words, that non-increasing 
returns to scale prevail. The convexity assumption is crucial because of 
its role in all the existingproofs of several fundamental economic theorems. 
It is a limitation in that it rules out,when (b) holds, increasing returns to 
scale (i.e., non-decreasing returns toscale with the existence of a possible 
production for which the scale of operations cannot he arbitrarily 
decreased). But it still has a great generality since it is, in particular, weaker 
than the convex cone assumption which will be discussed in connection 
with (g). 

Even if every Y, is closed, Y is not necessarily closed. However, 

(!j I/- every Y, is closed and conuex, and if Y n (- Y) = (01, then Y 
is closed. 

Proof: According to (9) of 1.9.p it suffices to prove that the 
asymptotic cones A Y, are positively semi-independent (1.9.m). 

It will first be shown that 2 AY, c Y. Since 0 E Y, there is, for 

each j ,  a vector yj in Y, such that 2 y,O = 0. By ( 5 )  of 1.9.0 and (14) 
j 

of 1.9.s, one has A Y, c Y, - ($I. The result follows by summation 
over j. 

It will now be proved that "y, AY, for every j, and 2 yj = 0" 
j 

implies "y, = 0 for every j." Consider one of them, y,.. The vector 
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1 y, is in 1 AY,, hence in Y; it is equal to -y,. which is similarly 
j i t f  j 
in - Y. If y,. were different from 0, a contradiction of Y n (- Y) = 
{ O ]  would result. 

Closely related to (f) is the similar assumption for the total production 
set: 
(f') Y is convex. 
The latter is clearly weaker than the assumption "every Y ,  is convex." 
Assumptions (f') and (b') together imply that non-increasing returns to 
scale prevail for the total production set. 

(g) Y, is a COW wifh uerfex 0 (constant returns to scale), 
i.e., if yj is a production possible for the ~ t h  producer, so is ty,. where t 
is any non-negative number. This assumption corresponds to the intuitive 
idea of an elementary production process for which the ratios of all 
outputs and all inputs to each other are fixed but the scale of operations 
can be arbitrarily varied. 

Constant returns to scale (g) together with additivity (e) implies that Y ,  
is a convex cone with vertex 0. In the case of constant returns to scale, 
convexity is therefore easily justified. Note that, conversely, "convexity 
(f), additivity (e), and possibility of inaction (h)" implies "constant returns 
to scale (g)." Also, hut this is of less interest, "convexity (f) and constant 
returns to scale (g)" implies "additivity (e)." 

All the assumptions on Y ,  listed so far ((a), (b), (e), (f), (g)), when made 
together, are equivalent to: Y, is a closed, convex cone with vertex 0. 
Interesting particular cases are: Y, consists of the single point 0; Y, is a 
closed half-line with oriein 0: Y. is a convex ~olvhedral cone with vertex 0. - . ,  . , 

If every Y, is a cone with vertex 0, so is Y. 

(h) Y = ( - a )  (free disposal), 
i.e., if a total production has all its outputs null, it is possible. In other 
words, it is possible for all producers together todisposeof all commodities. 
Closely related is the assumption: 
(v) Y = ( Y - ~ ; ,  
i.e., if a total production is possible, so is one where no output is larger 
and no input smaller (in absolute value). Indeed it is easy to prove, for 
example, that "additivity (e) for Y and (h)" implies (h'); and, using (5) 
and (14) of 1.9, that 

(2) "conuexity (f')for Y,  continuity (a')for Y ond(h)" implies (h'). 
Finally, in a different connection, note that "free disposal (h) and 

irreversibility (d)" implies "impossibility of free production (c)." 
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Cicen a price system p and a producrion y,, the profit of the j th producer 
i s p .  y,. The totalprojt isp . y.  

Because of the sign conventions on the coordinates of y, and p, the 
inner product p . yj is indeed the sum of all receipts minus the sum of all 
outlays. Since commodities are dated, this concept of profit corresponds 
to the customary notion of the sum of all properly discounted anticipated 
future receipts minus the sum of all properly discounted anticipated future 
outlays. I t  is convenient to conceive of all producers as corporations, and 
to regard, for example, a sole proprietorship as a corporation with a single 
shareholder. One of the advantages of this viewpoint is that it  makes 
clear that a sole proprietor usually plays two roles: that of a president of 
a corporation, in which capacity he receives an executive salary, and that 
of a shareholder, in which capacity he receives the profit. 

It is assumed that each producer (a) considers prices as given (because, 
for example, his output or input of any commodity is relatively small and 
he thinks his action cannot influence prices) and (b) tries to maximize his 
profit. Choosing a production according to this principle amounts, for 
the producer, to distributing optimally over time and over space his 
inputs (investments for equipment, building, inventories, . . . , labor, 
electricity, . . .) and his outputs. In the language of the theory: 

Given the price sjsrem p, the jth producer chooses his production in his 
production set Y, so as to maximize hisprojt. The resulting action is called 
on equilibrium pro<ucrion qf the j th producer relarive to p .  

When p # 0 one has the following geometric situation. If y, is a 
maximizer, the set Y, is contained in the closed half-space below the 
hyperplane H through y,, with normal p (fig. 3). The set of maximizers 
is the intersec:ion of Y ,  and H. 
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Given an arbitrary p, there may be no maximum profit (for example, 
if non-decreasing returns to scale prevail, and if for some y, in Y, one has 
p . y, > 0, profit can be arbitrarily increased). Let therefore T; be the set 
ofp  in R' for which the set of maximizers is not empty (T' is clearly a cone 
with vertex 0). Thus with each price system p in T; \s associated the 
non-empty set ~ ( p )  of possible productions maximizing profit for thatp. 
The correspondence q, from T,! to Y, is called the supply correspondence 
of the jth producer. The consideration of correspondences (instead of 
simpler functions) in the study of producers is inescapable for, in the 
important instance where Y, is a closed convex cone with vertex 0, the set 
of marimizen consists of a single point only in trivial cases (see the end 
of this section). Let n,(p) be the maximum profit when the price system 
isp  in I;'. The function a, from T; to R is called the profitfunction ofthe 
jth producer. If all the prices in p are multiplied by the same positive 
number t, clearly ~,(tp) = q,(p), is., the set of maximizers is unchanged, 
and n,(tp) = tnj@), i.e., the maximum is multiplied by t. 

Given a price systemp, there is a maximum profit for everyj = 1, . . . , n 
" 

if and only if p belongs to n Ti. In that case one can define the non- 
m j=1 

empty set q(p) = I q,(p) of possible total productions compatible with 
j-l 

profit maximization for that p by every producer. The correspondence q 
3k 

from n Ti to Y is called the total supply correspondence. One can also 
3-1 " " 

define the number n(p) = I n , @ ) .  The function a from n Ti to R 
j = ,  ?=I 

is called the totalprojr function. If t is a positive number, 

q(P) = rib), and 4 ~ )  = Np).  

Summing up the above definitions for the sake of the theory (according 
to 1.3.c, p . Y, denotes the image of the set Y, by the function defined on 
R' by Y, -p .  YJ: 

is dejned by Ti = @ s R' / p . Y, has a maximum). The supply corre- 
spondence of the jth producer, v,. from I;' to Y, is defuted by qj(p) = 
{y, E Y,, 1 p . y, = Maxp - Y,). The projt function of thejthproducer, a,, 
from Ti to R is dejned by nj(p) = Maxp . Y,. The total supply corre- " " 
spondence, q, from n Ti to Y is dejned by q(p) = I q,(p). The total 

j-1 ,=, 
" 98 

projrfmction, ?i, from n $ to R is defrned by n(p) = I n,(p). 
,=1 j=1 
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The following result is immediate: 

(1) Let ylr . . . , y,, ' . ' , y, bepoinrs of Y,, . . . , Y,, . . . , Y. respectively. 
Given p, p . y = Maxp . Y ifand only ifp . y3 = Maxp , Yj for euery j. 

In other words, y maximizes total profit on Y if and only if each yi 
maximizes profit on Ye This is illustrated by fig. 4 and gives the simple 
characterization of ~ ( p )  and n(p): 

(1') Given p in n Ti, ~ ( p )  = (y E Yip . y = Maxp . Y), and d p )  = 
Max p . Y j-' 

In other words, ~ ( p )  is the set of maximizers of total profit on Y; ?i(p) is 
the maximum of total profit on Y. 

Fig. 4 

In the rest of this section various assumptions on the production sets 
will be listed, and the implications of each one of them for profit maximi- 
zation will be studied. 

0 Y, (possibility of inaction). Given p in T:, 0 may be a maximizer 
(inaction may be optimal), it may even be the unique maximizer. In any 
case the maximum profit is clearly non-negative. 

(Y, + Y,) c Y, (additivity). Given p in Ti, the maximum profit is 
non-~ositive. (If a possible yj gave a positive profit, 2yj would also be 
possible and give a twice larger profit.) "Additivity and possibility of 
inaction" therefore implies that the maximum profit is null if it exists. 
This covers the case of a free entry industry. 
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Y, is conuex (convexity). Given p in T;, i f p  = 0, the set vj(p) of maxi- 
mizers is Y, itself; ifp # 0, v,(p) is the intersection of Y, and a hyperplane 
(see the discussion of fig. 3); in both cases v,(p) is convex. If every Y, is 

" n 

convex, the set ~ ( p )  = 2 vj(p) is convex for every p in n T;, as a sum 
of convex sets. j -1 9-1 

Y,  is a cone with uerlex 0 (constant returns to scale). Givenp in Ti ,  the 
maximum profit is null as in the case of "additivity and possibility of 
inaction." Therefore Ti = Y;, the polar of Y, (1.9.y). The origin 0 is a 
maximizer; hence, ifp # 0, the set vj(p) of maximizers is the intersection 
of Y, and the hyperplane H through 0, orthogonal t o p ;  if p = 0, the set 
qi(p) is Y, itself. In both cases the set vj(p) is a cone with vertex 0. It is 
easy to prove that, when p belongs to the interior of Yg, the origin 0 is 
the unique maximizer (this is illustrated in RZ by fig. 5.a). It  is more 

Fig. 5.a Fig. 5.b 

difficult to prove that, when p belongs to the boundary of Y; and Y, is 
closed, the cone of maximizers is not reduced to the single point 0 (this is 
illustrated in R2 by fig. 5.b; the cone of maximizers is the heavy closed 
half-line). 

Eoery Y, is a cone with vertex 0. Then so is Y. Given p, there is a 
maximum o f p  . y, on Y, for every j if and only if there is a maximum of 

p .  y on Y (according to (I)). Therefore n Yg = Y", the polar of Y. 
9-1 

Given p in Yo, the set ~ ( p )  is, according to (1'). the set of maximizers of 
p . y on Y. What has just been said for v,(p) and Yj can therefore be 
repeated for ~ ( p )  and Y. 
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Y 3 (-a) (free disposal). Given p, there is a maximum of p . y, on Y ,  
for every j only if there is a maximum of p . y on Y (according to (I)), 
hence only if p -2 0. Indeed, if p, c: 0, it would be possible to increase 
arbitrarily p . y by increasing (in absolute value) the total input of the 
hth commodity. 

3.5. PRICE VARIATIONS 

Letp be a first price system, and y, a corresponding optimal production 
for the jth producer. Ifp' is a second price system, and yi a corresponding 
optimal production, then denote the price change p' - p by Ap and the 
corresponding production change y; - y, by Ay,. By definition p . y; < 
p .  y , ;  hence 

(1) P . AY, < 0. 

Similarly p' . Ayj > 0 ;  therefore, by subtracting (I), 

(2) A p . A y , ) 0 .  

If only one price varies, say p,, (2) becomes 

AphAyjh 2 0, 
where y,, is the hth coordinate of y j .  Thus, if the price of a commodity 
increases, all other prices remaining constant, a producer increases or 
leaves unchanged his output of that commodity (decreases or leaves 
unchanged, inabsolute value, hisinput of that commodity). By summation 
over j one obtains inequalities analogous to (1) and (2) for the total 
production: 

(1') p . A y < O  and 

(2') Ap . Ay > 0. 

It will be shown in 5.4, 5.7 how, under certain rather weak assumptions, 
the production set Y j  can he replaced by a certain non-empty compacr 
subset of Y,.  The rest of this section will therefore study the case where 
Y,  is compacr. 

Given an arbitrary p, p . y j  defines a continuous function of y j  on Y,, 
and (4') of 1.7.i applies. Hence p . Y, has a maximum! In other words, 
TI = R'. 
'In fact, p . y j  defines a continuous function of (p, y,) on RL x Y,, and 

theorem (4) of 1.8.k applies (here the correspondence pi from R' to Y,  
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is defined by d p )  = Yj for every p e R'; it is constant and thus trivially 
continuous). Hence 7,. the supply correspondence of the jth producer, 
isuppersemicontinuouson R', and n,, the profit function ofthejth producer, 
is continuous on R'. 

t Z  

Fig. 6 

Figure 6 makes intuitive the continuity properties of v i  and n,. Consider 
a vector p rotating around 0 from p' to p3. If p is interior to the angle 
p'Op2, then v,<p) consists of the single point a'. If p is equal to pZ, then 
?lj(p) consists of the closed segment [a1, 07. If p is interior to the angle 
p20p3, then 7,(p) consists of the single point 02. 

When every Y, is compact, according to (4) of l.9.h, 7, the total supply 
correspondence, is upper semicontinuous on R', and, according to (3) of 
1.9.g, n, the total profit function, is continuous on R! Summing up: 

(3) I f  Y, is compact, then T; = R', 7, is upper semiconrinuous on R', ond 
n, is continuous on R'. ,'/every Y, is compact, then 7 is upper semicontinuous 
on RL, and n is continuous on R'. 

When one of the upper semicontinuous supply correspondences 7,. 77 

happens to he a function, it is continuous according to 1.8.g. 
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PRODUCERS 3. NOTES 

I. K. Menger's [I] discussion of production functions (relating a single output to 
several inputs) contains definitionr corresponding to "on-decreasing, "on-increasing. 
constant returns to scale, and additivity of 3.3. T. C. Koopmam' I11 basic study of 
convex polyhedral conic production see introduces the imporoibility of free production 
and irreversibility assumptions of 3.3. 

Inequalities (I) and (2) of 3.5 are P. A. Samuelson's [I]. Chapter 4. 

2. Three phenomena that thc present analysis does not cover muJt be emphasized: 
11) external economi~r ond diseconomies. i.e. the case where the ~roduction set of a ,~, 
producer depends on the productions of the other produarr (and/or on the con- 
sumptions of conrumerr), (2) increasing. returns to scale, (3) the khavior of producers - 
who do not consider prices as given in choosing their productions 



CHAPTER 4 

CONSUMERS 

4.1. INTRODUCTION 

This chapter studies a second class of agents, that of consumers. As in - 
the case of a producer, the role of a consumer is to choose a complete 
consumntion nlan: he is characterized hv the limitations on his choice. . . 
and by his choice criterion. Here the choice limitations are of two kinds: 
firstly, the consumption plan must satisfy certain a priori constraints (for 
example, of a physiological nature); secondly, given prices and the wealth 
of the consumer, the value of his consumption plan must not exceed his 
wealth. Under these limitations, a consumption plan to which none is 
preferred is chosen. The following natural program of work is thus 
suggested: to make precise from the viewpoint of the theory and from the 
viewpoint of interpretations the concepts of consumer, of consumption 
plan, of the set of apriori possible consumption plans; to investigate the 
vroverties of such sets: to make vrecise the concevt of preferences among . . . . - 
a priori possible consumption plans; to investigate the properties of 
prbferences; next to intr'duce <he wealth constrakt; then-tostudy the 
satisfaction of vreferences under the two constraints (a oriori vossihilitv . . 
and wealth constraint); finally, to investigate the dependence of optimal 
consumption plans on prices and wealth. 

A consumer is typically an individual, it may be a household, it might 
even be a larger group with a common purpose. His role is to choose (and 
carry out) a consumption plan made now for the whole future, i.e., a 
specification of the quantities of all his inputs and all his outputs. It is 
assumed that there is a given positive integral number m of consumers, and 
each one of them is indicated by an index i = 1,. . . , m. 
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The inputs of the ith consumer are represented by posiriue numbers, his 
oulputs by negative numbers. With this convention, his consumption plan, 
or more briefly his consumption, is represented by a point z, of R', the 
commodity space. A given consumption 2, may be possible or impossible 
for the ith consumer; for example, the decision for an individual to have 
during the next year as sole input one pound of rice and as output one 
thousand hours of some type of labor could not be carried out. The set Xi 
of all the consumptions possible for the ith consumer is called his con- 
sumption set. The point zi is also called the demand of the ith consumer. 

Fig. 1.a Fig. 1.b 

Many commodities do not, in general, enter into a consumption; this 
corresponds to the fact that X, is generally contained in a coordinate 
subspace of R' with a relatively small i~umher of dimensions. Typically, 
the inputs of aconsumption are various goods and services (related to food, 
clothing, housing, . . . ,dated and located); its only outputs are the various 
kinds of lahor performed (dated and located). The non-negativity of these 
inputs and the non-positivity of these outputs restrict further the set X,. 
Finally, limitations of the rice-labor example type complete the deter- 
mination of X,. An individual who buys a house, a car, . . . for his own 
use and sells it back later plays two roles: that of a producer who buys 
and sells houses, cars, . . . in order to sell their services, and that of a 
consumer who buys the service, use of that house, of that car,. . . 

Two examples will illustrate the above concepts for an individual 
consumer. First consider the case where there are one date and one 
location; a certain kind of labor defines the first commodity, a certain 
foodstuiT(assumed to be freely disposable) defines the second commodity. 
X, is represented by the shaded area in fig. 1.a. 
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Secondly, consider the case where there are one location and two dates; 
a certain foodstuff at the first date defines the first commodity, the same 
foodstf iat  the second date defines the second commodity. Let the length 
of [0, 0'1 (fig. 1.b) be the minimum quantity of the first commodity which 
that consumer must have available in order to survive until the end of the 
first elementary time-interval. If his input of the first commodity is less 
than or equal to this minimum, it might seem, on first thought, that his 
input of the second commodity must be zero. The set X, would therefore 
consist of the closed segment [0, 0'1 and a subset of the closed quadrant 
1, O', 2'. Such a set has the disadvantage of not being convex in general. 
However, if both commodities are freely disposable, the set X, is the 
closed quadrant 1,0,2, which is convex: if the consumer chooses (perhaps 
k a u s ;  he is forced to) a consumption z, in the closed strip 2,0,0', i', 
it means that 2:. of the first commoditv is available lo him and he will 

,A 

actually consume at most that much of it, and that z., of the second com- 
modit; is available to him and he will actually consume none of it. 

The two exam~les were restricted to the case of two commodities onlv to 
permit the use of diagrams. Their features are clearly general. The choice 
by the ith consumer of x ,  in Xi determines implicitly his life span. Notice 
that the free disposal assumption which played an essential role in the 
second example, in restoring the convexity of X,, is an assumption of free 
disposal for consumers' commodities only, and therefore much weaker 
than the total free disposal assumption (h) of 3.3. 

This section can be summarized by: 
The number m of consumers is a given positive integer. Each consumer is 

indicated by an index i = 1, . . . , m. The ith consunler chooses a point, his 
c o m p r i o n  or his demand z,, in a given non-empty subset of RL, his con- 

* . ~ 

sunytion set X,. Giuen a consumption z,for each consumer, z = 2 z2, is 
7" <=I 

called the total consumption or the totaldemund: the set X = X, is called 
rhe total consumption set. i - l  

All the assumptions on the sets X. which are used at  one point or  
another below are discussed here. The order in which they are listed 
corresponds approximately to decreasing plausibility. 

(a) X, is closed (continuity), 
i.e., let (4) be an  infinite sequence of consumptions; if all the @ are 
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possible for the ith consumer, and if z: +zl, then zp is possible for the 
ith consumer. 

Narrowly related (see (I)) is the similar assumption for the total con- 
sumption set: 
(a') A' is closed. 

(b) X, h a  a lower bound for < (lower boundedness), 
i.e., there is a point zi in R1 such that X ,  ( z, for all z, in X,, or, in other 
words, such that X, c (xi) + R. This assumption has an easy economic 
justification. If the hth commodity is an input, z, has a lower bound, 
zero. If the hth commodity is an output, i.e., a type of labor produced, 
there is clearly an upper bound (in absolute value) for the quantity of that 
labor which the consumer can produce during the corresponding elemen- 
tary time-interval, whatever his other inputs and outputs may be. 

The similar assumption for the total consumption set is: 
(b') X has a lower bound for <. ,,, 

If (b) holds for every X,, then I: = 1 1 ,  is a lower bound of X for 5. 
i = ,  

Conversely, if X has a lower bound for (, then every X, is easily seen 
to have a lower bound for <. 

Even if every Xi is closed, X i s  not necessarily closed. However, 

(I) Ifetiery X, is closed and has a lower bound for <, then Xis  closed. 
Proof: According to (9) of 1.9 it suffices to show that the asymptotic 

cones AX, are positively semi-independent (1.9.m). Notice that 
X, c {yz) + R implies AX, c A({x,) + a), and that, by (5) of 1.9.0, 
the last set is equal to An ,  hence to R. Summing up, AX. c R. ." 
Therefore it suffices to prove that "xi R for every i, and z, = 0" 
implies "zi = 0 for every i," which is obvious. .=I 

(c) X, is connected (connectedness). 
This means, in an intuitive and imprecise language, that X, is made of one 
piece (see the exact meaning in 1.6.u). 
(d) X, is convex (convexity), 
i.e., if z: and 3 are consumptions possible for the ith consumer, so is their 
weighted average, rz: + (I - t)$, with arbitrary positive weights. As in 
the case of (f) of 3.3, this convexity assumption is crucial because of its 
role in all the existing proofs of several fundamental economic theorems. 
I t  can be intuitively justified by referring to the two examples discussed in 
connection with fig. 1.a and fig. 1.b. 

According to (13) of 1.9 convexity (d) implies connectedness (c). 
If every X, is convex, then so is X. 
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4.4. PREFERENCES 

Given two consumptions z:, z: in X,, one and only one of the following 
three alternatives is assumed to hold: for the ith consumer (a) z: ispreferred 
t o 4 ,  (h) zf is indzyerent to $, (c) $ ispreferred to zf. It is most convenient 
to focus attention on the binary relation on X, "is not preferred to," 
which may also be read "is at  most as desired as." Clearly zi is at most as 
desired as z, for any xi in X,; moreover it is assumed that, for xi, e, z: 
in X,, "zf is at most as desired as z:, and z: is a t  most as desired as z;?" 
implies "z: is at most as desired as z:." The binary relation is thus 
reflexive and transitive; it is, according to the terminology of 1.4.h, a 
preordering which will be denoted 5, and called the preference preordering 

of the ith consumer. It is, in fact, by the first assumption of this section, 
a complete preordering. 
" 1 

zi 5 and $ 5 x:" is denoted "z: ; $' and read "zt is indifferent to 

$." 
"z: ; $ and not ~ z:" is denoted "z: > $ and read "z: is preferred to 

<." 
The binary relation 7 on X, is called the indiserence relation of the 

ith consumer. It is obviously reflexive and transitive; it is also symmetric, 
i.e., "z: 7 zy implies "$ 7 xi." Given a consumption z: in X,, the set 
{xi c Xi / z, 7 xi}, i.e., the set of consumptions in Xi which are indifferent 
to z:, is called the indzfference class of 2:. It is easy to see that an arbitrary 
consumption in X, belongs to one and only one indifference class. In 
other words, the set of indifference classes forms a partition of X,. 

A point z, in X, is called a satiation consumption if no possible con- 
sumption is preferred to it by the ith consumer. 

The preference preordering of the ith consumer completely expresses his 
tastes with regard to food, clothing, housing,. . . , labor and also to 
consumption at some date or some location rather than at another. The 
preferences considered here take no account of the resale value of com- 
modities; the ith consumer is interested in these only for the sake of 
the personal use he is going to make of them. 

The above concepts will he illustrated by two examples. In the first one 
(fig. 2.a) there are one date, one location, two commodities; the set X, is 
the closed quadrant 1,0, 2. With each point of the closed half-line 0, 1 is 
associated its indifference class revresented by a curve starting from that 
point. Four specimens have been-drawn.   he set of points preferred to 
a point z: of X, is the set of points above the indifference curve of z:. 
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The second example is that which has been studied in connection with 
fig. 1.b (in 4.2). The indifference class of a point of 0, 0' is the closed 
vertical half-line from that point; three specimens of indifference curves 
of points of 0', 1 have been drawn. 

2 
2 2' 

Fig. 2.a Fig. 2.b 

In the language of the theory, this section is expressed by: 

The preference preordering of the ith consumer is a giuen complete 
preordering,$, on X,.  Giuen a consumprion z: in X,, the set (2, i X ,  1 zi 7 2:) 

is called the indijerence class of 2:. A greatest element of X, for 5 is called 
a sariation consumption. 

All the assumptions on the preference preorderings 5 which are used 

at one point or another below are discussed in the next three sections: 
insatiability in 4.5, continuity in 4.6, convexity in 4.7. 

(a) No satiation consumption exists Jbr the ith consumer, 
i.e., no matter what his consumption is (in X,), there is another one (in X,) 
which the ith consumer prefers. 

The consumption set Xi is partitioned into indifference classes. Is it 
possible to associate with each class a real number in such a way that, if 
a class is preferred to another, the number of the first is greater than the 
number of the second? In other words, given a set completely preordered 
by preferences, does there exist an increasing (1.4.k) real-valued function 
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on that set? Such a function is called a utility f i c t ion ,  and denoted u,. 
The answer to the existence question is: not necessarily so (see an example 
in note 2). The main object of this section will therefore be to give an 
assumption on preferences (assumption (a)) from which the existence of a 
utility function can be proved (theorem (I)). In fact, this function would 
be of little interest ifit were not continuous; the assumption on preferences 
should therefore enable one to prove that there is a continuous utility 
function on X+ 

The existence problem will be left aside for a moment, and the concept of 
a utility function will he discussed further. If u: is a utility function, and 
iff is an increasing function from R to R, the function 4, defined on X, 
by <(z,) = f(u:(z,)) for all z,, is clearly also a utility function. (If u: and f 
are continuous, $ is continuous by ( I )  of 1.7.) Given a preference pre- 
ordering, a corresponding utility function is thus arbitrary to a large extent. 

A utility function is a valuable tool in the proof of some results. It also 
gives a precise content to the intuitive notion of a numerical measure of 
how satisfied the ith consumer is with zi. 

Summing up for the sake of the theory: 

A utility function ui for the ith consumer is an increasing functionfrom Xi 
preordered by 5 to R. 

The existence problem will now be studied and, for this, the following 
continuity assumption on preferences is first introduced: 

(a) .For every z: in X,, the sets {zi r Xi / z, 5 z:} and {q Xi I z j  2 z:} are 
closed in X,, 
i.e., let (<) be a sequence of consumptions possible for the ith consumer; 
if all the z: are at most as desired as xi, and if < -z: (a consumption in 
Xj), then zp is at most as desired as z:. And similarly when "at most as 
desired as" is replaced by "at least as desired as." If there is a continuous 
utility function on X,, preferences satisfy assumption (a) by (3') of 1.7. 

The rest of this section is devoted to the proof of the converse theorem: 
(I) Let X ,  be a connectedsubset of R', completelypreorderedby 5 .  Under 
assumption (a) there is on X, a continuous utility function. 

Proof (to Lighten notation the subscript i will be omitted in this 
whole proof; thus X will stand for X,, 5 for 2, . . .): The trivial 

case where all the points of X are indifferent can be immediately 
disposed of. Any constant real-valued function on Xis a continuous 
utility function. This case will be excluded until the end of this 
section. 
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The proof is based on the existence of a countable subset D of X 
which is dense in X (1.6.11). In part 2, a well-chosen increasing 
real-valued function is defined on D. In part 3, this function is 
extended from D to X. In part 4, the function so defined on Xis  
shown to he continuous. Part 1 supplies a useful preliminary result. 

1. A preliminary resulr. 

(2) If z' and z" in X satisfy z' < z", there is an z in D such that 
2' < z < zX. 

To prove this, wnsider the two sets X, = {z e XI x ~ z ' ]  and 
X6 = {z s X ( z" 51). They are disjoint, non-empty, and, by (a), 
closed in X. Since Xis  connected, their union cannot (1.6.u) he X, 
hence 

xzy. U x=* # x. 
Assume now that there were no z in D with the desired property; 

this would mean that D c X, u X'.. By (2) of 1.6.h, D, the 
adherence in X of D, would he wntained in the adherence in X of the 
right-hand set. The latter, however, is closed since it is the union of 
two closed sets. Hence one would have D c X, U X', or, since 
D = x ,  

X = x, u X". 

A contradiction would thus result. 
2. A utility junction on D. 
The utility function to he defined on D will be denoted u'. Select 

then two real numbers a, b such that a < b. 
If D has a least element P, one takes u'(za) = a. 
If D has a greatest element d, one takes u'(a?) = b. 
Remove from D all the elements indifferent to z' or to d, and call 
D' the remaining set. By (2), 

(3) D' has no least and no greatest element. 
An increasing function from D' onto the set Q' of rationals of the 

interval Jn, b[ is defined as follows. Since D' is countable, its elements 
can be ranked (z', 25. . . , zP, . . .); this ranking is unrelated to the 
preordering 5 .  Similarly Q' is countable, and its elements can be 
ranked (r', rz, , . . , F,. . .); this ranking is unrelated to the ordering 
< The elements of D' will be considered in succession; with zu - - 
will be associated an element ?-+ of Q' in such a way that the pre- 
ordering is preserved, and that every element of Q' is eventually 
taken. 
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Consider zl; take q, = 1 and u'(zl) = +. 
Consider za; the set D'  is partitioned into the following sets: the 
indifference class of z', the intervals I-, z'[ and ]z', - [. Two cases 
may therefore occur: 

if zZ - z', take q,  = q, and u'(z3 = f l* ;  
if zs is in one of the two intervals, say I-, zl[, consider the corre- 

sponding interval, )a, r l [ ,  of Q' and select in it the rational of leasr 
rank, P'; take u'(z2) = P2. 

In general, consider zn; the set D' is partitioned into the following 
sets: the indifference classes of 2'. z2, . . . . z" (the number of 
different sets so obtained is at most p - I), the intervals of the form 
I-, z91[, or Isv-, zP-+I[, or ]z9*-*, -[ where m < n implies z9-szv*  
(the number of non-empty intervals so obtained is at most p). Two 
cases may occur: 

if zv - 2'' where p' < p, take q ,  = q,, and u'(z3 = +; 
if zv is in one of the intervals, say I%", zu'[, consider the corre- 

sponding interval, ]r+, F:.[, of Q' and select in it the rational of 
Iterr rank, Pp; take u'(z3 = Pn. 

It is clear that the function u' is increasing. It is easy to check 
that (2) and (3) with the least rank rational selection imply that every 
element of Q' is eventually taken. 

3. Exlemionfrorn D to X. 
The utility function to be defined on X will be denoted u. If z' 

is an element of X, one writes D,. = (z s D 1 z j z ' }  and ff' = 
( z e ~ l z ' s z ) .  

If z is a least element of X, take u(z) = a. 
If z is a greatest element of X, take u(z) = b. 

In the other cases, consider Sup u.'(D,) and Inf u'(DZ). These two 
numbers will be shown to be equal. 

(1) If z' is any element of D,, and z" any element of ff, one has 
x ' s  z". Thus, if r' is any element of u'(D,), and r" any element of 
u'(ff), one has r' r". From this, one derives easily Sup ur(Dz)5 
Inf u'(ff). 

(2) One cannot have Sup u'(D,) < Inf u'(D3, for then any rational 
between them would not be taken on by u'. 

Take for u(z) the common value of the Sup and of the Inf. 
It is clear that, if z s D, one has u(z) = u'(z), and u is indeed an 
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extension of u' from D to X; in particular, Q' c u(X) c [a, b]. 
It is easy to check that u is increasing. 

4. Continuity of u. 
It will be proved that, if c is any real number, the inverse image of 

[c, -[ by u is closed in X. A similar proof would apply to I-, c]. 
According to (3') of 1.7, u will thus be proved to be continuous on X. 
If t is a real number, one writes X, = {z E XI U(Z) 2 1) and Xi = 
{Z E X /  1 < la&)}. 

It is clearly sufficient to consider the case where c is in ]a, b[. 
Then the interval [c, -[ is the intersection of the intervals [I, -[ 
where r s Q' and r <  c. By taking the inverse images by u, one 
obtains (see (I) of 1.3.d) XC = n X'. Let z be a point of X such that 

rca'  
r s c  

u(z) = r ;  X' = {z' c XI z s  z'), which isclosed in Xhy(a). Therefore 
Xcis closed in Xas an intersection of sets closed in X. This completes 
the proof. 

According to (5') of 1.7, u(X) is an interval withorigina,extremity b. 
The number a (resp. b) belongs to u(X) if and only if X has a least 
(resp. greatest) element. 

N.B. I n  this section, X. is always assumed to be convex. 
Three alternative convexity assumptions on preferences, (a), (b), (c), 

are of interest: 

I n  (a), (b),  (c), z: and 2: are two dzferenr points of X,, t is a real number 
in 10, I [. 

(a) if.: 2 z:, then 12: + (1 - r)z: 22: (weak-convexity), 

i.e., if a possible consumption < is at  least as desired as another z:, then 
their weighted average with arbitrary positive weights is at least as desired 
as z:. 

This assumption is easily seen to be equivalent to: 

(a') For every 2: in X,, the set {z, E X, I zi > 2:) is convex, and to: 

(a") For every z: in X,, the set {z~ F X, I Z, > z:} is convex. 

An indifference class is said to be thick if its interior in X, (see 1.6.0) 
is not emotv. Assumotion (a) allows thick indifference classes. . , . . 

Figure 4.a shows a preference preordering of X,, the non-negative 
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quadrant, satisfying (a). The shaded region is a thick indifference class; 
two specimens of non-thick indifference classes have also been drawn. 

(b) I f $  > z:, then 14 + (1 - r)z: > z: (convexity), 

i.e., if a possible consumption 4 is preferred to another z:, then their 
weighted average with arbitrary positive weights is preferred to a':. 

When preferences are continuous, assumption (b) implies assumption 
(a). In a formal statement: 

(I) Under (a) of 4.6, (b) implies (a). 

Proofi Let z:, 4 be two points of X, such that $t 2:. It must be 

shown that the set {zi [z:, a 1 z, < z:) is empty. This set cannot 

consist of a single point since its complement in [z:, $1 is the set 
{z, e [ x i ,  81 1 Z, 2 z:} which is closed by (a) of 4.6. Therefore, if the 

former set were not empty, it would own two different points zi and zy 
(see fig. 3.a). However, z: > z," implies, by (b), z: > zl, and 8 > zi 

i i 
implies, by (h), zy > 2:. A contradiction would thus obtain. 

i 

Fig. 3.a Fig. 3.b 

(b) is then actually stronger than (a), for it implies that a non-satiation 
indifference class is not thick. More precisely, as it is quite clear: 

(2) Under (b), if zl in X, is not a satiation poinf, zi is adherent to 
@, x, I zz > z:). 

i 

Assumption (b) allows indifference classes to contain non-degenerate 
closed segments. 

Figure 4.b shows a preference preordering of X,, the non-negative 
quadrant, satisfying (b). Five specimens of indifference classes have been 
drawn. 
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(c) If Z: 7 4, then t$ + (1 - t)z: > 2: (strong-convexity), 

i.e., if the two possible consumptions zf and Z: are indifferent, then their 
weighted average with arbitrary positive weights is preferred to them. 

When preferences are continuous, assumption (c) implies assumption (b). 
In a fonnal statement: 

(3) Under (a) of 4.6, (c) implies (b). 
Proof: Let *, 2: be two points of Xi such that e > 2:. Assume 

that there were z, between 2: and 3 such that z,< ziS(see fig. 3.b). 
Z 

By (a) of 4.6 there is a continuous utility function u, on X,. There 
would therefore be a point z: between zf and z, such that u,(z,) < 
u,(z:) < u,($): if z, < z,', this is clear: if x, 7 z:, one applies (c). 

Because of the double inequality, there would be a point z,l between 
zj and 4 such that u,(z:) = U,(Z;). From z: 7 z: and (c) would 
follow zi > z;, a contradiction of u,(zJ < u,(z:). 

Fig. 4.a Fig. 4.b Fig. 4.c 

(c) is then actually stronger than (b), for, as it is quite clear: 

(4) Under (c), an ind~rerence class does not contain any non-degenerate 
closed segment. 

Figure 4.c shows a preference preordering of X,, the non-negative 
quadrant, satisfpfig (c). Three specimens of indifference classes have been 
drawn. 

Assumption (a) and even assumption (b) are intuitively justified; it is 
not so for assumption (c). 



Given a price systemp and a consumption z,, the expenditure of the ith 
consumer is p . zi. Because of the sign conventions on the coordinates of 
z, and p, the inner product p . z, is the sum of all outlays minus the sum 
of all receints. Since commodities are dated. this conceot of exwnditure 
corresponds to the customary notion of the sum of all iiscounied future 
(proper) consumption outlays minus the sum of all discounted future 
labor receipts. The expenditure p . zi must clearly be at most equal to 
the wealth of the ith consumer, a real number w,. This concept of wealth 
corresponds to the customary notion of present value of everything (real 
estate, cars, furniture,. . . , stocks, bonds,. . .) the ith consumer owns, 
adding debts owed to him, subtracting debts he owes, . . . , each item 
being properly discounted. The m-tuple (wJ is called the wealth disfri- 
bution. It specifies the wealth of each consumer and can be represented 
by a point w of R". In the language of the theory: 

Giuen theprice systemp and his wealth w,, a realnwnber, the ith consumer 
chooses his consumption zi in his conrumption set X, so that his expenditure 
p . zi satires the wealth constraint p . z, < wi. The point w - (wJ of R" 
is called the wealth distribution. Thepoint @, w) of R1+" is called theprice- 
wenlth p i r .  

Whenp # 0 one has the following geometric situation. The hyperplane 
{a R' Ip. a = wj} is called the wealth hyperplane. The constraint p . z, 
5 w. expresses that z, must be in the closed half-space below the wealth - 
hyperplane (see for example fig. 7). 

Given an arbitrary price-wealth  air (p, w), the set {z, s X, l p .  zi < w,) 
in which the ith consumer must choose may be empty. Let therefore S, 
be the wt of @, w)in R"" for which this is not so (Si is clearly a cone with 
vertex 0). Thus with each price-wealth pair (p, w) in S, is associated the 
non-empty set y,(p, w) = {z, s X, lp. z, < w,} of possible consumptions 
satisfying the wealth constraint for that pair (p, w). In this way a corre- 
spondence yi from S, to X. is defined. y,(p, w )  depends actually only on 
p and w,; it has been presented in this form to prepare for the summation 
of individual demands which will be performed later. If t is a positive 
number, clearly y,(tp, tw) = yi(p, w). Formal definitions are given for 
the sake of the theory: 
Si is defned by S, = ((p, 3") t R1+" / there is z, in X, such thntp . z, ( w,). 

The correspondence yi jrom S, to X, is de$ned by y,@, w) = {z, . X, I p  . 2, 

I 4. 
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The rest of this section will study the continuity of y,. The definitions 
of 1.8.Mapply only in the case where X. is compact. It will be shown in 
5.4, 5.7 how, under certain rather weak assumptions, the consumption set 
Xi can indeed be replaced by a certain non-empty compact subset of X,. 
The following fundamental theorem will now he stated, discussed, and 
proved: 

(I) (f X, is cornpod, convex, and if (p: w 3  is o p in t  of S, surh thot 
wp # Minpo .X,, then y, is continuow of  (po, wo). 

In other words, given a compact, convex consumption set X, and a 
price-wealth pair Po, w 3  in S,, the correspondence yi is indeed continuous 
at the point @O, w 3  provided one rules out the exceptional case where 
4 = Minpo.X., i.e., where the wealth 4 is so small that for any smaller 
wealth there would be no possible consumption satisfying the wealth 
constraint. 

Fig. 5 

Figure 5 shows how y, may not be continuous if @ = Min po . Xi. The 
set X, is the closed square with edge 2. Considerpo = (0, I) and wp = 0 ;  
the corresponding wealth hyperplane is the straight line 0 ,  1. The excep 
tional case wp = MinpO. X, occurs, i.e., there is no point of X, below the 
wealth hyperplane. Let then o be the point (I, O), and let p, wi tend to 
po, wp in such a way that the corresponding wealth hyperplane rotates 
around o as indicated in the figure. As long as p f pO, the set y,@, w )  
is the shaded region whose limit is the closed segment [O,o]. However 
yLpn, wO) is the closed segment [O,24]. 



4.8 THEORY Of VALUE 

The proof of existence of an equilibrium for a private ownership 
economy (5.7) will hinge upon the continuity of y,. 

Proof of ( I ) :  The conditions of 1.8.b are clearly satisfied. It will 
therefore be proved that (I) y; is upper semicontinuous at @O, wo), 
(2) y i  is lower semicdntinuous at @O, vP). 

(1) The graph of yi is, by definition, ((p, w, z,) E S, x X, 1 p . zi < w,}. 
This set is clearly closed in S, x X,. Hence, by (1) of 1.8.h, y, is 
upper semicontinuous on S,. 

(2) Let @4 d)  be a sequence of points of S, tending to @O, wO), and 
let 2: be a point in yi (p9 wO), i.e., 4 E X, andpO.  e 5 $. One must 
prove that there is a sequence ( a  of points of X. such that g -+$ 
and, for all q, a$. yi@4 WP), i.e., pq . +( I@. Two cases will be 
considered. 

(2.1) po . z! i $. Hence, for all g larger than a cerlain integerq', 
pq . $ < wf. The sequence ( a  is defined as follows: 

If q 2 q', one takes for g an arbitrary point of y . p ,  @). 
If q > q', one takes < = 2:. 

The sequence (zl) clearly has all the desired properties. 

Fig. 6 
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(2.2) p o .  zp = @. By assumption, there is zl in X, such that 
pO. z: < wp. Hence, for all q larger than a certain integer q', 

p q . z j < w ? ,  and p ' . ~ i < ~ v . z :  

Consider the point ff where the straight line z:, zp intersects the 
wealth hyperplane determined by (pe, w") (see fig. 6). For all q larger 
than q', a-xists, is unique, tends to zp, as it is easy to check. The 
sequence (zp) is then defined as follows: 

If q ( q', one takes for z: an  arbitrary point of y,(pq, wo). 
If q > q' and aP s [z:, z f ] ,  one takes zy =ae. 
If q > q' and ff o [xi, zy], one takes zy = zp (because aq might not he 
in Xi). 

The sequence (<) clearly has all the desired properties 

Given a price-wealth pair (p ,  w) in S,,  the ith consumer chooses, in the 
non-empty set y,(p, w), a consumption z, which is optimal according to 
his preferences, i.e., a greatest element for the preference preordering 5. 
If there is a utility function ujr one can also say that he chooses a maximizer 
of u, on y,(p, w )  (in this case "preference satisfaction" is therefore synony- 
mous with "utility maximization"). Doing this amounts to selecting the 
quantities of each good or service he will consume, and the quantities of 
each type of labor he will produce (at each date and location) which form 
apossihle consumption plan optimal for his limited wealth. In the language 
of the theory: 

Giuen the price-wealth pair (p, w) in Si, the ith consumer chooses, in the 
set y,(p, HZ), a greatest element for his preference preordering 5. The 

resulting action is called an equilibrium consumption of the ith consumer 
relative to (p, w). 

When p f 0 one has the following geometric situation. If z; is a 
greatest element of y,(p, w), the set {z, c X, 1 zi > z:} has no point in 

common with the closed half-space below the wealth hyperplane H. 
Figure 7 illustrates the case where X, is the non-negative quadrant. The 
indifference class of z: has been drawn as a broken line through 2:. The 
set (z, F X< I Z,  > 2: )  is the shaded region (indifference curve excluded). 
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If z: is an equilibrium consumption rclative to (11, 11). it is clearly a 
greatest elcment lor 5 of {z, E X,  lp . z, < p . z:). It will be convenient 

to have the formal definition (which maker no reference to wealth): 

The acrion 1: is coiled an equilibriu~~t cunsuniprion of rhe ith consunrer 
r~ lo r i~ .e  to rhr price syste,n p i/ ir is o greorest elernenl of {z, E X, / p . zz 5 
1,. z;\ f i r s .  

Fig. 7 

Given an arbitrary pair (p, w) in S,, y,(p, w) may have no greatest 
element. Let therefore S,' be the set of ( p ,  w) in S, for which the set of 
greatest elements of y,(p, w) is not empty (S: is clearly a cone with vertex 0, 
the ~ o i n t  0 beine excluded if and onlv if the ith consumer is insatiable). - 
Thus with each price-wealth pair (p, n,) in S; is associated the non-empty 
set €,(p, w) of possible consumptions optimal under the wealth constraint 
defined by (p, w). All the points of t,(p, w )  are clearly indifferent. The 
correspondence ti from S: to  X, is called the demand correspondence of 
the ith consumer. The use of correspondences in the  study of consumers 
could be avoided only by making ;he strong-convexity issumption on 
preferences (c) of 4.7 for which there is little intuitive justification (see 
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section 4.7 and the last paragraph of the present section). Given two 
price-wealth pairs (pl, H,') and (pZ, wz) in S:, (pl, w') is said to be preferred 
(resp. indifferent) to (pZ, nj2) for the ith consumer if a point of €,(pl, w') is 
preferred (resp. indifferent) to a point of f,(pZ, w2). If there is a utility 
function u, on X,, the maximum utility, when the price-wealth pair is 
(p, w )  in SI, is denoted by v,(p, w). The function v ,  from S: to R is called 
the corresponding indirecr uriliry Junction of rhe ith consumer. If t is a 
positive number, clearly 

€,(rp, t w )  = €,(p, w) and u,(rp, rw) = vi(p, w). 

Given a price-wealth pair (p, w), there is a greatest element of y,(p, w) 
"8 

for every i = I ,  . . . , m if and only if (p, w) belongs to n S:. In that case 
i = l  ". ... 

one can define the non-empty set E(p, w) = 2 €,(p, w) of possible total . 
consumptions compatible with the selection by every consumer of a con- 
sumption optimal for his wealth constraint. The correspondence E from 

7lL n Si to X is called the total demand correspondence. If t is a positive :-. .-. 
number, clearly €(tp, tw) = €(pa w). 

Summing up the above definitions for the sake of the theory: 
s,! is dejned by S: = {(p, w) s S, I y,(p, w) has a greatest elementfor 5). 

The d e m d  correspondence ofthe ith consumer, €,,from S: ro X, is dejned 
by E,(p, w) = {z, s yi(p, w) I z, is a greatest element ofy,@, w)for 5). N 
there is a utilityfunction u,, the corresponding indirect utilityfunction ofthe 
ith consumer, v,, from S: to R is d e e d  by v,(p, w) = Max u,(y,(p, w)). - ... 
The roral demand correspondence, €,from n Si lo Xis  dqined by E(p, w )  = 

m i-1 

2 €,(p, w). 
i - l  

The analogy between fig. 7 and fig. 3 of 3.4 suggests that, given (p, w) in 
S:, 2: is a greatest element of y,(p, w) if and only if z: minimizes the 
expenditure p . zi on the set (z, s X, / z, > zj) of possible consumptions 

which are a t  least as desired as 2:. The interest of such an  equivalence 
would come in particular from the greater simplicity of the second opera- 
tion and fromits complete analogy with the maximization of the profitp . yi 
on the set Y ,  of possible productions; the theory of consumers and the 
theory of producers would thus be unified. The problem will now be 
formulated in a precise and slightly more general fashion. 
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In (a), (a'), (b), (b'), (p, n,) denotes agiuenpoint of S,, z: agiuen point of Xi, 
and xi an arbitrary poinr of X,. 

Consider firstly the assumption: 

(a) p . z, 5 w, implies x, zj. 

It is a generalization of the definition of 2.1 as a greatest element of yip,  w) 
since the latter would require, in addition, that p . zj < wi. 

(a) is (trivially) equivalent to: 

(a') z, > zj implies p . z, > wi. 
i 

Consider secondly the assumption: 

(b') z, > ZI implies p . zi 2 w,. 

It is a generalization of the definition of z: as a minimizer of expenditure 
on the set {z; s X, I 2 ,  > z:} since the latter would require, in addition, that 
p ' xi = Wi. 

(b') is (trivially) equimlent to: 

(b) p.  xi < wi implies xi < zj. 

Is then (a), (a') equivalent to (b), (b')? The answer is given by (1) and (2): 
(I) gives conditions under which (b) implies (a). And (2) gives conditions 
under which (a') implies (b'). 

In the remainder of this section various assumptions on the preference 
preorderings will be listed, and the implications of each one of them for 
preference satisfaction will be studied. 

N.B. Until the end of this section, X, is always assumed to be convex. 

Thepreferencepreordering 5 is continuous ((a) of 4.6). 

Then expenditure minimization implies preference satisfaction provided 
the exceptional case w, = Minp . X,, already met in 4.8, is excluded. 

Figure 8 shows how the implication may not hold if wi = Minp . X,. 
The set Xi is the closed quadrant 1,0,2. Three indifference lines have 
been drawn. Considerp = (0, I) and w, = 0; the exceptionalcase occurs. 
The set y,(p, w) is the closed half-line 0, I, and the point zj = (1,O) is 
clearly not a greatest element of y,(p, w )  for5. However, zi is a minimizer 

of expenditure on the set {xi X, I z, z z i } ,  reiresented by the shaded region. 

The theorem can now be precisely stated and proved: 
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Fig. 8 

(I) Iftheconrinuiryassumprion (a) of4.6 holdrfor 5 ,  andifww, = Minp . X, 
is excluded, then (b) implies (a). 

Proof: Since wi = Minp . Xi is excluded, there is a point z: in X, 
for which p .z: i w,. To prove the theorem it is sufficient to show 
that, if $ in X, satislies p .2: = w,, then $ 5  2:. For this, consider 

i 

Fig. 9 

any point zi of the closed segment [z,!, el, different from 4. Clearly 
p . z, < w,, hence, by (b), z, <xi. Thus 4 is adherent to the set 

i 
{zi E X, I zi< 2:). AS the latter is closed by (a) of 4.6, it owns 4. - 



The preference preordering < satisfrs the weak-convexity assumption (a) 
c. 

of4.7. 
Given a price-wealth pair (p, w) in S,!, the set t,(p, w) of possible 

consumptions optimal for (p, w )  is convex. Indeed, if z: is a greatest 
element of y,(p, w )  f o r s ,  then S,(p, w) is the intersection of y,(p, w) and 

(2, . X, (z,? 2:) which ;re both convex (for the second see (a') of4.7) 
m 

When the assumption holds for every i, and when (p, w )  is in n S:, ..-, 
the set E(p, w )  is convex as a sum of convex sets (see (1 1) of 1.9,s) 

The prc/erence u reordering 5 satisfies the convexity assumption (b )  of4.7. 

Then preference satisfaction implies expenditure minimization provided 
zI is not a satiation consumption. 

Fig. 10 

Figure 10 shows how the implication may not hold if the preference 
preordering is only required to satisfy the weak-convexity assumption. 
The set X, is the closed quadrant 1,0,2. A thick (see 4.7) indifference 
class has been represented by the shaded region. Let H be the wealth 
hyperplane. The point zj is a greatest element of y,(p, w )  for 5. It is 
clearly not a minimizer of expenditure on the set (zi E X. 1 z, 2 z:). ' 

The theorem can now be precisely dated and proved: ' 
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(2) If the convexity assumption (b) of 4.7 holds for < and if z: is not a - sotiation consumption, then (a') implies (b'). 

Proof: Since xi  is not a satiation consumption, there is a point z: 
in X, for which z: > z:. To prove the theorem it is sufficient to show 

that, if $ in X, satisfies e; xi, then p . <) w,. For this, consider 

any point xi of the closed segment [z:, $1, different from $. By (h) 
of 4.7, z. > z:, hence, by (a'), p . xi > w,. By continuity of p . xi one 

obtains p .  $2 w, 

As a corollary: 

(2') Given (p, w) in SL, let z: be a greatest element of yi(p, w) for <. If - 
the convexity assumption (b) of 4.7 holds for <, and if zj is not a satiation - 
consumption, thenp . z: = wi. 

Proof: By definition, one hasp .  zj < wi. Since (b') holds by (2), 
and since, trivially, zj > z:, one hasp  . x: > wi. 

? 

In other words, although the consumer is only constrained to satisfy the 
inequality p . z; 2 w,, the consumption z: he chooses satisfies the equality 
p . zj = w,. His expenditure equals his wealth. As a consequence, if 
(p, w') is in S,!, and if w: > w,, the wealth w: is preferred to the wealth we 

The preference preordering < satisfies the strong-conuexity assumption (c)  - 
of4.7. 

Then, given ( p ,  w )  in S:, there is clearly a unique greatest element of 
~ , ( p ,  w) for 5. In this case the demand correspondence E, is a function. 

When the assumption holds for every i, so is 5. 

71 



4.10 THEORY OF VALUE 

4.10. PIIICE-WEALTH VARIATIONS 

N.B. h this section, it is always assumed that Xi is connected and that the pre- 
ference preordering 5 is continuous ((a) 01 4.6). Hence there is on X, a 

continuous utility function ui ((1) of 4.6). 

As remarked in 4.8, under certain weak assumptions, the consumption 
set X, can be replaced by a certain non-empty compact subset of X,. The 
case where X. is compact will therefore be studied further. 

Given a price-wealth pair @, w) in S,, the ith consumer maximizes the 
continuous function ui on the set y,(p, w) which is non-empty, compact. 
(4') of 1.7.i applies and the set of maximizers is not empty. In other words, 
S,! = s,. 

In fact, u, defines a continuous function u: on S, x X, by (p ,  w, ZJ - 
ti@>, and theorem (4) of 1.8.k applies (here the correspondence rp from 
S, to X ,  is 7,). Hence, if (p, w)  is a point of S, at which the correspondence 
y,  is continuous, ti, the demand correspondence of the ith consumer, 
is upper semicontinuous at (p, w), and v,, the indirect utility function of the 
ith consumer, is continuous at (p, w). 

When the above assumptions hold for every i ,  according to (4) of 1.9.h, 
E,  the total demand correspondence, is upper semicontinuous at (p, w). 
Summing up: 

(1) If X, is compact, then St! = S,. I f ,  in addition, y i  is continuous at the 
point (p, w) of S,, then 5, is upper semicontinuous at (p, w), and v; is con- 
tinuous at (p, H,). I f  the aboue a.ssurnprions hold for euery i, then E is upper 
senlicontinuous at @, w). 

When one of the upper semicontinuous demand correspondences E, ,  E 
happens to be a function, it is continuous according to 1.8.g. 

I T h e  gencral roncepl of a cunrumploon ul and the lourr boundcdncrr auump!aon 
o f 4  3 are borrowed from K J Arrow and C Debreu [ I ]  1 thdnk H Lavadl and W 
Vickrey for their remarks which helped me to formulate the determination of the life 
span in the s s o n d  half of 4.2. 

2. About the history of utility theory, G.  J. Stiglcr (11 may be consulted. 
An example of a complcts prwrdcring which cannot be represented by a real-valued 

function is ths lcximgmpphic ordering of R'. By definition, (o, b) < (a', b7 if ( I )  o < o', 
or (2) 0 ;; a' and b < b'. Assume that there is a real-valued representation(, and let 
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I. denote the interval [Inf[(o, R). Sup f (o,  R)]. Clearly that intervalis non-degenerate, 
and o # o' implies I. n I.. = O. Thusa one-to-onecorrespondenceo- I. isatablished 
belween the set of real numbers (which is uncountable) and a set of pairwiw disjoint, 
"on-degenerate, real intervals (whlch is counloblel, a contradiction. 

In the proof of (I1 of 4.6, the assumption that X, in a subset of RL is uwd only to 
obtain a countable dena  subset D of X,. Therefore the following, more general, 
theorem has actually been proved. Let X, be a connected, separable ropologieol rpoce 
complerelypreordered by <. Under orrumption (a) 014.6 there is on X, o eonrinuour - 
utility funenon. In this form it isessentially a result of S. Eilenberg [I]. It  may be worth 
noticing that the arrumption of connectedness has been removed for spaces ratisfybng 
the second axiom of countability in C. Debreu 131 (and ir thus superfluous in (I1 of 6.2). 
The economic literature contains an earlier rigorous study of a particular caw of the 
real representation of preferences, that of H.  Wold [I]. 

Certain theorems whore statements list (a) of 4.6 among their hypo the~s  can, in 
fact, be proved by using weaker continuity assumptions on preferences inspired by I. N. 
Heraein and I. Milnor [I]. For example (denoting. for two points z; and z: of X,, the 
set ( r  c R / n :  + (1 - r ) r ; e  X,) by T(z;, z:)), (I) of 4.9 uses only the assumplion "for 
every r,, z;, z: in X,, the set 11 c T(z:, 2:) 1 rr: + ( I  - t)z:<r.) is closed in T(=:, 2:Y: 

? 

(11 of 4.7 (and consequently ( I )  of 6.4) uses only the assumption "for every z,,  r;, z2in 

X,, the wt { I  E T(I:. 2:) I lz: + (I - I)=; ?z , )  is closed in T(z;, r:)." Thew weaker 

assumptions are of special interest when the commodity space is infinite-dimensional, 
for they do  not utilize the topology of X,. 

3. Earlier studies of the convexity asumptionn on preferences (a), (b), (cl of 4.7 will 
be found in K. 1. Arrow 111, G. Debreu [I], K. I. Arrow and G. Dsbrsu [I]. If the 
contmuity assumption (a) of 4.6 and the weak-convexity assumption (a) of 4.7 hold for 
preferences defined on a Eonvex consumption set X,, thcn these preferences can be 
represented by a continuour quosi-concoue real function u, ('quasi-concave" means that, 
for every real number a, the set (z,  c X, I u.(z,) 2 o }  is convex). The problem of finding 
conditions under which a auani-concave function can be transformed, bv means of an 
~ncrearing real function of a real variable, into a concave function has been investigated 
by B. de Finetti [I] and W. Fenchsl [I]. 

4. Theorem (I) of 4.8 is mentially a result of K. J. Arrow and G. Debreu Ill, 
theorem (I) of 4.9 a rau l t  of K. 1. Arrow [I]. 

The concept of indirect utility function is due to H. Hotelling [I1 and R. Roy 111, the 
term to H. S. Houthakker 111. 

5. One would obtain incaualities similar to (11 and (21 of 3.5 bv wlectine for the " 
ith consumer a consumption r; in his consumption wt X<, minimizing the srpsnditure 
p . ri on the set (z,  E X, I z. >r:)  for a given price system p, and thcn varyingp. 

7 
6. It must beemphasized that the present analysis doer not cover the c a a  where the 

comumprion set of a consumer and/or his prcfrrrncer depend on the consumptions 
of the other conrumerr (and/or on the productions of producers). 
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CHAPTER 5 

EQUILIBRIUM 

5.1. ~ N T R O D U C T I ~ N  

In order to obtain the central concept of an economy it remains only to 
introduce the total resources (the available quantities of the various com- 
modities which are apriori given). To be precise, an economy is defined by 
m consumers (characterized by their consumption sets and their pre- 
ferences), n producers (characterized by their production sets), and the 
total resources. A state of the economy is a specification of the action of 
each agent, and a state is said to be attainable if the action of each agent is 
possible for him and if their (nt + n) actions are compatible with the total 
resources. The set of attainable states plays an essential role; its properties 
are therefore studied. A special class of economies is then considered, 
namely, the private ownership economies where consumers own the 
resources and control the producers. Given a price system, each producer 
maximizes his profit, which is distributed to consumers-shareholders. 
The wealths of the latter are thus determined, and they satisfy their 
preferences under their wealth constraints. As a result of this process each 
agent chooses an action. These (nz + n) actions are not necessarily 
compatible with the total resources. Can one find a price system which 
makes them compatible? An answer is given in section 5.7 in the form of 
an existence theorem (for which the way is prepared by the result of 
section 5.6). This fundamental theorem of the theory of value explains 
the prices of all commodities and the actions of all agents in a private 
ownership economy. 

The fofol resources of an  economy are the n priori given quantities of 
commodities that are made available to (or by) its agents. Quantities 
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made available to (resp. by) the agents of the economy are represented by 
positive (resp. negative) numbers. With this convention, the total resources 
are represented by a point w of R', the commodity space. They include the 
capital of the economy at the present instant, i.e., all the land, buildings, 
mineral deposits, equipment, invenfories of goods,. . . now existing and 
available to the agents of the economy. All these are a legacy of the past; 
they are apriori given. The date of the commodities so defined is the first. 

The rota1 resources are a g i ~ m  paint w of R'. 

A complete description of an  econonty E is now possible; it consists of: 

For each consumer, his consumption set X, and his preference pre- 
ordering.<. 

For  each producer, his production set Y,. 
The total resources w. 

A state of the economy Eis  a specification of the action of each agent,i.e., 
for each consumer (resp. producer) a specification of his consumption z, 
(resp. production y,) in the commodity space. Thus a state of E is an  
(nt + n)-tuple ((z,), (y,)) of points of R'. I t  can be represented by a point 
of RLtm+"l. Formally: 

An economy E is dgfned by: for each i = I ,  . . . , m a non-empty subset 
X, of R' completelypreordered by 5 ;  for each j = I ,  . . . , n a non-empty 
subset Y, of RL;  a point w of R'. 

A srore ofE is an (m + n)-tuple ofpoints oj'RL. 

Given a state ((z,), (y,)) of E, the point z - y is called the net demand. . . 
I n  formrngz - y one cancels out alfcommodlty transfers between agents 
of the economy (each such transfer aooears once as an inout with oosit~ve , . , . 
sign and once as an output with negative sign); z - y describes therefore 
the ner result of the activity of all agents together. That is to say, the 
positive (resp. negative) coordinates of s - y represent inputs not trans- 
ferred from (resp. outputs not transferred to) the agents of the economy. 
If z, X, for every i, and y, s Y, for every j, the net demand z - y belongs 
to  the set X - .Y. 

Given a state ((zi), (y i ) )  of E, the point z - y - o is denoted 2, and 
called the excess demand. It describes the excess of the net demand of all 
agents over the total resources. If zi E X, for every i, and y, e Y, for every 
j ,  the excess demand z - y - w belongs to the set X - Y - {w],  which is 
denoted 2. 
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(I)  Ciuen an economy E, ifevery X, ondeuery Y, is closed, then A is closed. 
Prooj? The product ( T I  X,) x ( T I  Yj) is closed. By (a') of 5.3, A is 

j 

the intersection of two closed sets and is therefore closed. 
If every set X, and every set Y, of an economy E i s  convex, so is A, for 

it is then, by (a ' )  of 5.3, the intersection of two convex sets. Under the 
same assumptions, the sets X - Y and Z are convex as  sums ofconvex sets. 

The sets X,, Yj of an economy E may be unbounded; but one expects, 
on account of the fined resources w ,  that the attainable consumption set of 
every consumer and the attainable production set of every producer be 
bounded, i.e., that A be bounded. This property of A will indeed play a n  
essential role later on. Theorem (2) will therefore give conditions on the 
sets X, Y which insure that A is bounded. As an incidental result, con- 
ditions under which the set X - Y (hence also the set 2) is closed will be 
obtained. 

(2) Ler E be an economy such that X has a lower bound for <, Y is closed, 
convex and Y n Cl = (0). 
I f n  = I andlor Y n (- Y) c (01, then A is bounded. 
IJ X is closed, then X - Y is closed. 

Proofi (1) To show that A is bounded, it suffices, according to (rx') 
of 5.3 and (8) of 1.9, to prove that the intersection of the asymptotic 

By (7) of 1.9, the first cone is contained in ( n  AX,) x (n AY,); it 
is therefore sufficient to show that i j 

~ ~~~ 

3 ((11 Ax,) x (TI  A Y,)) n AM = (01. 
i j 

The cone A M i s  the linear manifold of states ((x,), (y,)) satisfying 
the equality z - y = 0 since the latter set (1) is derived from M by a 
translation and hence has the same asymptotic cone as M, (2) is a 
closed cone with vertex 0 and hence coincides with its own asymptotic 
cone. Thus (3) is equivalent to: 

(3') "x, s AX, for every i, y, s AY, for every j, and z x i  - 1 y, 
= 0" implies "zi = 0 for every i ,  y, = 0 for every j." " 

According to ( 6 )  of 1.9, one has AX, c AX. Since X has a lower 
bound for <, one has also, as seen in the proof of (1) of 4.3, 

(4) A X  c R. 
Hence AX, i R and, consequently, 

( 5 )  2 AX, c R. 
i 
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Similarly, one has AY, c AY. Since Y is closed, convex, and 
owns 0, one has also, by (14) of 1.9, 

( 6 )  A Y C  Y. 
Hence AY, c Y and, consequently, 

(7) 2 A Y, c Y. 

(3') can now be proved. According to (S), 2 xi c R. According to 

(7). 2 y, e Y. Because of Y n R = {O), the relation 2 z, = z y, 
,>& 

thus implies 2 xi = 0 = 
,n ; = I  

2 Y,. 
j - 1  

As " 2 x, = 0 and x, s R for every i" implies "xi = 0 for every i," 
z - ,  

the proof is completed in the case n = 1. 
If Y n (- Y) c {O), one shows, exactly as for ( I )  of 3.3, that 
" 
2 Y, = 0 implies "y, = 0 for every j." And the proof is also com- 
, = 1 

pleied in this case. 
(2) To show that X - Y is closed, it suffices, according to (9) 

of 1.9, to prove that the asymptotic cones AX and A(- Y) are 
positively semi-independent. But this is equivalent to AX n A Y = 
{O), which follows directly from (4), (6) ,  and Y n Q = (0). 

Since the ith attainable consumption set .kj (resp. the j th  attainable 
production set Pj) of an economy E i s  the projection of A on the space R' 
containing X, (resp. Yj) ,  its properties are immediately derived from those 
of A.  For example, if A is bounded, or  compact, or  convex, every Fj and 
every 6 is respectively bounded, compact, convex. 

The remainder of this chapter will study economies where the consumers 
own the resources and control the producers. Thus, the ith consumer 
receives the value of his resources w, (the wi are points of R' satisfying 

~ - 
rn 

2 mi = w ,  the total resources), and the shares O,,, . . . , O,j, . . . , O,, of 
,=I 

the profit of the lst, - .  . , jth, . . . , n th  producer (the Bii are real numbers 
rn 

satisfying Or$ > 0, and 2 O,, = 1 for every j). The point wi specifies the 
:-, .-. 

a priori given quantities of commodities that are made available t o  him, o r  
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by him; the number Bij is interpreted as the fraction of the stock of the 
jth producer that he owns. 

A complete description of a prioare ownership economy 8 therefore 
consists of: 

For each consumer, his consumption set X,, his preference preordering 5,  
m 1 his resources m, sat~sfymgz w,  = w ,  the total resources , and his shares ( . ' <=, ." 

B,,, . . . , O,,, . . . , t?,,(satisfying 6,j ) 0, and Z. B,i = 1 for every j 
i = l  

For each producer, his production set Yj. 
>. 

Consider a private ownership economy 8. When the price system is p, 
the jth producer tries to maximize his profit on Y,. Suppose that y, does 
this; the profit rr,(p) = p .  yj  is distributed to shareholders. Thus the 
wealth of the ith consumer is: 

re 

W j  = p . W< + ): B,,nj(p). 
j-1 

This consumer tries to satisfy his preferences in X, subject to his wealth 
constraint. Suppose that z, does this. If the actions z,, y, satisfy the 
market equilibrium equality z - y = w, the economy is in equilibrium, 
i.e., every agent, given the price system and the actions of the other agents, 
has no incentive to choose a different action, and the state of the economy 
is a market equilibrium. Formally: 

A pritiate ownership econony t" is rlejned b.v: 

an economy ((X,, 51% (Y,). w); 
?,& 

for each i, npoinr w,  of R1 such rhar 2 w, = o,: 
i;, m 

for each pair ( i , j ) ,  o non-negarir~e real number B,, such rhaf ):B,, = I 
for eoery j. i - l  

An equi/ibriunz of rhe pritiare ownership ec0nonr.v 8 is an (m  + n + I)- 
ruple ((x:), (y:), p* )  ofpoinrs of R' such rhar: " 
(a) z: is a grearesr elenlent of (z, E Xi 1 p* . zj  ( p* . o, + 2 Blip* . $) 
for ;,for eoery i, i - 1  

(p )  y: maximizes projf  relative ro p* on Yj, for euery j, 
f Y )  Z* - y* = w .  

(a) expresses that, for the ith consumer, xt is (see 4.9) an equilibrium 
* 

consumption relative to (p*, w*) where u,t = p* . w ,  + ): O,,p* . y:; 
,=I  
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( p )  expresses that, for the jth producer, y: is (see 3.4) an  equilibrium 
production relative to p* ;  (y) expresses that the state ((2:). (y:)) is a 
market equilibrium. Let r be a positive real number; ((z:), (9% rp*) is 
an equilibrium if and only if ((rf), (y:), p*) is one; therefore all the price 
systems belonging to an open half-line with origin 0 are equivalent from 
the point of view of equilibrium. 

The fundamental question arises a t  once: given a private ownership 
economy, does it have an equilibrium? An answer will be given in 5.7. 
A preliminary theorem will be proved in the next section. 

Consider a private ownership economy 8, and let C be the set o f p  in R' 
for which all the sets v,(p), t:(p) of this paragraph are defined (hence non- 
empty). When the price system is p in C, the jth producer chooses y, in 
the set ~ , ( p )  of his productions optimal for that price system (see 3.4), 
and his profit is ?i,(p) = p . y,. Hence the wealth distribution is the 

m 

m-tuple (p . wi + 2 B,,n,(p)), and the ith consumer chooses xi in the set 
i = ,  

of his consumptions optimal for that price system and that wealth distri- 
bution (see 4.9). That set depends only on p and will be denoted 5:(p); 

,>, 
the sum I f : (p )  will be denoted F(p). Since zi is an  arbitrary point . '=, 
of for every i and y, is an  arbitrary point of q,(p) for evely j, the 
excess demand 2 = z - y - w is an arbitrary point of the set 

UP) = F(P) - ?(PI - {o). 

a subset of Z = X - Y - {o). Thus with each price system p in C is 
associated the non-empty set 5(p) of excess demands compatible with the 
selection by every consumer of a consumption optimal for his wealth 
constraint and by every producer of a production optimal for that price 
system. The correspondence < from C to Z is called the excess demand 
correspondence. The equilibrium problem amounts to finding a p in C 
for which a corresponding excess demand is 0 and can thus be formulated: 
is there a p  in C such that 0 c <(p)? 

Notice first that, i f p  is in  C and if r is a positive real number, v,(lp) is 
defined and equals v,(p) and EI(rp) is defined and equals S:(p); in other 
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uords, if all the prices of a price system p in C are multiplied by the same 
positive real number, the sets of optimal actions of the various agents 
are unchanged. Hence tp c C and 5(tp) = 5(p). The first relation shows 
that C i s  a cone with vertex 0 ,  hut with the point 0  excluded if (and only if) 
some of the qj@). <@) are not defined when all prices are zero. This 
clearly occurs if and only if some consumer is insatiable. 

Notice also that the actions z,, yj chosen by the agents for a price 
system p in C satisfy the wealth constraints 

p . zi ( p . mi + 1 Otjp . yi for every i. 
j-1 

," 
Summing over i, one obtains 

p . z < p . m + p . y ,  i.e., p . z ( O .  

Therefore for any p in Cone has 7 z 5 0  for every r in i(p)," which will 
01x0 he wv-itrerr p . <(p) ( 0.  When p # 0, this means that the set [(p) is 
below (with possibly points in) the hyperplane through 0  orthogonal top .  

A solution lo the equilibrium problem will be given in the case where 
free disposal ((h) of 3.3) prevails (a more general case will be discussed in 
notes 2, 3). It is intuitive that the market equilibrium equality (y)of 5.5 
can then be replaced by the inequality z* - y* ( o: precise conditions 
under which this can be done will be gi\,en in the next section. The above 
inequality expresses that for every commodity the net demand is at most 
equal to  the a priori given available quantity; it can also be written 
z* g 0. The equilibrium problem relative to this weaker condition amounts 
to finding a p in C for which a corresponding excess demand is ( 0 ,  i.e., 
belongs to -Q, and can thus be formulated: is there a p in C such that 
[(p) n (-0) is not empty? 

Moreover, in the free disposal case, v,(p) is defined for every j only if 
p_1 0 (see end of 3.4); hence C is contained in C2. If, in addition, the 
point 0 is excluded from C (i.e., if some consumer is insatiable), for every 

I 1 
p in C one has 2 p, > 0, hence 5 ( L i ,  - pk PI = Up); in the search for an 

*-I  

,.,-. , 
equilibrium, everyp in Ccan  therefore be replaced by the point where the 
closed half-line 0, p intersects the set 
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The heuristic remarks of the two last paragraphs lead one to study the 
following problem. A correspondence 5 from P to Z is such that for every 
p in P one h a s p  . 5(p) $ 0. What further conditions on i and Z insure 
that there is a p in P such that Up) A (-Q) f O ?  An answer is given by 
theorem (I),  which is very intuitive at least for a 2-dimensional space R' 
(in fig. 1, le tp move from one end of P to the other). 

I 

Fig. 1 

(I) Let Z he a contpact suhset of R'. I f  i is on upper semicontinuous 
corresporzdencefrom P to Z such rhor,for euery p in P, the set tip) is (non- 
empty) conrex and sorisfies p . i i p ) l O ,  then there is a p in P such that 
tip) " (-Q) I@. 

Proof: P i s  easily seen to be non-empty, compact, and convex. 
Z can be replaced by any compact subset Z' of RL containing i t ;  

Z '  is chosen to  be convex. As P is non-empty, so, clearly, is Z, and 
hence 2'. 

Given z in Z', let p(z) be the set o f p  in P which maximize p . z 

on P. Since P is non-empty, compact, p(z; is non-empty ((4') of 1.7) 
and the correspondence p fromZ'  to P is upper semicontinuous on Z' 
(exactly as the supply correspondence vj from RL to Y, was upper 
semicontinuous on RL in 3.5). Since P is convex, p(r) is also, for 
either (I) 2 = 0 and then p(a) is P itself, or (2) z # 0 and then p(z) 
is the intersection of P a n d  the hyp-rplane {p e R' I p . z = Max P . r}. 
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Consider now the correspondence q from P x Z' to itself defined 
by q(p, z )  = p(z) x ((p). The set P x Z' (which is a subset of RZL) 
is non-empty, compact, convex for P and Z' are. The corre- 
spondence p is upper semicontinuous for p and [ are ((3) of 1.8). 
Finally, for all (p, z )  in P x Z' the set q(p. I) is (non-empty) convex 
for p(z) and [(p) are. Therefore all the conditions of Kakutani's 
theorem ((2) of 1.lO.d) are satisfied, and p has a fixed point (p*, 2'). 
Thus (p*, z*)  c p(e*) x @I*), which is equivalent to: 

(2) p*  E p(zg) and z* e Up*). 

The first relation in (2) implies that, for every p in P, one has 
p . z* < p* . z*.  The second implies that p* . r* 0. Hence, for 
everyp in P, one hasp . z* 2 0. Letting k be one of the first I positive 
integers and taking the point p of P defined by (p, = I,p, = 0 for 
h f k ) ,  oneobtainsz: 0. Thereforer* r -R. This, with z* E [(p*), 
proves that p* has the desired property. 

The central idea of the proof consists, given an excess demand z, in 
choosingp in P so as to maximize p .  z. Let H be the set of commodities 
for which the component of z is the greatest. Maximizing p . z on P 
amounts to taking p 2 0 such that p, = 0 if h o H, and 2 p, = I .  

hen 
This procedure is suggested by the remark made in 3.5: an increase in the 
price of a commodity increases, or leaves unchanged, the total supply of 
that commodity. This hints at a tendency for an increase in the price of 
a commodity to decrease the corresponding excess demand. It prompts 
one, when trying to reduce positive excess demands, to put the weight of 
the price system on those commodities for which the excess demand is 
the greatest. 

It is now possible to give an answer to the question raised at the end of 
5.5. 

(1) The prirute ownership economy 8 = ((X,, z), ( Y,), (w,), (O,,))  has an 
equilibriunr f: 

for euery i (a) X, is closed, conuex, and has a lower boundfor <, 
(b.1) there is no sorialion consumption in X,, 
(b.2) ,for every xi  in Xi, thesers {z, r X, ( x i ~ z ~ ] a n d { z ,  E X, ( 

zi x z: }  are closed in X,, - 



(b.3) ifz: a n d 2  are twopoints of X, and iff is a realnumber 
in ]O,I [ ,  then < > 2: implies t g  + (I  - t)zf > z:, 

i 

(c) there is $ in X, such that z: << w,; 
for every j (d.1) 0 Y,; 

(d.2) Y is closed and convex, 
(d.3) Y n (- Y) c (01, 
(d.4) Y = (-52). 

Proof: The theorem will be proved as an application of (1) of 5.6. 
Difficulties, however, arise from the fact that some of the sets Y, 
may not be closed and convex, and some of the sets X<, Y, may be 
unbounded. In order to overcome them, the proof is organized - 
as follows. Let I', denote the closed convex hull of Y,, and let - - 
d denote the private ownership economy obtained by substituting Y, 
for Y, in d; in part I, it is noticed that an 8-equilibrium is an - - 
d-equilibrium. In part 2, it is then shown that &-equilibrium actions 
z:, y: necessarily belong to well-chosen compact, convex subsets - - - 
X,, Y, of X,, Y;. Denote now by a letter with the superior mark -, - - 
for example, i j ,  the object defined from X., Y, exactly as the object 
denoted by that letter without the superior mark, for example vj, 
was defined from X,, Y,. In particular, EP^ will denote the private 
ownership economy obtained by substituting 2, for X, and for Y, - - 
in 8. It is easily checked that an &-equilibrium is an 8-equilibrium; 
hcnce an B-equilibrium is an c&quiiibrium. Part 3 proves that an 
W-equilibrium price system is necessarily the product of a vector of 
P by a positive number. One is thus led to study, instead of the initial 
8-equilibrium problem, the gequilibrium problem where the price 
system is restricted to P. Part 4 establishes the upper semicontinuity - 
on P of the correspondences ;j,, 5:.  Part 5 then shows that all the con- 
ditions of (I) of 5.6 are satisfied for 2 and r; hence there is p* in 
P such that zp*) intersects -0. The remaining task of parts 6, 7, 8 
is to prove that p* is actually an equilibrium price system for g. - 

I .  An 8-equilibrium is an k-eyuilibrium. - 
Let % denote the convex hull of Y,; thus Y, denotes the closed 

convex hull of Y,. The important fact that - 
(2) I Y j = Y  

j 

84 



EQUILIBRIUM 5.7 
- 

will be used in part 6; it is proved now. Clearly Y, c Y,, hence - 
Y c 2 Y? On the other hand, according to (15) of 1.9, 2 Y, = Y; 

i - - j 
hence, according to (I) of 1.9, 2 c Y. However, by (d.Z), the 

last set is Y, and the result is established. - 
If ((2:). (y:),p*) is an @-equilibrium, it is also an &-equilibrium. 

To see this it suffices, according to the definition (a), (B), (y) of 5.5, 
to check that, if y: maximizes p' . y, on Y,, it also maximizes p* . yj - 
on Y,. But this is easily done for, if the closed, convex set {y, E RL 1 - 
p* . y, < p* . y:) contains Y,, it also contains & - - 

2. An 8-equilibrium is on 8-equilibrium. 
Since "(d.3) and (d.4)" implies Y n .Q = (01, all the conditions - 

of (2) of 5.4 are satisfied for &, and the set 6f its attainable states is - 
hounded. Therefore, in &, the attainable consumption set of every 
consumer and the attainable production set of every producer (see 
end of 5.3) are bounded. Let then K be a closed cube of RL with 
center 0 containing in its interior (the reason for this specification 
will appear in parts 7, 8) these m + n sets. By definition: - - - .  

X, = X. n K and Y, = Yj n K. 

It is clear that x is compact, convex, satisfies (b.2), (b.3), and 
owns zp (indeed, on account of (c) and (d.4), zp is an ;Lttainable - 
consumption for the ith consumer in k). It is also clear that is 
compact, convex, and owns 0. - 

If ((z:),(y:), p*) is an k-equilibrium, the state ((z:), (y:)) is attain- 

able for &, hence z: E x., which is a subset of X,, and y: s ?{, which - 
is a subset of Y<. therefore ((2:). (y:),p*) is an &quilibrium(see the 
definition (a), (B), (y) of 5.5). 

Summing up the conclusions of parts I and 2: an 8-equilibrium is 
an 2-equilibrium. 

3. An @-equilibrium price system is > 0. 
Letp* be an 8-equilihrium price system. Because of(b.1). p* f 0;  

because of (d.4), p* 2 0. Therefore p* > 0, and the open half-line 
O,p* intersects the set P. Thus, in the search for an 8-equilibrium, 
the price system can, without any loss of generality, be restricted 
to be in P. 
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4. Upper semicontinuity on P of Tj and E:. 
Since Tj is compact, the supply correspondence K. from P to Yi 

is upper semicontinuous on P and the profit function 6 from P to R 
is continuous on P ((3) of 3.5). 

Since zp << o,, for every p i n  P one has p . $ < p . oi. Since - 
0 c Y,, for every p in P one has c ( p )  2 0. Hence, for every p in P, 
the inequality p . zp < p . o, + 2 0,j;i7(p) holds, and the corre- 

j 

spondence < is continuous at the point (p, (p . oi + 2 O,,T.(p))) by 
j 

(I) of 4.8. Since the function is continuous on P, so is the function 
which associates with each p in P the rn-tuple of real numbers 
(p . oi + f O,,c(p)). These remarks prove, with the help of (I) of 

4.10 and (2) of 1.8, that the correspondence 2, defined at the beginning 
of 5.6, is upper semicontinuous on P. 

5. There isp* in P and r in -0 such rhar z sap*) .  - 
The set Z = 1 Fj - 2 x. - (o) is compact as a sum of compact 

i -  1 
sets. Since every E l  and every q, is upper semicontinuous on P, so is, 
by (4) of 1.9, the correspondence rdefined a t  the beginning of 5.6. 
From the convexity of x, (b.2) and (b.3), follow that $(p) is convex 
for every p in P ("convexity of preferences and continuity of pre- 
ferences" implies, by (I) of 4.7, "weak%onvexity of preferences," - 
and this, in turn, implies "convexity of €:Jp)," see the discussion in 
4.9). Similarly, from the convexity of follows that Gj@) is convex 
for every p in P. Therefore a p )  is convex, as a sum of convex sets, 
for every p in P. Finally, exactly as in 5.6, p . Gp) ( 0 for every p 
in P. Thus all the conditions of (1) of 5.6 are satisfied, and the asser- 
tion of the title is proved. 

6. Definition of rhe 6"-equilibrium actions z: and y;. - - 
Since z c [(p*), there is, for each i ,  a consumption z: in S:(p*) and, 

for each j, a production yj in ;j,(p*) such that 

(3) 2 x: - 2 y, - 0, = 1. 
i i - 

Let y denote, as usual. the sum 2 y,; as y, s Y, for every j, the 

total production y belongs to Y b; (2). The set Y is convex a;ld 
closed, therefore "y 6 Y and r -R" implies, by (2) of 3.3, "y + 
z E Y." Hence there is, for each j, a production y: in Y, such that 
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(4) 2y:=y- t -z .  
j 

It will be proved that ((zt), (y:), p*) is an equilibrium of 8. 
Notice first that "(3) and (4)" implies 

(5 )  2.: - 2 y ;  - w  =0. 
j - 

Therefore the state ((2:). (y:)) is attainable for 8, hence every z: 
and every y: is in the interior of the cube K. 

7. Properties of z:. 
Define, then, wi by 

W, =p*.'ui+~ei#'.yP 
- i 

Since z,? is in [:@*I, the consumption zf is, by definition of ti, - 
a greatest element of the set y@*, w )  = {zi c X< IP*. z, w,) for$. 
Consequently: 

(6)  z: isagreatest element ofyc(p*. w) = (x, . X, I p * . z j s  wi)for5. 

If it were not so, there would be a consumption z: in yi(p*, w) such 
that xi > z:. Let then x,(t) he the point (1 - t)x: + tx: where t is a 

real number in 10, I[. For every such t, the point xi(/) would be in 
the set y,@*, w) which is convex and, by (b.3). would satisfy the 
relation zi(r) > z:. Moreover, for t close enough to 0, the point 

i 
zi(t) would be in the cube K (since zf is in the interior of K), hencein 
?&I*, w.) = K n y,(p8, w), and z: would therefore not he a greatest 
element of %@*, w) for 2. 

8. Properties ofy:. ' 
From (6) and (2') of 4.9 follows that p*  .x: = wi. Summing 

over i, one obtains, from the definition of wi and (3) (and recalling 
that 2 Oti = 1 for every j), p* . z = 0. Hence, from (4). 

(7) P*.  y* = P * .  y. 
Since y, is in ;j,(p), the production y, maximizes profit (relative top*) - 
on Y,, for every j; therefore, by (1) of 3.4, y maximizes total profit 

on ? From (7), so does y*. And, by a new application of (I) of 3.4, - 
(8) y: maximizes profit relative top* on Y,, for every j. 
I n  parficularp* . y,? = p *  . y,, hence 

wi = P* ' wi + 2 o,,p* . Y:. 
7 
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This with (6) corresponds to (r) of the definition of 8-equilibrium 
given in 5.5, while (5) corresponds to (y). As for 

( B )  y: maximizes profit relative top*  on Y,, for every j, 
it follows readily from (8): since y: is interior to the cube K, an 
argument similar to that used for (6) proves that y: maximizes profit - 
relative t op*  on Y, (hence on Y,), 

All the assumptions of theorem ( I )  have been discussed earlier with the 
exception of (c). The latter expresses that the ith consumer can obtain a 
possible consumption by disposing of a positiue quantity of each com- 
modity from his resources. 

I. The following are taken from K. J. Arrow and G. Debrcu [I]: the concepts of 
attainableconsumption and production sets and their boundedness properties (the term 
"attainable" is due to T. C. Koopmanr [I]): the description of a private ownership 
economy; the central idea o f  the proof of (1) of 5.6; theorem (1) of 5.7 (modified 
according to the suggestion o f  H. Uzawa, Ill and private correpondenm, to replace 
"every Y, is eonvex" by " Y is convex"). 

Their article also contains historical remarks on the problem of existence of an 
equilibrium, and results where the inequality << of assumption (c) of 5.7 is weakened 
to < by means ofthe concept ofalways desired commodity. 

2. Theorem (I) of 5.6 has, indepcndenlly, been given by D. Gale I11 and H. Nikaido 
Ill. I thank A. Borcl, P. Samuel, and A. Weil for the convcrrations I had with them on 
an early formulation of that rault. An alternalive proof will be found in H. W. Kuhn 
121, a generalization to the case of non-free disposal in  G. Debreu [$I. 

3. A briefaccount of the contributions of L. W. McKenzie [I], [21,13] to the problem 
of  equilibrium will now be presented. 

The assumption o f  free disposal (d.4) in theorem (I) o f  5.7 can be removed. Let 
In1 A Y denote the interior of the arymptotie cone of  Y. The theorem remains true if 
one replaces (d.4) by 

(&4) Y n R c l O )  

and (c) by 

(c') ( { o , ) + I n r A Y ) n X .  # 0 ;  

the proof requires only a few minor chanea. - 
A still stronger result is obtained, without further modification o f  the proof, if the 

problem is treated in  the rmallest linear manifold L containing the set 2. Assume for a - 
moment that (E') is replaced, in the set of assumptionr of the last paragraph, by ((oil + 
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AY)  n X, f 0. It ir then easy t o  see that every set Y, and every set X, - (w,l  ts 

contained in L. Thus one can restrict oneself to the sulnpace L of the commodity space 
R1 (the component of the prim system orthogonal to L bang  indeterminate). Therefore, 
denoting by in,, A Y  the interior df AY in L, the existence theorem of 5.7 remains true, 
if one replaces (d.4) by 

(e.4) Y n n c (01 

and (c)  by 

(="I ((mi) + I n r ~  AY) n X' # 0. 

It is possible t o  weaken further (c") by means of the concept of always desired com- 
modity or by means of the concept, originating in D. Gale [21, of irreducible private 
ownership economy (L. W. McKenzie [21,131). In L. W. McKenrie[21 will also be found 
a audy  of the case where the preferences of a consumer depend on the actions of the 
other agenu and on pr ier .  

A model of production emphasizing international trade aspects is treated in L. W. 
McKenzie [I]. A similar model, without that particular emphasis, a p p r r  in R. 
Dorfman, P. A. Samuelson, and R. M. Solow [I], Chapter 13. Both arc extensions of a 
model of A. Wald [I], 121, [31, a simple presentation of which ir given in H. W. Kuhn [I]. 

4. Two important  problem^ have not been studied in this chapter: the uniqueness 
and the stability of equilibrium (on this point y e  K. J. Arrow and L. Hurwicz [I], 
K. 3. Arrow, H. D.  Block, and L. Hurwicz Ill, and their references). 



CHAPTER 6 

OPTIMUM 

Given two attainable states of an  economy, the second is considered t o  
he at least as desirable as the first if every consumer desires his consumption 
in the second state at least as much as his consumption in the first. An 
optimum is thus defined as an  attainable state such that, within the 
limitations imposed by the consumption sets, the production sets, and 
the total resources of the economy, one cannot satisfy better the pre- 
ferences of any consumer without satisfying less well those of another. 

The two main results of this chapter characterize an optimum by means 
of a new concept. Given a price systemp, an attainable state is said to be 
an  equilibrium relative to p if no consumer can satisfy his preferences 
better without increasing his expenditure and if no producer can increase - 
his profit. In 6.3 it is shown, under certain weak assumptions, that, if an  
attainable state of an economy is an  eauilibrium relative to a mice svstem. , . 
that state is an optimum. In 6.4 a converse assertion is proved under 
somewhat different assumptions: if an  attainable state of an  economy is 
an optimum, there is a price system relative to which that state is an 
equilibrium. To sum up briefly, an  attainable state is an optimum if and 
only if there is a price system to which all the agents are adapted in the way 
described above. These two essential theorems of the theory of value thus 
explain the role of prices in an economy. 

6.2. OP~IMUM AND EQUILIBRIUM RELATIVE TO A PRICE SYSTEM 

Consider the economy E = ((X,, s), (Y,), w). Given two attainable 

states of E, ((xi), (yi)) and ((x:), (y;)), the second is said to be a t  least as 
desired as the first, and one writes ((zi), (?/,)), 5 ((xi), (y;)), if, for every i, 
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z ,  5 zj, i.e., if every consumer desires his consumption in the second 

state at least as much as his consumption in the first. It is easy to check 
that the relation <, defined on the set A of attainable states of E by this 
unanimity princi$e for consumers, is a preordering. It is clear th; two 
attainable states of E may not be comparable, i.e., that the preordering 5 
may not be complete. 

Let ((z,), (y,) and ((2:). (y;)) be twr, attainahle states of the economy E. 
According to the definition of 1.4.c. ((2,). (yJ)  < ((xi), (y;)) means: for 
every i, z , $ z : ,  and, for at least one i, xi < 2:. The second state is then 

i 
said to he preferred to the first: every consumer desires his consumption 
in the second state at  least as much as that in the first, and at least one 
consumer actually prefers his consumption in the second state to that in 
the first. Similarly, according to 1 . 4 . ~  ((xi), (y,)) - ((xi), (y;)) means: for 
every i, z ,  ; zj. The two states are then said to be indzTerent: for every 
consumer, his consumptions in the two states are indifferent. 

An oprimum of the economy E is now defined as an attainable state to 
which no attainahle state is preferred. It is a maximal element of the set A 
for the preordering 5. This can be paraphrased as follows: when an 
attainahle state is not an optimum, it is possible, by suitable changes in 
productions and consumptions, to satisfy better the preferences of at 
least one consumer without satisfying less well those of any other; when 
an attainable state is an optimum, this is no longer possible, a better 
satisfaction of the preferences of a consumer necessarily occurs at the 
expense of the satisfaction of the preferences of another. Apart from the 
trivial case when they are indifferent, two optimums are not comparable. 

The main definitions given above are gathered here: 

Apreorderings is dejnedon the set A of attainable slrrtes of an economy 
E by ( (23 ,  (y,)) 5 ((xi), (Y;)) if, for every i, 2.2 2:. An optimum of E is 
a maximal element of A for <. - - -  

An intuitive representation of the set A ~reordered by 5 in the space R" 
ordered bv < can be obtained in thecase when, for even i = 1,. . . . m, the 
consumpdoX set X, is connected and the preordering 5 is 

continuous ((a) of 4.6). Then there is, for every i, a continuous utility 
function u, from X, to R ((I) of 4.6). Define the function u from A to R" 
by associating with the attainahle state ((xi). (y,)) the m-tuple of real 
numbers (u,(zi)). I t  is clear that ((2,). (y,)) ~((z:) ,  (y;)) if and only if u((z,), 
(y,)) < u((xi), g)). Comparing two attainahle states for the preordering 5 
is therefore equivalent to comparing their images in Rmhy the functionu for 
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the ordering s. In particular, an attainable state is preferred to another if 
and only if the image by u of the first > the image by u of the second; two 
attainable states are indifferent if and only if their images by u are the same; 
an attainable state is an optimum if and only if its image by u is a maximal 
element for < of the image U = "(A) of A by u. Figure 1 illustrates the 

Fig. I 

above concepts in the case where there are two consumers in the economy 
E: it is drawn on the assum~tions that the reoresentation u of A in Rz 
exists and that, moreover, the set U = u(A) is compact (this last assump- 
tion will he discussed in the proof of(1)). A state represented by a ,  or by 
b, is preferred to a state represented by 0. A state is an optimum if and 
only if it is represented by a point in the heavy-lined part of the boundary 
of U. A state represented by a (which is an optimum) is not comparable 
to a state represented by 6 (which is not an optimum). Figure 1 emphasizes 
that an optimum is not necessarily unique, and that two optimums which 
are not indifferent are not comparable. 

The preceding representation of A in R" also gives an easy answer to 
the question: given an economy E, does it have an optimum? 

(I) The economy E = ((X,,$), (Y,) ,  o) hm an optimum f: for euery i, 

(a) X, is closed, connected, and has u lower bound for <=, 



(b) for eaery zj in Xi, the sets (z, X ,  I z, xi) and {z, s X,  1 zz 5 z:} are 
closed in X,; 
(c) Y is closed, conoex, and sutisfies Y n 0 = (01, 
(d) ;u . X - Y. 

Proof: According to (I) of 4.6, there is, for every i, a continuous 
utility function up Hence the representation u of A in R" exists, 
and is continuous. Finding an optimum of the economy E is then 
equivalent to finding a maximal element of the set U = u(A) for the 
ordering of R". 

Consider the economy E' = ((X,, s), Y, w) derived from the 

economy E by replacing the n production sets Y, by their sum Y. 
Let A' be the set of attainable states of E'. Using the same utility 
functions ui as above, one obtains the continuous representation u' 
of A' in R'. It is easy to check that a point of R" bdongs to u'(A') 
if and only if it belongs to u(A), i.e., that u'(A') = U. But, according 
to (I) and (2) of 5.4, the set A' is closed and bounded. Therefore the 
set U is compact as the image of a compact set, A', by a continuous 
function, u' ((4) of 1.7). Moreover, by (d), the ser U is not empty. 

In order to have a maximal element of U for 2 it is clearly sue- 
cient to maximize on Uany continuous, increasing (see 1.4.k) function 
from R" ordered by to R. 

An important characterization of an optimum will be given in the next 
two sections. To this end a new concept is introduced here. Given a price 
system p, a state ((z:), (y:)) of an economy E is said to be an equilibrium 
relati~e to p if: (a) for the ith consumer, z: is (see 4.9) an equilibrium 
consumption relative to p ;  (,B) for the jth producer, y: is (see 3.4) an 
equilibrium production relative t o p ;  (y) the state ((z:), (y:)) is a market 
equilibrium. Formally: 

A stare ((z:), (y,?)) of E is un equilibrium relnliila lo the price ?>,srenz p 
in R' if: 
(a) z2: is a greatest element of@, c Xi ( p . z, ( p . x:] for 5 ,  for euery I, 
(0) y: maximizes p . yj on Y,, for every j, 
(y) Z* - y* = 0. 

Clearly, if (($1, (y:), p*) is an equilibrium of a private ownership 
economy, the state ((zf),(y:)) is an equilibrium relative to p* for the 
corresponding economy. Conversely, let the state ((zf). (y:)) be an 
equilibrium relative t o p *  for an economy E; it is easy to check that 
((x:), ($),p*) is an equilibrium of the private ownership economy obtained 

93 



6.3 THEORY OF VALUE 

from E by giving to the ith consumer the resources oi = z: - (1/m)ya 
and the shares 8 ,  = I/m. Summing up, the state ((zf), (y:)) is an equi- 
librium relative top*  for an economy E i f  and only if((z:), (y?),pt) is an 
equilibrium of a private ownership economy derived from E by specifying 
the resources and the shares of the consumers. The interest of the newly 
introduced concept is that it does not require such a specification. 

It  will be Droved in the next two sections that. under ~ r o w r  assum~tions . ' 
on the economy E, and with an exception noted in 6.4, the wncepts of 
optimum and of equilibrium relative to a price system are equivalent. 

Consider an ewnomy E and denote by X:: the set {z, r Xi 1 zi 2 z:] 
of consumptions in X, which the ith consumer desires at least as much as 
the consumption z: in X,. Given an nl-tuple (2:) of consumptions where 
z: Xi for every i, the set 

( 6 )  G = 2 x:: - 2 Y, 
i 

is the set of total resources forming with (X,, 5 )  and (Y,) an economy 

which can attain a state ((23, (y,)) such that z i z  zf for every i. The 

proofs of theorems (I) of 6.3 and (I) of 6.4 consist essentially of a study 
of the relative position of the point w (the actual total resources) and the 
set G (the set of total resources yielding an economy which can satisfy 
the preferences of consumers at least as well as some given m-tuple (2:) of 
possible consumptions). 

(1) Ler E be an economy such thar, for every i, 

(a) X, is conuex, 
(b) if 2: and f ore two poinrs of X, and if t is a real number in ]O,1[, 
rhen 4 > z: implies 14 + (1 - t)z: > z:. 

i i 
An equilibrium ((z:), (y:)) relarive to a price system p, where no z: is a 

sariation consumption, is an optimum. 
Prooj: Consider the function from R' to  R defined by a - p . a. 

Since the conditions of (2) of 4.9 are satisfied, it follows from (a) of 
6.2 that Z: minimizes p . a on X::. Moreover, from (8) of 6.2, -y: 
minimizes p . a on -Y,. Therefore, by (1) of 3.4, 2 z: - 2 y:, 

i 
which is equal to w,  minimizes p . a on G = 2 XI: - 2 Y, (this 

9 
shows, incidentally, that w is in the boundary of G; see fig. 2). 
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Let, then, ((z~), (y,)) be an attainable state such that ziz  zt for 

every i. It will be proved that xi 7 z: for every i, and this will 
establish the theorem. Since x - y = w,  the point 12, - 2 y, 

minimizesp . a on G, and this implies, by (I) of 3.4, that zi minimizes 
p . a on Xf: for every i. Therefore p . zj  ( p . x:, and, by (a) of 6.2, 
z, <z:, q.e.d. 

7 

Fig. 2 

A deeper theorem will now be proved. 

( I )  Let E be on econonzy such rhor: for every i, 
(a) X, is conuex, 
(b. I )  for euery z: in X,, the sets {z, E X, I z, z:} ond {z, r X, / xi 5 z:} 
are closed in X,, 
(b.2) i fz:  and ore two poinrs of X, and if I is o real number in p, I[, 
then 3 > zf implies re f (1 - r)r: >- rf; 

i i 
(c) Y is conuex. 

Giwn an optimum ((2;). 04:)) where some xf is not o satiation conswnp- 
tion, there is a price system p differentfrom 0 such rhar: 

(a)  z: minimizes p . x, on {zi 6 r\: 1 zi > x:}, for eoery i, 

(8) y; maximizesp . y, on Y,, for euery j. 
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0 .  

Prooft Let X;:i' denote the set (zc X,. 12,. > z,f) of consumptions 

in X,. which the i'th consumer prefers to the consumption z: in Xi.. 
Consider now the set 

of total resources forming with (X,, 5 )  and (Y,) an economy which 

can attain a state ((22, (y,)) such that zL. > z: and zj 2 2: for i # i'. 
i 

Since the state (($1, @;)) is an optimum, w does nor belong to G .  
Moreover, it follows from (a), (b.l), and (b.2). by (I) of 4.7, that the 

0 .  

sets XF' and X? are convex. Hence C is convex as a sum of convex 
sets. Thus, by Mtnkowski's theorem ((16) of 1.9.x), there is a hyper- 

plane H through w, bounding for G, i.e., there is p in R' different 

from 0 such that p . a 2 p . o for every a in G. 
$ 

According to (2) of 4.7, if z,. ;z:, then zi. is adherent to X:,. 
: 

In other words, the set X?' is contained in the adherence of X? . 
Therefore the set G defined by (3) of 6.2 is contained in the sum of the 

adherences of the m + n sets adding up to C. As this sum of 

adherences is, by (I) of 1.9.f, contained in the adherence of G, the set G 

is contained in the adherence of C,  hence in the closed half-space 
above the hyperplane H. Since the point o belongs to G, it minimizes 
p . a on G (thus w is in the boundary of G; see fig. 2). It follows from 

o = z z :  - y:, by (I)  of 3.4, that zf minimizes p . o on  sfo or 
every i ,  and -y: minimizes p . o on -Y, for every j, q.e.d. 

If the exceptional case where p . is the smallest expenditure relative 
t o p  in the consumption set Xi does not occur, then (a) of 6.4 implies (a) 
of 6.2 by (I) of 4.9, and ( (zt ) ,  (y:)) is indeed an equilibrium relati\'e top. 

1 .  This chapter is bawd on K. 1. Arrow [If ;::! G Dsbieu [I], 141. 
A bibliography on the problem of optimum will be found in the two survey articles 

A. Hergron [I], K. Boulding [I]. The most inlererting treatments of this problem by 
the calculus have been given by 0. Lange [I) and M. Allair 111. Chapter 4, Section E. 
The reprerentation of the set of attainable rtaten of an eccnamy illustrated by fig. I 
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is borrowed from M..Allais [I], Chapter 4, Section E, and P. A. Samuelron [I], Chapter 

8, [21. The set 2 X;'. at the end of 6.2 is related lo the concept of community indif- 

ference curve of T. Seitovsky [I]. 

2. Theorems similar to(!) of 6.3 and ( I )  af 6.4 are proved when the commodity 
space is an arbitrary vector space over the mals in G. Debreu [41. This provides, in 
particular, a solution of the problem of optimum when the dater form a sequence 
extending indefinitely in the future, a care studied by E. Malinvaud 111 with a dlf- 
ferent technique. 



CHAPTER 7 

UNCERTAINTY 

The analysis is extended in this chapter t o  the case where uncertain 
events determine the consumption sets, the production sets, and the 
resources of the economy. A contract for the transfer of a commodity now 
specifies, in addition to its physical properties, its location and its date, 
an event on  the occurrence of which the transfer is conditional. This new 
definition of a commodity allows one to  obtain a theory of uncertainty 
free from any probability concept and formally identical with the theory 
of certainty developed in the preceding chapters. 

An economy whose activity extends over T elementary time-intervals, 
or dates, will be studied. It is assumed that the uncertainty of the environ- 
ment during that period originates in the choice that Nature makes among 
a finite number of alternatives. These alternatives will be called eaents at T 
and indicated by an index e ,  running from I T  to  k,. Once eT is given, 
atmospheric conditions, natural disasters, technical possibilities, . . . are 
determined for the entire period. 

At the beginning of date t, the agents of the economy have some infor- 
mation about the event at T which will obtain. This information can 
be formally presented as follows. The set of events at T is partitioned 
into non-empty subsets called euenrs at 1 and indicated by an index e ,  
running from 1, to k,. At the beginning of date t, every agent knows to 
what event a t  t the event a t  Twhich will obtain belongs. At the beginning 
of date 1 + 1, further information is available, i.e., the partition which 
defines the events a t  t + I is derived by partitioning the events a t  t. The 
events a t  t = 1,.  . . , T c a n  be conveniently represented by the vertices of 
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a tree with the vertex I, corresponding to the absence of information 
prevailing initially. In fig. 1 such an event tree is drawn for the particular 
case where T = 3. 

Fig. 1 

7.3. COMMODITIES AND PRICES 

Wheat with specified physical characteristics available at location s, 
at date t will play entirely different economic roles according to the event 
at 1 which obtains (in particular, according to precipitation during the 
growing season). One is thus led to define a commodily in this new context 
by its physical characteristics, its location, and its event (or vertex of the 
event tree; this vertex defining implicitly the date of the commodity). 
A contract for delivery of wheat between two agents takes, for example, 
the form: the first agent shall deliver to the second agent, who shall 
accept delivery, five thousand bushels of wheat of a specified type at 
locations, at event e,. If e, does not obtain, no delivery takes place. It was 
remarked in Chapter 2 that the definition of a certain commodity might 
require several dates (and several locations). Therefore the definition of 
an uncertain commodity may require here several events (and several 
locations). Summing up, the concept of uncertain commodity is derived 
from the concept of certain commodity by substituting the tree structure 
of events for the line structure of dates and replacing everywhere "date" 
by "event." 

It is assumed that there is only a finite number I of commodities; these 
are indicated by an index h running from 1 to I. It is also assumed that 
the quantity of any one of them can be any real number. Given a sign 
convention for the inputs and the outputs of an agenr, a complete plan of 
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action, or more briefly an action, for him is represented by a point a of 
the commodiry space R'. The plan of action a made initially for the whole 
future specifies for each good and service the quantity that he will make 
available, or that will be made available to him, at each location, at each 
date, and at each event. 

The price p, of the hth commodity is a real number interpreted as the 
amount paid (in the sense of 2.1) initially by (resp. to) the agent who 
commits himself to accept (resp. to make) delivery of one unit of that 
commodity. Payment is irrevocably made although delivery does not take 
place if specified events d o  not obtain. An agent who buys a bushel of 
NO. 2 ~ e d  Winter Wheat available in Chicago at date t in any euent buys in 
fact as manv commodities as there are events at t. The usual futures"orice" 
thus corresponds to a sum of prices of uncertain commodities. The price 
system is the I-tuple p = (p,, . . . ,p,, . . . ,p,). The mlue of an action a 
relative to the price systemp is the inner product p . a. 

An action yj of thejthproducer is called aproducrion (inputs are negative 
and outputs positive). Let y,(eT) denote the vector of the components of 
yj  associated with the unicursal path from the vertex 1, of the event tree 
to the vertex e,, and let Yj[eT] he the certain production set associated 
with the same path. The production. yj is possible if and only if yj(eT) 
belongs to Y,[e,] for every event e ,  a t  T. The set of productions yj 
possible for the jth producer is a subset of the commodity space R1 
denoted Y, and called the production set of the jth producer. 

It is easy to interpret the assumptions of 3.3 on production sets in this 
new context, and to relate them to the corresponding assumptions in the 
case of certainty. For example, if Yj[eTl is convex for every event e, 
at T, then Yj is clearly convex. 

Given a price systemp and a production y,, theproJir of the jth producer 
is p . y,. Considering the price system as a datum, the j th  producer tries 
to maximize his profit in his production set. For this he needs neither an 
appraisal (conscious or unconscious) of the likelihoods of the various 
events, nor an  attitude toward risk. His behavior amounts to  maximizing 
the value of the stock outstanding of the jth corporation. I n  other words, 
the jth corporation announces a production plan y,; as a result, its share 
has a determined value on the stock market; it chooses its plan so as to 
maximize the value of its share. 
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UNCERTAINTY 7.6 

7.5. CONSUMERS 

An action z, of the ith consumer is called a comumpfion (inputs are 
positive and outputs negative). Exactly as for a producer, one defines 
the consumplion set Xi of the ith consumer. It is assumed that the set X, 
is completely preordered by the preferences 5 of the ith consumer. This 

preference preordering reflects the tastes of the consumer for goods and 
services (including, in particular, their spatial and temporal specifications), 
his personal appraisal of the likelihoods of the various events, and his 
attitude toward risk. 

The assumptions of 4.3 on consumption sets, and of 4.5-4.7 on 
preference preorderings are again easily interpreted in this context of 
uncertainty and related to the corresponding assumptions in the case 
of certainty. Most interesting are the three convexity assumptions on 
preferences of 4.7. Attention will be focused on: 

(a) If e t z : .  then te + (1 - i)z: kz:, 

which is the weakest (when preferences satisfy the continuity assumption 
(a) of 4.6). This axiom for uncertain consumptions implies an attitude 
of risk-aversion for the ith consumer. To see this, consider the case of 
one date and two events which are the outcomes Head and Tail of the 
tossing of a coin. Let b and c be two certain consumptions, and denote 
by (b, c) the uncertain consumption which associates 6 with event Head 
and c with event Tail, by (c, b) the uncertain consumption which makes 
the reverse association. Assume moreover that (6,b) is not indifferent to 
(c, c), i.e., that the certain consumptions b and c are not indifferent. 
If (b, c) is indifferent to (c, b), is., if the ith consumer appraises Head 
and Tail as being equally likely, (a) asserts that ((b + 4 2 ,  (c + b)/2), 
is . ,  the certainty of consuming (b + c)/2, is at least as desired as the 
uncertain consumption (b, c) or (c, b). 

Given a price system p and his wealth w,, the ith consumer tries to 
satisfy his preferences .< in the subset of X, defined by the wealth constraint 

? 

p.ziI_w'.  

7.6. EQUILIBRIUM 
Finally the lolal resources are a given vector w of R1 such that, for 

every event e, at T, the vector w(e,) of the components of w associated 
with the unicursal path from the vertex lo of the event tree to the vertex 
e, coincides with the certain total resources associated with that path. 
The formal description of an economy E = ((X,, 5). (Y,), ),o) is thus 
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7.7 THEORY OF VALUE 

identical with that given in 5.3. In particular, an attainable state of E is 
an (m + n)-tuple ((23, (y,)) of actions such that 

"8 " 
zi E XI for every i, y, G Y, for every j, 1 xi - 1 y, = w. 

i-l 9 - 1  

The equality expresses that the actions of the agents are compatible with 
the total resources, i.e., for every event e, at  T, 

1 zi(e*) - 1 Y,(~T) = 4 4 .  

A priuate ownership economy 8 is described by an economy ( ( x , , ~ ) ,  
( Y J ,  w), the resources (wJ of the consumers and their shares (8.3. The 

m 
wj are points of R' satisfying 1 w, = w, and the O,, are non-negative 

m < = I  

real numbers satisfying 1 0 ,  = 1 for every j. Given a price system p 
i=l  

and productions (y,) for the n producers the wealth of the ith consumer 
" 

is w , = p . w i + ~ O i j p . y , .  
j-l 

The formal identity of this theory of uncertainty with the theory 
of certainty developed earlier allows one to apply here all the results 
established in the preceding chapters. In particular, sufficient conditions 
for the existence of an equilibrium for the private ownership economy 8 
are given by theorem (1) of 5.7. 

7.7. OPTIMUM 

In the same fashion, theorems (1) of 6.3 and (I) of 6.4 applied to the 
economy E yield sufficient conditions for an equilibrium relative to a 
price system to be an optimum, and for an optimum to he an equilibrium 
relative to a price system. 

NOTES 
1. Thischapteris based onthe mimeographed paper. "Unc&conomis del'incertain((. 

written by the author at Electricit6 de France in the summer of 1953. The analysis of 
the theory of value under uncertainty in terms of choices of Nature originated in 
K. 1. Arrow 121, where the risk-aversion implication of weak-convexity of preferenas 
is established. The definition of the preference prsordering in 7.5 has been suggested by 
the work of L. 1. Savage [I]. 

A similar approach has been taken by E. Baudier Ill. A different attack has been 
tried by M. Allair (21. 

2. The assumption that markets exist for all the uncertain commodities introduced 
in 7.3 is a naturalextension of the urual assumption that markets exist for all thecertain 
commodities of Chapter 2 (see in psrticular 2.6). 
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