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PREFACE

The two central problems of the theory that this monograph pre-
sents are (1) the explanation of the prices of commodities resulting
from the interaction of the agents of a private ownership economy
through markets, (2) the explanation of the role of prices in an optimal
state of an economy. The analysis is therefore organized around the
concept of a price system or, more generally, of a value functicn
defined on the commodity space.

The first solutions of the two preceding problems were achieved by
L. Walras [1] and V. Pareto (1], [2], [3], [4] respectively, but neither
the masters of the school of Lausanne nor their disciples for several
decades gave a very rigorous account of their ideas. For example, the
knot of the first problem was thought to be cut by the bold assertion
that a system of equations whose number equals that of its unknowns
can be solved. Only in 1935-36 did A. Wald [1], (2], [3] publish the
first rigorous analysis of the problem of equilibrium. A little earlier
J. von Neumann (1], {2] had begun to develop, in different contexts, a
mathematical tool which was eventually to play an essential role in
that area under the definitive form as a fixed point theorem it received
from S. Kakutani {1]. The wvalue of that tool for economics was
demonstrated in 1950 by J. Nash’s [I] proof that every finite n-person
game has an equilibrium point (a concept whose origin can be traced o
A. Cournot [1], Chapter 7). As for the second problem, the first

rigorous study, using convex sets properties, of the equivalence be-
ix



X PREFACE

tween an optimum and an equilibrium relative to a price system was
done by T. C. Koopmans {1] in the context of linear activity analysis
of productive efficiency. The research of the last decade reported in
this volume started from these contributions. But it is hardly neces-
sary to add that many other currents of ideas have, directly or in-
directly, influenced the substance or the form of that research. Out-
standing among these influences has been the work of J. von Neumann
and O. Morgenstern [1] which freed mathematical economics from its
traditions of differential calculus and compromises with logic.

The theory of value is treated here with the standards of rigor of
the contemporary formalist schoel of mathematics. The effort toward
rigor substitutes correct reasonings and results for incorrect ones, but
it offers other rewards too. It usually leads to a deeper understanding
of the problems to which it is applied, and this has not failed to happen
in the present case. It may also lead to a radical change of mathe-
matical tools. In the area under discussion it has been essentially a
change from the calculus to convexity and topological properties, a
transformation which has resuited in notable gains in the generality
and in the simplicity of the theory.

Allegiance to rigor dictates the axiomatic form of the analysis where
the theory, in the strict sense, is logically entirely disconnected from
its interpretations. 1n order to bring out fully this disconnectedness,
all the definitions, all the hypotheses, and the main results of the
theory, in the strict sense, are distinguished by italics; moreover, the
transition from the informal discussion of interpretations to the formal
construction of the theory is often marked by one of the expressions:
“in the language of the theory,” “for the sake of the theory,” “for-
mally.” Such a dichotomy reveals all the assumptions and the logical
structure of the analysis. It also makes possible immediate extensions
of that analysis without modification of the theory by simple reinter-
pretations of concepts; this is- repeatedly illustrated below, most
strikingly perhaps by Chapter 7 on uncertainty.

To keep the cost associated with such an axiomatization at a mini-
mum, the theory is consistently set forth in the simplest possible
mathematical framework even when immediate generalizations, some
of which will be mentioned in notes, are available. In addition, the
small amount of mathematics necessary for a full understanding of
the text {(but not of all the notes} of Chapters 2 to 7 is given in the
first chapter in a virtually self-contained fashion. In another respect
the reading of this monograph will be facilitated by the excellent intro-
ductions to its problems provided by T. C. Koopmans' {2] first essay
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and by R. Dorfman, P. A. Samuelsen, and R. M. Solow’s {1] Chapters
13, 14.

Before concluding, must one remark that the contents of this vol-
ume—which have been taught at the University of Chicago and at
Yale University since the spring of 1953, and presented as a Doctor
of Science thesis at the University of Paris in June 1956—do not try
to exhaust the theory of value? Several important questions left
unanswered are emphasized below. One may stress here the certainty
assumption made, at the level of interpretations, throughout the analy-
sis of Chapters 2 to 6, according to which every producer knows his
future production possibilities and every consumer knows his future
consumption possibilities (and his future resources if resources are
privately owned—otherwise only the future fofel resources. need be
known). This strong assumption is weakened, albeit insufficiently, in
the last chapter.

The Cowles Foundation has provided an uncommonly favorable
environment for the research from which this monograph evolved,
and I wish to express my gratitude to Alfred Cowles, its founder, and
to Tjalling C. Koopmans and Jaccb Marschak for the constant in-
terest they have taken in my work. 1 have an exceptional debt to
Kenneth J, Arrow, for several of the main ideas of this volume have
been advanced either independently (K. I. Arrow (1, G. Debreu [11),
or jointly (K. J. Arrow and G. Debreu [1]) by him and by me.  Tjalling
C. Koopmans, Lionel W, McKenzie, Jacob Marschak, Roy Radner,
and Rohert M. Solow have read the whole manuscript or extensive
parts of it, and I owe many searching comments to them. My concern
for the theory of the school of Lausanne arose when I first met it in
the treatise of Maurice Allais [1] and, a little later, in the book of
Francois Divisia {1]. T also thank them, Georges Darmois, Wassily
Leontief, Pierre Massé, René Roy, and James Tobin for having greatly
helped to create the conditions which made this investigation possible.
Finally I gratefully acknowledge the financial support of the Office of
Naval Research and the Social Science Research Council in the writing
of this text, of the Centre National de la Recherche Scientifique, the
Rockefeller Foundation, and the RAND Corporation in the pre-
liminary work that led to it.



CHAPTER 1

MATHEMATICS

1.1. INTRODUCTION

This chapter presents al/ the mathematical concepts and results which
will be used later (in notes, however, additional concepts and results will
be freely used). Its reading requires, in principle, no knowledge of
mathematics.

The exposition starts from the concept of a set of elements and gradually
introduces, by means of definitions, concepts of increasing complexity.
Simultaneously results concerning those concepts are stated. Sections 1.2,
1.3, and 1.4 stay at a high level of generality; they deal respectively with
sets, functions and correspondences, and preorderings. Section 1.5 is a
crucial step in the exposition; it introduces (real) numbers. To prepare
for their definition it is necessary to introduce earlier the concepts of a
binary operation (in 1.3.j) and of 2 least upper bound (in 1.4.g). From the
set R of (real) numbers, one builds up the Euclidean space of m dimensions,
R™. Section 1.6 centers on the concept of a convergent sequence of
points of R™. Sections 1.7 and 1.8 are respectively devoted to the concepts
of continuity of functions and of correspondences. Section 1.9 is built on
the definitions of the sum of two elements of R™ and of the product of
an element of R™ by a (real) number; it considers R™ as a vector space.
Section 1.10 studies the concept of fixed point of a correspondence.

‘The method of exposition chosen parallels that of contemporary mathe-
matics; one of its aims is to show mathematical concepts in their proper
light. This is of invaluable help in the formulation and the solution of
economic problems.

It was stated that the reading of this chapter requires no know]edge of
mathematics. This is, admittedly, true only “in principle.” It certainly
requires an ability to think abstractly, which is usually developed through
the practice of mathematics, and an ability to assimifate in a short time

1



1.2 THEORY OF VALUE

a certain number of new concepts the motivation for which may not always
be clear at first, On the other hand, the expert will notice that the logical
foundations of set theory and even an clementary knowledge of the
integers are taken for granted.

The concepts and results which will be presented form the strict minimum
necessary for a complete understanding of later chapters. For example,
theorem (6) of 1.6.n (every subset of R™ contains a dense countable set)
is necessary for the proof of existence of a utility function in Chapter 4,
section 6; theorem (16} of 1.9.x (the Minkowski bounding hyperplane
theorem for convex subsets of R™) is, in essence, the centrai result on
economic optimum which is proved in Chapter 6, section 4; theorem (2) of
1.10.d (the Kakutani fixed point theorem for correspondences from a
convex subset of R™ to itself) is, in essence, the central result on economic
equilibrium which is proved in Chapter 5, sections 6 and 7.

Furthermore those concepts and results are almost ali among the most
basic of mathematics, and their usefulness goes far beyond the applications
whick: are made of them below.

Yet the reader may lack the time to read this entire chapter and the
proofs of the economic theorems for which it prepares. The text of the-
following chapters has therefore been presented in such a way that the
concepts and results stand out clearly and their meaning can be grasped
with stili less mathematical preparation.

In this chapter, proofs of assertions are not given. In many cases the
reader could reconstruct them; it might then be a valuable exéreise for
him to do se; hints will sometimes be provided. When this reconstruction
offers difficulties the locution “One can prove...” or some explicit
warming is used, Small-type passages contain examples and heuristic
comments. They are irrelevant for the logical development of the text
proper and could be omitted entirely; it is therefore permissible, in them,
to draw upon an intuitive knowledge of the physical world, and to use
vndefined simple mathematical terms like distance, curve, rectangle, . . .

1.2. SETS
a. A set S of elements is also a collection of elements; sometimes one
says a class of elements.

Exampres: (I} The set 4 of actions available to a certain social agent and among
which he has to choose. {2) The set N of positive integers, or whole numbers,
{1, 2,3, -} (braces will denote sets}.

2



MATHEMATICS 1.2

b. The sets which constitute the universe of discourse must always be
explicitly listed at the cutset.

ExamPLE: A social system may be described as composed of a certain number m of
agents. Any one of these agents may be indicated by a positive integer i, one of the
positive integers 1, 2, - - -, m. For any one of them, say the jth one, a set A4; of available
actions is given, The universe of discourse consists of the m sets 4,, - - -, A,

¢. x 5 expresses that x denotes a certain element of §; it is read:
x belongs to §, or = is an element of S, or z is in S, or § owns =.

ExAMPLE: 4, = A, indicates that 4, is an action available to the ith agent.

d. If z, y denote elements of S, then = = y (z equals y) expresses that
they denote the same element, and x + y (x different from y) expresses
that they denote different clements.

e. Let 2 be a property which any element x of § has or does not have.
{z« § | = has property #} denotes the set of all the elements of § which have
property #; it may be read: the set of z in S such that x has property 2.

Exampre: If A is the set of actions available to an agent and &’ is an element of A4,
the set of those available actions which that agent considers more desirable than &’ is
{a e 4| ais preferred to a'}.

fo A set X of elements of 5 is called a subser of §; this is denoted by

X < 8 (X comtained in §). The notation X = § does not exclude the
possibility that X is equal to §.

ExAMPLE to emphasize the last point: N < N (the set of positive integers).

g- Careful distinction must be made between the element z of § and
the subset {z} of .S having the only element z.

ExampLt: The assertion € X is equivalent to the assertion {z} < X.

h. A property 2 defines a subset of S, namely the set of elements of §
having that property. When no element of S has the property 2P, one
says that 2 defines the empty subset of S denoted @. This convention is
necessary if a property is afwagys to define a subset of S.

Exampre: In the example of 1.2.¢, {a e A | a is preferred to 4’} is always a subset of 4.
If g’ happens to be the most desirable action in A, then the above set is the empty
subset of 4.

i. If X'is a subset of S, and x an element of S, then x ¢ X expresses
that x is not an element of X' (z does not belong to X). The clements of §
which do not belong to X form a set called the complement of X in § and

3



1.2 THEORY OF VALUE

denoted CgX. When there can be ne ambiguity about § one says the
complement of X, and one writes CX.

J. Let X and Y be two subsets of S. One defines X U Y, the union of
X and Y, as the set of elements of S belonging to X or to Y (or to both).
X N Y, the intersection of X and Y, is the set of elements of § belonging
to both X and Y. If X and Y have no ¢lement in common,i.e,if X NY =0,
they are said to be disjoint.

ExampLEs can easily be constructed by drawing two (overlapping or non-overlapping)
regions X, Y in 2 plane S.

k. More generally, let X be a set of subsets of S. The union of these

subsets, |JX, is the set of elements of S which belong to at least one X
XeX
in X. Their intersection, X, is the set of elements of 5 which belong to

all the X in X. Tex

L A collection X of subsets of S forms a partition of S if they are
pairwise disjoint (i.e., if any two different subsets belonging to X are
disjoint) and if their union is S. That is, if each element of S belongs to
one and only one of the subsets in X. A partition of a set corresponds to the
famniliar idea of a classification of its elements, .

n. Consider two sets § and T; the set of pairsy (x, y) where x ¢ § and
y = T, is called their product S x T. The order in which z, ¥ and §, T are
written in (z, y) and S x T is essential.

ExampPLE: Let S be the lower horizontal edge of a rectangle drawn in a plane and
T its left vertical edge. If = is a point of §, y a point of 7, the pair (z,y) may be
visualized as the intersection point of the vertical straight line through = and the
horizontal straight line through . The preduct § x Tis then visvalized as the region
covered by the rectangle.

n. More generally, consider m sets S;,---, S8, ", 8, The set of
m-tuples (xy, -, %, - ,3,), where z; <« S, forevery i (=1, -, m) is
the produect §; % -+ X §; X -+ X 8, also denoted {[ S;. The order

iml

in which the x, and the §; are written is again essential. The m-tuple
{z, " ", %, - -~ , ¥, ) is denoted by (x)), and z; is called the ith coordinate
{or the ith component) of (x,).

ExampLE: Consider a social system consisting of m agents. The ith agent must
choose an action a; in a given set A, of actions available to him. When each agent has
made his choice, the outcome of the social activity is determined. Thus social activity

Ll
. is characterized by an m-tuple (2,), an element of [ | 4.
i=1

4



MATHEMATICS 1.3

1.3. FUNCTIONS AND CORRESPONDENCES

a. Let §and T be two sets; if with each element x = 5 is associated one
and only one element y « T, a function f from S to T is defined. fis also
called a zransformation of S into T. x is the variable, y is the image of =
by f, or the transform of x by f, or the value of [ at x, and one writes
¥ = f(x} (read y equals f of x), or = — f(z).

Examere: Let 4 be the set of actions available 10 a certain agent. If the choice of
@ in A4 determines the amount of money (a positive integral number of cents) this agent
receives, a function from A to N is defined.

b. Consider in § x T the set of elements (x, y) for which y = f{z).
This subset of S x T is called the graph of the function f.

ExameLe: In the example of 1.2.m, the graph of a function ffrom § to T is visualized
as a set of points of the rectangle such that the vertical through am arbitrary point
of S intersects it at exactly one point.

c. Let X be a subset of §; take the image ¥ = f{x) of each x « X. The
set of the images so obtained is a subset of I’ called the image of X and
denoted f(X). If f(S) consists of one element of T, in other words, if all
the elements of S have the same image in 7, the function fis said to be
constant. If f{S) =T, in other words, if each element of T is the image
of some element of §, fis said to be a function from 5 onto T.

d. Conversely, let ¥ be a subset of T; the set of z= 5 which have their
—1

images in Y'is a subsect of S called the inverse image of Y and denoted f(¥).

Exampii: If a curve is taken as graph of /ia the example of 1.3.b, a proper choice of
X, Y gives illustrations of the concepts of 1.3.cand 1.3.d.

it is easy 1o prove that:
(1} If [ is a function from a set § to a set T, and if W is a collection of
~1 -1
subsets of T, rhenf(ﬂ Y)=Ns(Y)
¥ Ye?
e. Ay <7 maybe thc 1mage of several, or of one, or of no element of S.

When for each y < T the set f (¥} consists of exactly one element, in other
words, when each v « T'is associated with one and only one element of §,
f'is said to establish a one-to-one correspondence between S and T. This
concept will be further discussed in 1.3.n.

j- Letfbeafunction fromaset FloasetT, andlet G be a set containing
F. A function g from G to T is said to be an extension of f to G if one has
J(x) = g(xj for every x in F.
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2. Consider » sets §,*+*, 5, *++, 5, and their product [T S, The
i
function which associates with the generic element (z;) of H S, its ith

coordinate z, in S, is called the ith projection (or the projec:,ta'on on §;).
The image of an element (resp. of a set) by a projection function is called
the projection of that element (resp. of that set).

h. If with each element r in a given set § is associated a non-empty
subset ¥ of a given set T, a function @ from § to the set of subsets of T
is defined. It is sometimes preferable to consider ¢ as a correspondence
from S to T. One writes ¥ = ¢(z).

-1
Exampres: (1) Let f be a function from a set Sonto aset T; forevery y € T, f(y)
-1

is & non-empty subset of §, hence £ is a correspondence from T to S. (2) Let 4 be
the set of a priori available actions of a social agent. Suppose that his environment
is completely specified by an element e of a set E. His environment restricts his freedom
of action, i.e., the element e determines the subset of 4 to which his choice is actually
restricted. A correspondence from E to A is thus introduced.

i. The graph of the correspondence ¢ is a subset of § x T, namely
{@ ) S x T|yepx)

Examrre: Consider the case of the rectangle already used to illustrate the graph of
a function in 1.3.b; the graph of a correspondence from § to 7 is visualized as a set
of points of the rectangie: the intersection of this set with a vertical through an
arbitrary point z of § is a non-empty set (the projection of which on Tis @(z)). See also
fig. 2a and fig. Zbof 1.8.

J- A binary operation T on a set S associates with each pair (z, y) of
elements of § (the order of which is essential) a unique element z of 5.
One writes z = z vy, Thus a binary operation on S is nothing else than
a function from S x Sto S.

ExampLEs: (1) The addition of two positive integers is a binary operation + on M.
(2) So is the multiplication - of two positive integers. (3) Given two positive integers
z,y, the expression 2* denotes the product of ¥ positive integers equal te 2; thus a
binary operation ~ on N can be defined by z ~ y = =,

k. A binary operation T on S is said to be associative if for all z, y, 2
inSonehas{zTy) Tz =z 7(yv2). Itissaid to be commutative if for all
z,yinSonehaszty =yrta.

Examrres: (1} Both + and - on N are associative and commutative. (2) ~ on N i$
neither associative nor comrmutative.

/. Consider two binary operations 1 and 7 defined on S. The first is
said to be distributive with respect to the second if for all z, ¥, z in S one
has zL(zTy) = (z22)T(21¥).

6



MATHEMATICS 1.4

ExaMmpPLES: (1) On N, - is distributive with respect to 4. (2} But + is not distributive
with respect to -.

m. A sequence (x', 2%, 23, ---,2%--) of clements of a set § is an
intuitive concept. Precisely, it is defined as a function from N to S. [t will
be denoted by (x9).

n. Intuitively, a set S is countable if it has at most as many elements as
N. In a precise fashion, a set S is defined as countable if it can be put in
one-to-one correspondence with a subset of N. When the countable set §
is not empty cne can always choose the corresponding subset of N so that
it owns 1, and so that, whenever it owns two positive integers, it owns
every positive integer between them. The image of x < S in the corre-
spondence is then called the rank of . Thus a set is countable if and only
if all its elements can be ranked, no two different eclements having the
same rank. One can prove that

(2) The product of m countable sets is countable.

ExampLEs: (1) N X N is countable. (2) However, one can prove that the set of
subsets of NV is rot countable.

1.4. PREORDERINGS

a. Let & be a binary relation in which any two elements x, y of § (the
order of which is essential) stand or do not stand. If they do, one writes
xR y.

ExampLEs: (1) Let S be the set of subsets of a set S. The relation # on G might be *“is
contained in,” then X # ¥ would be equivalent to X < ¥, (2} or the relation # might
be ““does not intersect,” then X # ¥ would be equivalent to XY M ¥ = 9. (3) Let A be
the set of actions available to an agent; the relation # might be “is not preferred to.”
(4) Consider the relation “is not a successor of”* on N and denote it by <.

b. The last relation corresponds to the natural ordering of the elements
of N. To define with full generality an ordering relation on a set, one
preserves certain properties of <X on N. In a precise manner, a binary
relation 2 on § which satisfies

(1) = & xforevery x e 5 (reflexivity),

(2) “z#yandy A= implies “x F 2 (transitivity)
is cailed a preordering (often also a quasi-ordering). When, in addition,
“z Ay and y A« implies “x =y, the relation is called an ordering.
Often the symbol < will be used (in place of ) to denote a preordering.
By definition, y > 2 means z < y.
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MATHEMATICS 1.4

ExampLEs: (1) Consider the set N partially ordered by the refation “is a divisor of,”
and let Sbe {1,2, 3 4, 5} S has three maximal elements, 3, 4, 5, no greatest element,
one minimal element, 1, and one least element, 1. {2) Consider a set 4 of actions
completely preordered by the relation “is not preferred t0.” If a is an action to which
none is preferred, a is a greatest element of A (which need not be unique: there may be
other greatest elements, all indifferent to a).

. Let S be a preordered set, and consider a subset X of S. An element
Y« S such that for all x « X one has = < y (resp. 2 » y) is called an upper
bound of X (resp. a lower bound of X ) C0n51der the set Y of the upper
bounds of X; the set ¥ has the property: “y <Y and y' > ¢ implies
“y' e ¥ A least element of Y is a least upper bound of X. 1f X has a
greatcst element ¥,y is clearly a least upper bound. The concept of
greatest lower bound of X is similarly introduced.
h. In the next section, the requirement will be put on a certain ordered
set that every non-empty subset which has an upper bound has a least

upper bound. _

i. Let S be a preordered set. A subset [ of S is an interval if “x [,
y eI, and © <z < y” implies “z < . Let g, b be two elements of § such
that a < b; f;articular cases of intervals are:

{a,b]={:ceS|a:<:s-5b}, la.b] = {zeS|a<z< b},
[a, b ={reS|la<z<b}, lab ={reSla<z<b}
[a.~{ = {zr e S|a <z}, - b= {r < S|z <8}
j. Denote by 8y,--+, 8,, S, m preordered sets, by =< the pre-
ordering on S, by =, a generic element of 5;. A preordering <‘ is defined
on the product § = HS by (23 < (%) if 2, < x; forevery i (= 1, )

According to the gcneral notation of l.4.c, (z)-< (z;) means that (x) for
all i, x; '5,“7; and (B) not for all i, <z, i.e., () for at least one i,

;< x, ’i"hc notation (z;) << () will exll:)ress that, for all i, z, < z;. With
thetexception of trivial cases, the preordering < on S cannot be'completc.
ExamPLE: See 1.9.z, l
k. Let S and T be two preordered sets, and denote by -Tsé (resp. -;] the

preordering on § (resp. on T). A function f from S to T is said to be
increasing (or 10 be a representation of § in T) if “z3 2™ implies
“f{x) 7 (') and “z < ™ implies “f (x) < f(').”

. . K] T
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1.5 THEORY QF VALUE

1.5. REAL NUMBERS

a. The set R of (finite, real) numbers is defined as a set of elements
having the following properties (all familiar, perhaps with the exception
of the last one).

b. There are on R two associative and commutative binary operations
(addition +, and multiplication *). There is an element, O, which, if added
to any element x, gives x. Any element x has a negative, i.e., an element
which, if added to x, gives 0. There is an element, 1, which if multiplied by
any element x, gives x. Any element z different from O has an inverse, j.e.,
an element which, if multiplied by x, gives 1. Multiplication is distributive
with respect to addition. 0 is different from 1.

¢. There is on R a complete ordering denoted <. If z is any element
anda L y,thenz L y+z fO0Scand0L y, then0 < -y,

d. Finally, every non-empty subset X of R which has an upper bound has
a least upper bound.

e. A few definitions and further (derived) properties of R will now be
added. = 4 y is the sum of z and y, z -y is their product. H =, ---,

z;, -+, ¥, arc n elements of R, their sum is denoted 3 z,. The product of
j=1

3

n elements equal to r is denoted z” and called the nth power of 2. 0 (resp. 1}
is the only element having the property which defines 0 (resp. 1). Any
x « R has a unigue negative denoted —z. Omne writes £ — y for z + (—y).
The corresponding binary operation is called subfraction, and the result
difference. Any z < R different from 0 has a unigue inverse denoted 1/z.
One writes zfy for « - 1/y. The corresponding binary operation is called
division, and the result quotient. For any z « R one has -z =0, and
(—1) -z = —=z. The multiplication dot will now always be dropped.

F x X y(resp. = << y)is read = less than or equal to y (tesp. « less than y).
x < O(resp. x < 0}is read x non-positive (resp. = negative). The expressions
are transposed in an obvious way if the inequality sign is inverted. One
has 0 < 1.

g- A greatest (resp. least) ¢lement of a subset X of R, if it exists, is
unigue (1.4.f); it is calied the maximum (resp. minimum) of X and denoted
Max X (resp. Min X). One defines the absolute value || of a number z by
[#| = Max {z, —z}, and the sign of a number z = 0 by signx = z/jz].
One has |z + y] < l=f + {yl.

k. A least upper bound of a subset X of R, if it exists, is unique (1.4.f};
it is calied the supremum of X and denoted Sup X. Every non-empty

10
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subset X of R which has a lower bound has a unique preatest lower
bound called the infimum of X and denoted Inf X,

The simplest EXAMPLE is provided by the non-empty interval I = [a, §[. It has no
maximum, its supremum is & Its minimum, and therefere (1.4.g) its infirum, is a.
See also example (2) of 1.5.0.

i. The infimum (resp. supremum) of a real interval is also called its
origin (resp. extremity). The Iengrh of an interval with origin @ and
extremity bis b — a.

j- By repeated addition of 1 to 0 and repeated subtraction of 1 from 0,
one obtains the set J of integers (non-negative and non-positive) as a
subset of R.

k. A real number of the form p/g, where p <J, ¢ ¢J, and g + 0, is cailed
a rational number. The set of rationals, a subset of R, is denoted by Q.

(1} The set Q is countable

(use (2) of 1.3.n to prove that J, then Q is countable) and satisfies all the
axioms in the definition of R with the exception of the last one. (For
example, one can prove that the set [z ¢ Q]2 < 2} has no least upper
bound in @, using the fact that there is no rational y satisfying y* = 2.)
/. One can prove that the set R is not countable. One can also prove that

{2) if z,y belong to R and satisfy x <y, there is a rational r such that
z<r<_y.

m. Given a number x 2> 0 and a positive integer n, one can prove that
there is a unique y = 0 such that ¥" = z. One calls y the nth roor of =,
and one writes ¥ = x'/™,

n. Consider a sequence (%) of numbers. Intuitively, one says that (29)
converges (o1 tends) to the number x° if =7 is as close to #® as one wishes
provided that ¢ is large enough. In a precise fashion, (z?) converges to =°
if, for any number & > 0, there is an integer 4" {depending on £} such that
g > ¢’ imphies |z% — 2% < &. One writes 27— 2°.

o. A sequence which tends to a number is called convergent. 1t is clear
that “z* — 2% and 2* —= y*” implies “2° = ¥; thus a convergent sequence
tends te a unique number called its /imit.

ExampLes: (1) The sequence ({—1¥/g) tends to 0 since, given £ > 0, making 1fg < ¢
is equivalent to making ¢ = be. (2} Note that if Y is the set {11, 1/2,---,1/g,- -},
then X has no minimum and Inf ¥ = 0. (3) The sequences ((—1)) and (4) are not
convergent_

p. The elements of R are also cailed poinis. The set R may be visualized
as folfows. On a horizontal straight fine., two different points are chosen; they will

11



1.6 THEORY OF VALUE

represent 0 and 1, 1 being to the right of 0. An element = of R is then represented by a
point of the straight line at distance || from 0, to the right (resp. left) of 0 if = is positive
(resp. negative). :

g. The letters N, J, Q, R have throughout this volume the meanings
introduced respectively in 1.2.a, 1.5.j, 1.5.k, 1.5.a.

1.6. Limits in R™

a. The set R™ is the product of m1 sets equal to R, i.e, R x -+ X
R x --+ % R. According to the general definitions of 1.2.n, an element,
or point, x of R™ is an m-tuple of real numbers ¢ = (x) = (=, -,
%+, T,). The ith number in the m-tuple is the ith coordinate of z.

b. The set R* may be visualized as follows. Draw in a plane a horizontal and a
vertical straight line. The first (resp. second) set R in R x R will be represented by
the horizontal (resp. vertical) line by choosing ¢ at the intersection point, and 1
arbitrarily to the right of 0 {resp. above 0). Then an element (%, y) of R® is represented
by the intersection peint of the vertical through = and the horizontal through .

¢. To visualize R®, consider, in ordinary space, the west-east, the south-north, and
the vertical straight line through a point 0. They will represent respectively the first,
the second, and the third set in R X R x R. An element (2, y, z) of R® is represented
by the intersection point of the vertical south-north plane through =z, the vertical
west-cast plane through ¥, and the horizontal plane through z.

d. R™ is called the m-dimensional Euclidean space. Let [ be a subset
of the sét of the first m positive integers {1, 2, - - -, m}. The set {z ¢ R™ |z,
=0 if 7 ¢ 1} is called & coordinate subspace of R™. lts dimension is the
number of elements of /. The peint 0, all of whose coordinates are equal
to 0, is the origin of R™.

e. Consider a sequence (x) of points of B™. One says that (z°) converges
(or tends) to a point 2° of R™ if, for all coordinates (i = I, -, m), one
has 2 - 2. One writes z*— 20,

J- As in the case of numbers (1.5.0), a sequence which tends to a point
is called convergent; the unique point to which a convergent sequence
tends is called its /imiz.

g. Let X be a subset of R™; a point x « R™ is adherent 10 X if there is
a sequence of points of X tending to x. One can also say, in a looser
manner, that x is adherent to X if there are points of X arbitrarily close
to x. Any point z of X is adherent to X; it suffices to take the sequence
whose points are all equal to .

h, The set of the points of R™ adherent to X is called the adherence
(often also the closure) of X, and denoted X. According to the last remark
of 1.6.8:

(1 X< X
12
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It is also clear that:
(2) X< YimpliesX Y.

Exampres: (1) Let & be a positive real number, and consider, in R?, the square
{with perimeter excluded} X = {x ¢ R*{|x| < kfori=1,2}; then ¥ ={ec e R*| || <
k for i = 1,2}, (2) Using (2} of 1.5.1, one obtains { = R: the adherence of the set
of rationals is the set of reals.

i. A subset X of R™is closed if it owns its adherent points. This may be
expressed as X « X. Thus, because of (1}, X is closed if and only if it is
equal to its adherence. One may also say that a set is closed if and only if every

point at zero distance from the set belongs to the set; this requirement will often be
imposed below.

ExampLEs: (1) In 1he examples of 1.6.s, X, the subset of R, and Q, the subset of
R, are not closed; X is closed. (2) The subset of R, {0,1,1/2,1/3,---,1fq, "}, is
closed,

J. One can prove:

(3) If X is a subset of R™, its adherence X is closed.
Thatis, ¥ = X. Since every closed set containing X clearly contains X, the
adherence of X can be characterized as the smallest closed set containing X

k. Tt is easy to prove that:

(4) If X is a set of closed subsets of R™, their intersection, } X, is a
closed subset of R™, Xex

It is a little more difficult to prove that: R

{5) If Xy, -+, Xu ", X, are n closed subsets of R™, their union, | ) X,
is a closed subset of R™, §=1

{. Let S be a subset of R™; for a subset X of S, one defines the adherence
of X in § as the set of points of § adherent to X, Similarly X is said to be
closed in S if it owns the points of § adherent to X,

ExampLes: (1)} Let k be a positive real number, and take § = {z ¢ R* | |z] < & for

i=1,2}, X={(z eS|z, =0} From a sketch it will be clear that the set X is closed
in .§ but not closed in R*. (2) Note also that any subset T of R™ is closed in T.

LI

m. Substituting “the adherence in S for “‘the adherence,” “*¢closed in §7
for “closed,” and S for R™ everywhere in (1) to (5), one obtains new
theorems with the same proofs.

n. One can prove:

(6) Every subset S of R™ contains a countable set X such that S < X
In other words, an arbitrary (therefore perhaps non-countable) subset S of
R™ contains a countable set X which is dense in §, i.e., such that for any
point x of § there are points of X arbitrarily close to x.

13
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ExaMpLE: Let S be R itself. From @ = R {(example (2) of 1.6.h) follows 6; = k™
Thus @™, the product of m sets equal to @, i.e., the set of points of R™ whose coordinates
are all rational, is dense in R™ Moreover O™ is countable {apply (2) of 1.3.0 to the
m countable sets ().

0. Let X be a subset of R™; a point x e R™ is imferior to X if it is not
adherent to the complement of X. This means, intuitively, that x is
completely surrounded by points of X. Any point = of R™ interior to X
clearly belongs to X. The interior of X is the set of points interior to X,
viz., C(CX).

ExampLes: (1) Let k be a positive real number, and consider, in R%, the closed square
X={reR||z] =k for i=1,2}; its interior is {x e R®||z,| < k for i=1, 2}
(2) The set 02 and the straight line ¥ = {y < R? |y, = 0} in R* have empty interiors,

As in the case of 1,61, if X is a subset of § (a subset of R™), a point z e §
is said 1o be interior to X in Sif it is not adherent to CgX, the complement
of Xin §.

ExameLe: (3) Consider, in R, the straight line § = {z € B*| 2, = 0), and its subset
Z={zeR|2z=0,0=2 =1} Theinteriorof Zin Sis {z eR*[z,=0,0 <z, < 1};
its interior in R® is empty.

P. Let X be a subset of R™; a point in R™ is a boundary point of X if it
is adherent to both X and its complement CX. The boundary of X is the

set of its boundary points, viz., ¥ N CX.

ExampLes: In the last group of examples, the boundary of the closed square X is
its perimeter, that of O is B2, thatof Yis Y.

g. Let X be a subsct of R™; the exterior of X is the complement of its
adherence, viz.,, C¥. It is easy to prove that the interior, the boundary,
and the exterior of X form a partition of R™ or, what is equivalent, that
the interior and the boundary of X form a partition of the adherence of X.
The last remark shows that the set X is closed if and only if it contains
its boundary.,

r. Let x be an element of R™; its norm |z| is the real number Max {|,i,
o |zd, v, Iml), Le., the greatest of the absolute values of its co-
ordinates. Let & be a non-negative real number; theset X = {z « R™ I 2|
< k) is a closed cube of R™ with center 0, edge 2k.

5. A subset § of R™ is said to be bounded if it is contained in some
closed cube K. A set which is unbounded is therefore a set which has
points arbitrarily far from the origin.

ExampLE: The set J of integers (a subset of R) is unbounded.
14
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i. A subset S of R™ is said to'be compact if it is closed and bounded.
It is easily proved that:
(7 If Sy, --+.8, -+, 8, are closed (resp. compact) subsets of R™, - - -,
R™s <+ R™ then S} X -+ % §;, X -+ % 8§, is a closed (resp. compact)

i

X om,
subset of RI-1

u. Finally. a subset 5 of R™ is said to be connected if it is not the union

of two non-empty, disjoint subsets closed in §. In other words, a set S is
coennected if it cannot be partitioned into two non-empty subsets closed in
§, ie., loosely speaking, if it is of one prece (but perhaps with holes). One can
prove that:

(8) A subset of R is connected if and only if it is an intercal.

1.7. ConTINUOUS FUNCTIONS

a. In this section, S denotes a subset of R™, T a subset of R*, (z") a
sequence of points of S, and (y°) a sequence of points of T.

b. Let { be a {unction frem S to T, and consider a point 2% « 5. The
function f'is continuous ar the paint 2° if:

= b 0 = £ (20, * =f(2)” implies “y* — 0"
In other words. fis continuous at 2° if the image of any sequence tending
to # is a sequence tending to the image of =%

ExampLE: Let f be the real-valued function of a real variable (i.e., a function from
Rto Rydefinedbyy = ljxife = 0,andy = 01fc = 0. The function f is continuous
at every point of R, with the exception of 0, as its graph readily suggests.

The function f is continuous on S if it is continuous at every point of .5,
¢. Let §;, S», T be subsets of R™, R™:, R" respectively, f be a function

from S, to S,, and g be a function from $, to T. Define a function 4 from

Sy to T by f{x} = g(f(2)) for every z in §;. It is immediate that:

(1) If[is continuous at the point x of S\, and if g is continuous at the point

[z} of S, then h is continuous at z.

d. Forevery k =1,---, p, let T, be a subset of R": and consider the
F
product T = J§ Ti. It is immediate that the projection on T, (see 1.3.2)
£-1

is continuous on 7.
e. With the notations of the last paragraph, let £, be a function from
S to T, and define a function f from § to T by f(x) = (fi(x)) for every

15
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x in §, where (f(z)) denotes the p-tuple ( fy(=), - - - o fo(®)). Ttis immediate
that:

(2) If every f, is continuous at the point x of S, then J is continuous at .
/. One can prove:

{3) A function from S to T is continuous on S if and only if the inverse image
of every set closed in T is closed in S.

g. In the important particular case where fis a real-valued function on S,
i.e., where {'is a function from § to R, one can prove:

(3) A function from S to R is continuous on § if and only if the inverse
image of every interval of R of the form |-, y) or y, —| is closed in S.

ExampLEs: (1) Let R+ be the set of positive reals, and consider the function / from
$ = R x R~to Rdefined by ¥ = f (4, v} = ujv. “The function fis continuous on 5"
is equivalent 10 “the inverse image of 1+, yl, i.e., the set {(u,v) « S|u —yo 20}, is
closed in S, and similarly for 1y, —[7; the second assertion is readily suggested by a
drawing in R® and easily proved. (2) The example of 1.7.b does not satisfy the continuity
criterion of (37), as the graph shows.

A, One can prove:

(4) Let f be a function from S to T. If [ is continuous on S, and if S is
compact, then f(S) is compact.

i. Applying this result to the particular case where f is real-valued, one

obtains immediately:
(4) (Weierstrass) Let f be a function from S to R. If fis continuous on S,
and if § is compact, non-empty, then f(8) has a maximum and a minimum.
“f(S5) has a maximum™ also means (1.5.g) “‘there is an ¥ in § such that
forallz € Sone hasf(z) < f(z*).” Such an element is called & maximizer
of /. The concept of a minimizer is similarly introduced. The maximum
{resp. minimum) of the set / ($) is also called the maximum (tesp. minimum)
of the function fon S.

ExamrLE: Let £ be the function defined in the example of 1.7.b, and [ an interval
to which the variable & is restricted. One sees on the graph of f how, when [ is not
bounded, or not closed, or owns 0 and a different point, f has no maximizer or no
minimizes.

/- Itis easy to prove (using (3)),

(5) Let f be a function from S to T. If fis continuous on S, and if S is
connected, then [(S) is connected.

k. Applying this result to the particular case where f'is real-valued, one
obtains immediately (see (8) of 1.6.u):
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{5) (Bolzano) Let [ be a function from S 1o R. If f is continuous on S,
and if § is connected, then [(S) is an interval.

Thus, if ', #? are two points of S, and ¥ is a real number such that
S < y < f(2?), then there is an = < § such that f(z) =y. In other
words, f takes on all values between f (') and f(z?). This result is often
applied to the case where S is an interval of R.

1.8. CoNTINUOUS CORRESPONDENCES

a. Example (2) of 1.3.h has pointed out the interest of correspondences
for economics; this section will study their continuity.

b. in this section, S denotes a subset of R™, T a compact subset of R",
{x%) a sequence of points of S, (y%) a sequence of points of T, and @ a corre-
spondence from S 1o T.

¢. The concept of continuity for a correspondence will be introduced
in three steps.

d. Let =% be a point of §; one defines firstly:

The correspondence ¢ Is upper semicontinuous at the point 1% if

“al— 20, y? = p(2f), y'— ¥ implies Y0 € @(2).”

In other words, if 2 tends to 2, and if ¥ tends to y® while belonging for
all g to the image-set of &%, one requires that y° belong to the image-set
of 29, One could also say, if 2% tends to z°, and if the distance from y* to the image-set
of 27 tends 10 zero, one requires that y° belong to the image-set of z°, This is a natural
but rather weak continuity requirement, as the following example shows. Let Sand T
be two compact real intervals. The graph of ¢ (fig. 2.a) is the shaded region, heavy-
lined boundary included; g(x") is the interval [@?, a*]. The correspondence ¢ is upper
semicontinuous at z°,

al

8 x@ s x
Fig. 2.a Fig. 2.b
e. One defines secondly:
The correspondence g is lower semicontinuous ar the point 2° if:
ot 2%, % e (%) implies “there is (y7) such that ¥* « ¢{z%), y* — 0.
17
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In other words, if z? tends to 2% and if ¥® belongs to the image-set of 22,
one requires that there be an infinite sequence (%) such that ¥? tends to »*
while belonging for all ¢ to the image-set of x°. One could also say, if =
tends to x°, and if y° belongs to the image-set of 2%, one requires that the distance from
¥ to the image-set of 2° tend to zero. Again, this is a natural but weak continuity
requirement as the example of fig. 2.b shows. Here piz?) is the interval [, 3*]. The
correspendence ¢ is lower semicontinuous at z°, Notice how the roles of

“yPe p(2®)" and "y p(z9), y*— y*” are permuted in the two preceding
definitions.

J- Finally one defines:

The correspondence ¢ is continuous at the point 28 if it is upper and lower
semicontinuous at z°,
@ then has all the desirable continuity properties at %,

g- When, for all z « §, @(x) consists of a single element, the definition
of lower semicontinuity at 2® is obviously equivalent to the definition of
continuity at #° for a function. One can prove that, in the same case, the
definition of upper semicontinuity at z° is equivalent to the definition of

continuity at £® for a functien.
h. Semicontinuities and continuity on S are defined as semicontinuities

and continuity at every point of S. It is clear that:
(1} The correspondence @ is upper semicontinuous on S if and only if its
graph is closedin § x T.

i. Asin 1.7.c, let S;, §,, T be subsets of R™, R™, R* rcspectlvely fbea
function from S, to §,, and g be a correspondence from Sy to T. Define a
correspondence y from S, to 7 by w(x) = ¢(f(x)) forevery xin §;. Wis
immediate that:

(2) Iffis continuous at the point x of Sy, and if @ is upper semicontinuous
(resp. lower semicontinuous) at the point f(z) of S, then y is upper semi-
continuous (resp. lower semicon!inuaus) at x.

J- Asin 1.7.d-e, for every k =], -+~ p let T, be a subset of R™, and
@, be a correspondence from § to 7. Consider the product T= ]'I T
and define a correspondence p from S to T by ¢(z) = H @z} for every

xin 8. If every T, is compact, so is T by (7) of 1.6.t. In this case it is
immediate that:

(3} If every g, is upper semicontinuous (resp. lower semicontinuous) at the
point x of S, then @ is upper semicontinuous (resp. lower semicontinuous) at x.

18



MATHEMATICS 1.9

k. According to example (2) of 1.3.h, the interest of these concepts for economics
lies, in particular, in the interpretations of an element = of § as the environment of a
certain agent, of T as the set of actions a priori available to him, and of ¢(z) (assumed
here to be closed for every z in §) as the subset of T to which his choice is actually
restricted by his environment z. Let f be a continuous real-valued function on
8 x T, and interpret [ (z, %) as the gain for that agent when his environment is = and
his action y. Given x, one is interested in the elements of (x) which
maximize { (now a function of y alone) on @(z); they form a set u(x). What
can be said about the continuity of the correspondence u from S to 7?

wlx}

Fig. 3

One is also interested in g(z), the value of the maximum of { on @(x) for a
given z. What can be said about the coritinuity of the real-valued function
gon 5?7 An answer to these two questions is given by the following result
(the proof of continuity of g should not be attempted}.
(4) If [ is continuous on § x T, and if @ is contimious at x < S, then u is
upper semicontinuous at x, and g is continuous at x.

ExampLE: Let S and 7 be the real interval {0, 1]. Define p by ¢(«) = [0, 1] for all

z 8, and f by f(z, ¥} = ay. For z # 0, u(x) consists of the single element 1; for
z =0, p(z) = [0,1]. For all z, g{z) = z. (It will be helpful to draw the graph of x.)

I. Throughout this section, the assumption that T is compact has been
made; it is essential in several respects. In applications, when the set T
is not compact, one may still be able to replace T by some compact set
without changing the problem, and thus to use the above results.

1.9. VECcTORS IN R™

a. Let z = (z;) and ¥ = (y,) be two elements of R™; one defines their
sum z + y as (z, + ¥,), i.e., the ith coordinate of  + y is the sum of the
ith coordinates of # and ». The element 0 has been defined (1.6.d) by the
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condition that all its coordinates are equal to 0. The negative of x is
— = (—=x). One writessx — y for x + (—y). Ifz!,--- 27, --- x" are
n
n elements of R™, their sum is denoted 3 /.
i=1

b. Let x = (x,) be an element of R™, and 7 a real number; one defines
their product tx, or xt, as (tx,). Geometrically, given two points x, ¥ of R™, one
obtains « + y by completing the parallelogram having 0z, Oy for sides; one obtains
—=z by taking the symmetric of « with respect to 0; one obtains rx by representing R on
the straight line Oz, choosing O to represent 0, x o represent 1; then s € R is represented
by tx.

yc. It is clear that the functions (x, ) -~ = + y from R™ X R™ to R™,
and (¢, ) - tx from R X R™ to R™ are continuous,

d. The elements of R™ are also called sectors.

e. Given a vector a of R™, the transformation of R™ into itself defined
by x — x + a is called the a-transiation in R™.

J- Let Xand Y be two subsets of R™; one defines their sum X + ¥ as
the set of elements of R™ of the form « 4+ y where x ¢ X, y ¢ Y. In other
words, one takes, in all possible ways, an element of X and an element of ¥
and adds them; the set of elements thus obtained is X + Y.

ExampLes: (1) Let X ={z e R*|0<x, <1, 2, =0}, and Y= {yc Ry, =0,
0=y, =1L Then X + ¥ = {ze R?|0 =z, = 1,/ = 1,2}. (2) See also fig. 4 in R*

Fig. 4

One defines — X as the set of elements of R™ of the form —x where z « X,
One writes X — ¥Yfor Y+ (—Y). If X,--+, X,,*+, X, are n subsets

b3
of R™, their sum is denoted ¥ X,. It is easy to prove :
i=1

() Ifx,---,X;,---, X, are n subsets of R™, then 3 X, < ¥ X,.
J Fj

20



MATHEMATICS 1.9

That is, the sum of their adherences is contained in the adherence of their
sum. One can also prove:

(2) The sum of n compact subsets of R™ is compact.
g. Let 5 be a subset of R™, and for every k =1,---,plet f, be a

»
function from S'to R". Define a function f from Sto R* by f(x) = 3 fi(x)
for every z in S, It is immediate that: k-1

(3) If every f; is continuous at the point = of S, then [ is continuous at =.

h. Similarly let § be a subset of R™ and foreveryk =1,---,plet T, be
a subset of R", and ¢, be a correspondence from Sto T,. Consider the sum

P
T = ¥ T, and define a correspondence ¢ from Sto T by p(x} = i o)
k=1 k=1

forevery xin S. If every T, is compact, s0 is 7 by (2). In this case one can
prove (for lower semicontinuity the proof is immediate):

(4) If every g, is upper semicontinuous (resp. lower semicontinuous) at the
point x of S, then ¢ is upper semicontinuous (resp. lower semicontinuous) at x.

i Let 2%, z% be two points of R™, ', f% two real numbers such that
114 2 = 1. The point fla* 4 r%? is called the weighted average of x!
and 2? with weights 1! and 2 (respectively).

J- Let 2, y be two different points of R™.

The straight line z, yis {z« R™ |t e R,z = (1 — )z + 1y},

The closed half-line =, y (the origin = is written first) is {2 « R™| 1 e R,
0<t,z=(1 —thx + 1y}

The open half-line z, yis {z « R™ |t c RO < 1,z = (1 — )z + ty}.

It may be more suggestive to rewrite the expression of zasz =ty — =) + =,
i.e., one multiplies the fixed vector (y — ) by the variable number ¢; this
gives the straight line (or the half-line} 0, (¥ — x); then one adds the
fixed vector = (which amounts to a translation; see fig. 5 drawn for the case
of the half-iine}.

k. Let x, ¥ be two points of R™ (different or not}.
The closed segment x, y, denoted [#,y], is {z<R™|teR, 0 <1,
z=(l — f)xr + 1y}. (Seefig. 5.) When z =y, the closed segment [x. y] is
said to be degenerate.

/. Given a subset C of R™ and a point z in C, C is said to be a cone with
vertex x if it contains the closed half-line z, y whenever it owns the point y
(different from z).
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1.9 THEORY OF VALUE

m. Given ncones Cp,---,C,,+ -+, C, with vertex 0, they are said to be
n

positively semi-independent if ““x, « C, for every j, and 3 =z, = 0" implies
=

“z; = 0 for every j,” i.e., if it is impossible to take a vector in each cone
so that their sum is 0, unless they are all equal to 0. It is clear that two
cones C,, Cp with vertex 0 are positively semi-independent if and only if
C, N (=C,) = {0}.

Fig. 5

n. Consider a subset S of R™. To describe those of its points that are infinitely
far from 0 onc introduces the concept of its asymptotic cone, as follows. Let k be a
non-negative real number, and denote by S* the set {& < S ||z = &} of
vectors in S whose norm is greater than or equal to k. Let I'(S*) be the
least closed cone with vertex 0 containing S* (i.e., the intersection of
all the clesed cones with vertex 0 containing 5*). The asymptotic cone
of 8, denoted AS, is defined as the intersection of all the I'(§%), ie,

AS = N I'($%); 1t is clearly a closed cone with vertex 0.
: E20
o. It is obvious that *“S§; © S5,” implies “AS, = AS5,” One can prove

that:
(5) If S is a subset of R™, and x is a vector in R™, then A(S + {z}) = AS.

In other words, a translation of S does not alter its asymptotic cone. It is
then easy to prove that: :

(6) If T PandS are two subsets of R™, then AS < A(S + T).
One can also prove that:
(N If, for every j=1,""+,n, S is a subset of R™, then A(]]S)}
< T AS; ’
i
p. Tt is now possible to give answers to the two important questions:
When is the intersection of a collection of sets bounded? When is the sum
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MATHEMATICS 1.9

of a finite number of closed sets closed ? One can prove the intuitive result:

(8) Given a collection of subsets vof R™, if the intersection of their asymp-
totic cones is {0}, then their intersection is bounded.

One can also prove:

(9) Given n closed subsets of R™, if their asymptotic cones are positively
semi-independent, then their sum is closed.

This is a generalization of (2), since the asymptotic cone of a bounded
set is {0}.

g. A subset of R™ is conpvex if it contains the closed segment [x, y]
whenever it contains the points x, ¥; in other words, if, whenever it
contains the points &, y, it contains their weighted average with arbitrary
positive weights. The set K in fig. 7.a, 7.b, or 7.c is convex. The graph of fig, 2.a or
2.bis not convex. The condition on a set that it be convex is crucial for
£CONomICS.

Ly

Fig. 6

r. A convex polyhedral cone is the sum of n closed half-lines.
Figure 6 pictures a convex polyhedral cone in R* which is the sum of four closed
half-lines with origin 0. L, and L, are imagined 10 be in the plane of the page, L, in
front of it, L, behind it.

5. It is easy to prove that:

(10} the intersection of a set of convex sets is convex,
(E1)  the sum and the product of n convex sets are convex,
(12} the adherence of a convex set is convex,
and also, using (8) of 1.6.u, that:
(13) a convex set is connected.
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1.9 THEORY OF VALUE

One can prove that:
(14) a closed, convex set owning 0, contains its asymplotic cone.

t. Let § be a subset of R™. lts convex huil, denoted S is defined as the

intersection of all the convex sets contammg S. According to {10), 5 is
indeed convex and can therefore also be characterized as the smallest
conveX set containing S. One can prove that:

(15) Given n subsets of R™, the convex hull of their sum is equal to the sum
of their convex hulls.

The closed convex hull of § is, by definition, the adherence S of the convex

hull of §. According to (3} of 1.6j, S is indeed closed; according to (12},
it is indeed convex. It is easy to see that a closed convex set containing S

necessarily contains S, which can therefore also be characterized as the
smallest closed convex set containing §.

u, Let xr = (x) and y = (p,) be two elements of R™; one defines their

m

inner product z-y as the number ¥ =, It is clear that the function
i=l

(x,y) ~ z -y from R™ x R™ to R is continuous.

When z - y = 0, one says that x and y are orthegonal. In the case of R,
visualized as in 1.6.c, saying that two vectors x and v different from 0 are orthogonal is
equivalent to saying that the half-lines 0, = and 0, y are perpendicular, provided that the
units on the three axes have the same length.

v. Let p be an element of R™ different from 0, and ¢ a real number;
the set H = {z ¢ R™|p-z = ¢} is a hyperplane with normal p. If 2" isa
point in H (one says also that H goes through 2}, one has p- 2" = ¢ and
the above expression may be rewritten H = {z « R™|p-(z — 2) = 0}
Thus the hyperpiane H is the set of points z of R™ such that z — 2" is
orthogonal to p; pand H are said to be orthogonal. 1f p and ¢ are multi-
plied by the same real number different from 0, the hyperplane H is
unchanged. An intersection of hyperplanes is called a linear manifold.

w. Given a hyperplane H with normal p, the point z of R™ is said to be
above Hif p - 2 > ¢. The closed half-space above H is {z < R™|p -2 > ¢}.
One obtains similar definitions replacing above, =», = by below, <, <.
A ciosed half-space is easily seen to be closed and-convex. So is a hyper-
plane, since it is the intersection of two closed half-spaces, and hence a
linear manifold.

x. A hyperplane H is said to be bounding for a subset § of R™if §is
contained in one of the two closed half-spaces determined by H. In
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other words, A is bounding for 5 if 5 is entirely on one side of A with, possibly, points
init. One can prove the fundamental theorem:
(16) (Minkowski) Let K be a convex subset of R™ and z a point of R™.

There is a hyperplane H through z and bounding for K if and only if z is not
interior to K.

oy #

Fig. 7.a Fig. 7.b Fig. 7.c

The intuitive content of the result in R* is brought out by fig. 7.a, where z is exterior
to K, by fig. 7.b, where z is in the boundary of K, and by fig. 7.c, where X (the heavy-
lined segment) has no interior. It i3 easy to draw a non-convex set in R* for which
some non-interior points are in no bounding hyperplane,

Fig. 8

¥- Let C be a cone with vertex 0. Its polaristheset C° = {x= R™ |z y

< 0 for every y « C}. It is easy to see that C° is a closed, convex cone
with vertex 0.

Figure 8 provides an illustration in R%.
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z. According to the general convention of 1.4.j, an ordering is defined
on Rmbyr < yifz, <y foreveryi=1, -+, m Asremarked in 1.4,
x < y means “z; < y, for all i and x; <C y, for at least one i,” and r << y
means “z; <y, for all i.”” (Several authors have used the notation <, <,
<< respectively for <, <, <)

The ron-negative orthant of R™ is the set Q = {z ¢ R™ | x> 0}. The letter
€ has throughout this volume the meaning introduced here.

1.10. Fixep POINTS

a. Consider a set S and a function ffrom Sto S, i.e., a transformation of
§ into itself. Great interest is attached to the exisience of an element =’
such that ' = f(2'), i.e., which coincides with its image, or which does not move
in the transformation.  Such an element is calied a fixed point of the trans-
formation f (sce fig. 9.a).

b. One can prove the fundamental theorem:
(1) (Brouwer) [f S is a non-empty, compact, convex subset of R™, and
if f is a continuous function from S to S, then f has a fixed point.

s

e

Fig. 9.a Fig. 9.b

¢. The generalization of this result to correspondences from a set to
itself will play an essential role later on. Consider now a set S and a
correspondence ¢ from S to S. A fixed point of the correspondence g is
an element =" such that z’ « p(z'), i.e., which belongs to its image-set
(see fig. 9.b).

d. One can prove:
(2} (Kakutani) If'Sis a non-empty, compact, convex subset of R™, and if
@ is an upper semicontinuous correspondence from S to S such that for all
x < § the set (%) is convex (non-emply), then g has a fixed point.

26



MATHEMATICS 1. NOTES

NoTEs

1. In a few cases the terminology and the notation adopted here are not the most
common. Four of them call for comments.

The set {x} and the element = are distinguished with care. Corresponding to these two
different concepts, two different symbols, < and ¢, and two different locutions, “is
contained in” and “belongs to,” are used. Two different verbs are therefore used here
to read > and 2: for the former “contains,” and for the latter “owns,” the natural
counterpart of *belongs 10.”

A correspondence (N. Bourbaki's [i] term) has often been called a mutlti-valued
function. Locutions such as these, where the object named by a noun and an adjective
is not in the class of objects named by the nioun alone, have been avoided here.

Preordering is N. Bourbaki’s [1] term; guasi-ordering is G. Birkhof's [1]. The most
convenient way o denote a preordering is < (L. N. Herst¢in and J. Milnor’s [H notation),
a juxtaposition of the two symbols < for the derived asymmetric relation, and ~ for the
derived equivalence relation. Once the notation < has been adopted for the coordinate-
wise ordering of R™, the above principle leads to give to * < y the meaning "'z = y and
z # y." The common usage of denoting this last relation by = < y has therefore not
been followed. As a consequence, ¥ << ¥ is used, instead of = < y, to denote “z; < y;
for every i."

The somewhat awkward expression positively semi-independent has been created to
describe the property of # cones introduced in 1.9.m.

2. The definition of R in 1.5.a-d raises the question: is there a set having all those
properiies? It is affirmatively answered by constructing the set J of non-negative and
non-positive integers from the set N of positive integers, then the set @ of rationals from
the set J of integers, and finally the set R of reals from the set O of rationals (using
either Cantor’s or Dedekind's process). A set having all the properties of the texi is
easily seen to be unique (up to an isomorphism). Notice that, if the axiom 0 5 1 is
omitted, a one-element set satisfies the definition. :

3. Most of the subjects treated in this chapter belong to the core of mathematics.
For these no references are given. There are, however, three special topics for which a
short bibliography may be necessary.

A study of the continuity of correspondences from a topological space to a topological
space will be found in C. Berge [11, Chapter 6, The application of (4) of 1.8 made in G,
Debreu [2] {(with a different, and less satisfactory, terminology) may help to motivate the
definitions and theorems of 1.8.

Results on asymprotic cones and references to the literature are given in W. Fenchel {1].

Theorem (2) of 1.10 on fixed points of correspondences is stated and proved in 8.
Kakutani {1]. It can be generalized in several directions; in particular the convexity
assumptions on S and @(z) can be relaxed (see S. Eilenberg and D. Montgomery [1],
E. Begie [1]).
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CHAPTER 2

COMMODITIES AND PRICES

2.1. INTRODUCTION

The dual concepts of commodity and price are introduced in this chapter.
The meanings of these terms, somewhat different from current usage, will
be made precise in the next sections. Many examples will be given as
illustrations.

1t is possible to present in this introduction the essential features of the
two concepts in a simplified and slightly imprecise manner. The economy
is considered as of a given instant cailed the present instant. A comrmodity
is characterized by its physical properties, the date at which it will be
available, and the location at which it will be available. The price of a
commodity is the amount which has to be paid now for the (future)
availability of one unit of that commodity.

No theory of money is offered here, and it is assumed that the economy
works without the help of a goed serving as medium of exchange. Thus the
role of prices is as follows. With each commodity is associated a real
number, its price. When an economic agent commits himself to accept
delivery of a certain quantity of a commodity, the product of that quantity
and the price of the commodity is a real number written on the debit
side of his account. This number will be called the amount paid by the
agent. Similarly a commitment to make delivery results in a real number
written on the credit side of his account, and called the amount paid to
the agent. The balance of his account, i.e., the net value of all his commit-
ments, guides his decisions in ways which will be specified in later chap-
ters.

To link the preceding concept of price with the customary notion of an
amount of money paid when and where the commodity is available, one
must introduce the concept of price at a certain date, at a certain location.
One obtains then, by comparing prices at the same location, at different
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dates, interest, and discount rates; by comparing prices at the same date,
at different locations, exchange rates.

In the next chapters the theory will be developed in terms of the two
general, abstract concepts of commodity and price. To have concrete
translations of its results one must use the present chapter, which provides
a great variety of interpretations for the two concepts, as a key.

2.2. DATES AND LOCATIONS

The interval of time over which economic activity takes place is divided
into a finite number of compact elemenrary intervals of equal length. These
elementary intervals may be numbered in chronological order; the origin
of the first one is called the present instant. Their common length, which
may be a year, 3 minute, a week, . .. is chosen small enough for all the
instants of an elementary interval to be indistinguishable from the point
of view of the analysis. An elementary interval will be called a date. and
the expression “at date ¢ will therefore be equivalent to “‘at some instant
of the fth elementary interval.”

Similarly the region of space over which economic activity takes place
is divided into a finite number of compact elementary regions. These
elementary regions, which may be arbitrarily numbered, are chosen smail
enough for all the points of one of them to be indistinguishable from the
point of view of the analysis. An elementary region will be called a
location, and the expression "at location s will therefore be equivalent to
“at some point of the sth elementary region.”

2.3. GoobDs

The concept of a commodity can now be introduced by means of
examples. The simplest is that of an economic good like wheat: it will be
discussed in detail. There are indeed many kinds of wheat, and to have a
well-defined good one must describe completely the wheat about which one
is talking, and specify in particular its grade, e.g., No. 2 Red Winter Wheat.
Furthermore wheat available now and wheat available in a week play
entirely different economic roles for a flour mill which is to use them.
Thus a good at a certain date and the same good ar a later date are different
economic objects, and the specification of the date at which it will be
available is essential. Finally wheat available in Minneapolis and wheat
available in Chicago play also entirety different economic roles for 2 flour
mill which is to use them. Again, a good at a certain location and the same
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24 THEQRY OF VALUE

good at another location are different economic objects, and the specifi-
cation of the location at which it will be available is essential. In the case
now discussed a commodity is therefore defined by a specification of all its
physical characteristics, of its availability date, and of its availability
location. As soon as one of these three factors changes, a differems
commodity results.

The guantity of a certain kind of wheat is expressed by a number of
bushels which can satisfactority be assumed to be any (non-negative) real
number. What is made available fo an economic agent is called an inpur
- for him; what is made available by an economic agent is an owtput for him.
For some agents inputs will be represented by non-negative numbers and
outputs by non-positive numbers. For other agents the reverse convention
will be made. A upiform convention might seem desirable, but a more
flexible one will make interpretation easier. With one of the above con-
ventions a quantity of wheat can be any real number.

Goods of the same type as wheat are cement, iron ore, crude rubber,
wood pulp, cotton yarn, petroleum, water, gas, electricity (whose definition
includes frequency and voltage, and whose quantity is expressed in kwhr),
etc.

As the prototype of a second class of goods consider trucks. The
complete description of this good includes model, mileage, . .. To define
the corresponding commodity one must add its date and its location. A
quantity of well-defined trucks is an integer; but it will be assumed instead
that this quantity can be any real number. This assumption of perfect
divisibility is imposed by the present stage of development of economics;
it is quite acceptable for an economic agent producing or consuming a
large number of trucks. Similar goods are machine tools, linotypes, cranes,
Bessemer converters, houses, refrigerators, trees, sheep, shoes, turbines, ete.

Land requires special mention. Its condition is described by the nature
of the soil and of the subsoil (the latter being of importance for construction
work), the trees, growing crops and construction on it, etc. A quantity of
land with specified condition, location, and date is expressed by a real
number of acres.

Minerali deposits, oil fields, . . . are defined by a complete description of
their content, their location, and, as always, their availabitity date. Their
quantity is expressed by a real number of tons, barrels, . .,

2.4. SERVICES

The first example of an economic service will be human labor. Its
description is that of the task performed; thus one has the labor of a coai
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miner, of a truck driver, of a member of some category of teachers, of
enginecers, of draftsmen, of executives, etc. (all including any further
specification necessary for a complete description). When one adds date
and location one has again a well-defined commodity. The quantity of a
specified type of labor is expressed by the time worked (a real number).

Another type of service is illustrated by the use of a truck. It will be
assumed that a truck {and similar economic objects) can be in only a finite
number of distinguishable conditions. The life of a truck is described by a
succession of time-intervals during each of which it stays in the same
condition. The lengths of those intervals depend on the intensity of use.
Thus the description of the service “‘use of a truck™ is that of the truck
(therefore of its condition during the time the service is rendered) and of
the conditions under which it is used (mileage per day for example). One
adds, as usual, date and location. The quantity of such a service is
expressed by the time during which it is rendered.

A more complex type of service is illustrated by the use of a hotel room.
The description of this service includes a listing of everything which will be
performed for the occupant. It must, of course, be dated and located. Its
quantity is an integral number of days; but it will again be assumed
instead that this quantity can be any real number. Of the same type is,
for example, the use of an apartment.

For other services, time is not the expression of the quantity. Suchis a
storage service which is described, for example, by the type of warehouse
(refrigerated or not . . ), the dates from which to which it is rendered, and
the location. Its quantity is expressed, for example, by a real number of
cubic feet. One observes that in this case thetemporal specificationrequires
not one but several dates. Many other services, whose purpose is no longer
to change the date of a commodity, require similarly more than one date to
be temporally specified {at least when the elementary time-intervals are
short encugh), e.g., services of a repair shop, of a laundry, of a beauty
parlor, atiendance at a show, at a course, etc. In every one of these casesa
unit is easily recognized: it is as always supposed to be perfectly divis-
ible.

Finally, transportation services are described by the conditions under
which they are rendered (rail, road, air, water, pipelines, power lines, etc.,
and any further specification necessary for a complete description), the
locations they involve, and (since again they require a time longer than
an elementary time-imiervaly the dates they involve. Their quantnities are
expressed for goods, for example, by the weight or the volume transported.
For passengers the unit of the service is obvious. Temporal and spatial
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specifications of such services require several dates and several locations.
Their quantities can, by assumption, be any real numbers.

2.5, COMMODITIES

Summing up, a commodity is a good or a service completely specified
physically, temporally, and spatially. It is assumed that there is only a
finite number / of distinguishable commodities; these are indicated by an
index A running from { to /. It is also assumed that the quantity of any
one of them can be any real number. From now on the full generality of
the concept of commodity, as illustrated by all the examples above, should
always be kept in mind. By focusing attention on changes of dates one
obtains, as a particular case of the general theory of commodities which will
be developed below, a theory of saving, investment, capital, and interest.
Similarly by focusing atfention on changes of locations one obtains, as
another particular case of the same general theory, a theory of location,
transportation, international trade and exchange. The interpretation of the
results in those terms will be left to the reader, since it offers no difficulty
once the definition of a commodity has been grasped.

The space R* will be called the commodity space. For any economic
agent a complete plan of action {made now for the whole future), or more
briefly an action, is a specification for each commodity of the quantity
that he will make available or that will be made available to him, i.e., a
complete listing of the quantities of his inputs and of his outputs. With
one of the sign conventions of 2.3 an action is therefore represented by a
point @ of &,

2.6. PRICES

With each commodity, say the Ath one, is associated a real number, its
price, p,. This price can be interpreted as the amount paid now by
(resp. to) an agent for every unit of the Ath commodity which will be made
available to (reSp. by) him.

The general term price covers a great variety of terms in current usage:
prices proper, wages, salaries, rents, fares, fees, charges, royalties, . . .

Consider as an example the commodity No. 2 Red Winter Wheat
available in Chicago a year from now. I:s price is the amount which the
buyer must pay new in order to have one bushel of that grade of wheat
delivered to him at that location and at that date. Price as understood here
is therefore very closely refated to “‘price” as understood on a futures
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market. There a sale contract concerns a well-defined good to be delivered
at a specified date, at a specified location. The “price” to be paid is also
specified now (it is the “price” prevailing on the floor of the exchange),
but it is understood that this “‘price” shall be paid at the delivery date, at
the delivery Iocation. This difference from the price concept which will be
used here is inessential (see 2.7). A difference of another kind clearly
exists, Organized futures markets concern only a small number of goods,
locations, and dates (not too distant in the future), whereas it is implicitly
assumed here that markets exist for a// commodities.

The price p, of a commodity may be positive (scarce commedity), nuli
(free commodity), or negative (noxious commodity). In the last case an
agent for whom that commedity is an output, i.e., who disposes of it,
makes a payment to the agent for whom it is an input, i.c., receives from
the latter a negative payment. The fact that the price of a commodity is
positive, null, or negative is not an intrinsic property of that commodity;
it depends on the technology, the tastes, the resources, . . . of the economy.
For example, some industrial waste product may be a nuisance the disposal
of which is costly; should an inventien, i.e., a different technology, open
uses for it, it might become a scarce commodity.

The price system is the Ituple p = (py,**+, pp " * . py); it can clearly
be represented by a point of R.. The value of an action a relative to the

I

price system p is Y pu4;, i.e., the inner product p - a.
A1

2.7, INTEREST, IMSCOUNT, AND EXCBANGE

Imagine that a certain good circulates as money at location s, at date ¢,
and let k be the index of the commodity thus defined. To obtain the
price at s, at ¢ of the ith commodity, p§’. i.c., the number of units of that
money which must be paid at s, at 1 in order to have one unit of the Ath
commodity available, one would divide p, by p,.. Doing this for all
prices in p, one would obtain the price system at s, at ¢, p** = p(l/p,).
Instead of referring all prices to some money at s, at ¢, one might refer
them, for example, to some good or service at 5, at . One is therefore led
to the general concept of price system at location s, at date t, p**, as derived
from p by multiplication by a certain positive real number 1** (determined
by the unit of value chosen at s, at ¢). In p}’ the location s and the date ¢
correspond to payment, the location and date which are implicitly deter-
mined by h correspond to delivery; the first pair and the second are
unrelated, in particular the payment date may be earlier than, simultaneous

33



2.7 THEQRY OF VALUE

with, or later than the delivery date. p now appears as the price system at
an unspecified location, at an unspecified instant (of which it is oflen
convenient to think as the present instant).

Let ¢, r* be two dates such that /* <Z r%. The number «fi » defined by
P = ptod s called the accumulation factor at s from 1 to £2. In this
section p is always assumed to be different from 0; therefore afip is a
uniguely defined positive number. Its meaning is simple: by giving one
unit of value at s, at ¢', one receives o 2 units of value at 5, at 1>, When,
in particular, ' =1t and 2 = ¢ + 1, one defines the interest rate at s
Jromt to t+ 1by if, ., =af,., — 1. It is the difference between the
value at 5, at ¢ + 1, one receives and the unit of value at s, at £, one gives.
The interest rates usually quoted, e.g., .02 or 29, are rates per annum;
here all interest (and discount) rates dre rates per elementary time-interval.
From o, = 1 + if;., one derives

o= (1 + G- (L + i),
a product of % — (! terms. This prompts the definition of the interest
rate a1 s from i* to 1%, i p, as a certain average, by
G{l'tt = (1 -+ i':l,t:)tz_tl,
the positive root of o » being taken,

Similarly the positive number fi 1 defined by p** = p"* 84 1 is called
the discount factor at s from 1* to {*. To receive one unit of value at 5, at 1%,
one gives f: 1 units of value at 5, at #*. Clearly

1 1
o1 T+ i)t
One defines also the discount rate ar s from 12 to 11, di 5, by
B = (1~ dh0)™*,
the positive root of Bhy being taken. For the Ath commeodity, p};" =
PA" By is called the price at s, at 12 discounted from 1? to 1.

Let 5%, 57 be two locations. The positive number £ defined by

E 1. .
Pt = pied™ is called the exchange rate at ¢, at s* on s®. One receives
one unit of value at ¢, at s2, by giving & units of value at ¢, at s*. For
example, if the unit of value at New York (resp. London) is called dollar
{resp, pound), the exchange rate at r at New York on London is the number
of dollars at ¢ {at New York) one pays for one pound at ¢ (at London).
One has

Baa =

#at
L =




COMMODITIES AND PRICES 2. NOTES

In fact, the set of locations is partitioned into nations, and for all the
locations s of a nation the price system at s, at a given date 7, p™, is the
same (this statement is unrelated to the generally fa/se statement that the
same good or service available at ¢, at two different locations of a nation,
has the same price). Then interest and discount rates, accumulation and
discount factors are the same for all the lecations of a nation, exchange
rates are the same for alt pairs of locations belonging respectively to a
pair of nations; the nation orly needs to be mentioned.

What has been said about the generality of the concept of commodity
could be repeated now for the concept of price. It must always be remem-
bered that when the price system p is known and the numbers A*¢ (p. 33}
are given, all prices proper, wages, salaries, rents, fares, ..., all accumu-
lation and discount factors, interest and discount rates, all exchange rates
are determined at every date, at every location.

2.8. THEORY AND INTERPRETATIONS

To conclude this chapter it remains to sum up the formulation of all the
above concepts in the language of the theory:

The number [ of commodities is a given positive integer. An action a of
an agent is a point of R', the commodity space. A price system p is a point
of R'. The value of an action a relative to a price system p is the inner
product p - a.

All that precedes this statement is irrelevant for the logical development
of the theory. Its aim is to provide possible interpretations of the [atter.
Other interpretations will be presented in Chapter 7.

NoTES

i. The idea that a good or a service available at a certain date {(and a certain location)
is a different commodity from the same good or service available at a different date (or a
different location) is old. The first general mathematical study of an economy whose
activity extends over a finite number of elementary time-intervals under conditions of
perfect foresight was that of E. Lindahl [1}. A similar treatment of time recurs in
I. R. Hicks {1] (see also G. Tintner {1], (2]).

The use of negative prices originated in K. J. Arrow [1j and T. C. Koopmans [l].

2. The assumpticn of a finite number of dates has the greal mathematical convenience
of enabling one to stay within a finite-dimensional commeodity space. There are, how-
ever, conceptual difficulties in postulating 2 predetermined instant beyond which all
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2. NOTES THEORY OF VALUE

economic activity either ceases or is outside the scope of the analysis. It is therefore
worth noticing that many results of the following chapters can be extended to infinite-
dimensicnal commodity spaces. In general, the commodity space would be assumed to
be a vecter space L over the reals and, instead of a price vector p, one would consider 2
iinear form v on L defining for every action ge L its value v(a). In this framework
could also be studied cases where the date, the location, the quality of commodities are
treated as continuous variables.

3. Two important and difficult questions are not answered by the approach taken
here: the integration of money in the theory of value {on this point see D. Patinkin [1]
and his references), and the inclusion of indivisible commoditics.
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CHAPTER 3

PRODUCERS

3.1. INTRODUCTION

An economy consists of a certain number of agents, the role of each of
them being to choose a complete plan of action, i.e., to decide on the
Juantity of his input or of his output for each commodity. Thus an agentis
sharacterized by the limitations on his choice, and by his choice criterion.
This chapter studies a first class of agents, that of producers. The pro-
duction pian of a producer is constrained to belong to a given set repre-
senting essentially his limited technological knowledge. In that set the
production pilan is chesen. {or given prices, so as to maximize profit, the
sum of all receipts minus ine sum of all outlays. A nmatural program of
work is thus suggested: 10 make precise from the viewpoint of the theory
and from the viewpoint of interpretations the concepts of producer, of
production plan, and of the set of possible production plans; to investigate
the properties of such sets; then to introduce the profit maximization
criterion; finally to study how the optimal production plans depend on
prices.

3.2. PrODUCTIONS AND PRODUCTION SETS

In the study of production, when one abstracts from legal forms of
organization (corporations, sole proprietorships, partnerships, ...} and
types of activity (Agriculture, Mining, Construction, Manufacturing,
Transportation, Services, ...} one obtains the concept of a producer, ie.,
an economic agent whose role is to choose (and carry out) a production
plan. It is assumed that there is a given positive integral number n of
producers, and each one of them is indicated by an index f=1,---,n.
For a producer, say the jth one, a production plan {made now for the whole
future) is a specification of the quantities of all his inputs and all his
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3.2 THEORY OF VALUE

outputs; outputs are represented by positive numbers, inputs by negative
numbers. With this convention a production plan, or more briefly a
production, 1s represented by a point y; of RY, the commodity space. A
given production y, may be technically possible or technically impossible
for the jth producer. The set ¥, of all the productions possible for the jth
producer is called his production set. The point y, is also called the supply
of the jth producer,

The inputs of a production may include raw materials, semifinished
products; land and equipment or their uses; labor of workers, foremen,
executives, . . . at various dates and locations. The outputs include, in
general, more than one commodity, if only because the production involves
several dates. The land, equipment, . . ., which were inputs at one date
may reappear as outputs at a later date, ina different condition. Generally,
inputs and outputs together contain only a reiatively small number of
commaodities, in other words most coordinates of y; are null; this corre-
sponds to ihe fact that Y, is, in general, contained in a coordinate subspace
of R with a relatively small number of dimensions. To the various types
of activity correspond production sets with different characters.

A production ¥, is classified as possible or impossible for the jth producer
on the basis of his present knowledge about his present and future
technology. The certainty assumption implies that he knows now what
input-output combinations will be possible in the future (although he may
not know now the details of the technical processes which will make them

possible). a
Given a production y, for each producer, the sum y = 3 y, is called
=1

the ratal praduction, also the rotal supply. In forming this sum one cancels
out ail commodity transfers from producers to producers (each such
transfer appears once as an ouiput with positive sign and once as an input
with negative sign); y describes therefore the ner result of the activity of all
producers together. That is 1o say, the positive coordinates of y represent
outputs of producers not transferred to the productiorn sector; the negative
coordinates Tepresent inputs of producers not transferred from the pro-
n

duction sector. Theset ¥ = 3 ¥; (see 1.9.f) is called the total production
i=1

sef; thus y, e ¥, forall j =1, -, nis equivalent to y « Y. The last set

describes the production possibilities of the whole economy; it is, in

general, no longer contained in a relatively smail coordinate subspace of R',

Figure 1 illustrates the above concepts in the case where there are three

commodities and two producers. The straight lines 0,2 and 0,3 are
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PRODUCERS 3.3

imagined to be in the plane of the page, the straight line 0, 1 to be per-
pendicular to the plane of the page and pointing toward the reader. The
production set of the first (resp. second) producer is the closed half-line ¥,
{resp. Y,) in the plane 1, 2 {resp. 2, 3}. Then the total production set ¥
is the shaded angle.

Fig. 1

In the language of the theory, this whole section is expressed as follows:
The number n of producers is g given positive integer. Each producer is
indicated by an index j =1, -+, n. The jth producer chooses a point, his
production or his supply y,, in a given Ron-ermpty subset of R, his production
set Y. Given a production y, for each producer, y = E y, is called the

i=
total production or the total supply, the set ¥ = ZY is cal!ed' the total

production set. i=

3.3, ASSUMPTIONS ON PRODUCTION SETS

All the assumptions on the sets ¥, which are used at ome point or
another below, and others closely related, are discussed here. The order
in which they are listed corresponds approximately to decreasing plausi-
bility.

(a) Y, is closed (continuity),
i.e.. let (7) be a sequence of productions; if all the yf are possible for the
Jjth producer, and if y? — g, then g} is possible for the jth producer.
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3.3 THEORY OF VALUE

Narrowly related (see (1)) is the similar assumption for the total pro-
duction set:
(a’) Y is closed.

{b) 0 < ¥, (possibility of inaction),
i.e., the jth producer has the possibility of doing nothing. The similar
assumption for the total production set is:
(thy OeVY.

An economy where no preduction activity can take place is characterized
by ¥ = {0}, i.e., the totai production set consists of the single point 0.

() Y N Q< {0} (impossibility of free productien),
i.e., a possible total production whose inputs are all null has all its outputs
null.

(d) Y N (=Y)< {0} (irreversibility),

ie., if the 1otal production ¥, whose inputs and outputs are not all null,
is possible, then the total production —y is not possible. The productive
process cannot be reversed since, in particular, production takes time and
commodities are dated.

To prepare for the study of the next three assumptions, a few definitions
are introduced here. Given a production y,, to change the scale of
operations is to multiply ¥, by a non-negative number r. To increase
(resp. decrease) the scale is to restrict further ¢ to be larger than 1 (resp.
smaller than 1}.

Fig. 2.a Fig. 2.b Fig, 2.c

Given Y, one says that:
non-decreasing returns to scale prevail if for any possible y; one can
arbitrarily increase the scale of operations,
non-increasing returns to scale prevail if for any possible y; one can
arbitrarily decrease the scale of operations,
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PRODUCERS 33

constant returns o scale prevail if for any possible y; one can arbitrarily
change the scale of operations.
These three cases are illustrated respectively by figs. 2.a, 2.b, and 2.c.
(e) (Y, + Y,) <Y, (additivity),
i.e., if ¥} and 47 are productions possible for the jth producer, soisy; + 1.
The sets Y, in fig. 2.2 and fig. 2.c have this property. In so far as Y;
represents technological knowledge, it is clear that two production plans
separately possible are jointly possible. Alternatively the jth producer
can be interpreted as an industry rather than as a firm; then the additivity
assumption means that there is free entry for firms into that industry, i.e.,
no institutional or other barrier to entry. Under {(e), if %; is possible
so is ky;, where k is any positive integer. Therefore (€) implies a certain
kind of non-decreasing returns to scale.
(f) Y, is convex (convexity),
ie., if 4} and ¥} are productions possible for the jth producer, so is
their weighted average, ty + (1 — )3, with arbitrary positive weights.
Assumptions (f) and (b) together imply that, if ¥; is possible, so is ty, for
every number ¢ satisfying 0 << ¢ < 1; in other words, that non-increasing
returns to scale prevail. The convexity assumption is crucial because of
its role in all the existing proofs of several fundamental economic theorems.
It is a limitation in that it rules out, when (b} holds, increasing returns to
scale (i.e., non-decreasing returns toscale with the existence of a possible
production for which the scale of operations cannot be arbitrarily
decreased). But it still has a great generality since it is, in particular, weaker
than the convex cone assumption which will be discussed in connection
with (g).
Even if every Y, is closed, Y is not necessarily closed. However,

(V) If every Y, is closed and convex, and if ¥ N (—Y) = {0}, then Y
is closed.

Proof: According to (9) of 1.9.p it suffices to prove that the

asymptotic cones A Y, are positively semi-independent (}.9.m).
It will first be shown that 3> AY, < Y. Since 0 ¢ ¥, there is, for

each j, a vector ¢ in Y, such that Yy} =0. By(5)of 1.9.0 and (14)

2
of 1.9.s, one has AY; = ¥; — {y7}. The result follows by summation
over j.

It will now be proved that “y, <« AY, for every j, and 3 y, = 0"
i
implies “‘y, = 0 for every . Consider one of them, y;. The vector
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33 THEQRY OF VALUE

Y y;isin Y AY, hencein ¥; it is equal to —y, which is similarly
o j
in - Y. If y, were diffcrent from 0, a contradictionof ¥ n(—Y) =

{0} would result.

Closely related to (f) is the simiiar assumption for the total production
set:
(f) Y is convex.
The latter is clearly weaker than the assumption “every Y, is convex.”
Assumptions (f') and (b') together imply that non-increasing returns to
scale prevail for the total production set.

(g) ¥, is a cone with vertex 0 {(constant returns to scale),

ie, if y; is a production possible for the jth producer, so is ty;, where ¢
is any non-negative number. This assumption corresponds to the intuitive
idea of an elementary production process for which the ratios of all
outputs and all inputs to each other are fixed but the scale of operations
can be arbitrarily varied.

Constant returns to scale (g) together with additivity (e) implies that ¥,
is a convex cone with vertex 0. In the case of constant returns to scale,
convexity is therefore easily justified. Note that, conversely, “convexity
(f), additivity {¢), and possibility of inaction (b)” implies “constant returns
to scale (g).” Also, but this is of less interest, “‘convexity (f) and constant
returns to scale (g)” implies “additivity (g).”

All the assumptions on Y, listed so far ((a), (b}, {e), (f), (g)), when made
together, are equivalent to: ¥, is a closed, convex cone with vertex 0.
Interesting particular cases are: Y, consists of the single point0; ¥;isa
closed half-line with origin 0; Y;is a convex polyhedral cone with vertex 0.

If every Y, is a cone with vertex 0, so is ¥,

(h) Y = (—£) (free disposal),

Le., il a total production has all its outputs null, it is possible. In other
words, it is possible for all producers together todisposeof all commuodities.
Closely related is the assumption:

) Yo (Y-,

Le., if a total production is possible, so is one where no output is larger
and no input smaller (in absolute value). Indeed it is easy to prove, for
example, that ‘“‘additivity (e) for ¥ and (h)” implies (h"); and, using (5)
and (14) of 1.9, that

(2) “convexity (f") for Y, continuity (') for Y and (hY" implies (h").

Finally, in a different connection, note that “free disposal (h) and
irreversibility (d)” implies ‘‘impossibility of free production (c).”
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3.4, PROFIT MAXIMIZATION

Given a price system p and a production y,, the profit of the jth producer
is p -y, The total profit is p - y.

Because of the sign conventions on the coordinates of y; and p, the
inner product p - y; is indeed the sum of all receipts minus the sum of all
outlays. Since commodities are dated, this concept of profit corresponds
to the customary notion of the sum of afl properly discounted anticipated
future receipts minus the sum of all properly discounted anticipated future
outlays. It is convenient to conceive of all producers as corporations, and
to regard, for example, a sole proprictorship as a corporation with a single
shareholder. One of the advantages of this viewpoint is that it makes
clear that a sole proprietor usually plays two roles: that of a president of
a corporation, in which capacity he receives an exccutive salary, and that
of a shareholder, in which capacity he receives the profit.

)

=t

Fig. 3

It is assumed that each producer (a) considers prices as given {because,
for example, his output or input of any commodity is relatively small and
he thinks his action cannot influence prices) and (b} tries t¢ maximize his
profit. Choosing a production according to this principle amounts, for
the producer, to distributing optimally over time and over space his
inputs {(investments for equipment, building, inventories, ..., laber,
electricity, . . .) and his outputs. In the language of the theory:

Given the price system p, the jth producer chooses his production in his
production set Y, so as to maximize his profit. The resulting action is called
an equilibrium production of the jth producer relative to p.

When p 7= 0 one has the following geometric situation. If y; is a
maximizer, the set Y, is contained in the closed halfspace below the
hyperplane  through y;, with normal p (fig. 3). The set of maximizers
is the interseciion of ¥; and H.
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Given an arbitrary p, there may be no maximum profit (for example,
if non-decreasing returns to scale prevail, and if for some y, in ¥; one has
P y; > 0, profit can be arbitrarily increased). Let therefore 7; be the set
of pin R* for which the set of maximizers is not empty (7 is clearly a cone
with vertex 0). Thus with each price system p in 7T} is associated the
non-empty set 7;(p) of possible productions maximizing profit for that p.
The correspondence #; from T} to ¥; is called the supply correspondence
of the jth producer. The consideration of correspondences (instead of
simpler functions) in the study of producers is inescapable for, in the
important instance where Y is a closed convex cone with vertex 0, the set
of maximizers consists of a single point only in trivial cases (see the end
of this section). Let =,(p) be the maximum profit when the price system
is pin T7. The function =, from I} to R is called the profit function of the
Jth producer. If all the prices in p are multiplied by the same positive
number £, clearly #,(¢p) = 7(p), i.e., the set of maximizers is unchanged,
and 7 (tp) = tw (p), i.e., the maximum is multiplied by ¢.

Given a price system p, there is a maximum profit foreveryj=1,---,n
if and only if p belongs to n T;. In that casc one can define the non-
empty set n(p} = Z 1P of possnblc total productions compatible with
profit maximizatlon for that p by every producer. The correspondence #
from n T to Y is called the total supply correspondence. One can also
defme the number w(p) = zfr,(P) The function = from n T;to R
is called the total profir ﬁmcnan If ¢ is a positive number,

7(tp) = n(p), and (ip) = t=(p).

Summing up the above definitions for the sake of the theory (according
1o 1.3.¢, p- Y, denotes the image of the set ¥, by the function defined on
Rbyy,~p-y):

T} is defined by T; = {p « R'| p - ¥, has a maximum). The supply corre-
spondence of the jth producer, n;, from T 1o Y; is defined by np) =
{9;< Y,ip-y; =Maxp- Y;}. The profit function of the jth producer, =,,
Jrom T to R is defined by m(p) = Maxp- ¥, The total supply corre-

spondence, m, from (Y T; to Y is defined by 7(p) = 3 n(p). The toral
i=1 i=1

profit function, , from [:l} T; to R is defined by n(p) = f m{p)-
i=1 j
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The following result is immediate:
(1) Letyy, ---,8p " Y bepointsof ¥y, -, ¥, - -, ¥, respectively.
Givenp,p-y = Maxp-Yifandonlyifp-y, = Maxp* ¥, for every J.
In other words, ¥ maximizes total profit on Y if and only if each y;
maximizes profit on Y, This is iHustrated by fig. 4 and gives the simple
characterization of #(p} and =(p):

(1 Givenpin N T), 4(p) = {ye Y|p -y = Maxp- Y} and nip) =
Maxp-Y i=1

In other words, »(p) is the set of maximizers of total profit on ¥; =(p) is
the maximum of total profit on ¥,

Fig. 4

In the rest of this section various assumptions on the production sets
will be listed, and the implications of each one of them for profit maximi-
zation will be studied.

0 ¢ Y, (possibility of inaction). Given p in T}, 0 may be a maximizer
(inaction may be optimal), it may even be the unique maximizer, In any
case the maximum profit is clearly non-negative.

(¥, + Y;) < Y, (additivity). Given p in Tj, the maximum profit is
non-positive. (If a possible y; gave a positive profit, 2y; would also be
possible and give a twice larger profit) “Additivity and possibility of
inaction™ therefore implies that the maximum profit is null if it exists.
This covers the case of a free entry industry.
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Y, is convex (convexity). Given pin Ty, if p = 0, the set 7,(p) of maxi-
mizersis ¥;itsell; if p 7= 0, n,(p) is the intersection of ¥; and a hyperplane
(see the discussion of fig. 3); in both cases #,(p) is convex. If every Y is

n
convex, the set n(p) = ¥ #,(p) is convex for every p in [} T}, as a sum
of convex sets. i=1 i=1

Y, is a cone with vertex O (constant returns to scale). Givenpin T ]'-, the
maximum profit is null as in the case of “additivity and possibility of
inaction.” Therefore T; = ¥7, the polar of ¥, (1.9.y). The origin0is a
maximizer; hence, if p # 0, the set 7,(p) of maximizers is the intersection
of Y, and the hyperplane H through 0, orthogonal to p; if p = 0, the set
ndp)is ¥, itself. In both cases the set 7,{p) is a cone with vertex 0. It is
easy to prove that, when p belongs to the interior of ¥9, the origin 0 is
the unique maximizer (this is illustrated in R® by fig. 5.a). It is more

Fig. 5.2 Fig. 5.b

difficult to prove that, when p belongs to the boundary of Y5 and ¥, is
closed, the cone of maximizers is not reduced to the single point O (this is
ilustrated in R? by fig. 5.b; the cone of maximizers is the heavy closed
half-line).

Every Y, is a cone with vertex 0. Then so is ¥. Given p, there is a
maximum of p - y; on Y, for every j if and only if there is a maximum of
p-y on Y (according to (1)). Therefore n ¥, = Y7, the polar of Y.

Given p in ¥°, the set 5(p) is, according to ( l "), the set of maximizers of
p-yon Y. What has just been said for 5,(p) and Y, can therefore be
repeated for n(p) and Y.
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Y o (—LQ) (free disposal). Given p, there is a maximum of p - ¥, on ¥;
for every j only if there is a maximum of p- ¥ on Y (according to (1}},
hence only if p = 0. Indeed, if p, < 0, it would be possible to increase
arbitrarily p- ¥ by increasing (in absolute value) the total input of the
hth commodity.

3.5. PRICE VARIATIONS

Let p be a first price system, and ¥, a corresponding optimal production
for the jth producer. If p is a second price system, and y}f a corresponding
optimal production, then denote the price change p’ — p by Ap and the
corresponding production change % — y, by Ay;. By definition p - y; <
P ¥;; hence

m _ p-Ay; 0.
Similarly p’ - Ay; => 0; therefore, by subtracting (1),
(2) Ap- Ay, > 0.
If only one price varies, say p,, (2) becomes
Apy Ay, = 0,

where y;, is the Ath coordinate of y,. Thus, if the price of a2 commodity
increases, all other prices remaining constant, a producer increases or
leaves unchanged his output of that commodity {decreases or leaves
unchanged, in absolute value, his input of that commaodity). By summation
over j one obtains inequalities analogous to (1) and (2) for the total
production:

(1) p-Ay<0 and
2 Ap- Ay > 0.

It will be shown in 5.4, 5.7 how, under certain rather weak assumptions,
the production set ¥, can be replaced by a certain non-empty compact
subset of ¥,. The rest of this section will therefore study the case where
Y, is compact,

Given an arbitrary p, p - ¥; defines a continuous function of ¥; on ¥,
and (4} of 1.7.i applies. Hence p- ¥, has a maximum! In other words,
T, = R.

In fact, p - y, defines a continuous function of (p,¥,) on R* x ¥,, and
theorem (4) of 1.8.k applies (here the correspondence ¢ from R' to Y
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is defined by @(p) = Y; for every p « R!; it is constant and thus trivially
continuous). Hence #;, the supply correspondence of the jth producer,
isupper semicontinuous on R', and m, the profit function of the jth producer,
is continiious on R

Fig. 6

Figure 6 makes intuitive the continuity properties of #, and =,. Consider
a vector p rotating around 0 from p' to p3. If p is interior to the angle
POy, then 5 p) consists of the single point a*. If p is equal to p?, then
74p) consists of the closed segment [4, a%]. If p is interior to the angle
P0p?, then #,(p) consists of the single point a2,

When every Y, is compact, according to (4) of 1.9.}, #, the total supply
correspondence, is upper semicontinuous on R', and, according to (3) of
1.9.g, =, the total profit function, is continuous on R'. Summing up:

(3} If Y, is compact, then TJ’- = RY, n; is upper semicontinuous on R', and
w; is continuous on R}, If every Y, is compact, then  is upper semicontinuous
on R', and = is continuous on R'.

When one of the upper semicontinuous supply correspondences #;, 9
happens to be a function, it is comtinuous according to 1.8.g.
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NOTES

1. K. Menger’s {1] discussion of production functions {relating a single output to
several inputs) contains definitions corresponding to non-decreasing, nen-increasing,
constant returns to scale, and additivity of 3.3. T. C. Koopmans’ {1j basic study of
convex polyhedral conic production sets introduces the impossibility of free production
and irreversibility assumptions of 3.3.

Inequalities (1) and (2) of 3.5 are P. A. Samuelson’s [i], Chapter 4.

2. Three phenomena that the present analysis does not cover must be emphasized:
(1) external economies and diseconomies, i.e., the case where the production set of a
producer depends on the productions of the other preducers (andjor on the con-
sumptions of consumers), (2) increasing returns to scale, (3) the behavior of producers
who do not consider prices as given in choosing their productions.
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CHAPTER 4

CONSUMERS

4.1. INTRODUCTION

This chapter studies a second class of agents, that of consumers. As in
the case of a producer, the role of a consumer is to choose a complete
consumption plan; he is characterized by the limitations on his choice,
and by his choice criterion. Here the choice limitations are of two kinds:
firstly, the consumption plan must satisfy certain g priori constraints (for
example, of a physiological nature); secondly, given prices and the wealth
of the consumer, the value of his consumption plan must not exceed his
wealth. Under these limitations, a consumption plan to which none is
preferred is chosen. The following natural program of work is thus
suggested: to make precise from the viewpoint of the theory and from the
viewpoint of interpretations the concepts of consumer, of consumption
plan, of the set of a priori possible consumption plans; to investigate the
properties of such sets; to make precise the concept of preferences among
a priori possible consumption plans; to investigate the properties of
preferences; next to introduce the wealth constraint; then to study the
satisfaction of preferences under the two constraints (a priori possibility
and wealth constraint}; finally, to investigate the dependence of optimal
consumption plans on prices and wealth.

4.2. CONSUMPTIONS AND CONSUMPTION SETS

A consumer is typically an individual, it may be a household, it might
even be a larger group with a common purpose. His role is to choose (and
carry out) a consumption plan made now for the whole future, ie., a
specification of the quantities of all his inputs and all his outputs. Itis
assumed that there is a given positive integral number m of consumers, and
each one of them is indicated by anindex i =1,--+ ,m.

50



CONSUMERS 4.2

The inputs of the ith consumer are represented by pesitive numbers, his
outputs by negative numbers. With this convention, his consumption plan,
or more briefly his consumption, is represented by a point z; of R', the
commodity space. A given consumption z; may be possible or impossible
for the ith consumer; for example, the decision for an individual to have
during the next year as sole input one pound of rice and as output onz
thousand hours of some type of labor could not be carried out. The set X,
of all the consumptions possible for the ith consumer is called his con-
sumption set. The point x; is also called the demand of the ith consumer.

Fig. 1a Fig. 1.b

Many commodities do not, in general, enter into a consumption; this
corresponds to the fact that X, is generally contained in a coordinate
subspace of R' with a relatively small number of dimensions. Typically,
the inputs of a consumption are various goods and services (related to food,
clothing, housing, . . . , daled and located); its only outputs are the varicus
kinds of labor performed (dated and located). The non-negativity of these
inputs and the non-positivity of these outputs restrict further the set X,.
Finally, limitations of the rice-labor example type complete the deter-
mination of X;. An individual who buys a house, acar, . . . for his own
use and sells it back later plays two roles: that of a producer who buys
and sclis houses, cars,...in order to sell their services, and that of a
consumer who buys the service, use of that house, of that car, . ..

Two examples will illustrate the above concepts for an individual
consumer. First consider the case where there are one date and one
location; a certain kind of labor defines the first commodity, a certain
foodstuff {assumed to be freely disposable) defines the second commodity.
X, is represented by the shaded area in fig. 1.a.
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Secondly, consider the case where there are one location and two dates;
a certain foodstuff at the first date defines the first commodity, the same
foodstufT at the second date defines the second commodity. Let the length
of [0, 0] (fig. 1.b) be the minimum quantity of the first commodity which
that consumer must have available in order to survive until the end of the
first elementary time-interval. If his input of the first commodity is less
than or equal to this minimum, it might seem, on first thought, that his
input of the second commodity must be zero. The set X; would therefore
consist of the closed segment [0, 0'] and a subset of the closed quadrant
1,0, 2. Such a set has the disadvantage of not being convex in general.
However, if both commedities are freely disposable, the set X is the
closed quadrant 1, 0, 2, which is convex: if the consumer chooses (perhaps
because he is forced to) a consumption «, in the closed strip 2,0, 0", 2',
it means that z,; of the first commodity is available 10 him and he will
actually consume at most that much of it, and that z,, of the second com-
modity is gvailable to him and he will actvally consume none of it,

The two examples were restricted to the case of two commodities only to
permit the use of diagrams. Their featores are clearly general. The choice
by the ith consumer of x, in X, determines implicitly his /ife span. Notice
that the free disposal assumption which played an essential role in the
second example, in restoring the convexity of X, is an assumption of free
disposal for consumers’ commodiiies only, and therefore much weaker
than the total free disposal assumption (h) of 3.3,

This section can be summarized by:

The number m of consumers is a given positive integer. Fach consumer is
indicated by an index i = 1,- - -, m. The ith consumer chooses a point, his
consumption or his demand x,, in a given non-empty subset of R', his con-

E)

sumption set X, Given a consumption %; for each consumer, x = 3 x; Is
i=1

called the total consumption or the total demand: the set X = Z X, is called
the total consumption set,

4.3. ASSUMPTIONS ON CONSUMPTION SETS

All the assumptions on the sets X, which are used at one point or
another below are discussed here. The order in which they are listed
corresponds approximately to decreasing plausibility.

{2) X is closed (continuity),
i.e., let (z7) be an infinite sequence of consumptions; if all the 2¥ are
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possible for the ith consumer, and if =7 — 2, then = is possible for the
ith consumer.

Narrowly related (see (1)) is the similar assumption for the total con-
sumption set:
(@) X is closed.
(bY X, has a lower bound for < (lower boundedness),
i.e., there is a point %, in R* such that x; < x for all #;in X, or, in other
words, such that X; < {y;} + €. This assumption has an easy economic
justification. If the Ath commodity is an input, x,, has a lower bound,
zero. If the Ath commodity is an output, i.e., a type of labor produced,
there is clearly an upper bound (in absolute value) for the quantity of that
labor which the consumer can produce during the corresponding elemen-
tary time-interval, whatever his other inputs and outputs may be.

The similar assumption for the total consumption set is:
(b} X has a lower bound for <. N

If (b) holds for every X, then y = ¥ y, is a lower bound of X for <.
i=1

Conversely, if X has a lower bound for <, then every X is easily seen
to have a lower bound for <.
Even if every X, is closed, X is not necessarily closed. However,

(1} Ifevery X, is closed and has a lower bound for <, then X is closed.
Proof: According to (9) of 1.9 it suffices to show that the asymptotic .
cones AJX, are positively semi-independent (1.9.m). Notice that
X, < {:} + Qimplies AX, = A({y,} + ), and that, by (5) of 1.9.0,
the last set is equal to AL, hence to Q. Summing up, AY, < Q.

Therefore it suffices to prove that “z, « Q foreveryi,and ¥ z, =07
implies “z; = 0 for every i,”” which is obvious. il
(c) X, is connected (connectedness).
This means, in an intuitive and imprecise language, that X, is made of one
piece (see the exact meaning in 1.6.u).
{4} X, is convex {convexity),
i.e., if z} and =¥ are consumptions possible for the ith consumer, so is their
weighted average, 1z} + (1 — ¢)#}, with arbitrary positive weights. As in
the case of (f) of 3.3, this convexity assumption is crucial because of its
role in all the existing proofs of several fundamental economic theorems.
1t can be intuitively justified by referring to the two examples discussed in
connection with fig. 1.a and fig. 1.b.
According to (13) of 1.9 convexity (d) implies connectedness (c).
If every X, is convex, then so is X.
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4.4. PREFERENCES

Given two consumptions x}, z7 in X, one and only one of the folfowing
three alternatives is assumed 1o hold: for the ith consumer (a) =} is preferred
tozZ, (b) =l is indifferent to 22, (c) # is preferred to z}. It is most convenient
to focus attention on the bmary relation on X, “is not preferred to,”
which may also be read *is at most as desired as.” Clearly =, is at most as
desired as =z, for any z, in X; moreover it lS assumed that, for =}, 23,
in X, “z} is at most as desired as «7, and x¥ is at most as desnred as z”
implies *“z} is at most as desired as #7.” The binary relation is thus

reflexive and transitive; it is, according to the terminclogy of 1.4.b, a
preordering which will be denoted <, and called the preference preordering

t
of the ith consumer. It is, in fact, by the first assumption of this section,
a complete preordering.
“t o ¥} and =} < 2} is denoted “z} 7 27" and read “z} is indifferent to

I
l

“zj > =} and not &7 > x}” is denoted “z} > +% and read “z} is preferred to
i

l

The binary relation 7 on X, is called the indifference relation of the
ith consumer. It is obvnousiy reflexive and transitive; it is also symmetric,
ie., “zl 72 implies “zf 7 ;. Given a consumption #; in X, the set
{x; = X, | z, vz}, le., the set of consumptions in X; which are indifferent
to a}, is called the indifference class of z[. It is easy to see that an arbitrary
consumption in X; belongs to one and only one indifference class. In
other words, the set of indifference classes forms a partition of X..

A point z; in X, is called a satiation consumption il no possible con-
sumption is preferred to it by the ith consumer.

The preference preordering of the ith consumer completely expresses his
tastes with regard to food, clothing, Rousing, ..., labor and aiso to
consumption at some date or some location rather than at another. The
preferences considered here take no account of the resale value of com-
modities; the ith consumer is interested in these only for the sake of
the personal use he is going to make of them.

The above concepts will be ilustrated by two examples. In the first one
(fig. 2.a) there are one date, one location, two commaodities; the set X is
the closed quadrant 1, 0, 2. With each point of the closed half-line 0, 1 is
associated jts indifference class represented by a curve starting from that
point. Four specimens have been drawn. The set of points preferred to
a point z} of X; is the set of points above the indifference curve of ;.
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The second example is that which has been studied in connection with
fig. 1.b (in 4.2). The indifference class of a point of 0,0 is the closed
vertical half-line from that point; three specimens of indifference curves
of points of ', 1 have been drawn.

2

1 0 0’ 1

Fig. 2. Fig. 2.b

In the language of the theory, this section is expressed by:

The preference pregrdering of the ith consumer is a given complete
preordering, <, on X,. Given a consumption x; in X, the set {z; ¢ X, EXEA
is called the i;:dayference class of ;. A greatest element of X, for < is called
a satiation consumplion. b

All the assumptions on the preference preorderings < which are used

t
at one point or another below are discussed in the next three sections:
insatiability in 4.5, continuity in 4.6, convexity in 4.7.

4.5. INSATIABILITY ASSUMPTION ON PREFERENCES

(a) No satiation consumption exists for the ith consumer,
i.e., ho matter what his consumpiion is (in X;), there is another one (in X)
which the ith consumer prefers.

4.6. CONTINUITY ASSUMPTION ON PREFERENCES

The consumption set X, is partitioned into indifference classes, Is it
possible to associate with each class a real number in such a way that, if
a class is preferred to another, the number of the first is greater than the
number of the second? In other words, given a set completely preordered
by preferences, does there exist an increasing {1.4.k} real-valued function
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on that set? Such a function is called & wrility function, and denoted u,.
The answer to the existence question is: not necessarily so (see an example
in note 2). The main abject of this section will therefore be to give an
assumption on preferences (assumption (a)) from which the existence of a
utility function can be proved (theorem (1)). In fact, this function would
be of little interest if it were not continuous; the assumption on preferences
should therefore enable one to prove that there is a continuous utility
function on X,.

The existence problem will be left aside for a moment, and the concept of
a utility function will be discussed further. If u} is a utility function, and
if fis an increasing function from R to R, the function »2, defined on X,
by ti(x,} = f(ul{x,)) for all z,, is clearly also a utility function. (If %! and f
are continuous, # is continuous by (1) of 1.7.) Given a preference pre-
ordering, a corresponding utility function is thus arbitrary to a large extent.

A utility function is a valuable tool in the proof of some results. It also
gives a precise content to the intuitive notion of a numerical measure of
how satisfied the ith consumer is with z;.

Summing up for the sake of the theory:

A wiility function u; for the ith consumer is an increasing function from X
preordered by < to R.

1]
The existence problem will now be studied and, for this, the following
continuity assumption on preferences is first introduced:
(a) Foreveryxin X, thesets {x, « X; |2, < ;) and {z, « X; |z, >~ z;} are
closed in X, : :
i.e., let {zf} be a sequence of consumptions possible for the ith consumer;
if all the = are at most as desired as =}, and if 7 —af (a consumption in
X)), then 20 is at most as desired as z;. And similarly when “at most as
desired as” is replaced by “at least as desired as.” If there is a continuous
utility function on X;, preferences satisfy assumption {(a) by (3") of 1.7.
The rest of this section is devoted to the proof of the converse theorem:
(1) Ler X, be a connected subset of R', completely preordered by <. Under
assumption {a) there is on X, a continuous utility function, :
Proof (10 lighten notation the subscript | will be omitted in this
whole proof; thus X will stand for X, < for < -): The trivial

i
case where all the points of X are indifferent can be immediately
disposed of. Any constant real-valued function on X is a continuous
utility function. This case will be excluded until the end of this
section.
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The proof is based on the existence of a countable subset D of X
which is dense in X (l1.6.n). In part 2, a well-chosen increasing
real-valued function is defined on D. In part 3, this function is
extended from D to X. In part 4, the function so defined on X is
shown to be continuous. Part ! supplies a useful preliminary result.

1. A preliminary result.

(2) If =" and 2" in X satisfy &' < 2", there is an = in D such that
<z

To prove this, consider the two sets X, = {z < X|z<z'} and
X = {zeX|2"<z}. They are disjoint, non-empty, and, by (a),
closed in X. Since X is connected, their union cannot (1.6.u) be X,

hence
X, U X" £ X

Assume now that there were no x in D with the desired property;
this would mean that D < X, u X*. By (2} of 1.6h, D, the
adherence in X of D, would be contained in the adherence in X of the
right-hand set. The latter, however, is closed since it is the union of
two closed sets. Hence one would have D < X, U X, or, since
D=2X,

X=X,uUX"

A contradiction would thus result.

2. A utility function on D,

The utility function to be defined on D will be denoted ', Select
then two real numbers g, b such that a << b.
If D has a least element 2%, one takes #'{(z%) = a.
If D has a greatest element z°, one takes &'(z") = b,
Remove from D all the elements indifferent to x* or to #*, and call
D’ the remaining set. By (2),

(3) D' bas no least and no greatest element.

An increasing function from D’ onto the set Q' of rationals of the
interval }a, b[ is defined as follows. Since D' is countable, its elements
can be ranked (¢!, 2% - -+, 2?, - - -); this ranking is unrelated to the
preordering <. Similarly ' is countable, and its elements can be
ranked (%, r%, -+ -, r% « - <); this ranking is unrelated to the ordering
=. The elements of D' will be considered in succession; with x®
will be associated an element r% of (0 in such a way that the pre-
ordering is preserved, and that every element of @’ is eventually
taken.
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Consider x'; take ¢, = 1 and 1/'(z)) = r*,

Consider x%; the set D’ is partitioned into the following sets: the
indifference class of z!, the intervals ]+, z}{ and J2%, —[. Two cases
may therefore oceur:

if 22 ~ 71, take g5 = ¢, and &'(2?) = r7;

if 2% is in one of the two intervals, say ]—, [, consider the corre-

sponding interval, Ja, /[, of Q' and select in it the rational of leasr
rank, re; take w'(z%) = %,
In general, consider x7; the set D’ is partitioned into the following
sets: the indifference classes of zl,z% ---, 2”1 (the number of
different sets so obtained is at most p — 1), the intervals of the form
T 21[, or JxPm, 2P, or Je®-t, [ where m < n implies x?= < x%»
(the number of non-empty intervals so obtained is at most p). Two
cases may occur:

if x# ~ x* where p’ < p, take g, = g, and #/(z%) = r%;

if 2 is in one of the intervals, say Jz*, *[, consider the corre-
sponding interval, }r%, ri-[, of Q' and select in it the rational of
least rank, r»; 1ake ¥'(2%) = ris.

It is clear that the function &’ is increasing. It is easy to check
that (2) and (3) with the least rank rational selection imply that every
element of Q° is eventually taken.

3. Extension from D ro X.

The utility function to be defined on X will be denoted w. If 2’
is an element of X, one writes D, = {z < D| z<x'} and D =
{reD|d <z}

If x is a least element of X, take u(x) = a.

If z is a greatest element of X, take u(z) = b.

In the other cases, consider Sup w/(D,) and Inf #'(D%). These two
numbers will be shown to be equal.
(1} I 2 is any element of D,, and z” any element of D*, one has
x"<z". Thus, if /' is any element of #'(0,), and /" any element of
w'(DF), one has #' < +". From this, one derives easily Sup o/(D,) <
Inf &'( D7)
{2) One cannot have Sup #'(D,) < Inf &'( D), for then any rational
between them would not be taken on by '
Take for u(x) the common value of the Sup and of the Inf.

It is clear that, if x ¢ D, one has u(z) = #(x), and u is indeed an
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extension of «' from D to X; in particular, ¢’ < u(X) < [a, b].
It is easy to check that % is increasing.

4. Continuity of u.

It will be proved that, if ¢ is any real number, the inverse image of
[c,~[ by u is closed in X. A similar proof would apply to J-, ].
According to (3') of 1.7, u will thus be proved to be continuous on X.
If ¢ is a real number, one writes X, = {z « X | u(z) < f} and X' =
{stlrgu(x)}.

It is clearly sufficient to consider the case where ¢ is in Ja, #{.
Then the intervat [¢, - is the intersection of the intervals [r, [
where r ¢« 0" and r < ¢, By taking the inverse images by u, one

obtains (see (1) of 1.3.d) X = [} X*. Letxbe a point of X such that

red’
rse

u(x) =r; X7 ={z' « X|x<z'}, which isclosed in X by(a). Therefore
X¢is closed in X as an intersection of sets closed in X. This completes
the proof.

According to (5") of 1.7, w( X) is an interval with origin a,extremity b.
The number a (resp. &) belongs to #{X) if and only if X has a least
{resp. greatest) element.

4.7. CONVEXITY ASSUMPTIONS ON PREFERENCES

In this section, X, is always assumed to be convex.

Three alternative convexity assumptions on preferences, (a), (b), {(c},
are of interest:

In (a), (b}, (¢}, =} and zF are two different points of X, t is a real number
in o, 1[.
(@) If 2% >z, then 1% + (1 — Nz} > 2! (weak-convexity),

7 3

i.e., if a possible consumption z% is at least as desired as another z}, then
their weighted average with arbitrary positive weights is at least as desired
as a}.

This assumption is easily seen to be equivalent to:

(a") For every x; in X, the set {z; ¢ X, |z, > =} is convex, and to:
H
(") For every x; in X,, the set {z; « X, |z, > z;} is convex.
2
An indifference class is said to be thick if its interior in X, (see 1.6.0)

is not empty. Assumption (a) allows thick indifference classes.
Figure 4.a shows a preference preordering of X, the non-negative
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quadrant, satisfying (a). The shaded region is a thick indifference class;
iwo specimens of non-thick indifference classes have also been drawn.
{b) Ifa? >— x}, then tx; + (1 — fz} >- z; (convexity),

ie, if a possxblc consumption z% is preferred to another 2}, then their
weighted average with arbitrary posmve weights is preferred to x}.

When preferences are continuous, assumption (b) implies assumption
(a). In a formal statement:

(1) Under (@) of 4.6, (b) implies (a).
Proof: Let !, 27 be two points of X, such that 27 > =}. It must be
shown that the set {, e[z}, 28]z, < z;} is empty. “This set cannot

1
consist of a single point since its complement in {z], 7] is the set
{x; [}, F} | =, >- xl} which is elosed by (a) of 4.6. Therefore, if the

former set were not ernpty, it wouId own two different pomts x; and z}
(see fig. 3.2). However, x} > z; implies, by (b), x; > 7, and 552 >- x

implies, by (b), «f > 2. A contradlcnon would thus obtain.
£

B x x =2 >-x1 x} x! z z3(>—x})
)——+—0——4 ;

0 = @ © =

Fig. 3.2 Fig. 3.b

{b) is then actuaily stronger than (a), for it implies that a non-satiation
indifference class is not thick. More precisely, as it is quite clear:

(2} Under (b), if =} in X, is not a satiation point, x; is adherent fo
D AL
k]

Assumption {b) allows indifference classes to contain non-degenerate
closed segments.

Figure 4.b shows a preference preordering of X, the non-negative
quadrant, satisfying (b). Five specimens of indifference classes have been
drawn.
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(© If 7, then 12} + (1 — 1)z} > 2] (strong-convexity),

3
i.e., if the two possible consumptions =! and z? are indifferent, then their
weighted average with arbitrary positive weights is preferred to them.
‘When preferences are continuous, assumption (c) implies assumption (b).
In a formal statement:

{3) Under (a) of 4.6, (¢) implies (b).
Proof: Let zl, 2¥ be two points of X, such that af > z}. Assume
i
that there were x, between ! and 27 such that z,< ] (see fig. 3.b).
3

By (a) of 4.6 there is a continuous utility function u; on X;. There
would therefore be a point z between z; and z, such that ufx,) <
u, (%)) < wfx}): if z; < &}, this is clear: if 2, 7 =}, one applies (c).

13
Because of the double inequality, there would be a point z between
z, and 27 such that w(x}) = u,(z}). From z] 7z and (c) would
follow =, > =, a contradiction of ufz)) < u(x}).

Fig. 4.a Fig. 4b Fig. 4.c

(c) is then actually stronger than (b}, for, as it is quite clear:
(4) Under (c), an indifference class does not contain any non-degenerate
closed segment.

Figure 4.c shows a preference preordering of X, the non-negative
quadrant, satisfying (c). Three specimens of indifference classes have been
drawn.

Assumption (a) and even assumption (b) are intuitively justified; it is
not so for assumption (c).
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4.8, WEALTH CONSTRAINT

Given a price system p and a consumption x,, the expenditure of the ith
consumer is p - z;. Because of the sign conventions on the coordinates of
z; and p, the inner product p - z, is the sum of all outlays minus the sum
of all receipts. Since commodities are dated, this concept of expenditure
corresponds to the customary notion of the sum of all discounted future
(proper) consumption outlays minus the sum of all discounted future
labor receipts. The expenditure p - z; must clearly be at most equal to
the wealth of the ith consumer, a real number w;. This concept of wealth
corresponds to the customary notion of present value of everything (real
estate, cars, furniture, . . ., stocks, bonds, . ..) the ith consumer owns,
adding debts owed to him, subtracting debts he owes, ..., each item
being properly discounted. The m-tuple (w) is called the wealth distri-
bution. It specifies the wealth of each consumer and can be represented
by a point w of R™. In the language of the theory:

Given the price system p and his wealth w,, & real number, the ith consumer
chooses his consumption x, in his consumption set X, so that his expenditure
P x; satisfles the wealth constraint p - x, < w,. The point w = (w;) of R™
is called the wealth distribution. The point (p, w) of R™™ is called the price-
wealth pair.

‘When p 5 0 one has the following geometric situation. The hyperplane
{a < R*|p-a=w]}is called the wealth hyperplane. The constraint p - x,
< w, expresses that «, must be in the closed half-space below the wealth
hyperplane (see for example fig. 7).

Given an arbitrary price-wealth pair (p, w), the set {z, ¢ X; [ p- 2, < w,}
jn which the ith consumer must choose may be empty. Let therefore S,
be the set of (p, w}in R™™ for which this is not so (S, is clearly 2 cone with
vertex 0). Thus with each price-wealth pair (p, w) in S, is associated the
non-empty set y(p, w) = {z, « X;| p " #; < w,} of possible consumptions
satisfying the wealth constraint for that pair (p, w). In this way a corre-
spondence y, from §; to X, is defined. y(p, w) depends actually only on
p and w,; it has been presented in this form to prepare for the summation
of individual demands which will be performed later. If 7 is a positive
number, clearly y,(tp, tw) = y{(p, w}. Formal definitions are given for
the sake of the theory:

S,isdefinedby S, = {{p, w) e R&™ | there is x; in X, such thatp 2,5 w,}.
The correspondence vy, from S, to X, is defined by y(p, w) = {z; < X;[ p - 2,
< wih
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The rest of this section will study the continuity of ;. The definitions
of 1.8.b—f apply only in the case where X, is compact. It will be shown in
5.4, 5.7 how, under certain rather weak assumptions, the consumption set
X can indeed be replaced by a certain non-empty compact subset of X,.
The following fundamental theorem will now be stated, discussed, and
proved:

(1) If X, is compact, convex, and if (p° w} is a point of S, such that
w? 5= Min p°- X, then y, is continuous at (p° wY).

In other words, given a compact, convex consumption set X; and a
price-wealth pair (p®, w®) in S, the correspondence y, is indeed continnous
at the point (p° w®) provided one rules out the exceptional case where
w? = Min p®- X, i.e., where the wealth w] is so small that for any smaller
wealth there would be no possible consumption satisfying the wealth
constraint.

;

Fig. 5

Figure 5 shows how y, may not be continvous if W = Min p°- X, The
set X; is the closed square with edge 2. Consider p® = (0, 1) and w? = 0;
the corresponding wealth hyperplane is the straight line 0, 1. The excep-
tional case w? = Min p® X, occurs, i.e., there is no point of X below the
wealth hyperplane. Let then a be the point (1, 0}, and let p, w, tend to
p°% wl in such a way that the corresponding wealth hyperplane rotates
around a as indicated in the figure. As long as p £ p®, the set y(p, w)
is the shaded region whose limit is the closed segment [0, @. However
4p° w?) is the closed segment [0, 2a].
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4.8 THEORY OF VALUE

The proof of existence of an equilibrium for a private ownership
economy (5.7) will hinge upon the continuity of ..

Proof of (I): The conditions of 1.8.b are clearly satisfied. It will
therefore be proved that (1) y; is upper semicontinuous at (p° w?),
(2) y, is lower semicontinuous at (p9, w?).

(1) The graph of y, is, by definition, {(p, w, 2} ¢ §; X X;|p- %, < w;}
This set is clearly closed in §; x X;. Hence, by (1) of 1.8.h, p, is
upper semicontinuous on S,

(2) Let(p% wf) be a sequence of points of S, tending to (p% w*), and
let = be a point in y, (% w®), i.e., 27 € X; and p° - 27 << . One must
prove that there is a sequence (=) of points of X; such that af — ]
and, for all ¢, «fcp pf, w9, ie, p?-2f < wi Two cases will be
considered.

(2.1) p°-2? <<w]. Hence, for all g larger than a certain integer ¢,
p?-2? << wi The sequence (¢7) is defined as follows:

If ¢ < ¢', one takes for #{ an arbitrary point of y{p?, w).
If g = ¢, one takes 2] = =7,

The sequence (z7) clearly has alt the desired properties.
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2.2) p¥-2% =wl. By assumption, there is z; in X, such that
F ¥ P 3
p° - =; < w]. Hence, for all ¢ larger than a certain integer ¢',

¥ . '
Pa.xi<w:_1, and Pq.xi.(pa.x?'

! al

Consider the point ¢ where the straight line z, 2] intersects the
wealth hyperplane determined by (p?, w) (see fig. 6). For all g larger
than ¢’, @° exists, is unique, tends to 2}, as it is ¢asy to check. The
sequence (zf) is then defined as follows:

If ¢ < ¢', one takes for z¢ an arbitrary point of y(p?, w?).

H g = ¢’ and a° s [#}, 27], one takes 2{ = &°.

If ¢ > ¢ and a* ¢ [z}, 2], one takes z? = a7 (because @ might not be
in X)).

The sequence {x7} clearly has all the desired properties.

4.9. PREFERENCE SATISFACTION

Given a price-wealth pair (p, w) in S, the jth consumer chooses, in the
non-empty set y,(p, w), a consumption x; which is optimal according to
his preferences, i.e., a greatest element for the preference preordering <.

1

If there is a utility function «,, one can also say that he chooses a maximizer
of u; on y{p, w) (in this case “‘preference satisfaction” is therefore synony-
mous with “utility maximization”). Deing this amounts to selecting the
quantities of each good or service he will consume, and the quantities of
each type of labor he will produce (at each date and location) which form
a possible consumption plan optimal for his limited weaith, In the language
of the theory:

Given the price-wealth pair (p, w) in S, the ith consumer chooses, in the
set y{p, w), a greatest element for his preference preordering <. The

1
restdting action is called an equilibrium consumption of the ith consumer
relative to (p, w). :

When p # 0 one has the following geometric situation. If x; is a
greatest element of p{p, w), the set {, ¢ X, [z, > 27} has no point in

common with the closed half-space below the wealth hyperplane H.
Figure 7 illustrates the case where X| is the non-negative quadrant. The
indifference class of «; has been drawn as a broken line through x;. The
set {z, ¢ X, |z, > ;} is the shaded region (indifference curve excluded).
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49 THEQORY OF VALUE

If z} is an equilibrium consumption relative to (p, ), it is clearly a

greatest element for < of {r, e X, | p-2, < p-z}. It will be convenient
7
to have the formal definition (which makes no reference to wealth):

The action x, Iis called an equilibrium consumption of the ith consumer
relative to the price system p if it is a greatest element of {x, < X, Ep A
o) for <.

i

v (o)

Fig. 7

Given an arbitrary pair (p, w) in S, y(p, w} may have no greatest
element. Let therefore 57 be the set of (p, w) in S, for which the set of
greatest elements of y.(p, w) is not empty (S, is clearly a cone with vertex 0,
the point 0 being excluded if and only if the ith consumer is insatiable),
Thus with each price-wealth pair (p, w) in §; is associated the non-empty
sel £,(p, w) of possible consumptions optimal under the wealth constraint
defined by (p, w). All the points of £(p, w) are clearly indifferent. The
correspondence &; from 8 to X, is called the demand correspondence of
the ith consumer. The use of correspondences in the study of consumers
could be avoided only by making the strong-convexity assumption on
preferences (¢) of 4.7 for which there is little intuitive justification (see
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section 4.7 and the last paragraph of the present section). Given two
price-wealth pairs (p', w!) and {p?, w?) in S}, (p', w) is said to be preferred
(resp. indifferent) to (p?, w?) for the ith consumer if a point of £,(p', w'} is
preferred (resp. indifferent) to a point of £(p% w?). If there is a utility
function u;, on X, the maximum utility, when the price-wealth pair is
(p, wyin 5., is denoted by v{p, w). The function v, from S; to R is called
the corresponding indirect utility function of the ith consumer. 1If t is a
positive number, clearly

Eftp, tw) = Efp,w) and v (ip, 1w) = vip, w).
Given a price-wealth pair (p, w), there is a greatest element of yip, w)

foreveryi =1, --,m if and only if (p, w) belongs to n S!. Inthat case

one can define the non-empty set &p, w) = 2 £(p. w) of possible total
i1

consumptions compatible with the selection by every consumer of a con-
sumption optimal for his wealth constraint. The correspondence £ from

.

n S:to X is called the total demand correspondence. If t is a positive

number clearly &(tp, tw) = &(p, w).
Summing up the above definitions for the sake of the theory:

S is defined by S{ = {(p, w} < S;| 7,(p, w) has a greatest element for <}.

The demand correspondence of the ith consumer, &,, from S;to X, is defined
by &(p, w) = {z; « y(p, w)| %, is a greatest element of y{p, w) for <}. If

1
there is a wtility function u,, the corresponding indirect utility function of the
ith consumer, v, from S; to R is defined by vdp, w) = Max ufy{p, w))

The total demand correspondence, &, from n S; to X is defined by &(p, w) =

E Edp, W)

The analogy between fig. 7 and fig. 3 of 3.4 suggests that, given (p, w} in
S;, ; is a greatest element of y,(p, w) if and only if =; minimizes the

expenditure p - z; on the set {z, ¢ X| z; 3> x;} of possible consumptions

1)
which are at least as desired as «}. The interest of such an equivalence
would come in particuiar from the greater simplicity of the second opera-
tion and from its complete analogy with the maximization of the profitp- y;
on the set Y of possible productions; the theory of consumers and the
theory of producers would thus be unified. The problem will now be
formulated in a precise and slightly more general fashion,
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In (a), (&), (B), (B'), (p, w) denotes a given point of S,, x; a given point of X,
and x, an arbitrary point of X,

Consider firstly the assumption:
@ p-x, < w, implies =, < ;.
t
It is a generalization of the definition of x} as a greatest element of y(p, w)
since the latter would require, in addition, that p - £} < w,.
(a) is (trivially) equivalent to:
(@) =, > x} implies p - z; > w,.
i

Consider secondly the assumption:

b) :c>—z' implies p - 2, 22 w,.

Itisa generallzatlon of the definition of =} as a minimizer of expenditure
on the set {z; « X, | %, >- #;} since the latter would require, in addition, that
P’ 1‘ = W,
(b") s (trivially) equivalent to:
(b) p-x, < w, implies x; < x;.

i

Is then (a}, (a') equivalent to (b), (b")? The answer is given by (1} and (2):
{1) gives conditions under which (b) implies (a). And (2) gives conditions
under which (a’) implies (b").

In the remainder of this section various assumptions on the preference
preorderings will be listed, and the implications of each one of them for
preference satisfaction will be studied.

Until the end of this section, X, is always assumed to be convex.
The preference preordering < is continuous {({a) of 4.6}.

Then expenditure minimization implies preference satisfaction provided
the exceptional case w; = Min p - X, already met in 4.8, is excluded.
Figure 8 shows how the implicatior may not hold if w; = Minp* X,.
The set X, is the closed quadrant 1,0, 2. Three indifference lines have
been drawn. Consider p = (0, 1) and w; = 0; the exceptional case occurs,
The set y{p, w) is the closed half-line 0, 1, and the pomt z=(1,0) is
¢learly not a greatest element of y(p, ) for-< However, z; is a minimizer

of expenditure on the set {z, ¢ X, | z,> =}, represented by the shaded region.
The theorem can now be precisely stated and proved:
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Fig. 8
(1} Ifthe continuity assumption (a) of 4.6 holds for < -< and ifw, =Minp- X,
is excluded, then (b) implies (a).
Proof: Since w; = Min p - X, is excluded, there is a point z} in X;
for which p - =} < w;. To prove the theorem it is sufficient to show

that, if 27 in X; satisfies p - 2f = w;, then 27 <. For this, consider

Fig. 9
any point z; of the closed segment [z}, 2], different from 27. Clearly
Pz, << w, hence, by (b), , < 2. Thus af is adherent to the set

{z; e X;| <z}, Asthe latter is closed by (a) of 4.6, it owns 22
H

i
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49 THEORY OF VALUR

The preference preordering < satisfies the weak-convexity assumption (a)
of 4.7. *

Given a price-wealth pair {p,w) In S, the set £(p, w) of possible
consumptions optimal for (p, w) is convex. Indeed, if z; is a preatest
element of y,(p, w) for <, then £,(p, w) is the intersection of y.(p, w) and

{z, = X;| 2> xj} which are both convex (for the second sce (@) of47).
When thé assumption holds for every i, and when (p, w) is in mﬂ S,

the set &(p, w) is convex as a sum of convex sets (see (11) of 1.9.s). -

The preference preordering < satisfies the convexily assumption (b) of 4.7.

t
Then preference satisfaction implies expenditure minimization provided
z; is not a satiation consumption.

Fig. 10

Figure 10 shows how the implication may not hold if the preference
preordering is only required to satisfy the weak-convexity assumption.
The set X, is the closed quadrant 1,0, 2. A thick (see 4.7) indifference
class has been represented by the shaded region. Let H be the wealth
hyperplane. The point «} is a greatest element of y(p, w) for <. Itis
clearly not a minimizer of expenditure on the set {z; € X, |2, > z;}. ¢

The theorem can now be precisely stated and proved: *
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(2) If the convexity assumption (b) of 4.7 holds for -< and if z; is not a
satiation consumption, then (a') implies (b').

Proof: Since z; is not a satiation consumption, there is a point
in X, for which &} > 2]. To prove the theorem it is sufficient to show

1
that, if 27 in X, satisfies 22 7 x, then p - 22 > w,. For this, consider

x}
1]

Fig. 11

any point z; of the closed segment [z, 27], different from 2%, By (b)
of 4.7, z, > x, hence, by (a'), p - z; > w,. By continuity ofp x, one
i

obtains p- 22 > w,.
As a corollary:
(2 Given (p, w) in 8], let x{ be a greatest clement of p,{p, w) for -< If

the convexity assumpnon (b} of 4.7 holds for -<, and if ] is not a sauatnon
consumption, then p - = = w,.

Progf: By definition, one has p - x; < w;. Since (b") holds by (2),
and since, trivially, ;> 2], one has p - z; > w,.

In other words, although the consumer is only constrained to satisfy the
inequality p - x; <X w;, the consumption z; he chooses satisfies the equality
p-x; =w,. His expenditure equals his wealth. As a consequence, if
(p, W) is in S/, and if w; > w,, the wealth w; is preferred to the wealth w,.

The preference preordering -< satisfies the strong-convexity assumption (c)
of 4.7.

Then, given (p, w} in 5], there is clearly a unigue greatest element of
v{p, w} for <. In this case the demand correspondence &; is a function.

1
When the assumption holds for every /, so is &.
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4.10. PRICE-WEALTH VARIATIONS

In this section, it is always assumed that X is connected and that the pre-
ference preordering < is continuous ((a) of 4.6). Hence there is on X; a

continuous utility flfnction u; ((1) of 4.6).

As remarked in 4.8, under certain weak assumptions, the consumption
set X; can be replaced by a certain non-empty compact subset of X;. The
case where X; is compact will therefore be studied further.

Given a price-wealth pair {p, w) in §,, the ith consumer maximizes the
continuous function #; on the set y,(p, w} which is non-empty, compact.
(4') of 1.7.i applies and the set of maximizers is not empty. - In other words,

[ R o

In fact, ¥, defines a continnous function u; on S, x X, by (p, w, 2,) ~
#fz), and theorem {4) of 1.8.k applies (here the correspondence p from
S; 1o X, is v,). Hence, if (p, w)is a peint of S, at which the correspondence
y, is continuous, £, the demand correspondence of the ith consumer,
is upper semicontinuous at (p, w), and v,, the indirect utility function of the
ith consumer, is continuous at (p, w).

When the above assumptions hold for every i, according to (4) of 1.9.h,
&, the total demand correspondence, is upper semicontinuous at (p, w),
Summing up:

(1) If X, is compact, then S] = S, If, in addition, y, is continuous at the
point (p, w} of S,, then &, is upper semicontinuous at (p, w), and v, Is con-
tinuous at (p, w). If the ubove assumptions hold for every i, then & is upper
Semicontinuous at (p, w).

When one of the upper semicontinuous demand correspondences &, £
happens to be a function, it is continuous according to 1.8.g.

Notes

1. The general concept of a consumption set and the lower boundedness assumption
of 4.3 are borrowed from K. J. Arrow and G. Debreu (1]. 1 thank H. Lavaill and W,
Vickrey for their remarks which helped me to formulate the determination of the life
span in the second half of 4.2,

2. About the history of utility theory, . J. Stigler {1] may be consuited.

An example of a complete preordering which cannot be represented by a real-valued
function is the lexécographic ardering of R*. By defiition, (a, b) = (a', b)) if () a < &',
or(2)a= a and b < b’. Assume that there is a real-valued representation f, and let
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I, dencte the interval [Inf f(a, R), Sup f(g, R)). Clearly that interval is non-degenerate,
and g + a" implies f; M f,- = @. Thus a one-to-one correspondence a «— I, is established
between the set of real numbers (which is uncountable) and a set of pairwise disjoint,
non-degenerate, real intervals (which is ceuntable), a contradiction.

In the proof of (1) of 4.6, the assumption that X, is a subset of R' is used only to
obtain a countable dense subset D of X, Therefore the following, more general,
theorem has actually been proved. Ler X, be a connected, separable topological space
completely preordered by <. Under assumption () of 4.6 there is on X, a continuous

utility function. In this form it is essentially a result of S. Eilenberg [1], It may be worth
noticing that the assumption of connectedness has been removed for spaces satisfying
the second axiom of countability in G. Debreu [3] {and is thus superfluous in (1) of 6.2),
The economic literature contains an eariier rigorous study of a particular case of the
real representation of preferences, that of H. Wold [1].

Certain theorems whose statements list (a} of 4.6 among their hypotheses can, in
fact, be proved by using weaker continuity assumptions on preferences inspired by 1. N,
Herstein and J. Milnor [1]. For example (denoting, for two points z; and 7 of X3, the
set {te Rjex] + (1 —s)afe X} by Tz, #{}), (1} of 4.9 uses only the assumption “for
every x;, xj, =7 in X, the set {re Tz}, 27) | 1z] + (1 — :)215::.-} is closed in T'{z;, ])"";

1
(1) of 4.7 {and consequently (1) of 6.4) uses only the assumption “for every &, x;, #7 in
X, the set {re T(x}, 27)|1x{ + (1 — 1)z} ?.'”'} is closed in T(x{, z])."" These weaker

assumptions are of special interest when the commodity space is infinite-dimensional,
for they do not utilize the topology of X..

3. FEarlier studies of the convexity assumptions on preferences (a), {b}, (c} of 4.7 will
be found in K. J. Arrow [1], G. Debreu {1], K. J. Arrow and G, Debreu [1]. If the
continuity assumption (a) of 4.6 and the weak-convexity assumption (a) of 4.7 held for
preferences defined on a convex consumption set X;, then these preferences can be
represented by a continuous guasi-concave real function u, (*‘quasi-concave” means that,
for every real number a, the set {z; ¢ X; | u(x,) = a}is convex). The problem of finding
conditions under which a quasi-concave function can be transformed, by means of an
increasing real function of a real variable, into a concave function has been investigated
by B. de Finetti {1] and W. Fenchel [1].

4. Theorem (1) of 4.8 is essentially a result of K. J. Arrow and G. Debreu [1],
theorem (1) of 4.9 a result of K. I. Arrow [1].

The concept of indirect utility function is due to H. Hotelling {1] and R. Roy [1], the
term to H. S. Houthakker [1}.

5. One would obtain inequalities similar to (1) and (2) of 3.5 by selecting for the
ith consumer a consumption =/ in his consumption set X;, minimizing the expenditure

p - x: on the set {z, ¢ X, |a, > x{} for a given price system p, and then varying p.
i

6. Tt must be emphasized that the present analysis does not cover the case where the
consumption set of a consurner and/or his preferences depend on the consumptions
of the other consumers (and/or on the productions of producers).
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CHAPTER 5

EQUILIBRIUM

5.1. INTRODUCTION

In order to obtain the central concept of an economy it remains only to
introduce the total resources (the available quantities of the various com-
modities which are a priori given). To be precise, an economy is defined by
m consumers (characterized by their consumption sets and their pre-
ferences), n producers (characterized by their production sets), and the
total resources. A state of the economy is a specification of the action of
each agent, and a state is said to be attainable if the action of each agent is
possible for him and if their (m 4 ») actions are compatible with the total
resources. The set of attainable states plays an essential role; its properties
are therefore studied. A special class of economies is then considered,
namely, the private ownership economies where consumers own the
resources and control the producers. Given a price systemn, each producer
maximizes his profit, which is distributed to consumers-sharcholders.
The wealths of the latter are thus determined, and they satisfy their
preferences under their wealth constraints. As a result of this process each
agent chooses an action. These (m 4 n) actions are not necessarily
compatible with the total resources. Can one find a price system which
makes them compatible? An answer is given in section 5.7 in the form of
an existence theorem (for which the way is prepared by the result of
section 5.6). This fundamental theorem of the theory of value explains
the prices of all commodities and the actions of all agents in a private
ownership economy.

5.2. RESOURCES

The zotal resources of an economy are the a priori given quantities of
commodities that are made avatlable to (or by) its agents. Quantitics
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made available to (resp. by) the agents of the economy are represented by
positive (resp. negative) numbers. With this convention, the total resources
are represented by a point w of RY, the commodity space. They include the
capital of the economy at the present instant, i.c., all the land, buildings,
mineral deposits, equipment, inventories of goods, ... now existing and
available to the agents of the economy. Ali these are a legacy of the past;
they are @ priori given. The date of the commodities so defined is the first.

The total resources are a given point @ of R

5.3. EcoNOomiES
A complete description of an economy E is now possible; it consists of:

For each consumer, his consumption set X, and his preference pre-
ordering <.

1
For each producer, his production set ¥,
The total resources w.

A state of the economy E is a specification of the action of each agent, L.e.,
for each consumer (resp. producer) a specification of his consumption 2,
(resp. production y,) in the commodity space. Thus a state of E is an
{m + n)-tuple ({z,}, (y;)} of points of R*. It can be represented by a point
of RH™+™_ Formally:

An economy E is defined by: for each i = 1,---,m a non-empty subset
X, of R' completely preordered by <; for each j=1,---,n a non-emply
subset Y, of R'; apointw of R". *

A state of E is an (m + n)-tuple of points of R*.

Given a state ((z), {#,)) of E, the point x — y is called the nef demand.
In forming = — y one cancels out all commodity transfers between agents
of the economy (each such transfer appears once as an input with positive
sign and once as an output with negative sign); x — y describes therefore
the rer result of the activity of all agents together. That is to say, the
positive (resp. negative) coordinates of # — y represent inpuls not trans-
ferred from (resp. outputs not transferred to) the agents of the economy.
If ; € X; forevery /, and y; < ¥, for every j, the net demand = — y belongs
1o the set X — &,

Given a state ((z,}, ()} of £, the point x — ¥ — w is denoted z, and
called the excess demand. 1t describes the excess of the net demand of all
agents over the total resources. Ifx; ¢ X, for every i, and g, < ¥; for every
Jj» the excess demand x - y — o belongs to the set X — ¥ — {w}, which is
denoted Z.
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A state ((x;}, (3,)) of Eis called a market equilibrium if its excess demand
is 0. This can also be expressed by # — ¥ = w, i.e., the net demand of all
agenis equals the total resources. The set of market equilibriums of E
is a linear manrifold in R*™+™) denoted M.

A state ((=,), (¥,)) of E is said to be artainable if it satisfies the constraints:

(o) w e X foreveryi, y, c Y, foreveryj,z —y =w.

That is, the consumption of each consumer must be possible for him, the
production of each producer must be possible for him, and the state must
be a market equilibrium, i.e., the net demand must equal the total resources.
The set of attainable states of E is a subset of R1™™ denoted A. Accord-
ing to (a):

(x') A is the intersection of ([ [ X x (] ¥;) and M.

Summing up: ' ’

Given a state ((z;), (¥,)) of E, the point x — y is the net demand, the point
z=ug —y — w is the excess demand. Z denates the set X — Y — {w}.

A state ((x,), (y;)) of E is @ market equilibrium if * — y = w. The set of
market equilibriums of E is denoted by M.

A state ((x,), (;)) of E is attainable if x; < X, for every i, y; < Y for every J,
z — y = w. The set of attainable states of E is denoted by A.

Given an economy £, a consumption x, for the ith consumer is said to be
attainable if there is an attainable state whose component corresponding
to that consumer is x,. The set of his attainable consumptions is called
his atzainable consumption set, and denoted X, An attainable production
for the jth producer and his anainable production set f’j are similarly
defined. According to the definition, X; (resp. ¥,) is the projection of A
on the space R containing X, (resp. ¥,). Formally:

Given an economy E, a consumption for the ith consumer (resp. a produc-
tion for the jth producer) is attainable if it is the component corresponding
to him of some attainable state. The set of his attainable consumptions
(resp. productions} is his attainable consumption (resp. production) set,
denated by X, (resp. ¥).

5.4. ATTAINABLE STATES

Various properties of the set A of attainable states of an economy E
will now be studied.

Tt is clear that A is not empty if and only if w = X — ¥; this can also
be written 0« Z.
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(1) Given an economy E, if every X, and every Y, is closed, then A is closed.
Proof: The product (TT X} x (T ¥;}is closed. By(«'}of 5.3, Ais

the intersection of two closed sets ;nd is therefore closed.

If every set X, and every set ¥, of an economy £ is convex, so is A4, for
it is then, by (a') of 5.3, the intersection of two convex sets. Under the
same assumptions, the sets X — Y and £ are convex as sums of convex sets.

The sets X, Y; of an economy £ may be unbounded; but one expects,
on account of the fixed resources w, that the attainable consumption set of
every consumer and the attainable production set of every producer be
hounded, i.e., that 4 be bounded. This property of 4 will indeed play an
essential role later on, Theorem (2) will therefore give conditions on the
sets X, ¥ which insure that 4 is bounded. As an incidental result, con-
ditions under which the set X — Y (hence also the sct £) is closed will be
obtained.

(2) Let E be an economy such that X has a lower bound for <, Y is closed,
convex gnd ¥ N Q = {0}
Ifn=1andfor Y N {(—Y) < {0}, then A is bounded.
If X is closed, then X — Y is closed.
Proof: (1) To show that 4 is bounded, it suffices, according to (x')
of 5.3 and {8) of 1.9, to prove that the intersection of the asymptotic

m n
cones A((H X-) X (HY)) and AM is {0}.
By (7) of 1.9, the first cone is contained in (H AX) x (]"[ AY); it
is therefore sufficient to show that

¥ (TIAX) x ([ AY)) N AM = {0},

The cone AM is the linear manifold of states ((x,), (y,)) satisfying
the equality = — y = 0 since the latter set (1) is derived from M by a
translation and hence has the same asymptotic cone as M, (2) is a
closed cone with vertex 0 and hence coincides with its own asymptotic
cone. Thus (3} is equivalent to:

(3') “z;cAX, for every i, y, c AY, for every j, and X x, — X g,
= (" implies “x; = 0 for every i, y, = 0 for every j.» °* :

According to (6) of 1.9, one has AX, < AX. Since X has a lower
bound for <, one has also, as seen in the proof of (1) of 4.3,

(4) AX < Q.
Hence AX, < {} and, consequently,
) SAX, < Q.
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Similarly, one has AY; = AY. Since Y is closed, convex, and
owns 0, one has also, by (14) of 1.9,

(6) AY < Y.
Hence AY; < Y and, consequently,
7 SAY, < Y.

j

(3') can now be proved. According to (5), Z z; e{}. According to
(7 2 w;¢ Y. Because of ¥ Q= {0], the relation Y, =Yy,
j i

thus implies ¥ z, =0 =¥ y.
n i=1 i=1
As ¥ x, = 0and z; ¢ } for every " implies “z; = 0 for every £,”
i=t
the proof is completed in the case n = 1.
If Y n(—7Y)<= {0}, one shows, exactly as for (1} of 3.3, that

> y; = 0 implies “y; = 0 for every /. And the proof is also com-
;)lelted in this case.

(2) To show that X — Y is closed, it suffices, according to (9)
of 1.9, to prove that the asymptotic cones AX and A(—Y) are
positively semi-independent. But this is equivalent to AX N AY =
{0}, which follows directly from (4), (6), and ¥ N Q = {0}.

Since the ith attainable consumption set X, (resp. the jth attainable
production set 17',-) of an economy E is the projection of 4 on the space R
containing X, (resp. Y,), its properties are immediately derived from those
of 4. For example, if 4 is bounded, or compact, or convex, every )?i and
every Y, is respectively bounded, compact, convex.

5.5. PRIVATE OwNERSHIP ECONOMIES

The remainder of this chapter will study economies where the consumers
own the resources and control the producers. Thus, the ith consumer
receives the value of his resources o, (the @, are points of R' satisfying

M
> w; = w, the total resources), and the shares 6,4,--+,8,,---,0,, of

i=1
the profit of the 1st, - -, jth, - - -, ath producer (the 6,; are real numbers
m
satisfying 8, > 0, and ¥ 8, = I for every j}. The point w, specifies the
i=1

a priori given quantities of commodities that are made available to him, or
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by him; the number 8,; is interpreted as the fraction of the stock of the
jth producer that he owns.

A complete description of a private ownership economy & therefore
consists of :

For each consumer, his consumption set X', his preference preordering < -<,

his resources «w; (satlsfymg > w; = w, the total resources |, and his shares

R JEE b‘ln(sansfymg 8,; =0, and E 8, =1 for evcryj)

For each producer, his production set Y.

Consider a private ownership economy €. When the price system is p,
the jth producer tries to maximize his profit on ¥,. Suppose that y, does
this; the profit = {p) = p -y, is distributed to sharcholders, Thus the
wealth of the ith consumer is:

wz’ ‘_"P " wi +Z st ;(P)
i=1

This consumer tries to satisfy his preferences in X, subject to his wealth
constraint. Suppose that z, does this. If the actions =z, ¥, satisfy the
market equilibrium equality x — ¥ = o, the economy is in equilibrivm,
i.e., every agent, given the price system and the actions of the other agents,
has no incentive to choose a different action, and the state of the economy
is a market equilibrium. Formally:

A private ownership economy & is defined by:

an economy ({X; -<), (Y;), w);

m

for each i, apomt w,; of R such that z w; = oy
for each pair (i, ), a non-negative rea! number 0,; such that zB,, =
for every j. i=1

An equflfbn'um of the privare ownership economy & is an {m + n + I)-
tuple ((x¥), (y) ), p*) of points of R such that:
(x} &} is a greatest element of {x, ¢ X, [ p* -z, X p* o, + 2 8:.p* - 4}
Jor <, for every i,
() ' y; maximizes profit relative to p* on Y, for every j,
{(y) =¥ —y* =w.

() expresses that, for the jth consumer, zf is (see 4.9) an equilibrium

Tt
consumption relative to (p*, w*) where w} =p* - w, + Azlﬂl.jp* ¥
Je=
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() expresses that, for the jth producer, 7 is (see 3.4) an equilibrium
production relative to p*: {y) expresses that the state ((x}), (47)) is a
market equilibrium. Let ¢ be a positive real number; ((7), (¥}), 1p*) is
an equilibrium if and only if ((z}), (#]), p*) is one; therefore all the price
systems belonging to an open half-line with origin 0 are equivalent from
the point of view of equilibrium.

The fundamental question arises at once: given a private ownership
economy, does it have an equilibrium? An answer will be given in 3.7.
A preliminary theorem will be proved in the next section,

5.6. MARKET EQUILIBRIUM

Consider a private ownership economy &, and let C be the set of pin R
for which all the sets 5,(p), £i(p} of this paragraph are defined (hence non-
empty). When the price system is p in C, the jth producer chooses ¥, in
the set #,(p) of his productions oplimal for that price system (see 3.4),
and his profit is =(p) = p-y; Hence the wealth distribution is the

m-tuple (p - @, + 3 0;74p)), and the ith consumer chooses z, in the set
i=1

& (P, (P Sy +§19,-1w,-‘(p)))

of his consumptions optimal for that price system and that wealth distri-
bution (see 4.9). That set depends only on p and will be denoted &j(p);

the sum ﬁf;(p) will be denoted #'(p). Since x; is an arbitrary point
i=1

of £{p) for every / and y; is an arbitrary point of #,(p) for every j, the
excess demand z = r ~— ¥ — w is an arbitrary point of the set

Up) = &(p) — n(p) — {w},

a subset of Z =X — ¥ — {w}. Thus with each price system p in C is
associated the non-empty set {(p) of excess demands compatible with the
selection by every consumer of a consumption optimal for his wealth
constraint and by every producer of a production optimal for that price
system. The correspondence { from C to Z is called the excess demand
correspondence. The equilibrium problem amounts to finding a pin C
for which a corresponding excess demand is 0 and can thus be formulated:
is there a p in C such that 0 < [(p)?

Notice first that, if p is in € and if ¢ is a positive real number, #,(ip) is
defined and equals #,(p) and &{1p) is defined and equals &{p); in other
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words, if all the prices of a price system p in C are multiplied by the same
positive teal number, the sets of optimal actions of the various agents
are unchanged. Hence tp « C and {(¢p)} = {(p). The first relation shows
that C is a cone with veriex 0, but with the point 0 excluded if (and only if)
some of the #,(p), §{p) are not defined when all prices are zero. This
clearly occurs if and only if some consumer is insatiable.

Notice also that the actions z,, ¥, chosen by the agents for a price
system p in C satisfy the wealth constraints

pro;Eprw 4 D0,p-y; foreveryd
i=t
Summing over i, one obtains (recal!ing that 3 8;; =1 for everyj) .
i=1

prelpwdpy e, pzXO

Therefore for any p in C one has *'p - z < 0 for every zin {(p),”" which will
also be written p- {(py < 0. When p # 0, this means that the sct {{p) is
below {with possibly points in) the hyperplane through 0 orthogonal to p.

A solution to the equilibrium problem will be given in the case where
free disposal ((h) of 3.3) prevails (a more general case will be discussed in
notes 2, 3). It is intuitive that the market equilibrium equality {3} of 5.5
can then be replaced by the inequality o* — y* < o precise conditions
under which this can be done will be given in the next section. The above
inequality expresses that for every commodity the net demand is at most
equal to the a priori given avaifable quantity; it can alse be written
#* = 0. The equilibrium problem relative to this weaker condition amounts
to finding a p in C for which a corresponding excess demand is <0, i.e.,
belongs to —£, and can thus be formulated: is there a p in C such that
L) M (—£2) is not empty?

Moreover, in the free disposal case, n{p) is defined for every j only if
p 22 0 (see end of 3.4); hence C is contained in £. If, in addition, the
point O is excluded from C (i.c., if some consumer is insatiable), for every

! 1
pin C one has ¥ p, > 0, hence Z( ; P\ = {(p); in the search for an
=1

2 P

k=1
equilibrium, every p in C can therefore be replaced by the point where the
closed half-line 0, p intersects the set

?
P={pEQ hglph=l}.
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The heuristic remarks of the two last paragraphs lead one to study the
following problem, A correspondence £ from P to Z is such that for every
pin Pone has p- {(p) £ 0. What further conditions on { and Z insure
that there is a p in P such that {{p) N (—£2) = 07 An answer is given by
theorem (1), which is very intuitive at Jeast for a 2-dimensional space R*
{in fig, 1, let p move from one end of P to the other).

Fig. 1

(I} Let Z be a compact subset of R'. If { is an upper semicontinuous
correspondence from P to Z such that, for every p in P, the set {(p) is (non-
empty) convex and satisfies p- [(pY < O, then there is a p in P such that
p) M (=) # 0.
_Proof: P is easily seen to be non-empty, compact, and convex.
Z can be replaced by any compact subset Z” of R' containing it;
Z' is chosen to be convex. As P is non-empty, so, clearly, is Z, and
hence Z°.
Given z in Z', let u{z) be the set of p in P which maximize p- 2
on P. Since P is non-empty, compact, u(z; is non-empty ((4') of 1.7)
and the correspondence u from Z' to P is upper semicontinuous on Z’
(exactly as the supply correspondence #; from R! to ¥, was upper
semicontinucus on R' in 3.5). Since P is convex, p(z) is alse, for
either (1) z = 0 and then u(z) is P itself, or (2} z == 0 and then u(z)
is the intersection of P and the hyperplane {p « R*| p-z = Max P z}.
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Consider now the correspondence ¢ from P x 2 to itself defined
by w(p. 2} = p(z) x {p). The set P x Z' (which is a subset of R#)
is non-empty, compact, convex for P and Z' are. The corre-
spondence p is upper semicontinuous for x and [ are ((3) of 1.8).
Fipally, for all {p, z) in P X Z’ the set @(p, 2) is (non-empty) convex
for p{z) and I(p) are. Therefore all the conditions of Kakutani’s
theorem ((2) of 1.10.d) are satisfied, and ¢ has a fixed point (p*, z%).
Thus (p*, 2*) e u(z*) x {(p*), which is equivalent to:

(2) p*epz*) and z* < {(p*).

The first relation in (2) implies that, for every p in P, one has
p-z*< p*-2*. The second implies that p*-2z* £ 0. Hence, for
every pin P, one has p - z2* < 0. Letting & be one of the first / positive
integers and taking the point p of P defined by (p, = 1,p, =0 for
h £ k), one obtainszf < 0. Thereforez* ¢ —{2. This, with z* € {{p*),
proves that p* has the - desired property.

The central idea of the proof consists, given an excess demand z, in
choosing p in P so as to maximize p-z. Let i be the set of commodities
for which the component of z is the greatest. Maximizing p-z on P
amounts to taking p= 0 such that p, =0 if h¢+H, and 3 p = 1.

kel

This procedure is suggested by the remark made in 3.5: an increase in the
price of a commodity increases, or leaves unchanged, the total supply of
that commodity. This hints at a tendency for an increase in the price of
a commodity to decrease the corresponding excess demand. Ii prompts
one, when trying 1o reduce positive excess demands, to put the weight of
the price system on those commodities for which the excess demand is
the greatest.

5.7. EQUILIBRIUM
It is now possible to give an answer to the question raised at the end of
5.5.
(1} The private ownership economy & = ((X,, <}, (¥)), (w,), (8,))) kas an
equilibrium if: i
foreveryi  (a) X, is closed, convex, and has a lower bound for <,
(b 1) there is no sanafmn consumprmn in X,

> o and {z, ¢ X,

i

z; <x }are closed in X,
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(b.3) ifz} and & are two points of X; and if ¢ is a real mumber
in 10,1[, then «% >- a} implies 1} + (I — )z} >z},
(€} thereis2®in X, such tha 22 gt
Joreveryj (d.1} 0eY;;
(4.2} Y is closed and convex,
(d3) Yn(—-y)< o},
(ddy Yo (-

Proof: The theorem will be proved as an application of (1} of 5.6.
Difficulties, however, arise from the fact that some of the sets ¥,
may not be closed and convex, and some of the sets X, Y; may be
unbounded. In order to overcome them, the proof is organized
as follows. Let Y denote the closed convex hull of Y,, and let
& denote the prlvate ownershlp economy obtained by substltutlng Y
for ¥, in € in part 1, it is noticed that an &-equilibrium is an
éa-equnhbrlum In part 2, it is then shown that &-equilibrium actions
:.,--,,yJ necessarily belong to well-chosen compact, convex subsets
X, Y of X,, ¥;. Denote now by a letter with the superior mark —,
for example, 7; the object defined from X, ¥, exactly as the object
denoted by that letter without the superior mark, for example »,
was defined from X, ¥,. In particular, & will denote the private
ownership economy obtained by substituting X, for X, and Y for ¥;

in &. It is easily checked that an &-equilibrium is an &-equilibrium;;

hence an &-equilibrium is an é"-ethbnum. Part 3 proves that an
&-equilibrium price system is necessarily the product of a vector of
P by a positive number. One is thus led to study, instead of the initial

&-equilibrivm problem, the Eequilibrium problem where the price
system is restricted to P. Part 4 establishes the upper semicontinuity

on P of the correspondences 7 &, Part 5 then shows that all the con-
ditions of (1) of 5.6 are satisfied for Z and Z; hence there is p*in
P such that ap*) intersects —Q. The remaining task of parts 6, 7, 8
is to prove that p* is actually an equilibrium price system for &,

1. An E-equilibrium is an &-equilibrium,

Let YJ denote the convex hull of ¥;; thus }", denotes the closed
convex hull of ¥,. The important fact that

@ 3Y,=
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will be used in part 6; it is proved now. Clearly ¥; = };_',, hence
Yc z Y On the other hand, accordlng to (15) of 1.9, z Y, =7Y;

hence according to (1) of 1.9, Z }" c ¥y However, by (d.2), the

last set is ¥, and the result is establlshed

K ((z}), (), p*) is an &-equilibrium, it is also an é’-equﬂlbnum
To see this it suffices, according to the definition (), (8), () of 5.5,
to check that, if y;‘ maximizes p* - y; on Y, it also maximizes p* - y,
on Y, But this is easily done for, if the closed, convex set {y; e R' |
Py, < p* - yf} contains Y, it also contains Y

2. An E-equilibrium is an & -equilibrium.
Since **(d.3) and (d.4)” implies ¥ N Q = {0}, all the conditions

of (2) of 5.4 are satisfied for és, and the set of its attainable states is

bounded. Therefore, in 6‘5, the attainable consumption set of every
consumer and the attainable production set of every producer (see
end of 5.3) are bounded. Let then X be a closed cube of R! with
center O containing in its interior (the reason for this specification
will appear in parts 7, 8) these m + a sets. By definition:

X,=X,nK and ¥,=¥,nKk

1t 15 clear that f’, is compact, convex, satisfies (b.2), (b.3), and
owns z) (indeed, on account of (¢) and (d.4), 2? is an attainable

consumption for the ith consumer in &), It is also clear that 'l;; is
compact, convex, and owns 0.

If (=), (), p*) is an é”-ethbrlum the state (=), (¥})) is attain-
able for &, hence zfe X,, which is a subset of X, and yJ € ?,, which

is a subset of ¥, therefore ((x}), ", p*)isan é"-eqmllbr:um (see the
definition (a), {8), () of 5.5).

Summing up the conclusions of parts | and 2: an &-equilibrium is
an c?-equilibrium.

3. An &-equilibrium price system is > 0.

Let p* be an &-equitibrium price system. Because of (b.1), p* = 0;
because of {(d.4), p* = 0. Therefore p* > 0, and the open half-line
0, p* intersects the set P. Thus, in the search for an &-equilibrium,
the price system can, without any loss of generality, be restricted
tobein P.
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4. Upper semicontinuity on P of 1j; and -f

Since Y, is compact, the supply correspondence 7 M f from P to ¥;
is upper semicontinuous on P and the profit function #; from P to R
is continuous on P {(3) of 3.5).

Since z? << w,, for every p'in P one has p- 2l < p-w,. Since
0« Y,, for every p in P one has 7{p) => 0. Hence, for every p in P,
the inequality p-z? < p-w, + X 0,7(p) holds, and the corre-

i

spondence ¥; is continuous at the point (p, (p - w; + 2 0,7(p) by
7

(1) of 4.8. Since the function 7; is continuous on P, so is the function
which associates with each p in P the m-tuple of real numbers
(p-w; + 2, 8,7(p)). These remarks prove, with the help of (1) of

i -
4.10 and (2) of 1.8, that the correspondence £, defined at the beginning
of 5.6, is upper semicontinuous on P,
5. There is p* in P and z in — such that z < {(p*).

The set Z = z X, - z Y, — {w} is compact as a sum of compact

sets. Since evcry 5 and every ;s upper semicontinuous on P, so 1s,
by (4) of 1.9, the correspondence T defined at the beginning of 5.6,
From the convexity of ;\7, (b.2) and (b.3}, follow that g}(p) is convex
for every p in P (“‘convexity of preferences and continuity of pre-
ferences™ implies, by (1) of 4.7, “wcak-convexity of preferences,”
and this, in turn, 1mpl:es ‘convexity of .f(p), see the discussion in
4.9). Similarly, from the convexlty of Y follows that 7,(p) is convex
for every p in P. Therefore §(p) 15 convex, as a sum of convex sets,
for every p in P. Finally, exactly as in 5.6, p - Efp) < 0 for every p
in P. Thus all the conditions of (1) of 5.6 are satisfied, and the asser-
tion of the title is proved.

6. Definition of the &-equilibrium actions =} and y}.

Since z ¢ ap"), there is, for each 7, a consumption zf in &A‘}(p*) and,
for each j, a production y; in 7,(p*) such that

) SH -3y -w=uz

Let y denote, as usual, the sum Sy asy; € Y, for every j, the

7 ~
total production y belongs to ¥ by (2). The set Y is convex and
closed, therefore “y « ¥ and z « —00" implies, by (2) of 3.3, “y +
z e Y.” Hence there is, for each /, a production yf in ¥; such that
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@ Sy =y+z
7

It will be proved that (=), (¥}), p*) is an equilibrium of &.
Notice first that *“(3) and (4)” implies

o) S-Sy —w=0.

Therefore the state (), (7)) is attainable for &, hence every o
and every ¥} is in the interior of the cube K.

7. Praperties of 7.

Define, then, w, by

w; =P=|= cw; + ZG”P* - Y
7

Since z is in &(p*), the consumption z¥ is, by definition of &,
a greatest element of the set y,(p*, w) = {x, ¢ X, | p* a2, < wy) for<.
Consequently: t
(6) =Fisagreatestelement of y,(p*, w) = [z, ¢ X, | p* -2, < w}for<.

If it were net so, there would be a consumption = in y{p*, w) such
that x; > zF. Let then xz,(¢) be the point (I — £}z + rx; wheretisa

real number in [0, I{. For every such ¢, the paint z{t} would be in
the set v{p*, w) which is convex and, by {b.3), would satisfy the
refation x,(r) > «}. Moreover, for ¢ close enough to O, the point
x(t) would be in the cube K (since =] is In the interior of K}, hence in
dp*, w) = K N y(p*, w), and =¥ would therefore not be a greatest
element of y,(p*, w) for <.

8. Properties of yf. *

From (6) and (2) of 4.9 follows that p*-2f = w,. Summing
over i, one obtains, from the definition of w; and (3) (and recalling
that > 8, = 1 for every j), p*  z = (. Hence, from {4),

N P*.y* =p*-y
Since y; is in 7,(p*), the production y; maximizes profit (relative to p*)
on Y, for every j; therefore, by (1) of 3.4, y maximizes total profit
on Y. From (7), so does y*. And, by a new application of (1) of 3.4,
{8) yj-" maximizes profit relative to p* on -}-’;, for every j.
In particular p* - yf = p* - y,, hence
wp=p* o+ 30,0yl
4
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This with (6) corresponds to (%) of the definition of £-equilibrium
given in 5.5, while (5) corresponds to (y). As for

{(#) 7 maximizes profit relative to p* an ¥, for every JA

it follows readily from (8): simce o is interior to the cube K, an
argument similar to that used for (6) proves that y* maximizes profit

relative to p* on 1", (hence on Y,).

All the assumptions of theorem (1) bave been discussed earlier with the
exception of (c). The latter expresses that the ith consumer can obtain a
possible consumption by disposing of a positive quantity of each com-
medity from his resources.

NOTES

1. The following are taken from K. J. Arrow and G. Debreu [1]: the concepts of
attainable consumption and production sets and their boundedness properties (the term
“attainable” is due to T. C. Koopmans [1]); the description of a private ownership
economy; the central idea of the proof of (1) of 5.6; theorem (1} of 5.7 (modified
according to the suggestion of H. Uzawa, {1] and private correspondence, to replace
“every Y, is convex™ by “Y is convex").

Their article alse contains historical remarks on the problem of existence of an
equilibrium, and resulis where the inequality << of assumption (¢} of 5.7 is weakened
to < by means of the concept of always desired commodity.

2. Theorem (1) of 5.6 has, independently, been given by D. Gale [1] and H. Nikaido
[1]. Ithank A. Borel, P. Samuel, and A. Weil for the conversations I had with them on
an early formulation of that result. Ar alternative proof will be found in H. W. Kuhn
[2], a generalization to the case of non-free disposal in G. Debreu [5].

3. A briefaccount of the contributions of L. W. McKenzie [1], [2], [3] to the problem
of equilibrium wiil now be presented.

The assumption of free disposal (d.4) in theorem (1) of 5.7 can be removed. Let
Int AY denote the interior of the asymptotic cone of ¥. The theorem remains true if
one replaces (d.4) by

.9 Y Qe {0}
and {(c) by
(c) o)+ ImAY)N X, = 0;

the proof requires only a few minor changes.

A still stronger result is obtained, without further modification of the proof, if the
problem is treated in the smallest linear manifold L containing the set Z. Assume for a
moment that (c’) is replaced, in the set of assemptions of the last paragraph, by ({w;} +
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AY)N X, # 9. It is then easy to see that every set ¥, and every set X, — {w,] is
contained in L. Thus one can restrict oneself to the subspace L of the commodity space
R* (the component of the price system orthogonal to L being indeterminate). Therefore,
denoting by Jnr;, AY the interior of A'Y in L, the existence theorem of 5.7 remains true,
if one replaces (d.4) by

(d’.4} Ynci®
and (c) by
(<) (e} + Im  AYY A X, 2 0.

It is possible 1o weaken further (c”) by means of the concept of always desired com-
modity or by means of the concept, originating in D. Gale {21, of irreducible private
ownership economy (L. W, McKenzie [2], [3]). In L. W. McKenzie [2] will also be found
a study of the case where the preferences of a consumer depend on the actions of the
other agents and on prices.

A model of production emphasizing international trade aspects is treated in L. W.
McKenzie [1]. A similar model, without that particular emphasis, appears in R.
Dorfman, P. A. Samuelson, and R. M. Solow [1], Chapter {3, Both are extensions of a
model of A. Wald [13, [2], [3], 2 simple presentation of which is given in H. W. Kuhn [1].

4. Two important problems have not been studied in this chapter: the uniqueness
and the stability of equilibrium (on this point see K. J. Arrow and L. Hurwicz [1],
K. 3. Arrow, H. D. Block, and L. Hurwicz [1], and their references).
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CHAPTER 6

OPTIMUM

6.1, INTRODUCTION

Given two attainable states of an economy, the second is considered to
be at least as desirable as the first if every consumer desires his consumption
in the second state at least as much as his consumption in the first. An
optimum is thus defined as an attainable state such that, within the
limitations imposed by the consumption sets, the production sets, and
the total resources of the economy, one cannot satisfy better the pre-
ferences of any consumer without satisfying less well those of another.

The two main results of this chapter characterize an optimum by means
of a new concept. Given a price system p, an attainable state is said to be
an equilibrium relative to p if no consumer can satisfy his preferences
better without increasing his expenditure and if no producer can increase
his profit. In 6.3 it is shown, under certain weak assumptions, that, if an
attainable state of an economy is an equilibrium relative to a price system,
that state is an optimum. In 6.4 a converse assertion is proved under
somewhat different assumptions: if an attainable state of an economy is
an optimum, there is a price system relative to which that state is an
equilibrium. To sum up briefly, an attainable state is an optimum if and
only if there is a price system to which all the agents are adapted in the way
described above. These two essential theorems of the theory of value thus
explain the role of prices in an economy.

6.2. OPTIMUM AND EQUILIBRIUM RELATIVE TO A PRICE SYSTEM

Consider the economy E = ((X,, <), (¥;), w). Given two attainable

states of £, ((z,), (3,)) and ((z}), (;y}f)),1 the second is said to be at least as
desired as the first, and one writes ((z,), (,)), < (), (y;)), if, for every i,
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z; < a:: ie., if every consumer desires his consumption in the second

state at least as much as his consumption in the first. It is easy to check
that the relation <, defined on the set 4 of attainable states of E by this
unanimity principle for consumers, is a preordering. It is clear that two
atiainable states of £ may not be comparable, i.e., that the preordering <
may hot be complete. -

Let (), (y;) and ((x}), (¥)) be two attainable states of the economy E.
According to the definition of 14.c, (=), (%,)) < ((z)), (yJ'-)) means: for
every i, :c,,ﬁ:c;, and, for at least one i, z; < ;. The second state is then

T

1
said to be preferred to the first: every consumer desires his consumption
in the second state at least as much as that in the first, and at least one
consumer actually prefers his consumption in the second state to that in
the first. Similarly, according to 1.4.c, ((x), (¥,)) ~ ({z}), (¥;)) means: for
every i, z; 7 x;. The two states are then said to be indifferent: for every
consumer, his consumptions in the two states are indifferent.

An optimum of the economy E is now defined as an attainable state to
which no attainable state is preferred. It is 2 maximal element of the set A4
for the preordering <. This can be paraphrased as follows: when an
attainable state is not an optimum, it is possible, by suitable changes in
productions and consumptions, to satisfy better the preferences of at
least one consumer without satisfying less well those of any other; when
an attainable state is an optimum, this is no longer possible, a better
satisfaction of the preferences of a consumer necessarily occurs at the
expense of the satisfaction of the preferences of another. Apart from the
trivial case when they are indifferent, two optimums are not comparable.

The main definitions given above are gathered here:

A preordering < is defined on the set A of attainable states of an economy
E by ((z), (y,))-< (=D, (yj)) if, for every I, z; —<:c An optimum of E is
a maximal element of A for <.

An intuitive representation of the set A preordered by < in the space R™
ordered by << can be obtained in the case when, foreveryi = 1, -, m, the
consumption set X; is connected and the preference preordering < is

b3

continuous ((a) of 4.6). Then there is, for every i, a continuous utility
function u, from X to R ({1) of 4.6). Define the function u from A4 to R™
by associating with the attainable state ((x)), (y,)} the m-tuple of real
numbers (#(z,)). Itisclear that((x), (v;)) < (=), (;))if and only if u((z,),
(v ) =< u{(z)), (v})). Comparing two attainable states for the preordering <
is therefore equivalent to comparing their images in R™by the functionu for
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6.2 THEORY OF VALUE

the ordering <. In particular, an attainable state is preferred to another if
and only if the image by u of the first > the image by u of the second; two
attainable states are indifferent if and only if their images by u are the same;
an attainable state is an optimum if and only if its image by u is a maximal
element for < of the image U = u(4) of 4 by u. Figure 1 illustrates the

U = ulA)

Fig. 1

above concepts in the case where there are two consumers in the economy
E; it is drawn on the assumptions that the representation u of 4 in R?
exists and that, moreover, the set U = u(d4) is compact (this last assump-
tion will be discussed in the proof of (1)}. A state represented by a, or by
b, is preferred to a state represented by 0. A state is an optimum if and
only if it is represented by a point in the heavy-lined part of the boundary
of U. A state represented by a (which is an optimum) is not comparable
to a state represented by b (which is nof an optimum). Figure I emphasizes
that an optimum is not necessarily unique, and that two optimums which
are not indifferent are not comparable.

The preceding representation of 4 in R™ also gives an easy answer to
the question: given an economy £, does it have an optimum?

(1) The economy E = (X, ﬁ), (Y,), w) has an optimum if: for every i,
(8) X, is closed, connected, and has a lower bound for <,
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OPTIMUM 6.2

(b) for every z; in X, the sets {w, ¢ X;| x> z}} and {=z, € X, |z, < %} are
closed in X;; i T

{c} Y iy closed, convex, and satisfies ¥ 1 Q& = {0},

(d weX—Y.

Proof: According to (1) of 4.6, there is, for every i, a continuous
utility function u;. Hence the representation u of 4 in R™ exists,
and is continupus. Finding an optimum of the economy Z is then
equivalent to finding a maximal element of the set U = u(A) for the
ordering < of R™,

Consider the economy E' = ((X,, <), Y, w)derived from the

£

economy E by replacing the n production sets Y, by their sum Y.
Let A’ be the set of attainable states of E'. Using the same utility
functions u; as above, one obtains the continuous representation u'
of A" in R™. It is easy to check that 2 point of R™ belongs to 4'{(A")
if and only if it belongs to u(A), i.e., that w'(4") = U/. But, according
to (1} and (2) of 5.4, the set A’ is closed and bounded. Therefore the
set U ix compact as the image of a compact set, A’, by a continuous
function, #" ((4) of 1.7). Moreover, by (d), the set U is not empty.

In order o have a maximal element of U for < it ie clearly suffi-
cient to maximize on I/ any continuous, increasing (see 1.4.k) function
from R™ ordered by < to R.

An important characterization of an optimum will be given in the next
two sections. To this end a new concept is introduced here. Given a price
system p, a state ((z7), (4])) of an economy E is said to be an equifibrium
relative to p if: («) for the ith consumer, =¥ is (see 4.9) an equilibrium
consumption relative to p; (f) for the jth producer, yf is (see 3.4) an
equilibrium production relative to p; (¥} the state ((z7), (7))} is a market
equilibrium. Formally:

A stare (), (570 of E Is an equilibrium relarive 1o the price system p
in RV if:

(@) 2 is a greatest element of {x, ¢ X;|p -2, < p- ¥} for <, for every i,
(B) yf maximizes p-y; on Y, for every j, t
() z*—y*=uw,

Clearly, if ((=}), (]}, p*) is an equilibrium of a private ownership
economy, the state ((z}), (4)) is an equilibrium relative to p* for the
corresponding economy. Conversely, let the state ((z}), (&) be an
equilibrium relative to p* for an economy E; it is easy to check that
(=), (), p*)is an equilibrium of the private ownership economy obtained
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6.3 THEORY OF VALUE

from E by giving to the ith consumer the resources w; = x! — (I/m)y*
and the shares 6,; = 1/m. Summing up, the state ((zf), (7)) is an equi-
librium relative to p* for an economy E if and only if ((x}), (¥7), p*) is an
equilibrivm of a private ownership economy derived from E by specifying
the resources and the shares of the consumers. The interest of the newly
introduced concept is that it does not require such a specification,

It will be proved in the next two sections that, under proper assumptions
on the economy E, and with an exception noted in 6.4, the concepts of
optimum and of equilibrium relative to & price system are equivalent.

Consider an economy E and denote by X% the set {r; ¢ X, |z, > 27}

3
of consumptions in X; which the ith consumer desires at least as much as
the consumption =! in X;. Given an m-tuple (z¥} of consumptions where
«f « X, for every i, the set

9 G=EX€'!—EY:'

i i
is the set of total resources forming with (X}, <) and (¥,) an economy
which can attain a state {(z,), (#;)) such that E x? for every i. The

preofs of theorems (1) of 6.3 and (1) of 6.4 consist essentially of a study
of the relative position of the point w (the actual total resources) and the
set G (the set of total resources vielding an economy which can satisfy
the preferences of consumers at least as well as some given m-tuple (z}) of
possible consumptions).

6.3. AN EqQUILIBRIUM RELATIVE TO A PRICE SYSTEM Is AN OPTIMUM

(1) Let E be an economy such that, for every i,

(a) X, is convex,
(b} if =] and =% are two points of X, and if t is a real mumber in 10, 1],
then 22 > z} implies 12 + (1 — Da} > x.
An equilibrium ((7), (y})) relative o a price system p, where no %7 is a
satiarion consumption, is an oplimum.
Proof: Consider the function from R' to R defined by e~ p - a.
Since the conditions of (2) of 4.9 are satisfied, it follows from (a) of
6.2 that =} minimizes p - @ on X¥. Moreover, from {8) of 6.2, —y}
minimizes p-a on —Y,. Therefore, by (1) of 3.4, Yaf — 3 yf,

1 Kl
which is equal to ©, minimizes p-a on G =2 XH — Y ¥, (this
i J
shows, incidentally, that w is in the boundary of G; see fig. 2).
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Let, then, {(z,), () be an attainable state such that z, >z} for

every i. It will be proved that x, 7z} for every ¢, and ihis will
establish the theorem. Since x —y =w, the point 3 o, ~ ¥ ¥

i j
minimizes p - @ on G, and this implies, by (1) of 3.4, that x, minimizes
p-aon X¥ for every i. Therefore p-x, < p- =¥, and, by () of 6.2,
z, <2}, g.ed

Fig. 2
6.4. AN OrTIMUM 1S AN EQUILIBRIUM RELATIVE TO A PRICE SYSTEM

A deeper theorem will now be proved.
(1) Let E be an economy such that: for every i,
(a) X, is convex,
(.1} for every z} in X, the sets [z, ¢ X, | =, >- w} and {x,c X, |2, <2}
are closed in X, 7
(b.2) xfx and a? are fwo points of X; and if t is a real number in 1, 1],

then 3 > z! zmpfzes w? 4 (1 — t)x >—

{c) Yis canuex

Given an optimum ((z}), (41)) where some x¥ is not a satiation consump-
tion, there is a price system p different from 0 such that:
x; - 2t} for every i,

i

(x) aF minimizes p- x, on {x, ¢ X,
(8) ¥ maximizesp-y,on Y, for every j.
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Proof- Let X’ "denote the set {z. ¢ X;. |z, >z"} of consumptions

in X} which the i'th consumer prefers to the consumptlon zf in X
Consider now the set

G= X5 +gxr-—zy

i’

of total resources forming with (X, <) and (Y;) an economy which
can attain & state ((z;), (y,)) such that ;. >— z} and z, >—x foris=i 1

Since the state ((m ), (yJ ) is an optlmum w does not belong to G
Moreovcr, it follows from (a), (b.1), and (b.2), by (1) of 4.7, that the

sets Xz' and X’ are convex. Hence G is convex as a sum of convex
sets. Thus, by Minkowski’s theorem ((16) of 1.9.x), there is a hyper-

plane H through w, bounding for (O?, 1.€., there is p in R* different
from 0 such that p-a = p - w for every @ in G. o s
According to (2) of 47, if x, 7 x¥, then z, is adherent to X3,
In other words, the set X,?E- is contained in the adherence of )?55".' .
Therefore the set G defined by {(8) of 6.2 is contained in the sum of the
adherences of the m + n sets adding up to G. As this sum of
adherences is, by (1) of 1.9.f, contained in the adherence of(;, the set G

is contained in the adherence of G, hence in the closed half-space
above the hyperplane M. Since the point w belongs to G, it minimizes
p+aon G (thus wis in the boundary of G; see fig. 2). It follows from

w-—Zx -—Zyj,by (1) of 3.4, that =¥ minimizes p-a on X7 for

every I, and —y} minimizes p - @ on =Y, for every j, q.e. 4.

If the exceptional case where p - af is the smallesi expenditure relative

to p in the consumption set X; does not occur, then («) of 6.4 implies (x)
of 6.2 by (1) of 4.9, and ((z), (y;-")) is indeed an equilibrium relative to p.

NotEes

This chapter is based on K. I. Arrow [I] a2 G. Debreu 1], [4].

A bibliography on the problem of optimum wiil be found in the two survey articies

A. Bergson (1], K. Boulding [1]. The most interesting treatments of this problem by
the calculus have been given by O. Lange 1) and M. Allais [1], Chapter 4, Section E.
The representation of the set of attainable states of an economy illustrated by fig. 1
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is borrowed from M..Allais {1], Chapter 4, Section E, and P. A, Samuelson [1], Chapter
8,[2. The set 3, X7 at the end of 6.2 is related to the concept of community indif-

1
ference curve of T. Scitovsky [1].

2, Theorems similar to (1) of 6.3 and (1) of 6.4 are proved when the commodity
space is an arbitrary vector space over the reals in G. Debreu [4]. This provides, in
particular, a solution of the problem of optimum when the dates form 2 sequence
extending indefinitely in the future, a case studied by E. Malinvaud [!] with a dif-
ferent technique.
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CHAPTER 7

UNCERTAINTY

7.1. INTRODUCTION

The analysis is extended in this chapter to the case where uncertain
events determine the consumption sets, the production sets, and the
resources of the economy. A contract for the transfer of a commodity now
specifies, in addition io its physical properties, its location and its date,
an event on the occurrence of which the transfer is conditional. This new
definition of a commodity allows one to obtain a theory of uncertainty
free from any probability concept and formally identical with the theory
of certainty developed in the preceding chapters.

7.2, EVENTS

An economy whose activity extends over T elementary time-intervals,
or dates, will be studied. Itis assumed that the uncertainty of the environ-
ment during that period originates in the choice that Nature makes among
a finite number of alternatives. These alternatives will be called events ar T
and indicated by an index ey running from 15 to kp. Once e, is given,
atmospheric conditions, natural disasters, technical possibilities, .. . are
determined for the entire period.

At the beginning of date ¢, the agents of the economy have some infor-
mation about the event at 7 which will obtain. This information can
be formally presented as follows. The set of events at T is partitioned
into non-empty subsets called events at ¢ and indicated by an index e,
running from 1, to k,. At the beginning of date 7, every agent knows to
what event at ¢ the event at T which will obtain belongs. At the beginning
of date 1 + 1, further information is available, i.e., the partition which
defines the events at ¢ 4 1 is derived by partitioning the events at . The
events at ¢ = 1, -+ -, T can be conveniently represented by the vertices of
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a tree with the vertex 1, corresponding to the absence of information
prevailing initially. In fig.  such an event tree is drawn for the particular
case where T = 3.

Fig. 1

7.3. COMMODITIES AND PRICES

Wheat with specified physical characteristics available at location s,
at date ¢ will play entirely different economic roles according to the event
at + which obtains (in particular, according to precipitation during the
growing season). One is thus led to define a commodity in this new context
by its physical characteristics, its location, and its event (or vertex of the
event tree; this vertex defining implicitly the date of the commeodity).
A contract for delivery of wheat between two agents takes, for example,
the form: the first agent shall deliver to the second agent, who shall
accept delivery, five thousand bushels of wheat of a specified type at
location s, at event ¢,. If ¢, does not obtain, no delivery takes place. It was
remarked in Chapter 2 that the definition of a certain commodity might
require several dates (and several locations). Therefore the definition of
an uncertain commodity may require here several events (and several
locations). Summing up, the concept of uncertain commodity is derived
from the concept of certain commodity by substituting the tree structure
of events for the line structure of dates and replacing everywhere “date”
by “‘event.”

It is assumed that there is only a finite number / of commodities; these
are indicated by an index b running from 1 to [ It is also assumed that
the quantity of any one of them can be any real number. Given a sign
convention for the inputs and the outputs of an agent, a complete plan of
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action, or more briefly an action, for him is represented by a point a of
the commodity space R'. The plan of action a made initially for the whole
future specifies for each good and service the quantity that he will make
available, or that will be made available to him, at each location, at each
date, and at each event.

The price p, of the kth commodity is a real number interpreted as the
amount paid {in the sense of 2.1) initially by (resp. to) the agent who
commits himself to accept (resp. to make) delivery of one unit of that
commodity. Payment is irrevecably made although delivery does not take
place if specified events do not obtain. An agent who buys a bushel of
No. 2 Red Winter Wheat available in Chicago at date ¢ in any event buys in
fact as many commeodities as there are events at 1. The usual futures “price™
thus corresponds to a sum of prices of uncertain commodities. The price
system is the Muple p = (py, -, pp. " "+, py). The value of an action a
relative to the price system p is the inner product p - a.

7.4. PRODUCERS

An action y; of the jth producer is called a production (inputs are negative
and outputs positive). Let y(es) denote the vector of the componenis of
¥; associated with the unicursal path from the vertex 1, of the event tree
to the vertex e, and let ¥;[e;] be the certain production set associated
with the same path. The production y; is possibie if and only if y{e;)
belongs to Y,[ey] for every event ey at T. The set of productions y,
possible for the jth producer is a subset of the commodity space R'
denoted ¥; and called the production set of the jth producer.

It is easy to interpret the assumptions of 3.3 on production sets in this
new context, and io relate them to the corresponding assumptions in the
case of certainty. For example, if Y[er] is convex for every event ep
at T, then Y, is clearly convex.

Given a price system p and a production ,, the profit of the jth producer
is p-y, Considering the price system as a datum, the jth producer tries
to maximize his profit in his production set. For this he needs neither an
appraisal (conscious or unconscious) of the likelihoods of the varicus
events, nor an attitude toward risk, His behavior amounts to maximizing
the value of the steck outstanding of the jth corporation. In other words,
the jth corporation announces a production plan y,; as a result, its share
has a determined value on the stock market; it chooses its plan so as to
maximize the value of its share.
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7.5. CONSUMERS

An action =z, of the ith consumer is called a consumption (inputs are
positive and outputs negative). Exactly as for a producer, one defines
the copsumption set X, of the ith consumer. It is assumed that the set X;
is completely preordered by the preferences < of the ith consumer. This

1
preference preordering veflects the tastes of the consumer for goods and
services {including, in particular, their spatial and temporal specifications),
his personal appraisal of the Jikelihoods of the various events, and his
attitude toward risk.

The assumptions of 4.3 on consumption sets, and of 4.5-4.7 on
preference preorderings are again easily interpreted in this context of
uncertainty and related to the corresponding assumptions in the case
of certainty. Most interesting are the three convexity assumptions on
preferences of 4.7. Attention will be focused on:

(2) Ifaf=a), then af 4 (1 — f)af=a,

which is the weakest (when preferences satisfy the continuity assumption
(a) of 4.6). This axiom for uncertain consumptions implies an attitude
of risk-aversion for the ith consumer. . To see this, consider the case of
one date and two events which are the outcomes Head and Tail of the
tossing of a coin. Let b and ¢ be two certain consumptions, and denote
by (&, ¢) the uncertain consumption which associates b with event Head
and ¢ with event Tail, by (c, b) the uncertain consumption which makes
the reverse association, Assume moreover that (b, 5) is not indifferent to
(c, €), i.e., that the certain consumptions b and ¢ are not indifferent.
If (b, ¢} is indifferent to (c, §), i.e., if the ith consumer appraises Head
and Tail as being equally likely, (a) asserts that (b + ¢€)/2, (¢ 4 5)/2),
i.e., the certainty of consuming (b 4 ¢)/2, is at least as desired as the
uncertain consumption (b, c) or {c, &).

Given a price system p and his wealth w,, the ith consumer tries to
satisfy his preferences < in the subset of X, defined by the wealth constraint

—~—

P s we '
7.6. EQUILIBRIUM

Finally the total resources are a given vector w of R' such that, for
every event ep at T, the vector w(ep) of the components of w associated
with the unicursal path from the vertex 1, of the event tree to the vertex
e coincides with the certain total resources associated with that path.
The formal description of an economy E ={(X, <. (Y), w) is thus

3
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identical with that given in 5.3. In particular, an attainable state of E is
an (m + n)-tuple ((x.), (y,)) of actions such that
x; e X; for every i, y; < Y, for every j, zx —Ey, =w.

= |
The equality expresses that the actions of the agents are compatible with
the total resources, i.¢., for every event ey at 7T,

2_ zler) — Z yiler) = wleg).

A private awnership‘ecanomy éf‘J is described by an economy {(X;, <),
(YY), w), the resources {w,) of the consumers and their shares (9,). ’fhe
w; are points of R' satisfying E w; =, and the §,; are non-negative
real numbers satisfying i 0, - filfor every j. Given a price system p
and productions (y,) f()r1 ?llle n producers the wealth of the ith consumer

isw, =p-ow, +28‘,p Y,

The formal 1denuty of this theory of uncertainty with the theory
of certainty developed earlier allows one to apply here all the results
established in the preceding chapters. In particular, sufficient conditions
for the existence of an equilibrium for the private ownership economy &
are given by theorem (1} of 5.7.

7.7. OPTIMUM

In the same fashion, theorems (1) of 6.3 and (1) of 6.4 applied to the
economy E yield sufficient conditions for an equilibrium relative to a
price system to be an optimum, and for an optimum to be an equilibrium
relative to a price system.

NOTES

1. Thischapteris based on the mimeographed paper, “Une économie de I'incertain,”
written by the author at Electricité de France in the summer of 1953, The analysis of
the theory of value under uncertainty in terms of choices of Nature originated in
K. J. Arrow [2], where the risk-aversion implication of weak-convexity of preferences
is established. The definition of the preference preordering in 7.5 has been suggested by
the work of L. J. Savage [1].

A similar approach has been taken by E. Baudier [1]. A different attack has been
tried by M. Aliais [2].

2. The assumption that markets exist for all the uncertain commodities introduced
in 7.3 is a natural extension of the usual assumption that markets exist for all the certain
commodities of Chapter 2 (see in particular 2.6).
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