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Preface

How are the prices of reproducible goods determined?

Can the analysis of the distribution of the gross national product and the
determination of production prices ignore wants, the level and structure of
demand? How does the choice of techniques, a switch in the methods of
production, interfere with the accumulation process, the distribution of the
gross national product, and therefore with the structure of prices? What
kind of relationship is there between market prices and production prices?
How should the contemporary analysis contemplate the problem of
exploitation and the relation between labour-values and production prices?
What is the meaning of the ‘standard commodity’? Can the analysis of
accumulation limit itself to permanent regimes with constant returns to
scale? What is the importance of the ‘golden rule’ of accumulation? How is
the dynamic evolution to be analyzed? . . .

These are the main topics we intend to address in the present book.

We shall more specifically analyse the problems generated by the
accumulation and the prices of the so-called ‘reproducible’ commodities,
assuming first that there are constant returns to scale; then we will
contemplate the increasing costs of production, the appearance of different
kinds of rents, and the determination of natural resources’ prices. We shall
assume that commodities are reproduced by means of heterogeneous
commodities and labour, the supply of which is taken to be unlimited.
Production which is, so to speak, pulled by demand, is supposed to be
disposed of without any difficulties. At each period, the stocks of the means
of production, the available (heterogeneous) commodities that can be used
for production, appear to be a constraint, limiting production; this
constraint is relaxed as time goes by, owing to accumulation.

The link with the classical approach is thus obvious. the classical school
focussed its analysis on ‘such commodities only as can be increased in
quantity, by the exertion of human industry’ (D. Ricardo, 1984, chapter 1)
and tended to put aside those for which the quantity could not be increased.
Ricardo referred to these as follows.
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There are some commodities, the value of which is determined by their scarcity
alone. No labour can increase the quantity of such goods, and therefore their value
cannot be lowered by an increased supply. Some rare statues and pictures, scarce
books and coins, wines of a peculiar quality, which can be made only from grapes
grown on a particular soil, of which there is a very limited quantity, are all of this
description. Their value is wholly independent of the quantity of labour originally
necessary to produce them, and varies with the varying wealth and inclinations of
those who are desirous to possess them.

These commodities, however, form a very small part of the mass of commodities
daily exchanged in the market. By far the greatest part of those goods which are the
objects of desire are procured by labour: and they may be multiplied, not in one
country alone, but in many, almost without any assignable limit, if we are disposed
to bestow the labour necessary to obtain them.

This approach is not only due to Ricardo; many other classics' adopted it
and it was approved by Marx (XXXX) in the first pages of The Poverty of
Philosophy. Production of Commodities by Means of Commodities by Sraffa
(1960) follows on the same line. However, this considerable work is limited
to the price theory while the scope of the classical analysis is much broader,
including, among other things, the problems of growth and accumulation
of capital which are at the heart of the general equilibrium model due to J.
von Neumann (1945-6). The latter introduced the first characteristic of the
system he intended to analyse as follows: ‘Goods are produced not only
from “natural factors of production”, but in the first place from each other.
These processes of production may be circular, i.e., good G, is produced
with the aid of good G,, and G, with the aid of G,.’

In von Neuman’s model, consumption is limited to the subsistence level.
Such a limitation will be cleared in the very first chapter of the present book.
The problems arising from the satisfaction of wants, or demand, are
mentioned from the very beginning, and this will allow us to draw a
typology of the structures of production and of goods. The accumulation/
consumption conflict is indeed quite different, depending on whether joint
production prevails and whether it is ‘strong’ or ‘weak’.

The determination of production prices under ‘simple’ production will be
developed in chapter 2; we shall temporarily assume that the choice of the
methods of production has been previously made, so that there are as many
methods of production as there are commodities to produce.

The analysis of production prices is continued in chapter 3 which deals
with peculiar structures of production, the decomposability and irregular-
ity of production systems. Chapter 4 is devoted to a prior study of price
systems under joint production; indeed, the decomposability of productive
systems brings about some new problems. Joint production cannot be
addressed independently of the problems of viability and efficiency of the
system, problems that we shall develop in chapter 7.
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The meaning and the determination of the invariant standard of value
are developed in chapter 5. We shall more particularly emphasise the
treatment of decomposable systems where the notion of a blocking sector
appears to be relevant. We will show that under joint production there is
always a standard of prices. This is to be linked with the existence of a
solution to von Neumann’s model. Finally, we shall address the standard of
activity levels which appears to be the dual of the standard of prices.

Chapter 6 is totally devoted to the analysis of the problems developed by
Marx, i.e., the relation between labour values and production prices, as well
as between the rate of profit and the rate of exploitation; the reformulation
that we shall suggest allows us to maintain a relation between the rate of
profit and the rate of exploitation through a specific commodity, or rather,
through a combination of activities similar to Sraffa’s standard of prices.
This will lead us to deal with the problem of luxury goods and the
decomposability of productive systems; we shall also examine the difficul-
ties arising from joint production systems where some commodities may
have negative labour values; this demonstrates the interest of the notion of
separately reproducible goods, defined in chapter 1.

The problem of switch in methods of production or the choice of
techniques is dealt with in chapter 7. We shall see that under simple
production, the choice among alternative methods of production is made
with the view to minimising production costs (von Neumann’s rule of
profitability). Under joint production, giving up some activities may be the
optimal solution, which, in some circumstances, may entail the appearance
of free goods available at zero price. The life span of fixed capital, the
depreciation of old machines, is analysed under the same principles.
Finally, we shall compare the theory of production prices and linear
programming.

The last chapter deals with some problems related to the dynamic
evolution, where the hypothesis of constant returns to scale is relaxed.
Indeed, provided there are no technical improvements leading to new
methods of production, the development of accumulation entails increas-
ing difficulties in production, leading to the appearance of differential rents
and possibly surplus profits. We shall also analyse the problems due to an
intensified use of scarce natural resources. Even if the problems of
instability, cycles, and economic crisis are not developed here, this chapter
is no doubt at variance with some analyses holding that the theory of
production prices can only take into account permanent regimes; change is
at the heart of this chapter.

This book builds on previous works.? The problems related to demand,
the level of activity and the rhythm of accumulation have been developed
on the basis of suggestions due to D. Lacaze and Ph. de Lavergne and more
recently on those due to Ph. Saucier. We may say that the aim of this book is
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to link Sraffa’s and von Neumann’s analyses using at best M. Morishima’s,
B. Schefold’s, I. Steedman’s, and N. Salvadori’s works. Itis certainly to Ch.
Bidard that this book owes the most, through his papers, the friendly
discussions we had and at the seminars he organised in Paris-X University
at Nanterre. On these latter occasions, we had the great pleasure and the
great chance to have sometimes passionate but always fruitful discussions
with N. Salvadori and P. Garegnani. We certainly will not forget in these
acknowlegements A. d’Autume whose numerous contributions allowed us
to specify and sometimes correct some of our propositions. We are grateful
to G. Dumenil, D. Levy and F. Larbre, for their apposite suggestions. The
present book is an English update of our previous work Prix, profits et
rythmes d’accumulation, published by Economica in 1987.



1 The golden rule of accumulation and prices

Within a simplified model with two goods and two activities (or methods of
production), we will graphically analyse some problems related to accumu-
lation, assuming a steady accumulation of means of production at a
uniform rate g >0 and a rate of profit r >0 that is identical in all industries.
The golden rule hypothesis, i.e., r=g, is not only convenient for drawing
figures, but, as we shall see in chapter 7, it is also a sufficient condition
allowing to choose efficiently among different methods of production. We
will use it extensively in the following pages.

We shali start with a brief typology of the different activities. The obvious
difference between ‘simple’ production and ‘joint’ production needs to be
addressed within a more general context, emphasising the contrast between
‘weak’ and ‘strong’ joint production. But situations may vary with the
rhythm of accumulation; which explains the notion of joint g-production,
that is either weak or strong according to the situation. Through simple
diagrams, we will analyse the meaning of the non-substitution theorem and
the problem caused by the satisfaction of demand in the different systems
we contemplate. We shall also see that the golden rule hypothesis allows to
show very simply on the same diagram the evolution of relative prices with
the rate of profit.

Then, we will analyse the relationship between the level of consumption
(the structure of which is taken to be fixed) and the rhythm of accumulation,
though it appears clearly that the relation between both variables is
decreasing (which explains the use of the term ‘conflict’), the problem has to
be dealt with differently according to the kind of model contemplated.
Finally we shall emphasise the importance of a peculiar category of goods,
i.e., seperately reproducible goods, under joint production. In the simple
production case this issue is not relevant since every good is seperately
reproducible.
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1.1 Typology of activities

Before dealing with the issue of accumulation let us first contemplate a
stationary economy (g =0) with each activity (/) using a certain quantity of
both goods (x;, =0, x;,>0) and homogeneous labour /;. As a normalisation
hypothesis, we assume that all activities use the same quantity of labour (it
may be one hour of work, a man-year, or any labour force available in the
economy), taken to be equal to 1. Consequently, we write a, = x,/l; and
a,= x,/l; which respectively represent the quantities of each good used in
the i'" activity when the latter uses one unit of labour. The final consump-
tion structure of both goods is fixed and known; we have 0<d,/d,< + c0.

The hypothesis of a stationary economy (g=0) allows to draw a first
typology of activities or methods of production.

The activity can be specialized, in the sense that it produces only one of both
goods exclusively; this is simple production.
When both activities are specialised, we have

a, ap b, 0
A= B=
[021 022:| [0 b22:|

For activity | which produces only good 1, the quantity produced b, is thus
obtained using quantities a,, and a,, of both goods. Hence figure 1.1 where
the quantities of goods 1 and 2 are respectively shown on the vertical and
horizontal axes.

The quantities g, and a,, of both goods used as inputs are written
negatively, which allows to define 0A, as the vector of used inputs.



The golden rule of accumulation and prices 3

good2 4 good2 ¢
M, _..-Bi
",' "’, -—__'IB‘.
A0 1 M) 3 ood
A h / 8
S R M,
a¥

Strong joint production Weak joint production

OM;>0 OM;»0
Figure 1.2a Figure 1.2b

—_— —— —

We finally define 0M, =04, +0b,, as the net product of the considered
activity, which is devoted to the production of good 1.

Similarly, if activity 2 is specialised in the production of good 2, OM2
denotes the net product of the considered activity which produces b,, by
using respectively a,, and _‘Zzz_?f both gﬂgs (plus one unit of labour).

Note that only one of 0M, ’s and 0M, ’s components is positive; since
each activity is specialised, it produces only one of the two goods.

If the activity is not specialised, it produces both goods simultaneously: this
is joint production. If both activities have joint productions:

A=|:au alZ] B=|:b” b|2:|
ay ap by by
The considered activity produces vector B, the components of which, b;,
and b, are strictly positive. Joint production is said to be strong when both
components of the net production vector are positive, and it is said to be
weak in the opposite case (figure 1.2). It is worth noting that weak joint
production includes simple production, thus we only need to distinguish
between both cases of joint production.

When the economy is not at a stationary state and the rhythm of
accumulation g becomes positive, point B, representing the gross produc-
tion of the considered activity, does not move since by assumption we are
dealing with the level of production springing from the use of a given
quantity of labour equal to unity; however, all the means of production
increase at a rate g since we respectively use (1 + g)a,, and (1 + g)a,, of each
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good; thus 4,(g) moves along ﬂr with, by construction 04,(g)/04,
=1+g; similarly, M,(g) moves along BM, with BM,(g)/BM,=1+g
(figure 1.3).

Thus, we can show the evolution of the activity’s net product as a
function of the means of production growth rate or rhythm of accumu-
lation; to simplify we shall speak of net g-product.

1.2 Choice of methods of production and satisfaction of demand

In what follows, we shall assume that the economy in question includes
several activities' or methods of production 1,2,3, ..., n; the growth rate gis
given and identical in the whole economy. The structure of demand d,/d, is
also given; the methods of production retained are those allowing to
maximise the level of consumption (at a given g), i.e., to produce the highest
number of consumption baskets. Here, we shall use the terms weak or
strong joint g-production to remind us that g is given.

1.2.1 Context of weak g-production

In this context which includes simple production, let us first contemplate
the case with two methods of production represented by the net g-products
M, and M,. In this case, the use of only one of the two methods would not
allow the self-replacement of the system, since M| and M, have negative
components: each method is a net user of one or both goods.

However, by using both methods of production, we may in some
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conditions obtain a net positive product of each good. These conditions are
those underlined by Hawkins and Simon under simple production:
The first requirement is that at the considered growth rate g of the means
of production, a net surplus of the first good emerges, that is
by —(1+g)a,>0

The second requirement is shown on figure 1.4. In order to have a positive
surplus of both goods, line M, M, must cross the space of goods in the
positive quadrant.

bzz_(l+g)azz>b12_(l +gap,
by—(1+g)ay~ by =(I+g)a
by —(1+gay b~ (1+g)ay,
by —(1+g)ay by—(1+g)ay,

Hence, b,,— (1 + g)a,, >0, since we are in a context of weak joint produc-
tion, and thus b, — (1 +g)a,, <0 and b,, — (1 + g)a,, <0.

On the other hand (see figure 1.5), b, —(1+g)a;,>0 and b,,—
(1+ g)a,,>0 are necessary but not sufficient conditions to obtain a net
positive product of both goods.

If the previous conditions are satisfied, the intersection between segment
M, M, and the positive quadrant of the diagram shows the set of consump-
tion possibilities. Indeed, each point on segment M, M, represents a linear
combination of two activities using the same quantity of labour (remember
that for simplicity’s sake we assume it is equal to 1).

Let |zgf|>|tga| and thus

or also



6 Prices profits and rhythms of accumulation

good 2

by-(1+g)ay

by -(1+gay

good 1

M,

Figure 1.5

Example

Let M,=(—2, +3)and M,=(+4, —1). Any convex combination
of M, and M, is given by M=hM + (1 — h)M, with 0<h<1. We can see
that M>0 < 1/4<h<?2/3.

Intersection C between M, M, and the line bearing vector d is equal to a
number ¢ of baskets d= (d,, d,). (Remember that the structure of demand is
taken to be fixed.) The ratio CM,/CM, gives the relative importance of
employment in both activities. Finally, we note that the simultaneous use of
both methods M, and M, allows us to satisfy any structure of demand:
suffice to give line d any slope between 0 and infinity on the diagram.

If a large number of methods of production are available, all of them will
not be used. We shall show that, except in the case of collinearity which we
will return to in chapter 7, we will use two methods of production to
produce two goods (more generally, this means that there are as many
methods of production as there are goods to produce and therefore that the
system is square).

Among the ten methods of production shown on figure 1.6, it appears
clearly that methods M, and M, are those which, for a given quantity of
used labour, allows us to maximise the level of consumption (at a given g).
The intersection between M,M; and the positive quadrant (bold on the
figure) defines the efficiency frontier of the considered economic system. The
choice of methods of production defining the efficiency frontier is indepen-
dent of the structure of consumption, and thus of the direction of line d. We
find here the conclusion of the non-substitution theorem.
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Remark

In some cases of collinearity (figure 1.7), the number of activities
used can be greater than the number of goods produced. Thus, if activities
M, and M jare located on segment M,M,, in addition to activities 9 and 10
we will be able to use activities 2 and 8.

1.2.2 Context of strong joint g-production

Let us first suppose that to produce both goods, we have at our disposal two
methods of production such that their respective net g-productions are
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represented by the coordinates of M; and M;. Let f; and f; be the slopes of
0M; and 0M, respectively. Then several cases have to be distinguished as a
function of what was assumed about the structure of demand (i.e., the slope

fofad).

(a)

(b)

©

If f;< f<f; (see figure 1.8) the demand line is within the cone formed by
the net g-production vectors. We have here a case similar to the one
contemplated under weak joint production: demand can be perfectly
satisfied by using both methods of production simultaneously; both
goods are economic goods.

If0 <f<f, as shown on figure 1.9, demand cannot be perfectly satisfied
because it is located outside cone M, 0M;. However, it is better to use
exclusively activity M;, whose production structure is closer to d; thus,
the supply of good 2 exceeds demand, as line MK shows, which is
perpendicular to the horizontal axis. Good 2 is thus considered a free
good or non-economic good; it is available at zero price, under the
assumption of free disposal. Good 1 is the only economic good.
Activity j is the only activity used and keeps on producing two goods,
only one of them being considered as an economic good. Conse-
quently, there are as many economic goods as there are activities (except
in the peculiar cases already contemplated).

If f;<f< + o0 as shown in figure 1.10, the treatement is symmetrical to
b; since demand, whose structure is d, is located outside cone M,0M, it
cannot be perfectly satisfied. However, using exclusively activity 0,
allows us to get closer to the desired structure; as a result, the supply of
good 1 exceeds demand (see line ML, perpendicular to the vertical
axis). Thus, good 2 is the only economic good produced by activity (i),
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which, however, keeps on producing good 1. The latter is a free good
and thus is available at zero price.
Thus, within cone M;0M;, demand can be perfectly satisfied and both
goods are economic goods (we will see later on how their prices are
determined). Outside the cone, demand cannot be perfectly satisfied. Only
one of the goods is an economic good; the good produced in excess is
available at zero price. And there always is an equal number of economic
goods and activities (except in the case of collinearity, contemplated
earlier).
It is also worth studying the case when the structure of demand, the set of
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0

Figure 1.11

desired goods, merges with one of the edges of the cone and thus intersects
one apex of the efficiency frontier. Assume for instance that d merges with
0M;; then demand would be perfecly satisfied; only one activity would be
used to produce two economic goods; and the number of activities would
no longer be equal to the number of economic goods. In such a situation we
cannot endogenously determine the price system: one price must be
considered as fixed exogeneously (we can set it equal to 0 as if it were a free
good); the other would be set as a function of the first (under the usual non-
negativity constraints).

Thus, except in peculiar cases, this simple example shows that the systems
of production prices are square: i.e., there is an equal number of methods of
production and of economic goods — ‘the assumption previously made of the
existence of a “second process” can now be replaced by the more general
assumption that the number of processes should be equal to the number of
commodities’ (Sraffa, 1960, para. 50). As a matter of fact, we may also
ponder on the relationship between such a statement and the assumption of
a fixed structure of wants. The latter is a traditional assumption in classical
economics and it is no doubt justified in the first stage of development
(Sraffa is very brief on this issue and only talks about ‘the proportions in
which [the commodities] are required for use’ (para. 50, footnote 2). But
what happens when consumers are able to substitute one good for another?
Then, itis quite possible that, in some cases of joint production, production
systems are not square, which generates some problems which we will
address in chapter 8.

Under strong g-production, we have up to now limited ourselves to a
context with only two methods of production. Let us now relax such a
simplified assumption and turn to figure 1.11.
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In the situation contemplated in figure 1.11, there are three methods of
production M|, M,, M, and demand can be perfectly satisfied whenever the
demand line dis located within cone M ,0M;. Thus, we have here to consider
the outside edges of the cone.

However, within the cone, the choice of methods of production depends
on the structure of demand. This is a very different situation from the one
prevailing under weak joint production; the non-substitution theorem is
not satisfied any more. Indeed, if dis located between 0M, and 0M,, it is the
pair of methods M, M, that will be used; if d is located between 0M, and
0M;, then we will use the combination M,M,. Finally, asindicated earlier, if
dis located outside the cone, we shall use only one method, either M, or M,
depending on the situation and one of the goods will become a non-
economic good. Therefore, here the efficiency frontier is LM, M,M,K. The
broken line shows that demand is not perfectly satisfied and that only one
activity is used. It is worth noting that combination MM, (broken line) is
no doubt possible for some structures of demand, but it will never be used.
Indeed, we can always obtain a greater net product by using either M, M, or
M,M,. Thus, frontier LM ,M,M,K is actually an efficiency frontier in the
sense that at given g and d it is not possible to obtain a greater net product
by using a different combination of activities.

The same reasoning can be applied to figure 1.12, which shows clearly
that activities M, M; and M are dominated and that the efficiency frontier
is LM,M,MXK.

If we can choose between activities M, and M; (figure 1.13), it appears
clearly that at the considered rhythm of accumulation g, M, will never be
used because it is dominated by M, in that it produces more of both goods.
Thus, the efficiency frontier is here LM K: there is only one economic good,
the other being available at zero price. In this connection, the direction of
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the demand line plays a determining role (we have already studied the case
where d merges with 0M;). This example leads to an important conclusion:
the efficiency frontier cannot include increasing segments like M, M, in
which we can obtain more of both goods simultaneously. Thus, the
efficiency frontier is bound to be non-increasing. For example, in figure
1.14, the efficiency frontier is LM, M, K and activity M; is never used (at a
given g). The non-increasing aspect of the efficiency frontier refers to the
analysis of prices that we will address here very briefly (the system of
production prices is dealt with in the following chapters).
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1.3 An analysis of the golden rule of prices

Consider an economic system with two activities producing two goods.
Remember that we are contemplating the case where for /;= 1 each activity i
(i=1,2) produces b, and b, quantities of both goods by respectively using
a, and a, of each of them. Let p, and p, be the prices of one unit of each
good. We assume that all the workers receive the same wage w and that
capitalists retrieve a rate of profit r that is uniform for the whole set of the
means of production. Thus, the system of ( production) prices writes

byp tbyp,=(+r)(a,p, +a,p,)+wl
by pitbyp,=(1+r)(ayp, +ayp,)+wh

Under the assumption /,=1,, by substracting corresponding terms of the
previous equations, we have

Pi(byy = by) + Py (b, — b)) =1+ r)[p\(ay, — ay ) + prla; — ay)]
pilby—(1+r)ay = by +(1+1)ay]
=palbp—(1+r)ay—b,+(1+rap]
from which we obtain
P_ [byy — (1t Nay ]~ [b,— (1 +1)ay,)
Py [by—(1+nay]=[by —(1+r)ay]

As previously, if we assume that within the same system, growth is the same
for all the means of production, the net g-products of each activity are

| good 1 good 2
activity 1 by—(+ga, b,—(1+g)ay,
activity 2 by, —(1+g)a,, by —(1+g)ay

hence figure 1.15.
Then, the slope of the efficiency frontier on segment M, M, can be easily
calculated
by — (1 +g)ay—[b,— (1 +g)a,]
by — (1t g)ay —[by;— (1 +g)ay]

But if this value is compared to the one found earlier for p,/p,, we note that

tga=

— Pi_
r=g="—=—1tga
2
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Thus, in a golden rule situation, where the rate of profit equals the growth
rate, the price ratio p,/p, is equal to the opposite of the slope of the efficiency
Sfrontier; therefore, it is independent of the structure of demand.

We can see that the non-increasing aspect of the efficiency frontier does
not allow negative prices. Negative prices would mean that on a part of the
efficiency frontier segment M;M; has an increasing slope, which is not
possible owing to the requirement set earlier. The efficiency frontier may as
well be horizontal (p,=0) or vertical (p,=0). Then one of the two goods
becomes a non-economic good since only one activity is used which no
longer allows demand to be perfectly satisfied.

Koopmans (1951, p. 67) notes that on one ‘facet’, one segment of the
efficiency frontier, the price ratio can be interpreted as a marginal rate of
substitution. This marginal rate of substitution is constant on each segment
of the efficiency frontier. When we shift to another facet, from one segment
of the efficiency frontier to another, the marginal rate of substitution
cannot be increasing, which rules out a configuration like M;M; M, (figure
1.16): it is indeed obvious that combination M; M, dominates combination
M;M; which cannot belong to the efficiency frontier. Thus, the marginal
rate of substitution is non-increasing.

Also, it is worth noting that the price ratio p,/p, can be directly
represented by the line perpendicular to the efficiency frontier with a slope
— p,/p, (indeed, the ratio between the slopes of both orthogonal lines is
equal to ~ 1). The slope of this perpendicular line directly gives the relative
price ratio p,/p, in a golden rule situation.
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1.4 The accumulation—consumption conflict under ‘simple’ production

Let us first contemplate the case where there are as many methods of
production as there are goods; we will relax such a restrictive assumption
later on.

1.4.1 An equal number of methods and goods

Let us first contemplate the case where both goods are produced by two
activities that are specialised in the production of each of them, in other
words we have a context of ‘simple production’, and there is no choice to
make between different techniques; there are two (and only two) activities
to produce each good. The system is taken to be productive, i.e., at g=0
there is a net surplus of at least one good. Remember that on a diagram
(figure 1.17), this means that M M, crosses the positive quadrant at g=0.
The intersection between M, M, and line drepresenting the final structure of
demand, stands for the maximum level of consumption that can appear in
the considered system at a zero rhythm of accumulation.

What happens when the rhythm of accumulation becomes positive and
then increases? Note that (refer to Saucier 1984b, p. 170) the coordinates of
vectors M, and M, are decreasing functions of g (more precisely, they are
non-increasing functions since one of the goods may not be used as a means
of production). If we write M and M? the vectors of net surplus generated
by the exclusive allocation of one unit of labour, with growth rates
respectively equal to g' and g2 and if g' <g? then M} > M?.

As a result, the set of consumption possibilities pertaining to g2 (>g')
must be included in the set pertaining to g', so that for a higher rhythm of
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accumulation (g) corresponds a lower level of consumption (¢) (whatever
the structure of consumption). The relation c(g) is strictly decreasing.

This demonstration can easily be applied to the case with k goods
produced (simple production) by & activities. Let 4 be the matrix (k x k) of
inputs, taken to be indecomposable, L be the column vector of labour
needs, d the final consumption vector (with d>0), ¢ the level of consump-
tion, g the rhythm of accumulation (or the growth rate of the means of
production) and y the row vector of the activity levels.

The system of activities then writes

b, 0 7. . .
yB=(1+g)yA+cd where B= [0” b ] is a diagonal matrix
22
Itis completed by condition yL = 1, expressing the assumption according to
which the system uses one unit of labour. (Such an assumption is similar to
the one made for the previous simple example, where we used a combi-
nation of linear activities so that only one unit of labour was used, the

definition of the unit of labour being arbitrary.) The previous system may
also write

y[B—(1+g)A]l=cd

Let’s first contemplate the following peculiar cases.

If g =0, the surplus is totally consumed; the level of consumption reaches a
peak C. The activity level system then writes

y[B—A]=Cdor y[I-AB~'}B=Cd

That is [/— A]CdB~'= Cd with A=AB~'>0and d=dB~'>0.
Note that multiplying 4 or d by B~!, is the same as changing units for
each of both goods.
Assuming that the system is productive, matrix (/— 4) has an inverse
(I— A) ™" which is strictly positive. Thus we have
y=Cd(I-A)"'>0
Owing to the normalisation hypothesis yL =1 we have
l=yL=Cd(I-4)"'L
That is
1
=TT

Note: we can define L the vector of direct and indirect labour (‘labour
values’ in the sense of Marx) (see chapter 5) as follows
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A=AA+L =>A=(I-A)"'L

Thus C, the maximum level of consumption of structure d, resulting from
the use of one unit of labour in system (4,7, L) is such that CdA=1: the
labour value of the basket of goods produced with one unit of labour equals
unity.

If ¢ =0, we assume that all the surplus is accumulated, then the growth rate
g reaches a peak G, and we have:

1
yB=(1+G)yd = H_GyB—yA <
The vector of activity levels is then an eigenvector corresponding to the
dominant eigenvalue a=1/(1+G) of the indecomposable matrix A
= AB~". The Perron-Frobenius theorem ensures that this vector is strictly
positive: y(G)>0.

On figure 1.17 representing the case of two goods produced by two
activities, this finding shows that for a zero consumption level, both vectors
representing the net g-products (written 0G, and 0G,) are collinear and
points G|,0 and G, are on the same line: line G,G, intersects the origin.
Indeed, from y=(1+ G)yA we obtain

yI-(1+G)A]=0

T
T1g)yAB =yA

Taking into account the normalisation condition yL =1
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bn by _
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-1+6)2  1-0+6) 2
bll b22

Since y=(y,,¥,)>0, then the determinant of the matrix above is zero: both
vectors representing the net G-products of both activities are on the same
line.

When g> G, there is no net surplus remaining for consumption, that is
the reason why we only contemplate the case where ge[0G[. The k
equations of the activity levels are then

yI=(1+g)yA+cd

yU-(1+g)Al=cd
When matrix 4 is indecomposable (as we assume it is here) with the
Perron-Frobenius theorem we demonstrate that for all ge[0G[ matrix
[/—-(1+g)A] has an inverse; its inverse is positive and an increasing

function of g.
Hence

y=cd[I-(1+g)A) '>0if c>0and ge[0 G[

In view of requirement yL=1, we have (k+1) equations with k+2

unknowns (the & levels of activities ¢ and g); if for example g is exogenously

determined, then ge[0 G, and we can easily determine the consumption

level, the activity level vector y and the resulting vector of output yB.
Moreover, from requirement yL =1, we obtain

I=yL=cd[I-(1+g)A]"'L

Hence

1
Tdl-(+gd] 'L

4

Asge[0 G[,matrix[I—(1+ g)A] ~'is positive and an increasing function of
g, then ¢(g) is a decreasing function of g. On figure 1.18, the intersections
between the curve and the axes represent two cases that we have already
analysed

g=0=c(g)=C
c=0=> g=G
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Figure 1.18

Under simple production, the latter case corresponds to von Neumann’s
model, provided it is assumed that the consumption required by workers is
taken into account in the characteristics of matrix A.

Remark

In the case of an economy with two goods and two activities (see G.
Abraham-Frois and E. Berrebi, 1980, pp. 12 and 31-3), we can show that
the curve c(g) is convex, linear or concave depending on whether ratio d4L/
dL is greater than, equal to or less than the dominant eigenvalue « of the
indecomposable matrix 4.

[ c

c c

0 G 2 0 G g
c
c
0 G g

Figure 1.19

Hence, the following three configurations (see figure 1.19):

. dAL
convex v I
uve i
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’ dAL

near curve _dL =a

concave curve —dAL <a
dL

Further, since we have set yL =1 in the general case of k goods produced by
k methods, the relation ¢ — g is linear when L is the eigenvector on the right
of the input matrix 4 which corresponds to the case where all the processes
have the same organic composition (see chapter 6, section 6.3.2).

1.4.2 More methods than goods

Up to now, we have assumed that there are an equal number of goods and
methods of production. This restrictive assumption will be relaxed in the
following developments.

Example

Consider an economy with only two goods to produce and where
three methods of production are available to meet a demand with a given
structure d. We have

52 1 10 0
a=|is| L[t efo ¥
43 1 0 10

Now, the problem is to know which method of production to choose in
order to produce the second good. The selection criterion is based on the
maximisation of the consumption level, that can be obtained per unit of
labour (at given g).We will show that the choice of method varies with the
(exogenous) rhythm of accumulation retained.

We can see on figure 1.20 that, at g=0, the second activity is not used,
since segment M?M? dominates M?M;. When g increases, the net g-
products of each activity shift to the directions shown by the arrows. We
note that for G, =25%, the three points representing the net g-products of
the three activities are on the same line: this is the case we have already
mentioned where the number of activities used can be greater than the
number of goods produced: for g,=25%, combinations M| M, and M| M,
allow us to obtain the same level of consumption. At g>25%, the set of
activities 1 and 2 is dominant and remains as such until the maximum rate
of profit R}, =2/3 is obtained, when points M? and M7 are lined up with the
origin, thus dominating M? (moreover, note that for R;;=3/7<2/3 the
compound system of activities 1 and 3 is not productive any more).
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2 s

The accumulation growth curve is then represented by the outside envelope
of curves c(g) (figure 1.21), each of them plotting one of the systems of
activities. As both curves are decreasing, the outside envelope is also
decreasing.

For ge[0 25 per cent] it is system (13) which is dominant.

For g=25 per cent both systems allow to obtain the same level of

consumption per unit of labour.

For ge[25 percent 3/7] it is system (12) which is dominant.

For ge[3/7 2/3] system (12) is the only productive one.
Thus, under simple production, at a given g, the choice of techniques is
independent of the structure of demand. On the figure showing the net g-
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Figure 1.21

products, it appears that one of the two systems of activities dominates the
other (at a given g) whatever the direction d chosen. More particularly, if
two systems are compatible at a given growth rate, they are so indepen-
dently of the structure of demand. This important property stops being
necessarily satisfied under joint production. But under weak joint production
as under simple production, the choice of techniques depends on g for a given d,
while it is independent of d at a given g.

1.5 The accumulation—consumption conflict under strong joint production

Weak joint production brings about the same problems as simple produc-
tion and needs to be analysed in the same way. However, additional
difficulties appear when it comes to analysing strong joint production. For
simplicity’s sake, the following developments will be limited to two goods.
They can be applied to a greater number of goods, but this would not allow
a diagrammatic approach.

1.5.1 Joint production can be either weak or strong depending on the
rhythm of accumulation

Joint production may be ‘strong’ for r=g=0, and weak when r=g=R,
(figure 1.22), and remains so until R=G. Thus, when ge[0 R,[, demand is
perfectly satisfied only if it is located within the cone formed by vectors 0M§
and OM¢, a cone that changes according to g. On the other hand, when
g€[R, R[demand is perfectly satisfied whatever its structure. Thus R, can
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be defined as the ‘minimum’ rate of profit in the sense that ininterval [R, R[
all the valid propositions under simple production are satisfied.

Thus it is obvious that the distinction between free and economic goods
varies with g (and with d). When g €[R, R[, the non-substitution theoremis
satisfied: both goods are economic goods and their prices are determined by
the system of production prices. But forge[0 R,[ there will necessarily be a
free good available at zero price if demand is located outside the cone
formed by the net g-product vectors.

Itis worth noting that interval [R, R[does notalwaysexist and thatjoint
production may remain strong all over interval [0 R]. For instance

O LA I N E
134 1 118
for r=g=0, we have

32
M(0)=B—A=[_2 4]

The maximum rate of profit is R=1, for which we have

M(R)=B-(1 +R)A=[ 2 O:I
-50
When R= 1, vectors 0M [} and OMJ are lined up on the horizontal axis. The
surplus becomes negative when r> 1.
We can see (figure 1.23) that when re[0 R[ joint production remains
strong; it stops being so at r= 1, the value of the rate of profit (or growth
rate) at which the surplus disappears. Thus, there is no interval [R, R[.
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Note that this refers to production systems which are at the same time
indecomposable and non-basic (vectors A2 and B are linearly dependent:
A*=2BY).

1.5.2 Possibility of reversing the slope of the efficiency frontier

For instance, at r=0 (figure 1.24), the slope of the efficiency frontier is
positive: as we have already seen, this corresponds to the case when one
activity dominates the other for the considered rates of growth and/or
profit; the slope of the frontier becomes null at a rate of profit R, beyond
which both goods can be economic goods provided the structure of demand
is located within the cone formed by the net g-products.

It is worth noting that at r=ge€[0 R, ], both goods cannot be economic
goods; one of them will necessarily be a free good. Here, the structure of
demand intervenes only in determining which of them will be a free good
while at r=ge[R, Ry[, it helps to find out whether there are free goods.
Beyond RL we (may) find interval [R, R]introduced earlier.

This case is particularly interesting since it shows that labour values may
be negative (the labour-value ratio corresponds to the price ratio at r=0),
while production prices may be positive for values of r greater than R, (we
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Figure 1.24

will return to this in chapter 6). Indeed, in I. Steedman’s arithmetical
example (1975), we have

S R et s

When re[0 10%] the slope of the efficiency frontier is positive; we have
R, =10%, R,=20% and G=R=44.4949...% (figure 1.25).

The difficulties underlined in the previous example also appear in the
following example (see Schefold, 1978), where strong joint production
prevails only in the first activity. Let

il 3 2 !
Sl EW B=13 L= d=(19 4

and, with r=g:

+
2—92—’) 2—(1+7) 4—% 1-r
B=UHNA=1 3 3049 a-a+n| T | 3 3-r
0 10 5 0 s

Several cases can be contemplated

4

r=0 [B—(1+r)A]=[B—A]=|:O

Wl —
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Figure 1.25

The slope of the efficiency frontier MM is then positive (see figure 1.26);
owing to the free disposal’ assumption only method 1 can be used.
Moreover, since the structure of demand is d=(79 4), method 1 produces
an excess supply of good 2, and only good 1 is an economic good.

The slope of the efficiency frontier remains positive as long as the net
surplus of good 2, produced by method 2, is less than method 1’s; when it
cancels out, the price of good 2 stops being negative at a particular value of

good 2
)KBZ
S L
Mf" M/ L \ 4
S aapeail ; *5,
. M)
M3 good 1
R=G Y
G
M3

the rate of profit r,= R, such that

l—r=——

3—r
= "1=

5

Hence, the second particular case

atr=1 [B-—(1+r)A]=[

15
-y
=3

20

= po—
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The efficiency frontier is parallel to the horizontal axis (see line M| M}).
Owing to the structure of demand, only the first method is used, and the second
good remains a free good.

When the rate of profit (equal to the rate of growth) increases sufficiently,
the second good becomes an economic good when the slope of method 1 net
g production vector equals the final structure of demand, i.e., when r=r,

4—rf2 79 .
o -4 re., r=9/11.

At r=9/11, we have M?=(79/22 2/11). Then demand can be perfectly
satisfied by using method 1 exclusively: one of either good will be
arbitrarily considered as an economic good, while the other is a free
good.

At r=g>9/11, demand can be satisfied by using a combination of
methods (1) and (2). When the rate of profit keeps on increasing, the
excess supply of good 2 produced by method 1 decreases, it cancels out
when r=1.

At r=1, we have a situation similar to weak joint production (see
position M M), where using a combination of both methods allows
to satisfy demand whatever its structure. Indeed, we have

such that

1
2

[B—(1 +r)A]=|:

(™)

0
2] and thus Ry=1.
5

3l

Finally, at r=2, no surplus may emerge any more and we have R=G=2
(see position MEMF). We note that: [R, R]=[l 2].
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1.5.3 The choice of production method may depend on the structure of
demand

We know that two techniques, two systems of activities, are compatible
when they have the same consumption level at a given g: see point (c*,g*) on
figure 1.27a. It is worth noting that there may be several compatibility
points between techniques (figure 1.27b).

c [ 3

€
C‘

*
€2

g* g
Figure 1.27a Figure 1.27b

In a context of simple production (and weak joint production), the
growth rates pertaining to points of compatibility between techniques are
independent of the final structure of demand.

On the other hand, the situation may differ in a context of strong joint
production: two techniques may be compatible at different growth rates if
the structure of demand varies. In other words, the choice of techniques does
not necessarilly depend on the structure of demand. This means that here the
non-substitution theorem does not hold.

Let us revert to the previous example, we have

3 1 32 1
] o) ]
05 10 5

(a) Ifd=(79 4), we have seen earlier that with r=g=9/11 two systems are
compatible:
atre[0 9/11] only method 1is used, and only good 1 is an economic
good,
atre[9/11 2} both methods are used and both goods are economic
goods with positive production prices.
(b) If d=(0 1), the point of compatibility between techniques appears at
r=g=1/2 (see figure 1.26),
atre[0 1/2] only method 1, which dominates method 2, is used and
only good 2 is an economic good,
atre[1/2 2] both methods are used simultaneously; both goods are
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economic goods with positive production prices (note that good 1
has a positive price, but its final demand is not positive).
(c) If d=(1 0) techniques are compatible with r=g=1,
atre[0 1]Jmethod 1 dominates method 2 in the production of good 1
which is the sole economic good,
at re[l 2] both methods are used and both goods are economic
goods.
This iltustration demonstrates that the point of compatibility between two
techniques depends on the rate of growth (which, remember, equals the rate
of profit). However, this is true only in some intervals:

Indeed, when r=ge[1 2], weak joint production prevails; in interval
[R, R[(when itis available), compatibility points between techniques
are independent of the structure of demand. And beyond the maxi-
mum rate of profit R =2, there are no systems allowing production of a
positive surplus.

When r=ge[0 1/2] wecan see that activity 1 always dominates activity 2
(the slope of the efficiency frontier would be positive if both activities
were simultaneously used). Thus, on this interval, the choice of
techniques is independent of demand: the structure of demand matters
only in determining which of either good is an economic good, the
other being a free good.

Finally, we can check that both techniques are compatible at r=4/5 if
d=(18 1)and at r=2/3if d=(11 1). More generally, both techniques are
compatible when the value of the rate of profit is such that the structure of
the first activity perfectly satisfies demand d (while the second activity is
specialized in the production of good 2). Figure 1.26 also shows that two
systems are always compatible when r=g=1/2 if d,/d, >2/15; indeed at
r=1/2 the slope of the efficiency frontier is zero and the production
structure of the first activity is (15/4 1/2) or (15/2 1).

In any case, curve (c, g) is decreasing; it consists in the (outside) envelopes
of curves (c, g) pertaining to each system of production allowing to satisfy
demand with positive production prices.

It is worth noting that the problems of compatibility between the two
techniques outlined above do not threaten the continuity of the curve; at g;
as at gy (see figure 1.27), curve c¢(g) cannot be derived. It remains
continuous. However, the continuity of frontier ¢(g) may be altered; let us
now contemplate such a problem.

1.5.4 The discontinuity of the consumption-accumulation envelope curve

(c.g)

This phenomenon was first illustrated by T. Bromek (1974). Let us use his
example
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3

3]
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Figure 1.28 shows the different values of the net g-products of these three

values of g=r.

Owing to the structure of demand d=(1 0), which merges with the
horizontal axis, it appears clearly that as long as the second activity is
productive, i.e., when re[0 1/3], it dominates the first and is the only one to
be used, with the second good being a free good.

Atre[l/3 1]thefirstactivity is the only one that can be used; then, owing
to the structure of demand, good 1 is the only good produced. This activity
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stops being productive at r= 1, which appears to be the maximum rate of
profit of the system.

At r=g=1/3, a discontinuity appears; since, when the rhythm of
accumulation g has a greater value, the second activity stops being
productive and is replaced by activity 1 which is much less productive at
values of r=g less than the critical value; hence, curve c¢(g) on figure 1.29.
Let us emphasise that both segments forming the curve represent curves
(¢,£) pertaining to two techniques (though reduced to one activity, which
have nothing in common but to produce the same goods).

As emphasised by S. Takeda (1983), such a discontinuity is due, not to
the fact that one technique stops being optimal (as in a case of switch in
techniques), but to the fact that it stops being productive beyond that rate
of profit. Such a phenomenon cannot happen when system (4, B) is
indecomposable.

It may happen, however, in a simpler case where only one method of
production is available to produce both goods.

Let

a=(1/3 3/2) 1,=1 b=(2 2)withd=(1 0)

!

These data are the same as those characterising the second method in the
previous example. We can see that the level of consumption, the structure
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Figure 1.30

for which is d=(1 0),’ is positive at the maximum growth rate G=1/3. It
may be amazing to find out that at the maximum growth rate G as defined
by von Neumann in a model which ignores consumption, the consumption
level is however positive. The fact is that in the present case consumption
applies exclusively to the first good which appears as over-abundant in von
Neumann’s model (see figure 1.30).

1.5.5 Is the existence of a maximum rate of profit ensured?

If under simple production (and weak joint production) the mere producti-
vity of the system suffices to ensure the existence of a positive maximum rate
of growth, the issue is worth examining again under strong joint produc-
tion. The counter example due to Manara (1968) does show well that there
are joint production systems in which there is no maximum rate of profit.
Indeed, let

A= 1 1.1 B 1.09 1.144
111 | 1.144 0.99
The determinant of matrix B— (1 +r)A equals

—0.002836+0.0168r—0.21r*<0 vr

Thus the determinant never cancels out and system (A4, B) has no maximum
rate of profit.

Let us consider this problem again. Since it is assumed that a situation of
golden rule prevails r=g, and our purpose is to find the maximum rate of
growth, we have a von Neumann model.
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But we know that as long as system (A4, B) is technologically and
economically indecomposable, there is a maximum rate of growth G equal
to a rate of profit R such that at this rate no activity makes any surplus
profits.

This existence theorem, leads to a reconsideration of the model due to
Manara. We can demonstrate that there is a maximum rate of profit that is
equal to the rate of growth and find its value provided (1) we distinguish
between economic and free goods and (2) we assume that labour is
necessary to make the system work.

Let us first assume that the second hypothesis is satisfied and let

!
L= [II:I >(0: at r=g=0, we can determine the net product vectors of both
2

activities M? and M. We write:

(a) Atr=g=0,the first activity yields a positive net surplus of both goods,
that is per unit of labour: (0.09//, 0.044//,). When r=g becomes
positive the coordinates of the net product vector become

(1.09—(1+g).1 1.144—(1+g).1.17_[0.09-g 0.044—1.Ig
I, I, oy I,

Note that:
at g,,=4% the activity’s net surplus of good 2 equals zero and
becomes negative at g>4%
at g,,=9% the activity’s net surplus of good 1 equals zero and
becomes negative at g>9%
(b) Atr=g=0, the second activity shows a net product vector that is non-
positive (0.044/, —0.01/1,). When g becomes positive the coordinates
of the net g-product vector become

1.144— (1+2)1.1 0.99—(1+g).17_[0.044—1.1g —0.01 — g
12 12 12 12

Thus at g=0, this activity only produces a positive net surplus of good 1|
while at g,, =4% the net surplus of good 1 of the same activity is zero and
becomes negative at g>4%.

Figure 1.31 shows the case when /, =1 and /,= 1/3. Indeed, we can show
that the efficiency frontier has a negative slope, ensuring positive prices,
only when /,//,€[0 44/90]. This is demonstrated in the following example
(though it is not really significant compared to the topic of our analysis, as
we shall see later on).

When g increases, the efficiency frontier M{M5 shifts ‘south-west’; note
that there is no surplus any more when g=4%. For such a value of g
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good 2 4

Figure 1.31

(independent of the structure /,//, considered ) the first activity is the only
one that can be used.

Thus, the maximum rate of growth (and profit) is 4%. At this rate, only
the first activity is used and supplies a net surplus of components (0.05 0).
Then good 1is a free good, and good 2 is the only economic good (here, the
structure of demand does not have to be taken into account since, when we
seek for the maximum rate of growth, we assume a zero consumption).

Thus, distinguishing free goods from economic goods and the golden
rule hypothesis allow us to wave the paradox underlined by Manara and
agree with von Neumann’s rule. When the system is indecomposable (or for
the indecomposable part of a decomposable system), there is always a
maximum rate of growth G equal to the rate of profit (and growth) in the
sense of Sraffa; to emphasise this, it may happen that some activities (as in
Manara’s model) are not used because they do not produce any net surplus.

Itis worth noting that two activities can be simultaneously used provided
(a) demand is satisfied and (b) production prices are positive; in other
words, when the efficiency frontier has a negative slope.

But, in the example above (figure 1.32),* this requirement is satisfied only
if ge[0 1.82608%). Beyond that value, the first activity dominates the
second and is the only one to be used.

Thus Manara’s paradox can be relaxed. It is due to the fact that his model
is the opposite extreme of the simple production system in which each
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activity is specialised in the production of one good. In the case contem-
plated by Manara both activities produce both goods but they are virtually
specialised in the production of the same good: when g increases, both
points representing the net g-products move in the same direction in a
particular way: they leave the positive quadrant crossing the same axis, that
of good 1; this illustrates the fact that both activities first produce good 1
and incidentally good 2. This explains why when g=G the good that is
supplied in excess becomes a free good.

1.6 Separately reproducible goods and strong joint production

The simple model with two goods allows to underline the notion of
separately reproducible goods. At a given g, let M, and M, be the net
g-products of both activities. If, as shown on figure 1.33, each of the
activities is specialised in the production of a specific good, simple
production or weak joint production prevails. We know that the intersec-
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tion between MM, and the positive quadrant represent the line of
consumption possibilities: as 7 and J are the intersection points between
MM, and the axes, we can see that at / and J, good 1 and good 2
respectively, are separately reproducible.

On the other hand, if strong joint production prevails in both activities,
none of the goods is separately reproducible (see figure 1.34): points /and J
representing the separate production of either good, are not located on line
M M,. This situation is economically impossible since it implies a negative
use of labour. Therefore, under strong joint production, none of the goods
is seperately reproducible. Note also that none of the methods is necessary
because a strictly positive net surplus can be obtained through the use of
only one of them, which is out of question under simple production or weak
joint production.

Of course, we could also analyse the case shown on figure 1.35, with only
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one of the methods of production being specialised. Then, only one of the
goods is separately reproducible.

We can restate this analysis in general terms by introducing the notion of
sub-systems definied by Sraffa (1960, appendix A) in Production of Commo-
dities by Means of Commodities. Remember that Sraffa calls sub-system i
the whole set of activities to which there are coefficients such that the net
product of sub-system i consists in one unit of good i.

Let e,=(0,...,0,1,...,0) be the net product of the system at a given g.

Thus we have: ;= y[B— (1 + g)A]

y(e)=e[B—(1 +g)A]_l

If the ith line of matrix [B— (1 + g)A4] "' obtained from ¢,[B—(1+g)A] ' is
positive, good i is g-separately reproducible. If y(e;) has a negative
component, good i is said to be residual®

It appears clearly that if [B—(1+g)A]  '>0 all the commodities are
g-separately reproducible. Otherwise, some goods would be residual: an
increase in good i of the original surplus can be obtained through a decrease
in the level of some activities.

We have to underline that if we consider systems with more than two
goods, all of the goods can be separately reproducible even though one
activity produces a net surplus of more than one good. Thus, in the
following example due to Schneider (1985), we can see that at g =0 we have
[B—(1+g)4] "' =(B— A) ' >0, activity 1 produces a net surplus of goods
1 and 3.

3 -1 % 0.329 0.142 0.034
For (B—A)=| —1 3 —1 |wehave(B—A)"'=[0.196 0.446 0.142
-1 -1 3 0.196 0.196 0.392

In the following case, two activities produce a net surplus of two goods.
However, we can see that (B—A4)™'>0

3 -1 % 0.378 0.137 0.033
For (B—A)=| -1 3 —1]|=(B—A4)"'=[0.137 0.424 0.137
w1 3 0.033 0.137 0.378
As underlined by Schefold (1978b), at g=0, all the goods are separately
reproducible in systems where (B—A4)~'>0 (and more particularly in
systems of simple production or weak joint production). Such a system is
said to be ‘all-engaging’ because a net product can be obtained only if all the
activities are actually used. If this requirement is not satisfied, the joint
production systems include activities that are not necessary; which was
emphasised in a simple example with two goods and two activities.®
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Thus, the important opposition of production systems cannot be based,
at a given g, on the simple production—joint production criterion. Indeed,
we have seen that weak joint production does not pose any more problems
than simple production. However, we cannot limit ourselves to comparing
weak joint production to strong joint production, making of simple
production a peculiar case of weak joint production.

Indeed, we have seen that, beyond the simple case of an economy with
two goods and two activities, all the properties of simple production appear
while some activities, at a given g, produce a net surplus of several goods.
To obtain this suffices, but the condition is important, that all goods are
separately reproducible, or, which is equivalent, that all the methods of
production are necessary. Mathematically, this comes down to knowing
whether matrix [B—(1+g)4] ™' has non-positive elements.

We have to underline that we have been reasoning with a given g. But as
we have seen, and we will revert to this in chapter 3, with a value of g close to
the maximum rate of growth, we can obtain in a golden rule situation, the
usual and safe framework of simple production systems. Paradoxically,
when the rhythm of accumulation becomes sufficient, all the goods become
g-separately reproducible.



2 Systems of production prices

In this chapter we shall examine the problem of the determination of prices
following Sraffa’s (1960) approach in Production of Commodities by Means
of Commodities.'! We will first contemplate the problem of the determi-
nation of prices in a case of production for subsistence, a world of robots
where there is no final consumption. There is no surplus, and prices which
make it possible for the production process to be repeated spring directly
from the methods of production. In a sense, we have here pure production
prices. As soon as the economic system produces more than the minimum
that is necessary to replace what was used up for production, the exchange
values cannot be determined as in the previous case: there is a fundamental
interaction between prices and distributive variables. The notion of ‘wage-
prices’ will allow us to specify the relationship between wage and profit, the
form of which depends on the numeraire chosen to evaluate prices and
wages. After we will show that production prices may be considered as
dated quantities of labour (this is the problem of ‘reduction’) and that we
can easily shift from the hypothesis of wages as a share of surplus to the
hypothesis of ‘advanced’ wages.

Our framework of analysis here is simple production with specialised
activities, while industry systems under joint production are developed in
chapter 4. Finally, since irregular decomposable systems are addressed in
detail in chapter 3, we shall limit the analysis of the present chapter to
regular indecomposable systems.

2.1 A world of robots: production for subsistence

Consider a society which produces just enough to maintain itself, that is to
say, every commodity produced is entirely consumed either as a means of
production or for subsistence. The system is said to be in a self-replacing
state.

More generally, we consider k£ commodities, each of which is produced

39
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by a separate industry. Let a; be the quantity of good j necessary to produce
one unit of good i; the vector of inputs needed to produce one unit of good
is(a;,apy,...,a;,...,a;),and we need not assume that every good enters into

the production of every other. Consequently, some a; may be zeros.
k

Note that for every commodity, we have Y, a;= 1 since, by assumption,
i=1 )
in a self-replacing system, the quantity of goods consumed ) a; and the
i=1
quantity of goods j produced (equal to unity, as seen earlier) is equal.

We assume that every quantity produced and consumed is known; the
unknowns to be determined are p,, p,, ..., p,, representing the values of units
of k commodities which, if adopted, restore ‘the original distribution of the
products and makes it possible for the process to be repeated; such values
spring directly from the methods of production’ (P.S. 1).

Indeed k prices are the solution to the following system

ayp+...tayp;t.. tayp, =p

a,.lpl+...+a,.jpj+...+a,-kpk =p;

ak,p,-’r...+akjpj+...+akkpk =D

Let Ap=p where 4 =[a;]and p =[p;].
k&) 1)

The price vector p appears as the eigenvector of matrix 4 corresponding
to the dominant eigenvalue 1 of A. Vector p is defined up to the multiplica-
tion by scalars, since we can choose any value of any good (or any
combination of goods), as the standard of value: this leaves only k—1
unknowns.

Further there are k equations, but only (k— 1) of them are independent;
indeed, since we assume that the system is in a self-replacing state, the sum
of each column is equal to 1. By adding up all the equations, the same
quantities occur on both sides: then, any one of the equations can be
inferred from the sum of the other (k— 1). This leaves only ‘.4 — 1 indepen-
dent linear equations which uniquely determine the k— 1 prices’.}

Having equal numbers of equations and unknowns is not sufficient to
ensure the positivity of prices. However, we have implicitly assumed that
matrix A is indecomposable. In such conditions, we know that the
eigenvector corresponding to the dominant eigenvalue of an indecompos-
able matrix is strictly positive. Thus all the prices are strictly positive and
uniquely defined (up to the multiplication by scalars).

As an illustration, matrix
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8/15 4/7 3/10
A=|1/5 2/71/5
4/15 1/7 12

has 1 asits dominant eigenvalue because the sum of every column is equal to
1.5

1; the corresponding eigenvector is p=| 0.7 | (or any homothetic vector),
1

which satisfies Ap=p.

Note related to the change of units

The example above is one of those given by Sraffa when he analyses
production for subsistence; but our presentation is a little different and lets
us address the problem of switch in (and choice of ) units of different
commodities. The economic system presented by Sraffa is:

240 quarters wheat + 12 tons iron+ 18 pigs — 450 quarters wheat

90 quarters wheat+ 6 tons iron+ 12 pigs — 21 tons iron

120 quarters wheat+ 3 tons iron + 30 pigs — 60 pigs
Besides, the author adds that the exchange values which ensure replace-
ment all round are

10 quarters wheat=1 ton iron=2 pigs.

Using one formulation or the other and obtaining matrix A is rather easy if
the unit used is the produced quantity of each commodity, that is to say, 450
quarters of wheat, 21 tons of iron, and 60 pigs respectively. Technically this
means that matrix A4 is obtained by dividing every figure of every column of
Sraffa’s system by the quantity of output used as unit (returns to scale are
not considered here; if we assumed constant returns to scale, this would
come down to multiplying or dividing every line of the previous system by
the same number). Such a treatment is interesting for it allows us to apply
linear algebra theorems which assume that the production matrix is the unit
matrix /1.

Itis worth noting that the price vector obtained as the solution to Ap=p,
concerns the relative prices of the quantities chosen as units. In the example
above this would mean that if 1 is the ‘cost’ of 60 pigs, then 0.7 is the ‘cost’ of
21 tons of iron and 1.5 is the ‘cost’ of 450 quarters of wheat. If we want to
obtain prices p,, p,, p; of 1 quarter of wheat, 1 ton of iron and 1 pig, suffice to
divide every element of the price vector previously obtained by the
corresponding quantity; hence

1.5 07 1

pl=ﬁ pz_i Ps3 60
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or also, since this vector is defined up to the multiplication by scalars,
pn=02 p=2 p=1 '

As the ratio of exchange values x,, x,, x, is the opposite of the price ratio, as
indicated by Sraffa, the exchange value required is 10 quarters of wheat for
1 ton of iron and/or 2 pigs. Indeed, by definition we have p,x, = p,x, = p,x,,
hence the figures above.

Thus, the solution is unique and always positive. The exchange values are
determined by the production (and reproduction) conditions of the system,
each industry exactly covering its production costs without surplus or
deficit. The problem is different when there is a surplus.

2.2 Sharing out the surplus

If the economic system produces more than the minimum necessary for
replacement of what was used up in production and there is a surplus to be
distributed,* the exchange values cannot be determined as in a context of
production for subsistence.

2.2.1 Assuming a uniform rate of profit

The relationship between prices and distributive variables appears here
with the problem of distributing any surplus. Sraffa assumes that ‘the
surplus (or profit) must be determined through the same mechanism and at
the same time as are the prices of commodities’ (P.S. 4-5).

Indeed, if we add the rate of profit r (which must be uniform for all
industries) as an unknown, the system becomes

aypt...taypi+.. . tayp(l+r) =p,

apt..tap+.. . taup(1+r) =p,

ak,pl+...+akjpj+...+akkpk(l +r) =p,

or in matrix notation

1
Ap(1+r)y=p = Ap= T+7

which means that p is the eigenvector corresponding to the dominant
eigenvalue 1/(1+r).> Accordingly, we simultaneously determine the domi-
nant eigenvalue 1/(1 +r) of 4, i.e., the rate of profit r and the corresponding
eigenvector p, and (k — 1) relative prices.

As an example, let us use Sraffa’s two-commodity system, wheat and
iron, where there is a surplus of 175 quarters of wheat and no surplus of
iron. By assumption the resulting production equations are the following
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280 quarters wheat + 12 tons iron — 575 quarters wheat
120 quarters wheat+ 8 tons iron — 20 tons iron

Prices and the rate of profit can be easily determined simultaneously by
writing the system under the following form

or also®

fis 0.6 [Pl =_1__ [Pl]
204 p| 1+r P,

By calling o= 1/(1 + r) the dominant eigenvalue of matrix A4, the character-
istic equation det(4 —al)=0 allows us to determine «=92/115 and thus
r=25%.

The ei t P nding to _l___9_2_ is such that 5—6
e eigenvector s corresponding TPRETT: i s

92 36 60 12 ,
P +O.6p2—-ﬁ§pl or also 0~6P2—m1’1- Then, PP =3 P that is to

23
say [ﬁ '] = |: : 2:|. Which means that we will need 575 quarters of wheat to
2

get 20 tons of iron, the relative price ratio of both quantities is given in the
previous relation. As a result, prices p, and p, of 1 quarter of wheatand 1 ton
of iron are respectively p,=23/575=1/25 and p,=12/20=0.6, or by
multiplying both elements of the price vector by 25, we obtain: p,=1,
p>=15. Accordingly, the exchange value of 15 quarters of wheat (good 1) is
1 ton of iron (good 2).

2.2.2 Workers’ wages

How can worker’s wages be taken into account?

As Sraffa puts it ‘we have up to this point regarded wages as consisting of
the necessary subsistence of the workers and thus entering the system on the
same footing as the fuel for the engines or the feed for the cattle’ (P.S. 8). We
may also consider that they include a share of the surplus. In view of this, he
continues, it would be appropriate to separate the two component parts of
the wage and regard only the ‘surplus’ part as variable. However, Sraffa
immediately abandons this assumption and then treats the whole of the
wage as variable, that is to say, paid post-factum as a part of the annual
product while the classics considered that the wage was advanced from
capital.



44 Prices profits and rhythms of accumulation

The subsistence quantities do not appear in the technology matrix any
more. The quantity of labour employed in each industry has now to be
represented explicitly by assuming, for the moment, a uniform quality of
labour.

Wecall /..., 1, the quantities of labour necessary to produce one unit
of each good.

We call ‘w’ the wage per unit of labour, which, as prices, will be expressed
in terms of the chosen numeraire.

On this basis, the equations take the form

anpi o Fagpt o tap(tntwl =p,
apt.tapt. Fapp(l+r)+wl =p,

anpt...tagpt. Fayp(1+r)+wlh =p,
which can be reformulated as follows
(1+nAp+wl=p

P l

withp=| p; | L=} [

Pr | L

2.2.3 The numeraire. arbitrary and necessary

We have here a system of k equations (i.e., kK production equations since we
assume that only one method of production® is available to produce each
good), with k + 2 unknowns: k prices and both distributive variables (w and
r). Since we are interested in the exchange ratio, i.e., the structure of relative
prices, it is always possible to express all the prices in terms of the price of a
particular commodity by making p,=1, or more exactly by making the
value of a quantity of the i commodity u, equal to unity, that is to say,
u;p;=1 (of course, suffice to choose a quantity equal to unity, u,=1, to
obtain the traditional formulation); more generally the normalisation
condition can be written as follows

up=1 with  u=(u,uy, ..., 1,...,14,) 20

Then, it is the value of the composite commodity u which is set equal to
unity. Note that in chapter 2 of Production of Commodities by Means of
Commodities, Sraffa chooses to normalise the system of prices by making
the value of ‘the set of commodities’ which form ‘the national income’ equal
to unity. If we let y be the row vector of activity levels in the economy in
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question, namely y=(y,,¥5,---, Vi» ---» Vi), then the normalisation condition
proposed by Sraffa leads to choosing u= y(I— A4) where y(I—- A)p=1.

Thus, owing to the normalisation condition, the system of equations
writes

p=00+nrNAp+wL with up=1

This gives k+ 1 equations (k production equations and the normalisation
equation) with k+ 2 unknowns (k prices and two distributive variables).

The result of this is that the equation system is not sufficient to determine
the unknowns; one of the unknowns is taken to be fixed, the other is
exogenously fixed and the system presents a degree of freedom.

Itis generally convenient to consider that one of the distributive variables
is exogenous; as the need arises, Sraffa alternatively considers the rate of
profitand the wage as being exogenous. At such a level of abstraction, what
is important is to emphasise that once the value of one of the two
distributive variables is set, the value of the other is fixed at the same time as
the set of production prices (here, matrix A is taken to be indecomposable
and thus all goods are ‘basic’ goods; the decomposability of the technology
matrix is addressed in chapter 3). Further, it is frequently more convenient
to consider r, which is a percentage, as exogenous; while the level of wages,
as prices, is determined as a function of the chosen numeraire: assuming
that w is exogenous implies that the numeraire has already been
determined.

A different way of addressing the problem consists in taking the wage
level as the numeraire of the whole set of prices; prices are then determined
in terms of wages; this is what we can call for short ‘wage-prices’; then the
system of equations writes

p=0Q+nrAp+wL withw=1
or

Poi+nal+r
w w

Under either of these forms, it appears clearly that the system presents a
degree of freedom and we can directly consider the distortion in the price
system as a function of the rate of profit taken to be exogenous.’

2.2.4 Prices of production: existence, uniqueness and positivity

In what follows, we shall limit our analysis to cases of economic interest,
namely the incomes distributed between different social groups (capitalists
and workers) cannot be negative.
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If wages equal zero, the whole surplus goes to capitalists; profit is then at a
maximum rate and is written R, the system of production prices then
becomes

1
= + =
p=({1+R)Ap or also T+ RP Ap

The vector of production prices p is the eigenvector corresponding to the
dominanteigenvalue = 1/(1 + R) of the indecomposable matrix 4; accord-
ing to the Perron-Frobenius theorem, this vector is unique (up to the
multiplication by scalars) and strictly positive. We can see that in the case of
production for subsistence contemplated earlier, we had R=0< a=1: we
note that

o= <l =R>0

1+ R

When profit equals zero, the whole surplus goes to workers; the wage is at a
maximum rate w(0)= W, with r=0, the system of production prices then
becomes

p=Ap+wL

We then revert to Leontief prices and since matrix (/— 4) has an inverse, we
have

p=w(—A)"'L

and%(I_A)-1L=(1+A+A2+...+A"+ ..)L.

When r=0, wage prices appear as the quantities of indirect and direct
labour entering the production of the different commodities, that is to say,
the labour values in the sense of Marx.

Let

0 -
PO -ae
w
For all r included between 0 and the maximum value R, the system of
production prices becomes

p=(+rAp+wL withup=1

from which we obtain [/— (1 +r)A]lp=wL with up=1.

Matrix [I—(1+r)A] has an inverse when re[0 R[ and its inverse is
positive; Thus the production prices of the commodities are defined
uniquely up to the multiplication by scalars and are strictly positive
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p=w[I—(1+r)A]""' Lforall re[0 R[
up=1

Remember that at r= R, matrix [/— (1 +r)A] has no inverse; the existence,
uniqueness and positivity of every price is ensured by the Perron-Frobenius
theorem since then p=(1+ R)Ap.

2.3 Wage prices and wage—profit relations

2.3.1 Characteristics of wage prices

Wage prices are all positive and decreasing functions of the rate of profit at
re[0 R[. Indeed, from the definition of the system of wage prices
p

P_+nal+r
w w

we obtain [/— (1 +r)A4] £= L, and matrix {/— (1 + r)4] having an inverse in

the interval where r is analysed, we have

Poi-a+nam

=T+ +DA+(1+1)?A2+ ... +(1+1)°A"+.. ]L

We know that when r =0, wage prices are equal to labour values in the sense
of Marx. When r — R wage prices are increasing towards infinity; their
increase does not obey any law, which means that the structure of relative
prices is altered when r increases; figure 2.1 shows a possible evolution of
some wage prices. Remember that at r= R, wage prices are not defined but

the structure of relative prices can be determined by the Perron-Frobenius
theorem.

2.3.2 The wage—profit relation

We can enhance an implicit relation, or rather a series of implicit relations
between the wage (w) and the profit (r). Indeed, for a given set of methods of
production represented by matrix 4 and vector L, there are as many wage—
profit relations as there are numeraires of prices; all these curves are
decreasing and intersect point (r= R, w=0). Indeed, from the k equations
of prices, we obtain

[I-(1+r)Alp=wL thatis, p()=w()[[—(1+r)A4]"'L
where for re[0,R[, [I— (1 +r)A4] "' >0.
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0 R r

Figure 2.1

From the normalisation condition up= 1, we obtain
l=up=wull—(1+r)A4]"'L
hence

1
M=+ 4] 'L

which is a decreasing function of r in interval [0, R[ since [I— (1 +r)4] "' is
an increasing function of r in this interval.

It appears clearly that the wage is a decreasing function of the rate of
profit in the considered interval, whatever the commodity u chosen as a
standard. The curve (figure 2.2) intersects the axis for =R which is
independent of the numeraire and for the maximum wage w,(0) written
W,=1/uA since at r=0 [I—(1+1r)4] "', L=[I— A] 'L = A, the vector of
labour values. The exact form of the wage—profit relation also depends on
the chosen standard u; this is the reason why we have chosen to write it
w, (7).

In this connection, let us revert to the normalisation condition of the
system of prices initially imposed by Sraffa. We have already seen (see
2.2.3.) that this condition consisted in setting the value of the whole set of
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0 R r
Figure 2.2

commodities forming the national income equal to 1, i.¢., with the previous
notations

y—Ap=1

From the definition equation of the system of prices, we have yp
=(1+r)yAp+wyL and ryAp+wyL=yp—yAp=y(I—A)p and thus
ryAp+wyL=1.

The total value of the national income, the sum of wages and profits, is set
equal to unity, whatever the wage or the rate of profit. In the peculiar case
when the rate of profit is zero (r = 0) the wage is then at a maximum level W
such that W= 1/yL. Further, it may be convenient to assume that the total
labour is equal to 1, which comes down to taking the total annual labour of
society as unit (see P.S. 10). In such conditions, the wage—profit curve
intersects point (r=0, W= 1) and the wage (at r > 0) represents fractions of
the national income (P.S. 13).

Such a process can be generalised; whatever the commodity chosen as a
standard, we can make sure that curve w,(r) crosses point (r=0, W,=1).
Such a condition comes down to writing up(0)=1.

Since p(0)=W({I—A)"'L=(I—A) 'L with W=1and A=(I—-A4)"'L

up(0)=ul=1< W=1

Then, all the curves w,(r) cross point (r=0, W=1). It is worth noting that
we could have chosen to make the wage—profit curve (and thus all the curves
w(r)) cross another point. Indeed, for any given structure of u, we can
always choose the level of u by writing: u[I— (1 + r,)A4) "' L= C(Cbeing any
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w A

\

-1 0 R r

Figure 2.3

positive scalar) for rye [— 1, R[, an interval in which matrix [/— (1+r4)4] ™
is positive.

Thus, the choice of numeraire poses both a problem of structure and a
problem of level that it would be convenient (but not necessary) to separate.
We can note that choosing the standard comes down to making all the
curves w,(r) cross a common intersection point different from R (which is
already common to all the wage—-profit curves).

Example
If we choose r,= —1 and C=1, the normalisation condition of
prices writes

ull-(1-1A4]"'L=uL=1

That is W,=1 for ry= — 1 whatever the value of u.

This gives the following wage—profit curves (see figure 2.3) characterising
the considered technique at different numeraires.

The exact form of the curve depends both on the structure of production
(of matrix 4 and vector L) and on the numeraire. We have shown
(Abraham-Frois and Berrebi, 1980, pp. 12 and 13) that, in the specific
model with two goods and two activities, the wage—profit curve was convex,
linear or concave depending on whether the ratio u4L/uL was greater than,
equal to or less than the dominant eigenvalue a of matrix 4. Decreasing
wage-profit relations, whatever the numeraire, express an increase in every
wage price in the interval [0, R[. Indeed, from the normalisation condition
of production prices up= 1, we can also obtain up/w=1/w, hence

B !

2 ul&+u2&+...+ui&+...+uk&
w w w w w
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The wage-profit relation can thus be defined as the inverse of a linear
combination of wage prices, the weighting of which depends on the
numeraire chosen for prices u=(u;,uy, ..., u;,...,4;).

2.3.3 Linearisation of the wage-profit relation

If curve (w,r) is always decreasing, its exact form depends on the chosen
numeraire. However, as previously mentioned, the latter is arbitrary and
may be represented by a semi-positive row-vector with k components.

We can show that in a system with single-product industries and
circulating capital, the wage—profit relation can always be made linear
provided we choose as a standard of prices (and of course, of wages) a
particular composite commodity, a homothetic commodity, which is also
Sraffa’s balanced commodity.

Let us revert to the definition and the properties of the eigenvector
corresponding to the dominant eigenvalue of an indecomposable and semi-
positive matrix. Let ¢ be the eigenvector on the left, corresponding to the
dominant eigenvalue o of matrix 4 taken to be indecomposable. By

1
.. - ith o=
definition, we have g4 =agq or, with a 7R

g=(1+ R)qA

By the Perron-Frobenius theorem, this vector is unique, strictly positive
and defined up to the multiplication by scalars; which means that the
previous system allows us to determine the structure of the basket of goods
g, but not its level; the latter is determined by the additional condition
gL=1.

From now on, the system of production prices will be normalised by
using as a standard of prices (and wages) not any commodity, but the net
surplus which would emerge if the considered economy provided a gross
production vector ¢ (thus requiring an intermediate consumption ¢4). The
value of such a net surplus g(/— A)p is taken to be equal to unity; hence the
normalisation condition g(I— A)p=1; then, the system writes

p=(1+rAp+wL
i=q(I-A)p

Now, we have a system of k + 1 equations with k +2 unknowns, from which

we can quite easily obtain a linear relation between wage and profit. Indeed,

by multiplying (on the left) the first system of equations by ¢ and by
rearranging the terms, we obtain

qp—qAp=rqAp+wqL
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This expression can be considerably simplified; indeed:
(@) gp—qAp=q(I—A)p=1
(b) gL=1 as indicated previously
(c) finally, gAp=1/R, since from g= (1 + R)qA we obtain
qp=(1+ R)gAp and RqAp=q(I— A)p=1
hence by replacing

=4 lso w=1--
R w or also w= R

Thus, relation (w, r) can always be made linear provided we choose Sraffa’s
balanced commodity as a numeraire of prices, that is to say, g(I— 4), with
the basket of goods having the same structure as the eigenvector on the left
corresponding to the dominant eigenvalue of the indecomposable matrix
A. Itis the value of such a commodity g (7 — A) which we set equal to unity to
normalise prices.

Remark
We can write: gL=1 < W=1 when u=q(/— A).
Indeed, since, as indicated earlier, we have in the general case

ud=1< W=1
owing to the definition of A=(I— 4) 'L, we obtain
l=uA=q(I-A)(I-A)"'L=gL

2.4 Reduction to dated quantities of labour

‘We shall call “Reduction to dated quantities of labour” [or “Reduction”
for short] an operation by which in the equation of a commodity the
different means of production used are replaced with a series of quantities
of labour, each with its appropriate “date”’ (P.S. 46).

The equation of prices: p=(1+r)Ap + wL also writes

p—(1+rAp=wL
or

[I-(1+rAlp=wL
that is, when re[0 R]

p=w[I—-(1+rA4]"'L
since then [/—(1+r)A4]~'>0.
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We can then develop [I—(1+7r)A4] ' for re[0 R{, and we obtain
p()=wlI-(1+rA4]"'L
=wll+(1+NA+(1+r24*+...+(1+r)"4"+..]L
that is
p(N=w[L+(Q+nNAL+(1+r)’A’L+...+(1+r)"4A"L+..]

We shall study the evolution of the value of each term composing price p,(r)
of good i as a function of r and show that in fact the price of p(r) only
depends on the first &k layers of labour, L, AL, AL,.. AL,

2.4.1 Evolution of the value of each term with a change in the rate of profit
The price of good i is p,(r), and
pi(n=ep(r)
=we[L+(1+nNAL+(1+1 4 L+.. .+ (1+n"4A"L+..]
where vector ¢, is equal to (0,0,...,0,1,0,...,0). Thus we have
pi(N)=w[l,+(1+reAL+(1+r)%,A’L+...+(1+r)"¢,A"L+..]
or 0]
p(N=wl1O+A+M+A+1UP+ . +(1+1)"1"+..]
where [{/) represents each ‘layer’ of labour

[N=e AL withjeN

If we choose commodity g(/~ A4) as a standard of prices with g(7— A)p=1,

we have w=1 —%and
ry 2 ©
Pi(")=<1"> Y A+niP=Y L")
R n=0 n=0

where L (r)= ( 1- é) A+,

By deriving L (r) in relation to r we obtain

oL™(r) 1

-1 ny ) _r n=1y(n)
o R(1+r) A +n<1 R) a+n"i
-1y 0 r(R—r)—=(1+7)]

R

=(1+r)
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Thus if n<(1+7r)/(R—r) we have oL (r)/dr<0; more particularly if
n<1/R, wehave 8L (0)/6r <0and sincen< 1/R<(1+r)/(R—r)Vre[0 R[
we have 0L (r)/or<OVre[0 R[, i.e., if L”(r) decreases at the beginning
(at r=0) it constantly decreases for re[0 R[.

However, if r=0and n>1/R, dL"(0)/6r>0 and L{(r) is increasing in
the neighbourhood of r=0. Since (1 +r)/(R—r) increases with r and tends
towards infinity when r — R, there exists a rate of profit ry such that
n=(1+ry)/(R—rp).

This means that for a given n greater than 1/R, L (r) increases when r
varies from 0 to ryand decreases when r varies from ry to R. The term L (r)
reaches its maximum value at a rate of profit r, defined by 1 +ry=(R—ry)n
or

_nR—l_(1+n)R—(1+R)_R_ 1+r
To 1+n 1+n B 1+n

Thus we can see that ‘with the rise of the rate of profits, terms devide into
two groups: those that correspond to a labour done in a more recent past’
(n<1/R), ‘which begin at once to fall in value and fall steadily throughout;
and those representing labour more remote in time’ (n > 1/R), ‘which at first
rise and then, as each of them reaches its maximum value, turn and begin
the downward movement’ (P.S. 47).

This is best shown in figure 2.4 given by Sraffa with curves representing
terms of widely different periods (n) and different quantities of labour. In
this example Sraffa assumed that R was equal to 25%.

2.4.2 Expression of p(r) as a function of the first k layers of labour

By the Cayley—Hamilton theorem every square matrix 4 of order & satisfies
its characteristic equation

dA)=|A~= M= +c A+ e k24 L+ e At e, =0

Thus we have ¢p(d)=A*+c,4* ' +¢c,4* 2+ ...+ ¢c,_, A+ ¢ J=0. That is
Ak= —[c,A* "+ c,A* 2+ .. 4+ ¢, A+ c,I], where the c,(s) are constants
which only depend on matrix A. Accordingly, vector A*L is a linear
combination of vectors L, AL,...,A*"'L since A*L=—[c,A*"'L
+¢,A¥"*L+...4 ¢,_ AL+ c,L] and we can show that, by iteration, vectors
AL A*PL ... A"L,... are also linear combinations of L,
AL, AL,...,A*"'L. Thus equation (1) representing p(r) as a function of
successive layers of labour can always be expressed as

p()=w[BL+bAL+.. .+ BAL+...+b,_ 4" 'L] ()

While according to (1), p(r) seems to depend on an infinity of layers of



Systems of production prices 55
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Value of ‘labour terms’
expressed in standard commodity
W or W

1

0 5% 10% 15% 20% 25%

Rate of profits (r) ®
Figure 2.4
Note: Variation in the value of ‘reduction terms’ of different periods [L w(l +r)"]
relative to the standard commodity as the rate of profits varies between zero and
R (assumed to be 25%). The quantities of labour (L,) in the various ‘terms’,
which have been chosen so as to keep the curves within the page, are as follows:
Ly=1.04; L,=1; Lg=0.76; L,5=0.29; L,;=0.0525; Ls,=0.0004.
Source: Reproduction of figure 2 from Sraffa, Production of Commodities by
Means of Commodities

labour (as indicated by Sraffa), (2) shows that p(r) depends at most on the
first k layers of labour L, AL,...,A* 'L. The coefficients B,
Bis---sBs. ... Bi—y are functions of (1+r) and we have'®

8 =(l+r)"+cl(1-f-r)j“+...+c,(_‘_j(1+r)"—l
4 - (1+r)A|

Where [I—(1+r)A|=1+c,(1+r)+c,(1+r)?+...+c,(1+r)* is the deter-
minant of the square matrix [I—(1+r)A|.

2.5 ‘Advanced’ wages and wages paid ‘post factum’

We have already noted that, from the very beginning of Production of
Commodities by Means of Commodities, Sraffa abandons the classical
economists’ idea of a wage ‘advanced from the capital’ and retains the
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assumption that the ‘wage is paid post factum as a share of the annual
product’ (section 9).

What differences does a change of hypothesis entail?

By writing p® and w¥ the system of prices and the wage retained in
Sraffa’s assumption, the system of production prices () writes

(S)  pS=(+rApS+LwS

If we call p* and w™ the system of prices and the wage retained in the
assumptions of the classical school, and more particularly of Marx, of
‘advanced wage’, the system of production prices then becomes

M)  pM=1+rA4pM+Lw)=(1+r)ApM+ LwM(1+7)

In the latter notation, the wage is actually ‘advanced’ in the sense that the
rate of profit applies both to the amount of wages paid and to the set of
other ‘advances’; then, this assumption does vary from the one expressed by
the former notation (S) where the wage is paid ‘post factum’ as a share of
the surplus.

In order to compare both systems of prices more precisely, prices have to
be expressed in terms of the same standard, in short we need

upM=1=up®

At a given rate of profit, the comparison of both systems (M) and (S) shows
that the relative prices of the goods are identical in both systems M and S and
only vary in the proportion (1 +r); that is to say

wS

N M M
w=(1+rw"” <« w"=—
( ) 1+r
This first result allows easy derivation of an advanced-wage/profit relation,
i.e., (W, r). We have already seen that if we retain Sraffa’s assumption of a
wage paid as a share of the surplus, the wage—profit relation (w¥, r) writes

s 1
Tull-(1+n4]"'L

w

From which we obtain

wS 1

"= +r (I +null-(1+n4] 'L

As a matter of fact, these two curves have two intersection points; indeed at
r=0 we have w5=w". Further, for w$=w*=0 we have r=R=(1—a)/a.
Thus we can see that, on the basis of that formulation, the maximum rate of
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3

Figure 2.5

profitis identical whatever the assumption retained (advanced wage or wage
paid on surplus).

If we choose to express prices by u=g(I— A), we obtain g(/— A)pS=1;
owing to system (.S) and the definition of g we then obtain the well-known
relation

p
S~ 1 —_
W R
And, as w*=w5/(1+r), if we express system (M) in terms of the same
commodity, g(I— A)p™ =1, we obtain

r R-r

In these conditions, the w—r relation stops being linear and is now of
homographic type. Thus the curve w—r is an equilateral hyperbola. We
write
wM=wS5=0=r=R
r=R=wM=wS=0
ifro —-1=>w">+0
v Rir—1
" R/r+R

ifro +oo=w — —1/Rsince R/r = 0
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Linear relation in one case and equilateral hyperbola in the other, the
representation of the wage—profit relation is thus very different according to
the assumption retained. But in neither case does the form of the wage profit
relation depend on the technology, the characteristics of system (4, 7, L); in
one case it is a line, in the other case it is a branch of equilateral hyperbola
(figure 2.5).



3 Irregular and decomposable systems

The purpose of the present chapter is to analyse peculiar technology
configurations and their effects on systems of production prices and
systems of activity levels. Some of them only concern the technology
matrices, or more precisely, system [4, I]. This is a problem of decomposa-
bility and indecomposability. Some other peculiarities can be underlined if
we integrate into the analysis the structure of the needs of labour for the
various activities or the structure of the final consumption; hence the
distinction between regular and irregular systems which brings to light two
types of irregularities.

3.1 Decomposable systems

In order to distinguish between two types of goods, basics and non-basics, it
is desirable to specify the properties of decomposable and indecomposable
matrices. Indeed, under the assumption of decomposability, the production
prices of all goods are not determined simultaneously. However, since the
basic sector plays a dominant role that we shall specify, the maximum rate
of profit is not necessarily determined by the production conditions of basic
commodities; a detailed analysis of Sraffa’s famous ‘beans’ example will
help us emphasise this. More generally, we will show the importance of a
classification of basic goods of different degrees in a k-sector model; the
maximum rate of profit R is determined by a set of goods, basics or not, that
we shall call ‘blocking goods’.

The decomposability of the technology matrix does not only affect the
determination of prices and the distinction between basic and non-basic
commodities, it also affects the determination of activity levels; we will then
be led to underline two types of activities, or processes: the ‘antibasic’
process on the one hand, and the ‘non-antibasic’ process, on the other hand
(this terminology obviously refers to Sraffa’s distinction of commodities),
but the distinction is not necessarily symmetric. We will also show that

59
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there may be several (independent) numeraires of prices and activity levels
making the w—r and ¢ — g relations linear.

3.1.1 Determination of prices

Basics and non-basics

‘Luxury’ goods are not used, whether as means of production or as
articles of subsistence, in the production of other commodities. Such a
category of goods could not exist in a context of production for subsistence,
where, the surplus being by assumption zero, all commodities were ‘bound’
to be found among both the products and the means of production.

When a surplus emerges, all commodities do not necessarily rank
equally. Luxury goods have a purely passive role: they have no part in the
determination of the system of prices. If an invention were to decrease the
quantity of means of production required to produce one unit of a luxury
commodity, the price of that commodity will also decrease, but there would
be no further consequences. The price relations of the other products and
the distributive variables would remain unaffected while they would be
altered if such a change occurred in the means of production of the other
products.

Therefore, we understand the importance of distinguishing between
basics and non-basics, this term being more appropriate than that of
‘luxury’ goods for their passive role can readily be extended to such
‘luxuries’ as are merely used in their own reproduction or merely for the
production of other luxuries. ‘The criterion is whether a commodity enters
(no matter whether directly or indirectly) into the production of all
commodities. Those that do we shall call basic, and those that do not, non-
basic products’ (P.S. 6).

This criterion, as we shall see, refers to the concept of a decomposable
matrix. The objective is to identify and gather within two seperate sectors,
basic and non-basic products. To separate the basic sector from the non-
basic sector we only need to rearrange the technology matrix by a
simultaneous permutation of the rows and columns.

Decomposable matrices

Definition
A square matrix is said to be decomposable or that it can be reduced
if there exists a permutation' 4 of matrix A with the form

a4l o
A; A3
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where 4| and 47 are square matrices of dimension k — m and m respectively.
A is said to be a quasi-triangular matrix which means that it includes zeros
only at the intersection of its first rows and last columns.
If A4is a kxk matrix and A7 an mx m matrix, the fact that 4 is
quasi-triangular means that indexes {1,2,...,k} are divided into two non-
empty classes {i}, i, ..., i_,,} and { j|, /s ...+j,} such that

a;=0Vieli,by...,ii_p,} and Vi€ {ji,fos - o)}
More particularly, if at the same time we have
a;=0and a;=0Vieli,iy...,i_n} aNd Vj€{j, )2 s}

matrix A is said to be totally decomposable. In that case there is a
permutation 4 of matrix 4 which can write as

- [A] .
A= |: 0 ' Az] where A| and A7 are square matrices.
2
When a square matrix is not decomposable it is said to be indecomposable or
irreducible.
Now, for the semi-positive square matrices, let us recall some properties
of the indecomposable and decomposable matrices.

Properties of indecomposable matrices

Property 1
If the square matrix 4 is indecomposable, there are two possibili-
ties whatever the index pair (i,j):
either a; >0
or there exists a series of subscripts jy, j5, - . . ,j, such that ay s3> 0.
In that case every commodity of model [4, , L] enters directly (if a; > 0) or
indirectly (if a;, a;,, ..., a;;> 0) in the production of every commodity j and
every commodity of the system is a basic commodity.
Note that if matrix A4 is (strictly) positive (4>0) it is of course
indecomposable and every commodity enters directly or indirectly the

production of every other.

Property 2 ( Frobenius theorem)

Any indecomposable semi-positive square matrix 4 possesses a
positive eigenvalue a(A4) and positive eigenvectors g on the left and p on the
right corresponding to a(4). The positive number «(A4), the only eigenvalue
of matrix 4 with an associated positive eigenvector, is a simple root of the
characteristic equation |4 — aJ|=0.? The absolute values of the other k — |
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eigenvalues of matrix A4 are not greater than a(4). k—1 is said to be the
dominant eigenvalue of matrix 4.

Properties of decomposable matrices
When the semi-positive square matrix 4 of order k is
decomposable,’ there exists a permutation A of matrix 4 with the form

_[4}! 0
2 2
where A4/ is a square indecomposable matrix of order k—m and 47 is a
square matrix of order m. If we write matrices 4 and [ as follows

_ [40 [h-m ©
<[4 %] wmar[o]]

the following properties appear.

Property 1

0 0
Matrix [4%, I?]=
atrix [ ] [ A2 Im]
composed of the last m columns of 4 and 7is of rank m, that is to say, when
matrix 4 is decomposable there exists a number m and a permutation of the
columns of 4 such that matrix [42 I*] of the form (k,2m) composed of the
last m columns of A (after permutation) and of I is of rank m.

Property 2

When 4,20 and A? is indecomposable the k—m commodities
produced by the system (4,,1,_,) enter the production of the other m
commodities and are basic commodities since A, is indecomposable.

Production prices
The system of price equations of model [A4, 7, L] can be decomposed
as follows

(1+ndAp+wL=p

from the new configuration of the technology matrix

40
““[A; Aﬂ

By distinguishing L, and L,, the quantity vectors of direct labour used in the
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L
basic sector and non-basic sector respectively, namely L=[ LI]’ and by
2

considering p, and p,, the price vectors in the basic sector and non-basic

1)

A0 14 L [~
aolaw] [l

Hence the following vector systems

(1+’)A11P1+WL1 =h
¢ +’)(A21P1 +A22P2)+WL2=P2

sector respectively, namely p= [p 'il we deduce

The first system of (k—m) equations simultaneously determines the (k
—m— 1) relative prices of the basic goods and both distributive variables.
Provided we chose an appropriate numeraire, there are (k —m) equations
for (k—m—1+2)=(k—m+ 1) unknowns; thus the system has one degree
of freedom and suffice to set one of the (k —m + 1) unknowns to determine
the (k — m) others.

The second system of m equations allows us to obtain the m prices of the
non-basic goods as a function of the prices of the basic products and of the
distributive variables which have all been determined in the first system.*

1
In that case matrix [(4',1']= |:A11 Ik""] is of a rank strictly greater than
k—m. 4, 0
As aresult, a necessary condition for at least one basic good to exist in the
system is that rank [4',1']>k—m. Note that this condition is not suffi-
cient, for if the square matrix 4 can be decomposed as follows

Al 0 0 ko
A=[0 420
A3 A3 43

m

none of the goods is basic even though rank [4',7']>k — m. This is due to
2
2

the fact that matrix [ A32 y

3] is not indecomposable.
3

Property 3

Any decomposable semi-positive square matrix 4 possesses a non-
negative eigenvalue a(A4) and semi-positive eigenvectors ¢ on the left and p
on the right corresponding to a(A4). The absolute values of the other k— 1
eigenvalues of matrix A4 are not greater than a(A4).

Owing to properties 1 and 2, if matrices 4, and 4, are indecomposable
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and if matrix 4, >0, system [4, I, L] where 4 may, after permutation, write:

e Al] 0 k—-m
4, 43,

possesses m non-basic products and (k —m) basic products since the first
(k— m) commodities, and only they, directly or indirectly enter the produc-
tion of all the goods.

If m=k—1, there exists (k— 1) non-basic commodities and one basic
commodity: A2 which generally has (k — m) rows and m columns becomes a
row-vector with m=k—1 components, all zeros of course, since
k—m=k—(k—1)=1.

If m=0 it is not possible to obtain a configuration that is a quasi-
triangular matrix through simultaneous permutation of the rows and
columns of A, and the system is indecomposable. Then, the economy only
includes basic commodities.

Finally, if matrix A4 is totally decomposable, there are only non-basic
commodities; no product is basic. In that case the production system could
be divided into several sub-sets having no technical relations and thus
constituting as many independent ‘sub-economies’ as there would be sub-
sets having at least one specific basic product. The configuration of the
technology matrix would then be

A0 0 0
0 430 0
0 0 450
0 0 0 4

which means that we would have to analyse several elementary sub-
economies represented above by sub-matrices of type 4|, 47, 43, Af. We
shall see later on that there is a maximum rate of profit R for the whole
model, which is determined by the blocking sector.

The following table shows the conditions of decomposability of a matrix
A and the conditions of existence of basic commodities in the model of
simple production [4, I, L].

Decomposability of matrix A and existence of basic commodities

Is there an m<k and a — no: A is indecomposable
permutation of 4 such that and all the goods are
matrix [42 I*] of dimension basic.

k x 2m is such that rank — yes: A is decomposable.
(A%, Pl=m<k?
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m being the greatest number | — no: A is totally

such that [4% P]=m <k, is decomposable and
rank [4,I']>k—m? there are no basic
goods.

— yes: there is at least one
basic good if A2 is
indecomposable.’

This presentation allows us to understand as Sraffa states it (P.S. 7):

why the ratios which satisfy the conditions of production have been called values or
prices rather than, as might be thought more appropriate, costs of production.

The latter description would be adequate so far as non-basic products were
concerned, since . . . their exchange ratio is merely a reflection of what must be paid
for means of production, labour and profits in order to produce them — there is no
mutual dependence . ..

In other words, the price of a non-basic product depends on the prices of its means
of production, but these do not depend on it. Whereas in the case of a basic product
the prices of its means of production depend on its own price no less than the latter
depends on them.

The prices of the non-basic products are then determined by the
conditions in which they are produced; on the other hand, the technology
matrix being taken to be known and unchanged, the prices of basic goods
determine as much the endogenous distributive variable as the latter
determines them.

Classification of goods in a decomposable system

In model [4,1, L] where matrix A is decomposable, Sraffa dis-
tinguishes basic goods which directly or indirectly enter into the production
of all goods, and non-basic goods which do not enter into the production of
basic goods but may enter into the production of non-basic goods.

In a decomposable model, a refined classification of non-basic goods is
needed. For simplicity’s sake, we shall analyse a simple decomposable
production model with four sectors [4, I, L].

In order to avoid complex notations, we shall first comment upon the
simple table representing inter-industrial relationships, where (C) stands
for the production of coal, (P) phosphate, (F) fertiliser and (W) wheat. The
needs in labour are not represented here, we shall simply assume that each
production requires a certain quantity of labour.
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Inputs Outputs
C C

Ccp P
CPF F
CPFW w

Coal is produced with coal and labour; Phosphate is produced with coal,
phosphate and labour; fertiliser with the same inputs and fertiliser; wheat
with coal, phosphate, fertiliser, wheat and labour. Coal is the only basic
good, while the others are non-basic.

However, the traditional distinction between basic and non-basic goods
is far from being satisfactory. First, because it does not determine clearly
the hierarchy of the determination of prices; second, there is no reason why
the maximum rate of profit should be determined by the basic sector only.

The example above shows clearly that the hierarchy of the determination
of prices is to be further specified. Indeed, if we write the price equations, it
appears that for a given r, the wage and the price of coal are determined
simultaneously. Then the price of phosphate is determined, then the price of
fertiliser and finally the price of wheat. Phosphate is then considered as a
non-basic good of degree 1, fertiliser is a non-basic of degree 2, and so on.
Note that we can compare basic goods and non-basic goods of degree 0 and
we obtain the following rule: The prices of non-basic goods of degree d are
independent of the prices of non-basic goods of a degree greater than d and
only depend on the prices of non-basic goods of a degree less than or equal
to d. We can then classify the goods of this decomposable model into two
categories: basic goods (or non-basic goods of degree 0) and non-basic
goods of increasing degree 1, 2 and 3 (possibly 0, 1, 2 and 3). Thus, the role
of basic goods appears less basic. Their role is further weakened, if we take a
closer look at the conditions in which prices are determined.

Blocking goods and the maximum rate of profit

Unforeseen difficulties can, however, appear concerning ‘self-
reproducing non-basics’. This is Sraffa’s famous ‘beans’ example which, as
we shall see, merits some attention. In Sraffa’s terms:

Consider a commodity which enters to an unusually large extent into the production
of itself. It may be imagined to be some crop such as a species of beans or of corn the
wastage on which is so great that for every 100 units sown no more than 110 are
repeated. It is clear that this would not admit of a rate of profits higher than, or
indeed, since other means of production must be used as well, as high as 10%.

If, the product in question is a basic one there is no problem; it simply means that
the maximum rate of profits of the system will have to be less than 10%.

If, however, it is a non-basic product, complications arise. The way in which a



Irregular and decomposable systems 67

non-basic is produced has, as we have seen, no influence on the general rate of
profits, so that there would be nothing to prevent the Maximum rate of the system
being higher than 10%: and yet the product in question is incompatible with a rate
as high as 10% (P.S. Appendix B).

If the input matrix of model [4, 1, L] is

{23
a :_(1)

with a,, >0, the dominant eigenvalue of matrix A4 is a(4)=10/11 and the
maximum rate of profit is R=(1—«)/x=0.10. But the basic sector has
a(A,)=20/23 as its dominant eigenvalue and the rate of profit correspond-

1—-20/23 L
in tothebasicgoodisR'=———/—=0.15.IfL= '], ata rate of profit
g L

20/23 )
r, the system that gives the production prices p, and p, of the basic product
and of the beans as a function of r is (1 +r)4Ap+wL=p, that is to say

% 0~ L [~
ool (o)

{(1+’)§_(32P1+WL|=P1 <p[1-(+r) %’]__"WL!
@ +r)(“21P1+:_?P2)+WL2=P2 <> pll-(1+r) %]=WL2+(1 +rayp,

or

23 23
w =
3-20r ' 20[0.15—7]

Thus we have p, = wL, and

11
P2=1_—10r WL, +(1+r)ay p]
If we normalise prices and wages by w= 1, which comes down to taking into
account wage prices, we have

N W 23
A= =%015-7 b

and
5,0=2= L 1L+ 49ap
p2(r —w_l_lor[ 2 ( r)a2|.p](r)]

Price j,(r) is positive and an increasing function of r in the interval [0 0.15];
and if we only take into account the first good which is the only basic good,
the rate of profit would be 15%, as shown by Sraffa. But by observing the
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Py 4 :
0 .: R 15% .
! 10% r
Figure 3.1

expression of p,(r) we notice that if j,(r) is positive and an increasing
function of the rate of profit when r varies from 0 to 10%, it becomes
negative when r is included between 10% and 15%. More precisely (figure

3.1) the curve representing p, as a function of r has the following shape and
has line r=10% as its asymptote.

It appears clearly that the maximum rate of profit of the system must be
equal to R=0.10=(1 — a)/a where a is the dominant eigenvalue of matrix 4
and not only the basic sector’s.

Suffice to reason within a golden rule context that beyond r=g=10% the
net surplus of beans is necessarily negative; the negative wage price of beans
shows the economic impossibility of obtaining a higher rate of profit than
the average 10%, except of course in the case when no ‘bean’ is consumed.
Then why bother producing non-basic goods? The problem disappears on
its own.

The ‘beans’ example is a peculiar case of a decomposable model where
blocking goods are not basic goods. Indeed, let A be a decomposable square
matrix of order seven (actually including four sectors) with non-negative
terms which, after a simultaneous permutation of rows and columns, writes

51000 0 0
2600000
1 160000
A4=01]0 1 2 5 2 0 0
1024700
11001 42
01107113
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We can see that matrix 4 can be broken down into blocks

5100000
2 6 00 00O
1 1.6 0000
A=01]0 1 2 52 0 0
1 024700
1 1.0 01 4 2
0110113
so that the four square matrices
0.5 0.1
A(l 1)—[0‘2 0_6}, AQ2 2)=[0.6]
0.5 0.2 0.4 0.2
40 3)_[0.4 0.7]’ 4@ 4)_[0.1 0.3]

which are on the ‘main diagonal’, are indecomposable.
The system of prices (1) can then be broken down into four matrix
equations

(LD p(D)=(1+r) A1 Dp(1)+wL,
(1.2) p2y=(1+n[42 Dp(1)+ 42 2)p(2)]+wL,
(1.3) pB)=(1+n[AQ3 Dp(1)+A43 2)p(2)+ 43 3)p(3)]+wL,
(1.4) pB=(1+n{44 Dp(1)+ A4 2)p(2)+ A4 3)p3)
+ A4 4)p(4)]+wL,

where L,, L,, L, and L, represent the four sectors’s needs for direct labour.
We can thus divide the goods of this decomposable model into two
categories: basic goods (or non-basics of degree 0) and non-basic goods of
increasing degrees 1, 2 and 3.
Now we need to find out under what conditions the prices of the seven
goods are positive. Let us first start with p(1). According to equation (1.1),
we have

[[-(1+nrnA(d Dp()=wL,>0

0.5 0.1
0.2 0.6
the prices p(1) of the first two goods are positive if

r<R(1)=(1-0.7)/0.7=3/7=0.42857...
Note that 0.42857 ... is the maximum rate of profit of matrix 4(1 1) which

and since matrix A(1 1) =[ ] has a[4(1 1)]=0.7 as an eigenvalue,
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represents the quantities of both basic goods entering into their own
production. Let us now take a look at the conditions for p(2), the price of
the third good which is a non-basic good of degree 1, to be positive.
According to equation (1.2), we have

[1-(1+nNA4A2 2)p2)=(1+rAQ2 p(1)+wL,
or

[1=-(1+n0.6p(2)=(1+rAQ2 Dp()+wL,
that is to say

[0.4—0.6r]p(2)=(1+rAQ2 Dp(1)+wL,

since p(1)>0 when r<R(1)=0.42857... and A(2 1)=[1 1]>0, we have
(1+rnAQ2 Yp(1)+wL,>0 when r<R(1). As a result, p(2)>0 when 0.4
—0.6>00rr<2/3=0.66666....

Note that R(2)=0.66666...=(1—0.6)/0.6 where 0.6 is the eigenvalue of
the square matrix of order 1, 4(2 2)=[0.6] which represents the quantity of
the third good entering into its own production. Since price p(1) is positive
only if r<R(1)=0.42857... and price p(2) is positive when
r<R(2)=0.66666... prices p(l) and p(2) are positive when
r<R(1)=0.42857... since r< R(1) and r < R(2).

In order to determine the conditions of positivity of prices p(3) of the
non-basic goods of degree 2, we use equation (1.3) and we obtain

= +nNAG NpB)=0+nN143 DHp(H+ A3 2)p(2)]+wL,

Since the dominant eigenvalue of matrix A(3 3)= |:0 407

]is a(A(3 3)
=0.9, prices p(3) of both non-basic goods of degree 2 are positive if and
only if r<(1—0.9)/0.9=0.11111... Note that 0.11111... is the maximum
rate of profit of matrix 4(3 3) which represents the quantity of both non-
basic goods of degree 2 entering into their own production.

As a result, prices p(1), p(2) and p(3) are all positive provided
r<0.11111...

Finally, in order to determine the conditions of positivity of prices p(4) of
the non-basic goods of degree 3, we use equation (1.4) and we obtain

U=(1+nA@4 9p@=>1+n[4@ Dp(1)+ A4 2)p(2)
+A4(4 HpQB))+wL,

04 0.27.
0.1 0'3:| isa(4(4 4)

=0.5, prices p(4) of both non-basic goods of degree 3 are positive if and
only if r<(1—0.5)/0.5=1. Note that | is the maximum rate of profit of

Since the dominant eigenvalue of matrix 4(4 4)=|:
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matrix 4(4 4) which represents the quantity of both non-basic goods of
degree 3 entering into their own production. Since 1 >0.11111 ..., the prices
of the seven goods are all positive if and only if the rate of profit of economy
ris less than 0.11111... i.e., the maximum rate of profit of the model is
R=0.11111...

As we can see, non-basic goods of degree 2 have the lowest maximum rate
of profit. We call them blocking goods because the rate of profit of economy
r must be less than the maximum rate of profit R(2)=0.11111..., otherwise
the prices of those goods would be negative. Thus, the maximum rate of
profit R of model [4, ], L] must be equal to the maximum rate of profit
R(2)=0.11111... of the blocking goods, and this enhances the vital role
they play.

Further, note that the dominant eigenvalue of matrix 4, which equals the
greatest of the four dominant eigenvalues of matrices A(i {),is0.9, which is
the dominant eigenvalue of matrix A(3 3). The latter characterises non-
basic goods of degree 2. Thus the maximum rate of profit R of model
[4,1, L] equals the maximum rate of profit R(2)=0.11111... of blocking
goods, or, non-basic goods of degree 2.

Linearisation of the wage—profit relation

When a matrix A is indecomposable, to its dominant eigenvalue
a(A) correspond the positive eigenvectors g on the left and p on the right. As
a result, every eigenvector ¢; on the left corresponding to an eigenvalue
o, #a has necessarily components with opposite signs otherwise the scalar
product g;p would always be zero.® On the other hand, if matrix 4 is
decomposable, to its dominant eigenvalue a(4) correspond semi-positive
eigenvectors on the left and on the right; one of these vectors at the most
being positive. As a result, a decomposable matrix can have several semi-
positive eigenvectors on the left that are not homothetic. More particularly,
if the dominant eigenvalue of matrix 42 corresponding to the non-basic
sector is greater than the dominant eigenvalue of matrix 4, corresponding
to the basic sector, this would ensure at least two independent numeraires
allowing the linearisation of relation (w,r).

Let us revert to the ‘beans’ example, that is to model (A4, /, L], where

29
P ]
|:a2l I

20

. 10
A has two eigenvalues o= T and o, = IER

To the dominant eigenvalue a=10/11 corresponds the eigenvector on the
left g=(q,,q,) satisfying g4 =10/11q4
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Wal-4)
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+

0.10 0.15 r

Figure 3.2 The wage~profit curve of model [4, I, L] corresponding to numeraires
qg(I—A)and g(I— A4)

20 10 230—220 10
3 ‘11'*"121‘]2:“ q, <= azlq2='—253_ q, =ﬁ q,

or

10 10 .

— ¢,=— q, <> g, arbitrary

11 11

thus we have g=A4(25,34a,,,1)>0 if 1>0 since a,;>0. If we choose as a
numeraire of prices, vector g(I— A) such that gL =1(25,3a,,,1)L=1, then
the wage-profit curve w,,._ , is the segment connecting points (r=0,w=1)
and (r=0,1 w=0).

To eigenvalue a,=20/23 corresponds the eigenvector on the left ¢°
=(q?,,q?) satisfying g>4 = (20/23)g% or

2 , , 20 , R
23 i +a,,4; =539 =any g

10 , 20
ﬁq§=gq§¢q§=0

thus ¢>=4(1,0)>0 when A>0.

Let us now choose vector ¢g%/— A) as a numeraire, such that ¢°L
=A(1.0)L=1; the wage-profit curve qu(I—A) is the segment of line
connecting points (r=0,w=1) and (r=0.10,w=1/3) which extends to
point (r=0.15,w=0). Recall that for r>0.10, p,(r) <0 (figure 3.2).

Now let us consider the three sector model [4, I, L], where

04 0 0 3

A=101050 and L=|2
0.1 0.1 0.6 1
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Figure 3.3 Wage-Profit curves corresponding to each of the three numeraires

Matrix A has three eigenvalues: o =0.6, which is the dominant eigenvalue,
a,=0.5 and o;=0.4, which is the eigenvalue of the basic sector matrix.

To each of these values correspond the respective positive eigenvectors
ontheleftg=(% & §),4*=@G 1 0)and¢’=(@ 0 0).Ininterval [0 R]where
R=(1—-a)/a=2/3, there are three numeraires g(/— A), ¢*(I— A) and ¢°(/
— A) which will make the wage—profit curve linear, as shown on figure 3.3.

We can see that the wage corresponding to the maximum rate of profits is
not necessarily zero when prices are normalised with one of the eigenvectors
corresponding to one of the non-dominant eigenvalues. Thus, at r=R=2/
3, the price equation p= (1 +r)4p + wL to which is associated the normali-
sation condition 1= g*(I— A)p (where ¢ is the eigenvector on the left of 4
corresponding to the dominant eigenvalue a,=0.5 satisfying gL =1) leads
to

1=qI— Ap=rq’Ap+ wq2L=%+ w

2 2
ap__ oq'p a !
forqup=oz2q2p=a2—T=(l —2oc2)q2p= | —2a2=§5' Thusatr= R, wehave
R 2 1
Y =y ]
wiI-4)=1-25=1-5=5#0
Similarly
R 22 5
31— =]l —-———=]— - ==
wgI= A)=1-—5=1-3- =540

Thus the wage corresponding to the system’s maximum rate of profit
R=2/3 is not necessarily zero when prices are expressed in terms of
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(I~ Ap=1or g’(I- A)p=1

As a conclusion, in a decomposable model it is proper to distinguish two
cases:

(a) The model’s maximum rate of profit is also the basic sector’s. Then
there is only one numeraire ensuring the linearisation of the wage—
profit relation.

(b) The model’s maximum rate of profit is also the non-basic sector’s.
Then, there are at least two numeraires ensuring the linearisation of the
wage—profit relation.

Coincidence of the basic and blocking sectors
Up to now we have assumed that the rate of profit r is identical in
all the sectors of the economy. If we relax this assumption, we will be able to
find conditions in which the basic sector is the blocking sector.
Let us revert to the beans example where the input matrix is

20
5 0 /
4=|3 ] L={q
[‘121 %‘T’ L
Assume that the rates of profit of both activities are different and

respectively equal to r and ur where re[0 0.15] and u is a constant to be

determined. p= l:p'] is the price vector and the price equations are

P,
20
P1=(1+r)2_3P1+W11 (1
10
p=(1+pr) ‘121P|+ﬁ1’2 +wl, 2
wl,

From equation (1) we deduce p,= which is positive for all

— + _
I=(1+7r) %
10
re[0 0.15[ and equation (2) gives [1 —(1+ur) H:I p,=wh+(1+urayp,
that is

_wht(1+pur)ayp,

€)

2
10

- + —_
I—(1+ur) T

At re[0 0.15] the numerator of (3) is positive while its denominator

10
1= +ur) 1 is positive provided
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11 1 1
+ur<— = —
1+ ur 10 or ur< 10 i 10orr 0.4
1 1 100 20 2
Ifwechooseusuchthat—o—u>0150r]0u_0ls—ﬁ 3thatlsp<3

both prices and the wage are positive.
Thus, if we choose ur as the rate of profit of the activity producing beans,

2
where , when the rate of profit of the activity producing basic goods is
=3

r, then at re[0 0.15[ the prices of both goods and the wage will all be
positive.

In such conditions, the basic sector determines the model’s maximum
rate of profit R=15% and with an exogenous rate of profit re[0 R[, price
P, of the basic good, as well as the wage w.

Equation (2) will then allow us to calculate p, which is necessarily
positive.

Suffice it to assume that the capitalists producing beans accept a lower
rate of profit than the rest of the economy, to allow the basic sector to
determine the maximum rate of profit.

Consider the general case of a decomposable model with k goods where
the blocking sector has a maximum rate of profit R that is less than R, the
rate of profit of the basic sector. At any rate of profit r of the basic sector,
included between 0 and R, we obtain positive prices and wages for all the

. R
goods, provided we choose a rate of profit p= pur, where u<—, in all the
non-basic sectors. R/

Anyway, the role of blocking goods is essential. It is explicit if we assume
that the rate of profit is uniform in all the industries of the model. It is
implicit if we relax that assumption since in that condition the rate of profit

. . R
in the non-basic sector must be less than ur where PR depends on the

S
internal return of blocking goods.

3.1.2 Determination of activity levels

Antibasic and non-antibasic processes
Let us contemplate the case when matrix A4 is decomposable, and
after permutation of its rows and columns, it writes as

Al 0 "
A=|4; A} |, _,

n k—n

where A7 is an indecomposable’ square matrix of order k—n and 4] is a
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square matrix of order n; all the activites are not on the same footing. We
then have to distinguish between antibasic processes and non-antibasic
processes as we have distinguished between basic goods and non-basic
goods. Indeed, the equation systems of activity levels can now be written by
distinguishing between y, and y,, the vectors of activity levels respectively
producing the first #n and the last (k —n) commodities with y=(y,,y,).

Similarly, d, and d, are respectively the consumption structures of the
first # and the last (k —n) commodities with d=(d,,d,)

1

Al 0
(1+8)(y1.y2) A=[A;1 Azz}+6(dl,dz)=(yl,y2)

Hence the two equation systems

{(1 +g)(ylAll '*'}’zAzl )ed, =y,
(1 +g)y2A22+ cd,=y,

The second system of (k—n) equations simultaneously determines the
(k — n) activity levels, the rate of growth g and the consumption level c.

Provided we choose a proper numeraire, there is one degree of freedom
and we only have to determine one of the unknowns to obtain the others. In
this case, therefore, the rate of growth is determined by the system of (k —n)
equations whatever the level of consumption ¢ (if the exogeneous variable is
the level of consumption). The processes forming the last (k — n) rows after
permutation (i.e., A,) are thus ‘basic’ processes, as far as the determination
of the rate of growth of the activity and consumption levels is concerned;
while the commodities forming the first # columns (i.e., 4') were ‘basic’ for
the determination of the rate of profit, prices and wages. To avoid any
ambiguity, we call the processes forming 4, ‘antibasic’. We shall see later
that they do not necessarily correspond to the processes producing luxury
goods, or non-basic goods.

If we revert to the two equation system that we have just emphasised, the
first (with n equations) allows to obtain the activity levels of what we shall
call non-antibasic processes as a function of the activity levels of the
antibasic processes and of the rate of growth determined within the
antibasic system only.

Let us look more closely at the distinction between antibasic and non-
antibasic processes to clarify the characteristics of an antibasic process.
Sraffa defines a basic good as a good entering, directly or indirectly, the
production of all goods. Similarly, a process will be called antibasic if it uses
all goods directly or indirectly B If this condition is not fulfilled, the process is
said to be non-antibasic.
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Existence and characteristics of non-antibasic processes
Let us revert to the decomposable matrix 4. By writing matrices 4
and [ as follows

Al 0 1,0
A= dI=
[ e =

The following properties appear:

Property 1
. [4, Al 0 .
Matrix 1 1711 o composed of the first n rows of 4 and 1, is
! n
of rank n, which means that, when a matrix A4 is decomposable, there exists

. . [4
a number n and a permutation of the rows of 4 such that matrix |: I ':| of
1

dimension (2n x k) composed of the first » rows of 4 and 7 is of rank n.

Property 2
When A4,>0 and A, is indecomposable each of the last (k—n)
activities uses, directly or indirectly, all the goods since 47 is indecompos-
. o A A} A3
able. These (k — n) activities are antibasic and in this case [ I 2:| = |: 0 2 I 2 :l
2 k—n

is of rank strictly greater than (k—n).

Thus, the condition for at least one antibasic process to exist in the system

.4 .
is that the rank of matrix [ I 2] , composed of the last kK — n rows of matrices
2

A and 1, is strictly greater than k—n. Of course this condition is not
sufficient, as shown in the third configuration of case .2 below. However,
this condition is sufficient if the square matrix A, is indecomposable.

The determination of an antibasic process needs to be specified, all the
more because antibasic processes do not necessarily coincide with those
producing non-basic goods and, symmetrically, non-antibasic processes do
not always correspond to those producing basic goods.

Several cases may be distinguished:

o. matrix A is indecomposable: all processes are antibasic and all goods are

basic.

B. matrix A is decomposable.

B.1. A is totally decomposable: the economy can be considered as a
juxtaposition of independent ‘sub-economies’ without any link
between them. Then there is no antibasic process and no basic good.

B.2. A is not totally decomposable.
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B.2. 1st configuration contemplated: A and 47 are indecomposable and
A,>0. Then, there are m antibasic processes and (k—m) non-basic
processes. In this case all non-basic goods are produced by antibasic
processes and all basic goods are produced by non-basic processes.

(k—m) Al |0
(m) 4; | 43

B.2.2nd possible configuration’

k—(m,+m,) Al 10 0

m, A} | 4210

m A | 43| 4

k=(m+m) m, m,

with 4] and 47 not entirely composed of zeros.
In this case there are:
k—(m,+m,) basic goods

m, antibasic processes
m,+m, non-basic goods
k—m, non-antibasic processes

f.2.3rd configuration

k—(m,+m,) Al 10 0

m, Al | A2 |0

m, A4 |0 A;

k=(m+my) m m

with 4, and 4, not entirely composed of zeros.
In this case there are:
k—(m;+m,) basic goods
m,+m, non-basic goods
Note that in this configuration there are no antibasic processes.
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B.2-4th configuration
k—(m,+my) 410 |0
m, 0 [42|0
m A | 43| A3
k=(m+m) m, m

with 4] and 47 not entirely composed of zeros.
In this case there are my; antibasic processes, k—m, non-antibasic

processes, and no basic good.

B.2-5th configuration

k—(m+m,) Al 10 0

m, 0 A2 [0

m, A |0 A3
k—(m+my)) m, m,

Then, there are no basic goods and no antibasic processes. In fact we revert
to the case of a totally decomposable matrix 4. Suffice simultaneously to
permute the first k — (m, +m,) rows with the following m, rows and the first
k—(m,+m,) columns with the following m, ones to notice that after

permutation A becomes

A20 0
A=[0 4]0
0 0 4;

The table below reveals the conditions of decomposability of matrix 4 and
the conditions of existence of antibasic processes in the simple production

model [A4, 1, L].

Decomposability of matrix A and existence of antibasic processes

Is there m<k and a
permutation of A such that
matrix [42 I?] of dimension
k x 2m is such that rank
[A3, Pl=m<k?

no — A is indecomposable
and all the goods are
basic

yes — A is decomposable.
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As m is the greatest number no — A is totally

such that rank [42, I*]= decomposable and
m<k,isrank [4',I']>k there is no basic good.
—m? yes — there is at least one

basic good if 42 is
indecomposable.'

We can add that there are non-antibasic processes of different degrees. In
the example developed on pages 68—71 we emphasised the existence of non-
basic goods of degrees 1, 2 and 3. Similarly, we note that the last two
activities are antibasic while the five others are non-antibasic of degrees 1, 2
and 3. We can see that both non-basic goods are produced by non-basic
activities of the highest degree (3), the non-basic good of degree 1 is
produced by the non-antibasic activity of degree 2, etc.

The activity levels are all positive only with a growth rate g that is less
than the maximum growthrate G= R=0.111... of the model defined by the
blocking sector.

Note We may always revert to the case when the antibasic sector
is also the blocking sector. An analysis similar to that of section 1.1.7 leads
to relaxing the assumption of a uniform growth rate in the model. In such
conditions, if g is the growth rate of the antibasic sector, which means that it
is included between 0 and G, (the maximum growth rate of the sector),
suffice to choose mg as the growth rate of the non-basic sector, where

m<—-
G,/

G being the maximum growth rate of the blocking goods.

Choice of numeraire and the c—g relation
In a k-sector model [4, I, L,d] the system of activity levels writes

y=(1+g)yAd+cd S)

where y is a row vector with k components which represents the vector of
activity levels; d is a row vector with k components which represents
consumption when g = 0; ¢ is the level of consumption; g is the uniform rate
of growth of the means of production.

System (S) with k equations, includes k + 2 unknowns: the £ components
of y, g and ¢. Thus we have two degrees of freedom.

As we have defined a standard u >0 of prices p by writing up =1, we shall
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define a numeraire of activity levels v>0 which is a row vector of dimension
k, by writing

=1 M

Note that in chapter 1 we wrote yL =1 to show that the quantity of labour
used by the system was equal to 1. In fact, this comes down to normalising
the activity levels with the labour vector L.

From system (S) we obtain

yliI-(1+g)A]l=cd
or

1_
y=cd[I-(1+g)4] " if ge[0 G[ where G=R=T°‘

this results in
l=yv=cd[I-(1+g)A] " 'v
or

1
CTAU-(+gA v

It appears that ¢ depends on g and since [/— (1 +g)4] "' is positive and an
increasing function of g for ge[0 G, the relation ¢ — g is decreasing.

Of course, the exact shape of curve ¢ — g depends on the numeraire v. We
may contemplate the case where the relation ¢ — g is linear. By analogy with
relation w—r, it seems quite normal to choose (I — A4)p as the numeraire of
activity levels, where p is the eigenvector on the right of matrix A
corresponding to its dominant eigenvalue a(A).

On this basis we add to the system

y=(1+g)yAd+cd (S)
the normalisation equation
yI—A)p=1 (1)

where p satisfies the relations

1
Aﬁ=ap=mﬁ and dp=1

From equation (S) we deduce

yp=(+g)yAp+cdp
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v

Figure 3.4

or
yI—-A)p=gyAp+c
that is

Ly,

for 1+ G)Ap=p implies (1+ G)yAp=yp or GyAp=y(I— A)p=1.

The shape of curve ¢ — g changes with the numeraire chosen, as shown on
figure 3.4.

If matrix A4 is indecomposable, the eigenvector j is positive and only the
numeraire (/ — 4)p makes the relation ¢ — g linear."

If matrix A4 is decomposable there may be several numeraires making
relation ¢ — g linear, as shown in the example below.

Example
Consider model [4, I, L,d] where

0.6 0 1
4 “[0.2 0.4] L= [1}
and d=[1,1].
There is a correspondence between the eigenvalues 0.6 and 0.4 respect-

1 0 .
ively and the eigenvectors on the right p= ( 1) >0and p,= (T) =0 satisfy-

ing dp=1 and dp,=1. We show that the curve ¢c—g is also linear if we
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Figure 3.5

choose (/— A)p, as a numeraire.'> The maximum growth rate of the first

., 1-06 3 . 1-04 3
good is G= 06 —2whllethatofthe second good is 04 2

We have here the same problem for determining the activity levels as for
calculating production prices in the beans example; the exogenous variable

3
gmust belessthan G= E(and not only less than G, = 1.5) so that the activity

level y, of the non-antibasic process is positive as ¢ and y,.

Thus, we have two numeraires of activity levels (/— A4)p and (I— 4)p,
allowing us to represent the relation ¢ — g by a segment of the line on the
interval [0 G]=[0 3] (see figure 3.5).

3.1.3 The role of blocking goods in the system

In the model that we have just developed, there were two numeraires of
activity levels making the relation ¢ — g linear. We notice that in this model
there is only one numeraire of prices, (/— A)g, where g=(1 0)is defined by
gA=aqand gL= 1. Indeed, both components of ¢,, the second eigenvector
on the left of 4, have opposite signs.

However, note that the maximum rate of profit R and the maximum
growth rate G are equal and defined on the basis of the blocking sector
which is composed of the sub-model [0.6 1] describing the production of
the first good in the first activity.

In the beans example where the input matrix is

10
a n
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we have established the existence of two numeraires of prices making
relation w — r linear and we can easily show that there is only one numeraire
of activity levels which makes relation ¢ — g linear.

The maximum rate of profits R and the maximum growth rate G are
equal and defined by the blocking sector consisting here in model [} 1]
which describes the production of the second good in the second activity.

In both cases the blocking sector determines R and G which are
necessarily equal. Further, we can see that the beans example does make
some sense for if it is not true for production prices it is true for activity
levels (except for the peculiar case where «, = ).

We may now contemplate the three-sector model [A4, I, L, d] where

040 0 2
A=]0.1060 L=
0.1 0.6 0.5

1 and d=[1 1 1]

1

The blocking sector is different from both the basic and the non-basic
sectors.

Matrix A4 has three eigenvalues: « = 0.6 which is the dominant eigenvalue
of A, a®=0.5 which is the dominant eigenvalue of the antibasic sector a(4;)
and a®=0.4 which is the basic sector’s, (4, ). Thus, in this model we have
both the problem that is dual to the ‘beans’ problem for the production
prices since (4, ) <o« and the problem that is dual to the ‘beans’ problem
for the activity levels since a(43)<a. We need to choose r<R=
(1—0.6)/0.6=2/3 so that the prices of non-basic goods are positive (while
forr<(1—0.4)/0.4= 1.5 the prices of basic goods and the wage are positive)
and g <G=(1—-0.6)/0.6=2/3 so that the activity levels of the non-antibasic
processes are positive (while for r<(1—10.5)/0.5=1 the activity levels of
anti-basic processes and the consumption level are positive).

In this model we have two numeraires g=(/— A) and ¢° = (/— A) making

11
the wage—profit relation linear; we have g= (Z’ > 0) defined by ¢4=0.6g

1 2
and gL =1 which corresponds to R= 06 3 and ¢g>=(1/2, 0, 0) defined

by ¢°4=0,44¢> and ¢°L =1 which corresponds to R*=(1—0.4)/0.4=1.5.
Similarly, there are two numeraires (/—A)p and (/— A)p* making

0
relation ¢—g linear; we have p=| 1/2 | defined by Ap=0.6p and dp=1
1/2 0

which corresponds to G=(1-0.6)/0.6=2/3 and p>=|0| defined by
1
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Figure 3.6a Figure 3.6b

Ap*=0.5p" and dp*= 1 which corresponds to G*=(1—-0.5)/0.5=1.

Thus we have two (w—r) relations and two (c— g) relations which are
represented by straight lines in the interval [0 R[=[0 G[=[0 2/3[ (see
figure 3.6).

To sum up, in a decomposable model (4, I, L, d) containing at least one
basic good and an antibasic process,' there is always a dominant eigen-
value o to which corresponds an eigenvector on the left ¢>0 and an
eigenvector on the right 5 >0, which means that the model has a numeraire
of prices and a numeraire of activity levels associated with R=G = (1 — a)/a,
which respectively make relations w—r and ¢ — g linear.

This is at variance with the case when matrix A is indecomposable where
there may exist other numeraires making relations w — r and/or ¢ — g linear.

More precisely, when matrix 4 has the following configuration

A0 0
A=|A4} A} 0
A3 A7 A3
where A4/, A7 and A; are indecomposable matrices, we know that:
if the dominant eigenvalue a(A4,) of the basic sector is inferior to the
dominant eigenvalue o of matrix 4, there always are other numeraires
making relation w—r linear;
if the dominant eigenvalue a(43) of the antibasic sector is inferior to the
dominant eigenvalue o of matrix 4, there always are other numeraires
ensuring the linearisation of relation ¢ —g;

if x(4)) and a(43) are both less than the dominant eigenvalue o« = a(A47)
of matrix A, we always have both properties.

3.2 Irregular systems

If we integrate the structure of the needs in labour of the various activitites
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into the analysis, thus contemplating system (A, I, L), new peculiarities may
appear; the systems where they appear are called ‘irregular’. Similarly,
taking into account the structure of the final consumption will lead to
studying systems (4,I,d) in which these peculiarities may also appear.
Thus, we shall distinguish two types of irregularities, irregular price systems
(A,1, L) and irregular activity systems (A,1,d).

3.2.1 Irregular price systems

We have to define a labour profile matrix with k columns representing the
first k successive layers of labour. If there are only m independent layers of
labour (with m<k), the system is said to be irregular and two specific
features may be emphasised.

On the one hand, when r varies, only price vectors p(r,),p(ry),...,p(r,)
corresponding to m rates of profit r,,r,,...,r,, all different, vary indepen-
dently from one another. On the other hand, the price vector p(r,,.,)
corresponding to any (m+ 1)" rate of profits r will be a linear combination
of p(r,),p(r,),...,p(r,). Further, for a given r, only m equations of prices
can be considered as independent: the determination of the prices of m of
the k goods entails, when the system is irregular, the determination of the
prices of the (k— m) other goods. It is only when the system is regular that
no additional constraints are imposed on the determination of prices and
that the k prices are determined by linearly independent k equations.

Matrix K of labour profile
The price vector p(r) of a k-sector model [4,], L] can write as
follows (see proposition 1, mathematical appendix)

p(=w[BoL+P AL+ ..+ BAL+.. .+ B A L] )
or

(A+rY+e,(1+ry  +. +e, ,+j(l+r)k :
l+c,(1+9+...+c(1+0*
k=1-j
A+r[1+ Y c(1+r)]
i=1
k .
1+ Y ¢i(1+r)

i=]

bj=

Then, the price wage writes

k-1
() M— Z =p,A'L
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Thus, whatever the distribution, price p(r) only depends on the first k layers
of labour L, AL, A*L,...,A*"'L.

Definition
We call labour profile matrix the square matrix

K=[L,AL,AL,...,A*"'L]

the k columns of which represent the first k layers of labour of model
[4,1,L].

Expression of p(r) as a function of K By calling (r) the column
vector (B, 8,85 ---,Bc_,)’, where M’ stands for the transpose of M, the
vector p(r) then writes

B()=KB(r)

Rank of matrix K We call rank m of matrix K the number of
column vectors independent of matrix K.
Note that from relation (1) we deduce that price p(r) only depends on the
first m layers of labour — where 1 <m <k — when matrix X is of rank m.
Rank m of matrix K is going to play an important role in the behaviour
and the evolution of prices p(r) as a function of the rate of profit r.

Regular system
System [A, I, L] is said to be regular when the labour profile matrix
K is of full rank, that is rank k.

Note that if an eigenvector g, on the left of matrix 4 corresponding to an
eigenvalue o, is orthogonal to L, we have q,4’'L=a/q,L=0 for all
j=0,1,2,... Thek vectors L, AL, A’L,..., A*~' L which are orthogonal to ¢,,
belong to a vector sub-space of R* of dimension k— 1 othogonal to g;.

Then, matrix K, the rank of which is at most equal to k— 1, is not of full
rank and system [4, [, L] is not regular if L is orthogonal to an eigenvector
on the left ¢, of 4.

In fact matrix Kis of full rank if and only if all the eigenvalues of matrix 4
are semi-simple and none of the eigenvectors g; on the left of 4 is orthogonal
to L.

Irregular system
System [A4, I, L] is said to be irregular when K is of rank m<k.
Before addressing the evolution of p(r), we will first recall the definition
and the properties of a kernel of linear application associated with a matrix.
Kernel of linear applications associated with K and p(r) The
application which associates vector xK= (xL,xAL,...,xA*”'L) represent-
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ing the first k layers of labour used to produce x to any activity level vector
(or gross production) x=(x,,x,,...,X,), is linear.

Kernel of the linear application associated with K We call kernel of
the linear application defined by matrix K, the vector sub-space of R
N(K)={ze R*|zK=0} )

Since zK=[zL,zAL,...,zA* ' L)if ze N[K] we have zK = 0 which is equiva-
lent to

zA"L=0 Yn=0,1,2,...,k—1 3)
Further (see chapter 2, section 5)

A =[c, A" "+, A e At ed]
As a result

zA*L=[c;zA* 'L+ c,zA* L+ ...+ ¢,_ | AL+ ¢,zL]=0

when we have inequalities (3).
We can see that these inequalities imply

zA"L=0  V¥n=0,1,2,... 4)
and relations (2), (3) and (4) are equivalent.
Kernel of the linear application associated with p(r) The appli-

cation which associates its wage price xp(r) with every gross production
vector x=(x,,...,x;) is linear." The kernel of this linear application

N(p(={ze R*|zk=0} %)
is a vector sub-space of R*
We have
N[K]=N[p(r))=N[p()] (6)

Number of independent prices for a given rate of profit
Foreveryre[—1 R[wehave N[p(r)]=N[K]and if matrix Kis of
rank m the kernel N[p(r)]= N[K]is a vector sub-space of R* of dimension
k—m. Thus, to any base z,,...,2,...,2_n of N[p(r)] we can make the
(k — m) independent equations correspond
7ip(N=0 zyp(N+...Fzpn) t. .tz p(n)=0

:Z:h.p(r)= 0 < z,p(N+...+zp N+ ... F2up(r)=0 Q)

zk'—mp(r)=0 Zk—m,lpl(r)+"'+Zk—m.ipi(r)+"'+Zk—m,kpk(r)=0
which link the prices of the k goods.
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As a result, with the aid of relation (7), we can deduce the price of the
k — m other goods when the prices of m of the k goods are known, i.e., there
exists a decomposable model with m basic goods which has the same price
system as the indecomposable irregular model {4, I, L].

Indeed, if k is of rank m any square matrix Z of order k such that ZK=0,
has its £ rows orthogonal to m linearly independent row vectors of K. Thus,
matrix K is totally determined as soon as & of its columns are determined
arbitrarily. If we choose k— m columns of Z equal to the k — m correspond-
ing columns of matrix A4, the matrix A — Z will have k — m zero columns and
will be decomposable. Further, since ZK=0 we have Zp(r)=0 for every
re[—1 R[ and the price system of model [4, ], L]

p(nN)=QAQ+rAp(r)+wL
also writes
p(N)=0+n[Ap(r)—Zp(n]+wL=(04+r)(A—Z)p(r)+wL

This means that p(r) is also a price system of the decomposable model
(4~ Z,1, L] which has m basic goods and k — m non-basic goods since 4 — Z
has k—m zero columns. Of course there are k!/m!(k — m)! decomposable
systems [4—Z, I, L] equivalent to the irregular indecomposable system
[A4,1, L], where the rank of K is equal to m since there are k!/m!(k — m)! ways
of choosing k— m columns among the k columns of matrix 4.

Example of irregular indecomposable model [A,I,L] Consider the
model [4, I, L] where

1 0.74
A=|% % | and L=|0.10
ER 0.16
1.25 2.825
We have AL=1|0.85 |and AL =1} 2.425 |; we notice A°L=AL—(5/36)L
0.72 1.96

meaning that matrix K=[L, AL, A*L] is of rank 2. The indecomposable
system [A, I, L] is thus irregular. Since the rank of the labour profile matrix
Kisequal to 2, there exists a non-zero square matrix Z such that ZK=0and
which shares any (=3 —2) column with 4.

If Z and A share the last column, it has the following form

Iy

Z=| 1z, z; 75| where

fon Flon 01—

3 I3

%)
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z;; and zy, are solutions to z,K=0 or z,L=0 and z, AL =0, that is

0.742,,+0.10z,, + 1.0.16 =0
hence z,, = % and z, = 332
1.252,,+0.85z,,+ 1.0.72=0

2, and z,, are solutions to z,K=0 or z,L =0 and z,AL =0, that is

0.742y +0.102), + 5.0.16=0
hence z, = =3 and z,,= 332
1252, +0.852,,+ 50.72=0

24, and z,, are solutions to z;K=0 or z,L and z,4AL =0, that is

0.74z,,+0.10z5,+ 5.0.16 =0
hence z;, = 732 and z;,= 755
1252, +0.852;,+ 5.0.72=0

-1 -—5263% 32522 0
thus we have Z=¢| —2.5 —13 63 & |and4.Z=4] 20 35.5 0 |,and
-10 —52 5 52 68.8
3 3 63y ¥ 3 0

the decomposable system [4 — Z, I, L] has the same price system as [A4, ], L]
which is indecomposable and irregular.
If we choose a matrix Z sharing its second column with 4, we have

N

n B 213
= _ 5
Z=|2z5 15 zp3 | where
4
Z3 3 232

z;; and z;; are solutions to z,K=0, i.e., z,L=0 and z,AL=0, with i=1,2,3.
We obtain

48 —318
INT w513 936

4.8 93.6.% —37.8
Zy =i 2= and Z=55 |5 93.6.% —39.375
1.6 93.6.& —12.6

23 = 55% 23 = %
42 0495
thus, we have A—Z=g5z| 21 0 68.625].
19.2 0 S1.6

And the decomposable system [4 — Z, I, L] has the same price system as
the indecomposable and irregular system [A4, I, L].
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While in model {4 — Z, I, L] the first two goods are basic goods and the
third is non-basic, in model [4 — Z, I, L] the first and the third goods are
basic goods and the second is non-basic.

Similarly, we can determine matrix

i 1 2.6 —3.9375
z=|3 ¥ -21875
14 175
which shares the first column with 4, and such that ZK=0.
0 3 4.0625
Thus we have 4 —Z=| 0 77 2.5 and in the decomposable system
0% %

{[A- 2, I, L}whichis equivalent to the indecomposable and irregular system
[A4,1, L], the last two goods are basic goods while the first good is not.
Now, let us consider a model [4, I, L] where we still have

-1l

2 158

—15 5 5

A=|% 15 T

2 4 s

|5 25 12
1.1
but L=|1
0.8

We have AL=(5/6)L and A’L=(5/6)4L=(25/36)L, which means that
matrix K=[L, AL, A*L]is of rank 1. The indecomposable system [4, I, L] is
thus irregular. Since K, the labour profile matrix, is of rank 1, there exists a
non-zero square matrix Z such that ZK=0 which shares two (=3—1)
columns with A4.

If Z shares its last two columns with A4 it has the form

4 1
Zn 15 18
— 5 5
Z=|zy 75 16
4 35
Z31 35 12

z,, is the solution to z,K=0 or z; L=0, that is
L1z, +£+408=0
hence z;,= #=3
Z,, is the olutlon to z,K=0 or z,L =0, that is

1.122[+ﬁ+ ﬁ.0.8=0
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hence z,, = 75
z4, is the solution to z;K=0 or z,L =0, that is
11z, + 5+ 5.08=0

hence z,, = 3.
Thus we have

=1

41

3 15 8

=| =% 5 5

Z_ 198 18 16

—38 4 5

99 45 12

and
5

200
A-Z=(200
Zoo

and the decomposable model [4 — Z, I, L] has the same price system as the
indecomposable and irregular system [A4, I, L].

If we choose a matrix Z sharing its first two columns with 4, it has the
following form

(IS

Z13

—
[

Z= 25

OIS |, NI
I Sl

Z33

z; is the solution to z,K=0, that is, z,L =0, with i=1,2,3. We obtain
z,3= —49/48, z,,= —35/48 and z;;= —20/48, and

Fs
it

1 4 —a
2 15 48
7|32 3 =35
AR i
2 2 =2
5 @ @

55

003

matrix A—Z=[0 0 3

40

00%

and the decomposable model [4— Z, 1, L] has the same price system as
[4,1,L).

While in model [4—Z,I,L] only the first good is basic, in model
[A—Z,1,L) only the third good is basic. These two examples show quite
well that an indecomposable and irregular model [4, I, L] has the same price
system as several decomposable systems [4 — Z, I, L] where ZK=0. If the
rank of matrix K=[L, AL, A’L,..., A*"'L]is equal to m, we can always find
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a decomposable system [4— Z, I, L] equivalent to [4, I, L], with m basic
goods (which can be chosen arbitrarily) and k — m non-basic goods. In this
case any numeraire is a price standard since L is the eigenvector on the right
of A.

As far as the determination of prices is concerned, we can see that at a
given rate of profit, in irregular or decomposable systems, only some of the
goods have their prices vary independently from one another. There is a
difference between decomposable models and irregular systems though. In
any decomposable model, there are non-basic goods, the prices of which are
deduced from that of basic goods. While in an irregular system, whose
matrix Kis of rank m, the m goods, the price of which vary independently,
can be chosen arbitrarily among the k goods produced by the system.

Variations of p(r) as a function of r

We have established that zp(r)=0 is equivalent to zK=0. Let us
consider k rates of profit r,r,,...,r,, all different, and the square matrix:
P(ri,....rpsesr)=[pr)s-...00r),....p(r)). Since zP=0 < zp(r,)=0
Vh=1,2,...,k < zK=0, we have N[P}]= N[K] and matrices P and K have
the same rank. Consequently, if K is of rank m, the price vectors
p(r),p(ry),...,p(r,) corresponding to m rates of profit r,r,,...,r,, all
different, move independently of one another. On the other hand, the price
vector p(r) corresponding to any (m+ 1)" rate of profit r, will be a linear
combination of p(r,),p(r,),...,p(r,,). Since the rank of matrix K represents
the number of independent layers of labour, when distribution varies, the
price vector p(r) takes as many independent values as there are independent
layers of labour.

More particularly, if the rank of matrix K is equal to 1, that is to say,
AL=ualL. The price vector p(r) is homothetic to L whatever the value of r. In
that case the price system does not change. However, if the rank of matrix K
is equal to k, the rank of matrix P[r,,...,r,,...,r.] is also equal to k and we
obtain the maximum number k£ of linearly independent price vectors

p(r|)7p(r2)s"-ap(rk)-

3.2.2 Irregular systems of activity levels

As we have distinguished irregular and regular price systems when the input
matrix A of model [4, ], L] was indecomposable, we shall now distinguish
regular and irregular systems of activity levels. We have to define the square
matrix C=[d,dA,dA?,...,dA* '], that we call the matrix of consumption
profile.

In this case, where d is the eigenvector on the left of the indecomposable
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square matrix 4 of order k, matrix C=[d,dA4,dA?,...,dA*"'], which we call
the consumption profile matrix, is of rank 1.

If the k columns d,dA,dA?,...,dA* " representing the first k successive
layers of consumption associated to gross production y are independent,
the system of activity levels of model [4, I, d] is said to be regular.

Otherwise matrix C is of rank n where 1 <n <k and the system is said to
be irregular for the activity levels. If we consider k rates of growth
£1:82 .-, &, all different, the activity level vectors y(g,),»(g:),..-,¥(g,)
corresponding to the nrates of growth g, g,, ..., g, vary independently of one
another. On the other hand, the activity level y(g) corresponding to any
(n+1)™ rate of growth g is a linear combination of y(g,),y(g,),...,y(g,)-

Similarly, for any ge{—1 G{ the & activity levels y,(g),y,(8),-..,:(8)
are linked by k — n independent equations if matrix Cis of rank n. As soon as
we know the activity levels of n of the k processes we can deduce those of the
k—n other processes.

In other words, there exists a decomposable model with n antibasic
processes having the same system of activity levels y(g) as the irregular
indecomposable model (4, I,d].

Example of irregular indecomposable model [A,1,d]
Let us consider the model [4, I,d] where

A= and d=[1 0.8 0.5]

oI oy =
&ls Sl Gle
Sl &l ==

We have dA=1/3[2.5 1.6 1.75)and d4?=1/9[6.25 3.8 4.625]. We can see
that d4?=dA — 12 d which means that matrix C=[d d4 dA*]isof rank 2.
The indecomposable system [4, I, d] is thus irregular. Since C, the rank of
the consumption profile matrix, is equal to 2, there exists a non-zero square
matrix Z sharing with 4 any (=3 —~2) row such that CZ=0.

-1 =2 =5
I 158
Z=|{ § % |satisfies CZ=0 and shares its third row with 4.
5w o
100 48 90
Matrix A—Z=15!1 020 —25
00 0

has its third row composed of zeros, and the decomposable model
[4—Z,1,d] has the same system of activity levels y as the irregular and
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indecomposable model [4,],d] since y=(1+g)yd+cd=(1+g)y(4—2Z)
+ ¢d, owing to the fact that CZ=0 implies yZ=0.'¢

=zl z1 -3

3

]
oo

Z=|3 & i |satisfies CZ=0 and shares its second row with 4.
£
25 18 15
Matrix A-Z=5%( 0 0 0
0 -4 5

has its second row composed of zeros and the decomposable model
[4— Z,1,d) has the same activity level system as the irregular and indecom-
posable model [4, I,d]. We can see that in model [4 — Z, I, d] the first and
the third processes are antibasic and the second process is non-antibasic
while in model [4 — Z, I, d] the first two processes are antibasic and the third

is non-antibasic.
1 4 1
2 %38 .
5 7% % | satisfies CZ=0 and shares its first row with A.

[N]

Nm

12
e §

3

1N
oC
1

|
|

W
[y

) 000
Matrix A—Z= 1|75 38 45
60 16 54

has its first row composed of zeros and in the decomposable model
[A—2Z,1,d], which is equivalent to the irregular indecomposable model
(4,1,d], the last two processes are antibasic while the first process is
non-antibasic.

Now let us consider model [A4, I, d] where we always have

fon 01—

A= 5| but d=[1 0.6 0.75]

# B

We have dA=[5/6 1/2 5/8]=5/6[1 0.6 0.75] and dA*=dA.A=5/6dA
=25/36d, which means that matrix C=[d d4 dA?*] is of rank 1. The
indecomposable system [A4, I,d] is thus irregular. Since C, the rank of the
consumption profile matrix, is equal to 1, there exists a non-zero square
matrix Z sharing with 4 any two (=3~ 1) rows, such that CZ=0.

1

OIS iy NI=
> gl Gl

N —

satisfies CZ=0 and shares its first two rows

|l Gle
[~

g
matrix Z=| 5 =
=8 =26 -

s 1

(V3

8
29

Y
~
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with 4.
0 00
Matrix A—Z=7%{ 0 0 0
20 12 15

has its first two rows composed of zeros and the decomposable model
[A—Z,1,d] has the same system of activity levels y as the irregular
indecomposable model [4, I, d].

I
2 15 8
Z=|=4% 32 3| satisfies CZ=0 and shares its first and third rows
I
with A.
0 0 0
A-Z=%[2012 15
[0 00

has its first and last rows composed of zeros and the decomposable model
[A=Z,1,d] is equivalent to model [4,1,d] which is irregular and
indecomposable.

While in model [4 — Z, I,d] only the last process is antibasic, in model
[4—Z,1,d}, only the second process is antibasic.

Similarly, the decomposable model [4 — Z, I,d], where

] 20 12 15
A-Z=%l 0o 0 0
000

is equivalent to system [A4, I,d] and its first process is antibasic and the last
two processes are non-antibasic. These two examples show that anirregular
indecomposable model [4, ],d] has the same system of activity levels as
several decomposable models [4—Z,1,d] where CZ=0. If the rank of
matrix C=[d dA dA®...dA*™'] is equal to n, we can always find a
decomposable model [4—Z,1,d], equivalent to [4,1,d], which has n
antibasic processes (that can be chosen arbitrarily) and £ — n non-antibasic
processes.

Mathematical appendix

Proposition 1

If A is a square matrix of order k, we have
k-1

U-(1+nA4]"'L=Y BA'L  Vre[—1 R]
j=0



Irregular and decomposable systems 97

(+rY+e,(1+"" + 4o (1+0!
[I-(1+1)4]

where bj=

(1)

By writing M and | M| the adjoint matrix and the determinant of a square
matrix M, we have
[I—=(14+nA]
TV ()]
II—(1+4r)A|
My (ML (DML A1 +HDIM,
1+c,(1+nN+,(1+nN*+ ... +c(1+n)'+...+c(1+r)k

[I-(1+r4)"'=

Since'” the minors of matrix 7—(1+r)4 are determinants of the square
matrix of order (k—1) the terms of which are functions of (1+7r). As we
have the identity [7— (1 +r)A].[I— (1 +r)4] "' =1, we deduce
N+e(l+)+ce,(1+r)*+. . +c(1+n'+ ...+ (1+r)*)
=[I-(1+nAd][My+(Q+nNM+...+(A+)' M+ +(1+r)* M, _|]
By identifying the terms (1+r)°(1+r),(1+r)%...,(1+r)* we obtain

between matrices My, M,,...,M;, M, _,, the following (k—1) relations
between matrices My, M,,...,M;, M, _,

I=M, = My=1I

cl=M,—AM, = M =AM,+cI=A+c]
c,I=M,—AM,_l=> . M, . AM,_1+c,I ..........
cI=AM,_,

Consequently, for any i=1,2,...,k~ 1, we have
M,=AM,_,+cI=A[AM,_,+c,_ 1]+
=AY AM,_y+c,_J1+c,_\ A+cl
=AM, _;+c;_ A%+, A+c,]
thatis M,=A'+c A" '+...+¢c,_,A+c,]

Thus we have
I-(1+NA=My+(+r)M,+...+(1+r)*'M,_,
k-1 k—1

=Y A+nN'M=Y (1+r)[d'+c A"+ . +c_ 1A+ cl]

i=0 i=0
=I+A+cDA+r)+...+(+r)[A'+c A7 +...
te A+ed]+.. .+ A+ A+ A2+ e, ]
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=[l+c,(1+nN+...+e(1+r)'+...+c_ 1+

F[(A+P)+ ...+ (147 14+ + (A +p)F14%!
k=1

= Z [(A+ry+c,(1 +r)j+'+...+ck_,_lj(1 +r)*~114 hence
i-0

[I-(1+nA]L

[I—(1+r)A|
O+ e+ Lt (140
[I—(1+ 1A

[I-(1+rA4]"'L=

k=1
=ZﬁjAjL
i=0
0 (A g (14D
Where f;= [I=(1+n4]
(Y () g, (1)
1+ (1) + a1+ .+ (1+0)F

Proposition 2
The kernels of the linear applications respectively corresponding
to matrix K and vectors p(r) and p(r) merge

N[K]=N[p(N]=N[p(r)] (6)
Of course we have N[ p(r)]= N[p(r)] since Vze N[p(r)] we have zp(r)=0 <
p(r)

zp(r)=z —w—= 0zeN[p@)]

Suffice to prove that N[K]= N[5 (r)], namely, N[K]isincluded in N[5(r)]
and N[p(r)] is included in N[K].

Wedo have N[K]included in N[ (r)] since Vze N[K]we have zK=0and
thus according to (1)

zp(ry=z.Kp(r)=zK.B(r)=0 that is ze N[ p(r)]

Similarly if zp(r)=0Vre[—1 R[wehavezK=0,i.e., N[p(r)]is included in
N[K].
Indeed if zp(r)=0Vre[—1 R[, we also have Vre[—1 R[

dlzp(r)] _
ar 0

and more generally

?zp(r)] _ ._ 3
=0 V=234, k-1




Irregular and decomposable systems 99

As a result, since zp(r)=z[I— (1 +r)A] "'L=zM~"(r) where
M@®)=I-(1+nA
dM(r)
“ar
A and M (r) are commutative

AN _ pg-1 P pg1p— a2 )L
dr dr

d1zp(n)]
ar?
Azp(n)] _
dr’
Since M(—1)=I-(1—1)A=1, we have M~ '(—1)=Tand M ~Y*D(-1)
=]
Which implies
zL=zM"'(—1)L=2zp(—1)=0
_[dzp(n}
L= dr

=2zA’M3(r)L

JzA’ MUY

ZAL=zAM*(—1) (r=—1)=0

_1dlzpmr=—1
bi dr
hence zK=[zL,zAL,...,z4°L,...,zA*"'L]=0.
Thus N[5(r)]= N[K] (6)

zA/L=zA M~ (— 1)L =0 Vj=23..,



4 The analysis of joint production

The analysis carried out in the previous chapter was restricted to single-
product industries and circulating capital. It is not because we consider
simple production as the rule and joint production as an exception that we
have first comprehensively developed simple production models. Itis rather
for simplicity’s sake, and this allowed us to obtain concise and elegant
results from the assumption of system productivity alone.

In fact, the general rule is joint production and Steedman (1984) has
listed the processes of joint production that can be encountered in various
sectors of the economy, such as agriculture, fishing, chemistry, electricity,
petrol, transportation, communications, etc. The emergence of fixed
capital, of machines, in models of production also requires a joint produc-
tion framework of analysis.

The analysis of joint production systems cannot be carried out without
mentioning the phenomenon of truncation, or the suppression of methods
of production. Analysing a specific system of joint production means
assuming that supply is in conformity with demand and that there is no
excess production; it also means that problems of efficiency, revealed by
negative prices, have been solved.

Such issues have already been contemplated in the first chapter, and the
issue of switch in methods of production will be dealt with in detail in
chapter 7, so it is not taken into account in the present chapter: production
systems are taken to be square, which means that unprofitable activities
have been eliminated as well as the excess supply of goods. It is in this
particular framework that we shall specify the determination of prices in
joint production systems.

Then we shall analyse particular structures, up to now unknown in
simple production where matrices 4 were either decomposable or indecom-
posable. However, in joint production, system (A4, B) may be decomposable
and at the same time broken down into basic and non-basic systems for the
determination of prices and into antibasic and non-antibasic systems for

100
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the determination of activity levels. We shall then tackle the problem of the
determination of the standard, or rather standards, in a joint production
system.

More generally, we have to insist on the fact that simple production
systems are exceptional and ... at the same time exceptionally simple. We
shall see that for some structures of joint production (provided the system
of production is both basic and non-basic) and for high enough rates of
profit (or growth) we revert to the mere simplicity of simple production.
This is a paradox that we have to emphasise for itis not in a stationary state
that these properties are enhanced but with high enough rates of growth (or
profit).

4.1 Prices in joint production

Sraffa’ analysed circulating capital and joint production systems as a kind
of preamble to the analysis of fixed capital and land. Thus, as in simple
production we assume that the methods of production do not require either
land or machines but only use circulating capital. However, since joint
production prevails, we have to introduce an additional assumption so that
the determination of prices is possible:

In Part 1 it has been assumed that each commodity was produced by a separate
industry. We shall now suppose two of the commodities be jointly produced by a
single industry (or rather a single process, as it will be more appropriate to call it in
the present context). The conditions would no longer be sufficient to determine the
prices. There would be more prices to be ascertained than there are processes, and
therefore equations, to determine them.

In these circumstances there will be room for a second, parallel process which will
produce the two commodities by a different method and, as we shall suppose at first,
in different proportions. Such a parallel process will not only be possible, it will be
necessary if the number of processes is to be brought to equality with the number of
commodities so that the prices may be determined. We shall therefore go a step
further and assume that in such cases a second process or industry does in fact exist.
(P.S. 50)

More generally, if there are k commodities there must be k production
equations so that the k prices can be determined: ‘“The assumption
previously made of the existence of a ““second process’ can now be replaced
by the more general assumption that the number of processes should be
equal to the number of commodities’ (ibid.).

This implies that the & activities allowing to produce the k£ commodities
are known, that is, the choice of techniques has been made.

We are now in a stationary state economy and we want to determine
prices and the scalar w for a given rate of profit r.
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Such an economy is represented by [4, B, L] where A=[a;] and B=[b;]
respectively stand for the input and output matrices, both are square and of
format k x k.2

As in simple production, L represents the direct labour vector (taken to
be homogeneous); w and r are respectively the wage and rate of profit.

Thus, the price equations write

(ay,prtappy .. +ayp)(A+r)+hw=bypy+b,p,+...+byp,
(ayptaypp,t...tayp ) +r)+hLw=by p+byp,+...+byp,

(apitappt. . taup )+t Lhw=by pitbyp,+...+bup,
or even

(1+rAp+wL=Bp

[B—(1+rAlp=wL

At a given rate of profit r prices p(r) are determined uniquely (up to the
multiplication by scalars) if matrix B—(1+r)A4 has an inverse. In addition
to this condition, we have to make sure that the model is productive and
that the supply of goods perfectly satisfies demand. Therefore, in order to
allow the determination of prices, model [4, B, L] must meet the following
three conditions:

Productivity of the system
The productivity of model [4, B, L] is guaranteed if there is at least
one activity level y>0 permitting a surplus s> 0 of all the goods, that is if

3y=0ly(B—A)=5>0 (N1

Satisfaction of demand
Once the productivity requirement is satisfied (N1), and whatever
demand cd=c(d,,d,,...,d)=>0, we can find an activity vector y

=(Y1sY2--->y) > 0 satisfying

y(B—A)=cd
y(B—A)'=cd, for at least one ie{1,2,...,k}

where (B— A)' represents the i column of matrix B— 4, that is to say the
net surplus of good i in each activity. The relation y(B— 4)'=cd, means
that the supply of good iis perfectly equal to its demand cd; and this good is
an economic good. On the other hand, a good j such that y(B— 4) > cd;isa
Sfree goodsince it is overabundant owing to the fact that the supply y(B8 — 4)’
is greater than its demand cd,. For prices to be positive there must be no
surplus of any good.
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Thus there is joint production in the economic sense of the word if demand
is perfectly satisfied, i.e., in a stationary state, if

dy>0|p(B—A)=cd (N2)

Note that in simple production [A4, I, L] the productivity requirement (N1)
is ascertained if the dominant eigenvalue a(A4) of matrix A is included
between 0 and 1. Condition (N2) is then satisfied whatever the demand cd
since matrix I — 4 has an inverse and (/— 4) ~' > 0 which implies that vector
y=(I—A)"'cd>0 always satisfies y(I— 4)=cd.

However, in joint production, before considering the positivity of prices
we have to make sure that supply and demand are in conformity, in other
words, that demand cd satisfies requirement (N2), or assuming growth at
rate g, the condition (N'2)

Iy=0ly[B—(1 +g)A]l=cd (N'2)

In this chapter, we assume that it is possible to satisfy demand perfectly;
in chapter 8 we will show that if this assumption is not satisfied one method
of production will have to be superseded, one of the goods becoming in
some conditions a free good.

Regularity of matrix M(r)
Requirements (N1) and (N2) being satisfied, the price matrix
equation

[B—(1+nAlp=wL

has at least one solution if there exists at least one rate of profit r such that
matrix M(r)= B—(1+r)A has an inverse. Therefore, we asume that the
following condition is always satisfied’

dr>0|M (r)=B—(1+r)A has an inverse (N3)

Furthermore, vector L must be such that M ~'(r)L>0 so that prices are
positive. Otherwise, some prices may be negative which proves the lack of
efficiency of the system, a bad selection of methods of production that has
to be remedied (the analysis of switch in methods of production is
developed in chapter 7). But if the previous assumption is satisfied, if the
prices are positive (as assumed in the present chapter), we can no longer
revert to the reassuring simplicity of simple production systems.

Indeed, we know that in thatcase re[0 R[M ~'(r)> 0, which is sufficient
for p(r)=M — 1(r)L to be positive. Such a condition is also sufficient to
ensure the growth of j(r). Indeed, since

dM"l(r) _ldM(r) -1
dr =M dr M
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dM
where # = — A4, we have
r

dp(r) dM~ '(".L _
dr dr

-M Y .(—A.M(r).L

=M~'(N.AM ' (r)L>0

And relation w(r) is decreasing in interval (0 R), whatever the numeraire u
retained for prices: indeed, we have

1
w“_u.M_'(r).L

But generally, in joint production, there is no interval (0 R) in which the
system has these characteristics: usually M ~'(0)=(B— A) ~'is not positive.
Even if prices are positive, as assumed from the beginning, wage prices are
not necessarily increasing functions of the rate of profit, the wage—profit
relation can be increasing for one numeraire and decreasing for another.

However, for a great number of joint production systems, there exists an
interval (R, R) (R, being positive) in which we can find the properties
specific to the simple production systems. It is quite paradoxical to find out
that in a golden rule situation, joint production systems that are not viable
in a stationary state (for r=g=0) become so at high enough rates of profit
(and growth) — though they are less than the maximum rate.

Recall that we have already defined R, as the ‘minimum’ rate of profit in
the sense that all the properties of simple production are ascertained on the
interval (R, R) (see chapter 1, section 5.1).

If demand is not appropriate or the system is inefficient, the system under
question will have to be truncated, which means that some inefficient
activities will have to be superseded at a specific rate of profit.

When an activity is suppressed, the system changes dimensions from
(k,k) to (k—1,k). A surplus of one of the goods emerges and the latter is
available at zero price. Therefore, we have a system with k—1 activities,
producing k— | goods and a free good.

If all the economic goods do not have positive prices or if demand cannot
be perfectly satisfied, a second activity will have to be suppressed. Conse-
quently, there will be k£ — 2 activities producing k — 2 economic goods and
two free goods. We can go on that way until when at a given rate of profit r,
there are as many activities as there are economic goods to produce at
positive prices.

We may also be led to a situation where a unique activity produces k
goods and among them k — 1 are free and only one is an economic good. It
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goes without saying that the exegonous rate of profit r retained for the
economy must not have a higher value than R as seen in section 1.5.5.

The issue of suppressing some methods will be dealt with in detail in
chapter 7 and the determination of the maximum rate of profit R will be
addressed in chapter 5.

Thus the link between prices and the rate of profit is more complex than
in a simple production context; such complexity will also appear when
analysing the basic or non-basic characteristics of the system.

4.2 Basic and non-basic systems

In a single product system with circulating capital each commodity was
produced by a single method of production which defined the industry.
Because there was a one to one correspondence between commodities and
industries there was an identity between the sector of basic industries and
the sector of basic commodities which was independent of the rest of the
economy as far as the determination of the prices of the commodities
produced in that sector and the determination of the endogenous distribu-
tive variable were concerned.

As a result, in such a system the technical autonomy of the basic sector
meant that prices and the distributive variables were determined indepen-
dently of the non-basic sector. To separate the basic sector from the non-
basic sector we only needed to simultaneously rearrange the rows and
columns of the technology matrix in such a way as to obtain zeros in the
upper right-hand corner of matrix 4. Commodities entering directly or
indirectly in all methods of production formed the basic sector.

Therefore, to solve an economic problem (the simultaneous determi-
nation of relative prices and distributive variables with one degree of
freedom) we were able to use a technical criterion, i.e., the indecomposabi-
lity of the basic sector or the participation, direct or indirect, of a
commodity in the production of all commodities.

Such a criterion cannot be applied in the general case of joint production
for it is now in general impossible to state that a particular means of
production enters the process of any particular commodity. This is for two
reasons: first, a particular commodity may be produced by several pro-
cesses; and, second, the contribution of any particular means of production
used in a joint process cannot be attributed to any one of the several
commodities produced jointly.

In such conditions any specific attribution is impossible, except in special
cases. This helps to explain the difficulties and paradoxes we meet in the
case of joint production. We shall now see that economic independence is
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no longer equivalent to technical autonomy as was the case with simple
production. The processes constitute a kind of veil over the commodities
but we shall see that by resorting to the basic system we shall be able to
create a certain transparency of the economic system. In general an
indecomposable system is not necessarily basic.*

We shall quickly address the case when system (A4, B) is decomposable; as
in simple production there is no difficulty in emphasising the basic and non-
basic sectors. It is when (4, B) is indecomposable that some peculiarites
may appear. Indeed, there may be a regular matrix M such that system
(M A, MB) is decomposable and the indecomposable system (A4, B) is then
said to be non-basic. We will show this using a simple example and then we
shall give a more general presentation. We will then be able to emphasise
two sub-systems, one basic the other non-basic. Unlike the decomposable
system, the partition of system (4, B) can be done in different ways, at least
as far as the activities are concerned: depending on the partition of the
system one activity in one part of the system may belong to the basic sub-
system and in another part belong to a non-basic sub-system. However the
distinction between basic and non-basic goods does not depend on the
partition; still, we have to emphasise that the prices of the (k—m) basic
goods depend on their use (and production) in the m methods retained to
form the non-basic sub-system.

Thus, a decomposable non-basic system appears to be a transition
system that can exist only in a joint production context; moreover, it is the
exact opposite of the simple production system where matrix M ~'(r) is
positive when the rate of profit is less than the maximum rate of profit; a
decomposable non-basic system is the opposite extreme of simple produc-
tion since, as we shall see, matrix M ~'(r) cannot be positive.

4.2.1 Indecomposable and decomposable systems

Definition

Matrices 4 and B form a decomposable system if, and only if, there
exists a permutation of their rows and columns such that 4 and B are
simultaneously transformed into quasi-triangular matrices as shown

below®
[4' 0 _[B! 0
4 ‘[Az‘ A%] 5 _[Bz‘ B!

with 4! and B being square matrices of the same dimension.®
The system of production just described is decomposable into two
groups of processes, one of them (4, B!) being technically autonomous
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from the rest of the economy. In these particular conditions the prices of the
commodities produced and consumed by this group of processes (basic
commodities) and the level of the endogenous distributive variable can be
simultaneously determined independently of the prices of the other
commodities.

The system of price equations is of the general form (1 +r)4p+wL=Bp
and can be written as follows

P L,
= L=
] el
el - w0
1+r) +w =
‘ [A; A;] |V L) B B,
That is
(1+")A11P1+WL1=31|P1

( +")(Azll71 +A22P2)+ WL2=leP1 +Bzzpz

The first of the two systems is sufficient to determine vector p, and one of
the distributive variables, given the other and given the numeraire.

The second system allows us to find vector p,, once p, and the endogenous
distributive variable have been determined. It thus appears as a non-basic
system.

In short, when a system is decomposable it is easy to define it into a basic
and a non-basic sector.

When a system (4, B) is not decomposable we may distinguish the basic
sector subject to the condition that the technology matrices have certain
collinearity properties that are even less restrictive than those previously
required. It is thus possible to find a regular matrix M such that system
(M A, MB)is decomposable. Then the indecomposable system (4, B) is said
to be non-basic.

4.2.2 Indecomposable non-basic system

Example

To introduce the subject, let us consider a very simple example.’
We have an economy with two processes of joint production defined by the
following positive technology matrices

ay ap by, b12:|
A= B:
|:a21 azz] |:b21 b,

It is obvious that system (4, B) is indecomposable. However, given certain
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assumptions of linear dependence in system [A4, B], we shall show that
system [4, B] although indecomposable is not necessarily basic.

a, a;; by by
ay ay by by

(4, B]=|: :| is a (2 x 4) matrix

Suppose that segment (a,,,b,,) belonging to the first process s linearly
dependent on the corresponding segment of the second process, in other
words there exists a scalar § such that®

la,; by;]1=Blay by)

In these conditions, matrices 4 and B write
4 =|:a,, ﬁazz] B=|:b“ an:l
Gy an by by,
Thus we have the following price equations
Py /)
= and L=
] mae=[.]
(+r) |:a” ﬂa22:| [P1:|+ w |:11:|=|:b11 ﬁbzz] [P1:|
a; ay 1) b by by, P>

(1+n(ayp +Bayp,) +wh=by p,+ Bbyp,
(1 +r)(ay pi+aynp,)+wh=by p,+byp,

or

By using a linear combination of these two equations it is possible to find an
equation with only three unknowns: p, and the distributive variables w and
r. We only need to multiply the second equation by (— ) and add up the
two equations to eliminate p,, hence

(1+r)(ay, — Bay )p, +w(l, — Bl) = (b, — Bby )

This equation shows that if we chose commodity 1 as a numeraire (with
p,=1) and assume that one of the distributive variables is given, the first
commodity has every property of a basic commodity vis-a-vis the second
commodity since we can determine the value of the endogenous distributive
variable independently of p, (with p, fixed at 1). As for p,, it can only be
determined if p; and the endogenous distributive variable are known.
Note that we have obtained the preceding equation, which could be
considered as a basic equation, by eliminating the second commodity
simultaneously from both the means of production and the quantities
produced, in the first equation for prices. This elimination is only possible
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because of the assumption of linear dependence between the two homolo-
gous segments of the methods of production. These segments have there-
fore disappeared from the ‘basic equation’. At the same time, it is perfectly
possible for some of the ‘abstract quantities’ to be negative (e.g., of the type
(a;,— Bay,), (b,,— Bby,), (I,— B1,)) and this of course cannot be related to
any effective method of production. This is one of the apparent paradoxes
of joint production (P.S. 56).

To conclude this example, it may be interesting to give another method
for dealing with the problem, whose importance will become clear in the
more general presentation given below. Let us construct a matrix®

w7

which transforms 4 and B into quasi-triangular matrices given the assump-
tion of linear dependence (a,,,b,;) = f (a3, b2,)"°

MA=|:1 'B] [an, al2_=[all_ﬂa21 0 :I
0 1]|ay an| |au an

MB=|:1 —B:I by blﬂ___[bu_ﬂbzl 0 ]

0 1 _b21 bzz_ b, by

L =B [H_[h- Bk
0 1][&] L& ]
We have constructed a virtual system

(“TII’B-IISZ;)=(aII_Baﬂ’bll — Bbyy, 1, — BL)

which appears as a basic system. While system (A4, B) was technically
indecomposable we have nonetheless been able to create a basic system
within system (A4, B) (given the assumption of linear dependence). We can
generalise this procedure without difficulty by following a method pro-
posed by Manara.

and

4.2.3 Indecomposable non-basic system. Generalisation"'

Definition

A system (A, B) is called non-basic if there is a simultaneous
permutation of the columns of 4 and B and a number m such that matrix
(4%, B*) composed of m(1<m<k— 1) last columns of 4 and B is of rank

m.12
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If mis the highest number having this property, the m goods associated to
[4?, B?] are non-basic.

Let us suppose that such a permutation has been made. System (4, B)
which is non-basic by assumption, can then be written as follows

k —m processes Al | At B! | B}
m processes A; | A} B, | B
k—m m k—m m
2 2

1
4; B
It has m independent rows. Thus (k—m) rows must be linear combi-
nations of m others, assumed to be independent. If the last m rows of
[42, B?)are independent we can then represent the first (k — m) rows [42, B?]
of [4?, B?] as linear combinations of the last m rows [4Z, B] taken as bases.
Let [A2, B}]= H[A}, B3] with H of dimension (k — m, m).
By using Manara’s procedure we can construct the following matrix

Ik—m -
ilo Tl

which transforms A4 and B into quasi-triangular matrices."
I,_, —H| [Al A7 [4] —HA;} 0
MA= =t 2
0 L7 4 427 4 A
I,_, —H] [B! BX] [Bl —HB! 0
MB= =l pl 2|7 R! 2
0 1|71 B! B2|7]| B B2
The smallest among the systems of ([4] — HA,),[B, — HB1))type,i.e.,
the system of this type to which corresponds the greatest m, is called a basic

system. If it is identical to (4, B), (A4, B) will be said to be a basic system.
If we multiply the initial system by M we obtain

(1+rMAp+ MLw=MBp

A B
The (k x 2m) matrix [42, B*] =[ : :| is of rank m.

and therefore we have two sub-systems of equations

(1+n(A4] —HA)p,+(L, —HL,)w=(B{ —HB))p,
(]+’)(A21P|+A22P2)+sz=leP|+322P2

The first series of equations can be solved independently of the second. Of
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course, the two series together give the same results as the initial equations
since the first are simply inferred from the second by a linear combination
given by M.

4.2.4 Can a basic system be uniquely decomposable?

When system (A, B) is non-basic and has m non-basic goods and k — m basic
goods we can emphasise two sub-systems: a basic sub-system composed of
the (k— m) rows of matrices (M A, MB), that is (4, — HA,), (B —HB,)
and a non-basic sub-system composed of m rows (A4,, B,) of matrices
(MA,MB).

The decomposition of the non-basic system (A4, B) into basic and non-
basic systems is not unique when system (A, B) is indecomposable. Indeed, in
this case matrix (42, B?) of dimension (k,2m) is of rank m and has at least
m+ 1 non-zero rows. We can then choose m linearly independent rows
among the k rows of matrix (42, B?) in different ways. We thus obtain as
many decompositions of system (4, B) into basic and non-basic systems.
Therefore, if we have

211 402
A=|132} and B=|054
333 226
12
Matrix (42, B*)=| 2 4 | composed of the last columns of matrices 4 and B
36 2140
is of rank 1 while matrix (4',B')=|1 3 0 5| composed of the first two
3322

columns of 4 and Bis of rank 3 greater than 2. As a result system (4, B) is
non-basic and has one non-basic good, the third, while the first two are
basic. In matrix (42, B?) of rank 1, we can choose any of the three rows as a
base and express the two other rows as ‘linear combinations’ of the row
chosen as a base. Thus, using the notations of the preceding paragraph, we
can write:

1 2 1/3
If (47,B3)=(3 6) and (42 B})= 5 4:|=|:2;3i| (3 6) which means that

10 —1/37

1/3
H = / and M,=|0 1 —2/3|then we have
23 00 1
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100 10/3 —2/3 0
M A=} —-110|and M;B=] —2/3 11/3 0
333 2 2 6
12 1/2 ) 172
2 p2y— 2 p2y_ = H. =
If (45,B;)=(2 4) and (47, B}) |:3 6:| [3/2] (2 4) that is, H, [3/2]
1 —1/20
and M,=|0 1 0]; thus we have
0 -321
32 —-1)20 4 -520
M,A=]1 3 2|and M,B=|0 5 4
3/2 =320 2 -11/20
2 p2 2 p2 24 2 .
If (45,B;)=( 2) and (4;,B;)= 361713 (1 2) which means that
) 100
H3=|:3} and M;=| —2 1 0| then we have
-301
211 402
MyA=|-310|and M;B=| -850
-300 -1020

In these three cases, we can see that the third good is a non-basic good in
the sense that its price depends on the prices of both other goods, and of
course on distribution, while the prices of the first two goods are obtained
independently from the price of the third good. On the other hand, system
(4, B) transformed into (M A, M B) can be broken down in three different
ways into a basic sub-system and a non-basic sub-system. More precisely:

In [M,A, M, B] the basic sub-system is composed of the first two rows of
[M A, M,B), while the non-basic sub-system is composed of the third
rows of [M |4, M B].

In [M,A, M, B] the basic sub-system is composed of the first and the third
rows of [M,A4, M,B] while the non-basic sub-system is composed of the
second rows of [M,A4, M, B].

In [M,A, M, B] the basic sub-system is composed of the last two rows of
[M;A, M,B] while the non-basic sub-system is composed of the first
two rows of [M;4, M,B].

Of course if system [A, B) is decomposable it can be broken down uniquely
into a basic sub-system (4|, B} ) and a non-basic sub-system [4,, B,] since
matrix (42, B?) of dimension (k, 2m) is of rank m and has k — m zero-rows.
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Note that prices p, and p, are independent of the partition of system (A, B)
into basic and non-basic sub-systems since they are in any case solutions to
the following equation

(1+rnAp+wL=Bp

We also note that the prices of the basic goods which are determined in the
basic system, not only depend on A4, B}, L, but also on the conditions of use
(A4, ) and production (B, ) of the basic goods in the non-basic sub-system and
of labour L, used in the non-basic sub-system.

4.2.5 Decomposable matrix associated with a non-basic system

It is not always easy to determine in a system (A, B) whether there exist m
columns A2 and B? of matrices A4 and B such that the matrix (42, B?) is of
rank m. However, when we have a square matrix we can quite quickly find
out whether it is decomposable.

Let us now state and demonstrate two theorems establishing a link
between the rank of matrix (42, B?) and the decomposability of a square
matrix of (B— puA) ' A type where p is any number.

Theorem 1
A necessary and sufficient condition for system (A4, B) to be basic is
that there is a regular matrix M such that system (MA,MB) is
decomposable.
Indeed, the condition is necessary since we have shown that if there are m
columns A2 and B? of matrices 4 and B such that the rank [4?, B*]=m, we
can construct Manara’s matrix

o)

which is regular and such that matrices MA and M B are quasi-triangular.
The condition is sufficient for if system (M A4, M B) is decomposable, we
have

Al 0 ke Bl o
A= -, - =|"_ _
M [Azl Azz],,, and MB [le Bzz]

k—m m

and by writing M ~!'=[M", M?*] we obtain
(k. k) (k,m)}

[4% B*)=M " '[(MA)*,(MB)*]|=M*4;,M*B})= M} A%,B3]
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and rank [47 B*]<rank [47,B?]=m. Hence system (A4, B) satisfies the
definition of a non-basic system (see section 4.2.3 above).

Before stating the second theorem, let us first demonstrate the following
proposition.

Proposition

Given the linear combination X=B— uA4 of matrices A and B,
system (A4,X) is non-basic if and only if system (4, B) is non-basic.
Furthermore, both systems have the same non-basic goods.

Indeed, if system (A4, B) is non-basic there is a permutation of the columns
of A4 and Band a number m such that the last columns 42and B*of 4 and B
establish rank [4%, B*]=m.

Thus, rank [4% X?]=rank [4% B>~ u4?]=rank [4%, B*)=mand system
(4,X)=(A4,B—uA) is non-basic and has the same m non-basic goods as
system (A4, B).

Similarly, if (4, X) is non-basic and rank [42, X*]=m after permutation
of the columns of 4 and X. Since B=X+ uA, then rank [4% B?]=rank
[4%, X*— pA*]=rank [4% X?]=m and system (4, B) is non-basic and has
the same m non-basic goods as system (4, X).

Theorem 2

A necessary and sufficient condition for system (A4, B) to be non-
basic is that there exists a regular matrix X=B— uA4 such that X '4 is
decomposable. Further, systems (4,B) and (X~'4,I) have the same
non-basic goods.

Indeed, the condition is necessary; since system (A4, B) is non-basic, it is
the same for system (4, X') and by theorem 1 there exists a regular matrix M
such that system (M A, M X) is decomposable. Then, matrices M4 and MX
are quasi-triangular and it is the same for (MX)~! and (MX) 'MA4
=X"'M~"'"MA=X""'4, which means that matrix X "'A=(B—ud) 4 is
decomposable.

The condition is sufficient for if system (X ~'4, I) is decomposable, by
theorem 1, system X (X ~'4,7)=(4, X) is non-basic and therefore system
(A, B) is non-basic owing to the proposition above. Of course systems (A4, B)
and (X ~'4,I) have the same non-basic goods since in all the linear
transformations there are no permutations of the last m columns.

As a result, sytem (4, B)

is basic if matrix X ~'4 is indecomposable; in this case any matrix of

(4% B?) type and of dimension (k,2m) is of a rank at least equal to
m+1

is non-basic and has m non-basic goods if matrix
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Zl 0 k—m
-1 - 1
XA |:Zzl Zzz]

m
k—-m m

where Z,>0 and Z| and Z? are indecomposable square matrices of
orders (k—m) and m. In that case there exists a matrix (42, B?) of
dimension (k,2m) and of rank m, and m is the highest integer for which
we have this property.

has no non-basic goods if X ~' A is totally decomposable; in this case if m is

the highest integer such that matrix (42, B?) of dimension (k, 2m) is of
rank m then matrix (4', B') composed of the first (k — m) columns of A
and B is of rank (k—m).

Of course we assume that condition (N3) ensuring the existence of at least
one rate of profit r, at which matrix B—(1+r)4 has an inverse, is
established. Otherwise there would be no linear combination X=B— uA
that would be regular.

It is worth noting that:

if matrix Bisregular we can choose X = Band system (A, B) is basic or not

depending on whether matrix B~'4 is indecomposable.

if matrices 4 and B are singular but (B— A) is regular, we can choose

X=B-A and system (4, B) is either basic or not depending on
whether matrix (B— 4) ™! 4 is indecomposable.

Example
Let us revert to the previous model (4, B) where
211 402
A=|132] and B=|054
333 226
Since matrix B is regular and
1 2 -5
B'=%1 4 10 -8
-5 -4 10

we can calculate B~'4 which is equal to

9 2 0
Ll -610 0
16 13 17

Matrix B~'A is really decomposable and here again, in model (4, B) the
first two goods are basic while the last one is non-basic.



116 Prices profits and rhythms of accumulation

4.2.6 Transformation of matrix X ~' A resulting from a permutation of the
rows and columns of matrices A and B

If we simultaneously permutate the columns of 4 and B by post-multiply-
ing them by a permutation matrix Q we transform 4, Band Xinto AQ, BQ
and XQ; thus we obtain

(XQ)7'40=0"'x7'40=0'Xx""'40Q
this means that the columns of matrix X !4 have undergone the same
permutation as A’s and B’s and the same permutation has been performed
on the rows of X ~'4. More particularly, if system (4, B) is non-basic,
gathering non-basic goods in the last columns of matrices AQ and BQ
transforms matrix X ~'4=(B—uAd)~'A into
z! 0 e
Z, z;]

k-m) m

Q'X"A=[

m

Thus, the non-basic goods are in the last m columns of Q'X ~'4Q and are
‘produced’ by the last m rows of Q' X ~'4Q.

If we simultaneously permutate the rows of matrices 4 and B by multiply-
ing A and B by a permutation matrix P we transform 4, B and X into

PA,PB,PX and X 'dinto (PX) 'PA=X"'"P 'PA=X""14=X""4

which means that matrix X ~'4 remains invariant when we permutate the
rows of matrices 4 and B; thus when system (A, B) is broken down into two
sub-systems (basic and non-basic) we obtain the same equivalent system
(X~'A4,1) to determine prices.

If we revert again to the non-basic decomposable model (4, B) analysed
in the paragraphs above, we do find out that the three models transformed
(M A, M \B), (M,A, M,B), (M,A, M,B) are such that

(M.B)""(M,A)=B~'M'M,A=B 'Awithi=12o0r3

4.2.7 Characteristics of non-basic indecomposable systems

While in simple production any indecomposable system (4, ]) is basic, we
have shown that in joint production an indecomposable system (4, B) may
be non-basic. We can show (see Bidard, 1982) that in such a system there is
no rate of profit r at which matrix

[B—(1+r)A)"'>0
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To show this let us demonstrate the following theorem.

Theorem 3
Consider a non-basic system (A4, B). If there exists a real number u
such that X ~'=(B—puA) ™' >0 then system (4, B) is decomposable.
Indeed, let § be a real number such that the square matrix Y=(B— f4) s
regular and semi-positive. As system (4, B) is non-basic matrix X ™'Y is
decomposable, and if there are m non-basic goods, with

X Xn|¢-m Y| Y} Z o
B 1 {4 4 -1y 41
A FI e PR F P
k-m) m
we have X| Y7+ X?Y2=0. Since matrices X/ >0and ¥/ >0owingto X "' >0
and Y>0, we have
X!'Y?=0and X2Y2=0

2
1

2
Y,
and we can always rearrange its rows so that Y7 is a regular matrix, thus
what we assume here is

X?Y?=0 implies X7=0

Since matrix Yis regular its last m columns |: :| form a matrix of rank m

Hence X "' is a quasi-triangular matrix as well as its inverse X. Since X ~'is
regular, its first (k —m) rows form the matrix [X|,X7]=[X, 0], itis of rank
(k— m); therefore matrix X] is regular and

X! Y?=0 implies Y?>=0

1 |
Thus, X= [2 (;,22} and Y= [)):E (;,22] and system (X, Y) is decomposable.
Since matrices 4 and B are linear combinations of the quasi-triangular
matrices X and Y, they are also quasi-triangular and system (A4, B) is
decomposable.

Corollary
If a system (A4, B) is indecomposable and non-basic, there is no rate
of profit r such that [B—(1+r)4] "' >0.

Suffice to choose u=(1+r) in matrix X= B— uA. By theorem 3 if there
exists r such that [B—(1+r)A4]"'>0 the system would necessarily be
decomposable which is contrary to the corollary assumption according to
which (4, B) is indecomposable.
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Summary table

We assume that assumption (N3) is established, meaning that the
rank of all matrices[42 B2]composed of m columns of 4 and B, associated
with the same goods, is greater than or equal to m. Table 4.1 allows to
determine the basic and non-basic goods of model[4 B]asa function of the
rank of matrices [4% B?].

If matrix X=A—uB is regular, table 4.2 summarises quite well the

characteristics of matrix X ~'4.

Table 4.1.
is m<k and does a simultaneous
permutation of the columns of 4 and B
exist such that rank [4% B*]=m?
no yes
[4 B]is a basic system [4 B]is a non-basic system

all the goods are basic goods
since m is the greatest number

such that rank [4? B?]=m,
does rank [4' B']=k—m?

no yes

there are m non-basic goods there are no basic goods
and k —m basic goods

Table 4.2.

Matrix X~ '4 rank [42, B?] Model [4 B]

indecomposable >m basic: every good is
basic

decomposable' =mandrank [4',B'|>k—m non-basic: has m non-
basic goods and k—m
basic goods

totally decomposable'> =m and rank [4',B']=k—m non-basic: has no basic

goods
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At this stage we have to remark that:

When system (A, B) is non-basic and has m non-basic goods, it can be
decomposed into two sub-systems, namely, a basic sub-system with
(k—m) equations [(4)— HA)),(B/—HB})] and a non-basic sub-
system with m equations (4,, B,).

The decomposition of the non-basic system (4, B) into a basic sub-system
and a non-basic sub-system is not uniqgue when system (4, B) is
indecomposable, since matrix (42, B?) of dimension (k, 2m) is of rank
m, we can choose in different ways m linearly independent rows that we
can write (42, B?); the corresponding sub-system [(4,, 47 ),(B;, B})] is
a non-basic sub-system while sub-system [(4) — HA,),(B} — HB,)] is
basic.

Of course, if system (A4, B) is decomposable it can be decomposed
uniquely into a basic sub-system (4, B} ) and a non-basic sub-system
(42, B,).

The prices p, of the basic goods, that are determined in the basic
sub-system not only depend on A4/,B] and L, but also on the
conditions of use (4,) and production (B, ) of the basic goods in the
non-basic sub-system and on labour L, used in the non-basic
sub-system.

Further, prices p, and p, do not depend on the decomposition of system
(4, B) into basic and non-basic sub-systems, since they always are
solutions to the following equation

(1+r)Ap+wL=Bp

We can determine the basic and non-basic goods in an indecomposable
non-basic system (A4, B); however, an activity may, according to the
decomposition of the system into basic and non-basic systems, belong
to the basic sub-system in one partition and to the non-basic sub-
system in another.

4.3 Antibasic and non-antibasic systems

As far as the analysis of activities and relation c¢(g) are concerned, moving
from simple production to joint production creates similar difficulties to
those springing from the analysis of prices and relation w(r). Under simple
production, we have already distinguished antibasic processes and non-
antibasic processes when matrix 4 is decomposable. We shall directly
contemplate the case where system (A4, B) is indecomposable though non-
antibasic, without reverting to the simple case, where in joint production
system (A4, B) is decomposable. We shall first define that kind of system and
then we will define its various characteristics; the analysis has been
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considerably shortened for our aim is mainly to apply to activities the
analysis that was used for prices.

4.3.1 Definition
A system (A4, B) is said to be non-antibasic if there exists a simultaneous
B,

composed of the first nrows of 4 and B(where | <n<k—1),isofrank n.Ifn
is the greatest number having such a property, the n processes defined by

A
[ l] are non-antibasic.

. . .14
permutation of the rows of A and B and an integer n such that matrix [ ‘] ,

BI
Let us assume that the permutation has been done: by assumption, the
non-antibasic system (A4, B) can be represented in the following way

Al | 42 | n B | B} |n
A= B=

Al | A% | k—n Bl | B | k—n

n k—n n k-—n

matrix I:A':|= l:Al‘ Alz] of dimension (2n,k) is of rank n
B | | B B ’ '

Thus it has n independent columns and (k—n) columns are linear

combinations of the n other columns supposed to be independent. If the

1

|4 .
first n columns of matrix l: B ] are independent, we can represent the last

1
A} 47 . o
(k— n) columns ofl:Bz] of matrix I:B :l as linear combinations of the first n
1 1
1 2

¢ Bll s S Bl Bll

matrix of dimension (n,k — n). By using the regular matrix

] H, H being a

we can transform matrices 4 and B into two quasi-triangular matrices

AN= Al AD\TI, —H 7| _[A] Ai—AlH) [4] 0
A A2llo  n_, | |4} A2—AlH| | 4} A}-AlH
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B BY|[I, —H} [B 0
BN=| .\ > . =1 51 p2_ pt
B! B2||0 ;5_,| | B, B;—BH

The smallest of the systems of type [(42— A, H),(B%— B, H)], namely, the
system of this type to which corresponds the greatest integer k — n, is called
an antibasic system. If it is identical to (4, B), (A, B) is said to be antibasic.

Indeed, if we multiply the initial system by matrix N

(1+gyAN+cdN=yBN

we obtain two equation sub-systems

(1+g) [y, 4] + y, 43 1ed, = (1 + g)[y, Bl + y,B) ]
(1+8)y, (A} — A H) + c(dy— d\H)= (1 + g)y,(B; — B}H)

The second system is sufficient to determine vector y, and one of the
distributive variables, given the other and given the numeraire of activity
levels. As for the first system, it allows us to determine y, only if y, and the
endogenous distributive variable are known. Both series of equations give
the same results as the initial equations since the first are simply deduced
from the second by a linear combination defined by the regular matrix N.

4.3.2 Characteristics of the indecomposable and non-antibasic systems

C oy .4
Let us now state three theorems which link the rank of matrix [ Bl:| and the
1

decomposability of a square matrix 4X ~! where X=B— puA.

Theorem I’

A necessary and sufficient condition for system (A4, B) to be non-
antibasic is the existence of a regular matrix N such that system (4N, BN) is
decomposable.

Proposition

Given matrix X=B— ud, system (4, X) is non-antibasic if and
only if system (4, B) is non-antibasic. Furthermore, both systems have the
same non-antibasic processes.

Theorem 2'

A necessary and sufficient condition for system (4, B) to be non-
antibasic is the existence of a regular matrix X'= B— uA such that matrix
AX ™' is decomposable. Furthermore, systems (A4, B) and (4X ~!,I) have
the same non-antibasic processes.
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Theorem 3’
Let (4, B) be a non-antibasic system. [f there exists a real number u
such that X ~'=(B— ud) ~'>0, sytem (4, B) is thus decomposable.

Corollary

If a system (4, B) is indecomposable and non-antibasic there is no
rate of growth g such that [B—(1+g)4])~'>0 (theorems 1’, 2’ and 3'
respectively demonstrate as theorems 1, 2 and 3).

Summary table
We assume that requirement (N3") is established, that is, the rank

1

A
of any matrix [ B :l composed of n rows of 4 and B, corresponding to the

I
same n processes, is greater than or equal to #. Table 4.3 allows us to
determine the antibasic and non-antibasic processes of model [4, B] as a

Table 4.3.
is n<k and is there a simultaneous
permutation of the columns of 4 and B
A 1
such that rank [ :I=n?
B,
no yes
[A B]is an antibasic system [4 B]is an antibasic model

all the processes are similar - )
since n is the greatest number

A 2
such that rank :|=n, does

BZ
A i
rank [B,]=k—n?
no yes
there are n non-antibasic there are no antibasic
processes and k — n antibasic processes

processes
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Table 4.4.
A 1
matrix X~ '4 rank l:B'] model [4, B]
indecomposable >n antibasic: all the processes
are antibasic.
2
decomposable'® =n and rank l:Bz] >k—n non-antibasic: has n non-
antibasic processes and

k — n antibasic processes.

2
totally decomposable'’  =n and rank =k—n non-antibasic: has no
y p BZ
antibasic processes

A
function of the ranks of matrices [Bl:l'
1

If matrix X=B—uA is regular, we obtain table 4.4 as a function of the
characteristics of matrix AX ™',

4.4 Various partitions of an indecomposable system

It is worth noting that when a model (A4, B) is indecomposable it can be:
basic and antibasic

basic and non-antibasic

non-basic and antibasic

non-basic and non-antibasic.

Indeed, we have already shown that the indecomposable model (4, B)
can be basic or non-basic depending on whether the square matrix
(B— nA) "' A is indecomposable or not. On the other hand, it is antibasic or
non-antibasic depending on whether the square matrix 4(B—pud) ™" is
indecomposable or not (see table 4.5).

Table 4.5. Nature of the indecomposable model (A, B)

AB—pA) ' (B—pd)"'A indecomposable decomposable
indecomposable basic and antibasic non-basic and antibasic
decomposable basic and non- non-basic and non-

antibasic antibasic
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The following examples illustrate the last three cases.

The indecomposable model (4, B) where

311 833
A=]241 B=]196
313 157
60 O 0
is non-basic for B™'A=55| —32 166 —83 | is decomposable. But it is
121 —83 166
95 =2 3
antibasic for AB™'= 55! 58 163 129 | is indecomposable.
86 76 135
Note that the matrix, of dimension 3 x 4, composed of the juxtaposition
1133
of the last two columns of A and B, namely [4%, B*]=|4 1 9 6 |isofrank2
1357

since the first row equals the sum of 2/11 times the second row and 3/11
times the third row.

If we consider model (4’, B'), where A’ and B’ are the transpose of matrices
A and B of the previous model, we have an indecomposable model that is
basic and non-antibasic.

Finally, the indecomposable model (A4, B) where

211 4 0 27
A=|132]and B= |05 4
213 42 6]
7 607
is non-basic for B~'4=;| 4 12 0|is decomposable and non-antibasic
~2 6 6]
20 8 12
since AB™'=3|15 18 —19 |is decomposable.
0 0 12

In these three cases we know that by theorems 3 and 3’ there is no rate of
profit r such that M~ '(r)=[B—(1+ 4]~ '>0.

Foranindecomposable model (4, B) to have at least a rate of profit r such
that M ~'(r)=[B— (1 + r)4] "' >0 the model must be basic and antibasic.
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The theorem'® below specifies the conditions of existence of r such that
M™(r)>0.

Theorem 4

Let (A, B) be a basic and antibasic joint production system with a
maximum rate of profit R>0 and such that there exist vectors g0, p=0
establishing

g[B—(1+R)A4}=0,[B~(1 + R)4]p=0, and rank [B—(1 +r)A]=k—1

There is then an interval [R, R[ such that matrix M~'(r)=
[B—(1+R)A]"'>0for re[R, R[, Risthesimple rootof [B—(1+r)A4]=0,
g>0and p>0.

In such conditions, for ge[R, R{, all the commodities are separately
producible and all the activities are necessary whatever the structure of the
final demand.

When R, is negative, all the properties of simple production are estab-
lished in the model.

Mathematical appendix

Let us now demonstrate that condition (N3'), stated below, has to be
established so that at least one real number r exists such that matrix
B—(1+r)A is regular.

Condition (N3')

There exists no integer m where 1 <m<k, such that after permu-
tation of the columns of 4 and B, matrix [4? B*] of dimension (k,2m)
composed of the last m columns of 4 and Bis of a rank p strictly less than m.

Condition (N3’) springs from the following theorem.

Theorem

If after permutation of the columns of 4 and B there exists a name
m such that matrix [42, B?] of dimension (k,2m) composed of the last m
columns of 4 and Bis of rank p strictly less than m, all linear combinations
uA+ AB of matrices 4 and B are singular.

Indeed, after permutation and decomposition of 4 and B, we have
A=[A',4%*]) and B=[B' B?]. As a result
(k. k) (e.m) (k k) e,m)
A+ AB=[uA'+ iB' uA*+ 1B?

and the rank of matrix u4 + AB is at most equal to the sum of the ranks of
matrices ud'+ AB' and u4?+ AB% But the rank of u4'+AB' is at most
equal to k— m and that of u4?+ AB*is at most equal to p since [4%, B?]is of
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rank p. The rank of u4 + ABis thus less than k—m+ p<k—m+ m=k since
p<m and the square matrix of order k, u4 + AB which is of a rank strictly
less than k is singular whatever the numbers p and 4.

Corollary

Ifthere exists a real number r such that B— (1 +r)A is regular and if
1 2 1 2

1 2
rank l:j;l j;z]Sm then rank [ji jlz:|=m. Indeed if rank [j; j;z:|<m,
owing to the previous theorem, when we choose A=1 and u= —(1+7r),
matrix ud +AB= B—(1+r)A is non-regular, which is at variance with the
assumption.
Note that we can replace condition (N3') by condition (N3”) stated
below.

Condition (N3")
There exists no integer n where 1 <n<k such that after permu-

1

A
tation of the rows of 4 and Bmatrix I:B ] of dimension (2n, k) composed of

1
the first n rows of A and B is of rank p strictly less than n.

Note that if matrix B (or A) is regular, condition (N3') is always
established since any matrix B2 composed of the m columns of B is of rank
m and thus rank [4?% B?}>rank (B?)=m.

More particularly, in simple production B=1 is regular and condition
(N3) always holds.



5 Standards and blocking goods

5.1 Seeking the invariant standard of value

Economists’ search for an ‘invariant standard of value’ is similar to the
search for the philosopher’s stone. We know that the issue was addressed by
Ricardo in section VI of The Principles of Political Economy and Taxation,
entitled ‘On an invariable measure of value’, which specifies the topic of
research and what is at stake.

When commodities varied in relative value it would be desirable to have the means
of ascertaining which of them fell and which rose in real value, and this could be
effected only by comparing them one after another with some invariable standard
measure of value, which would itself be subject to none of the fluctuations to which
commodities are exposed.

He also adds that even if we do not take into account a possible variation
in prices due to alterations in production conditions, we have to take into
account those due to changes in distribution. Since, to determine prices we
need to choose a given quantity of a given commodity as a numeraire, it is
quite impossible to know, when distribution varies, what part of the
variation in prices is due to the commodity in question and what part is due
to the commodity chosen as a numeraire. Hence the following proposition:

If, then, I may suppose myself to be possessed of a standard so nearly approaching
to an invariable one, the advantage is that I shall be enabled to speak of the
variations of other things without embarassing myself on every occasion with the
consideration of the possible alteration in the value of the medium in which price
and value are estimated.

In the following lines, Ricardo assumes that gold is the ‘invariable’
commodity, though he underlines . . . ‘I fully allow that money made of gold
is subject to most of the variations of other things’.

Does the standard-commodity constructed by Sraffa (P.S., chapter 4) in
Production of Commodities by Means of Commodities have the properties

127



128 Prices profits and rhythms of accumulation

sought for by Ricardo? Is there a commuodity i (or a basket of commodities
Y=(Y1sV25 s Vis--» ¥, )= 0) such that its price (p; or yp depending on the
assumption retained) remains invariant with variations in distribution? Are
both these questions identical?

The issue deserves to be addressed all the more since in the introduction
of Ricardo’s Works and Correspondence, Sraffa writes:

The search for what has been called the * chimera of an invariable standard of value’
preoccupied Ricardo to the end of his life. However, the problem which mainly
interested him was not of finding an actual commodity which would accurately
measure the value of corn and silver at different times and place; but rather of
finding the conditions which a commodity would have to satisfy in order to be
invariable in value. (Sraffa, 1970, p. xli).

We shall show that a specific commodity can have all the properties of an
invariable standard provided we choose a proper numeraire. The purpose of
this chapter is to give a precise definition of what might be an ‘invariant
standard of value’ and show how it can be constructed. We shall first reason
within a very simple context of an indecomposable model with circulating
capital, about which Sraffa’s propositions will have to be specified owing to
a recent controversy (see Burmeister 1980, Malinvaud 1981, Flaschel 1986,
Schefold 1986).

Then we shall address the cases of decomposable systems, on the one
hand, and systems taking into account joint production, on the other hand,
moving away from Sraffa’s position. More particularly, we shall show that
the search for an ‘invariable standard of value’ refers to von Neumann
model; the price standard — which exists in any case — can be constructed
from the activity and price system characterised as a ‘blocking system’.
These cases being further developed, we shall start with the indecomposable
system with single-product industries and circulating capital.

5.1.1 Indecomposable system with single-product industries and circulating
capital

In order to answer these questions, we shall start with Sraffa’s simple
production model with circulating capital described by the triple (4,1, L).
Prices p are determined with the usual notations

p=(+rAp+wL 1
The price normalisation equation writes
u(I—A)p=1 2

with u=(u,,u,,...,4;,...,u,)=0and uL=1.
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Note that first, Sraffa normalises the price system by the condition
e(I- A)p=1; in other words, he chooses a specific numeraire where
e=(1,1,..., 1) represents the activity vector showing the effective operation
of the system in question. The treatment that we suggest here is more
general.

Further, we know that if u= g defined by ¢=(1+ R)qA4 (where R is the
maximum rate of profit of the system) the wage—profit curve w(r) becomes
linear. If the system is regular,' this numeraire is the only one ensuring
linearity.

How can a ‘fixed-value commodity’ be determined when
distribution varies?
From (1) and (2), we obtain

l=u(l— Ap(r)=rudp+wuL=rudp+w 2"

When w decreases from 1 to 0, r increases from 0 to the maximum rate of
profit R. A variation dr of the rate of profit causes a variation dw of the wage
w(r) and a variation dp of the price vector p(r). We obtain dp by
differentiating both members of equation (1); thus we have

dp=(1+r)d(Ap)+ Apdr+ Ldw 3)

The price of a composite commodity y = (¥, V2 .-+, Vis---, V) =0 is equal
to yp(r) and when the rate of profit varies by dr, the price of the composite
commodity y undergoes a variation d{(yp)=yd(p). For the composite
commodity to have an invariant value when distribution varies, yp(r) needs
and only needs to remain constant when r moves from ( to R, meaning that
the differential d( yp) is zero, or

0=d(yp)=ydp
=(1+r)d(yAp)+yApdr+ yLdw 4)

for any re{0 R].

Expression (4) is of the form (1 + r) X+ Y= 0. Suffice that X=0and Y=0
or:

(a) d(y4Ap)=0 for all re[0 R).
(b) yAp.dr+yL.dw=0 forall re[0 R].

Condition (a) means that the input value yAp of commodity y must, as
¥, be constant when r varies from 0 to R. As a result, the ratio yAp/yp also
remains constant at re[0 R]. If we write this constant a, we obtain the
following condition

y4p

w ©)
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or
yAp=ayp
or
ylel—Alp=0for all re[0 R] 59

In the assumption retained here, where model [A4, 1, L] is regular, con-
dition (5') is established if and only if

yleI—A]=0or ay=yA (6)

that is, if a is an eigenvalue of the square matrix 4 and y is an eigenvector
corresponding to a. Since matrix 4 is taken to be indecomposable,as y >0, o
is the dominant eigenvalue a(4) of matrix 4 and y>0.

As vector y is defined up to the multiplication by scalars, we can choose
vector ¢ that is homothetic to y and such that gL =1.

Thus, vector ¢ >0 defined by

qA=aq 0]
and
gL=1 ®)

establishes (a) which is the first condition for commodity ¢ to have an
invariant value.
Note that commodity ¢ satisties Sraffa’s recurrence condition, since

Ai+l (Zi+l 1
qqA,.pp= aiqip=a=l+Rat all re[0 R]and i=0,1,2,...

Condition (b) must also be satisfied by commodity y, that is
yApdr+ yLdw=0 for all re[0 R].

Since commodity ¢ is homothetic to y which also satisfies gL=1,
condition (b) becomes

qAp.dr+qL.dw=qgAp.dr+dw=0

that is

w =d_w= —qgApatallre[0 R]

dr
which means that since, by condition (a), g4p is constant, the derivative w’
of win relation to r has to be constant, i.e., the wage—profit relation must be
linear. However, as previously stated, when the model is regular this
requires a specific numeraire u=g, that is
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qUI—Ap(r)=1 2"

In such conditions, by pre-multiplying both terms of equation (1) by
vector ¢, we obtain

gp=(+rgAp+wgL=(1+rgAp+w=qgAp+rgAp+w 9
hence

gp—qAp=rqAp+w
and

rgAp+w=q(I—A)p=1forall re[0 R]

More particularly, at r= R, we have w=0. Hence RgAp=1thus g4p=1/R
and

_94p _ _(1+R)
P==, =(1+R) q4p R

Therefore, in model (4, I, L) the composite commodity g defined by (7)
and (8) is the commodity sought for, the invariant value of which is equal to
(1+ R)/R provided the numeraire retained is g(/— A).

1
Note Since rqAp=1—w and qu=E, we have %= 1—w.

This implies that if w — 0, é — l and r — R, all prices being positive.

Properties of the standard
We can write that the standard q establishes the following relation

a _9 _°

qAp agp «
which means that when distribution varies the ratio of outputs (gp) to
inputs (g4p) remains invariant and equals 1 + R.

Thus we understand why Sraffa refers to the standard as a balanced
commodity.

=1+R  Vre[0 R] (10)

1
Further, since gA4p =z when gL=1 for all re[0 R], we have

qL _
qAp

This means that the labour/means of production ratio is independent of
distribution and equal to R in the activity producing commodity g.

R Vre[0 R] (1
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Furthermore, from relation (11) we deduce that, for any integer n
qA"L _ a"qL  qL
qA™'p a"qdp qAL

=R ¥re[0 R] (12)

This means that the labour/means of production ratio is independent of
distribution and equal to R in all the successive layers of means of
production in the activity producing commodity g. We revert here to the
recurrence condition emphasised by Sraffa (P.S. 21) in Production of
Commodities by Means of Commodities.

Finally we establish

w r
—_—=]— Vre[0 R 13
2U—A)p R [0 R] (13)
which means that the wage expressed in terms of the numeraire g(/— A4) is
the equation line

L
W=ITR

Note Ifthe wage is advanced, then we know that the wage—profit
curve is an equilateral hyperbola (see chapter 2).

We have shown that, at a given r, prices were the same whether wages are
advanced or paid on surplus; as a result, for a given model [4,],L]
commodity q is a standard even if the wage is advanced.

As an illustration, let us determine the standard commodity in the
concrete system contemplated by Sraffa. Such a system only includes basic
industries respectively producing iron, coal and wheat, in the following
way:

90 tons iron + 120 tons coal+ 60 quarters wheat + £ labour —
180 tons iron

50 tons iron + 125 tons coal + 150 quarters wheat + % labour —
450 tons coal

40 tons iron+ 40 tons coal + 200 quarters wheat + & labour —
480 quarters wheat

Totals=180 tons 285 tons 410 quarters

By taking as a standard for each of the three goods the quantity produced of
each good, we obtain the price equations

p=(+rAp+wL
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where
1 121 3
2 53 16
_|s5 5 s .
A= 18 18 16 and L= 16
2 4 5 8
5 a5 12 16

The dominant eigenvalue «= 1/(1 + R) of matrix A4 is 5/6 which corresponds
to a maximum rate of profit R=20%. The left-hand-side eigenvector ¢
corresponding to the dominant eigenvalue 5/6 is g=(1 3/5 3/4), which
means that the standard composite commodity includes (up to the multipli-
cation by scalars) one unit of iron, 3/5 units of coal and 3/4 units of wheat,
that is to say, 180 tons of iron, 3/5x450=270 tons of coal and
3/4 x 480=360 quarters of wheat or 1 ton of iron, 1.5 tons of coal and 2
quarters of wheat.

As the standard commodity is defined up to the multiplication by scalars,
only its structure is known, while the level of the basket, of this structure, is
not. To show this explicitly, suffice to write the level of the standard
commodity as u times the previous structure, with u being any scalar

g=p(13 =@ 3p 3p)

It is possible to choose p, i.e., to normalize vector ¢ by condition gL =1
which gives

I=pls §

e For Sw
Il
=
~—
NG
+
i
e
+
Bl
e
=
I
Silw
=

from which we obtain u=%and g=% % 1.

The standard commodity (whose structure and level are now fixed ) includes
4/3 units of iron, 4/5 units of coal, 1 unit of wheat, that is, 4/3 x 180=1240
tons of iron, 4/5 x 450 = 360 tons of coal and 480 quarters of wheat. We can
easily check that the standard system is the following:

120 tons iron + 160 tons coal + 80 quarters wheat + 5 labour —
240 tons iron

40 tons iron + 100 tons coal + 120 quarters wheat + % labour —
360 tons coal

40 tons iron+ 40 tons coal + 200 quarters wheat + & labour —
480 quarters wheat
Totals =200 tons 300 tons 400 quarters 16/16

Itis, as Sraffa termed it (P.S. 26), the Standard net product and the Standard
national income made up with 40 tons of iron, 60 tons of coal and 80
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quarters of wheat, which will help normalise prices, with the value of the
Standard national income set equal to 1 in order to ensure the linearity of
the wage~profit relation.

In the Standard system defined by Sraffa as ‘the set of equations (or of
industries), taken in the proportions that produce the Standard commo-
dity’, the proportion in which the various commodities are produced are
equal to those in which they enter the aggregate means of production; the
standard system consumes 200 tons of iron, 300 tons of coal, 480 quarters of
wheat; the percentage of excess quantity produced over the quantity used
up in production is the same for every commodity; it is here equal to 20%
and corresponds to the maximum rate of profit R.

In short, the standard commodity is ¢=(240 360 480), with
q(I— A)=(40 60 80) being the numeraire chosen to express prices and
wages.

5.1.2 What happens when the system is decomposable?

In a decomposable system, there may be several homothetic commodities
of type ¢,=(1+ R;)q;4 with ¢q;=>0. We write g the positive eigenvector
corresponding to a, the dominant eigenvalue of A.

Let us revert to Sraffa’s beans example

L_[2023 0
ay  10/11

has two eigenvalues = 10/11 and a,=20/23.

To the dominant eigenvalue = 10/11 corresponds g, the eigenvector on
the left such that g4 = ag; we can see that it is strictly positive and equal
to ¢g= 24 (25, 3a,,, 1)> 0 if we choose A>0.

If we choose g(I— A) such that gL = 1, as the numeraire of prices, the
wage-profit relation w= 1 —r/0.10is linear and intersects points (r=0,
w=1)and (r=0.10, w=0);

To the dominant eigenvalue a,=20/23 corresponds ¢ the eigenvector
on the left such that ¢4 =(20/23)g?% we can see that ¢°4 = (20/23)q>
with g2= A(1,0) >0 when we choose 1> 0. If we choose vector g*(/— A)
such that g’L =1, as the numeraire to express prices, the wage—profit
curve is linear and intersects points (r=0, w=1) and (r=0.15, w=0).

Let us now contemplate the following three-sector model

040 O

A=(0.1 050
0.1 0.1 0.6
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a=0.6 is the dominant eigenvalue of 4 to which corresponds the strictly
positive eigenvector g=(1 1 1);to the other eigenvalues o, and o, (which is
the eigenvalue of the basic sector) respectively correspond the eigenvectors
g*=(110)and ¢>=(1 0 0). We can thus define three homothetic commo-
dities with a common property; with a proper normalisation of the price
system, that is g,(/— A)p=1 (with ¢,L = 1), they allow us to obtain a linear
w/r relation, that is, g=1—r/R,. Thus in this example, we would have
R,=1/4, R,=3/7, R,=3/2.

Among these homothetic commodities, only one has the required
properties to construct a price standard. Indeed, the price standard
commodity must meet the following condition: w — 0, r - R with p>0 at
re[0 R], while this is not true” at r> R, =min R,.

Recall that the dominant eigenvalue of the decomposable matrix A is
equal to the dominant eigenvalue of one of the square matrices 4,, located
on ‘the main diagonal’. Matrix 4,, represents the use of the goods with the
lowest growth rate in their own production and characterises the ‘blocking
goods’ of the system.

Therefore, among the R;s, characterising each of the homothetic commo-
dities, we shall retain the lowest R, written R, which as a consequence will
be determined from a matrix A4,,, representing the ‘blocking’ goods; a,(A4,,,)
is the dominant eigenvalue of system A.

Since ¢,=(1+ R,)q,4,,=0, the price standard g, includes, on the one
hand, all the commodities making up the blocking sector and, on the other
hand, all the commodities directly or indirectly used in the sector (and more
particularly basic commodities).

In Sraffa’s beans example, the ‘standard’ includes the ‘blocking’ good,
namely beans, and the good used to produce the blocking good, namely the
basic good. Thus, in this case, Sraffa’s suggestion consisting of only
considering the basic sector leads to a mistake. In the beans example, it is
surely possible to define a ‘homothetic commodity’ including only the basic
good and associated with the rate of profit R,= 15%, but such a ‘homothe-
tic commodity’ is not the price standard sought because it is not defined
from the maximum rate of profit R, which here amounts to 10%.

Thus, the composition of the standard provides us with major infor-
mation. We already know that the use of the standard allows to confer a
certain transparency to the system; as any homothetic commodity, it allows
us to make the wage—profit relation linear: further, it is a price standard true
to the definition previously given. Finally, its composition is determined
from the peculiar category of ‘blocking’ goods that we have just defined as
those determining the maximum rate of profit (and growth) of the system.

While in an indecomposable system, the basic and blocking goods are the
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same, when the system is decomposable the blocking goods may differ from
the basic goods. That is the case of Sraffa’s beans example.

Note that there are blocking goods even if there are no basic goods. If the
system is totally decomposable, the blocking goods are defined from the
eigenvector corresponding to the dominant eigenvalue of the blocking
sector A,,. Itis only in the peculiar case when a,(4,,) =0 Vi that there are no
blocking goods.

Consequently, the price standard, which is unique, has to be considered
as composed of blocking goods (and not basic goods), and of goods directly
or indirectly entering their production.

Should the system be indecomposable, the blocking and basic sectors are
the same.

If the system is totally decomposable, there are no basic goods, however
there always is a blocking sector.

The blocking sector determines the critical proportion, and thus the
maximum rate of profit as well. The basic sector allows us to calculate the
prices of basic commodities, independently of the prices of the non-basic
goods, at any positive rate of profit that is less than the maximum rate of
profit. The price standard necessarily includes the commodities which
determine the blocking sector and therefore, if this is the case, the ‘beans’
and the commodities directly or indirectly entering their production.’

5.1.3 Joint products

The problem of the construction of the standard in joint production reveals
many difficulties, some of which we shall briefly recall in the following
pages, throwing a new light on the argument.

While contemplating the problem, Sraffa notes that some multipliers
entering its construction may become negative (see P.S. chapter 8). And he
adds:

Thus a Standard commodity which includes both positive and negative quantities
can be adopted as money of account without too great a stretch of the imagination
provided that the unit is conceived as representing, like a share in a company, a
fraction of each asset and of each liability, the latter in the shape of an obligation to
deliver without payment certain quantities of particular commodities (section 56).

However, such a point of view cannot be accepted; of course, there is no
objection if some of the multipliers are zero or negative (some g; of vector
q). However, choosing a commodity ¢B or g(B— A) including negative
quantities as a numeraire is out of question. For, under this hypothesis, and
since prices p vary with distribution, g Bp or (B — A)p could be zero at some
values of r and thus of p as well; therefore, the expression of prices in terms
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of such a zero commodity could not be defined. Such a commodity could
not be true to its purpose, namely providing an invariant standard of value.

Difficulties abound: for example, Manara has shown that the standard
ratio may not be determined; some examples also show that the possibility
of having several homothetic commodities associated to distinct R; can be
dismissed.

We have shown that in any square production model there always exists a
standard ratio R and a standard system. It is possible to define a commodity
g which will serve as an invariant standard of value (provided the price
system is normalised by g(/— A)p=1...).

The ratio % varies with distribution, but such variations are only due to

the variations of p;. The commodity gp is the standard commodity of value
sought for.

If we consider a decomposable simple production model, there may be
several homothetic commodities associated to distinct standard ratios R,
but only the homothetic commodity associated to the smallest standard
ratio R is the price standard. Non-basic goods may be included in the
standard commodity, since they are blocking or they enter the production
of blocking goods.

In joint production, we can show that, provided free goods are allocated
zero prices in von Neumann’s solution at a profit rate R equal to the
standard ratio, we can always find a composite commodity that is homothe-
tic for economic goods and meets the requirements of the standard
commodity.

5.1.4 Irregular systems and plurality of standards

We know that when the labour profile matrix K=[L, AL, A’L,..., A*"'L]is
of rank m <k, model [4, I, L] is irregular. Then, we have shown that

N[K]=N[p(N]=N[5() (6)
which means that for all vector z of the kernel of K, we have

zK=0 < zp(r)=0 < zp)(r)=0.
More particularly, we have

zA"L=0forn=0,1,2... 4)
that is

z.A"e N(K) and z4"e N{p(r)] for n=0,1,2... (10)
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and all ze N(K) establishes
z[ad— Alp(r)=0 for any ae R (11

Linearisation of the wage—profit relation
Let us consider an irregular model [4, I, L] where the input matrix
is indecomposable. We know that the standard q(/— A4) makes the wage—
profit relation linear (see, chapter 2, section 2.3.3).
Let us show that if ze N[K] any price standard v(/—A4), where
v=g+0z>0 with vL =1, makes the w—r relation linear.
Indeed, since we have:
w

qI—Ap

v(I— A)p(r)=q(I— A)p(r)+vz(I- Ap(r)=q(I—A)p(r) by (11) as a
result, for any ze N(K] such that v=¢g+uz>0

1 —é for g defined by g4=ag and gL=1.

w w r

v(I-Ap qU-Ap R

Thus the standard g(/— A)is no longer the only one ensuring the linearity of
the w—r relation when X is not of full rank; in that case, any standard
v(I— A4) where v=g+vz>0, makes the relation w— r linear.

Standards

In chapter 1, we have shown that for all re[0 R], a commodity y
had an invariant price yp(r) if it established the following conditions:
(a) d(yAp)=0 for all re[0 R].
(b) yAp.dr+yL.dw=0 for all re[0 R].

Relation (b) means that cjl_v: must be constant, i.e., relation w—r must be
linear.
Therefore, we have to choose as a numeraire the standard v(/— 4) where
v=g+vz>0 with ¢ establishing g4 =ag and gL=1 and ze N[K].
Relation (a) leads to the following condition

y[el—Alp(r)=0forall re[0 R] (5)
which is established if we choose

y=q+pz (12)
where ze N[K].

Then we do have

ylod = Ap(r)=I[q+ uz]lol — Alp(r)
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=glal— Alp(r)+ pz(al— A)p(r)=0

since g(af ~ A)=0 because ag=gA4 and z(al/— A)p(r)=0 by (11).

Note that when K is of rank m <k, its kernel includes non-zero vectors
and as a result the invariant standard of value is no longer unique; in
addition to vector ¢, any vector y=g+ uz >0 where ze N[K] is a standard.

Number of linearly independent standards

If matrix K is of rank m the kernel N[K]is a vector sub-space of R*
the dimension of which is k —m. Thus, every base of N[K] includes (k —m)
VECtOrS  Z|,Z3...,Zp.--,Zk_, and we can always find constants
His---sMy, ... om_, such that the (k—m) vectors u,=q+p,z, are semi-
positive. By the Miyao theorem, u,,u,,...,u,_,, are (k—m) standards of
(4,1, L} which are linearly independent since z,,z,,...,2,_,, form a base of
NI[K]. Further, since gK=[gL,qAL,...,qA* 'L]=[1,a,...,a* ']#0 the
standard ¢ does not belong to N[K] and thus is linearly independent of
VECLOTS Z(, ..y Zpy ey Zpm e

As a result, when matrix K is of rank m, system [A4,I, L] possesses

k—m+1 independent standards: Sraffa’s standard ¢, and the k—m
standards u,,u,,...,u,_, that we call Miyao’s standards.

Uniqueness of Sraffa’s standard  Sraffa’s standard commodity g is
the only standard (up to the multiplication by scalars) of model (4, /, L] if
and only if matrix A4 is indecomposable and matrix K is of full rank.

Indeed, if rank (K)=k, kernel N(K) is of dimension k—k=0. Thus we
have N[K]={0} and by the Miyao theorem, model [4, ], L] has only one
standard, namely q.

Similarly, if ¢ is the only standard of model [A4,], L] by the Miyao
theorem, we have N[K]={0} and rank (K)=k.

Standards when matrix K is of rank 1 1If rank (K)=1, the kernel
N(K) i1s of rank k—1 and the system [A4,I,L] possesses k— 1+ 1=k
independent standards that is to say, every commodity #>0 such that
uL=11is a standard.

5.2 Duality and standards

Our purpose is to show that it is possible to contemplate the construction of
a standard in the dual system, that of quantities and activity levels.

What is the meaning of such a standard? How is it to be constructed?
What are its characteristics? What is its composition?

We shall first specify some assumptions and notations and then we will
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address the topic within the context of an indecomposable system and then
of a decomposable system. Our reasoning will be limited to the case of a
system with single-product industries and circulating capital.

5.2.1 System of activity levels and 'virtual good’

Let us now contemplate the problem of accumulation in model (4,1, L,d]
by seeking for the activity level vector y, allowing for the same growth rate g
for all goods and a consumption withdrawn from surplus which remains
homothetic to a vector d,*

The activity level vector y(g) of model [4, I, L,d] satisfies the equation:

y=(1+gyA+cd 1)

This equation is completed by a normalisation condition to which we
shall revert.

The components y; vary when the distribution between accumulation
and consumption in the surplus varies. (Note that if we write e’ the column

0
vector | 1 | the component y,, which is the level of the i activity also

0
measures the gross production y.e' of the i" good.)

In fact, when the accumulation/consumption distribution varies, the
activity level vector y(g) of model [4, I, L,d] is altered and the ratios y, /y; of
any activities i and j do not remain constant when g varies.

As y,can beinterpreted as the gross production of goods i, we can see that
in general, the gross production ratios of goods i to goods j are altered when
g varies. As the denominator as well as the numerator of y,/y; vary, itis quite
impossible to determine, when accumulation varies, what part of the
change is due to the commodity in question and what part is due to the
commodity that has been used in the normalisation condition of the activity
system.

Here, a problem parallel to the invariant standard of value appears,
namely the problem of finding the ‘invarant standard of activity levels’ or,
which comes down to the same, the problem of finding a real or virtual
commodity whose gross production remains invariant when distribution
varies.

In order to specify the notion of ‘virtual commodities’, we first have to
distinguish activity level, technical coefficient, and quantity. Just as when
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we multiply a volume by a specific weight (density) we obtain a weight,
when we multiply an activity level by a technical coefficient, we obtain a
quantity.

Of course, when in simple production, the technical coefficient b,
(density) is equal to 1, when it is multiplied by an activity level y; (volume),
the quantity y;.1=y, is obtained. In this equality, the term y, on the
left-hand side stands for an activity level, while y; on the right-hand side
represents a quantity: the same number ( y;) represents two different things.

bli
However, a column b'=| b, | of the output matrix B, which in simple
by
0
production is '=| 1 |, has technical coefficients as components. Thus,
0

if we make the scalar product of the activity level row vector y
=(Y5--sYir---»¥x) by the column vector b' we obtain a quantity yb’
=yb,;t...+y;b;+ ...+ y.b,,, since it is the sum of the terms y,;b,; which are
quantities (the product of an activity level y; by a technical coefficient b;;).
In simple production, yb'=0+...+y,. 1 +...+0=yp,.

If model [A4, B, I, L] operates at the level y=(y,,...,;, ..., V), the quanti-
ties ya'=y,a,;+ ...+ y,a,+ ...+ y,a,; and yb' = y, represent the quantities of
good i respectively used and produced. Each of the pairs
[@' b'],....[a" b),...,[a* b*], represents a (real) good which is used and
produced by model [4, B, L].

By extension, a pair of column vectors of order k, [# z] can define a new
commodity or a ‘virtual commodity’ whose input and output technical
coefficients are respectively

hl zl
h=|h z=|z'
hk zk

The produced quantity of that good would be yz=yz,+...+y,z;+...
+ y,z, and the quantity used would be yh.

A ‘virtual commodity’ is not a ‘composite commodity’ but dual to a
composite commodity: while acomposite commodity can be compared to an
activity or to a pair of rows of matrices 4 and B, with components
representing quantities of several goods, a ‘virtual commodity’ can be
assimilated to a pair of columns of matrices 4 and B, with components
representing technical coefficients of a same good.
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5.2.2 Indecomposable system with single-product industries and circulating
capital

Let [A4,1, L,d] be a model where the input matrix 4 is indecomposable. We
assume that:
the growth rate is uniform for all means of production and is equal to g,
with g included between 0 and G= R=(1 —a(A))/ax(A);
when g grows from 0 to G, the consumption withdrawn from surplus
decreases but remains homothetic to d. We write c¢(g)d where c(g) is
the consumption level which then decreases from 1 to 0;
returns are constant.
The activity level vector y(g) of model [4, I, L, d] establishes the following
equation

y=(1+g)yd+cd Q)

Actually, this matrix equation is a system with k equations and k+2
unknowns: the k activity levels y,, y,,..., ¥;, ..., Vs, the growth rate g, and the
consumption level c. As returns are constant, vector y is defined up to the
multiplication by scalars and the k + 2 unknowns are totally determined if
we normalise activity levels and if one of the distributive variables c or g is
defined exogenously.

We can normalise activity levels by writing

y(U—Ay=1 @)

where v>0 such that dv=1.
owing to (1) and (2), we obtain

1=y(g)I— Av=gyAv+cdv=gyAv+c 2

and when ¢ decreases from 1 to 0, g decreases from 0 to the maximum rate of
growth G.

The level p, of the i activity stands for the gross production of the i
good by the model; it also appears as the scalar product of the activity level
vector y by vector e’ =(0,0,..., 1,...,0) representing the quantities of good
produced by each of the & activities.

Vector v, which serves as a standard for activity levels, can be interpreted
as a vector whose components are the quantities of a ‘virtual’ commodity
produced by each of the k activities of the model so that the net production
y(I—a)visequalto 1.

Instead of vector v, we can choose the eigenvector p on the right of matrix
A corresponding to the dominant eigenvalue a(A4) and defined as follows

Ap=a(A)p and dp=1 ?3)
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or

p=(1+G)4p )
thus we have

y()p=(+G)y(g)4p )
for all g included between 0 and G and the new activity level standard

y(@@U—-A)p=1 (6)

makes the consumption—accumulation relation linear since (2°) gives
I=y(I-A)p=gyAp+c=g/G+c

as we deduce from (5):
1=y(I—- A)p=GyAp

where yAp=1/G.

Further, if the model is d—- regular,’ the standard y(/— 4)p= 1 is the only
standard, up to the multiplication by scalars, which makes consumption
and accumulation linear, i.e., ¢(g)=1—g/G and consequently makes the
derivative dc/dg= — 1/G constant.

5.2.3 Definition of a good whose gross production remains invariant when
the accumulation—consumption distribution varies

Let us revert to the activity level system of model [4, 1, L,d].

When the accumulation—consumption distribution varies, the activity
level vector y(g) of model [4,1,L,d] which establishes the equation, is
altered and the ratios y,/y; of the levels of any activities i and j do not remain
constant.

Let us show that a real or virtual commodity exists, such that its gross
production remains invariant when distribution varies. Recall that the
gross production of a ‘virtual’ commodity z is by definition the scalar
product of yz where y establishes equation (1).

We can choose a temporary standard, represented by a vector v>0, to
express activity levels y(g) and consumption ¢(g) when the growth rate g is
€xogenous.

A variation dg of the growth rate causes a variation dc of consumption
c(g) and a variation dy of the activity level vector y(g).

We obtain dy by differentiating both members of equation (1) and we
have

dy=Q+g)d(yA)+yAdg+d.dc (10)
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the gross production of a virtual commodity z=|z,,...,z,...,2,] being
equal to y(g)z; when the growth rate undergoes a variation dg, the gross
production of the virtual commodity z undergoes a varation d[ yz]=d[ y)z.

For the virtual commodity z to have an invariant gross production when
accumulation changes, y(g)z needs and only needs to remain constant
when g varies from 0 to G, i.e., the differential d[ yz] must be identically zero
or

0=d[yz]=dy.z=(1+g)d[yAz] + yAzdg + dzdc (1)

forallge[0 G].

Since the identity (11) must be established for all g, the following
conditions are sufficient:
(a) d[yAz]=0 forall ge[0 G].
(b) yAzdg+dzdc=0  forallge[0 G].

Condition (a) means that the consumption yAz of the virtual commodity
z as an input must, just as the gross production of commodity yz, be
constant when g varies from 0 to G. As a result the ratio yA4z/yz also remains
constant when ge[0 G]. If we call that constant u, we obtain a first
necessary condition

YAz[yz=yp (12)
or

yAz=pyz
or

ylu I-A)]z=0 forallge[0 G] (12
If model [4, 1, L,d] is d-regular, condition (12') is established if and only if

[u I—A)z=0 or uz=Az (13)

that is, if u is the eigenvalue of the square matrix 4 and z is the
corresponding eigenvector on the right. Since matrix A is indecomposable
and z >0, p is the dominant eigenvalue a(A) of matrix 4 and z>0.
Vector z being defined up to the multiplication by scalars, we can choose
vector p that is homothetic to z and such that dp=1.
Thus vector 5> 0 defined by

Ap=a(A)p (14)
and
dp=1 (15)
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establishes condition (a) which ensures an invariant gross production of the
virtual good 5 when the accumulation—-consumption distribution varies.
Now let us turn to condition (b)

yAzdg+dzdc=0 forall ge[0 G]

and since commodity p is homothetic to z and also establishes dp=1,
condition (b) becomes

yApdg+dpdc=0 or yApdg+dc=0
that is
¢'=dcldg= —yAp forall ge[0 G]

Since by condition (a) yAp is constant, this means that the derivative ¢’ of ¢
in relation to g must be constant, in other words, the accumulation-
consumption relation must be linear. But this is possible only if the activity
level and consumption standard is homothetic to the eigenvector on the
right p.

As (I-A)p=(1—-a(A))p is homothetic to p, we can choose it as a
standard and write

y(@—A)p=1 2"

In these conditions, by post-multiplying both terms of equation (1) by
vector p, we obtain

yp=(1+g)yAp+cdp=(1+g)yAp+c=yAp+gyAp+c (16)
hence
yp—yAp=gyAptc
and
gyAp+c=y(I—A)p=1 forall ge[0 G].
More particularly, for g= G, we have ¢=0, hence GyA4p=1, that is
yAp=1/G  yp=yAp/a(d)=(1+G)y4p=(1+G)/G

Thus, in model [4, I, L, d], the virtual commodity p defined by (14) and (15)
has a quantity-invariant gross production if the activity level standard is
y—Ap=1

Note 1 Ifmodel (4,1, L,d]isnot d-regular, there exist m indepen-
dent virtual goods whose gross productions are invariant. They are
represented by the vectors
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sS=p+H>0
where y(g)#’=0 and j varies from 1 to m.

If we normalise activity levels by (I— A)u’ where «’ is also a semi-positive
vector of type p+A’ (which can be equal to or different from s7), all
commodities ys’ are invariant standards of activity levels.

When d is an eigenvector to the left of matrix 4, the model is of course

irregular and all the commodities have quantity-invariant gross produc-
tions. In this case, dy=0 when g varies from 0 to G.

Note 2 In joint production, we only need to apply the same
reasoning as the one used in section 5.1.3 for the price standard.
If p*(R) is the von Neumann solution of model [4, B, L], the activity level
standard is p=p*(R), which only applies the activities used in the Von
Neumann solution.

5.2.4 What happens when the system is decomposable?

When model [4,1,L,d] is decomposable, the activity levels y, are non-
negative only if g, the growth rate of the economyj, is less than

G=R=(1—-a(A))/a(A).

We know that G, the maximum growth rate of the economy, is the
blocking commodities’, which are characterised by a sub-matrix A(h,h)
whose dominant eigenvalue a(A4(h, h)) is equal to a(A4).

In these conditions, it appears that when g — G, ¢ —» 0 with y>0.

Note that in a decomposable system, there may exist several homothetic
virtual commodities of type p’=(1+G,)4 with p’>0. We write j the
non-negative eigenvector on the right corresponding to the dominant
eigenvalue a(4) of A such that dp=1.

Among the homothetic virtual commodities, only one has the properties
of the invariant standard of activity levels; It is the one which corresponds
to the dominant eigenvalue of matrix A, that is to the blocking goods’
maximum growth rate G, which is the lowest of the Gs.

Indeed, it is the only one for which ¢ —» 0 when g — G with y>0.

Therefore, the activity level standard is a virtual good which is used (and
produced) by the blocking sector and the activities directly or indirectly
using blocking goods.

It is worth noting that blocking commodities play a vital role in the
determination of prices and activity levels of the decomposable model
[4,1,L,d]. They determine the model’s maximum rate of profit R and
maximum growth rate G and consequently the price and activity level
standards.
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Further, the price standard includes the blocking commodities and the
goodsdirectly or indirectly entering their production while the activity level
standard is a virtual commodity which is used (and produced) by the
activities which directly or indirectly use blocking commodities.



6 Labour values and the problem of
transformation

The debate over ‘transformation’ is not purely theoretical; it is not only
concerned with the problem of the transformation of labour values into
prices of production, but also with Marx’s definition of the rate of profit.'
However, the current theory of production prices shows that they are
determined simultaneously with profit and thus are independent of labour
values. The famous formula given by Marx as the definition and the basis to
calculate the average rate of profit is therefore wrong (except in specific
cases). It is possible, however, to enhance the relation (that is different from
Marx’s) between a properly defined rate of profit and the rate of
exploitation.

We shall thoroughly analyse the (peculiar and therefore unimportant)
cases for which Marx’s formulation is revealed to be correct. We shall also
emphasise the fact that Marx’s presentation can be analysed as the starting
point of an iteration, which, provided it is completed, comes close to the
current theory of production prices.

We shall also have to revert to the case of the decomposability of
production structures: according to some hypotheses, ‘luxury’ goods, or
more precisely non-basic goods, may be produced in such conditions that
the mere existence of a production price system is questioned. A certain
number of paradoxes may also be emphasised in the case of joint produc-
tion; as a result, the labour value theory, which is concerned neither with
natural resources nor with non-reproducible goods cannot be applied to
non-separately reproducible goods. Finally, we shall give more precise
details on the relation between capitalists’s consumption and
accumulation.

6.1 Marx’s analysis: formal presentation

In the very first pages of Capital, Marx points out that a commodity’s
‘magnitude of value’ is measured ‘by the quantity of the value-creating
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substance, the labour, contained in the article’ (I, 38). Here, we only deal
with the values of commodities reproducible by social labour, thus exclud-
ing works of art and land. Further, we assume that these commodities are
useful otherwise they would have no value: ‘nothing can have value,
without being an object of utility’ (I, 41). Finally, in the calculations we
need to take into account not only direct labour but also indirect labour, the
value transmitted by the use of the means of production in the production
process: indeed, Marx specifies: ‘The quantity of labour expended in the
production of the consumed article, forms a portion of the quantity of
labour necessary to produce the new use-value’ (1, 200).

Thus, we shall use the hypothesis and the notations previously stated in
the developments dealing with systems with single-product industries and
circulating capital; a; then stands for the quantity of good jused to produce
one unit of good i and /; denotes the quantity of direct labour necessary to
produce one unit of the same good (as previously, we assume that there is
only one category of workers). The technology structure of the economy is
thus summarised in the technology matrix 4 and the column vector L of
needs in direct labour.

A

Let A=| 4,| be the column vector of the various commodities’ labour

Ay
values; since to produce one unit of good i, intermediate consumptions
denoted by vector a;=(ay,ap,...,q;,...,a;), are needed as well as a
quantity of direct labour /;, the labour value, the quantity of direct and
indirect labour Z; of one unit of good i is determined by
A=agd taphy+ . tad+ . tagh

LA

A=aA+] fori=1,2,...,k

This is therefore a system with k equations (there are as many equations as
there are activities and thus an equal number of commodities) which writes

A=AA+L
hence (I— A)A= L and if (I— A) is regular
A=(I—A)"'L

To show that the labour value represents the direct and indirect labour
contained in a commodity, we shall use a method inspired by Sraffa’s sub-
system methods (see Appendix A in Production of Commodities by Means of
Commodities).
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We know that at g=0, the production of a net surplus of commodities
d=(d,,d,,...,d;) requires the use of the activity-level vector y which
establishes the equation y=yA +d. More particularly, the production of
one unit of the i good, that is to say the net surplus d=¢,=(0, ..., 1,...,0)
with all its components being zeros except for the i which equals 1,
requires the use of vector y; such that y,=y,4 +¢;, thatis, y,=e;(I— 4) "' (if
det (I— A)0).

The quantity of direct or indirect labour used by the previous system to
produce one unit of good i is thus given by

y;,L=e,(I- A) "L=e,.A =},

A commodity’s labour value 4, does represent the quantity of direct and
indirect labour necessary to produce one unit of that commodity.

The labour value vector?is strictly positive if matrix 4 is indecomposable
(indeed, in that case matrix (I—A4)~" is strictly positive); if matrix A is
decomposable, some labour values may be zeros if the labour vector is semi-
positive, for matrix (/— 4) "' is semi-positive. Since the usual hypothesis
holds that every activity uses labour, then labour values are positive
whether matrix A is decomposable or not.

d=(d,,d,,...,d,...,d,)=>0 denotes the basket of consumption goods a
worker can buy in the considered society with the wage he receives as a
payment for each unit of labour provided (days or hours). Thus d represents
the mode of satisfying workers’ wants; we know that for Marx ‘the number
and extent of . .. necessary wants, as also the modes of satisfying them, are
themselves the product of historical development, and depend therefore to
a great extent on the degree of civilisation of a country’ (I, 171).

Labour power is a commodity which according to Marx has the virtue of
being a source of exchange value. ‘The value of labour is determined as in
the case of every other commodity, by the labour time necessary for the
production ... the value of labour power is the value of the means of
subsistence necessary for the maintenance of the labourer’ (I, 170-1). Thus,
the value of labour power (or variable capital) consisting in the supply of
one unit of labour and therefore in the creation of a unit of new exchange
value, is represented by the value of the commodities allowing the mainten-
ance and replacement of the labour power X1,d,=dA; the surplus value
withdrawn by the capitalist is the difference between the value created by
the labourer (unity by assumption) and the value of the labour power;
hence the expression of the rate of surplus value or exploitation rate, the
ratio of the surplus value to the value of variable capital

_1-dA
T dA

e
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From which we obtain: 1=(1+e¢e)dA and the new formulation of the
commodity’s value

A=aA+l=aA+l1=aA+] (1 +e)dA
A=a;A+1,dA+eldA

The commodity’s value is thus the sum of
(a) the value of constant capital entering its production ¢,4;
(b) the value of variable capital entering its production /,dA;
(c) and the resulting surplus value el,dA.
Hence the following expression of the system of values

A=AA+L(1+e)dA=AA+ LdA+eLdA

Let y={y,,¥s-...,¥:] be the vector of activity levels and under simple
production yI= y be the vector of the produced quantities of each good. We
have

yA=yAA+yLdA+eyLdA
with yA = the aggregate value of all produced commodities,
yAA=the aggregate value of the means of production used, that is to
say the total constant capital expressed in terms of value,
yLdA = the total variable capital expressed in terms of value,
eyLdA = the total surplus value.

Hence the rate of profit r defined by Marx as the ratio of the total surplus

value to the total capital advanced by the capitalists

_eyLdA e
T VLdA+y4AA 1+k

is the organic composition of capital.

AA
where k=;LdA

It is this average rate of profit applied to the total capital advanced in
each industry, which will allow us to determine prices of production p,
hence

p=(+r)(AA+LdA)

Note
In this chapter, the price vector p and the rate of profit r are defined
by the previous system and have nothing to do with the notations used in
the developments about Sraffa’s system.
It is worth emphasising that in the solution given by Marx of which we
have been reminded in the summary above:
(a) The determination of prices requires previous knowledge of the values
that appear in their mere expression; they thus appear as values which
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(b)

©

(d)

Prices profits and rhythms of accumulation

have been transformed, or altered. Compared to the production price
system that we have addressed in the previous chapters, Marx’s
production prices show a significant difference: they are not defined up
to the multiplication by scalars and there is no need to ponder on the
normalisation condition; indeed, they are directly defined on the basis
of labour values, that is to say as the sum of direct and indirect labour,
with the rate of profit redistributing so to speak the aggregate surplus
value to the benefit of industries with a relatively high organic
composition and to the detriment of those with a relatively low organic
composition.

The rate of profit s also defined on the basis of the system of values; it is
indeed the ratio of the aggregate surplus value to the total capital
advanced by the capitalists, or in other words the ratio of two quantities
expressed in terms of values.

By construction the total profit equals the aggregate surplus value;
indeed owing to the equation defining the rate of profit r we can see that
the aggregate profit (defined by Marx as the product of the rate of profit
r by the total value of the advanced capital: y44 + yLdA) equals the
aggregate surplus value ey LdA

r(yAA+ylLdA)=eyLdA

The sum of prices equals the sum of values, this means, as indicated in
the arithmetical example developed by Marx, that the set of produced
commodities represented by the gross production vector y has the same
value whether one uses it to assess either Marx’s production price
system p or the content in direct and indirect labour; in short the labour
value system. This reads clearly in the following lines: ‘the sum of the
prices of production of all commodities produced in society — the
totality of all branches of production - is equal to the sum of their
values’ (Marx, 111, 159).

Indeed, by premultiplying the column vector of prices previously
defined by the row vector of quantities y, we obtain

yp=(1+ry(AA+ LdA)=yAA+ LdA+r(yAA+yLdA)

Owing to the previous results, we can replace the last term of the
expression above, which represents the aggregate profit, by the aggre-
gate surplus value, hence

yp=yAA+yLdA+eyLdA=y(AA+ LdA+eLdA)

And since A=AA+ LdA+eLdA, the sum of prices equals the sum of
values yp=yA.
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6.2 Reformulation

6.2.1 Simultaneous determination of the rate of profit R* #r and the
production prices

Marx himself was aware of the ‘approximate’ character of his solution. In
the third volume of Capital he says:

We had originally assumed that the cost-price of a commodity equalled the value of
the commodities consumed in its production. But for the buyer the price of
production of a specific commodity is its cost-price, and may thus pass as cost-price
into the prices of other commodities. (III, 162)

And later he adds:

It is necessary to remember this modified significance of the cost-price, and to bear
in mind that there is always the possibility of an error if the cost-price of a
commodity in any particular sphere is identified with the value of the means of
production consumed by it.

But having pointed out this possibility of error Marx immediately adds:
‘our present analysis does not necessitate a closer examination of this point’
(IT1, 162). However, the contemporary analysis shows that production
prices are determined simultaneously with the average rate of profit, which
enters the production price of a commodity since it is assessed in terms of
prices and not of value. Hence the new expression of the production price
system denoted by p*

p’=(+R*)(Ap*+ Lw)

R*isthe rate of profit taken to be uniform, w the level of real wages allowing
to buy worker consumption goods assessed in terms of production prices,
that is: w=Zd,p,"=dp’

The production price system can also be written

p’=(1+R*)(Ap*+ Ldp*)=(1+R*)(A+ Ld)p*

Let A* be the ‘socio-technological’ matrix obtained from the technology
matrix A and vectors dand L

A=A+ Ld or a;=a,+!ld

[/t /A )

We obtain

pt=(l+Rt)Anpt <:>Atpt= pt

1+ R*

Thus p* appears as the eigenvector corresponding to the dominant
eigenvalue a*=1/(1+ R*) of matrix 4*; by the Perron—Frobenius theorem,
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p* is strictly positive if A4° is indecomposable and semi-positive if A* is
decomposable. Vector p* always exists and, unlike the price vector p defined
by Marx, it is defined up to the multiplication by scalars; it may (and must)
be normalised by a condition of the following type: up*=1 where u
= (u,, Uy, ..., u;) = 0. Therefore, such production prices are not transformed
values.

The rate of profit R*=(1—a*)/a* is thus obtained only on the basis of the
production system and defined simultaneously with all its prices while in the
system contemplated by Marx, the rate of profit was determined prior to
prices p. Further, the rate of profit R* is (generally) different from the rate of
profit r defined by Marx

R tr= m e
ad ctv 1+k

Although calculating R* does not imply the use of the system of values
where the rate of exploitation is defined, we may however underline the
relation between the rate of profit R* and the rate of exploitation e. Further,
it is worth re-examining the status of the equalities emphasised by Marx, of
the aggregate surplus value and the aggregate profit, on the one hand, and
of the sum of prices and the sum of values, on the other hand.

6.2.2 Relation between the rate of profit R* and the rate of exploitation e

Whatever the level of outputs and thus of activities ( ) characterising the
economy in question, it is always possible to define the production
structure, a (unique) linear combination of activities ¢* such that ¢, the
eigenvector on the left corresponding to the dominant eigenvalue o”
=1/(1+R") of matrix A", is strictly positive when A°* is indecomposable
and semi-positive when A" is decomposable

atq‘=q‘A‘<:>q!=(l+.Rl)q‘At
hence ¢*(I— A*)= R*q*A* where R* is the rate of profit defined by
a‘p‘=A‘p.<:>p‘=(l+R‘)A‘p‘

By multiplying both members of the equality defining ¢* by the vector of
values A, we obtain

q*(I—A*)A=R*q*A*A
hence

_q'(I-A4")A_ eq’LdA
gA'A g AA+q'LdA’
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We have thus constructed an abstract system characterised by the same
technical data (4 and L are identical) and the same level of workers
consumption as the real system (dis the same). The only difference lies in the
fact that activity levels (and thus here production levels) are not defined by
vector y any more but by vector g*.

Vector g* is by construction a linear combination of activities allowing a
balanced growth, that is homothetic to the system. ¢*/=g" stands for a
peculiar composite commodity that we shall characterise as a balanced
commodity or a commodity that is homothetic to the socio-technological
matrix. To be produced, such a commodity uses means of production ¢g*A4
whose value, the content in direct and indirect labour, is g*AA; further, it
uses a labour power ¢*L whose value is g¢"LdA. By defining k*
=q*AA/q* LdA as the organic composition of the homothetic commodity q*,
we obtain

_ eq'Ldd e
q*AA+q’LdA  q*AA +
q'LdA
. € ) ._qAA
or R_1+k‘ with k o LdA’

We have thus established a relation between the rate of profit R®
(simultaneously determined with the set of production prices) and the rate
of exploitation e; while the (mistaken) relation given by Marx r=¢/(1 +k)
implied the use of the social or average organiccompositionk = yAA/yLdA,
the formulation above implies the use of the organic composition of the
homothetic commodity k*.

It may be worthwhile reverting to another difference: in Marx’s analysis,
the formulation of r was also a determination of the rate of profit; it is quite
different here: calculating R* does not necessarily imply the use of the system
of values.

6.2.3 Normalisation of the price system

The system of transformation of values into production prices elaborated
by Marx emphasises the equality of the sum of prices and the sum of values,
on the one hand, and the equality of the aggregate profit and the aggregate
surplus value, on the other hand. But, when the system of production prices
is written in a consistent manner (inputs and outputs are both evaluated in
terms of production prices), there is no logical reason why these equalities
should be true in general.
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Indeed

A=AA+L
p‘=(1+R‘)A‘p.

These are two distinct systems of valuation. The first, the system of ‘value’,
represents labour content, i.e., absolute values, while the price system
determines relative prices, defined up to the multiplication by scalars.
(Relative) prices and (absolute) values cannot be compared; they are
incommensurable a priori.

They may be made commensurable however; this implies the use of the
normalisation condition of the price system. Instead of writing up*=1 as
usual, which consists in using the price of the composite commodity
u=(u,u,,...,u;) as the numeraire, we could write up* = uA; thus the price
of a certain basket of commodities is set equal to its own value. This, which
is always possible as the normalisation condition of the price system, as a
result makes prices and values commensurable since prices are thus
expressed in terms of labour.

But we may also set yp*= yA as the normalisation condition: this means
that the valuation of the set of commodities produced in terms of
production prices is by assumption equal to the labour value of that very set,
in other words, by assumption, the sum of prices equals the sum of values.
While the equality of the aggregate profit and the aggregate surplus value
cannot in general be established.

Indeed, consider the following system of values

A=AA+L=AA+(1+e)LdA
the aggregate surplus value is then defined by

eyLdA=yA—yAA—yLdA=yA—y(A+ Ld)A
=yA—yA'A=y(I—A")A

Since the system of prices writes p*=(1+R*)4A*p*, we have: yp*
=(1+R*)yA*p* and the aggregate profit is R*'yA*p’=yp*—yA*p*
=y(I— A*)p*. By using the normalisation condition yp*=yA, it appears
clearly that the aggregate profit cannot equal the total surplus value since
(at least in general) yA*p* #yA'A.

Remark

We could however use another normalisation condition for prices,
namely: y(I— A*)p*=y(I— A*)A; this would mean that by assumption the
aggregate profit is set equal to the total surplus value.
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In that case we can easily show, at least in general, that the equality of the
‘sum of prices’ and the ‘sum of values’ does not hold. Indeed

y([—A)A=yA—yA*A=eyLdA
yU—A")p*=yp*—yA"p'=R"yA"p*

It is clear that the normalisation condition ‘aggregate profit equals
aggregate surplus-value’ entails yp*=yA onlyif y4*p*=yA*A, and there is
no reason for the latter to be satisfied.

It is therefore always possible to obtain either the aggregate profit/
aggregate surplus value equality, or the sum of prices/sum of values equality.
Both are alternative normalisation conditions that we can always choose and
which have no specific meaning per se.

However, in general both equalities (which correspond to different

normalisation conditions for production prices) cannot be simultaneously
established. But, as we shall see, in some cases they are.

6.3 Peculiar cases when Marx’s statement holds
The rate of profit r defined by Marx writes
e y(I—A*)A
yA'A
The system of production prices p* defined by p*=(1+ R*)A*p* can be
completed by the normalisation condition yp* = yA which also implies that

the sum of production prices equals the sum of values.
Thus we have

I—A*)p*
g2t ‘?
yA'p
Marx’s theory holds if and only if
I—A")1
R*=ror Z(—y#= R’

Indeed, owing to the normalisation condition for prices yp*=yA, it is
clear that r=R* < y(I— A*)A=y(I— A*)p* (the aggregate surplus value
equals the aggregate profit).

The condition R*=y(I[— A*)A/yA*A can write

ylUI~(1+R*)4*11=0

which defines the set of cases when Marx's theory holds.
Two cases deserve a closer look owing to their simplicity.
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6.3.1 Ist case: the golden rule of accumulation

The production vector y is the eigenvector on the left of matrix 4*, taken to
be indecomposable

y=q'=(1+R")qg"4"

This® may refer to a very peculiar behaviour hypothesis of the capitalists
who accumulate the whole surplus value or surplus; their final consumption
is zero; on the other hand, workers consume the whole of their salaries. But
we may also suppose that workers’ savings exactly compensate for capita-
lists’ consumption so that we have G*= R*. Obviously, ‘transformation’ is
achieved here

y=q"=y[I-(1+R)4*]JA=0

owing to the mere definition of ¢”.

It is worth noting that the configuration contemplated by Samuelson
(1971)is only an alternative to this one. Indeed, he assumes that ‘In this case
every one of the departments happens to use the various raw materials and
machine services in the same proportions that society produces them in
toto.” Further, it is to be assumed that ‘the minimum-subsistence budget isa
market basket of goods that comes in those same relative proportions as the
goods are used as inputs in production’.

6.3.2 2nd case: identity of the organic compositions of the various sectors

The (symmetric) case to the previous one is that with the vector of values
being the eigenvector (on the right) of matrix 4*; we shall show that this
case does correspond to the case of identity of the organic compositions.

Let us first demonstrate that L and A are homothetic. The definition
equation of values A = A4A+ L can be written

A=AA+LdA+ L—LdA=AA+ L(1—dA)
Owing to the assumption o*4=A4"A, we have
A=a*A+ L(1—dA)
as o* and dA are scalars, we have
_(I=a")A
="

Vectors L and A are thus homothetic. Consequently: a*A=4"41 =
a'L=A"L=(A+ Ld)Land L(a*— dL)= AL; therefore L is the eigenvector
corresponding to the dominant eigenvalue ¢ =a*—dL of matrix 4. Simi-
larly, AA=oaL and thus, Vi
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aA=al=——1,
l—o
since L=A—AA=A—aA=(la)A.
Thus we have

ad o . _aA _a
T ek T

t

Thus, if a*A=A"A, k,=k and the transformation is achieved since a*p*
= A*p* and owing to the normalisation condition, production prices equal
values. (We can show without any difficulty that k,;=k = 0" A= A4*A.) These
two cases are not the only ones ensuring the transformation. The latter is
achieved every time y[I— (1 + R*)A4*]A =0, or by writing

b=[I-(1+R")A*]1
when yb =0 which implies the orthogonality of vectors y and b.*
Example

Consider an economy which produces and uses three
commodities;’ by assumption we have

[0.5030 7 02
4={0 0202 r=|04| a=[0200]
0.1 0.3 0.6 0.4
From which we obtain
1 0.5 030
A=|1|  4°=[0080202| «'=08<« R =025
2 0.18 03 0.6

The transformation condition writes: y[I—(1+ R*)A*]A=0, that is:
—0.05y,+0.15y,—0.10y,=0. We can see that the condition is met for
y=q"=(1, 1, 1) but also for y=(5, 3, 2). The example is economically
relevant for y(I— A4*)=(1.7 0.3 0.2)>0.

The previous condition results in that all vectors y > 0 of the hyper plane
orthogonal to vector b=[I—(1+ R*)A"]A represent the activity levels
enabling transformation.

Thus, in order to achieve transformation in the sense of Marx, vectors y
representing activity levels need and only need to belong to the cone
C={y|yb=0 and y>0}. Further, if it is required that the production of
each good is at least equal to its intermediate consumption by the whole
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system, y must establish the constraint y(/— A4*)>0 and belong to a cone
C,={y|yb=0and y(/— A*)>0} which is included in cone C.

6.4 Marx’s solution: an incomplete iteration(?)

A number of authors have recently shown that it is possible to move from
values to production prices by stating Marx’s procedure in general terms
and deducing the prices of values.® The Marxian theory appears as the
starting point of a series of iterations which, completed and stated properly,
leads to the contemporary formulation of production prices.

There is indeed, in a way, a ‘passage’, a transformation of values into
production prices. But, this is achieved only by means of an infinite series of
iterations; on the other hand, it is worth noting that the transformation of
the aggregate surplus value into aggregate profit is not achieved in Marx’s
way of thinking; if the equality of the sum of prices and the sum of values is
indeed established, the equality of the aggregate profit and the aggregate
surplus-value does not in general hold. As for the rate of profit which
appears at the end of the series of iterations, it is of course the rate of profit
R* associated to the dominant eigenvalue of matrix 4* but not the rate of
profit r defined by Marx.

We shall first demonstrate how the transformation of values into
production prices is carried out before showing that in general the two
equalities characterising the transformation in the sense of Marx do not
hold. We shall then ponder on the economic meaning of such a procedure.

6.4.1 From values to production prices

In what follows, we shall denote the socio-technological matrix by C to
lighten notations. Thus, let C= A + Ld the dominant eigenvalue of which is
denoted by a*. The other notations do not change. p,,p,,...,p;,...,p, are
column vectors of production prices with k components. We write p,= A.
With these notations, table 6.1 can easily be understood.

From the system of values A(=p,) and the level of gross production, we
can deduce the rate of profit defined by Marx (and written here r,) as the
ratio of the aggregate surplus value (eyLdA=yA~— yCA) to the aggregate
value of advanced capital (constant capital yAA+yLdA=y(A+ Ld)A
=yCA). By applying such a rate of profit to the values consumed in the
process of production for each commodity, we can determine the system of
production prices written p, as defined by Marx.

Marx stopped the procedure of transformation at this stage. But the table
shows that the iteration procedure can be continued. From the system of
prices p;, the ratio of the value of the surplus produced (y—yC)p,
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Table 6.1.

A=AA+L

U_y_A—yCLLA__

r 1

yCA yCA
|
pi=(1+r)CA
r2=yp1—pr1= o _ o (HryCA
yCpr yCp, (I+nr)yC.Ca
|
_yCA
rz_yCZA_
)
pr=(1+r)Cp,=(1+r)(1+r)C.CA=(1+r)(1+r,)C?A
i}}=)’P2_}’CP2=&_1
yCpy  yCpy
|
_yC"A_1
ra—-yCJA
|
P3=(1+"3)CP2=(1+’3)(1+72)(1+’|)C3A
U 3
_ =yC A_1
ry=... yC“A
|

Por=(1+r,_ YA +ry) (I 1,_)..(1+7,)C"'A

Y
p 2 IPnoy VP YPno

-1

" Y- ¥Cpa-
|

ycn—lA
ry=—m 1

yC'A

=yp, — yCp;, to the value of the means of production used yCp, allows one
to define an average rate of profit r, that can be expressed in terms of labour
values A (= p,) owing to the expression of p,. The rate of profit r, allows us
in turn to define a second series of production prices denoted by p, which
puts an end to the second wave of iterations.
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From this new system of prices, we then define an average rate of profit r,,
the ratio of the value of surplus (expressed in terms of p,) to the aggregate
value of advanced capital (also calculated in terms of p,); r; can also be
expressed in terms of labour values A and the iteration can be continued.

At the n"" iteration, we obtain

ycn— lA

14+7,=
n yC'A

But a matrix C"is represented by a linear matrix combination of a's where
the o;s are eigenvalues

C'=alM\+a;M,+...+a/M;+ ...+ a; M,

where matrices M, independent of n, only depend on the eigenvectors of
matrix C.

If the modulus of one of the eigenvalues is strictly greater than the
modulus of the others, the following formula shows that it imposes its
quality behaviour on C". If for example |a,| > |a;|Vj=2...,k, suffice to write
when n -+ o0

lim [E} = M, for [ﬂ -0

and thus C" — arM, for n sufficiently large.
As a result for n sufficiently large
n—1
Loy oM
afyM A

Since yM A is a scalar and the dominant eigenvalue of matrix C is
denoted by a*, we have

1
l1+r, - —==1+R*
o

The iteration is thus convergent. For a great number of iterations we do
obtain from the values the rate of profit R* such that

1
—.=1+R‘

o
Furthermore, the price vector of the n™ iteration establishes
p,=(1+r)(1+r)...(1+r)C"A

_yA yCA  yC"'A

= CAcA yen €
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that is: p,= C" 1 A

We know that when n - + 00, C" —» a*"M* where «* is the dominant
eigenvalue of Cand M* is a square matrix of order k defined on the basis of
the eigenvectors of C associated to the dominant eigenvalue.

We have
M*=p*q* with Cp*=o'p* and ¢*°C=ua"q"

A
Thus whenn - + 0, C" = «™M"and p, - y:J‘A'
Let us show that this limit is the eigenvector p* of C. Indeed
A y4
C. M'A= MA= "q°A
yM A yM*A ¢ M A
and since Cp*=a*p* and M*=p*q*
ya y4 y4
. . * = * * ‘A = 'M‘A
Cooma M A= g P A= g ®

yA L ova .
c[yM_A. A}_a [yM_A ]

This means that the expression within brackets is the eigenvector of C
associated to the dominant eigenvalue o* that is to say p* (up to a
multiplication constant).

The iteration is indeed convergent. When n tends towards infinity, the
equation p,=(1+r,)Cp,_, becomes

p*=(1+R")Cp*=(1+R*)(A+ Ld)p*

6.4.2 Aggregate profit and surplus value

As Shaikh (1977) puts it, the ‘correct’ production prices can be calculated
on the basis of values in the way suggested by Marx himself in the
transformation procedure. However we must not be misled by such a
conclusion: if we do obtain production prices p* from labour values, the
aggregate profit is not equal to the aggregate surplus value.

Of course, at each stage the equality of the sum of prices and the sum of
values is maintained. Indeed, taking into account the definitions given in
the previous table, we have pl =(1+r,)CA and therefore yp,=(1+r))yCA

since r| = — 1 then ypl A yCA yA.

yA
CA
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Further, whatever n

pn=(1 + rn)Cpn—l
yp,=(+r,)yCp,_,

and as
r =_y&1_1
" yCpa-
we have
ypn—l
=" yCp,-
" prn—I p :
YPu=YPur=...=yA

On the other hand, the equality: aggregate profit = aggregate surplus value
is not ensured any more from the second iteration. At the first iteration
(contemplated by Marx), we do have

aggregate profit=r, yCA=yA — yCA=aggregate surplus value.
But, at the second iteration, the aggregate profit is

ryCp,=yp,— yCp
As yp,=yA, we have

ryCp=yA—yCp #yA—yCA

and since, allowing for exceptions, yCp, #yCA.
At the n™ iteration, the aggregate profit is

'aYCPy = YPucy —YCPay
=yA—yCp,_,#yA—yCAfor yCp,_, #yCA

It is only in the peculiar case previously mentioned that the aggregate
profit equals the aggregate surplus value: indeed, activity levels y must
allow us to establish the condition: y[/—(1+ R*)A*]A=0.

6.4.3 Economic meaning of the contemplated procedure

Here, the aim is briefly to analyse the transformation procedure, and more
particularly its economic content. We know that Marx was far from being
clear concerning the concrete process allowing the rate of profit r to be
imposed on all the capitalists. It is in fact quite impossible to make the
transformation process lic on the competition of capital: such a compe-
tition would indeed lead the capitalists to give up the sectors with a high
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organic composition (with little surplus value to be retrieved) and to
concentrate on sectors with a low organic composition. For the transfor-
mation process contemplated by Marx to work actually, there must be a
central (planning) office which calculates the rate of profit r, on the basis of
the system of values, and then r,,r,,...,r, and indicates their levels to
capitalists so that they can set their production prices.

The change from values to production prices is thus purely formal;
further, allowing for exceptions, it does not ensure the ‘transformation’ in
the sense of Marx: one of these peculiar cases is of course when the growth
rate equals the rate of profit.

6.5 Non-basic goods and luxury goods

If the socio-technological matrix A4* is decomposable, we can, by permu-
tation of its rows and columns, clearly emphasise the (k —m) basic goods
and the m non-basic goods. Basic goods not only include the goods which
directly or indirectly enter the production of ali other goods but also the
consumption goods necessary for the replacement of the labour power. We

have
A 0 TJ&-m
A'=|:A‘§ A*g]

(m)
(k=m) (m)

Let p; and p; be the price vectors of the basic and non-basic sectors
respectively. Owing to the fact that p*=(1+ R*)A4*p*, we have

ot A1 0 fer
= l=1+R
F [pz‘] ( )[A‘é A‘%] [pz‘

{Pn‘=(1 +R)A" p;
py=(1+R*)(A")p} + 4")p3)

As seen earlier (chapter 3, 1), two cases have to be distinguished.

6.5.1 The dominant eigenvalue is determined by the basic sector

Let a*(4*)=a"(4")): this is the thesis spelt out by L. von Bortkiewicz
(1907) and resumed by Sweezy (1942): the production conditions of luxury
goods have no influence on the determination of the aggregate rate of
profit.

However, such a thesis has to be specified and qualified: it is perfectly
correct if we stick to the definition of luxury goods given by Marx in the
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second volume of Capital. In the analysis of reproduction, Marx opposes

Department I which produces ‘means of production’ and Department II

which produces ‘articles of consumption’. Within Department II, he

distinguishes two sub-divisions

(a) ‘articles of consumption, which enter into the consumption of the
working-class, and ... also form a portion of the consumption of the
capitalist class.’

(b) ‘articles of luxury, which enter into the consumption of only the
capitalist class and can therefore be exchanged only for spent surplus
value, which never falls to the share of the labourer’ (I1, 407).

By definition, such ‘articles of luxury’ are pure consumption goods in the
sense that they cannot enter their own production, or the production of
other luxury goods; since they are never used as means of production,
matrix 4*3is zero and Bortkiewicz’s thesis holds perfectly. It does in fact, as
soon as a*(4")=a"(A4"})>a'(A4*3). But it is questioned when non-basic
goods are used in an ‘abnormally high’ proportion in their own production.
Let us now consider this case.

6.5.2 The dominant eigenvalue is determined by the non-basic sector

Let a*(A*)=a"(4*3)>a;(4*}). It is thus the case when non-basic goods
enter their own production in an ‘abnormaly high’ proportion, as in
Sraffa’s ‘beans’ example.

Consider the following production model with three goods: a production
good, a workers’ consumption good, a luxury good. Wage being advanced,
the production conditions are the following

040 0 2
A=|0.1 0.1 0 L=[2] d=[00.10
0.10 06 1
0020 0.4 02 0
Hence Ld={0 0.2 0|and A4*=A+Ld=|0.1 0.3 0
0010 0.1 0.1 0.6

In this model the dominant eigenvalue of the basic sector a*(4*)=0.51is
less than the non-basic sector’s: a*(4*3)=0.6.
We know that the price system p; associated to the dominant eigenvalue
of the basic sector a; (4 %)= 0.5 < R; = | has components of opposite signs
2
(see chapter 3, section 3.1) and we can check that p;y=| 1
-3
Let us now contemplate the price system associated to the dominant
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0
eigenvalue of system: a*(A4*)=a*(4*2)=0.6. It is vector p*=|0|.
1

Both basic commodities are available at zero price even though they are
not overabundant.

Therefore the relative price between these two basic goods cannot be
calculated for the value R*=0.6.

It would be the same for a model with k — m basic goods and m non-basic
goods which, as in the previous example, would fix the maximum rate of
profit of the system. The prices of the k —m basic goods associated to the
maximum rate of profit would all be zeros and the exchange ratios of these
k —m goods could not be calculated.

This rules out the possibility for the uniform rate of profit to be, in Marx’s
example, fixed by the production conditions of the non-basic goods; as a
matter of fact the prices of the m non-basic goods expressed in terms of a
basket of k — m basic goods would be infinite which should normally lead to
a zero demand for these goods and thus cause the non-basic sector to
disappear.

6.6 Joint production and negative values

The joint production hypothesis with one activity producing several
economic goods, shows a certain number of problems and difficulties. One
of the first emphasised was the possibility of having negative labour values
(P.S. 70). More recently Steedman (1975) has pointed out an additional
paradox: it may happen that the average rate of profit is positive while
workers are not exploited, which is impossible in the case usually contem-
plated of single-product industries and circulating capital. Morishima
(1974) has consequently developed an alternative theory of labour values
using a treatment in inequality terms while the usual approach uses
equalities. It seems to us that the inequality treatment should be rejected
and the traditional approach kept; let us note however, that the mere
existence of negative labour values is necessarily excluded in the case of
separatly reproducible goods.’

6.6.1 One difficulty: labour values may be negative

If we assume that wages are ‘advanced’, the system of production prices is,
with the usual notations

Bp=(1+r(Ap+ Lw)
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By setting w= 1, which comes down to defining ‘wage prices’
p=Bp=(1+r)(4p+L)

In the case of single-product industries with circulating capital, we have
B=]where [ is the unit matrix of outputs of dimension k x k; if the rate of
profit is zero (r=0) wage prices p(0) are then defined by

1p(0)=p(0)=A4p(0)+ L
and
(I-A)pO)=L

When matrix 4 is productive, i.e., when there is a surplus in goods (which
mathematically corresponds to the case when the dominant eigenvalue of
matrix A4 taken to be indecomposable is less than unity), matrix (/— A) has
an inverse (/— A) ~' that is strictly positive; the system of 5(0)s then defines
the quantities of direct and indirect labour included, ‘labour values’
denoted by A which are strictly positive

p(0)=(I—A)"'L >0 with 5(0)=A

The problem is quite different under joint production where wage prices
p(0), corresponding to a zero rate of profit, are then

Bp(0)=Ap(0)+ L
or
(B—A)pO)=L

and if det(B— A4)#0 then p(0)=(B— A)~'L.

But, there is no reason for (B— A4) ™' to be strictly positive contrary to the
case of single-product industries with circulating capital where the system
only needs to be productive for (I— A) ™! to be positive. Therefore, it may
happen that negative components appear in vector 5(0).

Is it possible then to keep on assimilating prices (0) and values A as in
simple production? If yes, then what is the meaning of negative ‘labour
values™?

In this connection it is worth noting that the evaluation of labour values
in joint production entails some methodology problems even if negative
labour values do not result from calculations. The fact is that the labour
absorbed by a production process has to be distributed among the various
commodities produced. Such a distribution cannot be arbitrary: in the
square joint production system in question, a process produces several
commodities and one commodity is produced by several processes. The
distribution problem has to take into account this kind of interdependence,
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and in some cases, there will be no solutions unless some commodities are
given negative labour values.

In the case of single-product industries with circulating capital, the
notion of labour values, the content in labour, does not pose such problems
since a process produces only one commodity and transfers to it the entire
direct and indirect labour needed for its production. In such a situation,
commodities appear as depositories of value, crystals of human labour in
the abstract as Marx puts it. It is such a transparency in the activity system
that disappears under joint production.

The meaning of negative labour values has been clearly specified by
Sraffa in paragraphs 69 and 70 of Production of Commodities by Means of
Commodities:

we are driven to the conclusion that in the actual situation, with profits at a perfectly
normal rate of, say, 6%, that commodity is in fact being produced by a negative
quantity of labour.

This looks at first as if it were a freak result of abstraction-mongering that can have
no correspondence in reality. But if ... we suppose that the quantity of such a
commodity entering the net product of the system is increased (the other compo-
nents being kept unchanged), we shall find that as a result the aggregate quantity of
labour employed by society has indeed been diminished ®

This can be illustrated with an example due to Steedman (1975)
presenting an economy with two goods and two production processes. The
first combines five units of good (1) and one unit of labour to produce six
units of good (1) and one unit of good (2); the second process uses ten units
of good (2) and one unit of labour to produce three units of good (1) and
twelve units of good (2). With the usual notations, we have

G R s I

A
Let A= |: /ll] be the vector of labour values defined by BA= A4+ L.
2

We obtain
{6&,+/12=5/1, +1
34, +122,=104,+1
hence
Ay;=—1land 4,=2

The labour value of good (1) is indeed negative. And paradoxically, the
average (or general) rate of profit may be positive even though the rate of
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surplus value (or rate of exploitation) is negative. If, with the usual
notations, d=(1/2 5/6), the value of the labour power would be v=dA
=7/6; the surplus value, the difference between the value produced by the
unit labour power and the value of that very labour power is thus negative
(— 1/6); the rate of surplus value, the ratio of the surplus value to the value
of the labour power, is also negative (— 1/6)/(7/6)= —1/7.

Production prices are determined simultaneously with the rate of profit
R*: we have Bp*=(1+ R")(A+ Ld)p*; we check that p]/p;=0.161>0 and
R*=14.38%>0. Thus, we can see with that example that under joint
production, the whole set of production prices and the rate of profit R may be
positive in spite of a negative® rate of exploitation.

6.6.2 An alternative definition of value?

Morishima’s position spelt out in a number of works'® consists mainly in
developing what is to be called an alternative theory of labour-values. The
author considers indeed that the solutions developed by Steedman (1975)
were not relevant:

However, as far as his example is concerned, the values Steedman obtained have
nothing to do with the labour values of commodities (i.e. the Marxian values),
because the latter should be non-negative by definition, while the former contain
negative ones. In fact, as we all know, the value of a commodity is defined as the
amount of human labour expended directly or indirectly for its production. It
should be non-negative. How can we exert, or expend, a negative amount of labour?
Whatever can be meant by a negative amount of labour? (Morishima and
Catephores (1978), p. 32)

How is the value of a commodity to be defined or redefined? Morishima
and Catephores point out that apart from the two (equivalent) definitions
of value given in Capital, Marx gives a third definition of value; they base
their argument on a quotation from The Poverty of Philosophy by Marx: ‘It
is important to insist upon this point, that, what determines value is not the
time in which a thing has been produced, but the minimum time in which it
is susceptible of being produced, and this minimum is demonstrated by
competition.’

It is on the basis of this argument that they suggest giving up the
traditional definition and redefine value, they write:

In order to obtain, as solutions, true values of commodities rather than pseudo-
values, we have to weaken the input-output equations into inequalities so as to
allow for excess supply, because we may reach aimed net outputs in an efficient way
by simply discarding appropriate units of outputs of those commodities which are
overproduced because of joint production. (Morishima and Catephores, p. 33)
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In order to specify the authors’ approach, we shall briefly use the
previous example, used by them in a different respect. Let us consider a
problem to minimise the total amount of labour that is required to produce
a net output z=(8, 7). The vector of activity levels must satisfy

yBzyA+z with y>0

Owing to matrices 4 and B previously used, we have

6 1 50 i
(yl,yz)[3 12]—(y1,y2)[0 ]0]+(8 7) with y>0

that is to say

6y, +3y,>5y,+8
»+12y,>10y,+7

y+3y,—8>0
»n+2y,-7=0

with y, >0 and y,>0.

The total quantity of labour usedis N=yL=y,.1 +y,. 1=y, + y, whichis
minimised, subject to the previous constraint for y,=0 and y,=7/2.

Thus, we shall allocate 7/2 units of labour to the second process (the first
is not used) and obtain a net excess supply of the first good (3—0).7/2=
21/2> 8. We shall then have an excess supply of the first good that we only
need to discard. On the other hand, the output of the second good perfectly
satisfies demand (12— 10).7/2=7. The second good is thus an economic
good, while the first, by the von Neumann rule, becomes a free good.

Morishima and Catephores add that the minimised labour level does not
vary ‘even though net outputs are increased from (8, 7) to (9, 7). In the same
way, we find that the minimum amount of labour increases by 0.5 when the
net outputs change from (8, 7) to (8, 8). It is apparent that these efficient
employment multipliers, 0 for commodity 1 and 0.5 for commodity 2 at (8,
7), are different from the Steedman values, —1 and 2, respectively’
(Morishima and Catephores, p. 34) (figure 6.1).

Thus, Morishima and Catephores wish to define the value of a commo-
dity on the basis of optimal employment multipliers. The labour value is
then here the minimum quantity of labour needed for its production. Such a
definition of ‘optimal values’ or ‘true values’ allows us to confer general
validity to ‘the Fundamental Marxian Theorem which is of decisive
importance to Marxian economics’ (Morishima and Catephores (1978), p.
38).

In spite of the intrinsic importance of such an argument, reformulating in



172 Prices profits and rhythms of accumulation

Figure 6.1

terms of optimal values does not seem relevant to define labour values in the
sense of Marx. Not only because they are not additive, as emphasised by
Morishima himself, but also for a much more important reason.

The set of activities retained, the technique springing from the minimis-
ation of aggregate employment and which allows to determine ‘optimal
values’, the so-called ‘true values’, may be totally different from the set of
activities, or the technique, determining the rate of profit R* and the system
of production prices."" Thus, in the treatment of the example due to
Steedman, the paradox emphasised by the latter disappeared because the
problem has been removed.

The so-called optimal solution consists in pretending that the first
activity was abandoned by only using the second; we are thus led to
reasoning within a pseudo-system which has nothing to do with the system
we are analysing, which, by assumption, is made up of two activities and not
just one.

6.6.3 Do negative values reveal the inefficiency of the technique used?

The appearance of negative values does indeed show a certain inefficiency
of the technique used for some values of r; at r= R*, methods or processes
are used with some of them being dominated or inefficient at r=0.

The example due to Steedman is in this connection perfectly clear: the net
surplus of the first process amounts to (1 1) while that of the second is much
greater (3 2). We have at r=0
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Asl =[,=litisclear that the second process dominates, outclasses the first,
which appears clearly in figure 6.2 where at r=g =0, the line of consump-
tion possibilities M, M, has a positive slope which equals a negative price
ratio'? (see chapter 1).

As amatter of fact, we may recall that at the going rate of wages, the set of
prices (and the rate of profit) are positive: we have p{/p;=0.161>0 and
R*=14.038%. Negative values only show that at a rate of profit r=0,
production prices would be negative and the choice of methods should be
reconsidered.

As emphasised by Sraffa in section 70 of Production of Commodities by
Means of Commodities, no paradox appears at the ruling rate of profit.

In a golden rule context, we could add that the system in question would
be inefficient under simple production (at =g = 0) and would remain so as
long as the rhythm of accumulation does not reach a threshold R; beyond
that threshold (see Abraham-Frois and Berrebi, 1984b) all prices and wages
are positive up to the maximum rate of profit; which explains why there may
be negative values along with positive production prices; in that case and
subject to additional conditions, there may be simultaneously a positive
rate of profit and (in spite of) a negative exploitation rate.

6.6.4 Labour values and separately reproducible goods

We know that the theory of labour values is not concerned with natural
resources, land and more generally the ‘commodities, the value of which is
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determined by scarcity alone’ (Ricardo, 1984, chapter 1). Such goods havea
price but no value.

But among reproducible goods, we still have to determine which are
separately reproducible and which are not. Separately reproducible goods
are those which are separately reproducible at g=0. All goods are
separately reproducible if (B— A) ™' >0. It is worth noting however, that
even if goods are not separately reproducible, all labour-values may be
positive: if (B— 4) "' is not greater than 0 it does not necessarily imply that
A=(B— A)”'isnot greater than zero; and even if some values are negative,
this by no means implies that the rate of surplus value (e =(1—dA)/dA) is
also negative while the rate of profit is simultaneously positive.

However, such difficulties vanish away if we assume (B—A)™'>0;
therefore, Marx’s analysis carried out under simple production may, in the
case of joint products, be extended to the case of separately reproducible
goods. This also means that natural resources, scarce goods but also non-
separately reproducible goods must be discarded of the field of labour
values.

6.7 Consumption and accumulation

In Marx’s analysis, workers’ consumption is fixed (at a given instant) and
integrated to the model’s socio-technological matrix, with the rate of wages
ensuring by assumption the reproduction of labour power. The capitalists
who take over the entire surplus (assuming that there are no rents) allocate
the latter to consumption or accumulation as they wish. If we assume that
the capitalist consumption structure is fixed and represented by vector 4,
and if we write ¢ the level of such a consumption, i.e., the number of
consumption baskets §, then the activity system writes (for simplicity’s
sake,' we limit ourselves to simple production):

y=(+gyd +¢o

We know (see chapter 5) that if the level of consumption is measured in
terms of standard commodity of activity levels, the relation between the
level of consumption and the rhythm of accumulation (g) is linear.
However, the production price vector p*, defined by (1+R")A"p", is
nothing but the vector defining the virtual commodity of activity levels of
matrix (4*).

By writing y(I— A*)p* = 1, which comes down to assuming that the value
of the net surplus is taken to be equal to unity whatever the activity
structure, the capitalist consumption level, defined as a fraction of the
(constant) value of the net surplus, is a linear (and decreasing) function of
the rhythm of accumulation
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g

=1-=

E=1-7

In a golden rule context £=0 and if the system is indecomposable
g=G'=R".



7 Switch in methods of production

Up to now the analysis of production-price systems has been carried out
within a context of ‘square’ systems, assuming that the number of methods
of production was equal to the number of economic goods. We shall relax
this restrictive assumption in the present chapter: let us now suppose that,
to produce one of the commodities, we may choose among several methods
of production. What choice criteria shall we use, and what will be the
consequences of such a choice?

We shall first address the problem using systems with single-product
industries and circulating capital, or for short, ‘simple production systems’.
Then we shall develop the specific problems that arise in joint production
systems, more particularly the problem of the life span and depreciation of
machines. Finally, we will analyse the relationship between linear program-
ming and the production price theory.

Prior to this, we shall put the emphasis on the importance of distinguish-
ing the truncation of the system and the choice of methods of production,
the latter being based on a production cost minimisation criterion.

7.1 Truncation of the system and choice of methods of production

We have already remarked that in ‘simple’ production, Sraffa (1960)
carried out his analysis directly within a square system, ‘as if” the problem of
choosing a method of production did not exist or had been solved earlier. In
the beginning of chapter 7 dealing with ‘joint production’, it is stated as a
necessary rule, so to speak, that ‘the number of processes is to be brought to
equality with the number of commodities so that the prices may be
determined’.

In fact the problem of the number of methods of production used, and
thus the problems of the choice of or the switch in methods of production
does not arise in the same way depending on whether we are in a context of
‘simple’ production or ‘joint’ production. In simple production, since each

176
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method produces, by assumption one commodity, there must be at least £
methods to produce k goods; hence the problem of choosing among
methods of production because one cannot be eliminated without another
being chosen (according to a criterion we shall revert to). On the other
hand, in joint production, since one method may produce several goods,
producing k goods does not necessarily require the use of k£ methods: one
method may be suppressed without being replaced by another, since the
production of the various goods is ensured by the other existing methods;
though the system is square, it is not in the same sense as earlier. Therefore,
it is necessary to distinguish between the mere suppression of methods of
production (this is the problem of ‘truncation’) and the substitution of
methods of production.

7.1.1 Suppression of a method

In joint production, the suppression of a method may emerge for two
reasons: the first is the impossibility to perfectly satisfy demand, the second
is the domination of one method over another which leads to negative
prices.

The impossibility of perfectly satisfying demand has already been
analysed in chapter 1; it results in the use of only one method of production,
and the good the supply of which exceeds needs is available at zero price. Of
course, both goods keep on being produced by the unique method of
production used. This is however a ‘square’ system, with one method
producing only one economic good, the other being a free good. The rule
that allows the determination of prices is the equality of the number of
methods of production and the number of economic goods.

Further, Sraffa notes that ‘only those methods of production are
practicable which, in the conditions actually prevailing (i.e., at the given
wage or at the given rate of profits) do not involve other than positive prices’
(P.S. 50). The emergence of negative prices reveals the inefficiency of the
system due to an improper choice of methods of production.

Let us briefly revert to the diagrammatic approach of a system with the
two goods and two activities previously used (figure 7.1).

In a golden rule situation, we know that the price ratio is equal to the
opposite of the consumption possibilities line slope or the system’s
efficiency frontier. In the case contemplated above, the efficiency frontier
springing from the simultaneous use of methods M; and M; (at a given g
and with /;=/,=/) would be increasing, which means that one of the prices
would be negative. In this example, it is clear that method M, dominates
method M;, since both components of the net g-product vector are greater.
The inefficiency revealed by negative prices must lead to the suppression of
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Figure 7.1

the dominated method. As a result, the number of economic goods must be
reduced since demand cannot be perfectly satisfied (it is the comparison of
the demand structure and the net production structure of the activity used
which will allow us to determine which is the economic good and which is
the free good).

7.1.2 Choice of methods

The problem of substitution, of choice of methods of production, only
arises for those which allow to simultaneously satisfy the same structure of
wants. Such a condition does not apply in ‘simple’ production, where the
final demand can be satisfied by any combination of methods producing the
various goods.

How is the choice of methods satisfying the same needs to be determined?
— by the minimisation of production costs. This is indeed, the criterion
‘naturally’ retained by Sraffa when he addresses (P.S., chapter 12) the
problem of switch in methods of production using the simplest case with the
commodity in question being a ‘non-basic good’ (italics not in Sraffa): ‘At
any given level of the general rate of profits (taken as the independent
variable), the method that produces at a lower price is of course' the most
profitable of the two for a producer who builds a new plant’ (P.S. 92).

In section 93, Sraffa adds: ‘If the product is a basic one, the problem is
complicated by the circumstance that each of the two alternative methods
of producing it implies a distinct economic system, with a distinct maxi-
mum rate of profit’.

Thus, there are (k + 1) methods of production to produce k goods, which
means that to produce one good we can choose between two methods of
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production. Consequently, we can construct two distinct production
systems, denoted by I and II, by using the first or the second method and
compare their respective ‘cheapness’. Sraffa adds (we shall revert to this): ‘It
can however be shown? that, while the extent of the cheapness of one
method of production relatively to the other will vary according as the
comparison is carried out in system I or in system II, the order of the two
methods as to cheapness must be the same in the two systems’ (section 93).

Therefore Sraffa’s criterion is perfectly clear: the purpose is to minimise
the costs of production of the commodity in question taking into account
the going price system (and distributive variable).?

Such a criterion is to be related to von Neumann’s analysis. In the first
pages of his article, he writes: ‘There may be more technically possible
processes of production than goods and for this reason “counting of
equations”, is of no avail. The problem is rather to establish which
processes will actually be used and which not (being “unprofitable’)’ (von
Neumann, 1945-6, p. 1). And further ‘in equilibrium no profit* can be made
on any process P; .... If there is a loss, however, i.e. if P, is unprofitable,
then P, will not be used’ (p. 3) Champernowne comments upon this is the
following: ‘Profitability rule — Only those processes will be used which, with
the actual prices and rate of interest, yield zero profits after payment of
interest. These processes will be the most profitable ones available’ (Cham-
pernowne, 1945-6, p. 13).

It is that profitability rule which is thoroughly commented on and used
by Morishima (1969) in Theory of Economic Growth (especially in pages
101, 137 and 150). It is a choice criterion of methods of production whose
principle is identical to the one used by Sraffa. One difference is that in von
Neumann'’s model, the wage paid on surplus is zero. The second difference
lies in that von Neumann, Champernowne (and Morishima) deal with an
interest rate while Sraffa’s analysis refers to a uniform rate of profit: using
one method or the other does not pose any kind of problem. Therefore, the
equivalence of the criteria is not questioned.’

We shall call a cost minimising system (c.m.s, for short) a system with such
prices that none of the methods can make excess profits at the going rate of
profit and level of wage.

Such a definition which goes without saying in simple production has to
be stated in joint production.® In this case, indeed, it is not always possible
to define a good’s cost of production, since one method can produce more
than one good and one good can be produced by more than one method.
But however ‘excess profit’ is specific to each activity and can be defined
even in joint production.

In formal notation, let (a,, b;,/;) be a method of production where a; and
b; are the input and output vectors respectively and /; is the quantity of
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direct (homogeneous) labour necessary for the activity to operate. If vector
p and the scalars r and w are such that [b,— (1 + r)a; ]p > wl;, then method
(a;, b;,1;) makes excess profits at the considered values of p, wand r. On the
contrary if [b,— (1 +r)a;|p <wl,, then method (g;,b;,/;) has a lower profit-
ability at the values of p, w, r and would require a subsidy to operate.

In other words, system [A4,, B,, L,] minimises costs of production at a rate
of profit r if and only if

[B,—(1+nA,p.swL,forall he H

where H is the set of available methods of production, and p, and w, are
determined by

(Be=(1+ A lpc=wi Ly
up,=1

7.2 Single-product industries and circulating capital

In the case of ‘simple production’, we shall show that the minimisation of
costs (at a given r) leads to the maximisation of wages and that both criteria
are strictly equivalent, though only the first makes sense in an economy that
is not centrally regulated. We shall deduce from this that the minimisation
of costs is independent of the system of production in which it takes place,
thus demonstrating Sraffa’s previously stated proposition. It will also
appear, provided a golden rule situation prevails, that minimising costs
comes down to maximising consumption per unit of labour (at a given
r=g). We shall specify the evolution of relative prices and the change in
employment due to a switch in methods of production. Finally, we shall
revert to the hypothesis of advanced wage and Marx’s analysis under the
light of Okishio’s theorem.

6.2.1 Cost minimisation and wage maximisation

Let us compare two production systems (A,,1,L,) and (A4,,1,L,) with
r=F<min (R,, R,), R, and R, being the maximum rates of profit of both
systems of production. Prices are normalised by the condition up, = up,=1
and w,(r) and w,(r) are the wage-profit curves of each system.

Let us show’ that system (k) minimises costs of production (with r=7) if
and only if w, (F) = w, (7).

The production price system (k) denoted by p,, where the wage w,
appears, is defined by

=1 +PA.p,+wL, withup, =1
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from which we obtain,
U= +7A)pe=w Ly
p=w[I—(1+HA,] _lLk
Owing to the price normalisation condition, we have
l=up,=wull—(1+7)A] 'L,
1
Tull-(1+ 94 'L,

Wy
Similarly, given the exogenous rate of profit 7, the price production system
(h) denoted by p,, where wage w, appears, is defined by

pn=(0+PA,p,+w,L, with up,= 1
From which we obtain

1
R I— (0 +94,] 'L,

If system k minimises costs of production, we have by definition
U—=(1+~HA,lp<w.L,

Hence, since [I—(1 +7)A4,] has an inverse which is strictly positive at
r<R,

psSwell—(1 +f)Ah]_th
or also, by premultiplying both sides of the inequality above by u>0
up, <wull-(1+7A4,]7'L,

Owing to the normalisation condition already mentioned, up, =1, and the
above expression of w,, we have

1 . .
1<w,— that is, w,<w, since w;,>0
Wi

We shall prove the converse by reducing it to the absurd and show that if
w,<w,, it is impossible for system (/) to be cost minimising. Indeed, if so it
were and owing to the definition previously given of the c.m.s, we would
have

U=+ AdpySwily
and by pre-multiplying both sides of this inequality by u[I— (1 +7)4,] "

- -1 Wy,
up, <wyull—(1+7A,] Lk=;
&
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and owing to the normalisation condition up,= 1, this would mean that
w, 2 w,, which is at variance with the hypothesis retained.

Therefore, in a system with single-product industries and circulating
capital, system (A, 1, L,) is cost minimising if and only if, at the considered
exogenous rate of profit F, w (F)=w,(F) for all he H, where H is the set of
available methods of production.

Thus the choice criterion of techniques is not the maximisation of w at a
given r; the choice of techniques, of methods of production, lies in the
minimisation of costs (r given) which (in the context of single-product
industries and circulating capital retained ) is equivalent to the maximisa-
tion of w at a given r.

Remarks

(1) The previous developments justify and demonstrate Sraffa’s
propositions stated earlier, namely, ‘the order of the two methods as to
cheapness must be the same in the two systems’ even if ‘the extent of
cheapness of one method of production relatively to the other will vary
according as the comparison is carried out in system I or in system II’. The
systems compared have been denoted by (4) and (k).

(2) If the previous inequality between w,(7) and w,(F) is strict: w, > w,,
system (k) is the only cost minimising system. If, however, at the considered
exogenous rate of profit 7, w,=w,, systems (#) and (k) are compatible; in
that case we can make sure that prices in system (#) and (k) are equal. Such
situations are usually called ‘switching points’; note that there is no reason
that we should rule out the possibility of ‘re-switching’: it only means that
systems (k) and () are ‘compatible’ at several values of r.

(3) The previous demonstration has been done for any semi-positive
numeraire of prices u; thus, the domination of a technique over another is
independent of the numeraire: at r=F, w, >w,Yu>0. Similarly, the existence
of switching points is independent of the retained numeraire. for r=F,
w,=w,Vu>0 (see Pasinetti, 1977 and Berrebi, 1982). Of course, these
properties are valid only in the context retained, namely a system with
single-product industries and circulating capital; we shall see that in joint
production this is not the case.

(4) In the golden rule hypothesis, the minimisation of production costs is
equivalent to the maximisation of consumption per unit of labour.

We have already seen (chapter 1) that r=g = w(r)=c(g).® Since the
minimisation of costs ensures the maximisation of w, at a given r, then if
r=g, the maximisation of ¢ at a given g is ensured.

The non-respect of the golden rule may lead to inefficient choices as
shown in figure 7.2, where two systems of production are compared; for
both of them, curves c(g) and w(r) are identical owing to the retained
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normalisation of the price system. Note that according to the line retained,
system (h) is better when g (or r) is less than g* (or r*); however, system (k)
must be used at values of g (and of r) greater than g* —r*, which is the value
corresponding to the switching point. But, owing to the equilibrium
condition on the goods market and the relation springing from it between r
and g (that is, r=g/s, assuming that capitalists” propensity to save is 5,>0
and where workers consume the totality of their wages) in some cases it may
happen that g<g* and simultaneously r>r* (it is the situation contem-
plated in figure 7.2). In such condititons it would be suitable to choose
system (4) to obtain the maximum level of consumption: at g = gc, > ¢,. But,
system (k) dominates (h) at r=F=g/s,; w,>w,. Therefore, the system
chosen on the basis of the price system does not ensure a maximum level of
consumption if r #g. Respecting the golden rule ensures efficient choices.

7.2.2 The evolution of relative prices

Let us now examine the evolution of relative prices following a switch in
methods of production. For simplicity, assume that the switch in methods
of production concerns wheat which is the k™ good in the system. We write

_[4 a _|L _|? e
A ] e

The production price system writes
(1+nAp+wL=p

to which we add the normalisation equation of prices: up=1. From the
previous system, we obtain
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(A +r)(Ap+a®p,)+wLl=p @O

By calculating p as a function of w, p,and r in (I) and by adding this value
to the normalisation equation 1=up=#p+ u,p,, we obtain

_ 1=wall-(1+nA]"'L
P+ all=(1+nA (1 +nd’

Since a[I—(1+r)A)"'L>0and u,+a[I—(1+r)A]"'(1+r) a®>0 owing
to [I—(14+r)A]~'>0, p, is a decreasing function of w if #>0. Thus, any
switch in methods of production which minimises the production costs of this
good causes (at a given r) an increase in wages and a decrease in the price of
the good in question.’ If, at the contemplated value r of the rate of profit
both production systems are compatible (w,=w,), i.e., at the ‘switching
point’, the price of the good is the same; both systems are ‘compatible’.

Similarly, we can calculate p, as a function of p in the normalisation
equation and add this value in the matrix equation (I). We obtain

_oa a\T'[ - a®
13=|:I—(1+r)<A——):| |:wL+(1+r) —]
u, U,

where we assume u, #0, that is to say, ‘wheat’ enters the composition of the
commodity chosen as a numeraire.

Since [/— (1 +r)(A—a® @/u,)]”'>0 and L>0, the price vector j is an
increasing function of w. Therefore, any change in the methods of produc-
tion of a good leading to a decrease in its production costs, leads to an
increase'® in the relative price of the other goods whose methods of
production have not been changed. If the production systems are compat-
ible, prices are equal.

Note that if we choose wheat as a numeraire, we have

u=[a u,]=[0 1]
p,=1and p=[I—-(1+nA4]"'[wL+(1+r)a’]

Thus, when we choose as a numeraire the good whose production costs
have been decreased owing to a switch in methods, the wage and the prices
of the other goods must increase; they remain constant if the switch in
methods of production has not caused any decrease in costs.

7.2.3 The evolution of employment

Let (4,,1,L,) be an economic system in which emerges a net surplus of
commodities z > 0. If we write 4,, the vector of direct and indirect quantities
of labour necessary to produce each good (see chapter 6), we have
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A== 471,20
Wy

Thus, the total labour required to produce z is N,=zA,.

Let us consider a switch in methods of production such that the new
system is now (4,,1,L,). We write A, the vector of direct and indirect
quantities of labour required to produce each good A,=(I—A)"'L,
= p,(0)/w, and the total quantity of labour necessary to produce z, is then

N,=z4,.

Now we can compare N, and N, quite easily, and enhance the evolution
of employment following a switch in methods of production. As a matter of
fact we can point out that:

(1) It is not because a production system reduces the costs of production
that it also decreases employment. We know indeed that if system (A4,, 1, L, )
minimises the costs of production at a given rate of profit r=F, it is not
necessarily true at another value of r and more particularly when r=0.
However, as stated above, the direct and indirect quantities of labour
required to produce the commodities are nothing else but wage prices
corresponding to r=0. It is therefore quite possible for system (k) to be cost
minimising at a rate of profit »=7, without its substitution to system (/)
causing any decrease in employment (system (4) only needs to be cost
minimising when r=0).

(2) The evolution of employment is independent of the net surplus of
commodities z produced by the contemplated economic system. Indeed, we

W, > Wz A<z AU A, <un =>N,<N,

Wy

Figure 7.3
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have just seen that to analyse the evolution of employment, we had to
compare both systems or techniques, at r=0: the question is to compare
zp,(0)/w, and zp,(0)/w, or, which comes down to the same, w,/zp,(0) and
w,/zp,(0), or also w, and w, at r =0 with zp,(0) = zp,(0) = 1; thus, z plays the
role of the numeraire of prices and we have already seen that the
domination of a technique over another is independent of the numeraire z.
Therefore, when system (#) employs more workers than system (k) to
produce z, it will be the same for any other semi-positive vector u.

If we use the diagrammatic presentation, the comparison of w,(r) and
w,(r) at r=0, that is to say on the vertical axis, allows us to characterise the
evolution of employment following a switch in methods and therefore in
techniques.

7.2.4 Advanced wage and Marx’s analysis: the Okishio theorem

If the wage is advanced, the rate of profit R* (chapter 6) is a function of the
dominant eigenvalue a* of the socio-technological matrix 4* R*=(1
—a*)/a*. Okishio (1961) has studied the consequences of an innovaticn on
the average rate of profit R*; he has notably demonstrated the following
propositions: At a given real wage level, a cost-decreasing innovation cannot
cause a decrease in the general rate of profit. More precisely, he comes to the
following conclusions:

(1) If the industry is one where the new technique is a non-basic industry, then the
general rate of profit is not influenced at all;

(2) if the industry introducing the new technique is one of the basic industries then
the general rate of profit necessarily rises. (Okishio, article quoted p. 91)

Here, we shall limit ourselves to showing that if the socio-technological
matrix is indecomposable, the innovation, that decreases costs of produc-
tion, makes the average rate of profit increase.

With the usual notations and in the case of ‘advanced wage’, the
production prices p* are defined at the same time as the average rate of
profit R* on the basis of the socio-technological matrix 4™

(1+R.)A‘p.=p‘

Let A7 be the new socio-technological matrix that differs from the
previous one by one activity; from prices p* we obtain

(1+R*)A4ip*<p’

This is a vector inequality with strict equality for all the commodities
whose methods of production have not been changed. The inequality
concerns the i commodity produced by an improved method of produc-
tion and which is less costly on the basis of the going prices p*.
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Letg;=(1+R; )q; A} be the eigenvector corresponding to the dominant
eigenvalue of 4;. By pre-multiplying the previous inequality by q;, we
obtain the following strict inequality between scalars

(1+R")g; A} p*<q;p*=(1+R)q; A} p"
and as, g/ A;p* >0,
R‘<Ri.

Therefore, at a given real wage level, any technical improvement which
decreases the cost of production of a basic good, causes an increase in the
rate of profit.

7.3 Joint production: new problems

Difficulties arise in reference to the system with single-product industries
and circulating capital. The hypothesis of single product industries (and
circulating capital) leads to a certain number of simplifications which
disappear in joint production.

Demand or the satisfaction of wants, does not seem to play any rolein the
determination of production prices. It is no doubt because the emphasis is
put on the presentation of systems with single-product industries and
circulating capital, in which (with the usual condition of profitability) it is
always possible to satisfy wants and thus to meet demand. This is not
necessarily the case in joint production systems (see chapter 1), which is not
without consequences for switches in methods of production, the choice of
methods and the minimisation of production costs.

Another difference between simple and joint production systems is that
comparing the wage—profit curves is not necessarily relevant; the system
which ensures the minimisation of costs does not always coincide with the
one allowing to pay the highest wages at the going rate of profit.

Here again, respecting the golden rule of accumulation allows us to make
efficient choices: indeed, production systems have to satisfy the same needs
and establish the golden rule.

We shall also see that identifying the method of production to be
eliminated poses specific problems that did not arise in simple production.
Further, there may be negative prices which is a sign of inefficiency in the
system; however, they can be corrected by truncation.

7.3.1 Satisfying demand

A brief footnote by Sraffa in the beginning of chapter 7 in Production of
Commodities by Means of Commodities shows that he was quite aware of
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Table 7.1.
input output
good 1 good 2 labour good 1 good 2
method 1 0 1 3 3
method 2 3 H 6
method 2’ 1 0 2 ] 3

the problem even though he never explicitly addressed it; nor did he use the
term demand, preferring to talk about ‘proportions ... in which they {the
commodities] are required for use’. The full quotation is:

Incidentally, considering that the proportions in which the two commodities are
produced by any one method will in general be different from those in which they are
required for use, the existence of two methods of producing them in different
proportions will be necessary for obtaining the required proportion of the two
products through an appropriate combination of the two methods. (P.S. 50,
footnote 2)

But, when the role of demand is ignored, the price system may present
nonsensical phenomena, as shown in the following example.

Consider an economy with two goods and three methods of production
whose characteristics are shown in table 7.1."!

We assume r=0and u;=u,=1.

The simultaneous use of methods (1) and (2) defines system (k) where we
have

k_
W =1

L)
F
o

k_ 4 k_
hh=n P2=h

The simultaneous use of methods (1) and (2’) defines system (#) where we
have

Wi
)

wh=3  pi=%1  pj=;

We have here two possible production price systems and each of them
ensures the minimisation of production costs: this is the case for system (k): at
the prices of (k), method (2') shows a negative surplus; indeed (since r=0),
the cost of production pf+2w*=4/13+2.4/13=52/13 is greater than the
value of production (9/2)pf +3p5=9/2.4/13+3.9/13=45/13.

System (h) also ensures the minimisation of costs: at the prices of (k)
method (2) shows a negative surplus; indeed, the cost of production
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Table 7.2.
inputs outputs
good 1 good 2 labour good 1 good 2
method 1 0.5 0.5 1 1 2
method 2 0 3 1 3 0
method 2’ 0 0.5 1 1 0

(at r=0), (3/8)p+pr+2w"=3/8.2/3+1/3+2.5/3=94/24 is greater than

the value of production (9/8)p} + 6p7=9/8.2/3+6.1/3=66/24.

We have here two possible systems of production prices, which are
different, incompatible and both simultaneously minimise production

costs.

However, if we normalise activity levels so that each method of produc-
tion uses one unit of labour, when the system is at a stationary state, the net
product matrix of the three methods writes

[(B—Al=

FNEEE RN
o
L STV S |

0

Figure 7.4
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Figure 7.4 shows the net products of the three methods; it appears that
systems (k) and (h) respectively composed of methods (1, 2) and (1, 2') do
not satisfy the same needs (except in the specific case when d=(3/2, 2)).
According to the structure of demand, we shall choose one of the two
systems without being concerned with the minimisation of costs.

7.3.2 The irrelevance of comparing the wage-profit curves

Comparing w(r) curves is not necessarily relevant any more: indeed, the
system ensuring the minimisation of costs does not always coincide with the
one pay the highest wages at the considered rate of profit.

Let us use Salvadori’s example (1984, p. 183) of a production system with
two commodittes and three methods of production, characterised as shown
in table 7.2.

System (k) is defined by the simultaneous use of methods (1) and (2),
where at r=3/4, and with u,=1 and u,=99, the price of good 1 is
p¥=0.0219072... and the wage is w*=0.01385309...

System (#) is defined by the simultaneous use of methods (1) and (2),
where the price of good 1 is pf=0.025669... and the wage is w"
=0.0139280... Thus w"> w*.

But it is system (k) which is cost minimising: we can show that at the
prices of (k), the method of production likely to be used presents a negative
surplus. Indeed, according to the table above, the cost of production is
(1+r)0.5p5 + w*=(1+r)0.5((1 — pf)/99) + w* = 0.022497 while the produc-
tion of one unit of good 1 bears the value pf, that is, 0.0219072.

Thus, using method (2') does not decrease production costs; system (k) is

the cost minimising system while w, > w,, at the considered rate of profit.
Consequently, at a given r, the minimisation of production costs does not
imply the maximisation of wages any more. And comparing the wage—profit
curves cannot be considered as relevant.
Note on the importance of the choice of the numeraire: if we choose u; = u, = 1
as the numeraire for prices, (k) is still the production cost minimising
system, but this time w, > w,. The paradox, or rather the lack of equivalence
emphasised above, vanishes. This shows that the domination of one wage-
profit curve over another is not necessarily independent of the numeraire;
similarly, with a specific numeraire, switching points, which would not exist
with a different numeraire, may appear between two curves (we have seen
that in a system with single-product industries and circulating capital, the
order of the w(r) curves was independent of the numeraire).

We have shown in chapter 3 that for a given technique or method of
production, we could obtain the properties of simple production systems in
the interval [R, R[. Now, if we consider two techniques (k) and (h)
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respectively characterized by intervals [Rf R*[and [R{ R"[, it is only for
re[R¥ R¥[N[R! R"[that the production costs minimising system is also w
maximising, with r given and whatever d. There is no guarantee when r does
not belong to that interval.

But the chosen value of the rate of profit, namely r = 3/4, does not belong
to the interval [1(\/ﬁ —1)/2] where the c.m.s exists and coincides with the
w-maximising system, given r and whatever d.

The condition is more restrictive than the one indicated by Sraffa (P.S.
96) in Production of Commodities by Means of Commaodities; he has pointed
out (P.S. 72) that the curve (w, r) could be increasing in joint production, but
he believed'? that the decreasing character of the compared techniques’
(w, r) curves was sufficient to ensure the equivalence of the minimisation of
production cost and the maximisation of w given r (or of r given w).
However, the decreasing condition is no doubt necessary but not sufficient.
Itis only in the interval indicated above that the equivalence is ensured; for
curves (w,r) may be decreasing beyond that interval.

7.3.3 Stability condition of the choice of technique

Let [A,, B, L] and [4,, B,, L,] be square systems composed of an equal
number of goods and methods of production. Both systems differ only by
one activity.

Prices in both systems are defined, at a given r, by

[Bi—(1+nNA)p=w L, and [B,—(1+nr4,lp,=w,L, )

Definition
A c.m.sis said to be stable when the choice of technique retained is
the same whatever the price system.
In other words, the c.m.s is stable when we cannot have

[By—(1+r) Al <w, Ly, if [B,— (1 + 1) A, Ip, <w, Ly

Theorem
There is a stable c.m.s when different production systems satisfy
the same needs in a golden rule situation (r=g).
This assumption means that the same needs d can be satisfied by both
techniques / and & in a golden rule situation, that is to say

By —(1+nA4,]=d=y,[B,—(1+n4,] (2
Assume that system (#) is the c.m.s, then we obtain

[Be—(1+ A, lp<w,L,
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By pre-multiplying both terms of that inequality by y,> 0, we obtain

YelBe—= (1 + 1A Ipy <wpyi Ly
or, by (2)
dp,<w,d[B,— (1 +NA,] 'L, 3)

. 1 .
According to (1), (B,—(1+1rA4,]"'L,= — P and (3) writes
k

1
dp,<w,. :v_ dp, @)
k

By normalising prices in both systems by dﬁh= dp,= 1, we deduce from (4)
that

w,<w, (5)

Thus [B,— (1 +r)A4,]p, <w,L, is impossible. Otherwise, by pre-multiplying
yulBy— (A +1A4,1p. <w,y,L, by y,>0, that is according to (2)

dp,<wd[B,—(1+n4,] 'L,
and according to (1)

d,
dp, <w,. wi:
Since dp,=dp,=1, we would have w, <w,, which is at variance with (5).
We can note that the condition of the existence of the c.m.s is not
established in the example developed in section 7.3.1., with r=0 (original
hypothesis); it is clear that in a golden rule situation (r=g=0) both
production systems cannot satisfy the same wants (see figure 7.4).

Another interesting example was developed by Salvadori (1981) who shows
that in joint production the introduction of an innovation though profi-
table for the innovative capitalist may entail a decrease in the general rate of
profit. We can quite easily show that the golden rule has not been respected.

Consider the following production system (see table 7.3).

The wage is now ‘advanced’ and consists in one unit of good (2) for each
worker. If we simultaneously use methods (1) and (2") the prices of both
goods are determined at the same time as the rate of profit r by the following
equation system

{(0-5171 +0.5p,+p,)(1 +r)=p,+2p,
(0.5p,+py)(1 +r)=p,
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Table 7.3.
input output
good 1 good 2 labour good | good 2
method 1 0.5 0.5 1 1 2
method 2 0 3 1 3 0
method 2’ 0 0.5 1 1 0

With p,+p,=1 as the normalisation condition, we obtain the following
solution to system (h) above

12{'=6—_§Lg p;'=‘/6_] r”=24[g=0.63299...

5 3

But, system (/) is not cost minimising; we can indeed notice that for the
values of prices and rate of profit indicated above, using method (2) entails
an excess profit. Since that method uses three units of commodity (2) and
one unit of labour to produce three units of commodity (1), the production
cost can easily be calculated by taking into account the fact that the
‘advanced’ wage is composed of one unit of commodity (2) and that the rate
of profit is r"

Gt phyc1 +rhy= 26/ (2ﬁ > 1>=§ 6=/6)
5 3 3 5
which is less than the value of output, namely 3p!=3 (6— \/8)/ 5.

Thus the use of method (2) entails an excess profit at the going prices p”
and the rate of profit " as a consequence, capitalists will be encouraged to
replace (2') by (2), hence the new system (k) which simultaneously deter-
mines the prices of both goods and the new rate of profit

{(0.5171 +0.5p,+p)(1+1)=p,+2p,
(GBp,+p)(1+r)=3p,

Owing to the normalisation condition p, + p,= 1, we obtain the following
solution to system (k)

v 33—/193 ko V/19375
pi 78 p: 28

</ 193-9
r"=T=0.6115<r"=0-63299
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Table 7.4.
input output
good 1 good 2 labour good 1 good 2
method 1 2 0 1 5 1
method 2 0 1 1 1 3
method 2’ 1 0 1 1 3

Therefore, owing to the existence of a positive excess profit at the price
system initially applied (i.e., 4), the replacement of method (2') by method
(2) leads to a decrease in the average or general rate of profit. Thus it seems
that in joint production, the introduction of a technical innovation, though
profitable for the innovative capitalists, may entail a decrease in the general
rate of profit.

We can easily check that the rhythm of accumulation cannot be greater
than 33%, a rate at which the system does not present any surplus of good 2;
the paradox emphasised by Salvadori springs from the non-respect of the
golden rule. We may add that at r =g =33%, only the first activity is used:
good (1) then becomes a free good and only good 2 is an economic good.
This is a truncation of the system, a problem we shall revert to later on.

7.3.4 Identifying the method to be superceded

Consider an economy with two goods and three methods of production
characterised in table 7.4 (see Salvadori 1984, p. 183).

We assume that r=3/2 and p, +p,=1.

System (k) is defined by the simultaneous use of methods (1) and (2), and
we obtain

k_2 k_1 k_
w =3 =3 Pr=

System (h) is defined by the simultaneous use of methods (1) and (2") and we
obtain

(VI[N Y

h_3 h_4 h_3
wi=3 =3 P2=73

Thus, we do have two possible systems of production (in the sense that
prices and distributive variables are simultaneously positive), but none of
them is cost minimising. Indeed:

System (k) is not the c.m.s.: at the prices prevailing in (k), method (2')

shows a positive surplus, which can be easily checked; the production
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good 2 4

.
™ (m)
\\

®

> (1.4)

good 1
Figure 7.5

cost (1+r)pF+w*=5/2.1/3+2/3=9/6 is less than the value of this
activity’s output, pf+3pf=1/3+3.2/3=7/3=14/6.

System (#) is not the c.m.s. either: at the prices prevailing in (h), method
(2) shows a positive surplus; the production cost (1+r)ps+w"
=5/2.3/7+3/7=3/2 is here again less than the value of output,
pi+3pi=4/7+3.3/7=13/1.

In such a situation there is no cost minimising system: at the prices
prevailing in (k), capitalists consider that method (2) is more profitable;
when it is adopted and replaces (2), a new price system () appears for which
method (2) becomes more profitable! We are then confronted with a
permanent oscillation between two production price systems; neither of them
can be stable.

Let us now re-examine that example. Matrix B— (1 +r)A, characterising

the three methods of production writes, with r=g=3/2:

0
[B—(1+r)4]=|1
3

Nol—  —

Hence see figure 7.5 plotting the net g-products.

Recall that we have compared two systems, (k) composed of methods (1)
and (2) and system (#) composed of methods (1) and (2). But it appears
clearly (see figure) that any demand perfectly satisfied by (k) can also be
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Table 7.5.
input output
good 1 good 2 labour good 1 good 2
method 1 0 1 1 | 1
method 2 5 0 1 5 5
method 2’ 2 0 1 4 4

perfectly satisfied by (m) which is composed of methods (2) and (2'); the
efficiency frontier (broken line on diagram) has been defined on the basis of
(m) which can be easily established as the c.m.s. Thus, the problem of switch
in methods of production has been ill-defined: we have compared only two
systems (k) and (h), which differed by only one method (2) and (2) while it
was method (1) which had to be replaced, the c.m.s. being composed of (2)
and (2). Though the problem of the introduction of a new method was well
defined, that of the elimination of a method was not.
In this connection, Sraffa warned:

With single-product industries, each process or method of production is identified
by the commodity which it produces, so that when an additional, (k + 1)™, method is
introduced there is no doubt as to which of the pre-existing methods it is an
alternative to.

When, however, each process or method produces several commodities, and each
commodity is produced by several methods, this criterion fails. And the problem
arises of how to identify among the pre-existing methods the one to which the new
method is an alternative. (P.S., section 96)

Thusitisin the whole set of possible production systems that the problem
of switch in methods of production has to be contemplated; it entails the
adoption of a new method of production and also the elimination of a pre-
existing one, the cost minimising criterion under the constraint of satisfying
demand, ensuring in a golden rule situation, the existence and stability of
the c.m.s.

However, there is no guarantee that when it exists, the c.m.s. includes
non-negative elements. Let us now address that issue.

7.3.5 Ruling out negative prices through system truncation

Consider an economy with two goods and three methods of production
with the characteristics shown in table 7.5.
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good2 4
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Figure 7.6

System (k) is defined by the simultaneous use of methods (1) and (2)
where w¥=pf=5/6 and p; = 1/6 for r=0 and p, + p,= 1. This system is not
cost-minimising since at the prices of (k) and owing to the wage and rate of
profit values, method (2') shows a positive surplus: the production cost (at
r=0) is indeed 2 p¥+ w*=3w*=3.5/6=>5/2 less than the value of output
4pi+4ap;=4(pf+p;)=4.

Capitalists are thus led to replacing method (2) by method (2") which is
less costly; but the simultaneous use of method (1) and (2") defines system
(h) where w"=pl'=4/3 and pf= —1/3<0!

Such a phenomenon can be easily explained. At r=0, matrix B—(1+r)A4
writes

10
(B—A]=|0 5
24

Hence the net g-product diagram depicted in figure 7.6 (with r=g=0).

It appears clearly that the simultaneous use of methods (1) and (2°) which
define system (/) shows a curve of consumption possibilities with a positive
slope or, which is equivalent, negative (production) prices. We have already
indicated (chapter 1) that this is the sign of an inefficient system; it is indeed
quite clear that method (1) is dominated by method (2) (with r=g=0) and
that the simultaneous use is inefficient; such an inefficiency is revealed by
non-positive elements in the price system.
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Thus system (/) can never be used and method (1) has to be superceded if
method (2') is available. If so, two situations have to be contemplated:

either the structure of demand is included within the cone of net

products, determined by the simultaneous use of methods (2) and (2°),
i.e., dy/d, > 4/2=2: demand can then be perfectly satisfied by system
(m) composed of (2) and (2'), and production prices are strictly positive
for both goods (see position d ;).

or demand is outside the cone previously defined, i.e., d,/d, <2.

In such conditions (see dg on figure 7.6) method (1) cannot be used since it is
dominated by method (2') which will be the only one used. As a result good
(2) is supplied in excess and thus, provided we assume the free disposal of
the good produced in excess, the free good is available at zero price and
good (1) which is the sole economic good has a positive price.

Thus, the appearance of negative elements in the c.m.s shows that one
method of production is inefficient. Eliminating it would lead, with some
structures of demand, to the impossibility of perfectly satisfying demand,
and thus supply exceeds demand. Assuming the free disposal of free goods
means that they are available at zero price and the costs of production are
positive only for economic goods, the supply of which strictly equals
demand.

Itis worth noting that the conditions related to the positivity of thec.m.s.
hold for r=g=0 and when Koopmans’ concept of the efficiency frontier
can be used. In the general case when r=g#0 the concept of g-efficiency
frontier has to be used.

Therefore, the appearance of negative prices reveals an inefficiency of the
system springing from the simultaneous use of two methods of production
with one dominating the other. Ruling out the dominated method of
production leads to the impossibility of perfectly satisfying wants and thus
an excess supply of goods. By the von Neumann rule these products are
available at zero price provided we assume their free disposal. Then, only
the goods which perfectly satisfy wants have positive production prices.
Thus the efficiency condition implies the positivity of the c.m.s.

As a conclusion, the difficulties related to the existence, non-unicity and
non-positivity of the c.m.s. can be relaxed if we take into account the
necessity to satisfy demand in a golden rule situation, by eliminating
inefficiencies; in other words, minimising costs under the constraint of
satisfying demand in a context of g-efficiency.

If the retained structure of wants corresponds to the workers’ consump-
tion basket, the system is a c.m.s. which, given r=g, ensures the maximisa-
tion of wages. Hence the following proposition:
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If the compared systems of production produce the basket of goods consumed
by workers under g-efficiency, the c.m.s. coincides with the system which at the
considered rate of profit, maximises the real wage.

7.4 Depreciation of machines

By ‘machines’ or ‘fixed capital’ we mean any means of production whose
period of use is greater than the reference period of time, generally a year.
Consequently we know that the distinction between fixed capital and
circulating capital is quite arbitrary.

In ‘references to the literature’ (Appendix D) Sraffa notes that ‘the plan
of treating what is left of fixed capital at the end of the year as a kind of joint-
product may seem artificial if viewed against the background of the
continuous flow of industrial production, but it fits easily into the classical
picture of an agricultural system .. .". This method, introduced by Torrens,
adopted by Ricardo in the third edition of the Principles, then by Malthus in
the Measure of Value and later by Marx, seems to have fallen into oblivion
afterwards.

The depreciation of the machine (we speak here of ‘truncation’) means
that it has to be decided how long the machine is going to be used. This is
closely connected to the analysis of switch in methods of production
previously carried out; indeed, the decision to depreciate a machine, or stop
using it, is made to satisfy the same needs as those satisfied when a method
of production is abandoned, considering the worn-out machine as a free
good. Of course, the life span of a machine may be fixed, independently of
economic considerations. But such an hypothesis that we shall first address,
is neither the most frequent nor the most interesting one.

7.4.1 Fixed life span hypothesis

This point of view implies that the same machine, at different ages, should be treated
as so many different products, each with its own price. In order to determine these
prices, an equal number of additional equations (and therefore of processes) is
required.

Accordingly, an industry which employes a durable instrument must be regarded as
being subdivided into as many separate processes as are the years of the total life of
the instrument in question. Each of these processes is distinguished by the fact that it
uses an instrument of a different age; and each of them ‘produces’, jointly with a
quantity of a marketable commodity, an instrument a year older than the one which
it uses — with the exception of the process using the expiring instrument in its last
year, which produces singly the marketable commodity (or, at most, in addition, the
residual scrap if it has any value). (P.S. 74).
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Table 7.6.

Inputs Outputs

machines machines

wheat M, M, M, M, labour wheat M, M, M, M,

ay IN 1

a, 1 I b, 1

a, ] Iy b, 1

ay 1 A by 1
a, 1 1 b,

Let us now consider a single machine produced with wheat and labour
and used over four periods of time and then becomes scrap without any
value. Each period of time can be characterised as a process, a particular
method of production: the first process uses wheat, the new machine
denoted by M,, and labour and produces a certain quantity of wheat
written b, as well as the worn machine M ; the second uses wheat the worn
machine M, and labour and produces a quantity of wheat denoted by b, as
well as the worn machine M,; the third uses wheat the worn machine M, and
labour and produces a quantity of wheat denoted by b, as well as the worn
machine M;; the latter is finally used by the fourth process, which again
produces wheat and a worn-out machine, since it has reached its last year of
usefulness. Therefore, we have one activity producing the new machine and
four activities producing wheat using machines at different ages appearing
as many distinct machines each with its own price (see table 7.6).

Consequently, there are five equations and seven unknowns: the price of
wheat, the price of the new machine, the three prices of the worn machines,
the wage w and the rate of profit r. Owing to the normalisation equation, we
have here again one degree of freedom.

Now consider the more general case of a system producing k goods (the
new machine included) with circulating capital and labour, and each
method produces one and only one good (for simplicity’s sake we have
ruled out the hypothesis of joint production). Wheat is produced by means
of the new machine used over T periods of time: hence T production
equations of wheat, with each method using an input vector a,, a quantity of
labour /,, a worn machine M, _, and producing a quantity b, of wheat and a
worn machine M, (except for the last process which only produces wheat).

By writing p the price vector (with £ components) in circulating capital
inputs, p;" (with h=0,1,2,..., T— 1) the prices of the different machines, p,
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the price of wheat, 4 the intermediate consumption matrix of sectors
different from wheat and L the vector of needs in direct labour of these

sectors, we have
-

(1+rAp+wL =p
(1+nlap+Mypy'1+wl, =bp,+M,py
(1+nlap+M,pi")+wl, =b,p,+ M,py

ﬁ (M +nlar_ p+Mr_opr_y 1+ wir_, =br_ 1Pyt Mr_\pr_,
(1 +nlarp+Mp_ pr_, 1+ wir =brp,
with up=1

.
Thus we have k+ T+ 1 equations and k+ T+ 2 unknowns: the k prices of
goods produced by means of circulating capital (the new machine
included), the price of wheat, the (T— 1) prices of the worn-out machines
and the two distributive variables, hence k+ 1 +(T—1)+2=k+ T+2.

7.4.2 The integrated equation and ‘the suppression of joint production’

Joint production appears in the (T—1) processes using the first (77— 1)
machines and producing wheat as well as a worn-out machine, which is an
intermediate product.

The method to suppress intermediate products proposed by Sraffa (P.S.
76) can be generalised;'? the purpose is to combine in a single expression all
the elements of the machine system by multiplying them by (1+r)7",
Indeed, if we multiply the T equations respectively by (1+r)7"' (1
+r72,...,(1+7r), 1 and add them, the machines of intermediate ages
(above zero and under T years) which appear on both sides cancel out and
we obtain the integrated equation

T T
A+ A+ ap+Q+0"Mpg+wY (1+1771,

t=1 =1

T
= Z (l +I‘)T_‘b,pb
t=1

or also
(1+rap+ 1 +r)"Mypl"+ wi=bp,
with

T
a=Y (1+r' g,
t=1
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I=Yy a+n"1,

M~

!

b=

H

(A+rT',

M~

1

The production equations of wheat (with a simultaneous production of
worn machines) are thus replaced by the ‘integrated’ equation above which
provides the necessary information and where wheat (and only wheat) is
produced using an input vector, labour and the new machine. In a way, such
an integrated equation is a ‘simple’-production equation since only wheat
appears as produced by the system. It is not, however, a usual production
equation: the 4, /and b are indeed functions of r. Therefore, it is not really a
simple production system, but simple production taking into account
discounts, in short fixed capital.

The treatment of machines, or the taking into account of fixed capital
was explained in the first formulation; the integrated equation ignores the
latter without eliminating it.

By combining the integrated equation and the k production equations
different from wheat, namely p=(1+r)Ap+wL, we obtain the set of
activities producing finished goods (among them wheat and the new
machine). We can show without any difficulty' that under the usual
productivity conditions there exists a maximum rate of profit R> 0 and the
prices of finished goods are positive for any re[0 R]. We can also
demonstrate that the system has a strictly positive'> standard commodity
and that the wage—profit relation is linear and decreasing provided prices
and wages are expressed in terms of that standard commodity.

It is amazing that the previous characteristics are independent of all
hypotheses on the prices of intermediate goods, that is to say, worn
machines. However, analysing them is necessary to study depreciations and
their consequences.

7.4.3 Efficiency and prices of machines

Let us revert to the price equation characterising the T periods of the
machine’s usefulness. We have

(I+n(ap+M,_p"y- 1)+ wh=b,p,+ M, p;

After rearranging the equation and owing to M,= M,_,=1 (it is indeed
the same machine or rather the same quantity of machines which is used as
inputs and outputs)

(1 +npisy —py=bypy— (1 +1a,p—wl,=F,(r)
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F,(r)can be interpreted as the net return of the 2™ process: it is indeed the
difference between the value of the output of wheat and that of used inputs,
taking into account the rate of profit r and the wage w.

Using the integrated equation allows to consider here w, r, p, and p as
fixed and exogenous. Hence the recurrent form of the machines’ price
equation

m _Ea() oy

ph_l——lr with h=1,...,T—2
_Fr()
Pr-1= 1+r

Thus, we can calculate without any difficulty the price of a worn machine
of age A by first multiplying the different values of p;, pr'y 1, Preas--sP 11
successively by 1/1, 1/(1+7), /(1 +r)3,..., 1) +1 T,

Fyiy | Pav
m_— +___
Ph 1+r 1+r
Pi',"+l= Fy.y Ph+
1+r (14+0)?% (1+r)?
Pr-) - Fr
(1+ATF (4Tt

Summing up, we obtain

= Fh+l

P2 Tty

1=

Thus, the price of a worn machine of age h appears as the sum of the
expected net returns F, at each period, discounted by the rate of interest r.

If the machine is new, its production price is equal to the sum of
discounted expected net returns over the period of use

m __ L Fl
o= 2 a+y

Thus, the price of the new machine can be determined either by
production (and distribution) conditions, or by the conditions of use (and
discount). Both methods of valuing are equivalent. The new machine, a new
capital good, is therefore at a point where intertemporal and input-output
analyses meet.

The price of the worn machine, the intermediate good (at a given r), will
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vary with age. More precisely, the variations in the flow of net incomes F,
during the period of use will play a determining role. In this respect, it will
be convenient to speak of evolution in the machine’s efficiency; this term
may be misleading though: recall that it is economic efficiency which is in
question and it depends on prices and more generally on the rate of profit.

From the previous formula determining p;", let us consider the case of a
machine the net returns of which would remain positive whatever its age: it
is quite obvious that the price of the worn machine would also be positive

F>0 Vh=p'>0

This holds only if, at a given r, the efficiency is constant or possibly
increasing. In a number of cases, however, the F,s become negative when
the machine is in its last years of usefulness, which results in negative book-
values for old machines.

The issue of net flows of negative returns has to be elaborated: a negative
net flow does not necessarily mean that the price of the worn machine for
that specific period is negative: F, <0 does not imply p, <0. A machine with
h years may have a positive price even if net returns are negative during
period A and even in the next periods. For example, consider the case of a
machine with negative net returns between 0 and § and positive prices in
each of the periods in question; the positive net returns of the periods
following 8 compensate for the negative net returns of the first periods of
use: this is the case for dams, machines which are being built, works in
progress.

However, if the machine has negative net returns from = 6 until the end
of its last year of usefulness, its price will become negative at t=0 at the
latest. Suffice to use the recurrence formula

pr- 1 =Fr(n)/(1+7r)

Theorem
The wage prices p of the k final goods are increasing functions of r
ininterval [0 R]if all the prices of the intermediary goods (worn machines)
are positive in that interval.'s
Indeed, by differentiating both sides of

Bp(r)=(1+nAp(r)+L

we obtain

d . d .
B p0)=(1+n4 - )+ 4p()
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that is
d .
(B—(1+n4] 7 ()= 45()
By multiplying both members of the last equality on the T processes using

the machine by (1+r)”7"" and by adding corresponding terms using the
same notations as in section 7.4.2, we obtain

. oo d . T
[B(r)—(1+nAN] 5 p(r)=A()p(r)+ L M(t=1)p,(t—1)

=1

that is

t=1

d . . . T
2 PO =B =(1+nA ()] = {A (NP + L M(t=Dp,(t— 1)}

where [B(r)—(1+r)A(r)] " '>0 since in model [A(r), B(r)] there are no
machines any more and we revert to the simple production model.

The obvious consequence of this is that relation (w, r) can be increasing
only if the prices of some intermediate goods become negative in interval
[0 R]. Therefore, any ‘anomaly’ in curve (w, r) means that the prices of some
intermediate goods become negative; the converse is not true: some prices
may be negative without any anomaly, or increase appearing in curve (w, r),
(we have seen earlier that relation (w,r) is linear and decreasing only if
Sraffa’s standard commodity is used as a numeraire). Let us now explain the
appearance of negative prices for intermediate goods.

7.4.4 The capital life span

Why would some worn machines have negative prices? Because they have
been used too long; owing to the going rate of profit r, they should have
been ‘depreciated’, superceded.

To show this, let us first assume that it is the oldest machine which has a
negative price. By the previous definition

m =Fr(r)
Pr-1 1+r

with Fp(r)=bpp,— (1 + Na;p—wl;

given r, p7_, <0 <> F(r)<0. If the price of the oldest machine is negative
then the process using that machine does not derive the average profit from
the capital invested

Fr(r)<0 < brp,<(1+nrarp+wiy
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Thus, there is no reason for this process to be used: wheat can indeed be
produced by another method and needs to be satisfied at a lower cost.
Under the assumption of free disposal of that machine —a problem we shall
revert to — let us consider the machine as a free good and simultaneously
abandon the activity in question.The depreciation procedure may also be
continued until positive prices are obtained for all the machines used.

Remember though that this analysis has been carried out for a given
value of r and depreciation may be different at another value of r. No
relationship can be established between the economic life of capital goods
and the value of the rate of profit; contrary to what neo-Austrian authors
believed in a less formal context (see Hayek, 1931) that a decrease in the rate
of interest (profit) does not necessarily lead to a longer production process.
Further, the possibility of returns to depreciation cannot be ruled out; in
other words it may happen that the life span of a machine that is optimal in
a given interval of variation in the rate of profit, stops being so and then
becomes optimal anew when the rate of profit increases (or decreases).
Examples of that kind have been given by Hageman and Kurtz (1976) and
Schefold (1978).

If depreciation is the consequence of negative prices, conversely, we may
conceive the possibility of a longer period of use of some capital goods. The
initial hypothesis of a machine’s fixed life span is of course excessive in a
number of cases; conversely, we may put forward that it is always profitable
to lengthen the life of a machine as long as the method of use (and of
servicing) allows a positive book-price. This explains the ‘venerable’ age of
some equipment.'’

Itis worth adding that the free disposal hypothesis is rather questionable.
In many cases the removal (and dismantling) costs of the equipment are
significant. An alternative hypothesis would be that of fixed costs indepen-
dent of the age of the machine, that would be taken into account every time
an activity is to be stopped. But this often leads to a non-optimal use of the
means of production; depreciation may thus be accelerated.

7.5 Optimisation and production prices

Is it possible to link the traditional analyses of choices of techniques and the
presentations in terms of optimisation? Obviously both approaches are
conflicting: if we take the rate of profit as the exogenous variable, the
objective function of the canonical linear programming indicates a mini-
misation of wages; while in Sraffa’s case of switch in techniques, the aim is
to reach the highest wage at the considered rate of profit.

A simple case, that can easily be stated in general terms, allows us to show
that the contradiction is only apparent, provided simple production
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prevails. In that case the solution wage is indeed the lowest wage satisfying
the linear programming constraints and simultaneously the highest wage
springing from the choice of technique. Let us add that in both cases the aim
is to minimise production costs at the considered rate of profit. But in joint
production, the wage maximisation criterion has no general value any more
(given r). It is the cost minimisation criterion, von Neumann’s rule of
profitability, which has to be considered.

The problem is the same when it is the wage, and not the rate of profit any
more, which is taken to be exogenous. But then, the optimisation program-
ming is not linear any more and von Neumann’s model becomes more
relevant.

Also, it appears that if the choice of the exogenous distributive variable is
unimportant mathematically speaking, it is quite important as far as its
economic meaning is concerned. When r is exogenous, wis positive only ina
context of full employment.

While when w is exogenous it has a positive value even in a situation of
underemployment, the value of the rate of profit being obtained by solving
the model.

The analyses that follow have been carried out within the usual context
for this kind of exercice (steady-state regime, golden rule and constant
returns to scale unless otherwise stated). Thus, we shall distinguish two
cases.

7.5.1 When the rate of profit is exogenous

Using the usual notations, let us consider an economy with » activities
producing k goods (with n> k). The unit level of operation for each activity
is determined by the condition [,;= 1. We adopt the general case with some
activities producing several goods (pure joint production or worn-out
machines); final consumption is defined by vector 4, with its level being a
scalar ¢; y is the activity level vector, y4 and yB are the intermediate
consumption vector and the production vector respectively. The inequa-
tion system determining the equilibrium conditions for the whole set of
goods is

yBz(1+g)yA+cd
or
y[B—(1+g)Alzcd

The available output of each good must be at least equal to the
intermediate consumption (y4), accumulation (gy4) and final consump-
tion cd.
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The only primary factor of production considered here is labour which is
taken to be homogeneous. The labour force coefficients for each activity are
set equal to unity (/;=1) to allow a convenient normalisation of activity
levels. The quantity of labour used in the whole economy is yL. If we
assume that the quantity of available labour during the period in question
equals N, then we have: yL < N. Recall, that it may be convenient to choose
such units of measure to express the quantity of labour so that N= 1; this
does not have any consequences on the general operation of the model, nor
does it entail any new implicit hypothesis on the equilibrium conditions of
the labour market; thus we have yL<1.

If we take c as the social utility function of households’ final consump-
tion, the structure of which is taken to be fixed, we obtain the following
primal programming and the corresponding dual relations that we shall
explain

PRIMAL DUAL
Max ¢ Min w
yiB—(1+g)Al=cd p=0
VLN w=0
y=>0 [B—(1+g)AlpEwL
c=0 D<dp

The column-vector p is composed of the different goods’ dual prices and
number w is the dual price corresponding to labour. Let ' and b', be the it
columns of matrices 4 and B respectively; 4, is the i™ element of the final
consumption vector. By the complementarity relations, if the supply of a
good exceeds demand, its dual price is zero; it is positive in the opposite case

y[b'=(1+g)a']1>cd; = p=0
yb'=(+gla'l=cd; <= p;>0

1t is worth adding that the complementarity relations also hold for the
dual price of labour: the wage can be positive only if the quantity of
available labour is totally used (we shall revert to this issue later)

YL<N=w=0
yL=N<=w>0

To every variable y; corresponds a dual relation [b;— (1 +g)a;Ip< wi;
where b; and g; represent the j™ rows of matrices 4 and B. Owing to the
complementarity relations we can write

(b~ (1+g)alp<wl = y=0
b= (1+g)alp=wl <= y;>0
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Consequently, only the activities allowing us to reach the rate of profit
are used at the optimum (the rate of profit is equal to the rate of growth
owing to the golden rule hypothesis and the solution of the previous
programming). We recognise here the determination process of production
prices, with r=g.

Finally, the last relation of the primal can be interpreted by using the
complementarity relations

¢>0= D=dp
¢=0<= D<dp.

If the supply price, the value of economic goods (dp) is too high, higher
than an exogenous value D which can be interpreted as the available
purchasing power for final consumption, we should have ¢ =0, owing to the
complementarity relation c(dp — D)= 0. Such a case is ruled out here since
we assume that ¢> 0, and as a result dp = D; which comes down to the usual
normalisation condition.

The economic constraints are: y>0, p>0, w>0 and ¢>0 so that by
making M= B—(1+g)A, the programming can write

PRIMAL DUAL
Max 0.y+1.c=¢ Min0.p+1.w=w
—yM+cd<0 p=0
yL+c.0=N w>0
y=20 —Mp+wL>0
¢>0 dp+w.0=D

Maximizing ¢ comes down to maximizing D.c or 0.y + D.c with D given
and minimising w comes down to minimising N.w or 0.p+ N.w, given N.
By writing

a =(00,..,0,N), x =(ypYp--sVmC)

(1,k+1) (1,n+1)
P 0
P2 :
u ={: . /=y :
*k+1,1)
P (n+1,1) 0
w D

-M L
d H =
an (n+1Lk+1) ( d 0)
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This programming then writes in the traditional form

PRIMAL DUAL
Max xf=c¢ Min au=w
xHZa uz=0
x>0 Hu>f

Let us now revert to the objective function of the dual programming; it may
be curious that the aim is to minimise the wage while the analysis of switch
in methods of production puts the emphasis on the maximisation of the
wage — though wrongly since the aim is always to minimise the costs of
production. In simple production, the cost minimising criterion and the
wage maximising criterion are indeed equivalent (with r given). But such an
equivalence does not hold in joint production and only the cost minimising
criterion (or von Neumann’s rule of profitability) is relevant.

We shall address the problem first in a context of simple production with
each activity being specialised in the production of a single good, thenin a
context of joint production, keeping the system of production with two
goods. Note that in both cases the dual programming has to be considered
as a whole. Indeed, given r=g and given the structure of demand, the
objective is to find the lowest wage such that no activity makes excess
profits. Let us first contemplate the case of simple production with the
following example. Let

52 1 10 0
A=y 5| L=|1| B=| 0 ¥
43 1 010

be a simple production system with two goods and three activities. The

production price equations are written for r=g=0 and completed by the

normalisation condition dp=1 with d=(1 1). We assume ¢>0and D=1.
5p,+2p,+w=10p,

%Pl + 531’2"’ w= lTopz
4p,+3p,+w=10p,

ptp=1
Hence by substitution, the three relations w(p, ) defined at r=0
w=Tp,—2 0
w=2-1p, 2
w=T7-1lp, 3)

These three relations are shown in figure 7.7 as well as the normalisation
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z

Activity 1
w= 7pl -2

AEALLLLLELLNNE LN LAY

Wy
Wk
0 1 31
Activity 2
w=2- :Z, Py

Activity 3
w=T7-11p,

Figure 7.7

condition dp =1 that is, p,= 1 — p;. Owing to the constraints, the optimisa-
tion programming leads us to seek the lowest w such that

w>Tp, =2
w2 _%Pl
w>7—11p,

with w, p,, and p, positive.

Thus the solution is given by the ordinate of the intersection point J
defined by the w(p,) lines of activities (1) and (3), that is to say w;; thus,
activities (1) and (3) are retained, while the second is not: indeed, for w, <w;,
the third activity would make profits greater than the average profit (here
r=0) and the inequalities of the dual programming would not be satisfied
(see figure 7.7).

Itis actually the lowest wage satisfying the constraints (any w> w; would
satisfy them equally, but w; is the minimum wage) and simultaneously the
highest wage allowing positive prices for all the goods: w; > w,. Note also
that the same programming serves to define the system allowing us to
ensure the minimisation of production costs at the considered rate of profit
(r=g=0). Indeed, for w=w;, the inequalities [B— (1 + g)4]Jp<wL turninto
equalities for the activities retained as the optimal solution to the program-
ming in order to form the cost minimising system at the considered rate of
profit. Activities that are not retained have too low a profitability and their
production costs are too tight.
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p2=l-py . T3 y p2=1-p; .. R
1 141 1 141
Figure 7.8a Figure 7.8b

In joint production, each method can simultaneously produce both
goods and the configurations cannot be ruled out.

As in the previous case, lines (1), (2) and (3) represent the w(p, ) relations
at a given r. The broken line represents p,= 1 — p, since by assumption we
have d=(1 1). In both cases, activity (1) dominates activities (2) and (3);
thus, in both cases, it will be the only one to be used. But in the first case
=1 and p,=0 while in the second p,=0 and p,= 1. Only one activity is
used and it produces both goods, with only one of them being an economic
good the other being a free good. The solution w is shown on figure 7.8; it is
the result of the price non-negativity constraint,

Note that in this case the solution w does not correspond to the maximum
wage w* which could appear in one or the other considered cases but which
would not ensure the minimisation of production costs (the corner solu-
tions which may appear in joint production are impossible in simple
production where, contrary to joint production, two activities are needed to
produce two goods).

Of course, in joint production, the choice of techniques depends on the
structure of demand d while it is independent of it in simple production
(non-substitution theorem). We can see that in case of joint products, with
another structure of demand d=(d, 4,) we have, p2=dl—gl p, and a

: 4
change in the respective slopes and positions of lines (1), (2) and (3)
consequently modifies both the number of economic goods produced and
the number of activities retained.

A final issue deserves our attention: that of the reasoning behind the
determination of wages. It is assumed here that the rate of profit is
exogenously determined: in such conditions, the wage appears as the dual
price of labour and is positive only if the available quantity of labour is
totally used; which is far from being the case in real economies. Hence the
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questioning of the hypotheses retained and possibly of the framework of
analysis itself. Lacaze has analysed the problem quite well, he states that
‘the solution simply consists in admitting — a confession of helplessness —
that beside the official economy exists a sub-economy that we cannot take
into account’. And thus a part of the active population will be ‘out of the
model’ (see Lacaze, 1976a, pp. 1-72). We find it preferable to revert to the
initial hypothesis according to which the rate of profit is exogenously
determined and to contemplate the other side of the alternative.

7.5.2 When the wage is considered as exogenous

We know that in Production of Commodities by Means of Commodities
Sraffa sometimes chooses the wage and at other times profit as the
exogenous variable. In the classical theory, the wage is determined by the
historical and social wants of the workforce to reproduce itself, and the rate
of profit then appears as an endogenous variable. This is the hypothesis that
we shall use here.

If the wage is exogenously determined and fixed at the real level
d=(d,,...,d,), the aim of the primal cannot be the maximisation of ¢ but of
g for a given real wage. Hence the following programming, assuming that
the wage is ‘advanced’

PRIMAL DUAL

Max g Min r

y[B=(1+g)A]-(1+g)yLd=20 p20
y20 [B—(1+g)dlp—(1+r)Ldp<0

g>0 r=0

By writing A* the socio-technological matrix 4 + Ld, the (non-linear)
programming writes

PRIMAL DUAL
Max g Min r
y[B—(1+g)4"]20 p20
y20 [B—(1+g)A4"p=0
g=0 r=0

We find here von Neumann’s model; workers’ wages are non-zeros and
integrated to the socio-technological matrix A°.

From the price equations related to the methods actually used, we obtain
the price system translating Marx’s hypotheses, that is to say, R* being the
solution r

[B—(1+R*)4*]p=0  Bp=(1+R")A*p.
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Note that there is unemployment and consequently the dual price of
labour is zero. Further, suffice to apply the same reasoning as the one used
in the case when the rate of profit is considered as exogenous to re-interpret
the dual programming: indeed, the objective is to find the lowest rate of
profit r such that no activity makes any excess profit.

Any activity i shows a valuing of inputs and outputs such that

(1+r)(a)py+a;yp)=bypl +b,p,

We choose to normalise prices by the condition 4,p,+d,p,=1. By
substitution, we obtain the following relation

_ pi(dyby—dby) + by _
p(dyay —diay)+a;

and
dr - dy(byap —byay )
dp, [p(dya; —diay)+a;)
Note that if activity i is specialised in the production of good 1 (b,=0)

: . . dr . . N
relation r(p,) is increasing since E>O; relation r(p,) is decreasing if
1

activity i is specialised in the production of good 2 (b, =0).
If two goods are jointly produced by activity i, relation r(p, ) is increasing
or decreasing depending on whether b,a} — b,a/; is positive or negative.
Owing to the expression of the model

(1+nAp=Bp
the whole part located under r(p,) must be excluded (see shaded areas on

the figures). Further, we have also excluded p, <0 and p,>— 1 (Wthh would
lead to p,<0).

On figure 7.9a activities (&) and (B) are simultaneously used. The rate of
profit R and the price p, of good 1, solution to the system, appear on the
figure.

Price p, is then equal to g, = ——(] d, p,). Activity (y) whichis dominated
by («) is not used.

On figure 7.9b the three activities can be simultaneously used. The
solution to the problem is given by (R,p,) and price j, is immediately
deduced.

The case shown on figure 7.9¢ can appear in joint production only.
Method (y) dominates the others. The lowest solution rate of profit is R at
which
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1
p=0and p,= 22
We could obtain without any difficulty the case when the three curves are
decreasing; good 1 is then the sole economic good.'®

At the micro-economic level, the choice of techniques lies in von
Neumann’s rule of profitability; the methods that are not retained are ‘non
profitable’ (von Neumann 1945-6, p. 1), they do not allow the minimisation
of production costs.

It appears clearly that in the case of switch in techniques, it is not a misuse
of language to speak of maximisation of wage (given r) or of maximisation
of profit (at a given real wage). If in simple production such a treatment may
be appropriate, it becomes irrelevant in the more general case, that is to say
when there is joint production. The most general criterion and always the
most relevant is that of the minimisation of costs, with production
satisfying demand.

In a way, the idea of a maximum rate of profit in a square system may
cause some problems; it is true that at the considered level of wage, the
solution to the rate of profit is the highest of those that can be obtained with
the available methods of production. And for the methods actually used, it
is also the lowest acceptable rate of profit, that which ensures the minimis-
ation of production costs.

It appears also clearly that the choice of the exogenous distributive
variable is not without consequences. Assuming that a given rate of profitis
exogenous implies that the wage appears as the dual price of labour, which
is positive only when the constraint is saturated, when there is full-
employment. It may be more interesting to consider the real wage (or the
real wages of the different categories of workers) as data. Thus, the
corresponding mathematical model is a non-linear programming model,
von Neumann’s model, while the first case corresponds to a linear
programming model.



8 The dynamic evolution

Up to now our analyses have been carried out within a timeless context; we
have enhanced the structures of prices, at given r or g, and the correspond-
ing wage rates, on the one hand, and the activity structures and the resulting
consumption levels, on the other hand; thus we have dealt with structures
and not with change.

We shall first address the dynamic evolution of prices and quantities by
assuming constant returns to scale. Then we shall analyse the accumulation
process in a more general context with some activities using natural
resources, land whose availability is limited thus creating a scarcity
constraint. The regulating price of wheat, and more generally of the good
produced in increasingly costly conditions, will be fixed by the most costly
method of cultivation. The land using that method being first considered as
over abundant shall have a zero price and its owner will divert no profit
from it. As far as the other lands are concerned, we shall show that their
owners divert from them differential rents which are residual: lands and
methods of cultivation are closely related and are at the heart of our
analysis. Within the same framework, we shall analyse the consequences of
the introduction of new techniques or changes in the methods of
production.

When the ‘land’ using the most costly method of cultivation is fully used,
the rent phenomenon becomes general; intensive cultivation entails the
appearance of positive rents for all natural resources; then the prices of
‘wheat’ and ‘land’ (and thus the intensive rent) are determined simulta-
neously. Therefore, the determination of prices is deeply altered by scarcity.

8.1 Accumulation and distribution with constant returns

Let us recall that in such a situation, production and labour steadily grow at
a (yearly) rate g while the prices of dated goods steadily decrease at a
(yearly) rate r. The dynamic point of view allows us to better understand the
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opposition between the hypothesis of ‘advanced’ wages and that of wages
paid ex post, that is to say, paid on surplus. Then the normalisation
equation of prices can be reinterpreted: the numeraire is not the currency,
but the normalisation equation can be interpreted as a money expression of
prices. We shall specify how in such a situation inflation may spring from
the conjunction of firms’ behaviour and the rigidity to a decrease in prices
and wages. Finally, we shall ponder on the consequences of the possibility
to choose given to consumers, or in other words the consequences of
moving from the hypothesis of complementarity of goods to the hypothesis
of substitution; we will show that the production price system limits market
prices if it does not totally determine them.

Our purpose is thus to specify the dynamic evolution of quantities and
prices assuming constant returns to scale until the end of time. The
environment remains unchanged: there are no technical improvements the
consequences of which will be developed later. But we shall examine the
influence of agents’ behaviour (firms or workers) on the evolution of prices.

We know that in the case of single product industries with circulating
capital,' systems of activity levels and prices in a golden rule situation, that
is to say with r=g, are

y=(1+gyA+cdwith yL=1
p=(1+rAp+wL withdp=1

These are two timeless models, two pictures of economic systems. In both
cases, at r=g which is exogenously fixed, structures are defined: the
structure of activity levels and a number (c) of baskets of consumption
goods (d) resulting from the use of a given quantity of labour (one unit) by
the economic system; the structure of prices and wages per worker, when
the values of some baskets of commodities are set equal to ‘one’.

8.1.1 Growth of quantities

Let us first address the temporal analysis of the activity level system: the
quantities produced are y,{ or y,B depending on whether we are in a context
of ‘simple’ or ‘joint’ production, y, being the vector of activities in period ¢.
We assume for the time being that the environment remains unchanged
(there are no technical improvements or new methods of production
available) and the output is produced in a context of constant returns to
scale with an unlimited supply of labour at the offered wage level. There is
no scarcity constraint related to natural resources (a problem we shall
revert to) and the reserves of labour power are over abundant (we assume
that the rhythm of accumulation is less than the natural growth rate of the
labour power). This is a case of proportional growth in a situation of
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underemployment, with all the resources growing by assumption at the
same rate g.> At each period, growth is limited by the amount or the stock of
means of production used; such a stock grows from one period to another at
a rate g; thus, the constraint is steadily relaxed at a rate g and the dynamic
system writes y/=(1+g)y,_,4 +cd with y,L= 1. Production (y,/ or y,B)
and employment steadily grow at a rate g and thus we have

y,1=(l +g)y1—11
yL=Q0+gy,_ L

Therefore, we have

¢, —_ Ci-1 _ _ Co

WL yoL L ©

Thus, the relative structure of activity levels remains fixed while produc-
tion and employment grow steadily owing to the constant rhythm of
accumulation g, taken to be given; ¢, appears as an indicator of consumer
goods production (at time ¢) which develops steadily at a given g, while the
production of consumer goods per unit of labour ¢,/y L remains at the
constant level ¢,, in the absence of technical improvements.

¢,=(1+g)c,_, and

8.1.2 The evolution of the price system

As far as the temporal evolution of the price system p, is concerned, we can
write

p,=(1+nrAp,_,+w,_,L with dp,=1
or
p,=0+r)dp,_,+w,L with dp,=1

The first formulation corresponds to the hypothesis of ‘advanced’ wages
made by Marx and the Classical school, while the second refers to Sraffa’s
hypothesis according to which the wage is paid post factum, on surplus.

In both cases we face a problem of intertemporal equilibrium, making it
necessary to distinguish goods of the same nature on the basis of the date or
moment of their production or consumption. We know that from the
relative prices p;, of the same product available at different dates’® we can
define an interest rate r;, which is specific to that product: the rate r;  is thus
‘the interest rate provided for in a contract concerning the lending of one
unit of product i between dates ¢ and ¢+ 1. With such a definition of the

1

specific interest rate, we have p, =15
' ri,l

Di:
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‘Generally’, adds Malinvaud (1982), ‘the interest rates specific to one
period and several goods do not coincide. In order to make them coincide,
discounted prices should be such that the ratios p, . ,/p;, have the same
value for all the products. But there is no reason for such a situation to
happen.’

Later, the author shows ‘in what sense relative prices p; and the interest
rate r are defined in a unique way with respect to all programming
corresponding to a stationary regime’.* Such a proposition can easily be
applied to the case of proportional growth.

Thus, with proportional growth (that is, when the growth rate g is the
same for all the products ) we have r; , =r=g Vi Vtand

1
Piiv1— 1+ rpi,th

Thus, the dated prices of the different goods steadily decrease as time goes
by at a yearly rhythm that is identical to the rate of profit or the rate of
growth.

The excess profit made in period ¢ by the i activity must be zero, and
with the goods produced appearing one period after those used, this writes

Pie1—a;-p—liw, =0

mpi,t_ ai'pr—liw1= 0

Hence the usual notation of production prices under the hypothesis of
‘advanced’ wages

pi,1=(1 + r)(aip1+ Iiwl)

If the wage is paid ‘post factum’, we have

pi,H-l_aipt—Iin-l:O

a;.p,— 1, Mo

T4rPu™ N+r

that is D= (1+nra;.p,+1lw,

8.1.3 The numeraire and the money expression of prices

Regarding the dynamic evolution of prices, we may notice that the
normalisation condition dp,=1 is given once and for all and it is on the
basis of that normalisation condition that the steady decrease in each dated
price is assessed. If we had dp,= dp, = dp,= ... = dp,= cst, in a steady regime
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the structure of prices would have been constant, with absolute prices
remaining constant.

But the condition is dp,= 1 with dp,# 1 and ¢ #0. Hence the (downward)
evolution of absolute prices, while relative prices, the structure of prices,
remain constant. In fact the important condition is up,=cst= D, whatever
u>0; itis only for convenience’s sake that we have set = d and the constant
equal to unity.

Thus the numeraire is not the currency and the condition up,=D is
nothing but the money expression of prices at t = 0. Here the currency is not
a commodity; the conditions of money creation are not contemplated in the
model which however is not a real model. Prices are expressed in terms of
the currency by the previous condition (and we may change from the
monetary economy to the real economy, from absolute prices to relative
prices by normalising prices differently). As for the creation of money,
which is not analysed here, we assume it is endogenous.

8.1.4 Mark-up, rigidity to decrease and inflation

The previous developments lie on a very strong and peculiar hypothesis,
that of ‘endless tranquillity’, of the permanent regime. The considered price
system has always been existing and always will be, the rate of profit
adopted is the equilibrium rate of profit and the whole set replaces itself
over periods. However, the actual evolution of prices seems to be quite
different from what was described in theory: firms may not know the
equilibrium rate of profit, prices do not decrease at each period.

In what follows we will show that some inflationary evolutions may be
explained while keeping the framework of constant returns (or even by
totally ignoring the evolution of quantities); a fortiori, the appearance of
diminishing returns, the limited endowments in natural resources, the
evolution of the quantities produced reinforce the trends that we shall
emphasise, notably using Nikaido and Koyabashi’s (1978) work, as well as
those due to F. Catz and J. Laganier (1982 and 1984) and Y. Fujimori
(1982).

In order to do so, let us first specify the formalisation that we shall use in
the present chapter. Time is discretely divided into periods 1=0,1,....;
prices and wages at each period are denoted by p, and w, and are
exogenously initialised by the data of p,and w,. Prices are determined by the
capitalists on the basis of mark-up first and then under the hypothesis of
price rigidity.

Capitalists’ mark-up can be formalised as follows

pl+l=(l+f)ApI+LWI
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F is the rate of profit demanded by firms. This equation shows that
capitalists set the price of period ¢+ 1 on the basis of the costs recorded in
period ¢ and the demanded rate of profit 7.° Further, we assume that there
are m categories of workers (W, is thus a vector (m x 1) and L is a matrix
(k x m)) and that they demand a wage which maintains their purchasing
power. With D standing for the matrix of socially recognised consumption
wants, we have W, = Dp,. It is worth noting that such a formulation does
not necessarily imply that wages are totally consumed: workers put forward
claims to maintain their purchasing power but not to consume.

The rigidity of prices and wages is formalised in system I; firms and
workers are respectively opposed to any decrease in prices and wages

(I) {le:Max [(l +f)Apl+LWl’pl]
W1+l = Max [Dpla WI]

We may also consider systems II or III, respectively, taking into account
the rigidity of prices and wages only.

an {pm =Max [(1+A4p,+LW,p/]
Wl+] =Dpl

(IH) {p,+|=(1+F)Ap,+LW,
Wl+] = Max [Dpn Wt]

We may also contemplate the existence of partial rigidity for some prices
and some wages. In fact, the general logic of the model can be described
using system I which is the simplest® and the one we shall limit ourselves to
(changing to the hypothesis of advanced wage is quite easy to do). Let r be
the rate of profit, which is the solution to the intertemporal model.

p=((+rAp+Lw
W=Dp
up=1

Let us now consider three cases in which the equilibrium rate of profit r
and the demanded rate of profit 7 are compared:

Ist case
F=r: the demanded rate of profit equals the equilibrium rate of
profit.
Then, we can show that system (p, W,) converges towards the limit
system (p*, W*) which has the following characteristics:
(a) prices and wages adjust in relative values towards production prices
and the wages of the reference timeless model;’
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(b) absolute prices stabilise at a level determined by the initial conditions
(po, W))- System I which includes rigidities does not allow any decrease
in prices or wages, with initialisation (p,, W;) playing in a way the role
of a ratchet. Indeed, (p,, W,) may be interpreted as a system of prices
and wages springing from a shock on a vector (p_,, W_,) which wasan
equilibrium price system. Inflation so to speak adjusts to the greatest
initial shock (see Catz and Laganier 1984) and restores the equilibrium
of the rate of profit as in the timeless system; of course this implies that
the reasons for the shock are temporary and will not happen again. If
they do happen again, there will be another propagation.

2nd case
F<r: the demanded rate of profit is less than the equilibrium rate of
profit.

System (p,, W,) converges towards system (p*, W*) which does not
ensure the adjustment of the rate of profit and therefore is not a production
price system. All the industries and categories of workers are provided with
the necessary minimum (7 for every industry or activity, dp* for every
category of workers), with some industries or some categories of workers
still enjoying the additional remuneration steming from the initial shock.

There is no conflict in the aggregate distribution; inflation is neither
general nor permanent; it allows a partial redistribution of the profits or
wages springing from the initial shock.

3rd case

7> r: the demanded rate of profit is greater than the equilibrium
rate of profit. There is a conflict in the aggregate distribution between
capitalists and workers. We can show then that within the framework
retained for system I, all prices increase: whatever the initial structure
(po, Wy) there is a period of time from which all the prices and wages tend
towards infinity; inflation is general with a general increase in prices and
wages.

Consequently, the price and wage setting process from one period to

another is simplified; since all prices and wages at a given period are greater
than the previous period’s, system I writes

(I’) {pﬁl:(l +f)Ap1+LW1

W1+l =Dpl

From which we obtain, by setting

- [(+PH4 L b
A—[D D:I andp,—-[Wl]
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") p=4 b,
Relation p,, ;= A p, has two consequences:
the structure of prices p, converges towards the structure of eigenvector p

on the right of 4, corresponding to the dominant eigenvalue & defined
by

Ap=ap
where &> 1 since F>r

the levels of prices and wages all tend towards + oo for, by iteration, we
obtain

pr= A' pO
where matrix 4 has a dominant eigenvalue &> 1.
This is thus an inflationary situation without distortions in relative prices.
The levels of prices and wages increase at each stage at a rate i=&— 1. The
demanded rate of profit 7is thus decreased by the value of the inflation rate i
and everything goes as if the rate of profit r’ was included between r and 7.
The result according to which there is a structure convergence of relative
prices in spite of the increase in their absolute levels is of course questioned
if economic agents’ behaviour becomes unstable. If for instance, during the

inflationary process, some industries or activities increased their desired
margin or profit rate.

Remark

The previous results hold in system (I1) where only prices are rigid.
On the other hand, in system (III), where rigidity only applies to a decrease
in wages, a difference appears when 7 > r (see Catz and Laganier, 1984): the
structure convergence is not necessarily insured any more.

8.1.5 Intertemporal general equilibrium and pfoduction prices

A number of recent works have tried to link the intertemporal general
equilibrium theory and the production price theory. According to F. Hahn
(1982), production prices are only a peculiar aspect of prices in an
intertemporal general equilibrium when the parameters of the model are
chosen in a specific way. Contrary to Hahn, who chose for his analysis a
general equilibrium model with finite horizon, Dumenil and Levy (1983)
believe that an infinite horizon is more appropriate: when time tends
towards infinity, there exists an equilibrium price system which converges
towards a vector of production prices, independently of the economic
parameters’ values: utility function, initial stock. Such propositions have
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been demonstrated within a very simplified economy by Dana and Levy
(1984) then within a more general framework by Dana, Florenzano, Le Van
and Levy (1984). The authors consider an economy with any (finite)
number of consumers. Producers have at their disposal a set of simple
methods of production with a possible substitution of inputs and constant
returns to scale. It is also assumed that the socio-technological conditions
remain unchanged as time goes by. They notably show that:

‘We can obtain two main results: Under standard assumptions [the] intertemporal
general equilibrium model has an equilibrium whose prices allow at each period a
uniform maximum profit rate for every producer.

Recall that production prices are stationary prices which allow a maximum profit
rate uniform for every producer; when such a price system exists, the sequence of the
undiscounted prices of the general equilibrium converges towards the production
prices system. Then the maximum profit rate calculated at each period with
undiscounted prices is uniform and converges towards the stationary maximum
profit rate associated with the production prices. (Dana and Levy 1984, p. 1)

8.1.6 Production prices and consumers’ choices

The analyses dealing with production prices usually assume, at least when
the problem is addressed, that the structure of final demand is fixed.
Schefold (1985b, pp. 15 and 46) explains and supports such an hypothesis
by using different arguments, the most important being the existence of a
hierarchy of wants, different consumption structures due to the existence of
different social classes or groups, habits and social conventions. We may
add that if we are to study permanent regimes, the assumption is quite
normal or tempting. In a nutshell, we are dealing with wants and not
preferences.

Then what kind of problems can the introduction of a preference
function with a possible substitution of goods cause?®

We shall limit our analysis to a simple model with two goods, and the
utility function having the usual properties. The consequences of the new
assumption may be different depending on what type of model is retained.

Under simple production, case A (figure 8.1), and more generally when
economic goods are g-separately reproducible, the possibility of choosing
the consumption structure as a function of the prices of goods does not
change anything in the way the problem is solved. By assuming that the
efficient system is determined (at a given r=g) by activities (i) and ( ), the
representative consumer maximises his utility at the tangency point of one
of the indifference curves and the curve of transformation between goods,
which is nothing but the curve of consumption possibilities M;(g) — M,(g).
At this point, the ratio of both goods’ marginal utilities equals the inverse of
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Figure 8.1a Figure 8.1b

their price ratio; the latter, whether it is possible to choose the consumption
structure as a function of prices or not, is determined by the absolute value
of the consumption possibilities’ slope (in A, and A,). It is therefore on the
basis of the so-called production price system that consumers make their
choice. Thus, the production system is always square (subject to excep-
tions), and prices are identical whatever the assumption made about the
utility function: it does not matter for the consumer whether goods are
complements or substitutes. Obviously, in both cases there is no reason for
the consumer’s choice to be the same and the activity and production
structures will be different. But the possibility consumers have to alter the
consumption structure has no consequences whatsoever on the equilibrium
price or the choice of techniques; this is due to the non-substitution
theorem,

If the two goods are not g-separately reproducible, then distinctions are
to be made. If the utility function is such that one of the indifference curves
is tangent to one of the facets of the efficiency frontier (see figure 8.2) we
come to the same conclusion as previously: the production system is
(normally) square, and equilibrium prices are the traditional production
prices. Whether the utility function lies on the assumption of complemen-
tarity or substitution of goods has no importance either.

However, other possibilities have to be contemplated. In case C, (figure
8.3), the indifference curve does not meet a facet but a peak of the efficiency
frontier. Then, equilibrium prices are not determined by the structure of
production prices any more, but fixed by the market (and equal to the slope
of the indifference curve at the point where it meets the peak of the frontier).
Itis worth noting that market prices denoted by p, and p, are then limited by
the reproduction conditions of the two goods in both alternative systems
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using a common method M;. Indeed, to the right and left of M;, we have two
production price systems the structures of which are respectively given by
the slopes of lines M; M, and M, M, (in absolute values).

Clearly, we have

ul
P2 left U, P 12 right
Such indetermination also shows in C, where the line representing the
structure of consumption (taken to be fixed here) coincides with one edge of
the cone (here, with OM;). In both cases the production system is not

square any more; indetermination which is obvious in the case of fixed
consumption structure (C,) is relaxed by consumers’ preferences (C,). Note
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good 2 r good 2

Figure 8.4a Figure 8.4b

that while this case is quite exceptional in the case of complementarity of
goods, it is quite common in the case of substitution.

Finally, case D (figure 8.4) can be considered as a variant of the previous
case. In the complementarity hypothesis (D,) good 2 is produced in excess
and has a zero price; the production price system only applies to the
economic good. In the ‘neo-classical’ case (D,) both goods are economic
goods and market prices p, and p, are then constrained by

ul
<‘ﬁ> <—f=&<&=+oo since p,=0
Py ¥y P2 P2

Thus, the possibility of modifying the structure of consumption consi-
derably reduces the importance of free goods since low prices often lead to a
higher demand for the good in question. Equilibrium prices are then market
prices the structure of which is twice limited; first by the limit hypothesis
holding that one of the goods is available at zero price; second, by the
structure of production prices stemming from the simultaneous use of the
two methods to produce the two goods; a decrease in prices below that limit
would imply that method M; will be abandoned and method M, will be the
only one used owing to a significant change in consumers’ preferences and
thus in the shape of the indifference curve. The existence of ‘square’ systems
is here quite exceptional.

In the more common case where both goods are commodities, whatever
the assumption made on the utility function, we have previously seen (case
C) that the production systems were not always square; equilibrium prices
are then market prices which are limited, so to speak, by the structures of
production prices. Therefore, generally, production price systems limit
market prices if they do not determine them totally; such a strict determi-

good1 0 good 1
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nation is more particularly ensured when the goods in question are g-
separately reproducible (see case A).

Note

Consider a decomposable model where a non-basic good enters its own
production in great proportions (Sraffa’s beans example). Such a non-basic
good is a blocking good whose price tends towards infinity when the rate of
profit r prevailing in the economy tends towards the maximum rate of profit
R of the model. Therefore, the fixed-demand-structure hypothesis does not
hold when one of the goods is a blocking good and when the rate of profit r
approaches R.

8.2 Accumulation and increasing difficulties to produce

In the accumulation regime that we have just described, the economic
system develops steadily (hence the use of the term ‘permanent regime’), the
means of production used as capital steadily increase at a rate g as well as
the labour-power used. The system is not constrained, and it produces with
constant returns all the means of production that it may need and freely
uses the unlimited labour supply at the current rate.

Let us now assume that some activities use natural resources, ‘lands’,
whose quantity or available surface is limited. As a consequence, the
permanent regime of accumulation will face scarcity constraints at certain
dates; then production will have diminishing returns.

The regulating price of wheat, and more generally of the good produced
in increasingly costly conditions, will be fixed on the basis of the less
profitable cultivation method, the one used on the land cultivated to
produce additional quantities of wheat and satisfy demand. By assumption,
that land is not fully used;’ it is over abundant and available at zero price;
thus land owners do not retrieve any rent from it. As far as the other land is
concerned, we shall show that the differential rents provided by such land
are residual: they are indeed determined once the wage and the production
prices of all the commodities are known (at a given r).

It is worth noting in the following developments, that land and the
cultivation method are closely related. Land has no qualities per se: the
nature of one piece is not better than another; to produce, land must be
cultivated. The production process or the cultivation method, does not
limit itself to producing wheat; it gives value to land and, as we shall see,
allows its reproduction. Reasoning in terms of joint production will allow
us to emphasise that essential element, namely the joint production of

wheat and land by means of inputs, intermediate consumptions (fertiliser,
seed).
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Thus, at least in a way, land has no natural qualities; or more precisely it
is dependent on the method of cultivation used. Of course, we may assume
that identical methods of cultivation are applied on different land: this is a
specific case that we shall examine later on. In what follows, it is generally
assumed that there is no reason for the methods used on any land to be
identical.

8.2.1 Land and joint production

By ‘land’ we mean all natural resources and means of production employed
in production but not themselves produced, allowing in some conditions to
provide the owner with a specific income that we shall call ‘rent’.'®

Let us assume for the time being that land is all of the same quality and it
is not altered by use; notations are then highly simplified. Consider the i
process: it uses produced and reproducible means of production (repre-
sented by the row-vector a;), a certain quantity of direct labour [/, and a
given quantity of ¢, (surface area) of natural resources, land. Then we obtain
a quantity b, of the j™ good (the wheat crop) and we retrieve the land used
without it disappearing in the process.

This is a very specific case of joint production: we assume that (a) only
one type of crop is obtained on that land (wheat or carrots but not wheat and
carrots, which rules out the traditional meaning of joint production); (b)
land is not altered by the production process: it is the same product whose
price per unit (acre for instance) is denoted by p;.

In such conditions, and assuming that the wage wis paid on surplus'' and
that the rate of profit applies to the money spent by the entrepreneur to buy
produced or non-produced means of production, the equation characteris-
tic of the i™ process writes

( +r)(aip+tipT)+WIi=bijpj+tipT (1)

After rearranging the equation and by applying the same procedure as
the one used in chapter 7 about machines, we obtain

(1+ntpr—tipr=>byp;— (1t r)a;p — wl;=F(r)
By writing F,(r) the net return in final good of the i"" process, we have

F
rtpr=F() = pr= ") @

i

If we assume that, owing to the method of cultivation used, the ‘natural’
properties of land do not change as time goes by, the net return of the
process in question is constant (at a given r); by writing p = p(r), the return
or rent per acre, we have
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P
pr=" 3)
Therefore, land appears as a means of production which is not produced
and its price can be considered as determined by the capitalisation of the
rent at the going rate. Under the previous assumptions, every acre yields p a
year; the value of one acre is then the sum of the values of discounted net
returns over an infinity of periods

_p P p
P T

—»gwhenna + o0

Equation (1), showing the price of land, can transform into equation (4)
which is equivalent and shows the rent; indeed, from (1) we obtain

(1+nap+tprtripr+wl= bijpj-i- LDr
And by using (3) and simplifying, we obtain
(1 +nap+pt;+wl=b;p; O]

Thus formulations (1) and (4) are equivalent: the first emphasises the
production aspect, the second emphasises the distribution aspect. Underly-
ing the equivalence is necessary to make the comparison between econ-
omists’ and agronomists’ approaches easier. For most of the English
classics of the nineteenth century, land was an indestructible and reproduc-
ible factor of production: Ricardo speaks of ‘the original and indestructible
powers of the soil’ (Principles 1984, chapter 11, p. 33). While for agro-
nomists, fertility is produced; in 1855, an agronomist noted that ‘from one
improvement to another, arable land is constructed just as a furnace would
be’.'? For agronomists, it is quite clear that there is ‘production, destruc-
tion, and reproduction of land’s productive capacity’ (Barthélemy 1982, p.
63)

As a matter of fact some economists supported that position. Among
them Anderson, who certainly was before Ricardo and West, the genuine
founder of the theory of rent,'* wrote in 1777 that soils of the least fertile
class could be sufficiently improved through cultivation to move to the
superior class. Marx presents Anderson’s theses as follows:

Anderson . . . explained the difference between land which pays rent and that which
does not, or between lands which pay varying rents, by the relatively low fertility of
the land which bears no rent or a smaller rent compared with that which bears a rent
ora greater rent. But he stated expressly that these degrees of relative productivity of
different types of land, i.e., also the relative low productivity of the worse types of
land compared with the better, had absolutely nothing to do with the absolute
productivity of agriculture. On the contrary, he stressed not only that the absolute
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productivity of a/l types of land could be constantly improved and must be
improved with the progress in population, but he went further and asserted that the
differences in productivity of various types of land can be progressively reduced.
(Theories of Surplus Value, Collected Works, vol. 32, p. 346)

But equation (4) clearly emphasises that fertiliser, labour and the whole
set of inputs used produce not only wheat but also land. It has also been
underlined that by a simplified assumption, land is not altered by the
production process. This does mean that the cultivation method used is
such that it reproduces land as it was before. (We shall see later on how the
treatment can be generalised and contemplate methods of production with
achange in the quality of land.) Thus, obviously land appears as a good that
is not produced (this is its main characteristic) but also as a good that can be
damaged and consequently partly reproducible.

As for any other good, the rule of free goods also applies to land: only
goods whose supply does not exceed wants can have a positive price. If the
whole surface area of land is not fully used, its price will be zero as well as
the rent perceived by its owner(s). Only fully used land may have a positive
price and thus provide their owners with a positive rent. Let us now specify
the determination of that rent (and thus the price of land).

8.2.2 Fertility order and differential rent

If up to now we have assumed that only one plot of land produced wheat,
we shall now assume that there are /4 plots available for that purpose and
that land is not used in the rest of the production system. Moreover, to
simplify the presentation, let us assume that only two goods are produced:
iron and wheat. There is only one activity producing iron, which is the sole
basic good: by using one unit of labour and a,, of iron, we obtain a certain
quantity of iron that we set equal to unity. To produce wheat there are A
methods of production available (one per plot); on the i, by using one unit
oflabour,' g}, of iron and a}, of wheat on an area ¢', we obtain an output of
wheat b'.

In a golden rule situation (r=g), n,=(b'— (1 + g)a’,,)/t' represents the
net g-surplus per acre of the i method, or in short the net g-return (of the
method). The available area of each plot written 7, being by assumption
known, we can distinguish two cases:

Ist case
The final demand for wheat is low: D,<min (z;T;).
It stems from this that, taking into account the cultivation methods, the
demand for wheat can be satisfied by any one of the plots. At r=g given,
and owing to the cost minimisation rule, demand can be satisfied by using
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the least expensive method. By writing the normalisation condition p, =1,
and if the least expensive method of production of wheat is the e™, the
complete production system then writes

(1+nra,+w=1
(1+r)(ag +appp) +w+pt*=>b°p,

Then there is only one method of production of wheat and since, by
assumption, the land on which that method is applied is not fully used, its
price and the rent springing from it are zeros, p,=0; hence the following
system

{(l +ra;, +w=1
(1+r)(ap +ap,py) +w=b°p,

This notation does not mean that wheat does not use land, but that the
rent of the overabundant resource perceived by the landlord is zero. As a
consequence, the price of wheat is fixed by the cultivation conditions of the
e" cultivation method, that is to say

. (1 +rag +1—-(1+nra,
P (T4 D

Thus, let us assume that the demand for wheat is low (in the sense defined
above); or the basis of the production cost minimising condition, we can
now determine which is the only cultivated land. Then a fertility order is
defined ordering the cultivation of land. The concept of fertility does not
appear as a natural property, but as a purely agronomic one.

The fertility order is not unchanging natural data; it depends first on the
method of production used since the choice of land, the fertility order, is
defined on the basis of the minimisation of costs, and therefore uses the
same logic as the one used in the choice of techniques (chapter 7). But for
this reason, and assuming that the state of the technique remains
unchanged, that there are no technical improvements, the fertility order
depends on distribution."®

This is quite easy to understand: indeed, the production of wheat on each
plot requires intermediate consumption and uses direct labour. At different
levels of distribution, the production prices of the various goods are of
course altered. It is therefore quite possible that, at a given value of the rate
of profit, it becomes more profitable to cultivate land (e), while at another
value of r, it would be more profitable to cultivate land ( /) or (d). Note that
such a modification'® happens at a given level of final demand for wheat.
Changes in the latter present another problem that we shall now address.
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2nd case
Demand for wheat cannot be satisfied by the first cultivated land:

D,>min =;T,, i.e., since according to our assumption land (e) appeared
as the ‘best’, the ‘most fertile’, we have - D,>=,T,. Land (e) is thus totally
used: it will therefore have a positive price and its owners will perceive a
rent, the level of which will be specified.

Thus, to satisfy demand, it is necessary to cultivate at least another plot
of land which will have to be chosen among the (h— 1) plots still available;
here again the choice will be based on the minimisation of costs, which will
lead to land (/). For simplicity’s sake, we shall temporarily assume that
only one part of land (/) needs to be cultivated to satisfy demand, while
land (e) is fully used.

Wheat is thus produced on two plots of land, two methods of cultivation.
Then the production system writes

(1+nay, +w =1
(Y+nr(ap +app,)+wt+pt°=bp,
(1+r)(a, +aly p,) +w+p/t/ =b/p,

Since the /™ land is not fully used, we have, by the rule of free goods

(1+7)ay, +w =1
(1+r)(ag, +appp) +w+ptc=0b°p,
(]+r)(al{l+a{bpb)+w =bbe

The marginal land is the land that is not fully used and which is therefore
rentless: it is here land (/). It forms with the ‘industrial’ sector of the first
(k — 1) equations the system which allows the calculation of, at a given rate
of profit r exogenously given, the wage and production prices of the whole
system, and more particularly the price of wheat. The price of wheat is here
denoted by p, since it is fixed on the basis of the most expensive production
conditions.

The differential rent perceived by the owner of the most fertile land is
obtained by using the values of wage and production prices in the equation
corresponding to that land, and since it is land (e), we have

bepi=(+n(a +ai,ph)+1=(+r+a,+pe
pf=(]+r)a,fl+1—(l+r)+a“ pete
b

b*—(+r)ag, bé—(1+r)ay,
And, owing to the previous definitions of the net g-return n¢ and p;

e pe e
ph=pi+ = = p*=n(p{~p;)
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The differential rent thus emerges from the difference between the
production conditions on the marginal land and the land in question. It is
clear that the level of rent depends on distribution.

Generalisation

Let us assume that the demand for wheat has increased, and, to
meet wants, a greater number of land (g) among the (k) available, had to be
taken under cultivation. The previous demonstration can be specified and
generalised; let pfi be the differential rent per acre for the i land when the
marginal land is the /™, p{ being the production price of wheat on the
marginal land, p; being the production price of wheat when the marginal
land is the ™, and 7, the net g-return of the i land, we have

pi=n(p{—p}) for i=1.2,....g<h with p/=0

Therefore, the rent yielded by the land used to cultivate wheat depends, at r
given, on its production conditions (more precisely on p, and =; ) and the
marginal land’s (where the ‘regulating price’ pj is fixed) (see figure 8.5).

In the absence of technical progress, thus assuming that the cultivation
methods are given, and no changes or innovations are introduced, the
accumulation process which develops at a rhythm g, taken to be exogenous
and constant, will necessarily face the exhaustion of natural resources or
scarcity of fertile land at the end of a certain number of periods (owing to
the cultivation methods). Even if every method, each production process,
has been assumed to have constant returns to scale, the increase in demand,
the development of accumulation, explain the appearance of diminishing
returns; to satisfy demand (at a given r=g) producers have to start inferior
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Pf=mi(pi-ph)

Figure 8.6

production processes, to cultivate less ‘fertile’ land. As a result the ‘best’
land yields differential rents (relative), prices of wheat increase and at a
given r, wages decrease.

8.2.3 Fertility order and profitability order

The most profitable plots are obviously those yielding the highest rent per
acre. The most fertile are the first that have been taken under cultivation
(owing to the cultivation methods and the going rate of profit).

Itisclear that when there are only two plots, the most profitable is the one
which has been cultivated the first. Thus, a rent is yielded by the land which
is both the most profitable and the most fertile; the marginal land, which is
the second taken under cultivation, is rentless.

Such an equivalence of the fertility order and the profitability order
always exists in the simple case with two plots being cultivated. It does not
hold when more than two are cultivated.

To analyse the problem, let us revert to the formula of the differential rent
given previously, illustrated by figure 8.6.

pip= 7'5.'(1’1{ —Ds)

The differential rent per acre is an increasing function of the regulating
price of wheat; the relation is linear. The line which links the level of the rent
to the regulating price of wheat crosses point (p;,0) and has a slope ;.

Let us now assume that there are four plots with limited surface areas on
which wheat can be grown at different production prices (at a given r=g).
We can thus determine four linear relations between the differential rents
and the regulating price of wheat (one per method) and represent them on
the same diagram.

In the first example, the most fertile land, the first to be cultivated is land
n°2 which, owing to the methods of cultivation used and the rate of profit,
allows to produce wheat at the lowest cost. If demand increases, the same
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criterion — the minimisation of production costs on all the land not yet
cultivated — will lead to successively taking under cultivation land n°l then
land n°3 and finally land n°4. Thus, the fertility order is defined as the order
of cultivation of land based on the cost minimisation criterion (at a given
r=g) owing to the methods of cultivation used. Here we have

Pi<py<pi<ps

How does the fertility order evolve? If demand is low and only needs land
n°2 to be satisfied, the regulating price of wheat amounts to p} and of course
no differential rent is yielded. When demand has increased enough to
require the use of land n°l, the regulating price of wheat climbs to p; and
land n°2 yields a rent p? which reads on the diagram just at the vertical of p;
located on the horizontal axis. The most profitable land (the only profitable
land in this case) is land n°2 which was the first cultivated; here the fertility
order coincides with the profitability order.

When demand increases again and requires the use of land n°3, the
regulating price of wheat also increases (p; > p, ) and land n°1 is differential
rent bearing; here we have p?>p,. The profitability order here again
coincides with the fertility order: p? < p,. As for land n°3, which is the last to
be cultivated, it is also the least profitable since it is zero rent bearing.

It is when the demand for wheat requires the use of land n°4 that a
paradox appears in the example contemplated. Indeed, when the regulating
price of wheat increases again and moves to p;, the profitability order of the
first two plots of land differs from their fertility order. We have indeed

IS 229 3 4o
ps>pi>ri>pi=0

(see figure 8.7).
The paradox is explained in the mere formula of the determination of the
differential rent; recall that at a given r, we have

pr=npi—py) Vi

The profitability order is therefore determined by the order of the p/s and
thus, at a given p, (the rate of profit of the marginal land is taken to be given)
simultaneously by the production price of wheat (p, ) and the net g-return per
acre (m;) on each piece of land considered. As for the fertility order it is
determined only on the basis of the production price of wheat (p; ) which has
to be minimised, while the return per acre is not taken into account at this
stage.

Several remarks will complete the analysis:

(@) the fertility order always coincides with the profitability order for the
marginal land; the last plot taken under cultivation, which conse-
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(b)
©

quently is the least fertile, is necessarily the least profitable since it
yields a zero rent, as by assumption, the marginal land is not fully used
ph=py = p{=0

The fertility order also coincides with the profitability order when, as
already said, only two plots are used.
The profitability order depends on the last land taken under cultivation
since the differential rent of land depends on the regulating price of
wheat pj, which is a function of the production conditions on the
marginal land.

Thus, if the extension of cultivation is altered, the differential rents
yielded by the various plots will also change and this might disrupt the
profitability order. In the example contemplated above we wrote

pi>pi
while we had

p3>ps
Thus, the differential rent yielded by land n°2 is higher than the one
yielded by land n°l when the marginal land is n°3. The profitability

order is reversed when land n°4 is taken under cultivation. Then, the
profitability order does depend on the extension of cultivation.

(d) Finally, it goes without saying that the fertility and profitability orders

could be totally different at other levels of the rate of profit.
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8.2.4 Different returns per acre but identical unit costs

In the previous developments, the differential rents were due to the
cultivation methods rather than strictly rents yielded by natural resources
or land. The fertility order, the cultivation of land, was determined by the
comparison of production costs. The differential rent emerged from the
difference between production costs. The rents were as much or even more
due to the method used than to the land itself.

To clarify the problem, let us now contemplate a specific case where the
same methods of cultivation are used on different plots with the unit
production cost being the same for all of them at the considered rate of
profit; in such a limit case, the different methods of production only differ in
that they result in different yields per acre. In a way, we have here ‘purely
land rents’, and, in this connection, two cases have to be distinguished:

st case

All the methods of production used have, at the considered rate of
profit, identical production prices, i.e., p; (r)=cstVi. In these conditions, it is
clear that no land can be preferred to another one since the production costs
of wheat are the same (even though the yields per acre are different).
Whatever the demand for wheat (provided it does not require the use of all
the land available!”), none of the plots of land may yield differential rents;
all the plots are marginal, and rentless.

2nd case
Among the methods used on the various plots, only n of them have
identical production costs (with n<h).
We have to distinguish:

(a) If the n methods of production have the lowest costs of production, the
n plots simultaneously yield a zero rent when the demand for wheat
requires the cultivation of an area that is less than the » plots.

(b) If the n methods of production are not (or any more) those which
determine the regulating price, the differential rents perceived by the
landlords are not equal, but proportional to the yields per acre.

Let n=2 (this can be easily generalised to any »); if the two methods of
cultivation are the i " and the j, at the considered rate of profit, we have by
assumption

Py=ri

If the marginal land is the /™, the differential rents are then

p/=piph—pi) and p}=p,(p{ — p}) with p, = p}
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Thus, the differential rents of two plots on which, at the considered rate
of profit r, wheat is grown at the same cost but with different returns per
acre, are identical if they are zero (both plots are simultaneously marginal).
When they are positive, they are proportional to the return per acre they
allow: if the i™ land yields twice as much as the j*, then its rent is twice as
high (see figure 8.8).

8.2.5 Exhaustion and improvement of land

We have already emphasised that under joint production, each method of
cultivation simultaneously produces wheat and land. But if land is con-
sidered as the same good at the beginning and the end of the process in
question, this springs from a very strong hypothesis according to which
land remains absolutely unchanged and identical to itself.

The analysis could be elaborated by contemplating the case where the
natural resource is progressively exhausting (as machines) and its price
steadily decreasing until it becomes negative. As a result the method would
be abandoned as well as the good it produced. We may as well contemplate
the case when soils are improved and given a better quality with a higher
price.
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Note

When wheat is a basic good and enters the production of iron the previous
developments still hold. The only change consists in defining the net g-
return of the system

bi_(l +g)a£b +(1+g)ay,
/i

ﬁ"=

where a,, represents the quantity of wheat consumed by the activity to
produce iron. Then the production price system writes (with the usual
notations)

(1+r)(a, +a,p))+w=1
(1+r)(aj, +ajppf)+w+p't'=b'p]

From which we obtain pf=p} +—Z_[ and thus p/= z(pl—pi)

8.2.6 Changes in the production conditions

The increasing difficulties in production that we have contemplated above,
stem from the scarcity of natural resources; an increase in the level of
demand caused by accumulation inescapably leads, under the indicated
assumptions, to diminishing returns. Such assumptions may be questioned
because, on the one hand, the structure of demand can be modified, and, on
the other hand, new methods of production could be introduced.

A more than proportional increase in the demand for wheat will
obviously entail a change in the activity levels and a quicker appearance of
diminishing returns. If the production of wheat requires the use of tractors,
an increase in the demand for wheat will translate into the production of
new machines. Conversely, if the demand for wheat has a slower increase
(or even decreases), symmetrical changes would appear in the activity
levels; if changes are important and sudden, phenomena of excess capacity
may happen in some sectors; it is only when they are solved that a
permanent regime of growth may prevail again and that the price system
recovers a uniform rate of profit.

We may also contemplate the consequences of the appearance and
application of new methods of production. We face here a problem that is
totally different from the one addressed previously (chapter 7) dealing with
the choice of methods of production in a known set. Here, it is the outlines
of the set which change.'®

Let us now assume that a new method of production, up to now
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unknown, allowing to produce the £ good in less costly conditions, has
appeared in the economy where, by assumption, a permanent regime
prevails in a golden rule situation (given r=g). Owing to various types of
constraints (technical, financial and social) it is quite unlikely that the new
process is immediately spread in the economy in order to totally satisfy
demand for the good in question. Consequently, a transitory regime will
prevail with the good in question being simultaneously produced by (at
least) two methods of production during a series of periods of time. During
that stage, thatis to say, as long as the former method of production, which
is more costly, is used, the production price of the good in question will be
determined by the worst production conditions; thus ‘quasi-rent’ appears,
an excess profit yielded by the new method of production that is less costly;
indeed, there cannot be two prices for the same good.

The activities used are fixed by the level of demand to be satisfied. The
regulating price of the good is the production price determined on the basis
of the less efficient activity used. We could call the regulating price the
market price for it is determined at least indirectly by demand.

Then capital will progressively be (more or less quickly) used for the
production of the k™" good through the new process which is the most
profitable; in such conditions, good k will sooner or later be produced in
excess and its producers will have to decrease its price without it being an
equilibrium price; while the producers of good & see their excess profit
decrease, other industry producers benefit from the decrease in the price of
good k and enjoy an excess profit; the rate of profit is not uniform any more,
since the industries using good k enjoy a greater profitability. As a result the
adjustment process will continue: capital will flow towards the industries
having a higher profitability, then there will be an excess production of
goods which will lead to a decrease in their prices until the rate of profit
becomes identical in all the industries though greater than the initial level.

This does not mean that capital is flexible. It is indeed the profits of the
processes used which will be invested in the most profitable processes and
contribute to their extension. As a matter of fact, the adjustment conditions
and the agents’ behaviour should be developed since the stability of the
equilibrium is not ensured at all.

Let us consider a model with circulating capital, no barriers to entry and
perfectly ‘short-sighted’ entrepreneurs; any improvement, as little as it
might be, in the conditions of production of a good must then lead to an
immediate flow of the whole new capital available towards the production
of that good. This ends up creating shortages of other goods and an excess
production of the good in question; in other words, rapid fluctuations in the
quantities and prices of all the goods. Then it would be proper to introduce
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adjustment conditions taking into account producers’ learning procedures
and their abilities to forecast.

It is worth noting that instability may be significantly reduced when the
new process requires the use of machines or fixed capital which take time to
be produced in sufficient quantities and to satisfy requirements. Because of
this, activities may coexist during quite a long period of time with
differentiated rates of profit, and adjustment could be carried out progressi-
vely; but this may result in excess capacities which are slow to solve and
could consequently hamper the recovery of the uniform rate of profit.

8.3 Intensified use of natural resources

We have seen that, with no technical change, the development of the
accumulation process may lead to the exploitation of less and less profitable
natural resources or land: wheat, and more generally all goods using ‘land’,
are produced in increasingly costly conditions and more profitable land
yields differential rents (at the considered rate of profit). The method of
cultivation determining the regulating price of wheat is applied on the last
plot taken under cultivation, which is both the less fertile and the less
profitable. Up to now, we have assumed that this ‘marginal’ land was not
fully used: its price and the rent per acre are thus zero. Such an hypothesis is
not always acceptable; there is not necessarily available land. But if the
marginal land has a positive price, what is the determination process of that
price and therefore of the rent springing from it? This could be explained by
landowners’ monopolistic behaviour. However, this is not the only expla-
nation nor is it necessary as indicated in the note by Engels in Capital: ‘this
illustration shows how, by means of differential rent II, better soil, already
yielding rent, may regulate the price and thus transform all soil, even
hitherto rentless, into rent-bearing soil’."

We shall first contemplate the determination of rent on land of uniform
quality and with a limited surface area. In the few lines devoted to the
problem of intensive rent, Sraffa (P.S. chapter 11, Production of Commodi-
ties) addresses the problem in the same terms. In what follows, we shall
follow the same approach by using the same tools of analysis that we have
used several times earlier. This will allow a simplified presentation of the
problem that was widely developed in the past (notably Montani, 1972 and
1975; Kurz, 1978; Abraham-Frois and Berrebi, 1980; Bidard, 1987). We
shall indeed contemplate an extremely simple model where wheat is
produced by means of wheat and labour on land of uniform quality and
with a limited surface area; the rate of profitis exogenously given (and equal
to the rate of growth).
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8.3.1 Only one method of cultivation of wheat on a limited homogeneous
plot of land

Assume that wheat is produced on homogeneous land only by means of
wheat and labour. Since the system of production in question consists in,
apart from land, only one commodity (wheat), we can simplify the
notation: let a and b denote the quantities of wheat respectively used and
produced by the unique process considered, ¢ the surface area used, while
the quantity of labour used equals unity. Figure 8.9 represents the net g-
returns of the different rhythms of accumulation, with the quantities of
wheat on the vertical axis and land on the horizontal axis (by assumption
there cannot be a net production of land).

At a given g, assuming that wheat and land are jointly produced, the
vector of net g-products 0M (g) has[b—(1+g)a]land[t—(1+g)f]=—gtas
components. At g =0 of course g =0 and point M, has a zero ordinate, with
its abscissa being [b—a]. At g> 0 the vector of net g-pigducts constructed
on the basis of the usual rule (see chapter 1) 0M (g) =0b +0A4(g) moves as
indicated on figure 8.9, in the same direction as the origin line M,and witha
slope

— 181~ &) =—t(g1—gz)=ﬁvg>0
b—(1+gla—[b—(1+g)a a(g,—8) a

Let us now assume that g is known and exogenously fixed; if (see figure
8.9) the quantity of land is limited, to satisfy the demand for wheat which is
also taken to be known and fixed at level D, we would only need to alter the
level of use of the cultivation method in question, i.e., hire the exact number
of workers sufficient to produce D; the activity’s net surplus of wheat is
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given by the abscissa of M (g), thatis to say (g), when the activity is used at
the unit level, the activity level sufficient to satisfy demand D is = D/b(g).
Since returns to scale are taken to be constant, the development of the
activity entails an increased use of the land. When the surface area is limited
to T acres, it is clear that the development of the method will be limited,
hence the constraint

yi<T
At g>0 we have
gyt<gT hence also —gT< —gyr

It is this formulation which is used in figure 8.10, where it appears that, in
this case, land is not saturated at the level of demand of wheat contemplated
and the resulting level of activity j.

It is quite easy to show the opposite case when the demand for wheat is
not satisfied by the method in question.

Let § be the intersection point between 0M (g) and (—gT): the abscissa
of S, i.e., s, defines the maximum net product of wheat which can be
obtained using the activity in question at the rhythm of accumulation g and
the surface area T.

8.3.2 Several methods of production available

When at a given g, several methods of production M\, M,, M,... are
available to cultivate a uniform and limited plot of land, two cases have to
be distinguished.
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Ist case

When the land is over abundant, in that the demand for wheat can be
staisfied by any method, the usual rule of choice based on the minimisation
of costs applies. Since land is not a scarce resource, it is rentless: at a given
r=g and as every method uses the same quantity of labour /;=1, the
method providing the greatest net g-surplus of wheat is also the less costly
(see chapter 7). Thus, in the example contemplated above, it is method n°3
which, at a given r=g, is the less costly; it is therefore the one that will be
used if land is over abundant (the other methods are obviously less
profitable, the most expensive being method n°S which has the lowest
abscissa). Recall that this order holds only at the considered rate of profit,
and there is no reason for it to be the same if distribution changes.

The other component of the net g-product, i.e., land consumption, is not
taken into account in this example since land is over abundant. The
situation is quite different in the second example contemplated in figure
8.11.

Note FEach point M, represents the net g-product of a method (we
have used M, for M,(g) in order to simplify the presentation).

2nd case

When land is scarce, in that the demand for wheat cannot be
satisfied by any method, the usual choice criterion is not relevant any more.
Let us assume that using the least expensive method does not allow to
satisfy demand: the capitalist farmers will however be able to increase their
aggregate profit (recall that the rate of profit is given, but not the aggregate
rate of profit) by using more costly methods to produce more wheat.
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Let us first recall that the ordinate of the representative point M,(g) of the
net g-product of the activity is (—g¢;): as a result, at a given g, the
consumption of land is all the more important in that the (negative)
ordinate is low; as the yield per acre =, is the inverse of the consumption of
land per produced unit (w;=//t,;), the yield per acre is greater because the
method is represented high in the diagram of the net g-products. In the
example contemplated above (figure 8.12) method n°1 has the lowest yield
per acre and method n°6 has the greatest.

The choice among the six methods can be limited: methods M,, M, and
M are (at the considered rhythm of accumulation) dominated by at least
one of the other three methods. Then, the choice will be reduced to M;, M,
and M; as in the case of choice of techniques (chapter 7) here we take into
account the outside envelope of the different methods’ net g-products: it
defines, at the considered rate of profit, the efficiency frontier of the system.

In figure 8.12, we have limited the choice to the three methods in question
and, by using the method specified in figure 8.11, we have denoted the land
constraint by (—g7') and the exogenous level of demand for wheat by (D).

Using the least costly method (M;) would only allow, owing to the
available surface area, to produce s, units of wheat and would not satisfy
demand D; then it would be necessary to start using another method.

Among the available methods, it is method M, which will be selected:
though its production cost is higher than M,’s (its abscissa is lower) its yield
per acre is greater (M, is located higher than M, on the diagram); as for
methods M,, M, and M; we have seen that they are dominated by
combination M;M, and method M|, which is more costly than M,, isnot to
be used at all. It appears here that the substitution of method (2) for method
1 is not total but partial: since method n°2 is more costly than method n°3, it
will be used only in a part of the available surface area, while the least
expensive method is used in the other part. Competion among capitalist
farmers ensures the use of the least costly method but the need to satisfy
demand leads to a parallel use of the method with the greatest yield per acre.

In what proportions will the available surface area T divide between the
two methods? We know that when both methods are used at the unit level
(i.e., using one unit of labour) they produce net g-products respectively
represented by points M, and M,. Of course, any linear combination of
these two methods is possible and all points n of M,M, represent a linear
combination of these activities using one unit of labour. Changing the level
of use of this ‘mixture of activities’ allows to increase output until the land
constraint is saturated.

The previous approach then consists in using a given combination of
activities to deduce the production of wheat that can be obtained on the
available surface area. Conversely, it is possible to determine the linear
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combination from the demand for wheat that has to be satisfied. We can see
on figure 8.12 that from D we determine point A then point m which is the
intersection point of 0k and M,M,. While the ratio mM,/mM, determines
the utilisation ratio of one unit of labour between the two methods, the ratio
hS,/hS; determines the ratio of utilisation of a given surface area (T')
between the two methods.

We find here the same reasoning as the one used in a different context. We
have seen earlier (chapter 1) that in a golden rule situation, the prices of
both goods could not be positive unless the slope of the efficiency frontier is
negative. This holds here also: the prices of wheat and land, thus the rent,
are positive when methods n°2 and 3 are used simultaneously which means
that we are on point M;M, of the efficiency frontier which has indeed a
negative slope.

Since land is fully used, it is an economic good whose price is determined
in conformity with the general theory of production prices; the rent can be
easily deduced from the price of land. But, as we have seen, the rent is
positive only because two methods of production are simultaneously used, with
the most productive (defined as the one having the highest yield per acre) also
being the most costly, which agrees with Sraffa’s proposition:

While the scarcity of land thus provides the background from which rent arises, the
only evidence of this scarcity to be found in the process of production is the duality
of methods: if there were no scarcity, only one method, the cheapest, would be used
on the land and there could be no rent. (P.S. 88)
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Therefore, the simultaneous use of methods n°2 and n°3 allows to satisfy
the demand for wheat when it is included between s, and s, (see figure 8.12).
When demand D is less than s, it goes without saying that only one method
should be used, the least costly (here n°3): the land is then rentless since it is
not fully used. If the demand for wheat lies between s, and s, then method 3
is totally abandoned: methods n°2 and n°6 are simultaneously used to
satisfy demand, and they share the available surface area. The rent is
positive, since the slope of the efficiency frontier M,M, is always negative;
further, this uniform rent per acre which springs from the simultaneous use
of these two methods and consequently denoted by p2, is greater than p*,
which was obtained through the simultaneous use of methods n°3 and 2: we
know (chapter 1) that the absolute value of the slope of the efficiency
frontier represents the ratio of the price of wheat to the price of land thus, at
a given r =g, the ratio of the price of wheat to the uniform rent; since |slope
M,M,| <|slope M;M,|, then p*> p*2,

Hence the following possibilities:

De[0,s,] overabundant land p=0
Delsy,s,] fully used land p=p2>0
Dels,, 4] fully used land p=p¥>p¥>0

When D> s, figure 8.12 does not show the additional possibilities of
production using both more productive and more costly methods.

Specific cases of indetermination

If D=ys,, demand can be satisfied in two different ways. Either
method n°3 is used on the whole surface area; then the rent is zero since
there is no land constraint hampering the satisfaction of demand using the
least expensive method. Or methods n°2 and 3 are simultaneously used on
the whole available surface area and p= p*2> 0. Consequently, if D=s,, the
rent is indeterminate: p€[0 p**] which appears clearly on figure 8.12 where
the efficiency frontier is broken at M. In such a situation, the rent may be
fixed exogenously® between two limits, 0 and p*2.

If D=s,, the rent is indeterminate and can be fixed exogenously between
two limits: p** and p?. Demand can of course be satisfied by using
method n°2 only. But then, the rent cannot be zero for the availability
of lands plays as a constraint prohibiting the use of only the least
expensive method, i.e., method n°3. The rent is thus positive but
indeterminate between the indicated limits.

If D= s, the situation is similar, with the lower limit being p%. As for the
higher limit, it cannot be shown on figure 8.12 since it depends on the
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(unspecified) characteristics of an even more productive and costly
method.

8.3.3 Intensification process

Sraffa notes: ‘From this standpoint the existence side by side of two
methods can be regarded as a phase in the course of a progressive increase
of production on the land’ (P.S. 88).

In this connection, we need to revert to figure 8.12 and the previous table,
where, at a given g, the demand for wheat is low (D <s,), and land is a free
good; owing to the accumulation process, the demand for wheat grows as
time goes by and, with unchanged methods of production, leads to full
exploitation of the land by the least expensive method.

A further increase in the production of wheat becomes possible thanks to
a progressive extension of the method producing wheat at a higher unit
cost: the duality of the methods of cultivation is evidence of the scarcity of
land which yields a positive uniform rent per acre the level of which depends
on the characteristics of the two methods. The increase in the production of
wheat is possible only if a new method allowing a better yield per acre is
introduced at a proper time; since this new method is more costly than the
previous one (otherwise it would have been introduced earlier) the rent is
positive and increases: ‘In this way the output may increase continuously,
although the methods of production are changed spasmodically’ (P.S. 88).

The intensification process does describe a progressive change as time
goes by, but a technical improvement is, by assumption, excluded. Thus,
the process describes a rather catastrophic successsion of increasingly
costly methods of production. There is indeed a choice of techniques, of
processes of intensification; however, the range of techniques, the set of
activities, is taken to be known from the very beginning. The historical
evolution will in fact be much more complex and more interesting than the
logical evolution described above: the appearance of new methods of
production which are more productive (per acre) and less costly is not
excluded, which will allow an increase in the output with a decrease in the
price of wheat and in the rent.

8.3.4 Variations in the price of wheat and in the rent

Let us revert to the simplified economic example with only one basic good,
iron, produced by a unique method of production, and one agricultural
good, wheat, the demand for which is such that it requires the use of two
methods of cultivation on the available surface area, which is taken to be
fully exploited. Owing to the hypothesis of a uniform rent for both methods
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and using the notation already used in the analysis of the differential rent,
the price equations are

(1+na,, +w =1
(1+ 1)@y +app; ) twtp™i'=b'p;'
(1+1)(@j +a5,p') +w+pt*=b?p;’
Both the price of wheat and the ground rent bear the index (*') in order to
show explicitly the assumption according to which two methods (1 and 2)

are simultaneously used on the same land to produce wheat. By substitution,
we obtain

a_(+nay+1-(+na,  ,, /!
P b'—(1+Paj, P b =(+naj,

21_(1+r)a,f|+1—(1+r)a” 21 r
Py = 7_ ] p 2_ 3
b (1+r)abb b (1+r)a,,,,

And by writing p; the production price of wheat which would spring
from the use of only one of the two methods of production and x; the net
g-return of each of the methods, we obtain, as shown in section 8.2.2.

p2l

A_pty P
Py =Pp T,
21
n_ 2 P
Py =P nz
with
. (1+na, +1-(1+nay,
P b~ (1+)aj,
and
- b —=(1+nad]
n‘=———————( p r)abb)fori=l,2
Hence

p* =my(p}' —p}

S {pz' =n,(p;' — ps)
From which we deduce? the value of the rent

2 |
Py P
P ()= mym =

1
which allows to state the following theorem:
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Theorem
Ymy()>p,(n),p(1)>0< p()>py(r)

Rent p(r) is positive if and only if the method with the highest net g-yield of
wheat has the highest wheat production price.

Figure 8.13 is drawn on the basis of system (S). Note that asin the case of
differential rent, each of these equations shows that rent is a linear function
of the price of wheat. But contrary to the differential rent, the price of wheat
and the (intensive) rent are determined simultaneously (in the case of
differential rent, the price of wheat was determined first by the worst
conditions of production; the rent was defined in a residual way).

In figure 8.13 the slopes of each of the lines equal the net g-return per acre
and the abscissa at the origin corresponds to the production price of wheat
which would appear if the method in question was the only one used. The
rent is positive only if the two lines intersect in the positive quadrant of the
diagram: which requires p?> p, since by assumption 7,>x,.

When the demand for wheat is low, the least expensive method of
production may be used, here it is method n°l. As land is not fully used, its
price and rent are zero. The increase in demand for wheat leads to a full use
of the land and the impossibility of satisfying demand if only method n°l is
used. Hence its progressive replacement by method n°2, which is more
‘productive’ (n,> m, ) but more costly (p?>p;).

The simultaneous use of these two methods on the fully exploited land
leads to both an increase in the price of wheat (p?' > p}) but also p?' > p?)
and the appearance of a positive uniform rent p?'. Note that the price of
wheat and the ground rent remain at this level as long as both methods are
used, in spite of the increase in the demand for wheat (and in its
production).

Let us now examine the case when the demand for wheat reaches such a
level that the extension of the second method, the most productive (at the
considered g) to the whole surface area which can be cultivated, reveals to
be insufficient to satisfy wants. A third method necessarily more pro-
ductive, will have to be introduced, thus such that n;>n,>mn,. The
positivity condition of the rent then implies that p; > p2>p,.

The third method replaces the first and, as a result, owing to the
contemplated conditions of cost and of productivity, a new pair, price of
wheat p* - rent per acre p*2, appears and will hold until another increase in
the demand for wheat leads to a new stage of intensification; the second
method has progressively been replaced by method n°3; the latter in turn
will have to yield ground (literally) to method n°4; hence a new pair: price of
wheat p;* — rent per acre p*

The increase in the rent and in the prices of wheat are proportional at
each stage of intensification, and the relation can be read directly in figure
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Figure 8.13

8.13. In order to compare p>?and p?', suffice to note that method n°2 is used
in both situations; hence

p¥=p* =n(py ~p}'

and more generally

p"=p"=p,(p}—pf)

The intensification process explains the fact that only the intersection
points of lines p(p,) located on the outside envelope of the set of lines are
retained as solutions. The intersection between 1 and 3, in figure 8.13,
cannot be considered as relevant since it has been assumed first a progress-
ive substitution of method 1 by method 2, then of method 2 by method 3,
with the whole surface area always being fully exploited.

Remark

In the example contemplated below, method n°2, though it is less
costly (when used separately) than method n°3, will never be used. When
the demand for wheat is low, method n°l1 is the only one used since it is the
least costly; when the demand for wheat increases, method n°3 is used on
one part of the field, for it is more productive than method n°2 and allows a
lower price of wheat than the one that would result from the simultaneous
use of methods n°2 and n°l (see figure 8.14).
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8.3.5 The intensive rent: generalisation

The analysis can be generalised from different angles: we may contemplate
for instance the example when the intensified use of the scarce resource is
indirect or the case when several scarce resources enter the production of a
specific good; we could also analyse the case when labour, so far considered
as exceeding demand (at least in our analysis) is scarce. These are the topics
that we intend to address now. But let us first point out a change of
viewpoint: whenever there is a scarcity phenomenon creating an intensive
rent, prices cannot be considered as determined as previously; it seems more
appropriate to speak of utilisation prices rather than production prices.

If only one method of production is available to produce wheat on a
limited surface area, the intensification may appear indirectly in the use of
wheat. Since the production of wheat is fixed, wheat will here play the role
of land in the previous analysis: it is indeed quite possible that two methods
of production of ‘bread’ are used simultaneously. We can show that, in such
conditions (see Abraham-Frois and Berrebi, 1980, p. 20; also Saucter,
1981-4), the landlord perceives a rent (the land is fully used); such a rent
does not result from a duality of the methods of production of wheat, but
from a duality of the methods of production of the good (‘bread’) using
wheat. This is in a way a second degree duality: rent is here ‘incidental’ or
‘external’, which is passed on to the only scarce resource, land.

Further, Saucier (1984) has shown that when limited primary resources
enter the production of several goods, ‘it is not in general possible, even at a
given rate of profit, to classify lands any more. When demand increases, a
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Figure 8.15a Figure 8.15b

plot of land may be taken under cultivation, then superseded and replaced
by another and used again at a higher level of demand’** (Saucier, 1984, p.
166).

When one of these resources is fully used, another one has to be
introduced. In as much as limited resources are required for the simulta-
neous prodution of several goods, an increase in demand may lead to
sporadic changes in the productive combination every time the expansion
limit of a specific productive combination is reached. Hence the important
corollary: ‘the rent yielded by a land or by another limited primary resource
may decrease, and even disappear when demand increases’ (ibid.).

Finally, what happens when the development process faces a shortage of
labour? Here again, this will lead to the intensified use of the now scarce
resource; in other words, in order to satisfy demand, other methods of
production will have to be applied, thus saving labour, though their costs
will be higher. Consequently the rate of profit cannot be taken as exogenous
any more; indeed, the system of production is now composed of k+1
methods of production producing the £ goods, with one of the goods being
simultaneously produced by two methods and one of them is labour saving.
Owing to the normalisation condition, we have now k+2 equations
allowing to define the kK + 2 unknowns, the k prices and the two distributive
variables.

If we consider curves w(r), this means that we have two compatible
systems and that we are necessarily at an intersection point, or ‘switching’
point of both curves. It is worth noting that the solution may not be unique:
we find here the problem of ‘reswitching’ contemplated from a different
angle (see figure 8.15).

When the labour factor gets scarcer, producers have to introduce other
methods of production allowing to save even more labour. Such a
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substitution results in an increase in wages and a decrease in the rate of
profit (see Abraham-Frois 1984). Of course nothing proves that the
capitalists will accept the decrease in the rate of profit resulting from the
process; beyond a certain threshold, they might stop investing and thus
create a crisis due to the insufficient profitability, which will stop the
accumulation process (see figure 8.16).2

Insituations of scarcity, directly or indirectly leading to an intensified use
of a resource, the number of methods used is necessarily greater than the
number of goods produced; this logic is quite different from that of
production prices where there is one degree of freedom. The emergence of
scarcity emphasises systems where the set of distributive and price variables
is determined endogenously, with no degree of freedom; hence, the concept
of utilisation price and not of production price any more.

8.3.6 Intensive rent and differential rents

Let us now contemplate the combination of intensive rent and differential
rents. We have previously assumed that, when land was of different
qualities, the least fertile was not fully used; it was thus rentless. Then, on
the basis of that land, more precisely on the method of cultivation used, we
have determined the regulating price of wheat p/ and the differential rents
per acre yielded by the various plots of land:

pi=n(p}—p;) withi=1.2,...,h

Now, if we assume that the last plot taken under cultivation is fully used
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by two methods (¢) and (f), then it yields a positive intensive rent;
consequently, the price of wheat is fixed at a higher level p7/> p/ and the
differential rents of the various plots are now determined by

pi=n{pi = py)> py

Then all the plots yield positive rents. As a matter of fact it is quite possible
that the profitability order of the various plots is altered by the emergence of a
positive rent on the marginal land as shown on figure 8.17; the solid line
shows the characteristic price of wheat/rent relations of the four methods of
cultivation used on the four plots available. When plot of land n°4 is not
fully used, the regulating price of wheat is then determined by p; and the
order of the differential rents reads on the vertical of that point; we have
pa>pi>pi>pi=0.

If the increase in demand for wheat causes an intensified use of land n°4,
then a new method of production (n°5 for short) characterised by a relation
p°(p,) (broken line in figure 8.17) has to be introduced. The intersection
between p°® and p* determines both the new regulating price of wheat p;*
and the intensive rent yielded by land n°4 which is now fully used. The order
of the differential rents of lands n°2 and n°3 has changed, since, by writing
Pis the rent per acre yielded by each land, with i=1,2,3,4, we have

TR O "
Pas> Pis > Pas > Pas >0
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It is worth noting that intensification does not have to take place on the
marginal land. When the demand for wheat increases and the marginal land
is fully used, it is sometimes possible (and may be less costly) to intensify
cultivation on land that is already fully used and whose owner already
perceives a differential rent.

In the example contemplated in figure 8.18, it is assumed that method n°5S
could be substituted for the method of cultivation used on land n°2. As
foreseen by Marx and Engels in the quotations drawn from Capital, the
regulating price of wheat is then fixed by the ‘better soil’ then yielding a
differential rent, and now an intensive rent. Since all the other land is fully
used, the owners perceive differential rents; the amount of the latter
depends of course upon the characteristics of the method of production
contemplated, but also on the new regulating price of wheat determined by
the land on which cultivation is intensified. Note that in that example it
could have been possible, though more costly, to intensify cultivation on
land n°4 with method n°6 (broken line).

Thus, intensification does not necessarily take place on the last land taken
under cultivation. Let us note also that intensification does not necessarily
happen after cultivation has been extended. At each level of demand, and
taking into account the rate of profit, the method of cultivation used is the
one allowing to satisfy demand at the lowest production price. If the
cultivated soil is fully used, generally the producer may choose between
intensifying cultivation or extending it to other soils. He will, however, have
to solve the problem of choosing a method of cultivation allowing a low
production cost. The simplified assumption according to which one method
of production is available for each type of soil has to be relaxed; or rather, it
is the expression, the final result of a choice among more or less costly
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methods of cultivation. And sometimes, owing to the level of demand, it
will be better to increase the output of the considered soil by using a more
costly method of production than extending cultivation to other soils;
intensification is not (necessarily) the consequence of a physical constraint
(the impossibility of producing more), but the evidence of an economic
constraint: the minimisation of production costs under the constraint of
satisfying a determined demand.

The analysis of rent, either it is intensive or differential, allows to go
beyond the analysis of permanent regimes. When the process is dynamic, it
is of course quite impossible to address the problem of distribution
independently of the problems induced by accumulation. The efficiency of
the choice of technique is ensured by the golden rule hypothesis, the
equality of the rate of profit and the rate of growth. Regulating prices are
production prices defined on the basis of the conditions of production
resulting from the available methods of production, demand and the
rhythm of accumulation.

8.4 Technical improvement and distortion of the system of prices

The way an increase in profitability obtained by a company, an industry or
an economy, are spread can be specified by using the formulation suggested
by Jorgenson and Griliches (1967) and Vincent (1968) in a simplified
framework with only two factors of production, labour and capital, both
taken to be homogeneous. Let @, L and K be the quantities of output,
labour and capital respectively, p the price of one unit of final product, w the
wage, p, the price of one unit of capital good.
We have the accounting identity

pO=wL+p K

By differentiating the previous relation with respect to time and by writing
the derivative of a variable x in relation to time by

, dx
x'=—
dt
we obtain

PO'+ QP =wL'+w'L+pK +p,/K
Q' pl LI wl K/ pl’(
p0 | =+l |= wL | =+ |+ pk | = +2
[Q P L w| PP k7 p

- . . L
By dividing both members of the equality by pQ and by writing « =:—Q and
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K . . N
ﬁ=p—"— respectively the income shares of labour and capital in the total

pQ

income, we obtain
Q'+p‘=al:+aw+ﬁ[2+ﬁﬁk

where 0, , L respectively represent the growth rates of production, of the
final product price, of the quantity of labour used, etc.

We deduce from this

Q—(aL+BK)=p=aw+pp,~p
The left-hand side of the expression shows the productivity surplus
(denoted by u) defined as the variation in the volume of production less the
variation in the volumes of the production factors used, respectively
weighted by a and §.

Note that if the context is a domestic economy, this can be considered as
the representation of a ‘technical improvement’, or ‘residual’ or ‘third
factor’ in Solow, Meade and Denison’s sense.

As for the right-hand side of the expression it can be considered as the
representation of how the productivity surplus divides up into an increase
in wage, an increase in the price of capital and a decrease in the price of the
final product; these variations are respectively profitable for workers, the
owners of the means of production and for the final consumers.

Let us now use that method in a disaggregated model with two basic
goods (denoted by i and j) and a non-basic good (denoted by ¢)

a; a; 0 l; b, 0 0
A=|a; aj,.() L=lj B=0bj0
aci acj acc lc 0 O bc

Let p;, p; and p, be the production prices of the three goods, w the wage and r
the rate of profit.
For industry (i), we have the following equation

bpi=(1+r)(a;p;+ aijpj) +wi;
and by writing (1 +r)== to simplify notations
bp;=n(ap,+ aijpj) +wi;

Assuming a variation in the production conditions of good i, we have, by
differentiating the relation above with respect to time and using the
notations of the first illustration

bpi+pbi=nap;+na;p,+n'ap+ na;p;+ nagp;+ na;p;+ wli+1lw'
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' b T AT
bip; | =+ |=naqp; Bipluy T +ma;p; Biple %
pi b pPi a4 T p 4 T

that is

We define
a=h g TP g TP
b.p; b:p; Vobp;
and by denoting the growth rates of the various variables by
- x,
X=—
X
we have

Bt bi=Bu(ptdyt )+ By(py+ dyt A) + o+ )

By denoting the productivity surplus in industry i by g, we have:
5:'_ (Bua;t ﬂijdij+ aiii )= U

Hence by setting ;= B+ ;
=W+ B+ Bip+ Bijﬁj‘ﬁi

as far as the other industries are concerned, we would have
W=t B+ Bupi+ b~ b
Ht‘= (X‘.V‘l‘)‘*‘ ‘B‘ﬁ + Bciﬁi+ ﬁq’pj+ Buﬁc_ﬁc

that is
(=8 _ﬂi,' 0 b o B W Y
_B[/ (I_Bij) 0 13,' =% ﬂj [ﬁ]— H;
_Bci _Bq‘ (l _Bcc) ﬁc &, ﬂc K.

or also in compact notations, with j as the vector of changes in production
prices, f§ the semi-positive square matrix of the fijs, T the vector represent-
ing the first part of the line of the previous expression, and u the surplus
vector achieved in each industry

(I=Pp=T—p
We can then calculate vector j, with matrix (/— ) normally having an
inverse, and determinate the variation in production prices** for any

variation y;, y; or u_ in the productivity surplus.
Note that when surplus emerges in the sector of consumption goods, it
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affects the price of the (non-basic) consumption good, but has no conse-
quences on the prices of the basic goods i and j. Conversely, any surplus
emerging in the basic sector alters all the prices. This way we can measure
the magnitude of the ‘increase in productivity’ of the basic sector.

It is clear that this formulation is linked to the neo-Ricardian tradition as
shown in the following passage by Sraffa:

If an invention were to reduce by half the quantity of each of the means of
production which are required to produce a unit of a ‘luxury’ commodity of this
type, the commodity itself would be halved in price, but there would be no further
consequences; the price-relations of the other products and the rate of profits would
remain unaffected. But if such a change occurred in the production of a commodity
of the opposite type, which does enter the means of production, all prices would be
affected and the rate of profits would be changed. (P.S. 6)

If the nominal wage and the rate of profit are fixed, i.e., w=0and F=0,
the distortions in the system of prices directly and totally reflect the
variations in the surplus of each industry. We may of course suppose
that only the wage or the rate of profit remains fixed; such limit cases
could be interesting,.

Note that even if the surplus prevailing in each industry is equal, this
would not mean that prices are constant or that they vary in the same
proportions. The distortion in the level and structure of prices ensures
the redistribution of surplus in the whole economy through the
distortion of a technology matrix from one period of time to another.

The limit case where prices are constant is interesting to analyse

ﬁi=ﬁj=ﬁz‘ = 0

Each sector is then insulated from the other, and we find here many
aspects of the simplified framework of the one-sector model; the whole
productivity surplus of a given sector divides up between a rise in
wages and an increase in the rate of profit. Note that in general this case
is impossible because there are three equations for two unknowns
namely w and 7.
is worth emphasising another peculiar case which this time springs
from technical characteristics. Suppose that there is no basic sector,
and that for instance the sector of consumption goods uses no
intermediate goods, thus ;= f;=0. The sector in question is related
to the rest of the system only through increases in wages and profits. If
we further assume that the sector is ‘non-progressive’, namely g, =0,
we find the same results as the model due to Baumol (1967): the price of
the good produced by the ‘non-progressive sector’ (here, the consump-
tion good) increases provided a productivity increase in the ‘progress-
ive sector’ is followed by an increase in wages.

I

-
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See Nassau Senior’s third postulate which reads: ‘The powers of Labour, and of
the other instruments which produce wealth, may be indefinitely increased by
using their products as the means of further Production’, quoted by Schumpeter,
History of Economic Analysis, Allen and Unwin, 1954, p. 638.

See common works: Abraham-Frois and Berrebi, Theory of Value, Prices and
Accumulation, Cambridge University Press, 1979; see also: Rentes, rarete,
surprofits, Economica, 1980. See also Abraham-Frois (ed), L’économie classique —
nouvelles perspectives, Economica, 1984 and Abraham-Frois, Dynamique écono-
mique, Dalloz, 1991, 7th edition.

The golden rule of accumulation and prices

In the present book, the terms ‘method of production’ and ‘activity’ are
considered as synonyms. Consequently, we shall use both of them equally.
We can get rid of any excess of any good at zero price.
Actually, the assumption about the structure of consumption is vital. We are
grateful to Bidard for having clarified the topic.
More generally, we can show that production prices are positive only for
L,/1,€[0 44/90] and for re [0 0.044—0.096/1 1']
L1101

If this is not satisfied, only one activity can be used, and, owing to the structure
of demand, there is a free good and only one economic good. Thus there is only
one activity producing only one economic good. The maximum rate of profit can
then be easily determined.
This term is due to Schefold (1984).
See Schefold (1984), pp. 32-3, for a complete demonstration of the general case.

Systems of production prices

1 Reference to Sraffa’s (1960) Production of Commodities by Means of Commodi-
ties are given by the initials P.S. followed by the number of the relevant section.
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2 Here, we implicitly assume that all goods are basic goods. Thus all prices are
positive. We shall revert to these important problems.

3 P.S. 3, the system of k equations is of rank (k—1).

k

4 From now on, we have Y. a; <1 for all j, the inequality being strict for at least
one . i=1

5 Note that according to the Perron-Frobenius theorem, the dominant eigenvalue
1/(1+r) is included between 0 and 1 since the sum of every column is included
between 0 and 1. As a result, r is positive and finite.

6 Matrix A is obtained by dividing the quantities in the column by the quantities
produced.

56 ]+22.4—144 102

lA=-all=a’—a| —+0. —=0 that is, &’ — —
7 Indeed, we have: |A—all=a oz|:“5 0.4 s 0 that is, « 5

8
a+ s = 0 whose discriminate is

) S )

15 115 (15?% \115

102+82 92

2x 115 115

Note that in a case of production with a surplus, the dominant eigenvalue

a=92/115 is less than 1 while in the case of production for subsistence we had
a=1.

8 Here, industries, methods of production and activities are considered as
equivalent.

9 If labour is not uniform in quality (for instance, n skills), there are » column
vectors of needs in labour, n wages (w,, w,...,w,); then, to solve the system, »n

distribution variables (and not only one) have to be determined exogenously.
10 See mathematical appendix to chapter 3.

from which, we obtain, a= = r=25%.

3 Irregular and decomposable systems

1 A permutation of matrix A is the matrix obtained by a permutation of the rows
of A4 combined with the same permutation of the columns. Such a matrix can
always be expressed by 4= PAP’ where P is a permutation matrix and P’ its
transpose. Recall that a permutation matrix Pis composed of 0 and 1, each row
and each column having one and only one 1.

2 We write |M| the determinant of a square matrix M.

3 We assume that for any i, the row g; #0, otherwise there would be no basic
commodities. Indeed, if the ith row of 4 is zero, none of the commodities enters
directly or indirectly in the production of good i. But one or several columns g; of
A may be zero in the following analysis.

4 However, we shall see in section 1.1.6 that the maximum rate of profit is not
determined by the basic sector.
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5 Whenrank[A4',1']>k—mand A?is decomposable, there is no rule as far as the
existence of basic goods is concerned. Recall that by assumption 4| is
indecomposable.

6 The eigenvectors g; on the left and p; on the right of a square matrix A and
corresponding to eigenvalues o; and a; which are different, are necessarily
orthogonal, for from the relations ¢,4 =w,q; and 4p;=a;p;, we deduce «;.¢;p;
=0,q,.0;=q;A.p;=q;. Ap;=q;.,p;=o,q,p; that is (x,—o;)g,p;=0 where «,
—a;#0 hence ¢;p,=0.

7 We assume that foranyi=1,2,..., k the column a; >0, otherwise there would be
no antibasic process. However, if a row g; of A4 is zero there may be antibasic
processes. But there would be no basic good.

8 See the (k— n) last processes of matrix 4.

9 In this configuration and in the following three, we assume that matrices A,, A2
and A3 are indecomposable.

10 When rank [4',7']> k—m and 4} is decomposable, there is no general rule as
far as basic goods are concerned. Recall that by assumption, A4 is
indecomposable.

11 We assume that model [4,],d] is regular; we shall revert to this in the next
section. Note that if vector d is the eigenvector on the left of matrix A
corresponding to its dominant eigenvelue (d homothetic to q) the curve c—g is
linear whatever the numeraire.

12 Suffice to substitute j, and G, for 5 and G in the demonstration above.

13 This assumption implies that every row g; and every column ¢; of matrix 4 has at
least one non-zero component.

14 An eigenvalue is said to be semi-simple if it is a simple root of the characteristic
equation or a multiple root such that the sub-space corresponding to it is of
dimension 1.

15 See mathematical appendix.

16 Indeed, vector y can be broken down into ZyjdAf as p was broken down into
m i=1

BdA’L.
=1

J
17 See chapter 2, section 5.2.

4 The analysis of joint production

I P.S.chapters 7, 8, 9.

2 In the simple production context contemplated previously, matrix B was the
diagonal unit matrix B=I. Therefore, the analysis framework presented here is
very general, with simple production being a peculiar aspect of joint production:
Ap(1+r)+Lw=Bp=1Ip=p.

3 We will present in the mathematical appendix two requirements that are
equivalent to condition (N3).

4 Note first that we are speaking here of an indecomposable system and not of an
indecomposable matrix, and second that in the case of simple production there is
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an equivalence between a basic system and an indecomposable system. We shall
return to these two points below.

5 In case of simple production B= [ remains invariant whatever the permutation
of the rows and columns since / is a diagonal matrix and this implies that a
simple production system [4,7] is decomposable if, and only if, 4 is a
decomposable matrix.

6 Obviously the system composed of the A and B matrices is indecomposable if
there are no such permutations. Similarly, a simple production system (4,/) is
indecomposable if, and only if, 4 is an indecomposable matrix.

7 Refer to Manara (1968).

8 Thisrelation means that the rank of matrix (4%, B?]= a2 by |_{ Pan By is
ay by an by
equal to one (there is only one independent row vector).
9 Refer to Manara (1968).

10 Recall that this means that rank {4% B*]=1. In other words the rank of the
matrix composed of the last columns of 4 and B (and thus of dimension (2 x 2))
isequal to 1.

11 Many authors became interested in this topic, among them Manara (1968),
Pasinetti (1980a), Steedman (1980—4), St Burnell (1982), Bidard (1984).

12 Sraffa wrote ‘at most of rank m’ (P.S. 60). But we have to exclude the case when
the rank of [4?, B?] is less than m since condition (N3) would not be satisfied (see
the mathematical appendix).

13 In the preceding example k=2, m=1, the dimension of matrix H(k—m, 1) is
reduced to 1 x 1, i.e., a scalar. Matrix [4?, B2] of dimension (k,2m)=(2,2) is of
rank m=1.

Zl 0 k—-m
14 We assume that X~ '4= |:Zl' ZZ:I Z,#0, Z| and Z? indecomposable
2 4

k—m m

m

Zl 0 k—m
15 We assume that X !4 = [0 ! 222]

k-m m

m

z/o "
16 We assume that matrix AX"=[ ' ] where Z} #0, Z! and Z? are

. z; 73
indecomposable 2772 Lk-n
n  k-n

Z 0 "
17 We assume that matrix AX~'=| " _
0 7Zy |,_,

n k—n

18 This theorem is demonstrated in an article by Schefold (1978a). Note that the
terms are slightly different.

5 Standards and blocking goods

1 Here, we assume that the system is regular, i.e., the labour profile matrix
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K=[L,AL,...,A* 'L} is of full rank, which ensures the uniqueness of the
standard. Irregular systems are contemplated in section 3.

2 See chapter 3, section 1.1.5.
3 Wecaneven say that the standard does not indude the basic goods and the beans,

but ... the beans and the basic goods.

4 At the end of the present chapter, we write d the demand vector in order to avoid

any confusion with the ‘differential’ operator d.

5 A model is d-regular if the square matrix (d,d4,dA%,...,dA""") is regular.

6 Labour values and the problem of transformation

1

(%,

10

In this chapter quotations from Capital are generally drawn from the
unabridged edition, published by International Publishers. Roman numerals
correspond to the volume and Arab numerals stand for page numbers.

We have already noted the equality of labour values and wage prices at r=0:
A=p(0)/w (see chapter 2).

Referred to as the Marx—von Neumann regime in Abraham-Frois and Berrebi
(1979, chapter 6).

See Abraham-Frois and Berrebi (1984a).

See Parys, 1982,

It seems that the first demonstration was due to Okishio, On Marx’s Production
Prices (in Japanese), Keizaigaku Kenkyu, 1972; A. Shaikh stated the procedure
in a paper presented at Yale University in Feb. 1973 and included in ‘Marx’s
theory of value and the transformation problem’ published in The Subtle
Anatomy of Capitalism, J. Schwartz edn., Goodyear Publishing Cy, 1977.

See chapter 1.

This comes down to saying that by producing one more unit of good i with a
negative value, less labour would be consumed. Indeed, values A in the model
(4, B, L] write BA=AA+ L that is, A=(B— A) 'L, assuming that (B— 4) has
an inverse. Further, in order to obtain a final production z, activity levels y must
establish yB=yA4+z. The aggregate labour in the system is thus yL=z(8
—A)"' L=2zAsince y(B— A)=zthatis, y=z(B— 4) ~'. When one more unit of
good i is produced, we have z=(0, 0,...,1, 0,...,0) and by assumption
yL=zA=4,<0.

The figures given here are different from those given by 1. Steedman, for he, as
well as Sraffa, but contrary to Marx, considers that wages are paid on surplus
and not ‘advanced’. Also see Morishima and Catephores for similar results,
1978, p. 29.

See Morishima, ‘Marx in the light of modern economic theory’, Econometrica,
July, 1974 and ‘Positive profits with negative surplus value: a comment’,
Economic Journal, December, 1976; Morishima and Catephores, Values,
Exploitation and Growth, 1978.

We made the same criticism of Morishima and Catephores in a previous work
(Abraham Frois, 1981, foreword). Also see Fujimori, Modern Analysis of Value
Theory, 1982, p. 73; P. Flaschel: ‘Actual labor values in a general model of
production’, Econometrica, March, 1983, p. 440.
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12 For a more general treatment of inefficiencies and outclassing appearing in such
a case, see Dumenil and Levy, 1982 and 1984, Fujimori, 1982.

13 The extension of such treatments to separately reproducible joint products is
immediate.

7 Switch in methods of production

1 Our italics.

2 Though Sraffa does not provide us with the demonstration.

3 Sraffa specifies that ‘the rate of profit is taken as the independent variable in this
connection; but the argument would not be affected if the wage, expressed in any
given commodity or composite commodity, were taken instead’ (footnote 1,
section 92).

4 1In this context, this does not mean a zero profitability, a zero rate of profit, buta
profit rate that is not greater than the uniform interest rate.

5 Also see Brody (1970), pp. 734.

6 See Bidard (1984), Salvadori (1982, 1984).

7 Itis worth emphasising that since systems (%) and (k) differ only by one activity,
one of them necessarily dominates the other.

8 Provided we choose the final consumption vector d as numeraire for prices.

9 If u=0, ‘wheat’ is chosen as a numeraire and its price is by definition constant.

10 We can see in the formulas that at a given w, p, is a decreasing function of r and p
is an increasing function of r if u=(u u,)>0.

11 Example inspired by Bidard (1984), p. 189.

12 See footnote 1 of section 96 in Production of Commodities by Means of
Commodities.

13 Sraffa assumes that a machine works with constant efficiency throughout its life,
which allows an additional simplification of notations; but such a restrictive
hypothesis is not necessary at all.

14 See for example Schefold (1978b) and Baldone (1974).

15 For more details refer to Schefold (1971-1978), Baldone (1974) and Roncaglia
(1971), X. Galiegue (1985).

16 See Baldone (1974) and Schefold (1978b).

17 Anextreme case is when the net return of a machine F, is constant from its first
day of use until the end of time. In such a case we would have

s F m F,
m_ = vh d m_ m-— _1
Po ,; A +r) Pr and py = py ,

The machine is not only everlasting but its price is also constant whatever the
period of use.

18 In a von Neumann model with more than two goods several algorithms can be
used to find the solution (see for example Morgenstern and Thompson,
Mathematical Theory of Expanding and Contracting Economics, D.H. Heath,
Lexington, Mass., 1976; also see Afriat, “Von Neumann’s economic model’ in
M. Dore, S. Chakravarty and R. Goodwin (eds), John Von Neumann and
Modern Economics, Clarendon Press, Oxford, 1989).
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8 The dynamic evolution

1

13
14
15

16
17

18

19
20
21

The following developments can easily be generalised to the case of joint
production satisfying demand in a context of g-efficiency. However, we have
chosen to keep the simplest presentation.

For further information about the stability of the system, refer to Solow and
Samuelson: ‘Balanced growth under constant returns to scale’, Econometrica,
21, July 1953.

Called ‘discounted prices’ by Malinvaud (1982, chapter 10). Also see Bliss
(1975), Burmeister (1980), d’Autume (1982).

Our translation from French.

For simplicity’s sake, we assume that the rate of profit demanded by the
capitalists in the different. activities is uniform. The following results can be
applied to the case of differentiated rates of profit: see, Catzand Laganier (1984).
For a more general treatment see Catz and Laganier (1984).

Note that this can be obtained by applying to prices the results obtained by
Solow and Samuelson (1953) concerning balanced growth.

For further information see d’Autume (1985), Schefold (1985a and b).

This assumption is temporary and will be relaxed later on, see section 8.3.

The following developments owe a lot to Bidard’s work (1987), as well as to
those due to Kurz (1978), Montani (1972 and 1975), Guadrio Curzio (1980),
Saucier (1981), and Schefold. Also see Abraham-Frois and Berrebi (1980).
This analysis also holds with ‘advanced’ wages, and the rate of profit also applies
to the wages paid.

E. Lecouteux, ‘Principes économiques de la culture améliorante’, quoted by
Barthélemy, Economica, 1982, p. 63 (our translation).

This was well enhanced by Vidonne (1982) and Regnault (1984) among others.
Let '=1YVi.

The fertility order of two methods of cultivation is independent of distribution in
the specific case when each of the input and labour coefficients used on land 4 is
less than or equal to the corresponding coefficient of land B (with a strict
inequality for at least one of the coefficients). We find here (by generalising them)
the results of the Ricardian analysis. For further information see Boudhiaf
(1985).

For an arithmetical example, see Abraham-Frois and Berrebi, 1980, pp. 40-2.
We make here the same assumption, that we shall relax later on, as in the
previous developments (unsaturated land ).

The reasons behind the appearance of that new method of production are not
analysed here; they would require specific developments. We could suppose that
it is due to an ‘exogenous’ technical improvement (an innovation in Schum-
peter’s sense) or we may as well assume that it is due to the conditions of
production, distribution or the social characteristics of the system.

Capital, volume III, p. 740. Our italics.

About this problem, see Abraham-Frois and Berrebi, 1980, pp. 27-30.

If wheat, basic, enters the production of iron, the previous formulation still
holds provided #=[b'(1+r)aj, +(1+r)a,,]/t’ with i=1,2 and a,, being the
quantity of wheat required for the production of one unit of iron.
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22 Our translation from French.

23 This looks like the overaccumulation crisis described by Marx; for a presen-
tation and reinterpretation see Abraham-Frois and Berrebi, 1976, pp. 391-2 and
Abraham-Frois, 1984, pp. 187-93.

24 Assuming of course a uniform rate of profit and wage.
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